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Summary

Regression models with time series as both response and explanatory
variables play an important role in several fields of science. The easiest

time series regression model is built with independent 7V(0,<t2) dis¬

tributed errors. But these error assumptions are not fulfilled in many

real situations. In reality, correlation in the random errors is present

and/or some outliers are observable.

Many methods have been developed to take into consideration these fea¬

tures. The random errors have been modeled using an AR or ARIMA

process. Robust methods have been developed for time series auto-

regressions, generalizing robust methods applied in the usual regression
context. But the proposed procedures have only been partially adapted
to the time series situation and a simultaneous treatment of regression
models with outliers and correlated errors has been missing.

A promising idea to handle both correlated errors and outliers is to

write the time series regression models in state space form. State space

models constitute a large and flexible class of models. They consist of

an equation which describes the dynamics of the observation sequence

(Yt) using an unobserved first order Markov process (Xt) (the state pro¬

cess). For example, the popular Gaussian ARMA model is equivalent
to a linear Gaussian state space model.

Parameter estimation and inference for state space models rely on the

assessment of the distributions of the unknown states Xt given the ob¬

served values Yi,... ,YS. Three cases are distinguished: the prediction

(t > s), the filtering (t = s) and the smoothing (t < s) state distri¬

butions. General recursive methods for calculating the respective state

space distributions have been derived, but the formulae contain convo¬

lution integrals. Thus, an easy and closed form for the results is possible

only under strict assumptions (Gaussian distributions for both the er-
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IV Summary

rors and the starting Xq). But, the resulting methods are not robust

and therefore outliers can have disastrous effects. Unfortunately, it is

not easy to robustify these methods. On the other hand, it is possi¬
ble to choose other error distributions than the Gaussian one to model

the outliers. Then, approximations are needed in order to compute the

state distributions. A new approach which works well also with high
dimensional states Xt consists of approximating the state distributions

by samples generated using Monte Carlo methods.

In the present thesis, we consider a time series regression model and

assume linearity in the error term. Both auto-regressive correlated er¬

rors and observation outliers (additive outliers) are considered and no

constraints are set on the relationship between response and explana¬

tory time series. Moreover, missing values in the response series and/or
in the explanatory series are allowed.

The resulting state distributions are computed approximately using
Monte Carlo techniques. Special care is used to develop recursive algo¬
rithms which are both fast and reliable. In fact, these characteristics

are a prerequisite for the estimation of the unknown parameters in the

considered time series regression model.

The estimation issue is solved by applying the maximum likelihood

method. The resulting estimates are robust thanks to the assumed error

distributions. In addition, the maximum likelihood method permits to

compute approximate confidence intervals by the usual likelihood pro¬

cedures. The difficulty with this approach is that the likelihood function

cannot be computed in closed form and thus it has to be approximated

using again Monte Carlo methods. The developed methods are illus¬

trated with some examples.

Finally, we consider the robustness of filter and smoother distributions

to analyse how reliable the developed methods are.



Riassunto

In parecchi campi della scienza si incontrano modelli di regressione con

variabili indipendenti e variabile dipendente date da série temporali. II

modello più semplice in questi casi assume errori indipendenti e dis-

tribuiti normalmente con valore atteso zero e varianza a2. Purtroppo

queste assunzioni per l'errore sono disattese in molte applicazioni re-

ali. Infatti gli errori sono correlati e/o presentano valori anomali ("out¬
liers" ).
Parecchi metodi sono stati sviluppati per tenere in considerazione queste

caratteristiche. Per esempio gli errori sono stati modellati usando Pro¬

cessi AR o ARIMA. Inoltre metodi robusti sono stati sviluppati per série

temporali con errori autocorrelati generalizzando i metodi robusti usati

nella regressione. Ma le procedure proposte sono state solo parzialmente
adattate alle caratteristiche délie série temporali. L'analisi simultanea

di modelli di regressione con errori correlati e valori anomali è ancora

agli inizi.

Un' idea promettente per trattare sia gli errori correlati che i valori

anomali è di scrivere le regressioni tra série temporali usando modelli

di stato ( "state space models" ). Questi ultimi costituiscono una classe

ampia e flessibile di modelli. Consistono in un' equazione che descrive la

dinamica delle osservazioni (Yt) usando un processo markoviano (Xt) di

ordine uno che non è osservabile direttamente (il cosiddetto processo di

stato). Per esempio il modello ARMA con errori gaussiani, attualmente

molto in voga, è équivalente a un modello lineare di stato con errori

gaussiani.
II problema maggiore nell'utilizzare i modelli di stato è dato dal calcolare

le distribuzioni degli stati Xt conoscendo le osservazioni Yi,..., Ys. Tre

casi vengono distinti: la distribuzione di stato per la previsione (t > s),
per il filtro (t = s) e per la ricostruzione a posteriori ("smoothing",

v



VI Riassunto

t < s). Per calcolare queste distribuzioni sono state sviluppate ricorsioni

generali che pero contengono convoluzioni. Cosi ricorsioni facili e in

forma chiusa possono essere derivate solo nel caso in cui gli errori e la

distribuzione iniziale Xq siano date dalla distribuzione di Gauss. Queste
ricorsioni pero non sono robuste e cosi valori anomali nelle osservazioni

possono avère un effetto disastroso. Purtroppo non è facile rendere

robuste le ricorsioni trovate. D'altra parte, distribuzioni di errori diverse

da quella di Gauss possono essere usate per modellare i valori anomali

ma con lo svantaggio di dover usare delle approssimazioni per poter
calcolare le distribuzioni di stato. Un nuovo approccio che funziona

pure per stati Xt con dimensione elevata consiste nell'approssimare le

distribuzioni di stato con un campione generato usando metodi di Monte

Carlo.

Nella présente tesi consideriamo un modello di regressione tra sé¬

rie temporali con linearità nei termini d'errore. Sia errori autocorrelati

che valori anomali additivi sono presi in considerazione. Inoltre nes-

suna restrizione viene posta alla funzione che lega la série temporale

dipendente alle série temporali indipendenti. Alcuni valori delle série

temporali dipendente e/o indipendenti possono mancare.

Le distribuzioni di stato che ne derivano sono calculate approssimati-
vamente usando metodi di Monte Carlo. Particolare cura è usata per

sviluppare algoritmi ricorsivi che siano alio stesso tempo veloci e af-

fidabili. Infatti queste due caratteristiche sono un prerequisite fonda¬

mentale per svillupare i metodi di stima dei parametri sconosciuti nel

modello considerato.

La stima in se viene trovata applicando il metodo della massima

verosimiglianza ("maximum likelihood method"). Le stime risultanti

sono robuste grazie aile distribuzioni dell'errore scelte. Inoltre, il metodo

della massima verosimiglianza permette di trovare intervalli di confi-

denza approssimativi usando le teeniche sviluppate per questo metodo.

La difficoltà in questo approccio sta nel fatto che la funzione di prob-
abilità ("likelihood function") non puo essere espressa in forma chiusa

per il modello considerato e cosi deve essere approssimata usando nuova-

mente metodi di Monte Carlo. I metodi sviluppati vengono poi illustrati

tramite alcuni esempi.
Da ultimo, consideriamo la robustezza delle distribuzioni di filtro ed

"smoothing" trovate per analizzare quanto affidabili siano i metodi

sviluppati.



Chapter 1

Introduction

Regression type models with time series as both response and explana¬

tory variables are common in many fields of science, for example in

finance, biology and in many engineering domains. In the easiest time

series regression model, it is assumed that random errors are indepen¬
dent and 7V(0,<72) distributed. Frequently, these assumptions are far

from being fulfilled. The random errors are correlated and/or some

outliers are observable.

The classical way to deal with the dependence among random fluctua¬

tions assumes an AR or ARIMA model for the error term. A pioneer
work in this field is the paper written by Cochrane and Orcutt (1949).
They developed a stepwise method to cope with correlated errors. On

the other hand, deviations from the normal distribution assumption for

the error term call for robust estimation methods and the respective
inference techniques. Many methods exist for i.i.d. heavy-tailed errors

and they are well studied, see for example Hampel et al. (1986). Robust

methods have also been developed for time series auto-regressions, gen¬

eralizing robust methods applied in the normal regression framework.

For example, Fox (1972) analysed the effects on time series of two out¬

lier types: the outliers in the observations (additive outliers) and the

outliers in the innovations (innovation outliers). The former influence

the time series only at the times where they arise, and the aim is to

attenuate their effects. The latter produce structural changes in the

time series, and thus affect the time series also in successive times. In

this case, the goal is to follow these changes as fast as possible.

Unfortunately, the introduced methods have only been partially adapted

1



2 Chapter 1. Introduction

to the time series situation. In addition, a simultaneous treatment of

outliers and correlated errors has been missing.

In the early sixties, Kaiman (1960) and Kaiman and Bucy (1961)
introduced a very general model which includes a whole class of special
cases: the state space model. This model was primarily introduced for

researches in the aerospace domain.

State space models consist of an equation which describes the observa¬

tion dynamics using an unobserved first order Markov process. Kaiman

and Bucy considered a linear state space model. Thus, the unobserved

Markov process is described by the state equation

Xt = GtXt-1+Vt (1.1)

and the connection between states and observations is given by the

observation equation

Y = HtXt + Wt. (1.2)

Here, the states (Xt) are fc-dimensional, the observations (Yt) are l-

dimensional, (Gt) are k x fc-matrices and (Ht) are / x fc-matrices. They
assumed that (Vt) and (Wt) are two independent normally distributed

sequences with means zero and covariance matrices £t and ilt, respec¬

tively. In addition, they supposed that Xq followed a normal distri¬

bution with mean m0|o and covariance matrix i?o|o- Kaiman and Bucy
focused their interest on finding the distribution of Xt given Y\, ...,

Ys.

They distinguished three cases: the prediction (t > s), the filtering

(t = s) and the smoothing (t < s) distribution. Under the above as¬

sumptions, prediction, filtering and smoothing distributions are again
Gaussian and it suffices to compute the conditional means mt\s and

covariances Rt\s- They derived the well-known filtering and smooth¬

ing recursions for conditional means and covariances. Explicitly, the

filtering recursion is given by

mt\t-i = Gtmt-i\t-i, (1.3)

Rt\t-i = £t + Gti?t-i|t-iGt, (1.4)

Rt\t = \HtÇlt Ht + R^t-i)
= Rt\t-i — Rt\t-iHtMt HtRt\t-i,
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mt\t
=

mt\t-i + Rt\tHtSlt
1

(vt ~ #tt|t-i) (1.5)

= mt\t-i + Rt\t-iHtM^ (yt - Htmt\t-i) (1.6)

= mt\t-i + Kt (yt - Htmt\t-i) (1.7)

with

Mt = nt + HtRtlt_1H't,
Kt = R^t-iH'tMt-1.

Note that the equations (1.5), (1.6) and (1.7) have the intuitive interpre¬
tation "the filter mean is equal to the prediction mean plus a correction

term which depends on how much the new observation differs from its

prediction". In addition, Kt is the so-called Kaiman gain. On the other

hand, the smoothing recursion is given by

mt\T
=

mt\t + St (mt+1\T - mt+1|t) ,

Rt\T = Rt\t — St (Rt+i\t — Rt+i\T) St

with

St = Rt\tGt+iRt+i\t-

These recursions are very appealing and easy to compute. But they

present some disadvantages. First, the observations (Yt) enter linearly
in the computations, see (1.5), (1.6) or (1.7). Thus, the effect of out¬

liers in (Yt) is not reduced and the consequence can be disastrous. In

addition, all covariance matrices are independent of the observations

and, in the time invariant case, they converge quickly towards steady
values. Then, the confidence intervals have constant widths. Moreover,
the closed and easy form of the resulting recursions depends strongly
on the assumptions that the errors and the starting Xq have Gaussian

distributions.

State space models have been studied intensely in the last decades.

At first, only in engineering domains, later also in statistics. In fact,
state space methods appeared in the time series literature only in the

seventies (Akaike (1974), Harrison and Stevens (1976)), became estab¬

lished in the eighties and then an intensive research topic in the nineties.

One reason of their popularity is given by their high flexibility and thus

the wide range of possible applications. For example, the Gaussian
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ARMA model is equivalent to a linear Gaussian state space model in

the time-invariant case (see for example Wei (1990), Chapter 15, for a

simple proof and Akaike (1974) or Hannan and Deistler (1988) for more

details). The state space representation of an ARMA model is useful

since it permits to handle missing data in a very easy way. In fact, if the

observation at time t is missing, it suffices to set Ht = (0,..., 0) .
This

leads to an easy manner to compute the exact likelihood of an ARMA

model in the presence of missing observations, see for example Jones

(1980).
Many generalizations of the state space model introduced by Kaiman

and Bucy have been examined. Some attempts have been made to ro-

bustify equation (1.5) (or (1.6) or (1.7)). The easiest idea has been

to substitute yt
— Htmt\t-\ by ip(yt — Htmt\t-i) for a suitable tp

function. In this way, the influence of observation outliers has been re¬

duced, but the covariance matrices have still been independent of the

observations. Masreliez (1975) and Martin and Thomson (1982) pro¬

posed approximate estimation methods. Unfortunately, these methods

do not permit to estimate the parameters simultaneously. A way out is

to use an iterative scheme which alternates between removing the out¬

liers and estimating the parameters from the cleaned data. Kitagawa

(1987) developed numerical approximations for the filter recursion. But

in general, the numerical integration is difficult in higher dimensions

and, additionally, a good choice of the integration knots would presup¬

pose a knowledge of how the filter densities look like. The replacement
of Gaussian errors with heavy-tailed errors has also been used to model

different types of outliers, see the ideas in Fox (1972). An unusually

large value in Vt corresponds to an innovative outlier which also influ¬

ences successive observations Ys, s > t. On the other hand, an unusually

large value in Wt corresponds to an additive outlier which affects only

Yt. The difficulty in this approach is the computation of both the filter

and smoothing distributions and the maximum likelihood estimate.

A new approach to state space models has become popular and feasi¬

ble in the last years thanks to the increased computer performances.
The filter and smoother densities are approximated by samples pro¬

duced with Monte Carlo methods. Then, expectations can be approxi¬
mated by sample averages, quantiles by corresponding order statistics,
etc. Pioneers in this field were Carlin et al. (1992). They proposed
to use the standard Gibbs sampler to generate samples from the con¬

ditional distribution of (Xi,..., Xt) given (Yi,..., Yt). This can be

performed sampling from the so-called full conditionals, i.e. the den-
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sity of Xt given the remaining (Xf), t ^ t', and (Yi,...,Yr). But

this approach has two disadvantages. The method is not recursive and

thus the samples should be recomputed from the beginning when a new

observation becomes available. In addition, the convergence of single

update methods is usually slow. A method to improve considerably
the convergence speed of the Gibbs sampler for some often used models

was proposed by some authors, see for example Frühwirth-Schnatter

(1994), Carter and Kohn (1994) or Shephard (1994). The single up¬

dates in the Gibbs sampler can be substituted by multiple ones in the

same step. This is possible in all models where the state variable can be

split in two components, Xt = (Xtii,Xti2) ,
and the sampling of both

(Xt,i)t=o, ,t given ((Xti2)t=o, ,T,(Yt)t=i, ,t) and (Xtj2)t=o, ,t given

((Xt,i)t=o, ,T,(Yt)t=i, ,t) is realizable. Thus, the sampling proceeds

alternating between simulating from one of the two components while

the other is kept fixed. However, the lack of recursivity remains. The

idea of a recursive Monte Carlo sampling method goes back to Hand-

schin and Mayne (1969) and Handschin (1970). It was proposed again

by Gordon et al. (1993), Isard and Blake (1996) and Kitagawa (1996).
It has become now very popular and there is an extensive literature on

it, see Doucet (1998) and the book edited by Doucet et al. (2001). This

method is often called the particle filter.

The goal of the present thesis is to apply recursive Monte Carlo

methods to a time series regression model of the form

Yt = f(XtA,...,Xt,m,a1,...,ai) + Zt+et, t = 1,... ,T (1.8)

with (Yt) an univariate time series and /(.) a function of the exter¬

nal regressors (Xt i), ..., (Xtm) with hyperparameters «i, ...,«;. In

addition, (Zt) and (et) are assumed to be two independent sequences

where (Zt) is a Gaussian AR(p) process and (et) are i.i.d. distributed

according to a Pearson type VII distribution with mean zero, that is a

scaled t-distribution.

Linearity in the error term of (1.8) is required. On the other hand, a

simultaneous treatment of correlated errors and additive outliers is con¬

sidered. The former one is given by the Gaussian AR(p) process (Zt)
and the latter one by the chosen heavy-tailed distribution for (et). No

restrictions are set to the function /(.). It may be linear or nonlinear

and the number of external regressors may be different from the num¬

ber of hyperparameters. Moreover, some values may be missing in the

observation series and/or the external regressors.

The most interesting problem is to estimate the hyperparameters a and
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the nuisance parameters (the parameters characterizing the distribu¬

tions of (Zt) and (et) in (1.8)). To this aim, the time series regression
model (1.8) is written in state space form. Then, the first topic to dis¬

cuss will be the inference about the unknown states based on observed

values (Yt, Xty\, ..., Xtm) and on given parameters in (1.8). In fact,
reliable and fast algorithms for filtering and smoothing are a prerequi¬
site for the parameter estimation. Moreover, filtering and smoothing

algorithms permit the identification of additive outliers. Thus, the re¬

cursions for the filter and smoother densities of the unobserved states

are derived. Especially with AR processes of order p greater than one,

the smoothing recursion is not straightforward. But, unfortunately, the

filter and smoother densities cannot be computed in closed form as

a consequence of the chosen non-Gaussian observation error distribu¬

tion. These densities will be approximated using a sequential Monte

Carlo method. In addition, filtering and smoothing recursions are im¬

plemented to work also in presence of missing values in the observations

(Yt) and/or in the external regressors (Xtii), ..., (Xtim). Second, the

maximum likelihood method is applied to estimate all (or just a subset)
of the unknown parameters in (1.8). The resulting estimates are ex¬

pected to be robust since the observation error distribution is assumed

to be heavy-tailed. Moreover, the maximum likelihood method permits
to compute also approximate confidence intervals by the usual likeli¬

hood procedures. In general, particular care is required to get fast and

reliable maximum likelihood algorithms. The difficulty in this context is

that the likelihood function cannot be computed in closed form. There¬

fore, it has to be approximated with Monte Carlo methods which use

samples generated for a given set of parameters, see Hürzeler (1998).
Consequently, the approximations of the likelihood are reliable only lo¬

cally and the maximum likelihood procedures have to be iterated until

the estimate convergence. For this reason, it is also necessary to develop
an algorithm which computes a good starting estimate of the unknown

parameters such that the needed number of iterations is small.

A last point to examine is the robustness of filter and smoother distribu¬

tions, for example if a set of observations Yt and/or external regressors

goes to infinity. This shows how reliable the developed methods are.

The thesis is structured as follows. In Chapter 2, we will examine the

filtering inference about the unknown states based on observed values

(Yt, -Xt i, ..., Xtm) and on given parameters in (1.8). The smoothing
inference will be the subject of Chapter 3 and maximum likelihood es¬

timation will be consider in Chapter 4 together with the algorithm to
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compute starting estimates. Chapter 5 illustrates the developed algo¬
rithm with some examples. A comparison with the Kaiman algorithm
is carried out both on simulation studies and on a real data example.
The latter one consists of the estimation of vehicle emission factors and

it gave actually the input for this thesis. In Chapter 6, the robustness

of filter and smoother distributions is analysed. In Chapter 7, some

remarks about the developed algorithms and their computer implemen¬
tation will conclude the thesis.





Chapter 2

Filtering recursion

The aim of this chapter will be to derive an implementable filtering
recursion for the considered time series regression model. In fact, the

exact filtering recursion can be found easily, but it is not possible to work

directly with it. We will derive an approximate filtering recursion using
the Monte Carlo method. In addition, the filtering recursion should be

implemented in an efficient way. Two methods are presented to sample
from the densities of the approximate filtering recursion. The chosen

one will be explained in detail. The illustrative examples are postponed
to Chapter 5. In this way, we will compare the results of the filtering
recursion with the smoothing ones.

First, we explain the considered model. We examine a (possibly
nonlinear) time series regression model where the random errors consist

of a linear combination of a Gaussian AR(p) process and a heavy-tailed
distributed random variable. With the Gaussian AR(p) process we take

into account the possible error correlation and with the heavy-tailed
terms the presence of outliers. Explicitly, the considered model is given

by

Zt = <piZt-i-\ \-(ppZt-p + Vt, (2.1)

Yt = f(Xt,u...,Xt,m) + Zt + et (2.2)

with

9



10 Chapter 2. Filtering recursion

(Yt)

(Xt,u

(Zt)

(Vt)

(£t)

,Xt

time index: t G {1,..., T},
time series of the observed values,
known external (explanatory) regressors, where /
is a (possibly nonlinear) function of them,

stationary Gaussian AR(p) process. The coeffi¬

cients are <fi, ..., ipp,

state errors. (Vt) are '~
'

J\f(0,ay) distributed,

observation errors. (et) are '~
'

Pearson type

VII distributed with parameters to, c and £ = 0.

Remark 2.1 T%e general Pearson type VII distribution has a probabil¬

ity density function that can be expressed in the form

pVII(m,c,Ç)(w)
r(m) 1

fïï c T(m — 0.5) w—g

(2.3)

It depends on the 3 parameters to, c and £ where to and c should be

strictly positive. Expected value and variance of a Pearson type VII

random variable W are given by

E [W] = £, Var (W)
2to-3

(2.4)

The tv-distribution is a special case of the Pearson type VII distribution.

It is obtained by setting m = -^(v +1), c = yjv and £ = 0. Moreover

\llm - 1 I2m-1-
c

More details on the Pearson type VII distribution can be found in John¬

son et al. (1995), Chapter 28.

The key idea is that the equations (2.1) and (2.2) can be interpreted
as defining a state space model. In fact, the sequence (Zt) can play
the role of the unobserved state sequence with state evolution given by

(2.1). The series (Yt) is the observation sequence generated according
to (2.2). In addition, we should assume that the initial distribution of

(Zt) is known:

(Zi-f , Z0) - po(z1-p,..., z0)dfj,(z1-p,..., z0).
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But, in this chapter and in Chapter 3 we are interested in the inference

about the states (Zt) based on a stretch of both observed values (Yt) and

external regressors (Xtii,... ,Xtim) for a given model (i.e. all parame¬

ters in (2.1) and (2.2) are assumed to be known). Thus, it is convenient

to define the new observed sequence (Yt) as the model residuals

Yt:=Yt-f(XtA,...,Xtim). (2.5)

The state space model (2.1) and (2.2) simplifies to the model

Zt = fiZt-i-\ \-¥pZt-p + Vt, (2.6)

Yt = Zt + et (2.7)

with (Zi-p,..., Zq), (Vt) and (et) distributed as before.

Remark 2.2 As common in the literature, we refer to the equations

(2.1), (2.6) and (2.2), (2.7) as the state equation and the observation

equation, respectively.

The dependence structures of the state space model (2.6) and (2.7) can

be illustrated helpfully with the graph in Figure 2.1. Various conditional

independence properties can be easily read from it as we will remark in

the next sections.

Y
t-p-1

Y
t-p

Y
t-i

Y

Figure 2.1: Dependence structures of the state variable Zt given the

observations Y\ t.

In addition, we set some notations that we will use throughout the whole

thesis. We define
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• Yst, yst

The set of random variables (Yu,s<u<t) or realizations

(yu,s <u<t).

• Zs t, zs t :

The set of state random variables (Zu, s < u <t) or realizations

(zu,s <u <t).

• p(.) :

A general probability density function.

• ft\s (zt\yis) =p(zt\yis):

The conditional density of zt given Y\ s
= y\ s.

We will consider

the cases s < t (prediction) and s = t (filtering) in this chapter.
The case s > t (smoothing) will be the topic of Chapter 3.

• 4>(^,cr)(z) = 4>a(z- n) :

The density of the J\f(p, a2) distribution. Since the normal density

depends actually on the difference z — /x, it is useful to introduce

also the notation (pa (z — p).

• Pvii (m, c, £) (w) = 6m_c («;-£) :

The density of the Pearson type VII distribution with parameters

to, c and £, see (2.3). Since it depends actually on the difference

w — £, it is useful to introduce also the notation bmc (w — £).

Then, we have for the considered model (2.6) and (2.7):

p(Vt\zt) =Pvu(m,c,zt) (yt) = Pvn (m,c,yt) (zt),

P (zt\z(t-P) (t-i)) = 4> ( XI ^z*-'' av ) (z*) •

2.1 Exact filtering recursion

As mentioned before, the exact filtering recursion can be derived easily.
The easiest case is when (Zt) is a Gaussian AR(1) process (or in general
a first order Markov process). Then, the recursion can be found using
the well-known two-step procedure (a propagation step followed by an

update step).

Propagation step: From the filter density at time t — 1, the one step
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ahead prediction density is obtained by

ft\t-i (zt\yi(t-i)) = p (zt\yi (t-i))

p (zt-i, zt\yi (t-i)) dzt-i

= I p (zt\zt-i,yi (t-i))p (zt-i\yi (t-i)) dzt-i

p(zt\zt-i) ft-i\t-i (zt-i\m (t-i)) dzt-i (2.8)

= EZt_i|fit_i[p(zt|zt_1)]. (2.9)

The last equality follows since Zt is independent of Y\ (t-i) given Zt-\

(see the graph in Figure 2.1).

Update step: From the one step ahead prediction density, the filter

density at time t is derived by Bayes' theorem:

ft\t(zt\yit) =p(zt\yit)

_

P(zt,yt\yi (t-i))
p (yt\yi (t-i))

p (yt\zt,yi (t-i))p (zt\yi (t-i))
p (yt\yi (t-i))

p(yt\zt) ft\t-i (zt\yi(t-i))
p (yt\yi (t-i))

(2.10)

The last equality follows since Yt is independent of Y\ (t-i) given Zt

(see again the graph in Figure 2.1).

Therefore, the starting density of Zq and the equations (2.8) and (2.10)
permit to find the exact filtering recursion. The filter density at some

time t is computed using the filter density at the previous time, starting
with the density of Zq. But it is not straightforward to work with

this recursion since the integral in the prediction step (2.8) cannot be

computed in closed form for the considered model (2.6) and (2.7).
The question of how to generalize the recursion for AR(p) (p > 1)

state processes has not been answered yet. Some approaches have been

proposed. A first idea considers p-step prediction and filter densities.
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Briefly, the p-step ahead prediction density p (z(t-p+i) t\Vi (t-p)) is de¬

rived. Then, this density is updated using the observations y(t-p+i) t to

find the filter density p (z(t-p+i) t\yi t)- The disadvantage is that it is

hard to implement such a recursion efficiently since p states Z(t-p+i) t

are involved at the same time. A second approach is to consider p-

dimensional state vectors (Z(t-p+i) t) but with one step prediction and

update. A very appealing idea would be to use the first order Markov

property of (Z{t-p+i) t)
have

1

In fact, defining Xt = (Zt,. ; Zt-p+l) ,

xt =
0

^2

0

1

^3

0

0

Vp

0

0

\

Xt-1

(Vt\
0

0

\ o o o i o / V ° /

Unfortunately, the error vector (and thus Xt) does not have a probabil¬

ity density function in M.p since it has some deterministic components.

Then, difficulties arise in implementing the one step filtering recursion

for Xt efficiently. The finding of the smoothing distribution presents the

same problems since the state densities should be available in analytic
form to find the density p(zit\Ï/it), see Section 3.1.

We propose a slightly different method. We consider again the

p-dimensional state vectors (Z(t-p+i) t)- But the one step propagation
and update are computed directly for Zçt-p+i) u

i-e- without using its

first order property. In this way, the difficulties mentioned above do

not arise. But the resulting filter densities must be approximated by a

Monte Carlo method since it is not possible to compute them in closed

form. The approximation will be the topic of Section 2.2. Here we

derive the recursion explicitly.

Propagation step: From the filter density at time t — 1, the one step

ahead prediction density is obtained by

ft\t-i (z(t-p+i) t\yi (t-i)) =p (z(t-p+i) t\yi (t-i))

P (zt-p, zçt-p+i) tls/i (t-i)) dzt-p

= I p(zt\z(t-P) (t-i),yi (t-i))p (z(t-P) (t-i)\yi (t-i)) dzt-p

P (zt\z(t-p) (t-i)) ft-i\t-i (z(t-p) (t-i)|yi (t-i)) dzt-p.
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The last equality follows as in the case with p = 1: Zt is independent
of Yx (t_i) given Z(t-P) (t-i) (see the graph in Figure 2.1).

Update step: The filter density at time t is derived from the one step

ahead prediction density by applying Bayes' theorem:

ft\t (z(t-P+i) t\yit) = p (z(t-p+i) Si t)

_

p (z(t-P+i) t,yt\yi (t-i))
p (yt\yi (t-i))

_

p (yt\z(t-p+i) t,vi (t-i))p (z(t-p+i) Si (t-i))
p (yt\yi (t-i))

_

p(yt\zt) ft\t-i {z(t-p+i) t\yi (t-i))
p (ySi (t-i))

The last equality follows since Yt is independent of both Y\ (t-i) and

Z(t-P+i) (t-i) given Zt (see again the graph in Figure 2.1).

Putting the two steps together, we have

ft ,~ \ p(yt\zt)
Jt\t (Z(t-p+l) tWl t) - ,~ ,~ r-

p (yt\yi (t-i))

P {zt\z(t-p) (t-i)) ft-i\t-i {z(t-P) (t-i)Is/1 (t-1)) dzt-p.

(2.11)

Thus, the filtering recursion follows. Note, however, that the in¬

tegral cannot be interpreted as expected value with respect to

Z(t-p) (t-i)|Fi (t-i)
in general, compare with the special case p = 1

in (2.9).

2.2 Particle filtering method

The integral in (2.11) cannot be computed in analytic form for the con¬

sidered model (2.6) and (2.7). Therefore, we should approximate it

to have an implementable filtering recursion. The key idea is to ap¬

proximate the filter density /t_i|t_i (z(t-P) (t-i)|yi (t-i)) by its discrete
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density. I.e.,

1
N

ft-i\t-i (z(t-p) (t-i)\yi (t-i)) « jjJ2A \z(t-p) (t-i)J
x=l

where [Zçt_ -,

rt-i) ), * = F • •

•, A^, is a sample of the random vector

Z(t-p) (t-i)|Fi (t-i)
and A(x) is the Dirac density in point x. Then,

(2.11) can be approximated by

ft\t \Z(t-p+i) t\yit) «
N

P (zt\z(t-P) (t-i)) A (z$_p) (t_1}J dzt-p
p(yt\zt) l

N

E
t=i

N

p (yt\yi (t-i))

i p(yt\zt)

N

Thus, we can derive an approximate filtering recursion if we are able to

generate a sample (z,t_ +1-, t) from (2.12) using the previous filter sam¬

ple (z(t_ s ct_iO- To this aim, we note that the mixture density (2.12)

is the marginal distribution of the random variable (/, Z(t-p+i) t)\Yi t

with respect to Z(t-p+i) t- Thus, a sample from (2.12) can be found

generating first a sample (z\ ) from the density ft\t (zt\yi t) defined by

N

ft\t(zt\yit) « p&tlz^J^P^Mt-p)^-!)) (213)
1=1

v(0with
(z)t_ -, ct_ii) as above. (Note that the denominator in (2.12) is just

the normalizing constant and thus it is omitted in (2.13).) Then, we look

for the indices / of the densities p (zt\z(t_ -,

n_1\ ) in (2.13) which are

used to generate (z\ ') to recover the other components (z,^_ +1-, ft_n)
and find the sample (z,^_ +1-, t).

In the rest of the section, we present a brief overview of two gen¬

eral methods to accomplish the sampling from (2.13). The discussion

applies to any densities. The sampling method adapted to our aim and

optimized for the model (2.6) and (2.7) is presented later, see Sections

2.3 and 2.4. The overview is borrowed from Künsch (2003). Following
his notation we introduce:
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Definition 2.1 The density

1
N

x=l

is called the prior whereas the density p(tjt\zt) *s called the likelihood.

2.2.1 Rejection method

The rejection method for sampling from the density /t|t (zt\yi t) pro¬

duces values according to a proposal p(zt) and then accepts the gener¬

ated Zt = zt with probability

P^tME^iP^tl^Ht-p)
n z* =

( \ n/r
•

2-15

p(zt) M

M is the normalising constant of this expression or an upper bound for

it:

P(yt\zt)lltip{zt\z((lpnt_l))
M > sup

-^-
—.

P(zt)

The average acceptance probability of the rejection method is given by

EliîP&tlz^^Ztlz^^dzt
p (zt)-K (zt) dzt =

M

The most obvious choice for the proposal p(zt) is the prior (2.14).
Then, the evaluation of the acceptance probabilities ir (zt) is easy as

long as p (yt\zt) is bounded. With the smallest value of M it follows:

supZtp(yt\zt)

and the average acceptance probability is

Yllilp(yt\zt)p{zt\z^p){t_l))dzt
p (zt) it (zt) dzt

N supz,p(yt |zt)

This average acceptance probability is low if the likelihood is more in¬

formative (concentrated) than the prior or if the likelihood and the prior

are in conflict.
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Remark 2.3 Sampling according to the prior (2.14) is carried out in

two steps. First, an index I is chosen uniformly from {1, ..

., N} and

then the variable Zt is generated according to p ( zt\z?t_ s

it-i\ ) wl^11 =

i. The densities p (zt\zft_ s

it-i\ ) nee-d not to be available in analytic

form. Only the sampling from them should be possible.

Clearly, other proposal distributions than the prior are possible and

they can lead to higher acceptance rates. But the computation of a good

upper bound M becomes usually more difficult. Moreover, we face the

complication that the determination of the acceptance probabilities in¬

volves a sum over i, which should be avoided to increase the speed of

the calculations.

Pitt and Shephard (1999) proposed to consider explicitly the index I to

solve at least the last problem. I.e., we can generate first the auxiliary
index I according to a distribution (t(i)) and then the variable Zt ac¬

cording to a density p (i, zt) given I = i. We accept the sampled pair

(i, zt) with probability

Mytkt);p(Wt-P)(t-i))
, ,

r(i)p(i,zt) M

M is again the normalizing constant of this expression or an upper

bound for it:

P(î/t|*t)p(*t|*((t-p)(t-i)
m>suP

, w ; •

T-(i)p(i,zt)

Since the distribution of the accepted pairs (/, Zt) is given by

p(yt\zt)p[zt\z{t_pHt_1)

^ilP(yt\zt)p(zt\z^pnt^)dz;
the marginal distribution of Zt is exactly jt|t (zt\yi t). Thus, if the pair

(i, zt) is accepted, we simply discard the auxiliary index i and keep zt.

Otherwise, we generate a new pair (i,zt).
The crucial point in the implementation of this idea is the choice of both

the proposal distribution (t(i)) and the densities p(i,zt). For example,
if we take

t(i) = — and p(i,zt)=p(Kzt\z^_p) (t_1}) ,
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we obtain the usual rejection algorithm discussed before. But we can try

to increase the acceptance rate by other choices. The following lemma

is the cornerstone for the optimal choice of both the distribution (t(i))
and the densities p (i, zt). First, since the index i runs over a finite set,
M can be written as

M = max —— with Ml > sup —.

1 T(l) zt P(hZt)

Lemma 2.1 For a given choice of densities p (i, zt) and bounds Mt, the

average acceptance probability is maximal for t(i) oc Mt.

Proof: The Proof is taken from Künsch (2003).
The average acceptance probability is

E / T-(l)p(l,Zt)TT(l,Zt)dZt = JjYl / P'(yt\Zt)<P (Zt\zlt-p) (t-l)J dzt

MA'1

r(0,
= I max^ ] ^2 / P(yt\zt)p \zt\z(t-p) (t-i)J dzt-

Since the term J^ Jp (yt\zt)p izt\z(t_ -, (t_u) dzt is independent of

t(i), the average acceptance probability is maximal if and only if

max, M\ is minimal. But
1 t(%)

max—- = > t(j) max—- =

/ i~u)niax—- > > M,.
» r(i) Vy J * r(t) ^A l T^'~,

The term ^ M3 does not depend on t(i), anymore. It follows that

the minimal value of maXj M\ is reached if and only if we have the

equality, i.e. if and only if M\ is constant. D

Remark 2.4 If p (i, zt) = p ( zt\z^_ ,

(t_i\ ) ln Lemma 2.1, the optimal

t(i) 's are constant. This is somewhat surprising. In fact, one could con¬

jecture that it would be better to give higher probability to those indices

i for which the mass of p (zt\z^_ ,

(t_i\ ) %s close to argsupz p(yt\zt).

Lemma 2.1 indicates not only how the optimal distribution (t(i)) can

be found once the densities p(i,zt) are known. It also gives a method
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to construct the optimal densities p(i,zt). In fact, we see from its proof
that all Mj's should be small to have a high acceptance probability.

Thus, each p (i, zt) should be a good proposal distribution for the density

p(yt\zt)p[zt\z\t> ){t_lh

Jp(yt\zt)p (zt\Z(t_p) (t-i)) dzt

Ideally, we would choose this density as p (i, zt). But then, Mt must be

close to the normalizing constant Jp (yt\zt)p ( zt\z^_ ) (t-i) ) dzt which

is typically not available in closed form. In practice, we approximate
the density (2.17) and we choose the approximating density as proposal

p (i, zt). In this way, we obtain nearly optimal proposal densities p (i, zt).

2.2.2 Sampling importance resampling method

(SIR)

This method generates particles (z\ ; 1 < k < R) according to a chosen

proposal p(zt). Then it selects a sample of the desired size N from these

particles with inclusion probabilities

(k)\ p\y*\z* )^=iP{zi'\z(t-p)(t-D

p [zt

Resampling need not to be made at random. There are other methods

with reduced variability, for example stratification.

The standard choice for the proposal p(zt) is again the prior (2.14).
This was originally proposed by Gordon et al. (1993). Situations with a

low acceptance rate in the rejection sampling method typically also have

heavily unequal sampling probabilities tt ( z\ J. Thus, many ties are

present in the resulting sample. If R is chosen much bigger than N, the

number of ties will be smaller, but this at the expense of longer compu¬

tations. Note that the rejection method is an automatic way of choosing

R such that all ties are avoided. In cases where allp ( .\zYt_ -,

rt-i) ) have

their main mass in a region where the likelihood is flat and small, the

sampling importance resampling method can be much faster than the

rejection method and still give approximately equal weights to all val-

(k)
ues z\ . However, this can be misleading since it simply means that
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no value was proposed in the region where the likelihood is large. It

does not guarantee that the target density ft\t(zt\yit) has negligible
mass there. A more detailed comparison between the rejection and the

importance sampling methods in general can be found in Robert and

Casella (2004), Section 3.3.3.

Of course, other proposal distributions than the prior can be used.

As before, the disadvantage is that the sum in the acceptance probability
should be computed. The idea of Pitt and Shephard (1999) to include

explicitly the auxiliary index I was originally developed for this case.

They proposed to generate a sample ((if.,z\ ), 1 < k < R) from the

distribution r(i)p(i,zt) by generating first the index I/, according to

a distribution (t(i)) and then the variable Z\ ' according to a density

p(ik,zt) with Ik = ik- After this, a sample of size N is selected with

inclusion probabilities

><k,z
(fcA p(*l4>(4*H-U-i)

r('i'k)p('i-k,z
(k)

In contrast to the rejection method, a promising idea here is to combine

p (i, zt) = p \zt\zu_ s

ct_n ) with unequal t(«)'s. For example, each t(i)

can be chosen to be proportional to p(yt\'mt) where mt is the mean

or the median of p ( -\z(t_ -,

rt-i) ) •
If all p ( -\z(t_ -,

rt-i) ) have a small

spread relative to the scale at which p (yt\) varies, then most tt ( %u, z\ J
will be approximately equal, and therefore R = N is sufficient.

2.3 Particle filtering recursion with yt

available

We have to distinguish two situations in the construction of the particle

filtering recursion at time t: the case where yt is available and the

case where it is missing. The first case is considered in this section. In

particular, the efforts to get an efficient and fast algorithm are explained.
The particle filtering step with missing yt is discussed in Section 2.4.

This second case does not cause additional difficulties. In fact, the

filtering step becomes simpler.

The crucial point in the implementation of the filtering recursion
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(2.12) is an efficient scheme for sampling from the approximate density

ft\t (zt\yi t) defined in (2.13). Two methods were presented to accom¬

plish the general sampling task: the rejection sampling and the sampling

importance resampling method (SIR).
Which method is better to apply? As briefly mentioned in the Sub¬

section 2.2.2, the sampling importance resampling method can produce

many ties in the final sample. Or it can be that the final sample con¬

tains no value in some regions although the target density ft\t (zt\yi t)
has non-negligible mass there. For these reasons, we prefer the rejection
method to sampling importance resampling. As the filtering algorithm
should be as fast as possible, sampling with the rejection method should

be efficient. The classical choice of the proposal density p (zt) is the prior

(2.14). But this choice could be far from being optimal since the obser¬

vation error distribution is heavy-tailed in the considered model (2.6)
and (2.7). Consequently, the average acceptance probability could be

small as remarked in the Subsection 2.2.1. It would be better to take

directly p(yt\zt) as proposal density p(zt). But this choice is not free

of difficulties either, since the evaluation of the acceptance probability

requires the computation of the sum over i, see (2.15). The way out

is given by the application of the rejection method with the auxiliary
index. It also gives directly the used mixture indices in (2.13) which we

need in order to return the sample (z,t_ +1-, t). In addition, the distri¬

bution (t(i)) and the densities p (i, zt) can be chosen in the optimal way
described before. But unfortunately, the construction of the densities

p (i, zt) is not straightforward. In fact, as a consequence of Lemma 2.1,
each proposal p (i, zt) should be a trade-off between a good approxima¬
tion of the density (2.17) and a density from which it is easy to sample.
The ideal p (i, zt) is given by (2.17) itself. But this choice is not possible
since the integral in its denominator cannot be written in closed form

for the error distribution of the considered model (2.6) and (2.7). Thus,
the key idea for the construction of the densities p(i,zt) is as follows.

The "problematic" density p (yt\zt) in (2.17) is approximated by a ma¬

jorant which is a mixture of exponential functions with arguments given

by constant, linear or quadratic polynomials in zt. Then this majorant

is multiplied by the second density p (zt\Z(t_ > (-t_n) of (2.17) to get

a mixture of normal densities which satisfies the previously mentioned

trade-off. There is still something unpleasant in this idea. If the majo¬
rant is found directly for p(yt\zt), it will depend on the observation yt.

Thus, a new majorant should be computed in each filtering step. We
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can avoid this easily thanks to the following lemma.

Lemma 2.2 Consider the model (2.6) and (2.7) and let Zt be a random

variable with probability density function ft\t (zt\yi t) given by (2.13).
Then the random variable Z defined by

Zt -yt

has density

N /^pP 0)
_

~ \

f(z\yi t) oc pvu (to, c/av, 0)(z)-y2<f>[ —— —

,
1 (z)

J2.18)
with (z[^j,)(t_i)) a sample of Z{t-P) (t-i)\Yi (t-i)

= J/i (t-i),

i = l,...,N. ipi, ..., ipp, ay, m and c are the parameters of
the model (2.6) and (2.7).

Proof: The proof is straightforward. We have:

N

ft\t (zt\yi t) oc p(yt\zt) J2p [zt\z^_p) (t_i)J
i=i

N / p

bm,c (zt ~yt) -^2 4>av [zt - ^2 fl£\
1=1 \ 1=1

oc 6m,c f -^—w j -^2<paV [zt-yt- \y2 yizt\ -yt))

1
, ^(-»A f 1

, (zt-yt Y7i=i¥iztli-yt\
oc bm /

• > -0i
av V av J ^[ <*v \ <*v <*v J

, , . \T- A. \ £«= 1 ^lZt-l
~

Vt \
oc bmtC/(Tv (z) 2_^<Pi [z 1

.

Thus, the density of Z is:

N /^pP 0)
_

~ \

/ (z\yi t) oc pvu (m, c/av, 0)(z)T^ —— —

,
1 ) (z) .

D
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As we can see, the Pearson type VII density in (2.18) does not depend

on Yt. Thus, an efficient procedure to implement the filtering recur¬

sion at time t given yt and a sample \Z(t_ -,

rt-i) )> * = 1> • • •

> N, of

Z(t-P) (t-i)\Y (t-i) is as follows:

• Generate a sample (z^) from the density f(z\y\t) defined in

(2.18).

• Set 4° =yt+o-v- z^ for / = 1,..., N. Then (z[l)) is a

sample from the density /t|t (zt\yi t) (see (2.13)).

• Return the sample (z^_p+1) t) of Z(t-P+1) t\Y t.

The previous discussion about sampling from ft\t(zt\yit) also applies

to sampling from / (z\y\ t). Therefore, we choose the rejection method

with an auxiliary index to generate the sample (z^) from / (z\y\ t).

The rest of this section is organized as follows. First, the construc¬

tion of efficient proposal densities p (i, z) and of the distribution (t(i))
is explained. Then, the acceptance probability of a pair (i, z) proposed

using the rejection method with the auxiliary index is computed. Last,
the implementation of the filtering recursion at time t with yt available

is summarized.

2.3.1 Construction of proposal densities p(i,z)

We saw that each proposal density p (i, z) should be a trade-off between

a good proposal distribution for the density proportional to

( i t\\( \ a,
f^=ifizt-i-yt

1

\,
s

Pvu (m, c/av, 0) (z) <p \ ,
1 (z)

V av J
and a distribution from which it is easy to sample. The key idea was

to approximate the density pvu (wi, c/av, 0) (z) by a clever majorant.

Actually, it is easier to approximate the natural logarithm of this density

up to some terms. Since

log (pvu (m, c/av, 0) (z)) = log ( ^J^^q^ ) "TOl°g 1-

c/av

the unique term on the right side which depends on z is given by

1 + ( ,z J .
It suffices to seek the majorant for it.log
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Definition 2.2 For a given integer value K, we choose parameters otk,

ßk, 7fc and dk such that

log 1

c/av

K

< ^2(ak + ßkZ + -fkZ2)I{zeBk} Vze'.

k=i

(2.19)
with Bk '= (dk-i, dk], —oo =: do < di < < dx '= oo. The parame¬

ters otk, ßk, Ik and dk are not allowed to depend on z. log denotes the

natural logarithm.

Remark 2.5 Some comments about the previous definition.

• The function

g(z) := -log 1

c/av

is negative for all z in R7 symmetric about 0 and it has a maximum

in 0.

• In words, the majorant consists of a mixture of quadratic polyno¬
mials on the intervals Bk, k = 1, ..

.,
K. Note that

K

U Bk=.
k= l

and Bk n By — for k ^ k'.

• The reason why we need an approximation by a majorant will be

clear when we compute the optimal distribution (t(i)), see Sub¬

section 2.3.2. Moreover, the majorant should be constructed such

that it is as close as possible to the function g(z). This is impor¬

tant to have a high acceptance probability in the rejection method

with the auxiliary index, see Subsection 2.3.3.

We postpone the construction of the majorant. At the moment, it

is more interesting to show how we use it.

Lemma 2.3 Let the proposal densities p (i, z) be chosen as

2"

K

p(hz) = Y^
Rk,iMk,i

i Si=i Ri,iMi

exp
1 / Z-Mfc ,

"2 I Wk

l,i
M,

I
k.%

{z£Bk}
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with

1 1

°~k
V 1 - 2TO7fc

'

Pi
iJi=iVizt-i -yt

av

Pk,i
= ä\ (pt + mßk),

Rk,i = exp

1 fPkA2 1
2_l

1

Mk, = V27T ak
~fdk-pk,i\ ,

fdk-i- Pk,i\
I V °k J v 0~k J \

The parameters otk, ßk, Ik and dk are as in Definition 2.2; av, to- and

c are the parameters of the observation error distribution in the con¬

sidered model (2.6) and (2.7). Finally, $ (x) is the cumulative N'(0,1)
distribution function.

Then

Pvu(m,c/av,0)(z)-4>
Ep C1 ~

i=iviz\-i-yt
M K

av
1=1

1] (z)<kv[J2Ri,*Mi,*)-p(^z)
(2.20)

with

h
r(m) av

a/2 7T cT(m-0.5)'

Remark 2.6 Some comments about the lemma before we prove it.

• The pt 's are the expected values of the normal densities in the

target density (2.18). Note the form: they are a normalized dif¬

ference between the prediction value of Zt according to an AR(p)
process (the state equation (2.6)) and the observed value yt. If yt

is not an outlier; the absolute values of the pt 's are small. This is

true in most cases.

• The term

exp
Z-Mfc,,

M-,

k.i

is the density of the truncated Af(pk n ak) distribution on Bk.

Therefore, each proposal p (i, z) is a mixture of truncated normal
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densities with weights u>t(k) given by

Rk.iMk

2;=i Ri,iM,,i

The proposals p (i, z) satisfy the previously mentioned trade-off

provided that the majorant is a good approximation of the function

g(z).
The sampling of Z from p(t,z) with known I = i can be carried

out by the following two-step procedure. First, the index K* is

generated according to the weights distribution (ujt(k)) using the

inversion method. This requires the evaluation of the weights par¬

tial sums. Then, the variable Z is sampled from the truncated

N(ßk* n^k*) density on Bk* with K* = k* using again the inver¬

sion method. Explicitly, define

i ^ (dk*-i -Pk*,i\ , , /dk* ~Pk*
bk* := $ — and cy* '= $

ak* J V ak*

If U is uniformly distributed on [0,1], then

U*:=bk*+(ck*-bk*)-U

is uniformly distributed on [bk*,Ck*]. Thus

is distributed according to the truncated Af(ßk* n^k*) distribution

on By*

More details on the inversion method can be found in Ripley

(1987), Sections 3.2 and 3.3. Geweke (1991) proposed a more

efficient procedure for the sampling from a truncated normal dis¬

tribution.

Inequality (2.20) will be useful later to find the optimal distribution

(t(i)), see Subsection 2.3.2.

The inequality can be illustrated also in another way. Let q (z)
be a majorant of the density pvu (m, c/av, 0) (z) and not of its

logarithm (up to some terms) as it is in Definition 2.2. It follows
that

i i n\i \ j.
(Td=iviz(t-i-vt ,\

f ,
pvu (m,c/av,0) (z) </> ,1 (z)

V av J

, , ,
,{T,ï=i'piZt-i-yt A

, ,

<q(z)-4>\ — ,i I (z)
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g(*)*|Ef=^-'-*,ll(*)<fe-
av

?W^ -^^h^—>! (z)

sq(Z)4,\^:f-^ ,i\(Z)dz

(2.21)

The normalising constant

<l(z)4>i [z
Td=ifizi-i -yt

»

dz

°v

has an interesting feature: it is the convolution of the two func¬

tions q (z) and <p\ (z) computed in the point
22i=iv-zl-i-y

This

property will be useful to implement the smoothing recursion using

the second method, see Subsection 3.4-1.
Note that in Lemma 2.3, we find explicitly the expression (2.21)
for a specific choice of\og(q(z)) and we denoted it by

K

ki- J2Ri^M'^j -P(^z)
1=1

Proof of Lemma 2.3:

This is a constructive proof. The proposals p(i,z) are constructed using
the definition of the majorant (Definition 2.2) and completing the square

in the involved exponential terms. The inequality (2.20) follows directly
from the construction. Note that we generalize the proof a little bit by

setting the variance of the involved normal density equal to A. In this

way, we can adapt the proof easily to the smoothing case. But when we

use the notations introduced in this lemma, we assume A = 1.

First, we find using the definition of the majorant:

log pvu(m,c/av,0) (z) </>
'Tfi=ifi 't-i

av

= log
T(to)

R -s- r(m-0.5)
c/av
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= log (ki) — m log

<log(fci) +

1
( \2

c/av

y^ (mak + mßkZ + m^kz2) \zeBk}

K

_fc=i

K

(2.22)

1
< ^

1

mak + mßkz + m^kz
- — (z - pt)= log(fci) + ^

fc=i

It follows:

i i (\\( \ a

f^d=i Vizl-i ~ yt rr\
, ,

pvu (m, c/av, 0) (z) <p \ ,
VA (z)

{ze-Bfc}-

av

K

< exp<log(A;i) +J^
k=l

mak + mßkz + rwykZ -— (z - pt) l{zeBk}

K

= k\ 2_\exP
k=i

1

mak +mßkz + m'jkZ
- — (z - pt) {ze-Bfc}-

Now, we get completing the square in the exponents:

mak + mßkz + m^kZ2 - — (z - pt)
2A

1

"2

1 (\

2 VA

UpI

(j - 2mn] z2 - 2 (mßk + Ç) z +
y

- 2to«,

( - - 2TO7fc J (mßk +
yJ z

2 V A

1 (\

2 VA

'A-
2 VA

1 1

2TO7fc

— IraoLk

2m-fk

z2 -2

- f -r
- 2TO7fc j (ro/3fc + yj

2TO7fc I [mßk + — ) -

yr
+ TOttfc

/ _

n2 1 />fc,*V P2
,

1 fz~Pk,,
"2 I ^fc

log(-Rfc,J (2.23)
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Altogether:

i i cw t \ a
(TX=\vizt-i-yt r-\

, ,

Pvu (m, c/av, 0) (z) <p
\

,
VA (z)

ov

K

< ki ^2 exP

k=l

K

mak + mßkz + m-fkz2 - — (z - pt)
2A

I
{zGBk}

= ki^2Rk,i exp

fc=i

1 (Z-Pk,>
"2 I ëk

I{zGBk}-

Finally we normalize the right hand side:

i i cw t \ a
(^Liv^t-i-yt /A

, s.

Pvu (m, c/av, 0) (z) <p
\

,
VA (z)

K K

< *!• [y.r^miA -J2

ov

Rk.iMk-
exp

1 / z-P-k -.

"2 I ak

^K

k=i z~2i=iRi,iMi,i

= fci- i^2RiitMiit\ -P(i,z).

\i=i

' K

M,
I

k,i
{zEBk}

\l=l

The density feature of the proposals p (i, z) follows easily from their

definition, see also Remark 2.6. D

2.3.2 Construction of the distribution (r(i))

The second point to discuss in the application of the rejection method

with the auxiliary index is the construction of the distribution (t(i))
once the proposal densities p(i,z) are given. Lemma 2.1 gives the op¬

timal choice. We find:

Lemma 2.4 Let the densities p(i,z) be defined as in Lemma 2.3.

Then the optimal distribution (t(i)) is given by

U
Y.liY.liR^;
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Proof: The lemma follows easily using Lemma 2.1 and the inequality

(2.20). Note that the target density is given by / (z\y\ t), see (2.18).
From Lemma 2.1, the optimal t(«)'s are given by

t(i) oc Mt

with

pvu (m, c/av, 0) (z) 4> (Ef=1 ^f'^ , l) (z)

Mt > sup -At -

.

P(hz)

Using the inequality (2.20), we find

pvu (m, c/av, 0) (z) 4> (Ef=1 ^f'~Vt, l) (z) K

t^t L < *i VX.M,,,.
P(hz) 1~[

Mt can be set equal to the right hand side, since the latter is inde¬

pendent of z. The lemma follows since k\ is independent of the past

sample (^-p) (t-i))- D

2.3.3 Acceptance probability of the proposed pair

(i,z)

In the last Subsections 2.3.1 and 2.3.2, we have constructed useful pro¬

posal densities p (i, z) and the optimal distribution (t(i)). Thus, we are

able to generate a pair (I,Z) according to the distribution r(i)p(i,z)
by first sampling the auxiliary index / according to (t(i)) and then the

variable Z according to the density p(i,z) with I = i. The next step

consists of evaluating the acceptance probability of the proposed pair

(i,z).

Lemma 2.5 Let the densities p(i,z) and the distribution (t(i)) be de¬

fined as in Lemmas 2.3 and 2.4, respectively.

Then the acceptance probability of the pair (i, z) generated from the

distribution r(i)p (i, z) is

-K (i, z) = exp I -to logll+f—; J )+ak* + ßk*z + -/k*z2

where By* is the subset containing z, see Definition 2.2.
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Remark 2.7 The resulting acceptance probability in Lemma 2.5 is not

a surprise. It is a direct consequence of the majorant Definition 2.2 and

of the rejection methodology. In fact, approximation (2.19) permits the

construction of useful proposal densities p(i,z) starting from the ideal

ones. Then (2.19) also affects the acceptance step: it measures how

good the proposal densities p (i, z) are in comparison with the ideal ones

(which imply i\ (i, z) = I). See also how the acceptance probabilities

(2.15) and (2.16) are constructed. Therefore, the majorant should ap¬

proximate the function g(z) well to have a high acceptance probability.
This feature will help us to construct the majorant in Subsection 2.3.4-

Proof: The lemma follows by taking the formula of the acceptance

probability in the rejection method with the auxiliary index and eval¬

uating it with the proposal densities p (i, z) and the distribution (t(i))
(see their definitions in the Lemmas 2.3 and 2.4). Note that the target

density is given by / (z\y\ t), see (2.18). In addition, we generalize again
the proof by setting the variance of the involved normal density equal
to A. In this way, we can adapt the proof easily to the smoothing case.

But when we use the introduced notations, we suppose A = 1.

The acceptance probability is given similarly to (2.16) by

pvu (m, c/av, 0) (z) 4> (Ef=1 ^f"' "\ VX ) (z)

t(i) p(i,z) M
7ï(l,z)

with

pvu (m, c/av, 0) (z) 4> (^"f1^*, V\) (z)
M > sup -p±- L

.

n«) p(hz)

First, we calculate the supremum term and we define M. This can be

achieved using the inequality (2.20) and the definition of the distribution

(rW):

pvu (m, c/av, 0) (z) 4>^^"^ , Va) (z)
^
^ ^^^

-(i) p(i,z) t(i)
N K

ki J2J2r^Mi,
r=i 1=1
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The last expression does not depend neither on z nor on the past sample

(z(t- ) (t-i))- Fherefore, M can be set equal to it. Then it follows for

the acceptance probability:

pvu(m,c/av,0) (z)4>

ir(i,z)

ELiWVrü
A (*)

ki (E,=iE^i^,.Mj,,) T(i)p(i,z)

pvu(m,c/av,0)(z)4>
22ï=ivizl-i-y X)(z)

^K
ki (J2i=iRi,tMi,t) p(i,z)

pvu (m, c/av, 0) (z) 4> f^T/^, VA I (z)

kx Rk*tt exp
1 / z-Mfc*

"2 I ak*

k\ exp < —to log 1
c/av

1 I V

ÎÂ \Z
~

P^>2\

ki exp mak*+mßk*z +m^k*z2 - j^(z - ptY

21

exp < —to log 1
c/a^

(2.24)

exp (mak* + mßk*z + m^k*z2)

using successively the definitions of M, t(i), p(i,z) and (2.22), (2.23).
Note that we know which term of the mixture p (i, z) we should take,
since z is given. Thus, the lemma follows. D

2.3.4 Construction of majorants

In Subsection 2.3.1, we have postponed the construction of the majorant
in Definition 2.2. We have now all elements to construct it.

We note in Remark 2.7 that the majorant should be as close as

r / \ 2i

possible to the function g(z) = — log 1
"/av

In this way, the

proposed pairs (i, z) have a high acceptance probability. Above all, the

majorant should approximate g(z) well in the regions where the target

density f(z\y\t) has relevant mass since the proposed particles (z^)
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come from these regions. How can we find these regions? We see from

the definition of / (z\y\ t) in (2.18) that the Pearson type VII density has

main mass around zero whereas the normal densities are concentrated

around their expected values

Pi

Ep
(*) ~

Li fizi-i
-

yt

av

Therefore, the target density / (z\y\ t) will have relevant mass in some

places between 0 and the regions where pt lie. A bimodal f(z\y\t)
cannot be excluded, as Figure 2.2 shows. In this Figure, the resulting

target density / (z\y\ t) is shown for different values of yt given 10 fixed

values of Ef=i W^t-V Fhe comparison is made clearer by rescaling
the resulting target densities such that they have all the same maximal

value. In addition, the fixed values Ef=ic^'zt-i are given as vertical

bars on the horizontal axis. The other parameters have values av = 2,

to = 2 and c = 1.

' > \

Figure 2.2: Resettled target density f (z\y\ t) for different values of yt

given 10 fixed values ofi\^=^(piz^_l which are shown by vertical bars

on the horizontal axis. The other parameters are av = 2, m = 2 and

c= 1.
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On the other hand, the majorant should be easy and fast to compute

since it affects the construction of both the proposal densities p(i,z)
and the distribution (t(i)). Therefore, the number K of the mixture

subsets should be small and the mixture terms should be preferably
constant or linear functions. In addition, we want to compute the ma¬

jorant as rarely as possible in the whole filtering recursion to speed up

the algorithm. For this reason, we have reformulated the sampling at

time step t using Lemma 2.2.

How can we take into account all these features? We consider three

majorants, which we call the default, the lower and the upper majo¬
rant. All three majorants are mixtures with 7 terms (i.e. K = 7).
We choose one majorant at the beginning of each filtering step and we

use it to sample all particles (z^) for this step. The default majorant
is constructed to approximate very well the region around zero. It is

computed only once at the beginning of the filtering recursion since its

components depend only on the parameters cry and c (scale parameters

of the considered error distributions). The default majorant is selected

in the filtering steps where the p^s are around zero. Thus, it will be

the most frequently chosen majorant since the p^s are typically around

zero (see Remark 2.6). On the other hand, if the median of the /Xj's ex¬

ceeds a lower or an upper bound, then we should construct a majorant
which approximates well the regions both around zero and around the

median. This idea leads to the definition of the lower and the upper

majorant. Some components of them will depend on the median and

thus, if the lower or the upper majorant is chosen in one filtering step,

we have to compute first these components. The lower or the upper

majorants are selected only in few filtering steps. Actually, in steps

where the observed values (yt) are outliers and therefore the /Xj's are

big (in absolute value). The choice of the lower or the upper majorant

guarantees that the sampling remains efficient also in such problematic
cases (see the previous discussion).

Definition 2.3 Let the p% 's be as in Lemma 2.3 and let S be a strictly

positive real number. Define

p := medt (pt),

/(_) := g(p-S) = -log

r\ 2'

p
— 0

c/av
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/(+) :=g(p + ö) = -log 1+(^X2'
c/ay

Then the parameters to define the default majorant are given in Table

2.1, the parameters for the lower majorant in Table 2.2 and the parame¬

ters for the upper majorant in Table 2.3. Note that lower and upper ma¬

jorants can be defined only if p < —a/3 c/ay — ö and p > a/3 c/ay + 5,

respectively.

k rffc-i dk o.k ßk 7fc

-oo -5 c/av -log(26) 0 0

-5 c/av -V3c/av &$& - log(4) y^fyyy 0

-VSc/av -C/av ^ J^_
-c/av c/av 0 0 -^
c/av Vic/av M(i)_ÄM -y^p_

V3c/av 5 c/av ^^ - log(4) -^ ggy 0

5 c/av oo -log(26) 0 0

Table 2.1: Parameters to define the default majorant in the filtering
recursion.

We select

• the default majorant if —a/3 c/ay — ö < p < a/3 c/ay + 5,
• the lower majorant if —a/3 c/ay — 5 > p,

• the upper majorant if p > a/3 c/ay + ö.

Remark 2.8 Some comments about the definition.

• The majorants depend on few parameters: c/ay, p and S. The

latter two parameters are used only in the construction of lower

and upper majorants. In addition, the polynomials to define the

majorants are chosen as simple as possible. Therefore, we choose

a quadratic polynomial (a parabola) only for the approximations

around zero. On the first and the last subsets, it is sufficient an

approximation by a constant. On the other subsets, the majorants

are given by a secant (linear polynomial) through the begin and the
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rffc-i dk Ofc ßk Jk_

0 01 — oo p — 5 h-)

2 p — 5 p + S l(-) - ßi (p- 5)

3 p + 5 — a/3 c/av h+) - fo (p + s)

4 — a/3 c/av -c/av
log^-v^lcg^)

v/3-1

5 -c/av c/av 0

6 c/av a/3 c/av
log(4)-N/3 1og(2)

v/3-1

7 a/3 c/ay oo -log (4)

^^ —^
0'(+)-'(-)

2 «

'°g(4)+'(+)
g

^+5+ \/3 c/av

log(2)

(a/3-1) c/<tv

0

log(2)

(a/3-1) c/av

0 0

0

log(2)

(c/av)2

0

Table 2.2: Parameters to define the lower majorant in the filtering
recursion. We should have p < —a/3 c/ay — ö.

dk-i dk a.k ßk 7fc

1 — oo

2 — a/3 c/av

3 -c/av

4 c/av

5 a/3 c/av

6 p — 5

7 p + 5

-V3c/av -log (4) 0 0

rl-„ logW-y/älog^) log(2) n
C/(7V a/3-1 (a/3-1) c/av

c/av 0 0 -yff^r

„-* -log(4)-ÄA/3c/^ ^->^y 0

M + <5 «(-) -ße(p- S) '(+)2^(') 0

oo /(+) 0 0

Table 2.3: Parameters to define the upper majorant in the filtering
recursion. We should have p > a/3 c/ay + (5.

end point of the subsets. In addition, since the region around zero

should be approximated well by all majorants, the corresponding
subsets and polynomials are the same. Moreover, note that all

7fc 's are zero or strictly negative. Thus, the defined variances ~ä\
are always positive (see their definition in Lemma 2.3).

• With S we take into account the fact that the Af(pt, 1) densities

in (2.18) have their mam mass in the regions around the corre-
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spondmg expected values pt. The interval [p — S,p-\-S] covers such

regions and the lower and upper majorants are constructed to give

also a good approximation on this interval. We take the median

of the pt 's to define the interval since we want to avoid a direct

dependence on the sample (zft_ -, ct_n)- The default value of 6 is

two.

• If p is less than the bound —a/3 c/ay — 5, we put aside the default

majorant and we choose the lower one. In most cases, this lower

bound is still in a region where the approximation given by the

default majorant would be good. In this way, we have a smooth

transition from the default majorant to the lower one.

The cases with a very small value of c/ay are an exception. In

fact, the approximation given by the default majorant becomes bad

away from \5c/ay\ which is small in these cases. But the lower

majorant is selected first by p < —\p.ic/ay — S « —ö = —2. Then,
the transition between the default and the lower majorant is not

so smooth as before and, consequently, the sampling of (z">) gen¬

erates more rejections. The efficiency loss is not huge. For small

values of c/ay, the state errors mask the heavy-tailed observation

errors and, consequently, the observed values (Yt) follow the pat¬

tern of the state variables (Zt). Thus, the pt 's are near zero and

the default majorant is chosen.

Alternatively, one could introduce a second lower majorant to

cover the cases with —a/3c/ov — ö < p < —v3c/oy. Then a high

efficiency is also attained for the situations with a small c/ay
value. Since the efficiency loss is low, we do not follow this idea.

Of course, an equivalent discussion is valid for the upper majorant.

• Other problematic situations arise when about 50% of the p% 's is

less than —5c/ay and the other 50% is greater than 5c/ay. The

default majorant is chosen but it is not a good approximation in

such situations.

These cases may happen for example in presence of an observation

outlier: the target density has non-negligible mass in two distinct

regions. Actually, we have never got problems in these situations

(or perhaps we have never encountered these cases in simulated or

real examples).

• As said, the lower and the upper majorants should approximate

well the function g(z) on the interval [p — 5, p + S\ and not only
around zero. On the other hand, we would like to retain the same
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number of mixture terms as in the default case to avoid difficulties
in the computer implementation. Thus, we simplify lower and

upper majorants on the side where the median does not lie. The

resulting majorants are no more symmetric about zero as it was

for the default one.

• The default and the upper majorants are shown in Figure 2.3 for
the special case c/ay = I, p = 8 and 5 = 2. We see that the

approximations are very good "where it is needed" (around zero

and p).

Lemma 2.6 The three majorants in Definition 2.3 satisfy Definition
2.2. I.e., they fulfil the inequality

g(z) = -log

2'

1
Z

c/av

K

< J3 (ak + ßkz + -fkZ2) I{zeBk}, Vz G :

k = l

In addition, these majorants are continuous functions in z.

Proof: The proof of the inequality is very instructive. In fact, it

illustrates how the majorants are constructed.

Without loss of generality, we consider

/(x):=-log(l+x2)

(set x = z/ (c/ay)). Moreover, the three cases are proved together.
The proof is easy on the first and on the 7th subset of the mixtures since

the chosen polynomials are constant on these subsets and the constants

are the value of f(x) in the end point of B\ and in the start point of

Br, respectively.
The first two derivatives of f(x) are given by

/'(*)

/"(*)

2x

1+x27

2(1 +x2) -2x 2x

(l+x2)2 (l + x2)2'

Then f"(x) is strictly positive on the subset R \ [—1,1]. It follows that

f(x) is strictly convex on this subset and therefore all secants between

two points (&i, f(b\)), (62, f(i>2)), with 61 < 62 < — 1 °r 1 < &i < &2, are

automatically majorants. This proves the inequality on the mixture

subsets approximated by linear polynomials.
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Figure 2.3: The default and the upper majorants for the case c/ay = I,

p = 8 and 5 = 2. The function g(z) is shown by the solid line, the

majorants by the dashed line. Both majorants are very close to g(z)
near zero and p.

It remains the case with x in [—1,1]. The approximation on this subset

is given by the parabola — log(2) x2 for all three majorants. We note

that the parabola is constructed such that it goes through the points

(-!,/(-!) = -log(2)), (0,/(0) =0), (1,/(1) = -log(2)). In addition,
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we can prove the inequality on [—1,1] by proving that the function

h(x) := - log(2)x2 - f(x) = - log(2)x2 + log (l + x2)

is positive on the subset [0,1]. (Then h(x) is positive on the subset

[—1,1] thanks to the symmetry about zero.) To this aim, we note that

h(0) = h(l) = 0. Moreover, the first derivative is given by

h'(x) = -2 log(2) x + -4^0 = "2 x
(log(2)

l + x2 V l+x

Thus, the roots of h'(x) are at xmm = 0 and xmax = .
L "L, — 1 (we

do not consider the corresponding negative root). As pointed out by
the indices, the first root corresponds to a minimum of the function

h(x) and the second one to a maximum. Then, h'(x) is positive on

[0, xmax] and negative on [xmax, 1] and the previous assertion about

h(x) follows by applying twice the mean value theorem. In fact, we

have for x G [0, xmax\:

h(x)-h(0) = h'(0 (x-0) with Ç£(0,x)c[0,xmax}.

Thus, h(x) = h'(^) (x — 0) > 0. On the other hand, we have for

x g \x7nax, ij.

h(l)-h(x) = ti(Ç) (l-x) with Çe(x,l)c[xmax,l}.

Thus, h(x) = -h'(Ç) (l-x)> 0.

The continuity feature follows easily from the construction of the

majorants. Note that the majorants have the same value in the points

dk both coming from the left and from the right side of them. This can

be seen also in Figure 2.3. D

Remark 2.9 We saw in the previous proof that the choice of the

points x = { — 1,1} (respectively z = {—c/ay, c/ay}) to define the sub¬

sets Bk was not accidental. These points delimit the concave region

°.f f(x)- Also the choice of the points x = {—a/3, a/3} (respectively
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z = {—a/3 c/av, v3 c/ay}) has a reason. In fact, we have

d 2 x (l + x2)2 - (x2 -I) 2 (l + x2) 2 x

~~rJ \x) = J \x) = 2 -,

dxJ
K ' K '

(l + x2)4

= 2 [llSy [2*(i + *2)-4s(s2-i)]

(1
4-

t2\
r

-

" K '
x (x - a/3) (x + a/3)

(l+x2)4

T/ie roots of f'"(x) are at 0 and ±a/3. It follows that the function

f"(x) has maxima at x = {—a/3, a/3} and a minimum at x = 0. Since

f"(x) describes the curvature of the function f(x), we suggest to take

the points where the curvature is maximal to define the subsets Bk-

2.3.5 Summary of the particle filtering recursion

with yt available

Finally we put together all results of the previous subsections and we

write the algorithm to implement the filtering recursion at time t with

yt available. As stressed in Remark 2.8, the default majorant can be

computed at the beginning of the filtering recursion since it depends

only on the value c/ay. In addition, some components of the lower and

the upper majorants can be computed as well at the beginning since

they depend only on c/ay.
Thus, the filtering recursion at time t with yt available is organized as

follows.

Algorithm 2.1 Particle filtering recursion at time t with yt available.

Assumptions:

• The fully defined default majorant and the partially defined lower

and upper majorants have already been computed and 5 is known,
see Definition 2.3.

• The sample (z{^_p) (t_1}) of Zçt-P) (t-i^Y çt-i)
= yi (t-i) *«

known from the filtering recursion at time t — 1.

Preliminaries:

1. Compute the pt's, i = 1,. .., N, as described in Lemma 2.3.
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2. Choose the majorant for this step (time t).

To this end, define

p = medt (pt)

and select

• the default majorant if —a/3 — S < p < a/3 ——\- 5,

• the lower majorant if —a/3 — 5 > p,

• the upper majorant if p > a/3 ——\- 5.

If the lower or the upper majorant is chosen, compute the compo¬

nents which depend on p and 5, see Definition 2.3.

3. Compute the setup to apply the rejection sampling method with the

auxiliary index, i.e. find the variables to get the efficient proposal
densities p(i,z) and the optimal distribution (t(i)).

To this end, compute the variables ~&k, ~Pk%, ^ (
*

w

* *

) >

*(^z^±), RM^ = Rk,t Mfc>, for all k = l,...,K and

all i = 1, ...,
N as described in Lemma 2.3. Then, compute the

partial sums of RMk,t over k for all i. In addition, use Lemma

2.4 to find the optimal distribution (t(i)) and its partial sums.

Begin the construction of the sample (z)f_ +i)t), I = 1>--->N, of

Z(t-P+i) t\Yi t
= yi t- Set I = 1.

4. Sample a pair (i">, z">) according to the distribution r(i)p(i, z).

First, generate the auxiliary index T1' according to the distribution

(t(i)) and then the variable Z"> according to the density p (i">, z)
with Tl> = i">. The two samplings are carried out by the inversion

method. The partial sums of (t(i)) and the partial sums of RMk,t
over k for all 1 are needed, see also Remark 2.6.

5. Check the acceptance of the proposed pair (i"\z">).
For this purpose, generate U uniform on [0,1] and compute the

acceptance probability ir (i"\z">) according to Lemma 2.5.

* If U < 7T (i^l\ z^), then accept the pair (i^l\z^). Return

the particle z,f_ , ^ f
defined by

(0
_

(*(i))
f _

1
_

1

t-V+1
~ zt-»+-? Jor J — *-, . . . ,p 1,

^=yt+ayz^.
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Set I = 1 + 1.

If' / < N, return to step 4- Otherwise stop: all particles have

been computed.

• Else, the pair (i">, z">) is not accepted. Return to step 4-

2.4 Particle filtering recursion with miss¬

ing yt

In this section, we go back to the second case that we have distinguished
in the implementation of the filtering recursion at time t, that is the case

where yt is missing. The implementation becomes simpler, as already
mentioned in Section 2.3.

II yt is missing, we set the filtering density ft\t (z(t-p+i) t\Vi t) equal

to the prediction density /t|t-i (z(t-P+i) t\yi (t-i)) (we do not have an

update step). The integral in the latter density is approximated by

particles as described in Section 2.2. Thus, we have

1
N

ft\t (z(t-P+i) Si t) « y J2p (Zt\z(t-P) (t-i)) A (z(t-p+i) (t-i))
t=i

»with
(z\t_p) (t_i)) a sample of Z^-p) (t-i)\Y\ (t-i)

= y\ (t-i)- Note that

we have not dropped yt from the previous filtering density notation,

although it is missing. We have set the "value" of yt to NA (not avail¬

able). In this way, formulae have a better readability.
Similar to the case with yt available, the crucial point is to generate a

sample (z\ ) from the density

1
N

ft\t (ztWl t) = y J2p (Zt\z(t-P) (t-1)) •

x=l

Since this density is a mixture of N densities and we have to sample N

particles z\ from it, we suggest to use a deterministic mixing for the

sampling. I.e. we sample once from each density p (zt\z^_ -,

n_1\ )•
Therefore, the filtering recursion at time t with missing yt is organized
as follows.
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Algorithm 2.2 Particle filtering recursion at time t with missing yt.

Assume that the sample (z^_p) (t_1}) of Z^-p) (t-i)\Yi (t-i)
= Vi (t-i)

is known from the filtering recursion at time t — 1.

Then:

For i from 1 to N do:

a) Sample Z// according to the state density

P (Zt\z(t-P) (t-i)) = $ w2<Pizt-n°v (z*) •

U=i

b) Return the particle z?t_ +1\t-
The components z//_ +1,

(*)
are taken from the input filter particle z)f_ s

ct_H-

»





Chapter 3

Smoothing recursion

We have seen in Chapter 2 how we can find the particle filtering recur¬

sion for the considered model (2.6) and (2.7). The filtering recursion

has a pleasant characteristic: if a new observation yt> becomes available,
we can easily carry on the filtering recursion for this new value. In fact,

we only need the previous sample (z)t,_ -, (t/-u) besides the observation

yt>. This permits to apply the filtering recursion in on-line studies where

the observations become available one after the other.

The estimation of the state variables (Zt) would take advantage if we

also knew the future observations yt'+i, W+2, • • •
in addition to the

past observations y\ t>. This is easy to understand if the observed value

yt' is an outlier. In fact, also the sample (z)t,_ +1)j,) generated with

our filtering method may be influenced by the outlier yt' although in a

less pronounced manner than with the Kaiman filtering method. If we

knew the future observed values yt'+i, yt'+2, ,
then the presence of

the outlier yt' could be noticed (we recall at this point that the obser¬

vation errors in (2.7) are assumed to be independent). Thus, we could

reduce the influence of the outlier and get a better estimate of the state

variable Zf. Of course, such a method can be carried out only off-line,
i.e. once all observed values are collected.

This idea leads to smoothing methods. We discuss it in this chapter.
The considered model is the same as in Chapter 2, see (2.6) and (2.7),
and again the parameters in the model are assumed to be known. Now,
the whole set of observations y\ t is available and the goal will be to

generate a sample from the density p (z\ t\vi t)- Fo succeed in this, we

47
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will use the filter samples at all times t in {1,..., T}. Thus, the filtering
recursion has to be executed first, and all generated particles should be

saved. This is a disadvantage since it takes some time and memory.

On the other hand, the smoothing algorithm will improve the estimates

of the state variables (Zt) and, above all, it permits to derive fast and

reliable maximum likelihood estimating methods for the parameters if

they are no more assumed to be given (see Chapter 4). But a prereq¬

uisite for the maximum likelihood methods is that the sampling from

P (zi r\yi t) is fast to execute. For this reason, efficiency of the smooth¬

ing algorithm is important.

The chapter is organized as follows. The beginning is dedicated to

find the exact density p (z\ t^i t)- Then two methods are presented to

sample from this density. The first one is an adjustment of the imple¬
mented particle filtering method. Unfortunately, the resulting algorithm
can be very slow since its complexity is of order TN2 (T the length of

the observed series (Yt) and N the size of the generated sample). The

second method is an improvement of the first one to speed up the al¬

gorithm. In fact, it has a complexity of order TN log(N). This can be

achieved at the expense of a more difficult implementation.

3.1 Exact density p {z\-t\yi-.t)

In this section, we compute the density p(z\ t\vi t) f°r the considered

model (2.6) and (2.7). The aim is to write it in a form which permits

an easy sampling from it.

First, it is helpful to illustrate with a graph the dependence structure of

the state variable Zt when all observations Yi t are known, see Figure
3.1. The used conditional independence properties can be easily read

from it.

Figure 3.1: Dependence structure of the state variable Zt when all

observations Y\ t are known.
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The density p (z\ T\yi t) can be written as

P (z\ r\yi t) =P (zçt-p+1) r\yi t)P (zi (t-p)\z(t-p+i) t, y\ t)
T-p

= P (z(T-p+i) r\yi t)\\p (zt \z(t+i) t, m t)
t=l

T-p

= p(z(T-p+i)T\yiT) X\p{zt\z(t+\) (t+P),yit)
t=i

The last equality follows since Zt is independent of both Y(t+i) t and

Z(t+P+i) t if Z(t+i) (t+p) are given.

Up to now, we have used a classic approach to compute the density

P (zi t\Ï/i t)- In fact, we use the filtering density^ (z(T-p+i) t\Ï/i t) and

we go backward in time with transition densities p (zt|z(t+i) (t+p), Vit).
The next step is to compute these transition densities. To this aim,

we use twice Bayes' theorem, we introduce the past state variables

Z(t-P) (t-i) and we argue with similar conditional independence prop¬

erties as before. Explicitly,

/ i
~ x p(yt,zt\z(t+i)(t+p),yi(t-i)

p(zt\z(t+i)(t+p),yit)
-

p (yt\z(t+i) (t+P),yi (t-i))

p (yt\zt, z(t+i) (t+p),m (t-i))p (zt\z(t+i) (t+p),m (t-i))
(3.1)

p (yt\z(t+i) (t+P),yi (t-i))

p (yt\zt) p (zt\z(t+i) (t+P),yi (t-i))

p (yt\z(t+i) (t+P),yi (t-i))

p(yt\zt) I J'p (z(t-p) (t-i),zt\z(t+i) (t+P),yi (t-i)) dzt-p...dzt-\

p (yt\z(t+i) (t+P),yi (t-i))

p(yt\zt)

p (yt\z(t+i) (t+P),yi (t-i))

p(zt\z(t-p) (t-i), z(t+i) (t+P),yi (t-i))

P (z(t-p) (t-i)|2(t+i) (t+P),yi (t-i)) dzt-p . . .dzt-i
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p(yt\zt)

p (yt\z(t+i) (t+P),yi (t-i))p (z(t+i) (t+P)\yi (t-i))

P (zt\z(t-p) (t-i),Z(t+i) (t+p)) P (z(t-p) (t-i), Z(t+1) (t+P)\yi (t-l))

dzt-p -dzt-i

p(yt\zt)

p(yt,z(t+i)(t+p)\yi(t-i))

P (zt\z(t-p) (t-i),Z(t+i) (t+p)) P (z(t+i) (t+p) \z(t-P) (t-i), y\ (t-l))

P (z(t-p) (t-l) \m (t-l)) dzt-p .. . dzt-i

p(yt\zt)

p(yt,z(t+i)(t+p)\yi(t-i))

P (zt\Z(t-p) (t-l),Z(t+l) (t+p)) P (Z(t+1) (t+p)\z(t-p) (t-l))

P (z(t-p) (t-i)lyi (t-l)) dzt-p .. . dzt-i-

Two comments about the last expression. The integral^can be seen as

expected value with respect to the variables Z(t-V) (t-i) |^i (t-i) •
We will

use this feature to approximate this integral, see Section 3.2. Moreover,
the denominator does not depend on Zt. It is only the normalizing
constant.

We consider closer the product

P (Zt\z(t-p) (t-l),Z(t+l) (t+p)) P (z(t+i) (t+p)\z(t-p) (t-l))

in the last expression. This will be useful for Section 3.2.

Lemma 3.1 Let (Zt) be a stationary Gaussian AR process as described

by the state equation (2.6).
Then:

P (zt\z(t-p) (t-l), Z(t+1) (t+p)) P (z(t+i) (t+p)\z(t-p) (t-i)) =

= «/-'+) <p(yP^)+P{+),^)(zt)
with

V = (vi,---,vP) ,
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1 + f f

p-i

P{ ]
:= P{ ](z{t-p) (t-i)) = (l + <f ¥) Yl [vi-^VsVs+i ) zt-i,

1 = 1 V s=l )

P{+) :=M(+)(^(t+i)(t+p)) = (l+ ¥>¥>) ^2[<Pi -^2<Ps<Ps+i zt+i,

i=i

(z(t-p)(t-l),Z{t+l)(t+p))

<f> (y(~\ S05) («(+))

w(-,+) ;=„,(-,+)

= exp

(2n)P/2avV/l+cp'cp

The components of the vectors

!(«(+)-«(-)) 's-1 («(+>-«(->)

are given by

p p

v{~m :=w(_)(0(z(t-p)(t-i)) = J3 yszt+i-s + <pL^2<pszt-s,
s=l+l s=l

l-l

V(+)W - v(+)W(Z{t+1) {t+p)) = zt+i -^2ipszt+i-s.
s= l

The inverse of the matrix S can be computed explicitly. We have

S
x
=

—9- ( I — z ;— w
<\ 1 + V V

Remark 3.1 Since the matrix S_1 is symmetric positive definite, we

can decompose it with the Cholesky method. I.e. there exists an upper

triangular matrix R such that

5T1 = RR.
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Then, «/ '+>
can be rewritten as

w/_'+) = A; exp

= A; exp

= k exp

^(W^Il) (W+))
where k denotes the normalizing constant in the definition ofw^'+K
This is a very fine interpretation since the distances measured with an

identity covariance matrix are actually Euclidean distances. We will use

this feature to implement the second smoothing algorithm, see Section

3.4.

Proof: The proof follows by showing the two assertions:

1. p (zt\z{t-p) (t-i),Z(t+i) (t+p)) = 4> (m(_) + P{+),v) (zt),

2. p (*(+>|z(t-P) (t-i)) = <t> {v{-\ S° 5) («(+)) and

P (Z(t+1) (t+p)\z(t-p) (t-l)) =p(v(-+1\z{t_p) ((_!)).

Let us begin with the first assertion. The spectral density of (Zt) is

given by

/(")

1 — Y <Pi exp (—i2nvl)
1=1

a
v

p \ / p

1 — Y <Pi exp (—%2-kvI) I f 1 — Y Vi exP (—^2-ïïvI)
1=1 J V (=i

a
v

p p p p

1 - 2 Y <Pi cos(2ni/l) + Y <P2 + J2 J2 <pi<psexp(i2ni/(s -I))
1=1 1=1 1=1 s = 1

s i= i

a
v

p p p p—i

l+]C^f_2]Cwcos(27r^0+]C Y.'Psfs+i (exp(«27rz//)+exp(-«27rz//))
1=1 1 = 1 1=1 s= l
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=
1v

p p ( p-i \
1 + J2 <P2 - 2 Y cos(2ni/l) \<pi- Y <Ps<Ps+i

i=i i=i V s=1 /

Thus, the first assertion follows using standard results for Gaussian

Markov fields.

Now, the second assertion. We use first the definition of the AR(p)
process (Zt) to write

p

Zt+i = 2.^ <psZt+i-s + Yt+i
s=l

l-l / p \ p

= ^^vsZt+is + ipi [ 22vsZts + vt J + 22 VsZt+is + vt+i.
s=l \s=l J s=l+ l

Thus

i—i p p

Zt+l -~^2<PsZt+i-s = cpi^^cpsZt-s + J^ ipsZt+l-s + ipiVt + Vt+i,
s= l s=l s=l+l

v^=v(-W+wVt + Vt+l.

Since v(_)(') is a linear combination of Z(t-p) (t-i)
and both errors Vt

and Vt+i do not depend on these past state variables, we find considering
all / that

«(+)|Z(t-P)(t-i)~A^-\X)

with covariance matrix S = av 11 + if if ). The inverse of S is given by

1 L 1

In fact,

S =

t ( I — -, ;— W
4\ 1 + V ¥

XX
x
= av ( I + tptp ) -g-

( I - ——— <P<P
V / av V l + cp <p

= i+(i-T-r^-7T^ w=I
\ l + f <p l + tp tp I
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where we use that

<P<P <P<P =<P[<P<P)<P ={<P<P)<P<P

since <p <p is a scalar.

Moreover, we can compute explicitly the normalizing constant of the

above multidimensional normal distribution. In general, it is given by

(2-k) p' (det(Tj)) '
. But, since E is positive definite, it can be diago-

nalized and det(Y>) is the product of the eigenvalues. Recalling that the

eigenvalues A are defined such that (E — AI) v = 0 for vectors v differ¬

ent from the zero vector, we see that the eigenvalues are given by av

with multiplicity p — I and by av ( 1 + <p <p ). In fact, with A = av, the

previous defining equation becomes

0 = (E — AI) v = av II + pp J — 11 v = av<p<p v

which can be fulfilled hy p—l linear independent vectors v since the rank

of ipip is 1 (take v orthogonal). In addition, with A = av ll + ipip) and

v = <p, we find

(E -XI)v = av I + tptp
- (l + ip ip\I ip

cp + cp (cp'cp) -ip- lip ip) ip = 0.

Therefore, the normalising constant can be written as

(27rrp/2 (det(E))"
-1/2

(27T)
-p/2 2(p-l) o

'V

\-pI2„-p
=

(2n)-p^ayP
1 + ^

av [l + ip ip

1/2

-1/2

The assertion that p (v^\z(t_p^ (t-i)) = 4> (v^ \ E° 5) (v^) and also

some other features are proved.

Finally, the relationship between ^(t+i

(t+i) (t+p)
and -(/+) is linear with

functional determinant equal 1. Thus, it follows that

P(z(t+1) (t+p)\z(t-P) (t-i)) =p(v{+)\z(t-p) (t-l))
D
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We recapitulate briefly the results of this section. The density

P (zi r\yi t) can be written as

T-p

p(zit\Ï/it) =p(z(T-p+i)T\yiT) Y[p(zt\z(t+i)(t+p),yit) (3.2)
t=l

In addition,

pvu(m,c,yt) (zt)
p(zt\z(t+i)(t+p),yit

p (yt, z(t+i) (t+P)\yi (t-i))

(~'+) •</> (m(_) + p{+),v) (zt) -p(z(t-P) (t-i)\yi (t-i))

dzt-p -dzt-i (3.3)

with p(~\ p^+\ w(->+} and a as in Lemma 3.1.

3.2 Particle smoothing method

The density (3.3) cannot be computed in closed form for the consid¬

ered model (2.6) and (2.7) and, consequently, the density p (z\ t\/ÎIi t)
is also not available in closed form. What we can do is to approximate

P (zi tWi t) by a sample (z[3T) from it. The results (3.2) and (3.3) sug¬

gest the following strategy. We start with a sample (z(T_ +1s T) from

p (z(T-p+i) t\ïÎi t). Then, we go backward sampling the other compo¬

nents from the approximate transition densities p ( ^t|^[t+i) (t+ ),yitj-

As a starting sample (z(T_ +1s T) we use the last sample computed in

the particle filtering recursion. On the other hand, the transition densi¬

ties p ( ^t|^t+i) (t+ )' yi t ) are found approximating (3.3) by the Monte

Carlo method. We find

N

P \zt\zi(t+i) (t+ppyi t) oc pVII (m, c,yt) (zt)^2wh:J-<f> (p,[~)+p,^+\äj (zt)
i=i

(3.4)
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with (z^-p) (t-i)) a sample of Z{t-P) (t-i)|Fi (t_i)
= y\ (t-i). In addi¬

tion,

/(t-p) (t-i)) >

p\+)--=Pi+)(zl3tlut+„X (3-6)*3
-~ P \ (t+1) (t+p)

^=^ULut-iX (3-7)
/(t-p) (t-i)J >

^=-{+)(zi(lli)(t+P^ (3-8)

wl}0:=w
'

U(t_p)(t_i),^(t+i)(t+P)

fc exP ( "T,
-Rw„(+) - ife„( _) (3.9)

where p^\ p^\ v^~\ v^ and w/~>+) are defined as in Lemma 3.1, -R

as in Remark 3.1.

As we can see, we need all generated filter samples to implement this

idea and not only the sample at time T. Thus, the filtering recursion

should be executed first and all generated samples should be saved. In

addition, we note that we sample from the approximate transition den¬

sity (3.4) only once for each particle 2^+11 tt+ y
^n ^ac^' the aim *s t°

produce a sample (z^T) of p (z\ t\vi t)- Fhe density (3.4) is similar

to the target density in the particle filtering steps, compare (3.4) with

(2.13). Then, the two sampling methods discussed in connection with

the filtering recursion can be applied in principle also here, see their defi¬

nition in Subsections 2.2.1 and 2.2.2. However, the sampling importance

resampling method is not the most appropriate technique in this case

A3)
since we need only one value from each density p (

Zt\z/t', , \,yit

For the same reason, we have to be careful in the application of the re¬

jection method with the auxiliary index. The needed proposal densities

Pj (1, zt) and the auxiliary distribution (t3(i)) depend on the considered

particle 2^4-1) (t+ )
But ^ *s no^ convenient to compute these distri¬

butions (and the related partial sums to sample from them) for every j
(7)

since only one particle z) has to be generated. In fact, the resulting

algorithm would be too slow. Thus, we have to find a way to generate

more zt s without changing too much the distribution setup or find an

approach where the full setup is computed only if it is needed.

These are the leading ideas of the two presented methods to sample
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from (3.4). The first approach is similar to the one used to implement
the filtering recursion. The idea is to use the same setup to sample

(7)
several z\ s. Unfortunately, the algorithm can be very slow since it

has a complexity of order TN2. The second method refines the sam¬

pling strategy of the first one by grouping the particles (zn_ -, ft_n)
according to a specified criterion and by introducing a pretesting for

the particle acceptance. Thus, the full distribution setup is computed

only if the pretesting is passed. The resulting method will be faster

than the first one since it has a complexity of order TN log(N). But

some new theoretical considerations are required to justify it.

3.3 Particle smoothing recursion: method

1

In this section, we explain the first method to sample once from

p (zt\zfy+i) (t+ppyi t) for each particle z^f'+1) (t+p).
As noted earlier,

the previous density has a similar structure as the target density in the

filtering steps: it is proportional to the product of the Pearson type

VII observation density with a mixture of weighted normal densities,
see (2.13). The differences are in the presence of the weights wtJ in

the mixture and in the dependence of the normal densities on both

the past filter sample (zn_ -, ft_n) and the future smoothing sample

(^Yt+D (t+ )) In addition, we stress again that only one particle z)3

has to be generated from each F l^tl^t+i) (t+ ),yitj- Thus, it is intu¬

itive to apply the same sampling technique as in the filtering recursion

and to adapt it to consider the mentioned differences. Again, we have

to distinguish two cases: yt available or missing. First, we consider the

case with known yt.

3.3.1 Recursion with yt available

The main ideas to implement the filtering recursion at time t can be

summarized as follows. We applied the rejection method with the auxil¬

iary index to generate the required sample. Moreover, we approximated
the logarithm of the problematic heavy-tailed observation density by a

clever majorant to succeed in constructing the efficient proposal densi¬

ties p (1, z). We suggested to reformulate the sampling task by translat-
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ing and rescaling the state variable Zt, see Lemma 2.2. In this way, we

speeded up the algorithm since we avoided to compute the majorant in

each filtering step.

We proceed in the same way:

Lemma 3.2 Consider the model (2.6) and (2.7) and let Zt be a random

variable with probability density function p (ztlZfA^ ,t+ \,yit) as in

(3.4).
Then the random variable Z defined by

Zt -yt

a

has density

N /„(-),„(+)

P[z\z(i+i)(t+p)^yit) Kpvu(m,c/a,0)(z)^2wlty4>[- é
, lj (z)

(3.10)
with a, pi , p and wltJ as in (3.4). In addition, the normalizing

constant depends only on z?
.

(t+i) (t+p)-

Proof: The proof is similar to the previous one, see Lemma 2.2.

Substitute the expected values and the standard deviation in the

normal densities by the new ones (p\ + p and a, respectively).
Note that the additional weights wltJ do not affect the proof since they
are independent of Zt.

The Pearson type VII density in Lemma 3.2 is no more dependent on

Yt. We proceed for each j = 1,..., N as follows:

• sample one z^ from the density p ( ^|^[t+n (t+ )> ^ * ) defined as

in Lemma 3.2,

• set Zt =yt + a z^3\

Thus, we can restrict the discussion to the application of the rejection
method with the auxiliary index to the sampling of (z^). First, as in

the filtering case, we look for efficient proposal densities p3 (i, z) and an

optimal distribution (t3(i)). Then, we compute the acceptance proba¬
bilities of the proposed pairs (i, z) such that, finally, we can write the
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smoothing recursion for the case with yt available. In the discussion,
we will stress the modifications needed in comparison to the filtering

algorithm.

In Subsection 2.2.1, we saw that each density p3 (i,z) should be a

good proposal distribution for the density proportional to

Pvu (m, c/a, 0) (z) w,

or, equivalently, proportional to

(p[-ï+p^-yt \

pvu (m, c/a, 0) (z) • </> J
,
1 (z)

since the weights wtJ are independent of Z. If we would proceed as

in the filtering case, we would construct the proposals p3 (i, z) approx¬

imating the logarithm of the Pearson type VII density by a majorant.

Unfortunately, the densities p3 (i, z) would also depend on the smooth¬

ing particles (2^+11 (t+ )) since the latter are used to define the py. s.

Thus, we should compute all densities for each j, although we sample

only one Z^3\ Clearly, the resulting algorithm would be very slow, since

the construction of the distribution setup requires many calculations as

seen in Algorithm 2.1.

The key observation is the following: if some p s are near each other,
then the corresponding proposals p3 (1, z) will be very similar. Thus, we

propose the following recursive procedure. The first proposals p(i,z)

are constructed with py' equal to the minimal value of all py s. We

use these proposals p (1, z) to sample possibly several particles z° '. We

begin with the indices j' with values pyt' nearest the chosen py' and

then we move away until the densities p (1, z) become too bad propos¬

als. When this happens, a new setup of proposals p(i,z) is constructed

with p equal to the value py,, , j" the index where the setup change

takes place. The sampling of z^3 )
goes on from this index j" and the

procedure is iterated until all particles (z^3 )) are generated. What we

need to apply this idea is a break criterion which indicates when the

densities p(i,z) become too bad proposals and they should be updated.
An intuitive one is given by the number of rejections to sample z1-3 \

When this number exceeds a chosen maximal value, then we have a hint

that the proposals are no more appropriate to sample z^3 ) and new ones
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have to be computed. Of course, we expect more rejections with this

approach than with the one where the proposals are computed for each

j, since the used proposals are now nearly optimal. On the other hand,
we compute only few updates of all distributions. Therefore, the result¬

ing algorithm will be faster since the proposal of some more pairs (i, z)
is cheaper than the computation of a whole distribution setup.

Explicitly, we denote by py' the used py' and we define the majorant

equivalently to the filtering case, see Definition 2.2.

Definition 3.1 For a given integer value K, we choose parameters otk,

ßk, 7fc and dk such that the majorant of the function

g(z) := -log 1+ (—-
[ \c/a

is defined by

K

g(z) <~^2(o.k + ßkZ + -fkZ2)l{zeBk} Vz G R

fc=i

with Bk '= (dk-i, dk], —oo =: d,Q < di < < dx '= oo. The parame¬

ters otk, ßk, Ik and dk are not allowed to depend on z. log denotes the

natural logarithm.

The remarks done in the filtering case remain also valid here. Again,
the construction of the majorant is postponed and we find first the

proposals p (i, z). As said, they should be good proposal distributions

for the densities proportional to

Pvu (m, c/a, 0) (z) • </>
Pi
(-)

P
(+)

yt
,Vx\(z)

where now p is substituted by p .
As a consequence of this ap¬

proximation, we should also modify the variance of the normal densities

to succeed in the construction of the distribution (t3 («)) and in the eval¬

uation of the acceptance probabilities. For this reason we have intro¬

duced the new variance A. A cannot depend on the smoothing sample
(*0)

(t+i) (t+P),
otherwise we reintroduce its dependence in the proposal

densities. In addition, we assume that A does not depend neither on
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.«
nor on z to avoid additional difficultiesthe filter sample (z)t_ -, rt-i))

in the following computations. For the moment, the optimal choice of

A remains open. Note that A is one of the first thing to compute in

the smoothing steps since it influences the construction of the needed

distributions.

Lemma 3.3 Let the proposal densities p (i, z) be chosen as

mn _

l j ^-^k »

'

Rk,tMktt
K exp

p(i,z) = ^2 K

k=l Si=l Rl,tMl,t

1

I
Z-Mfc

,

"2

Mk
\ze-Bfc}

with

o~k '=

Pk,:

Rk,t := exp
- | --/- 1 --| — ri | + mak

Mk,t := v27T ak

The parameters o.k, ßk, Ik and dk are as in Definition 3.1; a is as in

Lemma 3.1; p\ and p are as in (3.5) and (3.6); m and c are the

parameters of the observation error distribution in the considered model

(2.6) and (2.7). Finally, $ (x) is the cumulative Af(0,1) distribution

function.

Then

Pvu (m, c/a, 0) (z)-(p
'(-W+) -yt

K

vx) (z)<kv[YJRi,tMlXp(t,z)

(3.11)

i=i

with

h:=
r(m) a

2X 7T cT(m- 0.5)
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Remark 3.2 Most remarks of the corresponding lemma in the filtering
recursion are also valid here, see Remark 2.6. Especially, the sampling

of Z according to p (i, z) can be carried out as explained there.

Proof: The proof is the same as in the filtering case, see Lemma

2.3. We substitute ay by a, Y^=i fizt-i by p\ + py and pt by

M<-> +/+>~-yt
_ _

— J
.
In addition, we use the new definitions of Ok, Pki, Rk,%

and k\ given here. D

We need an interim result before looking for the optimal distribu¬

tion (t3(i)). We have to investigate the relationship between the true

normal densities in (3.10) and the approximate ones used to construct

the proposals p (i, z).

Lemma 3.4 For A^ 1, we have

= a/A exp

4>[ w -1 (*)

4>[^)+f-"t,Vx\(z) 2(A-1)

^-^

^^-i z-l
l^-ifp[ ]+p{3+)-yt p[ hp^-yt^2'

à Act

In addition, it follows for A > 1 that

4>[ 4 ,i )(z)

4>[^)+f-ljt,Vx)(z)
< a/A exp

2(A-1)

,(+) „(+K2

and the minimum of the function

h(X) := a/A exp
2(A-1)

,/>-,/'^
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Proof: The proof requires only algebraic calculations.

Let us begin with the first assertion. The strategy is to put together
the two normal densities, to complete the square in the exponent and

to simplify it. I.e.:

4>[ i -1 (*)

A^+A^-i/t X\(z)

= a/A exp
i( p'-hp^-yA2 1 ( p[-hp^-ytY

It follows by completing the square in the exponent

\ 2 /

I P,

2V--

(-)
P
(+)

yt l

2Ä
P,
(-)

P
(+)

yt

5(W

11 p.

2

(-)

^ïyfl_f:
(-),„(+)

yt pt +p -yt

Xà

(+) ~ \2
p) -yt\ }_[ p.

2X

(-) ,(+)
yt

\l}-\
i\-1fpl ]+p\+)-yt p,

(-),„(+)
-yt

A5

iWm,(-> + ^+)
~ (-) (+) ~ \ 2

yt K; + p)
-

yt \

l ( p\ ]
+ p

,(+)

CT

2

Xà

yt i I p.

2X

(-) ,(+)
yt

We simplify now the rest term:

ly-1! P.

X

(-) .(+) (-)
yt p; + p

,(+)
yt

Xà

.(-)
11 pi +p3

2 \ à

(+) ~ \
2

-yt\
.(-)

2A\ 5

(+) ~ \
2

-

yt \
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all (-r-] r^+^-^y,
+ ~u>-r+ï ^) + MÎ+)-yty

2 / l \
-i p{~] + p{3+) - yt p['] + p{3+) - yt \

X\ X) à à j

1 [ l (^-]+p^-
V

yt\\ i ^
CT

-yt^
2 X-l\ J

+

^l )

2 a4_) + p{3+) - yt pI~] + p{3+) - yt

A — 1 CT CT

1 [(M.(-) + ^+)-»*)-(M.(-) + ^+)-5i)l
2

2(A-1) CT

1 x+'-/nä
2(A-l)\ ?

Putting all together we have

^r;y;«-»%v/A|M

= a/A exp
1/ p[-]+P^-
2\Z à

-yt i ( p^+p^-
2X\Z à

yt

= VXexpl--(l- z-l
-i/u^+u^-

i\-HpI '+p)"-yt p[ ]+p3' 1 ~v2
-yt)

CT Xà

1/ ly1 f p[ ]
+ p^ -

yt p[ }
+ p{3+) - yt

2\ X) \ à Xà

<->—<+>-5i\2
11 PI +p3
2 \ à

<->-»<+>-fc\2'
l I Pi +Pj

2X\ à
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= a/A exp
2(A-1)

/j+)-/j+)^

H-K1-! z- l
i\ -Up\ }+Mj+)-yt

_

a4 }+Mj+)-yA
1 à xà j

Now, the second assertion: the proof of the inequality follows directly

from the first result. If A > 1, then I 1 —
j J > 0. Thus, the second

exponential term in the first result has a negative exponent and it is at

most 1. Moreover, the first derivative of

h(X) = a/A exp
2(A-1)

is

h'(X)

Then, h'(X) = 0 if

fx (X-l) 2 3 exp
2(A-1)

0
/A

fX (A-1)2J

0 = (A-l)2 - Xe3,

0 = X2 -(2 + e3)X + l

Therefore, the roots are

2 + e3±d(2 + e3)2-A 2 + e3±Je2 + 4e

A + 2e3± 2v^7v/eJ + 4
_

(^± je3 + ±

We see from the sign of the first derivative that A_ is a maximum and

A+ is a minimum of the function h(X). D

Thus, we can construct the optimal distribution (t3(i)) given the pro¬

posals p (i, z).
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Lemma 3.5 Assume A > 1 and independent of both z and the filter

sample (^-p) (t-l))-
Then the optimal distribution (t3(i)) is given by

, a
_

wh3 J2f=i Ri,tMi,t

Yl=i^,3Yi=iRi^Mi^

with w,j as in (3.9), Rk,x and Mk,t as in Lemma 3.3.

Proof: The proof is very similar to the corresponding one in the

filtering case, see Lemma 2.4. It follows by applying Lemmas 2.1, 3.3

A3)
and 3.4. Note that the target density is given by p (

zlz/'^ (t+ i> 2/11

in (3.10).
From Lemma 2.1, the optimal t,(«)'s are given by

T, M «M,

A.<->+A«<+>-V.

with

pvu (m, c/à, 0) (z) wh3 4> I -—'-% -, 1 j (z)

Mt > sup
-^ 1

.

P(hz)

We find using the inequality (3.11) and Lemma 3.4 with A > 1:

/V_>+M(+)-yt A
Pvu (m, c/a, 0) (z) wh3 <y I - J-

,
1

j (z)

p(i,z)

pVII (m, c/à, 0) (z)-4> (^)+f-~Vt,Vx\ (z) 4> (^)+f-~Vt, 11 (z)

v^,3
P (h z)

, fß(-)+ß(,+)-vt

< Wi,3 h ^2Ri,iMi^ a/X exp
>S+,-/4+Y

2(A-1)
(3.12)

The last expression is independent of z, assuming that A is independent
of it. Thus, Mj can be set equal to this expression and the lemma

follows since k\, à and p are independent of the past sample
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(z(t- ) (t-i)) ano- tne same is assumed for A. D

The optimal distribution (t3(i)) in Lemma 3.5 is similar to the one of

the filtering case. In addition, there are the weights wlt3 here. Un¬

fortunately, these weights complicate the recursion since they also de¬

pend on the smoothing sample (y+n (t+ )) Fhus, if we work directly

with the distribution (t3(i)) defined in the lemma, the t3(i/s have to

be computed for each particle y+n (t+ y
^n addition, their partial

sums should also be evaluated because the sampling from (t3(i)) is typ¬

ically performed with the inversion method. All these computations
slow down the algorithm.
We tried to eliminate the dependence on the smoothing sample as done

in the construction of the proposals p(i,z). I.e. we took weights

i),j oc exp ( — — Ai
1

- a/+) - Rv[-]
2

J L

2

where Rv denotes the vector Rv for a fixed particle -y+n (t+ )

We had also to introduce Ai to normalise the acceptance probabili¬
ties. Then, we used these weights together with the previous pro¬

posals p(i,z) to sample z^3\ If the number of rejections exceeded a

given bound, we stopped the sampling and we updated the distribu¬

tions p (i, z) and (t(i)). The new distributions were computed with the

particle y+ii tt+ i
f°r which the stop took place. This idea worked fine

with a model where the state equation was given by an AR(1) or an

AR(2) process. For AR processes with higher order, we got the well-

known problem of the curse of dimensionality: the particles in a high

dimensional space are sparse. Thus, the nearest neighbour Rv)J' of

Rv (j1 =f= j) was already too far and the weights wtJ were a bad

approximation of the optimal ones for j'. Consequently, we got a lot

of rejections for each smoothing particle and many distribution setups

were computed (for a moderate value of the maximal bound, say 500, a

new distribution setup was computed for almost each smoothing parti¬

cle -Zft+n (t+ )) ^e also tried to separate the update of the distribution

(t(i)) from the update of the proposals p (i, z). The aim was to permit

more updates of (t(i)) for the same proposals. But we got no signifi¬
cant improvements. In fact, if we compute new proposals p (i, z), it is

reasonable to find also the new distribution (t(i)) since the optimal t(i)
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depends on the variables Rklt and M^.
To overcome these difficulties, we have to think the sampling technique
over. This gives the input to develop the second sampling method, see

Section 3.4. For the first method, we are content with the procedure
which uses the proposals p (i, z) defined in Lemma 3.3 and it computes

the distribution (t3(i)) for each smoothing particle y+n (t+ y
^n this

way, we eliminate only the dependence on the smoothing sample in

the construction of the proposals p(i,z). We should expect that this

algorithm is slow since it has a complexity of order TN2.

The next step is to evaluate the acceptance probability of a proposed

pair (i, z).

Lemma 3.6 Assume A > 1 and independent of both z and the fil¬

ter sample (z/._ i ft-ii)- Let the densities p(i,z) and the distribution

(t3(i)) be defined as in Lemmas 3.3 and 3.5, respectively.

Then the acceptance probability of the pair (i, z) generated from the

distribution t3 (i)p (i, z) is

7Tj (i, z) = exp • log 1(l+(-y) J +ak*+ßk*z + lk*z2

where Bk* is the subset containing z.

Remark 3.3 The resulting acceptance probability has a very intuitive

form as in the filtering case, see Lemma 2.5. It reflects the two ap¬

proximations used to implement this method: the approximation of the

logarithm of the Pearson type VII density (up to some terms) by a ma¬

jorant and the approximation due to the substitution of p by p .

Therefore, it is again important that the majorant approximates well the

logarithm of the Pearson type VII density (up to some terms) to have a

high acceptance probability.

Proof: The proof is similar to the corresponding one in the filtering

case, see Lemma 2.5. We take the formula for the acceptance probability
in the rejection method with the auxiliary index and we evaluate it

using the proposal densities p (i, z) and the distribution (t3 («)) (see their
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definitions in Lemmas 3.3 and 3.5). In addition, the result of Lemma 3.4

is used. Note that the target density is given by p (z\z// ^
, ,,y\ t

in (3.10).
The acceptance probability is given equivalently to (2.16) by

7Tj (l, Z)

pvu(m,c/a,0)(z) wh3 </>
a.<->+a.<+)-v.

1 (z)

r3(i) p(i,z) M

with

~ M(_> +M<+) -Vt
pvu (m, c/a, 0) (z) wh3 <p ( - J

,
1 ) (z)

M > sup
-

t3(i) p(i,z)

First, we calculate the supremum term and we define M. This can be

achieved using again the inequality (3.11), the definition of the distri¬

bution (t3(i)) in Lemma 3.5 and Lemma 3.4 with A > 1.

(M(_)+M(+)-yt A
PVU (m, c/a, 0) (z) wh3 <y

-s =?
,
1 (z)

T3(l) p(l,z)

pVII (m, c/à, 0) (z)-4> [£±P±,A (z) 4> (^)+f-«\ 1) (z)

rjW p(i,z)
t (ö£±vai (z)

^ri^&M)W

<t>(»^4^,VX)(z)

<

N K

ki I ^2wh3^2Ri^Mi,i ) V\ exp

r=i i=i

1

2(A-1)

P^-P^-2

(3.13)

The last expression does not depend neither on z nor on the filter sample

(z(t- ) (t-i)) f°r the assumed A. Therefore, M can be set equal to it.
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Using the definitions of M and (t3(i)), the acceptance probability is

given by

~ M(_> +M<+) -Vt
pvu (m, c/a, 0) (z) <p I - J

,
1 I (z)

n3 (i, z) =

ki [J2i=iRi,tMi,t)y^ exP 2(A-1)

M(+)_M(+K2
p(i,z)

|£ît^..|C,

Pvu (m, c/a, 0) (z) -<p ( - 5 -,a/A I (z) 4> ^,^W

ki (Yf=1 Ri,iMiA p (i, z) 'A exp
.M(+)_M(+)X 2

2(A-1)

(3.14)

Now, the first fraction can be simplified as in the filtering case, see

Lemma 2.5, equation (2.24). Substitute again ay by à, Y^=i fizt-i by

Pt + P) and recall that z is in Bk* The second fraction can be

evaluated using Lemma 3.4. Thus, the lemma follows. D

There are still two topics to discuss: the choice of A and the con¬

struction of the majorant.
What is a suitable value for A? A should be computable at the begin¬

ning of each smoothing step since it is needed to construct the proposals

p(i,z) and the distribution (t3(i)). Up to now, we have required that

A is greater than one and that it is independent of z, the filter sample
and the smoothing sample. In addition, we look for a simple procedure
to compute A. Thus, an intuitive strategy is to minimize the right side

of the inequality

4>[ 4 ,i (*)

4>
A.<->+A.<+)-V.

< a/A exp

A )(z)

1

2(A-1)

,(+)
P
(+k 2

with respect to A, see Lemma 3.4. In this way, we will improve the ap¬

proximations in the construction of the distribution (t3(i)) and in the

evaluation of the acceptance probability and also increase the accep¬

tance probability, see (3.12), (3.13) and (3.14). Contemporaneously, we
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should consider the mentioned restrictions.

Explicitly, Lemma 3.4 gives the value of A at which the minimum of

the right side is reached. We propose the following procedure to find a

suitable value of A given all p
(+).

• Compute e, := (p-
,S+) medn ,(+) for j = 1, ,N.

• Compute e

• bet \tmp

medj (e3)

_

I Ve+Ve+4

'3 \^3J

2

Note that Atmp is at least one.

• The experience shows that more than one distribution setup is

computed to generate the sample (z^). Thus, it is reasonable to

reduce the previous defined value of A. We take

A
tmp

1

In the (unrealistic) case where the resulting A is one, we set

A = 1.01.

This choice of A fulfils the restrictions discussed before.

In Subsection 2.3.4, we discussed the construction of the majorant
in the filtering recursion. We found out that it was reasonable to distin¬

guish three cases with corresponding majorants. The same arguments

are also valid here. Then, we state equivalently to the filtering case:

Definition 3.2 Let the p\ 's, p ,
a and X be as in Lemma 3.3 and

let 5 be a strictly positive real number. Define

p := medt
Pt "S+> yt

k-) '= a(p- vÄ<5) = -log

/(+) := g(p + VX5) = - log

>\5

c/a

>\5

c/a

Then, the parameters to define the default majorant are given in Ta¬

ble 3.1, the parameters for the lower majorant in Table 3.2 and the
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parameters for the upper majorant in Table 3.3. Note that lower

and upper majorants can be defined only if p < —a/3 c/à — \/Xö and

p > a/3 c/à + \/Xö, respectively.

rffc-i dk o.k ßk 7fc

-oo -5 c/â - log(26) 0 0

-5 c/â -V3c/a ^^)-log(4) ^fL= 0

_^cj~a _cß i^+^ß) _g2)_

-c/â c/â 0 0

elâ
^F\rK log(4)-N/3 1og(2) log(2)

c/a Vd c/a v^_1 (Vâ-i) c/_

log(2)

(c/ï)2

0

V3C/5 5 c/â ^^)-log(4) -y^ffe °

5 c/â oc - log (26) 0 0

Table 3.1: Parameters to define the default majorant in the smoothing
recursion (first method).

dk-i dk a.k ßk 7fc

— oo p — y\8 /(_) 0 0

p-Vxs p + Vxs *(_) - fa (p - Vxs) lj±^r1 °

p+VXS -V3c/â l(+)-ß3(p + VXS) ^+%% o

log(2)
-c/â c/â 0 0

r/â
^F\elâ log(4)-A/31og(2) log(2)

c/a Vd c/a v,i_1 (V3-i) c/â

a/3 c/â oo - log (4) 0 0

Table 3.2: Parameters to define the lower majorant in the smoothing
recursion (first method). We should have p < —a/3 c/à — \/Xö.

We select:

• the default majorant if —a/3 c/à — \/Xö < p < a/3 c/à + \/Xö,

• the lower majorant if —a/3 c/à — \/Xö > p,

• the upper majorant if p > a/3 c/à + \/Xö.
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rffc-i dk Ofc ßk 7^

-oo -V3 c/â -log(4) 0 0

_,/q
r/â -c/â log(4)-V^log(2) log(2) n

Vd
c/a c/a v,i_1 (a/3-i) c/s

u

log(2)
"

(c/a)2

0

0

-c/â c/â 0 0

V3C/5 M-aA<5 -log(4)-ft^c/5 ^%^\ra
p-Vxs p + Vxs /(_) - ß6 (p - Vxs) lj±^r1 °

p + y\8 oo Z(+) 0 0

Table 3.3: Parameters to define the upper majorant in the smoothing
recursion (first method). We should have p > a/3 c/à + \fXb~.

The remarks done in the filtering case are also valid here. Moreover:

Lemma 3.7 The three majorants in Definition 3.2 satisfy Definition
3.1. I.e., they fulfil the inequality

g(z) = -log

,
2'

,
z

1,
. .„

c/a

K

< J3 (ak + ßkZ + IkZ2) I-Oe-Bfc}, Vz G :

k=l

In addition, these majorants are continuous functions in z.

Proof: The proof is the same as in the filtering case, see Lemma 2.6.

Substitute av by ct. D

Finally, we put together all previous results and we summarize the

particle smoothing recursion at time t with yt known.

Algorithm 3.1 Particle smoothing recursion at time t with yt avail¬

able.

Assumptions:

• The fully defined default majorant and the partially defined lower

and upper majorants have already been computed and 5 is known,
see Definition 3.2.
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• The upper triangular matrix R has already been found as explained
in Remark 3.1.

• The maximal allowed number of rejections is known.

• The filter sample (z)/_ -, ct_n) an<^ ^e smoothing particles

(z(t+i) (t+ ))' *>•?' = f' • • •

' N, are known from the filtering recur¬

sion and the previous smoothing step at time t + I, respectively.

Preliminaries:

1. Compute the p\ 's and the p 's for i,j = l,...,Nas described

in (3.5), (3.6) and Lemma 3.1.

Compute the Rv^ 's and the Rv 's for i,j = 1, ..

.,
N with R

as above and vt 's, v 's as in (3.7), (3.8) and Lemma 3.1.

Sort the p 's according to size and apply the same permutation

to the Rv^+) 's.

2. Compute X.

To this end:

(a) Compute e3 := (p — med3 (p J J , for j = 1, ..

.,
N.

(b) Compute è := =% med3 (e3).
2

(c) Set Xtmp :=

(d) Set

x-.= :

/e+Ve+4

Xtmp ~ 1 =l +
l (Vë+Ve + A

2 2 2 \ 2 /

In the (unrealistic) case where the resulting X is I, set

X = 1.01.

Begin the construction of the particles (z\f ), j = 1,. ..,
N. Set j = 1.

3. Set p = p and choose the majorant.

For this purpose, define

p = med.
Pt + Pj

-

yt
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and select

• the default majorant if —a/3 & — \fXb~ < p < a/3 & + \Xb~,

• the lower majorant if —a/3 & — yX5 > p,

• the upper majorant if p > a/3 ê + a/Ao".

// i/ie lower or the upper majorant is chosen, compute the compo¬

nents which depend on p, X and 5, see Definition 3.2.

4- Compute the distribution setup for the rejection sampling method

using p .
I.e. find the variables to get the efficient proposals

p(i,z) and the optimal distribution (t3(i)).

To this end, compute the variables ~ä~k, ~Pkt, ^ ( k- k " ),

$ (^=-^) and RMk}l := Rk,t Mk}l for all k = 1, ... ,K and

all i = 1, ...,
N as described in Lemma 3.3. In addition, compute

the partial sums of the RMk<t 's over k for all i.

5. Compute the optimal distribution (t3(i)) for the particle
(i)

(t+i) (t+ ) according to Lemma 3.5. Find also its partial sums.

In addition, set the rejection counter rej-counter to 0.

6. Sample a pair (/tS3>,z^3>) according to the distribution T3(i)p (i, z).

First, generate the auxiliary index P3' according to the distribu¬

tion (t3(i)) and then the variable Z^3> according to the density

p i/iS3', z) with T3' = 'S3'. The two samplings are carried out by
the inversion method, see also Remark 2.6.

7. Check the acceptance of the proposed pair (i^3\z^3').
To this end, generate U uniform on [0, 1] and compute the accep¬

tance probability ir3 (i^3\z^3') according to Lemma 3.6.

• lfU<ir3 (i^3\z^3'), then accept the pair (i^3\z^3'). Return

(i)
the particle z) defined by

z[o) =yt + à z{3).

Set j =3 + l.

IfJ
—

N, return to step 5. Otherwise stop: all particles (z)f')
have been computed.

• Else, the pair (i^-3', z^-3') is not accepted. Increment

rej-counter by 1.
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If rej-counter < maximal allowed number of rejections, re¬

turn to step 6. Else, return to step 3 (improve the majorant

and then the setup).

3.3.2 Recursion with missing yt

We discuss now the smoothing recursion when yt is missing. The recur¬

sion simplifies considerably as in the filtering case, see Section 2.4.

If yt is not available, we do not have the Bayes' step (3.1) in

the exact computation of the density p (zt\z(t+i) (t+p), Vi t)- Thus, for

(7) (7)
each y+i) (t+ )

we should generate a particle z) from the density

P (z*lz(t+i) (t+P)>yi t) defined by

N

pi^+D^+pyyit) =J2^2^<i>{^)+^3+)^)(zt)> (3-15)

see (3.3) and (3.4). Note that we have not dropped yt from the pre¬

vious smoothing density notation, although it is missing. We have set

the "value" of yt to NA (not available). In this way, the formula has a

better readability.
The density (3.15) is a mixture of normal densities with weights given

by «jjj/ Yt=i wt,j- Both the normal densities and the weights depend
on the filter and smoothing samples. The latter dependence causes the

same difficulties met in the recursion with yt available. Then, we use

a two-step procedure to sample from this mixture: we generate the in¬

dex J according to the weight distribution and then the variable Zt is

sampled from the normal density </> (p\ '
+ p ,ct) (zt) with I = 1.

The sampling from the normal density is straightforward if we take care

to compute all p\ 's and all p 's at the beginning of the smoothing

step. The difficulty is given by the sampling from the weight distri¬

bution. This sampling is achieved typically with the inversion method

and thus the evaluation of the partial sums is also required. But, since

the weights depend on the smoothing sample, the weight distribution

and its partial sums have to be computed for each smoothing particle.

Thus, the resulting algorithm is not particularly fast. In Subsection

3.3.1, we discussed some ideas to avoid that the weights depended on

the smoothing particles. But unfortunately, we did not come off. We

have to think the sampling procedure over to have an effective improve-
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ment, see Section 3.4. Again, for method 1, we are satisfied with the

described two-step sampling method.

Then, the smoothing recursion can be summarized as follows.

Algorithm 3.2 Particle smoothing recursion at time t with missing yt.

Assumptions:

• The upper triangular matrix R has already been found as explained
in Remark 3.1.

• The filter sample (z)/_ -, ct_n) an<^ ^he smoothing particles

(z(t+i) (t+ ))' *>•? = 1' • • •

' N, are known from the filtering recur¬

sion and the previous smoothing step at time t + I, respectively.

Preliminaries:

1. Compute the pt 's and the p 's for i, j = 1, ..

.,
N as described

in (3.5), (3.6) and Lemma 3.1.

Compute the Rvt 's and the Rv 's for i,j = 1,. ..,
N with R

as above and v\ 's, v 's as in (3.7), (3.8) and Lemma 3.1.

Begin the construction of the particles (zf ), J = 1, ...,
N.

2. For j from 1 to N do:

(a) Compute the weights

2^=1 Wt,3

with wt<3 as in (3.9). In addition, compute the partial sums

of the weights.

(b) Sample T3' according to the weight distribution using the in¬

version method.

(c) Sample Z{to) from <y U[~] + p(3+), à) (zt) with 1^) = «0).

Return zß
.

3.4 Particle smoothing recursion: method

2

In Section 3.3, we discussed the first method to implement the smooth¬

ing recursion at time t. It was derived from the filtering one but the
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resulting algorithm was not particularly fast. It is useful to sketch again
the leading ideas to have a starting point for the development of the sec¬

ond method.
(7)

The task is to generate a particle z) from the density

P (zt\z)ry+1) tt+p),yi t) f°r each Z(t+i) (t+p)-
Fhanks to Lemma 3.2, we

can generate a particle z^3' from each density p (z\z\3t+l^ (t+ ,, y\ t ) de¬

fined as in (3.10). In the first method, this sampling was attained with

the rejection method with the auxiliary index. Unfortunately, we saw

that the efficient proposal densities p3 (1, z) depended on both the fil¬

ter sample (zn_ -, ft_n) and the smoothing particles (y+11 (t+ )) The

latter dependence is harmful and it was eliminated by constructing the

proposal densities p(i,z) using a fixed smoothing particle y+11 (t+ )

and, consequently, by enlarging the variance of the normal densities. In

addition, an update of these proposal densities was done once they be¬

came bad proposals. Although the proposals p(i,z) were used to sample
several z^'% this approach was not very efficient because the proposals

were computed for all filter particles (z/y_ -, ,-t-ii)- Fhis required a huge

amount of computations. The computation of the auxiliary distribu¬

tion t3(i) was even worse. In fact the optimal choice depended again on

both filter and smoothing particles and we did not succeed in eliminat¬

ing the second dependence in a clever way. At that time, we proposed
to compute the auxiliary distribution t3(i) and its partial sums for each

smoothing particle y+11 (t+ )

How can we speed up the algorithm? The key concept is to compute a

distribution setup which is simultaneously reliable and contains few dis¬

tributions since only one particle z^ is sampled from the target density

p (z\z(t'+1-, (t+ 1,3/11). Thus, we compute again the auxiliary distribu¬

tion (t3(i)) for each j but we take care to group similar filter particles
and we give the same value to the corresponding t,(«)'s. In addition,
we can introduce a pretesting on the sampled index I and we carry out

the construction of the proposal density p3(i,z) for this index / only
if it has passed the pretesting. In this way, an unfavourable index / is

discarded immediately and it does not cause additional computations.

Thus, we can allow that the auxiliary distribution and the proposal den-

(7)
sity depend on the smoothing particle y+11 (t+ )

since we reduce the

amount of required computations to find the auxiliary distribution and

we compute the proposal density only when it is needed.
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In few words, these are the leading ideas to develop the second method.

We discuss them in detail in the following subsections. We distinguish

again between the case with yt available and the one with missing yt.

Since the latter is a special case of the former, we discuss first the re¬

cursion with yt available.

3.4.1 Recursion with yt available

The aim is to improve the sampling of z^ from the target density

p(z\z)3t+l^ (t+ s,yi t) with known yt. The sampling is performed again

using the rejection method with the auxiliary index. Thus, there are

several points to treat. We should find efficient distributions p3 (i, z) and

(t3(i)) and evaluate the acceptance probabilities of the proposed pairs

(i,z). But we wish to apply the rejection method using a distribution

setup that is reliable and contains only few distributions.

Let us begin with the construction of the proposal densities p3 (i, z).
They should be good proposal distributions for the densities propor¬

tional to

pvu (m, c/a, 0) (z) </> ^
,
1 (z)

as seen in Subsection 2.2.1 and using that the target density is given

by (3.10). Unlike the first method, we work now directly with the

previous densities. I.e., we do not substitute p by p and we do

not enlarge the variance of the normal densities, since the construction

of the densities p3 (i,z) will be carried out only after the pretesting on

the indices I, i.e. only for potentially good indices /. This is a first step

towards having few distributions in the setup since p3 (i, z) will be found

for one index / at a time and not for all filter particles. The dependence
(7)

on the smoothing particle y+11 (t+ )
*s all°wed since it does not cause

additional difficulties.

The majorant is defined in the same way as in the first method, see

Definition 3.1. Again, we delay its construction and we concentrate on

finding the proposals p3 (1, z).
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Lemma 3.8 Let the proposal densities p3 (i, z) be chosen as

PYn _

l
i

'-W,.,

'

2

r^-kjtj ÏVlk:t3
K exp

p3 (i, z) = 22 '

k

k= l Y,l=lRl,t3Ml,t3

1

I z-p-k ,

"2

with

o~k

Pk,:

1

1 - 2m7fc

'p\ ]
+ p{3+) -yt

Mk,

mßk

l{zEBk}

Rk,tj exp

1 ( Pk-,

2 V ak

Mtk,tj 2tt at $
Pk',

0~k

Pt P
(+)

yt

$

CT ,

dk-1 ~PkA

~àk

mak

The parameters o.k, ßk, 7fc and dk are as m Definition 3.1; a is as in

Lemma 3.1; p\ and p are as in (3.5) and (3.6); m and c are the

parameters of the observation error distribution in the considered model

(2.6) and (2.7). Finally, $ (x) is the cumulative j\f(0,1) distribution

function.

Then

,(-)_!_„(+)

Pvu (m, c/a, 0) (z)-(p

with

yt

'

K

1] (z) <kv\^2Ri,t3M,A-p3(i,z)
(3.16)

V=l

h-.=
r(m) CT

a/2 7T cT(m- 0.5)'

Remark 3.4 Most remarks of the corresponding filtering Lemma 2.3

are also valid here.

Proof: The proof is again the same as in the filtering case, see

Lemma 2.3. Substitute ay by ct, Yf=i fizt-i by p\ + p„ and pt by
„(-)+„(+) -yt _

— J
.
In addition, set A = 1 and use the new definitions of ak,
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pk j,, Rk,tj and k\ given here. D

In Remark 2.6, we also gave a second interpretation of the inequality

(3.16) and we found a useful feature of it. We generalize this character¬

istic as follows.

Definition 3.3 Let q (z) be a majorant of the density

Pvu (m, c/à, 0) (z), see also Remark 2.6. Then, we define

M (a) := M (" ) := -j- f
q (z) <yx (z - %) dz.

Remark 3.5 Some comments about the previous definition.

• In words, M (y is proportional to the convolution of the two func¬
tions q (z) and <p\ (z). Since à depends only on the hyperparam¬

eters, we drop it from the notation and we denote M (y simply

by M (a).

• If\og(q(z)) is defined using the Definition 3.1, then we have

K

M (p[-] + p{3+) - yt) = J2Ri,t3Mi,t3,
i=i

see the inequality (3.16).

• If q(z) is symmetric about zero, the same is also true for M (a).
In fact, we get with the substitution z' = —z and the symmetry of

(pi (z) about zero that:

M(-a) = —f q(z) 4>i(z+^)dz
«1 J-oo V aJ

= khl
^

q{~zl) 4>l{-z' + l)(-dz')
= —[ q(z') 4>Az' ~")dz' = M(a).

«1 J-oo V crJ

Since we have chosen the proposal densities p3 (i, z), we can compute

the optimal distribution (t3(i)). We find
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Lemma 3.9 The optimal distribution (t3(i)) is given by

t3(i) oc wy M (p\> + py' - ytj

with p\ , p andwl3 as in (3.5), (3.6) and (3.9), respectively; M (a)
as in Definition 3.3.

Proof: The proof is very similar to the ones in the filtering case

and in the smoothing recursion implemented with the first method, see

Lemmas 2.4 and 3.5. I.e. it follows using Lemma 2.1, the inequal¬

ity (3.16) and Remark 3.5. Note that the target density is given by

p(z\z{(ili)(t+pyyit),see(^lO).
From Lemma 2.1, the optimal t3(i)'s are given by

To (l) OC M%

with

Pvu (m, c/a, 0) (z) wy </> I -s f ,
1 j (z)

Mt > sup ^ '-
.

p3(i,z)

Using the inequality (3.16) and Remark 3.5, we find

/V_)+m(+>-& A
Pvu (m, c/a, 0) (z) wy </> I — J-

,
1

j (z)

p3 (i, z)
K

< kx wh3 J2Ri,*3Mi,t3 = ki wtj M (p^ + p{3+) - yt) =: Mt

i=i

since the right hand side of the inequality is independent of z. The

lemma follows because k\ does not depend on the filter sample

(z(t-p) (t-i))- D

The optimal distribution (t3(i)) depends on both the filter sample

(z(t- ) (t-i)) ano- tlïe smoothing particles (y+n (t+ )) as we have al¬

ready noted in the first smoothing method. At that time, we tried to

eliminate the latter dependence, but without success. Now, the first key
idea is to reduce the computation complexity with respect to the filter

sample. This can be achieved with the following definition.
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Definition 3.4 The range

niin(p[ ]),m&yL(p[ ])

is divided in equally wide subsets S\, ..., S^t_t The index subsets Ir

are defined by

Ir = {i\p[-] £ Sr}, r=l,...,Nt-y

Remark 3.6 Since the p\ 's are constructed from the filter sample

( (t- ) (t-l)) an<^ ^le su^se-t width is fixed, the number of subsets depends

on this filter sample. We denote the dependence by Nt-i- In addition,
note that some subsets Ir may be empty.

We can combine the result of Lemma 3.9 with Definition 3.4.

Definition 3.5 The used distribution (t3(i)) is defined by

with i G Ir, r G {1,. .., -/Vt_i}. c3(r) is defined by

c3(r) > sup (wl>3 M (p{-] + //;+) -yt))-
In words, the idea of the previous definition is to get the same value to

all t3(i) with i in Ir. This reduces the computation complexity since

we have to compute only Nt-\ values c3(r) to define the distribution

(t3(i)), where Nt-i <C N (N the sample size).
For the moment, let us suppose that good upper bounds c3(r) are

known for each r. We discuss later how such bounds can be found.

Then, the next step is to evaluate the acceptance probability of a pro¬

posed pair (i,z). We find:

Lemma 3.10 Let the densities p3 (i,z) and the distribution (t3(i)) be

defined as in Lemma 3.8 and Definition 3.5, respectively.

Then the acceptance probability of the pair (i, z) generated from the

distribution T3(i)p3 (i, z) is

^3^z) = ^M(pA
/ / \

2\
I I 7. \ \

+ ak* + ßk*z + -fk*z2
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Ir and Bk* are the subsets containing the index i and the value z, re¬

spectively.

Remark 3.7 The value of M (pt + p
—

yA is a by-product of the

sampling of Z since M [p\ + p —yt) = 2;=i Ri,tjM\M, see Re¬

mark 3.5. In addition, the resulting acceptance probability has again a

very intuitive form. It reflects the two approximations used to imple¬
ment this method: the approximation of the logarithm of the Pearson

type VII density (up to some terms) by a majorant and the grouping of
similar indices 1 to define (t3(i)). Therefore, it is again important that

the majorant approximates well the logarithm of the Pearson type VII

density (up to some terms) and that the upper bounds c3(r) are chosen

with care. In this way, we have a high acceptance probability.

Proof: The proof is similar to the corresponding ones in the filtering
case and in the smoothing recursion implemented with the first method,
see Lemmas 2.5 and 3.6. That is we take the formula for the acceptance

probability in the rejection method with the auxiliary index and we

evaluated it using the proposal densities p3 (1, z) and the distribution

(t3(i)) (see their definitions in Lemma 3.8 and in Definition 3.5). Note

that the target density is given by plzlzß^-, (t+ -,,yi t), see (3.10).

The acceptance probability is given equivalently to (2.16) by

pvu (m, c/à, 0) (z) wh3 <p ( — f2 -, 1 j (z)
7T„ (l, z) = -T ; t. TT
' '

r3(i)p3(i,z) M

with

pvu (m, c/a, 0) (z) wh3 <p ( §? -, 1 ] (z)
M > sup — -A^

T3(l) p3(l,Z)

First, we calculate the supremum term and we define M. This can be

achieved using again the inequality (3.16) and the definitions of M (a),
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t3(i) and c3(r), see Remark 3.5 and Definition 3.5. Explicitly:

pvu (m, c/a, 0) (z) wh3 <p I - Ü
-, 1 I (z)

<

T3(l) p3(l,z)

h wl}3 M (p^ + p{3+) - yt)
T3(l)

< sup sup
r \telr

Nt-

k, wh3 M [p^ + p^ - yt) YrlT \Ir\ c3(r)'
^iVt-

E/il1 c3(r)I{teIr}

k± YI l/rl cj(r) sup ~ttsup \W^3M [pI ) +p{j+) - yt) )

Nt-1

< kl Y \Ir I C3 (7

The last expression does not depend neither on z nor on the filter sample

(y_ -, ct_n)- Therefore, we set M equal to it. Then, it follows using

the definition of (t3(i)) and recalling that i is assumed to be in Ir:

Tl3 (l, Z)

~

( M<_)+M<+) -Vt

Pvu (m, c/a, 0) (z) wy </> I - a
-,

1 ) (z)

ki(YrlT\Ir\cAr))r3(i)p3(i,z)

^YtiRi^M^ Pvn(m,clà,0)(z)^)+f-y\l ) (z)

°3{r) h (yIiRi^m^) p3(i,z)

»,,3 M (p[-] + p{3+) - yt)

exp < —m logfl- z

c/à
+ ak* + ßk*z + ^k*z

The last equality follows since the second term can be simplified as in

Lemma 2.5, equation (2.24). Substitute again ay by à and Yï=i fizt-i
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by y + py ,
set A = 1 and recall that z is supposed to be in Bk* .

If we look closer to the acceptance probability in Lemma 3.10, we

note that it is less than

wh3 M (p^ + p{+) - yt)

for all pairs (I,Z). In fact, it follows from the majorant Definition 3.1

that the exponential term in the acceptance probability has always neg¬

ative exponent and therefore it is at most 1. In addition, the upper

bound (3.17) for the acceptance probability depends on the generated
index I but not on the sampled value Z. This nice feature suggests us

the second main idea to reduce the amount of computations. We can

carry out a pretesting (squeezing) on the sampled index I before sam¬

pling the variable Z. The squeeze method was proposed by Marsaglia

(1977).
In our case, this idea is carried out by setting the pretesting probability
of the index I equal to the above bound or an easier upper approxima¬
tion of it (note that the bound is at most 1 thanks to the definition of

the Cj(r)'s). If I is not accepted, the pair (/, Z) will also not be accepted

independent of the value of the sampled Z since the acceptance proba¬

bility of the pair (/, Z) cannot exceed the upper bound (3.17). In such

a case, we spare the computations to generate a useless Z and we go on

sampling an index / until it passes the pretesting. An accepted index

J constitutes a reliable index and it is worth sampling Z according to

p3 (i, z) with I = i (see Lemma 3.8) and then checking the acceptance

of the pair (i,z) (see Lemma 3.10). In fact the conditional acceptance

probability of the pair (/, Z) given that / has passed the pretesting is

exp + ßk*z + jk*z

which is about 1 for a suitable chosen majorant. Moreover, the proposal

p3 (i,z) is found only for one filter particle y_ -,

,t_1\
at a time and

not for all values as in the first method. Thus, the construction of

p3 (i, z) can be carried out using the true py' and not only using the

approximate value p .
This also improves the efficiency of the method

and it reduces the amount of computations.
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Unfortunately, the evaluation of the upper bound (3.17) requires the

computation of M ( y
'
+ py' —

yt ) which is the normalizing constant

of p3 (i, z), see Remark 3.5. We should find a way to compute it or at

least to get a good upper bound. A Theorem proved by Ibragimov

(1956) help us. Following him we define

Definition 3.6 A distribution function F(x) is called unimodal if there

exists one value x = b such that for x < b the function F(x) is convex,

while for x > b it is concave.

A distribution function F(x) is called strong unimodal if the com¬

position (convolution) of F(x) with any unimodal distribution function
is unimodal.

E is the set of all points x such that Dj_F(x)DSF(x) =/= 0 where F(x)
is a distribution function, DdF(x) is the right derivative of F(x) and

DsF(x) is the left one.

A probability density function f(x) is called unimodal or strong uni¬

modal if the corresponding distribution function F(x) is unimodal or

strong unimodal, respectively.

Remark 3.8 The definition of an unimodal probability density func¬
tion corresponds to the one for general functions:
a function h(x) is called unimodal, if for some value b, h(x) is mono-

tonic increasing for x < b and monotonie decreasing for x > b.

Theorem 3.1 (Ibragimov) A proper unimodal distribution function

F(x) is strong unimodal if and only if F(x) is continuous and

tp(x) := \og(F'(x)) is a concave function on E.

Proof: See Ibragimov (1956). D

Corollary 3.1 The normal distribution function is strong unimodal.

Proof: Let $M/T (x) denote the J\f(p,a2) distribution function.

Clearly, $m,ct (x) is unimodal (set b = p) and continuous. Its first deriva¬

tive is zero nowhere and E = R. Moreover, the function

$(x) := log f—$,,,,, (x) J =--log(27T)-logCT-- f^-y^j
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is concave on R. Then, the corollary follows from Theorem 3.1

(Ibragimov). D

Now, we show how this is useful.

Lemma 3.11 Suppose that the majorant q (z) in Definition 3.3 is

bounded and unimodal. Then, the function M (a) is unimodal.

Proof: The integral J q (z) dz is not assumed to exist. For example,
this integral does not exist for the chosen (logarithmic) majorants (see
Definition 3.9) since they do not go to —oo for x going to ±oo. Thus,
we cannot define and work directly with q(z) / jq(z) dz.

The way out is given by the following definition. Let

1n(z) = ç(z)I{ze[-n,n]}-

Then
/>oo />n

qn (z) dz = q (z) dz < 2n sup q (z) < oo.

J
-n z

Therefore, we can define the density

1n(z)
fn(z)

J qn (z) dz
'

This density fn(z) is unimodal. Thus, the convolution (Fn * $) (a) is

unimodal from Corollary 3.1 where Fn(z) denotes the distribution func¬

tion corresponding to fn(z) and $ (z) denotes the standard normal dis¬

tribution function. Since

4- (Fn * *) (a) = -f- [<S>(a-z)dFn(z) = I <yi(a-z)
gw (z)

dz,
da da J J J qn (z) dz

the function

Mn (a) := — I </>i (a - z) qn (z) dz

is unimodal for all n. Finally, from qn (z) < q(z) < supz q (z) < oo, it

follows using Lebesgue's theorem that

lim Mn (a) = — \ 4>\ (a — z) q (z) dz = M (a), Va
n^oo k\ J

and the lemma is proved. D
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Clearly, M (a) = M (a/a) is also unimodal and we denote the maxi¬

mum of M (a) by amax. We can benefit from this unimodal feature

to compute an upper bound for M ( p\ '
+ py' —yt) In fact, we can

evaluate M (a) on a grid a\, .. .o» at the beginning of the smooth¬

ing algorithm. Then, we approximate M ( p\ + p
—

yt ) by taking

the smallest value M (ai) greater than M (p\ + p —yA,ai& grid

point, or M (amax). As a consequence of the unimodal feature, only

ctmax or two grid points come into question: the largest a; not greater

than p\ '
+ py' —

yt or the smallest a; not less than y
'
+ py' —

yt.

If we would know the location of the maximum amax, then we could

choose the right point between them. But unfortunately, it is not easy

to find the position of amax for a general majorant q(z). We should

refine this idea and assume additionally that the majorant q (z) is sym¬

metric about zero. Then, the same is true for M (a) (see Remark (3.5))
and therefore amax is zero.

Explicitly, we adopt the following technique to get an upper bound for

M^+p^ -yt)- First:

Definition 3.7 Let a\, ..., ajy be a grid containing zero and symmet¬

ric about it. Then, we compute M (a{) for all grid points a; not greater

than zero by setting pt + p —yt'-= o>i in the definitions of RkylJ and

Mkttj (see Lemma 3.8) to get

M(at) = M U(-> + p{3+) ~yt)=J2R^3M>
K

t> n /i

k,tj-

k=l

For positive grid points a\, it follows from the symmetries of both the

function M (a) and the grid sequence that

M (ai) = M (-ai) = M (aNg+1-i) .

The next step is to compute p\ + p
—

yt. It follows:

If P^] + p{3+) - yt < 0, then M [p[-] + p{3+) -yt)<M (a,.)

with

a,*-i<p[)+p{3+)-yt<a,*. (3.18)
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. If p[ ]
+ p{3+) - yt > 0, then M [p[ ]

+ p{+] -yt)<M (a,.)

with

ai* < p{-] + p{3+) -yt< ai*+1. (3.19)

Moreover, the grid idea permits to answer the open question of find¬

ing the Cj(r)'s for all r = 1,..., Nt-i. They have been defined by

c3 (r) > sup (wy M (p^ + p^ - yt) ),

see Definition 3.5, and recall that py' is fixed. It is important to find a

good approximation of the supremum to define c3(r) since the quotient

»,,3 M (p[-] + p{3+) - yt)

is the acceptance probability of the index / in the pretesting. Clearly,
it is desirable to have a high acceptance probability. But on the other

hand, the computation of the c3 (r)'s has to be easy to carry out. Then,
the most intuitive idea is to set

c3(r) > supwy
• sup M (p^ + p[+) - yt)

teir teir v /

How can we find the two suprema? As before, an upper bound for the

latter one can be computed thanks to the grid.

Definition 3.8 Let

P(r)rrnn = Him (p,) + Mo ~

Vt,
tÇzlr \ / J

p(r)max = max (/xî(_) ) + p{+) -

yt.
t^Ir V /

First, we note that p(r)mm < p(r)max. Then:

• If p(r)max < 0, then

sup M (p[-] + p{+] -yt)=M (p(r)max) < M (at, )
tel

with

ai*-i < p(r)max < at*. (3.20)
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• If p(r > 0, then

sup M (p[ )
+ p{+) -yt) =M (p(r)mm) < M (at* )

teir v /

with

at* < p(r)mm < ai*+1.

• Otherwise, we have p(r)mm < 0 < p(r)max and then

(3.21)

sup
te
ipM(Mî( î+fj^-yt) =M(ai*)

with

ai* = 0

(recall that 0 is a grid point).

For the first supremum, it follows using (3.9) that

1

(3.22)

sup Wjj = sup
teir teir

= A; exp

k exp

1

Rv[+) - -Rw,( )
J L

-Rw,(+) - Rvrt
)

J L ut*,3

where Rv\* denotes the nearest neighbour of the given Rv in the

.,(-) (-)subset {Rv\ ,i G Ir}. The intuitive procedure to find Rv\.t
' is to com¬

pute the distances between Rv and all Rv\ s, i G Ir, and return

the Rv;*
' with the minimal distance. Since the procedure is applied

to all subsets Ir and all vectors Rvy~' in each smoothing step, the re¬

sulting algorithm will have a complexity of order TN2. We saw that

the first method to implement the smoothing recursion had the same

complexity and the aim of the second idea is to reduce it. This can be

achieved with the method proposed by Friedman et al. (1977). Briefly,

they organized the subset {Rv; ,i elr}in a tree structure and then

they searched the nearest neighbour of the query vector Rv in this

tree. The computations required to construct the tree and to perform
the search are proportional to p \Ir\ log(|/r|) and log(|/r|), respectively

(p is the order of the AR process used as state equation (2.6)). Partic¬

ularly, the search of the neighbour is extremely fast once the data set is

organized. Thus, we adopt the latter nearest neighbour algorithm since
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it has a lower complexity compared to the intuitive one and therefore

it is considerably faster. Explicitly, we use the C++ implementation
written by S. Arya and D. Mount and described in Arya et al. (1998).
It supports any Minkowski norm for defining the distance and, espe¬

cially, the Euclidean one. In addition, it is convenient for us to find the

(+),
nearest neighbours of all Rv s in the subset

{Rv;

same time and then iterate for all subsets.

Summarizing, the c3(r)'s are defined for each r

.,(-)
,i G Ir} at the

,JVt-iby

c3(r) = W..J M (ad*) (3.23)

where and a;* are defined as above. We remarked before that each

c3(r) should be preferably close to < wtJM (p; '
+ py' —

yt )
,
i G Ir \

to have a high acceptance probability in the pretesting for I. This can

be reached by choosing a fine grid a\, ... a^ and a small width for the

subsets Sr. Of course, this can result in an increment of the computa¬

tions and thus a good trade-off should be found in each situation.

Finally, we examine the construction of the (logarithmic) majorant
needed to find the proposals p3 (i, z), see Definition 3.1. In the previous

paragraphes, we have assumed that the majorant q(z) of the density

Pvu (m, c/à, 0) (z) is symmetric about zero, bounded and unimodal.

We needed these features to carry out the computations. Therefore,
we should take care that the constructed (logarithmic) majorant fulfils

these features.

Actually, as before, we distinguish three cases. Note that the lower and

the upper majorants should be defined differently.

Definition 3.9 Let the p;
' 's, the py' 's and à be as in (3.5), (3.6)

and Lemma 3.1. In addition, let 5 be a strictly positive real number.

Define for a fixed p :

P =

medt (p[ ') + p3 -yt

l(-) =9(p-5) = -log

/(+) =g(p + S) = -log

p
— S

c/à

p + S

c/à
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Then, the parameters to define the default majorant are given in Table

3.4, the parameters for the lower majorant in Table 3.5 and the param¬

eters for the upper majorant in Table 3.6. Note that lower and upper

majorants can be defined only if p < —a/3 c/ct — ö and p > a/3 c/à + ö,

respectively.

dk-i dk o.k ßk 7fc

-00 -5 c/a -log(26) 0 0

-5 c/ä -V3c/a ^y^l-log(4) (b^6)
-

0
cj a

-.R
rlä -clâ log(4)-N/3 1og(2) log(2) „

Vd
c/a c/a v15_1 (v^-i) c/?

U

-c/a c/a 0 0

C/â V3c/â
l°g(4)-V5l°g(2)

_

log(2)
' V ' a/3-1 (a/3-1) c/S

log(2)

(c/?)2

0

V3C/5 5 c/â ^|a-log(4) -y^fyy, 0

5 c/â oc -log(26) 0 0

Table 3.4: Parameters to define the default majorant in the smoothing
recursion (second method).

dk-i dk o.k ßk 7fc

—00 p — 5 i(_) 0 0

p-5 p + 5 /(_) -ß2(p- S) l(+)2s(~} °

ß + S _V3c/5 -log(4)+/33y3c/5 ^1% °

-Vïc/â Vïc/â 0 0 -^^
V3C/5 -„-* -log(4)-/3By3c/5 -Ä, 0

-/.-j -^ + 5 l(_)+ße(p~S) -l(+)2s(~} °

—/i + (5 00 i(_) 0 0

Table 3.5: Parameters to define the lower majorant in the smoothing
recursion (second method). We should have p < —a/3 c/ct — ö.
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rffc-i dk ofc ßk jk_

— oo —p — ô /(+) 0 0

-tt-S -p + S li+)+ß2(p + 5) l(^2s(+) °

-p + S -V3c/â -\og(A) + ß3V3c/a Xl%°-lZ °

-V3c/â V3c/â 0 0 -^^
yäc/5 p-S -log(A)-ß5V3c/a -Xl%°_% 0

P-S p + 6 li+)-ß&(p + 5) -l(^2s(+) °

p + S oo Z(+) 0 0

Table 3.6: Parameters to define the upper majorant in the smoothing
recursion (second method). We should have p > a/3 c/ct + ö

We select:

• the default majorant if —a/3 c/ct — ö < p < a/3 c/ct + 5,

• the lower majorant if —a/3 c/ct — 5 > p,

• the upper majorant if p > a/3 c/ct + (5.

Remark 3.9 Most of the remarks done in the filtering case are also

valid here, see Remark 2.8.

New is the feature that lower and upper majorants are symmetric about

zero, too. Consequently, we have to simplify somewhat their approxi¬

mations around zero to retain the same number of subsets as before (7
subsets). Note that the upper majorant can be obtained from the lower

one by setting pupp = -plow.

In addition, we need to evaluate M (a) on the grid points a\, ..., a-^

to perform the smoothing recursion. But the computation of M (ai) de¬

pends on the chosen majorant, see Definition 3.7. Thus, M (ai) can be

computed for the default majorant at the beginning of the smoothing al¬

gorithm. But, every time that the lower or upper majorant is chosen, we

would have to compute M (aß) brand-new. We can avoid partially this

disadvantage using the same idea as in the first smoothing method. We

sort the values p and we use the same lower or upper majorant and

the corresponding M (ai) 's possibly for several p 's. When the lower

or upper majorant is no more suitable, we compute a better one and also

the corresponding M (ai) 's. The algorithm 3.3 explains the procedure in

detail.
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Lemma 3.12 The three majorants in Definition 3.9 satisfy Definition
3.1. I.e., they fulfil the inequality

g(z) := -log

2'
Z

'

c/ct

K

< J3 (ak + ßkz + ikz2) i{zeBk}, Vz g :

fc=i

The three majorants are continuous functions in z. Moreover, if q (z)
is constructed from one of them, then q (z) is symmetric about zero,

bounded and unimodal.

Proof: The proofs of both the inequality and the continuity are similar

to the ones in the filtering case, see Lemma 2.6. Substitute ay by à

and, for the lower and upper majorants, prove the inequality on the

interval [—a/3, a/3] similarly as before.

In addition, let h(z) denote the chosen majorant. We define q (z) by

/ ,

r(m) ?
f uf \\

q z =

r rf n^T exp (mh(z))

a/tt
c 1

(m
—

0.5)

Then, q (z) is symmetric about zero, bounded and unimodal. D

Finally, we put together all previous results and we summarize the

particle smoothing recursion at time t with known yt.

Algorithm 3.3 Particle smoothing recursion at time t with yt avail¬

able.

Assumptions:

• The fully defined default majorant and the partially defined lower

and upper majorants have already been computed and 5 is known,
see Definition 3.9.

• The grid a\, ..., ajy has already been defined: it contains zero

and it is symmetric about it. In addition, all M (ai)'s have been

evaluated using the default majorant, see Definition 3.7.

• The upper triangular matrix R has already been found as explained
in Remark 3.1.

• The width of the subsets that divide the range

min (p; ),max(y ) and the maximal allowed number

of rejections are known.
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• The filter sample (y_ ) (t-l)) an<^ ^le srn°othing particles

(z(t+i) (t+ ))' *>•?' = f' • • •

' N, are known from the filtering recur¬

sion and the previous smoothing step at time t + I, respectively.

Preliminaries:

1. Compute the p; 's and the p 's for i,j = l,...,Nas described

in (3.5), (3.6) and Lemma 3.1.

Compute the Rv^ 's and the Rv 's for i,j = I, ..

.,
N with R

as above and v; s, v s given as in (3.7), (3.8) and Lemma

3.1.

Sort the p; 's according to size and apply the same permutation

to the Rv^ 's. Do the same for the p 's and the Rv 's.
3 3

2. Divide the range min (p; '),m&x(p; ') in subsets

Si, ..., Spft_1 with the given width and compute all

Ir := {t\p^] e Sry r = I, . .

.,
Nt-y

Compute the nearest neighbour of each Rv in all subsets

{Rv{-),ieIr},r = l,...,Nt-1.

Begin the construction of the particles (z\f ), j = I,. ..,
N. Set j = 1

and initialize the rejection counter rej-counter to 0.

(i)
3. Choose the majorant to generate z) .

For this purpose, define

medt (pt ) + P3
~

yt

à

and select

• the default majorant if —a/3 c/ct — ö < p < a/3 c/ct + 5,

• the lower majorant if —a/3 c/ct — 5 > p,

• the upper majorant if p > a/3 c/ct + 5.

In the cases where the lower or the upper majorant is chosen:

• // it has been chosen in this smoothing step for the first time

or rej-counter is greater than the maximal allowed number

of rejections, then complete the definition of the lower or the
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upper majorant computing the components which depend on

p and 5. In addition, evaluate all M(a{)'s, I = l,...,Ng,
with this new majorant (see Definition 3.7).

• Otherwise, use the previous defined lower or upper majorant
and the corresponding M (a{) 's.

Set rej-counter to 0.

4- Compute the c3(r) 's, r = I, ..

., Nt-i, and the distribution (t3(i)).

Explicitly, from (3.23):

1 ,,s , ,
2

2
c3(r) := wt*t3-M (a;*) with wt*t3 = k exp Rv[+)-Rv^ )

Rv;* is the nearest neighbour of Rv in the subset

{Rv{~\ielr} and a,* is as m (3.20), (3.21) or (3.22). The

distribution (t3(i)) is found as in Definition 3.5. In addition,

compute also the partial sums of the latter distribution.

5. Sample an index T3' according to (t3(i)) until it passes the pretest¬

ing.

To this end, sample T3' with the inversion method and evaluate

the pretesting probability n3 (i^3'):

(3)\ -=
wyyt3 M (ai*

where Ir is the subset containing 'S3' and M (ai*) is as in (3.18)
or (3.19). Then, generate U uniform on [0,1],

• If U > n3 (i^3'), then the pair (P3',Z^3>) will be certainly

rejected (Z^3> is generated according to p3 ('iS3', z)). Increase

rej-counter by 1 and:

— If the default majorant has been chosen: repeat the sam¬

pling of T3'.
— If the lower or the upper majorant has been chosen:

if rej-counter is not greater than the maximal permitted
number of rejections or the lower or the upper majorant

has already been computed for this j : repeat the sampling

ofl^K
Otherwise, go back to step 3 (improve the majorant).

• Else, T3' passes the pretesting. Go to step 6.
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6. Sample Z^3> according to p3 (i^/z) where P3' = 'S3' has passed
the pretesting.

For this purpose, construct p3 (i^3>, z) as explained in Lemma 3.8

(note that this is done only for T3' = 'S3' and that the partial
sums of the RMk yy3

's over k are also needed). The sampling of

Z^3> is carried out as explained in Remark 2.6.

7. Check the acceptance of the proposed pair ('iS3', z^3').

To this end, compute the acceptance probability n3 (i^3\z^3') ac¬

cording to Lemma 3.10. Then, consider the same U for which T3'

has passed the pretesting.

• IfU<n3 ('S3', z^-3'), then accept the pair (i^/z^3'). Return

the particle zf defined by

43) =yt + o-z{3).

IfJ

—

N,

return to step 3. Otherwise stop: all particles (y)

Set 3 =3 + l.
IfJ

<
N,

retu

have been computed.

• Else, the pair (i^3', z^3') is not accepted. Increment

rej-counter by 1 and:

— If the default majorant has been chosen: go back to step

5.

— If the lower or the upper majorant has been chosen:

if rej-counter is not greater than the maximal permitted
number of rejections or the lower or the upper majorant

has already been computed for this 3: go back to step 5.

Otherwise, go back to step 3 (improve the majorant).

3.4.2 Recursion with missing yt

The second case to discuss is the smoothing recursion with missing yt.

As before, this is a special case of the one with yt available, and therefore

the recursion simplifies considerably.

The discussion in Subsection 3.3.2 remains valid. For each

y+11 ct_i_ i)
the aim is to generate a particle zf' from the density



3.4. Particle smoothing recursion: method 2 99

P\zt\z((t+i)(t+pyy^t) defined by

P

N

zt\z(i+i)(t+Pyyit) =
^ vt,3

Eiv
4>{p[-)+P{3+),^)(zt)

Note that we have not dropped yt from the previous smoothing density

notation, although it is missing. We have set the "value" of yt to NA

(not available). In this way, the formula has a better readability.

For each
0)

the above mentioned sampling can be achieved
(t+i) (t+p)'

again by first generating the index / from the weight distribution

t,j/ Yi=iwt,j and then the variable Zt according to the normal den-w.

,(-)sity <p ( p\
'
+ p) ,a) (zt) with I = i. We have already remarked that

both the weights and the normal densities depend on the filter and the

smoothing samples. These dependences do not cause any difficulties to

the sampling of Zt. On the other hand, the dependence on the smooth¬

ing sample makes problematic the sampling according to the weight

distribution, see the first smoothing method (Subsection 3.3.2). But,
this latter sampling can be improved by applying the same idea as in

the case with yt available. That is we compute the weight distribu¬

tion for each smoothing particle z
(3)

(t+1) (t+p)
but we group similar filter

particles. In this way, the weight distribution is reliable and fast to

compute at the same time. The grouping is achieved again by parti¬

tioning the range (p,(-h (p(-)ï

"t,0/Yt=lW:

although now the weights

(-)

j,j
do not depend directly on the values p; ,

see (3.9).

Another possibility would be to group similar vectors Rv; .
But since

they are p-dimensional, we risk to meet again the problem of the curse

of dimensionality as in the first smoothing method.

Explicitly, the range (À(-)ï (Ài-)\ is divided as in Definition

3.4. Then, we simplify Definition 3.5 to find the distribution (t3(i)).

Definition 3.10 The used distribution (t3(i)) is defined by

tjW = tj(*M)
c3(r)

../Vt
Y.Z-i\Ir\c3(r)

with !Glnr g{1,..., A^t-i}. c3(r) is defined by

c3(r) = supWjj = k exp I — —

teir
' V 2

Rv[+) - Rv1;, )
J L
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Rv;* is the nearest neighbour of Rv in the subset {Rv% ,
i G Ir}-

The sampling of the index / according to the weight distribution can be

carried out by the rejection method, see Subsection 2.2.1. / is proposed

according to the distribution (t3(i)) and it is accepted with probability

TT, (ï) -
CÀT)

-

CÀT)
-

Wt'°

SUP*Ï7M SUPr SUpîe/r y^y C3(r)

Remark 3.10 If c3(r) « wt^3, then the acceptance probability is high.

This can be reached by dividing the range min (p; ),max(y )
small subsets. Of course, more computations are needed.

Consequently, the particle recursion is organized as follows.

Algorithm 3.4 Particle smoothing recursion at time t with missing yt.

Assumptions:

• The upper triangular matrix R has already been found as explained
in Remark 3.1.

• The width of the subsets that divide the range

(p[ ]),m&yL(p[ ]) is known.

• The filter sample (y_ i ft-ii) arM^ ^le smoothing particles

(z(t+i) (t+ ))' *>•?' = f' • • •

' N, are known from the filtering recur¬

sion and the previous smoothing step at time t + I, respectively.

Preliminaries:

1. Compute the p; 's and the p 's for i, j = I,. ..,
N as described

in (3.5), (3.6) and Lemma 3.1.

Compute the Rv^ 's and the Rv 's for i,j = I, ..

.,
N with R

as above and v; s, v s given as in (3.7), (3.8) and Lemma

3.1.

Sort the p; 's according to size and apply the same permutation

to the Rv[ )
's.

2. Divide the range (p[ )),max((j,[ ]) in subsets

Si, ..., /Sjvt_i with the given width and compute all
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Ir:={t\p[ ] eSr),r=l,...,Nt-1.
Compute the nearest neighbour of each Rv in all subsets

{Rv{-),ieIr},r=l,...,Nt-1.

Begin the construction of the particles (zf ), 3 = 1, ...,
N.

3. For 3 from 1 to N do:

(a) Compute the c3(r)'s, r = I, ..

., Nt-i, and find the distribu¬

tion (t3(i)).
Explicitly, from Definition 3.10:

1
Rv(+)-Rv(-)

2

J Lc3 (r) := k exp (

with Rv;* the nearest neighbour of Rv in the subset

{Rv; ,i&Ir}. Then, find the distribution (t3(i)) and its

partial sums.

(b) Sample the index P3' according to the weight distribution

wt,j/ Yi=i wt,j using the rejection method.

To this end, P3' is proposed according to the distribution

(t3(i)) using the inversion method. Then, evaluate its accep¬

tance probability n3 (i^3') in the rejection method:

with Ir the subset containing the index i^3'. Generate U uni¬

form on [0, 1],

• IfU<n3 (i^3'), accept P3' and go to the next step.

• Else, repeat the sampling of P3'.

(c) Sample the variable Z; according to the normal density

<f> (p (J + py. ,&) (zt) with P3> = 'tS3> and return zf .





Chapter 4

Parameter estimation

In the previous chapters, we assumed that the whole set of parame¬

ters, say 0, in the considered model (2.1) and (2.2) is known and we

discussed the inference about the states Z\ j, based on the observations

Y\ t- From a statistical point of view, the most interesting problem is

the inference about the unknown parameters in the model. These can

be equal to all parameters or just be a subset of them (recall that the

parameters consist of both the hyperparameters of the function / and

the nuisance parameters determining the distributions of Zt and et).
We propose to estimate the unknown parameters using the maximum

likelihood method. This should result in robust estimates since the ob¬

servation error distribution in (2.2) is assumed to be heavy-tailed. In

addition, the maximum likelihood approach permits to find approximate
confidence intervals by the usual likelihood techniques. The difficulty is

that the likelihood function cannot be evaluated in closed form. Thus,
it should be approximated using Monte Carlo methods. For this reason,

we considered the particle filtering and smoothing recursions in Chap¬
ters 2 and 3. In fact, fast and reliable algorithms for these recursions

are a prerequisite for computing maximum likelihood estimators.

We discuss in this chapter two maximum likelihood methods to es¬

timate the unknown parameters. We call them the smoothing method

and MCEM. Both approaches have already been introduced by Hiirzeler

(1998), see Chapter 7. We will generalize these methods to cover also

the case with missing values in the observations (Yt) and/or in the exter¬

nal regressors (Xty,..., Xtim). In addition, the methods are protected

103
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against numeric overflow.

The key idea of both approaches is to approximate the exact likelihood

function using smoothing particles computed for a given 0q. (Recall
that 0q consists of both the unknown parameters and the given ones.)
Then, the approximate likelihood functions are maximized with respect

to the unknown parameters. Since the approximations are reliable only
around the used 0q, the procedures are iterated until the parameter es¬

timates are "stable" according to a chosen criterion.

We already discuss some features of this idea. A disadvantage is that

the filtering and smoothing recursions should be computed in each it¬

eration. For this reason, we made the effort to develop fast and reliable

algorithms in the previous chapters. On the other hand, the two meth¬

ods have a complexity of order TN. Therefore, the iterations are fast

to compute, especially for small sample sizes N. Moreover, the itera¬

tive estimates have quite small fluctuations around the true maximum

likelihood value 0ml already with small values of N. Unfortunately,
their convergence towards 0ml may be slow. This last behaviour can

be improved easily by developing an algorithm to find good starting
estimates for the unknown parameters. In this way, the number of iter¬

ations needed decreases and the estimation algorithms are faster. The

random fluctuations of the iterative estimates around 0ml can be re¬

duced by increasing the sample size N. It is reasonable to start the

recursions with a small value of N, and then increment it during the

iterations. Finally, we can use an ad hoc idea as stopping criterion.

The estimate differences Ok — Ok-i are plotted against k and the index

k from when the differences fluctuate around zero is found by eye.

Hiirzeler (1998) also proposed a maximum likelihood method based

on filter particles, see again Chapter 7. An advantage is of course that

the smoothing recursion is not carried out. In addition, the conver¬

gence is achieved with few iterations. But unfortunately, the iterative

estimates have big fluctuations around 0ml- Their amplitude could be

reduced by enlarging the sample size N. But this is not a good idea

since the algorithm has the disadvantage to have a complexity of order

TN2. Thus, it would become very slow.

For this reason, we give up to implement the filtering method. With a

good algorithm to compute the starting estimates, the smoothing and

the MCEM methods are more reliable and faster.

A definition and a remark before we begin the detailed discussion.

In this chapter, we consider explicitly the times t for which both the

observation Yt and the external regressors (Xt i,..., Xt m) are available.
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(Recall that in Chapters 2 and 3, we gave the value NA to missing
observations or missing external regressors. In this way, formulae had

a better readability.)

Definition 4.1 Let the time index subset Iav be defined by

Lav = {t | Yt and (Xty, ..

., Xttm) are available} Ç {1,. .., T} .

Moreover, since we are looking for the log-likelihood function,
we work with (Yt) and not with (Yt). In fact, (Yt) were de¬

fined by Yt = Yt -/(XM,...,Xt,m) in (2.5). Therefore, they de¬

pend on the hyperparameters of the function / which are un¬

known in general. The use of (Yt) does not cause additional prob¬
lems since each maximum likelihood iteration is performed with a

fixed Ok- Then, Z\ r\{Yt = ytß £ Lav}, Ok has the same distribution

as Z\ r\{Yt = yt, t G Iav}, 6k (recall that the external regressors are

known). Thus, if we need a sample from the former distribution, we

can take a sample from the latter.

4.1 Approximation of the log-likelihood
function based on the smoothing sam¬

ple

As usual, the maximum likelihood strategy is to maximize the

log-likelihood function 1(0) with respect to the unknown components

of 0. Equivalently, we can maximize the difference 1(0) — I(6k) for a

given Ok .
The main idea of the following method is to approximate this

difference using the particles (zfj,) sampled according to the distribu¬

tion of Zi T|{Yt = yt,te lav}, 6k

The first step is to rewrite the above difference using these smoothing

particles. We find:

Sl(0\0k) := 1(0) - l(0k)

= lo , p({yt,teiav}\6)

= log

p({yt,t g iav}\dk)

J ••• Jp({ytß £ IgV},z1T\6)dz1...dz1

p({yt,teiav}\6k)
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= log

= log

«log

=log I i?

Tog

log

af
p({yt,teIqv},ziT\6) p({yt,teIqv},ziT\6k) ,

J p({yt,teIav},z1T\ek) p({yt,telav}\6k)
ff f P({yt,teIav},ZlT\6) . .,

\ a\A
/

•••

/ —n—T-y-y rr-P (*i t \{yt,telav}, 6k)dZl.
V J p({yt,telav},ziT\6k)

'

I ^p({yt,telav},z[%\6) \

Nhip{{yt,teIav},z^T\6k)j
1

"
P (&t,te Iav}\z[%, 6) p (z[%\6^

N
3=1 P {{ytß G Iav}\z[0)T, 6k) p (z[0)T\6kJ J

2_
W p(yt\zï\e) t p(z[^_p){t_l),e) P

J=l\teIavP (yt\Zt ,VkJ t=P+lP \Zt P(t-p) (t-iy°kj P

Nh \telp {yt\z[]),6k) tiii p (4JM^) (t-i), **),

. dzT

«I*

*?>*

(4.1)

Remark 4.1 Some comments about the previous result.

The sample (z^j,) was generated using the smoothing algorithm

described in Chapter 3. In fact, (zfj,) is a sample of

Z\ rllFf = yt,t G lav}, @k and the latter random variable has the same

distribution as Z\ T|{Ft = yt,t G Iav}, 6k-

Moreover, the densities pizf \6) and p [zf ,6k) are multivariate

normal densities. The expected values are given by the p-dimensional
vector (0,. .., 0) and the covariance matrices can be computed using the

Yule-Walker equations given 6 and 6k, respectively. Of course, it is pos¬

sible to compute the ratio of these densities, but this evaluation requires

some additional computations (solve the Yule- Walker equation systems

to find the covariance matrices and compute the multivariate normal

densities). Since for T 3> p this ratio does not have a relevant effect
on the result, we avoid these computations and we make an additional

approximation to find (4-1)-

Now, we examine closer the approximation (4.1) and we protect it

against numeric overflow. To this end,
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Definition 4.2 Let

'p(yt\zP,e) p{zit3)\ztv)(t-iy°)
P(z{t])\4-p)(t-iy^

s, = ^2 log .

teiav ypyy^zß/dkj

and

We note that the variables s3 are sums of logarithmic or quadratic terms

for the considered model. Thus, their computation is reliable and it has

a complexity of order T.

We can estimate 5l(6\6k) using (4.1) and the previous definition as fol¬

lows:

5l(6\6k) = log

= log

1
N

-^exp(Sj)
N

exp(smoa;) -^exp(i
N

log

N

^exp(i

- log(X)

log(X). (4.2)

The logarithm term in the previous expression does not cause numerical

problems since its argument is between 1 and N. It is also possible to

compute it accurately. Therefore, the leading term in the expression

(4.2) is Smax- Since the computation of the s/s is not problematic as

noted before, 5l(6\6k) is protected against numeric overflow. Moreover,

(4.2) has a complexity of order TN.

Finally, the iterative estimation method based on the smoothing sample
can be summarized as follows. It is initialized with a reliable estimate

6q and it is carried on by

6k+i =arg max Sl(6\6k)
6

until the differences 6k+i — 6k fluctuate around zero. Note that the

maximum is computed with respect to the unknown components of 6,
and then 6k+\ is found by putting the new estimates and the fixed

parameters together. In addition, enlarging the sample size N during
the iterations reduces the Monte Carlo error in (4.2). This leads to a

more precise estimate of 6.
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4.2 MCEM method to approximate the

log-likelihood function

The second method proposed to perform the parameter estimation is

derived from the Expectation-Maximization (EM) algorithm.
The EM procedure is a quite general optimization method involving un¬

observed data, see for example Dempster et al. (1977) and McLachlan

and Krishnan (1997). The key idea is to maximize the expected value

of the log-likelihood of both observed and unobserved data. Since the

expected value also depends on the parameters, the procedure is itera¬

tive. In addition, the expectation can be approximated using the Monte

Carlo method which uses samples generated for a given set of param¬

eters. This gives rise to the Monte Carlo EM (MCEM) algorithm, see

for example Wei and Tanner (1990) and Chan and Ledolter (1995).

Explicitly, the first step is to compute the full log-likelihood function

of the data Z\ t, {Yt, t G Iav}- We find using the dependence structures

of the model (2.1) and (2.2):

l(0\{yt,t Iav},ZlT) = log (p({yt,t G Iav},ZlT\6))

= log (p ({yt, t G Iav}\zi t, 6) p (z1T\6))
T

= 52 log (P (yt\zt, #)) + 52 log (p (Zt\z(t-P) (t-i), #)) + log (p (zip\6)).
tela,, t=p+i

The new objective function is defined by taking the expectation with

respect to Z\ r\{Yt = yt,t G Iav}, 6k- Then, the expectation is approxi¬
mated using the Monte Carlo method. We have,

Q(6\6k) := ESfc [l(6\{yt,t G /„„}, zx T) - log (p (zx p\6) )]
T

E, '9k

N

J2 log (p(yt\zt,e))
Iteiav

yX Y.l°g(p {yt\zt
3=1 tela»

= .Q(6\6k).

E,ek

M

52 \°g(p(zt\z(t-p)(t-i),6))
=p+i

1
J> T

vE Elog
N

3=lt=p+l

p(zP\
0)u0)

\t-p)(t-iy

(zjy) is a sample of Z\ r\{Yt = yt,t G Iav}, 6k- As noted in Section 4.1,
these particles are generated using the smoothing algorithm of Chapter
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3. Moreover, note that the computation of Q(6\6k) has a complexity of

order TN.

Finally, the MCEM method can be summarized as follows. It is initial¬

ized with a reliable estimate 6q and it is carried on by

6k+i = argmax<5(0|0fc)
9

until the differences 6k+\ — 6k fluctuate around zero. As before, note

that the maximum is computed with respect to the unknown compo¬

nents of 6, and then 6k+i is found by putting the new estimates and the

fixed parameters together.
The replacement of the expectation with the Monte Carlo expectation
has the consequence that the typical monotonicity 1(6k+i) > I(6k) of

the EM-sequence (6k) is lost. But, as already noted, the estimates 6k

fluctuate randomly around the true maximum likelihood estimate 6ml
after some iterations. The amplitude of the fluctuations is small already
with moderate values of N. But the convergence may be slow, and thus

it is important to begin the iterations with a good 6q.

4.3 Algorithm to compute starting esti¬

mates

We saw in the previous sections that it is important to begin the maxi¬

mum likelihood recursion with a good estimate 6q. In fact, a good choice

reduces the number of iterations needed and the estimation procedure
is faster. Thus, the aim of this section is to develop an algorithm to

compute reliable starting parameters for the model (2.1) and (2.2). It

is convenient to separate the estimation of the hyperparameters of the

function / from the estimation of the nuisance parameters. We will es¬

timate first the hyperparameters and then the nuisance parameters. In

both cases, the estimation procedures should be robust and also work

in the presence of missing values in the observation series or in the ex¬

ternal regressors.

If the model has external regressors, we first estimate the hyperparam¬
eters. Otherwise, we can skip this step and go directly to Subsection

4.3.2.
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4.3.1 Estimation of hyperparameters

We have already remarked that the function / in (2.2) may be nonlinear.

Of course, the situation is simpler when / is linear. In such a case,

the hyperparameters can be estimated by applying the function rim

in the statistical software R, see R Development Core Team (2005).
This function fits a robust linear model by iterated re-weighted least

squares. It supplies different tp functions to perform the robust fit:

the Huber, Tukey bisquare and Hampel proposals. Moreover, it has

methods to supply the estimates needed to start the re-weighted least

squares iterations and it can work in the presence of missing values in

(Yt) or in the external regressors.

When / is nonlinear, we can generalize this technique by substi¬

tuting the iterated re-weighted least squares method by a iterated re-

weighted nonlinear least squares one. The nonlinear least squares fit

can be achieved with the function nls in R. The robustness can be ob¬

tained using different tp functions to compute the weights. The supplied

tp proposals are the Huber, Tukey bisquare and Hampel as in the linear

case.

The function nls can work in the presence of missing values in (Yt) or

in the external regressors. But, it needs starting estimates. We can

find them by attempts or from previous studies. In fact, no automatic

procedure is known to compute starting values in the general nonlinear

regression problem.

In most cases, we use the Tukey bisquare proposal to find the robust

hyperparameter estimates for both a linear or nonlinear function /.
Once the estimates are found, we can compute the model residuals

which are the input series to estimate the nuisance parameters.

4.3.2 Estimation of nuisance parameters

If the hyperparameters have already been estimated or if there are no

external regressors, the considered model can be simplified to (2.6) and

(2.7).
We assume for the moment that all nuisance parameters are unknown.

The key ideas to estimate them are based on both the Yule-Walker

equations for the AR process (Zt) and the relationship between the

autocovariance function of (Zt) and the corresponding one of (Yt).
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Definition 4.3 For any integer h define

C(h) =Cov(Yt,Yt_h),
~f(h) = Gov (Zt, Zt-h),

p(h) = Cor(Zt,Zt-h),

Ppart(h) = Cor (Zt, Zt-h\Z(t-h+l) (t-l)
= Z(t-h+l) (t-i)),

a2 = Va,r(et).

Then, it follows directly from the i.i.d. assumption on the observation

errors (et) that

C(0) = Gov (Zt + et, Zt + et) = 7(0) + a2,

C(h) = Gov (Zt + et, Zt-h + £t-h) = l(h), h=l,...,p+l.

In addition, it follows from the Yule-Walker equations for (Zt) that

v

i(h) = 52Lpri^h~1)' h = i,...,p+i,

1=1

v

1(o) = 52^a(i) + o-2v.
i=i

If we combine the last four (systems of) equalities and we assume that

estimates of C(0),..., C(p + 1) have been computed, then we have a

system of p + 2 equations for the p + 2 unknown parameters <pi, ...,

<Pp, ay and ct£ (recall that j(—h) = 7(h)). Thus, in principle, we could

estimate these parameters by solving the system. But it is difficult to

solve it in closed form already for an AR(2) state process, and existence

and uniqueness of solutions in the stationarity region are not clear. The

equation system needs to be solved numerically. We note that

7(0) = C(0)-ct£2, (4.3)

p(h)-l--l- gW -gW(1
} h_1 !

(44)

PW~
7(0) ~C(0)-ct2

~

C(0)
[ +Vh H-L,...,p+L, (4.4j

V

°v = 7(0) -X>7(0 (4-5)
1=1

with

??=yy>0. (4.6)
7(0)
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Thus, if C(0),..., C(p + 1) have already been estimated, we can solve

the equation system (4.4) numerically with respect to the unknown

parameters p\, ..., <pp and rj (recall that the autocorrelations p(h)
depend on <pi, ..., <pp). Then, the estimates of ov and ae can be found

from (4.3), (4.5) and (4.6).
How do we succeed in solving (4.4) numerically? We use the follow¬

ing well-known property of the partial autocorrelations of a stationary

AR(p) process (Zt):

\pPart(h)\ < 1 V h= 1,.. .,p,

Ppart(p+ 1) = 0.

Thus, we set

Definition 4.4 Define

Vmax = sup{ry > 0 I the vector (pri(h)), h = 1, .. . ,p, is in the station¬

arity region of the AR(p) process}

with pri(h) = pTgy (1 + p) as in (4-4)-
In addition, define an equally spaced grid Pk = (k — l)Ary,
k = 1,. .., N(pmax), Ary given. N(pmax) is the smallest integer

not less than i]max/ Ary.

Now, the strategy is to compute for each grid point pi the corresponding
autocorrelations pVt (h), h = 1,... ,p+ 1, and find the AR(p+1) process

which has exactly these autocorrelations. This can be achieved easily

by applying the Durbin-Levinson algorithm, a recursive procedure for

calculating the AR parameters <p(pi) from the autocorrelations pm(h)
(j, h = 1,... ,p + 1). It has the nice feature that the partial autocorre¬

lations are also found during the recursion since ppart(m) = <pm in an

AR(m) model. The recursion and more details can be found for exam¬

ple in Box et al. (1994), Appendix A 3.2.

Once the AR(p+1) models have been found for all grid points, we select

the AR(p + 1) model which is nearest to the AR(p) we are looking for.

To this end, we introduce

Definition 4.5 Let

rj= &Ygmin\ppart,rn(p+ 1)1 = arg min p(pi)v.

Then, we consider the AR(p) model with coefficients <p3 = p(rj) ,

j = 1,... ,p, as approximation for the KK(p) process which solves the
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equation system (4.4).
Sometimes it happens that the selected (p\, ..., pp give rise to a non-

stationary AR(p) process. For example, this may happen when the true

state process is near the stationarity border, since the Durbin-Levinson

algorithm is very sensitive to rounding errors in this situation. What we

do in this circumstance is to enforce stationarity by moving the roots

of the characteristic polynomial which are inside or on the boundary of

the unit circle just outside it. The translation is carried out along the

radius of the unit circle. Then, the new stationary AR(p) process with

these roots is computed.

Now, it is possible to estimate ov and ae. From (4.3) and (4.6) we

get

V
C(0) (4.7)

1+7?

and the auxiliary result

Therefore, it follows from the auxiliary result and (4.5)

o-y

\
££Uf>C(0. (1.8)
1 +V T-'V

1= 1

Sometimes it occurs that the argument of the square roots in (4.7) or

(4.8) is non-positive. For example, this may happen when the true

unknown value of ov or ae is near zero. Or rj can be zero. This can

occur when the time series is too short. In these situations, we set the

corresponding estimate equal to a small positive value.

In addition, it follows from Definition (4.3) and the result (2.4) that

al = Var(et) =
c2

2m

In principle, we would need an additional equation to estimate c and m.

But the estimation of the degrees of freedom m is known to be complex.

Therefore, we adopt a pragmatic approach: m is not estimated directly
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but several discrete values for m are chosen, typically rn G {1, 2, 3, 4, 5}.
Consequently, we have several starting values for c:

c = y max (1, 2m — 3) ct£.

Thus, we will use all these different starting values to compute the esti¬

mates using the methods described in Sections 4.1 or 4.2. Between these

estimates, the estimate 6 which maximizes the log-likelihood over the

different starting values of m is chosen as final estimate of the unknown

coefficients.

Note that small values of m (1 or 2) lead to very robust filtering and

smoothing recursions.

Four questions are still open: how we can find pmax and the estimates

of C(0),..., C(p + 1) and what we do if some nuisance parameters are

known or there are missing values in the series (Yt).
The value of pmax can be found easily if the state equation is an AR(1)
or an AR(2) process. In fact, the stationarity region of an AR(1) process

is given by

1 > \Ppart,r,(l)\ = \pV(l)\ =

which results in the condition

C(l)

"Hmax
C(0)

C(l)

C(0)

1.

a+v)

(4.9)

The stationarity region of an AR(2) process can be derived as in Box

et al. (1994), Subsection 3.2.4. It is given by

pri(2)<l and pv(2) > 2pv(l)2 1.

These conditions correspond to the area in the (yo(l),yo(2))-plane
bounded below by the parabola yo(2) = 2yo(l)2 — 1 and above by the

horizontal line yo(2) = 1. Since pv(2)/pv(l) = C(2)/C(l), we deduce

that pmax is attained on the upper border yo(2) = 1 for C(2) > |C(1)|.
Otherwise, it lies on the parabola yo(2) = 2yo(l)2 — 1. Explicitly,

• If C(2) > \C(l)\: from

1 = ^(2) = §Ü (!+?/),
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it follows that

Ws = §|y - 1- (4-10)

• If C(2) < \C(l)\: from

Pv(2) = 2pv(l)2 - 1,

it follows that

§!(l + ,) = 2^(l + ,)*-l,

0 = 2 C(l)2 (1 + p)2 - C(0) C(2) (l+p)- C(0)2,

n
C(0) C(2) ± ^C(0)2 C(2)2 + 8 C(l)2 C(0)2

(i + v)± =
l--w

•

The solution with the minus sign implies that 1 + p < 0 which is

not acceptable (p cannot be negative). Therefore,

_

C(0) C(2) + y/C(0)2 C(2)2 + 8 C(l)2 C(0)2
1

Vmax —
^ C(l)2

y^-11)

The calculation of the stationarity region of an AR(p) process, p > 3, is

no more straightforward. But, since the stationarity regions are nested,
we propose to choose pmax as in (4.10) or (4.11) also for these processes.

As a consequence of this nearly optimal choice, we should expect that all

grid points are outside the stationarity region from one rji'. This will be

reflected in the Durbin-Levinson algorithm by some terms \ppart,ril, (h)\,
h = 1,... ,p, which exceed 1 from an index h'. In these cases, we can

stop the Durbin-Levinson procedure for pi' and also for the following

grid points.

The second open question is the estimation of the autocovariances

C(0),..., C(p+ 1). They have to be estimated carefully, since they play
a crucial role in the estimation of the nuisance parameters as we saw

above. Especially, the estimation procedure should be robust.

The main idea is to approximate the observation series (Yt) by a Gaus¬

sian AR(p + 1) process:

Yt = ^iYt-i + --- + ^p+iYt-p-i+Vt, Vt~jV(0,a2~). (4.12)

Now, the AR(p + 1) process can be interpreted as a regression of Yt

on Yt-i) • • •

j Yt-p-i. Therefore, robust estimates 4>\, ..., 4>p+\ and à
y
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can be found by fitting a robust regression. To this end, we use again
the function rim with the Tukey bisquare proposal. Recall that the

function can work in the presence of missing values in (Yt). Since the

AR(p + 1) process is only an approximation of the series (Yt), it could

happen that the estimates 4>\, ..., 4>p+\ give rise to a non-stationary

AR(p + 1) process. In these cases, we enforce stationarity as explained
before.

Now, the Yule-Walker equations for the AR(p + 1) approximation of

(Yt) yield

P+i

C(h) = 52<piC(h-l), h=l,...,p+l (4.13)
i=i

and

p+i

C(0) = 52<PiC(l)+aY. (4.14)
i=i

If we replace the true parameters 4>\, ..., 4>p+i and ct~ with the esti¬

mated ones, we get a system of p + 2 linear equations for the unknown

autocovariances C(0),..., C(p +1). It is easy to solve this system nu¬

merically.

Finally, if some nuisance parameters are known, we replace the esti¬

mated values with these given values, paying attention to preserve the

stationarity. In addition, we note that the presence of missing values

in (Yt) does not cause problems. In fact, the series (Yt) is only used

to compute the robust linear regression with the function rim, and this

function can work in the presence of missing values.

It is useful to recapitulate the whole procedure to estimate the start¬

ing nuisance parameters.

Algorithm 4.1 Starting estimates of the nuisance parameters.

Assumption:

The hyperparameters have already been estimated or there are no exter¬

nal regressors. Therefore, the model is given by (2.6) and (2.7).

Then:

1. Compute the robust regression of Yt on Yt-\, ..., Yt-p-\ using

the function rim with the Tukey bisquare proposal. This function
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can work in the presence of missing values in (Yt).
In this way, robust estimates <p\,..., (pp+1 and d~ are found, see

(4-12). If they give rise to a non-stationary AR(p + I) process,

transform the coefficients <p\,..., <pp^\to enforce stationarity.

Substitute the previous estimates in the system of p + 2 linear-

equations (4-13) and (4-14)'• Solve this system numerically with

respect to C(0),. .., C(p+ 1).

Substitute the robust estimates C(0),.. ., C(p+ 1) in (4-3), (4-4),
(4-5) and (4-6) and estimate the nuisance parameters.

To this end:

• Fmdpmax.

For an AR(l) process, it is given by (4-9). Otherwise by

(4.10) or (4.11).
• Define an equally spaced grid Pk = (k — l)Ap,

k = 1, .. .,N(pmax), Ary given. N(pmax) *« the small¬

est integer not less than pmax/Ap.
• For each grid point pi, estimate the AR coefficients of

the AR(p+ I) model with autocorrelations given by pm(h),
h = 1, .. . ,p + I, see (4-4) Use the Durbin-Levinson algo¬
rithm to estimate the coefficients. If \ppart,r\v (h)\ exceeds 1

for a h = 1,.. . ,p, and a grid point pi>, then stop the Durbin-

Levinson procedure for this pu and the successive ones since

the autocorrelations will be outside the AR(p) stationarity

region.

• Select from the previous AR(p + I) models the one which is

nearest to an AR(p) process. I.e., let

p:= axgmii\\ppart,rtl(p + l)\ = argmin p(pi) +1
m vi

'

and consider the AR(p) process with coefficients p3 = p(p) ,

j = l,...,p.
Check if this AR(p) process is stationary. If not, enforce

stationarity.
• Find the estimates of the other nuisance parameters.

àv %s given by (4-8). For fn, choose several discrete values,

typically m G {1, 2, 3, 4, 5}, and compute the corresponding

starting values for c: c = ynax (1, 2m — 3) âe, with ct£ as

m (4. 7).
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(Recall that we will use all these different starting values to

compute the estimates using the methods described in Sec¬

tions 4-1 or 4-2. Between these estimates, the estimate 6

which maximizes the log-likelihood over the different start¬

ing values of fh is chosen as final estimate of the unknown

coefficients.)
• If some nuisance parameters are known, replace the estimated

values with these given values. Pay attention to preserve the

stationarity.



Chapter 5

Examples

In this chapter, we illustrate the performances of the developed Monte

Carlo algorithms with some examples. To this aim, the estimates ob¬

tained by the new algorithms are compared with the ones found using
the Kaiman recursions.

Before we begin, we recall that the Kaiman filtering and smoothing
recursions are defined as in Chapter 1. In addition, we compute the dis¬

tribution of the stationary AR(p) process. This is a multivariate normal

distribution and its covariance matrix is found using the Yule-Walker

equations. This distribution is used as starting distribution for -Z(i-p) o

in the Kaiman recursions and to generate the sample (y_

-, 0) to begin

the Monte Carlo algorithms.

The chapter is organized as follows. In the first two sections, we

carry out simulation studies to compare the Kaiman and the Monte

Carlo algorithms. An example with real data is analysed in the third

section.

5.1 State estimates given the parameters

In the simulation studies of this section, the parameters characterising
the models are assumed to be known. The goal is to compare the es¬

timates of the unknown state variables (Zt) that are found with the

developed Monte Carlo algorithms and the Kaiman ones. The com¬

parisons are done using a state space model with Gaussian error dis-

119
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Zt--= ipiZt-i +vt, vt

Yt == zt + wt, wt

tributions where, first, we have no outliers, and then we consider an

observation outlier at a fixed time point. For the sake of illustration,
this state space model has no external regressors and the state equation
is an AR(1) process. Thus, we write it using the same notation as in

(2.6) and (2.7).

5.1.1 Gaussian error distributions without outliers

Two time series Y\ 500 are simulated according to the model

'N(0,a2v), (5-1)

>N(0,a2w) (5.2)

with <pi = 0.8. In addition, we choose the values ov = 1, o~w = 1 for

the first time series and ov = 4, aw = 1 for the second one. The AR(1)
state process is simulated with the R function arima.sim which uses a

"burn-in" period at the beginning.

The next step consists of estimating the unknown state variables

(Zt) using the Kaiman and the Monte Carlo algorithms, both using the

filtering and the smoothing methods. The Kaiman algorithms can be

applied directly since the chosen error distributions are Gaussian, see

(5.1) and (5.2). On the other hand, the new Monte Carlo algorithms

require the choice of some additional parameters since the observation

error distribution is supposed to be a Pearson type VII distribution,
see the observation equation (2.7). Therefore, values for m and c are

needed. For m, we choose two different values: m = 1 and m = 3. The

aim is to compare two options which have different robust behaviours.

This can be seen by noting that m = 1 and m = 3 will produce a t\ and

a £5 densities, if c = 1 and c = a/5, respectively (see Remark 2.1). In

addition, c is chosen such that the Pearson observation error distribution

assumed for the Monte Carlo algorithms and the J\f(0, aw) distribution

used in the simulation have the same interquartile distance. This is done

to make these distributions comparable. According to Remark 2.1, we

set

<7A/-(0,l) (°-75)
c = \/2m — 1 aw

<&,„_! (0.75)

where <jyo,i) (0.75) is the 0.75 quantile of the J\f(0,1) distribution and

1t2m-i (0-75) is the 0.75 quantile of the t^m-i one. Moreover, we analyse
the influence of the sample size N on the results by taking two different



5.1. State estimates given the parameters 121

values for it: N = 200 and N = 1000. Finally, the Monte Carlo smooth¬

ing algorithm is computed with both developed methods, see Sections

3.3 and 3.4. In both cases, the maximal allowed number of rejections
before improving the distribution setup is 50.

Table 5.1 summarizes schematically all considered algorithms and

options to estimate the unknown state variables (Zt). It also contains

the names given to these methods to permit easier references later.

Furthermore, the table reports the CPU times measured on a dual-

Simulation Estimation

ay aw algorithm

(smoothing method)

m N CPU time

(in sec)

name

1 1 Kaiman (-) - - 0.95 K a)
Monte Carlo (1) 3 200 13.81 MC a)

(1) 1000 207.44 MC b)
(2) 200 5.19 MC c)
(2)
(1)

1000 32.60 MC d)
1 200 13.61 MC e)

(1) 1000 208.50 MC f)
(2) 200 5.28 MC g)
(2) 1000 32.89 MC h)

4 1 Kaiman (-) - - 1.16 K b)
Monte Carlo (1) 3 200 12.96 MC i)

(1) 1000 204.00 MCj)
(2) 200 5.28 MC k)
(2)
(1)

1000 33.83 MC 1)
1 200 14.65 MC m)

(1) 1000 214.13 MC n)
(2) 200 5.72 MC o)
(2) 1000 37.14 MC p)

Table 5.1: Simulation parameters and estimation methods m the exact

Gaussian simulation study. Same parameters or algorithms are written

only once to have a better readability. (1) or (2) denote the used Monte

Carlo smoothing method for the estimation, see Sections 3.3 and 3.4,

respectively.

processor Intel Xeon 2.4 GHz (2000 MB RAM) to estimate each case

once (this is the sum of the CPU times of the filtering and smoothing re-
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cursions). The Kaiman algorithms are implemented with the statistical

software R. The Monte Carlo algorithms are implemented principally
in C, and R plays the role of the interface.

As expected, the Kaiman recursions are faster than the Monte Carlo

ones. There are noticeable gains in the CPU times used by the second

Monte Carlo smoothing method with respect to the first one, although
we have measured only one CPU time for each condition (recall that

the filtering algorithm is the same in both cases). The CPU times of

the second Monte Carlo smoothing algorithm are actually not bad con¬

sidering also the length of the time series. The efforts to implement it

are worthwhile.

As a second point, we examine the estimates of the unknown state

variables (Zt). We consider two quantities:

• Zt — med ( Zt\Yi t ) and Zt — med ( Zt\Yi x

the bias between the true Zt and the conditional median of Zt

computed using both the filtering and the smoothing recursions.

For the Kaiman algorithms, the medians are given by the con¬

ditional expected values. For the Monte Carlo algorithms, the

medians are computed from the sampled particles.

\Zt-med(Zt\Y1 t)\ , \Zt-med(Zt | Yi t) |
.

• 7 ~r=
\ cLllQ 7 ~r=

\ '.

sd(Zt\Ylt) sd(Zt\Y1T)
the standardized absolute deviation between the true Zt and the

conditional median of Zt computed using both the filtering and

the smoothing recursions. For the Kaiman algorithms, the denom¬

inators are given by the conditional standard deviations (square
roots of the estimated variances). For the Monte Carlo algorithms,
the denominators are computed using the median absolute devia¬

tions (MAD) of the sampled particles adjusted by a factor to have

consistency at the normal distribution.

The results are shown in Figures 5.1, 5.2, 5.3 and 5.4 for the two con¬

sidered time series. The names are as in Table 5.1. The box plots

computed with the first Monte Carlo smoothing method are omitted

for the clarity. In fact, they present the same characteristics as the ones

computed with the second method since the smoothing target density
is the same and only the sampling technique is different. The filtering
recursion is the same in both cases and therefore the filtering samples
are identical.

The Monte Carlo box plots with m = 3 have the same shape as the
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Filter Smoother

K a) MC c) MC d) MC g) MC h) K a) MC c) MC d) MC g) MC h)

Figure 5.1: Bias for different estimation methods m the exact Gaus¬

sian simulation study. The time series is simulated with p\ = 0.8,

ay = 1 and aw = 1- The methods' names are explained in Table 5.1.

Kaiman ones. The Monte Carlo box plots with m = 1 have a little bit

wider interquartile distance and they present more outliers. This be¬

haviour is not surprising since the Monte Carlo filtering and smoothing

algorithms with m = 1 are more robust than the ones with m = 3. Thus,
extreme observations caused by extreme (unknown) states Zt may be

interpreted wrongly as outliers (see the circles in the box plots).
In all box plots, it is very common to find that the first observations

are treated as outliers. This is to be expected. The Kaiman algorithms
are started with given values for the expectation and the variance. Sim¬

ilarly, the Monte Carlo algorithms are initialized with a sample (zq)
from the true distribution of Zq. It takes some time steps until these

initial choices lose their effect. But not too long, as we can see.

In addition, we note that in some cases the box plots computed with the

smoothing algorithms are a little bit more concentrated than the ones

computed with the filtering algorithms. This is to be expected since

the smoothing reconstructions profit from all observations in contrast

to the filtering ones.
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Filter

-r-
*

Ka) MCc) MCd) MC g) MC h)

Smoother

Ka) MCc) MCd) MC g) MC h)

Figure 5.2: Standardized absolute deviation for different estimation

methods in the exact Gaussian simulation study. The time series is

simulated with p\ = 0.8, ay = 1 and aw = 1- The methods' names are

explained in Table 5.1.

The Monte Carlo sample size N does not seem to affect the box plots.
The final results are already good with the quite small size N = 200.

The next point we discuss using this simulation study is the sam¬

pling efficiency of the computed Monte Carlo methods. An intuitive

quantity to measure it is given by the ratio of the number of rejections
to produce the samples, divided by the sample size. The results are

shown in Figures 5.5 and 5.6.

A preliminary remark before we discuss the results. The smoothing

particles for T = 500 are given by the filtering particles (recall that 500

is the length of the simulated time series). This permits to initialize the

smoothing recursions. But, as a consequence, there are no rejections at

T = 500, and we omit this time point from the box plots.
As we can see, some characteristics are the same for the two considered

time series. The ratios are very small in the filtering algorithm for both

m = 1 and m = 3. Thus, the sampling efficiencies are very high. The

cases with m = 1 present more outliers. Again, this feature can be
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i>- o

N

0)

b

1 i

Filter

BBBÖB

Smoother

BBBBB

K b) MC k) MC I) MC o) MC p) K b) MC k) MC I) MC o) MC p)

Figure 5.3: Same as Figure 5.1, with ay = 4.

explained by the higher robustness of this choice. In addition, a larger

sample size should reduce the standard deviation of the ratios without

changing the expected value. This is also noticeable, although not really
well for m = 1 in Figure 5.6.

The rejection ratio is very stable with respect to the different values of

m and N in the second Monte Carlo smoothing method. This is a con¬

sequence of the used procedure to implement it. In fact, each particle
is sampled separately from the others, and therefore the proposal setup

can be adapted to each particle. Unfortunately, the ratio is greater

than in the filtering algorithm. This is not a surprise since the smooth¬

ing recursion is more complex than the filtering one as we discussed in

Chapter 3. But the ratio is still acceptable and definitely better than

with the first smoothing method. In fact, in the latter method, the same

proposal setup is used to sample more particles and it is improved only
when it becomes too bad. This happens when the number of rejections
exceeds a chosen bound.

It is interesting to note that with the first smoothing algorithm, the ra¬

tio exhibits a similar behaviour for the two different degrees of freedom

(m = 1 and m = 3) but not for the two sample sizes (N = 200 and
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Filter Smoother

Kb) MCk) MCI) MCo) MC p) Kb) MC k) MCI) MC o) MC p)

Figure 5.4: Same as Figure 5.2, with ay = 4.

N = 1000). This can be explained looking at the number of computed

proposal setups at each time t, t = 1,..., 500. Its summary is reported
in Table 5.2 for the different methods. On the whole, the number of

MC a) MC b) MC e) MC f) MC i) MCj) MC m) MC n)
Min. 2 3 2 3 2 2 2 2

1st Qu. 3 3 3 4 2 3 3 4

Median 3 4 3 4 2 3 3 5

Mean 2.99 3.61 3.15 3.92 2.33 3.12 3.47 4.60

3rd Qu. 3 4 3 4 3 3 4 5

Max. 4 5 5 6 4 5 5 7

Table 5.2: Summary of the number of computed setups for differ¬
ent Monte Carlo smoothing methods in the exact Gaussian simulation

study. The smoothing recursions are performed with the first idea. The

methods' names are explained in Table 5.1

computed setups is stable for different values of m and N. But, if the

sample size N is 1000, the maximal allowed number of rejections may
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Filter Smoother (method 2) Smoother (method 1)

MC c) MC d) MC g) MC h) MC c) MC d) MC g) MC h) MC a) MC b) MC e) MC f)

Figure 5.5: Rejection ratios for different Monte Carlo estimation

methods in the exact Gaussian simulation study. The time series is

simulated with p\ = 0.87 ay = 1 and aw = l- The methods' names are

explained in Table 5.1

be reached more often than with N = 200. This results in a slightly

greater number of computed setups for N = 1000 than for N = 200.

Consequently, the used setups for N = 1000 are somewhat more accu¬

rate and, combined with the fact that the particles are more dense for

N = 1000, it leads to a lower rejection ratio for this case.

Finally, Table 5.3 reports the total number of setup improvements in

the Monte Carlo smoothing recursions computed with the second idea.

All times t, t = 1,..., 500, are taken together since the number of setup

improvements is never greater than 1 for each single time t. We can see

that the value of m influences the total number of computed setups. As

before, the reason is the higher robustness of the algorithm with m = 1.

In addition, the value of N combined with m = 1 also influences this

number. The explanation can be as discussed above for the influence

of N on the rejection ratio in the Monte Carlo smoothing algorithm

computed with the first method. But, on the whole, the total number

of computed setups is small. This feature also contributes to make the
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Smoother (method 2) Smoother (method 1)

-*- BB

MC k) MC I) MC o MC k) MC I) MC o MCi) MCj) MC rr

Figure 5.6: Same as Figure 5,5, with ay = 4.

MC c) MC d) MC g) MC h) MC k) MC 1) MCo) MC p)
3 2 103 139 5 7 64 121

Table 5.3: Total number of computed setups for different Monte Carlo

smoothing methods in the exact Gaussian simulation study. The smooth¬

ing recursions are performed with the second idea. The methods' names

are explained in Table 5.1

second smoothing method faster than the first one.

5.1.2 Gaussian error distributions with one outlier

In this subsection, the influence of a isolated outlier at a fixed time

point is analyzed using a Gaussian state space model with known

parameters. For the purpose of illustration, the simple state space

model considered in Subsection 5.1.1 is also used here. The analysis
is repeated for two simulated time series with parameters given by

<pi = 0.2, ay = 4, aw = 1 and p\ = 0.8, ay = I,aw = 1, respectively.
The time series have length 100. In addition, the outlier is at the fixed
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time t = 60 for both series. Thus, we vary the value of yeo and we

estimate the state Zqq using different methods. In this way, we can ex¬

amine the behaviour of the estimated state Zqq as function of yeo under

different methods. These methods are the Kaiman algorithms and the

Monte Carlo ones with different options (in all cases the estimates are

computed using both the filtering and smoothing recursions).

40 50 60 70 80 40 50 60 70 80

Time Time

Figure 5.7: Section of the two considered time series in the simulation

study with one outlier. On the left, the time series with p\ = 0.27

ay = A, aw = 1/ on the right, the series with p\ = 0.87 ay = I,

aw = 1- The solid line gives (Yt), the dashed line (Zt), and the vertical

dotted line the outlier location.

We start with the first time series. A section of it around t = 60 is

shown in Figure 5.7. The state estimates with the Kaiman recursions

can be computed directly. For the Monte Carlo recursions, we choose

m = 3, N = 2000 and we use the second smoothing method.

Figure 5.8 shows the median, the 10% and 90% quantiles of the state

estimates of Zqq as function of y^ for both the Kaiman and the Monte

Carlo recursions. The filtering results are on the left, the smoothing ones

on the right. In addition, the vertical dashed line gives the location of

the original simulated yeo and the horizontal dashed line corresponds
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-40 -20 0 20 40 -40 -20 0 20 40

^60 Y60

Figure 5.8: Estimated quantités using the Kaiman and Monte Carlo

recursions in the simulation study with one outlier. The time series

is simulated with p\ = 0.27 ay = 4 and aw = 1- The Monte Carlo

recursions are computed with m = 3 and N = 2000. The vertical and

horizontal dashed lines give the simulated Yeo and Zeo, respectively.

to the simulated state zeo- As we can see, the Kaiman estimates are

not robust against the outlier. Moreover, the width of the 10% — 90%

confidence intervals is always the same since the estimated filtering and

smoothing variances are independent of the observations. On the other

hand, the Monte Carlo estimates are the same as the Kaiman ones for

values of yeo around zero. But, with increased \yeo\ values, the Monte

Carlo recursions detect the outlier in yeo, they discredit it and they
reduce the estimates. The behaviour is very intuitive, too. First, the

quantile nearest zero reacts to the outlier, then the median and, lastly,
the other quantile. Furthermore, the width of the 10% —90% confidence

intervals is not constant but it becomes larger once the outlier is recog¬

nized. This reflects the uncertainty about the state estimates.

The values of yeo where the outlier detection takes place depend on the

value of the observations around yeo- In fact, once the outlier becomes

noticeable, it will be discredited. From Figure 5.7, we see that 2/59 and
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2/61 are negative (yei is even —8). This affects the results in Figure 5.8.

The outlier is already discovered by yeo = 16 for positive values of yeo,

but only by yeo = —18 for negative ones.

Filter Smoother
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Figure 5.9: Same as Figure 5.8 with m = I in the Monte Carlo algo¬
rithms.

The choice of m influences the outlier detection, too. Figure 5.9 shows

the quantile estimates for the first time series using m = 1 in the Monte

Carlo algorithms. As expected, the outlier is found earlier, since the fits

with m = 1 are more robust.

It is also interesting to analyse what happens to the distributions of the

Monte Carlo samples (zq0) for values of yeo around the outlier detection

regions. We illustrate this behaviour using histograms of the samples.
For this purpose, we have chosen a quite large sample size N. Thus,

Figure 5.10 shows the distributions of the Monte Carlo filtering samples

computed with m = 3. Looking at the figure from left to right, from

top to bottom, we see that the distribution of (zq0) is unimodal for

yeo = —23.5 and the main mass is around the value —8. This corre¬

sponds to the fact that the observation yeo = —23.5 is detected as an

outlier. With yeo around —21, the estimates of Zt are more uncertain.

The distribution becomes bimodal with peaks around the values yeo and
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y60= -23 5 y60= -21 5 y60= -21

JllllllllllHliïlT-
20 10 0 10 20 20 10 0 10 20 20 10 0 10 20
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y60=19 5 y60= 20 5 y60= 22

Figure 5.10: Histograms of the Monte Carlo filtering samples at time

t = 60 for different yeo values (simulation study with one outlier). The

time series is simulated with p\ = 0.27 ay = 4 and aw = 1. The Monte

Carlo recursion is computed with m = 3 and N = 2000.

—8, as before. This value of yeo is in the outlier detection region (see
Figure 5.8). The observation yeo is not considered an outlier any more.

This is reflected by the fact that the peak near yeo is still dominated

by the one around —8 for yeo = —21.5. But the former one becomes

dominating with yeo = —21. With yeo = —20, there is only the peak
near yeo- The distribution is again unimodal and the observation yeo

is not detected as an outlier any more. Then, the distribution moves

from the negative to the positive axis until yeo comes near the outlier

detection region on the positive side. Now, it happens the contrary of

before. With yeo = 18, there is only one peak near yeo- With yeo = 19.5,
there are two peaks near 8 and yeo and the latter one is dominating.
With yeo = 20.5, there are again the same peaks but the one near 8 is

dominating. Finally, with yeo = 22, it remains only the peak near 8.

The same behaviour can be seen in the distributions of the Monte Carlo

smoothing samples, but at some slightly different values (see Figure

5.11).
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Figure 5.11: Same as Figure 5.10 using the Monte Carlo smoothing

samples.

Finally, we consider the second time series. It has the same coeffi¬

cients as one time series studied in Subsection 5.1.1, but different length.
A section of it around t = 60 is shown in Figure 5.7 and the estimated

quantiles of Zt are shown in Figure 5.12. As we can see, the results are

similar to the previous ones. The histograms of the samples present the

same behaviour as above, but less clearly.
In addition, we can note in Figures 5.8, 5.9 and 5.12 that the Monte

Carlo smoothing algorithm reacts a little bit earlier to the outlier than

the filtering one. This is a consequence of the fact that the smoothing

algorithm uses the whole set of observations Yi iqo-

5.2 Parameter estimation

In this section, we compare the parameter estimates obtained by the

developed Monte Carlo algorithms with the Gaussian maximum like¬

lihood estimates computed using the Kaiman filtering recursion. The

comparison is carried out by a simulation study. We use a Gaussian



134 Chapter 5. Examples

Filter Smoother

MC 50%

MC 10%,90%
K 50%

K 10%,90%

MC 50%

MC 10%,90%
K 50%

K 10%,90%

>>
C\J -

o

o -

N

'"///
OJ

/ / /

/ / /

^1-
1

/ / /

'//
/ / /

/ / •

/ / /

/ / /

-15 -10 -5 0 5 10 15

Yeo

-15 -10 -5 0

Yeo

10 15

Figure 5.12: Same as Figure 5.8, with p\ = 0.87 ay = 1 and aw = 1.

state space model and we consider two different cases: without outliers

and with 10% isolated or patchy (of length 5) additive outliers. Ex¬

plicitly, in the first case time series Y\ t are simulated according to the

state space model

Zt = piZt-i -\ h PpZt-p + vt,

Yt = Zt + Wt,

Vt~N(0,a2y), (5.3)

Wt~M(0,a2w). (5.4)

In the second case, the time series Yi j, are generated according to

Zt = piZt-i H h PpZt-p + Vt,

Yt = Zt + Wt + Ot,

Vt~N(0,a2y),

Wt~M(0,a2w)

(5.5)

(5.6)

with

Ot =
k sd(wt) -Ut if te lout,
0 otherwise.

We choose a 10% outlier contamination and we denote the outlier index

subset by Iout. We consider both the situation with isolated outliers and



5.2. Parameter estimation 135

the one where the outliers occur in patches of length 5. In both cases, the

outlier indices are chosen randomly. The sequence (Ut), t G
I
out, gives

the outlier signs: Ut takes value in { — 1,1} with probability {0.5,0.5}.
For the patchy case, the values of (Ut) are the same on each patch.

Moreover, the outlier magnitude is given by the term k sd(wt) where

sd(wt) is the empirical standard deviation of the realized observation

errors Wt and A; is a multiplicative factor. We choose several values of

k. Finally, the models (5.3), (5.4) and (5.5), (5.6) are examined using
two different state space equations: an AR(1) and an AR(4) processes.

We use the smoothing and the MCEM methods to compute the esti¬

mates, see their definitions in Sections 4.1 and 4.2. We do 30 iterations,
and the required initial estimates are found using the starting function

described in Section 4.3. Since the estimates computed with both Monte

Carlo methods fluctuate randomly around the true maximum likelihood

value 6ml, we take the median of the last 5 estimates 62e, ,
#30 to

get the final estimate 6 in both methods.

In addition, we compute the estimates using several values for the de¬

grees of freedom m and the sample size N. If we do not fix a value of m

a priori, the estimate 6 which maximizes the approximate log-likelihood
over the different starting values of m is chosen as final estimate of the

unknown coefficients. This approximate log-likelihood is given by

1(6) = log \p({yt,telav}\6)
= 52 ^g\p(yt\{yt,te {1,...,t-i}ni}

tela»

= 52l°s p(yt\zt,{yt,te{l,...,t-l}nlav},6)-
teiav

L

p(zt\{yt,t e {l,...,t-l}nlav},6)dzt

r 1
N

tElav 1=1

(5.7)

with (z\; ) a sample of Zt\{Yt,t G {1,..., t — 1} n Iav}, 6. Iav is given

as in Definition 4.1 and the sample (zp') is produced by simulating from

the state equation using the filter sample (zfly t-i)-
On the other hand, the exact log-likelihood function for the Gaus¬

sian state space model (1.1), (1.2) can be computed from the Kaiman
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filtering recursion. We have

1(6) = 52 log[p(yt\{yt,te{l,...,t-l}nIav},6)
tela»

= -0.5 52 [log(27r) +log(Mt) + -^- (yt - Pt\t-if
tela»

*

smceYt\{Yt,t £ {I,... ,t-l}r\Iav},6 is J\f(pt\t-i, Mt) distributed. We

have

Pt\t-i
= Htmt\t-i,

Mt=HtRt\t-iH't+Qt

where mt|t-i and Rt\t-i are the Kaiman prediction mean and variance,

respectively, see (1.3) and (1.4). Note that if Yf is missing, we set

'mv\tj = wif|t'-i in the Kaiman filtering recursion.

Then, the negative log-likelihood function can be minimized to obtain

the maximum likelihood estimate 6ml- Fhe minimization is carried out

by the R function optim which requires starting estimates, too. We take

the ones used to begin our Monte Carlo estimation methods, i.e. the

ones computed by the starting function described in Section 4.3.

This maximum likelihood method derived from the Kaiman filter is used

to estimate the parameters in the models (5.3), (5.4) and (5.5), (5.6).
Of course, in the first case we have exactly the right situation for the

Kaiman method (Gaussian errors). It is interesting to analyse what

happens to the estimates using the second model.

5.2.1 Estimates using an AR(1) state process

We discuss the results found using an AR(1) state process. The length
of the simulated time series is 200 and the coefficients are p\ = 0.8,

ay = 1 and aw = 1-

First, 100 different time series are simulated from the Gaussian state

space model without outliers, see (5.3), (5.4). The resulting estimates

are shown in Figure 5.13. "st" denotes the estimates obtained by the

starting algorithm (see Section 4.3); "MC: m = 1" to "MC: m = 5"

the estimates found using the smoothing or the MCEM algorithm. The

sample size N is 200. In addition, we select between the estimates "MC:

m = 1" to "MC: m = 5" the one which maximizes the approximate log-
likelihood (5.7) for each simulated time series. This estimate is denoted
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Figure 5.13: Parameter estimates of the Gaussian AR(1) state space

model without outliers. The sample size for the Monte Carlo methods

is 200.
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by "MC: best". Moreover, the maximum likelihood estimates obtained

using the Kaiman filtering recursion are denoted by "Kal". The results

"st" and "Kal" are shown in both "Smoother" and "MCEM" plots.

Finally, for the Monte Carlo smoothing and MCEM algorithms, âw
is found from m and c by comparing the interquartile distance of the

normal distribution with the one of the Pearson type VII, see before.

We have

d
c Qt^ (0-75)

V2m- 1 <7a/-(o,i) (0.75)'

The true coefficient is given in each plot by the dotted horizontal line.

As we can see, the starting estimates are not bad. It is also to be

expected that the "MC: m = 1" results are not good for the exact

Gaussian model. In fact, this method is too robust and it interprets
the time series as a AR(1) process with a big aw and, consequently, a

small p\. The "MC: m = 2" method has the same problem, to a lesser

degree. The other Monte Carlo methods produce very similar estimates

and log-likelihood values. The best Monte Carlo estimates are actually
found between the estimates computed with these methods, see Table

5.4. The estimates px and ay for "MC: m = 3", ...,
"MC: m = 5" and

MC m = 1 m = 2 m = 3 m = 4 m = 5

Smoother 2 2 15 32 49

MCEM 0 3 14 37 46

Table 5.4: Frequencies of the value of m which gives the best Monte

Carlo smoothing or MCEM estimate of the parameters of the Gaussian

AR(1) state space model without outliers. The Monte Carlo sample size

is 200.

"MC: best" are also comparable with the Kaiman ones and with the

true values. As expected, the dispersion is a little bit greater. On the

other hand, the estimates âw are smaller than both the corresponding
Kaiman estimates and the true value. This can be a consequence of the

small over-estimate of ay. We should also not forget that âw is not

found directly but it is derived by comparing the interquartile distances.

Smoothing and MCEM estimates are similar, except for m = 1. The

advantage of the smoothing method is that it converges faster than

the MCEM one. But it has bigger fluctuations at the convergence.

Figure 5.14 illustrates these features for two time series. The Monte

Carlo estimates are computed with m = 5. For both the Kaiman and
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Figure 5.14: Iterative estimates for two time series (upper and lower

panels, respectively) in the Gaussian AR(1) state space model without

outliers. The Monte Carlo estimates are computed with m = 5, the

sample size N is 200.

the Monte Carlo methods, the estimates (p\, ay and âw are shown by

solid, dashed and dotted lines, respectively. The Kaiman estimates are

the horizontal lines in the plots. The true parameters are given on the

right margin.
It is also interesting to examine what happens if we take a different

sample size N, for example 500. The results are shown in Figures 5.15

and 5.16. The considered time series are the same as before for both

figures. As we can see, the estimates are very similar. In these examples,
a greater value of N does not reduce the fluctuations of the Monte Carlo

smoothing estimates.

The next point to discuss is the influence of isolated or patchy out¬

liers on the estimates. This is analysed by simulating an AR process

(Zt) and a Gaussian white noise sequence (Wt) as described in (5.5) and

(5.6), respectively. Then, the outlier index subset Iout and the signs

(Ut), t G lout, are generated. Finally, the observations (Yt) are calcu-

Smoother

Gv, Gyv

<Pl

5 10 15 20 25 30

Iteration
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Figure 5.15: Same as Figure 5.13, with N = 500.
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Figure 5.16: Same as Figure 5.14, with N = 500.

lated using several values of the magnitude k of the outliers, see (5.6),
and the estimates are computed depending on the values of k. For the

AR(1) state equation, we choose k in {NA, 0, 2, 3, 5,10,15, 20}. With k

equal to NA, we denote the case where the observations {Yt,t G Iout}
are not available.

Figures 5.17 and 5.18 show the results for two different sequences (Zt)
and (Wt). Note that we show only two examples, since the behaviour

is similar for all considered sequences. In both figures, the starting es¬

timates are connected by the black lines; the Monte Carlo MCEM with

m in {1,2,3} using the green solid, dashed, and dotted lines, respec¬

tively. The Monte Carlo estimates with m = 4 and m = 5 are omitted

for the sake of clarity. The Monte Carlo estimates which maximize the

approximate log-likelihood (5.7) with respect to m in {1,2,3,4,5} are

connected by the blue lines. Finally, the Kaiman estimates are con¬

nected by the red lines.

We can see that all estimates are good for small values of k except the

Monte Carlo ones with m = 1. As before, this is to be expected since

the outliers are still tolerable. The starting estimates are not bad either.

With increasing magnitude k, the Kaiman estimates and sometimes the

Smoother

Gv, Gyv

-<Pl
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Isolated outliers (MCEM) Patchy outliers (MCEM)
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Outlier magnitude Outlier magnitude

Figure 5.17: First example of the influence of 10% outliers on the

estimates of the parameters of the AR(1) state space model. The Monte

Carlo sample size N is 200. See text for the other notations.

starting estimates become inaccurate. On the other hand, the Monte

Carlo method with m = 1 produces reliable results and the best Monte

Carlo estimates are given by it. The other Monte Carlo estimates be¬

come less accurate with increasing m and large k (including the omitted

estimates with m = 4 and m = 5). In addition, the estimates in the

case where 10% of the observations are not available are similar to the

ones without outliers.

We note that the Kaiman estimates of p\ also remain good with big

magnitudes for patchy outliers. This is a consequence of the fact that

the signs (Ut) are the same on each patch. Therefore, the AR structure

is not disturbed too much, only the scale parameters ay and aw are

affected by the outliers.

Figure 5.18 shows that the resulting Monte Carlo estimates are also re¬

liable with bad starting values.

As before, we can examine what happens with a different Monte Carlo

sample size N, for example 500. Figure 5.19 shows the results for the

same sequences (Zt) and (Wt) used to get Figure 5.18. The estimates
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Isolated outliers (MCEM) Patchy outliers (MCEM)

NA 0 2 3 5 10 15 20 NA 0 2 3 5 10 15 20

Outlier magnitude Outlier magnitude

Figure 5.18: Second example of the influence of 10% outliers on the

estimates of the parameters of the AR(1) state space model. The Monte

Carlo sample size N is 200. See text for the other notations.

are practically the same.

The estimates obtained by the Monte Carlo smoothing method present

the same features as the MCEM ones. For this reason, they are not

shown.

5.2.2 Estimates using an AR(4) state process

In the second case, we choose a more difficult AR process as state equa¬

tion. The AR coefficients are as in Percival and Waiden (1993), Section

2.6.: pi = 2.7607, p2 = -3.8106, p3 = 2.6535, p4 = -0.9238. This

is an interesting example to test the developed algorithms since this

AR process is near the non-stationarity border and the (logarithmic)
spectral density is bimodal, see for example Figure 5.23. The scale pa¬

rameters are ay = 1 and aw = I and the length of the simulated time

series is 256. As before, we analyse the resulting parameter estimates

of the models (5.3), (5.4) and (5.5), (5.6). In addition, we consider the
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Isolated outliers (MCEM) Patchy outliers (MCEM)
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Figure 5.19: Same as Figure 5.18, with N = 500.

estimated (logarithmic) spectral densities for the second model. It is

very illustrative in this example.

First, 50 different time series are simulated according to the Gaussian

model without outliers, see (5.3) and (5.4). The resulting estimates are

shown in Figure 5.20. The Monte Carlo estimates are computed with

the MCEM method and the notation is the same as before.

As we can see, the starting estimates are no more accurate. This is

somewhat surprising, but we should not forget that the chosen AR

process is near the non-stationarity border. Nevertheless, the Kaiman

estimates are good. The MCEM estimates are quite good for small

values of m and "MC: best". An exception are the estimates of aw- A

reason could be as before that the estimates are computed by comparing
the interquartile distances and not directly.
The Monte Carlo estimates computed with the smoothing method are

very similar to the MCEM ones. There are some more outliers and some

box plots are a little bit wider. The estimates âw are better for "MC:

m = 4" and "MC: m = 5" (the 50% box contains the true value).
The influence of isolated or patchy (of length 5) outliers is examined
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Figure 5.20: Parameter estimates of the Gaussian AR(4) state space

model without outliers. The sample size for the Monte Carlo MCEM

methods is 200.
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Isolated outliers (MCEM) Patchy outliers (MCEM)

NA 0 5 10 15 20 25 NA 0 5 10 15 20 25

Outlier magnitude Outlier magnitude

Figure 5.21: First example of the influence of 10% outliers on the

estimates of the parameters of the AR(4) state space model. The Monte

Carlo MCEM sample size N is 200. See text for the other notations.
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Isolated outliers (MCEM) Patchy outliers (MCEM)
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Figure 5.22: Second example of the influence of 10% outliers on the

estimates of the parameters of the AR (4) state space model. The Monte

Carlo MCEM sample size N is 200. See text for the other notations.
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using the model (5.5) and (5.6). The outlier magnitude k takes values

in the set {NA, 0, 5,10,15, 20, 25}. This set is adapted to the fact that

the observations have larger values with this AR(4) state process. The

results for two sequences (Zt) and (Wt) are shown in Figures 5.21 and

5.22. Note that we show only two examples, since the behaviour is simi¬

lar for all considered sequences. In addition, the Monte Carlo estimates

are computed again with the MCEM method. The colors and the line

types have the same meaning as before.

In the case with isolated outliers, the Monte Carlo estimates with m = 1

(and then the best Monte Carlo estimates) remain accurate for all out¬

lier magnitudes k. This is not true for the starting estimates and the

Kaiman ones. Their estimates become worse with increasing k. Unfor¬

tunately, the estimates with patchy outliers are not so good. In fact,
the Monte Carlo estimates become imprecise with increasing k, This

is due to the fact that the considered model (2.1), (2.2) presupposes

independent observation errors.

We can illustrate these results better considering the logarithmic

spectral density of the AR(4) state process. It is given by

log(/(i/)) = 21og(<7v)-log

4

52 pi exp(_ i2-Kvi)
i=i

It is bimodal for the chosen AR(4) process.

Figures 5.23 and 5.24 show the results for the same two sequences (Zt)
and (Wt) of Figures 5.21 and 5.22. The logarithmic spectral densities

computed with the best MCEM, the Kaiman and the true coefficients

are shown by solid, dashed and dotted lines, respectively. In the case

with isolated outliers, we can reproduce well the bimodality for all k

using the best MCEM estimates. This is not the case with the Kaiman

estimates. But also the best MCEM method is no more able to repro¬

duce the two peaks with big values of k in the patchy case.

The plots using the Monte Carlo smoothing estimates are very similar

to Figures 5.21, 5.22, 5.23 and 5.24.

5.3 Estimation of road traffic emissions

We analyse now an example with real data. It actually motivated the

present thesis.

The emissions of road vehicles contribute significantly to air pollution.
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Isolated outliers (MCEM) Patchy outliers (MCEM)
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Figure 5.23: First example of the logarithmic spectral densities for the

AR(4) state space model with 10% outliers: best MCEM (solid line),
Kaiman (dashed line) and true (dotted line). The MCEM sample size

N is 200.
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Isolated outliers (MCEM) Patchy outliers (MCEM)
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Figure 5.24: Second example of the logarithmic spectral densities for
the AR(4) state space model with 10% outliers: best MCEM (solid line),
Kaiman (dashed line) and true (dotted line). The MCEM sample size

N is 200.
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A way to characterize the traffic emissions is given by the so-called

emission factors (EFs). They give the amount of emitted compounds

per driven distance, and they are estimated for single, entire fleet or

categories of vehicles. Many variables influence the emission factors, for

example size, type, age, cylinder capacity, fuel mode (gasoline or diesel)
of the vehicle, presence of the catalytic converter. Or the driving style,
the kind of road (highway, ... ) and its gradient. Consequently, the es¬

timation of emission factors is quite complex. At least two methods are

used to estimate them: dynamometric tests or measurements in tunnels.

Dynamometric tests permit to measure the emission factors for single
vehicles under given conditions (driving style, speed, road gradient and

so on). If these conditions are chosen close to real ones and the tests are

carried out on a representative sample of vehicles, then road traffic emis¬

sion models can be developed. For example, the handbooks of emission

factors HBEFA (1999) and HBEFA (2004) describe road traffic emis¬

sions of several compounds (CO, NOx, THC) for Austria, Germany and

Switzerland. But, unfortunately, the reproducibility of real conditions

is not easy.

On the other hand, measurements in a tunnel permit to estimate emis¬

sion factors in a real traffic situation, although only for some categories
of vehicles. Briefly, the measurements are organized as follows. The key
idea is that the pollutants are transported with very little losses through
a passively ventilated tunnel. Thus, the concentrations at the beginning
and at the end of the tunnel are measured for each substance at regular
intervals t during one or more weeks, and the concentration differences

Act (between the end and the beginning of the tunnel) are computed.
Interval shifts are used to compute the differences to take into account

the times that the air needs to pass from the beginning to the end of

the tunnel. Then, for each pollutant and interval t, the average emitted

quantity EFt per vehicle and driven distance can be computed by mul¬

tiplying Act by the volume Vt of the air passing through the tunnel in

the interval t and dividing by the length d of the tunnel and the number

of vehicles nt passing through it in the interval t. Explicitly,

tit - d

where the volume Vt is obtained by

Vt = Wf s- At.

wt is the air speed measured inside the tunnel (it depends on the traffic

flow), s is the tunnel cross section and At is the length of the considered
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time interval. Emission factors are usually expressed in g/km. In addi¬

tion, loop detectors set on the road provide traffic informations for the

same intervals. Typically, they register the number of vehicles divided

in different categories (the classification is done according to the wheel

distance) and their speeds. Thus, we can model the average emissions

EFt using the percentages of vehicles in each class and their speeds. In

this way, we can find an estimate of the emission factors for each vehicle

category.

Both explained methods (dynamometric tests and tunnel measure¬

ments) present advantages and disadvantages as we have seen. The aim

is to use the estimated emission factors from tunnel measurements to

validate the road traffic emission models developed from dynamometric
tests.

In this example, we analyse the measurements performed from Mon¬

day 9th September to Friday 13t/l September 2002 in one tube of the

Gubrist tunnel close to Zurich, Switzerland. The Gubrist tunnel is a

highway tunnel and the considered tube has two lanes with a road gra¬

dient of 1.3%. The considered pollutant is nitrogen oxide (NOx: NO +

NO2). Moreover, the loop detectors divide the traffic in two categories:
the heavy duty vehicles (HDV) and the light duty vehicles (LDV), i.e.

private cars or vans. Most heavy duty vehicles have a diesel engine,
the light duty vehicles have mostly a gasoline engine and a small part

a diesel one, especially vans. The time intervals of the measurements

have length 1 minute. But we consider averages over 15 minutes.

The Gubrist study is actually more comprehensive. In fact, the mea¬

surements go on 5 weeks (from 9th September to 10t/l October) and

carbon monoxide (CO) and total Volatile Organic Compounds (t-VOC)
are also measured. We consider a reduced example for illustrative pur¬

poses.

The average emission factors computed according to (5.8), the percent¬

ages of HDV and the vehicle speeds are shown in Figure 5.25. LDV

and HDV have nearly the same speeds and thus we have only one time

series of speeds. In addition, we have set the values between 8 p.m. and

6 a.m. to NA since few vehicles are on the road during these hours.

Then, the conditions to compute the average emission factors EFt are

not ideal (for example inhomogeneous traffic flows and air speeds wt).
The vertical dotted lines in the plots delimit the different days. The

relation between average emission factors EFt and percentages of HDV

is immediately visible.
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Figure 5.25: Average emission factors EFt, percentages of HDV and

vehicle speeds for the considered 5 days.



154 Chapter 5. Examples

In previous tunnel studies, a very promising model was given by

log(EFt) = log(«i + a2 • pHDVt) + a3 speedt + et, (5.9)

see for example Colberg et al. (2005). In the last model, pHDVt is the

percentage of HDV and speedt is the vehicle speed on the tth interval.

Note that the previous model (5.9) gives

EFt = («l + «2 -pHDVt) exp(a3 • speedt) exp(et),

i.e. we have a multiplicative error and the speed scales the emission

factor.

Now, the goal is to estimate the parameters ot\, a2 and a3. In this way,

we can find the estimates of the emission factors of LDV and HDV for

different speeds and also their pointwise confidence intervals. To this

end, we use different methods. A first estimation is carried out assum¬

ing that the errors (et) are independent and Gaussian distributed. We

use the R function nls to compute the nonlinear fit. But, as we could

expect, the residuals are correlated and only approximatively normally
distributed. Some outliers are also present. Thus, we have the situation

covered by our model. We estimate the parameters in (5.9) using the

developed MCEM algorithm and the maximum likelihood method de¬

rived from the Kaiman filtering recursion. We use the starting function

described in Section 4.3 to begin both estimation methods. Moreover,
we choose an AR(2) process for the errors. This order results consid¬

ering the autocorrelation and partial autocorrelation plots computed
with the residuals of the preliminary nonlinear fit. The order will be

confirmed by the MCEM fit. In addition, different estimates of the de¬

grees of freedom m are used to compute the MCEM estimates. The

estimate which maximizes the approximate log-likelihood (5.7) over the

different values of m is chosen as the final estimate. The number of

iterations in the MCEM algorithm is 30 and the sample size is 500.

Once the parameters are estimated, the estimated emission factor EF

for given values of pHDV and speed is given by

EF = (ai + S2 -pHDV) exp(S3 • speed). (5.10)

Its pointwise confidence interval follows from the asymptotic theory of

the maximum likelihood estimator. In fact, the maximum likelihood

estimate 6 is asymptotically J\f(6o, /(öo)_1/T) distributed, see for ex¬

ample Bickel et al. (1998) or Jensen and Petersen (1999). 6q denotes

the true unknown parameters, I(6q) is the Fisher information and T is
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the length of the time series. Thus, the estimated emission factor EF is

approximatively normally distributed around the true unknown value.

The variance is given by

Var ( EF) = Var ((ai + â2 • pHDV) exp(<Î3 • speed))

« exp(2«3 • speed) Var ((ai + â2 pHDV) exp(A«3 • speed))

« exp(2«3 • speed) Var ((Si + â2 pHDV) (1 + Aas - speed))

« exp(2«3 • speed)-

Var (A«i + Aa2 pHDV + («i + a2 pHDV)Aa3 speed)

« exp(2«3 • speed) a Var (6) a (5-H)

« — exp(2«3 • speed) a I(6o)~1a (5-12)

with 6o := (ai,a2,o.s) ,
a := (l,pHDV,(a\ + a2 pHDV) speed) .

Note that the variance of 6 := (â\, â2, «3) is given by /(öo)_1 /T.
Now, we use the results (5.10) and (5.12) to estimate the emission fac¬

tors of LDV and HDV for given speed values and find their approximate

pointwise 95% confidence intervals. This is done for the three estimation

methods mentioned above (nls method, MCEM method and maximum

likelihood method derived from the Kaiman filtering recursion). We just
set pHDV equal to zero to find the estimated emission factors of LDV

and equal to one for the HDV. To compute the variances, we substitute

the true unknown parameters by the estimated ones. In addition, the

Fisher information can be approximated by the Hessian of the negative

log-likelihood function computed at the estimated parameters for both

the MCEM method and the maximum likelihood method derived from

the Kaiman filter. For the nls method, the variance of 6 in (5.11) can

be computed directly from the design matrix of the nonlinear fit, see

also below.

It is also interesting to estimate the emission factors of LDV and HDV

by applying the method in Colberg et al. (2005). This method is a

refinement of the method in Cochrane and Orcutt (1949), see Staehelin

et al. (1995). First, the estimate 6 := (âi,â2,âs) is found by fitting
a nonlinear model with the function nls, see also above. Explicitly, we

have

6= (x'x\ XY

with Y the vector containing all values \og(EFt) and X the design
matrix which is given by the derivatives of the right hand side of (5.9)
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with respect to the parameters. Then, the residuals are modeled with a

robustified AR(2) process and the covariance matrix S of the residuals

is computed. It follows

Var (6) = [x'x\ X'ÈX (x x\ /B2 (5.13)

with B a correction term due to the robustification. Then, the estimated

emission factors of LDV and HDV are computed using again (5.10),
and the confidence intervals are computed using (5.11). The variance

in (5.13) is used to compute (5.11).
More details on this method can be found in Staehelin et al. (1995).

The estimated emission factors of LDV and HDV, and their point-
wise 95% confidence intervals are shown in Figure 5.26. They are com¬

puted with the nls method, the refinement of Cochrane and Orcutt

(1949) (nls+AR) and the MCEM method. The best MCEM estimate

is obtained by the degrees of freedom m = 8. This means that the

observation errors are approximately normally distributed.

Unfortunately, we did not succeed in computing the corresponding re¬

sults with the maximum likelihood method derived from the Kaiman

filter. In fact, the optimization routine optim of R ended always in lo¬

cal minima for the tried starting values (we also used the best MCEM

estimate) and the chosen tuning variables (for example the scaling val¬

ues for the parameters during the optimization). Consequently, we got
unreasonable parameter estimates (for example negative values of Si)

or nonpositive definite variance matrices Var (6).
In addition, the estimated emission factors from the handbooks HBEFA

(1999) and HBEFA (2004) are also shown. The black circles denote the

results using the HBEFA (1999), the squares using the HBEFA (2004).
These estimates are available only for few speeds. The LDV estimates

are computed assuming a mix of 88% cars and 12% vans. This is the

average mix in the Gubrist tunnel.

Of course, the emission factors estimated with the nls method and the

nls+AR one are identical since they are found with the same method.

The pointwise 95% confidence intervals computed with the nls+AR

method are wider since the (positive) error correlation is considered.

As expected, the speed has a positive effect on the emission factors of

LDV and HDV for all three methods and the two handbooks. But the

MCEM estimated emissions of LDV are greater than the nls or nls+AR

ones. The contrary is true for HDV.

Which results are reliable? A well known problem affecting the HBEFA
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Figure 5.26: Estimated emission factors and their pointwise 95% con¬

fidence intervals using the nls7 nls+AR and best MCEM methods. The

black circles denote the results using the HBEFA 99, the squares using

the HBEFA 04.
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(1999) is that the emission factors of HDV are systematically under¬

estimated. A reason is that modern diesel engines are equipped with

electronic systems which can control and reduce the emissions in steady
state approval tests, see for example Hausberger et al. (2002). (Dy¬
namometric tests are performed under the same conditions.) But out¬

side these test conditions, the emissions are greater. This result is con¬

firmed by the three statistical methods. The HBEFA (2004) corrects

this problem, but maybe it overestimates now the emissions. Or other

reasons to explain the discrepancy between the statistical results and the

HBEFA (2004) may be the following ones. The estimates for HDV are

computed by setting pHDV equal to one. This extrapolation could be

problematic since the observed percentages of HDV never exceed 18%,
see Figure 5.25. Or it could be that the vehicle fleet passing through
the Gubrist tunnel is "cleaner" than the one assumed in the handbook.

In addition, the handbook requires the specification of the mix between

cars and vans to compute the estimates for LDV. The mix may also vary

considerably during the day. This fact can affect the results since vans

have typically a diesel engine. On the other hand, the statistical meth¬

ods have the disadvantage that the classifications in the two categories
LDV and HDV are done using loop detectors. Then, misclassifications

are possible. This could be checked by comparing the classifications

from the loop detectors with the ones from video records, if the latter

are available.

The issue of finding good road traffic emission models is still open.

It also changes in the years following the technical developments, the

traffic and driving conditions.



Chapter 6

Robustness of filter and

smoother distributions

In this chapter, we examine how sensitive the density p (z\ r\yi t) is to

the presence of extreme values in the observation series (yt). This is

useful to understand how robust the developed filtering and smoothing
recursions are in the presence of outliers.

The discussion is inspired by the results by Dawid (1973) and O'Hagan

(1979). In both cases, the inference of a location parameter given a

random sample was considered from the Bayesian point of view. Pre¬

cisely, Dawid (1973) considered a single observation x on a location

model X = 6 + D, where 6 was the unknown parameter with specified

prior distribution P\ and D was the unknown error with known error

distribution P2. He gave sufficient regularity conditions on the tails of

P\ and P2 to imply that, as x tended to infinity, the posterior distribu¬

tion of 6 approached P\ (x was discredited as an outlier), and similarly
for the posterior mean of a function of 6. In addition, he observed

that, since 6 and D entered symmetrically, the same conditions on P2

and Pi implied that the posterior distribution of D approached P2 (the
prior was discredited; 6 was asymptotically fiducially distributed). In

particular, normal P\ and student P2 gave the former case and the re¬

verse, the latter. O'Hagan (1979) proved that any admissible inference

procedure applied to at sample effectively ignored extreme outlying
observations regardless of the assumed prior information. On the other

hand, he showed that the normal distribution did not exhibit the same

159



160 Chapter 6. Robustness

behaviour. In fact, it never allowed outlier rejection, regardless of the

prior information.

We prove now some similar results for our model using the Li-norm.

Without loss of generality, we assume that all observations Y\ t and all

external regressors (Xtp,..., -Xt,m)(t=i t) are known. In addition, we

write the model as in (2.6) and (2.7) such that outliers in the external

regressors are also taken into consideration.

First, it is useful to summarize the definition and some well-known

equivalent forms of the Li-norm for densities:

ll/-fflli:= / \f(x) -g(x)\dp(x)

= 2J(f(x)-g(x))+dp(x)
= 2 1- / min(/, g) dp(x)

= 2 sup|-F(A) -G(A)\
A

(6.1)

(6.2)

(6.3)

= 2 sup

A(V)<1
V>(x) (f(x) - g(x))dp(x)

Here x+ := max(x,0) is the positive part and

A(-i/>) = supx x, \tp(x) — ip(x')\ is the variation of -p. The equality

(6.1) is Scheffé's theorem, see Devroye (1987), p. 2. The other

equalities are easy consequences of this result. According to (6.3), the

Li-norm for densities is twice the total variation norm between the

corresponding distributions.

Second, we prove an auxiliary result. It gives a lower and an upper

bound for the ratio of the observation densities with different values of

the state variable Zt.

Lemma 6.1 Let zt and z't be given and let Yt\Zt have density

Pvu (m, c, zt) (yt). Then, for all yt,

3 +
zt ~zt

<
p(yt\zt)

p(yt\z't)
< 3 +

zt ~ zt

Proof: To begin, we rewrite the problem in an easier way using the
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definition of the Pearson type VII density. We have

,

2"

P(yt\zt) _pvn(m,c,zt)(yt)
p(yt\z't)

with y

pyu(m,c,z't)(yt)

1 yt-zt
l + (y + zf

l + v2

^—^ and z
c

p(yt\zt)

Zt Zt. Thus, we have that

p(yt\z't)

and analogously

p(yt\zt)

T" p(yt\z't)
> mm mm

y

l + (y + zf
1

p(yt\zt)
< max

y

l + (y + zf
1 yZ.p(yt\z't)

Therefore, we can reduce the attention to the function

l + (y + z)2
hz(y)

1 y

The next step consists of finding a lower and an upper bound for it.

To this end, we find its minimum and maximum. They should fulfill

the condition

„

d... 2(y + z)(l + y2)-[l + (y + z)2]2y
0 = Tyh^

=

(ÏT17Y2
2y + 2y3 + 2z + 2zy2 - 2y - 2y3 - 4zy2 - 2yz2

(i + y2)
2\2

-2z(y2 zy

(i + y2)
2\2

0 means that zt =
zi and then ,-T'(

' v(yt\zt)
1. The assertion

_

-z±V^+4

The case z

of the lemma follows trivially.

For the case z ^0, the two roots y± =
~z±vz'+4

are alwayS real and

different. We assume for the moment that z is positive. Then, it follows

from the sign of -j-hz(y) that y_ is a minimum and y+ is a maximum

of the function hz(y). Consequently,

m&xhz(y) = hz(y+)
y
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< 1 + - (z2 + z2 + 4 + 2zv/z2 +A

<l+l-[2z2+4 + 2zJ(z+2z

= 1 +
4
(2^+4 + 22 z +

l + -(4z2+8) = 3 + z2

On the other hand,

1
min hz(y) = min hz(-y - z) = min ————-r = mm ——-

y y y l + (y + z)z y hz(y)
1

>
1

m*AXyhz(y) 3 + z2

Thus, we have proved the lemma for positive z. The case with negative

z can be reduced to the positive one since

l + (-y + Z)2 l + (y+\z\)2
hz(-y) =

-, , , „A9
=
—7-TT2—

= h\z\(y)-
i + (-y)2 l + r

D

We now examine what happens if some of the observations (yt) go

to ±00. We show that these observations are discredited, i.e. they do

not affect the resulting density in the limit.

Lemma 6.2 Let I be any subset of {1,..., T}. Then

lim \\p(z1T\yiT)-p(ziT\{yt,t(jÉI})\\1=0.
{yt,teI}^±oo

Remark 6.1 The notation {yt,t G /} —> ±00 means that each yt,

t G I, goes to 00 or —00 independently of the others.

Proof: The proof follows by applying Lemma 6.1 and twice the

Lebesgue's dominated convergence theorem.

The first goal is to compute iim^ytttei}^±ooP (zi r\yi t)- We have

p(zir\yiT) =
p(zit) p(yiT\zir)

p (yi t)
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p (zi t) UttiP(yt\zt) UteiP (yt\zt)

! Jp (4 t) Y\t4iP(yt\z't) YlteiP (yt\z't) dz[

p(ziT)Ut£iP(yt\zt)

.
dzL

I lp{z[T)Ut4IP{yt\z[)Utei\W^) QjZ-\
. . . QjZrj

The terms which depend on {yt,t G /} are now only in the denomina¬

tor. We succeed in computing the above mentioned limit if we apply

Lebesgue's theorem to the denominator. To this aim, we need a ma¬

jorant of the integrand which is both independent of {yt,t G /} and

integrable with respect to z'1T. Moreover, we should compute the limit

of the integrand.
The integrand can be bounded using Lemma 6.1:

>«*>n><*wn;-tfê <p(z'iT)\{p(yt\z't)\{ (3-

t(i ter
^

zt-zt

The right hand side does not depend on {yt,t G 1} and thus it can be

chosen as majorant. We need the following inequalities to prove that it

is integrable with respect to z'1T:

• For any functions f\, In we have

\fi(zn)\n dziWuzn) dZ1...dZl<i[(/•••/
'

i=i i=i^ '

(generalized Holder inequality).
• For any a, 6 G M+, c,del and n G N, we have

(a + 6) < (2a)+ (26),

(c-d)2 < 2c2 + 2d2.

• For any zt and yt, we have

P (yt\zt) = &m,c (yt - zt) < 6m,c (0)

(see Chapter 2 for the notation).

Thus,

p(z[T)\{p(Wt)\{^+{Z-^)2)mdz'1.

. dz,

l/r

tii

<5m,c(0)T m
Ez[

. dzT

tel

n 3+
zt

2\ m



164 Chapter 6. Robustness

<w(°r|f| riE^
tel

<bm,c(of-w n{6mi/i
tel

^

<w(o)th/i n{6mi/i
tel

^

<w(o)t_i/i n(6m|/|-
tei

^

3 +

2\ ml/I Vl-ri

2 \ m\I\
E^ &-*t)2m|/|

vm

2 \ ml-f|
Ez' (2(z't)2+2z2)mW

Vl-ri

£ 1 i / 1 TT
K)

/-,2ml II
Vl-ri

The last expression is finite since Z't is normally distributed, and there¬

fore all moments exist and are finite. In addition,

lim 1 [
p(yt\z't)

{yt,tei}^±cX,fe1lp(yt\zt) {yt,tei}

lim 1 [
±oo

tel

i + Uyt-zt)2

lim TT

{yt,tl}^±oo^
1.

i + Mvt-4)2

'yi2 + Mi-zml?
y-^ + Ml-z'ty-t)

/ ÎT—1^2

We can now put the previous results together and apply Lebesgue's
theorem to interchange the limit with the integral. It follows that

lim p(z\T\yiT)
{yt,tel}^±oo

P(ziT)X\tiiP(yt\zt)

I —I lim{yt,*e/}^±oo [P (z[ T) Ut4iP(yt\z't) Utei pWw)) dz'^ dzT

p(ziT)Ut£iP(yt\zt)
I Jp(z[t) UtfiP (yt \z't) dz[... dz'T

=

p(ziT,{yt,t £ I})

f fp(z'1T,{yt,t £ I}) dz[ . .. dz'T

= p(ziT\{yt,t £1})-

Thus, the lemma follows using the Proposition 2.29 in van der Vaart

(1998). This latter proposition can be proved easily by applying
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Fatou's or Lebesgue's theorem. D

Finally, we compute the supremum in the Li-norm of the difference

between two densities with some different observations. The supremum

can be at most 2 which corresponds to the case where the two densities

are completely separated. For the considered model (2.6) and (2.7), we

show that the supremum is less than 2. Thus, the densities are not

completely separated also in the worst situation, i.e. the presence of

outliers does not cause a breakdown in the estimation of p (z\ r\yi t)-
To prove the described characteristic, we should generalize a well-known

inequality.

Lemma 6.3 (Chebyshev's inequality in R")
Let X = (X\, ... ,Xn) be a random vector in1". Then, for any positive

c,

1

P(||X-E[X]||2>c) < -YJVar(Xl).
c

t=i

Proof: The lemma follows easily by applying the generalized

Chebyshev's inequality in one dimension to the random variable

||X-E[X]||2:

pf||X-E[X]||2>c2)<+E[||X-E[X]||2l=+Er=i^(^)- a

Lemma 6.4 Consider any two observation series y\T and y\T. Then

_

sup \\p(z1T\y1T) -p(z1T\ytT)\\i < 2-

{yi T,y\T}

Thus, it follows easily that

Corollary 6.1 Consider any two observation series y\ j* and y\T. Let

I={t |î/t«}Ç{l,...,T}. Then

sup \\p(ziT\yiT)-p(ziT\yïT)\\i < 2.

i(yt,y*t),tei}

Proof of Lemma 6.4: The first step is to reformulate the assertion

using (6.2). We find:

_

sup \\p(z1T\y1T) -p(zlT\y\T)\\1
{yi T,y\T}

< 2 — 2 / • • • / inf v(z\ tIvi t) dz\... dzT-
~

J J {yt,te{iT}}FK
ll\yll>
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Then, the lemma follows if we show that

inf p (z\ tIvi t) dz\... dzx > 0.

{yt,te{ir}}

The main ideas to prove this inequality are the following ones. To begin,
we write p (z\ r\yi t) in the same way as in the proof of Lemma 6.2.

It is convenient to write the involved observation density p (yt\zt) with

the notation 6mc (yt — zt) introduced in Chapter 2. Further, we find

successively lower bounds for the integral. To this end, we use Lemma

6.1, then we reduce the integral on RT to an integral on a suitable

subset and we estimate it using Chebyshev's inequality (Lemma 6.3). In

addition, we use that (c — d)2 < 2c2 + 2d2 for any c, d G M. Explicitly,

>

>

>

inf p
(z\ t\u\ t) dz-i

...
dzrr

{yt,te{iT}}FK
ll\yll>

inf

{yt,te{lT}}

p(zit)

Ez'.

'

T

n
t=l

bm,o(yt-z't)
bm,civt-zt)

p(zit)

Ez'

-dz\ ... dzj*

dz\ ... dzj

„..„
TT °m,cWtbm,c(yt-z't)

zt)

p(ziT)

E; n(3+(^x2
p(zit)

-dz\ .. . dzj

E5

\VT var(zy j

T

n (3-
t=l

dz\ . . . dzj

>

E
TT (o I •2(zj)2 +2d2TVar(Z1)

l-P(\\Z1T\\2> dv/TVar(Z1)

p (z\ t) dz\ .. . dzj

{ J!** rll2 A

Ez' TT f% !
2(z>ty +2d?T Var(Z1)V

t=l^ C '
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7-2

>

Ez' rj U {
2(z't)*+2cPT Var(Z1)V

t=l^
C '

(6.4)

>0

for d > 1. In fact, the random vector Z\t is multivariate M{0, £)
distributed and therefore the denominator is finite (we can use an argu¬

mentation similar to the one in the proof of Lemma 6.2). In addition,
the numerator does not vanish. Finally, we stress again that the inequal¬

ity (6.4) follows by generalizing Chebyshev's inequality as in Lemma

6.3 and using that E [Zt] = 0 for all t and Var (Zx) = = Var (ZT). D





Chapter 7

Outlook

It is now time for some critical remarks on the developed algorithms
and for the outlook.

As we have seen in Section 5.1, the estimates of the states given the

parameters work really well. The developed methods can cope with

outliers and the CPU times are reasonable. On the other hand, the

Kaiman state estimates become unreliable, already in the presence of

mild outliers.

The developed Monte Carlo estimation methods also produce fine re¬

sults for the models without outliers, with isolated outliers or mild

patchy outliers, see Section 5.2. The developed methods encounter dif¬

ficulties when the patchy outliers have a big magnitude. The reason

is that the considered regression model assumes i.i.d. observation er¬

rors, see (2.1) and (2.2). Again, the method derived from the Kaiman

filtering recursion cannot cope well with outliers.

The main critical point of our developed algorithms is that the es¬

timates are computed with the maximum likelihood method, i.e. using

a numerical optimization algorithm. This could be problematic since

optimization algorithms may end up in local minima (or maxima) al¬

though quite good starting values are provided. In addition, numerical

optimization algorithms are not particularly fast. A promising idea to

avoid the numeric optimization is to expand the state vectors to contain

also the unknown parameters, see Kitagawa (1998). Then, particular
care is needed to avoid too big setups to compute the state densities.

In fact, this approach should also be fast to compute.
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Other possible improvements to our methods are to extend them to

cope well also with patchy outliers in the observations or with inno¬

vative outliers in the state errors. Again, particular care is needed to

avoid too big setups.
The theory should also be improved, for example by analysing the break¬

down point of the estimation methods.

As we see, the end of a thesis is actually the start point for a new one.
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