
ETH Library

Contract wizard II

Master Thesis

Author(s):
Wotruba, Dominik

Publication date:
2003

Permanent link:
https://doi.org/10.3929/ethz-a-005114784

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005114784
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Contract Wizard II

Diploma Thesis

Dominik Wotruba

Supervised by Prof. Dr. Bertrand Meyer and Karine Arnout

ETH Zürich

October 6, 2003

Acknowledgements

Let me express my thanks to the people who made this diploma thesis possible.

First of all I want to thank Karine Arnout for her supervision, her scientific support and her
very helpful comments on this diploma thesis.

I thank Prof. Dr. Bertrand Meyer for his consultations and supervision.

I would also like to express my thanks to Hans Dubach for his great help and support in
dealing with administrational questions.

Last but not least I am very grateful to my parents for their support in every respect.

Abstract

This diploma thesis is part of a general effort to improve existing components by adding
contracts a posteriori. In this diploma thesis, I focus on .NET components.

.NET does not support Design by Contract. For this reason, a tool called Contract Wizard,
which allows adding contracts to every .NET assembly, whatever .NET language it was
originally written in, was developed by Karine Arnout [2]. The Contract Wizard was written
for a beta version of .NET. The goal of this project was to rewrite this tool for the latest
version of .NET.

Contract Wizard II reads a “contract-less” .NET assembly and explicit contracts provided
separately. The tool merges this information automatically, generates Eiffel proxy classes
containing the contracts and compiles them using the Eiffel compiler into a new .NET
assembly.

The tool provides incrementality: if the assembly already contains explicit contracts, the tool
does not process the whole .NET assembly again, but takes advantage of an XML
representation of the Eiffel proxy classes.

In this diploma thesis, I explain how to use the tool Contract Wizard II, I discuss its design
and give a precise description of its implementation.

1

2

3

Content

1. PROJECT PLAN ... 7
1.1 PROJECT DESCRIPTION... 7
1.2 BACKGROUND MATERIAL.. 10
1.3 PROJECT MANAGEMENT .. 10
1.4 PLAN WITH MILESTONES.. 13
1.5 DEADLINES.. 14
1.6 TENTATIVE SCHEDULE .. 14

2. DEMO APPLICATION ... 17
2.1 CONTRACT WIZARD COMMANDS ... 17
2.2 CONTRACT WIZARD ACCOUNTING EXAMPLE ... 17

3. SOFTWARE ARCHITECTURE ... 25
3.1 CLUSTER OVERVIEW.. 25
3.2 THE SUB CLUSTER PARSE/AST.. 26

4. THE .NET PARSER .. 33
4.1 THE .NET FRAMEWORK.. 33
4.2 .NET PARSER CLASS OVERVIEW ... 34
4.3 THE CLASS CW_AST_FACTORY.. 35
4.4 THE CLASS CW_DOTNET_AST_FACTORY ... 37
4.5 THE PARSER (CW_PARSER) .. 43
4.6 THE .NET PARSER (CW_DOTNET_PARSER) ... 44
4.7 TRANSLATING .NET NAMES INTO EIFFEL NAMES ... 49
4.8 SUMMARY ... 51

5. THE XML PARSER (CONTRACT READER) .. 53
5.1 DESIGN OF THE XML PARSER ... 53
5.2 STRUCTURE OF THE XML PARSER... 54
5.3 SETTING UP THE GOBO XML PARSER .. 55

6. CONTRACT WIZARD PROXY CLASSES... 63
6.1 THE CONTRACT WIZARD PROXY CLASS.. 63

7. GENERATING CONTRACT WIZARD PROXY CLASSES................................... 71
7.1 THE EIFFEL CODE GENERATOR... 71
7.2 THE XML CODE GENERATOR .. 73
7.3 THE LACE CODE GENERATOR... 75

4

8. PROXY CLASS SYNTAX... 77
8.1 IDENTIFIER SPECIFICATION .. 77
8.2 TYPE SPECIFICATION ... 78
8.3 FORMAL ARGUMENT SPECIFICATION ... 78
8.4 ACTUAL ARGUMENT SPECIFICATION ... 79
8.5 CREATION PROCEDURE SPECIFICATION ... 79
8.6 ATTRIBUTE SPECIFICATION ... 80
8.7 PROCEDURE SPECIFICATION .. 80
8.8 FUNCTION SPECIFICATION ... 81
8.9 FEATURE SPECIFICATION ... 82
8.10 CLASS SPECIFICATION ... 83

9. CONTRACT HANDLER ... 85

10. TEST CASES.. 87

11. STORING THE CONTRACTS ... 89
11.1 STORING CONTRACTS IN AN XML FILE ... 89
11.2 STORING CONTRACTS IN THE ASSEMBLY METADATA... 89
11.3 CONCLUSION... 90

12. CONCLUSION ... 91

13. ACRONYMS .. 93

REFERENCES ... 95

5

Introduction

.NET does not support Design by Contract. For this reason, a tool called Contract Wizard,
which allows adding contracts to every .NET assembly, whatever .NET language it was
originally written in, was developed by Karine Arnout [2]. The Contract Wizard was written
for a beta version of .NET.

The aim of this diploma thesis is to implement a tool called Contract Wizard II, which works
with the latest version of .NET.

Contract Wizard II reads a “contract-less” .NET assembly and separately provided contracts.
It merges this information and automatically generates Eiffel proxy classes containing
contracts. Then the contracted Eiffel proxy classes are compiled into a new .NET assembly.
Moreover, an XML representation of the contracted Eiffel proxy classes is generated. This
enables the client to append contracts to an already contracted assembly without going
through the whole process given above. For more details on the scope and the objectives of
this diploma thesis, see Chapter 1.

Contract Wizard II has been designed with extendibility in mind: it should be easy to adapt it
to support future changes of the Eiffel language and to automatic contract extraction from
.NET assemblies [5].

This report consists of four major parts:

• The first part describes the project plan including the set-up of the project and the
intended results.

• The second part is a user manual explaining how to use the tool Contract Wizard II.
• The third part is a developer report; it addresses the developers who want to extend the

tool.
• The last part is theoretical and discusses the advantages and drawbacks of storing

contracts directly in the assembly’s metadata instead of storing them in separate XML
files as implemented.

6

7

Part A: Project plan

1. Project plan

1.1 Project description

1.1.1 Overview

Building reliable software is the aim of software engineering. Assertions, which are part of
the Eiffel programming language, provide the programmer with essential tools for expressing
and validating correctness arguments. The key concept is Design by Contract. Viewing the
relationship between a class and its clients as a formal agreement, expressing party’s right
and obligations, is the only way one can hope to attain a significant degree of trust in large
software systems. [2]

The current implementation of .NET does not support Design by Contract yet. The goal of
this project is to develop a tool, which provides the ability to add contracts like preconditions,
postconditions and invariants to an arbitrary .NET assembly, which will be a big enrichment
for many programming languages based on .NET.

1.1.2 Scope of the work

The main work of the diploma thesis is to implement a tool, called Contract Wizard II. There
already exists a tool called Contract Wizard developed by Karine Arnout. The main
difference between Contract Wizard II and Contract Wizard is the implementation.

I developed the entire tool Contract Wizard II in full Eiffel for .NET and take advantage of the
XML technology (comparing to Contract Wizard I that is a mix of Eiffel, C# and COM). The
current implementation (full Eiffel for .NET) makes it possible to turn Contract Wizard II into
a Web service later.

I implemented the tool considering future Eiffel language extension, like contracts for
attributes. Furthermore, all inserted contracts are stored in XML. This has the advantage that
for example, tools for automatic contract extraction [5] can easily be incorporated.

The work consists of the following parts (see Figure 1 on next page):

8

.NET
assembly

Contract
Reader

Name
ResolverParser

user
contracts

symbol
DS

Codegen

Proxy
classes

with
contracts

contracts
in XML

ACE file Eiffel
compiler

.NET
assembly

symbol
DS with

contracts
GUI

Contract
DS Error in

contracts

contracts
in XML

2

1

3 3 4

If specific
metadata
retrieve XML
files

Figure 1: Software architecture

(1) If there is no specific metadata, the parser parses the .NET assembly and produces a
symbol DS (Data Structure). The Name Resolver keeps track of the renaming from .NET
names to Eiffel names.

(2) If there is specific metadata (e.g. a path to the XML contract files) in the .NET assembly
expressing that there are already contracts for it, the Contract Reader reads the contracts from
XML contract files and produces a Contract DS. Furthermore, like in point (1), a symbol DS is
produced.

(3) Both the Contract DS and the symbol DS are handled by the Contract Handler and the
basic GUI. They produce a symbol DS containing information about the .NET assembly and
the contracts. The Contract Handler and the basic GUI are also responsible for user contracts.
User contracts are appended to the Contract DS.

(4) The Code Generator traverses the symbol DS with contracts and produces proxy classes
with contracts. The proxy classes will contain metadata expressing where the Contract Files
are located. Another task of the Code generator is to generate XML files storing all
information about contracts and to produce the ACE files needed by the Eiffel compiler.

(5) The Eiffel compiler is called by the GUI and compiles the generated proxy classes using
the ACE files. If the contracts are not correct, an error message is displayed and the contracts
can be corrected considering the error messages.

9

1.1.3 Intended results

Table 1 below shows the intended results.

Parser • Implementation of a parser, which parses a .NET
assembly and produces a symbol DS

Name Resolver

• Implementation of a Name Resolver
• Scope: .NET and Eiffel have different naming

conventions; hence, different names for the same
type or feature. The Name Resolver keeps track
of .NET types and .NET methods. It uses the Eiffel
[10] core algorithm for renaming.

Contracts • Implementation of a DTD to store contracts in XML

Contract Reader • Implementation of a Contract Reader based on the
mentioned DTD

Basic GUI
• Implementation of a basic GUI for demonstration

purposes to enable adding contracts (preconditions,
postconditions and invariants)

Contract Handler • Implementation of the Contract Handler, which is
used by the basic GUI

Code Generator

• Implementation of a code generator consisting of the
following parts:

o XML Writer: Implementation of an XML
writer which enables storing contracts in
an XML file based on the specified DTD.
(One XML contract file per class).

o ACE File Producer: Implementation of an
ACE File Producer, which keeps track of
the .NET assembly and of the Eiffel proxy
classes

o Proxy Class Generator: Implementation of
a Proxy Class Generator, which produces
Eiffel classes with contracts. Scope:
Generation of a proxy class for every
class (subclass) in the .NET assembly

o Assembly Updater: This part updates the
proxy classes with metadata (e.g. path to
the XML contract files)

Demo application • Implementation of a demo demonstrating the
functionality and scope of Contract Wizard II

Test cases • Test cases that will be used for the demo
Table 1: Intended results

10

1.2 Background material

1.2.1 Reading list

• Chapters in OOSC2 [7] in particular:
o 1 Software quality
o 11 Design by Contract: building reliable software
o 23 Principles of class design
o 26 A sense of style
o 28 The software construction process

• NET Training Course [5]
• Rapport de stage “Jeune Ingénieur” [1]

1.2.2 Software

• Source code of Contract Wizard

1.3 Project management

1.3.1 Objectives and priorities

Table 2 below shows the objectives and priorities of the different parts of the project. One
represents the highest priority and three the lowest priority. The most important software parts
are: design of the software architecture, the parser, the contract reader, the code generator and
the test cases. The most significant documentation part is the thesis report including the
developer documentation.

Objective Priority
Software architecture 1
Parser 1
Contract Reader 1
Contract Handler 1
Code Generator 1
Demo application 2
Basic GUI 3
Test cases 1
Optimization 3
User documentation 2
Developer documentation 1
Intermediary report 3
Thesis report 1

Table 2: Objectives and priorities

11

1.3.2 Criteria for success

The focus on this project is quality. The result may be a partial implementation of the
intended results and objectives without implying any penalty on the success of the project.

Quality of software:

• Use of Design by Contract
o Routine pre- and postconditions
o Class invariants
o Loop variants and invariants

• Careful design

o Design Patterns
o Extendibility
o Reusability
o Careful abstraction

• Core principles of OOSC2 [7]
• Command/query separation

o Simple interfaces
o Uniform access
o Information hiding
o etc.

• Style guidelines
• Correct and robust code
• Readability of source code
• Ease to use

Quality of documentation:

• Completeness
• Understandable documentation
• Usefulness
• Structure

1.3.3 Method of work

The technologies involved are:
• The System.Reflection library from the .NET Framework [14]
• The System.XML library from the .NET Framework [14]
• Programming language: Eiffel for .NET [11]
• ISE Eiffel compiler beta version 5.4 for test purposes [11]
• The development tool is Eiffel Studio 5.3 [11]

12

I developed the software using the Eiffel style of design in close cooperation with the
supervisor.

1.3.4 Quality management

Quality was ensured by:
• Weekly progress reports: Short weekly progress reports sent to the supervisor
• Milestone progress reports: Detailed reports for each milestone (see plan with

milestones below)
• Review and Validation: Review of each milestone by the supervisor concluded by a

meeting
• Validation: Validation of each milestone after review (see validation steps below)
• Testing: Testing of the software by application of different test cases

1.3.5 Documentation

• Progress reports:
o Short weekly progress reports consisting of the main tasks completed
o Detailed reports for each milestone consisting of:

o The main tasks
o Eventual encountered difficulties
o Implementation, scope of the implementation

• Developer report: This manual documents the software architecture and its

limitations, describes the difficulties encountered during the implementation, explains
how the software could be extended and contains a section discussing the test cases.

• Intermediary report: The intermediary report consists of the intermediary developer
report.

• User manual: The user manual describes the usage of the tool Contract Wizard II.
• Thesis report: The thesis report consists of the final user manual, the final developer

report and a theoretical part discussing the possibility to store the contracts in the
assembly metadata.

1.3.6 Validation Steps

The validation for each milestone comprises:
• Report: Sending detailed report and the relevant parts of the work to the supervisor

for review
• Meeting: Organizing a meeting with the supervisor or presentation and discussion of

the conducted work
• Revision: Revision of parts or all of the work for this milestone, depending on the

conclusion of the supervisor

13

1.4 Plan with milestones

1.4.1 Project steps

Table 3 below shows the milestones of this project.

Milestones Objectives

M1: Software architecture

Design of the entire Software Architecture (This includes
writing the core interfaces of the Parser, the Name
Resolver, the Contract Reader, the Contract Handler,
the Code Generator, the symbol DS and the symbol DS
with contracts). The Software Architecture is refined in
the later milestones.

M2: Parser
Implementation of the Parser, Name Resolver and the
symbol DS

M3: Contract Reader
Design of the DTD and implementation of the Contract
Reader based on this DTD

M4: Contract Handler Implementation of the Contract Handler

M5: Code Generator

Implementation of the Code Generator consisting of
three parts:

• XML-Writer
• Ace-File producer
• Proxy Class generator

M6: Eiffel Compiler Implementation of a class calling the Eiffel Compiler

M7: Basic GUI Basic GUI (only for demonstration purposes)

M8: Demo
Implementation of a demo that illustrates the capabilities
of the tool

M9: Intermediary Report
Writing of the intermediary report. Presentation of the
intermediary results in a group meeting.

M10: Developer Report Writing of the developer report

M11: Thesis Report

Writing of the thesis report, including the user
documentation, the developer documentation, test case
documentation, a theoretical part discussing the
possibility to store the contracts in the assembly
metadata and a project review. Presentation of the
project results in a group meeting.

Table 3: Milestones

14

1.5 Deadlines

Table 4 below shows the dates of the scheduled deadlines at the beginning of the project and
the dates when the milestones have been handled. As you can see, I spent much more time in
milestone M2 Parser and M3 Contract Reader (it turned out to be more complex to parse the
.NET assemblies and their XML representation than initially assumed) which caused a delay
for the other milestones. Due to the delay, we decided to move milestone M4 at the end of the
project and continued directly with milestone M5. Instead of writing a basic GUI, we decided
to write a command line interface*.

Milestone Scheduled
Deadline Handed in

M1 Software architecture 2003-06-13 Fr 2003-06-13 Fr
M2 Parser 2003-07-04 Fr 2003-07-17 Fr
M3 Contract Reader 2003-07-13 Fr 2003-08-06 Fr
M4 Contract Handler 2003-07-25 Fr 2003-10-03 Fr
M5 Code generator 2003-08-08 Fr 2003-09-01 Fr
M6 Eiffel Compiler 2003-08-08 Fr 2003-10-03 Fr
M7 Basic GUI* 2003-08-15 Fr 2003-10-03 Fr
M8 Demo 2003-08-22 Fr 2003-10-03 Fr
M9 Intermediary report 2003-08-29 Fr 2003-10-02 Fr
M10 Developer report 2003-10-06 Fr 2003-10-06 Fr
M11 Thesis report 2003-10-11 Fr 2003-10-06 Fr

Table 4: Deadlines

1.6 Tentative Schedule

Figure 2 on the next page shows the tentative project schedule.

15

Figure 2: Tentative and real project schedule

16

17

Part B: User manual

2. Demo Application

2.1 Contract Wizard commands

Figure 3 shows the commands provided by Contract Wizard II

Figure 3: Contract wizard II commands

• The command help shows all valid commands (see Figure 3)
• The command version shows the Contract Wizard version
• The command remove_contracts removes the XML file storing all contracts for the

assembly specified by Partial_assembly_name
• The command edit_contracts opens the file containing the XML representation of the

Contract Wizard proxy classes in an external editor. If you use for example the editor
vi you can edit the contracts using the command edit_contracts my_assembly vi

• The command create_from_assembly means that we want to create Contract Wizard
proxy classes for the assembly specified by Partial_assembly_name

• The command append_contracts inserts contracts defined in file File_name into the
assembly corresponding to Partial_assembly_name.

• The command put_contracts removes all existing contracts and adds new contracts
specified in the file (File_name).

Partial_assembly_name describes only a part of the assembly name. The “assembly fully
qualified name” also contains the assembly version and the assembly public key token. In
the current version, Contract Wizard loads the newest version of the assembly from the
global assembly cache (GAC) specified by the Partial_assembly_name.

2.2 Contract Wizard accounting example

The Contract Wizard provides users with the possibility to add contracts to a CLS compliant
.NET assembly a posteriori. The tool can be used incrementally, meaning it is possible to add
contracts to a .NET assembly that has already been contracted using the Contract Wizard. We

18

will explain how to add contracts to a .NET assembly on the accounting example delivered
with this project. In the directory “./example/Accouting_Example/
C#_sources_for_Account.dll/” you find the files Account.dll, c1.csv (the extension “.csv”
stands for comma separated values) and c2.csv (the latter two contain the contracts).

Table 5 below shows the class Account from assembly Account.dll to which we want to add
contracts.

using System;

[assembly: CLSCompliant (true)]

namespace Accounting
{
 public class Account
 {
 // Set up account with `InitialAmount'.
 public Account(int InitialAmount)
 {
 Balance = InitialAmount;
 Deposits = new DepositList();
 Withdrawals = new WithdrawalList();
 }

 // Deposit `Sum' into the account.
 public void Deposit(int Sum)
 {
 Add(Sum);
 Deposits.Add(new Deposit(Sum));
 }

 // Withdraw `Sum' from the account.
 public void Withdraw(int Sum)
 {
 Add(-Sum);
 Withdrawals.Add(new Withdrawal(Sum));
 }

 // Is it possible to withdraw `Sum' from the account?
 public bool MayWithdraw(int Sum)
 {
 return (Balance >= MinimumBalance + Sum);
 }

 // Add `Sum' to `Balance'.
 private void Add(int Sum)
 {
 Balance = Balance + Sum;
 }

19

 // Account balance
 public int Balance;

// Minimum balance

 static public int MinimumBalance = 1000;

 // List of deposits
 public DepositList Deposits;

 // List of withdrawals
 public WithdrawalList Withdrawals;
 }
}

Table 5: C# class Account.cs

In this example, we add the precondition (in Eiffel syntax), not_too_big: a_sum <= balance -
minimum_balance to feature withdraw of class Account. The file c1.csv contains the contract
not_too_big (see Figure 4 below).

2.2.1 Insertion of a contract

We add the contract not_too_big using the command line application contract_wizard (see
Figure 4 below). The first command -create_from_assembly Account c:\cw_tmp specifies
from which assembly we want to create the Contract Wizard proxy classes and where they
have to be stored. The second command –append_contracts c1.csv specifies that we would
like to append new contracts stored in the file c1.csv.

Figure 4: Insertion of a contract with Contract Wizard II

Table 6 shows the generated Contract Wizard proxy class (CW_ACCOUNT) for the class
Account. A closer look at Table 6 on the next page shows the inserted precondition (1).

indexing

 note: "Automatically generated by the Contract Wizard."
 dotnet_name: "Accounting.Account"

class CW_ACCOUNT

20

inherit

 SYSTEM_OBJECT
 redefine
 get_hash_code,
 equals,
 to_string
 end

create

 make

feature {NONE} -- Initialization

 frozen make (a_initial_amount: INTEGER) is
 -- dotnet_name: "Account..ctor (InitialAmount: Int32)"
 do
 create account_ref.make (a_initial_amount)
 end

feature -- Access

 frozen balance: INTEGER is
 -- dotnet_name: "Account.Balance: Int32"
 do
 Result := account_ref.balance
 end

 frozen deposits: DEPOSIT_LIST is
 -- dotnet_name: "Account.Deposits: DepositList"
 do
 Result := account_ref.deposits
 end

 frozen withdrawals: WITHDRAWAL_LIST is
 -- dotnet_name: "Account.Withdrawals: WithdrawalList"
 do
 Result := account_ref.withdrawals
 end

 frozen minimum_balance: INTEGER is
 -- dotnet_name: "Account.MinimumBalance: Int32"
 do
 Result := account_ref.minimum_balance
 end

21

feature -- Query

 frozen get_hash_code: INTEGER is
 -- dotnet_name: "Account.GetHashCode (): Int32"
 do
 Result := account_ref.get_hash_code
 end

 frozen equals (a_obj: SYSTEM_OBJECT): BOOLEAN is
 -- dotnet_name: "Account.Equals (obj: Object): Boolean"
 do
 Result := account_ref.equals (a_obj)
 end

 frozen to_string: SYSTEM_STRING is
 -- dotnet_name: "Account.ToString (): String"
 do
 Result := account_ref.to_string
 end

 frozen may_withdraw (a_sum: INTEGER): BOOLEAN is
 -- dotnet_name: "Account.MayWithdraw (Sum: Int32):
 -- Boolean"

do
 Result := account_ref.may_withdraw (a_sum)
 end

 frozen get_type_from_original_class: TYPE is
 -- dotnet_name: "Account.GetType (): Type"
 do
 Result := account_ref.get_type
 end

feature -- Commands

 frozen deposit (a_sum: INTEGER) is
 -- dotnet_name: "Account.Deposit (Sum: Int32)"
 do
 account_ref.deposit (a_sum)
 end

 frozen withdraw (a_sum: INTEGER) is
 -- dotnet_name: "Account.Withdraw (Sum: Int32)"
 require
 not_too_big: a_sum <= balance - minimum_balance (1)
 do
 account_ref.withdraw (a_sum)
 end

22

feature {NONE} -- Implementation

 frozen account_ref: ACCOUNT
 -- Reference to the .NET class

end

Table 6: Proxy class CW_ACCOUNT with a precondition on feature withdraw

2.2.2 Incrementality

To demonstrate incrementality we insert a second contract (see Figure 5 below). The
invariant not_under_minimum: balance >= minimum_balance states that the balance is
always bigger than the minimum balance.

Figure 5: Adding a new contract

Table 6 shows a fragment of the modified proxy class CW_ACCOUNT. The class contains the
inserted contracts not_too_big (1) and not_under_minimum_balance (2).

Indexing

 note: "Automatically generated by the Contract Wizard."
 dotnet_name: "Accounting.Account"

class CW_ACCOUNT

inherit

 SYSTEM_OBJECT
 redefine
 get_hash_code,
 equals,
 to_string
 end

create

 make

23

feature {NONE} -- Initialization

 frozen make (a_initial_amount: INTEGER) is
 -- dotnet_name: "Account..ctor (InitialAmount: Int32)"
 do
 create account_ref.make (a_initial_amount)
 end

…

feature -- Commands

 frozen deposit (a_sum: INTEGER) is
 -- dotnet_name: "Account.Deposit (Sum: Int32)"
 do
 account_ref.deposit (a_sum)
 end

 frozen withdraw (a_sum: INTEGER) is
 -- dotnet_name: "Account.Withdraw (Sum: Int32)"
 require
 not_too_big: a_sum <= balance - minimum_balance (1)
 do
 account_ref.withdraw (a_sum)
 end

feature {NONE} -- Implementation

 frozen account_ref: ACCOUNT
 -- Reference to the .NET class

invariant

 not_under_minimum: balance >= minimum_balance (2)

end

Table 7: Proxy class CW_ACCOUNT with an invariant

2.2.3 Adding assemblies to the Global Assembly Cache

Contract Wizard reads assemblies from the Global Assembly Cache. To add an assembly into
the GAC use the gacutil tool delivered with the .NET Framework (see Figure 6 below).

24

Figure 6: Adding an assembly into the Global Assembly Cache

25

Part C: Developer manual

3. Software architecture

In this chapter, I give a rough overview of the software architecture of the Contract Wizard.
First, I describe briefly the cluster hierarchy of the system. Second, I focus on the AST sub
cluster and explain it in more details.

3.1 Cluster overview

3.1.1 The root_cluster

Contract Wizard II consists of the following clusters:
• controller: classes for handling the symbol DS and its contracts
• doc: Contract Wizard documentation, including this report
• example: some example applications, including the Accounting example presented

before
• generation: classes for code generation (see also section The cluster generation)
• parse: classes for parser generation - .NET parser and XML parser (see also section

The sub cluster parse/ast. Ast stands for Abstract syntax tree.)

3.1.2 Sub clusters of the cluster parse

The cluster parse contains the following sub clusters:
• ast: classes representing the symbol DS
• factory: classes to produce the symbol DS
• formatter: classes responsible for translating .NET names into Eiffel names
• incrementality: classes indicating whether there are contracts for the specified .NET

assembly or not (see also Sub cluster incrementality: dealing with already
contracted .NET assemblies)

• parser: classes responsible for parsing .NET assemblies and their corresponding XML
files

• support: helper classes providing functionalities used by other classes in other clusters.
• visitor: classes implementing the visitor pattern [3]

3.1.3 The cluster generation

The cluster generation has two sub clusters: internal and dotnet. The sub cluster internal
contains the following classes:

26

• CW_LACE_GENERATOR
This class generates an ACE file from the symbol DS.

• CW_EIFFEL_GENERATOR

This class generates the proxy classes from the symbol DS.

• CW_XML_GENERATOR
This class generates an XML file representing the symbol DS.

• CW_GENERATOR

The above classes have in common that they all need a symbol DS and a specific
visitor, which they inherit from the class CW_GENERATOR. Code is produced by
traversing the symbol DS.

To simplify code generation I use the visitor pattern [3]. The class
CW_EIFFEL_VISITOR helps to produce Eiffel code from the symbol DS. The class
CW_XML_VISITOR helps to generate the XML representation of the symbol DS. Both
classes will be discussed thoroughly in the section Accessing the symbol DS.

The sub cluster dotnet includes the following classes:

• CW_COMPILER_LAUNCHER
This class launches the compiler and reports the user interface with possible
compilation error messages.

• CW_EDITOR_LAUNCHER
This class launches an external editor.

3.2 The sub cluster parse/ast

3.2.1 Contract Wizard type (CW_TYPE)

The symbol DS contains the data to produce the Eiffel proxy classes and their XML
representation. The symbol DS is a list of elements of type CW_TYPE. An instance of
CW_TYPE has features (CW_FEATURE), interfaces (CW_INTERFACE) and invariants
(CW_INVARIANT), where a feature can either be a routine (CW_ROUTINE) or an attribute
(CW_ATTRIBUTE) (see Figure 7 below).

27

Inheritance link

+ Effective (concrete) class

* Deferred (abstract) class

Supplier link

*
CW_ROUTINE

+
CW_FUNCTION

+
CW_TYPE

*
CW_FEATURE

+
CW_ATTRIBUTE

+
CW_INVARIANT

+
CW_INTERFACE

return_type

features: LINKED_LIST […] type

invariants

interfaces: LINKED_LIST […]

Figure 7: CW_TYPE and its features, interfaces and invariants

3.2.2 Contract Wizard Interface (CW_INTERFACE)

As shown on Figure 7 CW_INTERFACE inherits from CW_TYPE. CW_INTERFACE has an
additional access feature special_names (LINKED_LIST [CW_NAME]). This feature returns
the interface feature names, which has to be undefined in the proxy class later (see also
Chapter 7). The reason I use CW_INTERFACE instead of CW_TYPE is the feature
special_names that facilitates the creation and the parsing of the XML representation of the
proxy classes. Special_names is a linked list storing the interface feature names, which are
foreseen to be undefined in the proxy class

3.2.3 Contract Wizard feature (CW_FEATURE)

The next version of Eiffel [11] will allow assertions on attributes (CW_ATTRIBUTE). That is
why a feature (CW_FEATURE) has preconditions (CW_PRECONDITION) and
postconditions (CW_POSTCONDITION). A feature is either a routine (CW_ROUTINE) or an
attribute (CW_ATTRIBUTE) (see Figure 8 below).

28

Inheritance link

+ Effective (concrete) class

* Deferred (abstract) class

Supplier link

+
CW_ARGUMENT

+
CW_ROUTINE

*
CW_FEATURE

+
CW_ATTRIBUTE

+
CW_PRE

CONDITION

+
CW_POST

CONDITION

preconditions: LINKED_LIST […]

postconditions: LINKED_LIST […]

arguments: LINKED_LIST […]

Figure 8: Clients of CW_FEATURE

3.2.4 Contract Wizard routine (CW_ROUTINE)

A routine has a list of arguments (CW_ARGUMENT) (see Figure 8). A routine is either a
procedure (CW_PROCEDURE) or a function (CW_FUNCTION) (see Figure 9 on next page);
the latter has a return type (CW_TYPE).

3.2.5 Contract Wizard attribute (CW_ATTRIBUTE)

Every attribute has a name (CW_NAME) and a type (CW_TYPE).

3.2.6 Implementation hierarchy

CW_TYPE, CW_FEATURE and CW_ASSERTION inherit the feature visit from
CW_AST_NODE. We need this feature to implement the visitor pattern [3].

The class CW_FEATURE introduces preconditions and postconditions, which are inherited by
CW_ROUTINE and CW_ATTRIBUTE.

Both CW_FUNCTION and CW_PROCEDURE inherit from CW_ROUTINE. A creation
procedure is a special procedure. That is why CW_CREATION_PROCEDURE inherits from
CW_PROCEDURE.

29

All preconditions (CW_PRECONDITION), postconditions (CW_POSTCONDITION) and
invariants (CW_INVARIANT) have an assertion tag and an assertion expression in common.
They inherit the assertion tag and the assertion expression from CW_ASSERTION.

*
CW_FEATURE

Inheritance link

+ Effective (concrete) class

* Deferred (abstract) class

*
CW_AST_NODE

+
CW_TYPE

+
CW_INTERFACE

+
CW_ATTRIBUTE

*
CW_ASSERTION

+
CW_ROUTINE

+
CW_PROCEDURE

+
CW_FUNCTION

+
CW_ARGUMENT

+
CW_CREATION_

PROCEDURE

+
CW_PRE

CONDTION

+
CW_POST_
CONDTION

+
CW_INVARIANT

Figure 9: AST used by the Contract Wizard

3.2.7 The sub cluster parse/factory: producing the symbol DS

I introduce a class CW_FACTORY (with its two variants CW_AST_FACTORY and
CW_DOTNET_FACTORY) to make the creation of AST nodes simpler. (This corresponds to
the Abstract Factory pattern described in [3]). Ast nodes can only be created by the
CW_AST_FACTORY.

3.2.8 The sub cluster parse/formatter: translating .NET names into Eiffel names

This cluster contains the class CW_NAME_FORMATTER, which translates .NET names into
Eiffel names.

30

3.2.9 Sub cluster incrementality: dealing with already contracted .NET
assemblies

If the user has added contracts to a .NET assembly, there is an XML file containing all
information about the generated proxy classes and their contracts. In this case, the Contract
Wizard gets the symbol DS from the XML file. (Otherwise it retrieves the symbol DS from the
.NET assembly). The cluster incrementality contains all classes used to determine whether an
assembly already has some contracts.

3.2.10 The sub cluster parse/parser

This cluster contains the effected classes CW_XML_PARSER and CW_DOTNET_PARSER.
Both inherit from CW_PARSER. The role of the class CW_XML_PARSER is to parse an XML
document and to produce the symbol DS. The role of the class CW_DOTNET_PARSER is to
produce the symbol DS from a .NET assembly using the reflection mechanism of .NET. In
both cases we end up with a symbol DS. The only difference is that in the first case
(CW_XML_PARSER) the symbol DS contains contracts.

3.2.11 The sub cluster parse/support

This cluster contains classes that provide facilities needed by other classes of the same 'parse'
cluster. It contains in particular constant classes.

3.2.12 The sub cluster visitor: accessing the symbol DS

There are two possibilities to access data stored in the symbol DS. Either we access the data
directly using the desired features (e.g. a_type.features.name) or we use a visitor. The table
below shows how to use a visitor. In this example a type and its features are visited. Then,
there are two assignments. The first assignment retrieves a list of attributes; the second
assignment retrieves a list of procedures. Both lists have been extended during the loop.

type.visit (visitor)
features := type.features
from

features.start
until

features.after
loop

features.item.visit (visitor)
features.forth

end
attributes := visitor.attributes
procedures := visitor.procedures

Table 8: Example of how to use a visitor

31

Table 9 shows an example of how the lists could be extended. For every call a_symbol.visit
(visitor) a specific visitor procedure is called on the visitor object. If the visited symbol in the
symbol DS is of type CW_PROCEDURE then the visitor procedure visit_procedure is called,
if the visited symbol is of type CW_ATTRIBUTE then the visitor procedure visit_attribute is
called, and so on.
Back to the example this means that we can create specific Eiffel code or its XML
representation for every visited symbol through execution of the specific visitor procedure.
From the argument symbol of the visitor procedure we can retrieve all needed information to
produce code (for example if the symbol is of type CW_PROCEDURE we can get the
procedure name, the attributes …).

class EIFFEL_VISITOR_EXAMPLE

inherit

VISITOR

create

make

feature -- Basic operations

visit_procedure (a_procedure: CW_PROCEDURE) is
-- Visit procedure a_procedure.

local
a_procedure_name: STRING
some_attributes: STRING

do
…
a_procedure_name := a_procedure.eiffel_name
…
a_procedure_name.append (some_attributes)
procedures.extend (a_procedure_name)
…

end

visit_creation_procedure (a_creation_procedure: CW_PROCEDURE) is

-- Visit creation procedure a_creation_procedure.

…

end

Table 9: Example using the EIFFEL_VISITOR class

32

33

4. The .NET parser

This chapter starts by describing some parts of the .NET Framework that are directly relevant
to Contract Wizard II. Then, it explains the implementation of the .NET parser that parses
.NET assemblies using the .NET reflection capabilities.

4.1 The .NET Framework

4.1.1 .NET Framework overview

The .NET Framework
Figure 10 shows the architecture of the .NET Framework. The two main components in the
.NET Framework are the Common Language Runtime (CLR) and the .NET Framework class
library. The CLR is a modern runtime environment that manages the execution of user code
[16]. The .NET Framework class library is a library of classes providing access to system
functionality and is designed to be the foundation on which .NET Framework applications,
components and controls are built [14].

The Common Type System (CTS)
The Common Language Specification (CLS) and the Common Type System (CTS) are based
on the .NET Framework class library.
The Common Type System (CTS) is a shared type system. The CTS defines the rules by which
all types are declared, defined and managed, regardless of source language [16].

The Common Language Specification (CLS)
The Common Language Specification (CLS) is a subset of the CTS (see Figure 11) that
enables cross language integration. The .NET languages, among them Eiffel for .NET, Visual
Basic.NET and C#, are based on the CLR/CTS.

CLS

CLR

Eiffel
for .NET VB C++ C# …

CTS

Microsoft Framework.NET base class library

Figure 10: Architecture of the .NET Framework

4.1.2 The Common Language Specification (CLS)

34

Figure 11: Relations between the CLR/CTS and the CLS

Ideal would be cross language integration based on the CTS, but the CTS is too large for most
non OO-languages. That’s why the CLS - a subset of the CTS (see Figure 11) - has been
introduced. The CLS is part of the ECMA standard [10]. Every language can be a CLS
consumer, a CLS extender or a CLS producer.

• A language is a CLS consumer if it can consume any CLS compliant type.
• A language is a CLS extender if it can extend any CLS compliant type.
• A language is a CLS producer if it produces CLS compliant code.

Eiffel for .NET is a CLS consumer, a CLS extender and a CLS producer.

4.1.3 Contract Wizard II and the .NET Framework

Contract Wizard II is based on cross-language interoperability: The generated proxy classes
are in Eiffel for .NET. The resulting .NET assembly (obtained by compiling the generated
Eiffel for .NET proxy classes) can be used from any .NET language.

Since only CLS compliant code guarantees cross language interoperability among all .NET
languages, it is required that the original .NET assembly and the proxy classes are CLS
compliant.

4.2 .NET parser class overview

To parse a .NET assembly I implemented the following classes:
• CW_PARSER: A class providing common features for the .NET parser

(CW_DOTNET_PARSER) and the XML parser (CW_XML_PARSER).
• CW_DOTNET_PARSER: A class implementing the .NET parser, which populates the

symbol DS by retrieving information from the .NET assembly given as input using the
reflection capabilities of .NET.

• CW_XML_PARSER: A class implementing the XML .parser, which reads an XML
representation of the symbol DS - that may contain contracts - and builds the
corresponding AST to be used by the Contract Handler.

35

• CW_AST_FACTORY: A class providing common features for the class
CW_DOTNET_AST_FACTORY and the class CW_XML_AST_FACTORY.

• CW_DOTNET_AST_FACTORY: A class responsible for creating AST nodes
(CW_TYPE, CW_PROCEDURE, CW_ATTRIBUTE, …) from .NET members
(METHOD_INFO, FIELD_INFO, ...) and .NET types (TYPE).

• CW_NAME_FORMATTER: A class responsible for translating .NET member names
and .NET type names into Eiffel feature names and Eiffel type names.

• CW_DOTNET_KEYWORD_CONSTANTS: A class defining .NET keywords.
• CW_DOTNET_TYPE_CONSTANTS: A class defining .NET type constants.
• CW_EIFFEL_KEYWORD_CONSTANTS: A class defining Eiffel keywords.
• CW_PUNCTUATION_CONSTANTS: A class defining punctuation constants.

4.3 The class CW_AST_FACTORY

4.3.1 Generating AST nodes for contracts, feature and type names

cw_type +
cw_interface +
cw_argument +
cw_procedure +
cw_function +
cw_attribute +
cw_creation_procedure +

cw_feature_name +
cw_type_name +
cw_precondition +
cw_postcondition +
cw_invariant +

inherits from

f+ Effective (implemented) feature

+ Effective (concrete) class

* Deferred (abstract) class

+
CW_XML_AST_

FACTORY

*
CW_AST_
FACTORY

+
CW_DOTNET_
AST_FACTORY

Figure 12: Contract Wizard AST factory classes

I have implemented a factory (factory pattern [3]) to facilitate the creation of Contract Wizard
AST nodes (CW_PROCEDURE, CW_FUNCTION, CW_TYPE…). The factory consists of the
following classes: CW_AST_FACTORY, CW_XML_AST_FACTORY and
CW_DOTNET_AST_FACTORY (see Figure 12).

36

The class CW_AST_FACTORY implements the common features for
CW_XML_AST_FACTORY and CW_DOTNET_AST_FACTORY.

The role of class CW_DOTNET_AST_FACTORY is to create Contract Wizard AST nodes
from .NET members (METHOD_INFO, FIELD_INFO...) and .NET types (class TYPE
corresponding to the .NET type System.Type).

The role of class CW_XML_AST_FACTORY is to create Contract Wizard AST nodes
(CW_PROCEDURE, CW_FUNCTION, CW_TYPE…) from XML nodes (XML_XML_NODE
corresponding to System.Xml.XmlNode). Every XML node represents a .NET member, a .NET
type or a contract (precondition, postcondition or invariant).

The class CW_AST_FACTORY implements the following features: cw_feature_name,
cw_type_name, cw_precondition, cw_postcondition, cw_invariant (see Figure 12 above). They
are described below.

4.3.2 The feature cw_precondition

cw_precondition (a_tag: like tag; an_expression: like expression):

 CW_PRECONDITION is
 -- Precondition with tag a_tag
 -- and boolean expression an_expression

require
 tag_not_void: a_tag /= Void
 tag_not_empty: not a_tag.is_empty
 expression_not_void: an_expression /= Void
 expression_not_empty: not an_expression.is_empty
 do
 create Result.make (a_tag, an_expression) (1)
 ensure
 precondition_not_void: Result /= Void
 tag_set: Result.tag = a_tag
 expression_set: Result.expression = an_expression
 end

Table 10: Feature cw_precondition: creating a precondition from given tag and expression

The feature cw_precondition creates a Contract Wizard precondition from a contract tag and a
contract expression (1).

4.3.3 The feature cw_postcondition

The feature cw_postcondition creates a Contract Wizard postcondition from a contract tag and
a contract expression.
The implementation resembles the implementation of cw_precondition given above, simply
replace “precondition” with “postcondition”.

37

4.3.4 The feature cw_invariant

The feature cw_invariant creates a Contract Wizard invariant from a contract tag and a
contract expression. The implementation resembles the implementation of cw_precondition
shown before, just replace “precondition” with “invariant”.

4.3.5 The features cw_type_name and cw_feature_name

 cw_feature_name (a_name: SYSTEM_STRING): CW_NAME is (1)

 -- Feature name (with Eiffel name and .NET name) created from
 -- a_name

 require
 a_name_not_void: a_name /= Void
 do
 …
 create Result.make (eiffel_name, dotnet_name)
 ensure
 result_not_void: Result /= Void
 end

 cw_type_name (a_name: SYSTEM_STRING): CW_NAME is (2)

 -- Type name (with Eiffel name and .NET name) created from
 -- a_name

 require
 a_name_not_void: a_name /= Void
 do
 …

create Result.make (eiffel_name, dotnet_name)
 ensure
 result_not_void: Result /= Void
 end

Table 11: Features cw_feature_name and cw_type_name: Generating a feature name and a
type name

Features cw_type_name and cw_feature_name create a Contract Wizard name (CW_NAME)
consisting of an Eiffel name and a .NET name. The reason why there are two features (1, 2)
for creating Contract Wizard names is performance: .NET types and .NET members are
translated differently into Eiffel.

4.4 The class CW_DOTNET_AST_FACTORY

4.4.1 Generating AST nodes for features and types

The class CW_DOTNET_AST_FACTORY implements the following core features: cw_type,
cw_interface, cw_argument, cw_procedure, cw_function, cw_attribute and
cw_creation_procedure (see Figure 12 above). They are described below.

38

4.4.2 The feature cw_type

 cw_type (a_type: TYPE): CW_TYPE is (1)

 -- Contract Wizard type (AST node) created from .NET
 -- type a_type

require
 a_type_not_void: a_type /= Void
 type_name_not_void: a_type.name /= Void
 local

 a_type_name: CW_NAME
…

do
...
a_type_name := cw_type_name (a_type.name.to_string)
create Result.make (a_type_name) (2)
Result.set_deferred (a_type.is_abstract or a_type.is_interface) (3)
Result.set_expanded (a_type.is_value_type)
Result.set_array (a_type.is_array)
Result.set_enum (a_type.is_enum)
Result.set_namespace (a_namespace) (4)
…

 -- Add interfaces this type implements. (5)
…

ensure (6)
 result_not_void: Result /= Void

deferred_set: Result.is_deferred = a_type.is_abstract or
 a_type.is_interface

 array_set: Result.is_array = a_type.is_array
 enum_set: Result.is_enum = a_type.is_enum
 expanded_set: Result.is_expanded = a_type.is_value_type
 end

Table 12: Feature cw_type: Generating a Contract Wizard type

The feature cw_type creates a Contract Wizard type (CW_TYPE) from a .NET type (TYPE)
(1). The creation of a Contract Wizard type requires a Contract Wizard type name
(CW_NAME); therefore, it creates a Contract Wizard type name and generates a Contract
Wizard type with it (2).
To create proxy classes we have to distinguish between the following types: A type can be an
array, an enumeration type, an expanded type or a deferred type. The feature cw_type sets the
following features for the created Contract Wizard type depending on the parsed .NET type:
is_deferred, is_expanded, is_array and is_enum (3). The feature is_deferred is set to true if
the parsed type is abstract, is_expanded is set to true if the parsed type is a value type,
is_array is set to true if the parsed type is an array and is_enum is set to true if the parsed type
is an enumerated type. The namespace is set because it is required for the class description of
the proxy classes later (4). We also have to set all CLS compliant interfaces the type
implements. (5)
The postcondition of cw_type ensures that all Contract Wizard type features are set (6).

39

4.4.3 The feature cw_interface

 cw_interface (an_interface: TYPE): CW_INTERFACE is

 -- Contract Wizard type (AST node) created from .NET
 -- argument an_argument

require
 interface_not_void: an_interface /= Void

local
…
an_interface_name: CW_NAME
a_feature_name: CW_NAME
…

do
…
create Result.make (an_interface_name) (1)
…
Result.add_speial_name (a_feature_name)

ensure
 result_not_void: Result /= Void
 end

Table 13: Feature cw_interface: Generating a Contract Wizard interface

The feature cw_interface creates a Contract Wizard interface with a Contract Wizard
interface name (CW_NAME) (1) and sets special interface feature names (ToString, Equals,
GetHashCode) required by the Contract Wizard proxy class generator (2).

4.4.4 The feature cw_argument

 cw_argument (an_argument: PARAMETER_INFO): CW_ARGUMENT is

 -- Contract Wizard type (AST node) created from .NET
 -- argument an_argument

require
 argument_not_void: an_argument /= Void
 argument_name_not_void: an_argument.name /= Void

local
 an_argument_name: CW_NAME
 a_type: TYPE

do
…
an_argument_name := cw_feature_name
 (an_argument.name.to_string)
create Result.make (an_argument_name) (1)
a_type := an_argument.parameter_type
Result.set_type (cw_type (a_type)) (2)

40

ensure

 result_not_void: Result /= Void
 end

Table 14: Feature cw_argument: Generating a Contract Wizard argument

The feature cw_argument creates a Contract Wizard argument with a Contract Wizard
argument name (CW_NAME) (1). To do this, it first creates a Contract Wizard type
(CW_TYPE) representing the type of the .NET argument and sets it to the Contract Wizard
type (2).

4.4.5 The feature cw_procedure

 cw_procedure (a_procedure: METHOD_INFO): CW_PROCEDURE is (1)

 -- Contract Wizard procedure (AST node) from .NET procedure
 -- a_procedure

require
 procedure_not_void: a_procedure /= Void
 do

 Result := cw_procedure_from_method_base (a_procedure) (2)
 ensure (3)

 result_not_void: Result /= Void
 deferred_set: Result.is_deferred = a_procedure.is_abstract
 static_set: Result.is_static = a_procedure.is_static
 end

Table 15: Feature cw_procedure: Generating a Contract Wizard procedure

The feature cw_procedure creates a Contract Wizard procedure from a .NET procedure (1). It
sets the procedure name (CW_NAME), the feature is_deferred and the feature is_static using
the feature cw_procedure_from_method_base (2). Is_static is set to true if the .NET procedure
(of type METHOD_INFO corresponding to the .NET System.Reflection.MethodInfo) is static.
Is_deferred is set to true if the .NET procedure is abstract.
The postcondition ensures that features is_deferred and is_static of CW_PROCEDURE are
set (3).

4.4.6 The feature cw_function

 cw_function (a_function: METHOD_INFO): CW_FUNCTION is (1)

 -- Contract Wizard function (AST node representing a .NET
 -- function) created from .NET function a_function

require
 a_function_not_void: a_function /=Void
 a_function_name_not_void: a_function.name /= Void

41

local

 a_procedure: CW_PROCEDURE
 a_return_type: CW_TYPE

do
a_return_type := cw_type (a_function.return_type)
a_procedure := cw_procedure_from_method_base (a_function) (2)
create Result.make_from_procedure (a_procedure, a_return_type)
Result.set_is_property (is_property (a_function)) (3)

 ensure (4)
 result_not_void: Result /= Void
 deferred_set: Result.is_deferred = a_function.is_abstract
 property_set: Result.is_property = is_property (a_function)
 static_set: Result.is_static = a_function.is_static
 end

Table 16: Feature cw_function: Generating a Contract Wizard function

The feature cw_function creates a Contract Wizard function from a .NET function (1). It sets
the procedure name (CW_NAME), the feature is_deferred and the features is_static using the
feature cw_procedure_from_method_base (2). Is_static is set to true if the parsed procedure
(of type METHOD_INFO corresponding to the .NET System.Reflection.MethodInfo) is static.
Is_deferred is set to true if the parsed function is abstract.
It sets the feature is_property (3). The feature is_property is set to true if the parsed function
is an accessor method (for example “get_property”).
The postcondition of cw_function ensures that features of CW_FUNCTION are set (4).

4.4.7 The feature cw_attribute

 cw_attribute (a_field: FIELD_INFO): CW_ATTRIBUTE is (1)
 -- Contract Wizard attribute from .NET field a_field

 require
a_field_not_void: a_field /= Void
a_field_name_not_void: a_field.name /= Void

local
an_attribute_name: CW_NAME
a_type: CW_TYPE
a_value: STRING

do
an_attribute_name := cw_feature_name (a_field.name.to_string)
create Result.make (an_attribute_name) (2)
a_type := cw_type (a_field.field_type)
Result.set_type (a_type) (3)
Result.set_static (a_field.is_static) (4)
Result.set_constant (a_field.is_literal)

42

if a_field.is_literal then
 create a_value.make_from_cil (a_field.get_value

 (a_field.reflected_type).to_string)
 Result.set_value (a_value)

 end
ensure (5)

 result_not_void: Result /= Void
static_set: Result.is_static = a_field.is_static
constant_set: Result.is_constant = a_field.is_literal
constant_value_set: Result.is_constant

implies Result.value /= Void
end

Table 17: Feature cw_attribute: Generating a Contract Wizard attribute

The feature cw_attribute creates a Contract Wizard attribute (CW_ATTRIBUTE) from a .NET
field (1). First, it creates the Contract Wizard attribute with the attribute name (CW_NAME)
(2). Then, it creates a Contract Wizard type (CW_TYPE) from the field type and sets it to the
Contract Wizard attribute (3). It also sets the features is_static and is_constant depending on
the parsed field (4). The postcondition ensures that the features of CW_ATTRIBUTE are set
(5).

4.4.8 The feature cw_creation_procedure

cw_creation_procedure (a_constructor: CONSTRUCTOR_INFO):

CW_CREATION_PROCEDURE is (1)
 -- Contract Wizard creation procedure from .NET constructor
 -- a_constructor

 require
 a_constructor_not_void: a_constructor /= Void

local
a_procedure: CW_PROCEDURE

do
a_procedure := cw_procedure_from_method_base (a_constructor)
create Result.make_from_procedure (a_procedure)

ensure
 result_not_void: Result /= Void
 result_is_not_static: Result.is_static = False
 result_is_not_deferred: Result.is_deferred = False
 end

Table 18: Feature cw_creation_procedure: Generating a Contract Wizard creation procedure

The feature cw_creation_procedure creates a Contract Wizard creation procedure
(CW_CREATION_PROCEDURE) from a .NET constructor (1). The creation procedure must
be neither static nor deferred. It is guaranteed by the postconditions: result_is_not_static and
result_is_not_deferred (2).

43

4.5 The parser (CW_PARSER)

ast_factory ++
assembly +
parse +
parse_type +
inspect_contructors +
inspect_methods +
inspect_fields +

ast +
ast_factory +
parse *
parse_type *
inspect_constructors *
inspect_methods *
inspect_fields *

Inherits from f * Deferred (abstract) feature

+ Effective (concrete) class

* Deferred (abstract) class

+
CW_XML_
PARSER

*
CW_PARSER

+
CW_DOTNET_

PARSER

f + Effective (implemented) feature

f ++ Redefined feature

Figure 13: Parser hierarchy

The parser consists of the following classes: CW_PARSER, CW_DOTNET_PARSER and
CW_XML_PARSER (see Figure 13).

The class CW_PARSER defines and partly implements the features common for
CW_XML_PARSER and CW_DOTNET_PARSER.

The class CW_DOTNET_PARSER parses a CLS compliant .NET assembly and generates the
data structure ast (of type LINKED_LIST [AST_NODE]). The data structure ast contains all
required information to generate the proxy classes.

The class CW_XML_PARSER parses the XML representation of the data structure ast and
generates the object representation of the data structure ast.

The class CW_PARSER implements the following attributes: ast and ast_factory (see Figure
13). The data structures ast and ast_factory are described above.

The class CW_PARSER defines the following deferred features: parse, parse_type,
inspect_constructors, inspect_fields, inspect_methods, parse_public_constructor,
parse_public_field and parse_public_function (see Figure 13). I will now describe them in
more details.

44

• Feature parse

It parses all types by calling the feature parse_type for every type and generates the
data structure ast (of type LINKED_LIST [CW_TYPE]).

• Feature parse_type

It parses a type by using features: inspect_constructors, inspect_fields,
inspect_methods and creates a Contract Wizard type (CW_TYPE). It adds the created
Contract Wizard type to the ast.

• Feature inspect_constructors

This feature iterates through all constructors and calls the feature
parse_public_constructor for every inspected constructor.

• Feature inspect_fields

This feature iterates through all fields and calls the feature parse_public_field for
every inspected field.

• Feature inspect_methods

This feature iterates through all methods and calls the feature parse_public_function or
parse_public_procedure for every method depending on the return type.

• Feature parse_public_constructor

It parses a constructor and generates a Contract Wizard creation procedure
(CW_CREATION_PROCEDURE). It adds the created object to the Contract Wizard
type (CW_TYPE).

• Feature parse_public_field

It parses a field and generates a Contract Wizard attribute (CW_ATTRIBUTE). It adds
the created object to the Contract Wizard type (CW_TYPE).

• Feature parse_public_function

It parses a public function and produces a Contract Wizard function
(CW_FUNCTION). It adds the created object to the Contract Wizard type
(CW_TYPE).

4.6 The .NET parser (CW_DOTNET_PARSER)

The class CW_DOTNET_PARSER gathers information needed to generate proxy classes. It
provides the following features: make, parse, parse_type, inspect_methods, inspect_fields,
inspect_constructors, parse_public_constructor, parse_public_function,
parse_public_procedure and parse_public_field (see Figure 13 above). I will now describe
them in more detail.

45

4.6.1 The creation procedure

 make (an_assembly: like assembly) is (1)

 -- Initialize current with a CLS compliant an_assembly.
 -- Generate ast.

require
 assembly_not_void: an_assembly /= Void
 assembly_is_cls_compliant: is_cls_compliant (an_assembly) (2)
 do

 -- Create an empty ast.
 create ast.make (3)

 -- Create ast factory to enable generation of cw ast nodes.
 create ast_factory.make (3)
 assembly := an_assembly
 ensure
 assembly_assigned: assembly = an_assembly
 end

Table 19: Creation procedure of the .NET parser

This feature initializes the parser with a .NET assembly that has to be parsed (1).
The .NET assembly must be CLS compliant; hence the precondition
assembly_is_cls_compliant (2). Moreover, this feature initializes the data structure ast and the
ast factory (3). This is ensured by the class invariant (clauses ast_not_void and
ast_factory_not_void).

4.6.2 Feature parse

 parse is

 -- Parse all public types from assembly.
 local
 i: INTEGER
 do
 types := assembly.get_types
 from
 i := types.lower
 until
 i = types.count
 loop
 type := types.item (i)
 if type_exists (2) then
 parse_type (1)
 end
 i := i + 1
 end

46

 ensure then
 types_not_void: types /= Void
 all_types_parsed: type = types.item (types.count-1)
 consistent: ast.count = type_count
 end

Table 20: Feature parse: Parsing public types

This feature iterates through all types of a .NET assembly (ASSEMBLY) and calls parse_type
(1) for every inspected public type (2).

4.6.3 Parsing a type

 parse_type is

 -- Parse a public type and all its members like method_infos,
 -- field_infos, constructor_infos.
 -- Generate a cw_type with all its features:
 -- cw_procedure, cw_function, cw_attribute.

 do
 cw_type := ast_factory.cw_type (type) (1)
 if has_public_constructors then
 inspect_constructors (2)
 end
 if has_public_methods then
 inspect_methods (3)
 end
 if has_public_fields then
 inspect_fields (4)
 end
 ast.extend (cw_type) (5)
 end

Table 21: Feature parse_type: Parsing public members of a type

The feature parse_type creates a Contract Wizard type (CW_TYPE) from the .NET type being
parsed. The .NET ast factory (CW_AST_FACTORY) facilitates the creation of the Contract
Wizard type (CW_TYPE). It sets all required features: is_static, is_deferred, is_expanded and
is_enum (1).

It parses the public constructors, methods and fields (members) and calls the features
inspect_constructors (2), inspect_methods (3) and inspect_fields (4) depending on the type of
the parsed member. The feature inspect_constructors iterates through every constructor of the
.NET type and calls the feature responsible for parsing it (parse_public_constructor). The
feature inspect_methods does the same for .NET methods. The feature inspect_fields takes
care of .NET fields.

It adds the resulting Contract Wizard type to the ast (5).

47

4.6.4 Inspect methods

 inspect_methods is

 -- Inspect all public method_infos from type
 -- Call parse_public_procedure or parse_public_function for every
 -- inspected method_info depending on the method_info type.

 local
 i: INTEGER
 do
 method_infos := type.get_methods

 -- Inspect all public method_infos from type.
from

 i := method_infos.lower
 until
 i = method_infos.count
 loop
 method_info := method_infos.item (i)
 if procedure_exists then
 parse_public_procedure (1)
 elseif function_exists then
 parse_public_function (2)
 end
 i := i + 1
 end
 ensure then

all_methods_parsed: method_info = method_infos.item
 (method_infos.count - 1)

 end

Table 22: Feature inspect_methods

The feature inspect_methods iterates through all public methods of the .NET type being
parsed. It calls the feature parse_public_method (1) or parse_public_function (2) for every
inspected method depending on the return type of the .NET method.

4.6.5 Inspect fields

The feature inspect_fields iterates through all public fields of the parsed .NET type. It calls the
feature parse_public_field for every inspected public field. (The code resembles the code
fragment in Table 22.)

4.6.6 Inspect constructors

The feature inspect_contructors iterates through all public constructors of the parsed .NET
type. It calls the feature parse_public_constructor for every inspected public constructor. (The
code resembles the code fragment in Table 22.)

48

4.6.7 Parse constructors

 parse_public_constructor is

 -- Parse a constructor_info.
 -- Generate corresponding cw_creation_procedure.
 -- Add cw_creation_procedure to cw_type.

 do
cw_creation_procedure := ast_factory.cw_creation_procedure
 (constructor_info) (1)

 cw_type.add_feature (cw_creation_procedure) (2)
 end

Table 23: Feature parse_public_constructor

The feature parse_public_constructor parses a public .NET constructor (class
CONSTRUCTOR_INFO corresponding to the .NET System.Reflection.ConstructorInfo) and
generates a Contract Wizard creation procedure (CW_CREATION_PROCEDURE) from it.
The .NET ast factory (CW_DOTNET_AST_FACTORY) facilitates the creation of the Contract
Wizard creation procedure (CW_CREATION_PROCEDURE) (1). It sets all required features:
is_static and is_deferred. The generated creation procedure is added to the feature list of the
Contract Wizard type (CW_TYPE) (2).

4.6.8 Parse functions

The feature parse_public_function parses a public function and generates a Contract Wizard
function (CW_FUNCTION). The .NET ast factory facilitates the creation of the Contract
Wizard function. It sets all required features: is_static and is_deferred. The generated function
is inserted to the feature list of the Contract Wizard type. (The code resembles the code
fragment in Table 23.)

4.6.9 Parse procedures

The feature parse_public_procedure parses a public procedure and generates a Contract
Wizard procedure (CW_PROCEDURE). The .NET ast factory facilitates the creation of the
Contract Wizard procedure. It sets all required features: is_static, is_deferred and is_property.
The generated function is added to the feature list of the Contract Wizard type. (The code
resembles the code fragment in Table 23.)

4.6.10 Parse fields

The feature parse_field parses a public field and generates a Contract Wizard attribute
(CW_ATTRIBUTE) from it. The .NET ast factory facilitates the creation of a Contract Wizard
attribute. It sets all required features: is_static, is_constant and value. The feature value is set
only if the field is a constant. The generated attribute is inserted to the feature list of the
Contract Wizard type. (The code resembles the code fragment in Table 23.)

49

4.7 Translating .NET names into Eiffel names

eiffel_formatted_name +
eiffel_formatted_array_name +
eiffel_formatted_primitive_type_name +
eiffel_formatted_defined_type_name +
eiffel_formatted_creation_procedure_name +

* Deferred (abstract) class f+ Effective (implemented) feature

+
CW_NAME_
FORMATTER

Figure 14: Name formatter: Transforming .NET names into Eiffel names

Since Eiffel names and .NET names differ slightly, we need a class that translates .NET names
into Eiffel names. The class CW_NAME_FORMATTER is responsible for this. It implements
the following features: eiffel_formatted_name, eiffel_formatted_keyword_name,
eiffel_formatted_array_name and eiffel_formatted_primitive_type_name (see Figure 14
above). I now describe them in more detail.

• Feature eiffel_formatted_name
By convention, feature names in Eiffel use all lower case characters, and like class
names, words are separated by underscore [11]. The feature eiffel_formatted_name
translates “CamelCase” .NET names into Eiffel names separated by underscore. For
example, “getName” becomes “get_name”.

• Feature eiffel_formatted_keyword_name
If the name corresponds to an Eiffel keyword an underscore is append to it: For
example the following .NET member names: “feature”, “is”, “do” become “feature_”,
“is_”, “do_”. All keywords are defined in the class
CW_EIFFEL_KEYWORD_CONSTANTS.

• Feature eiffel_formatted_array_name

Arrays have the following format in .NET: “type [,] name”. Example: “string [,]
arrayName”. The commas stand for the dimension of the array. If the array has
dimension one there are no commas. If array has dimension i and i is bigger than 1
there are i-1 commas, between the brackets.
This feature translates a .NET array into an Eiffel array. The class NATIVE_ARRAY
represents a .NET array in Eiffel for .NET. Arrays are written as: “NATIVE_ARRAY
[ARRAY_TYPE]” independently of the dimension. The above example is translated
into “NATIVE_ARRAY [STRING]”.

50

• Feature eiffel_formatted_primitive_type_name
The .NET Framework has the following CLS compliant primitive types: byte, int16,
int32, int64, single, double, boolean, char, decimal, intPtr, and string. The feature
eiffel_formatted_primitive_type_name translates primitive CLS compliant .NET types
into Eiffel according to the following translation rule:

Byte INTEGER_8
Int16 INTEGER_16
Int32 INTEGER
Int64 INTEGER_64
Single REAL
Double DOUBLE
Boolean BOOLEAN
Char CHARACTER
Decimal DECIMAL
Object SYSTEM_OBJECT
IntPtr POINTER
String SYSTEM_STRING

Table 24: Translation rule for primitive types

• Feature eiffel_formatted_defined_type_name

Eiffel class names must be unique within a system. There are .NET class names that
conflict with the class names in the EiffelBase library. They are renamed according to
the following translation rule:

Object SYSTEM_OBJECT
String SYSTEM_STRING
Array SYSTEM_ARRAY
Console SYSTEM_CONSOLE
DateTime SYSTEM_DATE_TIME
Directory SYSTEM_DIRECTORY
File SYSTEM_FILE
Queue SYSTEM_QUEUE
Random SYSTEM_RANDOM
SortedList SYSTEM_SORTED_LIST
Stack SYSTEM_STACK
Stream SYSTEM_STREAM

Table 25: Translation rule for types already defined in the EiffelBase library

• Feature eiffel_formatted_creation_procedure_name

The name of the constructor in .NET is .ctor. This feature renames it to make.

51

4.8 Summary

4.8.1 Characteristics of the .NET parser

• The assembly being parsed has to be CLS compliant.
• The parser parses the following information required to generate Eiffel proxy classes:

o public types (class TYPE corresponding to .NET System.Type)
o public .NET constructors (class CONSTRUCTOR_INFO corresponding

to .NET System.Reflection.ConstructorInfo)
o public .NET methods (class METHOD_INFO corresponding to .NET

System.Reflection.MethodInfo)
o public .NET fields (class FIELD_INFO corresponding to .NET

System.Reflection.FieldInfo)

• The parser generates the following Contract Wizard nodes:
o The parser generates a Contract Wizard type (CW_TYPE) and sets the

following features for it: is_deferred, is_array, is_expanded and is_enum,
name_space. Moreover, it attaches all interfaces (of type
CW_INTERFACE) that the type implements.

o The parser generates a Contract Wizard attribute (CW_ATTRIBUTE) and
sets the following features for it: is_static, is_constant and if the parsed
field is a constant it also sets the constant value.

o The parser generates a Contract Wizard procedure (CW_PROCEDURE)
and sets the following features for it: is_static, is_deferred.

o The parser generates a Contract Wizard function (CW_FUNCTION) and
sets the following features for it: is_static, is_deferred and is_property (is
set to true if the function is an accessor).

o The parser generates a Contract Wizard creation procedure
(CW_CREATION_PROCEDURE).

The CW_NAME_FORMATTER
• translates “CamelCase” .NET names into Eiffel names separated by underscore.
• keeps track of the following CLS compliant primitive types: byte, int16, int32, int64,

single, double, boolean, char, decimal, intPtr and string.
• keeps track of .NET class names that conflict with the EiffelBase library.
• keeps track of .NET names that conflict with keywords of the Eiffel language (For

example: feature, do, end, ...).
• handles arrays of dimension n.

4.8.2 Limitations

• The parser does not parse events (class EVENT_INFO, System.ReflectionEventInfo
in .NET), since the event mechanism of .NET differs from the agent mechanism of
Eiffel.

• The parser does not parse nested classes.

52

53

5. The XML parser (Contract Reader)

This chapter discusses the implementation of the XML parser. First, I evaluate two parsers and
explain why I selected the Gobo XML parser. Then, I describe the XML parser I developed.
Finally, I discuss the event handling mechanism.

5.1 Design of the XML parser

5.1.1 Evaluating the right parser

There are quite a few libraries to parse XML files in Eiffel for .NET. I have evaluated the two
following libraries:

• Gobo, a free and portable library for Eiffel [10]
• XML libraries part of the .NET Framework [14]

The Gobo library contains two non-validating XML parsers: A pure Eiffel parser and a parser
based on the expat C library [13].

The XML libraries part of the Eiffel .NET Framework contain a variety of validating and non-
validating parsers.

I decided to use the Eiffel parser. The main reason is that the Eiffel parser unlike its
competitors is written in pure Eiffel. Moreover, it is fast and simple to use.

Even if the Eiffel parser is a non-validating parser, I wrote a document type definition. It can
be very useful to test the generated XML files. The XML files can be validated using external
tools, such as xmlspy [15].

The Eiffel parser is an event parser. It reads an XML stream sequentially and acts as an event
source. It throws events on XML start tags, XML end tags and XML attributes.

The Eiffel parser is initiated by the class CW_XML_PARSER described below.

54

5.2 Structure of the XML parser

5.2.1 Class hierarchy

Inherits from

f+ Effective (implemented) feature

+ Effective (concrete) class

* Deferred (abstract) class

f* Deferred feature

Client relation

ast +
parse *
…

+
CW_XML_

FILTER
*

CW_PARSER

+
XM_EIFFEL_

PARSER

+
CW_XML_
PARSER

make +
parse +
…

eiffel_parser

cw_xml_filter

Figure 15: Class hierarchy of the XML parser

The parser consists mainly of the following classes: CW_PARSER, CW_XML_PARSER,
CW_XML_FILTER and XM_EIFFEL_PARSER (see Figure 15 above).
XM_EIFFEL_PARSER is part of the Gobo library. I wrote the other classes. The classes with
prefix CW_ are part of the Contract Wizard.

5.2.2 The class CW_PARSER

The class CW_PARSER defines the feature parse implemented by the class
CW_XML_PARSER and exposes the attribute ast (of type LINKED_LIST [like cw_type])
where cw_type represents the Contract Wizard type being parsed (see Figure 15 above).

5.2.3 The classes CW_XML_FILTER and XM_EIFFEL_PARSER

The class CW_XML_FILTER acts as an event handler and the class XM_EIFFEL_PARSER
acts as an event source. (XM_EIFFEL_PARSER is part of the Gobo library.)

55

5.2.4 The class CW_XML_PARSER

The role of the class CW_XML_PARSER is to parse the XML representation of a Contract
Wizard proxy class using the Eiffel parser (XM_EIFFEL_PARSER) and to generate the data
structure ast from it.

The class CW_XML_PARSER implements the following features: the initialization feature
make and the feature parse (see Figure 15 above).

The initialization procedure make initializes the file_name and creates an empty ast (of type
LINKED_LIST [like cw_type]). The filename (file_name) represents the name of the XML file.

5.3 Setting up the GOBO XML parser

parse is
 -- Parse an XML file with name file_name containing the
 -- serialized proxy classes.
 -- Create ast.
 do
 create file.make (file_name) (1)
 file.open_read
 if not valid_file then
 -- Error
 else
 create eiffel_parser.make (2)
 create cw_xml_filter.make (ast) (3)

eiffel_parser.set_callbacks (cw_xml_filter) (4)
 eiffel_parser.parse_from_stream (a_file) (5)
 file.close
 end

ensure
xml_filter_not_void: valid_file implies cw_xml_filter /= Void
eiffel_parser_not_void: valid_file implies eiffel_parser /= Void
eiffel_parser_is_correct: valid_file implies eiffel_parser.is_correct

end

Table 26: Feature parse

The feature parse (see Table 26 and Figure 15 above) creates a file (1), creates the XML
parser (XM_EIFFEL_PARSER) (2) and instantiates the events filter (CW_XML_FILTER) (3).

The feature set_callbacks registers the event filter (CW_XML_FILTER) to the XML parser
(XM_EIFFEL_PARSER) (4).

56

5.3.1 The parsing process

The feature parse_from_stream (5) initiates the parsing process. The parser reads the XML
stream sequentially and throws events on XML tags. They are handled by the registered event
filter (CW_XML_FILTER) described in the next chapter.

5.3.2 The event filter

The event filter consists of the following classes: CW_XML_FILTER,
CW_XML_CONSTANTS and XM_CALLBACKS_FILTER (see Figure 16 below).

The class CW_XML_FILTER
The class CW_XML_FILTER redefines the following features from the class
XM_CALLBACKS_FILTER: on_start_tag, on_attribute, on_start_tag_finish and on_end_tag
in order to add new functionality.

The class XM_CALL_BACK_FILTER
The class XM_CALL_BACK_FILTER makes the class CW_XML_FILTER acting as an event
handler.

The class CW_XML_CONSTANTS
The class CW_XML_CONSTANTS provides the CW_XML_FILTER class with constants.

Inherits from

+ Effective (concrete) class

+
CW_XML_FILTER

+
XML_CALLBACKS_

FILTER

+
CW_XML_

CONSTANTS

Figure 16: Class hierarchy of the event filter

57

5.3.3 Cooperation between CW_XML_PARSER and CW_XML_FILTER

I will explain the cooperation between the CW_XML_PARSER (event source) and the
CW_XML_FILTER (event handler) on the example in Table 27 below.

The example demonstrates the serialized content of a Contract Wizard proxy class in XML. It
shows a list of Contract Wizard types. The first type has the name CLASS. It contains a
creation procedure make with one argument and a procedure foo.

<cw_ast>
 <cw_type dotnet_name = "class" eiffel_name = "CLASS" >
 <cw_creation_procedures>

<cw_creation_procedure …eiffel_name="make" …>
 <cw_arguments>

 <cw_argument dotnet_name="…" … >
 <type … is_array = "no" />
 </cw_argument>
 </cw_arguments>
</cw_creation_procedure>

 </cw_creation_procedures>
 <cw_procedures >

<cw_procedure … eiffel_name= "foo" …>
 …

 </cw_type>
<cw_type>

…
</cw_ast>

Table 27: Example of a Contract Wizard XML file

5.3.4 Event handling

As mentioned before the XML parser fires events on XML tags handled by the following
features of class CW_XML_FILTER: on_start_tag, on_start_tag_finish, on_attribute and
on_end_tag.
The feature on_start_tag handles events fired when an XML start tag has been processed. The
feature on_start_tag_finish handles events when the end of an XML start tag has been
processed. The feature on_attribute handles events fired when an XML attribute has been
processed and finally the feature on_end_tag handles events fired when an XML end tag has
been processed.

5.3.5 Parse XML

A closer look at a Contract Wizard XML start tag shows that there is enough information
stored in it to create a Contract Wizard ast node (see Table 27). The parser creates a Contract
Wizard ast node for each XML start tag using the feature on_start_tag_finish (see Table 28
below).

58

The specific type (CW_PROCEDURE, CW_FUNCTION, and CW_ATTRIBUTE) of the
Contract Wizard ast node depends on the name of the XML start tag.

In Table 28 below, you see the implementation of the feature on_start_tag_finish. The XML
node (represented by cw_current) is queried in the “if statements”. Depending on the name of
the XML node, the following features are called: generate_type, generate_procedure,
generate_precondition ….

on_start_tag_finish is
 -- Generate Contract Wizard ast nodes.

 do
 if is_type (cw_current) then
 generate_type
 elseif is_attribute (cw_current) then
 generate_attribute
 elseif is_creation_procedure (cw_current) then
 generate_creation_procedure
 elseif is_procedure (cw_current) then
 generate_procedure
 elseif is_function (cw_current) then
 generate_function
 elseif is_feature_type (cw_current) then
 generate_return_type
 elseif is_argument (cw_current) then
 generate_argument
 elseif is_precondition (cw_current) then
 generate_precondition
 elseif is_postcondition (cw_current) then
 generate_postcondition
 elseif is_invariant (cw_current) then
 generate_invariant
 end
 Precursor {XM_CALLBACKS_FILTER}
 end

Table 28: Feature on_start_tag_finish

Composing Contract Wizard ast nodes
In the previous section, I discussed how to create Contract Wizard ast nodes.
The next step is to compose them. All Contract Wizard ast nodes defined between an XML
start tag and an XML end tag have to be composed.

For example if the XML tag represents a Contract Wizard type the parser assigns all Contract
Wizard features defined between the XML start tag (<cw_type>) and the XML end tag
(</cw_type>) to this Contract Wizard type .

59

The feature on_end_tag (see Table 29 below) is responsible for composing the Contract
Wizard ast nodes (1), (2), (3)… (It is called by the parser whenever an XML end tag has been
processed).

on_end_tag (a_namespace: STRING; a_prefix: STRING;
 a_local_part: STRING) is
 -- Compose Contract Wizard AST nodes.
 local
 upper_part: STRING
 do
 upper_part := a_local_part.as_upper
 if is_type (upper_part) then
 compose_type (1)
 extend_ast
 elseif is_creation_procedure (upper_part) then
 compose_routine (cw_creation_procedure) (2)
 elseif is_procedure (upper_part) then
 compose_routine (cw_procedure) (3)
 elseif is_function (upper_part) then
 compose_routine (cw_function) (4)
 cw_function.set_return_type (return_type)
 elseif is_attribute (upper_part) then
 compose_attribute (5)
 elseif is_argument (upper_part) then
 compose_argument (6)
 end

Precursor {XM_CALLBACKS_FILTER} (a_namespace, a_prefix,
 a_local_part)

 ensure then
return_type_set: is_function (a_local_part.as_upper) implies
 cw_function.return_type = return_type

 end

Table 29: Feature on_end_tag

5.3.6 The document type definition

The document type definition (DTD) describes the structure of an XML file and validates it.
The document type definition in Table 30 below validates every Contract Wizard XML file.
You can use the DTD with various tools to edit XML files such as xmlspy [15]

<?xml version="1.0" encoding="utf-8"?>
<!ELEMENT cw_ast (cw_type+)>
<!ELEMENT cw_type (interfaces?, cw_creation_procedures?, cw_attributes?,
cw_procedures?, cw_functions?, cw_invariants?)?>
<!ELEMENT cw_creation_procedures (cw_creation_procedure)*>
<!ELEMENT cw_attributes (cw_attribute)*>

60

<!ELEMENT cw_procedures (cw_procedure)*>
<!ELEMENT cw_functions (cw_function)*>
<!ELEMENT cw_preconditions (cw_precondition)*>
<!ELEMENT cw_postconditions (cw_postcondition)*>
<!ELEMENT cw_invariants (cw_invariant)*>
<!ELEMENT interfaces (interface)*>
<!ELEMENT cw_arguments (cw_argument)*>
<!ATTLIST cw_type
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 namespace CDATA #REQUIRED
 is_deferred (yes | no) #REQUIRED
 is_expanded (yes | no) #REQUIRED
 is_enum (yes | no) #REQUIRED
 is_interface (yes | no) #REQUIRED
>
<!ELEMENT cw_creation_procedure (cw_arguments?, cw_preconditions?,
cw_postconditions?)?>
<!ATTLIST cw_creation_procedure
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
>
<!ELEMENT cw_attribute (type+, cw_preconditions?, cw_postconditions?)?>
<!ATTLIST cw_attribute
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 is_constant (yes | no) #REQUIRED
 value CDATA #REQUIRED
 is_static (yes | no) #REQUIRED
>
<!ELEMENT cw_procedure (cw_arguments?, cw_preconditions?,
cw_postconditions?)>
<!ATTLIST cw_procedure
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 is_deferred (yes | no) #REQUIRED
 is_static (yes | no) #REQUIRED
>
<!ELEMENT cw_function (cw_arguments?, type+, cw_preconditions?,
cw_postconditions?)>
<!ATTLIST cw_function
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 is_deferred (yes | no) #REQUIRED
 is_static (yes | no) #REQUIRED
 is_property (yes | no) #REQUIRED
>

61

<!ELEMENT cw_argument (type+)>
<!ATTLIST cw_argument
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
>

<!ELEMENT cw_invariant EMPTY>
<!ATTLIST cw_invariant
 tag CDATA #IMPLIED
 expression CDATA #REQUIRED
>
<!ELEMENT cw_precondition EMPTY>
<!ATTLIST cw_precondition
 tag CDATA #IMPLIED
 expression CDATA #REQUIRED
>
<!ELEMENT cw_postcondition EMPTY>
<!ATTLIST cw_postcondition
 tag CDATA #IMPLIED
 expression CDATA #REQUIRED
>
<!ELEMENT interface EMPTY>
<!ATTLIST interface
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 to_string (yes | no) #REQUIRED
 equals (yes | no) #REQUIRED
 get_hash_code (yes | no) #REQUIRED
>
<!ELEMENT type EMPTY>
<!ATTLIST type
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 is_array (yes | no) #REQUIRED
>

Table 30: The document type definition for the Contract Wizard proxy classes

63

6. Contract Wizard proxy classes

This chapter explains how Contract Wizard creates the Eiffel representation and the XML
representation of Contract Wizard proxy classes and examines the structure of a Contract
Wizard proxy class.

6.1 The Contract Wizard proxy class

Contract Wizard generates a Contract Wizard proxy class for each public .NET class or public
.NET interface in the specified .NET assembly.
The Contract Wizard proxy class acts as a surrogate for the original .NET class or .NET
interface. To do this the proxy class has to specify the same interfaces and features as the
original .NET class.

Interactions between the Contract Wizard proxy class and the original .NET class are as
follow:

Contract Wizard
proxy class .NET class

do_it

client

do_it

Figure 17: Delegating calls to the original .NET class

In Figure 17 you see the interaction between a client, a Contract Wizard proxy class and an
original .NET class. The interaction is the following: the client calls the feature do_it of the
Contract Wizard proxy class instead of calling the feature do_it of the original .NET class
directly. The Contract Wizard proxy class delegates the call to the original .NET class.
In this way, each call is delegated to the original .NET class.
Since the Contract Wizard proxy class specifies all public features of the .NET class
(including inherited features from super classes of the .NET class) delegation to inherited
features of the .NET class is provided.

6.1.1 Implementation of a Contract Wizard proxy class

Figure 18 on the next page shows the implementation of a Contract Wizard proxy class
(CW_PROXY).

Every Contract Wizard proxy class has a reference ref to the original .NET class. The
reference is of type ORIGINAL_DOTNET_CLASS and delegates calls to the original .NET
class.

64

do_it +
do_it_sup +

Inherits from

f+ Effective (implemented) feature+ Effective (concrete) class

* Deferred (abstract) class

f* Deferred featureClient relation

+
CW_PROXY

+
ORIGINAL_
DOTNET_

CLASS

*
INTERFACE

+
ORIGINAL_
DOTNET_

SUPER_CLASS

ref do_it +

do_it * do_it_sup +

INTERFACE represents all interfaces

Figure 18: Implementing a Contract Wizard proxy class (CW_PROXY)

Both the Contract Wizard proxy class (CW_PROXY) and the original .NET class
(ORIGINAL_DOTNET_CLASS) implement (inherit from) the same interfaces. The deferred
class INTERFACE represents all interfaces. That is why it is grey. This structure makes the
proxy a real surrogate for the original .NET class.

6.1.2 Inheritance from System.Object

Every type in .NET is an object, meaning that it must derive directly or indirectly from the
Object class. If you do not specify a base class when you define a class, the compiler will
inject this requirement into the IL code. [3]
Since Contract Wizard proxy classes are also .NET classes they inherit from the class
System.Object.

Before discussing the consequences, I will examine the public methods of the class
System.Object (in Eiffel SYSTEM_OBJECT). From now on I will use the Eiffel for .NET
naming conventions.

The class SYSTEM_OBJECT has the following public methods.

• equals (obj: SYSTEM_OBJECT): BOOLEAN: Determines whether the specified obj is
equal to the current object.

65

• frozen equals_object_object (obj_a: SYSTEM_OBJECT; obj_b: SYSTEM_OBJECT):
BOOLEAN: Compares two objects and determines whether they are equal (field by
field equality).

• frozen reference_equals (obj_a: SYSTEM_OBJECT; obj_b: SYSTEM_OBJECT):
BOOLEAN: Compares two object references and determines whether they are
referring to the same object (reference equality).

• get_hash_code: INTEGER: Gets the object hash code.
• frozen get_type: TYPE: Obtains the object’s type at runtime.
• to_string: SYSTEM_STRING: Gets a string representation of the object.
• frozen memberwise_clone: SYSTEM_OBJECT: Creates a shallow copy of the current

object.

Calls to equals, get_hash_code and to_string are delegated to the original .NET class. (The
original .NET class may provide for example a special hash function).

All other features of the class SYSTEM_OBJECT are not delegated. The reason is that they are
all frozen in the class SYSTEM_OBJECT, thus cannot be redefined.

Other reasons are:

• For the feature get_type: We want to hide implementation details of the original .NET
class.

• For the features equals_object_object, reference_equals, memberwise_clone: These
features implement the required service and don’t affect the current type.

In order to delegate the services of the three features get_hash_code, equals and to_string, we
have to redefine them in the class SYSTEM_OBJECT, which every Contract Wizard proxy
class inherits from. I will explain the delegation of these features on the following three cases:

• the original .NET class is an effected class
• the original .NET class is an abstract class
• the original .NET class is an interface

The original .NET class is an effected class
The Contract Wizard proxy class has to implement (inherit from) the same interfaces as the
original .NET class to act as a surrogate.
For example, the Contract Wizard proxy class in Table 31 on the next page generated from
the .NET core library (mscorlib) [14] implements (inherits from) the following interfaces:

• IMEMBERSHIP_CONDITION (1)
• ISECURITY_ENCODABLE (1)
• ISECURITY_POLICY_ ENCODABLE (1)

These are the same interfaces as the original .NET class ALL_MEMBERSHIP_CONDITIONS
implements.

Handling interfaces
Interface inheritance has some consequences for the Contract Wizard proxy class since
interfaces are represented by deferred (abstract) classes in Eiffel for .NET (abstract classes
also inherit from SYSTEM_OBJECT), the features to_string, get_hash_code and equals have

66

to be undefined to avoid ambiguous feature names. (These features are already inherited from
SYSTEM_OBJECT). (2)

Interfaces force a programmer to implement defined features. For example, the .NET interface
IMEMBERSHIP_CONDITION (3) forces the programmer to implement (among other
features) the features to_string and equals. This does not affect the Contract Wizard proxy
class, except the implementation detail that the proxy class needs only undefine the feature
get_hash_code (4) since the other two features are already defined by the interface.

The class SYSTEM_OBJECT has to redefine the three features to_string, equals and
get_hash_code to enable delegation of these three features.

indexing

 note: "Automatically generated by the Contract Wizard."
 dotnet_name: "System.Security.Policy.AllMembershipCondition"

class CW_ALL_MEMBERSHIP_CONDITION

inherit

 IMEMBERSHIP_CONDITION (1) (3)
 undefine (4)
 get_hash_code

 end

 ISECURITY_ENCODABLE (1)
 undefine (2)
 get_hash_code,
 equals,
 to_string

 end

 ISECURITY_POLICY_ENCODABLE (1)
 undefine (2)
 get_hash_code,
 equals,
 to_string

 end

SYSTEM_OBJECT
 redefine (5)
 get_hash_code,
 equals,
 to_string

 end
….

67

feature {NONE} -- Implementation

 frozen all_membership_condition_ref: ALL_MEMBERSHIP_CONDITION
 -- Reference to the .NET class

end

Table 31: Fragment of an effected proxy class implementing .NET interfaces

The original .NET class is an abstract class
From the implementation point of view, there is no difference between effected and deferred
Contract Wizard proxy classes concerning redefinition.

• Both the effected and the abstract Contract Wizard proxy class inherit from
SYSTEM_OBJECT.

• It is not allowed in .NET to specify one of the three features to_string, equals or
get_hash_code as abstract (in .NET there is no construct undefine like in Eiffel).

• This means we can handle the three effected features: to_string, equals and
get_hash_code in the same way we handled them in the effected class.

Overriding
As in the effected .NET class a programmer can override one of the three features to_string,
get_hash_code and equals also in the abstract .NET class. Overriding has no effect on the
current implementation of the Contract Wizard proxy class. If a client calls an overridden
feature, the call is delegated by the Contract Wizard proxy class to the overridden feature of
the .NET class.

In Table 32 below, you see an example of a CLS compliant .NET class written in C# and in
Table 33 there is the corresponding Contract Wizard proxy class. The feature ToString is
overridden (1), the feature Equals and GetHashCode are inherited from System.Object.

using System;

[assembly: AssemblyVersion ("1.0.3300.1")]
[assembly: AssemblyKeyFile ("mykey.snk")]
[assembly: CLSCompliant (true)]

public abstract class Hello {

 /* Overrides the method ToString from System.Object */
 override public string ToString () { (1)
 return "Hello World!";
 }
}

Table 32: CLS compliant class Hello overriding the method ToString from System.Object

68

Examining the corresponding Contract Wizard proxy class in Table 34 you see that
overriding has no effect on the current implementation of a Contract Wizard proxy class. The
overridden method is called (2) since the reference is of type HELLO (1). Note it is not
possible to call the method to_string from SYSTEM_OBJECT through the Contract Wizard
proxy class in this case.

indexing

 note: "Automatically generated by the Contract Wizard."
 dotnet_name: "Hello"

deferred class CW_HELLO

feature -- Query

 frozen get_hash_code: INTEGER is
 -- dotnet_name: "Hello.GetHashCode (): Int32"
 do
 Result := hello_ref.get_hash_code
 end

 frozen equals (a_obj: SYSTEM_OBJECT): BOOLEAN is
 -- dotnet_name: "Hello.Equals (obj: Object): Boolean"
 do
 Result := hello_ref.equals (a_obj)
 end

 frozen to_string: SYSTEM_STRING is (2)
 -- dotnet_name: "Hello.ToString (): String"
 do
 Result := hello_ref.to_string
 end

feature {NONE}-- Implementation

 frozen hello_ref: HELLO (1)
 -- Reference to the .NET class

end

Table 33: Deferred proxy class representing the CLS compliant .NET class Hello

The original .NET class is an interface
If the original .NET class is an interface, the corresponding Contract Wizard proxy class is
deferred. (Eiffel does not support the notion of interface.)
Although the Contract Wizard proxy class inherits from SYSTEM_OBJECT the features
to_string, equals and get_hash_code have not to be redefined in SYSTEM_OBJECT, since a
.NET interface does not have any effected features by definition.

69

If a .NET interface specifies one of these features the Contract Wizard proxy class undefines
them in SYSTEM_OBJECT as well as all interfaces the Contract Wizard proxy class inherits
from (see example in Table 34 below).

Example: The interface CW_IMEMBERHSIP_CONDITION
Table 34 represents the .NET interface IMEMBERSHIP_CONDITION from the .NET core
library (mscorlib) [14]. The interface specifies the .NET members ToString and Equals. The
corresponding Contract Wizard proxy class undefines these features in all interfaces (1) it
inherits from. These features are also undefined in the class SYSTEM_OBJECT (2).

indexing

 note: "Automatically generated by the Contract Wizard."
 dotnet_name: "System.Security.Policy.IMembershipCondition"

deferred class CW_IMEMBERSHIP_CONDITION

inherit

 ISECURITY_ENCODABLE (3)
 undefine(1)
 equals,
 to_string

 end

 ISECURITY_POLICY_ENCODABLE (3)
 undefine(1)
 equals,
 to_string

 end

SYSTEM_OBJECT
 undefine (2)
 equals,
 to_string

 end

feature -- Query

 equals (a_obj: SYSTEM_OBJECT): BOOLEAN is (1)
 -- dotnet_name: "IMembershipCondition.Equals (obj: Object):
 -- Boolean"
 deferred
 end

70

 to_string: SYSTEM_STRING is (1)
 -- dotnet_name: "IMembershipCondition.ToString ():
 -- String"
 deferred
 end
…
end

Table 34 Proxy class corresponding to the .NET interface IMEMBERSHIP_CONDITION

71

7. Generating Contract Wizard proxy classes

7.1 The Eiffel code generator

In this section, we have a closer look at the implementation of the Eiffel code generator (see
Figure 19 below). The role of the Eiffel code generator is to generate the Contract Wizard
proxy classes and to store them into the specified directory.

generate +
generate_source ++
store_source +
generate_and_store_class+

Inherits from

f+ Effective (implemented) feature

+ Effective (concrete) class

* Deferred (abstract) class

f* Deferred feature

Client relation

generate_source +
…

f++ Redefined feature

source+
creation_procedures+
attributes+
procedures+
functions+
invariants+
visit_type*
visit_creation_procedure*
visit_attribute*
visit_procedure*
….

visit_type+
visit_creation_procedure+
visit_attribute+
visit_procedure+
visit_function+
visit_argument+
visit_precondition+
visit_postconditon+
visit_invariant+

*
CW_GENERATOR *

CW_VISITOR

+
CW_EIFFEL_
GENERATOR

+
CW_EIFFEL_

VISITOR

+
CW_EIFFEL_
KEYWORD

CONSTANTS

Figure 19: Class diagram of the Eiffel code generator

The Eiffel code generator consists of the deferred classes CW_GENERATOR and
CW_VISITOR and of the effected classes CW_EIFFEL_GENERATOR,
CW_EIFFEL_VISITOR and CW_EIFFEL_CONSTANTS.

CW_GENERATOR
The class CW_GENERATOR specifies the features common to all its descendants:
CW_EIFFEL_GENERATOR (see Figure 19), CW_XML_GENERATOR and
CW_LACE_GENERATOR. The class CW_GENERATOR and its descendants have a common
creation procedure make. It has two arguments: an_ast (of type LINKED_LIST [CW_TYPE])
and a_directory_path_name (STRING). The argument a_directory_path_name defines the
path to the directory where the generated code is stored. The data structure ast represents the
parsed classes from the .NET assembly.

72

CW_VISITOR
The class CW_VISITOR defines features common to its descendants CW_EIFFEL_VISITOR
and CW_XML_VISITOR. The last two classes are described below.

CW_EIFFEL_KEYWORD_CONSTANTS
The class CW_EIFFEL_KEYWORD_CONSTANTS specifies the required constants for
generating the Eiffel representation of Contract Wizard proxy classes.

The Eiffel visitor (CW_EIFFEL_VISITOR)
The Eiffel code for the Contract Wizard proxy classes is generated using an Eiffel visitor
(CW_EIFFEL_VISITOR). It specifies features for Eiffel code generation, namely:

• visit_creation_procedure: This feature generates Eiffel code for a Contract Wizard
creation procedure (CW_CREATION_PROCEDURE) and appends it to the
creation_procedures list. The code includes preconditions and postconditions.

• visit_attribute: This feature generates Eiffel code for a Contract Wizard attribute
(CW_ATTRIBUTE) and appends it to the attributes list.

• visit_procedure: This feature generates Eiffel code for a Contract Wizard procedure
(CW_PROCEDURE) and appends it to the procedures list. The code includes
preconditions and postconditions.

• visit_function: This feature generates Eiffel code for a Contract Wizard function
(CW_FUNCTION) and appends it to the functions list. The code includes
preconditions and postconditions.

• visit_invariant: This feature generates Eiffel code for a Contract Wizard invariant
(CW_INVARIANT) and appends it to the invariants list.

• visit_type: This feature generates Eiffel code for a Contract Wizard type (CW_TYPE)
using the features creation_procedures, attributes, procedures, functions and
invariants.

These features are called indirectly by registering the Eiffel visitor to a Contract Wizard ast
node. A visitor is registered to a Contract Wizard ast node by the feature visit. A visitor can
be registered more then once. There is an internal counter. You can ask every Contract
Wizard ast node in which state it is. There are two states: is_visited and not is_visited. It can
be very useful to distinguish between these two states. Some pre-processing can be done in
the state not is_visited.

Example of how to use visitors
Table 35 on the next page shows an example how Contract Wizard proxy classes are
generated using a visitor. Note that the visitor must be of type CW_EIFFEL_VISITOR to
generate Eiffel code.

The visitor is registered twice to the Contract Wizard type (CW_TYPE) (1, 2) and once to
every feature (CW_FEATURE) (3). After registering the visitor to all Contract Wizard ast
nodes, the Contract Wizard Eiffel code can be retrieved using the query visitor.type_text.

73

 visit_class (a_type: CW_TYPE) is

 -- Visit a_type.
 require
 type_not_void: a_type /= Void
 visitor_not_void: visitor /= Void
 local
 a_feature: CW_FEATURE
 features: LINKED_LIST [CW_FEATURE]
 do
 a_type.visit (visitor) (1)
 features := a_type.features
 from
 features.start
 until
 features.after
 loop
 a_feature := features.item
 visit_feature (a_feature) (3)
 features.forth
 end
 features := a_type.features
 visit_assertions (a_type.invariants)
 a_type.visit (2)

end

Table 35: Registering a visitor to Contract Wizard ast nodes

Note: if you want to generate an XML representation of a Contract Wizard proxy class instead
of the Eiffel representation, you must use the XML visitor (CW_XML_VISITOR) instead of the
Eiffel visitor (CW_EIFFEL_VISITOR).

7.2 The XML code generator

The XML code generator resembles the Eiffel code generator in many ways.

74

generate +
generate_source ++
store_source +
generate_and_store_class+

Inherits from

f+ Effective (implemented) feature

+ Effective (concrete) class

* Deferred (abstract) class

f* Deferred feature

Client relation

generate_source +
…

f++ Redefined feature

source+
creation_procedures+
attributes+
procedures+
functions+
invariants+
visit_type*
visit_creation_procedure*
visit_attribute*
visit_procedure*
….

visit_type+
visit_creation_procedure+
visit_attribute+
visit_procedure+
visit_function+
visit_argument+
visit_precondition+
visit_postconditon+
visit_invariant+

*
CW_GENERATOR *

CW_VISITOR

+
CW_XML_

GENERATOR

+
CW_XML_
VISITOR

+
CW_XML_
KEYWORD

CONSTANTS

Figure 20: Class diagram of the XML code generator

Figure 20 above shows how classes CW_VISITOR, CW_XML_VISITOR CW_GENERATOR,
CW_XML_GENERATOR and CW_XML_CONSTANTS interact with each other.
The classes CW_GENERATOR and CW_VISITOR are the same as the ones discussed in
section The Eiffel code generator.

CW_XML_GENERATOR
The class CW_XML_GENERATOR generates XML code using the XML visitor
(CW_XML_VISITOR) and stores it to the specified XML file.

CW_XML_CONSTANTS
The class (CW_XML_CONSTANTS) specifies the XML tags required for generating XML
proxy classes.

CW_XML_VISTOR
The generation of XML code is similar to the generation of Eiffel code, except that it uses an
XML visitor instead of an Eiffel visitor in feature visit_class (see Table 35).

The class CW_XML_VISITOR is responsible for code generation. It has the following
features:

• visit_creation_procedure: Creates the XML representation of a Contract Wizard
procedure (CW_PROCEDURE) including contracts. The generated code is appended
to the creation_procedures list.

75

• visit_attribute: Creates the XML representation of a Contract Wizard attribute
(CW_ATTRIBUTE) including contracts. The generated code is appended to the
attributes list.

• visit_function: Creates the XML representation of a Contract Wizard function
(CW_FUNCTION) including contracts. The generated code is appended to the
functions list.

• visit_procedure: Creates the XML representation of a Contract Wizard procedure
(CW_PROCEDURE) including contracts. The generated code is appended to the
procedures list.

• visit_invariant: Creates the XML representation of a Contract Wizard invariant
(CW_INVARIANT) including contracts. The generated code is appended to the
invariants list.

• visit_type: Creates the XML representation of a Contract Wizard type (CW_TYPE)
making use of the features creation_procedures, attributes, procedures, functions and
invariants.

You can access the generated XML code using the query visitor.source.

7.3 The LACE code generator

To compile the Contract Wizard proxy classes we need an ACE file. The LACE generator
(CW_LACE_GENERATOR) (see below) creates the appropriate ACE file, written in LACE
(Language for Assembly of Classes in Eiffel) and stores it into the specified directory.

generate +
generate_source ++

generate_source +
…

Inherits from

+ Effective (concrete) class

* Deferred (abstract) class f+ Effective (implemented) feature

f++ Redefined feature

+
CW_LACE_

CONSTANTS

*
CW_GENERATOR

+
CW_EIFFEL_
KEYWORD

CONSTANTS

+
CW_LACE_

GENERATOR

Figure 21: Class diagram of the LACE Generator

76

• CW_LACE_GENERATOR
The class CW_LACE_GENERATOR (see Figure 21 above) inherits from the three
classes CW_GENERATOR, CW_LACE_CONSTANTS and CW_EIFFEL_KEYWORD_
CONSTANTS. The last two classes provide the LACE generator with the required
constants to generate an ACE file.

• CW_GENERATOR

The feature generate (see Figure 21 above) provides the LACE generator with an
assembly (ASSEMBLY, corresponding to the .NET System.Reflection.Assembly) and a
prefix. The prefix is used to prevent ambiguous names.

• CW_LACE_GENERATOR
The LACE generator extracts all required information from the assembly to generate
the ACE file, such as the assembly version, the assembly public key token and the
assembly name.

77

8. Proxy class syntax

In this section, I discuss the syntax of the generated Contract Wizard proxy classes. I present
the syntax on a small language based on regular expressions specified by the grammar defined
in Table 36 below.

Concatenation
A = B C: A corresponds to B followed by C

Option
A = B | C: A corresponds to B or C

Zero or one
A = [B]: A corresponds to zero or one B

Zero or many
A = {B}: A corresponds to zero or many B

Table 36: A small language based on regular expressions

I start with some basic concepts such as identifiers, formal and actual arguments, and types.
Based on them I describe the syntax of creation procedures, attributes, procedures, functions
and finally I explain the syntax of a Contract Wizard proxy class.

8.1 Identifier specification

Table 37 below shows the specification of an identifier (Id). Valid identifiers are for example:
“a_name”, “foo” etc.

Id = Letter { Letter | Digit | Special_character }

Letter = “A” | “B” | … | “Z” | “a” | “b” | … | “z”

Digit = “0” | “1” | “2” | … | “9”

Special_character = “_” | … | “*”

Table 37: Definition of identifiers

Note Special_characters are limited to characters provided by the .NET framework.

78

8.2 Type specification

Table 38 below shows the production of a type (Type). There are four different types handled
by Contract Wizard:

• Defined types: Some types already exist in Eiffel. For these types Contract Wizard
prepends the prefix SYSTEM_.

• Array types: These types represent arrays. The array type corresponds to the characters
between the opening and the closing square bracket.

• Object types: These types represent objects.
• Primitive types: These are CLS compliant primitive types. They are not the same in

Eiffel and in .NET (they have different names).

Defined_type = “SYSTEM_STRING” | “SYSTEM_ARRAY” |
“SYSTEM_CONSOLE” | “SYSTEM_DATE_TIME” | “SYSTEM_DIRECTORY” |
“SYSTEM_FILE” | “SYSTEM_QUEUE” | “SYSTEM_RANDOM” |
“SYSTEM_SORTED_LIST” | “SYSTEM_STACK” | “SYSTEM_STREAM”

Array_type = “NATIVE_ARRAY” “[” Object_type | Primitive_type | Defined_type
“]”

Object_type = Id

Primitive_type := “BOOLEAN“ | “CHARACTER” | “INTEGER_8” |
“INTEGER_16” | “INTEGER” | “INTEGER_64” | “POINTER” | “REAL”

Type = Object_type | Primitive_type | Array_type | Defined_type

Table 38: Definition of types

Valid productions for Type are: “INTEGER_64”, “NATIVE_ARRAY [INTEGER]”,
“MY_CLASS” …

8.3 Formal argument specification

To express Eiffel routines, we have to introduce formal arguments. Table 39 specifies a
formal argument list.

Formal_argument = Id “:” Type

Formal_arguments = Formal_argument | [Formal_argument “;”
Formal_arguments]

Formal_argument_list = “(“ Formal_arguments “)”

Table 39: Definition of a formal argument

79

A valid production for a formal argument list (Formal_argument_list) is (a_name: STRING;
an_object: SYSTEM_OBJECT).

8.4 Actual argument specification

Actual arguments are required for expressing Eiffel routine calls. Table 40 below specifies an
actual argument list.

Actual_argument = Id

Actual_arguments = Actual_argument | [Actual_argument “,”
Actual arguments]

Actual_argument_list = “(” Actual_arguments “)”

Table 40: Definition of actual arguments

A valid production for an actual argument list (Actual_argument_list) is: (a_name,
an_object).

8.5 Creation procedure specification

A Contract Wizard proxy class creation procedure consists of the keyword frozen, followed
by the creation procedure name make, an optional formal argument list and a procedure body
where the referenced .NET class is instantiated.
The restriction frozen is required to prohibit programmers from redefining the creation
procedure.

Table 41 shows the production of a Contract Wizard proxy class creation procedure.
Reference represents the references to the original .NET class.

Reference = Id

Creation_procedure = “ frozen ” “ make ” [Formal_argument_list] “ is ” “ do ”
“create ” Reference “.” “make ” [Actual_argument_list] “ end ”

Table 41: Definition of a Contract Wizard creation procedure

Table 42 on next page shows a production of a valid creation procedure.

80

frozen make (a_sum: INTEGER) is
 do
 create deposit.make (a_sum)
 end

Table 42: Example of a Contract Wizard creation procedure

8.6 Attribute specification

A Contract Wizard proxy class attribute represents a .NET field.

The Contract Wizard attribute has a frozen keyword in front of the attribute name prohibiting
users from redefining it.

Table 43 below specifies a Contract Wizard proxy class attribute. Reference references the
original .NET class.

Attribute_name = Id

Attribute = “ frozen ” Attribute_name “:” Type “ is ” “ do ” “ Result” “ := ”
Reference “.” Attribute_name “end”

Table 43: Definition of a Contract Wizard attribute

Table 44 shows a valid production of a Contract Wizard proxy class attribute.

frozen balance: INTEGER is

do
 Result := account.balance
 end

Table 44: Example of a Contract Wizard attribute

8.7 Procedure specification

A Contract Wizard proxy class procedure represents either a deferred (abstract) .NET
procedure or an effected (implemented) .NET procedure.
If the Contract Wizard proxy class procedure represents a deferred .NET procedure, it consists
of a procedure name, followed optionally by a formal argument list and a deferred procedure
body.

81

If the Contract Wizard proxy class procedure represents an effected .NET procedure, there is a
frozen keyword in front of the procedure name prohibiting users from redefining it. It has an
effected feature body where the procedure call is delegated to the .NET procedure.

Table 45 below specifies a Contract Wizard proxy class procedure.

Procedure_name = Id

Deferred_procedure = Procedure_name [Formal_argument_list] “ is ”
“ deferred ” “ end ”

Effected_procedure = “ frozen ” Procedure_name [Formal_argument_list]
“is” “do” Reference “.” Procedure_name [Actual_argument_list] “ end ”

Procedure = Effected_procedure | Deferred_procedure

Table 45: Definition of a Contract Wizard procedure

The two tables (Table 46 and Table 47) below show examples of Contract Wizard proxy class
procedures. The first table depicts a procedure representing an abstract .NET procedure. The
second table shows a procedure representing an effected .NET procedure.

deposit (a_sum: INTEGER) is
 deferred
 end

Table 46: Example of a deferred Contract Wizard procedure

frozen deposit (a_sum: INTEGER) is
 do
 account.deposit (a_sum)
 end

Table 47: Example of an effected Contract Wizard procedure

8.8 Function specification

A Contract Wizard proxy class function represents either a deferred (abstract) .NET function
or an effected (implemented) .NET function.

If the Contract Wizard proxy class function represents an abstract .NET function, it consists of
a function name, followed optionally by a formal argument list, followed by a colon, a return
type and a deferred function body. The function name represents the name of the .NET
function. The function type represents the type of the .NET function.

82

If the Contract Wizard proxy class function represents an effected .NET function there is a
frozen keyword in front of the function name prohibiting users from redefining it.
The delegated function call is assigned to the Result in the effected feature body.

Table 48 below specifies a Contract Wizard proxy class function.

Function_name = Id

Deferred_function = Function_name [Formal_argument_list] “ : ” Type “ is ”
“ deferred ” “ end ”

Effected_function ” := ” “ frozen ” Function_name [Formal_argument_list] “:”
Type “ is ” “ do ” “ Result ” ” := ” Reference “.” Function_name [
Actual_argument_list] “ end ”

Function = Effected_function | Deferred_function

Table 48: Definition of a Contract Wizard function

The two tables (Table 49 and Table 50) below show valid productions of Contract Wizard
proxy class functions. The first table depicts a function representing an effected .NET
function. The second table shows a function representing an abstract .NET function.

frozen add (a_new_withdrawal: SYSTEM_OBJECT): INTEGER is
 do
 Result := withdrawal_list.add (a_new_withdrawal)
 end

Table 49: Example of an effected Contract Wizard function

add (a_new_withdrawal: SYSTEM_OBJECT): INTEGER is
 deferred
 end

Table 50: Example of a deferred Contract Wizard function

8.9 Feature specification

Before we introduce Contract Wizard types, we have to specify features (Features) (see Table
51 below). A feature (Feature) is a creation procedure, an attribute, a procedure or a function.
For better readability we don’t specify feature clauses.
Table 51 on next page shows the specifications of features.

83

Features = Creation_procedure | Attribute | Procedure | Function

Features = Feature | [Features]

Table 51: Definition of a Contract Wizard feature

8.10 Class specification

Now we are ready to specify Contract Wizard proxy classes. A Contract Wizard proxy class
can act as a surrogate for the following .NET constructs:

• effected .NET classes
• deferred (abstract) .NET classes
• interfaces

The Contract Wizard proxy class inherits from the same interfaces as its corresponding .NET
class. Every Contract Wizard proxy class inherits from SYSTEM_OBJECT.

The Contract Wizard Proxy class represents an effected .NET class
If the Contract Wizard proxy class represents an effected class, it has no Type_distinctor (see
Table 52 below) in front of the keyword class. It has a creation clause (Creation_clause)
where it defines all creation procedures.

The Contract Wizard proxy class represents a deferred (abstract) .NET class
If the Contract Wizard proxy class represents a deferred class, it has the Type_distinctor
deferred in front of the keyword class. The Reference in a deferred Contract Wizard proxy
class points to a deferred .NET class. That is why it is not instantiated. To use a deferred
Contract Wizard proxy class you have to effect it.

The Contract Wizard proxy class represents an interface
If the Contract Wizard proxy class represents an interface, it has the Type_distinctor deferred
in front of the keyword class. It has no creation clause (Creation_clause) and no Reference.

Table 52 below specifies the syntax of a Contract Wizard proxy class.

Type_distinctor = [“ deferred ”]

Dotnet_class_type = Id

Class_name = “CW_” Dotnet_class_type

Interface_name = Id

Creation_procedure_names = Creation_procedure_name | [
Creation_procedure_name “,” Creation_procedure_names]

84

Creation_clause = “create” [Creation_procedure_names]

Undefinitions = “ undefine ” [“ get_hash_code ”] [“,”] [“ equals ”] [“,”] [
“ to_string ”] “end”

Redefinitions = “ redefine” [“ get_hash_code ”] [“,”] [“ equals ”] [“,”] [
 “ to_string ”] “end”

Interface = Interface_name Undefinitions

Interfaces = Interface [Interfaces]

Class_header = [Class_distinctor] “ class “ Class_name “ inherit ” [Interfaces]
“ SYSTEM_OBJECT ” [Redefinitions | Undefinitions] [Creation_clause]

Ref = “ frozen ” Reference “ : ” Dotnet_class_type

Class_body = Features “ [feature {NONE} --Implementation ” Ref]

Contract_Wizard_proxy_class = Class_header Class_body “ end”

Table 52: Definition of a Contract Wizard proxy class

85

9.

Contract Handler

The Contract Handler provides the ability to insert contracts to the Symbol DS. It can be easily
accessed from the GUI or any other client.

The Contract Handler is implemented by the class CW_CONTRACT_HANDLER and offers
the following basic features:

• add_precondition
Insert a precondition to the ast given a type name, a feature name, a tag and an
expression representing the precondition.

• add_postcondition
Insert a postcondition to the ast given a type name, a feature name, a tag and an
expression representing the postcondition.

• add_invariant
Insert an invariant to the ast given a type name, a tag and an expression representing
the invariant.

• type_by_name
Return the object representation of a type (CW_TYPE) given a type name.

• feature_by_name
Return the object representation of a feature (CW_FEATURE) given a type name and a
feature name.

Note: For future GUI developments, it would be better to access the data structure ast directly
instead of using the Contract Handler (the data structure ast itself acts as a Contract Handler).
Using the Contract Handler would yield a performance overhead.

87

10. Test cases

I tested Contract Wizard II on the .NET core library (mscorlib.dll) [14]. I checked that the
generated Contract Wizard proxy classes are the same whether you retrieve them from XML
files or from the .NET assembly.

Figure 22 below shows the results of performance tests with the XML parser and with the
.NET parser. The left bar shows how long it takes to retrieve the ast from the XML
representation of the Contract Wizard proxy classes representing mscorlib. The right bar
shows how long it takes to retrieve the ast from the .NET assembly using the .NET reflection
mechanism. As you can see, it is 2.4 times faster to retrieve the ast from the XML
representation. Furthermore, the memory consumption to retrieve the ast from the XML
representation is 30 percent lower (51 Megabyte (XML) compared to 78 Megabyte (.NET)).
I tested the parsing process on a system with a Pentium 3 processor with 1100 MHz and 256-
megabyte RAM.

112 s

270 s

Parsing XML .NET Reflection

time

Figure 22: Performance test

I also tested how long it takes to add contracts using the Contract Handler.
Contract Wizard II requires in average less than 1 minute to add 5000 contracts
(preconditions, postconditions and invariants) to mscorlib on the same system. We have tested
adding contracts on randomly selected classes and features of mscorlib.
In the worst case there are O (n*m) computations to add a precondition and O (n)
computations to add an invariant using the Contract Handler to the symbol DS ast, where n
stands for the number of classes and m for the number of features.

88

89

Part D Theoretical part

11. Storing the contracts

The current implementation of Contract Wizard II stores contracts in an XML file. This has
some advantages but also some drawbacks. Let us review them now.

11.1 Storing contracts in an XML file

Advantages

• XML files can easily be manipulated manually. This makes it possible to change
contracts directly in the XML files.

• XML files can be read by humans, which can help to debug the Contract Wizard proxy
classes.

• XML files are more flexible against future changes of the .NET framework.
• XML files also allow having more than one version of contracts for an assembly. (This

may also be dangerous though.)

Disadvantages

• Consistency: We have to keep track of two files: the assembly and the XML
representation.

11.2 Storing contracts in the assembly metadata

Another solution would be to store contracts in the metadata associated with any .NET
assembly. Let us discuss the pros and cons of such an approach.

Advantages

• We do not need to generate an XML file, everything is in the same file, which
probably implies a gain in space. The XML file representing the Contract Wizard
proxy classes of the .NET core library (mscorlib.dll) requires 4.5 megabyte of space
(compared with mscorlib.dll that requires about 2 megabyte of space).

• Because information is stored in just one file, it makes the assembly self-describing.
No problem with extra files somewhere on the disk.

• It also makes the process of adding contracts simpler for the programmer.

90

Disadvantages

• Maybe lower performance: tests with the current version of Contract Wizard II have
shown that it is faster to retrieve the symbol data structure ast from the XML
representation versus getting it from the assembly using the reflection mechanism
of .NET (see also chapter 10). However, it would remain to be tested how fast it is to
extract contracts from the metadata.

11.3 Conclusion

I chose to store the contracts in an XML file representing the Contract Wizard proxy classes. I
think using XML makes Contract Wizard more flexible and extendible. For example, if you
want to rewrite Contract Wizard II for other programming languages you can reuse the same
XML files.

91

12.

Conclusion

I developed a completely new architecture for the tool Contract Wizard, now called Contract
Wizard II, including the following points:

• Design of the software architecture.
• Implementation of a .NET parser and the corresponding data structure ast.
• An XML parser and the corresponding XML data structure to store the Contract

Wizard proxy classes containing contracts as well. The XML parser also acts as the
Contract Reader.

• Contract handler for managing the contracts within the data structure ast.
• Code generator, which generates the Contract Wizard proxy classes, their XML

representation and the LACE file from the data structure ast.

Contract Wizard II works well. I tested it on the .NET core library (mscorlib) [14].

Because of time limit, I didn’t implement a GUI but a command line application, which
provides simple access to the functionality of Contract Wizard (see also Demo Application).

Future work
A lot of interesting work can be done:

• Implement support for inner classes and overloaded features.
• Join automatic contract extraction [5] with Contract Wizard II. Contract Wizard II

offers a simple interface for insertion of contracts as comma-separated values (see
chapter 2).

• Extend Contract Wizard II as a web service.
• Implement a GUI.

93

13. Acronyms

Acronym Description

.NET

“The .NET Framework is a new computing platform that
simplifies application development in the highly distributed
environment of the Internet.” [11]

The .NET Framework has two main components: the common
language runtime and the .NET Framework class library. The
common language runtime is the foundation of the .NET
Framework.” [11]

ACE Assembly of Classes in Eiffel
AST Abstract syntax tree
CLR Common Language Runtime [14]
CLS Common Language Specification [14]
COM Component Object Model
CTS Common Type System [14]
DS Data structure
DTD Document Type Definition [9]
GAC Global Assembly Cache [14]
GUI Graphical User Interface
LACE Language for the Assembly of Classes in Eiffel

OOSC2

Object Oriented Software Construction Second Edition, the book
by Bertrand Meyer, is used as the primary programming and
language reference for implementing the software of this project
in Eiffel.

Symbol DS Symbol Data structure
XML eXtendible Markup Language [9]

Table 53: Acronyms

94

References

[1] Karine Arnout: “Développement de la technologie Eiffel dans l’environnement .NET de
Microsoft”, Rapport de stage Jeune Ingénieur, ENST Bretagne, September 2001.

[2] Karine Arnout, and Raphaël Simon. "The .NET Contract Wizard: Adding Design by Contract to
languages other than Eiffel", IEEE Computer Society, TOOLS 39, Santa Barbara, USA - July
2001, p: 14-23.

[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design patterns, Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995

[4] Nancy Kotary, Colleen Gorman, Ellie Volckhausen, David Futato: .NET Framework Essentials,
O’reilly, 2002

[5] Christof Marti, Automatic Contract Extraction: Developing a CIL parser,
http://se.inf.ethz.ch/projects/christof_marti/, consulted in September 2003

[6] Bertrand Meyer: .NET Training Course, Prentice Hall, 2001.

[7] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

[8] Bertrand Meyer. "The start of an Eiffel standard". In Journal of Object Technology, Vol. 1, No.
2, July-August 2002, 95-99. http://www.jot.fm/issues/issue_2002_07/column8.pdf

[9] Acronymfinder.com: http://www.acronymfinder.com, consulted in June 2003

[10] ECMA Standard, http://www.ecma-international.org, consulted in June 2003

[11] Eiffel Software, http://www.eiffel.com, consulted in June 2003.

[12] Gobo Eiffel, http://www.gobosoft.com/eiffel/gobo/, consulted in June 2003

[13] The Expat XML Parser, http://expat.sourceforge.net, consulted in June 2003

[14] The Microsoft .NET library API: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netstart/html/cpframeworkref_start.asp?frame=true/, consulted in June 2003.

[15] XML Spy, http://www.xmlspy.com, consulted in June 2003

[16] O'Reilly Network_ C# in a Nutshell_ Introducing C# and the .NET Framework, Part 2 [Apr. 22,
2002]; Online at: http://www.ondotnet.com/pub/a/dotnet/excerpt/csharpnut_1/index2.html,
consulted 21.06.2003

95

http://www.jot.fm/issues/issue_2002_07/column8.pdf
http://www.acronymfinder.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-
http://www.ondotnet.com/pub/a/dotnet/excerpt/csharpnut_1/index2.html

96

