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Abstract

One of the starting points of the subject of Topological Combinator¬

ics is Lovasz's proof of the Kneser Conjecture, concerning lower bounds

for the chromatic number. The pattern to obtain a lower bound of the

chromatic number is to associate a topological space to a graph and

bound the chromatic number by a topological invariant of this space,

e.g. connectivity or Z2-index.

In this thesis we study lower bounds for the chromatic number ob¬

tained by assigning different complexes to graphs. Namely, we are in¬

terested in the neighborhood complex, the Lovâsz complex, various box

complexes, and the homomorphism complex. We will see that although
these complexes are seemingly quite different their homotopy or Z2-

homotopy types are in fact closely related. This allows us to take a

closer look at the hierarchy of the topological methods.

Another part of the thesis is the study of non-tidy spaces. This

together with our universality statement allows us to construct graphs
whose assigned complexes have interesting properties. Moreover with

this result we can refine the hierarchy of lower bounds for the chromatic

number.

We study homomorphism complexes separately as well since they

can be considered as generalizations of the other complexes. We will

show that many of them are manifolds, and we will analyze small di¬

mensional examples. One of the most surprising examples comes from

mapping the 5-cycle to the complete graph on 4 vertices. This leads to

the 3-dimensional projective space.

Amazingly non-tidy spaces arise naturally amongst homomorphism

complexes. My conjecture about homomorphism complexes and Stiefel

manifolds appears to be the currently best explanation for the difficulty
of proving Lovasz's conjecture.
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Zusammenfassung

Einer der Ausgangspunkte zum Thema Topologische Kombinatorik

ist Lovâsz' Beweis für die Knesersche Vermutung über untere Schranken

für die chromatische Zahl. Das sich ergebende Muster zum Nachweis

einer unteren Schranke für die chromatische Zahl besteht darin, dem

Graphen einen topologischen Raum zuweisen und die chromatische Zahl

durch eine topologische Invariante dieses Raumes zu begrenzen, z.B.

durch Konnektivität oder durch den Z2-Index.

In dieser Arbeit untersuchen wir untere Schranken für die chromatis¬

che Zahl, die durch Zuweisung unterschiedlicher Komplexe zu Graphen

entstehen. Wir interessieren uns für den Nachbarschaftskomplex, den

Lovâsz'sehen Komplex, verschiedene Kastenkomplexe, sowie den Homo¬

morphismuskomplex. Es wird gezeigt, dass obwohl diese Komplexe sich

voneinander scheinbar ziemlich stark unterscheiden, ihre Homotopie-

oder Z2-Homotopietypen nah verwandt sind. Dies ermöglicht es uns,

die Hierarchie der topologischen Methoden näher zu betrachten.

Zusätzlich beschäftigt sich diese Arbeit mit nichtsauberen Räumen.

In Verknüpfung mit einer Universalitätsaussage, die wir aufstellen, er¬

möglicht dies uns, Graphen zu konstruieren, deren zugewiesene Kom¬

plexe interessante Eigenschaften aufweisen. Mit diesem Ergebnis kön¬

nen wir die Hierarchie der unteren Schranken für die chromatische Zahl

weiter verfeinern.

Im Speziellen untersuchen wir die Homomorphismuskomplexe, da

diese als Verallgemeinerungen der anderen Komplexen betrachtet wer¬

den können. Es wird gezeigt, dass viele von ihnen Mannigfaltigkeiten

sind, und wir werden Beispiele in kleinen Dimensionen analysieren.
Eines der überraschendsten Beispiele ergibt sich aus der Abbildung des

5-Kreises zum vollständigen Graph auf 4 Knoten. Dies führt zum 3-

dimensionalen projektiven Raum.

Interessanterweise treten nichtsaubere Räume auf natürliche Weise

unter Homomorphismuskomplexen auf. Meine Vermutung über Ho¬

momorphismuskomplexe und Stiefeische Mannigfaltigkeiten scheint zur

Zeit die beste Erklärung dafür zu sein, dass die Lovâsz'sehe Vermutung

schwierig zu beweisen ist.
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Chapter 0

Introduction

There are several combinatorial and geometric results whose proofs

(the first proofs and often the only known proofs) involve a surpris¬

ing application of algebraic topology. Lovasz's [Lov78] striking proof of

Kneser's conjecture [Kne55] from 1978 using the Borsuk-Ulam Theo¬

rem was one of the foundation stones of a new discipline: Topological
Combinatorics.

During the last two decades, topological methods in combinator¬

ics have become more elaborate. Rather advanced parts of algebraic

topology have been successfully applied by Babson and Kozlov [BK04].
Perhaps Borsuk-Ulam-type theorems are some of the most often applied
tools from topology. Recently Matousek collected applications of this

kind in a book [Mat03] (see the " User's guide to equivariant methods

in combinatorics" by Zivaljevic [Ziv96, Ziv98] and the survey of Bârâny

[Bâr93] as well). Other directions of research in topological methods

are surveyed by Björner [Bjö95] and Zivaljevié [Ziv97].

0.1 Topological methods

My research focuses on the classical problem of coloring graphs. It

is well known that computing the chromatic number X(G) of a graph G

1



2 Chapter 0. Introduction

is a very hard problem which means that the worst case performance of

any algorithm has most likely exponential running time. Surprisingly
even coloring a 3 chromatic graph with 4 colors is NP-hard, which was

proven by Khanna, Linial and Safra [KLSOO].

For this reason it is very interesting to find non-trivial bounds for

the chromatic number. Lovasz's original proof of Kneser's conjecture

provides a topological lower bound for the chromatic number.

0.1.1 Graph complexes

Matousek and Ziegler [MZ04] compared various topological lower

bounds for the chromatic number. They found that different methods

give numerically the same - or nearly the same - bounds. These bounds

can be formulated using various complexes assigned to graphs. We will

study the neighborhood complex, the Lovâsz complex, various box com¬

plexes and the Hom complex. Note that the Hom complex Hom(iï, G)
is a topological space assigned to two graphs. We will compare the

Hom(K2,G') complexes to other graph complexes. By slightly abusing
the notation we will call these Hom(i^2,G) complexes, when the first

graph is K2, Hom complex as well.

We will show that these graph complexes can be considered as

avatars of the same object as far as their homotopy type is concerned.

0.2 Summary and organization

According to the general theme of the results, the rest of the thesis

is divided into four chapters. We summarize what are the new results

of this thesis.

0.2.1 Preliminaries

In Chapter 1 we summarize what we need from graph theory, about

simplicial complexes, posets, and about topology. This chapter is based

on books [Bjö95, DieOO, Mat03], survey papers [KozOSc, Ziv96, Ziv98],
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and research papers [BK03, KozOSb]. We introduce the definitions and

the basic properties, which we frequently use later. If we need some

notation only once, we might define it only shortly before we actually
need it.

0.2.2 Homotopy type results

In Chapter 2 we continue the work initiated by Matousek and

Ziegler [MZ04]. We show that for any graph G the neighborhood com¬

plex, the Lovâsz complex, various box complexes and the Hom complex
have the same homotopy1 or Z2-homotopy type. We will generalize
some of these results into simple Z2-homotopy equivalence in sense of

Whitehead [Whi39]. Some of our simple homotopy type results were

independently proven by Kozlov [Koz05b], however, in these cases our

proofs are simpler.

Matousek and Ziegler [MZ04] reformulated Sarkaria's and Lovasz's

bounds for the chromatic number (Theorem 2.1 and 2.2). They proved
that the difference between these two lower bounds is at most 1. We

strengthen this statement, in Section 2.2 we show that the box complex

B0(G) is Z2-homotopy equivalent to the suspension of B(G). Matousek

and Ziegler [MZ04] asked the question whether these two lower bounds

are the same or there is a graph for which the difference between them

is one.

Topology alone is not enough to answer this question. There are

topological spaces [Cso04] such that the suspension does not increase

the Z2-index. So the question is whether the box complex of a graph
could be such a space (up to homotopy). Surprisingly, box complexes

are universal:

Theorem 2.14 (universality theorem). For any finite free simplicial

Z2-complex (K,z/) there is a graph G such that its graph complex is

Z2-homotopy equivalent to (K, v).

This theorem leads to examples (graphs) such that Lovasz's lower

xOn the neighborhood complex there is no free ^-action in general, so for it

we can not have Z2-homotopy type result. Later we will speak only about TLi-

homotopy type which assumed to be understood as homotopy type for the case of

the neighborhood complex.
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bound is strictly better than Sarkaria's bound, thus answering the ques¬

tion of Matousek and Ziegler.

The universality theorem will be used to give a purely topological
construction for graphs showing that Sarkaria's and Lovasz's bound can

be arbitrarily far from the chromatic number.

We study how graph manipulation changes the homotopy type of

Hom complexes. We show that the fold in the second parameter does

not change the homotopy type. In a special case this was proven by
Cukic and Kozlov [CK04]. Here the general case is settled. Later Kozlov

[Koz05a] proved a stronger result that the simple homotopy type is also

preserved. Folds in the first parameter were considered by Babson and

Kozlov earlier [BK03].

We show how the so-called Mycielski construction changes the ho¬

motopy type of the Hom complex. We generalize the result of Gyâr-

fâs, Jensen and Stiebitz [GyJS04] into Z2-homotopy equivalence. This

stronger statement was predicted by Simonyi and Tardos [ST04].

The size of Hom complexes is rather large. Even for (relatively) small

graphs the complex is too large to perform any experiment with com¬

puter (e.g. computing homology by some software [DHSW03, GJ03]).
For this reason we introduce a homotopy equivalent smaller complex.
This smaller complex can be used to determine the homotopy type of

Hom(Ä-3,ür„).

Some of the results of Chapter 2 are joint work with Carsten Lange,

Ingo Schurr and Arnold Wassmer [CsLSW04].

0.2.3 Non-tidy space constructions

After understanding the homotopy types of graph complexes, we

know what sort of spaces do we need. In Chapter 3 we construct a

space (simplicial complex) such that the suspension does not increase

its Z2-index. It will turn out that we have to search among non-tidy

spaces. We will also present non-tidy Zp-spaces. Later we will see

that non-tidy spaces arise naturally in topological combinatorics. The

constructed space together with our universality theorem allows us to

construct graphs showing that Lovasz's original topological lower bound
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[Lov78, MZ04] is strictly better than Sarkaria's bound [Sar90, MZ04].

0.2.4 Graph coloring manifolds

The recent proliferation of results [BK03, BK04, CK04, CK04b,

CsL05, EngOS, HL04, Koz05a, KozOSc, KozOSd] regarding homomor¬

phism complexes opens up a multitude of new research directions.

We denote by Hom(G, H) the set of graph homomorphisms between

G and H. To study Hom(G, H) is more difficult than coloring graphs.
This is evidenced by the observation that:

X(G) = min{n: Hom(G,Kn) ^ 0}.

Lovâsz et al. studied related questions; for example, they characterize

which graph parameters can be obtained as the size \Hom(G,H)\ for

some graph H. For example, \Hom(G, Kn)\ is the number of colorings of

G with n colors. For more details and for references see the presentation
of Lovâsz [Lov05].

The set Hom(G, H) can be extended to a polyhedral complex

Hom(G, if), whose 0-skeleton is Hom(G,H). The cells are products
of simplices corresponding to homomorphisms 'close' to each other.

Among homomorphism complexes, there is an amazingly large num¬

ber of manifolds (e.g., ~H.om(K2, Kn) is an (n — 2)-dimensional sphere).
The starting point was my conjecture.

Conjecture 4.8. The Hom complex Hom(Cs, Kn+i) is homeomorphic
to the Stiefel manifold Vn>2-

We will show that they are manifolds, moreover we characterize

when graph coloring complexes will be manifolds:

Theorem 4.2. The homomorphism complex Hom(G, Kn) of a graph
G (n> X(G)) is a piecewise linear (PL) manifold if and only if G is the

complement of the 1-skeleton of a flag simplicial (PL) sphere.

This provides infinitely many examples of graph coloring manifolds.

The simplest ones are homomorphism complexes of complements of cy¬

cles Hom(Cm, Kn). One of the most interesting examples is the case of
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the five cycle C5 which appears in Lovasz's conjecture as well (which
was proven recently by Babson and Kozlov).

Theorem [BK04]. Let G be a graph, and let r G Z, r > 1. Then

X(G) > connectivity (Hom(C2r+i, G)) + 3.

In connection with this we show that Hom(Cs, K4), the space cor¬

responding to graph homomorphisms from the 5 cycle to the complete

graph on 4 vertices, is homeomorphic to the 3-dimensional projective

space MP3. This already explains some of the difficulties of the proof
of Lovasz's conjecture since it is a non-tidy space. It supports my con¬

jecture as well. More low dimensional examples of graph coloring man¬

ifolds, such as Hom(C2r+i, Kr+i) and Hom(C2r, Kr+i), are analyzed.

Some of the results of Chapter 4 are joint work with Frank Lutz

[CsL05].

0.2.5 Limits of the topological method

In Chapter 5 we examine the strength of these topological lower

bounds for the chromatic number. It was proven by Walker [Wal83]
that they can be arbitrarily bad. We generalize this result. Moreover

we present the smallest graphs for which the topological lower bound

does not give its chromatic number. Using the universality theorem we

give purely topological constructions to show that the topological lower

bounds can be arbitrarily bad.

Some of the results Chapter 5 of are joint work with Carsten Lange,

Ingo Schurr and Arnold Wassmer [CsLSW04],



Chapter 1

Preliminaries

In this section we recall some basic facts about graphs, simplicial

complexes and topology to fix notation. Interested readers are referred

to e.g. [Bjö95, DieOO, HatOl, KozOSc, Mat03, Zie95].

1.1 Graphs, homomorphisms and chromatic

numbers

Any graph G will be assumed to be finite, simple, connected, and

undirected unless stated otherwise, i.e. G is given by a finite set V(G)
of vertices and a set of edges E(G) Ç ( 3 ) •

We will denote by [n] the set {1, 2,..., n}.

Examples: Kn is the complete graph on n vertices, i.e. V(Kn) — [n] and

E(Kn) = (W).
Kn,m is the complete bipartite graph on n + m vertices, i.e. V(Krhm) —

[n + m] and {i, j} e E(Kn^m) if and only if i < n < j.
Let KGn)fc denote the Kneser graph. Its vertices are the fc-element

subsets of the n-element set [n], and two of them are connected by

an edge if and only if they are disjoint. For example KGr,,,i is Kn,

KG2fc_i)fc is a graph with no edges, KG2fc)/e is a matching, and the

smallest interesting example is KGs^- It turns out to be the ubiquitous

7
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Petersen graph (see Figure 1.1). Kneser [Kne55] conjectured that the

chromatic number of KGWifc is n — 2k + 2.

Figure 1.1: The Petersen graph.

The common neighborhood of A Ç V(G) is

CN(A) - {t; e V(G) : {a, î;} £(G) for all a G A}.

We define CN(0) := V{G). For A Ç B C F(G) the common neighbor¬
hood relation satisfies

(a) A n CN(A) - 0,

(b) CN(£) Ç CN(A),

(c) AÇCN2(A), and

(d) CN(A)-CN3(A).

For two disjoint sets of vertices A,BQ V(G) we define G[A, B] as the

subgraph of G with V(G[A, B]) = A U B and £(G[A, £]) - {{a, 6} e

E(G): aeA.beB}.

Definition 1.1. For two graphs H and G, a graph homomorphism from

if to G is a map ip: V(#) -> F(G), such that if {v,w} e E(H) then

{y(v), ip(w)} £'(G). Let the set of all graph homomorphisms from H

to G be denoted by Hom(H, G).

Graphs with graph homomorphisms form a category.

Proposition 1.2. If ip: H —> G and i/j: G —> T are graph homomor¬

phisms, then ip o </? : if —» T is again a graph homomorphism.
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Definition 1.3. The chromatic number of G, X(G) is the minimal n

such that there exists a graph homomorphism ip: G —> Kn.

Proposition 1.4. If there exists a graph homomorphism ip: H —> G,

thenX(H)<X(G).

In this sense, the problem of vertex-colorings and computing chro¬

matic numbers corresponds to choosing a particular family of graphs,

namely the complete graphs Kn, and fixing an evaluation (a function

into the real numbers) on this family. Here our evaluation function is

given by mapping Kn to n. Now to obtain the chromatic number we

have to find a graph homomorphism from a given graph to the chosen

family, which would minimize the fixed evaluation. Here we follow the

survey on homomorphism complexes written by Kozlov [KozOSc].

There are other families of graphs and evaluations which correspond
to other natural and well-studied classes of graph problems.

If we take the larger family, the Kneser graphs, KGrijfc, n > 2k, and

choose the evaluation KGn,fc —» ^, we obtain the fractional chromatic

number.

Definition 1.5. Let G be a graph. The fractional chromatic number

of G, X/(G), is defined by

77

where the infimum is taken over all pairs (n, k) such that there exists a

graph homomorphism from G to KGn,fc.

Another possibility is to chose the family to be U(m,r) (see Defi¬

nition 1.6), and the evaluation is given by U(m,r) — r. Observe that

U(m,m) is the complete graph Km.

Definition 1.6. For positive integers r < m we define the graph

U(m,r) as follows.

V{U{m, r)) - {(i, A) : A Ç [m], \A\ = r ~ 1, i<£ A} ,

E(U(m,r)) = {{(i, A), (j,B)}: ieBJeA}.

Let G be a graph. The local chromatic number of G, ip(G), is defined

by

ip(G) = inf r,
(m,r)
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where the infimum is taken over all pairs (m, r) such that there exists

a graph homomorphism from G to U(rn,r).

One can prove that the local chromatic number is between the frac¬

tional chromatic number and the chromatic number:

X(G) > il>(G) > X/(G).

Recently Simonyi and Tardos [ST04, ST05] found a topological lower

bound for the local chromatic number:

>
rcoindex(Hom(if2,G))l

+ 2

After reading this chapter it will be clear what is on the right hand side

of this formula.

1.2 Topological interlude

We assume that the spaces are cell complexes and that the maps

between them are continuous unless stated otherwise. We will use stan¬

dard topological notations. Whoever is familiar with equivariant homo¬

topy theory should skip this section.

A topological space is a pair (X, Ö), where X is a ground set and

Ö Ç 2X is a set system, whose members are called open sets, such

that 0, X G Ö, the intersection of finitely many open sets is an open

set, and so is the union of arbitrary collection of open sets. A map

f:Xi —> X2 between the topological spaces (X\,ö\) and (X2,C2) is

continuous if /-1 (V) G Ö\ for every V G ö2. We say that X\ and X2

are homeomorphic if there is a bijection tp : Xi —> X2 such that ip and

(p~x are continuous.

A set F in a topological space X is closed if and only if its comple¬
ment X \ F is open. The closure of a set Y Ç X, denoted by F, is the

intersection of all closed sets in X containing Y. The boundary of Y is

dY:={YDX~\Y}.

Two maps f,g:X—>Y are homotopic (written / ^ g) if there is a

map F: X x[0,l]^Y such that F(x,0) - f(x) and F(x, 1) = g(x).
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In particular a map X — Y is nullhomotopic if it is homotopic to

a constant map that maps all of X to a single point y e Y. It is

not hard to verify that "being homotopic" is an equivalence relation on

the set of all maps X —> Y. Tcn(X) denotes as the homotopy classes

of maps [0, l]n —> X, where homotopies and maps must satisfy that

/(#[0, l]n) = g(d[0, l]n) - F(<9[0, l]n,t) = x0 G X. This set becomes a

group with the following definition

(f+g){ai,o,2,...,an) =
f(2a1,a2,...,
g(2a1 - l,a2,

a. t) if 0<ai<^,
if J < ai < 1.On)

For n > 2 7Tn(X) is known to be Abelian. Figure 1.2 shows the homo¬

topy groups of spheres [Tod62].

TT((5n)

i —

I 2 S 4 5 6 7 8 9 10 11 12

n 1 Z 0 0 0 0 0 0 0 0 0 0 0

I 2 0 I I z2 z2 z12 z2 z2 23 Zl5 z2 Z2xZ2
3 0 0 z 22 z2 Ziz 12 22 ^3 2,5 z2 Z2xZ2
4 0 0 0 z z2 z2 ZxZ12 Z2xZ2 Z2xZ2 Z24xZ^ Zl5 Z2
5 0 0 0 0 z 22 Z2 Z24 Z2 22 z2 Z30
6 0 0 0 0 0 Z Z2 Z2 Z24 0 z z2
7 0 0 o 0 0 0 z Z2 Z2 z24 0 0

8 0 0 0 0 0 0 0 z Z2 z2 1-u 0

Figure 1.2: Sample of homotopy groups of spheres [Tod62].

A space is k-connected (k > —1) if for every / — —1,0,1,..., k,
each continuous map /: d[0, l]l+1 —» X can be extended to a

map /: [0,1]/+1 — X. Here (—l)-connected means that the

space is nonempty. We define the connectivity of a space X by

connectivity(X) :— maxjfc: X is fc-connected}.

Suppose that X and Y are topological spaces and there is a map

f:X^Y. If there exist a map g : Y — X, such that ,go/~ Idx and

f o g r-u idy, then / is a homotopy equivalence. If such an /' exists, then

the spaces X and Y are called homotopy equivalent.
If X is homotopy equivalent to a point we say that X is contractible.

Definition 1.7. Let X be a topological space, A Ç X a subcomplex,
and i : A t-> X be the inclusion map. A continuous map / : X —> A is

called a retraction if /|a — W4.
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Furthermore it is called a deformation retraction if i o /: X —> X is

homotopic to the identity map Idx-

Finally, / is called a strong deformation retraction if there exists a

homotopy F: X x [0,1] — X between iof and Idx, which is a constant

on A, i.e., F(a, t) = a for all t G [0,1] and a G A.

Let us recall that if X and Y are topological spaces, the join X * Y is

the quotient of the product space lxyx[0,l] modulo the equivalence

«, where (x,y,0) « (xf,y,0) and (rc,y, 1) « (x,?/,l) for all a^x' G X

and î/, j/' G F. (See Figure 1.3.) It is known that the join of geometric

simplicial complexes is homeomorphic to the geometric realization of

their simplicial join, which will be defined in the next section. A special

case, when Y is the 0-dimensional sphere S°, is called the suspension of

X: susp(X) := X*S°. The cone of X is defined by cone(X) = Appoint.

Join can be defined for maps as well. Let / : X\ —> X2 and g : Y\ —>

I2 arbitrary continuous maps. We can define a map / * g : X\ * Y\ —»

X2 * Y2 by tx + (1 - t)y -> t/Oc) + (1 - t)g{x).

X

i*

*>

y *=o t=i

x x y x [0,1]

Figure 1.3: Join of spaces.

X*Y

An n-cell is a topological space homeomorphic to [0, l]n C Mn.

A CW-complex X is obtained by the following inductive construction.

(1) The 0-skeleton Xq is a discrete set.

(2) We construct the n-skeleton Xn by the simultaneous attachment of

the n-cells to Xn-\ along their boundaries.

(3) We equip the space X — U£°_0Xn with the weak topology: A Ç X

is open if and only if A D X is open for any n.

A espace is a pair {X,v) where X is a topological space and

v. X — X, called the Z2-action, is a homeomorphism such that

— Idx- If {X\,v\) and (X2,z^2) are Z2-spaces, a Z2-v" —

v o v
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map between them is a continuous mapping f : X\ —y X2 such that

/ ° v\ - v<i o /.

X\ > X2

V\ VI

xx —f-^ x2

Z2-spaces with Z2-maps form a category. We call a Z2-space free if

its Z2-action v has no fixed point. The sphere Sn is understood as a

free Z2-space with the antipodal homeomorphism x —> —x. Sometimes

it is denoted by 5 to distinguish from other possible actions, e.g., the

identity maps makes it a non-free Z2-space denoted by 5f. Since in

this thesis we consider only S we will denote it by simply Sn. We will

consider only finite dimensional free Z2-complexes.

One of the central theorems of topology is the Borsuk-Ulam Theo¬

rem. In order to state its equivalent forms as well we need the following
definitions.

The Z2-index of a Z2-space (X, v) is

ind(X) = minjn > 0: there is a Z2-map (X, v) —> (Sn, —)} .

The Z2-action v will be omitted from the notation if it is clear from the

context. If mA{X\,v\) > ind(X2,^2)) then there is no Z2-map Xi -^

X2. One of the equivalent formulation of the Borsuk-Ulam Theorem is

ind(£n) - n.

Another index-like quantity of a Z2-space, the coindex can be defined

by

coindex(X) — max <n>0: there is a Z2-map Sn —^ X >.

The notation level and co-level, instead of index and coindex respec¬

tively, appears in the literature as well.

Another equivalent formulation of the Borsuk-Ulam Theorem is that

coindex(X) < ind(X). We call a free Z2-space tidy if coindex(X) =

ind(X).

The Borsuk-Ulam Theorem can be stated in many equivalent forms.

Here we state four of them.



14 Chapter 1. Preliminaries

Theorem 1.8 (Borsuk-Ulam). The following are true and equiva¬
lent:

1. For every continuous map f:Sk —» M.k there exists x G Sk for
which f(x) — f(—x).

2. (Lyusternik-SchnireVman version) Let d > 0 and let A be a collec¬

tion of open (or closed) sets covering Sd with no A A containing
a pair of antipodal points. Then \A\ > d + 2.

3. Sd+1 -£+ Sd for any d>0.

4- For a Z2-space X we have coindex(X) < ind(X).

A Z2-map /: X —> Y is a ^-homotopy equivalence if there exists a

Z2-map g : Y —> X such that g o / is Z2-homotopic to Idx and fog
is Z2-homotopic to Idy. In this case we say that X and Y are Z2-

homotopy equivalent. A general reference for group actions, Z2-spaces
and related concepts and facts is the textbook of Bredon [Bre67].

1.3 Simplicial complexes, polytopes and

posets

An abstract simplicial complex K is a finite hereditary set system.

We denote its vertex set by V(K). The formal definition is as follows.

Definition 1.9. An abstract simplicial complex is a pair (V, K), where

V is a set and K Ç 2V is a hereditary set system of subsets of V; that

is, we require that F G K and G Ç F imply G e K. The sets in K

are called (abstract) simplices. We define the dimension dim(K) :=

max{|F|-l: F G K}.

We will now define geometric simplicial complexes. They are ob¬

tained by gluing together geometric simplices along their faces.

Definition 1.10. A simplex a is the convex hull of a finite affinely

independent set A in M.d. The elements of A are called the vertices of a.

The dimension of a is dimcr :— \A\ — 1. The convex hull of an arbitrary
subset of vertices of a simplex a is a face of a.
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Definition 1.11. A nonempty family K of simplices is a simplicial

complex if the following two conditions hold:

1. Each face of any simplex a G K is also a simplex of K.

2. The intersection o-\ n <r2 of any two simplices a\, <r2 G K is a face

of both o~\ and cr2.

We call a G K a rf-dimensional simplex if \a\ = d + 1.

Since an abstract simplicial complex K is a subcomplex of a d :=

(|F(K)| — l)-dimensional simplex every finite abstract simplicial complex
can by realized in Rd. We sometimes denote this geometric realization

as ||K|| to emphasize that we rather consider it as a topological space,

than a set system. The dimension of K is dimK := maxjdima: a G K}.
The k-skeleton of a simplicial complex K is the collection of at most k-

dimensional simplices of K. We will denote it by SKk(K).

Example: The rf-dimensional crosspolytope is the unit ball of the l\-

norm: {x G Rd: ||x||i < l}. Its boundary is a simplicial complex home¬

omorphic to the sphere.

A convex polytope P C Rd is the convex hull of finitely many points
in Ie1. A valid inequality for P is a linear inequality cTx < Co with

c G Rd, c0 G M satisfied by all x G P. A face F of a polytope P is the

intersection F := P n {x G Rd: cTx — c0} where cTx < c0 is a valid

inequality.

Definition 1.12. A polyhedral complex is a collection C of polytopes
in Rd satisfying the following conditions:

1. the empty set is in C,

2. for every P G C all its faces are in C and

3. for every P,Q E C: P Pi Q is a face of both P and Q.

The members of C are called cells.

Definition 1.13. Let K and L be two abstract simplicial complexes. A

simplicial mapping of K to L is a mapping /: V(K) —> V(L) that maps

simplices to simplices, i.e., such that f(F) G L whenever F G K.

A bijective simplicial mapping whose inverse mapping is also simplicial
is called an isomorphism of abstract simplicial complexes. The existence
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of an isomorphism of simplicial complexes K and L will be denoted by

Clearly the affine extension of a simplicial mapping defines a contin¬

uous map 11/11 : ||K|| —> ||L||.

We recall that a partially ordered set, or poset for short, is a pair

(P, ^), where P is a set and ^ is a binary relation on P that is reflexive

(x < x), transitive (x ^ y and y ^ z imply that x < z), and weakly

antisymmetric (x -< y and y -< x imply x — y). When a covering relation

^ is understood, we say only "a poset P."

Definition 1.14. The order complex of a poset P is the simplicial

complex A(P), whose vertices are the elements of P and whose simplices
are all chains (i.e. x\ -< x2 < • • • < x^) in P.

The face poset of a simplicial complex K is a poset ^(K), which is the

set of all nonempty simplices of K ordered by the inclusion.

For a simplicial complex K, the simplicial complex

sd(K) := A(^(K))

is called the (first) barycentric subdivision of K.

We will consider maps between two posets (Pi, ^i), (P2, ^2) which

are either monotone or antimonotone, i.e., which satisfy either the con¬

dition x < y => p(x) S <p(y) or the dual condition x < y ^ (p{y) -<p{x).
A map between two posets induces a simplicial map between their order

complexes.

Sometimes by an abuse of notation we will write K instead of JF(K),
and we will speak about the homotopy type of a poset meaning the

homotopy type of its order complex.

We will frequently use the following Quillen-type Lemma. Our fa¬

vorite version which turned out to be especially useful for dealing with

Hom complexes was proven by Babson and Kozlov (Proposition 3.2

(page 9) in [BK03]).

Lemma 1.15. Let (j) : P —» Q be a map of finite posets. If <fi satisfies

Condition (A): A(<p~1(q)) is contractible, for every q G Q,

and
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Condition (P): For every p G P and q G Q with 4>(p) > q the poset

<p'1(q) H P<p has a maximal element,

then (j) is a homotopy equivalence.

Definition 1.16. A poset (P, <) is involutive if it is equipped with an

involution ip: P —> P which is either monotone or antimonotone and

p2 — Idp. Instead of involutive we also say that (P, ^) admits a Z2-

action or that (P, ^) is a Z2-pose£. We will call a Z2-poset (P,^,(p)
free if ip is a free Z2-action on its order complex.

Chain notation: We denote by A a chain Ai c ...
C Ap of subsets of

the nodes V(G) of a graph G and by # a chain Pi C ... C Bq of subsets

of V(G). For 1 < t < p we denote by ^4<t the chain Ai C ...
C At. A

similar convention is used for A>t. For chains A, B satisfying Ap C B\

we define a new chain, the concatenation of A and B:

A C B := Ai C ... C Ap Ç Pi c ... C Bq,

where we omit Ap or Pi in case Ap — B\. If a map / preserves (resp.

reverses) inclusions, we write f(A) instead of f(Ai) Ç ...

C f(Ap)
(resp. f(Ap) Ç ...

C /(Ai)). One obtains a chain of proper subsets by

omitting multiple copies.

For sets A, B define A Ö B := {(a, 0) : a G A} U {(6,1) : 6 G P}. An

important construction in the category of simplicial complexes is the

join operation. For two simplicial complexes K and L the join K * L is

defined as

K * L := {F W G | F G K and G G L}.

Let K be a simplicial complex and a G K its simplex. The star and

the link of cr in K is defined by: starK(cr) := {r G K: r U a G K} and

linkK(cr) :={rGK:rncr^0 and r Ucr G K}.

1.4 Collapsing, and simple homotopy type

Definition 1.17. Let K be a simplicial complex. Let a, r G K such that

1. t C cr,
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2. a is a maximal simplex, and no other maximal simplex contains

T.

A (simplicial) collapse of K is the removal of all simplices 7, such that

r Ç 7 C a. If in additional dimr — dim cr — 1, then this is called an

elementary collapse.

When Y is a simplicial subcomplex of X, we say that X collapses onto

Y if there exists a sequence of elementary collapses leading from X to Y.

The reverse of an elementary collapse is called an elementary expansion.
A sequence of elementary collapses and elementary expansions leading
from a complex X to the complex Y is called a formal deformation. If

such a sequence exists, then the simplicial complexes X and Y are said

to have the same simple homotopy type, see [Whi39].

The definition of the ^-collapse and simple %2-homotopy type is

self-evident.

A sequence of collapses yields a strong deformation retraction, in

particular, a homotopy equivalence. The converse is not true, there are

simplicial complexes which are contractible, but not collapsible.

Although there are homotopy equivalent but not simple homotopy

equivalent spaces these two notions coincide for contractible spaces:

Theorem 1.18. A simplicial complex K contractible if and only if there

exists a sequence of collapses and expansions leading from K to a vertex.

It is well-known, see e.g. [Koz05b], that for a simplicial complex X

the subdivision sd(X) and ssd(X) have the same simple homotopy type

as X, since they can be obtained by repeating stellar subdivision. This

clearly extends to simple Z2-homotopy type for Z2-complexes.

Definition 1.19. An order preserving map ip from a poset P to itself

is called a descending closure operator if ip2 — (p and p{x) -< x, for any

x G P; analogously, <p is called an ascending closure operator if ip2 = <p

and p(x) y x, for any x G P.

A Z2-descending closure operator is a descending closure operator
which is a Z2-map as well.

That ascending and descending closure operators induce strong de¬

formation is well known in topological combinatorics, see e.g., [Bjö95].
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We will use the following generalization due to Kozlov which is suitable

to deal with simple homotopy equivalences and prove collapsibility.

Theorem 1.20 ([KozOSa, Theorem 2.1]). Let P be a poset, and let

cp be a descending closure operator, then A(P) collapses onto A((p(P)).
By symmetry the same is true for an ascending closure operator.

Actually, one can adapt the proof of the previous theorem to obtain

the Z2-version which we will need.

Theorem 1.21. Let P be a poset with a free involution u, and let a Z2-

map ip be a descending closure operator, then A(P) ^-collapses onto

A(p(P)). By symmetry the same is true for an ^-ascending closure

operator.

Proof. We use induction on \P\ - \(p(P)\. If \P\ = \<p(P)\, t<ûen V ls the

identity map and the statement is obvious. Assume that P \ <p{P) ^ 0

and let x G P be one of the minimal elements of P \ <p(P).

Since ip fixes each element in P<x, p(x) < x, and ip is order preserv¬

ing, we see that P<x has ip(x) as a maximal element, see Figure 1.4.

Thus the link of x in A(P) is A{P>X) * A{P<X) = A{P>X) * A(P<v{x)) *

<p(x), in particular, it is a cone with apex <p(x).

Figure 1.4: P<x = P<<p(xy

Let ai,... ,at be the simplices of A(P>X) * A(P<(p(x)) ordered so

that the dimension is weakly decreasing. Then

(<7i U {x}, ox U {x, <p(x)}), ...,(o-tU {x}, at U {x, p{x)})
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is a sequence of elementary collapses leading from A(P) to A(P \ {x}).
Since ip restricted to P \ {x} is again a descending closure operator,

A(P \ {x}) collapses onto A((p(P \ {x})) = A((p(P)) by the induction

assumption. Since u is a free Z2-action meanwhile we can do the Z2-

pairs of these collapses as well.

We introduce the basics of Discrete Morse Theory which was in¬

vented by Forman [For98]. It provides a convenient language for de¬

scribing sequences of elementary collapses.

Definition 1.22. Let P be a poset with the covering relation >-.

• We define a partial matching on P to be a pair (£, /x) where X Ç P

is a set, and /i : S —s- P\S is an injective map, such that ß(x) y x,

for all x G S.

• The elements of P \ (S U //(£)) are called critical. We let C(P, //)
denote the set of critical elements.

• Additionally, such a partial matching ß is called acyclic if there

exists no sequence of distinct elements x\,..., xt G £, where t >2,

satisfying ß{x\) y x2, fi(x2) y xs, ..., fi(xt) y x\.

The partial acyclic matchings and elementary collapses are closely

related, as the next proposition shows.

Proposition 1.23 ([Koz02, Proposition 5.4]). Let A be a regular

CW complex and A' a subcomplex of A, then the following are equiva¬

lent:

a) there is a sequence of elementary collapses leading from A to A';

b) there is a partial acyclic matching on the poset .F(A) with the set

of critical cells being exactly J-(Af).

1.5 Graph complexes

Now we will define simplicial complexes assigned to graphs.

The clique complex Cliq(G) of a graph G is a simplicial complex

assigned to G. Its vertex set equals V(G), and the simplices are subsets
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of vertices forming a clique in G:

Cliq(G) := {S Ç V(G) : S is a clique in G}.

The independence complex Ind(G) of a graph G is a simplicial complex

assigned to G. Its vertex set equals V(G), and the simplices are subsets

of vertices forming an independent set in G:

Ind(G) := {S Ç V(G) : S is an independent set in G}.

Clearly Ind(G) is isomorphic to Cliq(G), where G is the complement of

G.

The neighborhood complex N(G) was introduced by Lovâsz [Lov78] in

order to solve the Kneser Conjecture [Kne55]. It is a simplicial complex

associated with a graph G. Its vertex set equals V(G), and the simplices
are subsets of vertices possessing a common neighbor:

N(G) --{SQV{G):CN{S)^®}.

Figure 1.5 shows an example of a graph and its neighborhood complex.
The disadvantage of the neighborhood complex is that it does not admit

any free Z2-action.

6 3

G N(G)

Figure 1.5: The neighborhood complex.

The so-called Lovâsz complex \-{G) is an induced subcomplex of the

barycentric subdivision of the neighborhood complex. Its vertex set

consists of the sets A on which CN2 does behave as the identity:

V(l(G)) := {S E N(G): CN2(S) - S}.
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These sets are called closed. Equivalently it can be defined as 1(G) =

CN(sd(N(G))). The map CN, which maps the vertex S to CN(5),
defines a free Z2-action on L(G) making it a Z2-space. Figure 1.6 shows

an example of a graph and its Lovâsz complex.

6 3

G L(G)

Figure 1.6: The Lovâsz complex.

It is known that these complexes are simple homotopy equivalent:

Theorem 1.24 ([KozOSb]). The barycentric subdivision sd(N(G)) of
the neighborhood complex collapses into the Lovâsz complex L(G).

Proof. Since 1(G) = CN2(sd(N(G))) and CN2 is an ascending closure

operator, Theorem 1.20 completes the proof.

It is worth to note that these complexes provide a surprising and

useful topological lower bound for the chromatic number.

Theorem 1.25 ([Lov78]). For every graph G we have

X(G) > ind(L(G)) + 2 > connectivity (N(G)) + 3.

Different versions of a box complex are described by Alon, Frankl,

and Lovâsz [AFL86], Sarkaria [Sar90], Kfiz [Kh'92], and Matousek and

Ziegler [MZ04]. Among these we will use the one which was introduced

by Matousek and Ziegler.
The box complex B(G) of a graph G can be considered as the subcomplex
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of the join N(G) * N(G), where we keep only those simplices which

correspond to complete bipartite subgraphs of G. More formally,

R(r, / AiSB: A,BÇV(G), AnP = 0, \
[ } '

\ G[A,B] is complete bipartite, CN(A)^0^CN(P) J
'

We note that CN(0) = V(G). The vertices of the box complex are Vi :=

{v \S 0: v G V(G)} and V^2 := {0 l±J v: v G V(G)}. The subcomplexes of

B(G) induced by V\_ and V2 are disjoint subcomplexes of B(G) that are

both isomorphic to the neighborhood complex N(G). We refer to these

two copies as shores of the box complex. The box complex is endowed

with a Z2-action which interchanges the shores.

If the extra condition on "having a common neighbor" is deleted,

then we get a different box complex [MZ04]

°^ \ G[A,B] is complete bipartite ]'

The cones over the shores complex Bc(G) is:

BC(G) := B(G) U {(x, A Ö 0) : A Ç V(G), CN(A)^0}
U {(0 Ö B, y) : B Ç V(G), CN(P)/0} ,

where we assume that x,y g V(G). We need this complex Bc(G) only
for technical reason. We note that B(G), B0(G), Bc(G) are free Z2-

spaces.

Examples: For the complete graph Kn its neighborhood complex

N(Kn) is the boundary complex of the (n — l)-dimensional sim¬

plex. Its box complex Bo(Kn) is the boundary complex of the n-

dimensional crosspolytope; while B(Kn) is the boundary complex of the

n-dimensional crosspolytope, with two opposite facets removed. Be (Kn)
can be obtained from B(Kn) by attaching cones over its boundary com¬

ponents.

The advantage of the the box complex (compared to the neighbor¬
hood or to the Lovâsz complex) is its natural functoriality [Mat03,

MZ04]. If /': G — H is a graph homomorphism we get naturally an

induced simplicial Z2-map

B(f):B(G)^B(H).
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This gives us a possibility for elegant conceptual proofs.

Theorem 2.1. [Mat03, MZ04] For every graph G we have

X(G) > ind(B(G)) + 2.

Proof. X(G) — n means that there is a graph homomorphism /: G —»

Kn. In the above example we have seen that B(Kn) is the boundary

complex of the n-dimensional crosspolytope, with two opposite facets

removed. This means that B(Kn) is Z2-homotopy equivalent to the

sphere Sn~2 so md(B(Kn)) = n-2. The Z2-map B(/): B(G) -> B(K"n)

proves that ind(B(G)) > n — 2 what we wanted to show. Ü

Similarly as before one can obtain a lower bound using Bo(G).

Theorem 2.2. [MZ04] For every graph G we have

X(G) > ind(B(G)) + 2.

1.6 Homomorphism complexes

Homomorphism complexes are generalizations of box complexes. We

will see later that Hom(if2, G) is the "middle" of the box complex. More¬

over the box complex B(G) is Z2-homotopy equivalent to the Hom com¬

plex Hom(K'2,G). Lovasz's original idea to prove Kneser's conjecture

is equivalent to considering 'only' homomorphisms from an edge ÜT2 to

the given graph G.

The homomorphism, complexes were introduced by Lovâsz [BK03J.
Their 1-skeleton is a well-known graph which was studied earlier by

e.g. Brightwell and Winkler [BW99].

Let AV(H^ be a simplex whose set of vertices is V(H). Let C(G, H)
denote the direct product ELeWG) AV^H\ i-e-> the copies of Av^ are

indexed by vertices of G.

Definition 1.26 ([BK03, KozOSc]). For any pair of graphs G and H

let the Horn complex Hom(G, H) be a subcomplex of C(G, H) defined

by the following condition: c = IXreWG) a^ G Hom(G, H) if and only

if for any x,y G V(G) if {x,y} G E(G), then H[ax,ay] is complete

bipartite.
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The topology of Hom(G, H) is inherited from the product topology

of C(G, H). Hom(G, H) is a polyhedral complex whose cells are prod¬

ucts of simplices and are indexed by functions (multi-homomorphisms)
r) : V(G) - 2yW\{0}, such that if {i, j} G E(G), then for every ï G rj{i)
and J G r)(j) it follows that {ï, j} G E(H).

Let V(G) = {l,...,m}. We encode the functions 77 by vectors

(r/(l),..., 77(771)) of non-empty sets rj(i) Ç V(H) with the above proper¬

ties. A cell (Ai,..., Am) of Hom(G, if) is a face of a cell (B\,..., _Bm)
of Hom(G, H) if A» Ç B; for all 1 < i < m. In particular, Hom(G, H)
has Hom(G, H) as its set of vertices. Moreover, every cell (Ai,..., Am)
of Hom(G, H) is a product of m simplices of dimension \A-,\ — 1 for

1 < i < 771. For brevity, we write sets A — {ai,...,a/J Ç V(-ÖT) in

compressed form as strings, i.e., A — a-±... a^.

A cell of Hom(G, H) is a maximal face or /acef if it is not contained

in any higher-dimensional cell of Hom(G, H). If H is the complete

graph Kn on n nodes, then the maximal cells of Hom(G, Kn) have a

particularly simple description: A cell (Ai,..., Am) of Hom(G, Kn) is

a facet if and only if \JaNu\ Aj — V(Kn) for every 1 < i < m, where

N(i) denotes the set of neighbors of the node i in the graph G, and

AiDAj -0 for j eN(i).

As remarked above, Hom(G, H) is a polyhedral complex whose cells

are products of simplices. In particular, the barycentric subdivision of

Hom(G, H) is a simplicial complex.

Examples: The cells of the Hom complex Hom(if2, K3) are given by

the vectors (1, 2), (1,3), (2,3), (2,1), (3,1), (3, 2), (12,3), (13, 2), (23,1),

(3,12), (2,13), and (1, 23). Therefore, Hom(if2, K3) is a circle with six

edges; see Figure 1.7.

The cells of the Hom complex Hon^Gs,.?^) is homeomorphic to the

disjoint union of two circles. The Hom complex Hom(G7, K-s) is home¬

omorphic to the disjoint union of two Möbius bands. Figure 1.8 shows

one component of Hom(G7, K$), a Möbius band. The dashed line corre¬

sponds to the embedding sd(Hom(Gs, A3)) *-> sd(Hom(G7, A3)) given

by (a, b, c, d, e) —» (a, b, c, d, e, d, e).

The Horn complex Hom(if2,Üfn) is an (n-2)-dimensional sphere (n >
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(12,3)
(1,3)
___

(2,3)

(1,2) t y (2,i)

(13,2) \ / (23,1)

(3,2) (3,1)V '

(3,12)

Figure 1.7: The Hom complex Hom(K2,i^3)-

Figure 1.8: One component of the Hom complex Hom(G7,ÜT3) and

Hom(G5,K3).

2). In fact, Hom(i^2, Kn) is the boundary complex of a polytope [BK03,
Sect. 4.2]. It can be described as the boundary of the Minkowski sum of

an (n — l)-dimensional simplex <rn_i and its negative —<rn_i, as stated

in [Mat03, p. 107, Ex. 3 (c)]. We will see a simpler argument later for

this fact.

It is useful to note that the homomorphism complex Hom(If2, G) or

actually its barycentric subdivision can be defined as a subcomplex of

sd(B(G)) spanned by the vertices Aö£ such that A ^ 0 / B. This def¬

inition is clearly equivalent to the original definition of homomorphism

complex. We will see that actually sd(B(G)) Z2-collapses down to this

subcomplex (see Section 2.7).

So B.om(K2,Kn) can be obtained from intersecting the bound¬

ary of the n-dimensional crosspolytope (Bo(G)) with the hyperplane

Yh=i Xi = 0' an<^ therefore Rom(K2, Kn) is Z2-homeomorphic to S"2-
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Later we will be interested in subcomplexes of Hom(K2, Kn), namely

in the cells in the form (*,12...fc*). Note that Hom(if2, Kn-i) sits

inside Hom(if2, Kn), we only do not use the color n. Geometrically it

corresponds to the intersection of Hom(ÜT2,ifn) (as described before)
with the hyperplane xn = 0. Now the cells of (A,B) G B.om.(K2,Kn)
such that n G A are in the open halfspace xn > 0, while the cells with

n G B are in xn < 0. So returning to our problem the cells in the form

(*, 12
... fc*) are given by intersections of the sphere Hom(if2, Kn) and

k orthogonal halfspaces, so it is a disc for fc < n.

Similarly to the box complexes the Hom complexes are naturally

equipped with covariant and contravariant functors [BK03, BK04,

Koz05c] as well. If ip: G —> H is a graph homomorphism, we obtain an

induced map fv: F(Rom(T,G)) -> T{B.om(T,H)). This gives functo-

rial continuous maps between the Hom complexes as topological spaces.

In the other case we get a contravariant functor. ip induces

fv : T(Rom(H, T)) -> jF(Hom(G, T)).
It is important for us that if ip is an automorphism of T such that

it flips an edge in T (i.e., two vertices, which are connected by an

edge, get interchanged), then the induced map /^ : .F(Hom(T, G)) —>

J^(Hom(r, G)) is fixed-point free for an arbitrary graph G (without

loops).
This makes Hom(if2, G) and Hom(Gn, G) a free Z2-space. Similarly, as

with the box complexes, since Hom(Üf2, Kn) is Z2-homeomorphic to the

(n — 2)-dimensional sphere, we obtain that

X(G)>ind(Hom(if2,G)) + 2.

In the next section we will explain that these topological lower bounds

are more than closely related.

We will often refer to the neighborhood complex, the Lovâsz com¬

plex, the box complexes and the Hom(K2, G) as graph complexes.
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Chapter 2

Homotopy types of graph

complexes

In this chapter we will study the previously defined graph complexes,

the neighborhood complex N(G), the Lovâsz complex L(G), the box

complexes B(G) and Bo(G), and the Hom complex Hom(iiT2,G). These

graph complexes associated to a graph G can be viewed as avatars

of the same object, as long as their Z2-homotopy (or even simple Z2-

homotopy) types are concerned [CsLSW04, Cso04, Koz05b, Ziv04]. At

first we will see that they are Z2-homotopy equivalent, and at the end

of this section we will show that this can be extended to simple Z2-

homotopy equivalences as well. We will present the universality theo¬

rem, which says that up to Z2-homotopy any Z2-space can be a graph

complex.

In [MZ04] Matousek and Ziegler compared various topological lower

bounds for the chromatic number. They reformulated Lovasz's original

bound [Lov78] and Sarkaria's bound [Sar90] in terms of the index of

various box complexes:

Theorem 2.1 (The Lovâsz bound [MZ04]). For any graph G

X(G) > ind(B(G)) + 2.

Actually this might be formulated in terms of other graph complexes:

29
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X(G) > ind(Hom(X2, G)) + 2 - ind(L(G)) + 2 = ind(B(G)) + 2.

Theorem 2.2 (The Sarkaria bound [MZ04]). For any graph G

X(G) > ind(B0(G)) + 1.

In Section 2.2 we prove that the box complex B0(G) is Z2-homotopy

equivalent to the suspension of B(G). This makes the connection be¬

tween these two bounds explicit. Since ind(X) < ind(susp(X)) <

ind(X) + 1 the difference between the right side of the Lovâsz and the

Sarkaria bound is at most one.

Prom purely topological point of view it is possible that these

two bounds are not the same. In Section 3.5 we construct Z2-

spaces e.g. X2^ such that the suspension does not increase their index:

ind(susp(X2/,)) = ind(X2/l).

However to show that these lower bounds (Theorem 2.1 and 2.2)
are not the same for graphs we would need a graph such that its box

complex B(G) has this property (the suspension does not increase the

index). In Subsection 2.3.1 we show that graph complexes are universal:

their homotopy type can be 'arbitrary'. In Subsection 2.3.2 we extend

this result to Z2-homotopy equivalence. This allows us to construct

graphs G such that the gap between these two bounds is 1. This means

that the Lovâsz bound can be strictly better than the Sarkaria bound,

which answers a question of Matousek and Ziegler [MZ04].

2.1 Shore subdivision and useful subcom¬

plexes

In [CsLSW04] we introduced the shore subdivision of simplicial com¬

plexes and used it to find an upper bound to the topological lower bound

(Theorem 2.1) and to construct a strong Z2-deformation retraction from

the box complex to the Lovâsz complex. In the process, we analyze and

clarify the combinatorics of the complexes involved and link their struc¬

ture via several 'intermediate' complexes.

For a simplicial complex K and any partition of its vertex set V

into non-empty sets V\ and V2, we call the simplicial subcomplexes Ki
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and K2 induced by V\ and V2 its shores. In case of the box complex

we always consider the canonical partition (see Section 1.5). The shore

subdivision of K is

ssd(K) := {sd(a n Ki) * sd(cr n K2) | a K} .

We apply this definition to the shores of the box complex to obtain the

shore subdivision ssd(B(G)) of B(G). The vertices of ssd(B(G)) are of

type A W 0 and 0 Ö A where 0 ^ A c V(G) with CN(A) ^ 0. A simplex

of ssd(B(G)) is denoted by A W B (the simplex spanned by the vertices

A fctl 0 and 0 W B where AeA,BeB).

The map en2 : ssd(B(G)) — ssd(B(G)) defined on the vertices by

cn2(A Ö 0) := CN2(A) tt) 0 and cn2(0 ttJ A) := 0 W CN2(A).

It is simplicial and Z2-equivariant. We refer to the image of the map

en2 as doubled Lovâsz complex DL(G). It is

DL(G) = \AttB
A,Be L(G), for all A e A,B #'

G [A; £?] is complete bipartite

A copy of the Lovâsz complex can be found on each shore of DL(G) C

ssd(B(G)), but these copies do not respect the induced Z2-action.

We partition the vertex set of the doubled Lovâsz complex DL(G)
into pairs of type {A W 0,0 W CN(A)} to define a simplicial Z2-map

j : DL(G) — DL(G). Our aim is to specify one vertex for every pair

and map both vertices of a pair to this chosen "smaller" vertex. To do

this we refine the partial order by cardinality to a linear order "-<" on

the vertices of the original Lovâsz complex L(G) using the lexicographic
order:

A<B :<^> <
' ' '

\\A\ - \B\ and A<lexB.

In fact any refinement would work in the following. A partial order on

the vertices of the doubled Lovâsz complex DL(G) is now obtained:

Ao0-<0l±iCN(A) :<=> A^CN(A).

We define the map j on the vertices using this partial order by

j(A W 0) := min{A W 0, 0 tt) CN(A)}
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and

j(0 W B) := min{0 W £, CN(Z?) W 0).

It is easy to show that j is simplicial. Let A 'S B he a, simplex of

the doubled Lovâsz complex DL(G), that is, the simplex spanned by
the vertices A t±J 0 and 0 ü ß with A G A ß G B, A, B G N(G) are

fixed points of CN2, and G[A;B] is complete bipartite. Suppose that

Ap -< Bq holds for the largest elements Ap and Bq of A and B. Then

/ly, -< CN(Ap), since Bq Ç CN(AP). Hence A ttl 0 is a fixed point of j
for each ,4 G A For some 0 < k < q, the vertices 0 tt) £? for B G £></,.

are fixed by j, while the vertices 0 l±l I? are mapped to CN(£?) l+l 0 for

B G B>k. Since Ap -< CN(£) for each B G #>fr, we have

j(AvB) = (AtlCN(B>k))\tiB<k,

which is a simplex of DL(G). The argument is the same if Bq -< Ap.
Hence j is simplicial.

Since the image Im j has half as many vertices as DL(G), we refer

to Im j as halved doubled Lovâsz complex HDL(G).

Figure 2.1: The box complex B(C^).

A first example: The neighborhood complex N(Gs) of the 5-cycle G5 is

the 5-cycle; its Lovâsz complex L(Gr,) is the 10-cycle Gio- The box com¬

plex B(Gz), depicted in Figure 2.1, consists of two copies of N(Gs) (the
two shores) such that simplices of different shores are joined if and only if

their vertex sets seen as node sets of the graph are common neighbors of

each other. The shore subdivision ssd(B(Gs)) as illustrated in Figure 2.2

is a subdivision of the box complex induced from a barycentric subdivi¬

sion of the shores. The map en2 maps a vertex of ssd(B(Gs)) to the com¬

mon neighborhood of its common neighborhood. In our example, every
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Figure 2.2: The shore subdivision ssd(B(Gr,)) coincides with DL(Gö).

Figure 2.3: The halved doubled Lovâsz complex of Cr,.

vertex is mapped to itself, hence ssd(B(G5)) = DL(G5). The partition¬

ing of the vertex set of DL(Gr,) into pairs of type (A y 0, 0 W CN(A)) can

be visualized by edges of DL(G^) that connect singletons from one shore

with two-element sets from the other. The refined lexicographic order

determines the image of such an edge under j: the smaller vertex is a

singleton. Hence the map j collapses all edges of type (.400, 0tt)CN(J4)),
which yields the halved doubled Lovâsz complex HDL(G) as shown in

Figure 2.3.

A second example: Let us first describe the neighborhood complex and

the Lovâsz complex of the complete graph Kn on n nodes. The neigh¬
borhood complex of Kn is the boundary of a simplex on n vertices.

This follows from the fact that every set of n — 1 nodes has a com¬

mon neighbor but the set [n] has empty common neighborhood. The

neighborhood complex N(Kn) is therefore a pure abstract simplicial

complex of dimension n — 2, the set of facets is ( \)- The Lovâsz com¬

plex L(Kn) is its barycentric subdivision, since CN(yl) = [ri] \ A and

therefore CN2(,4) - A for each A C [n]. The Z2-action of L(A'„) maps

a vertex A G V(L(A"n)) to its complement in [n]. We now describe the
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box complex B(Kn). It is the subcomplex of the join N(Kn) * N(Kn)
that has facets A ttJ ([n] \ A) for each non-empty set A C [n]. The

box complex B(G) can also be interpreted as the boundary of an n-

dimensional crosspolytope where a pair of opposite facets is removed.

The Z2-action maps a simplex A l±J B to the simplex B l±l A. The shore

subdivision ssd(B(Kn)) is a subcomplex of the join L(Kn) * L(Kn). Its

facets can be described as follows. Consider a non-empty set A C [n] and
a maximal chain A of non-empty subsets of A. Such a chain represents

a (\A\ — l)-dimensional face of L(Kn)- Consider a complementary sim¬

plex B, that is, a maximal chain of non-empty subsets of [n] \ A. Then

,4l+l#isafacetofssd(B(ifn)). The Z2-action maps AWB to BSA. Since

every vertex of sd(N(ÜTn)) is a fixed point of CN2, the shore subdivision

ssd(B(iv~n)) coincides with the doubled Lovâsz complex DL(Kn). To

define the map j, we consider the following partitioning of the vertices

of DL(Kn) into pairs formed by A l±l 0 and 0 Ö CN(A). The map j maps

both vertices to the smaller one of A l±l 0 and 0 l±l CN(A) with respect to

-<. The image of j is the halved doubled Lovâsz complex. Its Z2-action

maps A ö 0 to 0 Ö A.

Remark 2.3. Independently from this work, de Longueville [dL04] used

shore subdivisions to give a short and elegant proof of the fact that Bier

spheres are in fact spheres.

2.1.1 L(G) as a Z2-deformation retract of S(G)

Theorem 2.4. The Lovâsz complex L(G) and the halved doubled Lovâsz

com,plex HDL(G) are ^-isomorphic.

The proof makes use of the chain notation introduced in Section 1.3.

Proof. Since each shore of DL(G) is isomorphic (but not Z2-isomorphic)
to 1(G), we have |V(L(G))| - |V(HDL(G))|. To define a simplicial Z2-

map / : 1(G) -> HDL(G), we partition V(L(G)) into

A G V(L(G)) and 1

j(AW0) = AW0 J
'

A e V(L(G)) and 1

j(J4i±)0) = 0l±)CN(A)J
'
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(where "5"' and "J" denote the vertices that 5tay fixed or Jump to their

neighbor), and set

f{A).=
\A{^ HAeS,

1 ] '

|0ttJCN(A) if Ag J.

This map is a bijection between the vertex sets V(L(G)) and V(HDL(G))
that commutes on vertex level with the Z2-actions. We now show that

it is also surjective and simplicial. For simpliciality, consider a simplex
A in L(G). Let t denote the largest index k such that Ak is mapped onto

the first shore. The image of A under / is A<t Ö CN(.4>t+i). This is

a simplex since G [At; CN(At+i)] is complete bipartite. For surjectivity
consider a simplex AW B of HDL(G), i.e. G [A; B] is complete bipartite
for each A G A and B G B. This simplex is the image of the simplex

A C CN(ß) of L(G).

Theorem 2.5. The halved doubled Lovâsz complex HDL(G) is a strong

Z2-deformation retract of the box complex B(G).

Proof. First we observe that ||DL(G)|| is a strong Z2-deformation retract

of ||B(G)|| = ||ssd(B(G))||. This follows from the fact that a closure

operator induces a strong deformation retraction from its domain to its

image, [Bjö95, Corollary 10.12 and the following remark]. Explicitly,
this map is obtained by sending each point p G ||ssd(B(G))|| towards

||en21| (p) with uniform speed, which is Z2-equivariant at any time of the

deformation.

To show that ||HDL(G)|| is a strong Z2-deformation retract of

||DL(G)||, we define simplicial complexes and simplicial Z2-maps

DL(G) =: So -^ S1 i ...

lz> SN+1 := HDL(G),

such that Si+i is a Z2-subcomplex of Si and 5,;+i is a strong Z2-

deformation retract of Si. The composition of the fi yields the earlier

defined map j, i.e.,

j = fN ° • • • ° /l ° /o-

To construct Si+i inductively from Si, we consider

X:-max{Y G J \ Y W 0 G 5»} ,
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and obtain Si+\ from Si by deleting each simplex of Si that contains

X ö 0 or its Z2-partner 0 l±l X, that is,

Si+i := {a | cr G S* and X ö 0 0 a and 0 l±) X £ cr} .

The maximality of X implies that a maximal simplex which contains

X Ü 0 (resp. 0 W X) does also contain 0 1+) CN(X) (resp. CN(X) l±J 0).
Hence the map /,; defined on the vertices v G V(5j) via

f0WCN(X) ifv = Xo0,

/;(^) := icN(X)l±J0 if^ = 0WX,

y v otherwise.

It is simplicial and Z2-equivariant.

Thus F : ||^||x[0,l] -M given by F(x,t) :=t-x+(l-t)-\\fi\\(x)
is a well-defined Z2-homotopy from ||/j|| to Id^y that fixes ||Â\+i||. D

We end this section with a construction of a Z2-map HDL(/) be¬

tween HDL(G) and HDL(H) if we are given a graph homomorphism

/ : G —» H. Once we have chosen the partial orders that define the

maps jo and jH that give HDL(G) and HDL(H), we simply compose

the following simplicial Z2-maps:

• The inclusion i : HDL(G) -> ssd(B(G)),

• the map ssd(B(/)) : ssd(B(G)) —» ssd(B(if)) canonically induced

from /,

• the map en2 : ssd(B(#)) -» Dl(H), and

• the map jH : 01(H) -» HDL(F).

More precisely, the simplicial Z2-map * : HDL(G) — HDL(H) is defined

by:

^ := JH ° en2 o ssd(B(/)) o l.

Since the halved doubled Lovâsz complex HDL(G) is Z2-isomorphic to

the original Lovâsz complex L(G), this map can be interpreted as a

simplicial Z2-map L(/) between L(G) and \-(H). This construction is

significantly simpler than the construction of the Z2-map L(/) : L(G) —>

L(H) described by Walker, [Wal83].
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2.2 The connection between the box com¬

plexes BC(G), B0(G) and B(G)

In this section we will prove that Bo(G) and susp(B(G)) are Z2-

homotopy equivalent. The reason is that the box complex is 'nearly'

Hom(X2,G)x [0,1].

Theorem 2.6. B^(G) is ^-homotopy equivalent to susp(B(G)).

Proof. It follows from Lemma 2.8 and 2.9.

Remark 2.7. One can use Lovasz's bound to prove Kneser's conjecture

[Kne55]. The box complexes of Kneser graphs (and Schrijver graphs)
are tidy spaces [Lov78] (spheres up to homotopy [BL03] for Schrijver

graphs). This means that one can prove Kneser's conjecture by using

Sarkaria's bound (or any higher suspension of the box complex) as well.

Lemma 2.8. B^(G) is %2-homotopy equivalent to Bo(G).

Proof. Bc(G) was obtained from B(G) by attaching two cones Gi,G2
over the shores, while B0(G) is B(G) plus two simplices Al5 A2 covering
the shores.

We consider the following two quotient CW-complexes. (Bc(G)/Gi)/G2
and (Bo(G)/A1)/A2 (the order of the factorization does not matter

since we collapse disjoint subcomplexes). It is obvious that they are the

same CW-complexes and since Ci, Ai are contractible subcomplexes

Be (G) and B0(G) are Z2-homotopy equivalent.

Lemma 2.9. Bc(G) is Z2-homotopy equivalent to susp(B(G)).

Proof. BC(G) is a subcomplex of susp(B(G)). The idea of the proof
is to start with susp(B(G)), and get rid of the extra Simplexes one by

one (using deformation retraction) such that finally we get Bc(G). We

will work with one cone (half) of the suspension. Since we want a Z2-

retraction, on the other cone we have to do the Z2-pair of each step.

Let x be the apex of the cone over the first shore in susp(B(G)) (y is

the other apex). We will define (by induction) sequences of simplicial

complexes such that

susp(B(G)) — Xq D Xx D • • • D XN = BC(G),
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and X^+i is a Z2-deformation retraction of X7;.

Let assume that we already defined Xn •
We choose a simplex a G Xn

such that

1. x G a, and the rest of the vertices of a are from the second shore,

2. no other simplex in Xn containing x has more vertices from the

second shore, and it has at least one vertex from the second shore.

The vertex set of a will be {x, 0 l±J bjx,..., 0 l±J bjt_x} for some B =

{bn,..., bjt^} Ç V(G). Let A := CN(£) - {a^,..., a?;J and â be the

Z2-pair of cr with vertex set {y, 6jx l+l 0,..., bjl_1 Ö 0}. We are ready to

define Xn+i'.

Xn+1 := Xn \ {t G Xn : a G r or a G r} .

x

^

£

We have to only
show that Xn+1 is the

deformation retract

of Xn. We know

the local structure

of our complex Xn
around a. Let as¬

sume that it is a face

of a bigger simplex
A with vertex set

{x, 0 i±l 67l,..., 0 l±l bjl^1, c}. c can not be the other apex. If c were from

the second shore, then we would choose A instead of a to define Xn+\.
So c can be only from the first shore and then c G A. This means that

a is on the boundary of Xn\ it is on the boundary of the simplex s

with vertex set {x, 0 Ö bjx,..., 0 t±J bjl_1 ,aix l+J 0,..., aik ö 0}. Moreover

every simplex which has a as face is on the boundary of Xn. So what

we delete to get Xn+i is on the boundary (except s). The retraction1

1This deformation retraction of the simplex {v\ = aix l±l 0,..., vk = alk l±) 0, w\ —

0 t±J fejl,... ,u>i-i = 0 ttl bjll, wi :~ x} can be explicitly given by:

ht {^2 tiVi + ^2 S3W3 ) =Yl{~r +ti)Vi+Yl (8J " *) J '

where ^ t^ + X^ sj — 1- ^ starts with /io = id, and ends (for a particular point), just
when the first coefficient of Wj become zero. This retraction 'kills' those simplices,
which has as a face the simplex {w\,... ,Wi}, and retracts the 'interior' points to

the remaining simplices.
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to Xn+i can be given as indicated on the picture.

2.3 Universality of graph complexes

In this section we prove that any Z2-simplicial complex can be a

graph complex up to Z2-homotopy. First we start with the homotopy
version which we extend to Z2-homotopy in the next subsection (Sub¬
section 2.3.2).

2.3.1 Neighborhood complex

We consider the following natural

question about the neighborhood com¬

plex. Given a simplicial complex K, is

there a graph G such that its neigh¬
borhood complex is the given complex,

N(G) - K?

For example, if K is the complex on

Figure 2.4 then the answer is no\ The reason is that there is a topological
obstruction. The neighborhood complex is homotopy equivalent to the

box complex which is a free Z2-simplicial complex so it has clearly even

Euler characteristic. But X(K) — —1 is odd.

Another example if K is the complex of Figure 2.5.

Now the answer is no again, but there is no topologi¬
cal reason. With the usual antipodal map K becomes

a free Z2-simplicial complex. On the other hand the

graph G with N(G) — K should have 4 vertices, and by

brute force one can check that K is not a neighborhood
complex.

Figure 2.5: K.

Unfortunately we can not answer this question, but we will show

that up to homotopy everything is possible.
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Theorem 2.10. Given a free Z2-simplicial complex (K,v), there is a

graph G such that its neighborhood complex is homotopy equivalent to

the given complex, N(G) ~ K.

In order to prove it we will use the following construction of a graph
from a Z2-simplicial complex. Note that the construction does depend

only on the 1-skeleton of the Z2-complex (K,z/). In order to prove

Theorem 2.10 we will use the barycentric subdivision of K. The graph

complex of Gsd(«) is K up to homotopy.

Construction 2.11 (K —» G«)« Let K be a ^simplicial complex. The

vertices of G« are the vertices of K, and each vertex is connected to its

Z'2-pair and the neighbors2 of the 2,2-pair. Thus if x, y G V(Gk) — V(K)
then there is an edge between them if and only ifv(x) = y or {x, v(y)} G

K (or {y, v(x)} G K). An example is in Figure 2.6.

K

Gk

Figure 2.6: Example for the construction.

We need the nerve theorem as well.

Definition 2.12 (nerve). Let T be a set-system. The nerve M(J7)
of T is defined as the simplicial complex whose vertices are the sets

in T, and {Xi,..., Xr} G N(F) if and only if Xi,..., Xr G T and

Xi n x2 n n xr ^ 0.

Theorem 2.13 (nerve theorem). Let K be a simplicial complex and

Kj (i G I) a family of subcomplexes such that K — {Jil K^. Assume that

every nonempty finite intersection K^ D • • PI Kir is contractible. Then

K and the nerve A/"(|J K^) are homotopy equivalent.

Proof of Theorem 2.10. For technical reason we need the first barycen¬
tric subdivision sd(K) of K. The free simplicial Z2-action on sd(K) will

be denoted by v as well.

2 in the 1-skeleton of K
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We use Construction 2.11 with sd(K) to obtain Gscj(k)- Because of

the barycentric subdivision the vertices of Gsci(k) denoted by subsets of

V(K). If A, B G ^(Gsd(«)) then there is an edge between them if and

only if v(A)=B or u(A)cB or v(A)Z)B.

We denote the vertices of K by 1,2, ...,n. Let starsd(K)(A) be

the star3 of the vertex A in sd(K). The nerve of the set system

{starsd(K)(,4): A G V(Gsd^))} is clearly the neighborhood complex of

Csd(K)- (This is even true without any subdivision: N(Gk) = A/"(«S)
where S is the set of the vertex stars in K.)

We want to use the nerve theorem so we should prove that if

B G starsd(K)(Ai) PI • PI starsd(K)(ylr) ^ 0 then this intersection is

contractible. We show that this is a cone. We have two cases:

1. If Ai c B for alH = l,2,...,r:
In this case \jAi is a vertex of the barycentric subdivision since

it is a subset of B, and it is in the intersection as well. We show

that the intersection can be contracted to this point. We construct

this deformation retraction by letting each vertex to travel towards

UAi with uniform speed. The only thing that we have to check is

that whenever B\ C £?2 C • • • C Bq is a simplex in the intersection,

then with the special vertex X := UAi they form a simplex as

well. First observe that there is an edge between X and Bi, l G

{1,..., q}. If B\ c Ai for some i then Bi C X as well. Otherwise

X c Bt. For the simplex B1 C B2 C • • C Bq if X C Bt or X D

Bq then they form a simplex with X. Otherwise there is an index

k such that Bk C X C Bk+i. This means that B±, ß2,..., Bq, X

form a simplex.

2. If B C Aiâ for some j = 1,..., k (k > 1), and Ai C B for the rest:

fc

In this case B C PI A^. / 0 4 is a vertex of the barycentric subdi-

vision and the intersection as well. We show that the intersection

can be contracted to this point. We construct this deformation re¬

traction by letting each vertex to travel towards PlA^. with uniform

speed. We have to show that whenever B± C B2 C • • C Bq is a

simplex in the intersection, then with the special vertex X :— PiA^
they form a simplex as well. First observe that there is an edge
between X and Bti, I e {l,...,q}. If Bi D Ai for some ij

3The star of a G K: starK(cr) = {t£K:tU(t£K}
B D U Ai would be good as well, but it can be the ernptyset.

Ai CD

4
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then B\ D X as well. Otherwise X D f?/. For the simplex

5i C £2 C • C Bg if X C #i or X D £9 then it is true.

Otherwise there is an index k such that Bk C X C .Bfc+i which

means that J5i, B2,..., Bq, X form a simplex.

This completes the proof. D

2.3.2 Box complex: Z2-universality

In this section we prove the universality theorem. It is the Z2-
extension of Theorem 2.10. These results were already announced by
Matousek and Ziegler [MZ04] (arXiv:math.CO/0208072v2). Later it

(and the result from Section 2.2, Theorem 2.6) was proven by Zivaljevic

[Ziv04j.

Theorem 2.14. Given a free ^simplicial complex (K,^), there is a

graph G such that its box complex B(G) is 1i2-homotopy equivalent to

the given complex.

First we need the Z2-carrier lemma.

Definition 2.15 (Z2-carrier). Let (K, v) be a Z2-simplicial complex
and (T, ß) a Z2-space. A function G taking faces a of K to subspaces

C(a) of T, satisfying C(v(cr)) = ß(C(a)), is a ^-carrier if C(cr) Ç C(t)
for all cr Ç r.

Lemma 2.16 (Z2-carrier lemma). Assume that for a Z2-carrier C

for any a G K C(a) is contractible. Then any two Z2-maps f,g: K —» T

that are both carried by C are Z2~homotopic.

Proof. We proceed similarly as the proof of Theorem II.9.2 in [LW69].
We will construct by cell induction the required homotopy F: K x

[0,1] —> T. For a vertex v G K since f(v),g(v) G C(v) and C(v)
contractible we can define F on v x [0,1] such that F(v x [0,1]) Ç C(v).
On v(v) x [0,1] we do everything in order to obtain Z2-homotopy. As¬

sume that cr G K is a minimal simplex such that F is not defined on

cr x [0,1] yet. For a face r Ç a we have by the induction hypothesis
that F(t x [0,1]) C C(t) Ç C(o-) So on the boundary of a x [0,1] F
is defined, and since C(a) is contractible we can extend F such that
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F(a x [0,1]) Ç C(a). On v(a) x [0,1] again we do everything in order

to obtain Z2-homotopy. D

Proof of Theorem 2.14- We will use the same notations as in the proof
of Theorem 2.10. Similarly we obtain Gsd(«) by using Construction 2.11

with sd(K). We need to show that the box complex B(Gsd(K)) and (K, v)
are Z2-homotopy equivalent. In order to prove it we will define Z2-maps

/: sd(B(Gsd(K))) -> sd(K) and g: sd(K) -» B(Gsd(K)). To complete the

proof we will show that / (and g) is a Z2-homotopy equivalence.

The definition of g: This is an embedding. We map a vertex A G

sd(K) to A W 0 G B(Gsd(K)) and of course its Z2-pair v(A) G sd(K) to

0l±J A G B(Gsd(K)). Here we had to choose! If we pick v(A) first than we

mapped v(A) to v(A) tt) 0 and A to 0 l+l v(A). So we have 2 choices for

any Z2-pair A, v(A). This defines a Z2-map g on the vertex level. We

have to show that g is simplicial. Let A\ C • • C A\ be a simplex a in

sd(K). Since A\ l+J 0,..., At l+J 0, 0 l±J v(Ai),..., 0 Ü u(Ai) form a simplex
in B(Gsd(K)) the image of a is a simplex. (In Gsd(K) A; is connected to

v(Ai) and since Ai C Aj or Ai D Aj it is connected to v(Aj) as well.

So Gsd(K)[{^4i,..., At}; {p(A\),..., z/(A;)}] is complete bipartite.)

The definition of /: Let Ax \H 0,..., A\ Ö 0, 0 l+J Bx,..., 0 l+J Bk be the

vertices of a simplex cr in B(Gsd(K))- Gsd(«)[*4; B] is complete bipartite
where A := {Ai,..., A{\ and B := {Bi,..., Bk}. This means that

k

A C starsd(K)^(ßj) for any j G {1,..., k} so A C Pi starsd(K)^(^)-

fc

From the proof of Theorem 2.10 we know that Pi starsd(K)i/(JB7) is a

cone with apex X. Since A,v(B) C starsd(K)X we have that Y :—

l k

Pi starsd(K)^.i fi n sfarsd(K)z/(^?) 7^ 0- From the proof of Theorem

2.10 we know that F is a cone. We denote its apex by X^ which can

l k

be chosen to be Pi Ai f] D v(BA if it is not the empty set. Now we

i=\ j=i

are able to define /'.

I
. -

k

f(AuB):=\ Û^ni/W if »to.

X^ otherwise.

By the construction it is Z2 on the vertex level. (We can choose X^
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v(Xj).) It is simplicial. An edge with two vertices A l+J B and A l+J B

(A C A, B C B) is mapped to two vertices S C R since XA is in the

cone of X*~. Now a simplex is mapped to a chain (since every two vertex

is comparable by inclusion).

Next we prove that / o sd(g): sd(sd(K)) —» sd(K) is Z2-homotopic
to Hk- We will use the Z2-carrier lemma. We have to construct

'only' a contractible Z2-carrier for / o sd(g) and Id. The image
of the vertex v = {A\,..., Ai}, A\ C ••• C A\ is sd(g)(v) =

{A%11...iAis}\ü{v(Ajl),...,v(Ajr)}. And now f(sd(g)(v)) = A1 n

• • • PI Aj = A\ in this case! The image of a simplex with vertex set

{An }, {AiL, Ai2},..., {Aix,..., Ait} is a face of the simplex A\ c • • C

A/. So for a simplex a G sd(sd(K)) with its maximal vertex {Ai,..., A]}
we define C(cr) := {Ai,... ,Ai\ G sd(K). This G is a contractible Z2-
carrier what we need. / o sd(g) and Mk are Z2-homotopic.

Now we show that gof; sd(B(Gsd(«))) —» B(Gs<j(K)) is Z2-homotopic
to Id. Again we construct a contractible Z2-carrier for g o / and Id. A

vertex A ö S is mapped to Xj by / and to X^ l+J 0 or 0 l+J v{X%)
by g o f. Let A\ \S B\,.. .,An^ Bn the vertex set of a simplex a in

sd(B(Gsd(K))). (Ai C---cAn,Bx c C Bn, An •- {Au ..., A,} and

Bn := {5i,. • • ,-Bjfc}). We consider the subgraph iï" of Gsd(K) spanned

by Ax,..., A\, B\,..., Bk, their Z2-image under v and XA*, v(XAl ) for

any i G {1,..., n). We will use H (actually B(H)) to define the desired

carrier. First of all B(H) contains the simplex with vertex set A\ l+J

0,..., Ai l+J 0, 0 l+J B1?..., 0 l±J Bk which contains a. Moreover we defined

H in such a way that B(H) contains (g o f)(a) as well. Observe that

H is bipartite. The neighbors of the vertices X^ and i/(Xjj) provides
a partition of the vertex set of H. The neighborhood complex N(H) is

the disjoint union of two simplices corresponding to this partition. So

the box complex B(H) C B(Gsd(K)) contains two disjoint contractible

sets (since it is homotopy equivalent to H(H)). One of these sets covers

a and (g°f)(o-), so we define our contractible Z2-carrier C(cr) to be this

'half of B(H). D

Remark 2.17. For any free ^simplicial complex (K, v) there is

a graph G such that its Hom complex Hom(Ä'2,G) is ^-homotopy

equivalent to the given complex, since the box complex B(G) is Z2-

homotopy equivalent to Hom(i^2,G). (The Z2-ma^s /: sd(B(G)) —»
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sd(Hom(if2,G)) defined by

( (A,CN(A)) i/B = 0,
A&B~>1 (CN(B),B) ifA = ®,

I (A, B) otherwise,

and g: sd(Hom(A"2, G)) -» sd(B(G)) given by (A,B) -> AWB are Z2-

homotopy equivalences, f o g — Id and g o f is carried by Id.,)

We have seen in Section 2.1.1 that the Lovâsz complex L(G) is Z2-

homotopy equivalent to the box complex B(G), so the Lovâsz complex
and the Hom complex Hom(if2,G) are universal as well.

It would be interesting to extend this universality result for Horn

complexes in general. For example on Hom(G5,G) the dihedral group

D$ — Z5 xi Z2 (the symmetry group of the regular pentagon) acts freely.
So is it true that every free Ds-space can be Hom(Gs, G) for some graph
G?

Let P3 the path on 3 vertices. The spaces Hom(P3,G) shows some

difficulty around the extension of the universality theorem. The space

Hom(P3, if3) has only a free Z3-action, while the complex Hom(P3, P3)
is a disjoint union of a square and an interval. So Hom(P3, P3) has no

free action at all. One could suspect that Hom(p3, G) could be any finite

simplicial complex up to homotopy. Using the notation of folding (see
Section 2.5) and the result of Babson and Kozlov [BK03], we have that

Hom(P3, G) is homotopy equivalent to Hom(if2, G). So our universality
theorem says that Hom(P3,G) or more general Hom(ü', G), assuming
that H folds to an edge, can be any finite Z2-simplicial complex up to

homotopy.

2.4 The G+ construction

It is well known (see [Wal83]) that the topological lower bound for

the chromatic number can be arbitrarily bad. But now we will be able

to give purely topological examples (see Section 5.2).

Definition 2.18. For a graph G let G+ be the graph obtained from G

by adding an extra vertex w and connecting it by edges to all the vertices

of G, i.e., V(G+) = V(G) U {w} and E(G+) = E(G) U {{v,w}: v G

V(G)}.
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Remark 2.19. G+ is a special case of the Mycielski construction:

G+ — Mi (G). We will reprove the following lemma in Section 2.6.

Lemma 2.20. B(G+) is Z2-homotopy equivalent to susp(B(G)).

Proof susp(B(G)) is a subcomplex of B(G+). The difference is only two

big simplices (and some of their faces) V(G) l+Jw; and w\ßV(G). We will

get rid of the extra simplices one by one using deformation retraction.

We will work with one shore, on the other shore we have to do the

Z2-pair of each step.

We will define (by induction) sequences of simplicial complexes such

that

B(G+) =: X0 D Xi D D XN = susp(B(G)),

and Xi+i is a Z2-deformation retraction of Xi.

Let assume that we already defined Xn. We choose A Ç V(G) such

that AWw G Xn, and there is no A c B Ç V(G) such that B&w G Xn.

We define Xn+1:

Xn+i := Xn \ {A l+J w, w l+J A, A l+J 0,0 l+J A} .

By the definition of Xn+i it is clearly a Z2-deformation retract of Xn

since A l+J 0 is on the boundary of Xn. (Map the barycenter of A l+J 0 to

0 l+J u;.) D

2.5 Folding

We will show that folding in the second parameter of the homo¬

morphism complex yields a homotopy equivalence. In the next section

we will use this. There we will study how the so called Mycielski con¬

struction in the second parameter changes the homotopy type of the

homomorphism complex.

Definition 2.21. G — v is called a fold of a graph G if there exist

u G V(G), u^v such that N(u) D N(v).

So far we only considered special Hom complexes the Homfi^G)
complexes. Now we will work with the general Hom(G, H) complexes.
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It was proven in [BK03, Proposition 5.1] that folds in the first pa¬

rameter yield homotopy equivalence. It was noticed in [CK04, Lemma

3.1] that one can fold in the second parameter if the deleted vertex is an

identical twin. Now we will show that the fold in the second parameter

is a homotopy equivalence in general. This statement was generalized

by Kozlov [Koz05a] into a simple homotopy equivalence. Note that now

graphs can have loops as well. The proof works in that generality.

Theorem 2.22. Let G and H be graphs and u, v G V(H) such that

N(u) D N(v). Also, let i : H — v °-> H be the inclusion and u : H —>

H — v the unique graph homomorphism which maps v to u and fixes
other vertices. Then, these two maps induce homotopy equivalences in :

Rom(G,H~~v) - Hom(G,#) and ujh : Hom(G,#) - Rom(G,H-v),
respectively.

Proof. We will show that uh satisfies the conditions (A) and (B) of

Lemma 1.15. Unfolding definitions, we see that for a cell of Hom (G, H),
t : V(G) -> 2V^ \ {0}, we have

( y \ — j r(x) if v ^ t(x),
UH{T){X)

-

| ^ ö^ ^ ^ otherwige>

Let 77 be a cell of Hom(G, H - v), 77 : V(G) - 2VW\W \ {0}. Then

üJ^1(r/) is a set of all rf such that, for all x G V(G),

1. r)'(x) — rj(x), if u £ rj(x);

2. or if u G r)(x) then (at least theoretically) we have the following

possibilities:

(a) n'(x) = rj(x),

(b) r]'(x)=r)(x)\{u}U{v},

(c) rf(x) = 7](x) U {v}.

Because of the condition N(u) D N(i>), not all 7/ satisfying 2.(6), 2.(c)
have to belong to Hom (G, if). Note that if H is simple and u G n(x)
and (x,y) G E(G) then u 0 r](y). But this is not true in general. This

means that for any x it depends not only on N(?j) that we can use

2.(6), 2.(c) to get r)1 G Hom (G, if). It depends on the choices of n'(y)
at the neighbors of x.
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The map ip : uj^ (rf) —> tu^1 (77) is defined by

{C,(x)

iîueÇ(x),
C(x) ifu,v(£((x),
C(x) U {u} if u £ r](x) and v G rj(x),

for all x G V(G). We show that ip is a homotopy equivalence by using
Lemma 1.15.

ip~i(Q is clearly a cone with apex ( (it is the maximal element) so it is

contractible and condition (A) satisfied for ip.

Take now any r G <p~1 ( (w]i1(rj))>t). The maximal element £ of the

set p-1^) nO^fa))^. is c.

Since y> satisfies conditions (A) and (B) it is a homotopy equivalence.
The image of ip is a cone with apex 77 so contractible and condition (A)
is satisfied for U}j.

Take now any r G a;^1(Hom(G, H — v)>r}). The maximal element £ of

the set ^^(77) Pi (Hom(G, H))<T is

fi(x) =
{ ^ ifu^7](x),
\ t(x) Pi (r](x) U {u}) otherwise.

Since it satisfies conditions (A) and (B), we conclude that sd(u)n) and

hence also uh are homotopy equivalences.

It is left to prove that in is also a homotopy equivalence. It is clear

that uh ° %h — IdHom(G,iJ-*;)- Let $ be the homotopy inverse of ujjj.

Then we have ifj o loh — $ ° ^h °ïh ° ^h ~
$ ° uh — IdHom(c?,jy)- ^

2.6 Mycielski graphs

Recall (see for example [ST04] page 16) that the Mycielskian Mr(G)
of a graph G — (V,E) has vertex set {z} U (V x [r]), z is connected to

all vertices of y x {1}, (v, i) is connected to (u, i + 1) for all (u, v) e E

and i = 1, 2,..., r — 1, and a copy of G sits on V x {r}.
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Our aim is to prove5 that (as it is predicted in [ST04]):

Theorem 2.23. For every graph G and every r > 1, the homomorphism

complex Hom(Ä'2, Mr(G)) is Z2-homotopy equivalent to the suspension

susp(Hom(JftT2, G)).

Our main tools are Bredon's theorem [Bre67] which allows us to use

standard topological combinatorics to prove Z2-homotopy equivalence

(see [Ziv04] for other applications).

Theorem 2.24 (Bredon). Suppose that f': X —> Y is a (simplicial)
Zi2-rnap of free simplicial ^-complexes X and Y. The Z2-mop /': X —»

Y is a %2-homotopy equivalence if and only if it is an ordinary homotopy

equivalence.

Proof of Theorem 2.23. We will use induction on r. For r = 1 it was

proven in Section 2.4. Here we give a new proof.

r=l: We extend the face poset of Hom(ÜT2,G) with two

non-comparable maximal elements maxi, max2 to obtain

7r(susp(Hom(K2,G))). We define the map

/: P := F(Kom(K2,Mi(G))) -> Jr(snsp(B.om(K2,G))) =: Q

by (we will denote the cells by (A, B) and (Au{z}, B) where we assume

that z 0 A, B Ç V and A, B ^ 0)

f(A,B) = (A,B),
f(Au{z},B) = maxi,

f(z, B) — maxi.

Since we want a Z2-map / is well defined. (For example f(B, z) —

max2.)

/ is clearly monotone (simplicial), as all maps we will introduce

later. We will keep using Lemma 1.15.

f~l(A, B) is just (A,B) so in this case (A) and (B) are satisfied.

If f(p) — maxi then /-1(maxi) PI P<p has a maximal element p. To

show that R :— /_1(maxi) is contractible we define g: R —> im(#) by

In [GyJS04] only the homotopy equivalence was proven.
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g(Au{z},B) — (z, B) and g(z, B) = (z, B). g is a, homotopy equivalence
since g~1(z,B) is a cone with apex (z,B) and let q — (z,B) and p —

(A U {z}, B) such that g(p) > q (B Ç B). Now the maximal element

of g~l(q) n R<p is (A U {z},B). Moreover im(g) is a cone with apex

(z,V).

The induction step r => r + 1:

The graph homomorphism (j>: Mr+i(G) —> Mr(G) defined by 4>(z) =

z and 0(î; x z) — v x min{i, r} gives a Z2-map

/: P := .F(Hom(K2,Mr+i(G))) - .F(Hom(if2, Mr.(G))) =: Q.

We will show that / is a homotopy equivalence. If (A U B) Pi ({z} UVx

{l,2,...,r-l}) ^0 then l/"1^,^ - 1 so in Lemma 1.15 (A) and

(B) are satisfied. In the case when (A UP) Ç V x r, by slightly abuse of

notation we will write instead of (A, B) (Axr,B x r) showing that in

Mi(G) in which copy of V belong to A and B. Let p = (Ai xrUA2 x (r+
l),Px(r+l)) such that f(p) > (Axr, Bxr). Now the maximal element

ofJ-^ixr^xrjnP^ is ((A4P1A) xrU(A2PiA) x (r + 1), Px (r + 1)).
We should show that S := f~l(A x r, P x r) is contractible as well.

We define g: S —> im(g) by g(A x r,B xr) = (Ax r,B xr), g{A\ x

r U A2 x (r + 1), B x (r + 1)) = (A1 x r U A x (r + 1), P x (r + 1))
(AiUA2 = A) and symmetrically #(A x (r + 1), Pi x rUP2 x (r + 1)) =

(A x (r + 1), Pi x r U B x (r + 1)) (Pi U P2 = P). im(p) is a cone

with apex (Ax (r + 1), P x (r + 1)). g~l(q) is a cone with apex q. Let

(without loss of generality) q
— (Ai xrUAx (r + l),Px (r + 1)) and

p= (ÂixrUÀ2x (r+1), Px (r+1)) such that f(p) > q (À] D Ai). Now

the maximal element oî f"1(q)C]S<p is (Ai xrUAx (r + l),P x (r + 1)).
This completes the proof. D

Remark 2.25. There are interesting consequences of Theorem 2.23.

Since M\(Kn) — Kn+\ and Hom(if2, if2) homeomorphic to S° we get

that Hom(i^-Kn) «s ^-homotopy equivalent6 to Sn~2. This implies

already Lovasz's topological lower bound for the chromatic number:

X(G)>ind(Hom(K2,G)) + 2.

In general about Hom(P, Mr(G)) or Hom(Mr(P), G) one can not expect

something like Theorem 2.23. Is is shown by the following well known

It is known [BK03] that Hom(K2,Kn) is Z2-homeomorphic to S'
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or easily computable examples: B.om.(K^,K2) — 0, Hom(if3,M2(Ü'2) —

G5) = 07 Hom(i^3,Mi(K2)) 2É \fS°} Hom(K3, M^K3)) ~ V^

Hom(i^3,M2(X3)) ^ \/S°, Hom(G5,K2) = 0, Hom(G5, M2(K2)) -

\fS°, Hom(G5,Mi(i^2)) 9* S1 US1, Hom(G5,M2(G5)) ^ V-^ anrf

Hon^Gs^^i^s)) ^ RP3. Pwf sto'ZZ something can be said.

Theorem 2.26. Ifn > 3 andr > 2 then E.om(Kn,Mr(G)) is homotopy

equivalent to Hom(Kn,G).

Proof Let G be a subgraph of Mr(G) induced by the vertex set V x

{r,r - 1}. Clearly Rom(Kn, Mr(G)) is the same as B.om(Kn,G). It is

easy to see that G folds down to G. Now Theorem 2.22 completes the

proof.

Remark 2.27. Since X(M2(G)) = X(G) + 1 we obtain graphs such that

no topological lower bound using Hom(isrn, *) (n > 3) can give sharp
bound on their chromatic number. On the other hand for these graphs

Hom(iC2, *) might provide sharp bound.

It is interesting to mention that X(Mr(G)) > X(G) does not hold in

general ifr > 3, e.g., if G is the graph from Figure 5.2 then X(M$(G)) =

X(G) = 4.

Figure 2.7: G such that x(M3(G)) = x(G) = 4.

Theorem 2.26 can be stated in more general in the following way.
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Proposition 2.28. Jïom(Kn,G) (n > 3) is homotopy equivalent to

Hom(Üfn, G — v), if there is no triangle in G containing a vertex v G G.

Theorem 2.29. If2n + l<2randr>2 then Hom(G2n+i, Mr(G)) is

homotopy equivalent to Hom(G2n+i, G).

Remark 2.30. The condition 2n+ 1 < 2r in Theorem 2.29 is the best
9

possible since Hom(G5,ii:2) - 0 but Hom(G5, M2(K2)) = V^°-

Proof. The same as the proof of Theorem 2.26, just now G should be a

subgraph of Mr(G) induced by the vertex set V(Mr(G)) \ {z}.

Remark 2.31. As before: using Theorem 2.29 we can construct graphs

showing that the topological bound obtained by e.g. Hom(G5,*) can be

arbitrarily bad. On the other hand for these graphs Hom(if2, *) can

provide good bound for their chromatic number.

2.7 Simple homotopy type of graph com¬

plexes

In this section we show that the neighborhood complex N(G), the

box complex B(G), the homomorphism complex Hom(Ä"2,G) and the

Lovâsz complex L(G) have the same simple Z2-homotopy type7, in the

sense of Whitehead [Whi39].

The Z2-homotopy equivalence of the graph complexes were stud¬

ied in several papers [Cso04, CsLSW04, Mat03, Ziv04]. Kozlov inde¬

pendently proved [Koz05b] that the neighborhood complex N(G), the

Lovâsz complex L(G) and the homomorphism complex Homfi^, G) has

the same simple homotopy type. Our proof [Cso05] is a Z2-version

and simpler for the homomorphism complex Hom(ir2,G) via the box

complex B(G).

7Since the neighborhood complex is not a Z2-space for it we have only simple

homotopy type result.
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2.7.1 Simple Z2-homotopy equivalences of graph

complexes

In this subsection we will prove that B(G) collapses onto N(G),
sd(B(G)) Z2-collapses onto sd(Hom(i<:2,G)), and ssd(B(G)) Z2-

collapses onto L(G).

Theorem 2.32. B(G) collapses onto N(G).

Proof. We will collapse B(G) onto its first shore which is isomorphic to

N(G). The idea of the proof is to start with B(G), and get rid of the

extra simplexes one by one (using collapses) such that finally we get

N(G). We will define sequences of simplicial complexes such that

B(G) =: X0 D X± D D XN - N(G),

and Xi collapses onto Xi+-\.

Let assume that we already defined Xn. We choose a maximal sim¬

plex a Xn such that

1. a has a vertex from the second shore,

2. no other simplex in Xn has more vertices from the second shore.

Let r C cr be the intersection of a and the second shore. We define

Xi+i from Xi by collapsing (r, a). First of all we have to show that this

is a well defined collapse. By contradiction assume that there were a

simplex r U v G Xi such that v 0 a. If v were form the second shore it

would rather choose rUv instead of a to define Xi+\. If v were from the

first shore then cr U v would be a simplex of B(G). Since a is maximal,

this simplex would be deleted before (together with cr).

Theorem 2.33. sd(B(G)) ^-collapses onto sd(Hom(K2,G)).

Proof. sd(Hom(i;ir2, G)) is a subcomplex of sd(B(G)). The extra vertices

are vertices on the shores of the box complex sd(B(G)). (They are in

the form 0 W A and B Ö 0.) We work only with the first shore; the B t±l 0

part of sd(B(G)). On the other shore every collapse Z2-pair is done.

We describe an acyclic matching on P :— P(sd(B(G))). Let F G P.

We assume that F has a vertex from the first shore. Its vertices form

a chain AiW0C---Cv4nl±)0C An+i W #i C • • • C An+m Ö Bm. We
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set BQ — 0 and consider the vertex CN2(An) U CN(An). Let i be the

maximal index such that An+i tt) Bi ç CN2(An) W CN(An). We note

that An WB0Ç CN2(An) l±) CN(An) so such an i exists.

If i = m then we can have that An+m Ö Bm = CN2(An) W CN(Ai)-
In this case we match F with F \ (CN2(An) W CN(An)). Else we match

F with F U (CN2(An) ö CN(A„)).

If i ^ m then we consider Iw7:= An+i+i W 2?i+i n CN2(An) Ö

CN(An). If (J y 7) G F then we match F with F\(Iö Y). If

(Iö7)^F then we match F with Fu(IöY).

Next we show that the obtained matching M acyclic. Assume that

there exist a sequence Fo,.,., Ft P such that all Fi are different, with

the exception F0 = Ft, and such that Li(Fi) y Fi+1 for 0 < i < t — 1.

Assume that fi(F0) = A1l±)0C---C,4nl±l0C An+i W5i C • • C

An+m W Bm. Observe that An+m ößm- CN2(An) W CN(An). If F0

were /j,(Fo)\An+m\i)Bm then since F0 ^ Fi it would be not possible to

match Fi upwards unless we delete An U 0. But matched pairs contains

the same many vertices in type A l±l 0, so it can not be a member cycle.
Else F0 = ß(F0) \ (An+i t±J Bi) for some m > i > 1. Now Fi should

be ii(Fq) \ (An+i+i ttJ -Bz+i) to be matched up. We see that in F\ the

number of vertices which are subsets of CN2(An) W CN(An) is more by

1 than in Fq. Repeating this argument, we see that Ft has t vertices

more, therefore F0 7^ Ft. This leads to the conclusion that M is an

acyclic matching.

The critical simplices form a subcomplex sd(Hom(if2, G)) which

completes the proof.

Theorem 2.34. ssd(B(G)) ^-collapses onto L(G).

Proof. First we show that ssd(B(G)) Z2-collapses onto cn2(ssd(B(G))).
This follows from the fact that en2 is an ascending closure operator.

Next we show that cn2(ssd(B(G))) Z2-collapses onto L(G).

Unfortunately the previous simple proof does not work directly, we

will define simplicial complexes

cn2(ssd(B(G))) =: S0 D Si D • • D SN+1 = 1(G),
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such that Si Z2-collapses onto Si+i Assume that we already defined Si.

How to define Sj+i? We choose a vertex X tt) 0 G Si such that

1. 0WCN(X) G Si, and

2. \X\ > |CN(X)|, and

3. there is no Y such that FU0 G Sh 0l±)CN(F) G S», |F| > |CN(F)|
and \Y\ > \X\.

The maximality of X implies that a maximal simplex which contains

X Ö 0 (resp. 0 Ö X) does also contain 0 tt) CN(X) (resp. CN(X) Ö 0).

We define an acyclic matching on P := P(Si). Let F G P such that

X U 0 is its vertex. If 0 U CN(X) is a vertex of F then we match F with

the simplex F \ (0 1±) CN(X)). Else we match F with F U (0 Ö CN(X)).

Next we show that the obtained matching M acyclic. Assume that

there exist a sequence Fo,..., Ft G P such that all Fi are different, with

the exception F0 — Ft, and such that ft(Fi) y Fi+i for 0 < i < t - 1.

p(F0) = F0 U (0 l±J CN(X)). We must obtain Fi from /x(F0) by deleting
1 vertex in such a way that it matches upwards. It is possible if and

only if we delete the vertex 01±) CN(X) therefore F0 = Fi. This leads to

the conclusion that M is an acyclic matching.

The critical simplices form a subcomplex as it is proven in Subsection

2.1.1 (Theorem 2.5) as well that the complex what we obtain by the end

is L(G). This completes the proof.

2.8 Making small Hom complexes

The problem of calculating (by computer) invariants (e.g. homology)
of Hom complexes is that they are not simplicial complexes. The natural

barycentric subdivision provides a homeomorphic simplicial complex.
But in this way one gets simply to large complex even for small graphs!

Since the cells of Hom complexes are products of simplices one can

triangulate it without any additional vertex obtaining smaller homeo¬

morphic version. In the following we suggest an only homotopy equiv¬

alent, but much smaller complex.
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We want to study Hom(G, H) (definition 1.26). Let I be an inde¬

pendent set in G. We define Horn/ (G,H) by deleting this independent

set many 'coordinates' form Hom(G, H) in the following way.

Let AV(H) be a simplex whose set of vertices is V(H). Let Ci(G, H)
denote the direct product YixeV^x^j AV(H\ i.e., the copies of A^^

are indexed by vertices of G \ I.

Definition 2.35. For any pair of graphs G, H and an independent set

/ in G we define

Hxmv(G, H) := Hom(G, H) n Cr(G, H).

It is a polyhedral complex whose cells are indexed by functions fj :

V(G \ I) -> 2F^)\{0}, such that there exist an extension 77 : V(G) ->

2vr(/f)\{0| with the following properties:
If (i,j) G E(G), then for every i G rj(i) and j G n(j) it follows that

(l~j)GE(H).

Theorem 2.36. Hom/(G, H) is homotopy equivalent to Hom(G, H).

Proof. We will use Lemma 1.15. We only have to show that the

conditions (A) and (B) are satisfied by a map ip: F(Hom(G,H)) —>

JP"(HSm7(G, H)) given by restricting 77 G .F(Hom(G, H)) to V(G) \ I.

Condition (A): A(<£>-1(r7)) is clearly the products of (barycentricly sub¬

divided) simplices, so contractible.

Condition (B): For every 77 .F(Hom(G,#)) and v G T(Eami(G,R))
with ip(r}) > v the poset <p~1(î>) D .F(Hom(G, H))<v has clearly a max¬

imal element, because i is an independent set.

Proposition 2.37. Kom(K2,Kn) (n > 2j is homotopy equivalent to

Sn~2.

Remark 2.38. Of course it is well known that Hom(K2,Kn) (n > 2)
is homeomorphic to Sn~2 (see Section 1.6).

Proof. Let / be an independent set in K2 i.e. I is a vertex.

Horn/-(if2, i^n) has a very simple structure. It is the boundary of the

n-dimensional simplex which shows our claim. H

Remark 2.39. Observe that Hom/(if2,G) is the neighborhood com¬

plex N(G) of the graph G. So we proved that Hom(Ä2, G) is homotopy

equivalent to N(G).
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In [BK04] Babson and Kozlov computes (co) homologies of

Hom(G2r+i,ifn). They only conjecture the Hom(G7,if4) case. Our

computer calculation verifies that H(Hom(Cr, if4)) = (Z,Z2,0,Z).

Another application is to determine the homotopy type of the

Hom complex Hom(if3,ifm). By Theorem 2.36 we have that it is

homotopy equivalent to the (m—3)-skeleton of Hom(if2, Km). Since

Hom(if2, Km) is a boundary of a polytope and it has 2m — 2 (m—2)-
dimensional cells Hom(if3, Km) is homotopy equivalent to the wedges of

2m — 3 {m—3)-dimensional spheres. It is enough to reprove the theorem

of Babson and Kozlov for n — 3:

Theorem 2.40 ([BK03]). If Hom(ifn,G) is k-connected, then

X(G)>k + n+l.

Recently Engström [Eng05] found an interesting application of this

idea of removing an independent set (Theorem 2.36).
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Chapter 3

Non-tidy spaces

In the previous chapter we compared the homotopy type of various

graph complexes. We studied the topological lower bounds obtained by

using them. In order to answer the question of Matousek and Ziegler

[MZ04] we need a space such that the suspension does not increase its

index. We will see that we have to search amongst non-tidy spaces.

In the next chapter (Subsection 4.2.2) we will observe that non-tidy

spaces are around us, for example the Hom complexes Hom(Gs,if2n)
are non-tidy!

3.1 The Z2-index of the join of topological

spaces

In combinatorial applications, when we use the appropriate form of

the Borsuk-Ulam Theorem [Mat03, ST04, ST05] we usually want to

bound the Z2-index of some space, which we obtain by some construc¬

tion (e.g. join). The following theorem provides an upper and lower

bound for the join of two topological spaces.

Theorem 3.1 ([Mat03]). For any X and Y (free Z2-spaces)

max { ind(X), ind(Y) } < ind(X * Y) < ind(X) + ind(Y) + 1.

59
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The following lemma will provide us plenty of examples showing that

the upper bound can be tight. Usually the upper bound of Theorem

3.1 is used in applications, but it is useful to know how big mistake one

can make by using it.

Lemma 3.2. If X, Y are tidy Z2-spaces, then ind(X*Y) = ind(X) +

ind(Y) + 1.

Proof. X, Y are tidy spaces, which means that coindex(X) — ind(X) —

n and coindex(F) = ind(Y) = m for some n, m G N. This equivalent to

the following chains of Z2-maps Sn -^ X -^ Sn and Sm -^» Y V

Sin. The join of these two chains Sn+m+1 ^ X * Y -^ Sn+m+1

shows that X * Y is tidy as well, and ind(X * Y) — n + m + 1 =

ind(X)+ind(y) + l.

For example if X = Sn and Y = Sm then, since they are tidy spaces,

ind(X * y) = iud(X) + ind(y) + 1.

Let us remark that in Theorem 3.1 the lower bound strictly smaller

then the upper bound

max { ind(X), ind(y) } < ind(X) + ind(y) + 1.

So if we want to find an example (two Z2-spaces A and B) showing that

the lower bound is tight (max j ind(A), md(B) \
— ind(A * B)), then

for this particular example ind(A * B) < 'md(A) + ind(-B) + 1. Lemma

3.2 shows that this is not possible for tidy spaces. Because of that at

first we have to search for non-tidy spaces.

3.2 Construction of non-tidy spaces

In this section we will construct non-tidy Z2-spaces. These examples

are based on an earlier construction by Matousek, Zivaljevic and the

author [Cso04, Mat03, page 100].

We proceed in the following way. We choose a map / : Sn+k~1 —> Sn

([f] G 7rn+k-i(Sn), k>l) and we attach two (n+/c)-cells (the boundary
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of the (rH-fc)-cell is 5n+fc-1) to Sn via / and -/. The Z2-action on

Sn C <S/ is the standard antipodal map on the sphere and the Z2-

action on Sf interchanges the two (ra+fc)-cells. We denote this Z2-space

by

Sf :=Sn\jBn+k{jBn+k.
f -/

For example if / = id : Sn — Sn then Sf = Sn+1 which is unfortunately

tidy (see Figure 3.1).

Figure 3.1: <Sid where id: Sn -» Sn.

Now we compute the Z2-index and the coindex of Sf. In order to

calculate coindex(<S/) we need an important technical tool, the cellular

approximation theorem.

Theorem 3.3 ([Bre67] Proposition II/5.6). Every Z2-map

f : X —^ y between two ^spaces is Z2~homotopic to a cellular map -

which maps the n-skeleton of X into the n-skeleton of Y for every n.

Using this theorem we are ready to compute coindex(Sf).

Lemma 3.4. If k >2 then coindex(<S/) — n.

Proof. The embedding Sn ^ Sf shows that coindex(Sf) > n. In order

z2

to prove that coindex(«S/) = n it is enough to show that Sn+1 /—> Sf.
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By contradiction assume that we have a Z2-map Sn+ —> Sf. Using
Theorem 3.3 we could assume that Sn+1 mapped into the n+1 skeleton

of Sf which is Sn. This gives us a Z2-map Sn+1 —^ Sn contradicting

to the Borsuk-Ulam Theorem.

It is easy to see that ind(5/) < n + 1. Let B% be the unit ball in

Rl centered at the origin. We assume that /: Sn+k~1 —> Sn maps the

n-\-k—1-dimensional unit sphere, the boundary of the unit ball, into the

»dimensional unit sphere. We define a map b: Bn+k —> Bn+1 such that

it maps the origin of Rn+fc into the origin of Rn+1 and iî x G Bn+k,

\\x\\ / 0 then b(x) := / (^) \\x\\. We know that Sn+1 = <Sid where

id: Sn —> Sn so it is enough to construct a map a: Sf —^ S\&. a maps

Sn C Sf to Sn C «Sid identically and these two (n+fc)-cells of Sf to

those two (n+l)-cells of Sid by b and —b.

It is slightly more difficult to prove, that for an appropriately chosen

/ ind(*S/) = n + 1, which shows that 5/ is not tidy. We will use the

following tools:

Definition 3.5 ([HatOl] Page 427, Section 4.B). Let /: S2"1'1 -»

Sn, (n > 2), and let G/ = Sn{jB2n (we attach a 2n-cell to Sn via f).
/

The Hopf invariant of / (denoted by H(f)) can be defined such that

aUa = H(f) ß, where a Hn(Cf) = Z and ß G H2n(Cf) - Z are the

generators of the corresponding cohomology groups and U is the cup

product.

We collect some well known facts [HatOl] about the Hopf invariant.

• If n is odd, then H(f) = 0.

• If / is null-homotopic, then 'H(f) — 0.

• H : 7r2n-i(Sn) — Z is a homomorphism. If n=2, then it is an

isomorphism.

• There is an / such that H(f) = 2 if n is even. There exist an /,

H(f) - 1 if and only if n = 2,4,8.

• K2n-i(Sn) contains a Z direct summand when n is even.
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Theorem 3.6 ([HW60] Theorem 9.5.9). Let f: 52n_1 - Sn and

g: Sn —» Sn be continuous maps. Then the following holds: TC(g ° /') =

deg(g)2-H(f).

Theorem 3.7 ([HatOl] Proposition 2B.6). Every Z2-map

f : Sn -^ Sn must have odd degree.

Lemma 3.8. If f : S2n~l -» Sn such that H(f) / 0 then ind(<5/) -

tt,+ 1.

Proof. By contradiction assume that ind(<S/) < n which means that

there is a Z2-map F: Sf —^ Sn. We restrict this map into Sn C Sf

obtaining g: Sn -> Sn. We claim that go f: S271'1 - Sn is null-

homotopic. We attached one 2n-cell to Sn via /. This gives us a map

i: B2n - Sf and F o i: B2n - Sn. The restriction of F o i into

^2n-i _ ^^2^ is go f\ So the map 50/ extends into B2n which proves

that g o f is null-homotopic.

On the other hand Theorem 3.7 tells us that deg(g) is odd. (We
need now only that it is not zero.) Using Theorem 3.6 we have that

H(gof) = deg(g)2-H(f). Since we know that deg(g) ^ 0 and H(F) ^ 0

we have that H(g°/) ^ 0. This means that go f is not null-homotopic,

contradiction. D

Remark 3.9. It is easy to see that if f: Sn+k~1 -» Sn is null-homotop

then Sf is tidy, i.e., coindex(<S/) — ind(<S/) = n.

Corollary 3.10. ///: S2"1 -> Sn such that H(f) # 0 then Sf is not

tidy.

Proof. Lemma 3.8 shows that ind(<S/) = n + 1, Lemma 3.4 tells us that

coindex(<S/) = n, hence Sf is not tidy.

For example one may obtain easily a cell complex model of a non-

tidy Z2-space in the following way. Let h: S3 — S2 be the Hopf map1,
then Sh is not tidy, ind(*Sh) = 3 and coindex(<S/l) — 2.

In fact there are maps /: S4"1'1 - S2n such that H(f) = 2^0.

Using this /, <S/ is a non-tidy 4n-dimensional complex.

1
Considering S3 as the unit sphere in C2 and S2 = CP1, the Hopf map: h: S3 —

S2 defined by (zi,z2) —> [zi,z2] G CP1. h is the generator of 7:3 (S2) = Z and

H(h) = 1, (see [HatOl] Example 4.45).
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Simonyi and Tardos recently found even simpler examples [ST05].

They show that for example the double torus (the Z2-action is the re¬

flection through the origin as it is naturally embedded to R3) has index

2 but coindex 1. Moreover they show that the suspension of this space

is tidy with index=coindex=3. However their examples are not good

for our purpose.

3.3 Projective spaces

Another example for non-tidy spaces is provided by the odd di¬

mensional projective spaces RP2n+1 (n > 1). We present S2n+1 as

the unit sphere in the complex space Cn+1. RP2n+1 is the quotient

£2n+1/({x,-x}: x G S2n+l). The free Z2-action on RP2n+1 is defined

by (vi,..., vn+i) -» (m,..., ivn+i), v.-L G C. Stolz [Sto89] showed that

the index of ffiP2n+1 is at least n + 1, in fact he determined the index

exactly:

if n = 0, 2 mod 8,

ind(MP2n_1) = ^ n + 1 if n = 1,3,4, 5, 7 mod 8,

if n — 6 mod 8.

On the other hand Zivaljevic [Ziv02] reported that their coindex is 1.

In this section we take a closer look into MP3 since it appears as the

Horn-complex Hom(C5,Üf4) as well!

There is a simplicial MP3 [Lut] (with 12 vertices, 48 top simplices)

with a free simplicial involution presented in Table 3.1. The involution

is given by +6 modulo 12. For example the Z2-pair of the vertex 8 is

8 + 6 = 14, which is 2 modulo 12. In Table 3.1 the rows contains the

Z2-pair simplices of MP3.

{8,4,7,11} {2,10,1,5}
{4,6,11,8} {10,12,5,2}
{4,7,5,8} {10,1,11,2}
{8,3,6,11} {2,9,12,5}
{8,12,3,11} {2,6,9,5}
{4,7,12,3} {10,1,6,9}
{4,7,3,5} {10,1,9,11}
{2,4,7,12} {8,10,1,6}
{2,4,7,11} {8,10,1,5}
{2,4,6,11} {8,10,12,5}
{2,3,6,11} {8,9,12,5}
{2,3,5,6} {8,9,11,12}
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{3,5,6,7} {9,11,12,1}
{9,2,4,6} {3,8,10,12}
{9,2,4,12} {3,8,10,6}
{9,5,6,7} {3,11,12,1}
{9,5,8,7} {3,11,2,1}
{9,8,7,11} {3,2,1,5}
{10,3,6,7} {4,9,12,1}
{10,6,9,7} {4,12,3,1}
{10,9,7,11} {4,3,1,5}
{10,2,7,11} {4,8,1,5}
{10,2,7,12} {4,8,1,6}
{10,3,7,12} {4,9,1,6}

Table 3.1: Simplicial EP3.

It is possible to compute the index and coindex of MP3 by a direct

analysis.

Theorem 3.11. ind(RP3) - 2.

Proof. In [CF62] S3 is considered as the unit sphere in C2 with a free

Z4-action given by (21,22) — (-z2,Zi), and S2 as CP1 with the free

Z2-action given by z — =£. Now the Hopf map: h: S3 —» S2 defined

by (21, z2) -> f2 e CP1 gives us a Z2-map h: MP3 - S2.

By contradiction assume, that there exists a Z2-map m: MP3 —> S1.

(Now i is the Z2-action again!) The map2

(cos(a),sin(a)) —> (cos f — j ,sin ( — J ,0,OJ ,a G [0,2ir]

gives us an embedded circle (C) in MP3, which corresponds to the gen¬

erator of 7Ti(RP3). This embedding is a Z2-map as well (S1 -> MP3).
We can choose a CW-structure (not necessary Z2 invariant), such that

this embedded circle is the 1-skeleton. The 2-cell mapped into the 1-

skeleton by the map 2id: S1 — S1. Let 77151 : S1 —> S1 be the restriction

of m: MP3 -»• S1 into C C MP3. We know, that mSi has odd degree.

So 2id 0772,51 is not null-homotopic. But on the other hand m maps this

2-cell into S1 so it were null-homotopic. O

Remark 3.12. Since Sl = MP1 C MP3, and the following homol¬

ogy groups of MP3 Hi (MP3) and H2(MP3) are finite, we have that

coindex(MP3) = 1 using Corollary 4-12.

2RP3 is identified with the set of lines going through the origin of C2 = M4.
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3.4 Non-tidy Zp-spaces

Similarly to the projective space example there are non-tidy Zp-

spaces as well (p is an odd prime). A Xn-space is a pair (X,v) where

X is a topological space and v: X —* X, called the Zn-action, is a

homeomorphism such that vn = Idx- Their Zn-index can be defined

similarly as the Z2-index. Now instead of the sphere we will use the

EnZp spaces as yardsticks. They can by defined as iterated joins of p

points, EnZp = En~iZp * Zp (EqZp — Zp).

Definition 3.13. Let X be a Zp-space. The Zp-index and Zp-coindex
are defined as follows (see e.g. [Mat03]).

indZp(X) - min{n N: there is a Zp-map X -+ EnZp = (Zp)*(ri+1)),

coindzp(X) — maxjn G N: there is a Zp-map EnZp —» X}.

Lens spaces are a 'generalization' of the projective spaces. Let

g2n-i c £n ke tne unit sphere. Now the multiplication by e~^ de¬

fines a free Zm-action. We choose a Zpi -action, which gives us a free

Zp-action on L2n_1(p) = S2n~l/Zp. Meyer proved in [Mey98] that

n-2

p
<indZp(l2n-1(p))<2

n

+ 3,

if p is an odd prime (here \x~\ denotes the smallest integer bigger or

equal to x, i.e. \x\ — —[—#]•)

Remark 3.14. The importance of this result is that

lim indzfL^-^^oo.
n—^oo

Lemma 3.15. coindzp (L2"1^)) — 1.

Proof. Similarly as in [Ziv02]. We will use that S1 = E{Zp (S1 :=

{z e C: 121 = 1}, the Zp-action is given by the multiplication with

e^) and that (ExZp = 51c51*Zp =)E2Zp is 1-connected. eai ->

(e^,...,e^) eCn, ae [0, 2tt] is a Zp-map S1 - L2n"x(p)-

Let a: Sl —» L2n_1(p) be any Zp-map. If we have a Zp-map E2ZP —>

l_2n_1(p) then the restriction into S1 (S1 C E2ZP) is null-homotopic. So
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it is enough to show that [/d] G iri (L2n_1(p)) « Zp (n > 1) is non-zero.

(We will see that [//] = 1.)

We need the universal p-cover 52ri_1 - l2n~l(p). A point in

L2"~1(p) is considered as ap-fan (p planar half-lines emanating from the

origin and the angle between neighbor half-lines is 2pE). Let /d(-\-l) =: F

(F g L2n_1(p) is a p-fan) and then /^(e~) = e~^~ F. We lift F into

S2n~l which means that we choose a unit vector (v G 52n_1) on the

2m (pfc + t)27T

p-fan. Now the lift of e^~ F can be any of e p2v. This piece (6
27T/

#

27Tt

between +1 and e^) determines /d, and all of the lifts ends in e p v

showing that // is not null-homotopic.

Corollary 3.16. l2n~1(p) is an example where the difference between

the Zp-index and coindex can be arbitrarily large.

Remark 3.17. Bartsch [Bar90] claims, that for free G-spaces Fadell

[Fad80] was the first to introduce the G-index(-l) as G-genus. But

in fact it was introduced already by P. E. Conner and E. E. Floyd in

[CF60]. Perhaps it was studied even before.
First Zp-actions were used in topological combinatorics by Bârâny,

Shlosman and Szücs [BSSz81].

3.5 The suspension and the index

We turn back to Theorem 3.1. We have already seen that the

upper bound of the Z2-index of join of spaces can be tight. More¬

over we know that for tidy spaces we always have equality. In

this section we will see how one can construct examples showing

that the lower bound can be tight as well, namely spaces such that

max | ind(X), ind(Y) } = ind(X *Y). In our example X will be Sf

for an appropriate /: 5n+fc"1 - Sn, and Y will be S°. X * S° is called

the suspension of X, and in this section we will denote it by SX. We

know that Sf * S° is <SS/ where the map £/: Sn+k -> Sn+1 is the join

of / and id: S° - S°. The suspension gives us a group homomorphism

as well S : irn+k-i(Sn) - 7rn+k(Sn+1). The following theorem will help

us to provide examples.

Theorem 3.18. ///: S2n~l -* Sn such thatH(f) £ 0 andT.f: S2n ->
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Sn+) is null-homotopic then max | ind(<S/), ind(5°) j = ind(<S/ * S°).

Proof. Lemma 3.8 shows that ind(«S/) = n+1. We know that ind(£°) =

0 so we have that max j ind(«S/), ind(5°) } = ra + 1. According to the

assumption S/ is null-homotopic. Remark 3.9 tells us that ind(<S/ *

S°) = ind(5S/) = n+1. So we proved that max j hid(5/), ind(5'0) j =
n + l^ind(Sf*S°). G

It is not clear again how many different dimensional examples can

we construct using Theorem 3.18. It is known that \iT4n-i(S n)\ = °°

and |7r4n(52n+1)| < oo. So there is always a map /: S4*1"1 -» S2n such

that H(f) + 0 and E/ is null-homotopic. Using this /', X - Sf is a

4n-dimensional complex, with Y = S° they show the tightness of the

lower bound.

For example if h: S3 - S2 is the Hopf map then the Freudenthal

Theorem ([HatOl] Corollary 4.24) tells us that S: tt3(S2) -» n4(S3),
which is actually Z -» Z2, is surjective. This means that £fr is the

generator of ir4(S3). So Sh is not known to be a good choice for showing

equality in the lower bound, but S2h is since S2/i is null-homotopic.

3.6 More simplicial complex examples

Now we present more simplicial complex examples. We know that

Sh (h is the Hopf map) is a non-tidy space. If we attach one 4-cell to S2

via h we get CP2. In [MSOO] there is a simplicial complex CP2 obtained

in this way (Table 3.2), where S2 is the boundary of the simplex ABCD.

After a special barycentric subdivision, when we subdivide only S

(the boundary of ABCD) (and the neighbor simplices as well) we can

define the simplicial Z2-action on this sphere by v: H - {A, B, C, D] \

H where H Ç {A,B,C,D}. Now we can attach the second 4-ball via

-h in order to get Sh- It is the same as gluing two subdivided CP2

along there embedded spheres in an antipodal way. The result has 24

vertices an 252 top simplexes (Table 3.3). The Z2-action given by % -> %

for i = 1,2,3,4,5 and v.
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{1,2,A,B,C} {4,5,A,C,D} {1,2,3,4,5} {1,3,B,C,D} {3,4,A,B,D}

{2,3,5,B,D} {2,3,A,B,C} {4,5,B,C,D} {1,2,3,4,D} {3,5,B,C,D}

{1,3,4,B,D} {2,3,A,B,D} {3,1,A,B,C} {4,5,A,B,D} {1,2,3,5,D}

{1,4,B,C,D} {2,3,4,A,D} {2,3,5,B,C} {1,3,4,5,A} {1,2,5,A,B}

{1,5,A,C,D} {1,3,5,A,C} {1,4,5,A,B} {1,2,5,A,D} {1,2,4,5,B}

{1,2,A,C,D} {3,4,5,A,C} {2,5,A,B,D} {1,3,5,C,D} {1,3,4,A,B}

{2,3,4,5,0} {1,2,4,B,C} {2,4,A,C,D} {2,4,5,B,C} {1,2,4,C,D}

{2,3,4,A,C}

Table 3.2: Simplicial CP2.

{4
{4
{i
{i
{3
{2
{2
{4
{4
{3
{1
{2
{3
{3
{4
{1
{1
{2
{1
{1
{1
{1
{1
{1
{2
{2
{1
{2
{2
{1

{Ï
{Ï
{4
{Ï
{Ï
{3
{3

{2
{2

{4
{3
{3

{2
{2

{3

{4

{4
{Ï
{1

{2
{Ï
{Î
{Î
{1

{Ï

~Tî,2

{4,5
{4,5
{1,3
{3,4
{3,4
{2,3
{2,3
{4,5
{1-2
{3,5
{1,3
{2,3
{3,1
{3,1
{4,5
{1.4
{1,4
{2,3
{1,2
{1,5
{1,3
{1,2
{1,2
{3,4
{2,5
{1,3
{2,3
{2,4
{2,4
{1,2

{1,2
{1,2
{4,

{1,3
{1,3

{3,4
{2,3

{2,3
{4,5
{4,5

{3,5
{3,5

{2,3
{2,3

{3,1
{4,5

{4,5
{1,4
{2,3

{1,3
{1,5
{1,5

{1,4

{1,2
{1,2

{1,2
{1,2
{4,5
{1,2
{1,3
{3,4
{3,4
{2,3
{2,3
{4,5
{3,5
{3,5
{2,3
{2,3
{3,1
{4,5
{4,5
{1,4
{1,4
{2,3
{1,5
{1,5
{1,4
{1,2
{1,2
{3,4
{2,5
{1,3
{1,2
{2,4

{2,4
{2,3
{1,2
{4,5
{4,5

{1,3
{1,3

{3,4
{2,3

{2,3
{4,5

{4,5
{3,5
{1,3

{2,3
{3,1

{3,1
{4,5
{1,2

{1,4
{2,3
{1,2

{1,5
{1,3

{1,2
{1,2

A,AB,ABC}
C,AC,ABC}
C,AC,ACD}
3,4,5}
C,CD,BCD}
A,AD,ABD}
D,BD,ABD}
A,AC,ABC}
C,BC,ABC}
C,CD,BCD}
B,BC,BCD}
D,BD,BCD}
A,AB,ABD}
D,AD,ABD}
B,AB,ABC}
A,AB,ABD}
D,AD,ABD}
B,BD,BCD}
D,CD,BCD}
5,BC,C}
A,AC,ACD}
D,AD,ACD}
5,A,AB}
4,5,B}
C,CD,ACD}
5,AC,C}
B,BD,ABD}
5,CD,D}
4,B,BC}
C,AC,ACD}
5,B,BC}

4,A,AC}
ACD,CD,D}
BCD,BD,B}

ABC,BC,B}
ACD,AC,A}

ABC,AB,A}
ACD,AC,C}
5, AC,ABC}

ACD,AD,D}
ACD.AC.A}

ABC,AB,A}
ABD,AD,A}

4,ACD,AC}
ACD,CD,C}

BCD,CD,D}
ABD,BD,D}
ACD,CD,C}

3,5,ABC}
ABD,AB,A}
4,BC,ABC}

5,BCD,CD}
ABD,BD,B}

5,BCD,BD}
5,BCD,BC}

BCD,BC,B}

{1 2

{1 2

{4 5

{1 3,

{1 3

{3 4

{2 3,

{2 3

{4 5

{4 5

{3 5

{3 5

{2 3

{2 3,

{3 1

{4 5

{4 5,

{1 4

{2 3

{1 3,

{1 5,

{1 5

{1 4,

{1 2

{1 2

{2 5,

{2 5,

{1 3

{1 2,

{2 4

{2 4

{2 3

{1 2,

{4 5

{4 5

{1 3,

{3 4

{3 4

{2 3

{2 3

{4 5

{Ï 2,

{3 5

{1 3

{2 3

{3 1

{3 1

{4 5,

{Î 4

{1 4

{2 3,

{Î 2,

{1 5

{Î 3,

{1 2,

{1 2

A,AC,ABC}
C,BC,ABC}
C,CD,ACD}
B,BC,BCD}
D,BD,BCD}
B,AB,ABD}
5,B,BD}
B,AB,ABC}
B.BC.BCD}
D,BD,BCD}
B,BD,BCD}
D,CD,BCD}
A,AD,ABD}
D,BD,ABD}
B,BC,ABC}

A,AD,ABD}
D,BD,ABD}
C,BC,BCD}
4,A,AD}
4,5,A}
A,AD,ACD}
D,CD,ACD}
5,AB,B}
A,AC,ACD}
D,AD,ACD}
A,AB,ABD}
D,AD,ABD}
4,A,AB}
4,BC,C}
C,CD,ACD}
5,BC,C}

4,AC,C}
ACD,AD,D}

BCD,BC,B}
ABC,AB,B}

ABD,AD,A}
BCD,CD,C}
ABC,BC,C}

BCD,CD,D}
ABD,BD,D}

ABD,AD,A}

3,4,ABC}
ABD,AB,A}
4,AC,ABC}

ACD,AC,C}
BCD,BD,D}

ABD,AD,D}
ACD,AC,C}
ACD,AD,A}

ABC,AC,A}
5,ACD,AD}
5,CD,ACD}

ABD,AB,B}

5,BD,ABD}
5,BC,ABC}
ABD,BD,B}

,B,AB,ABC}
,A,AC,ACD}
,D,AD,ACD}
,B,BD,BCD}
,D,CD,BCD}
,B,BD,ABD}
,5,BD,D}
,B,BC,ABC}
,B,BD,BCD}
,D,CD,BCD}
,C,BC,BCD}

,4,B,BD}
,B,AB,ABD}

, A, AB,ABC}
,C,AC,ABC}
,B,AB,ABD}
,3,5,D}
,C,CD,BCD}
,4,AD,D}
,5,A,AB}
,C,AC,ACD}
,5,A,AC}
,5,A,AD}
,A,AD,ACD}
,D,CD,ACD}
,A,AD,ABD}
,D,BD,ABD}

,4,AB,B}
,A,AC,ACD}
,D,AD,ACD}
,4,C,CD}

,BCD,CD,D}
,ABD,BD,D}
,ABD,BD,B}

,3,4,5}
,ABD,AB,A}
,BCD,BC,C}

,ABC,AC,C}
,BCD,BD,D}

,ABD,AD,D}
,ABD,AB,A}

,ACD,AD,A}

,ABC,AC,A}
,BCD,CD,C}

,ABC,BC,C}

,ACD,CD,D}
,BCD,CD,C}
,ABC,BC,C}

,ACD,AC,A}
,ABC,AB,A}
,5,AD,ABD}

,BCD,BD,B}
,ABC,BC,B}

,5,BCD,CD}
,4,5,ACD}

,ABD,AB,B}

,B,BC,ABC}
,A,AD,ACD}
,D,CD,ACD}
,C,BC,BCD}
,A,AB,ABD}
,D,AD,ABD}
,A,AB,ABC}
,C,AC,ABC}
,C,BC,BCD}
,3,4,D}
,C,CD,BCD}
,4,BD,D}
,B,BD,ABD}

, A, AC,ABC}
,C,BC,ABC}
,B,BD,ABD}
,B,BC,BCD}
,D,BD,BCD}
,5,B,BC}
,5,AB,B}
,C,CD,ACD}
,5,AC,C}
,5,AD,D}
,C,AC,ACD}

,5,A,AC}
,B,AB,ABD}
,5,C,CD}

,4,5,C}
,A,AD,ACD}
,D,CD,ACD}
,4,CD,D}
,BCD,BD,D}
,ABD,AD,D}

,ABD,AB,B}
,ACD,AD,A}
,ABC,AC,A}

,ACD,CD,C}
,5,ACD,AC}

,ACD,CD,D}
,ACD,AD,A}

,ABC,AC,A}
,ACD,AC,A}

, ABC,AB,A}

,BCD,BC,C}

,ABC,AC,C}
,ACD,AD,D}
,BCD,BC,C}

,ABC,AC,C}
,ABD,AD,A}

,4,BCD,BC}
,4,5,BCD}
,BCD,BC,B}

,ABC,AB,B}

,S,CD,ACD}
,BCD,BD,B}
,ABC,BC,B}
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{Ï,2,ABC,AB,B}
{2,5,BCD,BC,C}
{2,5,ABC,AC,C}

{Ï,3,4,CD,ACD}
{2,4,BCD,BD,B}
{2,4,ABC,BC,B}

{1,2,4,ABD,AB}

{3,4,5,BCD,BD}
{2,5,ACD,CD,C}
{Î,3,5,ABD,AB}
{2,3,4,S,ABD}
{2,4,BCD,BC,B}
{2,4,ABC,AB,B}
{1,2,4,AB,ABC}

{3,4,5,BD,ABD}
{2,5,ACD,AC,C}
{1,3,5,AB,ABC}
{1,2,4,ACD,AD}
{2,4,ABD,BD,B}
{2,4,5,ACD,AD}
{2,3,4,BCD,BD}

{2,5,BCD,CD,C}
{2,5,ABC,BC,C}
{1,3,4, BCD,CD)
{1,2,4,AD,ABD}
{2,4,ABD,AB,B}
{2,4,5,AD,ABD}
{2,5,4,BD,ABD}

Table 3.3: Simplicial 5/j.

Using a simplicial model for 2h: S\2 - S2 [Mad02, MS00] one can

obtain a simplicial complex model for <S2/j as well.

After that one can construct similarly as before a simplicial model of

S2h. Unfortunately the triangulation we obtained contains 896 vertices

and 14688 top simplices. One can clearly get a much smaller complex.

3.7 Open problems

Unfortunately this construction provides only examples, where

ind(X) - coindex(X) < 1. It is known that this defect ind(X) -

coindex(X) can be arbitrarily large [Ziv02] (see Section 3.3). Go¬

ing back to the original question, we have seen only examples where

(ind(X) + ind(y) + 1) - ind(X * Y) < 1. Can this defect become arbi¬

trarily large?

Moreover one should answer this question for Zp-spaces as well.
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Graph coloring manifolds

Our starting point was Lovasz's conjecture (see Subsection 4.2.2).

Although Babson and Kozlov [BK04] proved this conjecture, the homo¬

topy type of the Hom complex Hom(CB,iCn) is not fully understood at

present. We tried to prove my conjecture (see Subsection 4.2.2) which

says that these are Stiefel manifolds. We studied when Hom(G,Kn)
will be a manifold. The most interesting example is Cb which means

that the Hom complexes Hom(C5, Kn) are manifolds indeed. We show

that Hom(C5, K4) is homeomorphic to KP3 and explain some difficulty

of the proof of the Lovasz's conjecture. We present at the end of this

chapter more low dimensional manifold examples.

4.1 Vertex-stars and flag simplicial spheres

Babson and Kozlov asked in [BK03] for what graphs the Hom com¬

plex construction provides a connection to polytopes. In this section, we

will characterize those graphs G for which Hom(G, Kn) is a piecewise

linear (PL) manifold for all n > X(G).

A (finite) simplicial or polytopal complex is a combinatorial or PL d-

manifold if and only if every vertex-star, i.e., the collection of facets that

contains the respective vertex, is a PL d-ball. A PL ball is a politopal

71
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complex whose underlying space is piecewise linearly homeomorphic to

the simplex.

(1,3)

(1,4) (2,1)

(3,1)

Figure 4.1: The star of the vertex (2,4) in Rom(K2, K±).

Example: In Rom(K2,K4), the vertex (2,4) is contained in the four

facets (12, 34), (2,134), (23,14), and (123,4), as displayed in Figure 4.1.

From the figure we see that the vertex-star has an almost product-like

structure: Since the colors 1 and 3 are not present in the vertex (2,4),

we can independently add them either to the first or to the second

position. If the color 1 is added to the left position, then we move to

the left, otherwise we move to the right. On the other hand, if the color

3 is added to the left position, then we move downwards, and upwards

otherwise.

Example: We write every cell of Eom(C5,Kn) as a vector

(Au A2, A3, A4,A5) of non-empty sets Ai Ç V(Kn) = {l,...,nj,
1 < i < 5, with the property that A» n Ai+1 = 0, where the indices

are taken modulo 5. It is obvious that every k G V(Kn) can occur in

at most two of the sets Ai on the circle Cb. On the other hand, if a

number k G V(Kn) is contained in only one or in none of the sets of a

face (Au A2,A3,A4,A5) of Hom(C5, Kn), then this face can be comple¬

mented by adding one or two copies of k to appropriate sets of the face,

respectively. Since this can be done independently for all the elements

(color classes) of V(Kn), any facet of Hom(C5, Kn) contains exactly two

copies of the elements of V(Kn) and therefore has dimension d = 2n-5.

The star of the vertex (1, 2,1,2,3) in Hom(C5, KA) consists often facets,

as displayed in Figure 4.2. The colors 1 and 2 already occur twice in
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Figure 4.2: The star of the vertex (1,2,1,2,3) in the Hom complex

Hom(C5,i^4).

(1,2,1,2,3) and thus cannot be used further. The color 3 is used once. If

we place its second copy at the second position, then we move upwards.

If we place it at the third position, then we move downwards. Alto¬

gether, there are five choices to place the two copies of the missing color

4, by which we move around the axis vertical to the central horizontal

pentagon. Again, the vertex-star has a product like structure.

Let n G Hom(G, Kn) be a vertex of the Hom complex Hom(C7, Kn)
for which its vertex-star staxKom(G,Kn)(v) is a PL ball. In the examples

above we have seen that the vertex-stars have a product like structure,

since colors that are missing in the vertex n can independently be placed

to complement rj to a facet of Hom(G, Kn)-

We will show in the following that star^i^G,^7?) is PL honieo-

morphic to a cubical complex Xn = X± x • • x Xn, where each factor

Xi, 1 < i < n coresponds to the vertex i G Kn- Since a product

Xi x • • x Xn is a PL ball if and only if each factor is a PL ball (see

[RS82, 2.24 (3)+(5)]), it remains to analyze the factors and to give the

PL homeomorphism from star^i^G,/^)^) to Xn.

We define the factors Xi, 1 < i < n, as the collection of cells for
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which the vertex n is complemented by color i only. Clearly, Xi is a

cubical complex, since every of its maximal cells is a product of intervals

(and vertices).

In the previous example the maximal cells of the factor X4 for the

vertex (1,2,1,2,3) in Hom(C5,K4) are (14,2,14,2,3), (1,2,14,2,34),

(1, 24,1,2,34), (1, 24,1, 24,3), and (14,2,1,24,3). There are three dif¬

ferent types of factors for a vertex n of Hom(C5, K4). If the color h is

used twice in n, then Xh is a point. If the color i is used once in n,

then Xi consists of two intervals. If the color j is not used in n, then

Xj consists of five squares. See Figure 4.3 for the factors Xi and Xj (of

the vertices (*, *, *, i, *) and (*, *, *, *, *), respectively).

(*,*,*,*!*)

(*,*,*,*,*)

(*,i,*,i,*)

(.?,*,.?>,*)
t*'*'-7''*'*) (*,*,j,*,j)

(j, *,*,*,*) (*,*,*, *,.?')

(*,*,* J, *)\/^^ (*, 3i *,*,*)

(*J,*J,*)

Figure 4.3: Factors of the cubical complex Xv for G = C5.

The PL homeomorphism from starHom(G,/fn)(^)to xv is given b^ aP~

propriately subdividing facets of the cells of starHom(G,xn)(?7)- Every cell

£ of staxHomtG.K.oM is a product of \V(G)\ simplices ^(1),... £(\V{G)\)

with n(v) e £(v) for every v G V(G). We consider each simplex £(v)

as a cone with apex n(v), and we barycentricly subdivide the simplex

£(v) \ n(v) as in Figure 4.4. In this way, starHom(G,tfn)M becomes a

cubical complex Xv which is isomorphic to X\ x • • x Xn.

It remains to discuss, when the factors are indeed PL balls. Suppose

that color j is not used in the vertex n, then we can complement n

to a facet of the corresponding factor Xj by placing the color j at all

positions of a maximal independent set of G. By this correspondence,

we see that Xj is isomorphic to the cubical cone over the (simplicial)

independence complex Ind(G) of G. Thus, Xj is a PL balHf and only

if Ind(G) is a PL sphere. In terms of the complement G of G, the

independence complex Ind(G) is a PL sphere if and only if the clique

complex Cliq(G) is a PL sphere.
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Figure 4.4: Simplex £(v) with apex n(v) and the barycentric subdivision

of £(v) \ n(v) which is identified with a cube.

Definition 4.1. Let K be a (finite) simplicial complex. If K has no

"empty simplices", i.e., if every set of vertices of K which form a clique in

the 1-skeleton actually spans a simplex, then K is a flag simplicial com¬

plex (cf. [CD95]). A flag simplicial sphere is a flag simplicial complex

which triangulates a sphere.

Theorem 4.2. Let G be a graph. Then the Horn complex Hom(G, Kn)

is a PL manifold for all n > x(G) if and only if G is the complement

of the 1-skeleton of a flag simplicial PL sphere.

Proof. Let n > X(G) and let Eom(G,Kn) be a PL manifold. Since

n > X(G), there is at least one vertex n of Rom(G,Kn) that only uses

the colors 1,... ,X(G). By the above discussion, starHom(G,xn)(^) is a

PL ball if and only if all factors X±,... ,Xn are PL balls. In particular,

Xn has to be a PL ball. Since the color n is not used for the vertex n,

Ind(G) is required to be a flag simplicial PL sphere. In other words, G

is the complement of the 1-skeleton of a flag simplicial PL sphere. (The

factors Xi for X(G) + 1 < i < n are all isomorphic to Xn and therefore

are PL balls as well.)

For every 1 < i < X(G), the color i is used at least once in the vertex

77. In order to complement n to facets of the factor Xi, the color i can be

placed at positions of n corresponding to independent sets of G, which
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contain the positions at which i is already present in n. It follows that

Xi is the cubical cone over the link of a face in Ind(G). Since Ind(G) is

a flag simplicial PL sphere, then also every link of a simplex in Ind(G)

is a flag simplicial PL sphere, and thus Xi is again a PL ball.

Vice versa, let G be the complement of the 1-skeleton of a flag simpli¬

cial PL sphere. Then all the factors Xi for all the vertices of Hom(G, Kn)

are PL balls, and thus Hom(G, Kn) is a PL manifold. Ü

Remark 4.3. If n < X(G), then Bom(G,Kn) = 0. If n = X(G),
then every vertex n of Hom(G,KX(g)) uses a^ colors 1,... ,X(G). If

Hom(G, K-x(g)) is a PL manifold, then it is only required, that the links

of vertices (or higher-dimensional faces if every color is used more than

once in every vertex of Hom(G, KX(g))) of Ind(G) are flag simplicial

PL spheres. It follows, in particular, that if G is the complement of

a flag combinatorial manifold, then Hom(G, _K"x(G)) i>s a manifold. As

another example, if G is a bipartite graph, then Hom(G, K2) = S° is a

manifold.

We note that if Ind(G) is a pseudo-manifold, then Hom(G, Kn) is

clearly a pseudo-manifold.

Definition 4.4. A Hom complex Hom(G, Kn) is a graph coloring man¬

ifold if G is the complement of the 1-skeleton of a flag simplicial PL

sphere.

Babson and Kozlov [BK03, Section 2.4] stated as a basic property

of Hom complexes that

Hom(G! Ù G2, H) - Hom(Gi, H) x Hom(G2, H), (4.1)

from which it follows that if G = (J if2 is the complement of the

i—l,...,k

1-skeleton of the boundary of the ^-dimensional crosspolytope, then

Hom( \J K2,Kn)= J] Sn~2. (4.2)

i~l,...,k i~l,...,k

Definition 4.5. A flag simplicial PL sphere is prime if the complement

of its 1-skeleton is connected. A Hom complex Hom(G, Kn) is a graph

coloring manifold of sphere dimension d if G is the complement of the

1-skeleton of a prime flag simplicial PL sphere of dimension d.
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Since every coloring of a graph G can be regarded as a covering of G

by independent sets, the following lower bound holds for the chromatic

number X(G) of G:

X(G)>
r ivi i

a(G)
—

u(G)
(4.3)

where a(G) is the independence number or stable set number of G (i.e.,
the maximum size of an independent set in G) and u(G) is the clique

number of G (i.e., the maximum size of a clique in G).

If G is the complement of the 1-skeletonof a prime flag simplicial

PL d-sphere on n vertices, then a(G) — u(G) = d + 1. Thus

X(G)>
n

d + 1
(4.4)

and

dim(Hom(G, KX(G)+k)) = (X(G) + fc)(d + 1) - n

for all k > 0.

(4.5)

The lower bound (4.4) can be arbitrarily bad: If G is the complement

of the 1-skeleton of the suspension S° * G2r+i of an odd cycle C2r+i,

r > 2, then X(G) = 2r + 1 >
n

d+\

f2r+31
I 3

Theorem 4.6. (Cukic and Kozlov [CK04b]) Let G be a graph of maxi¬

mal degree s, then the Hom complex Hom(G, Kn) is at least (n — s — 2)-

connected.

It follows that graph coloring manifolds provide examples of highly

connected manifolds.

Conjecture 4.7. Graph coloring manifolds are orientable.

Let G be the complement of a flag simplicial PL sphere. If G has

maximal degree s, then Hom(G, Kn) is simply connected and thus ori¬

entable for n > s + 3.
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4.2 Graph coloring manifolds

Trivially, 5°, consisting of two isolated vertices, it is the only zero-

dimensional flag simplicial sphere. The complement of its "l"-skeleton

is the complete graph K2. Hence, Eom(K2,Kn) ^ Sn~2 (n > 2) are

graph coloring manifolds.

The circles Gm of length m > 4 are the flag simplicial spheres of

dimension one. For m = 4we have that SKi(G4) = G4 = K2 UK2 and

Rom(K2 0 K2, Kn) = Eom(K2, Kn) x Eom(K2, Kn) - Sn~2 x Sn~2.

If m > 5, then SKi(Gm) = Cm is connected. In the following, we treat

circles of odd and of even length separately.

4.2.1 Hom complexes of complements of odd circles

For m = 5, the Hom complexes Hom(G5, Kn) are perhaps the most

interesting examples. It is easy to see that Eom.(C5,K3) is homeomor¬

phic to S1x S°.

Now we show that Hom(G5, K4) is homeomorphic to EP3. The col¬

lections of cells in the form (ijk, *,*,*, *) form a solid torus. For exam¬

ple the collection (123, *, *, *, *) is the same as the (123,4, *, *, 4), where

the middle (*, *) part is the six-gon Eom(K2,K5). So (ijk, *,*,*, *)

is the product of the triangle and a circle. The cells in the form

(ij, *, *, *, *) form a solid torus as well, as it can be seen on Figure 4.5.

The cells in the form (i, *, *, *, *) form a solid torus as well, it's boundary

torus can be seen on Figure 4.6.

A meridian disk of the (1, *, *, *, *) is on Figure 4.7, and its boundary

is the red curve on Figure 4.6.

The complement of (1, *, *, *, *) in Hom(G5, K4) is a solid torus as well.

Its meridian curve is the blue dashed curve on Figure 4.6, which is a

(2,1) curve. Figure 4.8 explains how can one get this blue meridian circe,

since it is enough to understand how the pieces (2, *, *, *, *), (3, *, *, *, *),

(4, *, *, *, *) glued together. This (2,1) curve explains that after gluing

them together we obtain the 3-dimensional projective space. D
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(1,3,1,3,2)1

\ M)^- ^*~*^ (1,4,2,3,2)

(1,2,1,3,2)
(1,4,1,3,2)

Figure 4.7: The meridian of the solid torus (1, *,*,*,*) in Hom(Gs, K4).

Now we turn to the general problem studing the topology

of Hom(G5,K"n+2) We will try to prove similarly as above that

Hom(G5,ifn_)-2) looks like a sphere bundle. We prove that the collec¬

tions of cells (12 ... k, *,*,*,*) of Hom(Gs, Kn+2) form a manifold with

boundary. In order to do that we have to show that for every vertex

v (12 ... k, *, *, *, *) the star of v is homeomorphic to a ball or to a

half ball with v on the boundary. The proof is nearly the same as the

proof of Theorem 4.2. Any number k G {1,..., n + 2} is either 0,1 or 2

times in v. If the number a is twice in v, then, as before, we define Xa to

be a point. If the number 6 is once in v, for example if v — (b, *, *, *, *),

then we can use b one more time at the third or fourth place. For such

a vertex let Xb be the subdivided interval as in Figure 4.3. However, if

v = (•, *, *, b, •), then when 6 is not in {1,..., k} a second copy of b can

only be placed at the second position. In this and similar cases, we let

Xb to be one single edge as in Figure 4.9. If the number c e {1,..., k]

is not in v — (*, *, *, *, *), then we can use c twice to complement v to

a facet, and Xc can be choosen as in Figure 4.3. But if c ^ {1,..., k},

then c cannot be placed at the first position. In this case we take for

Xc a half disk as in Figure 4.9.

In this way, we define for each vertex v G (12 ... k, *, *, *, *) a cubical

complex Xv :— X\ x • x Xn+2- As before, we can then identify Xv

with the appropriately subdivided vertex-star of v. This shows that

(12 ... k, *, *, *, *) is a manifold with boundary.

We prove that (12 ... k, *, *, *, *) is homotopy equivalent to Sn~1.

We will use Lemma 1.15.

The cells (12 ... k, *, *, *, *) of Hom(Gs, Kn+2) (with the incusion)

defines a poset P. The map <fi is defined as 0(12 ... k, A, X, Y, B) :—
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sii
(&,*,*, 6,*)

j (*, 6, *,&,*)

Figure 4.9: Factors of the cubical half ball Xv.

(X, Y), is the projection into the 3rd and 4th coordiante. The image Q

is a subcomplex of the sphere Sn = Eom(K2, Kn+2)- Using Lemma 1.15

we show that the projection is <f>: P -> Q is a homotopy equivalence.

We have to check that Condition (A) and (B) are fulfilled:

Condition (A): Let q = (X, Y) e Q. ^(tf) - {(12 .. .fc, A X,Y, B)\AC\

I^pny-Mn 12..fc = 0, £ n 12
...

fc = 0}. There is a maximal

element in 4>~l(q)'- Pmax = (12.. .fc, Amax, Jf, V, J3max)) with Amax =

[n + 2]\[k\\X and £max - [n + 2] \ [fc] \ Y. If 0 ^ A Ç Amax,

0/ßC ßmax then (12... k, A, X,Y,B) G 0_1(^)- So ^H?) is the

barycentric subdivision of A|Amax|_i x A|ßmax|„i which is the product

of two simplices. So it is contractible.

Condition (B): Let q = (X,Y) Q and p = (12... fc, Ap,Xp,Yp,Bp)
such that X CXp,Y CYP. Now the maximal element of 0_1(g) n P<p

is (12...fc,Ap,X,F,£p).

Since (f>: P -> Q is a homotopy equivalence the question is what

is the image Q. The image is the subcomplex of the sphere Sn =

Rom(K2,Kn+2)- The missing elements of the poset Hom(K2,KI1+2)
are R := (*, *(fc+l)... (n+2)) and S := (*(k+l)... (n+2), *) since

they would be the images of (12 ... fc, *, *, *(fc+l)... (n + 2), 0) and

(12 ... fc, 0, *(fc+l)... (n+2), *, *). R and S are clearly n-dimensional

disjoint subcomplexes of Q. In Section 1.6 we have already seen that

R and S are disks and their complement is clearly homotopy equiva¬

lent to Sn~l. Here we use Lemma 1.15. We show that R and S are

contractible. Since the simmetry of R and S it is enough to deal with

R. First consider the following simplicial map: f:R^R defined by

(A,B(k+l)...(n+2)) -> (A,(fc+l)...(n+2))\ The image f(R) is a

cone with apex (12 ... fc, (fc+1)... (n+2)) so it is contractible. Finally

(*,*,c,*,*) (*,*,c,*,c)

(*,*,*,*,c)

(c, *, C, *, *)((

(c, *,*,*,*)#„„

(c, *,*,<:,*)• ^XlX^' "> (*'C'*'*'c)

(•, *, *, c, ^o^^Zi^^ (*>c' *> *' *)

(*, c, *, c, *)
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we have to show that / is a homotopy equivalence. We will use Lemma

1.15. We have to check that Condition (A) and (B) are fulfilled:

Condition (A): Let q = (A, (fc+1)... (n+2)). f~\q) =

{(A,B(k+l)...(n+2))\A n B = 0, A n (fc+1)... (n+2) = Q,B n

(fc+1)... (n+2) — 0}. There is a maximal element in f~x(q): Pmax =

(A, [n+2] \ A), the other elements of f~1(q) are its subsets. So f~x(q) is

the cone over the barycentric subdivision of a simplex An-\-i~\A\ (B — 0

can be, which gives the apex of the cone). So f_1(q) is contractible.

Condition (B): Let p = (A, B(fc+1)... (n+2)) and q =

(X, (fc+1)... (n+2)) such that A D X. Now the maximal element of

f-^q) n R<p is (X, B(k+1)... (n+2)). Ü

By Theorem 2.36 we know that up to homotopy it is enough to

glue together the pieces (i, *,*,*,*) of Hom(Gs, Kn+2). Now for a

second assume that the pieces (i, *,*,*,*) are Dn x S71-1. Observe

that there are only n + 2 of them for Hom(Gs, Kn+2)- In order to un¬

derstand the topology of Hom(Gs, Kn+2) it would be useful to find the

meridian disk Dn of e.g. (1, *, *, *, *). It would be the following collec¬

tion of n+3 cells: (1,3,2,1,23 ... (n+2)), (1,3, 2,13,24... (n+2)),

(1,34,2,3,24... (n+2)), ..., (1,34... (n+2), 2,3,2(n+2)),

(1, 34 ... (n+2), 12,3, 2), (1,23 ... (n+2), 1,3,2). Here ...

means that the cell (1,3 ... i, 2,3,2%... (n+2)) is followed by

(l,3...i(t+l),2,3,2(i+l)...(n+2)).

4.2.2 The Lovâsz Conjecture

Using my conjecture one could find a new proof of the Lovâsz Conjec¬

ture in a special case. To state it we need to define the Stiefel manifolds

Vn,k- They are the collection of fc orthonormal vectors in En:

Vn,k - |(vi, • • •, Vfc) Vi En; {vi,Vj) - öijj

Examples: Vn,i = S71'1, V2,2 = S1 U S1, and V3j2 - K^3-

Conjecture 4.8. The Hom complex Kom(C5, Kn-\-i) is homeomorphic

to the Stiefel manifold Vn 2.

We could use the following result of Dai and Lam [DL84].
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Theorem 4.9. Let u{v\,v2) = (v\, -v2) be a Z2-action on Vn,2-

coindex(l/n 2,ui) — n — 2

.

'

, / n-lz/n^2,4,8
md(K,2,o;)- | n-2i/n-2,4,8

Let us note that u and uj2(vi,v2) = (v2, ^i) are the same Z2-actions,

but u(vi,v2) = (-vi, -v2) can be different. The Z2-version of the pre¬

vious conjecture is: The Hom complex E.om(C5,Kn+1) (the Z2-action

given by reflecting an edge in G5) is Z2-homeomorphic to the Stiefel

manifold (Vn,2,uj).

Now it would be easy to prove Lovasz's conjecture for the G5 case.

Theorem 4.10. [Lovâsz Conjecture, proven by Babson and Kozlov

[BK04].| Let G be a graph, and let fc G Z such that fc > -1. If

Hom(G5, G) is k-connected then X(G) > fc + 4.

Actually we could prove something slightly stronger.

Theorem 4.11 ([BK04]). Let G be a graph, and let k G Z such that

fc > -1. If coindex(Hom(G5, G)) > fc + 1 then X(G) > fc + 4.

Proof. It follows from Theorem 4.9 and Conjecture 4.8.

The (co)homology computation of Babson and Kozlov [BK04]

enough to show that Rom(C5,K2n) are non-tidy spaces. This already

explain some difficulty to prove Lovasz's conjecture.

Corollary 4.12. If a Z2-space X has finite cohomology group Hn(X, Z)

then ind(X) — coindex(X) = n can not happen.

Proof. By contradiction if there were Z2-maps /' : Sn —»• X and g : X —>

Sn then the composition Hn(Sn,Z) -> Hn(X,Z) -> Hn(Sn,Z) would

be by Theorem 3.7 a multiplication by an odd number. On the other

hand since Hn(X, Z) is finite it is not possible, contradiction. G

The graph homomorphism K2 -> G5 gives a Z2-map

0: Hom(G5,Kn) -+ Eom(K2,Kn) ^ Sn~2. Another Z2-map

f . Sn-5 ç* Eom(K2, Kn-X) -> Hom(G5, Kn)
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can be defined by f(x,y) :— (n,x,y,n,n—l). If n is even than by the

cohomology computation of Babson and Kozlov [BK04] we know that

Hn~2CRom(C6,Kn),Z) and Hn-3(Hom(G5, Kn),Z) are finite groups.

Using Corollary 4.12 we get that ind(Hom(G5,i;r2fc)) = 2fc - 2 and

coindex(Hom(Gs, K2k)) — 2k — 3.

4.2.3 More small dimensional examples

Now we will gain some insight into all Hom complexes

Hom(G2r+i,Kn) of complements of odd circles G2r+i, r > 2. We dis¬

play the circles G2r+i, r > 2, in form of a crown; see Figure 4.10 for the

crown representations of G5 and of G7. Clearly, the bottom vertices of

a crown representation form a clique, or to be precise, a complete graph

Kr, in the complement G2r+i.

Figure 4.10: The (dashed) circles G5 and G7 and their complements.

Let us have a look at the crown representation of G5. Every cell

(a, b, A, B, C) of Hom(G5, Kn) contains every number x G {1,..., n} at

exactly two positions. Since the sets a and b are associated with the

bottom vertices that form a clique K2 in G5, the number x can appear

in at most one of the sets a and b. If it is contained in, say, a, then

the second copy of x can be placed only in the sets A and B that are

connected to a by a dashed edge of G5. The top vertices of G5 form

a clique minus the (dashed) edge between the leftmost vertex and the

rightmost vertex. Hence, if x is contained in neither a nor 6, than it is

contained in the leftmost top set A and in the rightmost top set G.

If we restrict us further to n = 3 colors, then Hom(i\f2, K3) is a six-

gon that we display in solid in Figure 4.11. The cell (a, b) — (1,23) of
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(1,23) ^J1'2)
lliiiiMlfiiir

"•\ n m i i 11 u j ï i n it i m i a u

(2,1) (23,1) "'"^(3,1)

Figure 4.11: Eom(K2,Ks) and Hom(G5,K3)-

Hom(if2, K3) can be extended to a cell (a, b; A, B, C) of Hom(G5, K3) in

precisely two ways, either to (1,23; 1, 2,3) or to (1,23; 1, 3, 2). We depict

these edges of Hom^i^) as dashed edges in Figure 4.11, parallel

to the edge (1,23) of Hom(X2, K3). Let (1,23; 1,2,3) be the upper

dashed edge. If we move the number 3 from the second to the third

position, then we obtain the cell (1,2; 13, 2,3) from which we move

on to (1,2; 3,12, 3), and from there to (1, 2; 3,1, 23). These three cells

of Hom(C5,üf3) correspond to the vertex (1,2) of Hom(K2,K3) and

are together displayed by a dashed half-circle at the vertex (1,2) in

Figure 4.11. If we move on, then we get to the dashed edge (13, 2; 3,1, 2),

from there to the dashed edge (3,12; 3,1, 2), before we again start a

half-circle (3,1; 23,1, 2), (3,1; 2,13,2), (3,1; 2,3,12), this time at the

vertex (3,1) of Hom(JC2, Kz). We can then continue on the outerdashed

circle until we reach our starting edge (1,23; 1,2,3) of Hom(G5, l^)-

Similarly, we can move around the inner dashed circle when we start

with (1,23; 1,3, 2).

Proposition 4.13. The Hom complex Hom(G2r+i,i^r+i) w the dis¬

joint union of r! circles with (2r2 + 3r + 1) vertices each.

Proof. We first count the number of vertices of Hom(G2r+i, Kr+i), i.e.,

the number of distinct colorings with r + 1 colors of G2r+i. To color

the bottom Kr in the crown representation of G2r+i we choose r of the

r + 1 colors and then have r! choices to place these r colors. For one

such coloring, say (1, 2,..., r), there are (2r + 1) ways to extend it to
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a coloring of C2r+i' If we use the color r + 1 just once, then we have

r + 1 choices to place it in the top row of the crown; the remaining

positions for the colors in the top row are then completely determined

by the position of the color (r + 1) and by our choice of the colors in the

bottom row. If we use the color r + 1 twice, then we have to put it at

the positions 1 and r + 1 of the top row. We further choose one of the

colors 1,... ,r not to be used in the top row; this again determines all

the positions for the colors in the top row. Thus we have (r + 1) choices

if color r + 1 appears once in the top row and r choices if color r + 1

appears twice in the top row. Altogether we have

(r + l\r!(r + 1 + r) - (2r2 + 3r + l)r!

different colorings of G2r+i with r + 1 colors.

Since every number 1,... ,r + 1 appears_exactly twice in a cell of

Hom(G2r+i,Ä"r+i), the dimension of Hom(G2r+i, Kr+i) is 2(r + 1) -

(2r+l) = 1. If we move for the edge (1,2,..., r-1, r(r+l); 1, 2,..., r, r+

1) of Hom(G2r+i, Kr+i) the number r + 1 from the last position of the

bottom row to the first position of the top row and then continue until

we reach the edge (r+1,1,2,..., (r-l)r; r+1,1, 2,..., r-1, r), then this

takes r + l + r = 2r + l steps. After r + 1 such rounds we return to our

starting edge (1, 2,..., r - 1, r(r + 1); 1,2,..., r - 1, r, r + 1). Hence, by

symmetry, every circle of Eom(C2r+1, Kr+1) has length (2r+l)(r+l) =

2r2 + 3r + 1. Since_Hom(G2r.+i, Kr+1) has (2r2 + 3r + l)r! vertices, it

follows that Hom(G2r+i, Kr+i) consists of r! circles with (2r2 + 3r + 1)

vertices each. G

As before in the case of Hom(G5, #3), every edge of Eom(Kr, Kr+1)

can be extended in exactly two ways to an edge of Hom(G2r+i, Kr+1).

We can interpret this behavior geometrically by thickening every edge

of the 1-dimensional manifold Rom(Kr, Kr+1) to a 2-dimensional strip

and then gluing these strips together at the vertices of Eom(Kr, Kr+\).

As result, we get a two-dimensional manifold with boundary, where the

boundary is homeomorphic to Hom(G2r+i, Kr+\).

In Figure 4.12 we display the Hom complex Hom(iT3, K4), consisting

of 24 vertices and 36 edges, together with two of the 3! = 6 (dotted)
circles of Hom(G7, K±).
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Figure 4.12: The Hom complex Eom(K5,K4).

Remark that every vertex of E,om(Kr, Kr+i) can be extended in

r + 1 ways to an edge of Hom(G2r+i, Kr+i). These r + 1 edges form a

path that we display as a half-circle in the Figures 4.11 and 4.12.

Conjecture 4.14 (Lutz). The 3-dimensional graph coloring manifolds

Hom(G27.+i,iirr+2), r > 2, have homology iï*(Hom(G2r+i, Kr+2)) =

(z,z2(H-2)©zr!,z2(H"2),z).

Since every cell of a Hom complex is a product of simplices, trian¬

gulations (without additional vertices) can easily be obtained by the

product triangulation construction. For the next example we computed

the homology with a computer program [DHSW03].

Proposition 4.15. The graph coloring manifold Rom(Cr,K5) with

2520 vertices has homology groups H^(Eom(Cr,K^)) = (Z, Z 0

Z6,Z8,Z).
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4.2.4 Hom complexes of complements of even circles

Similar to the crown representation of (complements) of odd cir¬

cles, we split the vertices of even circles G2r into a lower and an up¬

per part, corresponding to the bipartition of G2r. The lower and also

the upper part form a complete graph Kr in G2r, i.e., every maximal

cell of Hom(G2r, Kr) contains each color 1,..., r exactly twice, once in

the lower part and once in the upper part. (Figure 4.13 displays Cq

and its complement Cq together with a cell (01,02,03; Ai,A2, As) of

Hom(G6,AV)0

O-l a2

Figure 4.13: The circle G6 (dashed) and its complement Cq.

Proposition 4.16. (Babson and Kozlov [BK03]) The Hom complex

Rom(Ks,Kr) is hom,otopy equivalent to a wedge of f(s,r) spheres of

dimension r~s, where the numbers f(s, r) satisfy the recurrence relation

f(s, r) = sf(s - 1, r - 1) + (s - l)f(s, r - 1),

for r > s> 2; with the boundary values f(r, r) — r! - 1, f(l, r) = 0 for

r > 1, and f(s, r) — 0 for s > r.

We employ this proposition to describe the Hom complexes

Hom(G2r, Kr+1). Actually we need only that f(r,r + 1) - r\r ~2r~2 +1

(see [CK04, Proposition 13]).

Proposition 4.17. The Hom complex Hom(G2r, Kr+1), r > 2, is an

orientable cubical surface of genus g(r) — f(r, r + 1) = rV—~2r~- + l with

n(r) - (2 + r2)-(r + l)! vertices, 2(n(r) + 2g(r) -2) - 2r(r + l) • (r + 1)!

edges, and n(r) + 2g(r) - 2 — r(r + 1) • (r + 1)! squares.
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Proof. Let (ai,..., ar; A\,..., Ar) be a maximal cell of

Hom(G2r, Kr+i). Since every color 1,..., r + 1 appears exactly once in

(ai,..., ar) and once in (Aj,..., Ar) the cell (oj,..., ar; A\,..., Ar) is

the product of the edge (oi,..., ar) with the edge (A\,..., Ar). Hence,

Hom(G2r, Kr+lL) is a cubical surface.

We now count the number of vertices of Hom(G2r, Kr+i). For every

vertex (vi,... ,vr,w\,..., wr) we have to choose r of the r + 1 colors

for the lower part and then have r! choices to place these r colors.

Let (vi,. ..,Vj) = (1,..., r) be such a placement. If the left-out color

r + 1 does not appear in the upper part, then (l,...,r) can be ex¬

tended in exactly two ways to a coloring of G2r, yielding the vertices

(l,...,r;l,...,r) and (1,... ,r; 2,... ,r, 1) of Hom(G2r, Kr+1). If the

left-out color r + 1 is used in the top part, then there are r choices

to place it, and for each such placement every choice to not use one of

the colors 1,... ,r determines a vertex. Therefore, we have altogether
2 + r2 choices to extend (1,..., r) to a vertex of Hom(G2r, Kr+\); i.e.,

Hom(G2r, Kr+i) has n(r) := (2 + r2) • (r + 1)! vertices.

Let M be an orientable cubical surface of genus g with n vertices, e

edges, and s squares. Since every square is bounded by four edges and

every edge appears in two squares, double counting yields 2e — 4s. By

this equation and the Euler relation, s-e + n = X(M) = 2-2g, we get

that s = n + 2g - 2 and e = 2(n + 2g - 2).

It therefore remains to show that Hom(G2r,ÜTr+i) is an orientable

surface of genus g(r) = f(r, r + 1) = Qr! - £l=î fc(fc + 2)(fc + 3) • • • r.

For this, let us fix an edge, say (a\,... ,ar) — (1,2,.. .,r
- l,r(r + 1)),

of Rom(Kr, Kr+i). Then the sequence of 2r squares

1, 2, . ..,r-- l,r(r + 1) • 1 2 .,r- 2,r - l,r(r + 1)),
1,2,. ..,r-- l,r(r + 1) ;1,2,.. . ,r- 2, (r- l)r,r + 1),

1,2,. ..,r-
- l,r(r + 1) ;1,2,.. .,(r-2)(r-l),r,r+l)

1,2,. ..,r-- l,r(r + 1) ;1,23,. ..,r- l,r,r + l),
i, /,. ..,r--l,r(r + l) . 1,6. O^ • ..,r- l,r,r + l),
1,2,. ..,r-- l,r(r + 1) ;2,3,.. .,r-l,r,l(r+l)),
1,2,. ..,r-

- l,r(r + 1) ;2,3,.. .,r- l,r(r + l),l),

1,2,. ..,r-- l,r(r + 1) ;2,3,.. .,r- l,r + l,lr),
1,2,. ..,r--l,r(r + l) ;12,3,. ..,r- l,r+l,r),
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(l,2,...,r-l,r(r + l);l,23,...,r-l,r + l,r),

(l,2,...,r-l,r(r + l);l,2,...,(r-2)(r-l),r + l,r),

(l,2,...,r-l,r(r + l);l,2,...,r-2,(r-l)(r + l),r),

forms a cylinder G2r x I. By symmetry, we get such a cylinder for every

edge (oi,..., or) of Eom(Kr, Kr+i). Since every vertex of_the graph

Rom(Kr,Kr+i) has degree r, we have r cylinders in Hom(G2r, Kr+\)

meeting "at a vertex" of Hom(Kr., Kr+i). (In the case of Hom(K3, K4)
three cylinders meet at a vertex, which yields a trinoid as depicted in

Figure 4.14.) By inspecting the gluing at the vertices, it is easy to

Figure 4.14: Three cylinders forming a trinoid in Eom(CQ,K4).

deduce that Hom(G2r, Kr+\) is orientable. It moreover follows that

Hom(G2r, Kr+i) has genus /(r, r + 1), which is the number of wedged

1-spheres in the graph Eom(Kr, Kr+i).

As in the case of Hom(G2r+i,irr.+i) we can interpret

Hom(G2r, Kr+i) geometrically in the following way. If we thicken the

edges of the 1-dimensional manifold E_om(Kr,Kr+i) to solid tubes,

then for the resulting 3-manifold with boundary the boundary is

homeomorphic to Hom(G2r, Kr+i)-
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Conjecture 4.18 (Lutz). The Hom complex Hom(G2s,Kr) is home¬

omorphic to the connected sum of 2f(s,r) copies of Sr~s x Sr~s.

Triangulations of two-dimensional spheres with up to 23 vertices

have been enumerated with the program plantri by Brinkmann and

McKay [BMcKOl].

Table 4.2: Triangulated surfaces with few vertices.

# vertices 6 7 8 9 10

# manifold 3 9 43 655 42426

# spheres 2 5 14 50 233

# flag spheres 11 2 4 10

The flag simplicial spheres with up to 8 vertices together with the

complements of their 1-skeleton are displayed in Figures 4.15-4.18.

Ill

Figure 4.15: The boundary of the octahedron O2 and the complement

of its 1-skeleton.

For the flag 2-spheres O2, G5 * S° and G6 * S° the complements of

the respective 1-skeleton are not connected, and therefore we have that

Rom(SKl(02),Kr) = x3i=1Eom(K2,Kr),

Hon^SK^Gs*^0), KT) = Hom(G5, Kr) x Rom(K2, Kr),

HomtSK^Ge*^0), Kr) = Hom(G6, Kr) x ttom(K2, Kr), and

For the flag 2-sphere with n < 8 vertices, for which the comple¬

ments of their 1-skeleton are connected, we computed the homology of

corresponding triangulations of their Hom complexes with few colors.
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Figure 4.16: The flag sphere G5 * S° and the complement of its 1-

skeleton.

Figure 4.17: The flag sphere Cq * S° and the complement of its 1-

skeleton.

Figure 4.18: A flag 2-sphere X2 and the complement of its 1-skeleton.

Proposition 4.19. The Hom complex Hom(SKi(X2), Ks) consists of

4 circles with 24 vertices each. Moreover,

tf*(Hom(SKi(X2),K4)) (Z,Z©Z2,Z2,Z,Z),

where the respective Hom complex have 3624 vertices.



Chapter 5

Limit of the topological
method

It is known that the topological lower bounds are very useful. Lovâsz

[Lov78] original proof of Kneser's conjecture [Kne55] gives a general
lower bound for the chromatic number. His proof was motivating to

attack other problems by using topological methods (see [Bjö95, Koz05c,

Mat03, Ziv98] for references of later developments). There are now

short proofs available for the Kneser Conjecture by Bârâny [Bar78] and

Greene [Gre02]. Moreover Matousek [Mat04] found a combinatorial

proof as well, motivated by discrete version (Tucker's lemma) of the

Borsuk-Ulam Theorem.

In this chapter we will show that this topological lower bound can

be arbitrarily bad.

5.1 The Ki?m-theorem

The following theorem will be useful to show some limit of the topo¬

logical method.

Theorem 5.1 (Ki;in-theorem). If a graph G does not contain a com¬

plete bipartite subgraph K^m then the index of its box complex is bounded

95
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by

ind(B(G)) < £ + m - 3.

We know that ind(B(^+m_i)) = £~\-m—3, since B(Ke+7n-i) is a the

boundary of a crosspolytope with an opposite pair of facets removed.

Therefore, the statement of the theorem is best possible. On the other

hand, we obtain md(B(Kk,k)) <k — l from the theorem, since Äi^+i is

not a subgraph of Kk,k- But md(B(Kk,k)) — 0, since Kk,k is bipartite.

So the gap in the inequality can be arbitrarily large.

We give two proofs for this theorem. The first one uses the shore

subdivision and the halved doubled Lovâsz complex [CsLSW04], the

other is a direct argument on L(G) along the lines of Walker [Wal83].

Proo/.(using shore subdivision) Let $ : ssd(B(G)) —> ssd(B(G)) be the

simplicial Z2-map defined by j o en2 (see Section 2.1). Using that the

index is dominated by dimension, it suffices to show the last inequality

of

ind(B(G)) = ind(ssd(B(G))) < ind(Im$) < dim(Im$) < £ + m-3.

To estimate the dimension of Im$ ~ HDL(G), we use that the graph G

does not contain a subgraph of type K^m and assume without loss of

generality that £ < m. A vertex of HDL(G) or DL(G) of the form A W 0

or 0 W A is called small if |A| < £, medium if £ < \A\ < m, and Jorge if

m < \A\. For £ — vn there are no medium vertices. Let a — A Ö B be a

simplex of HDL(G) and consider the set of vertices

Ma :=V(j-l(o-)) - (J {^W0,0WCN(A)}U |J {CN(£)W0,0W^}.
AeA BeB

Clearly, \Ma\ is at most twice jV(cr)j. If cr has a large vertex Al±)0, then

the vertex 0WCN(A) must be small, otherwise G would contain a K^m.
Hence there are at most 2-2(^ — 1) many vertices in Ma that are large

or small. Since the number of medium vertices is at most 2(m — £), we

have

\Ma\ < 2 2(£ - 1) + 2(m - £) = 2(1 + m - 2).

Hence |V(<r)| < £ + m - 2 for all a, and therefore dim(HDL(G)) is at

most £ + m — 3. D
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Proof, (using the Lovâsz complex) It suffices to prove dim(L(G)) < £ +

m — 3, since

ind(B(G)) - ind(L(G)) < dim(L(G)).

(See e.g. [Mat03, MZ04] or use that Im$ = HDL(G) ~z2 L(G) from

Section 2.1.1.) Without loss of generality let £ < m and consider a

simplex A = Ai C ... C Ap of 1(G) of maximal dimension p-1. If p < £

we are done. Suppose that p > £. Then G[Af,CN(Ae)] is a bipartite

subgraph of G and we have \A£\ > £ as well as |CN(^)| >p-£+ l. The

assumption that G does not contain a K^m implies that m > p
- £ + 1,

i.e. dim(„4) < £ + m - 3.

Already a special case of this theorem, the K2;2-theorem [Wal83],
leads to examples showing that the topological lower bound can be arbi¬

trarily bad. Erdös [Erd59] showed that there are graphs with arbitrarily

high chromatic number without 4-cycle. The K2j2-theorem provide us

that the index of its box complex is at most 1, so the topological lower

bound gives us only at most 3.

5.2 Topological construction

It is well known (see the previous sections or [Wal83]) that the topo¬

logical lower bound for the chromatic number can be arbitrarily bad.

But now we are able to give purely topological examples.

We will construct graphs such that X(G) > ind(B(G))+2+fc. We will

use the universality theorem and the Mycielski construction (Theorem

2.23). First we need a Z2-space (actually a simplicial complex) X such

that ind(X) = ind(suspfc(X)). Now let G := Gsd(x)- For G we have

that X(G) > ind(B(G)) + 2 - ind(X) + 2. We claim that G+k :=

Mh(... (Mik(G))) is good for us if ij e {1, 2}. (Here we use that the
>

v
/

k

Mycielski construction increases the chromatic number if ij {1,2}.)

Clearly x(G) + k = X(G+k) and ind(B(G+fc)) - ind(suspfc(B(G))) =

ind(suspfc(X)) = ind(X). So X(G+k) > ind(B(G+fc)) + 2 + fc. In this

way we obtain the announced examples.
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5.3 The smallest example

The K^m-theorem was invented in order to provide examples such

that ind(B(G))+2 < X(G). Now we will find the smallest example where

ind(B(G))+2 ^ X(G). Let us start with some observations. Their proof

is straightforward using the functoriality and that ind(B(Kn)) — n — 2

(see Section 1.5).

Lemma 5.2. // Kn Ç G then n - 2 < ind(B(G)).

Proof. Since Kn Ç G we have a Z2-map B(Kn) -A B(G). We have

seen that B(Kn) (the crosspolytope on 2n vertices without two antipodal

faces) is Z2-homotopy equivalent to Sn~2. So the above map gives a

Z2-map Sn~2 —^ B(G), which completes the proof.

Remark 5.3. We denote by oo(G) the size of the maximal clique in G.

-^w(G) ^ G. The previous lemma can be reformulated as

u(G) < ind(B(G)) + 2 < X(G).

Lemma 5.4. ind(B(G)) = 0 «=» graph G bipartite -<=>- X(G) = 2.

Remark 5.5. If X(G) = 3 then ind(B(G)) = 1. (In other words if

X(G) = 3 then ind(B(G)) + 2 - X(G) = 3).

Definition 5.6. A graph G is called perfect if, for each of its induced

subgraphs F, the chromatic number of F equals the size of the largest

clique.

Going back to our original plan, if we want to find an example such

that ind(B(G)) + 2 < X(G) then Remark 5.5 tells us that X(G) > 4.

Moreover if G is perfect then Lemma 5.2 shows that ind(B(G)) + 2 =

X(G). So it is enough to deal with non-perfect graphs. The following

theorem will help us to find the non-perfect graphs on few vertices.

Theorem 5.7 (Strong Perfect Graph Theorem). [CRST02] A

graph is perfect if (and only if) it contains no odd hole and no odd

antihole, where a hole is a chordless cycle of length at least four; and

an antihole is the complement of such a cycle.

The Strong Perfect Graph Theorem tells us that graphs having at

most 4 vertices are prefect, so they can not be an example. On 5 vertices
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the only non-perfect graph is G5 (the complement of G5 is G5 as well),

but since X(C5) — 3 this can not be an example.

It is easy to see that the non perfect graphs on 6 vertices are in Figure

5.1. Gi,...,G7 has chromatic number 3, so they are not interesting

Gi G2 G3 G4

G5 Gq G7 G8

Figure 5.1: The non-perfect graphs on 6 vertices.

any more. The chromatic number of Gs is 4, and K4 % G8 so it is

a candidate for being the smallest example. We have to compute the

Z2-index of its box complex.

Lemma 5.8. ind(B(G8)) — 2 which means that ind(B(G8)) + 2 —

X(G8) = 4.

Proof. We denote the vertex set of G8 by V — {1,2,3,4,5,6} as in

Figure 5.1. Then the vertex set of the box complex will be {1, 2,3,4, 5,6}

and {1,2,3,4,5,6}. (To make the notations simpler here we use A

instead of (A, 0) and A instead of (0, A).) Now one can check that the

following triangles forms an embedded sphere (an ikozahedron) : 124,

146, 163, 135, 152, 324, 546, 263, 435, 652, 324, 546, 263, 435, 652, Ï24,

146, Ï63, Ï35, 152. From this we have that ind(B(G8)) > 2 and since

X(GS) -4we have that ind(B(G8)) < 2. D

Remark 5.9. Another possible way of proving this lemma is using the

Mycielski construction (see Theorem 2.23). Since G8 = Mi(C$) and

the box complex B(Gs) is %2-homotopy equivalent to S1 (see Figure 2.1)

we get that B(G8) is Z2-homotopy equivalent to S2.
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So the smallest example such that ind(B(G)) + 2 < X(G) must has

at least 7 vertices and the graph on Figure 5.2 has this property.

G

Figure 5.2: The smallest example.

Theorem 5.10. The Z2-index of the box complex of the graph on Figure

5.2 is 1, while its chromatic number is 4.

Proof. It is easy to see that the chromatic number is 4.

We denote the vertex set of G by V = {1, 2,3,4, 5,6, 7} as in Figure

5.2. Then the vertex set of the box complex will be {1,2,3,4,5,6, 7} and

{1, 2,3,4, 5,6, 7}. (To make the notations simpler here we use A instead

of (A, 0) and A instead of (0, A).) The Simplexes of the box complex are

the following Simplexes, and its faces as well ï - 237, 2 - 134, 3 - 124,

4 - 2356, 5 - 467, 6 - 457, 7 - 156, 14 - 23, 47 - 56 and its Z2-images

1 — 237, (For example 14 — 23 is a 3-dimensional simplex such that

its Vertexes are 1,4,2,3.) By the K^m-theorem we can reduce the di¬

mension of this complex. (The resulting complex is the Lovâsz complex

what we will obtain in this way.) The stable pairs (CN(A) and GN2(A))

are corresponding to the maximal Simplexes, so using the method of the

K^m-theorem the remaining vertices are 1, 2, 23,3,4, 5,56,6, 7 and their

Z2-pairs 1,2,23,3,4,5,56,6,7 and the simplices are as in Figure 5.3.

We denote this simplicial complex by X. It is easy to see, that it has

an embedded circle. The vertices 3,23, 2,3,23,2 in this order form a

circle, which gives a Z2-map S1 -A- X. This proves that ind(X) < 1.
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2 23 3 5 56 6 7

Figure 5.3: The remaining complex.

On the other hand we can map X into S1, into a 4 cycle as in Figure

5.4. The analysis of this map shows that ind(X) > 1, so ind(X) = 1,

6

7
56

5
23

„23-56
2 5 7

3
4

6
1

Figure 5.4: The Z2-map X -> S1.

which is what we wanted to prove.
D

Among the graphs with 7 vertices there is another example, the

complement of the 7-cycle with this property. Similarly one can see

that its graph complex is homotopy equivalent to Sl, so the topological

lower bound is 3, while its chromatic number is 4.
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