HIV-Derived Lentiviral Vectors
Engineered for
Regulated Transgene Expression

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of
Doctor of Natural Sciences

Presented by
Barbara Maria Guarino
Dipl. Natw. ETH Zürich
born 24.05.1977
citizen of Italy and of Lugano (TI), Switzerland

Accepted on the recommendation of
Prof. Dr. Martin Fussenegger, examiner
Prof. Dr. Sabine Werner, co-examiner
Zurich, 2005
Summary

Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of the acquired immunodeficiency syndrome (AIDS). Capitalizing on a refined understanding of HIV-1 molecular biology following decades of intensive research on acquired immunodeficiencies, this well-evolved pathogen became a high-leverage gene therapy tool in 1996. HIV-derived lentiviral vectors have reached a state of development, which enables such clinical studies using these agents as gene delivery vehicles. They have particular advantages for certain *in vitro* and *in vivo* applications such as their ability to integrate their genetic material into the genome of a wide variety of difficult-to-transduce cells and tissues and to deliver therapeutic transgenes without eliciting significant humoral immune responses.

Current lentiviral expression vectors are the result of a progressive development rather than of a rational design and often lack convenient multiple cloning sites (MCS) and a modular set-up to increase compatibility with existing expression technologies. Thus, we engineered a set of flexible lentiviral vectors (self-inactivating lentiviral expression vectors containing extended MCS, multicistronic expression cassettes and various promoters and transgenes), capitalizing on state-of-the-art packaging and pseudotyping strategies. We obtained multi-functional lentiviral vectors, suitable for the transduction of a variety of cell lines and primary cells *in vitro* and for the *in vivo* transduction of chicken embryos.

For many molecular interventions (gene therapy treatments, therapeutic reprogramming of clinical cell phenotypes for tissue engineering or sophisticated gene-function analyses in the post-genome era) the achievement of adjustable transgene expression is one of the most important characteristics of a lentiviral vector. Merging latest-generation transduction technologies with advanced transgene control modalities, developed in our laboratory, we built up a variety of lentiviral particles for streptogramin- as well as erythromycin-responsive transgene expression, enabling efficient transgene regulation *in vitro* in different human primary cells and cell lines and *in vivo* in chicken embryos, where a morphometric analysis allowed us to precisely determine the angiogenetic effect of regulated transgenes.

Finally, considering the importance of optimal protocols for the large-scale production of clinical-grade therapeutic lentiviruses for use in the field of gene therapy and tissue engineering initiatives, we rigorously analyzed all the production-relevant parameters (transfection, cell density, media composition, temperature, relative vector concentrations and genetic configuration) for the
drafting of a standardized and optimized protocol for the production of HIV-derived lentiviral vectors.
Sommario


Gli attuali vettori di espressione lentivirali sono il risultato di uno sviluppo progressivo piuttosto che di un disegno razionale e quindi spesso mancano di siti multipli di clonaggio (MCS) e di un’organizzazione modulare che ne accrescano la compatibilità con le tecnologie di espressione esistenti. Per questo motivo sulla base di avanzate strategie di assemblaggio e pseudotyping abbiamo costruito diversi vettori lentivirali versatili (vettori di espressione lentivirali del tipo self-inactivating contenenti estese MCS, cassette di espressione multicistroniche e diversi promotori e transgeni). Abbiamo ottenuto vettori lentivirali multifunzionali, adatti per la trasduzione in vitro di vari tipi di linee cellulari e cellule primarie e per la trasduzione in vivo di embrioni di pollo.

Per molti interventi molecolari (trattamenti di terapia genica, riprogrammazione terapeutica di fenotipi cellulari per l’ingegneria di tessuti o sofisticate analisi di funzioni genetiche nell’era postgenomica), l’ottenimento di un’espressione regolabile del transgene è una delle più importanti caratteristiche di un vettore lentivirale. Fondando le tecnologie di trasduzione di ultima generazione con le avanzate modalità di controllo del transgene sviluppate nel nostro laboratorio, abbiamo costruito un gran numero di particelle lentivirali per un’espressione di transgene sensibile alla streptogramina e all’eritromicina, che permettono una regolazione efficiente di transgene in vitro in diverse cellule primarie umane e in diverse linee cellulari e in vivo negli embrioni di pollo, dove un’analisi morfometrica ci ha permesso di determinare con precisione l’effetto angiogenetico del transgene regolato.

Infine, considerando l’importanza di protocolli ottimali per la produzione su larga scala di lentivirus terapeutici di qualità per il loro uso nel campo della terapia genica e delle iniziative di ingegneria dei tessuti, abbiamo analizzato rigorosamente tutti i parametri rilevanti per la produzione.
dei virus (trasfazione, densità cellulare, composizione del terreno di cultura, concentrazione relativa di vettore e configurazione genetica), per la stesura di un protocollo standardizzato ed ottimizzato atto alla produzione di vettori lentivirali derivanti dall'HIV.