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Abstract

Recent relativistic particle collider experiments at very high energies are probing a

new phase of matter. This so-called quark-gluon plasma contains quarks and glu-

ons, just as ordinary matter does. However, while in ordinary matter the quarks

are confined by the strong interaction, in the quark-gluon plasma, the quarks are

deconfined. We use Lattice Quantum Chromodynamics (Lattice QCD), which pro-

vides a regularisation of QCD, the theory of the strong interaction, on a discrete,

hypercubic lattice in Euclidean space-time without any assumption on the strong

coupling. In this framework, non-perturbative phenomena, such as confinement and

its disappearance through the phase transition above, can be computed by Monte

Carlo simulations from first principles.

This thesis mainly deals with the following two physical problems: (i) the phe-

nomenon of string breaking in the context of 3-dimensional SU(2) Lattice Gauge

Theory, by measuring the groundstate energy of a gluonic system with two static ad-

joint colour-charges; (ii) the thermodynamics of Lattice QCD at finite temperature

and matter density, by studying the canonical ensemble rather than the more com-

monly used grand-canonical ensemble. Both projects have in common that standard

numerical methods fail to reveal relevant information, because the signal is drowned

into noise before reaching the physically interesting distance/energy scale. In other

words, we have to deal with “weak signals”. Techniques that provide a substantial

variance reduction are thus needed. We improve state-of-the-art methods for vari-

ance reduction and develop a new canonical approach to QCD.

String breaking, ie. the creation of a matter-antimatter pair from the energy stored

in the flux tube between two static colour-charges, has been observed in older stud-

ies, however, a controversial multichannel technique has been used. Here, we show

this “string breaking”-effect in an uncontroversial way by considering the Wilson
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loop observable only, which we show to have a non-vanishing overlap with both the

unbroken and the broken string state. This task is numerically challenging, because

the signal to be observed is of order O(10−40), while a single measurement is of order

O(1). An efficient variance reduction is needed if we want to avoid the unfeasible

number of 1080 measurements. We take the Lüscher-Weisz variance reduction tech-

nique as a starting point. This method focuses on the correlation of Polyakov loops

and provides an error reduction exponential in their length by averaging temporal

link-link correlators. We generalise this technique to adjoint Wilson loops by in-

troducing an additional error reduction on the spatial transporters. We succeed in

measuring the energy of the groundstate, first- and second excited state as a func-

tion of the spatial separation R up to R ∼ 1.2fm. We find that in our model, string

breaking occurs at R ∼ 1.0fm.

Lattice QCD at finite temperature T and finite chemical potential µ lacks algorithms

to study thermodynamic systems with µ
T

& 1. The difficulty is caused by the “sign

problem”, which is absent at µ = 0, but gains strength with increasing µ. We present

a new approach to Lattice QCD thermodynamics, where we focus on the matter

density ρ rather than the chemical potential. We provide a variance reduction by

calculating the Fourier coefficients of the fermion determinant on each configuration.

This makes the approach numerically expensive so that we can only study small

lattices due to limited computer budget. However, in our particular case of QCD

with four flavours of staggered quarks with mass m
T

= 0.2, the regime T
Tc

& 0.8 and

µ
T

. 2 becomes accessible on a 63 × 4 lattice. We determine the Helmholtz free

energy, from which all thermodynamic properties of QCD follow. In particular, we

locate the phase transition between ordinary matter and the quark gluon plasma in

the T -ρ as well as T -µ plane. In contrast to the literature, we observe a “bending

down” of the critical line at µ
T

& 1.3. We argue that this bending must happen,

if the critical line is to reach expectations from a strong coupling analysis at zero

temperature.
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Zusammenfassung

Kürzlich wurde mit Hilfe relativistischer Teilchenbeschleuniger ein neuer Zustand

der Materie bei sehr hohen Energien entdeckt. Dieses sogenannte Quark-Gluonen-

Plasma setzt sich, wie unsere Umwelt, aus Quarks und Gluonen zusammen. Im

Gegensatz zu normaler Materie ist jedoch im Plasma das Confinement der Quarks

aufgehoben. Wir benutzen Lattice Quantum Chromodynamics (Lattice QCD) um

QCD, die Theorie der starken Wechselwirkung, welche für das Confinement verant-

wortlich ist, zu regularisieren. Diese Regularisierung wird erreicht, indem die Kontin-

uumstheorie auf einem hyper-kubischen Euklidischen Raumzeit-Gitter diskretisiert

wird, ohne eine Annahme über die Stärke der starken Wechselwirkung zu machen.

Dadurch ermöglicht Lattice QCD mit Hilfe von Monte Carlo Simulationen das

Studium nicht-perturbativer Phänomene, wie dem Confinement und Phasenübergängen,

direkt mittels der QCD Lagrange-Dichte.

Diese Dissertation befasst sich hauptsächlich mit den folgenden zwei physikalis-

chen Problemen: Wir studieren (i) das Phänomen “string breaking” im Rahmen

drei-dimensionaler SU(2) Gitter-Eichtheorie, indem wir die Grundzustands-Energie

eines gluonischen Systems mit zwei statischen adjungierten Farb-Ladungen messen;

(ii) die Thermodynamik von Lattice QCD bei endlicher Temperatur und Teilchen-

dichte, indem wir, anstatt wie gewöhnlich das grosskanonische, das kanonische En-

semble untersuchen. Es ist beiden Projekten gemeinsam, dass herkömmliche nu-

merische Methoden unzureichend sind, um relevante Informationen zu sammeln.

Das Signal verschwindet im Rauschen bevor physikalisch interessante Distanz- oder

Energie-Skalen erreicht wurden. Mit anderen Worten, wir haben ”schwache Sig-

nale” aufzulösen. Wir verbessern Algorithmen zur Varianz-Reduktion, welche auf

dem neuesten Stand der Technik sind, und entwickeln für QCD einen neuen kanon-

ischen Ansatz.
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“String breaking”, d.h. die Bildung eines Materie-Antimaterie Paares aus der En-

ergie, welche im String zwischen zwei statischen Farb-Ladungen gespeichert ist,

wurde vor einigen Jahren durch Gitter-Eichtheorie-Simulationen beobachtet. Allerd-

ings wurde bis anhin ein umstrittener Ansatz, die Multi-Kanal-Technik, verwendet.

Wir werden diesen “String-breaking”-Effekt auf eine unumstrittene Art und Weise

demonstrieren, indem wir nur “Wilson loops” betrachten. Wir zeigen, dass der “Wil-

son loop” einen nicht-verschwindenden Überlapp mit dem Zustand des gebrochenen,

wie jenem des ungebrochenen Strings hat. Diese Aufgabe ist aus numerischer Sicht

eine Herausforderung, da das zu betrachtende Signal der Grössenordnung O(10−40),

eine einzelne Messung hingegen der Ordnung O(1) ist. Will man die unrealistis-

che Anzahl von 1080 Messungen vermeiden, muss eine effiziente Methode zur Re-

duktion der Varianz angewendet werden. Wir starten mit dem Algorithmus von

Lüscher-Weisz, welcher auf die Messung von “Polyakov loop”-Korrelationen spezial-

isiert ist. Der Fehler wird hierbei exponentiell in der Länge des “Polyakov loop”

verkleinert, indem man über temporale Link-Link Korrelatoren mittelt. Wir verall-

gemeinern diese Methode, so dass sie auch für adjungierte Wilson loops verwendet

werden kann. Wir erreichen dies, indem wir eine zusätzliche Fehler-Reduzierung für

die räumlichen Komponenten entwickeln. Dieser Weg ist von Erfolg gekrönt: Wir

können die Energie des Grundzustandes, wie auch jene des ersten und zweiten an-

geregten Zustandes, als Funktion der räumlichen Distanz R der beiden Ladungen bis

R ∼ 1.2fm, messen. Der String bricht in unserem Modell bei der Länge R ∼ 1.0fm

auseinander.

Es fehlen Algorithmen, um die Thermodynamik der Lattice QCD bei endlicher

Temperatur T und bei endlichem chemischen Potential µ für Systeme mit µ
T

& 1

zu simulieren. Die Schwierigkeit wird vom “sign problem” verursacht, welches bei

µ = 0 nicht auftaucht, allerdings mit grösserem µ stärker wird. Wir präsentieren

einen neuen Ansatz, indem wir die Teilchendichte ρ, anstatt das chemische Potential

betrachten. Die Methode reduziert die Varianz, indem sie die Fourier-Koeffizienten
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der fermionischen Determinante für jede einzelne Konfiguration berechnet. Dadurch

wir sie numerisch sehr kostspielig, und aufgrund unserer beschränkten Computer-

Ressourcen konzentrieren wir uns auf die Untersuchung kleinerer Systeme. Konkret

betrachten wir QCD mit vier Arten von Kogut-Susskind Fermionen der Masse

m
T

= 0.2 auf einem Gitter der Grösse 63 × 4. Wir können dieses System im

Bereich T
Tc

& 0.8 und µ
T

. 2 studieren. Wir bestimmen die Helmholtz Freie En-

ergie, von welcher die gesamte Thermodynamik der QCD abgeleitet werden kann.

Beispielsweise lokalisieren wir den Phasenübergang von der gewöhnlichen Materie

zum Quark-Gluonen-Plasma, sowohl als Funktion von T und ρ, wie auch als Funk-

tion von T und µ. Im Gegensatz zur Literatur sehen wir, dass diese Phasenlinie, bei

µ
T

& 1.3 startend, rasch in T abfällt. Wir denken, dass dieser Effekt eintreten muss,

um konsistent mit Erwartungen von “strong coupling”-Rechnungen bei T = 0 zu

sein.
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Chapter 1

Introduction

Today’s knowledge about the elementary constituents of matter and the interaction

between them is summarised in a model called “The Standard Model”, see Fig. 1.1.

Matter consists of 12 fundamental fermions - 6 leptons (electron, muon, tau and the

corresponding neutrinos) and 6 quarks (up, down, strange, charm, bottom and top).

The forces between these particles are mediated by bosons. The electromagnetic

force involves a massless “photon” that is either absorbed or emitted by any particle

with non-zero electric charge.

Figure 1.1: The fundamental particles in the standard model (left). The four inter-

actions in nature are the gravity, the electromagnetic force, the weak force and the

strong force. Note that gravity is not part of the standard model (right, taken from

http://particleadventure.org/particleadventure ).
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2 Introduction

The massive bosons Z0, W+ and W− are assigned to the weak interaction and

interact with themselves. The W bosons also couple to the photon due to their

electromagnetic charge. The strong force is mediated by eight “gluons”. Each gluon

is characterised by a colour and an anti-colour charge. They couple to the quarks,

but also to each other. In our world, there are three colours. Unlike the coupling

in the electromagnetic or the weak force, the strong coupling is, well, strong, which

makes this interaction very complicated. We will discuss this in more detail below.

The quantum field theory Quantum Electrodynamics (QED) had enormous success

in describing the electromagnetic interactions. This theory has the structure of

an Abelian U(1) gauge theory, ie. a theory that allows for a local U(1) symmetry

transformation1. The corresponding bosonic gauge field is the electromagnetic field,

from which the photon (“gauge boson”) emerges. This success has been a great

motivation to extend the notion of a gauge field to the other interactions, such as

the strong force. The resulting theory is called Quantum Chromodynamics (QCD) -

a Non-Abelian2 SU(3) gauge theory that couples the six species (called “flavours”)

of quarks to the eight gauge bosons via the colour charge. The world of QCD

is tremendously rich and fascinating, but more difficult to deal with than QED,

which can be solved using perturbative methods. This well-known mathematical

tool depends on the existence of a small expansion parameter, usually the coupling

constant. In QCD, the strong coupling constant αs is small only in the limit of very

high energy (≫ 1 GeV) - a fact which is known as asymptotic freedom. However, the

typical scale of phenomenological interest is of order of the size of a nucleon, which is

1A reminder: the QED Lagrangian, which describes the physics of the electromagnetic interac-

tion, is invariant under the local transformation of the matter field Ψ(x)→ eiφ(x)Ψ(x) and of the

bosonic gauge field Aµ(x)→ eiφ(x)Aµ(x)e−iφ(x).
2Non-Abelian physics is completely different from Abelian physics: the force is short-range

rather than long-range; and the gauge bosons self-interact, which is not the case for photons. In

the following part of the introduction, we generalise our notation to Nc colours unless otherwise

specified.



Introduction 3

about one Fermi or 200 MeV. In this low-energy regime, αs is large and perturbative

methods fail. As a consequence an alternative, non-perturbative approach has to

be used. Many non-perturbative phenomena in QCD have still to be understood,

foremost among them is colour confinement: the dynamics of the gluon sector of

QCD contrives to eliminate asymptotic quark states and other states with a non-

trivial colour charge from the spectrum. Indeed, all the strongly-interacting particles

observed so far are colour-neutral and can be viewed as bound states of quarks and

gluons.

Kenneth G. Wilson[1] transcribes gauge theories without any assumption on the

coupling constant (this is how we define “non-perturbative”) on a four-dimensional

hypercubic lattice rather than in continuous space-time. The lattice sites are sep-

arated by a distance called “lattice spacing” a. First, this formulation provides a

regularisation of the ultraviolet (and infrared, if any) divergences and second, pre-

serves the “holy grail” of gauge theories, namely the local gauge invariance, exactly.

Within this framework, non-perturbative calculations can be carried out, for exam-

ple by numerical simulations (“Monte Carlo simulations”). However, in order to

recover the continuum field theory, two limits have to be taken one after the other:

the volume V →∞ (“thermodynamic limit”, since space-time is infinite), then the

lattice spacing a → 0 (“continuum limit”, to remove the cut-off). Renormalised

physical quantities will show a finite, well behaved limit, thus QCD can be studied

non-perturbatively.

In the following part of the introduction, we show how QCD can be formulated on the

lattice in an exactly gauge-invariant way, and we discuss the notions of temperature

and chemical potential. Subsequently, we will present the conjectured phase diagram

of QCD. Finally, having established these preliminaries, we motivate the projects

and give an outlook for the chapters in this thesis.



4 Introduction

1.1 Formulation of QCD on the Lattice

A suitable starting point for our discussion about the formulation of QCD on the

lattice, called “Lattice QCD”, is the path integral formulation of a quantum field

theory given by the Lagrangian L with the field φ in continuous Euclidean space,

where real time t has been analytically continued to imaginary time x4 = it (“Wick

rotation”). The functional integral Z, often also referred to as “partition function”,

is given in this framework by the path integral over all possible field configurations

[Dφ]

Z =

∫

[Dφ] e−
1
~

∫
dx4

∫
d3~x L(φ,∂µφ) . (1.1)

We define the “action”

S(φ, ∂µφ) ≡
∫

dx4

∫

d3~x L(φ, ∂µφ) , (1.2)

which is real in general. Note that this is of crucial importance: Monte Carlo

simulations, the tool we are using in this thesis exclusively, require e−
1
~
S(φ,∂µφ) to

be real and positive, since this factor is interpreted as a probability! We write the

“expectation values” of a functional Ô(φ) of the fields φ as

〈Ô(φ)〉 =
1

Z

∫

[Dφ] Ô(φ)e−
1
~
S(φ,∂µφ) . (1.3)

One question arises about the Euclidean domain: is it physical? Time-independent

quantities, like the spectrum of the theory have a well defined meaning: the Eigen-

states of the Hamiltonian are damped exponentially with imaginary time instead

of oscillating with real time. On a more axiomatic level, the Osterwalder-Schrader

reflection positivity condition[2] ensures the reconstruction of Minkowski Green func-

tions via analytical continuation from Euclidean Green functions. On the lattice,

strict constraints on the form of the discretised action are imposed. M. Lüscher[3]

has shown that for Lattice QCD, discretised in the usual way, reflection positivity

holds.
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1.1.1 QCD Lagrangian and its Symmetries

We specify the (continuum) Lagrangian of QCD and discuss its two main symme-

tries3: the local “gauge symmetry” and the global “chiral symmetry”. This is of

prime importance since the discretisation of the theory (Euclidean space→ hypercu-

bic lattice, continuum Lagrangian→ discretised Lagrangian) may break symmetries

explicitly. Wilson had the intuition to promote local gauge invariance, rather than

for example Lorentz invariance, to something unbreakable when discretising the the-

ory.

The local gauge invariance of the Lagrangian is fundamental and defines the gauge

theory as such. The motivation to discuss the global symmetry is more diversified.

On the one hand, the transcription of the fermion fields to the lattice raises technical

problems and may break global symmetries explicitly. On the other hand, we will

study QCD at finite temperature and finite density, introduced in subsection 1.1.5:

a phase transition, which might occur if we vary the temperature, often is related to

a different realisation of a global symmetry of the Lagrangian; an observable, which

transforms not trivially under the symmetry, thus operates as an order parameter.

Furthermore, once the relevant degrees of freedom are identified, effective theories,

which are more easily solvable, help to predict the order of the phase transition.

3We will not discuss Lorentz invariance in detail. A remnant of this symmetry is present “on

the lattice”, namely the rotations of the cubic group and the translations by a. This is sufficient

for its restoration when taking the continuum limit.
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The Euclidean Lagrange density of QCD is

L(A, Ψ̄,Ψ) =
1

4
F a
µνF

a
µν +

∑

flavour f

Ψf (D/ +mf )Ψf (1.4)

with

F a
µν = ∂µA

a
ν − ∂νAaµ + igfabcA

b
µA

c
ν : Field-strength tensor.

D/ = γµ
(
∂µ + igAaµλa

)
: Dirac operator.

Ψf,c
µ : Quark field.

Aaµ : Gluon field.

c : Colour index (“fundamental”), 1, . . . , Nc.

a : Colour index (“adjoint”), 1, . . . , N2
c − 1.

f : Flavour index, 1, . . . , Nf .

µ : Dirac index, 1, . . . , 4.

g : Bare coupling.

mf : Bare quark mass.

γµ : Dirac’s Gamma matrices (γ4 = iγ0).

λa : Generators of the Lie Group SU(Nc).

fabc : Structure constant: [λb, λc] ≡ ifabcλa.

(1.5)

In our world, the number of colours is Nc = 3. Thus, the colour indices a = 1, . . . , 8,

the generators λa are the Gell-Mann matrices and f 3
12 = 2, f 8

45 = f 8
67 =

√
3, f 7

14 =

f 5
16 = f 6

24 = f 7
25 = f 5

34 = f 6
37 = 1 and zero otherwise. The number of quark flavours

is Nf = 6. However, at the scale of a few hundred MeV, the dynamics of QCD is

completely dominated by the three lightest quarks, namely “up” (mu=1.5-4 MeV)

and “down” (md=4-8 MeV) and “strange” (ms=80-130 MeV).
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The Lagrangian is invariant under the local gauge transformation

Ψ(x)→ Ω(x)Ψ(x) (1.6)

Aµ(x)→ Ω(x)Aµ(x)Ω
−1(x)− i

g
Ω(x)∂µΩ

−1(x) (1.7)

where Ω(x) ∈ SU(Nc), while the gluons fields are elements of the corresponding

algebra Aµ(x) = Aaµλa ∈ su(Nc). On the lattice, this fundamental symmetry will be

preserved exactly.

For the massless classical theory, a global UV (Nf )×UA(Nf ) = SUV (Nf )×SUA(Nf )×
UV (1)× UA(1) flavour symmetry is realised. The UV (1) symmetry

Ψ→ eiθΨ , Ψ̄→ Ψ̄e−iθ (1.8)

provides the baryon number (or rather quark number) conservation via the conserved

current

Jµ = Ψ̄γµΨ (1.9)

and will be discussed later, see subsection 1.1.5. Due to quantum corrections (the

notorious “triangle”-anomaly[4]) the axial U(1)A symmetry (Ψ→ eiγ
5θΨ, with γ5 ≡

−γ1γ2γ3γ4, {γ5, γµ} = 0) is broken. We thus will discuss just the symmetry group

SUV (Nf )×SUA(Nf ) in more detail. The Lagrangian with degenerate quark masses

is invariant under the global vector transformation

Ψ→ eiT
aθaΨ , Ψ̄→ Ψ̄e−iT

aθa , (1.10)

where Ψ = (Ψ1, . . . ,ΨNf ), each Ψf = Ψflavour f,colour c
Dirac µ , and T a are the generators of

the SU(Nf ) Lie group. The conserved current is

V a
µ = Ψ̄γµT

aΨ . (1.11)

This vector symmetry SUV (Nf ) is called flavour symmetry. In addition, the massless

Lagrangian is also invariant under the global axial-vector transformation, which is
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given by

Ψ→ eiγ5T
aθaΨ , Ψ̄→ Ψ̄eiγ5T

aθa , (1.12)

and the corresponding conserved current is

Aaµ = Ψ̄γµγ5T
aΨ . (1.13)

This SUV (Nf )× SUA(Nf )-symmetry of the massless Lagrangian is called the chiral

symmetry, and we say that

γ5ΨR = +ΨR : ΨRhas right-handed chirality (1.14)

γ5ΨL = −ΨL : ΨLhas left-handed chirality, (1.15)

with ΨR/L =
1

2
(1± γ5) Ψ . (1.16)

In order to refer to the chiral basis (ΨR,ΨL), one often writes SUR(Nf )× SUL(Nf )

rather than SUV (Nf )× SUA(Nf ).

This chiral symmetry can be spontaneously broken to SUV (Nf ). As a consequence,

a non-vanishing “chiral condensate Ψ̄Ψ” has formed: the vacuum expectation value

〈0| Ψ̄Ψ |0〉 = 〈0| Ψ̄RΨL + Ψ̄LΨR |0〉 (1.17)

does not transform trivially under SUA(Nf ), and thus is zero if the SUA(Nf )-

symmetry is realised in the vacuum, but non-zero if broken:

Ψ̄Ψ →
SUV (Nf )

Ψ̄Ψ (“trivial”) (1.18)

Ψ̄Ψ →
SUA(Nf )

Ψ̄e2iγ
5TaθaΨ (“non-trivial”) (1.19)

Therefore, the chiral condensate is an order parameter. The spontaneous breaking

gives rise to N2
f − 1 massless Goldstone bosons, identified with the pions.

Let us take the real world as an example. The “up” and “down” quarks are approx-

imately massless and have an approximate SUV (2) × SUA(2) chiral symmetry. By

the spontaneous breaking of the axial-vector symmetry, three Goldstone bosons are
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created: π0,π±. However, due to Eq.(1.18), we know that a mass term explicitly

breaks the chiral symmetry. Since the quarks are not exactly massless, the π-meson

acquires a mass of about 135 MeV, which is small compared to the nucleon mass (∼1

GeV). This smallness of the pion mass (often called a quasi-Goldstone or pseudo-

Goldstone boson) is the motivation for an expansion about the massless limit, called

chiral perturbation theory[5].

1.1.2 Gauge Fields on the Lattice

We proceed as follows. In this subsection, we discretise the gauge field part of the

QCD Lagrangian, ie. QCD without quarks, and discuss its symmetries on the lattice.

We then define the path integral measure of the gauge fields, which completes the

construction of the partition function of this “Yang-Mills theory”, also called “pure

gauge theory”. In the next subsection, we discretise the fermion field part of the

QCD Lagrangian and discuss the (possible) breaking of symmetries; this is followed

by the definition of the fermionic path integral measure. We then discuss in detail

the notion of the continuum limit, and close this section by defining the concepts of

“temperature” and “chemical potential” on the lattice.

In order to start the construction of Wilson’s formulation of Lattice QCD, we intro-

duce the four-dimensional hypercubic lattice Λ with lattice spacing a as

Λ = {x = (x1, x2, x3, x4) | 1 ≤ nµ =
xµ
a
≤ Nµ, Nµ ∈ N} . (1.20)

The elements x are called sites, and a link l = {x;µ} describes the line, which

connects two neighbouring sites. The “plaquette” is the elementary square p =

{x;µ, ν} on a lattice, which is bounded by four links, see Fig. 1.2. Local gauge

invariance has to be implemented exactly, as required by Wilson. He thus put the

gauge field on the links by assigning a “phase factor” to a given link l

Uµ(x) = Peig
∫ x+µ̂a

x dx′ Aa
µ(x′)λa ≈ eigaA

a
µ(x+a

2
µ̂)λa ∈ SU(Nc) . (1.21)
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P denotes the path ordering, which can be defined by dividing the path into N

segments (xn, xn+∆n) of size ∆n = µ̂a
N

, with n = 0, . . . , N −1 and taking the ordered

product,

Uµ(x) = lim
N→∞

e
−ig

∫ x+µ̂a
xN−1

dx′ Aa
µ(x′)λa

e
−ig

∫ xN−1
xN−2

dx′ Aa
µ(x′)λa · · · e−ig

∫ x1
x dx′ Aa

µ(x′)λa . (1.22)

Uµ(x)

Uν(x + aµ̂)

U †µ(x + aν̂)

U †ν(x)

x x + aµ̂

x + aµ̂ + aν̂x + aν̂

Figure 1.2: A plaquette and its contour.

The “plaquette variable” is the phase factor of the transporter around a plaquette p

U(∂p) = U †
ν(x) U

†
µ(x+ aν̂) Uν(x+ aµ̂) Uµ(x) , (1.23)

and usually called “plaquette” as well. Based on this simple object, we can show

the two most crucial requirements in constructing a lattice formulation of the pure

gauge theory:

• local gauge invariance. We can build an object TrU(∂p), commonly also called

“plaquette”, which is exactly gauge invariant under the lattice gauge transfor-

mation

Uµ(x)→ Ω(x+ aµ̂)Uµ(x)Ω
−1(x) , Ω(x) ∈ SU(Nc) (1.24)
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By an expansion in a

1 + igaAµ(x) +O(a2)

→ 1 + iga
[
Ω(x+ aµ̂)Aµ(x)Ω

−1(x)
]
+ a Ω(x+ aµ̂)∂µΩ

−1(x) +O(a2)

(1.25)

we can recover the continuum expression for a→ 0

Aµ(x)→ Ω(x)Aµ(x)Ω
−1(x)− i

g
Ω(x)∂Ω−1(x) (1.26)

• correct continuum limit. Based on this gauge invariant object, we can con-

struct a lattice action, which recovers the correct Yang-Mills action in the

naive continuum limit a→ 0

Sg[U ] = β
∑

p

[

1− 1

2Nc

(
TrU(∂p) + TrU †(∂p)

)
]

→
a→0

∫

d4x
1

4
F a
µνF

a
µν +O(a2)

(1.27)

by identifying β = 2Nc

g2
.

Haar Measure

The quantum expectation value of an observable functional of the fields Ô(U) is

obtained by averaging its value over all field configurations {U} with a “sampling

weight”4 proportional to e−Sg [U ]

〈Ô(U)〉 =
1

Z

∫

[DU ] Ô(U)e−Sg[U ] , (1.28)

where the partition function Z is given by

Z =

∫

[DU ] e−Sg [U ] . (1.29)

Link by link, the integrals involved in the construction of Z are ordinary integrals

[DU ] =
∏

l dUl. We require the measure dUl to preserve local gauge invariance and

4We use the term “sampling weight” in order to refer to Monte Carlo simulations.
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to be normalised

normalisation

∫

dUl = 1 (1.30)

invariance

∫

dUl f(Ul) =

∫

dUl f(ΩUl) =

∫

dUl f(UlΩ) . (1.31)

The measure is determined uniquely and identified as the SU(Nc) Haar measure.

The local gauge invariance and the following property of group integration

∫

dUl Ul = 0 (1.32)

are sufficient to ensure that only gauge invariant object have non-zero expectation

values. If we deal with pure gauge theories, such an observable has to be the trace

of a closed loop of gauge links.

1.1.3 Fermion Fields on the Lattice

The treatment of “dynamical” fermions5 is not unique, and by itself involves concep-

tual problems, which arise from the first-order derivative in the Dirac operator. We

first present the “naive discretisation” formulation for an illustration of these diffi-

culties. Then, we discuss other formulations. A summary of the various advantages

and disadvantages can be found in Table.1.1 on page 15.

Naive Discretisation

The fermion part of the continuum action for one continuum flavour in the free case

Aµ(x) = 0 is

SF [Ψ̄,Ψ] =

∫

dx4

∫

d3~x Ψ̄(γµ∂µ +m)Ψ . (1.33)

5It is worth noting, what we understand under the term “dynamical”. We can measure ex-

pectation values of (external) fermion field functionals in a vacuum, which contains gluons only.

(so-called “quenched” simulations). Real QCD, however, allows for virtual fermion loops in the

QCD vacuum, ie. “feedback” of the quarks back to the gluons. We then speak of simulations with

“dynamical” fermions.
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We discretise and write the derivative ∂µ naively by the central difference

SnaiveF = a4
∑

x

Ψ̄(x)
4∑

µ=1

γµ
Ψ(x+ aµ̂)−Ψ(x− aµ̂)

2a
+mΨ̄(x)Ψ(x) , (1.34)

which, in the chiral limit m→ 0, is invariant under the global chiral transformation

Ψ(x)→ eiγ
5TaθaΨ(x), Ψ̄(x)→ Ψ̄(x)eiγ

5Taθa . (1.35)

Thus, the naive discretisation does not break the chiral symmetry explicitly. How-

ever, if we solve for the spectrum of the discrete Dirac operator, we find that the

lowest energy states, which dominate at large distance, show a 16-fold degeneracy.

As we will show now, each of these states corresponds to a Dirac particle of mass m

in the continuum. In other words, although the naive discretisation is supposed to

correspond to one continuum flavour, it actually describes 16 continuum flavours,

when we let a→ 0. This is known as the “doubler problem”.

We extract the spectrum, ie. the energy Eigenvalues, by solving for the poles in the

fermion field propagator. Snaive(p), where p is the momentum, is obtained by taking

the Fourier transformation of the Dirac operator Eq.(1.34) and inverting it:

Snaive(p) =
1

iγµ sin pµa

a
+m

=
−iγµ sin pµa

a
+m

sin2 pµa

a2 +m2
. (1.36)

The 16-fold degeneracy is most easily shown form = 0. One pole is at p = (0, 0, 0, 0),

as expected in the continuum. There are, in principle, infinitely many more poles at

p = (n1π, n2π, n3π, n4π) with (n1, n2, n3, n4) ∈ Z
4. However, due to the translation

invariance of the lattice, the Brillouin zone is [0, 2π
a

). In addition to the continuum

solution, we thus have 15 more solutions: p = (π
a
, 0, 0, 0), (0, π

a
, 0, 0), . . . , (π

a
, π
a
, π
a
, π
a
).

Each pole corresponds to a Dirac particle, characterised via its dispersion relation.

This can be illustrated nicely for a non-zero mass m. We set p4 = iE. The denomi-

nator in Eq.(1.36)

sinh2Ea = m2a2 +
3∑

i=1

sin2 pia (1.37)
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reduces in the continuum limit to the dispersion relation of Dirac particles E =
√

m2 +
∑3

i=1 p
2
i near the origin of the momentum space, but also for any of these 15

poles, for which we obtain E =
√

m2 +
∑3

i=1

(
pi − ni πa

)2
. These additional modes

also contribute to the partition function and the expectation values, and thus, survive

as relevant degrees of freedom in the continuum limit. In principle, this would not

be a problem, if our world consisted of 16 degenerate flavours of quarks. However,

we know our world consists of six quarks with very different masses: two very light

quarks “up” (mu=1.5-4 MeV) and “down” (md=4-8 MeV), a light quark “strange”

(ms=80-130 MeV) and three more, but heavy quarks: “charm” (mc=1150-1350

MeV), “bottom” (mb=4100-4400 MeV) and “top” (mt=174300 ± 5100 MeV).

We cannot simply get rid of these doublers without some sacrifice. The Nielsen-

Ninomiya “No Go”-theorem[8] states rigorously, that in any local lattice theory

with chiral symmetry, there exists species doubling of fermions. An escape route

from to the “No Go”-theorem must violate either locality or chiral symmetry. In

other words, the following properties cannot hold simultaneously:

1. The Dirac operator is local, ie. the non-vanishing contributions to the sum

DΨ(x) = a4
∑

yD(x, y)Ψ(y) come from the points y exponentially decaying,

ie. |D(x, y)| ≤ e−γ|x−y|/a. Note that the usual discretisation schemes (Naive,

Kogut-Susskind and Wilson fermions) even fulfill ultra-locality, ie. the con-

tributions to DΨ(x) = a4
∑

yD(x, y)Ψ(y) come from the points y in a finite

neighbourhood of x.

2. Chiral symmetry is not violated, ie. the Dirac operator anti-commutes with

γ5, Dγ5 + γ5D = 0.

3. There are no doublers, ie. the Dirac operator is invertible for all non-zero

momenta (within the first Brillouin zone).

4. The Dirac operator actually describes Dirac particles, ie. D/ (p) = iγµpµ for

small p.
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In Table 1.1, we summarise for the most common discretisations of the Dirac oper-

ator the sacrifice. For example, naive fermions are invariant under a global vector

and axial-vector transformation and the Dirac operator is ultra-local, but doublers

appear.

Discretisation Continuum Chiral Flavour Ultra-

Scheme Species Symmetry Symmetry Locality

Naive fermions 16
√ √ √

Kogut-Susskind fermions 4
√ × √

Wilson fermions 1 × √ √

Ginsparg-Wilson fermions 1
√ √ ×

(minimal violation)

Table 1.1: Various transcriptions of the Dirac operator and their relation to doublers,

chiral symmetry, flavour symmetry and ultra-locality.

Several proposals have been made during the years to formulate fermions on the lat-

tice. Commonly, Wilson fermions and Kogut-Susskind fermions (staggered fermions)

are used, and we will briefly discuss them. A recent, third major proposal, called

Ginsparg-Wilson fermions, is under intense investigation. This transcription al-

lows for a lattice theory without doublers and the minimal violation of the chiral

symmetry, as shown by P. H. Ginsparg and K. G. Wilson[9]. The sacrifice is the

ultra-locality. This may not be crucial, and we argue as follows (see Ref. [10] and ref-

erences therein). As long as the rate of decay in |D(x, y)| = |D(|x−y|)| for |x−y| can

be shown to be proportional to the cutoff 1
a
, the sum DΨ(x) = a4

∑

yD(x, y)Ψ(y)

is dominated by the contributions from a bounded region around x with a fixed

diameter in lattice units. It is argued that this is as good as the strict ultra-

locality requirement, thus leading to the same continuum physics. Indeed, it has

been shown rigorously for smooth gauge field configuration6 that the Dirac opera-

6A smooth gauge field configuration refers to a configuration in which the gauge links differs
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tor in the Ginsparg-Wilson formalism has exponentially decaying tails in D(x, y),

ie. |D(x, y)| ≤ Ce−γ|x−y|/a with C, γ > 0. In practice it seems that all configurations

are allowed for lattices, which are fine enough (β has to be large enough).

Wilson Fermions

Wilson himself introduced a modification of the naive action in order to suppress

the doublers in the continuum limit. Essentially, he added a second derivative to

the action

SWilson
F = SnaiveF − r

2
a5
∑

x

Ψ̄(x)
∑

µ

Ψ(x+ µ̂) + Ψ(x− µ̂)− 2Ψ(x)

a2
(1.38)

with r the Wilson parameter. The free fermion field propagator becomes

SWilson(p) =
1

iγµ
(

sin pµa

a
− r 1−cos pµa

a

)

+m
=

1

iγµ
(

sin pµa

a
− 2r sin2(pµa/2)

a2

)

+m
.

(1.39)

The expansion of the denominator around p = (0, 0, 0, 0) leads to

1

SWilson(p)
= iγµpµ +m+

ra

2

4∑

ν=1

p2
ν + . . . (1.40)

where the extra-term vanishes for a → 0. If instead we expand around a specific

doubler at p = (π, 0, 0, 0), we obtain

1

SWilson(p)
= iγµpµ +m+

2r

a
+ . . . . (1.41)

As we approach the continuum limit, the mass of the doubler m + 2r
a

diverges.

We recover a local formulation of the Dirac operator with no doublers. However,

the chiral symmetry of continuum QCD is explicitly broken on the lattice even for

m→ 0. The term ra
2

in Eq.(1.40) is manifested in the Lattice Dirac operator by an

additional mass term ra
2
Ψ̄Ψ, which is not invariant under the chiral transformation

Eq.(1.35):

Ψ̄Ψ →
chiral transformation

Ψ̄e2iαγ
5

Ψ . (1.42)

“little” from their neighbouring gauge links. In particular this is fulfilled by free case Aµ(x) = 0.
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Kogut-Susskind Fermions

We now describe another formulation, where the resulting fermion fields are known

as “Kogut-Susskind fermions” or “staggered fermions”. The number of doublers can

be reduced by a factor four, while preserving a part of the chiral symmetry in the

naive formulation, at the cost of mixing the lattice flavours[11]. In chapter 4 we will

simulate dynamical fermions based on this formulation.

We substitute

Ψ(x) = γ
x1
a

1 γ
x2
a

2 γ
x3
a

3 γ
x4
a

4 ρ(x) , (1.43)

for which the naive fermion action Eq.(1.34) becomes diagonal with respect to the

spinor indices i

SnaiveF = a4
∑

x

4∑

µ=1

ηµ(x)
4∑

i=1

ρ̄i(x)
ρi(x+ µ̂)− ρi(x− µ̂)

2a
, (1.44)

with

η1(x) = 1

η2(x) = (−1)
x1
a

η3(x) = (−1)
x1
a

+
x2
a

η4(x) = (−1)
x1
a

+
x2
a

+
x3
a .

Each spinor index adds the same contribution to the action, since ηµ(x) is indepen-

dent of the spinor index, and therefore, the idea is to leave only one component of

ρi(x) in order to reduce the degeneracy, ie. ρ1(x) = χ(x):

SKSF = a4
∑

x

4∑

µ=1

ηµ(x)χ̄(x)
χ(x+ µ̂)− χ(x− µ̂)

2a
+mχ̄(x)χ(x) (1.45)

We thus reduce the degeneracy by a factor four, and say, one flavour of staggered

fermions corresponds to 4 degenerate flavours of continuum quarks[12]. For com-

pleteness, since we are using this formulation in chapter 4, we now turn on the gauge
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field. The Kogut-Susskind action is given by

SKSF = a4
∑

x

4∑

µ=1

ηµ(x)χ̄(x)
Uµ(x)χ(x+ µ̂)− U †

µ(x− µ̂)χ(x− µ̂)

2a
+mχ̄(x)χ(x)

≡ a4
∑

x

∑

x′

Ψ̄(x)MKS(x, x′)Ψ(x′) (1.46)

with the “fermion matrix” MKS(x, x′)

MKS(x, x′) = amδx,x′ +D/ (x, x′)

= amδx,x′ +
1

2

4∑

µ=1

ηµ(x)
[
Uµ(x)δx,x′−µ̂ − U †

µ(x− µ̂)δx,x′+µ̂
]
. (1.47)

We conclude our discussion of the construction of Kogut-Susskind fermion fields on

the lattice by a comment about the chiral symmetry. With the substitution given

in Eq.(1.43), we have obfuscated the notion of chiral symmetry

Mγ5 + γ5M = 0 ⇔ γ5M
†γ5 = M and D/ anti-hermitian. (1.48)

Chiral symmetry in the case of Kogut-Susskind fermions is the invariance of the

Kogut-Susskind Lagrangian under the continuous UA(1) transformation

χ(x)→ eiθǫ(x)χ(x), χ̄(x)→ χ̄(x)eiθǫ(x) , (1.49)

with ǫ(x) = (−1)
∑

µ
xµ
a , which plays the role of γ5. Notabene, ǫ(x)

(
MKS(x, x′)

)†
ǫ(x′) =

MKS(x, x′). The spontaneous breaking of this symmetry gives rise to one Goldstone

pion.

Fermion field measure

The complete QCD partition function with a discretised action with Kogut-Susskind

fermions is given by

Z =

∫

[DU ][Dχ̄][Dχ] e−Sg [U ]−SF [U,χ̄,χ] , (1.50)
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where

Sg[U ] = β
∑

p

[

1− 1

2Nc

(
TrU(∂p) + TrU †(∂p)

)
]

SF [U ] = a4
∑

x

∑

x′

χ̄(x)MKS(x, x′)χ(x′) . (1.51)

We have discussed the path integral measure [DU ] already in subsection 1.1.2. Here,

we define [Dχ̄][Dχ] and then integrate out the fermion fields analytically. This

effective description of the fermion fields is the standard approach in Lattice QCD,

because Grassmann variables cannot be directly simulated. The fermion field χ(x)

is represented by anti-commuting Grassmann variables χ(x)χ̄(y) = −χ̄(y)χ(x). The

path integral is defined as

[Dχ̄][Dχ] ≡
∏

x

dχ̄(x)dχ(x) , (1.52)

with the following Grassmann integration rules:

∫

dχ(x) (a+ bχ(x)) = b (1.53)
∫

dχ̄(x) (a+ bχ̄(x)) = b (1.54)
∫

dχ̄(x)dχ(x) χ̄(x)χ(x) = −1 . (1.55)

The partition function Eq.(1.50) can be tremendously simplified to

Z =

∫

[DU ]e−Sg [U ] detMKS(U) . (1.56)

The determinant of the Kogut-Susskind matrix is real and positive (see below), hence

appropriate for Monte Carlo simulations. However, since we have to calculate7 the

determinant for the large fermion matrix for each configuration {U}, the simulation

of fermions is computationally expensive.

7In practice, the determinant is often estimated rather than calculated exactly[7].
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We show the required property detMKS(U) > 0 as follows. First, we order the

matrix in even ((−1)
∑

µ
xµ
a = 1) and odd sites ((−1)

∑

µ
xµ
a = −1). Then,

detMKS(x, x′) = det




am1ee Meo

Moe am1oo = det




1ee 0

0 Doo



 , (1.57)

where Moe (Meo) is the matrix from odd sites to even sites (even sites to odd sites)

and Doo = (am)21oo −MoeMeo = (am)21oo +M †
eoMeo. Finally, we exploit the anti-

hermiticity of the Dirac operator. Doo is nothing else than the odd-sites part of

(
MKS

)†
MKS =




am1ee M †

oe

M †
eo am1ooam1ee Meo

Moe am1oo
=




(am)21ee +M †

oeMoe 0

0 (am)21oo +M †
eoMeo



 .

The eigenvalues of M †M are real and positive, which completes the proof.

It is displeasing however that one Kogut-Susskind lattice flavour corresponds to

four degenerate continuum flavours. If we want to use the staggered formulation

to simulate Nf degenerate continuum flavours, there is a simple, but controversial,

trick[13]:

det
Nf
4 MKS(U) = e

Nf
4

Tr logMKS(U) (1.58)

reduces the contribution of the degenerate flavours to the action by a factor
Nf

4
,

which corresponds to the contribution of Nf continuum flavours. This expression is

certainly valid if Nf is a multiple of 4, e.g. we recover the determinant of the Kogut-

Susskind fermion matrix detMKS(U) for Nf = 4. However, for two flavours, the

expression becomes e
2
4

Tr logMKS(U) =
√

detMKS(U). Hence, this ad-hoc approach

is often referred to as the “square-root trick”. The problem is whether there exists

a fermion operator D̃ (matrix M̃) with kernel

D̃χ(x) = a4
∑

y

D̃(x, y)χ(y) , (1.59)
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which satisfies det M̃(U) =
√

detMKS(U) and locality. Such an operator has not yet

been found. In this thesis, we will not make use of this trick, but study four degener-

ate flavours of continuum quarks, also called “four degenerate flavours of staggered

quarks”. Note that this common terminology is slightly misleading, since we are

simulating only one Kogut-Susskind lattice flavour (ie. Nc complex components per

site).

1.1.4 Continuum Limit

An important issue has to be treated carefully: the continuum limit. We remove

the ultraviolet cutoff provided by the lattice by taking the limit a → 0. Since a

is the only dimensionful quantity on the lattice8, every physical observable of mass

dimension −dÔ will be expressed in units of the lattice spacing

〈Ô(U)〉 = adÔfÔ(β) (1.60)

where fÔ is a dimensionless function of the parameters of the theory, here β. With-

out any statements about the function fÔ, if we naively set a→ 0, the expectation

value will either be zero or infinity, except if dÔ = 0. In order to approach a finite

value for the expectation value for a physical observable, we must require that fÔ

goes to infinity or zero (depending on the sign of dÔ). We can only vary the coupling

β = 2Nc

g2
, where g is the bare coupling. We can tune it such that we recover the

physical results measured by experiments. This procedure is called renormalisation.

A well defined continuum limit has to exist for all physical observables. Therefore,

all the functions fÔ have to approach infinity or zero exponentially in −dÔ for the

same β → βc, where βc is thus called the “scaling critical point”. In the case of QCD

we know the value of the scaling critical coupling due to asymptotic freedom: in the

regime of small distances a→ 0, the coupling constant g → gc = 0 or β → βc =∞.

Perturbation theory can be applied and provides the relation between the cut-off a

8The coupling g is dimensionless in dimension d = 4.
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and coupling constant g by solving the Callan-Symanzik equation. For QCD[6],

a(g) =
1

ΛQCD

e
− 1

2β0g2 (β0g
2)

− β1
2β2

0

(
1 +O(g2)

)
(1.61)

a(β) =
1

ΛQCD

e
− β

4Ncβ0

(
2Ncβ0

β

)− β1
2β2

0 (
1 +O(β−1)

)
(1.62)

with the constants

β0 =
1

16π2

[
11

3
Nc −

2

3
Nf

]

β1 =
1

(16π2)2

[
34

3
N2
c −

(
13

3
Nc −

1

Nc

)

Nf

]

where Nf is the number of fermion species. To establish that the Lattice Gauge

Theory indeed defines a continuum quantum theory for β → ∞, the behaviour of

Eq.(1.60) has to be verified. If this is found to occur, the actual dimensionless value

of the physical observable (in the continuum theory) O can be expressed in terms of

the dimensionful constant ΛQCD as

〈Ô(U)〉 = O Λ
−dÔ
QCD . (1.63)

ΛQCD has to be determined, and one “fixes the scale” by measuring one expectation

value on the lattice and comparing it with its physical value. A conventional way in

pure gauge theory is the measurement of the string tension in the quark potential

(see for a detailed discussion subsection 1.2.3 and chapter 2) and compare it with the

physical value from spectroscopy of the quarkonia. In full QCD, ie. with fermions,

one measures the ρ-meson mass in lattice units ma. The physical value of the ρ-

meson mass is the reference observable used to fix the scale ΛQCD. An intuitive

picture of the continuum limit is the following: Approaching β → βc in the coupling

parameter space will cause a divergence of the ρ-meson-correlation length ξ in lattice

units, which is defined via 〈ρ†(r)ρ(0)〉 ∼ e−
r/a
ξ/a , where ρ†(r)ρ(0) describes the creation

of a ρ-meson at position x = (0, 0, 0, 0) and its annihilation at position r = (0, 0, 0, r).

In other words, a second (or higher) order phase transition takes places at βc in

coupling space, since ξ
a
→ ∞. Note that details of the underlying lattice action,
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ie. details of the microscopic theory, do not affect the critical phenomena due to the

universality property. Thus, translation invariance as well as rotational symmetry

is restored in the continuum limit, because the physics becomes insensitive to the

particular choice of the lattice discretisation.

1.1.5 Temperature and Chemical Potential

We formally can identify the Euclidean path integral Eq.(1.1) with the partition

function of a three dimensional quantum statistical system. As a consequence, the

sampling weight is often referred to as a “Boltzmann weight”. In thermal equilibrium

at a certain temperature T , the probability for a state |φ〉 to occur in a quantum

system is just the Boltzmann factor e−
1
T
E with kB = 1, and E has to be interpreted

as the energy eigenvalue of |φ〉 in a quantum system given by an Hamiltonian Ĥ. In

quantum statistical mechanics, the integration over the phase space is replaced by

a sum over states. The formal identity with a quantum statistical system given can

be obtained by compactifying the imaginary time dimension and by periodicising

the fields:

Z = Tr|φ〉 e
− 1

T
Ĥ =

∫

bc

[Dφ] e−
∫ 1

T
0 dτ

∫
d3~x L(φ,∂µφ) , (1.64)

where bc abbreviates the boundary conditions in the temporal direction, which the

fields φ have to fulfill: periodic for boson fields φ(~x, 1
T
) = +φ(~x, 0), antiperiodic for

fermion fields φ(~x, 1
T
) = −φ(~x, 0). This follows from the path integral formalism. We

show it here for bosonic degrees of freedom. We introduce the conjugate momentum

π̂ with the Eigenstate |π〉 and divide the imaginary time 1
T

in N elements ∆τ = 1
NT

.
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The identity is given by 1 =
∫
dϕN(~x)|ϕN〉〈ϕN | =

∫ dπN (~x)
2π
|πN〉〈πN |.

∫

dφ〈φ|e− 1
T
Ĥ |φ〉 = lim

N→∞

∫

dφ〈φ|
(∫

dπN(~x)

2π
|πN〉〈πN |

)

e−∆τĤ

(∫

dϕN(~x)|ϕN〉〈ϕN |
)

· · ·
(∫

dπ1(~x)

2π
|π1〉〈π1|

)

e−∆τĤ

(∫

dϕ1(~x)|ϕ1〉〈ϕ1|
)

|φ〉

= lim
N→∞

∫

dφ

∫

dϕN+1(~x)〈φ|ϕN+1(~x)〉
∫ N∏

k=1

dπk(~x)

2π
dϕk(~x) 〈ϕN+1|πN〉 · · ·

(

e+
∫
d3~x πk(~x)ϕk+1(~x)

)

︸ ︷︷ ︸

〈ϕk+1|πk〉

(

e−∆τ
∫
d3~x H(πk,ϕk)e−

∫
d3~x πk(~x)ϕk(~x)

)

︸ ︷︷ ︸

〈πk|e−∆τĤ |ϕk〉

〈ϕ1|φ〉

= lim
N→∞

∫

dφ

∫ N∏

k=1

dπk(~x)

2π
dϕk(~x) δ(φ− ϕN+1)δ(ϕ1 − φ)×

× e−∆τ
∑N

k=1

∫
d3~x H(πk,ϕk)−πk(~x)

ϕk+1(~x)−ϕk(~x)

∆τ

≡
∫

[Dπ]

∫ ϕ(~x,x4= 1
T

)=φ(~x)

ϕ(~x,x4=0)=φ(~x)

[Dϕ] e
−
∫ 1

T
0 dτd3~x

[

πk(~x,t)
∂ϕk(~x,t)

∂τ)
−H(πk,ϕk)

]

(1.65)

If the Hamiltonian allows to simply integrate out the momentum fields, we obtain

∫

dφ〈φ|e− 1
T
Ĥ |φ〉 = N

∫ ϕ(~x,x4= 1
T

)=φ(~x)

ϕ(~x,x4=0)=φ(~x)

[Dϕ] e−
∫ 1

T
0 dτd3~x L(πk,ϕk) (1.66)

with N a constant. The same calculation for fermions with
∫
dφ†dφ, where φ are

Grassmann variables, results in antiperiodic boundary conditions. This can be il-

lustrated by considering the two-point Green function G2. With τ ∈]0, 1
T
[ and the

time-ordering

Tτ [φ(~x, τ1)φ(~y, τ2)] ≡ φ(~x, τ1)φ(~y, τ2)Θ(τ1−τ2)+η φ(~x, τ2)φ(~y, τ1)Θ(τ2−τ1), (1.67)
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where η = +1 for bosons, and η = −1 for fermions due to the respective commutation

relations, we can calculate (τ > 0)

G2(~x, τ ; ~y, 0) ≡ 1

Z
Tr
(

e−
1
T
ĤTτ [φ(~x, τ)φ(~y, 0)]

)

=
1

Z
Tr
(

e−
1
T
Ĥe+

1
T
Ĥφ(~y, 0)e−

1
T
Ĥφ(~x, τ)

)

(1.68)

=
1

Z
Tr

(

e−
1
T
Ĥφ(~y,

1

T
)φ(~x, τ)

)

= η Tr

(

e−
1
T
ĤTτ

[

φ(~x, τ)φ(~y,
1

T
)

])

(1.69)

= η G2(~x, τ ; ~y,
1

T
) (1.70)

This implies φ(~x, 0) = η φ(~x, 1
T
).

For QCD, the corresponding formal identification is as follows

Z = Tr e−
1
T
Ĥ =

∫

bc

[DU ][DΨ̄][DΨ] e−
∫ 1

T
0 dτ

∫
d3~x L(U,Ψ̄,Ψ) , (1.71)

where the gluon fields obey periodic boundary conditions, the fermion fields an-

tiperiodic boundary conditions, see Fig. 1.3. The lattice extents are asymmetric

with Ns sites in the spatial directions and Nt sites in the temporal direction. The

thermodynamic limit is given by Ns → ∞. For practical purposes, however, it is

enough to demand

Ns ≫ Nt . (1.72)

The QCD temperature T (not to be confused with the above temperature T ) is

given by

T (Nt, β) =
1

Nta(β)
, with β =

2Nc

g2
. (1.73)

The introduction of an additional quark chemical potential leads to QCD at finite

temperature and density, or short “Finite Density QCD”. In quantum field theory,

particles can be created and destroyed, and thus we couple the chemical potential

to the fermion charge operator, ie. the difference of the number of fermions and
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Figure 1.3: Field Theory at Finite Temperature. The cylinder represents the periodic

boundary conditions in the temporal direction.

antifermions, from now on referred to as “fermion number”, which is given as

N̂ =

∫

d3~x Ψ̄γ0Ψ. (1.74)

Its conservation can be shown: The Noether current Jµ = Ψ̄γµΨ, associated to the

global U(1)V transformation Ψ → eiθΨ, is conserved: ∂µJ
µ = 0. It follows that

∂0N̂ =
∫
d3~x∂0J

0 =
∫
d3~x∂iJ

i = 0. Therefore, the chemical potential will appear in

the Hamiltonian as a term µ
∫
d3~xJ0

Ĥ → Ĥ − µN̂ = Ĥ − µ
∫

d3~xΨ̄γ0Ψ = Ĥ − µ
∫

d3~xΨ†Ψ . (1.75)

It seems straight-forward to transcribe the continuum chemical potential to the

lattice, since we could treat the corresponding term like the mass term. However,

the naive discretisation is not adequate. Its failure can be seen when calculating the

internal energy[15]

ǫ(µ) ≡ 1

V

∂ logZ(µ)

∂( 1
T
)

=
1

4π4

∫

d4p
~p2 +m2

(p4 − iµ)2 + ~p2 +m2
, (1.76)

which shows for massless fermions in the zero temperature limit T = 0 the behaviour9

9This follows from a dimensional argument: since m = 0 and T = 0, the only dimensionful
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ǫ ∼ µ4. The lattice expression correspondingly is

ǫ(µ) =
1

4π4a4

∫ π

−π
d4p

∑3
j=1 sin2(pja) + (ma)2

[sin(p4a)− iµa]2 +
∑3

j=1 sin2(pja) + (ma)2
, (1.77)

which is quadratically divergent
(
µ
a

)2
in the continuum limit a→ 0. This apparent

difficulty of putting a chemical potential on the lattice actually is easily solved by

going back to the discrete Dirac operator. The derivative is implemented as a central

difference

∂µ =
δx,x′+µ̂ − δx,x′−µ̂

2a
→

Fourier transformation

eipµa − e−ipµa

2a
= i

sin(pµa)

a
. (1.78)

In the continuum, the chemical potential is introduced by a shift in the fourth

component of the momentum p4 → p4 − iµ, which imposes the following change in

the lattice expression of the internal energy

ǫ(µ) =
1

4π4a4

∫ π

−π
d4p

∑3
j=1 sin2(pja) + (ma)2

sin2(p4a− iµa) +
∑3

j=1 sin2(pja) + (ma)2
, (1.79)

and shows the correct behaviour in the continuum limit[16]. We go back to position

space by the (inverse) Fourier transformation in Eq.(1.78), and it follows

δx,x′+µ̂ → δx,x′+µ̂ e
−µa

δx,x′−µ̂ → δx,x′−µ̂ e
µa . (1.80)

The modification of the discrete Kogut-Susskind fermion matrix is then given by

MKS(x, x′, µ) = amδx,x′ +
1

2

3∑

i=1

ηi(x)
[

Ui(x)δx,x′−î − U †
i (x− î)δx,x′+î

]

(1.81)

+
1

2
η4(x)

[
1

2
U4(x)

(
δx,x′−4̂e

µa
)
− U †

4(x− 4̂)
(
δx,x′+4̂e

−µa)
]

. (1.82)

In other words, introduce a chemical potential µ on the lattice by

U4(x)→ eµa U4(x)

U †
4(x)→ e−µa U †

4(x) . (1.83)

parameter is µ; since the dimensionality of ǫ(µ) ∼ a−4, the internal energy has to be proportional

to µ4.
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It is interesting to note that the resulting energy density (in the naive continuum

limit) is four times larger than the usual finite energy density of one continuum

flavour at zero temperature, which reflects the presence of the doublers.

The fermion matrix at zero chemical potential M(µ = 0) fulfills γ5-hermiticity

MKS(µ = 0) = γ5

(
MKS

)†
(µ = 0)γ5 , (1.84)

in other words, the determinant is real

detMKS(µ = 0) = det
(
MKS

)†
(µ = 0) . (1.85)

In contrast, the fermion matrix at non-zero chemical potential is not symmetric,

since the forward components “δx,x′−4̂” pick up a factor eµa, while the backward

components “δx,x′+4̂” are assigned a factor e−µa. Therefore, the determinant be-

comes complex. If µ is chosen to be pure imaginary, µ = iµI , the determinant still

fulfills the γ5-hermiticity, since eiµaU4(x) is the complex conjugate of e−iµaU †
4(x).

Note that we have required a positive definite sampling weight in order to be able

to perform Monte Carlo simulations. Obviously, this is not fulfilled anymore, if we

turn on a chemical potential. We thus have to define a new sampling weight. A

usual choice is

e−Sg [U ] detM(U ;µ) = e−Sg[U ] | detM(U ;µ) | eiφ(U ;µ) → e−Sg[U ] | detM(U ;µ) | ,
(1.86)

where the phase factor eiφ(U ;µ) will be treated as an observable. This approach,

known as “reweighting”, introduces a severe numerical problem, the so-called “sign

problem”, which we will discuss in detail in chapter 3.

1.2 QCD Thermodynamics

Recent experiments offer the exciting possibility to create temperature and density

conditions under which the dynamics of QCD can bring ordinary matter into a new
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state, the so called “quark-gluon plasma”. Unfortunately, the regime of the phase

transition is not accessible by analytical calculations, which are limited to very large

(∼ infinite) temperature and/or density. Lattice QCD at finite temperature and

density provides the framework to characterise the different phases and study phase

transitions from first principles. The thermodynamic study of Lattice QCD at finite

temperature, but zero density is a well established field. However, progress in the

study of Finite Density QCD has only been made recently. The hindrance is of al-

gorithmic nature, and we will provide a new numerical technique within the context

of this thesis.

Lattice QCD at finite temperature and density is given by the grand canonical

partition function

ZGC(T, V, µ) =

∫

[DU ][DΨ̄][DΨ] e−Sg [U ;T,V ]−SF [U,Ψ̄,Ψ;T,V,µ] (1.87)

Sg[U ] = β
∑

p

[

1− 1

2Nc

(
TrU(∂p) + TrU †(∂p)

)
]

SF [U ] = a4
∑

x

∑

x′

Ψ̄(x)MKS(x, x′)Ψ(x′) . (1.88)

where the path integral is taken with the temporal boundary conditions

Uµ(~x,
1

T
) = +Uµ(~x, 0)

Ψ(~x,
1

T
) = −Ψ(~x, 0) (1.89)

and periodic spatial boundary conditions. After integrating out the fermion fields,

we obtain the commonly used grand canonical partition function

ZGC(T, µ) =

∫

[DU ] e−S[U ;T ] detMKS(U ;µ) . (1.90)

The thermodynamic state of the system is completely determined from the free
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energy and its derivatives

free energy F =− T logZGC(T, µ) (1.91)

free energy density f =
F

V
(1.92)

pressure P =− ∂F

∂V
(1.93)

matter density ρ =− 1

V

∂F

∂µ
(1.94)

In this thesis, we are particularly interested in the phase diagram of QCD in the T -µ

and T -ρ-plane. In order to understand the phase structure, we first have to discuss

another symmetry of the Yang-Mills Lagrangian, which only plays a significant role

at finite temperature: the ZNc-symmetry. In addition, we discuss properties of

the grand canonical partition function by enlarging the phase space to imaginary

chemical potential. This leads to an explicit construction of canonical partition

functions, which we will need for our different approach to Finite Density QCD as

presented in chapter 4. These notions are important prerequisites for our discussion

of the QCD phase diagram in subsection 1.2.3.

1.2.1 ZNc
Centre Symmetry

The Yang-Mills Lagrangian is invariant under any local gauge transformation, in

particular trivially under the following global transformation

Aµ(x)→ z(k)Aµ(x)z(k)
† , (1.95)

where z(k) ≡ ei
2πk
Nc 1Nc with k = 0, . . . , Nc − 1 are the centre elements of the gauge

group SU(Nc). Note that the group built by the elements z(k) is isomorphic to ZNc .

The gluon fields are in the adjoint representation and therefore, they commute with

the centre elements z(k)Aµ(x)z(k)
† = Aµ(x). Hence, the Lagrange density remains

the same. At finite temperature, this symmetry becomes relevant, since it can be

spontaneously broken and thus may be related with a phase transition that occurs

at a critical temperature. We now show the construction of an order parameter.
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Remember that the fields are required to obey boundary conditions in the temporal

direction given by quantum statistics, ie. Aµ(~x,
1
T
) = +Aµ(~x, 0) for the gluon fields

and Ψ(~x, 1
T
) = −Ψ(~x, 0) for the fermion fields. A proper gauge transformation must

respect these boundary conditions. For the gluon fields, as noticed by ’t Hooft[17],

it is sufficient to demand (for notation compare with the local gauge transformation

Eq.(1.6))

Ω(~x,
1

T
) = z(k) Ω(~x, 0) , (1.96)

since

Ω(~x,
1

T
) Aµ(~x,

1

T
) Ω−1(~x,

1

T
) = z(k)AΩ

µ (~x,
1

T
)z(k)†

= AΩ
µ (~x,

1

T
) = AΩ

µ (~x, 0) , (1.97)

where AΩ = Ω(~x, 0) Aµ Ω−1(~x, 0), for example Ω(~x, 0) = 1Nc . Having this in mind,

a “ZNc-transformation” on the lattice can be realised by multiplying all temporal

links originating at sites of a given temporal hyperplane x40 by z(k). This leaves the

Yang-Mills Lagrangian invariant, but a simple object can be found that does not

transform trivially under this transformation: the Polyakov loop,

Pol(~x) =
∑

~x

1

Nc

Tr
∏

n4<Nt

U4(~x, x4 = n4a)

→ z(k)Pol(~x) , (1.98)

which is a closed loop thanks to the compactness of the temporal direction. This

implies that the expectation value of the Polyakov loop is zero if the ZNc symme-

try is present, but can be non-zero if spontaneously (or explicitly) broken. Hence,

the Polyakov loop is an order parameter of this discrete symmetry. Note that the

ZNc-transformation is not a gauge transformation, since it changes the value of the

gauge-invariant Polyakov loop. Nevertheless, because of its origin Eq.(1.96), it is

often called a “singular gauge transformation”.
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The inclusion of dynamical fermion fields in the usual grand-canonical formulation10

breaks this symmetry explicitly. This can be most easily seen in the following way:

Ω(~x,
1

T
) Ψ(~x,

1

T
) = z(k)Ω(~x, 0) Ψ(~x,

1

T
)

= Ω(~x, 0)

(

z(k)Ψ(~x,
1

T
)

)

6= Ω(~x, 0)

(

−Ψ(~x, 0)

)

. (1.99)

We now show the breaking explicitly. We write the Kogut-Susskind fermion matrix

given in Eq.(1.47) as MKS(U ;m) = am
(1+ 1

2am
ǫ(U)

)
= am (1+ ǫ(U ;m)). Then,

detMKS(U ;m) = e3V Nt log(am)eTr log(1−ǫ(U ;m)) = e3V Nt log(am)eTr[−ǫ(U ;m)− 1
2
ǫ2(U ;m)+...] ,

(1.100)

if we expand the logarithm in terms of ǫ(m). Assume for simplicity that the number

of spatial sites is Ns → ∞ and the number of temporal sites is Nt = 2. The first

term
∫

[DU ] e−Tr ǫ(U ;m) = 0 since the group measure fulfills
∫
dUµ(x)Uµ(x) = 0. The

second term can be decomposed into Uµ(x)U
†
µ(x) = 1 (overall factor), Ui(x)Ui(x+ î)

(i=spatial index, integral is zero), U †
i (x)U

†
i (x− î) (integral is also zero) and Polyakov

loops Pol(~x) and Pol†(~x), whose integrals are not zero. These considerations lead

to an expansion in the Polyakov loop

detMKS(U ;m) = e3V Nt log(am)e
− 1

2(2am)2

∑

~x(Pol(~x)+Pol†(~x))(−1)+...
(1.101)

where the explicit (−1) refers to the antiperiodic boundary condition of the fermions.

The exponent is maximised if the Polyakov loop is close to 1. Therefore, these val-

ues of the Polyakov loop are preferred due to the larger Boltzmann weight, and

the ZNc-symmetry is explicitly broken. Since the Polyakov loop is real, we call the

corresponding vacuum the “real sector”.

10In chapter 4, we will discuss an equivalent canonical formalism of Finite Density QCD, in which

the ZNc=3 symmetry is realised for any temperature, ie. the Polyakov loop expectation value is zero

for any temperature. This subtle issue that in the presence of dynamical fermions the Polyakov

loop is always either zero or non-zero will be resolved in detail in subsection 4.4.1.
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We remember that a chemical potential is built into the fermion matrix by the sub-

stitution U4(x) → eµaU4(x), U
†
4(x) → e−µaU †

4(x) respectively. Thus, we can break

the ZNc-symmetry into any of the Nc ZNc-vacua by applying an imaginary chemical

potential aµ = aiµI = −i 2πk
NcNt

. We label the corresponding vacuum by the integer

k and call it “k-sector”.

1.2.2 Partition Functions

In this section, we will discuss symmetries of the grand canonical partition func-

tion ZGC(T, µ) as a function of an imaginary chemical potential µ = iµI , following

Ref. [18]. The main purpose is to provide an explicit construction of the canonical

partition function ZC(T,Q). The motivation for this derivation is at hand: In chap-

ter 4 we present a canonical approach to Finite Density QCD.

Important properties of ZGC(T, µ = iµI), see Fig. 1.4 for an illustration, are

• Evenness: ZGC(−iµI) = ZGC(+iµI).

The transformation µ → −µ can be compensated by time-reversal, ie. by

interchanging particles and anti-particles. Time reversal is equivalent to CP

symmetry (since CPT is always a good symmetry), and thus does not change

the thermodynamics in the absence of CP violating terms.

• 2πT
Nc

-periodicity in µI : ZGC(i(µI + 2πT
Nc

)) = ZGC(iµI).

It follows from the previous subsection that a shift in the imaginary chemical

potential µI → µI + 2πk
Nc

can be compensated by a ZNc-transformation with

−k, ie. by a rotation of the Polyakov loop Pol(~x) → z(−k)Pol(~x). Since the

path integral sums over all possible gauge fields, the partition function stays

the same.

These properties lead to an expectation of the phase structure in the T − µI-plane:
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In a phase, where the ZNc-symmetry is realised (“disorder”), the periodicity in µI

is smoothly realised. However, there is a phase, where this ZNc-symmetry is spon-

taneously broken into one of the sectors (“order”). The existence of these distinct

phases forces the appearance of phase transitions. Naturally, these discontinuities

appear at µI = 2πkT
Nc

+ πT
Nc

.

-2π/3 -π/3 0 π/3 2π/3

T

µI/T

disordered

Tc(µ=0)

ordered, k=0 ordered, k=1ordered, k=2

Z3 transitions

Figure 1.4: Phase diagram of ZGC(iµI) in the (µI , T )-plane for Nc = 3. The arrows

indicate the orientation of the Polyakov loop. The vertical lines signals the “order-order”

Z3 transitions, which are first order. Properties of the “order-disorder” Z3 transitions

(curved lines) depend on the parameters (number of flavours, quark mass) of the theory.

We obtain the canonical partition function ZC(T,Q) when we fix the number of

quarks N̂ =
∫
d3~x ψ̄(~x) γ0 ψ(~x) toQ, by inserting a δ-function in the grand canonical

partition function:

ZC(T,Q) =

∫

[DU ][DΨ̄][DΨ] e−Sg[U ;T ]−SF [U,Ψ̄,Ψ;T ]δ
(

N̂ −Q
)

. (1.102)
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The δ-function admits a Fourier representation with the new variable µ̄I

ZC(T,Q) = N
∫ ∞

−∞
dµ̄Ie

−iQµ̄I ×
∫

[DU ][DΨ̄][DΨ] e−Sg [U ;β]−SF [U,ψ̄,ψ]+iµ̄IN̂

= N
∫ ∞

−∞
dµ̄Ie

−iQµ̄I ×
∫

[DU ][DΨ̄][DΨ] ×

× e−Sg [U ;β]−SF [U,ψ̄,ψ]+iµ̄I

∫
d3~x ψ̄(~x) γ0 ψ(~x)

= N
∫ ∞

−∞
dµ̄Ie

−iQµ̄I ×
∫

[DU ][DΨ̄][DΨ] ×

× e−Sg [U ;β]−SF [U,ψ̄,ψ]+iµ̄IT
∫ 1

T
0 dτ

∫
d3~x ψ̄(~x) γ0 ψ(~x) , (1.103)

where N is a normalisation factor. In the last line, we have used the fact that Q is

conserved. One recognises iµI = iµ̄IT as an imaginary chemical potential,

ZC(T,Q) = N
∫ ∞

−∞
dµ̄Ie

−iQµ̄IZGC(T, iµ̄IT ) =
Nc

2π

∫ π
Nc

− π
Nc

dµ̄Ie
−iQµ̄IZGC(T, iµ̄IT ) ,

(1.104)

where we have exploited the 2πT
Nc

-periodicity in µI of ZGC(iµI) in the last step. From

this periodicity, it follows that ZC(T,Q) = 0 except for Q
Nc
≡ B ∈ Z, where B is the

baryon number. For convenience, we write

ZC(T,B) =
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T ZGC(T, iµI) . (1.105)

In principle, we can reconstruct the grand canonical partition function from the

canonical ones using the fugacity expansion in B

ZGC(T, µ) =
∞∑

B=−∞
e3B

µ
T ZC(T,B) . (1.106)

In the infinite volume, the baryon density ρB = B
V

is a continuous variable, and we

obtain the Laplace transformation

ZGC(T, µ) =
V→∞

∫ ∞

−∞
dρB e

3V ρB
µ
T ZC(T, ρB) (1.107)

=

∫ ∞

−∞
dρB e

−V
T

(f(T,ρb)−3µρB) (1.108)

with the Helmholtz free energy density f(T, ρB) = − T
V

logZC(T, ρB).
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1.2.3 QCD Phase Diagram

Historically the roots of QCD are in nuclear physics and the description of ordinary

matter - understanding what protons and neutrons are and how they interact. Nowa-

days, we know that nucleons are composite particles, made of quarks and gluons. At

first sight however, it appears to be confusing that we have not seen single quarks in

experiments, for example via the trajectories of a particle with a fractional electric

charge. Neither have we observed gluons - massless particles mediating the long-

range strong force. Therefore, QCD must explain why quarks and gluons cannot

exist as isolated particles - we say that they are confined. Confinement is the prop-

erty of a certain phase. In QCD, the relevant thermodynamic variables for the phase

diagram are the temperature T and the chemical potential µ (or density ρ). It may

happen that confinement gets lost if we increase either the density or the tempera-

ture. In the latter, there is a rigorous proof as to why a “confinement-deconfinement

phase transition” must occur in QCD - even in the absence of dynamical quarks[20].

On the one hand, at β = 0, Wilson[1] shows confinement in the regime of strong

coupling. On the other hand, at β =∞, perturbation theory can be applied, which

does not confine quarks.

In the following, we give a description of the conjectured QCD phase diagram. The

confined phase, also called hadronic phase is located at low temperature and small

chemical potential, see Fig. 1.5. Quarks are confined, and the chiral symmetry is

spontaneously broken, which is reflected in the non-vanishing expectation value of

the chiral condensate. At low temperature we expect a vacuum-nuclear matter phase

transition, which occurs at a quark chemical potential close to mproton

3
, where mproton

is the mass of the proton, and is first order because it takes some energy to extract

a proton or neutron from a nucleus.

In relativistic heavy-ion collisions, as performed at RHIC (Brookhaven) or planned at

LHC (CERN), we can probe higher temperatures. The protons and neutrons start to
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Tc

≈mproton/3

T

µ

confined
<ΨΨ> > 0

QGP

<ΨΨ> = 0

vacuum
<ρ> = 0

nuclear
matter
<ρ> > 0

?
neutron star

LHC
RHIC

Figure 1.5: Conjectured phase diagram of real-world QCD in the (T, µ)-plane.

overlap, and their constituents cannot be assigned to one hadron or another. Quarks

are no longer confined, and furthermore, chiral symmetry is restored. Experimental

hints for the formation of such a quark-gluon plasma are accumulating[21], and we

may succeed in the coming years to confirm descriptions of this plasma being a gas

of quarks and gluons. Numerical simulations at realistic quark masses indicate, that

the temperature driven transition at zero chemical potential is a rapid, but smooth

crossover. The µ-driven transition at zero temperature, on the other hand, is a

strong first order transition, where the baryon density ρ jumps from zero to non-

zero. For an recent review of various model calculations, see Ref. [22]. The existence

of a second order endpoint follows from the fact that the µ-driven first order critical

line starting at zero temperature cannot end at zero chemical potential. The search

for this endpoint currently is an important goal in the community of Lattice QCD

and experimental heavy-ion physics.

At low temperature and high density, as it might be realised in the interior of neutron

stars, the description is more speculative[23]. This regime is of particular theoretical
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interest, since the relevant scale is given by a large chemical potential. The coupling

becomes small due to asymptotic freedom, and analytic calculations are feasible. It

is predicted that matter may form a colour-superconducting phase.

The nature of the phase transition, such as the order and details of the critical

behaviour, is related to global symmetries of the QCD Lagrangian. Here, we discuss

the phase transition between hadronic matter and quark-gluon plasma in two limits:

the regime of static quarks, where the Z3-symmetry is realised and the case of

massless quarks, for which the chiral symmetry is relevant. Note that only in these

limits global symmetries exist and for any non-zero, finite value of quark masses,

the global symmetries are explicitly broken. In Fig. 1.6, we indicate the order of the

phase transition at µ = 0 in the plane of the degenerate “up/down”-quark masses

mu = md and “strange”-quark mass ms. In Fig. 1.5 the quark masses were physical

and the phase transition at zero chemical potential was a crossover. Thus, at the

corresponding position, denoted by the blue “X”, we are in the crossover region.

In QCD with infinitely heavy quarks, which corresponds to pure SU(3) gauge theory

with static test charges, the phase transition is first order. Effectively, it can be

described by the Z3-symmetric 3-state Potts model[24, 25], which confirms this

numerical finding of the order of the transition. Unlike QCD, the Potts model

can be numerically treated at arbitrary chemical potentials µ. We can extend this

figure in a third dimension µ, as we will present in chapter 5. This first order nature

of the transition persists for large, but finite quark masses. It terminates with a

critical line of second order endpoints, because numerical simulations show that the

phase transition actually is a crossover for intermediate quark masses.

The effective sigma-model[26, 27] describes QCD in the chiral regime, since SUV (Nf )×
SUA(Nf ) = O(2Nf ). It has been found that for three or more flavours, the phase

transition is first order. Therefore, it also has to end at a line of second order end-

points.
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crossover

X

first
order

first order

0

∞∞

∞

Real world
Heavy quarks

mu,d

ms

Figure 1.6: The order of the phase transition from the hadronic matter phase to the

quark-gluon plasma one in the plane of the degenerate “up/down”-quark masses mu = md

and “strange”-quark mass ms. The blue X refers to real-world physics, ie. physical quark

masses.

We have discussed the order of the phase transition, but what are the mechanisms

which drive the transition? We cover the two limits separately, starting with infinite

quark mass. In this limit, the phase transition is called confinement-deconfinement

transition. Quarks are confined in the low-temperature phase, while they are not

at high temperature. At zero temperature, confinement is detected by Wilson’s

criterion[1]: linear confinement, ie. a linearly increasing quark-antiquark potential

V (R), can be detected by the area law behaviour of the Wilson loop

W (R, T ) ∼
T→∞

e−V (R)T = e−σRT (1.109)

where R is the spatial extent and here, T the temporal extent of the rectan-

gular Wilson loop W (R, T ), and σ is called the string tension. For details see
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chapter 2. However, this criterion is inappropriate at non-zero temperature. A

temperature sensitive criterion for Yang-Mills theories is given by associating the

confinement-deconfinement transition with the spontaneous breaking of the global

Z3 symmetry[28]. The Polyakov loop, which represents one static quark world line

wrapping around the lattice, is related to the free energy of a single quark via

〈Pol(~x)〉 = e
1
T
Fq :

T < Tc 〈Pol(~x)〉 = 0→ Fq =∞→ confinement (1.110)

T > Tc 〈Pol(~x)〉 6= 0→ Fq <∞→ deconfinement (1.111)

However, this seems ill-defined, since the left hand side can be complex. The

clean way to study the transition is by measuring correlators of Polyakov loops,

see Eq.(2.15), as a function of the distance R, ie. we measure the quark-antiquark

potential, or rather the free energy of a system with a quark and an antiquark, as a

function of the temperature. A linearly increasing potential as a function of R shows

linear confinement. However, for finite quark masses, the long distance behaviour of

the quark-antiquark potential can no longer serve as an order parameter, since the

heavy quark free energy stays finite for all temperatures[29], indicating the screen-

ing of the static charges by dynamical quark-antiquark pairs. Up to date there is

no known order parameter for finite quark masses[30], because there is no known

symmetry.

In the massless quark regime, the Lagrangian is invariant under the chiral transfor-

mation. At low temperature, the chiral symmetry is spontaneously broken. As we

have seen in Eq.(1.18), the order parameter is the chiral condensate

T < Tc 〈Ψ̄Ψ〉 6= 0→ spontaneously broken symmetry (1.112)

T > Tc 〈Ψ̄Ψ〉 = 0→ symmetry restored . (1.113)
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As outlined, two properties of QCD are playing a central role for the structure of

the QCD phase diagram at finite temperature: confinement and chiral symmetry

breaking. While the former explains why we observe colour-singlet states in the

spectrum the latter describes the presence of light Goldstone particles, the pions.

1.3 Outlook for the following Chapters

The first project, “String Breaking”, is aimed at observing the creation of a matter-

antimatter pair gḡ in SU(2) gauge theory from the energy between two static colour

charges Q and Q̄, which is stored in a flux tube due to the self-interaction of the glu-

ons, see Fig. 1.7. The energy in the flux tube, which is a string-like object, increases

linearly with the spatial separation R of the two static charges, reflecting the con-

fining property of QCD. At a certain distance Rb, it will be energetically favourable

to create a matter-antimatter pair out of the vacuum using the accumulated energy

stored in the string. The two static charges become screened and the energy remains

constant under a further increase of the distance. We say, the string is broken.

��
��
��
��

��
��
��
��

R < Rb

R > Rb

Q Q

QQ g g

Figure 1.7: Two static charges Q and Q̄ will be screened, if the energy stored in the flux

tube of length R is large enough to create a matter-antimatter pair gḡ.

An uncontroversial observation at zero temperature from first principles can be

achieved by measuring the groundstate of the system by the Wilson loop observable,

which has a small, but non-vanishing overlap with the broken-string groundstate. In
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Euclidean field theory, the groundstate energy can be extracted uniquely by evolv-

ing an arbitrary initial state in imaginary time T and taking the limit T → ∞.

The difficulty arises, since the magnitude of a single Wilson loop is of O(1), while

its expectation value is of O(10−40). In Monte Carlo simulations, this would re-

quire N = 1080 measurements, since the statistical error on the expectation value of

the Wilson loop decreases like 1√
N

. Thus, a strong variance reduction technique is

needed.

The goal of the second project is to extract and understand certain aspects of QCD

thermodynamics, e.g. its rich phase diagram as a function of temperature and mat-

ter density or chemical potential11. In particular, we study the nature of the so-

called “confined phase” and the “quark-gluon plasma phase”, which is of experi-

mental relevance (RHIC12, LHC13), and is discussed in detail in section 1.2.3. In

the literature[31, 32, 33, 34], the two phases are often described by two simple mod-

els - the hadron resonance gas model in the confined phase, a weakly-interacting

gas of light-quarks in the quark-gluon phase. We will compare our findings with

predictions of these two models as well.

In contrast to the first project, the study of Finite Density QCD requires the numer-

ical treatment of dynamical fermions, which is, as we will see later, computationally

expensive. In addition, the simulation at non-zero chemical potential suffers from

the so-called “sign-problem” - a known and serious obstacle for Lattice QCD with a

real chemical potential. We propose a canonical approach to Finite Density QCD,

which allows to investigate interesting physical regimes, without actually solving

11Unless otherwise specified, the chemical potential µ refers to the quark chemical potential, the

matter density ρ refers to the baryon matter density
12RHIC is the acronym of Relativistic Heavy Ion Collider, located at and operated by the

Brookhaven National Laboratory in Upton, New York.
13LHC is the acronym of Large Hadron Collider, a high-energy proton-proton or ion-ion collider

located at CERN with a collision energy of 7 TeV per proton, currently under construction and

scheduled to operate in 2007.
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the “sign problem”. The major part of the difficulties to explore the regime of finite

matter density are due to the so-called “overlap-problem”, which often accompanies

the “sign-problem”, but is less well known. This issue can be naturally addressed

within the framework of our method. We will illustrate the “sign problem” and

“overlap problem” in the context of a simple QCD toy model in an introductory

chapter.

In QCD, the number of flavours and the masses of the involved quarks can be treated

as parameters. In particular, we can make all quark flavours very heavy. This theory

can be effectively described by the 3-state Potts model, for which the “sign problem”

is mild, and simulations are feasible for arbitrary chemical potential. It thus pro-

vides an excellent laboratory to study heavy-quark QCD at finite chemical potential.
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Chapter 2

String Breaking

2.1 Motivation

Quarks are linearly confined inside hadrons by a force called the strong interaction.

Therefore, we cannot see single quarks. One can study this force by analysing the

energy between a static colour charge and a static anticharge. Unlike in the case

of the electromagnetic force, this energy is, as a consequence of linear confinement,

squeezed into a long flux tube. This flux tube is a string-like object. Therefore, one

can ask whether this string actually breaks when it reaches a certain length. This

breaking of the string corresponds to the screening of the static charges by a virtual

matter-antimatter pair created from that very energy stored in the string. The

energy of the groundstate of the system, the so-called static potential, completely

changes its qualitative behaviour as a function of the distance between the two static

charges and can therefore be used to detect string breaking. There are two main

situations where string breaking can be studied: (i) when one deals with static

charges in the fundamental representation, which can only be screened by other

fundamental particles, such as dynamical quarks or fundamental Higgs fields; (ii)

when one considers static charges in the adjoint representation which can be screened

by the gluons of the gauge field. To avoid the simulation of costly dynamical quarks

45
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or of Higgs fields, we consider here adjoint static charges. The bound state of a

gluon and an adjoint static charge is called a “gluelump”. Therefore, the breaking

of the adjoint string leads to the creation of two of these gluelumps.

Three approaches have been used to measure the static potential and study string

breaking:

• Correlation of Polyakov loops, at finite temperature [35].

• Multichannel Ansatz (also known as Variational Ansatz) using two types of

operators: one for the string-like state and one for the broken-string state

[36, 37].

• Wilson loops [38, 39].

String breaking has been seen using the first two methods, but no clear signal has

been observed using the third one. The failure of the Wilson loop method seems to

be due to the poor overlap of the Wilson loop operator with the broken-string state.

It has even been speculated that this overlap is exactly zero [40]. This is why we

have a closer look at this problem, taking advantage of recent, improved techniques

to measure long Wilson loops. The results already are published in Ref. [41, 42].

Recently, [43] succeeded in measuring string breaking, using Wilson loops only, in a

three-dimensional Z2-Higgs model.

In the following section we recall notions about the static potential and its relation

to the Wilson loop. In section 2.3, we take the three methods into more detailed

consideration, to be able to discuss our results in all approaches. We explain the

difficulties of measuring string breaking using Wilson loops only. In section 2.4, we

present the techniques we applied, such as adjoint smearing and improved exponen-

tial error reduction for Wilson loops. We also discuss the methods used to analyse

our data. For all three methods, results are shown in section 2.5, followed by the

conclusion.
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2.2 Static potential

We consider a pure SU(2) gauge system with a static charge and a static anticharge

separated by a distance R. Although we mainly focus on measuring the static poten-

tial using Wilson loops only, we also consider the Multichannel Ansatz. Therefore,

here we discuss the issue of measuring the groundstate and excited-state energies in

a more general way.

The Hilbert space of the Hamiltonian is spanned by its orthonormal eigenbasis

Ψ(n)(R). The corresponding energies are E0 < E1 < ..., where E0, the ground-

state energy, is called the static potential. If we knew these eigenstates, we could

extract the energies by measuring their Euclidean time evolution:

Γ(n)(R, T ) = 〈Ψ(n)(R) | T̂T | Ψ(n)(R)〉 = e−En(R)T , (2.1)

where T̂ is the transfer operator, T̂ =
∑∞

n=0 |Ψ(n)(R)〉e−En(R)〈Ψ(n)(R)|. Since we do

not know these eigenstates explicitly, let us consider an arbitrary linear combination

Φ(R). We can expand this state in the eigenbasis

|Φ(R)〉 =
∑

n

〈Ψ(n)(R)|Φ(R)〉 |Ψ(n)(R)〉 . (2.2)

The temporal evolution is given by

〈Φ(R) | T̂T | Φ(R)〉 =
∑

n

|〈Φ(R) | Ψ(n)(R)〉|2 e−En(R)T ≡
∑

n

cne
−En(R)T . (2.3)

Let us introduce a finite set of states φi(R) which we know how to measure. We set

Φ(R) =
∑

i

ai(R)φi(R) . (2.4)

To be explicit, let us expand Eq.(2.3) and define the correlation matrix Vij(R, T )

Vij(R, T ) = 〈φj(R) | T̂T | φi(R)〉 . (2.5)

so that

〈Φ(R) | T̂T | Φ(R)〉 =
∑

i,j

aj(R)ai(R)Vij(R, T ) . (2.6)
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A lemma, which is proven in Ref. [44], states for the eigenvalues λ(n)(R, T ) of the

correlation matrix Vij

λ(n)(R, T ) =
T→∞

f (n)(R)e−EnT
(
1 +O(e−T∆En)

)
(2.7)

where f (n)(R) > 0 and ∆En = min
m6=n
|En−Em|. In general, the correction term cannot

be neglected and it will play an essential role in our study. The way to determine

the eigenvalues λ(n)(R, T ) and estimate the energies En is described in subsection

2.4.3.

The finite set of states φi(R) is created by applying some operators on the vac-

uum. These states are chosen to model the expected ones, the unbroken-string and

the broken-string state. We can build a string-like state φs(R) by a spatial line

Ss(R) of links of length R where s denotes the number of spatial smearing iterations

(see subsection 2.4.1), or a broken-string state φG(R) of length R, using G(R), a

”clover” discretisation of Fµν around the two static charges (see subsection 2.4.4).

The correlation matrix is then

Vij(R, T ) = 〈φj(R) | T̂T | φi(R)〉 , i, j = s,G (2.8)

=























=




SsSs(R, T ) SsG(R, T )

GSs(R, T ) GG(R, T )



 (2.9)

Using the diagonalisation procedure1 (see subsection 2.4.3) one can reconstruct

Γ(n)(R, T ) (Eq.(2.1)) for small n, the lowest energies, hence the static potential,

1Throughout this project, we call the multichannel Ansatz the approach to obtain eigen-energies

and -states using a multichannel approach, i.e. measuring correlations between states created by

a finite set of operators. We call the diagonalisation procedure the numerical procedure we use

to extract information about eigen-energies and -states from a given correlation matrix of type

Eq.(2.5).
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T

R

〈φs(R) | T̂T | φs(R)〉 = SsSs(R, T ) = W (R, T )

Figure 2.1: The Wilson loop channel. Information about the groundstate energy, the

so-called static potential, can be extracted.

and the overlaps of the string-like state and the broken-string state with the corre-

sponding eigenstates. In previous studies [36, 37], this correlation matrix has been

used in the multichannel Ansatz to show string breaking. We will confirm these re-

sults. But since the multichannel Ansatz has been objected to (see next section), we

will also show that the full information about the static potential can be extracted

using only the GG-channel or only the SsSs(R, T ) channel (the Wilson loop W (R, T )

(see Fig. 2.1)). Using the above notation, this corresponds to setting as = 1, the

other ai = 0. Eq.(2.3) is now given by

〈φs(R) | T̂T | φs(R)〉 = SsSs(R, T ) = W (R, T )

=
∑

n

|〈φs(R) | Ψ(n)(R)〉|2 e−En(R)T =
∑

n

cne
−En(R)T .

(2.10)

We can truncate this sum of exponentials at n = l if all the states we neglect are

strongly suppressed. For all k > l, we demand

1≫ ck(R)

cl(R)
e−(Ek(R)−El(R))Tmin(R) , (2.11)

which defines a Tmin(R) implicitly. In particular, we consider the following two-mass

Ansatz (l = 1)

W (R, T ) = c0e
−V (R)T + c1e

−E1(R)T , T > Tmin , (2.12)

where c0 and c1 are the overlaps of the state |φs〉 with the groundstate, which is the

static potential, and the first excited state respectively.
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2.3 The three approaches

The adjoint Wilson loop shows a good overlap with the unbroken-string but not with

the broken-string state. This is natural: The Wilson loop observable creates a static

quark-antiquark pair together with a flux tube joining them. Therefore, the broken-

string state, which consists of two isolated gluelumps, has poor overlap with the

flux-tube state, hence with the Wilson loop. For R < Rb the unbroken-string state

is the groundstate, therefore in Eq.(2.12) c0 is large compared to c1. In this regime,

additionally E1 > V by definition, therefore the second exponential in Eq.(2.12) is

negligible for T > Tmin. An important issue is what happens for R larger than Rb.

The broken-string state becomes the groundstate. Its energy V (R) is smaller than

the unbroken-string state energy E1(R) (level crossing has occurred). But for small

T , the unbroken-string state still dominates over the broken-string state because

c0 ≪ c1. Of course, this domination holds only up to a temporal extent T = TP ,

where TP is the turning point defined by the equality of both terms on the right-

hand side of (2.12). For T > TP , the broken-string groundstate becomes ”visible”

in the exponential decay of Eq.(2.12). The value of this TP is crucial to be able to

detect string breaking using Wilson loops only.

TP =
log c1

c0

E1(R)− V (R)
. (2.13)

Based on the heavy quark expansion, the strong coupling model[45] leads to es-

timates of the ratio c1
c0

and of TP . As an example we consider the distance R =

12a = 1.228(1) fm, whereas string breaking occurs at Rb ≈ 10a = 1.023(1) fm (The

lattice spacing a is calculated in the beginning of section 2.5). The energy of the

broken-string state is V (R) ≈ 2 ×M(Qg), where M(Qg) = 1.03(2)a−1 is the mass

of a gluelump (measured independently in subsection 2.4.4). Within the model[45],

the ratio c1
c0

is around c1
c0
∼ eM(Qg)R ≈

R=12a
2 × 105. Therefore, the turning point is

estimated to be

T
(est)
P =

M(Qg)R

E1(R)− 2M(Qg)
≈

R=12a
42a (2.14)
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using the value E1(R = 12a) = 2.34(1)a−1 of our results in advance. Wilson loops

of size 12a × 42a, i.e. about 1.2fm ×4.3fm, or larger are needed to observe string

breaking according to this model.

Based on a topological argument, Ref. [40] even suggests that there may be no

overlap at all: c0 = 0 for R > Rb. Adding matter fields gives rise to the formation

of holes in the world sheet of the Wilson loop, reflecting pair creation. The average

hole size leads to two different phases of the world sheet. In the normal phase, holes

are small and the Wilson loop still fulfills an area law, W (R, T ) ∼ e−σRT , where σ

is the string tension renormalised by the small holes. This phase corresponds to the

unbroken-string case and a screening of the static charges cannot be observed. The

other phase is called the tearing phase, where holes of arbitrarily large size can be

formed. As a consequence, the Wilson loop follows a perimeter law, W (R, T ) ∼ e−cT .

This corresponds to the broken-string state, since the groundstate energy remains

constant. Ref. [40] speculates that the Wilson loop is in the normal phase, and

analyticity prevents it from changing phase, so that string breaking cannot be seen.

This would explain why, for instance, the authors of Ref. [39] could not observe

string breaking even at a distance R ≈ 2Rb. Note however, that their temporal

extent was T ≤ 3.

A simple argument gives a necessary condition for the observation of string breaking

if we only use ordinary (non-smeared) Wilson loops W (R, T ). If R > Rb, where Rb

is the string breaking distance, but T < Rb, we can relabel the R and T directions,

so that now R < Rb and T > Rb. In that case, string breaking is not visible since

the new spatial extent is R < Rb, and the Wilson loop must still fulfill the area law.

Therefore, both sides R and T should be larger than Rb. Replacing ordinary Wilson

loops by spatially smeared ones may relax this requirement somewhat.

As already mentioned in the previous section, an improved determination of the

static potential can be achieved by a variational superposition of the unbroken-string

and the broken-string states. In other words, the multichannel Ansatz enlarges the
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operator space to a multichannel approach. The unbroken-string state is realised via

the flux tube of the Wilson loop, the broken-string state is modelled by considering

two gluelumps - separated static charges surrounded by gluons which screen the

”interior” colour charge. We end up with the two-channel transfer matrix Vij of

Eq.(2.9).

Nevertheless, this method has been criticised [46]. One may claim that string break-

ing is built into the multichannel Ansatz due to the explicit inclusion of both states.

Moreover, the behaviour in the continuum limit (β → ∞) must be considered. If

the off-diagonal element SsG(R, T ) = GSs(R, T ) is zero in this limit, string breaking

does not actually happen: the Wilson loop does not communicate with the broken-

string state; the eigenvalues merely cross each other at R = Rb. It is only if the

off-diagonal elements are different from zero, that the eigenstates are a mixture of

both states. A small overlap at different β-values has indeed been confirmed by the

mixing analysis in the multichannel Ansatz, as can be seen in Ref. [36, 37], which

deal with this issue. However, whether this overlap vanishes or not for a → 0 still

has to be checked in detail. Here, we do not address this question of continuum

extrapolation due to technical difficulties: The method we use is more efficient at

smaller β. Therefore we consider only one β-value, which we choose as small as

possible while staying in the scaling region.

The Wilson loop method and the multichannel Ansatz work at zero temperature,

where the question to be answered is: What is the groundstate of a system with

two static charges? In the context of the Polyakov loop method we have contribu-

tions of temperature-dependent effects, and the question to be answered is different:

What is the free energy of a system with two static charges coupled to a heat-

bath? Nevertheless, it is an interesting issue and, as a by-product, we can also

measure the correlations of Polyakov loops, which are in our case of adjoint charges

Pol(x) = 1
3
Tr
∏Nt−1

i=0 U
(t)
adj(x, i). This results in a temperature-dependent potential
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VT (R) [47]:

〈Pol(0)Pol∗(R)〉 = e−VT (R)/T . (2.15)

The flattening of the potential VT (R) at large R has been seen in QCD with dy-

namical fermions, although in practice only at temperatures close to or above the

critical deconfinement temperature. Unlike the multichannel Ansatz, this method

builds in no prejudices about the structure of the groundstate wave function.

2.4 Technical details

We are considering Wilson loops in the adjoint representation (for a definition see the

following subsection). The choice of the representation has a direct impact on the

static potential, which is, at lowest order in perturbation theory in (2+1) dimensions

[48]

VP (R) ∼ −C2
g2
0

2π
logRΛ +O(g4

0/Λ) . (2.16)

C2 is the value of the quadratic Casimir operator of the representation of the static

charges, i.e.

• fundamental representation: C2(F ) 12x2 = 3
4
12x2

• adjoint representation: C2(A) 13x3 = 2 13x3

The important point is that, in the regime of perturbation theory, i.e. at small

distances R, at lowest order, the adjoint static potential Vadj(R) differs from the

fundamental static potential Vfund(R) by a factor 8
3
. Assuming, for simplicity, that

the ratio remains the same at larger R (this issue is discussed in subsection 2.5.5), the

adjoint potential is much more difficult to measure than the fundamental one: The

Wilson loop is W (R, T ) ∼ e−V (R)T , therefore the signal decreases much faster with

R or T in the adjoint representation. This is the price to pay if we consider adjoint

static charges instead of fundamental static charges in order to avoid the simulation

of dynamical quarks. We need a sophisticated method of exponential error reduction
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(see subsection 2.4.2) to detect very small signals: The magnitude of each measured

Wilson loop is Wi(R, T ) ∼ O(1) while the average to be detected, as it will turn

out, is W (R, T ) ∼ O(10−40). Using ordinary methods, 1080 measurements would be

needed.

2.4.1 Adjoint smearing

It is very desirable to reduce contributions from excited states Ψ(n6=0) to the Wilson

loop W (R, T ): The turning point Euclidean time TP (Eq.(2.13)) is reduced, and the

accuracy on the groundstate potential is greatly improved. To this end, we smear

adjoint links spatially. In SU(2), a matrix Ufund in the fundamental representation

can be mapped onto a 3× 3 real link matrix Uadj in the adjoint representation by

Uαβ
adj(Ufund) =

1

2
σαliUfund,ijσ

β
jkU

†
fund,kl . (2.17)

where the σα are the Pauli matrices; α, β = 1..3; i, j, k, l = 1..2.

The smearing can be done by setting the new adjoint link as the SO(3) projection

of the old link plus a weighted sum of the spatial staples:

U ′
adj(x) = ProjSO(3)

(

Uadj(x) + α

4∑

i=1

Adjoint Spatial Staplei

)

(2.18)

where we choose α = 0.5. We consider three different smearing levels: 15, 30 and 60

iterations of Eq.(2.18). For details and usage, see subsection 2.4.2. We define our

projection of an arbitrary matrix Ã onto A ∈ SO(3) by maximising Tr Ã†A. This

can be performed using the singular value decomposition: Every M × N matrix Ã

(M ≥ N) can be written as the product of a column-orthogonal M ×N matrix U , a

diagonal N ×N matrix ∆ with positive or zero elements (the singular values), and

an orthogonal N ×N matrix V †

Ã = U∆V † . (2.19)
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Since in our case M = N = 3, both U and V are elements of SO(3), and we get the

projection of Ã onto SO(3) by

A = ProjSO(3)

(

Ã
)

= UV † . (2.20)

For completeness we also describe the fundamental smearing procedure used in sub-

section 2.4.4. Instead of considering adjoint links, we use the same method but in

the fundamental representation:

U ′(x) = ProjSU(2)

(

U(x) + α
4∑

i=1

Spatial Staplei

)

, (2.21)

where we take α = 0.5 and project back onto SU(2) by

U ′(x) = ProjSU(2)

(

Ũ ′(x)
)

=
Ũ ′(x)

√

det Ũ ′(x)
. (2.22)

2.4.2 Exponential error reduction

An adjoint R by T Wilson loop in the (x, t)-plane consists of two adjoint spa-

tial transporters of length R, which we call L(0) and L(T )†, and two temporal

sides of length T , which we write explicitly2 as U(0)† =
∏T−1

i=0 U
†(t)
adj (x, y, t + i) and

U(R) =
∏0

j=T−1 U
(t)
adj(x+R, y, t+ j). The expectation value of the Wilson loop can

be written as

W (R, T ) =
1

Z

∫

[DU ] Tr{U(0)†L(T )†U(R)L(0)} e−S[U ] (2.23)

An exponential error reduction is possible because of the locality of the action, which

in our case is the Wilson plaquette action. The main idea is to write the average of

a product as a product of averages.

2To make clearer the distinction between the two temporal sides of the Wilson loop, we use

separate indices i and j for the two running time-coordinates.
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Multihit-method

One possibility to reduce the variance of the Wilson loop observable, is to reduce the

variance of a single link contribution. The Multihit method [49] takes the average

of many samples of one particular link with all other links held fixed. As we will

show now, all the temporal links3 U
(t)
adj,k in Eq.(2.23) can be treated like this for

Wilson loops with a spatial extent R ≥ 2. In the first step we split the action as

S = S ′[U ′] +
∑

k S
′′
k [Uk]. S ′′

k [Uk] is the local part of the action that contains the

fundamental link Uk corresponding to Uadj,k. The Multihit-method can be applied

also to Uadj,l if S ′′
k [Uk] does not depend on Ul for k 6= l. Therefore, since we use the

Wilson plaquette action, this condition is satisfied if R ≥ 2. We can then apply the

Multihit-method on all time-like links and Eq.(2.23) can be rewritten as

1

Z

∫

[DU ′] Tr

(
T−1∏

i=0

∫

dUiU
†
adj,i e

−S′′
i [Ui]

)

L(T )†× (2.24)

(
0∏

j=T−1

∫

dUjUadj,j e
−S′′

j [Uj ]

)

L(0) e−S
′[U ′] =

1

Z

∫

[DU ] Tr

(
T−1∏

i=0

Ū †
adj,i

)

L(T )†
(

0∏

j=T−1

Ūadj,j

)

L(0) e−S[U ] , (2.25)

where the Multihit-average is given by the one-link integral

Ūadj,i =

∫
dUiUadj,i e

−S′′
i [Ui]

∫
dUie−S

′′
i [Ui]

. (2.26)

In simple cases, as in pure SU(2), the Multihit-average can even be calculated

analytically. Namely, S ′′
i [Ui] = −β 1

2
TrUiW

†, where W is the sum of the four (in

3d) fundamental staples, and

Ūadj,i = Ŵadj
I3(βw)

I1(βw)
, (2.27)

where w =
√

detW , Ŵ = W/w is the projection of the staple-sum onto SU(2) and

Ŵadj represents Ŵ in the adjoint representation via Eq.(2.18).

3The situation is different considering spatial links: Since we have smeared them spatially, we

cannot ”hold all the other links fixed”.
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Since the variance of each time-like link entering W (R, T ) is reduced, the variance

reduction in W (R, T ) is exponential in T . The coefficients have been estimated in

Ref. [50]. For fundamental Wilson loops, the reduction is about (0.82)T = e−0.45T ,

and for adjoint loops about (0.52)T = e−1.39T .

Multilevel-method

Although the Multihit-method was revolutionary in 1983, the error reduction was

not strong enough to enlarge measurable Wilson loops to temporal extents T suffi-

cient to observe string breaking. In section 2.3, we suggested a heuristic argument,

that T should be at least as large as the string breaking distance, which in our

case is at Rb ∼ 10a. The heavy quark expansion even results in an estimation of

T
(est)
P ≈ 42a (see Eq.(2.14)).

M. Lüscher and P. Weisz generalise the Multihit method from single time-like links

to link-link correlators T(R, t′ = na) [51]. Using our notation from above,

T(R, t′ = na)αβγδ = U
∗(t)
adj (x, y, t+ i = na)αβ U

(t)
adj(x+R, y, t+ j = na)γδ . (2.28)

A single Wilson loopWs(R, T ) can be written, using the tensor multiplication defined

by

{T(R, na)T(R, (n+ 1)a)}αβγδ = T(R, na)αλγǫT(R, (n+ 1)a)λβǫδ (2.29)

as

Ws(R, T ) = L(0)αγ{T(R, 0)T(R, 1a)...T(R, (T − 1)a)}αβγδL(T )∗βδ . (2.30)

Just like in the Multihit-method where we considered the average links Ūi, here

time-slice expectation values of a link-link-correlator T(R, na), denoted by [ . ],

can be obtained by sampling over the corresponding sublattice which is in this case

the time-slice at time t′ = na. This sublattice can be studied independently of

the surrounding lattice provided the spatial link variables at the boundaries are
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held fixed. This is a consequence of the time-locality of the gauge action. Using a

self-explanatory notation:

[T(R, na)] ≡ 1

Zsub

∫

[DU ]subT(R, na)e−S[U ]sub , (2.31)

the expectation value of the Wilson loop can be written in the form

W (R, T ) = 〈L(0)αγ{[T(R, 0)][T(R, 1a)]...[T(R, (T − 1)a)]}αβγδL(T )∗βδ〉 . (2.32)

The restriction of fixed spatial links at the boundaries becomes manifest in the fact

that only the temporal links on the time-slice at time t′ = na are allowed to be

updated when evaluating [ . ] with Monte Carlo methods. For our project, this is a

severe obstacle which limits the efficiency of the exponential error reduction. It can

be circumvented by using a hierarchical scheme based on identities like

[T(R, na)][T(R, (n+ 1)a)] =
[

T(R, na)T(R, (n+ 1)a)
]

=
[

[T(R, na)][T(R, (n+ 1)a)]
]

(2.33)

The impact on the Monte Carlo method is, that we are also allowed to sample over

spatial links on the time-slice (n + 1)a since the boundary of the so-called second-

level average
[

. .
]

now consists of the spatial links in the time-slices na and (n+2)a.

The possibility to use this two-level scheme allows us to measure long Wilson loops

almost up to the desired accuracy. We actually implement the following three-level

scheme illustrated in Fig. 2.2, where T is restricted to be a multiple of 4:

W (R, T ) = 〈L(0)αγ{· · ·
[[

[T(R, na)][T(R, (n+ 1)a)]
]

[

[T(R, (n+ 2)a)][T(R, (n+ 3)a)]
]]

· · · }αβγδL(T )∗βδ〉 (2.34)

As a result of a rough optimisation process in the error reduction, based on min-

imising the CPU time versus the error, we choose the following parameters (see

also [52]): The innermost averages [T(R, na)] are calculated from 10 sets of time-

like Multihit-links, each obtained after n1 = 10 updates. The updates alternate
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{
{

{

[[

[T(0)][T(a)]
][

[T(2a)][T(3a)]
]]

[

[T(0)][T(a)]
]

[

[T(2a)][T(3a)]
]

[T(3a)]

[T(2a)]

[T(a)]

[T(0)]

Figure 2.2: Hierarchical scheme. Using the three-level method as described in the text

decreases the statistical error exponentially. While a one-level approach only allows to

sample over the temporal links, a multi-level approach also makes it possible to update

the interior spatial links, which improves the error reduction.

heatbath and overrelaxation steps in the proportion 1:4. The second-level averages,
[

[T(R, na)][T(R, (n+ 1)a)]
]

are calculated from n2 = 160 averages of [T(R, na)]

and [T(R, (n+ 1)a)], separated by 200 updates of the spatial links on time-slice

(n+ 1)a. Finally, the third-level averages are calculated from n3 = 165 second-level

averages separated by 200 updates of the spatial links on time-slice (n+ 2)a.

n1 = 10 seems rather small, but can be explained using the confinement-deconfinement

phase transition. For the ratio Tc√
σ
, [53] finds a value

Tc√
σ

= 1.065(6) (2.35)

with periodic boundary conditions. The corresponding critical temporal extent (in

lattice units) for our coupling β = 6.0 is then

N (p)
c =

a(β = 6.0)

Tc
≈ 3.76 (2.36)

As a rule of thumb, one can estimate that a slice with fixed boundary conditions

with a temporal extent of & 1
2
N

(p)
c will be ”confined” [54]. On the first level, we

deal with time slices of extent 1, a high temperature regime, corresponding to the

deconfined phase. Then the link-link-correlator has a large finite value, even at large

R, and its determination is easy: n1 = 10 Multihit-averages are sufficient, and in-

creasing n1 further does not reduce the final error as 1/
√
n1. On the next level, time
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slices of extent 2 are in the confined phase. The signal then decreases exponentially

at large R. We adjust n2 so that the signal to noise ratio is about 1 for the distance

R = 13a which we are interested in. On the third level, the situation becomes more

complicated and the best choice of all three parameters can only be found using

optimisation, to minimise CPU time versus error. We find that a three-level scheme

is more efficient than a one- or two-level scheme.

In Eq.(2.34), we have a product of N tensors, the three-level link-link-correlators

with a temporal extent 4a. Just like in the case of the Multihit-method, the variance

of each tensor is reduced by a factor δ(R). Thus, the variance of the Wilson loop

average can be reduced by as much as δ(R)N for an effort ∝ Nδ(R)−2. Variance

reduction exponential in N = T/4 is achieved.

Improved spatial transporter

Using the above technique, we are able to reduce exponentially the error coming

from the temporal links of the Wilson loop. But there is still the intrinsic noise,

coming from the frozen spatial links at time-slices t = 0 mod 4, which is relatively

large [52]. How can we decrease it? This is what we do: To provide additional error

reduction also in the spatial transporter, we replace the spatial transporters L(0)αγ

and L(T )∗βδ with staple-shaped transporters, which are constructed in the following

way (see Fig. 2.3):

(i) After each calculation of second-level averages, denoted as , we form the

smeared spatial links, , at time-slice (n + 2)a. (ii) We multiply them with

the second-level averages to obtain the staple-shaped transporter , . (iii)

This procedure is repeated n3 = 165 times, each time after updating the spatial links

on time-slice [(n+2)a] during the calculation of the third-level average. These error-

reduced staple-shaped transporters replace the naive spatial transporters L(0)αγ and

L(T )∗βδ and by contracting them with none, one, two, etc... third-level-averages one
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[

[T(0)][T(a)]
]

[

[T(2a)][T(3a)]
]

adjoint spatial transporter

adjoint spatial transporter

Figure 2.3: The improved spatial transporters. After each calculation of second-level av-

erages
[

[T(R,na)][T(R, (n+ 1)a)]
]

, we form staple-shaped transporter including smeared

spatial links at the time-slice (n+ 2)a.

obtains Wilson loops at a fixed R with temporal extent T = 4, 8, 12, etc...

2.4.3 Diagonalisation procedure

Given a set of states φi and the correlation matrix Vij(R, T ) as introduced in section

2.2, one can approximate the eigenstates correlation matrix Γ defined in Eq.(2.1),

get information on the eigenstates Ψ(n) and extract the lowest energies En using a

diagonalisation procedure.

For a given separation R, the correlation matrix is defined in Eq.(2.5) as

Vij(R, T ) = 〈φj(R) | T̂T | φi(R)〉 . (2.37)

A naive determination of the lowest energies En is obtained by looking for a plateau

in the ratio of eigenvalues λ(n)(R,T )

λ(n)(R,T+1)
of Vij(R, T ) for increasing T (see Eq.(2.7)):

En(R, T ) = lim
T→∞

log
λ(n)(R, T )

λ(n)(R, T + 1)
. (2.38)

This simple method works very well, especially in the multichannel Ansatz. Never-

theless, we want to increase the signal of the desired state as much as possible. For a

finite basis, for small T , the eigenstates change with T . To improve T -convergence,

we apply a variational diagonalisation which consists of solving the generalised eigen-
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value problem

Vij(R, T ) v
(n)
j (R, T, T0) = λ(n)(R, T, T0) Vij(R, T0) v

(n)
j (R, T, T0) , T > T0 . (2.39)

The eigenvalues λ(n)(R, T, T0) also fulfill Eq.(2.7) but their coefficients f (n)(R) are

enhanced by construction, compared to the previous ones. Once the eigenvectors

v(n) and eigenvalues λ(n) are known, one may approximate the eigenstates as a

superposition of the operator states using

Ψ(n)(R, T ) = N (n)(R, T, T0)
∑

j

v
(n)
j (R, T, T0)φj(R, T ) ≡

∑

j

a
(n)
j (R, T, T0)φj(R, T ) ,

(2.40)

where the constants N (n) are chosen such that the Ψ(n) are normalised to unity.

It is well known from the literature, that the groundstate energy can be extracted

nicely using a single-mass Ansatz even in the broken-string regime R > Rb, starting

with T0 = 0, if broken-string state operators are included in the multichannel (vari-

ational) basis. Indeed, we can confirm this observation. The situation is different

when one uses a pure Wilson loop operator basis, at R > Rb. Because the overlap

of the Wilson loop with the broken-string state is so weak, one must choose T0 very

large to ensure that the lowest-lying eigenstates at T0 and T are both broken-string

states. Then, the high sensitivity of Eq.(2.39) to statistical noise renders the analysis

delicate: The matrix Vij(R, T0) may not be invertible. As a trade-off, we choose a

small value of T0, T0 = 4a, but must use a two-mass Ansatz to account for all data

points.

2.4.4 Gluelumps

In order to fully implement the multichannel Ansatz, we must consider the two-

gluelump correlator, which is in the notation of Eq.(2.9)

= GG(R, T ) . (2.41)
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R

T

C1 C2

C3 C4

Figure 2.4: Interacting gluelumps at distance R. Four ”clovers” are stuck on a link-link-

correlator tensor of temporal extent T .

The broken-string state can be described by the presence of two gluelumps, each

formed by the coupling of adjoint glue to an adjoint static charge [50]. It is of

interest to measure the mass and the correlator of gluelumps. A simple way to

probe the gluon field distribution, denoted as , around the adjoint static charge

is the so-called clover-discretisation of Fµν , denoted as Cm,µν = C1,µν , ...,C4,µν in

Fig. 2.4.

Cm,µν =
1

4

4∑

i=1

Smeared Spatial Plaquette(m,µ, ν)i

= C0
m,µν12x2 + iCα

m,µνσ
α , (2.42)

where the index i labels the four plaquettes of the clover Cm. The anti-hermitian

part of the clover Cm approximates Fµν

1

2i
(Cm,µν −C†

m,µν) = Cα
m,µνσ

α = g0a
2Fµν +O(a4) , (2.43)

where the σα are the Pauli matrices and we average over the four oriented spatial

plaquettes that share a corner with one end of the time-like line. We choose the ori-

entation of Fig. 2.4 (all four staples clockwise), whose symmetry selects the lowest-

lying gluelump mass [39]. The plaquettes are built using fundamentally smeared
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links (as described in Eq.(2.21)).

To measure the gluelump mass, one considers only one gluelump, e.g. the left side

(C1 - C3) in Fig. 2.4. The gauge-invariant operator CC(T ) is an adjoint time-like

line of length T using Eq.(2.17), Aαβ(T ), which is coupled at the two ends to the

clovers (C1 and C3)

CC(T ) = Cα
1 (0)Aαβ(T )Cβ

3 (T ) . (2.44)

The adjoint time-like line can be measured using the Multihit-method or by apply-

ing the Multilevel-idea to this particular problem. The mass M(Qg) can then be

extracted using

CC(T ) ∼ e−M(Qg)T . (2.45)

The overlap with the lowest-lying state is enhanced by using smeared links to build

the clover observable Eq.(2.42). We would like to mention at this point that the

gluelump mass by itself has no real physical meaning, since it contains a UV-

divergence in the continuum limit due to the self-energy of the time-like links. Only

the difference between this divergent mass and another similarly divergent one, like

the static potential, makes physical sense. As a consequence, the string breaking

distance Rb remains constant in physical units, while the energy of the level-crossing

diverges as β →∞.

To measure the correlation of two gluelumps, one has to consider the full object

in Fig. 2.4. The four clovers C1, ...,C4 are measured as described above. The

correlation GG(R, T ) of two gluelumps separated by a distance R can be measured

by contracting the four clovers to the link-link-correlator tensors with temporal

extent T , T(R, T ). The same tensors, obtained with the Multilevel algorithm and

used for Wilson loops, are also used here

GG(R, T ) = Cγ
2 (0)Cα

1 (0)Tαβγδ(R, T )Cβ
3 (T )Cδ

4(T ) . (2.46)
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GG(R, T ) can be used in two ways: On the one hand, as mentioned in the beginning

of this section, it is a contribution to the multichannel matrix; on the other hand,

we can try to extract, from it alone, the energies of the unbroken-string and of the

broken-string states since presumably the two-gluelump correlator has projection on

both states.

GG(R, T ) ∼ g0e
−V (R)T + g1e

−E1(R)T , T > Tmin , (2.47)

where V (R) is the static potential and E1(R) the first excited state energy. The

operator has obviously a good overlap with the broken-string state, but a poor one

with the unbroken-string state. This situation mirrors that of the Wilson loop, de-

scribed in the beginning of section 2.3. For R < Rb, the unbroken-string state is

the groundstate. Therefore g0 is expected to be small compared to g1, and the first

excited state, with the energy of two gluelumps, is dominating for small T . Since

the groundstate will be visible for large temporal extents only, we need a two-mass

Ansatz to describe the correlator. At large distances, R ≥ Rb, the broken-string

state is the groundstate and also the dominating one (g0 ≫ g1), therefore a single-

mass g0e
−V (R)T will suffice.

In the case of Wilson loops, we attach improved spatial transporter to the link-link-

correlators. Here, we use non-improved clovers for simplicity. Therefore, we have

more statistical noise, which makes it difficult to extract the groundstate, if the

turning point is large. This is the case, for distances R close to but below the string

breaking distances Rb. For details see subsection 2.5.2.
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2.4.5 Multichannel Ansatz

To complete the multichannel Ansatz, we must also consider the off-diagonal ele-

ments in Eq.(2.9), denoted Ss1G(R, T ) and GSs2(R, T ).

Ss1G(R, T ) = Ls1(0)αγTαβγδ(R, T )Cβ
3 (T )Cδ

4(T ) (2.48)

GSs2(R, T ) = Cγ
2 (0)Cα

1 (0)Tαβγδ(R, T )Ls2(T )∗βδ (2.49)

To extract their values at T = 0 mod 4, we use the non-improved spatial transporter

Ls1(0) and Ls2(T ), where we smeared the links beforehand using s1 respectively s2

smearing iterations. The clovers are denoted as C1, ...,C4. We attach them to the

link-link-correlators T(R, T ). The complete multichannel matrix is

Vij(R, T ) =























=




Ss1Ss2(R, T ) Ss1G(R, T )

GSs2(R, T ) GG(R, T )





=











S15S15 S15S30 S15S60 S15G

S30S15 S30S30 S30S60 S30G

S60S15 S60S30 S60S60 S60G

GS15 GS30 GS60 GG











, (2.50)

since we consider three different smearing levels (15,30 and 60 smearing steps).

This 4× 4 matrix can be analysed using the diagonalisation procedure described in

subsection 2.4.3. We end up with enhanced signals for the three lowest-lying states,

plus effective information about higher states.

2.4.6 Polyakov loops

According to Eq.(2.15) we can extract a temperature-dependent potential VT (R).

The correlator of two adjoint Polyakov loops can be easily built by using the link-link
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correlator tensors and the tensor-multiplication defined in Eq.(2.29)

〈Pol(0)Pol∗(R)〉 = 〈{· · ·
[[

[T(R, na)][T(R, (n+ 1)a)]
]

[

[T(R, (n+ 2)a)][T(R, (n+ 3)a)]
]]

· · · }ααγγ〉

= e−VT (R)/T . (2.51)

2.5 Results

We are using a 3d-lattice with extent (48a)2×64a at inverse coupling β = 4
ag2

= 6.0.

The lattice spacing a can be obtained from the Sommer scale4 r0[55], which is defined

by

r2
0Ffund(r0) = 1.65 . (2.52)

Setting r0 = 0.5 fm and comparing with the lattice result for r0/a, one obtains

a = 0.1022(1) fm. A description of our procedure to extract the fundamental force

Ffund is given in subsection 2.5.5.

We present our results in the following order:

1. The static potential and excited states extracted from Wilson loops only.

2. The static potential extracted from the two-gluelump correlator.

4The phenomenological interpretation of this scale is valid only for QCD. When extracting the

lattice spacing a from the Sommer scale r0 = 0.5 fm, the resulting value of a depends on the Ansatz

chosen for the potential, and on the fitting range for the force. We chose Ansatz Eq.(2.53), which

includes a perturbative logarithmic term, because not including this term causes an unacceptably

bad fit. Fitting the force over the interval 3a ≤ R ≤ 7a, one obtains r0/a is 4.890(1), and

a = 0.1022(1) fm. This value changes by 0.5% under a variation of the fitting interval. Similar

ambiguities arise when one tries to extract the lattice spacing from the string tension (σa2). Setting
√
σ = 440MeV ≈ (0.45fm)−1, one obtains a = 0.1136(1) fm, with a systematic variation of about

0.5% with the fitting range.
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Figure 2.5: The adjoint and fundamental static potentials V (R) (the latter multiplied

by the Casimir factor 8
3) versus R using Wilson loops only. The adjoint static potential

remains approximately constant for R ≥ Rb ≈ 10a proving string breaking. The unbroken-

string state energy is also drawn. The horizontal line at 2.06(3)a−1 represents twice the

mass of a gluelump.

3. The static potential and excited states obtained from the multichannel Ansatz.

4. The temperature-dependent potential obtained from the Polyakov loop corre-

lators.

5. The comparison of fundamental and adjoint potentials and the issue of Casimir

scaling.

We have analysed 44 configurations, which appear to be statistically uncorrelated.

To extract the statistical errors we apply the jackknife method, see Appendix B.

2.5.1 Wilson loops only

We measure both the fundamental and the adjoint potential between two static

charges. In the first case, string breaking cannot occur since the system does not
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contain particles which can screen charges in the fundamental representation. Nev-

ertheless, we can compare our results with accurate data available in the literature

[38, 39]. We will also need these values later on, to discuss the issue of Casimir

scaling (see subsection 2.5.5). In the case of adjoint static charges, string breaking

should occur. A summary of our results is given in Fig. 2.5, where we show the

fundamental potential multiplied by the Casimir ratio 8
3

(see Eq.(2.16)) and the ad-

joint static potential. It can clearly be seen that the adjoint static potential remains

approximately constant for R ≥ 10a proving string breaking at Rb ≈ 10a. The

unbroken-string potential is also shown.

The horizontal line at 2.06(3)a−1 represents twice the mass of a gluelump, whose

evaluation is described in subsection 2.4.4. This is the expected value of the static

potential of the system, when the string is broken, since the broken-string state is

modelled by the presence of two gluelumps whose interaction is screened.

Excited states are not visible for the fundamental case since the shortest Wilson

loops we consider have a minimal temporal extent of T = 4a and excited states

are already strongly suppressed. But they are clearly seen in the adjoint case for

distances larger than the string breaking distance since the Wilson loop has very

good overlap with the unbroken-string state which is an excited state for R > Rb.

More about excited states can be found in subsection 2.5.1.

Static potential

We start our discussion with the extraction of the fundamental static potential

Vfund(R). We consider only one level of fundamental smearing (30 iterations of

Eq.(2.21)) of the fundamental spatial links and do not consider a Wilson loop matrix

in the sense of Eq.(2.55). A single-mass Ansatz works nicely at all R in the temporal

range Tmin = 12a ≤ T ≤ 60a, where we have no measurable contribution of excited

states. The extracted Vfund(R) is in full agreement with the literature.

From the static potential we can extract the string tension σ. This gives us a cross-
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check with previous determinations [56] and a way to express the lattice spacing in

physical units. We use a string-motivated Ansatz

V (R) ∼ V0 + l log
R

a
− γ

R
+ σR . (2.53)

The Coulombic log R
a

term follows from 3d perturbation theory (see Eq.(2.16)). The

1/R term follows from the bosonic string model. γ is a universal constant with value

γ = π
24

(d− 2) in d dimensions [57]. The linear term describes confinement, and σ is

the string tension.

We fit all parameters and find for the string tension σ = 0.0625(5)a−2. This value

is stable and in full agreement with [56]. Using our Ansatz Eq.(2.53), γ cannot be

reliably extracted by a global fit of the static potential. Using instead5

γ = −∂
2V (R)

∂R2
R3 , (2.54)

the extracted γ tends to the universal value π
24
≈ 0.131: γ =

R=6a
0.126(12) and re-

mains stable for R ≥ 6a albeit with larger errors.

In the following case of the adjoint static potential, the Ansatz Eq.(2.53) does not

result in stable parameters, with or without the Coulombic log R
a

term. Neverthe-

less, we include in Fig. 2.5 a best fit of the adjoint unbroken-string energy in the

range 2a ≤ R ≤ Rb using this Ansatz.

The extraction of the adjoint static potential works well using a single-mass Ansatz

for T ≥ 4 and R < Rb. At larger distances R, it is a more complicated matter

since the string breaks and the Wilson loop has a poor overlap with the broken-

string. This makes the two-mass Ansatz mandatory. To extract the energies of the

groundstate and first excited state, as shown in the figures, we use the diagonalisation

procedure described in subsection 2.4.3. To illustrate that the static potential V (R)

5We do observe an increase in γ with increasing R, visible until R ∼ 6a. This increase can be

understood as a 1/R-correction to γ coming from the next-to-leading term in the bosonic string

theory [57].
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Figure 2.6: Adjoint Wilson loop data versus T , for R = 11a and R = 12a, obtained from

a diagonalisation procedure Eq.(2.56), applied to Wilson loops, considering three different

levels of smearing. A two-mass Ansatz accounts for all data points. Single-exponentials

(dotted lines) do not. At large T , the broken-string groundstate is exposed. Note how

small a signal can be measured.

at a fixed R > Rb cannot been determined by a single-mass, we show in Fig. 2.6

W (R, T ) = λ(0)(R, T, T0) (see Eq.(2.56)) at R = 11a and R = 12a. Here we want to
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make use of the full Wilson loop data without distorting the ratio c1
c0

of Eq.(2.12).

We use a simplified version of the diagonalisation procedure to obtain λ(0)(R, T, T0)

using Wilson loops only:

We have three types of staple-shaped transporter , as used in Eq.(2.50). In the

same notation, the Wilson loops correlation matrix is

= Ss1Ss2(R, T ) =








S15S15 S15S30 S15S60

S30S15 S30S30 S30S60

S60S15 S60S30 S60S60








(2.55)

1. For a fixed R, we diagonalise the matrix Ss1Ss2(R, T0), where we choose T0

so that the overlap with the desired state (e.g. the groundstate) is as large

as possible and the signal still quite accurate. Setting T0 & TP is a natural

choice. E.g. at R = 12a we choose T0 = 24a.

2. We use the eigenvectors v0(R, T0), v1(R, T0) and v2(R, T0), where the corre-

sponding eigenvalues fulfill λ(0)(R, T0) > λ(1)(R, T0) > λ(2)(R, T0), to project

Ss1Ss2(R, T ) to the different states at all T by

λ(n)(R, T, T0) = vn,s1(R, T0) Ss1Ss2(R, T ) vn,s2(R, T0) . (2.56)

λ(0)(R, T, T0), the largest eigenvalue, contains amplified information about the ground-

state and λ(1)(R, T, T0) information about the first excited state. λ(2)(R, T, T0) is

some effective value containing information about the remaining excitations. W (R, T ) =

λ(0)(R, T, T0) has to be analysed with a two-mass Ansatz and the ratio c1
c0

can be

extracted.

W (R, T ) = c0e
−V (R)T + c1e

−E1T , T > Tmin . (2.57)

V (R) corresponds to the groundstate, E1 is the first excited state energy. The

groundstate is the broken-string state and therefore, V (R) should be the energy of

two gluelumps E(2Qḡ) ≈ 2M(Qḡ). At small temporal extent T of the Wilson loop

W (R, T ) we get a larger slope than at large T , as visible in Fig. 2.6. This can be
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explained as elaborated in section 2.3: At small T the signal is dominated by the

unbroken-string state. The broken-string state can only be observed once T is large

enough since the Wilson loop observable has a poor overlap with this groundstate.

The ratio c1
c0

quantifies the domination of the unbroken-string state signal versus the

broken-string state and is related to the turning point TP (see Eq.(2.13)). We obtain

c1
c0

=
R=12a

3.1(4)103, while the prediction of the strong coupling expansion [45] was

c1
c0
≈

R=12a
2 × 105 and (see Eq.(2.14)) T

(est)
P ≈

R=12a
42a. Our numerical determination

of the turning point TP =
R=12a

22(1)a is clearly below this estimate.

Note that we can detect signals down to 10−40, which corresponds to 1080 ordinary

measurements. Previously, only signals down to 10−7 have been measured, i.e. in

a regime where the unbroken-string state is dominating over the groundstate. This

explains why string breaking has not been observed in Wilson loops up to now.

Excited states

Excited states of the fundamental representation are suppressed too much for us to

measure. But in the adjoint representation, we have clear information about the

first excited state. Using the diagonalisation procedure Eq.(2.39), one source of in-

formation is the two-mass fit of W (R, T ) = λ(0)(R, T, T0) at large distances R ≥ Rb

where the first excited state is the unbroken-string state. Another, related, source

of information, also for smaller R, is W1(R, T ) = λ(1)(R, T, T0).

In the same manner as for the static potential, we adopt here a two-mass Ansatz

W1(R, T ) = e0e
−V (R)T + e1e

−V1(R)T , T > Tmin , (2.58)

where V (R) is the static potential and V1(R) the energy of the first excited unbroken-

string state (as it turns out). In Fig. 2.7, for distances smaller than the string

breaking distance Rb we see a clear signal of the first excited state. However, at

larger distance we expect contributions from at least three states: The two-gluelump

groundstate, the unbroken-string state, and an excited unbroken- or broken-string
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Figure 2.7: The static adjoint potential V (R) versus R (same as in Fig. 2.5) and the first

excited unbroken-string state energy using Wilson loops only. We also show the energy

Ẽ1(R) (Eq.(2.59)) resulting from the relativistic Nambu string theory. The horizontal line

at 2.06(3)a−1 represents twice the mass of a gluelump.

state, since one expects a level-crossing of the latter two depending on the spatial

distance R.

Surprisingly, at R = 8a and R = 9a we completely miss the broken-string state.

The explanation lies in the spectrum at R = 8a, 9a. The first three terms entering

the expansion of the Wilson loop Eq.(2.10) are:

• c0e−E0T groundstate: lowest-lying energy state of the unbroken-string,

• c1e−E1T first excited state: lowest-lying energy state of the broken-string,

• c2e−E2T second excited state: first excited state of the unbroken-string.

The overlap of the Wilson loop operator with the second excited state (unbroken-

string), c2, is larger than the overlap with the first excited state, c1. In addition, the

difference between the two corresponding energies E1 and E2 is small. In our case,

the second excited state indeed dominates over the first in the accessible range of
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Figure 2.8: Agreement of the static adjoint potential V (R) versus R, extracted from the

two-gluelump correlator and the one extracted from Wilson loops only (same as in Fig. 2.5,

but shifted to the right for clarity). The deviations at R = 8a and R = 9a are due to a

large value of the turning point TP , as explained in the text.

Euclidean times. Therefore, we miss the broken-string state at R = 8a and R = 9a.

From our fit of the adjoint potential via Eq.(2.53) we have extracted the string

tension σ. We then consider the relativistic Nambu string [58], which predicts for

the first excited string energy

Ẽ1(R) =

√

σ2R2 + 2πσ(1− 1

24
) + const. (2.59)

This relativistic bosonic string theory prediction agrees with our measured first

excited energy remarkably well, see Fig. 2.7.

2.5.2 Gluelumps

We have seen that the Wilson loop operator has an overlap with both states -

the unbroken-string and the broken-string state. What about the two-gluelump
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operator? At large distances R > Rb, a single-mass Ansatz is sufficient since the

groundstate is the broken-string state, which has good overlap with the correlator of

two gluelumps, GG(R, T ). Therefore, we cannot measure any signal of the unbroken-

string state in this regime. At distances R < Rb, GG(R, T ) can be analysed using a

two-mass Ansatz

GG(R, T ) ∼ g0e
−V (R)T + g1e

−E1(R)T , T > Tmin . (2.60)

At small R, the turning point TP is small, and the two-mass Ansatz Eq.(2.60) works

fine. For R = 8a and R = 9a, which approaches the string breaking distance Rb,

the energies of the unbroken-string and broken-string state are almost degenerate,

and the turning point value is large. As mentioned in subsection 2.4.4, we used

improved spatial transporters to measure Wilson loops. Here, we use non-improved

clovers and have more noise. In addition, we have only one operator-state and cannot

apply a diagonalisation procedure. Therefore, we have difficulties to measure the

subleading groundstate exponential decay in this regime. We lose the signal of the

unbroken-string state before it becomes visible and cannot extract the unbroken-

string groundstate properly.

Fig. 2.8 shows the agreement between the static potential extracted from Wilson

loops only and that extracted from the two-gluelump correlator. This confirms that

GG(R, T ) has a non-vanishing overlap with the unbroken-string state, similar to the

fact, that the Wilson loop has a non-vanishing overlap with the broken-string state.

GG(R, T ) can also be used in the multichannel Ansatz as explained in section 2.3.

It enters as a diagonal matrix element in the 4x4-matrix Vij(R, T ) Eq.(2.50). We

will now consider this approach.

2.5.3 Multichannel Ansatz

The full multichannel matrix Eq.(2.50) is obtained by including the mixing terms

SiG(R, T ) and GSj(R, T ).
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Figure 2.9: The static adjoint potentials V (R) versus R using the multichannel Ansatz.

The agreement with the static potential extracted from Wilson loops only (same as in

Fig. 2.5, shifted to the right for clarity) is good. The unbroken-string state energy is also

drawn (dashed line). The horizontal line at 2.06(3)a−1 represents twice the mass of a

gluelump.

Static potential

We analyse the 4×4 matrix using the diagonalisation procedure Eq.(2.39) at T0 = 4a,

as described in subsection 2.4.3. As expected, a single-mass Ansatz can be applied

for all R using λ(0)(R, T, T0 = 4a). The results, presented in Fig. 2.9, agree with

the static potential extracted from Wilson loops only, with improved accuracy for

R > Rb.

The three Wilson loop operator states at different smearing levels have a good over-

lap with the unbroken-string state, but a poor one with the broken-string state.

The opposite holds for the two-gluelump operator state. To confirm this statement,

we analyse the overlaps a
(n)
j (R, T, T0) of Eq.(2.40). We consider the overlap of all

three Wilson loop operator states (j = S15, S30, S60) and the overlap of the two-
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Figure 2.10: The static potential V (R), the first and the second excited states energies

using the multichannel Ansatz. We also show the energy Ẽ1(R) (Eq.(2.59)) resulting from

the relativistic bosonic string theory. The horizontal line at 2.06(3)a−1 represents twice

the mass of a gluelump.

gluelump operator state (j = G) with the groundstate (n = 0)6. We observe for

a
(0)
G (R, T, T0) an abrupt change from O(10−3) (R ≤ 10a) to O(1) (R > 10a) and

vice versa for a
(0)
S (R, T, T0). This indicates that string breaking actually occurs at a

distance slightly larger than 10a.

Excited states

Considering λ(1)(R, T, T0 = 4a), we get information about excited states by applying

a two-mass Ansatz. For R > Rb, we extract the lowest-lying unbroken-string state

as expected. For R = 8a and R = 9a, the first excited state is the broken-string

state. For R = 7a, the broken-string state and the excited unbroken-string state

energies are almost degenerate. For R < 7a we extract the energy values of the

6In a
(n=0)
j (R, T, T0 = 4a) of Eq.(2.40) we fix T = 8a. The results are stable for larger T ,

although with increasing errors.
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Figure 2.11: Polyakov loop method. The static adjoint potential V (R) versus R extracted

from the correlator of two adjoint Polyakov loops agrees very well with that measured using

Wilson loops only (same as in Fig. 2.5, shifted to the right for clarity). The flattening of

the potential can be observed, although we cannot extract the value at R = 12a due to

large fluctuations.

excited unbroken-string state which are in agreement with the ones extracted using

Wilson loops only. For R < 5a we can no longer extract first excited state energies

due to statistical noise. Finally, considering λ(2)(R, T, T0 = 4a), for R ≥ 7a, we

obtain the energy of the second excited state, namely the excited unbroken-string

state. For R < 7a we cannot extract the second excited energy due to statistical

noise. In Fig. 2.10, we show the static potential extracted from λ(0)(R, T, T0 = 4a),

the first excited energy, extracted from λ(1)(R, T, T0 = 4a) and the second excited

energy, extracted from λ(2)(R, T, T0 = 4a).
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2.5.4 Polyakov loops

The correlator of two adjoint Polyakov loops allows the extraction of a temperature-

dependent potential VT (R) (see Eq.(2.15))

VT (R) ≡ − 1

Nta
log〈Pol(0)Pol∗(R)〉 . (2.61)

The temperature of our system is T = 1
Nta
≈ 30 MeV since Nt = 64 is the tem-

poral extent of the lattice and a = 0.1022(1) fm the lattice spacing. Since this

temperature is quite low, contributions of excited states are negligible. Therefore,

we observe a good match with the static potential measured using Wilson loops only

(see Fig. 2.11).

In the regime of string breaking R ≈ 10a we see flattening of the potential indicat-

ing string breaking. For R = 12a, the signal becomes very noisy and the average

correlator is negative.

2.5.5 Casimir scaling

Since we measure the static potentials between fundamental and between adjoint

charges with high accuracy, we can examine the hypothesis of Casimir scaling, which

says that the ratio of the adjoint static potential over the fundamental static poten-

tial remains equal to the Casimir value 8
3

over a broad range of distances where both

potentials grow more or less linearly with distance. Already in Fig. 2.5, we see clear

deviations from Casimir scaling: The fundamental static potential, rescaled by the

Casimir factor 8
3
, agrees with the adjoint static potential at small distances R ≤ 2a

only. This confirms earlier observations of Ref. [39], also at β = 6.0, and of Ref. [59]

at β = 9.0. Therefore, we apply a more careful analysis considering forces, defined

by

F (rI) = −V (r)− V (r − a)
a

, (2.62)

where rI is chosen such that the force evaluated from Eq.(2.62) coincides with the

force in the continuum at tree level [55]. The procedure to determine the explicit
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Figure 2.12: Ratio of forces
Fadj(R)
Ffund(R) as a function of the spatial separation. The horizontal

line at 8
3 indicates the Casimir ratio expected from perturbation theory. We see clear

deviation at distances larger than R = 2a. The ratio seems to decrease linearly while

increasing R.

values of rI is described in Appendix A.

In Fig. 2.12, we show the ratio
Fadj(R)

Ffund(R)
at two different β’s. In the regime of per-

turbation theory, i.e. at small distances R, this ratio is 8
3

as expected. At larger

distances, our β = 6.0 data show clear deviations. The ratio appears to decrease

linearly with increasing distance7 R. The less precise data at β = 9.0 of Ref. [59]

seem to confirm this R-dependence, making it unlikely to be an artifact of the lattice

spacing.

Our results do not necessarily contradict the work of Ref. [60], which found accurate

Casimir scaling at large distances. [60] considers the 4d SU(3) theory, while we con-

sider SU(2) in 3 dimensions. Rather, what we see might be specific to 3 dimensions.

7For R > Rb, the adjoint string breaks and the force Fadj is essentially zero. Large fluctuations

at R ≈ Rb induce the large error on the rightmost data point in Fig. 2.12.
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2.6 Conclusions - String Breaking

We have demonstrated that string breaking can be observed, using only Wilson loops

as observables to measure the static potential. This demonstration was performed

in the computationally easiest setup: breaking of the adjoint string in the (2 + 1)-

dimensional SU(2) theory. Even in this simple case, the unambiguous observation

of string breaking, at a distance Rb ≈ 1 fm, required the measurement of adjoint

Wilson loops of area in excess of 4 fm2, with state-of-the-art variance reduction

techniques. A similar study in (3 + 1) dimensions with a larger gauge group will be

challenging.

The reason for such large loop sizes is as expected: the Wilson loop has very poor

overlap with the broken-string. Even when the static adjoint charges are separated

by R > Rb and the broken-string becomes the groundstate, its contribution to the

Wilson loop area-law is subdominant. The temporal extent T of the Wilson loop

must be increased beyond a characteristic distance, the turning point TP , to weaken

the unbroken-string state signal and reveal the true groundstate. We find TP ∼ 2

fm, which explains why earlier studies, which did not use similar variance reduction

methods, failed to detect string-breaking. While large, this turning point value stays

well below the strong-coupling estimate of [45], which would predict a value about

twice as large.

Of course, string-breaking is easy to observe, over a limited Euclidean time extent,

if one uses a multichannel approach where a correlation matrix between unbroken-

and broken-string states is formed and diagonalised, the latter being modelled by a

pair of gluelumps. We reproduce in this case the results in the literature. We also

consider the two-gluelump correlator, which has poor overlap with the unbroken-

string state, and show that the unbroken-string groundstate can be extracted from

that correlator alone, if one allows again for a large Euclidean time extent. Therefore,

full information about the adjoint potential is contained in each of the diagonal

elements of the multichannel matrix.
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Finally, we looked in detail at the issue of Casimir scaling, by measuring the ratio of

forces
Fadj(R)

Ffund(R)
as a function of R. We observe clear deviations of this ratio from the

perturbative value 8
3
, and an apparent linear decrease with R. A consistent cross-

check at a smaller lattice spacing makes this violation of Casimir scaling unlikely to

be a lattice artifact. The situation, however, may be different in the (3+1)d theory.



84 String Breaking



Chapter 3

QCD Toy Model

3.1 Motivation

Monte Carlo simulations provide a powerful tool to understand properties of physi-

cal models from first principles, ie. based on the fundamental Hamiltonian Ĥ rather

than on effective descriptions. The hermiticity of the Hamiltonian ensures a positive

Boltzmann weight e−
1
T
Ĥ → e−S, see Eq.(1.64). It may occur that the models are

modified by putting in an external field by hand, which causes the weight to become

complex, as in the case of a chemical potential in Lattice QCD. While this is not

a conceptual problem, it causes technical difficulties when one attempts to study

these systems by the usual Monte Carlo methods, which require a real and positive

sampling weight. To gain insight how to treat such systems here we study a simple

model with a complex phase.

A common approach is to take the absolute value of the complex weight as the

sampling weight e−S(µ) = | e−S(µ) |eiφ → | e−S(µ) |. The complex measure depends on

some parameter called µ. The expectation value of any observable in the physical

system with volume V can be rewritten as

〈Ô〉µ =
〈Ôeiφ(V,µ)〉||
〈eiφ(V,µ)〉||

, (3.1)

85
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where 〈〉|| refers to the sampled ensemble. The error becomes a contribution propor-

tional to 1/〈eiφ(V,µ)〉||, which grows exponentially in V and µ, see for example [61]1.

To preserve statistical accuracy as V or µ is increased, the Monte Carlo sample

size N must grow exponentially, since the statistical error is proportional to 1√
N

.

This is the “sign problem”. If we find a method such that the required statistics

is polynomial in V and µ, we say that the “sign problem” is solved. In general,

this is not possible. However, by exploiting specific properties of a given model, in

particular in zero or one dimensions, it may be feasible to find such a solution, as

we will demonstrate. One should keep in mind, however, that generalisations, for

example to higher dimensions, is usually not straight-forward or even possible.

The above choice to take the absolute value as the sampling weight is not unique.

Any positive measure may be chosen. This general strategy is known under the

name “reweighting”, since the weight given to each configuration in the Monte Carlo

sample is no longer uniform. It is important to note that the “sign problem” is of-

ten accompanied by the lesser-emphasised “overlap problem”. There is a priori no

guarantee that the sampled Monte Carlo partition function will produce a represen-

tative sample for the physical partition function, because the respective integrands

may have poor overlap. A simple, but not foolproof way to detect whether there

is an “overlap problem” is to monitor the distribution of the weights assigned to

the various Monte Carlo configurations. In extreme situations, one configuration

may dominate the partition function causing the complete breakdown of statistical

sampling. A reasonable measure of the severity of this problem is thus provided by

the width of the distribution of the logarithm of weights.

In the following section we present our simplified model, which encodes the main

characteristics of the “sign problem”. In section 3.3, we present various methods to

1In short: Z(µ)
ZMC

∼ e−V ∆F (µ), where Z(µ) is the partition function with a complex weight and

ZMC is the sampled partition function. The ratio decreases exponentially in V . In addition ∆F (µ)

increases if µ grows.
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tackle the “sign problem” and then discuss the difficulties we meet. Eventually, we

find an approach to solve the “sign problem” in the context of our simple model,

as demonstrated in subsection 3.3.3. We want stress that a generalisation of the

strategy, in particular with respect to higher dimensions, seems not to be possible.

3.2 The Model: 0-dim Quantum Field Theory

We propose an analytically solvable model, given by the partition function

Z(λ) =

∫

dt∞−∞ e−t
2+iλt ≡ 1√

π
e−

λ2

4 . (3.2)

The goal of this study is to evaluate ratios of partition functions

Z(λ)

Z(0)
= e−

λ2

4 (3.3)

using several Monte Carlo approaches. Since the result is known, we can discuss

systematic uncertainties such as the underestimation of statistical errors.

Ratios of partition functions can be measured in a MC simulation, for example by

Z(λ)

Z(0)
=

∫
dt e−t

2
eiλt

∫
dt e−t2

= 〈eiλt〉λ=0 . (3.4)

On the one hand, the measurement of eiλt in a certain configuration is of order one

for any λ. On the other hand, the expectation value is exponentially decreasing,

while increasing λ. Therefore, huge cancellations have to take place. This effect is

the essence of the “sign problem”.

3.2.1 Sign Problem

At non-zero λ, the integrand of our model is oscillatory, and therefore cannot be

used as a sampling weight in a Monte Carlo simulation. Instead, we measure

〈Ô〉λ =

∫
dt Ô e−t

2+iλt

∫
dt e−t2+iλt

=

∫
dt Ôe+iλt e−t

2

∫
dt e+iλt e−t2

=
〈Ôeiλt〉λ=0

〈eiλt〉λ=0

. (3.5)
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This expression results in the correct expectation value, if the statistics is large

enough. Unfortunately, computational resources are limited, say, to N measure-

ments, thus the above expectation value is biased. The question arises, how much

can we increase λ? The relative error, see Appendix B, is given by

(

∆〈Ô〉λ
〈Ô〉λ

)2

=

(

∆〈Ôeiλt〉λ=0

〈Ôeiλt〉λ=0

)2

+

(
∆〈eiλt〉λ=0

〈eiλt〉λ=0

)2

+ . . . >

(
∆〈eiλt〉λ=0

〈eiλt〉λ=0

)2

. (3.6)

The “sign problem” is encoded in the expectation value of the complex phase eiλt,

which decreases exponentially

〈eiλt〉λ=0 = e−
λ2

4 →
λ→∞

0 . (3.7)

The error, however, remains constant

∆〈eiλt〉λ=0 ∼
1√
N
. (3.8)

For a given computer budget, the limiting λ is given by

N ∼ e
λ2

2 . (3.9)

If we succeed to find a method to measure 〈eiλt〉λ=0 = Z(λ)
Z(0)

accurately for any λ

without exponentially, but polynomially growing statistics, we have solved the “sign

problem” for this particular case.

3.2.2 Overlap Problem

A less well known problem is the “overlap problem”. It comes from the fact, that the

distribution function of the sampling model might have small or vanishing overlap

with the one of the physical model.

In Fig. 3.1, we plot two different situations. A clear overlap problem is illustrated

in the left sketch. The sampled distribution has an exponentially small overlap with

the desired distribution. In a MC simulation with finite statistics, no or only a few

configurations {t}, which are important for the integral, are sampled. This can lead
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Figure 3.1: Simple illustration of the overlap problem. A typical example of a sampled

distribution versus the correct distribution with vanishing overlap. No relevant “configura-

tions” are sampled (left). The sampled distribution at λ = 0 shows a rather good overlap

with the distribution at λ 6= 0 (right).

to unrealistic errors estimates, if the error analysis is not performed carefully. In the

right plot, the sampled distribution versus the real part of the relevant distribution

can be seen. The important configurations {t} are in the interval [−1 : 1], which

is well sampled with e−t
2
, ie. λ = 0. Thus, there is no overlap problem in our

toy-model2.

3.3 Methods and Results

We now will discuss a variety of methods to tackle and finally solve the “sign prob-

lem”.

3.3.1 Brute-Force Method

The Brute-Force method

Z(λ)

Z(0)
= 〈eiλt〉λ=0 . (3.10)

measures the complex phase eiλt in an ensemble generated at λ = 0, ie. the sampling

weight used in the MC simulation is given by e−t
2
.

2Trivially, we can factorise the distribution e−t2+iλt → e−t2eiλt. While e−t2 is exponentially

decreasing, eiλt is of order one.
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The ratio decreases exponentially while increasing λ and can only be computed

accurately by this ordinary Monte Carlo if we gather extremely high statistics. Nev-

ertheless, it is interesting to discuss a few quantities:

1. The histogram of sampled t’s (Fig. 3.2, top left) confirms that we are sampling

the λ = 0-weight as intended. As it has been mentioned above, there is no

“overlap problem”.

2. The expectation value of cos(λt) is the ratio of the partition functions (Fig. 3.2,

top right). We have an excellent reproduction of the analytic result up to λ ≈
4.5. This is expected: Our simulation involves N = 50′000 Monte Carlo steps.

Using Eq.(3.9), we can estimate the maximal λ accessible: λmax = 4.65. Note,

that for higher λ’s, expectation values can become negative, and therefore are

missing in the plot.

3. The histogram of cos(λt) (Fig. 3.2, bottom left) provides information about

the strength of the “sign problem”. For λ = 1, most measurements of cos(λt)

are in the positive regime, therefore, the “sign problem” is weak. Starting with

λ = 4, the ratio of the partition functions is mainly obtained by cancellations,

and the “sign problem” sets in.

4. The expectation value of sin(λt) (Fig. 3.2, bottom right) is a check of potential

problems with ergodicity and verifies that the errors are estimated correctly:

the partition function is a real number, therefore the expectation value of the

imaginary part must be zero within errors.

3.3.2 Factorisation Method

The Brute-Force method for sure does not solve the “sign problem” as discussed in

subsection 3.2.1. The Factorisation method may provide an improvement. It is a

general trick which, for example, has helped to improve the efficiency in measuring
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Figure 3.2: The Brute-Force method. The histogram of the sampling variable t in com-

parison with the exact integrand (top left). The expectation value Z(λ)
Z(0) = 〈cos(λt)〉 in

comparison with the exact result (top right). The histogram of the observable cos(λt) as

a measure of the “sign problem” (bottom left). The expectation value 〈sin(λt)〉 (bottom

right) as an indicator for ergodicity, and a check of the correct evaluation of the statistical

error.

the ZNc-“order-order” interface tension in lattice gauge theories immensely[19]. One

evaluates the desired ratio by using the identity

Z(λ)

Z(0)
≡ Zn
Z0

=
Zn
Zn−1

Zn−1

Zn−2

· · · Z1

Z0

(3.11)

where Zk = Z(λk), for example λk = k
n
λ. In general, λk should be chosen, such that

each factor in Eq.(3.11) is of O(1).

We reformulate the calculation of Z(λ1)
Z(λ2)

in a generic way. Let us define

〈 Ô 〉f ≡
∫
dt Ô e−t

2
f(t)

∫
dt e−t2f(t)

(3.12)

then

Z(λ1)

Z(λ2)
=

∫
dt cos(λ1t)

f(t)
e−t

2
f(t)

∫
dt cos(λ2t)

f(t)
e−t2f(t)

=
〈 cos(λ1t)

f(t)
〉f

〈 cos(λ2t)
f(t)
〉f

= e−
λ2
1−λ2

2
4 , (3.13)
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where we have set to zero the imaginary part. We introduce a function f(t), which is

positive definite - examples, see Table 3.1. Each factor is a ratio of two expectation

values, both very small for large λ. However, numerator and denominator are both

estimated by sampling the same configurations {t}. It is hoped that there will be

strong error cancellations when estimating the ratio.

λ1 λ2 f(t) Method

λ 0 1 Brute-Force method

k
n
λ k−1

n
λ ǫ+ | cos(

k− 1
2

n
λt)|, ǫ > 0 Standard Factorisation method

k
n
λ k−1

n
λ 1 Crompton Factorisation method

λ1 λ2

√
cos2(λ1t)
Z2(λ1)

+ cos2(λ2t)
Z2(λ2)

Optimised Factorisation method

Table 3.1: Generalised Factorisation Method. An overview of various choices.

In the Standard and Crompton Factorisation methods, the latter following a sug-

gestion of P. Crompton[62], the function f(t) has been chosen ad hoc. We have

introduced an ǫ > 0 in the first case, such that the sampling weight does not become

zero. By minimising the relative error for a given size N of the Monte Carlo sample,

we determine f(t) in the Optimised Factorisation method approach. The (unjusti-

fied) assumption that the relative error on numerator (num) and denominator (den)

in Eq.(3.13) can be added in quadrature allows for an analytic solution:

∆rel2[f ] =

(
∆num[f ]

num[f ]

)2

+

(
∆den[f ]

den[f ]

)2

. (3.14)

We then apply the central limit theorem

(
∆num[f ]

num[f ]

)2

≈ 1

N

(

〈( cos(λ1t)
f

)2〉f
(〈 cos(λ1t)

f
〉f )2
− 1

)

, (3.15)

and it would follow that the optimal function for the numerator is fnum(t) = cos(λ1t)

(fden(t) = cos(λ2t) for the denominator). By minimising the total relative error
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∆rel[f ], we obtain the optimal function

f(t) =

√

cos2(λ1t)

Z2(λ1)
+

cos2(λ2t)

Z2(λ2)
(3.16)

The partition function Z(λ) is unknown in principle. In this study, we know it

exactly and, for educational purposes, make use of this. The optimised function

f has the nice feature, that it does not vanish, unless both cosines do. Moreover,

one can compute the relative error, which is a function of λ1, λ2 and N . If one

chooses N and λ2 in advance, then one can adjust λ1, so that after N Monte Carlo

measurements, the ratio Z(λ1)
Z(λ2)

will be known to some prescribed accuracy. For the

results presented in Fig. 3.3, we have chosen a fixed, λ1 − λ2 = 0.2 for simplicity.
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Figure 3.3: The Factorisation method. The histogram of the sampling variable t in

comparison with the exact integrand (top left) for various λ. The expectation value
Z(λ)
Z(0) = 〈cos(λt)〉 in comparison with the exact result (top right). The expectation value
Z(k)
Z(k−1) in comparison with the analytic result (bottom left). Successive values of λ1 in the

Optimal Factorisation method (bottom right).

The sampled t (top left) are in nice agreement with the sampling function for various

λ’s. Despite all the effort, the accessible range in λ could not be enlarged (top
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right), based on the same statistics (N = 50′000). We lose the signal at around

λ = 4.0 ∼ 4.5. This result is based on the intermediate factors (bottom left), which

are of order one, but cannot be measured accurately for larger λk’s. We therefore

think, there is no gain by further developing this type of approach - a “magical”

cancellation of the error due to correlated measurements has not been observed:

the numerator in Eq.( 3.13) can be negative while the denominator is positive or

vice versa (see Fig. 3.4 (right)). We can give another, however related argument.

Considering the Optimal Factorisation method, we can predict the successive value

of λ1 for a given λ2, N and accuracy, which is shown in Fig. 3.3, bottom right.

Initially, N and the accuracy are chosen such that for λ2 = 0 it follows λ1 = 1.

Then, we keep N and the accuracy fixed, set λ2 ← λ1 = 1 and solve for the new

value of λ1. The result shows that the spacing (λ1 − λ2) decreases exponentially.

Therefore, an exponentially increasing effort still is needed to access larger λ’s.

Sign problem

While discussing the Brute-force method, we have illustrated the “sign problem” by

plotting the histogram of sampled cos(λt), see Fig. 3.2, bottom left. More generally,

we can do so by considering cos(λt)
f(t)

. As an example, we want to measure the ratio of

partition functions at λ = 6. For this, we use the Standard method with ǫ = 0.05

and n = 20. As per Eq.(3.13), we plot in Fig. 3.4

Zphysical
Zsampled

= 〈 cos(λ1t)

ǫ+ | cos((λ1 − λ
2n

)t)|〉Standard , (3.17)

as a function of λ1. An interesting feature is the maximum of the ratio at λ1 =

1. We thus can eliminate the “sign problem” for the particular choice ǫ = 0.05

and n = 20 - however, this works for small λ1 . 1.0 only! For λ1 & 4.5, the

expectation value is zero within errors. The “-”-contributions are thus as important

as the “+”-contributions, which indicates that the expectation value is obtained by

cancellations.
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Figure 3.4: Quantification of the “sign problem”. 〈 cos(λ1t)

ǫ+| cos((λ1− λ
2n

)t)|〉Standard drops to zero

fast, while increasing λ1 (left). Another way to see the sign problem is by checking corre-

lations between the numerator and the denominator. The more often the numerator has

different sign than the denominator, the stronger the sign problem is. Here, we plot for

λ1 = 6.0 (right). Note that we consider one factor of the factorisation formula Eq.(3.11).

The expectation value of this factor thus is of order O(1).

Overlap problem

It is clear that the Factorisation method does not solve the “sign problem”, since

it is designed to address and solve the “overlap problem”, which as we saw is not

a concern here. As an illustration for this claim, recall the distribution example we

have given in subsection 3.2.2. We are interested in a Gaussian distribution d(tmax),

which has the maximal contribution at the configuration tmax = 6. Assume that for

some reason, we can sample this distribution for tmax ≤ 4 only, see Fig. 3.5, left.

This schematically should indicate, that the Factorisation method provides a mean

to eliminate the overlap problem: Information from the physical distribution is

tunnelled to the sampled distribution via intermediate steps, where neighbouring

distributions show a good overlap.

In our particular case, Fig. 3.5, right, the important region is correctly sampled,

such that we do not have an “overlap problem”.
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Figure 3.5: The Factorisation method as a mean to solve the “Overlap problem”. Schemat-

ically, the Factorisation method allows to conciliate the sampled distribution with the

physical distribution, if we find a way to sample “intermediate” distributions (left). The

toy model considered here does not suffer from an “overlap problem”: We sample prefer-

ably configurations {t}, which are important for the oscillating, correct distribution.

3.3.3 Contour Integral

Finally, we would like to test a deformation of the integral from −∞ to +∞ into the

complex plane. Since the function to integrate e−t
2+iλt has no poles, the integral can

be computed on any deformed contour. The idea is to have the deformed contour

go through (or near) the saddle point t = iλ/2. Near the saddle, as expected

from stationarity, the cosine stops oscillating, therefore the deformed contour should

reduce the “sign problem” substantially, see Fig. 3.6.

We introduce a parametrisation with y(t) →
t→±∞

0 by

z(t) = x(t) + iy(t) x(t) = t y(t) =
y0

1 + (t/t0)2
. (3.18)

Analytic continuation leads to

Z(λ) =

∫

γ

dz e−z
2+iλz =

∫

dt

(
dz

dt

)

e−(x(t)+iy(t))2+iλ(x(t)+iy(t)) (3.19)

=

∫

dt e−x(t)
2+y(t)2−λy(t)

(

cos[x(t)(λ− 2y(t))]− ∂y(t)

∂t
sin[x(t)(λ− 2y(t))]

)

(3.20)

=

∫

dt e−x(t)
2+y(t)2H(t, λ) , (3.21)

where H(t, λ) = e−λy(t)
(

cos[x(t)(λ− 2y(t))]− ∂y(t)
∂t

sin[x(t)(λ− 2y(t))]
)

. As sam-
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Figure 3.6: The Contour Integral. The integrand stops oscillating around the saddle point.

A deformed contour may help to reduce the “sign problem” substantially. Here, λ = 2.0

is plotted to increase the visibility.

pling weight we use e−x(t)
2+y(t)2 (denoted by 〈·〉C) and measure

Z(λ)

Z(0)
=
〈H(x, λ)〉C
〈H(x, 0)〉C

(3.22)

Based on our previous analysis of the Factorisation method, the Brute-Force ap-

proach should work fair enough if the Contour Integral method provides a reduction

of the “sign problem”. We have two tuning parameters, t0 and y0, where we assume

that y0 should be close to the saddle point.

Discussion: t0

Motivated by the observation, that the oscillations stop at the saddle point, we fix

y0 = λ
2
. We vary the parameter t0. By choosing a large t0, we avoid the oscillating

regime at the origin, see Fig. 3.6. We perform Monte Carlo simulations for t0 =

1, 10, 100, 10000. The results are presented in Fig. 3.7.

In general, we lose the signal at λ ≈ 4.5 as with the previous methods, almost inde-

pendently of the choice of t0. For t0 = 100, however, we have results for larger λ’s.
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Figure 3.7: The Contour Integral. We fix y0 = λ
2 and vary t0. Although we vary t0 in a

huge range, the choice of y0 = λ
2 seems not to extend the range of λ measurable.

Unfortunately, they seem to disagree with the theoretical prediction, in particular

at λ = 6 within statistical errors. As a consequence, we suspect that the jackknife

error underestimates the true error - a danger, one always should be aware of.

Discussion: y0

We fix t0 = 100 and vary y0, from y0 = λ
10

to y0 = λ. The results are shown in

Fig. 3.8.

For y0 ≥ λ
2
, we lose the signal already at small λ. For y0 ≤ λ

10
, we are close to the

undeformed contour, and also cannot measure beyond the naive limit λ ≈ 4.5. In

the range λ
6
≤ y0 ≤ λ

3
, we recover the analytic result. A further increase of λ reveals

y0 = λ
4

to be the optimal choice, see Fig. 3.9.

At first sight, this result is surprising. We argued that oscillations disappear at the

saddle point, which should substantially reduce the sign problem. This is true, but

only for the numerator in the ratio of partition functions Eq.(3.22). In Fig. 3.10 we

plot 〈H(x, λ)〉C and 〈H(x, 0)〉C for a few choices of y0 from λ = 6 to λ = 12. For
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y0 = λ
2
, the numerator is measured with high accuracy for any λ, while using an

almost undeformed contour, y0 = λ
20

, the denominator is obtained with negligible

statistical errors. The choice y0 = λ
4

is a trade-off, and indeed, a “magical” cancel-

lation of the error due to correlated measurements is observed (unlike in the other

methods). We present the correlation between the numerator and the denominator

in a log-log plot. If the numerator is small/large/positive/negative, the denominator

is small/large/positive/negative. There are only a few incidents where the numer-

ator has different sign than the denominator: for t0 = 100, 4-8 out of N = 50′000,

for t0 = 1000, 0-1 out of N = 50′000. In the limit t0 → ∞, we parameterise with

y(t) = y0, and we have perfect correlation due to the shape of H(t, λ), see Eq.(3.19).

In the case ∂y(t)
∂t

= 0, the signs of H(t, λ) and H(t, 0) are identical for all t since

cos[x(t)(λ− 2λ
4
)] = cos[x(t)(−2λ

4
)].

3.4 Conclusions - QCD Toy Model

We have investigated a simple model with a complex phase, which suffers from the

“sign problem” due to oscillations, which are controlled by the parameter λ. We

have tested various methods, of which most break down at a value of λ ∼ √2 logN ,

where N is the number of measurements. One strategy, the change of the integration

contour, works beautifully and solves the “sign problem” in the context of the 0-

dimensional quantum field theory by carefully tuning the contour parameters y0 = λ
4

and t0 & 100. The “overlap problem” has been illustrated, and a method to over-

come this technical problem, namely the Factorisation method, has been introduced.

What can we learn from this study for our next project, QCD at Finite Density? Al-

though it would be very interesting to generalise to QCD the strategy, which worked

so well on the QCD toy model, we were not able to do so: in the contour integral

method, we deform the (co)domain of our field from real (t) into the complex plane

(z(t) = x(t) + iy(t)); in QCD, this would, for example, correspond to allow for non-
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Figure 3.10: The Contour Integral. The numerator has small errors for y0 = λ
2 (top left),

while the denominator has small errors for y0 = λ
20 ≈ undeformed (top right). With the

choice y0 = λ
4 , we observe strong correlation between the numerator and the denomi-

nator in Eq.(3.22). We plot the case “positive numerator” (bottom left) and “negative

numerator” (bottom right).

unitary colour matrices, or to allow for a complex chemical potential. In the latter

it is unclear what the integration contour should look like. Therefore, we have to

find a different approach, which avoids the “sign problem”. The canonical frame-

work, which depends on the baryon number B rather than the chemical potential µ,

seems to be a promising candidate. However, the difficulty we face is the “overlap-

problem”: we would like to extract information about finite density physics, but we

only know how to sample at zero matter density (µ = 0). We address this problem

by making use of the idea of the Factorisation method.



102 QCD Toy Model



Chapter 4

Canonical Approach to Lattice

QCD

In this chapter, we discuss the main project of this thesis: Lattice QCD at finite

matter density. In the following, we motivate this study and discuss the current

state-of-the-art of numerical methods and the scope of our project. In section 4.2,

we present in detail two models, which we want to test by comparison with our

numerical results: the hadron resonance gas in the hadronic phase and the ideal

gas of free quarks in the quark-gluon plasma phase. The canonical approach to

Finite Density QCD is presented in section 4.3 and consists of two parts: first,

we introduce a method aimed at zero baryon density, which is computationally

inexpensive; second, we present a more costly technique to extract information about

all canonical sectors. Results are discussed in sections 4.4 and 4.5, followed by the

conclusions.

4.1 Motivation

The non-perturbative study of the thermodynamics of Yang-Mills theories via lattice

calculations has shown the existence of the confinement-deconfinement transition[47]

103
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25 years ago for SU(2). In the late eighties, simulations of dynamical quarks have

become feasible, and the chiral transition has been studied with respect to various

quark flavours and masses, for a review see Ref. [63]. There was, however, no progress

in the study of the QCD phase diagram at non-zero matter density ρ (or non-zero

chemical potential µ) until recently. During the past few year various methods have

been developed which work at small chemical potential µ
T

. 1. We briefly discuss

the approaches and their limitations in the following subsection.

So far, Finite Density Lattice QCD calculations have been concentrating on deter-

mining the phase boundary Tc(µ) between the low-temperature confined phase and

the high-temperature quark-gluon plasma. We propose another approach, a canoni-

cal approach, which is designed to study systems with a few baryons at low tempera-

ture, but also allows to study the phase diagram for temperatures T & 0.8 Tc(µ = 0)

in the T -ρ plane with ρ . 5 baryons
fm3 , which corresponds in the T -µ plane to µ

T
. 2.

We recall the relevant part of the conjectured QCD phase diagram in Fig. 4.1, which

is discussed in subsection 1.2.3. Currently, simulations at approximately physical

quark masses[64] show a crossover behaviour at small chemical potential. We have

discussed in subsection 1.2.3 the existence of a second order endpoint. This critical

point has not yet been found uncontroversially. At lower temperatures, the phase

boundary becomes a first order transition line, which gives rise to a co-existence

region in the T -ρ plane as indicated in the plot.

4.1.1 State of the Art

1. Z. Fodor and S. D. Katz[65] propose a two-parameter reweighting (see Ap-

pendix D) in temperature T and chemical potential µ following the critical

line, which is determined by monitoring the Lee-Yang zeroes1: if the zeroes

1The critical line alternatively can be determined by identifying the peak in the specific heat or

in the susceptibility of the chiral condensate.
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Figure 4.1: Simplified conjectured phase diagram of real-world QCD in the (T, µ)-plane

(left), in the (T, ρ)-plane (right). The dotted lines represent a crossover, the solid lines a

first order phase transition. The single dots show the position of the second order critical

endpoint.

of the grand canonical partition function touch the real axis for V → ∞, the

existence of a phase transition follows. In the case of a crossover, the zeroes

tend in the thermodynamic limit to a value with a non-zero imaginary part.

The applicability of the method has been demonstrated for four degenerate

flavours of staggered quarks and for three flavours of quarks at almost physi-

cal quark masses. In the case of four degenerate flavours, the phase transition

at zero chemical potential is first order for their choice of quark mass m
T

= 0.2

and presumably does not develop a critical point, as we will discuss later. In

the latter calculation the goal was to identify the critical point; however their

findings are controversial[66]. Several years ago, there was a similar method

in use, the so-called Glasgow method[67]. The essential difference is the fol-

lowing: To detect the µ-driven phase transition at some fixed temperature

T0 < Tc(µ = 0), the Glasgow group sampled at T0(µ = 0) and increased

the chemical potential by reweighting at fixed temperature. Unfortunately,

the indicated onset of baryon density begins at a chemical potential smaller

than the expected mproton

3
, see section 1.2.3. Ref. [68] noticed that this is due

to the “overlap problem”: the ensemble generated at zero chemical potential
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only has a few (or none at all) relevant configurations for the finite-density

physics. Z. Fodor and S. D. Katz address this problem by sampling at the

critical temperature at zero chemical potential Tc(µ = 0). The generated en-

semble consists of configurations from both the confined and the deconfined

phase, and thus, a much better overlap with the critical target ensemble is

achieved. Still, the generic difficulty of reweighting methods, namely the reli-

able estimate of the statistical error, remains. See for more details subsection

4.5.4.

The systematic uncertainties become large at µ & mπ

2
[69]. Simulations with the

sampling weight | detM(µ)|2, called “phase quenched” simulations, correspond

to systems with finite isospin chemical potential, ie. µIS = µu = −µd[70, 71]

(see Appendix D.1.2). The phase diagram2 at finite isospin chemical potential

is sketched in Fig. 4.2. At small isospin chemical potential, the influence of

the quenched phase is small, therefore one observes essentially the same cur-

vature as at small chemical potential. At larger isospin chemical potential,

ie. µIS & mπ

2
, however, one probes a new phase at low temperature, called the

“pion superfluid”, in which the expectation value of the chiral condensate is

not zero, unlike in the quark-gluon plasma where 〈Ψ̄Ψ〉 = 0. Ref. [69] argues

that reweighting methods are exceedingly delicate for values of T and µ, where

phase quenched QCD is in the pion superfluid phase, and shows that the crit-

ical endpoint found in Ref. [65] is close to the hadronic phase - pion superfluid

transition.

2. Another approach[72, 73, 74] also samples at zero chemical potential, but in-

stead of reweighting, which requires the (costly) exact determination of the

fermion determinant, they determine the coefficients in the Taylor-expansion

2The Boltzmann weight at non-zero isospin chemical potential is positive and real, therefore

the whole phase space is accessible via Monte Carlo methods.
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Figure 4.2: The conjectured phase diagram in the plane of temperature T and isospin

chemical potential µIS . For an isospin chemical potential µIS >
mπ
2 a pion condensate is

built.

of the free energy in µ
T

about µ = 0. These coefficients can be expressed

as observables in the µ = 0 ensemble, which can be estimated rather than

computed exactly, and thus, the approach is computationally less intensive.

Larger lattices can be tackled, however systematic uncertainties coming from

the truncation of the Taylor series impose µ
T

. 1.

3. A third approach [75, 76, 77] samples at imaginary chemical potential, which

preserves the γ5-hermiticity of the Dirac operator, see Eq.(1.84), and there-

fore the fermion determinant remains real positive (for Nf even). Without a

sign problem, accurate results can be obtained without enormous numerical

effort, but there is a limitation in the analytic continuation to real chemical

potential at |µ|/T ≤ π/3 , due to non-analyticities in the partition function at

µI

T
= (2k + 1)π

3
, as outlined in subsection 1.2.2.
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Most of these methods initially have been tested for a particular theory, namely

four degenerate flavours of staggered quarks. As it happens, all groups have chosen

the quark mass to be m
T

= 0.2. The resulting pion mass mπ ≈ 350 MeV is larger

than the physical one (about 135 MeV). Interestingly, all approaches agree in the

phase boundary Tc(µ) for µ
T

. 1.0. One feature of the four flavour theory is that

the phase transition at zero chemical potential is first order. This has been observed

by direct lattice calculations, but is also in agreement with theoretical predictions

of the sigma model, in which the phase transition is first order for four massless

flavours, but gets weaker for less flavours, see subsection 1.2.3. For the particular

choice of the quark mass, namely m
T

= 0.2, the phase boundary remains first order

presumably for all chemical potentials. This simplifies the detection of the phase

boundary compared to a crossover, because the signatures of a first order transition

are more pronounced. We will test our approach exclusively in the context of this

model.

4.1.2 Scope of this project

We try to address the limitation of the previous approaches “ µ
T

. 1.0” by using a

canonical approach, where we focus on the matter density ρ (or the baryon number

B = ρV ) rather than the chemical potential. With our improvements presented in

this chapter, the Helmholtz free energy F (T,B) of successive baryon sectors

F (T,B) ≡ −T log
ZC(T,B)

ZC(T,B = 0)
(4.1)

can be determined rather accurately on small systems down to relatively low tem-

peratures T ≈ 0.8Tc for a wide range of baryon number (up to 30 baryons). As

elaborated in subsection 1.2.2, the canonical partition function ZC(T,B) at fixed

baryon number B is obtained from the grand canonical one using a Fourier trans-
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form

ZC(B) =
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T ZGC(µ = iµI) . (4.2)

Note that in this formulation the sign problem is explicitly visible in the oscilla-

tory phase factor e−i3B
µI
T , whereas the fermion determinant detM(U ;µ = iµI) in

ZGC(µ = iµI) is real positive.

So far, we have motivated the new approach mainly with respect to the phase dia-

gram, but the range of applicability is much wider - new regimes can be explored,

unsettled questions can be answered - and not much has been done beyond algorith-

mic testing[78, 79, 80, 81]. We proceed as follows:

• We explore the simplest canonical sector B = 0, which is equivalent to the

grand canonical ensemble at µ = 0 in the thermodynamic limit[82, 83]. The

“trivial” canonical sector B = 0 is in particular interesting due to an un-

resolved paradox, which we call the “Polyakov loop paradox”. On the one

hand, the grand canonical partition function ZGC(T, µ) with chemical poten-

tial µ explicitly breaks the Z3 centre symmetry with the fermion determinant,

as proven in subsection 1.2.1. As a consequence, the Polyakov loop expec-

tation value is non-zero for all temperatures and volumes, see Fig. 4.3(top).

On the other hand, the canonical partition function ZC(T,B) at fixed baryon

number B is manifestly Z3-symmetric, see Fig. 4.3(bottom), since the transfor-

mation3Pol(~x) → z(k)Pol(~x) can be compensated due to the 2πT
3

-periodicity

of ZGC(µ = iµI) (see subsection 1.2.2). Therefore, the Polyakov loop expec-

tation value is exactly zero. This raises a fundamental question about the

equivalence of the two ensembles and the role of the Polyakov loop as an order

parameter[30, 84], which we will answer in subsection 4.4.1.

3z(k) ≡ ei 2πk
3 with k = 0,±1 are the centre elements of the gauge group SU(3)
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Figure 4.3: Distribution of the complex Polyakov loop in the grand canonical (top) and

canonical (bottom) ensembles in the volumes 43×4 (left), 63×4 (right). In the thermody-

namic limit, the distributions agree for both ensembles, up to two additional Z3-rotations

in the canonical ensemble.

• In heavy-ion collisions, as performed at RHIC (Brookhaven) or planned at

LHC (CERN), a canonical framework is natural, since the net baryon num-

ber is fixed and conserved. It is a long-standing goal of lattice calculations to

study the thermodynamics of few-nucleon systems. We initiate this field by

measuring the Helmholtz free energy as a function of the baryon number in the

quark-gluon plasma, and in particular also in the low-temperature hadronic

phase. Prospects are the study of the bulk properties of nuclear matter from

first principles, and the nuclear interaction, for example the binding energy of

Deuteron. Nevertheless, the difference of scale between nuclear interactions

(MeV) and nuclear masses (GeV) makes this goal extremely hard to reach.

This search can be eased by a change in the parameters of QCD, namely the

number and mass of the quark flavours, since the strength and even the order

of a phase transition depend on these.
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• The regime of higher matter density is also accessible. In our study, we can

explore the phase diagram of QCD in the T -µ as well as in the T -ρ plane for

T & 0.8Tc and ρ . 5 baryons
fm3

4. We compare the phase boundary Tc(µ) with the

literature and agree for µ
T

. 1.0. We determine the order and strength of the

observed phase transition. We characterise the different phases: the measured

Helmholtz free energy is compared with predictions from simple models, such

as the hadron resonance gas and the free gas of massless quarks.

4.2 Models

Two non-interacting models have been found to provide an good description of

the basic features of the T - and µ-dependence of thermodynamic observables in

the confined and in the quark-gluon plasma phase[31, 32, 33, 34] respectively: the

hadron resonance gas and the free gas of massless quarks.

The starting point for both models is given by the grand canonical one-particle

partition function of the continuum theory[15]

logZGC(T, µ) = ηg
V

2π2

∫ ∞

0

dkk2 log
(

1 + η e−
1
T

(ǫ(k,m)−µ)
)

. (4.3)

The parameter η is η = −1 for bosons and η = 1 for fermions, g is the spin-isospin

degeneracy of the state, µ is the chemical potential and the relativistic kinetic energy

is

ǫ(k,m) =
√
k2 +m2 . (4.4)

The contribution of the antiparticle is obtained by replacing ǫ(k,m)−µ by ǫ(k,m)+µ.

The hadron resonance gas model is a model of a non-interacting gas of various

bosonic and fermionic hadrons. Each kind of hadron is described by the one-particle

partition function Eq.(4.3). The model of the free gas of quarks considers Nf de-

generate flavours, each given by the one-particle partition function. It should be a

4Note, however, as V →∞, fixing the baryon number amounts to approach ρ = 0
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good approximation of QCD in the regime of asymptotic freedom, which holds at

very high temperature.

4.2.1 Hadron Resonance Gas

The hadron resonance gas describes QCD bulk thermodynamics in terms of a non-

interacting gas of hadron resonances, either bosonic mesons or fermionic baryons

and exhibits a singularity, which is indicative of the hadronic matter quark-gluon

plasma phase transition[85].

The sum of energies of relativistic Fermi and Bose particles is used as the Hamilto-

nian, ie. one assumes that the free energy density is given by the contributions of

all the hadron resonances without explicit interactions. The hadron resonance gas

model is an effective theory, which contains all relevant degrees of freedom of the

confined matter, and implicitly contains the strong interaction by the inclusion of

the heavy resonances as stable particles.

The grand canonical partition function ZHRG can be split into bosonic and fermionic

contributions

logZHRG(T, V, µB) =
∑

i∈Mesons

logZM
i (T, V ) +

∑

i∈Baryons

logZB
i (T, V, µB)

+ (particle ←→ antiparticle) , (4.5)

with µB the baryon chemical potential5. We are interested how the free energy

depends on µB, therefore we discuss the baryon contributions only. The relevant

partition function of a hadron resonance with mass mi is

logZB
i (T, V, µB) = gi

V

2π2

∫ ∞

0

dk k2 log
(

1 + zie
− ǫ(k,mi)

T

)

(4.6)

5The baryon chemical potential is related to the quark chemical potential by µB = 3µ
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with the fugacity zi = e
µB
T . We expand the logarithm and obtain

logZB
i (T, V, µB) = gi

V

2π2

∞∑

l=1

(−1)l+1zli
l

∫ ∞

0

dk k2e−l
ǫ(k,mi)

T

= gi
V Tm2

i

2π2

∞∑

l=1

(−1)l+1zli
l2

K2

(
lmi

T

)

, (4.7)

where K2 is a modified Bessel function of second kind. With6 mi ≫ T, µB it follows

that sectors with several resonances of the given type are exponentially suppressed,

since K2

(
lmi

T

)
∼ e−

lmi
T :

logZB
i (T, V, µB) ≈

l=1
gi
V Tm2

i

2π2
K2

(mi

T

)

e
µB
T . (4.8)

In dimensionless quantities the change in the free energy density due to a non-zero

baryon chemical potential is given by

−F (T, V, µB)− F (T, V, 0)

V T 4
≡ −∆F (T, V, µB)

V T 4
=

1

V T 3
log

ZHRG(T, V, µB)

ZHRG(T, V, 0)

=
1

2π2T 2

∑

i∈Baryons

gim
2
iK2(

mi

T
)
(

e
µB
T + e−

µB
T − 2

)

≈ f(T )
(

cosh
(µB
T

)

− 1
)

. (4.9)

The so-called “sum of resonances” f(T ) is

f(T ) ≡ 1

π2

∑

i∈Baryons

gi

(mi

T

)2

K2

(mi

T

)

. (4.10)

In subsection 4.5.2 we will numerically relate the baryon density ρ = B
V

to the quark

chemical potential µ = µB

3
. In the hadron resonance gas, the baryon density is given

in dimensionless quantities as

ρ

T 3
≡ −

∂
(

∆F (T,V,µB)
V T 4

)

∂
(
µB

T

) = f(T ) sinh
(µB
T

)

= f(T ) sinh

(
3µ

T

)

. (4.11)

6The lightest baryon is about 1 GeV, while the temperature scale is about 160 MeV
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4.2.2 Quark-Gluon Gas

In the limit of high temperature (Stefan-Boltzmann (SB) limit), thermodynamic

observables, like the free energy density, are expected to approach predictions of a

free gas of quarks and gluons, due to asymptotic freedom. The gluonic contribution

is independent of the chemical potential and contributes to the free energy with

8π2

45
. We consider a system of Nf degenerate flavours of non-interacting quarks and

antiquarks in the continuum. The free energy densities can be added and we obtain

F (T, V, µ)

V T 4
= − Nf

2π2T 3

∫ ∞

0

dkk2 log
[(

1 + e−
1
T

(ǫ(k,m)−µ)
)(

1 + e−
1
T

(ǫ(k,m)+µ)
)]

.

(4.12)

For massless quarks one finds from an evaluation of the integral the free energy as

a finite polynomial in µ
T
[34]

−F (T, V, µ)

V T 4
≈ 8π2

45
+Nf

(
7π2

60
+

1

2

(µ

T

)2

+
1

4π2

(µ

T

)4
)

+O(g2) . (4.13)

The first term reflects the contribution of the gluon sector, which is independent of

the (quark) chemical potential µ, the Nf -dependent terms quantify the contribution

of the fermion sector. We have indicated that interacting contributions start at order

g2[86]. We have seen in subsection 1.2.2 that CP symmetry implies that the series

is even in µ.

We are interested in the change of the free energy density with increasing chemical

potential in dimensionless quantities

−∆F (T, V, µ)

V T 4
=
Nf

2

(µ

T

)2

+
Nf

4π2

(µ

T

)4

. (4.14)

The quark density is given as ρq = − 1
V
∂∆F (T,V,µ)

∂µ
. We here calculate the baryon den-

sity ρ = ρq

3
as a function of the quark chemical potential in dimensionless quantities

ρ

T 3
=

ρq
3T 3
≡ −

∂
(

∆F (T,V,µ)
V T 4

)

3∂
(
µ
T

) =
Nf

3

(µ

T

)

+
Nf

3π2

(µ

T

)3

. (4.15)

These simple expressions are valid in the continuum theory at very high temperature,

where the coupling g ≈ 0 and m≪ T . On the lattice we expect finite size corrections
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(Ns <∞) as well as cut-off corrections (T = 1
aNt

). Ref. [73] has calculated the free

energy of free fermions with infinite spatial volume (Ns = ∞) but finite temporal

extent (Nt = 4). Here, we also determine the corrections for finite spatial volume

Ns = 4, 6, 8, 10 for the free massless fermion gas on the lattice. We set the gauge

fields Aµ(x) = 0, ie. the gauge links to the identity, and solve for the free energy via

−∆F free
latt (T, V, µ)

V T 4
=

logZfree(T, V, µ)

V T 3
=

log detM free(T, V, µ)

V T 3

≈ C2
Nf

2

(µ

T

)2

+ C4
Nf

4π2

(µ

T

)4

(4.16)

Table 4.1 summarises the results.

The correction terms approach their infinite volume expectation rather quickly. For

the particular mass m
T

= 0.2 we consider, the difference from the massless limit is

smaller than the (fitting) errors, and thus, results are not presented explicitly. Note

that we have an additional column [C6]: we have added the term C6

(
µ
T

)6
to the

Ansatz Eq.(4.16). The coefficient C6 is very small. The correction terms C2 and C4

are unchanged within the statistical errors.

Lattice C2 C4 [C6]

43 × 4 4.387(1) 0.28(3) [-]

63 × 4 2.628(1) 1.70(5) [0.0081(1)]

83 × 4 2.315(1) 2.25(5) [0.0046(1)]

103 × 4 2.250(1) 2.49(5) [0.0030(1)]

∞3 × 4 2.25 2.6 -
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6

-F
(µ

)/
V

T
4

µ/T

Free Gas, 44, a m=0.05
Free Gas, 63x4, a m=0.05
Free Gas, 83x4, a m=0.05

Free Gas, 103x4, a m=0.05
Stefan-Boltzmann gas, Nt=4

Table 4.1: The prediction for the free energy density based on the free gas model in the

continuum at high temperature suffers from finite size and cut-off effects. The correction

terms C2 and C4 help to quantify the systematics. The functional form in Eq.(4.16) nicely

describes the data - the contribution of the additional term
( µ
T

)6
is negligible (left table).

We also plot the free energy density of the massless Stefan-Boltzmann gas for comparison

(right). Already at the volume 103, no difference is visible.
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4.3 The Two Methods

4.3.1 Fourier Transformation

In order to design an algorithm which is able to measure an observable as a function

of the quark, or rather baryon number, we need to understand how the expectation

value of an observable O can be evaluated in the canonical ensemble. It is given by

〈Ô〉B ≡
1
2π

∫ π

−π dµ̄I e
−i3Bµ̄I

∫
[DU ] e−Sg [U ;β] detM(U ; iµ̄IT ) Ô(U)

ZC(T,B)
. (4.17)

We recognise at least three numerical prescriptions:

1. We treat µ̄I as a dynamical degree of freedom, and supplement the ordinary

Monte Carlo (Hybrid MC[87, 88], R-algorithm[89], PHMC[90], RHMC[91], . . .)

at fixed µ̄I with a noisy Metropolis update of µ̄I → µ̄′
I keeping {U} fixed. The

oscillatory part e−i3Bµ̄I in the sample weight causes a sign problem for non-zero

baryon number B. This approach breaks down for rather small B already.

2. Rather than allowing all imaginary chemical potentials, one can measure the

ratio of grand canonical partition functions as

ZGC(iµ̄IT )

ZGC(iµ̄I0T )
=

∫
[DU ] e−Sg [U ;β] detM(U ; iµ̄IT )

∫
[DU ] e−Sg[U ;β] detM(U ; iµ̄I0T )

=

∫
[DU ] e−Sg[U ;β] detM(U ;iµ̄IT )

detM(U ;iµ̄I0
T )

detM(U ; iµ̄I0T )
∫

[DU ] e−Sg [U ;β] detM(U ; iµ̄I0T )

≡
〈

detM(U ; iµ̄IT )

detM(U ; iµ̄I0T )

〉

µI0

. (4.18)

The range µ̄I ∈ [−π, π] can be covered with a set of “patches” each centred on

a different µ̄0. Each grand canonical partition function can thus be measured

with a certain statistical error, and the Fourier transformation has to be cal-

culated only once. This approach, promoted e.g. by Ref. [92], also fails rapidly

as B increases, because statistical noise overwhelms the small amplitudes of

the high Fourier coefficients, which decrease exponentially in B. We thus need

some kind of variance reduction.
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3. The third approach provides such a variance reduction, but is computationally

much more intensive. We exploit the fact, that all the µI-dependence in the

grand canonical partition function is contained in the fermion determinant,

and calculate the Fourier components of the determinant of each configuration

exactly :

ZC(T,B)

ZGC(iµ̄I0T )
=

1
2π

∫ π

−π dµ̄I e
−i3Bµ̄I

∫
[DU ] e−Sg[U ;β] detM(U ; iµ̄IT )

ZGC(iµ̄I0T )

=

∫
[DU ] e−Sg [U ;β] detM(U ; iµ̄I0T )

(
1
2π

∫ π

−π dµ̄I e
−i3Bµ̄I detM(U ;iµ̄IT )

detM(U ;iµ̄I0
T )

)

ZGC(iµ̄I0T )

≡
∫

[DU ] e−Sg[U ;β] detM(U ; iµ̄I0T )
(

ẐC(U ;B)
detM(U ;iµ̄I0

T )

)

ZGC(iµ̄I0T )

≡
〈

ẐC(U ;B)

detM(U ; iµ̄I0T )

〉

µI0

. (4.19)

In a first project, QCD at zero baryon density, we use the first prescription. At

B = 0, e−i3Bµ̄I |B=0 = 1 and thus, the Boltzmann weight is real and positive. In

this framework, we resolve the “Polyakov loop paradox”, compare the confinement-

deconfinement transition at µ = 0 with B = 0, and study the free energy as a

function of the temperature and the imaginary chemical potential. In a second

project, a canonical approach to Finite Density QCD, we implement the third pre-

scription. We measure the free energy as a function of the temperature and the

baryon number and determine the phase boundary of the phase transition from the

hadronic matter phase to the quark-gluon plasma phase in the T -µ and T -ρ plane.

4.3.2 Zero Baryon Number

In order to sample the B = 0 canonical ensemble (Eq.(4.2)), we alternate two kinds

of Metropolis steps: (i) proposing a new configuration {U ′} at given imaginary

chemical potential µI as a candidate by Hybrid Monte Carlo, and (ii) suggesting a

new imaginary chemical potential at given configuration {U}.
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A candidate {U ′} is accepted with ordinary Metropolis probability

Prob(U → U ′) = min
(
1, e−∆S

)
. (4.20)

The update of µI → µ′
I , keeping {U} fixed, is based on the acceptance

Prob(µI → µ′
I) = min

(

1,
detNf (D/ (µ′

I) +m)

detNf (D/ (µI) +m)

)

. (4.21)

The ratio of determinants is evaluated with a stochastic estimator (see Appendix

C), namely

detNf (D/ (µ′
I) +m)

detNf (D/ (µI) +m)
= 〈e−|( 6D(µ′I)+m)

−Nf /2
( 6D(µI)+m)

Nf /2
η|2+|η|2〉η (4.22)

where η is a Gaussian complex vector. Since one Gaussian vector is sufficient, the

computational overhead is negligible. In addition, one can perform a “Z3-move” at

any time to help ergodicity:

µI → µI ±
2πT

3
U4(~x, x4 = x40)→ U4(~x, x4 = x40)e

∓i 2π
3 , ∀~x . (4.23)

Such a “Z3-move” is always accepted, since the configuration {U, µI} and the one

with a centre-rotated Polyakov loop, but shifted imaginary chemical potential, {U×
e−i

2π
3 , µI + 2πT

3
} have the same Dirac determinant, and thus the same sampling

weight, as discussed at length in subsection 1.2.2.

A computational detail: For T > Tc, the µI-distribution is sharply peaked around

0,±2πT
3

. To obtain the distribution accurately in the whole interval, we apply a

multicanonical algorithm in the T > Tc regime for the larger lattices (63 × 4 and

83 × 4)[93]. For this, we bias the sampling of the imaginary chemical potential by

modifying the acceptance probability

Probmulti(µI → µ′
I) = min

(

1,
detNf (D/ (µ′

I) +m)

detNf (D/ (µI) +m)
e(bias(µ

′
I)−bias(µI))

)

, (4.24)
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with bias(µI) chosen such that the sampled histogram becomes flat for all µI
7. The

expectation value of an observable Ô is then given by

〈Ô〉 =
1

∑

{U ;µI} e
−bias(U ;µI)

∑

{U ;µI}
Ô(U ;µI)e

−bias(U ;µI) . (4.25)

{U, µI} labels the sampled configurations {U} at imaginary chemical potential µI .

4.3.3 Non-Zero Baryon Number

In the first part of this subsection, we follow Ref. [79]. As we will see, the canonical

partition functions ZC(T,B), which allow the study of canonical ensembles at non-

zero baryon number, are determined by the Fourier coefficients of the determinant.

[94] noticed that the determinant of the fermion matrix can be exactly computed for

any chemical potential at the cost of diagonalising a so-called “reduced matrix” (or

“fermion transition matrix”)8. The fermion matrix M for four degenerate flavours

of staggered quarks

M(x, x′, µ) = aδx,x′ +
1

2m

3∑

i=1

ηi(x)
[

Ui(x)δx,x′−î − U †
i (x− î)δx,x′+î

]

(4.26)

+
1

2m
η4(x)

[

eµaU4(x)δx,x′−4̂ − e−µaU †
4(x− 4̂)δx,x′+4̂

]

. (4.27)

is of size C
3V Nt⊗3V Nt , where V is the spatial volume. Note we have chosen a slightly

different convention M = MKS/m (compare Eq.(1.47)). In the temporal gauge

(U4(x, x4) = 1 except for x4 = Nt − 1), the staggered fermion matrix M can be

reordered and written in the following block-form:

7A simple way to get an estimate of the function bias(µI) is the following: One starts by

sampling with no bias to produce a histogram hist(µI) of the sampled µI . One then fits bias(µI)

to 1
hist(µI) with a suitable Ansatz like aµ2

I − bµ4
I , or uses a table.

8Z. Fodor and S. D. Katz[65] make use of this approach.
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0
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is not zero
is id

is -id

M =














B0 1 0 ... 0 U †
Nt−1e

−µaNt

−1 B1 1 0 ... 0

0 −1 B2 1 0 ...

...

−UNt−1e
µaNt 0 ... 0 −1 BNt−1














The Bi’s are matrices of size C
3V⊗3V . They contain the spatial part only, so the

entries of each Bi-row consist of one identity and 18 non-trivial complex numbers:

3 colours × 6 neighbours. U †
Nt−1e

−µaNt is a shorthand notation for a 3V × 3V

block-diagonal matrix, where the 3 × 3 blocks are built from the V temporal links

U †(~x, x4 = Nt − 1) that are not set to the identity in the temporal gauge. The

introduction of a chemical potential is explicitly given by the e±µaNt term, which is

the only dependency of the fermion matrix M on the chemical potential. We now

explicitly show for Nt = 4 how the reduced matrix P is obtained.

1. We multiply the last column by UNt−1e
µaNt :

det M = det










B0 1 0 U
†
Nt−1

e−µaNt

−1 B1 1 0

0 −1 B2 1

−UNt−1eµaNt 0 −1 BNt−1










= e
−3V µaNt det










B0 1 0 1

−1 B1 1 0

0 −1 B2 UNt−1eµaNt

−UNt−1eµaNt 0 −1 BNt−1UNt−1eµaNt










2. We multiply from the left by a specially crafted matrix, of which the determi-

nant is the identity:

det M = e
−3V µaNt det










1 B0 0 0

0 1 0 0

0 0 1 B2

0 0 0 1



















B0 1 0 1

−1 B1 1 0

0 −1 B2 UNt−1eµaNt

−UNt−1eµaNt 0 −1 BNt−1UNt−1eµaNt










= e
−3V µaNt det










0 1 + B0B1 B0 1

−1 B1 1 0

−B2UNt−1eµaNt −1 0 (1 + B2BNt−1)UNt−1eµaNt

−UNt−1eµaNt 0 −1 BNt−1UNt−1eµaNt










3. We multiply the first column by −1 and cycle the columns of the matrix such

that the first column becomes the last. This allows to write the matrix in the

following block form:
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det M = e
−3V µaNt det




Ω01 1

−1 Ω23UNt−1eµaNt





with Ωi,i+1 =




BiBi+1 + 1 Bi

Bi+1 1



 =




Bi 1

1 0








Bi+1 1

1 0





4. We multiply the last column by e−µaNt and define the reduced matrix P :

det M = e
+3V µaNt det




Ω01 e−µaNt

−1 Ω23UNt−1



 = e
+3V µaNt det

(

P + e
−µaNt

)

with P =





Nt−1
∏

i=0,2

Ωi,i+1



 UNt−1 =

Nt−1
∏

i=0,1




Bi 1

1 0



 UNt−1 (4.28)

P is independent of the chemical potential and of size C
6V⊗6V . Let us denote

its 6V complex Eigenvalues by λi. Note that with Eq.(4.28), we can calculate

detM via the reduced matrix for arbitrary temporal extentsNt. The numerical

effort scales like N2
t for a given volume.

5. The determinant of the staggered fermion matrix can be calculated for arbi-

trary µ using

detM(U ;µ) = e3V µaNt

6V∏

i=1

(
λi + e−µaNt

)
. (4.29)

The Fourier expansion of the fermion determinant is

detM(U ;µ) =

Q=3V
∑

Q=−3V

ẐC(U ;Q)e−QµaNt , (4.30)

where Q is the quark number[95]. The sum is limited by |Q| ≤ 3V . We argue as fol-

lows. Let us absorb (as per step 1 in the above derivation) the factor e±µaNt in U †
Nt−1

(UNt−1 respectively). Per Eq.(4.28), the number of Fourier modes of detM(U ;µ)

is equal to the one of detP (U ;µ). The size of the reduced matrix P is 6V × 6V .

When its determinant is expanded using Cramer’s rule, each term is the product of

6V matrix elements, each of which can involve a temporal link (with the intrinsic

chemical potential). Thus, a temporal link can appear 6 times at most, which leads

to 12V+1 Fourier modes. However, since detP (U ;µ) = detP (U ;−µ), the number

of Fourier coefficients is reduced to 6V+1. The expansion in Eq.(4.30) follows.



122 Canonical Approach to Lattice QCD

We can solve for the Fourier coefficients ẐC(U ;Q) by a matching procedure:

det M(U ; µ) = e
3V µaNt

[

λ1 · · · λ6V + . . . + f(λ1, . . . , λ6V )e
(−3V −Q)µaNt + . . . + 1 · e

−6V µaNt
]

= e
3V µaNt [ẐC(Q = −3V, λ1 · · · λ6V ) + . . . + ẐC(Q, λ1, . . . , λ6V )e

(−3V −Q)µaNt + . . .

+ ẐC(Q = 3V, λ1 · · · λ6V )e
−6V µaNt ]

= e
3V µaNt e

−3V µaNt
[

ẐC(Q = −3V )e
3V µaNt + ... + ẐC(Q = 0) + ... + ẐC(Q = 3V )e

−3V µaNt
]

= ẐC(Q = −3V )e
3V µaNt + ... + ẐC(Q = 0) + ... + ẐC(Q = 3V )e

−3V µaNt . (4.31)

This delicate step requires a special multi-precision library9. The whole Fourier

decomposition, in particular the computation of the Eigenvalues, is the compu-

tational intensive part of the simulation. It takes O(V 3) operations. A numer-

ical test can easily be performed: Since ẐC(U ;−Q) = ẐC(U ;Q)∗ via inspection

of Eq.(4.30), and in particular ẐC(U ;Q = 3V ) = 1 exactly, it must be fulfilled

ẐC(U ;Q = −3V ) =
∏6V

i=1 λi = 1.

From the construction of the canonical partition function, Eq.(1.105), it follows

immediately that

ZC(β,Q) =

∫

[DU ] ẐC(U ;Q) e−Sg [U ;β] , (4.32)

with ZC(β,Q) = 0 for Q not a multiple of 3. We thus consider the baryon number

B = Q
3

from now on. In Monte Carlo simulations, it is more convenient to express

the canonical partition functions as observables

ZC(β,B)

ZGC(β0 = β, µ = iµI0)
=

1

ZGC(β0, iµI0)

∫

dUe−Sg [U ;β0] detM(U ; iµI0)

× 1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

detM(U ; iµI)

detM(U ; iµI0)

= 〈 1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

detM(U ; iµI)

detM(U ; iµI0)
〉β0,iµI0

= 〈 ẐC(U ;B)

detM(U ; iµI0)
〉β0,iµI0

,

(4.33)

9We use the GNU multi precision library (http://www.swox.com/gmp). We have cross-

checked the results with other libraries, such as MAPM (http://www.tc.umn.edu/ ringx004/mapm-

main.html).
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with ẐC(U ;B) = 1
2π

∫ π

−π d
(
µI

T

)
e−i3B

µI
T detM(U ; iµI), and ZGC(β0, iµI0) is the grand

canonical partition function sampled by Monte Carlo, here for notational simplicity

at β0 = β and µ = iµI0 . The ẐC(U ;B)’s are the Fourier coefficients of the fermion

determinant for a given configuration {U}. Although the average in Eq.(4.33) should

be real positive, the individual measurements are in general complex, sometimes with

a negative real part. This is how the sign problem manifests itself in our approach.

Moreover, a reliable estimate depends on a good overlap of our Monte Carlo ensemble

with the canonical sector B at temperature β. We address this issue by following

the idea of Ref. [65] and including both confined and deconfined configurations in

our ensemble. Indeed, we supplement the ensemble (βc(µ = 0), 0) with additional

critical ensembles at various couplings, which consist of configurations from both

phases. In principle, any ensemble is allowed. We use the following set of ensembles:

1. at imaginary chemical potential in the whole periodic interval, denoted as

(βc(µI), µI).

The critical line as a function of the imaginary chemical potential is

βc(µI) = 5.042(3) + 0.80(6)µ2
I +O(µ4

I) . (4.34)

2. at non-zero isospin chemical potential, denoted as (βc(µIS), µIS).

For small chemical potential, the curvature of the isospin chemical potential

corresponds to the one of the real chemical potential

βc(µIS) = 5.042(3)− 0.80(2)µ2
IS +O(µ4

IS) . (4.35)

Remember that at low temperature, one has to be careful not to exceed

µIS & mπ

2
[69]. Otherwise, one samples ensembles with configurations from

the confined phase and the pion superfluid, see Fig. 4.2. The potential risks

have been discussed in subsection 4.1.1.

3. at asymmetric coupling ξ, denoted as (βc(ξ), ξ).

We keep µ = 0 and modify the temporal part of the Dirac operator. We
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introduce in

M ∼ 1

2m
η4(x)

[

U4(x)δx,x′−4̂ − U †
4(x− 4̂)δx,x′+4̂

]

(4.36)

an anisotropic coupling ξ ∈ R by

M ∼ 1

2m
η4(x)

[

ξ U4(x)δx,x′−4̂ − ξ U †
4(x− 4̂)δx,x′+4̂

]

(4.37)

(compare with the fermion matrix with a chemical potential Eq.(4.26) and see

Ref. [96] for a similar approach). The problem we want to solve with this

particular choice of ensembles is the following. If we want to find the phase

transition at low temperature, for example at β = 4.9, we have to reweight

the critical ensembles at imaginary chemical potential from β(µI) ≥ 5.042

over a huge “distance” in β. Also, the isospin chemical potential ensemble at

β = 4.90 might sample the pion superfluid rather than the quark gluon plasma.

The presented modification of the Dirac operator shifts the phase transition

to lower β for ξ > 1, see Table 4.2, because ξ > 1 is equivalent to shrinking

the temporal lattice spacing a→ a
ξ

seen by the quarks.

ξ βc(ξ)(approx.)

1.00 5.042

1.10 5.013

1.25 4.970

1.375 4.935

1.515 4.900

Table 4.2: The (approximated) phase transition as a function of the asymmetry-parameter

ξ.

Each of these ensembles has a good overlap with a certain canonical sector at a

particular temperature10. We will illustrate this in more detail in the beginning of

10For example, it has been suggested by Ref. [97] that for a given B there is an optimal imaginary
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section 4.5. We combine all this information about a particular canonical partition

function ZC(β,B) by Ferrenberg-Swendsen reweighting[98]. We discuss this non-

trivial issue in detail in Appendix D. Here, we want to stress one point: We have

to ensure that the individual ensembles have good overlap with their “neighbour-

ing” ensembles, in particular because the ensembles at imaginary chemical potential

are unphysical and the ξ-ensembles are generated with a modified Dirac operator.

Assume we want to combine the measurements of two ensembles with no overlap:

(β = 4.935, µ = 0 ⇔ ξ = 1) and (β = 4.935, ξ = 1.375), see Fig 4.4. By making

fr
eq

ue
nc

y

log(e-Sg[U] detM(U))

β=4.935, ξ=1.00
β=4.935, ξ=1.10
β=4.935, ξ=1.25

β=4.935, ξ=1.375

Figure 4.4: Illustration of the Factorisation method. The ensemble at ξ = 1.375 is a

critical ensemble. We want to combine it with an ensemble generated at µ = 0 (equal

ξ = 1). For a proper Ferrenberg-Swendsen reweighting, we have to ensure a good overlap

by supplementing with two more ensembles at ξ = 1.1 and ξ = 1.25.

use of the Factorisation method, see subsection 3.3.2, we can ensure the applica-

bility of the Ferrenberg-Swendsen reweighting procedure. In this particular case,

chemical potential µI . Unfortunately, this does not seem to be so simple: The Laplace transforma-

tion Eq.(1.108) tells us, that the optimal choice of a chemical potential solves ∂f(T,ρ)
∂ρ

= 3µ, where

f(T, ρ) is the Helmholtz free energy density. For an imaginary chemical potential, this equation

does not have a solution since the free energy density is real.
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this means that we have to add two more ensembles (β = 4.935, ξ = 1.1) and

(β = 4.935, ξ = 1.25) to the ensemble pool.

4.3.4 Baryon density versus chemical potential

One of the main results in this project is the phase diagram as a function of the

temperature T and the baryon density ρ = B
V

. To compare with the literature, which

focuses on the phase diagram in the T -µ-plane, we need to know how to relate µ

to ρ. We have two options. (i) We can express any expectation in the grand

canonical ensemble by the canonical partition functions via the fugacity expansion,

see Eq.(1.106),

ZGC(T, µ) =

∫

dρ e3V ρ
µ
T ZC(T, ρ) (4.38)

as

〈ρ〉(µ) =
1

ZGC(T, µ)

∫

dρ ρ ZC(T, ρ)e3V ρ µ
T

〈B〉(µ) =
1

ZGC(T, µ)

∑

B

B ZC(T,B)e3B
µ
T . (4.39)

In practice, some of the canonical partition functions are very poorly determined and

contribute essentially noise. As a whole, this approach works badly, as concluded by

Ref. [79], still it might come in handy to perform cross-checks with (ii): the saddle

point approximation. We can rewrite Eq.(4.38) as

ZGC(T, µ) =

∫

dρ e−
V
T

(f(T,ρ)−3µρ) (4.40)

with the Helmholtz free energy density f(T, ρ) = − T
V

logZC(T, ρ). For large vol-

umes, the integral is dominated by a neighbourhood of ρmax, where ρmax is the

maximum of −V
T

(f(T, ρ)− 3µρ) for a given chemical potential, ie.

µ =
1

3

∂f(ρ)

∂ρ
|ρmax = f ′(ρmax) . (4.41)

While the first expression Eq.(4.39) is exact in any volume, the saddle point approx-

imation Eq.(4.41) is so only in the thermodynamic limit and may have more than
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one solution when solving for the baryon density. We illustrate this in Fig. 4.5 by

plotting f ′(ρ), which equals µ in the saddle point approximation, versus ρ. Assume

a first order phase transition line, which we cross by varying the chemical potential

µ. Increasing µ from zero, ρ increases very little. For some µ > µ1, two more solu-

tions appear, but by continuity, the system chooses the lowest value of the density.

At some value µ = µ2 we reach the “local maximum” of a typical S-shaped curve,

and the low-density solution disappears: the density must jump, discontinuously, to

the high-density solution. Starting at large chemical potential, we will stay in the

high-density phase until µ = µ1. Then the high-density solution disappears, and ρ

must jump to a low value. We obtain a text-book hysteresis plot.

µ2µ1

ρ

µ = f’(ρ)

f’(ρ)
µ ➚
µ ➘

Figure 4.5: The plot illustrates the hysteresis in ρ(µ) while crossing a first order transition.

We start at zero chemical potential and increase it. Then, we start at large chemical

potential and decrease it. Dashed, we plot the first derivative of the free energy, which

typically shows an S-shape in the vicinity of a first order phase transition.

The canonical approach to Finite Density QCD allows to determine the Helmholtz

free energy F (T,B). We thus approximate the derivative by a finite difference11 and

11The approximation of the derivative by a finite difference introduces an error O
(

1
V

)
.
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obtain the saddle point approximation in the form

µ(B)

T
=
F (T,B)− F (T,B − 1)

3T
. (4.42)

4.4 Results - Zero Baryon Number

While the grand canonical partition function ZGC(T, µ) with chemical potential µ

explicitly breaks the Z3 symmetry with the Dirac determinant, the canonical par-

tition function at fixed baryon number ZC(T,B) is manifestly Z3-symmetric. We

compare ZGC(T, µ = 0) and ZC(T,B = 0) formally and by numerical simulations,

in particular with respect to properties of the confinement-deconfinement transition.

We resolve the “Polyakov loop paradox” and show that differences between the two

ensembles, for physical observables characterising the phase transition, vanish with

increasing lattice size. We identify the phase transition by measuring the suscep-

tibility of the plaquette and of the chiral condensate, and discuss finite size effects

via Binder cumulants. From the histogram of the sampled imaginary chemical po-

tential µI , we obtain the free energy as a function of µI for free. We discuss it and

demonstrate numerically that the two ensembles at µ = 0 and B = 0 are equivalent

in the thermodynamic limit.

We focus on four flavours of Kogut-Susskind fermions with degenerate mass m
T

= 0.2.

In this theory, the pion mass acquires a mass of about 350 MeV. Simulations are

performed on lattices with extents 43× 4, 63× 4 and 83× 4 at seven temperatures12,

ranging from T
Tc

= 0.85 to 1.1, with good overlap between the “neighbouring” ensem-

bles. We analyse the results using Ferrenberg-Swendsen reweighting[98], see section

D.4.

12We relate the coupling β to the temperature T via T = 1
a(β)Nt

and the two-loop β-function

Eq.(1.61).
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4.4.1 Polyakov Loop in the Canonical Ensemble

The expectation value of the Polyakov loop in the canonical ensemble is zero for

any temperature. We show this explicitly in the following. The chemical potential

is introduced on the lattice, see subsection 1.1.5, as

U4(x)→ e+µaU4(x) (4.43)

U †
4(x)→ e−µaU †

4(x) , (4.44)

or equivalently as

U4(~x, x4 = x40)→ e+NtµaU4(~x, x4 = x40) (4.45)

U †
4(~x, x4 = x40)→ e−NtµaU †

4(~x, x4 = x40) , (4.46)

on a given temporal hyperplane x40 . An imaginary chemical potential iµI = i2πTk
3

corresponds to a Z3 centre transformation, see subsection 1.2.1,

U4(~x, x4 = x40)→ eiNta
2πTk

3 U4(x) = z(k)U4(~x, x4 = x40) . (4.47)

As a consequence, the two configurations {U, µI} and {z(k)U, µI − 2πTk
3
} have the

same value for the Dirac determinant detM(U ;µI) = detM(z(k)U ;µI − 2πTk
3

), but

the Polyakov loop is centre-rotated. We can group the configurations of a canonical

ensemble in triplets,

ZC(T,B) =
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

∫

[DU ] e−Sg[U ;β] 1

3

2∑

k=0

detM(z(k)U4(x4 = x40), µI) ,

(4.48)

since detM(U ;µI + 2πTk
3

) = detM(z(k)U ;µI) and e−i3B
1
T

2πTk
3 = 1 for B ∈ Z. In

each triplet, the average of the Polyakov loops is Poli×
(

1 + e−i
2π
3 + ei

2π
3

)

= 0, and

therefore the ensemble average also vanishes

〈Pol〉ZC(T,B) = 0 (4.49)

for any integer baryon number and temperature.
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In the ensemble generated by the grand canonical partition function

ZGC(T, µ) =

∫

[DU ]e−Sg [U ;β] detM(U ;µ) , (4.50)

the expectation value of the Polyakov loop

〈Pol〉ZGC(T,µ) 6= 0 (4.51)

is non-zero for any chemical potential and temperature. In the following, we show

that the non-vanishing value is caused by canonical sectors with quark numbers,

which are not a multiple of three. We express the grand canonical partition function

via the fugacity expansion (for notational simplicity at µ = 0)

ZGC(T, µ = 0) =
∑

Q

ZC(T,Q) with ZC(T,Q) = 0 if Q 6= 0 mod 3

(ZC(T,Q): see Eq.(1.105) on page 35)

= ...+ ZC(0) + Z×C(1) + Z×C(2) + ZC(3) + Z×C(4) + ... (4.52)

with Q the quark number, and Z×C(·) indicates ZC(·) = 0. The canonical partition

functions can be written as ZC(T,Q) =
∑

iWi(Q), where i labels the configurations,

and Wi(Q) are the corresponding Boltzmann weights. The expectation value of the

Polyakov then generically is given by

〈Pol〉GC =

∑

Q Num(Q)

ZGC(T, µ = 0)
(4.53)

=
...+ Num× (0) + Num(1) + Num(2) + Num× (3) + Num(4) + ..

...+ ZC(0) + Z×C(1) + Z×C(2) + ZC(3) + Z×C(4) + ...
6= 0 ,

(4.54)

where Num(Q) is given by Num(Q) =
∑

i PoliWi(Q) and vanishes if Q is a multiple

of 3 due to Eq.(4.49). It follows that the contributions of canonical sectors with frac-

tional baryon number to the Polyakov loop are unphysical, since the corresponding

canonical expectation value

〈Pol〉ZC(T,Q6=0 mod 3) =
Num(Q 6= 0 mod 3)

Z×C(Q 6= 0 mod 3)
=∞ . (4.55)
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Thus, the non-vanishing expectation value 〈Pol〉GC is irrelevant for thermodynamic

properties, since the canonical and the grand canonical ensembles are equivalent in

the thermodynamic limit, and has to be considered as an artifact of keeping sectors

with quark numbers not a multiple of three13. These canonical sectors, the so-called

non-zero “triality sectors”, have zero partition function, and make no contribution

to any expectation value, as we will show numerically in the following, except for

observables sensitive to the centre Z3 like the Polyakov loop. In particular, they do

not change the expectation value of the Polyakov loop correlator.

4.4.2 Confinement-Deconfinement Transition

The phase transition is signaled by the peak in the susceptibility of the chiral con-

densate 〈ψ̄ψ〉, which we measure as follows. First, we show that the expectation

value of the chiral condensate is ∂ logZGC(T,µ,m)
∂m

:

∂ logZGC(T, µ,m)

∂m
=

1

ZGC(T, µ,m)

∂ZGC(T, µ,m)

∂m

=
1

ZGC(T, µ,m)

∫

[DU ][DΨ̄][DΨ]
∂

∂m
e−Sg [U ]−Ψ̄MΨ

=
1

ZGC(T, µ,m)

∫

[DU ][DΨ̄][DΨ]
(
−Ψ̄Ψ

)
e−Sg [U ]−Ψ̄( 6D+m−µγ0)Ψ

= 〈−Ψ̄Ψ〉 . (4.56)

13“Triality” is defined as the difference of the number of quarks and antiquarks modulo 3. We

can say that non-zero triality states cause the explicit breaking of the Z3-symmetry and therefore

are responsible for a non-vanishing expectation value of the Polyakov loop. Furthermore, we can

argue that non-zero triality states are unphysical: Triality is a strictly conserved quantity in any

physical process. Once the universe has decided in which triality sector it wants to exist, it cannot

change its triality. Since in the confined phase, there are colourless states only, it must be the zero

triality sector.
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We can interchange the path integral and ∂
∂m

, from which it follows

∂ logZGC(T, µ,m)

∂m
=

1

ZGC(T, µ,m)

∂ZGC(T, µ,m)

∂m

=
1

ZGC(T, µ,m)

∫

[DU ]
∂

∂m
e−Sg [U ]+Tr logM(m)

=
1

ZGC(T, µ,m)

∫

[DU ]

(

Tr{M−1(m)
∂M(m)

∂m
}
)

e−Sg [U ] detM(m)

= 〈Tr{M−1(m)
∂M(m)

∂m
}〉 . (4.57)

Thus, the chiral condensate is calculated via the trace of M−1(m)∂M(m)
∂m

. Note that

the trace is evaluated with stochastic estimators, rather than computed exactly. We

plot the results from both ensembles as a function of β in Fig. 4.6.
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Figure 4.6: Susceptibility of ψ̄ψ versus β for all volumes in both ensembles. left:

ZGC(T, µ = 0), right: ZC(T,B = 0). Even for the smallest, 44, lattice, differences are

barely visible.

On the 43 × 4 lattice, a slight shift in the pseudo-critical βc can be observed. It

disappears for larger volumes. We observe the same behaviour for the specific heat.

The small deviation is caused by contributions from higher baryon sectors, which are

present in the µ = 0 ensemble. This is our first evidence to establish the equivalence

of the two ensembles.

In quenched simulations, a Z3-symmetrisation of the Polyakov loop is often enforced

by hand, which is accompanied by reduced finite size effects[99]. Therefore, we could

expect to observe such a reduction in the canonical formalism as well compared to
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Figure 4.7: Binder cumulant minimum versus inverse volume for both ensembles (slightly

shifted). left: plaquette, right: chiral condensate. The thermodynamic extrapolation does

not tend to 2
3 , indicating a first order transition.

the grand canonical one. To compare the finite size effects in the two ensembles, we

analyse the minimum of the Binder cumulant[100]

CB(Ô) = 1− 1

3

〈Ô4〉
〈Ô2〉2

(4.58)

versus the inverse volume 1/V (see Fig. 4.7). For both the plaquette and the chiral

condensate, the thermodynamic (linear) extrapolation does not tend to 2
3

- indica-

tive of a first order phase transition14, confirming the finding in the literature[101].

However, for each volume, the measured cumulant values agree between the two

ensembles within statistical errors, indicating equivalent finite size effects.

4.4.3 The Free Energy F (T, µI)

In the grand canonical ensemble, the free energy (as a dimensionless quantity) is

given in terms of the grand canonical partition function

∆F (T, µ)

V T 4
≡ − 1

V T 3
log

ZGC(T, µ)

ZGC(T, 0)
. (4.59)

14In the case of a second order transition, 〈Ô4〉 is equal to 〈Ô2〉2 up to finite size corrections[100].

Thus, CB(Ô) → 2
3 in the thermodynamic limit. In the case of a first order transition, the double

peak structure of the distribution of the measurements manifests itself in a non-trivial value of the

Binder cumulant.
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A standard approach[72, 73] is to make a Taylor expansion in µ about µ = 0, where

the derivatives entering the series may be expressed as complicated expectation

values evaluated at µ = 0. Remember that this expansion is in even powers of µ.

The lowest order expansion coefficient is then estimated by

∂2 logZGC(T, µ)

∂µ2
= 〈Nf

4

∂2(log detM)

∂2µ
〉µ=0 + 〈

(
Nf

4

∂(log detM)

∂µ

)2

〉µ=0 . (4.60)

and

∂(log detM)

∂µ
= Tr

(

M−1∂M

∂µ

)

(4.61)

∂2(log detM)

∂µ2
= Tr

(

M−1∂
2M

∂µ2

)

− Tr

(

M−1∂M

∂µ
M−1∂M

∂µ

)

(4.62)

In our approach, the free energy comes for free from the µI-histogram in the canon-

ical simulation, and moreover, to all orders. For low temperature, however, the

histograms are quite noisy. Therefore we will, when needed, anticipate results from

the more sophisticated method (see subsection 4.3.3), where we can calculate the

grand canonical partition functions as a function of an arbitrary imaginary chemical

potential as a consequence of the reweighting method that we apply, as described in

Appendix D.

In Fig. 4.8 we show the free energy divided by V T 4 versus µI

T
for T

Tc
< 1, T

Tc
≃ 1 and

T
Tc
> 1. In all cases, we observe a minimum at µI

T
= 0. Therefore, in the thermody-

namic limit, only µI

T
= 0 mod 2π

3
will survive. This establishes the equivalence of

ZC(T,B = 0) with ZGC(T, µ = 0).

For T
Tc
∼ 0.9, no singularities develop at µI

T
= ±π

3
in the thermodynamic limit, thus

indicating a crossover, as expected from the phase diagram T -µI , see Fig. 1.4 on

page 34. In Fig. 4.9, left plot, we show the free energy density, determined by the

histogram method, which is very flat and noisy unfortunately. The periodicity of

the free energy is 2πT
3

, and we exploit it by a Fourier expansion in 3k µI

T
using the
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Figure 4.8: F (T,µI)
V T 4 as a function of µI

T at the temperatures T
Tc
∼ 0.9, 1.0, 1.1 from left to

right. The free energy density increases significantly while entering the high-temperature

phase.

Ansatz
∆F (T, µI)

V T 4
= c

(

1− cos(3
µI
T

)
)

+ d cos(6
µI
T

) + . . . . (4.63)

In order to improve the determination of the coefficients c,d,. . ., we use results based
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Figure 4.9: F (T,µI)
V T 4 as a function of µI

T for T
Tc
∼ 0.9. The histogram method is very noisy.

We show a rescaled version of the left plot in Fig. 4.8 (left). We also present results

based on the reweighting method described in subsection 4.3.3 (right). The results are

in agreement with the histogram method, but allow for a more reliable description by

a Fourier expansion. The first coefficient is sufficient to describe the data points. The

reweighting method calculation is expensive and has not been done for the 83 × 4 lattice.

We thus draw the fit, which is based on histogram data.

on the reweighting method described in subsection 4.3.3. Within errors, the free en-
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ergy density is in agreement with the histogram method, but with much smaller sta-

tistical uncertainty. The fit is excellent already with one Fourier coefficient, with no

indication for higher Fourier components, at least on the small lattices we consider.

Note that in the hadron resonance gas model, see subsection 4.2.1, the Ansatz for

the free energy as an imaginary chemical potential is ∆F (T,µI)
V T 4 = f(T )(1− cos(3µI

T
)).

We thus have a mean to measure the sum of resonances f(T ). For example in the

case of a 63 × 4 lattice, f(T ∼ 0.9Tc) = 0.048(1). Since our data can be so well

described by this Ansatz, this confirms that the relevant degrees of freedom in the

low-temperature phase are hadrons. The masses of the hadrons are much larger

than the scale given by the temperature, since the free energy changes only slightly

when varying the imaginary chemical potential, thus mH ≫ Tc ≈ 160 MeV.

For T
Tc
∼ 1.1 we expect a cusp at µI = ±πT

3
(Z3-transitions) to develop in the

thermodynamic limit, due to the first order phase transition. Indeed, it appears

clearly as the volume increases, see Fig. 4.10 for a comparison of the histogram

results (left) versus the reweighting approach15 (right).
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Figure 4.10: F (T,µI)
V T 4 as a function of µI

T for T
Tc
∼ 1.1. The histogram method (left). The

reweighting method, however with 83 × 4 results from the histogram (right). We can

describe the data points very accurately by the free gas Ansatz. With increasing volume,

the Stefan-Boltzmann limit (T →∞) is approached very quickly already at T
Tc
∼ 1.1 due

to the strong first order transition.

15The 83 × 4-data points are taken from the histogram method.
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We can try to describe these results by a generic Taylor series in µI

T
as an Ansatz.

We already have discussed such a simple model at high temperature, the free gas

of massless quarks (see subsection 4.2.2). If we perform an analytical continuation

from real to imaginary chemical potential, then the free energy of this model is given

by
∆F (T, V, µI)

V T 4
= b2(T )C2

Nf

2

(µI
T

)2

− b4(T )C4
Nf

4π2

(µI
T

)4

(4.64)

in the thermodynamic limit. We consider the volume-dependent lattice corrections

C2 and C4 (compare Table 4.1) and measure the deviation from this free gas model

by two parameters b2(T ) and b4(T ).

T ∼ 1.1Tc 43 63 83 SB limit

b2(T ) 0.29(1)(2) 0.71(2)(6) 0.90(2)(4) 1

b4(T ) 28(2)(21) 4.3(8)(41) 3.9(9)(26) 1

Table 4.3: The coefficients of the free energy density expansion for T
Tc
∼ 1.1 come close

to their T → ∞ value. In addition to the jackknife error, we specify a systematic error

for the fitting Ansatz (see text). The error on the second coefficient b4 is so large that we

cannot determine it properly.

We observe that the leading term approaches the Stefan Boltzmann limit rather

fast while increasing the volume, see Fig. 4.10 and Table 4.3. This is somewhat

surprising since this coincidence with the Stefan Boltzmann law will occur only at

T → ∞ even in the thermodynamic limit. Deviations at T ∼ 1.1Tc should persist

even in the thermodynamic limit, which indicates the interactions of the quarks16.

The reduction of b2(T ) from 1 is consistent with perturbative calculations[34], and

its value agrees with Ref. [103], already for the 83× 4 lattice. We argue that indeed

the relevant degrees of freedom at high temperature are very light quarks. The first

indication is the success of describing our data with the massless quark gas model.

16It has been shown already that the free energy of the gluon sector deviates from the Stefan

Boltzmann value 8π2

45 by about 15%[102] even at T
Tc
∼ 5 (and more for lower temperatures). It

thus would not be astonishing to observe deviations at finite temperature also in the quark sector.
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The second indication comes from the observation that the high-temperature phase

is strongly affected by the imaginary chemical potential, thus mq ≪ Tc ≈ 160 MeV.

The coefficients in Table 4.3 suffer from a systematic fitting error. One source is the

fitting range: our Ansatz Eq.(4.64) does not reflect the 2π
3

-periodicity of µI

T
, therefore

we are allowed to fit small µ
T

only. In this regime, the quartic term is subleading

and hard to quantify. An estimate of the systematic fitting error can be obtained

by varying the fitting range. Another source is the fitting Ansatz : we could add the

next-order term
(
µI

T

)6
, which changes C4 by a few percentages, or periodicise the

Ansatz by hand via

∆Fper(T, V, µI)

V T 4
= − 1

V T 3
log

Zper(T, V, µI)

Zper(T, V, 0)
(4.65)

with

Zper(T, V, µI) =
∞∑

k=−∞
e
−V T 3

(

b2(T )C2
Nf
2 (µI

T
+ 2πk

3 )
2−b4(T )C4

Nf

4π2 (
µI
T

+ 2πk
3 )

4
)

. (4.66)

In conclusion, we cannot determine b4(T ) accurately.

4.5 Results - Non-Zero Baryon Number

We now present results from the variance reducing canonical approach to study

properties of QCD at temperature T and density ρ/chemical potential µ. For the

theory with four flavours of Kogut-Susskind fermions at mass m
T

= 0.2 (mπ ≈ 350

MeV), the transition between the hadronic and the plasma phase is first-order and

gives rise to a co-existence region, part hadron part plasma. We will identify this

co-existence region, obtain the phase diagram in the T -ρ plane, then in the T -µ

plane using the saddle point approximation Eq.(4.42). We will confirm that the

two phases can be well described by simple models, the hadron resonance gas and

the massless quark gas. We will measure the chiral condensate as a function of the

baryon number. The result will also help to identify two phases: in the confined
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phase the chiral condensate has a finite value, while in the quark gluon plasma it

should be zero since chiral symmetry is restored. However, due to the non-vanishing

quark mass, there is a residual chiral condensate. The dynamics of the first order

phase transition is governed by the latent heat and the interface tension. We discuss

a technique to measure them and present results. Note that the average Polyakov

loop is of no use in our approach. Its expectation value is zero for any temperature

in every canonical sector, as discussed in subsection 4.4.1.

This is a feasibility study, therefore we consider a small, coarse lattice 63 × 4. Since

Tc ∼ 160 MeV, the lattice spacing a ∼ 0.3fm, and the spatial volume is (6a)3 ≈
(1.8fm)3. We sample a variety of ensembles, each at around 5000 configurations, to

address the overlap problem, as elaborated in subsection 4.3.3. See Table 4.4 for a

detailed list. In addition to the ensembles listed in that table, we have 55 additional

ones, given by the parameters (β, µI), with eleven β’s in β = 4.80, . . . , 5.10 and

the imaginary chemical potentials µI = 0.0, 0.0654I, 0.1309I, 0.18512I, 0.2618. Note

that our ensembles are generated such that the autocorrelation time τ is smaller than

one configuration except at the phase transition, where τ is about 1 . τ . 5. The

autocorrelation times are taken into account in the multi-histogram reweighting, as

well as in the error analysis. In Fig. 4.11, we illustrate the overlap problem and the

importance of critical ensembles. We plot the importance of the various ensembles

ΩC (see Eq.(D.32)) in the canonical sectors B = 0, 8, 14 at temperature T
Tc

= 0.9.

We observe that only ensembles sampled at around criticality, namely the ensembles

(β = 5.05, µI = 0.0), (β = 5.071, µI = 0.1852) (not included in the pictures) and

(β = 5.10, µI = 0.2618), contribute in the high-density (large B), ie. quark-gluon

plasma regime.
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ensemble number β coupling type coupling value

0 5.042 µI 0.00

1 5.044 µI 0.06

2 5.054 µI 0.13

3 5.067 µI 0.18

4 5.085 µI 0.22

5 5.095 µI 0.26

6 5.007 µI 0.00

7 5.009 µI 0.06

8 5.019 µI 0.13

9 5.032 µI 0.18

10 5.050 µI 0.22

11 5.060 µI 0.26

12 4.975 µI 0.00

13 4.975 µI 0.18

14 4.975 µI 0.26

15 4.975 µI 0.06

16 4.975 µI 0.13

17 4.972 µI 0.00

18 5.025 µI 0.26

19 4.970 µIS 0.20

20 4.990 µI 0.26

21 4.970 ξ 1.25

22 4.970 ξ 1.10

23 4.935 ξ 1.00

24 4.935 ξ 1.10

25 4.935 ξ 1.25

26 4.935 ξ 1.375

27 4.955 µI 0.26

28 5.013 ξ 1.10

29 4.90 ξ 1.00

30 4.90 ξ 1.10

31 4.90 ξ 1.25

32 4.90 ξ 1.375

33 4.90 ξ 1.515

34 4.90 ξ 1.45

35 4.92 µI 0.26

Table 4.4: The various ensembles in our approach.

4.5.1 The Free Energy F (T, µ) and F (T,B)

The free energy is the fundamental quantity to describe a thermodynamic system.

We present it as a function of the temperature T and the real chemical potential µ

as well as the baryon number B:

∆F (T, µ) = −T log
ZGC(T, µ)

ZGC(T, µ = 0)

F (T,B) ≡ −T log
ZC(T,B)

ZC(T,B = 0)
. (4.67)



4.5. RESULTS - NON-ZERO BARYON NUMBER 141

 0

 0.05

 0.1

 0.15

 0.2

 0.25

T/Tc=0.90,  B=0

 4.8  4.85  4.9  4.95  5  5.05  5.1β
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

µI 0

 0.2

 0.4

 0.6

 0.8

 1

ΩC

-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

T/Tc=0.9, B=8

 4.8  4.85  4.9  4.95  5  5.05  5.1β
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

µI 0

 0.2

 0.4

 0.6

 0.8

 1

ΩC

-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

T/Tc=0.9, B=14

 4.8  4.85  4.9  4.95  5  5.05  5.1β
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

µI 0

 0.2

 0.4

 0.6

 0.8

 1

ΩC

Figure 4.11: The importance ΩC of various ensembles (see text) at temperature T/Tc =

0.90 (β = 4.98), see Eq.(D.15) on page 197. In the B = 0-sector, the confining ensembles

around β = 4.975 contribute most (top). In the co-existence region (B = 8) several

ensembles contribute (middle). At large B, only the ensembles sampled around criticality

contribute (bottom). This reflects the overlap-problem: for B = 14, we sample the quark-

gluon plasma phase; ensembles in the confined regime have no information about this

sector, hence only the ensembles sampled at around criticality contribute significantly.
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In this section, we almost exclusively deal with the Helmholtz free energy F (T,B).

However, to establish the connection with the previous section, where we have stud-

ied the free energy as a function of the imaginary chemical potential, we first dis-

cuss ∆F (T, µ). As per Eq.(D.6), we determine ZGC(T, µ) via Ferrenberg-Swendsen

reweighting. An arbitrary normalisation constant cancels if we consider the ratio

ZGC(T,µ)
ZGC(T,µ=0)

. We want to show the inconsistency of ∆F (T, µ) with the free gas expres-

sion in the Stefan-Boltzmann limit, confirming results in Ref. [73] and the previous

section.
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Figure 4.12: −∆F (T,µ)
T 4 as a function of the temperature at fixed real chemical potential

µ
T = 0.4, 0.8 and 1.2. The Stefan-Boltzmann values incorporate finite volume and cut-off

corrections of the free gas on the lattice. At T
Tc

= 1.1, the numerical values are about 30%

smaller than the model calculation.

In Fig. 4.12 we plot ∆F (T,µ)
V T 4 at fixed chemical potential while varying the temperature.

A plateau is reached for rather low temperatures T ∼ 1.1Tc already17. We compare

17We have chosen the inverse coupling β = 5.10, which gives a temperature T of about 1.1 Tc.

In the previous section, we discussed results at the same β-value.



4.5. RESULTS - NON-ZERO BARYON NUMBER 143

its value with the free gas model calculation,

−∆F (T, V, µI)

V T 4
= C2

Nf

2

(µ

T

)2

+ C4
Nf

4π2
(
µ

T
)4 , (4.68)

where we take the finite volume and cut-off corrections C2 and C4 into account, as

listed in Table 4.1. We observe that the lattice results are below the free gas values.

We quantify the deviation by requiring that

−∆F (T, V, µI)

V T 4
= b̂2(T )C2

Nf

2

(µ

T

)2

+ b̂4(T )C4
Nf

4π2
(
µ

T
)4 (4.69)

describes our high temperature plateaus for all chemical potential. Note that we

have plotted only three particular values of µ
T

for simplicity. We obtain b̂2(T ∼
1.1Tc) = 0.70(2) and b̂4(T ∼ 1.1Tc) = 3.0(2). For small chemical potentials, our

results deviate from the free gas Ansatz by about 30%, for µ
T
> 1 even more. This

discrepancy is caused by an interaction between the quarks. Ref. [34] shows that a

finite coupling g(T ) indeed decreases the leading coefficient in Eq.(4.68). Note that

we cannot determine the value of the coupling g(T ), since also g(T )-dependent finite

size corrections are affecting b2(T ). In the previous section, where we extracted the

free energy as a function of an imaginary chemical potential, we have determined

b2(T ∼ 1.1Tc) = 0.71(2) (b4(T ∼ 1.1Tc) could not be extracted reliably), confirming

the findings here. This indicates that the analytical continuation of the Taylor series

works, at least for small chemical potential.

In the following, we discuss F (T,B) as a function of small baryon numbers B =

1, . . . , 4 to check the feasibility of the method to explore few-nucleon systems at

low temperature. We then extrapolate to the strong-coupling regime β → 0 and

compare with analytical strong-coupling calculations.

In Fig. 4.13 (left), we illustrate the scans we are performing in the T -ρ plane. Note

that the arrows are not vertical, since we keep fixed the baryon number, not the

density18. If we increase β, the lattice spacing a decreases. As a consequence, the

18The scans actually are performed along T ∼ ρ 1
3 .
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density increases. In the right figure, we present the Helmholtz free energy at fixed

baryon number B = 1, 2, 3, 4 as a function of the temperature.
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Figure 4.13: A sketch of our scan (left). The free energy at fixed baryon number as a

function of the β/T (right). The vertical line indicates the critical temperature at B = 0.

At low temperature, we deal with a system of weakly interacting heavy (mB ≫ T ) baryons

F (T,B) ∼ B, at high temperature we observe a weakly interacting gas of light (mq ≪ T )

quarks F (T,B) ∼ B2.

In the high-temperature phase T > Tc, F (T,B) is almost independent of the tem-

perature. Thus, compared to the temperature, the mass of the degree of freedom is

either very large or very small. Motivated by the (relative) success of the free quark

gas model in this regime, we calculate the Helmholtz free energy in this model for

small B. For small µ, the free energy as a function of the chemical potential is ap-

proximately F (µ) ∼ V T 2µ2, compare with Eq.(4.16). The grand canonical partition

function thus is

ZGC(T, µ) ∼ eV Tµ
2

, (4.70)

and we obtain the canonical partition function by the Fourier transformation

ZC(T,B) =
1

2π

∫ π

−π
dµ̄I e

−i3Bµ̄IZGC(iµ̄IT ) ∼ e−
B2

V T3 . (4.71)

It follows that the Helmholtz free energy F (T,B) = −T log ZC(T,B)
ZC(0)

∼ B2, as we

observe with small deviations. These deviations may be caused by finite size effects,
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and/or the inappropriateness of the simple model (for example there is a weak in-

teraction between the quarks). Here, we cannot shed more light on this issue, but

we will do so in the next subsection.

As T approaches Tc from below, the free energy drops dramatically. This region is

indicative of the co-existence region, however, due to rounding effects, boundaries

are hard to quantify. In the low-temperature phase T < Tc, the Helmholtz free

energy increases approximately linearly with B at a given temperature. In addition,

it decreases linearly in T at a given B. A very naive canonical partition function

like

ZC(T,B) = e−
1
T

(m|B|−ST ) ≡ de−
1
T
m|B| with d ≡ e−S (4.72)

would already be sufficient to explain this behaviour. This partition function de-

scribes a system consisting of B baryons of the same kind: a baryon state with mass

m at rest, with degeneracy d (S is the entropy). The assumption that we deal with

static baryons is reasonable: the minimal non-trivial momentum is much larger than

the temperature, pmin = ~kmin = 2π
Nsa

> T = 1
Nta
∼ 160 MeV. In other words it

is unlikely to find baryon states with non-zero momentum. A numerical investiga-

tion shows however that we observe small deviations from this description. At fixed

temperature, we check the difference I = F (B = 1) − F (B = 2)/2. We obtain

I = −0.06(1)a−1 ≈ −35(6) MeV, within errors independently of the temperature

in the interval 0.85 < T
Tc
< 0.9. This may be caused by a small repulsive interac-

tion. As a consequence, we either implement this interaction in the given model,

or we consider a different one. We realise that Eq.(4.72) is a crude approximation

of the hadron resonance gas model (one static resonance only). We will test our

data against the hadron resonance gas in the next subsection and, indeed, find good

agreement.

We can lower the temperature, or rather β, even further. We measure F (β,B = 1)
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and extrapolate to the strong coupling limit β → 0. It will allow us to compare

with predictions from different strong coupling calculations. The first comparison

is made by considering the strong coupling spectrum of the four flavour theory. We

use the Ansatz in Eq.(4.72) extended to two states with the masses m0,m1 and

degeneracies d0, d1. The masses are known[104, 105] a priori: am0(β = 0) = 2.785

and am1(β = 0) = 3.113. The degeneracies can be calculated. In order to determine

the various possibilities to combine three degenerate quarks into a symmetric state

(under the exchange of a pair of quarks), we have to reduce 4⊗4⊗4 = 20S⊕20M ⊕
20M ⊕ 4A, where the subscript S refers to symmetric, M to mixed-symmetric and A

to antisymmetric states. With four flavours, the “baryon octet”, which contains the

“nucleon” becomes a 20-plet. The “baryon decuplet” becomes a 20-plet also. The

total degeneracy is then (for the two lowest states)

JP =
1

2

+

: 20× (2
1

2
+ 1) = 40

JP =
3

2

+

: 20× (2
3

2
+ 1) = 80 .

The Ansatz thus becomes

Z(β) = d0e
− (am0)(β)

aT + d1e
− (am1)(β)

aT + . . . , (4.73)

with d0 = 40 and d1 = 80. 1
aT

= Nt, where Nt is the number of lattice sites

in temporal direction. We expand the mass terms in β: (ami)(β) = (ami)(β =

0) + ciβ +O(β2) allows for a fit with the parameters c0, c1.

In Fig. 4.14, we plot our results of F (β,B)/B for B = 1 and B > 2. We first consider

the case B = 1, where F (β,B)/B = F (β,B), and fit the Ansatz Eq.(4.73). If we

consider one state (m0) only, the expansion coefficient c0 is small, which justifies our

simple expansion. However, the fit19 does not account for all data points, neither

does the Ansatz with two states. The tendency however is that the inclusion of more

states reduces the free energy of our Ansatz, thus Eq.(4.73) approaches the lattice

19In Fig. 4.14 we only indicate the free energy predicted by Eq.(4.73) at β = 0: “1-state” refers

to the inclusion of only the state m0; “2-states” indicates that we use two states m0 and m1.
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Figure 4.14: Strong coupling limit. We show F (β,B)/B for B = 1 and B > 2 (plateau).

For B = 1, F (β,B)/B = F (β,B), we compare the free energy with predictions from

a simple strong coupling Ansatz Eq.(4.73), labelled with “1-state” and “2-states”. The

parameters c0 and c1 are obtained by a mediocre fit (not explicitly plotted). Further states

are needed, which bend the strong-coupling prediction to lower values, thus the prediction

will approach the lattice data. F (β,B)/B is also a crude approximation for the critical

chemical potential[80]. We compare with predictions for the critical chemical potential

at β = 0 from Monte Carlo simulations and strong coupling calculations: “Monte Carlo,

Karsch and Mutter”[106], “Nishida et al.”[107] and just recently “Kawamoto et al.”[108].

At B = 1, the interaction of the baryons is not included, which biases F (β,B)/B to larger

values. At fixed β, a plateau in F (β,B)/B is reached at about B = 3 already. We plot the

particular plateau-values which are in between the various strong coupling calculations.

data. However, this would require further knowledge of the spectrum. In fact, if we

allow in our simple Ansatz for non-zero momenta ǫ2i (mi, ~k) = m2
i +
∑3

j=1

(

2 sin
kj

2

)2

and sum over these states, the prediction is T−1F (β,B) = 4.80 for the “1-state plus

momenta”-Ansatz and T−1F (β,B) = 4.31 for the “2-states plus momenta”-Ansatz.

Strong coupling calculations have determined the critical chemical potential at β =

0. An old analysis using Monte Carlo simulations has found aµc(β = 0) = 0.63

(see Fig. 4.14 “Monte Carlo, Karsch and Mutter”[106]. The quantity shown is

1
aT

3aµc.), a newer strong coupling calculation has obtained aµc(β = 0) = 0.57 (see
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Fig. 4.14 “Nishida et al.”[107]). Their result indicates a rather large critical chemical

potential. However, recently, another strong coupling analysis has been performed,

where a baryon interaction term is incorporated for the first time. Ref. [108] then

finds, depending on the strength of the interaction, a band aµc(β = 0) ∈ [0.03, 0.15].

This band is indicated in Fig. 4.14 (“Kawamoto et al.”). As argued in Ref. [80],

F (β,B)/B is an estimation of the critical chemical potential at a certain value of

the coupling β, if a plateau of F (β,B)/B with increasing B is reached. We observe

such a plateau for B = 3 already. We show the plateau-value, B > 2, which is in

between the strong coupling calculations. The value of the critical chemical potential

at β = 0 is important because it provides a limiting value for the critical line µc(β),

which we study later.

4.5.2
F (T,B)−F (T,B−1)

3T = µ(B)
T

We assume the validity of the saddle point approximation to equate F (T,B)−F (T,B−1)
3T

with µ(B)
T

following Eq.(4.42). This assumption is justified, as we will show in the

next subsection. If we know µ(B)
T

, which relates µ to ρ = B
V

, we can compare the

lattice results with model calculations for ρ(µ): we show that the low-density regime

can be reasonably well described by a simple hadron resonance gas Ansatz Eq.(4.11),

ρ
T 3 = f(T ) sinh( µ

T
) with f(T ) as the only free parameter; the high-density regime

almost corresponds to a gas of free massless quarks Eq.(4.15) ρ
T 3 =

Nf

3

(
µ
T

)
+

Nf

3π2

(
µ
T

)3
.

In Fig. 4.15, we show µ
T

as a function of the baryon number, at fixed temperature, as

sketched in the left figure. We obtain accurate results up to high densities ( ρ
T 3 = 8

corresponds to about 5 baryons/fm3) and large chemical potentials ( µ
T
∼ 2). Note

that we find the same ρ
T 3 (

µ
T
) dependence in the plasma phase at all temperatures.

In the low-temperature phase, it is remarkable that the hadron resonance gas Ansatz

ρ

T 3

(µ

T

)

= f̃(T ) sinh
3µ

T
(4.74)

accounts for all data points at small baryon number. We fit the sum of the hadron
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Figure 4.15: A sketch of our “scans” (left). The derivative of the free energy at fixed tem-

perature as a function of the baryon number (density). In the saddle point approximation,

the y-axis corresponds to µ
T

resonances f̃(T ) and find f̃(T ∼ 0.90Tc) = 0.05(1), in agreement20 with f(T ∼
0.90Tc) = 0.048(1) in subsection 4.4.3. In two independent studies, at imaginary

chemical potential and at finite baryon density, we have described consistently the

free energy and one of its derivatives with the hadron resonance gas model. The only

free parameter was the sum of resonances f(T ) = f̃(T ). As a side note, this result

also indicates the validity of analytic continuation. ρ
T 3

(
µI

T

)
shows no measurable

deviation from f(T ) sin 3µI

T
, whereas ρ

T 3

(
µ
T

)
deviates from Eq.(4.74) dramatically as

the phase transition is reached.

The high-temperature regime can be well described by the slightly modified free

massless quark Ansatz

ρ

T 3

(µ

T

)

= b̃2(T )C2
Nf

3

(µ

T

)

+ b̃4(T )C4
Nf

3π2

(µ

T

)3

, (4.75)

with b̃2(T = 1.1Tc) = 0.70(1) and b̃4(T = 1.1Tc) = 2.97(3). This appears to hold

for any temperature if the density is large enough. Thus, we have found the low-

20We compare the results at same inverse coupling β = 4.95, which corresponds to a temperature

slightly lower than T
Tc

= 0.9.
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temperature/large-density regime to be consistent with a quark-gluon plasma de-

scription. The coefficients, which quantify the deviation from the Stefan-Boltzmann

gas, are in agreement with results from imaginary chemical potential (subsection

4.4.3) as well as real chemical potential (subsection 4.5.1). On the rather small lat-

tice 63 × 4, we deviate by at about 30% from a free gas. The downward deviation

from 1 (b̃2(T = 1.1Tc) = 0.70(1)) is consistent in sign with leading perturbative

corrections[86].

For completeness, we cross-check the volume-dependent constants C2 and C4. We

calculate F (T,B)−F (T,B−1)
3T

for the free quark gas on the lattice, which is obtained by

setting all gauge links to the identity. The results are shown in Table 4.5. The new

constants, labelled as C̃2 and C̃4 (“canonical results”), agree with the C2 and C4

(“grand-canonical results”) in Table 4.1.

Lattice C̃2 C̃4

43 × 4 4.39(8) 0.24(8)

63 × 4 2.67(2) 1.75(3)

83 × 4 2.33(1) 2.33(1)

103 × 4 2.25(1) 2.52(1)

∞3 × 4 2.25 2.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

µ/
T

ρ /T3

Stefan-Boltzmann gas, Nf=4
Free Gas, 103x4, a m=0.05

Free Gas, 83x4, a m=0.05
Free Gas, 63x4, a m=0.05

Free Gas, 44, a m=0.05

Table 4.5: The prediction for µ
T ( ρ

T 3 ), based on the free gas model in the continuum at

high temperature, suffers from finite size and cut-off effects. The correction terms C̃2 and

C̃4 help to quantify the systematics (left table). As expected, the correction factors are

in agreement with Table 4.1 on page 115. We plot results of µ
T ( ρ

T 3 ) from the free gas on

the lattice at various lattice sizes and compare with the massless Stefan-Boltzmann gas

(right). Already at the volume 103, no difference is visible.
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4.5.3 Maxwell Construction

The first order phase transition and the associated metastabilities between the two

phases are clearly visible in the S-shape behaviour of µ
T
(B), see the discussion in

subsection 4.3.4. For a given temperature T , we identify the boundaries ρ1 and ρ2

of the co-existence region and the critical chemical potential µc as follows. Equality

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

0 1 2 3 4 5

µ/
T

 =
 (

F
(B

)-
F

(B
-1

))
/3

T

Baryon number

ρ/T3

ρ1 ρ2

T/Tc = 0.92
µ/T=1.06(2)

Weakly interacting massless gas

Figure 4.16: The Maxwell construction allows to extract the chemical potential, as well as

the boundaries of the coexistence region.

of the free energy densities in the two phases f(ρ1)− 3µcρ1 = f(ρ2)− 3µcρ2, where

f is the Helmholtz free energy f(ρ = B
V

) = − T
V

logZC(ρ = B
V

), implies

∫ ρ2

ρ1

dρ(f ′(ρ)− 3µc) = 0 . (4.76)

Since f ′(ρ) is the quantity measured in Fig. 4.15, we determine ρ1, ρ2 and µc by

a “Maxwell construction”, illustrated in Fig. 4.16 for the temperature T
Tc

= 0.92.

The value of µ
T

defining the horizonal line is adjusted to make the areas of the two

“bumps” in the S-shape equal. Here, µc

T
= 1.06(2) is the value of the critical chem-

ical potential, with the boundaries of the co-existence region at ρ1
T 3 = 1.00(16) and
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ρ2
T 3 = 3.15(32).
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Figure 4.17: The saddle point approximation in comparison with the fugacity expansion.

The same critical chemical potential µc = 1.06(2) is indicated. However, the S-shape

indicating the metastabilities is only visible via the saddle point approximation.

We can cross-check this result for the critical chemical potential by making use of

the fugacity expansion Eq.(4.39), see Fig. 4.17. For a given chemical potential, we

measure the baryon number 〈B〉(µ). We see a jump at the same value µ
T

= 1.06,

but the rounding due to finite size effects is very strong.

4.5.4 Phase Diagrams

We present the phase diagram in the T -µ as well as in the T -ρ-plane21. The latter

has been obtained for the first time. In Fig. 4.18, we summarise results from various

methods, all for the same theory: four flavours of staggered quarks at m
T

= 0.2,

21Remember that we fix the temperature as a ratio T
Tc

via the 2-loop β-function. Also, we set

the scale by setting Tc = 160MeV . Then, a(β) = 1
T (β)Nt

≈ 0.3fm.
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with Nt = 4 time slices; only the spatial volume varies as indicated. We have re-
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Figure 4.18: The phase diagram in the T -µ-plane for four degenerate flavours of staggered

quarks with mπ ≈ 350 MeV.

peated (”Our reweighting”) the study of [65](”Fodor,Katz”), using multi-parameter

reweighting on one ensemble generated at (βc, µ = 0). We identify the phase transi-

tion via the peak of the specific heat instead of Lee-Yang zeroes, and obtain consis-

tent results. However, the “sign problem” dramatically grows with increasing chem-

ical potential, as shown by the average sign in the figure. Moreover, our statistical

error, based on jackknife blocks as in Ref. [65], does not reflect the true inaccuracy,

since the blocks are not statistically uncorrelated, see Appendix B. In Fig. 4.19 (left),

we explicitly show the weight of each configuration sampled at βc(µ = 0) when we

reweight to (β = 4.94, aµ = 0.35). Two configurations carry 2
3

of the weight, indi-

cating the breakdown of statistical sampling. This apparent overlap problem can

be cured, see Fig. 4.19 (right). We supplement the reweighting of the one ensemble

generated at (βc, µ = 0) with the ensembles listed in Table 4.4. Again, we identify

the phase transition via the peak in the specific heat. The phase boundary “Our
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reweighting, all ensembles” agrees with the results from the canonical approach, and

clearly starts to deviate from the βc(µ = 0)-reweighting results at µ
T
≈ 1.2.
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Figure 4.19: The breakdown of statistical sampling. Here we show the weight of each

configuration sampled at βc(µ = 0) when we reweight to (β = 4.94, aµ = 0.35). The two

arrows mark the only relevant configurations (left). The phase boundary, obtained via

reweighting, agrees with our new results, if we include ensembles with better overlap with

the large µ-regime. Note, the lines are meant to guide the eye (right).

The parabolic fit[76] is consistent with the black points[96]. Both methods perform

an analytic continuation from imaginary chemical potential, for which systematic

errors are hard to quantify.

Our new results are shown in red. There is no strong inconsistency with other

results, but we observe a clear sign of bending down starting at µ
T
≈ 1.3. In fact

this should happen, if the critical line is to reach our strong-coupling results.

In Fig. 4.20, we plot the phase diagram in the T -ρ plane. We reach reasonable

accuracy down to T
Tc
≈ 0.8. The densities at the boundaries of the co-existence

region seem to remain constant at T < 0.85Tc already, with ρQGP = 1.8(3) B
fm3

and ρconfined = 0.50(5) B
fm3 . For the following discussion we assume that the density

ρconfined gives an upper bound for nuclear matter density[109]: the baryons are so

packed at this density that a phase transition starts to take place. Let us compare

the value with the real world, where the nuclear matter density is 0.17 B
fm3 [110]. We

thus have 3 times more baryons in the system. This is a reasonable value, since our

quark mass is heavier than in real-world, from which one expects that the baryon
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Figure 4.20: The phase diagram in the T -ρ-plane for four degenerate flavours of staggered

quarks with mπ ≈ 350 MeV.

shrinks. If we want to compensate for the factor 3 in the density, the diameter of a

baryon shrinks by 3−
1
3 ∼ 0.7.

4.5.5 Chiral Condensate

In chapter 1, we have discussed the notion of chiral symmetry with its order pa-

rameter, the chiral condensate. With massless quarks, the expectation value of Ψ̄Ψ

is non-zero in the confined phase, but zero in the deconfined phase. Here, we deal

with non-zero quark masses, hence the pion acquires a mass. As a consequence, the

chiral condensate never is zero. Still, it can be used to characterise the two phases

at low and high density.

We first study the chiral condensate at zero chemical potential as a function of the

temperature, see Fig. 4.21. The black points are our results for the chiral conden-

sate 〈Ψ̄Ψ〉, in red we plot the susceptibility 〈
(
Ψ̄Ψ
)2〉 − 〈Ψ̄Ψ〉2. Note that we have



156 Canonical Approach to Lattice QCD

multiplied the red values with a normalisation factor, such that both data sets fit

nicely on the same figure. The phase transition occurs at β = 5.043(1), in agree-

ment with the literature. We note the residual of the chiral condensate at large β:

〈Ψ̄Ψ〉 = 0.255(12). We will make use of this value in the following, when we study

the chiral condensate as a function of the baryon number.
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Figure 4.21: The chiral condensate as a function of the temperature at µ = 0. The chiral

symmetry is only approximate, hence there is a non-zero residual chiral condensate even

at high temperature, 〈Ψ̄Ψ〉 = 0.255(12).

In Fig. 4.22, we present the chiral condensate as a function of the baryon number at

T
Tc

= 0.94. We indicate with vertical lines the boundaries of the co-existence region

at that temperature obtained via the saddle-point approximation. The residual

chiral condensate at high temperature at zero chemical potential is also drawn. The

value of the chiral condensate at B = 0 agrees with the one at µ = 0 as expected.

For small baryon numbers, the chiral condensate varies only slightly until it hits

the co-existence region. A rather fast drop is observed, eventually 〈Ψ̄Ψ〉 remains

constant at large B. It is nice to observe that this happens within the boundaries
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given by the residual chiral condensate at µ = 0.

We cannot read off the boundaries of the co-existence region in a clean way. Due to

the finite volume, the rounding effects are simply too large. Furthermore, we rapidly

loose accuracy if we lower the temperature. This is due to the method to extract

the chiral condensate as a function of the baryon number, see below. The analysis is

based on one ensemble only, given by the temperature we want to study. To avoid

an overlap problem, we remain conservative and have studied a temperature not too

far from the phase transition.
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Figure 4.22: The chiral condensate as a function of the baryon number B at T
Tc

= 0.94.

The agreement of the residual chiral condensate at large baryon number with the one in

the large-temperature regime at B = 0 (resp. µ = 0) is an indication that the high-density

regime can be identified with the quark-gluon plasma phase. The dotted lines, indicating

the boundaries of the co-existence region, are taken from the previous subsection (via the

Maxwell construction).

The problem in the study of the chiral condensate lies in the fact that the observable

depends explicitly on the chemical potential. As a consequence, we cannot determine
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the expectation value of Ψ̄Ψ as simple as the one of the plaquette, which does not.

However, we can measure ∂ logZC(T,B,m)
∂m

:

∂ log ZC(T, B, m)

∂m
=

1

ZC(T, B, m)

∂ZC(T, B, m)

∂m

=
1

ZC(T, B, m)

1

2π

∫
π

−π
d

(
µI

T

)

e
−i3B

µI
T

∫

[DU ][DΨ̄][DΨ]
∂

∂m
e
−Sg [U]−Ψ̄MΨ

=
1

ZC(T, B, m)

1

2π

∫
π

−π
d

(
µI

T

)

e
−i3B

µI
T

∫

[DU ][DΨ̄][DΨ]
(
−Ψ̄Ψ

)
e
−Sg [U]−Ψ̄(6D+m−µγ0)Ψ

= 〈−Ψ̄Ψ〉(B) (4.77)

We write the derivative as a discrete difference and obtain

〈−Ψ̄Ψ〉 =
∂ log ZC(T, B, m)

∂m
|m=m̄ =

log ZC(T, B, m̄ + δ) − log ZC(T, B, m̄ − δ)

2δ
. (4.78)

The right hand side can be evaluated via

ZC(T, B, m̄ + δ)

ZC(T, B, m̄ − δ)
=

1
ZC (T,B,m̄)

∫
[DU ] 1

2π

∫ π
−π

d
(

µI
T

)

e
−i3B

µI
T

(
det M(m̄+δ)
det M(m̄)

)

e−Sg [U] det M(m̄)

1
ZC (T,B,m̄)

∫
[DU ] 1

2π

∫
π
−π

d
(

µI
T

)

e
−i3B

µI
T

(
det M(m̄−δ)
det M(m̄)

)

e−Sg [U] det M(m̄)

=
〈

ẐC (B,m̄+δ)

det M(m̄)
〉m̄

〈
ẐC (B,m̄−δ)

det M(m̄)
〉m̄

, (4.79)

where we sample at m = m̄.

4.5.6 Latent Heat

Quantities of central importance for the dynamics of a first order phase transition

are the latent heat and the interface tension (discussed in the next subsection). In

the literature, these quantities are studied while varying the temperature. Here, we

also have access to the density driven transition properties. The latent heat quan-

tifies the energy needed for the hadronic matter or quark-gluon plasma to undergo

a change of phase while varying the density at fixed temperature.

We study the latent heat as follows. The internal energy density of the system is

given by (U=internal energy)

ǫ ≡ 〈U〉
V

=
T 2

V

∂

∂T
logZ (4.80)
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with the temperature T = 1
a(β)Nt

. Since we have fixed the number of sites in temporal

direction Nt = 4, we can vary the temperature by changing β. Thus,

ǫ =
T 2

V

∂β

∂T

∂

∂β
logZ = − 6

a4
〈Plaq〉 a∂β

∂a
(4.81)

with 〈Plaq〉 = 1
Z

∫
[DU ]

(
1

6N3
sNt

∑

µ<ν

∑

x
1
Nc
ReTrPlaq(x, µ, ν)

)

e−Sg [U ] detM(U).

As β-function, we use the perturbative 2-loop expression given in Eq.(1.61) and

obtain

a
∂β

∂a
=

4β3
0Ncβ

2β1Nc − β0β
. (4.82)

We express the latent heat Lh in the density driven transition in a dimensionless

ratio

Lh
T 4
≡ ǫ(Bmax)− ǫ(Bmin)

T 4
= −6N4

t (〈Plaq(Bmax)〉 − 〈Plaq(Bmin)〉)a
∂β

∂a
, (4.83)

where Bmin and Bmax correspond to the boundaries of the co-existence region. In

Fig. 4.23 we show the results. In the left figure, we illustrate our construction. At

temperature T
Tc

= 0.92, we plot 〈Plaq(B)〉. The two phases are clearly separated. At

small baryon number, we observe a moderate linear increase until we hit the phase

boundary. A sharp linear increase follows, which bends into a constant behaviour.

The rounding is due to finite size effects. It is hard to read off the boundaries

of the co-existence region. We thus use the Bmin and Bmax values obtained from

the Maxwell construction, indicated by vertical delimiters. The latent heat is then

determined via Eq.(4.83), see the right figure. The dimensionless ratio Lh

T 4 increases

rapidly, and seems to remain constant for T
Tc

< 0.96. We thus have indication

that the strength of the phase transition increases as the temperature is lowered.

Unfortunately, the errors are rather large.

We can cross-check these results in principle. Due to the first order nature of the

transition, the histogram of the plaquette shows a two-peak structure. The distance

between these peaks allows to determine the latent heat. Qualitatively, we can verify

the above finding, but the error is even larger.
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Figure 4.23: The plaquette expectation values as a function of the baryon number at fixed

temperature T
Tc
≈ 0.92. The boundaries of the co-existence region are indicated with

vertical delimiters. We equal the distance of the two horizontal lines with 〈Plaq(Bmax)〉−
〈Plaq(Bmin)〉 (left). The latent heat in a dimensionless ratio Lh

T 4 as a function of T
Tc

(right).

4.5.7 Interface Tension

We assume a nucleation process as the underlying mechanism of the first order

transition from the low- to the high-density phase. In order to start the transition,

a droplet of the high-density phase has to form which is accompanied by building

an interface. Its energy cost is proportional to the area of the interface with the

proportionality constant σ, which is called the interface tension. On a hypercubic

lattice with periodic boundary conditions, the droplet grows until the two phases are

separated by two planar (2+1)-dimensional non-interacting interfaces, see Fig. 4.24,

left. The area of one interface thus is (Nsa)
2(Nta) = 2(Nsa)

2/T . The transition

completes at no additional cost by moving the interfaces. Eventually, the destruction

of the two interfaces will release the energy the system had to pay in the first place.

The change in the Helmholtz free energy is illustrated in Fig. 4.24, right.

The first bump22, whose area is labelled by A (dimensionless), encodes the free

energy needed to create the two interfaces. We introduce the “reduced” interface

tension by

σR =
σ

T
(4.84)

22The construction is described in subsection 4.5.3.



4.6. CONCLUSIONS - CANONICAL APPROACH TO LATTICE QCD 161

N
a s

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8  9

(F
(B

+
1)

-F
(B

))
/3

T

rho/T3

Pure phase Pure phase

2 planar interfaces

A

Figure 4.24: Illustration of the nucleation process. On a hypercubic lattice with periodic

boundary condition, the two interfaces are planar (left). The area of the bump A corre-

sponds to the free energy needed to create two planar interfaces and allows to extract the

interface tension.

and extract it via (see Fig. 4.25)

σR =
A

2(Nsa)2
. (4.85)

Within the errors, the reduced interface tension remains fairly constant for T
Tc
< 0.96

at
√
σR ≈ 45 MeV as a function of the temperature. For pure SU(3)-Yang Mills

theory, the reduced interface tension is
√
σR = 34(17) MeV on a 643 × 4 lattice[19].

We thus conclude that the order of magnitude of our interface tension is reasonable.

We have presented a new method to extract the interface tension between the con-

fined phase and the quark-gluon plasma of the density-driven transition, by exploit-

ing fully the Maxwell construction.

4.6 Conclusions - Canonical Approach to Lattice

QCD

We have presented a method to study QCD in a canonical framework. It is designed

for few-nucleon systems at low temperature but proves also capable of exploring
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Figure 4.25: The reduced interface tension in physical units as a function of the tempera-

ture.

high-density regimes (ρ . 5
fm3 or µ

T
. 2) at temperatures T & 0.8Tc on a 63 × 4

lattice.

We measure the free energy as a function of the imaginary chemical potential µI , real

chemical potential µ and the baryon number B. With the latter two, we identify the

location of the phase transition between hadronic matter and quark-gluon plasma

via the peak in the specific heat, and independently, by a Maxwell construction,

which is based on the saddle point approximation. We find good agreement with

the literature when µ
T

. 1. At larger chemical potential µ, we observe a bending

down of the critical line at µ
T

& 1.3. This should happen if the critical line is to

reach our strong coupling results. As a new result,we have obtained the T -ρ phase

diagram. Based on the Maxwell construction, we can extract the boundaries of the

co-existence region quite reliably. As a result, we obtain the maximum nuclear mat-

ter density ρconfined ∼ 0.50(5) B
fm3 for a four flavour theory with mπ ≈ 350 MeV -

three times larger than real-world nuclear matter density. We can cross-check the
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estimates of the phase boundaries via the specific heat or the chiral condensate,

however, this is much harder, due to finite size effects. We find rough agreement.

The two phases can be rather well described by the hadron resonance gas at low

density and by an interacting massless gas at high density. In the confined phase,

for example at T
Tc
∼ 0.9 (β = 4.95), we find a good description of our data by

ρ

T

(µ

T

)

= f(T ) sinh

(
3µ

T

)

(4.86)

with f(T ) = 0.048(1), a value obtained from both real and imaginary chemical

potential approaches. In the quark-gluon plasma phase, a slightly modified free gas

Ansatz allows to account for all data points

ρ

T 3
= C2

Nf

3

(µ

T

)

+ b4(T )C4
Nf

3π2

(µ

T

)3

. (4.87)

We determine the finite-size and cut-off correction terms C2 and C4 by calcu-

lating the free energy of the free fermion gas on the lattice and find agreement

with the literature for V → ∞. The coefficients b2(T ) and b4(T ) are indepen-

dent of the temperature for large enough temperatures and densities, and we find

b2(T ∼ 1.1Tc) = 0.70(1) and b4(T ∼ 1.1Tc) = 2.97(3). The leading order term b2 is

confirmed by results at imaginary chemical potential. We thus observe deviations

from the Stefan Boltzmann free gas of at about 30% just above Tc.

We study the dynamics of the density-driven phase transition by calculating the la-

tent heat Lh ≈ 20−40 T 4 for temperatures around (0.88−0.99)Tc and the interface

tension
√
σ ∼ 45 MeV. The order of magnitude of these quantities seem reasonable

(
√
σR ≈ 34(17) MeV for the pure SU(3) theory). However, further studies, for ex-

ample at larger quark mass, are needed.

The determination of the canonical partition functions requires the calculation of the

Fourier transformation (in imaginary chemical potential) of the grand canonical par-
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tition function. We have presented two methods: a computationally cheap version,

where the imaginary chemical potential is treated as a dynamical degree of freedom;

and an expensive method, which enjoys a substantial variance reduction provided

by the Fourier transformation of each determinant. A peculiarity of the canonical

approach is that the expectation value of the Polyakov loop is zero for any temper-

ature and baryon number. In the grand canonical ensemble, however, the Polyakov

loop is always non-zero. This gives rise to questions about the equivalence of the

two ensembles. We have shown that they do agree since their free energy densities

are equal in the thermodynamic limit. We furthermore have resolved the so-called

“Polyakov loop paradox” by realising that the non-physical non-zero triality sectors,

ie. canonical sectors of quark numbers not a multiple of three, are responsible for

the non-vanishing Polyakov loop expectation value. These non-zero triality states

can be included or excluded without affecting the expectation values of observables

sensitive to the phase transition in the thermodynamic limit.

The numerical problems of the canonical approach are different for the two methods

presented. The numerically cheap version suffers from the sign problem already

for small B. We thus use it to explore the zero baryon density region only. The

other, more expensive method shows large fluctuations in the co-existence region.

These fluctuations are not caused by the numerical method, but by the physics of

the system, which does not like to stay in the co-existence region because of the

additional interface free energy.



Chapter 5

3-state Potts Model

5.1 Motivation

The 3-dimensional 3-state Potts model and the Finite Temperature QCD with in-

finitely heavy quarks share the same Z3 global symmetry, and in both theories the

order parameter shows a first order phase transition[24, 25]. When an external mag-

netic field is turned on in the Potts model, this Z3 symmetry is explicitly broken

and the first order phase transition is weakened, becoming second order for a certain

strength of the magnetic field and crossover beyond. In the case of Finite Temper-

ature QCD, the inverse of the quark mass plays the role of the external magnetic

field in the 3-D 3-state Potts model. The first order phase transition of the quenched

theory (infinitely heavy quark limit) weakens, and turns into a second order tran-

sition for a critical, heavy but not infinite, dynamical quark mass [111, 112], see

Fig. 5.1. A universality argument then implies that the critical properties of the two

theories, Potts and QCD, will be the same at this second-order point. Since the 3-D

3-state Potts model is simpler than QCD and can be simulated on a large lattice,

its numerical investigation will give us more detailed quantitative information on

the critical properties of Finite Temperature QCD with heavy quarks. In particular

we can determine the curvature of the surface of second-order endpoints (Fig. 5.1,

165



166 3-state Potts Model

large mass regime) as a function of the chemical potential µ in QCD. µ also becomes

µ

* QCD critical point

X

1rst

1rst

crossover

*
Potts model (h,h’)

0

∞

Real world
Heavy quarks

This work
Nf=3

mu,d

ms

µ

Figure 5.1: The order of the QCD phase transition from hadronic matter phase to the

quark-gluon plasma phase in the plane of the degenerate “up/down”-quark masses mu =

md, “strange”-quark mass ms and the chemical potential µ. The Nf = 3 line refers to the

case of 3 degenerate quark flavours with mass M . The blue X refers to real-world physics,

ie. physical quark masses. In our sketch, the vertical line pierces the surface of second

order endpoints at a particular value of the chemical potential. If this QCD critical point

indeed exists, such a positive curvature ∂2M(µ)
∂µ2 |µ=0 is likely. However, if the curvature is

negative, there is no critical endpoint, which leads to exotic scenarios of the QCD phase

diagram. In this work, we determine M
T

( µ
T

)
at large quark masses via the Potts model

and show that the first order region shrinks under the influence of µ.

an external magnetic field in the Potts model. Following Ref. [113], we revisit this

mapping (mu,d = ms = M, µ)QCD → external fields (h, h′)Potts, and determine the

phase diagram for an arbitrary chemical potential, real or imaginary. Analytic con-

tinuation of the phase transition line between real and imaginary chemical potential

can be tested with precision. Our results show that the chemical potential weakens
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the heavy-quark deconfinement transition in QCD. We determine the canonical par-

tition functions and show that the S-shape behaviour of F (T,B)−F (T,B−1)
3T

at the first

order transition is realised as in our QCD study.

5.2 Method

The effect of a quark chemical potential on hot QCD with static quark sources can

be formulated in the following grand canonical ensemble:

Z(µ) =
∑

n,n

Zn,n e
µ
T

(n−n)

=
∑

n,n

∫

[DU ]
1

n!
(Φ[U ])n

1

n!
(Φ[U ]∗)n e−Sg [U ]− n

T
(M−µ)− n

T
(M+µ)

=

∫

[DU ] e−Sg [U ]+e−
1
T

(M−µ)Φ[U ]+e−
1
T

(M+µ)Φ[U ]∗ , (5.1)

where Zn,n is the canonical partition function with n quarks and n anti-quarks, U

is the SU(3) gauge field, Sg is the gauge action, Φ[U ] is the Polyakov loop, Φ[U ]∗

the anti-Polyakov loop, M is the heavy quark mass and µ is the quark chemical

potential. When there is no chemical potential (µ = 0), the action in Eq.(5.1) is

real. If µ 6= 0, the action becomes complex and Monte Carlo simulation is difficult

because of the “sign problem”: the usual probabilistic interpretation of Eq.(5.1) is

not possible.

Symmetry considerations tell us that the important dynamics of the gauge field are

those of the Polyakov loop and the anti-Polyakov loop. Thus, one can simplify Sg[U ]

and consider instead the interaction of Polyakov loops, modelled by a Potts term.

We introduce the Z3 spin Φ(~x) ∈ [1, e−i
2π
3 , e+i

2π
3 ] and write the corresponding lattice

Hamiltonian for the 3-D 3-state Potts model

H = −κ
∑

i,~x

δΦ(~x),Φ(~x+i) −
∑

~x

[hΦ(~x) + h′Φ∗(~x)] , (5.2)
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where κ is the effective coupling of neighbouring Z3 spins, and the external fields

h = e−
1
T

(M−µ) ≡ hMe
µ
T = hMe

µ

h′ = e−
1
T

(M+µ) ≡ hMe
− µ

T = hMe
−µ (5.3)

with hM = e−
M
T and µ = µ

T
. If h 6= h′∗, this Hamiltonian is also complex. However,

the partition function remains real [113]. The partition function includes summa-

tion over all the possible Z3 spin configurations. Introducing “bonds” with a certain

probability among parallel Z3 spins and defining a “cluster” made of the sites con-

nected by the bonds, we can divide the summation into the sum over clusters and

that within a cluster. Then, after analytically summing over Z3 spin orientations

within each cluster, the partition function in terms of cluster configurations is given

by

Z(µ) =

∫

[Db](eκ − 1)Nb

∏

C

[

e2hM |C| coshµ + 2e−hM |C| coshµ cos(
√

3hM |C| sinhµ)
]

,(5.4)

where Db is the sum over all the possible bond configurations, Nb is the number

of bonds in a given cluster configuration, and |C| is the number of sites in a given

cluster. Z is real and is free from the “sign problem” since the second term which

can be negative due to the presence of cos(
√

3hM |C| sinhµ) is always smaller than

the first term. However, the “solution” of the complex action problem in the 3-D

3-state Potts model is different from the SU(2) gauge theory case [114] and from

the four-fermi theory case [115], where the action itself can be shown to be real

even with a real chemical potential. In the Potts model, the action is complex, and

a change of variables (from spins to bonds) is necessary to recover a real effective

action and show that the partition function of the model remains real.

The (h = h′) case (that is, zero chemical potential) has been studied in Ref. [116].

The (h′ = 0) case (that is, M,µ → ∞ while M/µ is fixed) has been investigated

in Ref. [113]. Since we are also interested in testing the analytic continuation of

imaginary chemical potential results to real chemical potential, instead of taking

h′ = 0 limit, we study here the full parameter space of arbitrary (h, h′).
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For the case of an imaginary chemical potential (µ → µI , i.e., h′ = hMe
−iµI = h∗),

the partition function, ZI , becomes

ZI(µI) =

∫

Db(eκ − 1)Nb

∏

C

[

e2hM |C| cos(µI)e2hM |C| cos(µI+ 2π
3 )e2hM |C| cos(µI− 2π

3 )
]

=

∫

Db(eκ − 1)Nb

∏

C

[

e2hM |C| cosµI + 2e−hM |C| cosµI cosh(
√

3hM |C| sinµI)
]

.

(5.5)

Since cosh(iµ) = cos(µ), sinh(iµ) = i sin(µ) and cos(iθ) = cosh(θ), the relation

Z(µ→ iµI) = ZI(µI) is quite obvious and the analytic continuation between Z and

ZI is transparent. The Roberge-Weiss symmetry [18], ZI(
µI

T
) = ZI(

µI

T
+ 2πk

3
), can

also be seen clearly in Eq.(5.5).

5.3 Real Chemical Potential

Using the Swendsen-Wang cluster algorithm [117] on Eq.(5.4), we simulate the 3-

D 3-state Potts model. The actual simulation is performed along the h = h′ line

in the (h, h′) parameter space and the data are re-weighted for arbitrary (h, h′).

Although the reweighting factor is not always positive, this strategy turns out to

be more efficient than sampling Eq.(5.4), because the ensuing sign problem is very

mild. Simulations are performed on lattice volumes 563, 643, and 723. Typically

∼ 2 million data samples are collected per simulation point. The critical point

could be identified via the Binder cumulant introduced in Eq.(4.58) on page 133.

Here, we require the third order cumulant 〈
(

Ô − 〈Ô〉
)3

〉 of the absolute value of

the magnetisation 〈Ô〉 = 〈|∑~x Φ(~x)|〉 to vanish. At that point, we evaluate the

connected Binder cumulant

B4(Ô) = 1− 1

3

〈
(

Ô − 〈Ô〉
)4

〉

〈
(

Ô − 〈Ô〉
)2

〉2
. (5.6)

Since the universality class of the 3-D 3-state Potts model is that of the 3-D Ising

model, B4 for the Potts model at the critical point should be equal to that of the
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Ising model (= 1.604(1)). Fig. 5.2 (left) shows B4 as a function of h (here, h′ = h).

From this, we find that the critical end point is at (κc, hc) = (0.54940(4), 0.000255(5))

in comparison with the value given in Ref. [116], (0.54938(2), 0.000258(3)). Similarly,

for the h′ = 0 case, Fig. 5.2 (right), we obtain that (κc, hc) = (0.54947(1), 0.000465(5))

(Ref. [113] reported (κc, hc) = (0.549463(13), 0.000470(2)).
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Figure 5.2: The Binder cumulant B4 for magnetisation versus h (h = h′) (left). B4 for

magnetisation vs h (h′ = 0) (right).

The critical end point can be located for arbitrary h and h′. Fig. 5.3 (left) shows the

(h, h′) parameters for the second order phase transition. Here, rather than (h, h′),

we use the variables M
T

and µ
T
, which can be related to QCD due to the universality

argument as per Eq.(5.3). The line in the figure is from the asymptotic value,

(h = hc, h
′ = 0). Since h = e−

M
T

+ µ
T , the relation hc = e−

M
T

+ µ
T for given hc defines a

line in the parameter space (M
T
, µ
T
). In Fig. 5.3 (left), the simulation data lies above

this asymptotic line. This shows that the anti-Polyakov loop in Finite Temperature

QCD plays an important role in critical parameter space and should not be neglected

in considering the critical properties of the theory. To further compare our results

with the limit studied in Ref. [113], we show T
M

vs. µ
M

in Fig. 5.3 (right). As µ
M

increases, our simulation data approach the asymptotic line as expected. This plot

clearly shows that the range of T
M

values for which the transition is first-order shrinks

as the chemical potential is turned on. In fact, the transition disappears altogether
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for µ
M
> 1. So the effect of the chemical potential is to weaken the phase transition.
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Figure 5.3: M
T for second order transition versus ( µT )2 (left). T

M for second order transition

versus µ
M (right).

Fig. 5.3 (left) suggests an interesting comparison with the Finite Temperature QCD

phase diagram. Let us imagine increasing the chemical potential from zero, following

the arrow in Fig. 5.4 (left). Without chemical potential, the quark mass is chosen

such that the transition is first order. With a non-zero chemical potential, this first

order phase transition weakens. At a certain chemical potential, the system shows

a second order phase transition. With chemical potential larger than this critical

value, the system shows a crossover. On the other hand, consider Fig. 5.4 (right),

which is analogous to Fig. 5.4 (left). This figure is a schematic phase diagram for

three-flavour QCD with light quarks suggested in Ref. [118] and summarises the

conventional wisdom, compare Fig. 5.1. Without chemical potential, 3-flavour QCD

shows a first order phase transition when the quark mass is smaller than a certain

mass mc(0). Let us say that we start with a system where the quark mass is larger

than mc(0). Then, this 3-flavour QCD system has a crossover. In this case, in-

creasing the chemical potential makes the transition stronger: a second order phase

transition appears when the chemical potential hits a certain magnitude. If the

chemical potential is increased further, the system undergoes a first order phase

transition. Therefore, the 3 light flavour QCD system shows (crossover → second
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order phase transition → first order phase transition) as the chemical potential is

increased. In contrast, the heavy quark QCD system suggested by 3-D Z3 Potts

model will undergo (first order phase transition→ second order phase transition →
crossover) as the chemical potential is increased. Interestingly, some recent light-

quark QCD simulations give support to the possibility that the conventional wisdom

scenario above might be at fault [119], so that the influence of the chemical potential

in the light-quark and the heavy-quark cases would be similar.
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Figure 5.4: M
T for second order transition versus ( µT )2 (left). schematic QCD phase diagram

for 3 light quarks from [120] (right).

5.4 Imaginary vs Real Chemical Potential

For the case of an imaginary chemical potential, one can perform a direct sampling

of Eq.(5.2), or reweight the h = h′ data used for the real chemical potential study.

As before, the critical point is located by use of the magnetisation Binder cumulant

and B4 = 1.604 crossing point.

In Fig. 5.4 (left), we put together the critical end point parameters obtained from

the imaginary chemical potential case and those from the real chemical potential

case (note the similarity with the schematic phase diagram for 3 light flavour QCD
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shown in Fig. 5.4 (right)). Although the proximity of the Z3 transition at µI =

π
3

introduces curvature in the imaginary chemical potential result, the small real

µ result is smoothly connected to the small imaginary µI result and the analytic

continuation poses no serious problem even on a large lattice volume such as 723.

However, the critical line shows significant curvature, which limits the accuracy of

the extrapolation from imaginary to real µ. A 4th order polynomial M
T

= 8.273 +

0.585( µ
T
)2 − 0.174( µ

T
)4 + 0.160( µ

T
)6 − 0.071( µ

T
)8 is necessary to describe the critical

line from ( µ
T
)2 = −(π

3
)2 to 1.5.

5.5 Canonical Ensemble

For a given M
T

, the system undergoes a phase transition at some critical chemical

potential µ
T
. Here, we study the behaviour of µ

T

(
ρ
T 3

)
in the vicinity of a second

order critical point. We expect the S-shape, which we have observed in the first-order

transition study in subsection 4.3.4 on page 126, to flatten to a plateau, indicating the

absence of the metastabilities1. The canonical partition functions can be calculated

as in chapter 4. The Helmholtz free energy of B baryons is given by

F (T,B) ≡ −T log
ZC(T,B)

ZC(T,B = 0)
(5.7)

with

ZC(T,B) =
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T ZGC(T, µ = iµI)

=
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

∫

[DU ] e−Sg[U ]+e−
1
T

(M−µ)Φ[U ]+e−
1
T

(M+µ)Φ[U ]∗

=

∫

[DU ]

(
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

+e
iµI
T Φ[U ]+e−

iµI
T Φ[U ]∗

)

e−Sg [U ]+hMΦ[U ]+hMΦ[U ]∗

≡
∫

[DU ] ẐC(B) e−Sg [U ]+hM (Φ[U ]+Φ[U ]∗) . (5.8)

1At h = 0, the first order transition in the Potts system is weak. An increase in h further

decreases the strength of the transition since we approach the second order critical point, compare

Fig. 5.2
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The Fourier coefficients ẐC(B) can be identified with a Bessel function of first kind

Jn(z)

ẐC(B) =
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

+e
iµI
T Φ[U ]+e−

iµI
T Φ[U ]∗

=
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

+2Re Φ[U ] cos
µI
T

−2 Im Φ[U ] sin
µI
T

=
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

+2|Φ[U ]| cos(µI
T

−θ)

=
1

2π

∫ π

−π
d
(µI
T

)

e−i3B
µI
T

+2|Φ[U ]| cos(µI
T

−θ)

= e−i3BΘ[U ]I3B(2|Φ[U ]|) . (5.9)

with Θ[U ] = arccos Re Φ[U ]
|Φ[U ]| = arg(Φ[U ]).

In Fig. 5.5, we compare µ
T

(B) = F (T,B)−F (T,B−1)
3T

with the grand canonical expec-

tation value 〈B〉GC
(
µ
T

)
. The baryon number is measured by evaluating 〈B〉GC =

∂ logZ(µ)
∂µ

, where Z(µ) is given by Eq.(5.1). The parameters are chosen such that we

are at a second order endpoint: for the 483 lattice M
T

= 8.8805; for the 963 lattice

M
T

= 9.028. Both approaches, the canonical as well as the grand canonical, indicate

the same corresponding chemical potential. We observe a plateau-like behaviour, in-

dicating the second order nature of the transition. Note that for the smaller lattice

the resolution of the density is limited, and hence, we do not observe the approach

µ
T
→ 0 for B → 0. These simple checks confirm the applicability of the canonical

approach to identify the critical chemical potential.

5.6 Conclusions - 3-state Potts Model

We have extended earlier work on the 3-D Z3 Potts model with one external field

coupled to Φ(~x) [113] or to Φ(~x)+Φ∗(~x) [116] to the full general case hΦ(~x)+h′Φ∗(~x),

and presented a complete picture of the phase diagram in the (κ, h, h′) parameter

space. Our investigation also gives us a handle on heavy quark QCD at finite den-



5.6. CONCLUSIONS - 3-STATE POTTS MODEL 175

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20

µ/
T

 =
 (

F
(B

)-
F

(B
-1

))
/3

T

483  |h|=0.00015  k=0.5492

canonical
grand canonical

µc  0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  10  20  30  40  50  60  70  80

963  |h|=0.00012  k=0.5492

canonical
grand canonical

µc

Figure 5.5: The chemical potential µ
T as a function of the baryon number B on a 483

lattice at mass M
T = 8.8805 (left), and on a 963 lattice at mass M

T = 9.028 (right). The

critical chemical potentials are indicated equivalently by the canonical approach and by

the grand canonical framework. Note that at the smaller volume, the resolution of the

density is coarse.

sity and temperature which shares the same global symmetry, allowing us to make

statements about the heavy quark QCD phase diagram in the finite temperature,

finite density, and heavy quark mass parameter space.

For a real chemical potential, the partition function of the Potts model is shown

to be real even though the action itself is complex. The sign problem is mild.

Simulation results show that turning on a chemical potential µ makes the finite

temperature transition weaker, so that the region of parameter space corresponding

to a first-order transition shrinks under the influence of µ. This implies that a sim-

ilar phenomenon occurs in the phase diagram of heavy quark QCD, see Fig. 5.1.

For an imaginary chemical potential, the action of the Potts model is real and the

model is easy to study. Since both real chemical potential and imaginary chemical

potential can be simulated, analytic continuation from imaginary to real chemical

potential can be tested. We find that analytic continuation works satisfactorily, even

with large lattice volumes such as 723.
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We also can study the Helmholtz free energy. We determine the critical chemical

potential as a function of the baryon density, and find good agreement with grand

canonical calculations at real µ.

In short, the 3-D Z3 Potts model has a rich structure and provides us with a useful

“proving ground” for studying the finite temperature and density phase structure of

QCD.



Chapter 6

Outlook

In the context of 3-dimensional SU(2) Lattice Gauge Theory with two static adjoint

charges, we have shown for the first time the phenomenon of string breaking from

first principles using the Wilson loop observable only. The string breaks at a length

Rb ≈ 1.0fm. We were able to measure Wilson loops up to the extent R × T ∼
1.2fm × 4.0fm. The variance reduction technique by Lüscher and Weisz addresses

the exponential decrease of the signal in T . The required computer time scales

approximately like T 3[51]. The exponential decrease in R remains. For similar

models, like the ZNc or U(1) gauge theory, there are algorithms[121], which allow to

go beyond this limitation.

Our results settle the question whether string breaking can be observed from first

principles using only the Wilson loop observable. The natural extension is to study

string breaking in the context of 4-dimensional QCD with dynamical fermions1. As

outlined in chapter 2, the required large lattice size was beyond our computer ca-

pacity, but progress is happening: just recently, Ref. [122] has convincingly observed

string breaking with two flavours of Wilson fermions using the multichannel ap-

proach.

1Note that the presented variance reduction method, which requires a decomposition of the

action in local pieces, is not directly applicable in the presence of dynamical fermions.
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In Lattice QCD with four flavours of staggered quarks with mass m
T

= 0.2, we have

studied the phase diagram for T
Tc

& 0.8 and µ
T

. 2 with a new canonical approach -

a success, when compared to other methods, which are limited to µ
T

. 1.

Our new method provides a framework, which allows to determine the phase bound-

ary to even lower temperatures. However, we observe that with the considered

ensembles, we cannot lower the temperature further: we lose the signal of the

Helmholtz free energy F (B), which is obtained from the ratio of partition functions

ZC(B)
ZC(0)

. This ratio decreases exponentially like e−BmB/T , where mB is the mass of the

baryon. New ensembles, which have a good overlap with the confined, co-existence

and deconfined regime at low temperature, have to be found (see below). The study

of QCD in a canonical formalism has just begun. Many promising developments

and generalisations can be explored. We can vary various simulation parameters,

such as the volume V , the quark mass m, the temperature T = 1
aNt

, the number of

quark flavours Nf or the number of colours Nc. The essential goal is to approach

real-world and/or experimental conditions more closely. Here are some possibilities:

1. The increase of the spatial volume V is mandatory to obtain physically reliable

results. (i) The thermodynamic limit has to be taken. (ii) We need to make

sure for a certain matter density that the number of baryons B = ρV in

the system can be described as a statistical ensemble: the small maximal

density in the hadronic phase (ρ1 ∼ 0.5 B
fm3 , see subsection 4.5.4) requires a

significant volume (ie. V & 103) before enough baryons are present to justify

a statistical treatment. From a numerical point of view, increasing the volume

is computationally expensive: the effort grows like V 3. The calculation can be

distributed among several processors, however a fast interconnection is needed.

Nowadays, the calculation of the eigenvalues of the reduced matrix, which

consumes 99% or more percents of the total computation time, is already

feasible on a 163×4 lattice. Assuming a several petaflop machine, it should be
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possible for our strategy to double the spatial extent from 1.8 fm to 3.6 fm (or

change the volume from about 6 fm3 to about 50 fm3), which might well be

in the regime of the thermodynamic limit. At the same time, we can consider

finer lattices, e.g. we reduce the lattice spacing from 0.3 fm to 0.15 fm. The

required lattice then is of extent 243 × Nt. Note that the temporal extent

Nt has only a linear influence on the numerical effort. A problem, however,

may be caused by the required baryon numbers in order to achieve the same

baryon densities. In any case, ensembles with a good overlap with the desired

canonical sectors are mandatory.

2. At the quark mass m
T

= 0.2, Nf = 4, the phase transition is believed to be

first order for any chemical potential. As per Fig. 1.6 on page 39, it is likely

that an increase in the quark mass weakens the phase transition also for the

four flavour theory. An initial study indeed shows that the phase transition

becomes a crossover at zero chemical potential for m
T

= 0.28. If the transition

at T = 0 still is first order, the existence of a second order endpoint like in

the case of real-world QCD follows. In this framework, we thus can test the

capacity of our method to identify this critical endpoint. At least, it might

provide a determination of the curvature ∂2m(µ)
∂µ2 |µ=0 of the surface of second-

order endpoints at small quark masses, compare with Fig. 5.1. The technical

difficulty is the identification of the second order endpoint on a small lattice.

In the context of a computationally inexpensive laboratory of heavy-quark

QCD, namely the Potts model, we have determined this curvature at large

quark masses. A careful finite size scaling analysis is needed, which is possible

in the Potts model. We have observed that in a small volume, the canonical

formalism gives a false signal for a weak first order transition when it should

be a second order transition, while the grand-canonical approach indicates

mistakenly a crossover. These finite size effects have to be taken into account

in further studies.
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3. By changing the spatial extent Nt, we can vary the temperature via T =

1
a(β)Nt

. By increasing Nt, lower temperatures become accessible, and thus

the study of nuclear matter and nuclear interactions on the lattice from first

principles is possible in principle. Fig. 6.1 shows preliminary results hinting

that, perhaps, the formation of nuclear matter may be observed. The free

energy per baryon F (B)/B is displayed as a function of the baryon density

ρ, for four temperatures T ≤ 2
3
Tc (Tc is also shown for comparison). All

simulations were performed on 43 × Nt lattices, β = 5.0, with four flavours

of staggered fermions (am = 0.05), so that the physical volume is strictly

constant and the relative temperatures are known exactly. The scale has been

fixed by setting Tc = 160 MeV. One clearly sees that the free energy per

baryon is minimised when ρ ≈ 4/fm3. The baryon mass comes out at it

should be ∼ 1 GeV, and the binding energy per baryon is about 200 MeV. A

further investigation is mandatory: what is the effect of increasing the physical

volume? What happens if we change the quark mass or the number of quark

flavours?

4. We can vary the number of quark flavours Nf . While quarks come in six

flavours, three of them are so heavy that the thermodynamics of QCD at 200

MeV can be reproduced at Nf = 2 + 1 (mu = md = m, ms > m) flavours. For

T ≪ 200 MeV Nf = 2 may be adequate. To adjust the number of flavours

in the simulation, we either make use of the square root trick with staggered

fermions or implement Wilson fermions2. In both approaches, technical aspects

of the Fourier expansion of the fermion determinant in ei
µI
T have to be worked

out carefully.

It has been suggested[123] (since we study four degenerate flavours of medium-

2Ref. [81] uses Wilson fermions, however they calculate the values of the determinant at different

chemical potentials by brute-force, ie. they build the fermion matrix M from scratch for each

chemical potential. This limits their investigation to baryon sectors B = 0, 1, 2 only.
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Figure 6.1: Dimensionless free energy per baryon, T−1F (B)/B, as a function of the baryon

density in units of baryons per fm3. The lowest temperature is about 53 MeV.

heavy quarks) that the minimum in Fig. 6.1 may be related to “strange

matter”[124], ie. nuclear matter with a large fraction of strange quarks. The

stability of this “strange matter”, which might explain why we perhaps see

nuclear matter at T = 53 MeV and above in the four-flavour case, should be

larger if we consider more flavours (and smaller for fewer flavours). We thus

might study Nf = 8, which poses no technical difficulties, and the nuclear

binding should be even more pronounced.

5. It also might be interesting to change the number of colours. For Nc = 4,

a strong coupling calculation[125] finds a T = 0 transition at a value of the

baryon chemical potential significantly smaller than mB. This indicates strong

nuclear binding and gives rise to the assumption that it might be easier to

identify the nuclear matter transition in an SU(4) model than in an SU(3)

model also at finite temperature. Moreover, the sign problem might be milder,

since it is absent at β = 0.
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6. In Heavy-Ion collision experiments, up- and down-quark numbers are different

and conserved separately (up to weak corrections). We can introduce an isospin

chemical potential, which controls the ratio of up- and down-quarks. We thus

improve the reproduction of experimental conditions, and the phase diagram

becomes richer[126].

From an algorithmic point of view, we have observed two properties, which could

be exploited further. (i) A symmetry property of the Fourier coefficients of the de-

terminant ẐC(B) = Ẑ∗
C(−B) indicates, in principle, a possible reduction of the size

of the reduced matrix P by a factor 2. The determination of its Eigenvalues would

then gain a factor 8 in speed. (ii) ẐC(B) and ẐC(B − 1) are strongly correlated as

per Fig. 6.2. Can we find improved estimators for the important quantity ZC(B)
ZC(B−1)

,

where ZC(B) are the canonical partition functions?
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Figure 6.2: Strong correlations between the individual measurements of ẐC(B) and ẐC(B−
1) on a given configuration are observed. Here, we show a particularly clear example at

B = 7, β = 5.070, m
T = 0.28.
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This short list indicates in how many directions this study can be continued to

explore regimes, “where no man has gone before”.
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Appendix A

rI and the free scalar propagator

We follow [55] and define forces by

F (rI) = −V (r)− V (r − a)
a

(A.1)

where rI is chosen such that the force evaluated from Eq.(A.1) coincides with

F (rI) = C2
g2
0

2πrI
, (A.2)

the force in the continuum at tree level (ie. from a Coulomb potential log r in two

dimensions). This results in

rI = − a

2π(G(r, 0)−G(r − a, 0))
, (A.3)

where G(x, y) is the massless scalar lattice propagator in 2 dimensions defined by

−∆G(x, y) = δ(x, y) (A.4)

We simply solve for G(x = n1a, y = n2a) by Fourier transform, namely

G(n1a, n2a) =
1

N2

N∑

l1=1,l2=1

cos(2π
N

∑2
1 lini)

∑2
i=1 2− 2 cos(2π

N
li)

, (A.5)

where N ≫ n1, n2 is the number of discretisation points, taken sufficiently large that

G(n1a, n2a) is known to 4-digit accuracy. Finally, we set the zero-mode contribution

so that G(0, 0) = 0.0. A summary of our results in the range we consider is given in

Table A.1.
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r/a G(r, 0)

0 0.0000

1 -0.2500

2 -0.3634

3 -0.4303

4 -0.4770

5 -0.5129

6 -0.5421

7 -0.5668

8 -0.5881

9 -0.6069

10 -0.6237

11 -0.6389

(r − a
2
)/a rI/a

2.5 2.3790

3.5 3.4080

4.5 4.4333

5.5 5.4505

6.5 6.4435

7.5 7.4721

8.5 8.4657

9.5 9.4735

Table A.1: (left) The scalar lattice propagator G(r, 0) in 2d. (right) The naive derivation

points
(
r − a

2

)
compared with rI in the range we consider.



Appendix B

Error analysis

The correct estimation of the statistical error of an expectation value based on a

stochastic simulation is difficult. Here, we outline the ’common practice’-method:

jackknife error analysis of binned data, and comment on the ’best practice’-method:

bootstrap error analysis. In the second section, we discuss the error estimation of a

reweighted observable.

B.1 Binned Jackknife Error Estimation

We consider N measurements Oi from an importance sampling Monte Carlo simu-

lation. The expectation value of the observable 〈O〉 can be estimated as the average

O =
1

N

N∑

i=1

Oi . (B.1)

The naive error is given by

∆O =

√
√
√
√ 1

N(N − 1)

N∑

i=1

(
Oi −O

)2
. (B.2)

In practice, we have to deal with autocorrelations between the individual measure-

ments, and often we have to estimate the error of functions, which depend (possibly

non-linearly) on the expectation values of some quantities. In the following, I present
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the idea behind the binned jackknife error estimation[127], and then comment on

the issue of autocorrelations.

1. Based on all measurements, we calculate the average Y = f(O1, O2, . . .) ,

where Oi is the average of the observable Oi.

2. We divide the N measurements into M blocks. The block size N
M

is a crucial

quantity, since the error estimated by this procedure depends on N
M

due to

the, usually non-zero, autocorrelation time τ . I will comment on this “feature”

below.

3. For each m = 1, . . . ,M we remove the block m and calculate the jackknife

variable Ym = f(O1
m, O2

m, . . .), where the subscript m shall denote, that the

average is evaluated based on the remaining N − N
M

measurements.

4. The error estimate is then given by

∆Y =

√
√
√
√M − 1

M

M∑

m=1

(
Ym − Y

)2
. (B.3)

As mentioned, the estimated jackknife error varies with the block size N
M

. In the

following we assume that N
M
≪ N . As long as the block size is smaller than the

autocorrelation time τ , the error increases as we increase the block size. The reason

for this is the fact, that our blocks are still correlated. When the block size becomes

larger (than τ), the error starts to flatten to a plateau value and then oscillates

around its correct value. The blocks will be statistically uncorrelated. Usually, the

plateau value is taken as the jackknife error estimate. This procedure is known in

the literature as “binning analysis” and it helps to determine an adequate block size

for a given set of measurements as well as the autocorrelation time.

The bootstrap method is closely related to jackknife, but it takes the underlying

sampling distribution into account.
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1. Based on all measurements, we calculate the average Y = f(O1, O2, . . .) ,

where Oi is the average of the observable Oi.

2. We divide the N measurements into M blocks, such that the block size N
M
≫

τ , where τ is the largest autocorrelation time of the individual ones of each

observables O1, O2, . . ..

3. New: From the set of M blocks, we pick randomly M blocks, not trying to

avoid double sampling. Thus, some blocks may not get selected at all, some

once, some twice etc.

4. We calculate the quantity of interest over the selected data, denoted as Bb.

5. New: We repeat the previous two steps a large number of times NB, typically

NB ≫M .

6. The error estimate is then given by

∆Y =

√
√
√
√ 1

NB − 1

Nb∑

b=1

(
Bb − Y

)2
. (B.4)

B.2 Example: Statistical Error Estimate in the

Reweighting Procedure

In the reweighting method, there is a variety of sources of errors[128]. Here, we

discuss the statistical error only. Assume an infinite set of measurements of two

observables O1
i = (Ow)i = Oiwi and O2

i = wi. Our function f(O1, O2) = O1

O2
is the

“true value”. In practice we have N measurements, however.

Let us now denote the average of K samples of our N measurements a1, . . . , aK as

O1
K , from which we obtain an estimate f(O1

K , O2
K). The average over many sets

of samples then is f(O1
K , O2

K) . We define the bias as

bias = f(O1
K , O2

K)− f(O1, O2) . (B.5)
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A linear function g(O1, O2) = O1 + O2 has no bias, but the reweighting function f

given above has a non-vanishing bias. The estimated relative error of the expectation

value of O

〈O〉 =
〈Ow〉||
〈w〉||

≈ Ow

w
(B.6)

is
(

∆〈O〉
〈O〉

)2

≈
(

∆Ow

Ow

)2

+

(
∆w

w

)2

− 2cov(Ow,w) + . . . , (B.7)

where cov is the covariance of Ow and w

cov(Ow,w) =
1

N − 1

(
N∑

i=1

Oiw
2
i −

N∑

i=1

Oiwi

N∑

i=1

wi

)

. (B.8)

In practice, we calculate the error estimate of a reweighted quantity via the binned

jackknifed procedure describe above.
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Stochastic Estimator

A ratio of determinants can be estimated using a single Gaussian complex vector[7]:

detNf (D/ (µ′
I) +m)

detNf (D/ (µI) +m)
=

detNf M(µ′
I)

detNf M(µI)
=

∫
dφ†dφe

−φ† 1

M
Nf (µ′

I
)
φ

∫
dφ†dφe

−φ† 1

M
Nf (µI )

φ
(C.1)

=

∫
dη†dη |J(φ, η, µI)| e−η†M

Nf /2
(µI)M

−Nf /2
(µ′I)M

−Nf /2
(µ′I)M

Nf /2
(µI)η

∫
dη†dη |J(φ, η, µI)| e−η†η

(C.2)

where we have substituted φ = MNf/2(µI)η. Note, that in the above notation, the

Jacobian |J(φ, η, µI)| is detMNf (µI), which is independent of η.

detNf (D/ (µ′
I) +m)

detNf (D/ (µI) +m)
=

∫
dη†dη e−|M−Nf /2

(µ′I)M
Nf /2

(µI)η|2e−|η|2+|η|2
∫
dη†dη e−|η|2 (C.3)

= 〈e−|M−Nf /2
(µ′I)M

Nf /2
(µI)η|2+|η|2〉η (C.4)

and 〈·〉η tells us that η has to be sampled with the distribution
∫
dη†dη e−|η|2 .
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Appendix D

Ferrenberg-Swendsen reweighting

Ferrenberg-Swendsen or multi-histogram reweighting[98] is a method, which allows

us to “expand” results from Monte Carlo simulations at some particular values of the

involved couplings (temperature β, chemical potential µ, . . .), to any other value of

these couplings (βr, µr) sufficiently close to the simulation parameters without per-

forming any additional simulations. It is necessary that the “target” ensemble, given

by (βr, µr), has a non-vanishing overlap with at least one of the Monte Carlo en-

sembles, otherwise the results become unphysical. This would pose no problem if

the error estimation, as discussed in Appendix B, is trustworthy. Note that in this

thesis, we check for the overlap explicitly.

We present the method with a certain amount of verbosity. There are two steps,

which can be looked at independently.

1. An iterative procedure, which solves a self-consistency equation for the so-

called “optimised partition functions”, and

2. the virtual reweighting procedure, which allows to calculate the value of the

partition function, and furthermore, the expectation value of observables at

“arbitrary” values of the couplings. In practice, reweighting works well for

interpolation in the coupling space, however not for extrapolation.

192
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D.1 The Self-Consistency Equation

The grand canonical partition function is given by

ZGC(β, µ) =

∫

[DU ]e−Sg [U ;β] detM(U ;µ) ≡
∫

[DU ]W [U ; β, µ] . (D.1)

In this particular case, we have two couplings: the temperature β and the chemical

potential µ. We assume that the couplings are chosen such that the weight W can

be sampled by ordinary Monte Carlo methods. For the following, consider a discrete

configuration space for simplicity. The sum over configurations cannot be performed

exactly. Instead, importance sampling is used, so that n configurations are visited,

selected from the ensemble with probability W [U ;β,µ]
ZGC(β,µ)

. Then, the number of times

a given configuration U will appear in the sample is (when averaged over many

identical Monte Carlo simulations)

c(U) = n
W [U ; β, µ]

ZGC(β, µ)
(D.2)

Consider several simulations j = 1..R performed with different sets of weights

(βj, µj), consisting of a number of configurations given by nj. The grand canon-

ical partition functions are

Zj =

∫

[DU ]W [U ; βj, µj] . (D.3)

All these simulations still do not cover the full configuration space. Many configu-

rations have not been sampled, while some others have been sampled several times.

But altogether, the ensemble of all sampled configurations can be used to evaluate

a partition function with arbitrary couplings W [U ; β, µ], via

ZGC(β, µ) ∼
∑

distinct sampled U

W [U ; β, µ] (D.4)

However, one must avoid overcounting. The number of times a given configuration

U appears in the sample j is given by Eq.(D.2). Therefore, configuration U appears

in the ensemble of all sampled configurations a number of times equal to

∑

j

nj
W [U ; βj, µj]

Zj
(D.5)
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Taking this multiplicity factor out, one arrives at the Ferrenberg-Swendsen expres-

sion for the grand canonical partition function ZGC(β, µ):

ZGC(β, µ) =
∑

sampled U

1
∑

j nj
W [U ;βj ,µj ]

Zj

W [U ; β, µ] (D.6)

In particular, this holds for all the sampled partition functions, thus the self-consistency

equation can be written as

Zk =
∑

sampled U

W [U ; βk, µk]
∑

j nj
W [U ;βj ,µj ]

Zj

, (D.7)

and more explicit with
∑

sampled U =
∑R

s=1

∑ns

is=1

Zk =
R∑

s=1

ns∑

is=1

e−Sg [s,is;βk] detM(s, is;µk)
∑R

j=1 nj
e−Sg [s,is;βj ] detM(s,is;µj)

Zj

. (D.8)

The weight of each configuration U , now more specifically denoted as (s, is), has to

be known for each set of sampled couplings. We will now show that this is trivial

for the gauge action Sg[s, is; β], but more difficult for the determinant.

D.1.1 Gauge action

The lattice gauge action Eq.(1.27) is independent of µ, and β can be factored out:

S[s, is; β] = β
∑

p

(

1− 1

Nc

Re Tr ps,is

)

, (D.9)

where
∑

p is the sum over all plaquettes and Nc is the number of colours. The

gauge part of the weight-function thus is easily obtained for any configuration at

any coupling β.

D.1.2 Fermion determinant

The fermion determinant is independent of β, but µ cannot be factored out. The

brute-force way would be to calculate the determinant for each configuration by

creating the fermion matrix M from scratch for any involved chemical potential.
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Fortunately, we know the Eigenvalues of the reduced matrix Eq.(4.29), with which

we can express the determinant as

detM(µ) = e3V µNt

6V∏

i=1

(
λi + e−µNt

)
,

for real, as well as imaginary chemical potential. This allows the evaluation of

detM(µ) for any µ, once the λi’s have been computed.

At finite isospin chemical potential µIS, the fermion part of the weight is given by

Wf [s, is;µIS] =
√

detM(µ = µIS) detM(µ = −µIS) . (D.10)

Unfortunately, supplementing the ensemble with configurations generated at non-

trivial ξ-values is expensive. In this case, we cannot make use of the above trick,

but have to re-calculate the Eigenvalues λi for every ξ 6= 1.

D.2 Autocorrelation-Time

The previous derivation of Eq.(D.6) assumes that all configurations were uncorre-

lated from each other. This is hardly the case, in particular around a first order

phase transition. In fact, each simulation j is a Markov chain with autocorrelation

time τj, and in general, one samples in the transition regime more configurations

than in others. Eventually, the estimate of the total weight of the critical ensem-

bles is too large. We can restore the proper statistical weights by a rescaling of the

weights:

W [U ; βj, µj]→
W [U ; βj, µj]

1 + 2τj
(D.11)

This leads to the modified Eq.(D.7):

Zk =
R∑

s=1

ns∑

is=1

e−Sg [s,is;βk] detM(s, is;µk)/(1 + 2τk)
∑

j nj
e−Sg [s,is;βj ] detM(s,is;µj)/(1+2τj)

Zj

, (D.12)

which we use, after estimating the τj’s of the plaquette values. We have observed

that the reweighting results do not change within the statistical error if we consider
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the autocorrelation times of different observables. In particular, our ensembles are

generated such that the autocorrelation time is smaller than one configuration except

at the phase transition, where τ is about 1 . τ . 5.

D.3 Reweighting to Arbitrary Coupling

The expectation value of an observable Ô in general is given by

〈Ô〉β,µ =
R∑

s=1

ns∑

is=1

Ô(s, is)ω(s, is; β, µ) . (D.13)

If R = 1 and the Markov chain is generated using importance sampling at couplings

(β1 = β, µ1 = µ) (no reweighting), the weight-function ω simply is ω = 1
ns

. In

general,

ω(s, is; β, µ) =
1

ZGC(β, µ)

W [s, is; β, µ]
∑R

j=1 nj
W [s,is;βj ,µj ]

Zj

(D.14)

and ZGC(β, µ) is given by Eq.(D.6). We have omitted the autocorrelation time for

notational simplicity. The weights used in the first step of the Ferrenberg-Swendsen

reweighting method, namely solving the self-consistency equation Eq.(D.7), are sam-

pling weights, so they are positive. In the second step, there is no such a restriction:

we can reweight to real chemical potential, where the determinant is complex. The

difficulty, however, is to control the statistical error.

It is advantageous to cover as much configuration space as possible, so that a new

ZGC(β, µ) can be evaluated correctly even when the weights W [s, is; β, µ] are very

different from any of the sampling weights W [s, is; βj, µj]. However, if the sampling

weights W [s, is; βj, µj] are very different from each other, each simulation j will

concentrate on a given part of configuration space, and the sum
∑

j nj
[s,is;βj ,µj ]

Zj
for

any configuration (s, is) will be dominated by just one term. This is known as the

overlap problem. This will make the convergence of the set of equations Eqs.(D.7)

difficult. There is a subtle consequence for the error estimation. In an extreme case,
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when most of the weight is carried by one single configuration, any error estimation

is questionable.

It is convenient to define the total weight of a Monte Carlo ensemble by

Ω(s) =
ns∑

is=1

ω(s, is; β, µ) . (D.15)

The sum
∑

s Ω(s) =
∑

s

∑ns

is=1 ω(s, is; β, µ) has to be the identity exactly - a simple

test for numerical round-off errors.

D.4 Zero Baryon Density

, and the Fourier transformation is sampled independently of the temperature β.

We treat the imaginary chemical potential µI as an additional degree of freedom,

like the gauge configuration U . We thus make use of the reweighting procedure by

the following formulation. The expectation value of an observable at some target

temperature β in the zero baryon sector is given by

〈Ô〉B=0,β =
1

ZC(β,B = 0)

1

2π

∫ π

−π
dµ̄I

∫

[DU ] Ô e−Sg [U ;β] detM(U ; iµ̄IT ) (D.16)

=
1

ZC(β,B = 0)

R∑

s=1

ns∑

is=1

Ô(s, is) ω(s, is; β) (D.17)

Our ensembles, denoted by j, are not sampled at β, but at various βj’s. The function

ω, the correct weight distribution Eq.(D.14), thus is given by

ω(s, is; β) =
1

N
e−βSg[s,is]

∑R
j=1 nj

−βjSg [s,is]

Zj

, (D.18)

where N is a normalisation constant, which is cancelled by ZC(B = 0, β)

ZC(β,B = 0) =
1

N
R∑

s=1

ns∑

is=1

1
∑R

j=1 nj
−(βj−β)Sg[s,is]

Zj

. (D.19)
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D.5 Canonical Partition Functions

In subsection 4.3.3 we have claimed that Eq.(4.33) allows for Ferrenberg-Swendsen

reweighting, in order to improve the accuracy on the canonical partition functions.

Again, the key for understanding is given by realising that

ZC(βk, B)

ZMC(βk, iµk)
=

∫
[DU ] ẐC(U ;B)detM(U ;iµk)

detM(U ;iµk)
e−Sg [U ;βk]

∫
DUe−Sg[U ;βk] detM(U ;µk)

= 〈 ẐC(U ;B)

detM(U ; iµk)
〉βk,iµk

=
∑

ik

ẐC(k, ik;B)

detM(k, ik; iµk)
, (D.20)

with ẐC(U ;B) = 1
2π

∫ π

−π dµ̄I e
−i3Bµ̄I detM(U ; iµ̄IT ) are the Fourier coefficients of

the determinant. The canonical partition function with respect to a different β is

given by

ZC(β,B)

ZMC(βk, iµk)
=

1

ZMC
1
N‖

(βk, iµk)

∑

ik

ẐC(k, ik;B)

detM(k, ik; iµk)
eSg [U ;βk]−Sg [U ;β] . (D.21)

The arbitrary normalisation factor N‖ is irrelevant for physical observables. If we

want to perform a multi-histogram reweighting using various ensembles, we have to

be careful to add “apples to apples”, since each ensemble has a different normali-

sation, ZMC(βk, iµk). We solve this problem by expressing the canonical partition

functions at a target coupling β with respect to a reference grand canonical partition

function at the couplings (β0, µ0). Generically, we write

ZC(β,B)

Zref (β0, µ0)
=

1

Zref (β0, µ0)

∫

[DU ] ẐC(U ;B)e−Sg [U ;β] . (D.22)

Based on our s ensembles, the denominator Zref (β0, µ0), although not explicitly

needed, can be calculated via the self-consistency equation Eq.(D.8)

Zref (β0, µ0) =
∑

s,is

e−Sg [s,is;β0] detM(s, is;µ0)
∑

j nj
e−Sg [s,is;βj ] detM(s,is;µj)

Zj

(D.23)

The numerator ZC(β,B) is independent of the chemical potential. In terms of the

sampled configurations, we write

ZC(β,B) =
1

N
∑

s,is

ZC(s, is;B) e−Sg [s,is;β]

∑

j nj
e−Sg [s,is;βj ] detM(s,is;µj)

Zj

(D.24)
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The overall normalisation factor N drops out for physical observables.

For notational convenience in the following, we multiply the numerator in Eq.(D.24)

with the identity detM(s,is;µ0)
detM(s,is;µ0)

and define

ZC(β,B)

Zref (β0, µ0)
=

1

Zref (β0, µ0)

1

N
∑

s,is

ZC(s, is;B)detM(s,is;µ0)
detM(s,is;µ0)

e−Sg [s,is;β]

∑

j nj
e−Sg [s,is;βj ] detM(s,is;µj)

Zj

≡
[

ẐC(s, is;B)

detM(s, is;µ0)

]β

β0,µ0

(D.25)

D.6 Canonical Observables

The expectation value of an observable Ô in the canonical sector B is given by

〈Ô〉B,β =
1

ZC(β,B)

∫

[DU ]e−Sg [U ;β] 1

2π

∫ π

−π
dµ̄Ie

−i3Bµ̄I detM(U ; iµI)Ô (D.26)

=
Zref (β, µ0)

ZC(β,B)

1

Zref (β, µ0)

∫

[DU ]e−Sg [U ;β] detM(U ;µ0)× (D.27)

× 1

detM(U ;µ0)

1

2π

∫ π

−π
dµ̄Ie

−i3Bµ̄I detM(U ; iµI) Ô (D.28)

=
Zref (β, µ0)

ZC(β,B)

[
1

2π

∫ π

−π
dµ̄Ie

−i3Bµ̄I
detM(U ; iµI)

detM(U ;µ0)
Ô

]β

β,µ0

, (D.29)

where we have chosen the reference temperature β0 = β for simplicity.

Observables, which are independent of the chemical potential, can be measured as

follows. The expectation value is given by

〈Ô〉B,β =

[

Ô ẐC(U ;B)
detM(U ;µ0)

]β

β,µ0
[

ẐC(U ;B)
detM(U ;µ0)

]β

β,µ0

≡
∑

s,is

Ô(s, is) ωC(s, is;B, β) , (D.30)

and we define the canonical weight-function ωC(s, is;B, β) as

ωC(s, is;B, β) =

ẐC(s,is;B)e−Sg [s,is;β]

∑

j nj
e
−Sg [s,is;βj ]

det M(s,is;µj)

Zj

∑

s′,i′s

ẐC(s′,i′s;B)e−Sg [s′,i′s;β]

∑

j nj
e
−Sg [s′,i′s;βj ]

det M(s′,i′s;µj)

Zj

. (D.31)
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Note that this expression is independent of µ0. Like in subsection D.3, the sum

over all weights
∑

s,is
ωC(s, is;B, β) = 1 can provide a simple test for limitations

due to machine precision. In order to determine the importance of each ensemble

for a given canonical sector, we consider the average weight of one configuration in

a given ensemble:

ΩC(s;B, β) = NC
1

ns

ns∑

is=1

ωC(s, is;B, β) (D.32)

where the constant factor NC is given by the condition

∑

s

ΩC(s;B, β) = 1 (D.33)
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CH - 8093 Zürich-Hönggerberg

Email: slavo@kratochvila.com

Schools

1983 - 1989 Primary school, Schattdorf/Altdorf UR

1989 - 1996 Gymnasium, Kollegium Karl Borromäus, Altdorf UR
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1996 - 2001 ETH Zürich, Studies in Physics
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