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Abstract Computer simulation of microscopic transport
and light emission in semiconductor nanostructures is of-
ten restricted to an isolated system of a single quantum well,
wire or dot. In this work we report on the development of
a simulator for devices with various kinds of nanostructures
which exhibit quantization in different dimensionalities. Our
approach is based upon the partition of the carrier densi-
ties within each quantization region into bound and unbound
populations. A bound carrier is treated fully coherent in the
directions of confinement, whereas it is assumed to be to-
tally incoherent with a motion driven by classical drift and
diffusion in the remaining directions. Coupling of the popu-
lations takes place through electrostatics and carrier capture.
We illustrate the applicability of our approach with a well-
wire structure.

Keywords Nanostructures · Optoelectronics · Transport ·
Luminescence · Quantum wells · Quantum wires

1 Introduction

Nanostructures have become an indispensable part of to-
day’s consumer technology in the form of quantum-well
(QW) lasers, light-emitting diodes (LEDs), or high electron
mobility transistors (HEMTs). Moreover, a plethora of pos-
sible future devices like nanowire transistors [1] and solar
cells [2], quantum wire (QWR) [3], dot (QD) [4] or pho-
tonic crystal [5] low-threshold lasers as well as applications
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in quantum information science [6] assert a constant stim-
ulus within the academic community. Computer simulation
has proven in the past to be able to contribute to the de-
velopment process by gaining understanding about the fun-
damental processes governing the behaviour of a structure.
Designs are optimized in an easy, fast and inexpensive way,
thus avoiding sometimes cumbersome and expensive fabri-
cation in the lab.

Research in carrier transport simulation is currently cen-
tered either on experimental nanodevices with near-ballistic
[7] or one-dimensional [8] transport using quantum mod-
els, or on industrial devices using classical or quasi-classical
models [9]. In optoelectronics, focus is put on predicting ac-
curate gain [10] and luminescence [11] spectra from quan-
tum theory, but transport through the device is mostly car-
ried out in a classical picture [12]. The underlying reason
for this conceptual inconsistency is the intricate situation
in a quantum well, wire or dot light emitter: gain spectra
have clear indications of low-dimensional quantum states,
but carrier injection is highly diffusive due to high tempera-
tures and carrier densities as well as the long travelling dis-
tance of a particle before it recombines (as opposed to, for
example, photoluminescence experiments). These opposites
suggest that a semi-coherent microscopic model would be
best suited. However, the only two quantum formalisms ca-
pable of such a treatment (the nonequilibrium Green func-
tion (NEGF) [13] formalism and the Wigner function for-
malism [14]) are out of reach from a numerical point of
view when the device is nonplanar and/or a few microns
big.

In this contribution we report on the development of a
new simulator aimed at applications in optoelectronics. It
is based on a mixed picture where carriers are described
quantum-mechanically in some directions and classically in
others. The fundamental concept we follow is that within
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a nanostructure, the carrier population partitions into car-
riers which have sufficient energy to leave the structure
and those which are confined to the structure. The lat-
ter population can only move in the unconfined directions
(two in a quantum well, one in a quantum wire, zero in a
quantum dot) and experiences enough scattering such that
transport in these directions is governed by drift and dif-
fusion. On the other hand, much less scattering occurs in
the confined directions because of their small extensions
and modified density of states, and the carrier is best de-
scribed by its quantum-mechanical wave function and en-
ergy which we determine by means of the popular k · p
method [15].

Rigorous adherence to this approach has the advantage
that it can be applied to structures which contain a combina-
tion of multiple wells, wires and dots. This is an uncommon
feature. The different transport problem dimensionalities of
the various populations lead to a system of coupled transport
equations defined on a diversity of spatial grids.

A similar approach to transport in nanostructures has
been presented in [16] in the sense that there is a k · p
Schrödinger problem solved together with a drift-diffusion
equation. However, our method differs in the assumption
that wavefunctions describe only bound carriers in the di-
rections where they are localized. They enter the transport
problem indirectly via their influence on the electrostatic
potential and recombination rates. The quasi-Fermilevel, on
which the current in both our model and the model in [16]
depends, is in our case not calculated from the quantum re-
sults. We believe that a purely classical picture is more suit-
able for carriers in large bulk regions. Our model thus as-
sumes that behaviour in such regions is governed by local
rather than nonlocal effects, hence restricting the computa-
tionally expensive nonlocal eigenvalue (Schrödinger) prob-
lems to the central parts of the device.

Limitations of our model lie in the assumption of type
I heterojunctions, equilibrium distributions within a car-
rier population and in the strict division between coher-
ent and incoherent directions. Furthermore, we consider
only steady-state transport and isothermal situations with a
globally constant temperature, although the latter limitation
could be overcome at a later stage.

The aim of this paper is twofold: In Sects. 2–4 the
reader is introduced to the model with the purpose of giv-
ing the complete set of transport (Sect. 2) and luminescence
(Sect. 3) equations entering our calculation as well as some
essential numerical considerations (Sect. 4). As the power of
a physical model in the end is always determined by its abil-
ity to describe real-world measurements, a first simulation
example of an experimentally realized well-wire structure
[17] is given in Sect. 5.

Table 1 Problem dimensionalities for different nanostructures

Bulk Well Wire Dot

Transport 3D 2D 1D –

Wavefunction – 1D 2D 3D

Fig. 1 Sketch of bound and unbound carrier populations

2 Transport in low-dimensional structures

Consistent partitioning into energetically bound and un-
bound carrier populations leads to the problem dimension-
alities given in Table 1. Each population has a separate con-
tinuity equation and a separate Schödinger equation in our
model. The populations are coupled through the electrosta-
tic potential, which is always solved on the bulk grid, and
through capture of carriers from high-dimensional into low-
dimensional populations. The charge density entering the
Poisson equation (10) includes the low-dimensional densi-
ties which are spread out according to their wavefunction
in the quantized directions. Capture acts as an outflow (re-
combination) on the high-dimensional grid and as an inflow
(generation) on the low-dimensional grid. Figure 1 gives a
schematic view of the situation.

2.1 Continuity equation

In the drift-diffusion model, carrier transport is determined
by the zeroth moment of the Boltzmann equation:

∇ · Jn − ∂n

∂t
= Rn − Gn, ∇ · Jp − ∂p

∂t
= Rp − Gp. (1)

n and p are the electron or hole particle densities, Rn,p and
Gn,p denote recombination and generation, and Jn,p is the
particle current given by

Jn = μnn∇EFn, Jp = μpp∇EFp, (2)

where μn,p are the mobilities and EFn,p the quasi-Fermi-
levels (QFL). Validity of a generalized Einstein relation [18]
between drift and diffusion processes at nonequilibrium is
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tacitly assumed. Consistent with our classical picture, a sin-
gle parabolic band is assumed as dispersion relationship
leading to

nd = N(d)
c Fd/2−1

(
EFn − Ec + eφ

kT

)
, (3a)

pd = N(d)
v Fd/2−1

(
Ev − eφ − EFp

kT

)
. (3b)

Here Fν stands for the Fermi integral of order ν, Ec,v denote
the conduction and valence band edges, e is the positive el-
ementary charge, φ is the electrostatic potential and T is the
temperature. The index d marks the dimensionality of the
carriers which affects the order of the Fermi integral as well
as the effective densities of states Nc,v :

N(d)
c,v = S(d)Γ (d/2)

(√
2me,hkT

2π�

)d

, (4)

where me,h are effective masses fitted to the density of states
at the band edge, S(d) is the volume of the d-dimensional
sphere and Γ the Euler Gamma function. Taking the Boltz-
mann limit of (3) and substituting everything into (2) leads
to

Jn = μn

(
n∇

(
Ec − eφ − d

2
kT logme

)
+ kT ∇n

)
, (5a)

Jp = μp

(
p∇

(
Ev − eφ + d

2
kT logmh

)
− kT ∇p

)
. (5b)

A materialwise constant mobility and the temperature-
and doping dependent Arora mobility model [19] are cur-
rently considered.

In addition to the drift and diffusion currents, a change in
bandgap or mass leads to corresponding currents. We model
these quantities in a continuous way. The given model natu-
rally takes into account heterojunctions based on the valid-
ity of (2) even for spatially varying band edges and masses.
Other widely used heterojunction models [20, 21] are re-
stricted to situations where the current essentially flows per-
pendicular to the junction and cannot be applied to intersec-
tions of three or more materials.

2.1.1 Recombination mechanisms

Our model employs the standard Shockley-Read-Hall
(SRH), Auger and radiative recombination mechanisms
[19]. In the latter, an alternative to the standard approach
was implemented in which recombination is calculated from
the luminescence as described in Sect. 3.2, without the need
of an additional material parameter. Doping and temperature
dependence was accounted for in the SRH minority carrier

lifetimes according to

τSRH = τmax

1 + ( N

NSRH
ref

)γ
·
(

T

300 K

)Tα

. (6)

2.1.2 Carrier capture

Capture acts as a recombination mechanism on the higher-
dimensional grid of the unbound population and as a genera-
tion mechanism on the lower-dimensional grid of the bound
population. As shown in Sect. 4.2, a geometrical factor en-
ters due to the different dimensionalities of the carriers. De-
pending on the structure, capture can happen between any
combination of bulk, well, wire and dot populations. The
model employed has been developed for quantum wells [22]
using equilibrium scattering rates, but the derivation can be
straightforwardly extended to wires and dots. The net cap-
ture rate is given by

Rcn = nd

τ

(
1 − nd-1

Nd-1

)(
1 − exp

(
EFn,d-1 − EFn,d

kT

))
,

(7a)

Rcp = pd

τ

(
1 − pd-1

Pd-1

)(
1 − exp

(
EFp,d − EFp,d-1

kT

))
.

(7b)

nd and pd are the unbound carrier densities while nd−1

and pd−1 are the bound low-dimensional well densities.
EF {n,p}{d,d−1} are the QFLs of the corresponding popula-
tions. Nd−1 and Pd−1 are the maximum bound electron and
hole densities which we determine by integrating the low-
dimensional density of states obtained from the k · p calcu-
lation up to the barrier bandedge.

Capture is hence proportional to the number of unbound
carriers, decreases with the filling of the bound states and
increases with QFL separation. When the bound population
is completely filled up, or when there is no difference in the
QFLs of the populations, net capture will be zero. This is the
situation demanded by a vanishing current in equilibrium.
Omission of the exponential term would lead to unphysical
effects as this would mean at equilibrium that either the bulk
density has to vanish within the nanostructure or the bound
population must be completely filled, both of which are not
reflecting the physical situation.

2.1.3 Correction of bandedges within a quantum region

An unbound carrier within a quantum region must have at
least the energy of the barrier bandedge, not of the quan-
tum region bandedge. Hence it is necessary to substitute the
well, wire or dot bandedges with the barrier bandedge in the
continuity equations for the unbound carriers. This has the
consequence that unbound carriers experience no more band
offset when they enter the quantum region.
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2.1.4 Fermi statistics

For structures with degenerate doping, Fermi statistics need
to be considered. For example, (5a) is in the bulk case re-
placed by [18]

Jn = μn

(
n∇(Ec − eφ) − λ(3) 3

2
nkT logme + kT λ(3)∇n

)
,

(8)

where

λ(3)(ν) = ν

F−1/2(F −1
1/2(ν))

(9)

is a unitless function approaching 1 for ν → 0, evaluated at
ν = n

Nc
. Note that the resulting current can still be divided

in a drift and a diffusion part, with the modified Einstein

relation [18] Dn = μn
kT
e

F1/2(
EF −Ec

kT
)

F−1/2(
EF −Ec

kT
)
.

2.2 Electrostatics

In addition to the continuity equations, the Poisson equation
is solved:

∇ · (ε∇φ) = e(p(tot) − n(tot) + ND − NA). (10)

e(ND − NA) is the net ionized dopant charge density, ε =
εsε0 the static permittivity and n(tot), p(tot) are the total car-
rier densities, i.e. the sum of bulk and low-dimensional car-
rier densities. Incomplete dopant ionization is treated in the
standard way found e.g. in [18].

The low-dimensional carrier densities are spread out in
the quantized directions according to their wavefunctions:

nd(x//, x⊥) = nd(x//)
∑
nk

fnk|ψnk(x⊥)|2, (11)

and similarly pd (d = 0,1,2). Here the three-dimensional
coordinate x is split tensorially into coordinates x// of
the low-dimensional transport grid and x⊥ of the low-
dimensional Schrödinger grid. fnk is an appropriate weight-
ing of the wavefunctions ψnk, usually the Fermi factor
(1 + exp(

Enk−EFn

kT
))−1 with some normalization. However

a variant is also implemented where only the lowest-lying
state is considered: fnk = δn0δk0.

2.3 Boundary conditions for the drift-diffusion equations

We employ the standard drift-diffusion boundary conditions.
For the continuity equation this means charge neutrality
within a contact and Neumann conditions elsewhere. The
Poisson equation has Dirichlet conditions at the contacts,
where the potential is found from the densities and the fixed

Fermilevels using (3) or its Boltzmann approximation, and
Neumann conditions elsewhere. Due to reasons elaborated
in Sect. 5, only bulk carrier populations are contacted di-
rectly.

2.4 A note on the quasi-Fermilevels

In the proposed model, the drift-diffusion QFLs assuming
parabolic bands do not coincide with the QFLs obtained
from the k · p bandstructure using the same density. While it
is consistent to use the former quantities in the transport sim-
ulation, the latter need to be employed in the luminescence
calculation as well as in the factors fi in (11). At thermal
equilibrium, the solution will only enforce the parabolic-
band-QFLs to be constant. A possible improvement of this
model would be to fit the effective masses entering the trans-
port equations to the k · p results, thus improving the quasi-
Fermilevels entering the capture equations (7).

3 Luminescence from nanostructures

3.1 Band structure

Spontaneous emission spectra can be obtained from knowl-
edge of the band structure and the carrier densities (or,
equivalently, the QFLs). We employ the widely used k · p
method [15, 23] to calculate the band structure in the vicin-
ity of the Γ -point. Advantages over other methods are the
applicability of a common formalism to all types of nanos-
tructures, easy incorporation of strain, parameter availability
for all optoelectronic materials and reasonably fast compu-
tation times such that it can be employed in a self-consistent
calculation together with a transport simulation. However,
standard k · p methods fail to incorporate effects from mate-
rial interfaces and remote k-points. Details of the formula-
tion and implementation are discussed in [24].

3.2 Luminescence

We employ multiband versions of the luminescence calcu-
lations using thermalized carrier densities elaborated in [25]
for wells and more generally in [26]. For accurate lumines-
cence and gain spectra, it is important to include carrier–
carrier interactions. We are currently working on an imple-
mentation of many-body effects on the screened Hartree-
Fock (SHF) level which is able to describe excitonic effects
as well as bandgap renormalization and phenomenological
scattering. However, the results presented in Sect. 5 use free-
carrier theory in which the position- and energy-resolved
spontaneous emission rate is given by [25]
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L(x,�ω)

= e2nr�ω

π�2c3m2
0ε0

1

(2π)d

∑
m,n

∑
k

Mnm(k)

×Γ (�ω,Enk − Emk)f (Enk,EFn)(1 − f (Emk,EFp)).

(12)

Here nr is the background dielectric constant, m0 is the bare
electron mass, m and n denote electron and hole subbands,
and Γ is a normalized lineshape function centered around
Enk − Emk which we choose to be of cosh−1-type. Mnm(k)

is the momentum matrix element between electron state nk
and hole state mk. Note that the spin is included in the sub-
band indices.

The luminescence L(x,�ω) is coupled to the continuity
equation as a recombination mechanism:

Rlumi(x) =
∫ ∞

0
d(�ω) L(x,�ω). (13)

The spectrum and the total output power of the device are
then found by

P(�ω) =
∫

dx L(x,�ω), P =
∫ ∞

0
d(�ω) P (�ω).

(14)

4 Numerical solution

4.1 Discretization of the transport problem

The well-known Scharfetter-Gummel box-method discreti-
zation [27] is employed for the continuity equations and a
finite volume discretization for the Poisson equation. The
resulting equations, whose form is independent of grid di-
mensionality, are given in the Appendix.

4.2 Interpolation between grids

As the transport of bound carriers is restricted to fewer di-
mensions than in the bulk case, the corresponding continu-
ity equations are also solved on different, low-dimensional
grids. This creates the need to interpolate the following
quantities:

– The electrostatic potential, defined on the bulk grid, must
be interpolated onto the low-dimensional grids. To do so,
we determine for each low-dimensional vertex its posi-
tion within the bulk grid and interpolate linearly from the
vertices constituting the bulk element it lies in:

φ(x
(i)
dD) =

∑
j

λijφ(x
(j)

3D),
∑
j

λij = 1. (15)

– Low-dimensional density must be included in the Pois-
son equation on the bulk grid. For this it is spread out in
the quantized directions with the energy-weighted sum of
wavefunctions (11). The low-dimensional transport grid
and the wavefunction grid compose a tensorial grid hav-
ing the same dimension but not being equivalent to the
bulk grid. Bulk grid vertices are written as a linear com-
bination of tensorial vertices and receive density with the
corresponding weights:

nd(x
(i)
3D) =

∑
j

λij nd((x//, x⊥)(j)),
∑
j

λij = 1. (16)

– For the capture rates (7) several low-dimensional quanti-
ties must be given on bulk vertices. For this a bulk vertex
is projected orthogonally onto the low-dimensional grid
and the projection is written as a linear combination of
low-dimensional vertices. The value on the bulk vertex is
the corresponding weighted sum of low-dimensional val-
ues.

– The captured density must be generated on the low-
dimensional grid. Distribution is not straightforward, as it
is important to generate the density homogeneously and
at the same time ensure particle conservation:

∑
i

V
(i)
2 G

(j)

2 (i) = V
(j)

3 R3(j), (17)

where i and j are low-dimensional and high-dimensional
vertices, V

(i,j)
d the respective Voronoi cell sizes and

G
(j)

2 (i) the generation at vertex i arising from capture
at vertex j . A proper treatment is cumbersome and would
involve projection of high-dimensional voronoi cells onto
the low-dimensional Voronoi cells and corresponding in-
tersection calculations. Instead the following approach is
used which is satisfactory for similar degrees of refine-
ment of both grids. First the bulk vertex j is projected
onto the low-dimensional grid. Then all low-dimensional
vertices i′ which are closer to that point than to any other
projected bulk vertex are determined, and the captured
density is distributed between these vertices according to
their Voronoi cell size:

G
(j)

2 (i) = V
(i)
2∑′

i V
(i′)
2

· V
(j)

3

V
(i)
2

R3(j). (18)

In cases where there are no low-dimensional vertices
closer to the projected point than to any other projected
point, the capture is given to the vertices constituting the
low-dimensional element in which the projection is lo-
cated. The total generation at a vertex i is the sum over all
bulk vertices j .
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4.3 Interpolation between k · p slices

The description of a bound carrier by its wavefunction in
the quantized direction would in fact require the solution of
a Schrödinger equation with varying electrostatic potential
at every point of the low-dimensional transport grid. This
would bring about an immense computational burden. We
instead select certain points in the low-dimensional trans-
port grid, termed k · p slices, where we perform the k · p
calculation for the spreading and luminescence. The spread-
ing shape, band structure and k · p-QFLs of the remaining
points are then interpolated linearly.

4.4 Newton method for the transport equations

The Poisson equation together with 2q + 2 continuity equa-
tions (where q is the number of quantum structures in the
device) forms a system of nonlinear equations which is
solved by a Newton procedure. Our implementation features
an advanced dependency and timestamp concept which is
completely independent of the actual solved equations. This
allows fast and conceptually clear implementation of new
models. The solver is able to assemble the total derivatives
with respect to Newton variables entering the Jacobian using
only partial derivatives and the chain rule.

The basic entity of the developed solver is an equation
class which encapsulates a number of equations for the same
number of solution variables of some entity. Each of these
classes has a list of dependencies on other classes. The
solver makes a basic distinction between explicit equations,
where the solution variable can be computed directly from
the variable values of the dependencies, and implicit equa-
tions where such a relation cannot be given and the equation
must be solved by the Newton algorithm. Examples are the
Poisson equation as an implicit equation and (5) as an ex-
plicit equation. The solution variable of the Poisson equa-
tion is the electrostatic potential, and its dependencies are
the various densities as well as the electrostatic permittivity.
The solution variable of (5) is the particle current and the
dependencies are the band edge, mass, density, temperature
and potential.

Only the partial derivatives with respect to the di-
rect dependencies need to be implemented for each equa-
tion/variable. Implicit equation objects hence compute the
Newton function and the partial derivatives with respect to
all direct dependencies of the equation, explicit equations
compute their own variable values and the partial deriva-
tives with respect to all dependencies of that formula.

The mentioned automatization has virtually no computa-
tion expense as the sparsity pattern of the Jacobian matrix is
determined prior to its computation. Like this only nonzero
matrix entries are actually computed.

We have implemented all necessary derivatives in our
equations, such that all quantities are solved simultaneously

and no Gummel iteration needs to be employed. We have
experienced good convergence with this method.

4.4.1 Linear solver and employed unit system

For the solution of the linear equation system, several
solvers can be chosen from. Pardiso [28] and Umfpack [29]
are freely available direct sparse system solvers. However,
we observed that the Jacobian can in rare cases get very
badly conditioned during the Newton iteration. In these
cases it is more convenient to work with an iterative solver
such as ILS [30] whose deflation of eigenvalues makes it
insensitive to this problem.

A reasonable choice of physical units also improves con-
vergence. The simulator is designed such that the unit sys-
tem can be set by giving four fundamental constants for
length, time, energy and charge. For quantum-sized struc-
tures, standard de Mari scaling [31] is not appropriate as the
whole device is much smaller than the diffusion length. We
usually choose the units 10 nm–1 ps–1 eV–1 e.

4.4.2 Solution of the transport problem

A couple of restrictions were applied to achieve convergence
in the solution of the transport equations:

• An inexact line search algorithm scales down the update
vector when needed such that the norm of the newly ob-
tained right-hand side is smaller than the old one. The
minimum scale is 10−5. However, especially far away
from the solution this criterion is not always met.

• Densities are kept above some minimum value at all
stages. While this does not change the device behaviour,
it drastically improves convergence at low voltages. Typ-
ical minimum densities are 10−11 cm−3 for 3D densities,
10−6 cm−2 for 2D densities and 10−12 cm−1 for 1D den-
sities.

• The electrostatic potential receives a maximum update of
±0.2 V and the k · p QFLs a maximum update of ±0.1 V.
This prevents overshoot during the first Newton iterations.

• The exponential factor in (7) is limited to e10.

The convergence criterion applied to each quantity reads

|�x|
|x| + nxxref

< ε. (19)

nx is the number of solution variables of a given quantity,
e.g. the number of vertices in case of the electrostatic po-
tential. x is the vector of solution variables of the quantity
and xref a reference size. We typically set xref = 0.1 V for
potentials, 1020 cm−3 for a 3D density, 1013 cm−2 for a 2D
density and 107 cm−1 for a 1D density. ε is a mixture of
relative and absolute error and is typically chosen as 10−6–
10−7. Please note that all of these numerical values were
determined by experience.
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4.4.3 Initial guesses

Choosing starting values for the densities and the potential
which are reasonably close to the solution is of the essence.
We solve (10) in the absence of space charge to obtain an
initial guess for the electrostatic potential. For the bulk and
quantized densities, the majority carriers are set to the dop-
ing value whereas the minority carries are set to the intrinsic
value.

4.5 k · p equations

Within this work, a stand-alone solver for 4 × 4, 6 × 6 and
8 × 8 zincblende and wurtzite problems using the finite el-
ement method has been developed. The eigenvalue problem
associated with k · p envelope equations for wells, wires and
dots and its numerical solution is elaborated in [24].

4.6 Self-consistence of transport and luminescence

The k · p calculation is an eigenvalue problem and cannot
be included in the Newton solution scheme of the trans-
port equations. It relies on the densities and the electro-
static potential and itself influences the transport equations
through radiative recombination and the spreading accord-
ing to (11). Therefore the transport and k · p calculations
need to be iterated until self-consistence is achieved. It was
shown [32] that this process may not converge unless a
predictor-corrector (PC) scheme is employed in which the
derivative of a quantity relying on band structure with re-
spect to the potential is predicted, even though the band
structure is kept constant in the Newton iteration. We have
indeed observed that outer convergence may fail at elevated
carrier densities unless the PC scheme is employed, in which
case one typically needs less than 10 iterations. Although in
[32] the carrier densities were expressed explicitly in terms
of the potential, their findings apply to our problem as well.

4.7 AQUA—A QUAntized structure simulator

All of the above has been realized in a highly object-
oriented C++ code which we call AQUA. Focus was put on
extendability, sustainability and clarity. Top-level program
steering is done using the scripting language Python. The
performance-critical sections of Jacobian and RHS assem-
bly, linear systems solver and eigenvalue solver are paral-
lelized. Figure 2 summarizes the simulation flow. AQUA
only relies on freely available software.

5 A quantum well-wire example

The AlGaAs–GaAs QWR LED structure investigated exper-
imentally in [17] provides a first validation of the applicabil-
ity of our developed simulator. Choosing an AlGaAs-based

Fig. 2 Simulation flow in AQUA

Fig. 3 Band edges (not to scale) and mesh of the QWR diode, and
doping profile of the QW diode structure [17]

device facilitates the analysis because the material system
has well-established parameter sets. The device consists of
a V-grooved QWR embedded in a series of QWs, two of
which (termed vertical QWs or VQWs) are contacted elec-
trically. The device is expected to operate by channeling in-
jected carriers through the VQWs and capturing them in the
QWR where radiative recombination preferably takes place.
Using the VQWs as channel increases the collection of elec-
trically injected carriers by the wire and hence yields a high
radiative efficiency for the wire. Our simulation results will
confirm this picture.

The model of the structure is shown in Fig. 3. Compared
to the experimental structure, the lateral wells are omitted as
they are not expected to influence the electroluminescence
experiments. We adjust the distance between the wire and
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the p-region to 90 nm instead of a nominal 200 nm due to
suspected diffusion of the p-dopant zinc atoms. Like in [17],
a comparison is made to a planar structure comprising a sin-
gle QW, also depicted in Fig. 3. The QWR diode and the
QW diode have the same doping profile.

The low-dimensional carrier populations are not con-
tacted directly. Carriers are always first injected into bulk
in our model. A combination of bulk and low-dimensional
injection at the lateral ends of the QW is inherently not feasi-
ble unless one restricts the contact region to the well. This in
turn would diminish the contact area and lead to an unphys-
ically high contact resistance which would govern the be-
haviour of the whole device. Instead the device is preceded
with highly doped bulk regions, and injection into the ends
of quantum structures will happen by itself via capture.

The lack of contacts in the low-dimensional continuity
equations brings with it the inability of low-dimensional car-
riers to escape the structure other than through recombina-
tion or reemission into bulk. This is unphysical since QW
carriers there should experience no additional energy barrier
when leaving the structure. We circumvent this obstacle by
introducing an artificial recombination of the form n−ni

τ
for

minority carriers with very short recombination times. This
forces a carrier which has traveled along the whole quantum
well to recombine at the end. The associated recombination
current is added to the contact current of the corresponding
side. This provides a sufficient description of the experimen-
tal situation, also considering that not much is known about
the precise mechanisms of injection and removal at the end
of quantum regions.

5.1 Simulation setup

The dielectric permittivity is modeled as regionwise con-
stant, and the Arora model [33] is employed for the doping-
and temperature-dependent mobility with binary parame-
ters and alloy interpolation as in [34]. Carrier or lattice
heating should be negligible, and electric fields are not so
high as to significantly change the mobility. Dopants are as-
sumed to be completely ionized. The transport simulation
uses Boltzmann statistics. Equations (7) are employed for
bulk-well, bulk-wire and well-wire capture. Renormaliza-
tion of bandgaps due to many-body effects is not included.
For the temperature dependence of the alloy bandgap, we
take the Varshni bandgaps of the constituting binary materi-
als and interpolate with a temperature-independent bowing
parameter, thus not relying on interpolations of the Varshni
parameters (the same methodology is used in [16]). The en-
tire bowing takes place in the conduction band. Simulation
parameters not listed in Table 2 are taken from [35].

For the k · p calculations, the six-band model was used
with 12 k-points between k = 0 and k = 1.5 nm−1. The well
band structure was solved in radial approximation. 17 points

Table 2 Simulation parameters unless listed in [35]

Parameter Value (Al molefraction x < 0.4)

mh/m0 0.4809 + 0.29x

μn,p [34]

εs 12.9 − 2.84x − 0.625x(1 − x) [34, 36]

EP [eV] 18.0 + 3.1x [23, 35]

τmax
n,p 10−9 s; wire: 10−10 s

NSRH
ref 1016 cm−3

c
Aug
n,p 10−30 cm6 s−1

τbulk→well see text

τbulk→wire 10−6 s

τwell→wire see text

of the drift-diffusion grid of the 2D well carriers were se-
lected along the transport direction where a k · p problem
was solved. For the wire, one k · p slice sufficed due to the
translational invariance of the structure in the wire transport
direction. A maximum of 28 bound valence subbands and
8 bound conduction subbands was encountered in the well
problems. The wire displayed 12 bound electron subbands
and over 30 bound valence subbands.

5.2 Solution procedure

To have a coherent methodology for the determination of un-
known system parameters, the planar QW diode I–V curves
were investigated first to check the used literature parame-
ters and determine the temperature-dependent well capture
times.1 Then the QWR diode was simulated and the wire
capture times fitted to experimental results. We included an
additional series resistance of 10 � (compared to a diode
turn-on resistance of 500–800 �). Using this procedure,
we obtain bulk-well capture times of {3 · 10−12,8 · 10−12,
2 · 10−11,8 · 10−11} s from the QW diode simulation and
well-wire capture times of {3 · 10−13,2 · 10−12,8 · 10−12,
4 · 10−11} s from the QWR diode simulation, both for tem-
peratures of {300,240,175,90} K. There is little discus-
sion of such a temperature dependence in literature. How-
ever, an increase of the capture time seems plausible as
both electron-electron and electron-phonon scattering mech-
anisms freeze out at low temperatures.

We found that using Fermi statistics or incomplete dopant
ionization as well as different k · p models and mobilities
has almost no effect on the QW I–V curves. The parame-
ters governing the I–V characteristics below turn-on are the

1The contact area of the simulated QWR diode is 10 × 100 nm2,
10 nm being the extension in the wire transport direction. To com-
pare our results with [17], extensive quantities were scaled by a fac-
tor of (250 µm/10 nm) · 500 = 1.25 · 106 for the QWR diode and
(250 µm)2/(10 nm · 100 nm) = 6.25 · 107 for the QW diode.
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Fig. 4 QWR diode equilibrium electrostatic potential and carrier den-
sities at T = 175 K

Fig. 5 Room temperature hole density of the bound wire population
at Vto

capture time, which determines how efficiently carriers are
transferred into the bound population, and the SRH lifetime.
Recombination current dominates over drift and diffusion.

The system was first solved without low-dimensional
densities for convergence reasons. For low-temperature sim-
ulations, the temperature was ramped from 300 K down to
the desired value in steps of 50 K. Then the voltage was
ramped starting from equilibrium up to 1.6–2.0 V depend-
ing on the temperature.

Attempts to include the well density in the electrostat-
ics according to (11) in the QWR diode were unsuccessful
because of the high occupation in the doped zones even at
equilibrium. Instead we employed the lowest flat-band state
for the transversal distribution of the well carriers. For the
luminescence and all wire-related matters the full k · p re-
sults were used.

5.3 Transport

The electrostatic potential, bulk and bound densities at ther-
mal equilibrium are shown in Fig. 4. Within the VQWs the
unbound population is almost depleted whereas the bound
population is present up to the very end of the well. The sum
of the populations does not exactly compensate the doping,
such that some space charge remains which is visible in the
potential. The wire population located in the centre of the

Fig. 6 Room temperature current–voltage characteristics and behav-
iour of the bound wire populations

i-region is too low to be visible in Fig. 4. We instead plot a
typical hole density at room temperature and turn-on voltage
in Fig. 5. The shape of the density is determined according
to (11) where the quasi-Fermilevel is determined from the
k · p results and the drift-diffusion density. As the shape is
a mixture of populated subbands, the distribution does not
resemble any particular k · p state. The bound electron den-
sity closely resembles the hole density except for a potential-
induced shift to the n-side.

Figure 6 shows obtained current-voltage characteristics
at room temperature for the QWR and the QW diode to-
gether with the one-dimensional bound electron and hole
densities of the wire. The curves are dominated by the ex-
ponential behaviour arising from the pn-junction potential
barrier. They can be approximated by

I = I0 exp

(
eV

nf kT

)
, (20)

I0 being the dark current and nf the ideality factor of the de-
vice. An ideal pn-diode has an ideality factor of 1 whereas
recombination currents from SRH, Radiative and Auger re-
combination typically have ideality factors of 2, 1 and 2/3,
respectively. In [17] it was only noted that nf is similar
for both the QW and the QWR diodes whilst not giving
an explicit value. In our simulations we encounter nf ∼ 2
for voltages below the turn-on voltage for both the QW and
QWR diode, even at low temperatures where radiative re-
combination dominates.

The asymmetric behaviour of the two bound populations
at low voltages seems to arise from the different potential
barriers between the wire and the n- and p-doped regions.
After a quick increase, the electron density reaches a plateau
at around 1 V. During this phase, a voltage increase effec-
tively only lowers the potential barrier to the p-side until the
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Fig. 7 Experimental and simulated turn-on voltages

Fig. 8 QWR diode I–V characteristics at different temperatures (log-
arithmic I -scale)

electron and hole densities reach the same order of magni-
tude. A further voltage increase then lowers both energetic
barriers by equal amounts.

The turn-on voltage Vto is defined at Ito = 2.5 mA.
Above this point the wire density starts to saturate, as seen
in Fig. 6, and carrier capture gets inefficient. The bound wire
density at turn-on is in the range of a few 106 cm−1, in
agreement with the findings of [17]. A comparison of ex-
perimental and simulated temperature dependencies of Vto

is shown in Fig. 7. The potential barrier in the QWR diode
is lowered by 100–200 mV compared to the QW diode, thus
indicating that the carriers are indeed channeled through the
lower-bandgap well. This finding is supported by an analysis
of the current densities (not shown) confirming that current
is transferred from the bulk to the quantized well population.

Fig. 9 Combined wire-well luminescence at room temperature and
different currents

Current-voltage characteristics for different temperatures
are shown in Fig. 8. From a fit to (20) up to the turn-on
voltage with nf = 2 we find dark currents of {3 · 10−49,
2 · 10−25,8 · 10−18,8 · 10−14} A for the QWR diode and
{10−55,3 · 10−28,5 · 10−20,10−15} A for the QW diode at
{90,175,240,300} K, although the curves do not follow
closely an exponential behaviour in the QW case. This con-
firms the statement in [17] that dark currents are some 2–3
orders of magnitude higher in the QWR diode.

As the total device length of only 0.7 µm between the
contacts is much smaller than the diffusion length, minority
carriers do not experience enough recombination to return to
their equilibrium value before they reach the opposite con-
tact. Below Vto most of the injected carriers are captured
into low-dimensional densities and current is dominated by
the recombination current of the highest quantized popula-
tion, which is in this case the bound wire population. We
found that in order to achieve the measured values of Vto at
room temperature, SRH recombination rates of 1010 s−1 in
the wire and 109 s−1 elsewhere had to be assumed. (Note
that this value will get modified with the local doping ac-
cording to (6) for the actual SRH rate.) Nonradiative recom-
bination dominates over radiative recombination at room
temperature but not at lower temperatures. High above satu-
ration, the current is dominated by the artificial recombina-
tion current of well carriers traveling across the wire without
being captured, as explained earlier in this section.

Finally we point out that the magnitude of bound wire
density is dominated by capture and recombination times.
The bound well density is mainly governed by electrostatics
because the well is situated along a p-i-n junction.

5.4 Luminescence

Figure 9 shows the room-temperature luminescence spec-
trum arising from the combined wire-well system at differ-



J Comput Electron (2008) 7: 509–520 519

Fig. 10 Left: Combined wire-well luminescence in the QWR diode at
Vto for different temperatures. Right: QW diode

ent currents, although the well emission is too weak to be
seen on a linear scale plot. Total emission from the wire
saturates around the turn-on voltage. Different peaks ac-
cording to transitions of different subbands are observed
at this point. The spacing of around 30 meV between the
peaks qualitatively agrees with the experimental observa-
tions. It is determined by the conduction subbands which are
much wider spaced than the valence subbands. Contrary to
the statement in [17], we find that transitions between sub-
bands with different index numbers do influence the emis-
sion spectrum. The FWHM is not discussed here since it
would be significantly modified by inclusion of many-body
effects in the luminescence calculations. Given the uncer-
tainty about the structure geometry and material composi-
tion, these results reproduce the findings in [17] to a satisfy-
ing extent.

In Fig. 10 the temperature dependence of the lumines-
cence is shown. An analysis shows that the relative mag-
nitude of the nonradiative recombination mechanisms in
the wire compared to the radiative recombination decreases
from a factor of 25 at room temperature to about 1 at 90 K.
Thus nonradiative recombination plays a significant role at
these temperatures. However, at even lower temperatures ra-
diative emission would dominate, indicating a high inter-
nal quantum efficiency of the device especially at cryogenic
temperatures.

6 Conclusion and outlook

We have introduced the reader to a new simulation tool ca-
pable of investigating transport and luminescence in com-
bined well-wire-dot nanostructures. The underlying model
is based on the partition of space into different quantization
degrees and on the distinction between bound and unbound
populations. Bound populations are described in a purely
quantum-mechanical way in the directions of confinement

and in a purely classical way in the lateral directions. Move-
ment of bound carriers is governed by drift and diffusion
and only takes place in the lateral directions. Populations
are coupled by capture and the electrostatic potential.

The applicability of the developed approach was tested
with a QWR LED structure consisting of a wire connected to
wells. Experimental results could be explained to a reason-
able degree, suggesting that all the essential physics of both
transport and light emission in this structure was captured.
Simulations indicate a large dependence of the capture times
on the temperature.

Our tool offers promising applications in future academic
research on a wide class of nanostructures, such as nitride
light emitters, nanowire solar cells, quantum dot, wire and
well LEDs. The modularity of the code allows the concise
implementation of different physical models with high de-
grees of complexity. When coupled with an optical simula-
tion, the tool also has the potential to investigate laser de-
vices such as VCSELs [37]. Furthermore, the present model
could serve as a fundament for full quantum simulations on
a small but pivotal central part of the structure, thus facili-
tating the investigation of large nonplanar optoelectronic de-
vices on a sound theoretical footing.
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Appendix: Discretized device equations

For each grid vertex i, the box-discretized bulk drift-
diffusion equations read [27]

∑
E(ij)

∑
j (i)

εE

sijE

Lij

(φi −φj )−Vie(pi −ni +NDi −NAi) = 0,

(21)

∑
E(ij)

∑
j (i)

sijEμE
n

kT
e

Lij

(
niB

(
e(φi − φj )

kT

)

− njB

(
e(φj − φi)

kT

)⎞
⎠ + ViRi = 0,

(22a)∑
E(ij)

∑
j (i)

sijEμE
p

kT
e

Lij

(
−piB

(
e(φj − φi)

kT

)

+ pjB

(
e(φi − φj )

kT

)⎞
⎠ + ViRi = 0.

(22b)
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j (i) herein denotes all vertices j connected to vertex i and
E(ij) all elements around edge ij . sijE is the part of the
Voronoi surface at edge ij which lies in element E(ij), Lij

is the length of edge ij , μE
n,p are the electron and hole mo-

bilities in element E and B(x) = x
ex−1 is the Bernoulli func-

tion. Written in this form, the equations are applicable to
problems of any dimensionality.

For each quantized region an additional pair of equations
of the form of (22) is solved on a low-dimensional grid de-
scribing the movement of the bound carriers.
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