Doctoral Thesis

Scanning probe techniques for dopant profile characterization

Author(s):
Stangoni, Maria Virginia

Publication Date:
2005

Permanent Link:
https://doi.org/10.3929/ethz-a-005061495

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
Scanning Probe Techniques for Dopant Profile Characterization

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Sciences

presented by
MARIA VIRGINIA STANGONI
Laurea di Dott. in Ingegneria
University of Cagliari
born March 4th 1972
citizen of Italy

accepted on the recommendation of
Prof. Dr. Wolfgang Fichtner, examiner
Dr. Vito Raineri, co-examiner

2005
Abstract

In the present work, the imaging and the quantitative doping profiling capabilities of Scanning Capacitance Microscopy (SCM) and Scanning Spreading Resistance Microscopy (SSRM) for nanometer scale devices are investigated.

Special attention has been paid to the development and the optimization of dedicated processes for the preparation of suitable cross-sectioned samples. In fact, the control of surface characteristics such as roughness, state density, and fixed charges has been demonstrated to be a crucial factor for reproducible and quantitative results.

The exploration of the physical limits of the SCM technique has been assisted by two- and three-dimensional simulations of the measurement process. In particular, device simulation has been applied to quantify the maximum achievable accuracy in the determination of doping profiles and in the delineation of the electrical junction. In this respect, a novel technique is proposed, which represents an efficient alternative to the capacitance spectroscopy for the quantitative localization of the electrical junction in bipolar samples. The capabilities of SCM have been assessed with own measurements and with experimental data from a round robin experiment, which has involved several European laboratories.

SSRM measurements have been carried out on the same samples characterized by SCM and the peculiarities of both techniques are discussed. In particular, this work points out the impact of the different parasitic components that contribute to the formation of the SSRM signal, leading to the observed deviation of the measured characteristics from the curves predicted by the spreading theory. It is also shown that for this reason the quantitative doping profiling by
SSRM requires an accurate case-by-case calibration. The SSRM measurement process has been simulated in two and in three dimensions both to quantify the weight of the parasitic series resistances and to ascertain the intrinsic limits of the technique in the delineation of the electrical junction in bipolar samples. These simulations demonstrate that due to the strong modification of the local carrier density through the injecting tip, SSRM cannot reach the same junction delineation capabilities as for SCM.

Progress has also been made in increasing the accuracy of the conversion of the free carrier SCM and SSRM profiles into the related doping profiles. For this purpose, a numerical solution scheme of the reverse modelling problem based on the use of Artificial Neural Networks has been developed.

The assessment of both techniques demonstrates that SCM and SSRM exhibit a large degree of complementarity. SCM has shown to be superior to SSRM in the case of complex large bipolar structures, whereas SSRM provides the excellent lateral resolution required to image nanometer scale devices.
Riassunto

Questo saggio tratta delle potenzialità di visualizzazione bidimensionale e di profilometria di drogaggio della Scanning Capacitance Microscopy (SCM) e della Scanning Spreading Resistance Microscopy (SSRM) applicate a dispositivi a semiconduttore di scala nanometrica. Poiché per l’ottenimento di risultati riproducibili e quantitativi si sono dimostrati cruciali aspetti quali la rugosità, la densità degli stati di superficie e delle cariche fisse, particolare attenzione è stata dedicata all’ottimizzazione dei processi di preparazione dei campioni di entrambe le tecniche.


Le prestazioni in termini di microscopia della SCM sono state accertate mediante il confronto di dati sperimentali propri e di misurazioni acquisite nel quadro di un progetto internazionale che ha coinvolto diversi laboratori europei.

Le peculiarità della SSRM sono state caratterizzate con gli stessi campioni utilizzati per la SCM, in modo da poter effettuare un confronto diretto. Queste misurazioni hanno evidenziato l’importanza delle diverse componenti parassite nella formazione del segnale SSRM, ciò che costituisce la causa principale della notevole discrepanza ri-
levata fra le caratteristiche sperimentali e quelle predette dalla teoria dello spreading di corrente. È stato inoltre dimostrato che la quantificazione dei profili di drogaggio acquisiti mediante SSRM richiede un’accurata fase di calibrazione preliminare da effettuarsi caso per caso.

Il processo di misura della SSRM è stato simulato in due e tre dimensioni. Questo ha permesso di valutare il peso relativo delle resistenze serie parassite, consentendo così di accertare il limite intrinseco della tecnica nella delineazione della giunzione elettrica in campioni bipolari. Le simulazioni dimostrano inoltre che, a causa della forte distorsione introdotta nella densità dei portatori dall’iniezione di corrente attraverso la punta, la SSRM non può raggiungere le stesse capacità di delineazione della giunzione elettrica appurate per la SCM.

Lo sviluppo di uno schema risoluzione numerica del problema della modellizzazione inversa basato sull’utilizzo di reti neurali artificiali ha consentito di migliorare la precisione nella conversione del profilo dei portatori liberi nel corrispettivo profilo di drogaggio. Questa nuova tecnica può essere usata sia per la SCM che per la SSRM.

Lo studio delle prestazioni in termini di microscopia della SCM e della SSRM ha confermato che entrambe le tecniche presentano caratteristiche complementari. La SCM si è dimostrata superiore alla SSRM nel caso di strutture bipolari estese e complesse, mentre la SSRM essendo capace di una risoluzione laterale eccellente, si è rivelata una tecnica più adatta alla visualizzazione di dispositivi su scala nanometrica.