Doctoral Thesis

Mechanistic studies of a chorismate mutase from Bacillus subtilis

Author(s):
Kienhöfer, Alexander

Publication Date:
2005

Permanent Link:
https://doi.org/10.3929/ethz-a-005015230

Rights / License:
In Copyright - Non-Commercial Use Permitted
Mechanistic studies of a Chorismate Mutase
from *Bacillus subtilis*

A dissertation submitted to the

Swiss Federal Institute of Technology (ETH) Zurich

For the degree of

Doctor of Natural Sciences

Presented by

Alexander Kienhöfer

Dipl. Chem. Universität Konstanz
Born February 15, 1973
From Germany

Accepted on the recommendation of
Prof. Dr. Donald Hilvert, examiner
Prof. Dr. Dario Neri, co-examiner

Zürich, 2005
Abstract

Chorismate mutase catalyzes the Claisen-rearrangement of (-)-chorismate to prephenate, the first committed step in the biosynthesis of phenylalanine and tyrosine. *Bacillus subtilis* chorismate mutase (BsCM) was used as a model system to study the catalytic mechanism of the enzyme. Mutagenesis, enzymological, and crystallographic studies of BsCM have shown that arginine at position 90 is very important for the 10^6-fold rate acceleration provided by the enzyme, probably by stabilizing the developing negative charge at the ether oxygen in the transition state. It was further concluded from crystallographic and Fourier transform infrared studies of the enzyme and its complex with prephenate and a transition state analogue inhibitor that the enzyme shows considerable structural changes upon substrate binding and especially that the C-terminal tail might serve as a lid for the active site upon substrate binding. These two aspects of the enzyme were studied in this work.

In order to determine whether the ability of arginine to form hydrogen bonds or its positive charge is essential for catalysis, we have replaced it with non-proteinogenic analogues by chemical semisynthesis. The analogues chosen were citrulline, homo-lysine, and 4,4-difluoroarginine; the latter was synthesized in 17 linear steps starting from N-Boc-D-serine methylester. For semisynthesis, the enzyme was divided into two parts between Lys87 and Cys88. The C-terminal 40 amino acids that contained the mutated position as third last residue were synthesized by solid phase peptide synthesis (SPPS) and all variants were obtained in sufficient yield after optimizing the synthesis. Aspartimide formation during SPPS of the 40-mer required the introduction of an Asp102Glu mutation in this fragment (variants containing this mutation are designated as BsCM*). The N-terminal 87 residues were biosynthesized in *Escherichia coli* as an intein fusion. After capturing the intein splicing intermediate with a thiol, the N-terminal fragment was obtained as an activated thioester at its C-terminus. The two fragments were then coupled by native chemical ligation under denaturing conditions. After folding and purification, the three mutant enzymes were obtained and characterized. To validate the method, the enzyme with the wild-type arginine residue at
position 90 was prepared as well. It was indistinguishable from the recombinant enzyme with respect to its activity and biophysical properties.

The Arg90Cit BsCM* mutant described in Chapter 2, which contains an isosteric but uncharged substitution at position 90, shows a dramatic loss in activity. Its k_{cat} value is only $0.0026 \pm 0.0001 \text{ s}^{-1}$, more than four orders of magnitude lower than that of wild-type BsCM, whereas its K_m value is only increased three-times to $270 \pm 40 \mu\text{M}$. Its K_i value of $6.8 \pm 0.2 \mu\text{M}$ displayed a similar increase as the K_m parameter. These observations support the role of electrostatic transition state stabilization in catalysis by the enzyme chorismate mutase.

In Chapter 3 two mutants of BsCM are described in which Arg90 is replaced either by homo-lysine or by 4,4-difluoroarginine, residues with positively charged side chains. The kinetic parameters determined for Arg90homo-Lys BsCM* were $k_{\text{cat}} = 0.013 \pm 0.001 \text{ s}^{-1}$ and $K_m = 510 \pm 70 \mu\text{M}$. The enzyme was inhibited by the transition state analogue 1 with a K_i value of $7.6 \pm 1 \mu\text{M}$. Thus, the increase in K_m and K_i are comparable and approximately five-times higher than the corresponding values for the wild-type enzyme. The k_{cat} value of Arg90homo-Lys BsCM* is 3500-fold lower than that for BsCM* and only five-times higher than for Arg90Cit BsCM*. This suggests that either the decreased steric requirement or the decreased number of hydrogen bond donor sites of the ammonium group compared to the guanidinium group of arginine causes the side chain of homo-lysine to be improperly oriented for efficient catalysis.

The kinetic parameters were also determined for the Arg90F2Arg BsCM* mutant. Its k_{cat} value of $47 \pm 6 \text{ s}^{-1}$ is indistinguishable from that of BsCM* and in good agreement with the published kinetic parameters for wild-type BsCM. The K_m value of $190 \pm 40 \mu\text{M}$ is increased by two-fold compared to that of BsCM*. A similar increase to $3.3 \pm 0.5 \mu\text{M}$ was found for the K_i value. The pH dependence of the reaction catalyzed by the Arg90F2Arg BsCM* variant was also examined. The apparent pK_a values obtained for Arg90F2Arg BsCM* for two ionizing groups are 4.21 ± 0.08 and 8.66 ± 0.06. The first pK_a value for Arg90F2Arg BsCM* is similar to that of the wild-type enzyme, but the second is shifted by almost 0.6 pK_a units from 9.22 to 8.66.

The slight increase in k_{cat} and large increase in K_m with increasing pH observed for Arg90F2Arg BsCM* indicates that deprotonation of the enzyme happens before the
substrate binds. The pK_a value of 8.66 consequently reflects ionization of the free enzyme and the apparent pK_a value increases considerably upon complexation of the active site with the substrate. Assuming the high pK_a can be attributed to the deprotonation of Arg90, this is an example of how dramatic pK_a values can change inside the active pocket of an enzyme. It also provides further evidence for the need for electrostatic stabilization of the polarized transition state.

The structural and dynamical consequences of ligand binding to the monofunctional chorismate mutase from *Bacillus subtilis* have been investigated by solution NMR spectroscopy in the second part of this thesis. TROSY methods were employed to assign 98% of the backbone $^1H^N$, $^1H^{\alpha}$, ^{15}N, $^{13}C'$ and $^{13}C^{\alpha}$ resonances as well as 86% of the side-chain ^{13}C resonances of the 44 kDa trimeric enzyme at 20°C. This information was used to map chemical shift perturbations and changes in intramolecular mobility caused by binding of prephenate or a transition state analogue onto the X-ray structure. Model-free interpretation of backbone dynamics for the free enzyme and its complexes based on ^{15}N relaxation data measured at 600 and 900 MHz showed significant structural consolidation of the protein in the presence of bound ligand. In agreement with earlier structural and biochemical studies, substantial ordering of ten otherwise highly flexible residues at the C-terminus is particularly notable. The observed changes suggest direct contact between this protein segment and bound ligand, providing support for the proposal that the C-terminus can serve as a lid for the active site, limiting diffusion into and out of the pocket and possibly imposing conformational control over substrate once bound. Other regions of the protein that experience substantial ligand-induced changes also border the active site or lie along the subunit interfaces, indicating that the enzyme adapts dynamically to ligands by a sort of induced fit mechanism. It is believed that the mutase-catalyzed chorismate-to-prephenate rearrangement is partially encounter controlled, and backbone motions on the millisecond time scale, as seen here, may contribute to the reaction barrier.
Zusammenfassung

Um herauszufinden, ob die Fähigkeit von Arginin Wasserstoffbindungen auszubilden, oder seine positive Ladung, notwendig ist für die Katalyse, haben wir es durch chemische Semisynthese mit nicht proteinogenen Analoga ersetzt. Die ausgewählten Analoga waren Citrullin, *homo*-Lysin und 4,4-Difluoroarginin, letzteres wurde in 17 linearen Schritten ausgehend von *N*-Boc-D-Serinmethylester synthetisiert. Für die Semisynthese wurde das Enzym zwischen Lys87 und Cys88 in zwei Fragmente aufgeteilt. Das C-terminale 40-mer, das die mutierte Position an drittletzter Stelle enthielt, wurde durch Festphasenpeptidsynthese (SPPS) hergestellt und alle Varianten konnten, nach Optimierung der Synthese, in ausreichenden Mengen erhalten werden. Aspartimid-Bildung während der SPPS erforderte die Einführung einer Asp102Glu Mutation in diesem Fragment (Varianten die diese Mutation enthalten werden als BsCM* bezeichnet). Das aus 87 Aminosäuren bestehende N-terminale Fragment wurde durch Biosynthese in *Escherichia coli* als Fusion mit einem Intein hergestellt. Nachdem das Spelßintermediat mit einem Thiol abgefangen wurde, wurde es mit einem

Die in Kapitel 2 beschriebene Arg90Cit BsCM* Mutante, die eine isosterische aber ungeladene Substitution an Position 90 enthält, zeigt eine dramatisch verringerte Aktivität. Ihr \(k_{\text{cat}} \) Wert ist nur \(0.0026 \pm 0.0001 \, \text{s}^{-1} \) und damit mehr als vier Größenordnungen unter dem des Wildtyps. Sein \(K_m \) Wert dagegen ist nur dreifach erhöht auf \(270 \pm 40 \, \mu\text{M} \). Eine ähnliche Erhöhung auf \(6.8 \pm 0.2 \, \mu\text{M} \) konnte für den \(K_i \) Wert gemessen werden. Diese Ergebnisse unterstützen die Rolle der elektrostatischen Stabilisierung des Übergangszustandes als wichtigen Faktor der Katalyse durch Chorismat-Mutase.

In Kapitel 3 sind zwei Mutanten von BsCM beschrieben, bei denen Arg90 entweder durch homo-Lysin oder 4,4-Difluoroarginin ersetzt wurde. Beides sind Aminosäuren mit positiv geladenen Seitenketten. Die kinetischen Parameter, die für Arg90homo-Lys BsCM* bestimmt wurden, waren \(k_{\text{cat}} = 0.013 \pm 0.001 \, \text{s}^{-1} \) und \(K_m = 510 \pm 70 \, \mu\text{M} \). Das Enzym wurde durch das Übergangszustandsanalogon 1 mit einem \(K_i \) Wert von \(7.6 \pm 1 \, \mu\text{M} \) inhibiert. Die Zunahmen von \(K_m \) und \(K_i \) sind vergleichbar und die Werte sind ca. fünfmal höher als die entsprechenden des Wildtyp-Enzyms. Der \(k_{\text{cat}} \) Wert von Arg90homo-Lys BsCM* ist 3500-mal tiefer als derjenige von BsCM* und nur fünfmal höher als der von Arg90Cit BsCM*. Eine Erklärung dafür könnte sein, dass entweder die geringeren sterischen Ansprüche, oder die geringere Zahl möglicher Wasserstoffbrückendonoren der Ammonium-Gruppe im Vergleich mit der Guanidinium-Gruppe von Arginin, dafür sorgt, dass die Seitenkette von homo-Lysin nicht korrekt orientiert ist, um eine effiziente Katalyse zu gewährleisten.

Die kinetischen Parameter wurden auch für die Arg90F2Arg BsCM* Mutante bestimmt. Ihr \(k_{\text{cat}} \) Wert von \(47 \pm 6 \, \text{s}^{-1} \) ist ununterscheidbar von dem von BsCM* und in guter Übereinstimmung mit publizierten Werten für das Wildtyp-Enzym. Der \(K_m \) Wert
nimmt, im Vergleich zu BsCM*, um einen Faktor zwei zu auf 190 ± 40 µM. Eine ähnliche Zunahme auf 3.3 ± 0.5 µM wurde für den K_i Wert gefunden. Die pH-Abhängigkeit der durch Arg90F2Arg BsCM* katalysierten Reaktion wurde ebenfalls untersucht. Die für zwei ionisierbare Gruppen von Arg90F2Arg BsCM* erhaltenen pK_a Werte waren 4.21 ± 0.08 und 8.66 ± 0.06. Der erste pK_a Wert von Arg90F2Arg BsCM* ist vergleichbar mit dem des Wildtyp-Enzyms, aber der zweite ist um fast 0.6 pK_a Einheiten von 9.22 nach 8.66 verschoben.

Die geringe Zunahme von k_{cat} und die große Zunahme von K_m mit zunehmendem pH, die für Arg90F2Arg BsCM* beobachtet wurde, weist auf eine Deprotonierung des Enzyms vor der Substratbindung hin. Der pK_a Wert von 8.66 entspricht daher der Ionisierung des freien Enzyms und er steigt nach der Substratbindung beträchtlich an. Unter der Annahme, dass der höhere pK_a Wert der Deprotonierung von Arg90 zugeordnet werden kann, ist dies ein Beispiel dafür wie stark sich pK_a Werte in der aktiven Tasche eines Enzyms ändern können und liefert weitere Hinweise für die Notwendigkeit der elektrostatischen Stabilisierung des polarisierten Übergangszustands der Reaktion.

In Kapitel 4 wurden die strukturellen und dynamischen Auswirkungen der Substratbindung auf die monofunktionale Chorismat-Mutase von *Bacillus subtilis* mit Hilfe von NMR in Lösung untersucht. Es wurden TROSY Methoden verwendet, um 98% der $^{1}H, ^{1}H^{\alpha}, ^{15}N, ^{13}C$ und $^{13}C^{\alpha}$ Resonanzen des Rückgrats und 86% der ^{13}C Resonanzen der Seitenketten des 44 kDa schweren homotrimeren Enzyms bei 20°C zuzuordnen. Diese Information wurde verwendet, um Veränderungen der chemischen Verschiebung und der intramolekularen Mobilität, die durch Ligandbindung verursacht werden, auf die Kristallstruktur zu projizieren. Modell-freie Interpretation der Dynamik des Rückgrats für das freie Enzym und seine Komplexe mit Prephenat und dem Inhibitor 1, basierend auf ^{15}N Relaxationsdaten, die bei 600 und 900 MHz gemessen wurden, zeigten eine signifikante strukturelle Festigung des Proteins in der Gegenwart von gebundenem Ligand. Eine substantielle Ordnung von zehn ansonsten hoch flexiblen Aminosäuren am C-Terminus ist besonders erwähnenswert. Dies ist in Übereinstimmung mit früheren strukturellen und biochemischen Forschungsergebnissen. Die beobachteten Veränderungen weisen auf einen direkten
Kontakt dieses Proteinsegments mit dem gebundenen Liganden hin, ein weiteres Indiz für die These, dass der C-Terminus als Deckel für die aktive Tasche fungieren kann und dadurch die Diffusion in und aus der Tasche limitiert und möglicherweise konformationelle Kontrolle über das gebundene Substrat ausübt. Andere Regionen des Proteins, die Ligand induzierte Veränderungen erfahren, sind ebenfalls nahe der aktiven Tasche oder liegen entlang der Interfaceregion der Untereinheiten. Dies ist ein Hinweis darauf, dass sich das Enzym durch eine Art “induced fit” Mechanismus dynamisch an den Liganden anpasst. Man nimmt an, dass die Mutase-katalysierte Umlagerung von Chorismat nach Prephenat teilweise Begegnungs-kontrolliert ist und Rückgrat-Bewegungen auf einer Millisekunden Zeitskala, wie sie hier beobachtet wurden, zur Reaktionsbarriere beitragen.