Electromechanical behaviour of CGG-type compounds at non-ambient temperatures

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doktor der Wissenschaften

presented by
CYRIL THYBAUT
born 13th August 1978
citizen of France

accepted on the recommendation of
Prof. W. Steurer, examiner
Dr. J. Schreuer, co-examiner
Prof. L. Bohatý, co-examiner

2004
Abstract

This work focuses on the investigation of electromechanical properties of LGS (La$_3$Ga$_6$SiO$_{14}$), LGT (La$_3$Ga$_{5.5}$Ta$_{0.5}$O$_{14}$), CGG (Ca$_3$Ga$_2$Ge$_4$O$_{14}$) and SGG (Sr$_3$Ga$_2$Ge$_4$O$_{14}$) between 100K and 1800K. These compounds belong to the CGG structure type and are potential candidates for the replacement of α-quartz in piezoelectric devices.

For this purpose the innovative method of resonant ultrasound spectroscopy has been applied in combination with certain standard techniques. The analysis of resonance spectra has been improved in order to obtain more reliable piezoelectric stress constants and to extract information about the individual quality factors of resonances. In addition to accurate sets of relevant electromechanical parameters (dielectric, piezoelectric and elastic constants) and their temperature derivatives as well as coefficients of thermal expansion significant progress towards the understanding of the strong ultrasonic losses in CGG-type materials at high-temperatures could be achieved. Regardless of chemical composition and cation disorder all investigated crystal species show strong ultrasound dissipation effects with a loss maximum between 900 and 1300K. This behaviour is characteristic for point defect relaxation according to Debye’s theory but the nature of the defects remains unknown. In LGT a second Debye peak could be observed at about 800K with an activation energy of the relaxation process of about 1.05eV.

Further, the elastic shear stiffnesses of CGG-type compounds show distinct anomalies. Their evolution with temperature is in most cases non-linear with an increase of the temperature coefficient to lower temperatures. In general the temperature coefficients of C_{66} and C_{44} vanish close to room temperature and become positive at lower temperatures. This behavior indicates a structural instability that might lead to a phase transition at lower temperatures (below 100K) or higher pressures.

Finally, a strong dependence of electrical properties on the thermal history of samples has been discovered. Thermal treatment at temperature above about 1000 K in high-vacuum or atmospheres with low oxygen partial pressure induces oxygen defects which, for instance, lower the dielectric constant ε_{33} of LGS and LGT by about 20%. This observation provides a simple explanation for the scatter of literature values.
Résumé

Ce travail s’est concentré sur l’analyse des propriétés électromécaniques du LGS (La₃Ga₅SiO₁₄), LGT (La₃Ga₅.₅Ta₀.₅O₁₄), CGG (Ca₃Ga₂Ge₄O₁₄) et SGG (Sr₃Ga₂Ge₄O₁₄) entre 100K et 1800K. Ces composés ont des structures de type CGG et sont des candidats potentiels pour le remplacement du quartz α dans les applications piézoélectriques.

Dans cet objectif, la spectroscopie par résonance à ultrason a été utilisée en combinaison avec d’autres méthodes standards. L’analyse des spectres de résonances a été optimisée pour obtenir des valeurs les plus précises possibles des constantes piézoélectriques et pour extraire des informations sur les facteurs de qualités propres à chaque résonance. En plus de données précises sur les paramètres électromécaniques importants (constantes diélectriques, piézoélectriques et élastiques) et leurs dérivées par rapport à la température ainsi que les coefficients d’expansion thermique, des progrès significatifs ont été accomplis quant à la compréhension des fortes pertes ultrasoniques apparaissant à hautes températures dans ces matériaux. Indépendamment de leur composition chimique et du désordre affectant leurs cations, tous les composés étudiés montrent une forte dissipation ultrasonique dont le maximum se situe entre 900K et 1300K. Selon la théorie de Debye, ce comportement caractérise la relaxation de défauts ponctuels, la nature de ceux-ci restant inconnue. Dans le langatate, un deuxième pic de Debye ayant une énergie d’activation de 1.05eV a été observé à environ 800K.

De plus, les constantes élastiques des matériaux de type CGG ont un comportement particulier. Leur évolution avec la température n’est pas linéaire. En général, les coefficients C₆₆ et C₄₄ ont une rupture de pente aux alentours de la température ambienne et leur dérivées par rapport à la température deviennent positives à des températures plus basses. Ce comportement indique une instabilité de la structure qui peut conduire à une transition de phase à basses températures (en dessous de 100K) ou à haute pression.

Finalement, une forte dépendance des propriétés électriques en fonction de l’histoire thermique spécifique à chaque échantillon a été découverte. Le chauffage à des températures supérieures à 1000K dans un vide poussé ou dans une atmosphère ayant une faible pression partielle d’oxygène crée des défauts en oxygène qui peuvent diminuer la constante diélectrique ε₃₃ de LGS et LGT d’environ 20%. Cette observation explique la dispersion des valeurs des
constantes électriques trouvées dans la littérature.