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Man muss noch Chaos in sich haben

um einen tanzenden Stern gebären zu können.

(F. Nietzsche)

Science is the belief in the ignorance of experts.

(R. P. Feynman)
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Abstract

This dissertation is about a spécifie problem and about general methods.

The spécifie problem is carrier-phase synchronization, which appears in

the context of digital communications. The general methods are message-

passing algorithms operating on graphical models, in particular, factor

graphs. We consider applications of such algorithms in the context of

statistical inference (as in communications, signal processing, and ma¬

chine learning), statistics, information theory, and the theory of dynami¬
cal systems (such as analog electronic circuits).

The primary motivation for this work was (1) to analyze the degrada¬
tion of digital communications systems due to oscillator non-idealities;

(2) the development of synchronization algorithms that minimize this

performance degradation.

Clocks are ubiquitous in digital communications systems; real-life clocks

are noisy, i.e., their signals are not perfectly periodic, which often leads to

a significant degradation of the performance of communications systems.

In the early days of communications, this source of degradation was

only of secondary concern. Communications systems used to operate

far from the ultimate performance bound, i.e., channel capacity. The

main concern was therefore to develop error-correcting techniques that

could close the gap between the performance of practical communications

systems and channel capacity.

With the recent advent of iterative decoding techniques, communications

systems nowadays most often operate close to the ultimate performance

limits; issues such as synchronization, which were earlier only of secon¬

dary importance, have now become the mayor (remaining) bottlenecks
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vin Abstract

in the design of communications systems.

In this dissertation, we focus on carrier-phase synchronization, i.e., the

alignment of the phase of the local oscillator in the receiver to the phase
of the incoming carrier. The questions we address are:

a) Which physical mechanisms are responsible for phase noise? How

can phase noise be modeled?

b) How can carrier-phase estimation algorithms systematically be deri¬

ved?

c) What are the ultimate limits for communication over channels with

phase noise? In particular:

i) How much does the information rate of a communications

channel decrease due to phase noise?

ii) How well can the (noisy) carrier phase be estimated?

In contrast to earlier and parallel work, our aim is not the design and

optimization of fully operating communications systems. In this thesis,
various tools are developed that lead (or may lead) to an answer to the

above questions (and many other related questions).

We give a detailed analysis of phase noise in free-running clocks and

PLLs (Question 1). We propose a simple intuitive model for phase noise

in free-running oscillators. We describe two simple models for passband
communications channels. The models take phase offsets into account

between the received carrier and the local carrier in the receiver, but

disregard timing offsets. In the first model, the phase is constant, in the

second, the phase performs a random walk. We investigate under which

conditions the two models are valid. Most methods of this thesis will be

illustrated by means of both channel models.

Most methods we propose in this dissertation are based on graphical

models, more precisely, factor graphs. Factor graphs are used to visua¬

lize the structure of the system at hand. They represent the factoriza¬

tion of multivariate functions. Each edge in the graph corresponds to a

variable, each node corresponds to a factor. Factor graphs can represent

any function, in particular, probabilistic models, error-correcting codes,
block diagrams and other common models in communications, signal

processing and beyond.
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We show how factor graphs can be used as a tool to develop practi¬
cal estimation and detection algorithms. Our techniques can be applied
to model-based signal processing (e.g., phase estimation) and machine

learning. In particular, we formulate several standard signal-processing
and machine-learning algorithms as message passing on factor graphs,

e.g., particle methods, gradient methods, decision-based methods, and

expectation maximization. In all those algorithms, local rules are applied
at the nodes in a factor graph. In other words, the (global) estimation

and detection problem is tackled by a divide-and-conquer strategy: the

global computation is carried out by multiple (simple) local computa¬

tions. The local message-update rules may be used as building blocks

for novel estimation and detection algorithms. By listing the possible

update rules at each node in the factor graph, one can systematically

explore novel algorithms. We demonstrate this idea by deriving phase
estimation algorithms for the constant-phase model and the random-walk

phase model (Question 2). We also show how the back-propagation algo¬
rithm for the training of feed-forward neural networks follows by apply¬

ing generic message-passing rules. We elaborate on the computation of

kernels in the light of message passing on factor graphs.

We demonstrate how message-passing algorithms for inference can be

implemented as dynamical systems, in particular, as clock-free analog
electronic circuits. Those systems operate in continuous time, and do

not require a digital clock; therefore, they circumvent the problem of

timing synchronization.

We present a numerical algorithm to compute the information rate of

continuous channels with memory (Question 3.a). The algorithm is an

extension of the methods proposed earlier for discrete channels with

memory. Also here, factor graphs and the summary-propagation algo¬
rithm are key ingredients. We apply the method to the random-walk

phase model. The algorithms we propose for computing Cramér-Rao-

type bounds open the door to exciting applications of information geo¬

metry, such as (1) natural-gradient-based algorithms; (2) the computa¬

tion of Fisher kernels.

We propose a numerical algorithm for computing the capacity (or lower

bounds on capacity) of continuous memoryless channels (Question 3.a).
We present numerical results for the Gaussian channel with average-

power and/or peak-power constraints. We outline how the algorithm
can be extended to continuous channels with memory (e.g., channels
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with phase noise) by means of message-passing techniques.

We propose message-passing algorithms to compute Cramér-Rao-type
bounds. Cramér-Rao-type bounds are lower bounds on the minimum

mean square estimation error; the bounds may be used to asses the

performance of practical (message-passing) estimation algorithms, in parti¬

cular, our phase-estimation algorithms (Question 3.b). The algorithms
we propose for computing Cramér-Rao-type bounds open the door to ex¬

citing applications of information geometry, such as (1) natural-gradient-
based algorithms; (2) the computation of Fisher kernels.

Keywords: graphical models, summary-propagation, belief propaga¬

tion, message passing, expectation maximization, EM, steepest descent,

particle filter, MCMC, particle methods, Gibbs sampling, importance

sampling, decision-based estimation, iterative conditional modes, ICM,
carrier phase estimation, phase noise, clock jitter, synchronization, Blahut-

Arimoto algorithm, information rate, channel capacity, Cramér-Rao bound,
information matrix, kernel methods, Fisher kernel, product kernel, proba¬
bilistic kernel, neural networks, back-propagation algorithm, analog elec¬

trical circuits, linear feedback shift register, LFSR.



Kurzfassung

Diese Dissertation beschreibt einerseits ein spezifisches Problem

und andererseits allgemeine Methoden. Das spezifische Problem ist

Trägerphasensynchronisation, welches im Kontext der digitalen Kommu¬

nikation auftritt. Die allgemeinen Methoden sind sogenannte "message-

passing" Algorithmen, welche auf graphischen Modellen angewandt wer¬

den, insbesondere auf Faktorgraphen. Wir betrachten Anwendungen sol¬

cher Algorithmen im Kontext von statistischer Inferenz (wie z.B. in der

digitalen Kommunikation, in der Signalverarbeitung oder im maschi¬

nellen Lernen), Statistik, Informationstheorie und der Theorie dynami¬
scher Systeme (wie z.B. analoge elektrische Schaltungen).

Die primäre Motivation für diese Arbeit war (1) den Leistungsverlust

digitaler kommunikationssysteme infolge nicht-idealen Oszillatoren zu

untersuchen; (2) die Entwicklung von Algorithmen, welche diesen Leis¬

tungsverlust minimieren.

Oszillatoren sind allgegenwärtig in digitalen Kommunikationssystemen;

Signale praktischer Oszillatoren sind verrauscht, d.h., die Oszillator¬

signale sind nicht exakt periodisch, was oft zu einem bedeutenden Leis¬

tungsverlust der Kommunikationssysteme führt.

In den frühen Tagen der Kommunikation war diese Art von Leistungsver¬
lust eher von sekundärer Bedeutung. Die Kommunitionssysteme operier¬
ten zu diesen Zeiten weit entfernt von der theoretischen Leistungsgrenze,

d.h., die Kanalkapazität. Die Hauptsache war deswegen Fehlerkorrigie¬
rende Methoden zu entwickeln, welche die Lücke zwischen der Leistung

praktischer Kommunikationssysteme einerseits und der Kanalkapazität
andererseits schliessen könnten.

XI
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Mit der jüngsten Entwicklung iterativer Dekodierungsmethoden arbei¬

ten die heutigen Kommunikationsysteme nahe an der theoretischen

Leistungsgrenze; Probleme wie Synchronisation, welche zuvor eher von

sekundärer Bedeutung waren, sind heute die wichtigsten (letzten)
Engpässe beim Entwurf von Kommunikationssystemen geworden.

In dieser Dissertation konzentrieren wir uns auf Trägerphasensynchroni¬
sation. Darunter versteht man das Synchronisieren der Phase des lokalen

Empfängersoszillators mit der Phase des empfangenen Signals.

Die Fragen welche wir betrachten sind:

a) Welche physikalische Mechanismen sind verantwortlich für Phase¬

rauschen? Wie kann Phaserauschen modelliert werden?

b) Wie können Trägerphasenschätzungsalgorithmen systematisch her¬

geleitet werden?

c) Was sind die theoretischen Leistungsgrenzen für Kommunikation

über Kanäle mit Phaserauschen, insbesondere:

i) Wieviel nehmen die Informationsraten infolge Phaserauschen

ab?

ii) Wie gut kann die (verrauschte) Tragerphase geschätzt wer¬

den?

Im Gegensatz zu früheren und parallelen Arbeiten ist unser Ziel nicht

der Entwurf und die Optimierung von vollfunktionierenden Kommuni¬

kationssystemen. In dieser Arbeit werden verschiedene Werkzeuge ent¬

wickelt, welche zu Antworten auf die obenstehenden Fragen (und vielen

anderen verwandten Fragen) führen (oder führen könnten).

Wir beschreiben eine detaillierte Analyse von Phasenrauschen in freilau¬

fenden Oszillatoren und PLLs (Frage 1). Wir schlagen ein einfaches intui¬

tives Modell für Phaserauschen in freilaufenden Oszillatoren vor. Wir be¬

schreiben zwei einfache Modelle für Bandpass-Kommunikationskanäle.
Die Modelle berücksichtigen Offsets zwischen der Phase des Empfan-

gersoszillators und der Phase des empfangenen Signals; die Modelle

vernachlässigen aber Timing-Offsets. Im ersten Modell ist der Phase-

Offset konstant, im zweiten Modell wird der Phase-Offset modelliert als
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ein Random-Walk Prozess. Wir untersuchen unter welchen Bedingun¬

gen beide Modelle gültig sind. Die meisten Methoden dieser Dissertation

werden anhand beiden Modellen illustriert.

Viele (wenn nicht alle) Methoden dieser Arbeit sind basiert auf graphi¬
schen Modellen, insbesondere Faktorgraphen. Faktorgraphen werden u.a.

verwendet um die Struktur des betrachteten Systems zu visualisieren.

Sie stellen die Faktorisierung multivariater Funktionen dar. Jede Kante

des Graphens entspricht einer Variable, jeder Knoten des Graphens ent¬

spricht einem Faktor. Faktorgraphen können beliebige Funktionen dar¬

stellen, insbesondere probabilistische Modelle, fehlerkorrigierende Codes,

Blockdiagramme und andere Modelle welche oft in der Kommunikation,
in der SignalVerarbeitung und in anderen Gebieten verwendet werden.

Wir zeigen wie Faktorgraphen als ein Werkzeug verwendet werden

können, um praktische Schätz- und Detektionsalgorithmen zu entwi¬

ckeln. Unsere Techniken können auf modellbasierte SignalVerarbeitung

(z.B. Phaseschätzung) und auf machinelles Lernen angewandt werden.

Wir formulieren verschiedene Standard-algorithmen der Signalverarbei¬

tung und des machineilen Lernens als message passing auf Faktorgra¬

phen, z.B. Partikelmethoden, Gradientenverfahren, entscheidungsbasier-
te Methoden, und expectation maximization (EM). In diesen Algorith¬
men werden lokale Regeln an den Knoten des Faktorgraphen angewandt.
Mit anderen Worten, die globale Schätzaufgabe (oder Detektionsaufga-

be) wird anhand einer teile-und-herrsche Strategie angepackt: die globale

Berechnung wird durch viele (einfache) lokale Berechnungen ersetzt. Die

lokale Regeln können als Bausteine für neue Schätz- und Detektionsal¬

gorithmen verwendet werden. Durch dem Auflisten von den möglichen

Aufdatierungsregeln an jedem Knoten des Faktorgraphen kann man sys¬

tematisch neue Algorithmen entwicklen. Wir demonstrieren diese Idee für

das konstante-Phasemodell und das Random-Walk Phasemodell (Frage
2). Wir zeigen auch wie der back-propagation Algorithmus für das Trai¬

nieren von feed-forward neuronalen Netzwerken als das Anwenden von

generischen Aufdatierungsregeln auf einem geeigneten Faktographen auf-

gefasst werden kann. Wir beschreiben Kernels im Kontext von message

passing auf Faktorgraphen.

Wir zeigen wie message-passing Algorithmen für Inferenz als dynamische

Systeme implementiert werden können, insbesondere als Uhr-freie ana¬

loge elektrische Schaltungen. Diese Systeme arbeiten zeitkontinuierlich

and brauchen deswegen keine digitale Uhr; deshalb vermeiden sie das
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Problem von Zeitsynchronisation.

Wir schlagen eine nummerische Methode vor, um Informationsraten von

kontinuierlichen Kanälen zu berechnen (Frage 3.a.). Der Algorithmus ist

eine Erweiterung einer Methode welche zuvor für diskrete Kanäle vor¬

geschlagen wurde. Auch hier sind Faktorgraphen zusammen mit dem

summary-propagation Algorithmus ein wichtiger Bestandteil. Wir wen¬

den die Methode auf das random-walk Phasemodell an.

Eine nummerische Methode für die Berechnung von Kapazitäten (oder
den unteren Grenzen für die Kapazität) von kontinuierlichen Kanälen

ohne Gedächtnis (Frage 3.a) wird vorgeschlagen. Wir bieten nummerische

Ergebnisse für den Gauss'schen Kanal mit mittleren- und maximalen-

Leistungsbedingungen an. Wir skizzieren wie der Algorithmus mit Hilfe

von message-passing Methoden auf Kanäle mit Gedächtnis (z.B. Kanäle

mit Phaserauschen) erweitert werden kann.

Wir schlagen message-passing Algorithmen für die Berechnung von

Cramer-Rao-Typ Grenzen vor. Cramér-Rao-Typ Grenzen sind untere

Grenzen für den minimalen mittleren quadratischen Schätzfehler; diese

Grenzen können verwendet werden um praktische (message-passing)
Schätzalgorithmen zu bewerten, insbesondere unsere Phaseschätzer (Fra¬
ge 3.b). Die Algorithmen für die Berechnung von Cramér-Rao-Typ Gren¬

zen welche wir vorschlagen könnten zu neuen interessanten Anwendungen
der Informationsgeometrie führen, wie z.B. (1) natürlicher-gradienten¬
basierte Algorithmen; (2) die Berechnung von Fisher-Kernels.

Stichworte: Graphische Modelle, summary-propagation, belief pro¬

pagation, message passing, expectation maximization, EM, steepest

descent, Partikelfilter, MCMC, Partikelmethoden, Gibbs sampling, im¬

portance sampling, entscheidungsbasiertes Schätzen, iterative conditio¬

nal modes, ICM, Trägerphasenschätzung, Phasenrauschen, clock jitter,

Synchronisation, Blahut-Arimoto Algorithmus, Informationsrate, Kanal¬

kapazität, Cramér-Rao Grenze, Informationsmatrize, Kernel-Methoden,

Fisher-Kernel, Produkt-Kernel, probabilistischer Kernel, neuronale Netz¬

werke, back-propagation Algorithmus, analoge elektrische Schaltungen,
LFSR.
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Chapter 1

Introduction

1.1 Motivation

This dissertation is about:

• a particular problem, i.e., carrier-phase synchronization, which ap¬

pears in the context of digital communications.

• general methods, i.e., message-passing algorithms operating on graphi¬
cal models, in particular, factor graphs. We consider applications
in the context of statistical inference (as in communications, signal

processing, and machine learning), statistics, information theory,
and the theory of dynamical systems (such as analog electronic

circuits).

The primary motivation for this work was (1) to analyze the degrada¬
tion of digital communications systems due to oscillator non-idealities;

(2) the development of synchronization algorithms that minimize this

performance degradation.

Clocks are ubiquitous in digital communications systems; real-life clocks

are noisy, i.e., their signals are not perfectly periodic, which often leads to

a significant degradation of the performance of communications systems.

1
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In the early days of communications, this source of degradation was

only of secondary concern. Communications systems used to operate

far from the ultimate performance bound, i.e., channel capacity. The

main concern was therefore to develop error-correcting techniques that

could close the gap between the performance of practical communications

systems and channel capacity.

With the recent advent of iterative decoding techniques, communications

systems nowadays most often operate close to the ultimate performance

limits; issues such as synchronization, which were earlier only of secon¬

dary importance, have now become the mayor (remaining) bottlenecks

in the design of communications systems.

In this dissertation, we focus on carrier-phase synchronization, i.e., the

alignment of the phase of the local oscillator in the receiver to the phase
of the incoming carrier. The questions we address are:

a) Which physical mechanisms are responsible for phase noise? How

can phase noise be modeled?

b) How can carrier-phase estimation algorithms systematically be deri¬

ved?

c) What are the ultimate limits for communication over channels with

phase noise? In particular:

i) How much does the information rate of a communications

channel decrease due to phase noise?

ii) How well can the (noisy) carrier phase be estimated?

In contrast to earlier and parallel work, our aim is not the design and

optimization of fully operating communications systems. In this disser¬

tation, various tools are developed that lead (or may lead) to an answer

to the above questions (and many other related questions).

Most of the methods we propose in this dissertation are based on graphi¬
cal models, more precisely, factor graphs [119] [103] [66]. Factor graphs
are used to visualize the structure of the system at hand. They repre¬

sent the factorization of multivariate functions. Each edge in the graph

corresponds to a variable, each node corresponds to a factor. Factor

graphs can represent any function, in particular, probabilistic models,



1.1. Motivation 3

error-correcting codes, block diagrams and other common models in com¬

munications, signal processing and beyond.

Factor graphs can be used for statistical inference, i.e., detection and

estimation. Statistical inference is performed by sending messages along
the edges of the graph ( "summary propagation" or "message passing" ).
Different algorithms are obtained by different message types or different

message-update schedules. We will derive various phase-estimation algo¬
rithms within this framework (Question 2). We show how various exis¬

ting algorithms can be interpreted as message passing on factor graphs,

e.g., particle methods, decision-based methods, the backpropagation al¬

gorithm for the training of feedforward neural networks, etc.

We demonstrate how message-passing algorithms for inference can be

implemented as dynamical systems, in particular, as clock-free analog
electronic circuits. Those systems operate in continuous time, and do

not require a digital clock; therefore, they circumvent the problem of

timing synchronization.

A different application of factor graphs is the computation of informa¬

tion rates of (discrete) channels with memory (Question 3.a). As has

been shown in [12], information rates for such channels can be com¬

puted by forward-only messaging on the graph of the state-space model

that represents the channel. In this dissertation, we extend this result

to continuous channels. Moreover, we investigate how the capacity of

continuous channels can be computed.

In this dissertation, we will also present an entirely novel application of

factor graphs: the computation of Cramér-Rao-type bounds, which are

lower bounds on the mean squared estimation error. We will compute

those bounds for a communications channel with phase noise (Question
3.b). The algorithms we propose for computing Cramér-Rao-type bounds

open the door to exciting applications of information geometry, such

as (1) natural-gradient-based algorithms; (2) the computation of Fisher

kernels.

Many of the tools we propose in this dissertation are applicable to a much

wider variety of problems than merely phase estimation, i.e., they are not

only applicable to synchronization or other estimation/detection pro¬

blems in digital communications, but also to problems in signal process¬

ing and machine learning.
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1.2 How to read this thesis?

This dissertation may be of interest to:

• communications engineers, who want to learn more about (1) algo¬
rithmic and information-theoretic aspects of carrier-phase estima¬

tion or the problem of channel estimation in general; (2) the design
of clock-free analog circuits for pseudo-noise synchronization, or,

more generally, the implementation of message-passing algorithms

by means of dynamical systems.

• researchers in signal processing and machine learning, who want to

learn more about (1) message-passing algorithms for estimation; (2)
the computation of performance bounds for estimation algorithms;

(3) the connection between, on the one hand, message passing on

graphical models and, on the other hand, neural networks, infor¬

mation geometry and kernel machines.

Each chapter of this thesis concerns a specific aspect of the problem at

hand, and can, to a great extend, be read independently of the others.

We provide an introduction to factor graphs and the sum(mary)-product
algorithm in Chapter 2. We recommend the reader who is not familiar

with factor graphs and the sum(mary)-product algorithm to start with

Chapter 2 before reading any following chapter. In the next section, we

outline the content of this thesis and mention our contributions.

1.3 Outline

Channel Model (Question 1)

We give a detailed analysis of phase noise in free-running clocks and

PLLs. We propose a simple intuitive model for phase noise in free-

running oscillators. The model is an alternative to the more sophisticated

analysis by Demir et al. [54] [57] based on Floquet-theory.

We describe two simple models for passband communications channels.

The models take phase offsets into account between the received carrier
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and the local carrier in the receiver, but disregard timing offsets. In the

first model, the phase is constant, in the second, the phase performs a

random walk. We investigate under which conditions the two models are

valid. Most methods of this thesis will be illustrated by means of both

channel models.

Factor Graphs and Summary Propagation

This chapter gives a brief introduction to factor graphs and the summary-

propagation algorithm.

Phase Estimation Algorithms (Question 2)

We show how factor graphs can be used as a tool to develop practical
estimation and detection algorithms. Our techniques can be applied to

model-based signal processing (e.g., carrier-phase estimation) and ma¬

chine learning.

In particular, we formulate several standard signal-processing and machine-

learning algorithms as message passing on factor graphs, e.g., particle

methods, gradient methods, decision-based methods, and expectation
maximization. In all those algorithms, local rules are applied at the

nodes in a factor graph. In other words, the (global) estimation and de¬

tection problem is tackled by a divide-and-conquer strategy: the global

computation is carried out by multiple (simple) local computations. The

local message-update rules may be used as building blocks for novel es¬

timation and detection algorithms. By listing the possible update rules

at each node in the factor graph, one can systematically explore novel

algorithms.

We demonstrate this idea by deriving phase estimation algorithms for

the constant-phase model and the random-walk phase model.

Appendix E and D are strongly based on the results of this chapter.

In Appendix E, we show how the back-propagation algorithm for the

training of feed-forward neural networks follows by applying generic rules

on a suitable factor graph.
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In Appendix D, we investigate how kernels can be extracted from graphi¬
cal models by means of message passing on factor graphs.

The message-passing tools presented in this chapter were developed in

collaboration with Sascha Korl.

Computing Cramér-Rao-type Bounds (Question 3.b)

We propose message-passing algorithms to compute Cramér-Rao-type
bounds. Cramér-Rao-type bounds are lower bounds on the minimum

mean square estimation error; the bounds may be used to asses the

performance of practical (message-passing) estimation algorithms, in parti¬

cular, our phase-estimation algorithms. The algorithms we propose for

computing Cramér-Rao-type bounds open the door to exciting applica¬
tions of information geometry, such as (1) natural-gradient-based algo¬

rithms; (2) the computation of Fisher kernels.

We wish to acknowledge Shun-ichi Amari, Sascha Korl, Frank Kschis¬

chang, Amos Lapidoth, and Marc Moeneclaey for inspiring discussions

and useful feedback on the topics of this chapter.

Computing Information Rates of Continuous Channels with

Memory (Question 3.a)

We present a numerical algorithm to compute the information rate of

continuous channels with memory (Question 3.a). The algorithm is an

extension of the methods proposed earlier for discrete channels with

memory [12] [179] [160]. Also here, factor graphs and the summary-

propagation algorithm are key ingredients. We apply the method to the

random-walk phase model.

Capacity of Continuous Memoryless Channels (Question 3.a)

A numerical algorithm is presented for computing the capacity (or lower

bounds on capacity) of continuous memoryless channels. We present
numerical results for the Gaussian channel with average-power and/or
peak-power constraints. We outline how the algorithm can be extended
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to continuous channels with memory (e.g., channels with phase noise) by
means of message-passing techniques.

We wish to acknowledge Sascha Korl and Frank Kschischang for inspiring
discussions on the topic of this chapter.

Analog Clockless Electronic Circuit for PN-Synchronization

This chapter does not address one of the three questions we listed in

the above. Its topic, however, is strongly related to (1) the problem of

synchronization; (2) message passing on factor graphs.

We present an analog electronic circuit that synchronizes to pseudo-noise

sequences. The circuit operates without a digital clock, and avoids there¬

fore the problem of timing synchronization. We derive the circuit as mes¬

sage passing on a suitable factor graph. In this fashion, we established a

connection between statistical state estimation and the phenomenon of

entrainment.

The results presented in this chapter are based on joint work with Matthias

Frey, Neil Gershenfeld, Tobias Koch, Patrick Merkli and Benjamin Vigoda.

My personal contribution concerns the statistical estimation aspect, and

not the hardware implementation or measurement of the circuit.

Conclusions and Outlook

The last chapter states some concluding remarks and suggestions for

future research.

Appendices

In the appendices, we provide background information concerning es¬

timation and detection theory (Appendix A), information theory (Ap¬
pendix B), coding theory (Appendix C), kernel methods (Appendix D),
neural networks (Appendix E), and Kaiman filtering (Appendix H with

related material in Appendix F and Appendix G). In Appendix I, we

provide necessary conditions for differentiation under the integral sign,

an operation we will often carry out in this thesis.



8 Chapter 1. Introduction

Appendix D also contains some thoughts on how kernels can be derived

from graphical models, in particular, by message-passing methods.

In Appendix E, we in addition show how the back-propagation algo¬
rithm for the training of feed-forward neural networks can be derived as

message-passing on factor graphs.

In the Appendices J-L, we provide detailed derivations of some results

presented in this thesis.

Appendix J contains the derivations of the EM update rules listed in

Section 4.9.2.

In Appendix K, we give proofs of lemmas and theorems stated in Chap¬
ter 5.

In Appendix L, we derive alternative update rules for the soft-LFSR

presented in Section 8.4.



Chapter 2

Channel Model

In this chapter, we describe the two channel models we will use in this

thesis. The models are simple descriptions of a single-carrier passband
communications system: they take phase offsets into account between

the received carrier and the local carrier in the receiver, but disregard

timing offsets.

We organized this chapter as follows. First, we review some basic notions

from digital communications, with special emphasis on single-carrier

passband communications systems. We present our first model, in which

the phase offset is constant. We then investigate how noise sources such

as thermal and shot noise amount to random fluctuations in oscillator

and clock signals. At the end of this chapter, we formulate the second sig¬
nal model, which incorporates random phase fluctuations, i.e., the phase
drift is modeled as a Gaussian random walk. We discuss under which

conditions both models are valid.

2.1 Digital Communications System

In this section, we review some basic concepts from digital communica¬

tions. For a classical treatment of this subject, see e.g. [165]. We will

follow the exposition in [203].

9
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Figure 2.1: Digital data transmission over a noisy channel.

Assume that we are interested in transmitting data (such as images,
audio or video signals) from a point A to a point B or that we wish to

store some information that we would like to retrieve later on. In both

cases we desire that the received and the retrieved data is identical to

the data transmitted or stored, or, if errors cannot be avoided, that there

are as few errors as possible.

Fig. 2.1 shows the typical blocks of a model for digital data transmission

over a noisy channel:

• (Source/source coding)
The data we would like to transmit is produced by a source. Its

output can be compressed (losslessly or lossy) by a source coding
scheme to reduce the amount of data to be transmitted. The output

of such a compressed source may for example be modeled as a

binary i.i.d. source. By u = (u\,U2, ,Uk), where ut G U, we

denote the vector of k consecutive source output symbols.

• (Channel coding)
In order to increase the reliability of the transmission of the sig¬
nal through the (noisy) channel, the channel encoder introduces

redundancy to the data coming out of the compressed source.

A trivial form of encoding is to repeat each source symbol m times,
where m is a positive integer. In non-trivial encoding schemes, the

source output vector u of length k is mapped to a vector v =

(vi, V2, , vn) of length n where vt G V. The art of channel coding
is to find a "good" subset C of V called codebook or, in short,

code; the elements of C, referred to as the codewords, should be as
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far "apart" from each other as possible

For more information on coding, we refer the reader to Appendix C

• (Modulation/noisy medium/demodulation)
The noisy medium is the physical medium that is used to send the

data from the transmitter to the receiver In wireless transmis¬

sion, the data is transmitted in free space,1 other media are wire

lines, optical fiber cables, and magnetic materials (as, e g ,
in hard

drives) The medium corrupts the signal by a variety of mecha¬

nisms as for example ( 1 ) thermal noise and shot noise generated by
electronic devices, (2) interference with background signals, such

as signals stemming from other users or power-line signals

Before the data v can be sent over the noisy medium, it must

be converted into analog waveforms that match the characteristics

of the medium, this is the task of the modulator Typically, the

code symbols v are first converted into channel symbols x This

conversion is generally referred to as line encoding The channel

symbols x are modulated on analog waveforms At the receiving

end of the communications system, the demodulator transforms

the received (analog) signal into a sequence y of symbols

The concatenation of the three blocks modulation, noisy medium,
and demodulation is called the communications channel (or chan¬

nel for short) A communications channel is characterized by the

channel law Py|x(yIx) which is the conditional probability of y

given x

When the output yk of the channel solely depends on the current

input Xk and is conditionally independent of previous inputs and

outputs, then the channel is called "memoryless" The channel law

PY|x(y|x) can then be written as

PY\x(y\x) = l[PY\x(yk\xk), (2 1)
fc=i

under the assumption that the channel is used without feedback

The channel is thus fully characterized by the conditional proba¬

bility function Py\x and can be represented by a diagram as in

1We remind the reader of the fact that free space is not a medium in the physical

sense We use the word "medium" here in a more abstract sense, as is standard in

the communications literature



12 Chapter 2. Channel Model

Xk e X pY\x(Vk\xk) Vk&y

Figure 2.2: Example of a channel diagram.

Fig. 2.2. An example of memoryless channel model is the addi¬

tive white Gaussian noise channel with binary (BI-AWGNC) or

continuous (C-AWGNC) inputs. The input to the BI-AWGNC is

±1, the output is a real number, and the quality of the channel is

characterized by the variance of the additive white Gaussian noise;
in the C-AWGN channel, the input is a real number.

The efficiency of the information transmission over the channel is

quantified by the transmission rate R (in bits per channel use)
defined as the ratio

, log2 |C|
_

Mog2 |W|
,„„.

We provide more information about the channel in Section 2.2.

• (Channel decoding)
The sequence y is passed to the channel decoder, which tries to

eliminate errors that might have occurred during transmission;

thereby, it exploits the redundancy contained in the received data.

Based on the observation y our estimate about u is û = (u\,..., ûk)
of length k with ût G U. Instead of estimating u, we are possi¬

bly interested in an estimate v = (v\,V2,... ,vn) about v, where

vu G V. Channel decoding is the art of finding a "good" and effi¬

cient decoding algorithm for a given channel code and a given chan¬

nel. By "good" we mean that the probability of error Pr[u ^ u]
should be as small as possible.

• (Source decoding/sink)
The source decoder uncompresses û and delivers the result to the

final destination ("sink").
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2.2 The Communications Channel

We defined the channel as the concatenation of modulation, the noisy

medium, and demodulation (see Fig. 2.1); the modulator transforms the

digital information into analog waveforms, which are transmitted over

the noisy medium, and converted back into a sequence of symbols by the

demodulator at the receiver side.

Two major classes of analog waveforms are baseband and passband

signals, each leading to substantially different transmitter and receiver

structures. Baseband signals are pulse trains, the information is encoded

in the amplitude of the pulses. They are used in applications such as Inte¬

grated Services Digital Networks (ISDN), Local Area Networks (LANs),
and digital magnetic recording systems. In passband communications

systems, a baseband signal is modulated unto a sinusoidal carrier, such

that the resulting waveform fits into the frequency range available for

transmission. In radio, wireless and satellite communications systems,

information is transmitted by means of passband signals.

In the following, we briefly outline both classes of communications sys¬

tems; we refer to [165] for more detailed information. We will assume

that the channel code C is binary. We will use the symbol b (instead
of v) for the encoded bits. We will also assume that the noisy medium

solely adds white noise n(t) to the transmitted signal s(t). The received

signal is then given by

r(t)=s(t-TC) + n(t), (2.3)

where tc is the delay of the channel.

2.2.1 Baseband System

A rudimentary block diagram of a baseband communications system is

depicted in Fig. 2.4.

Modulation

The line encoder maps sequences of log2M encoded bits bk to channel

symbols Xk taking value in {±1, ±3,..., ± (M — 1)}. The sequence x of

channel symbols passes through a linear filter (transmit filter) with im¬

pulse response grit)- The resulting (base-band) waveform (see Fig. 2.3)
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has the form

sbbW = ^xkgT(t - kT), (2.4)

where T is the inverse of the symbol rate. The signal sbb(£) is transmit¬

ted over the noisy medium.

sbb(*) tXAfc

Xk+l

Figure 2.3: Baseband signal.

Demodulation

The received signal is processed by a linear filter (receiver filter or

"matched filter" ) whose impulse response gR is given by (?#(£) = <?t(i~r —

t), where tr is a chosen such that (?t(i~r — t) is a causal function.

In addition, the convolution h(t) = [gT * gn](t — tr) often satisfies the

first Nyquist criterion

h(kT) =
1 for k = 0

0 for k + 0.
(2.5)

An extensively used class of functions that satisfy (2.5) are the raised

cosine pulses

sin(7rf/T) cos(a7rf/T)
h(t) (2.6)

nt/T l-4a2t2/T2'

where the parameter a is called the roll-off factor and satisfies 0 < a < 1.

The output of the matched filter is sampled at a rate 1/T; the line

decoder converts the samples in the sequence y, which will be further

processed by the channel decoder.
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Modulation

\ Line

Encoder

Transmit

Filter

"

Demodulation
Noisy

Channel

Y
Line

Decoder

Receiver

Filter

Figure 2.4: Baseband communications channel.

We investigate the signals in the baseband receiver in more detail. The

received waveform r(t) is given by

y(t) = YJ^9T(t-iT-TC)+n(t), (2.7)
£

and the output of the receiver filter equals

y(t) = Y^xeh(t-eT-TC-TR)+ n(t), (2.8)
£

where n(t) = [n *<?#](£). The signal y(t) is sampled at the instances t =

t + kT resulting in the samples

yk = ^2xeh(T + (k-e)T)+nk, (2.9)
£

where rik = n(f + kT), yk = y(kT), and t = f — tr — tc is the timing
offset. If

T =Tldeal =TR + TC, (2-10)

the timing offset t equals 0, and as a consequence of the first Nyquist
criterion (2.5), the expression (2.9) simplifies to

Vk=Xk+nk. (2-11)

The sample yk then only depends on the channel symbol Xk ; otherwise,
it is (in principle) affected by all channel symbol c (cf. (2.9)), an effect

called "inter-symbol interference" (ISI). In many practical receivers, a
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timing-synchronization algorithm (see Fig. 2.5) tries to align the sam¬

pler to the incoming signal in order to circumvent ISI. However, (small)
deviations between f and T1(jeai are unavoidable. An alternative approach
is not to adjust f at all, but to use a free-running sample clock instead.

The timing offset t is then estimated from the samples r, and the ISI is

compensated for by digital signal processing.

Line

Decoder

Receiver

Filter

Timing
Sync

Figure 2.5: Timing synchronization in a baseband receiver.

2.2.2 Passband System

Fig. 2.6 shows a basic block diagram of a (single-carrier) passband com¬

munications system.

Modulation

Channel symbols x are passed through a linear filter gr(t)', the resul¬

ting baseband signal sBB(t) is modulated onto a sinusoid c(t) with fre¬

quency fc

c(t) = eJ2^fct, (2.12)

amounting to the passband signal spB(t)

sPB(t) = Re{sBB(ty2*fct}. (2.13)

Before the signal spB(t) is transmitted over the communications channel,
it is fed into a bandpass filter.

Depending on the structure of the baseband signal sBB(t), one distin¬

guishes two different classes of passband modulation schemes: non-offset

modulation and offset modulation. In non-offset modulation, the

baseband signal sBB(t) nas the form

sBB(t) = J2xk9T(t-kT), (2.14)
k
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Modulation

_ -
c(t)A

X i
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Encoder

Transmit

Filter
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Filteri

<* IX)*
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Figure 2.6: Passband communications channel.

where grif) is the signaling pulse. Quadrature amplitude modulation

(QAM) and phase shift keying (PSK) are the two most wide-spread non-

offset modulation schemes. With QAM modulation, Xk in (2.14) has the

form

Xk = ak+ ]bk (2-15)

with ak and bk belonging to {±1, ±3,..., ±(M - 1)}. With PSK, we

have

Xk = e>a\ (2.16)

with ak G {0, 2tt/M, ..., 2tt(M - 1)/M}. In offset modulation, the

baseband signal sbb is given by

*bb(*) = J2 ak9T{t -kT)+jJ2 hgT(t -kT- T/2). (2.17)

In offset quadriphase modulation (OQPSK), which is the most common

offset modulation scheme, ak and bk in (2.17) take values ±1 (as in 4-

QAM).

The encoded bits b can be mapped to (channel) symbols x in a number

of ways. The most common mapping is Gray encoding, where adja¬
cent (M-ary) signal amplitudes differ by one binary digit, as illustrated

in Fig. 2.7. The most likely errors caused by noise involve the erroneous

selection of an adjacent amplitude to the transmitted amplitude Xk- In

such a case, only a single-bit error occurs in the M-bit sequence.

Demodulation

The received signal is first processed by a pre-filter (not shown in Fig. 2.6)
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to eliminate out-of-band noise. Its output is down-converted to a base¬

band signal: first, it is multiplied by a local carrier c^(t), then it is

passed through a low-pass filter. The output of this filter is processed by
a baseband-receiver.

"bk

10* 00*

ii* 01«

at

J

bk

10

ii«

oi ak

Figure 2.7: Non-offset modulation.

(left) 4-PSK; (right) 4-QAM, a.k.a Q(uadrature) PSK.

We now have a closer look at the signal processing in the passband re¬

ceiver. We consider non-offset modulation, the extension to offset modu¬

lation is straightforward. We merely focus on carrier synchronization and

put aside timing synchronization, since it has been considered previously.

The output of the low-pass filter in Fig. 2.4 can be represented as the

complex signal

y(t) = eA2t+e\sBB(t)+n(t), (2.18)

where

• n(t) is low-pass noise, whose bandwidth is usually much wider than

the bandwidth of the baseband signal sBB(t).

• v = fn — fi, is referred to as the carrier frequency offset,

• fi, is the frequency of the local reference and fn is the frequency
of the incoming carrier; due to the Doppler effect and clock insta¬

bilities2
,
the frequency fn may differ from fc, the frequency of the

transmitted carrier,

• 9 = 9l — 9r — 2nfR r is a phase offset,

2We address clock instabilities in Section 2.4.
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• 6l and Or is the phase of the local reference and the incoming

carrier respectively,

• we assumed that the low-pass filter has a unity frequency response

for the low-pass signal components

The output of the receiver filter y(t) = [gn * y](t) is given by

m EX£ e0{2^{t-t')+e)gT{j _ t, _ £T _ Tc)

gT(TR-t')dt' + m(t), (2 19)

where rh(t) = [gR*n](t) The expression (2 19) can be approximated as

m ^{2-nvt+O) YJX£h(t-eT-TC-TR) + m(t), (2 20)

as long as the phase 9(t) = 2-nvt + 9 varies only little over a time interval

of length T Sampling y(t) at the "ideal" instances t = T1(jeai + kT =

tr + Tc + kT yields

yk = eA2^+kT^Xk+nk, (2 21)

where rik = n(T1(jeai + kT) Note that carrier offsets (in contrast to

timing offsets) do not lead to mter-symbol interference, as long as the

phase offset remains small Most passband receivers are equipped with

algorithms to track the carrier offsets v and t, as depicted in Fig 2 8 3

In addition, they often contain algorithms to correct for timing offsets

Line

Decoder

Receiver

Filter

Low-pass
Filter

Timing
Sync

-«—

I

Sync

Figure 2.8: Carrier and timing synchronization in a passband receiver

3The picture shows one possible architecture, there is a large variety of classical

synchronization schemes, see [135] [136]
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2.3 Constant-Phase Model

We propose a first simple stochastic model for a single-carrier communi¬

cations systems.

Constant-phase model:

Yk = XkeJe + Nk (2.22)

with O [0, 2tt) and

(2.23)

The above model is a stochastic model, its variables (e.g., O) are random

variables. We use capital letters to denote random variables and small

letters for their realizations.

The model (2.22) (2.23) is valid if

a) a timing-synchronizer tracks the timing offsets, and hence the ex¬

pression (2.21) is a good description of the received symbols yk,

b) the frequency offset v = 0,

c) the phase offset 9 = 9l — 9r — 2nfRT is constant.

The last assumption is typically not met. The phase offset often un¬

dergoes random fluctuations. In the following section, we study how

noise sources such as thermal, shot and flicker noise amount to phase
instabilities. In Section 2.5, we present a simple model that takes those

instabilities into account.

2.4 Phase Noise

Clock and oscillator signals that occur in communications systems are

not perfectly periodic. Practical clocks, such as CMOS LC-oscillators for

example (see e.g., [98] [64] [215]), are affected by phase and frequency
instabilities called phase noise. This is even the case for high-precision
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frequency sources such as quartz oscillators, masers and passive atomic

frequency standards [135, p. 142].

Since we are interested in modeling the impact of phase offsets in pass-

band systems, it is of crucial importance to have a good understanding
of the random fluctuations in the phase of an oscillator. In this section,

we present several models for phase noise in free-running and forced os¬

cillators.

The oscillator output is typically perturbed by short-term and long-term
instabilities. Long-term instabilities, also known as drifts or trends, may
be due to aging of the resonator material (e.g., in quartz oscillators).
These usually very slow changes are much less critical than the short-

term instabilities, caused by noise sources such as thermal, shot, and

flicker noise in electronic components. The oscillator output may also

interfere with other signals. For example, in highly integrated oscilla¬

tor circuits, switching signals from the digital portion of the circuit can

couple with the clock signal through the substrate or power supply lines

(see e.g., [81]). This kind of interference can often be avoided by careful

system design.

Phase noise degrades the performance of communications systems, as

we illustrate by two examples. The transitions in an oscillator signal are

sometimes used as a time reference (e.g., the sampler clock in a baseband

receiver). The spacing between those transitions is ideally constant; in

practice, however, they will be variable due to phase noise (see Fig. 2.12).
The randomness in the transition times, called timing jitter, has a harm¬

ful effect on the sampling process, as illustrated in Fig. 2.9: the un¬

certainty in the sampling times translates directly to uncertainty in the

sampled value.

Phase noise also has a deteriorating influence on the down-conversion in

passband receivers (see Fig. 2.10). The power spectral density of a peri¬
odic signal (with period Ts) consists of Dirac deltas located at the har¬

monics k/Ts (k = 1,2,...). Due to phase noise, power "leaks" from the

harmonics to neighboring frequencies: the Dirac deltas becomes smooth

"bumps", centered at the harmonics. As a consequence, background

signals in the frequency band adjacent to the incoming data signal are

down-converted and interfere with the desired baseband signal (2.18).
This phenomenon is called mterchannel interference.
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Sampling error

Timing jitter

Figure 2.9: Sampling error due to timing jitter.

Oscillators are omnipresent in communications and optical systems and

as a consequence, phase noise has been studied intensively in the past.

Nevertheless, a generally accepted model for phase noise does not seem

to exist. The same holds for flicker noise, despite of its ubiquity. The

modeling of phase noise, in fact, of noise in general, remains a very active

research field.

In the following, we briefly review the three most common noise sources:

thermal, shot and flicker noise. We derive a simple model for phase
noise in free-running oscillators, i.e., oscillators that are not locked unto

a reference. Our aim is to gain some insight, not to derive a complete

theory. We review some modeling approaches that have been proposed in

the literature, for free-running clocks and for phase-locked loops. At the

end of this section, we discuss simple heuristic models for phase noise.

Common noise sources

• (Shot noise)
Shot noise consists of random fluctuations of electric currents in re¬

sistors, pn-junctions, transistors, and other electronic devices. The

fluctuations are due to the fact that an electric current is carried by
discrete charges (electrons and holes). The power spectral density
of this (additive) noise source is constant for a very large frequency

range (tens of hertz to gigahertz). It can be represented as a zero-
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Figure 2.10: Interchannel interference

mean white noise source with spectral density

Sshot(f) = 2ql, (2 24)

where q is the electron charge, I the (average) current and / the fre¬

quency The expression (2 24) can be derived as follows
4
The flow

of electrical charges through some spatial section can be modeled as

a random pulse tram The corresponding (stochastic) current I(t)
is of the form

I(t) qS(t -tk), (2 25)

where tk is the arrival time of the k-th carrier, and q is the charge
of each carrier We model the arrival of the carriers as a Poisson

process with rate A The signal I(t) is an 11 d stochastic process

with mean

I = E[l(t)] =Xq (2 26)

4We follow in part the exposition in [175], a more detailed microscopic model can

be found in [218, pp 54-68]
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The shot noise, i.e., the random fluctuations around the average

current I(t), is given by the zero-mean current I(t):

ï(t) = I(t) - I. (2.27)

The power spectral density of I(t) follows from Carson's theo¬

rem [218, pp. 22-23].

Theorem 2.1. (Carson's theorem)
Let x(t) be defined as follows:

X{t)=YJAkg{t-tk), (2.28)
k

where Ak are i.i.d. random variables, the function g(t) ("pulse")
has the Fourier transform G(f), and the number of pulses in a

given time interval is Poisson distributed with rate A. The power

spectral density of X(t) is given by

Sx{f) =2XE[A2]\G{f)\2 + ^¥?[x]5{f). (2.29)

We apply Carson's theorem to the signal / (2.27) with Ak = q and

G(f) = 1, and obtain:

Sx(f) = 2Xq2 (2.30)

= 2ql, (2.31)

which is the spectral density (2.24).

• (Thermal noise)
A conductor in thermal equilibrium with its surroundings exhibits

random fluctuations even when no (average) current is flowing

through it. These fluctuations were first observed by Johnson in

1928 [92], and shortly afterwards, Nyquist proposed a theoretical

explanation [154]. This noise source is often called Johnson-Nyquist
noise (or "thermal noise" ). The power spectral density of the open-

circuit voltage and closed-circuit current is given by

S^thermalM = 4:kBTR and S^thermalM = AkBT/R (2.32)

respectively, where kB is the Boltzmann constant, T is the equi¬
librium temperature and R is the resistance. In most standard
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accounts on noise, thermal noise and shot noise are treated as fun¬

damentally different physical processes. Sarpeshkar and al. [175]
have shown that both noise sources are in fact the result of one

and the same physical mechanism, i.e., the discrete nature of charge

transfer; we shortly review the line of thought in [175].

If no voltage is applied across a resistor, electrons flow in the re¬

sistor due to diffusion. The resulting forward and backward cur¬

rent Ifit) and hit) can be modeled as Poisson processes. Both

currents cancel on the average, since the total average current is

assumed to be zero. If the currents Ifit) and hit) are statistically

independent, they generate shot noise with total power spectral

density S,shot(/) = 2</(I/ + h) (cf. (2.24)), where If and h are the

average forward and backward current respectively. The latter are

proportional to the concentration of the carriers n and to the area

of the cross section, and inversely proportional to the length L of

the resistor:

If =h = qDnA/L, (2.33)

where D is the so-called diffusion constant. By means of (2.33) and

Einstein's relation D//J, = kT/q, where /x is the mobility constant,

the noise power can be written as:

Sshotif) = 2q(If + Ib) (2.34)

= Aq2DnA/L (2.35)

= A(q/jn)kTA/L (2.36)

= AkTaA/L (2.37)

= AkT/R (2.38)

= S»,thermal (w), (2.39)

where a is the conductivity of the material. The key step in the

derivation is the use of Einstein's relation (cf. (2.36)). We obtained

thus Johnson's and Nyquist's result (2.32) for the power spectral

density of short-circuit noise in a resistor. In other words, thermal

noise is nothing but shot noise, originating from the discreteness of

the forward and backward current.

• (Flicker noise)
In a large variety of unrelated systems, signals have a power spec¬

tral density that is proportional to 1// at low frequencies /. Such

signals are called "1// noise" (or "flicker noise" or "pink noise").
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Examples include music and speech, the current through ion chan¬

nels, network and freeway traffic, currents and voltages in electronic

devices, etc. (see [95] and references therein). Whereas thermal

and shot noise are fairly well understood, there is still quite some

controversy around 1// noise. Recently, Kaulakys et al. [95] [96]
proposed a simple and generic mathematical description for this

type of noise—in our opinion, the most plausible and promising
of all approaches we are aware of. Kaulakys et al. argue that the

origin of 1// noise lies in Brownian fluctuations of the mterevent

time of signal pulses. In the following, we briefly review Kaulakys'
model [95] [96].

We consider again a signal x(t) of the form (2.28). The pulse

shape g(-) mainly influences the high-frequency portion of the power

spectral density, and is not responsible for 1// noise. Fluctuations

in the pulse amplitude ak usually result in white or Lorentzian

noise, but not 1// noise. For the purpose of this analysis, we re¬

strict ourselves to the noise due to correlations between the transit

times tk'. we choose a Dirac delta as pulse shape and assume that

the pulse amplitude is constant, i.e., ak = a, for all k, resulting in

the signal x(t):

x{t) = ^2aô{t-tk). (2.40)
k

This model corresponds to the flow of identical point objects such as

electrons, photons, etc. Suppose now that the recurrence times Tk =

tk — tk-i follow a first-order autoregressive model:

Tk =Tfc_i -7(Tfc_i -f) + ank, (2-41)

where a ("noise variance") and 7 ("damping factor") are "small"

positive real numbers, rik is an i.i.d. Gaussian random variable

with zero mean and unit variance, and f is the steady state value

of Tk Note that for large k the variance of the interevent time Tk

converges to a finite value:

Var[rfc]=a2/(27)- (2.42)

In [95] it is shown that the power spectral density of the sig¬

nal xit) (2.40) with interevent times (2.41) for t 3> 7_1 and fa =

y/j/{na) > f > fi = 73/2/(7r<T) has the form

S{f) = I% (2.43)
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where I = a/r and a is a dimensionless constant:

a=^=Ke-K\ (2.44)

with K = fy^/a. The model amounts to a 1/f spectrum in a wide

frequency range (/i, ^2) with /2//1 = 7_1- As a result of the non¬

zero damping factor 7 and, consequently, due to the finite variance

of the recurrence time Tk, the model is free from the unphysical

divergence at / = 0. For f < fi the power spectrum density is

Lorentzian [95]:

w-'Vr^ (2'45)

where w = 2-rrf and Trei = a2/(2f^2). For 0 < / < l/(27rTrei), the

power spectral density is flat, i.e., S(f) = AI2Tle\ and S(0) is finite.

Recently, Kaulakys [96] proposed a non-linear stochastic differential

equation for the signal (2.40) with interevent times (2.41), and 7 =

% = & + &*»*). <>

where nit) is zero mean white Gaussian noise with unit variance.

We refer to [96] for more details. A similar differential equation
for 7 > 0 has not been derived yet.

We now investigate how noise sources such as thermal, shot and flicker

noise can generate phase noise. First we consider free-running clocks,
then phase-locked loops.

2.4.1 Phase Noise in Free-Running Clocks

A Simple Model

We consider a general autonomous (continuous-time) system described

by the first-order differential equation

!=><*>• (2-47)

where x G M is the state of the system and / : Rn —> Rn. We assume

that / satisfies the conditions of the existence and uniqueness theorem
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for initial value problems, and that the system (2.47) has a non-trivial

Ts-periodic solution xs(t). The path Ps (or "orbit" or "limit cycle") is

defined as

Ps ={xGRn :x = xs(t),t G [0,TS)}. (2.48)

The distance d(x, Ps ) between a point x G M and the path Ps is defined

as

d{x,Ps) = min |x-x'|. (2.49)
x'EPs

The solution xs(t) is assumed to be an attractor, which means that

there exists a number e > 0 such that with each initial value xq satis¬

fying d(xo,Ps) < e, there corresponds an asymptotic phase 9(xq) G M

with the property

lim \x(t, x0) -xs(t + 9(x0))\ = 0, (2.50)
t—>oo

where xit, xq) is the (unique) solution of (2.47) with attains the value xq

at t = 0. In other words, as soon all noise sources are "switched off", the

state xit) will return to the orbit Ps; deviations from the orbit ("ampli¬
tude deviations" ) are smoothed out by a control mechanism, but a phase
offset 9 persists, even when no further perturbations occur!

The fact that the system (2.47) is supposed to have a stable periodic so¬

lution immediately implies that / is a non-linear function. Indeed, linear

systems do not have stable (or "attracting" ) limit cycles. This inherent

non-linearity makes the study of phase noise notoriously difficult.

We are interested in the response of the system (2.47) to a "small" ad¬

ditive stochastic perturbation N(t); the perturbed system is given by

(IT

-=f(x) + N(t). (2.51)

As a first step in our analysis, let us consider the response xit) to a small

deterministic perturbation no G M at t = 0, as illustrated in Fig. 2.11.

We assume that the state xit) evolves along the path Ps before the pertur¬

bation occurs, more precisely, xit) = xs(t) for all t G [—to, 0) with to > 0.

The response x(0) at t = 0+ equals:

x(0) = xs(0)+n0 =x0. (2.52)

Since the limit cycle Ps is an attractor, the state xit) will return to Ps:

x(t)=xs(t + 9(xs(0),n0)), (t>0) (2.53)
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Figure 2.11: Perturbation of the stable orbit xs(t)

where the asymptotic phase shift 0(xs(O), no) depends on the initial posi¬

tion xs (0) and the perturbation no The form of the function 6( ) depends
on the function /( ) (cf (2 47)) We consider now the Taylor-expansion
of 9(xs (0), no) around no = 0

9(xs(0), n0) = 9(xs(0), 0) + V„o0(xs(O), n0)|„o=0 n0 + O(|n0|2)
(2 54)

= Vnofl(xs(0),no)|no=0 n0 + 0(|no|2), (2 55)

where we have used the fact that #(xs(0),0) = 0 Since the perturba¬
tion no is assumed to be small, one can (to a good approximation5) omit

the non-linear terms in (2 54)

0(xs(O),«o)« 7(^(0)) n0, (2 56)

BHajimin et al have performed SPICE-simulations to verify the linearity assump¬
tion They concluded that the assumption holds as long as the perturbation is smaller

than 10% of the signal amplitude icmax = maxt |xs(t)| [78, p 38] We also investi¬

gated the linearity assumption by means of simulations (l e
, by numerical integration

of (2 51)), and obtained similar results The effective injected charges due to actual

noise and interference sources in practical circuits are typically of the order 10—4

of :Cmax or even smaller, hence the linearity assumption is usually valid
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where

7(xs(0))â V„0fl(xs(0),no)|no=0. (2.57)

Suppose now that the system is disturbed by multiple deterministic per¬

turbations n\, ri2, , riM at the time instances t\, t2, , tM respectively.
For simplicity, we assume that the time instances tt are "far" apart such

that the state x has reached the orbit Ps before each perturbation nt

occurs.6 The resulting asymptotic phase shift 9 for t ~^> tM depends on

the states xs(t~ + 0(t~)) at t~ and the perturbations nt (i = 1,..., M).
Again, we assume that the perturbations are small and that 9 depends

linearly on the disturbances nt

M

9 = YJl(xs(t; + 9(t;)))-nl. (2.58)
i=\

Since the time t uniquely determines the position of xs(t) along the

path Ps, we will from now on write 7(£~ + 9(t~)) instead of 7(xs(£~ +
0(O)).

The same reasoning can be applied to the model (2.51), which results in

the following continuous-time phase model.

Continuous-time phase noise model:

G(t) = / 7(t' + G(t')) • N(t')dt'. (2.59)
J —OQ

In words:

(Key property of phase noise)
Phase noise is intrinsically an accumulative process; it results from

integrating the system's perturbations over time.

The phase Q(t) (cf. (2.59)) is a random variable. Note that (2.59) is a

nonlinear stochastic differential equation.

6If this assumption does not hold, our theory is still valid, but the reasoning
becomes a bit more involved.
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Suppose now that the noise source N(t) is an 11 d process with (Amte)
variance a2, as for example thermal and shot noise

7 We assume that t

is sufficiently large so that the initial condition has been "forgotten" and

the pdf pe(9(t)) is uniform The random variable Kit) = j(t + Q(t))N(t)
has zero mean, and as a consequence of (2 59), the same holds for the

phase Q(t) The variance Var[©(£)] of the phase grows linearly with time,

which can be shown as follows Since N(t) is 11 d
,

/t+At E[\>y(t' + e(t'))\2\ctt', (2 60)

where At is a "small" positive real number The expectation in the RHS

of (2 60) does not depend on t (for large t)

E[|7(t + e(t))|2] ^eo (2 61)

As a consequence,

E[(6(t + At)-O(t))2] =cr21e0At, (2 62)

and, therefore, the derivative of Var [©(£)] is constant

^^Wl â hm E[(6(t + At) - 0(t))2/At] = a2 e0 (2 63)

Assuming Var[@(0)] = 0, we obtain

Var[6(t)] = c0t, (2 64)

where cq = a2 eo As a consequence of (2 64), spectrograms8 of the

phase O (measured over a large, but finite time interval) have the form

Sg(f) ocl/f (2 65)

For large t, Q(t) is a Gaussian random variable Indeed, the inte¬

grand Kit) = 7(t + Q(t))N{t) in the RHS of (2 59) is a "weakly" -

dependent stationary process One may therefore invoke the central limit

7A Gaussian l l d process is strictly speaking not well-defined, since it has infinite

power (or variance) An arguably more precise formulation is the following we

suppose that the power spectrum of N(t) is flat for all / < fc (with fc 3> 1/TS)
and decays to zero for / > fc, as for example in a Lorentzian spectrum with cut-off

frequency fc
8The power spectral density of 0(t) is not well-defined, since 0(t) is not wide-sense

stationary
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theorem (CLT) for such processes [126] [85] to conclude that O(t) is a

Gaussian random variable.

Note that phase jitter does not alter the total power in the oscillator

signal. If t is large and therefore p&(0(t) = 9) = -^ for all 9, the power

of the noisy signal is identical to the power of the periodic signal xs(t):

E[x2(t + 0(t))]=7i /
S

x2s{t)dt. (2.66)
J-s Jo

The phase deviation Q(t) does not change the total power, but it changes
the power spectral density, potentially leading to effects as interchan-

nel interference, as we pointed out earlier. If the noise sources are

i.i.d. Gaussian random processes, the power spectral density has the

shape of a Lorentzian around the carrier [54]; away from the carrier,
the white-noise sources contribute a term that has a 1/f2 frequency de¬

pendence, and the colored-noise sources contribute terms that have a

frequency dependence as 1/f2 multiplied with the spectral density of the

colored-noise source [54]. In the case of flicker noise (FN), the most com¬

mon colored-noise source, the dependency is therefore 1/f3. The power

spectral density of the output signal xit) of a free-running clock with

nominal frequency fo is usually of the form [110]:

Sx(f) = c/(f - fo)2 + cfn/I/ - fo\3, (2.67)

where the offset frequency Af = \f — fo\ is supposed to be sufficiently

large, and c and cfn are positive real numbers. A typical spectrogram

of the phase noise 6it) in free-running clocks has the shape [110]:

Se(f) = d/f2 + dFN/f, (2.68)

where d and dp-^ are positive real numbers. Note that the 1/f2 behavior

in the RHS of (2.68) is in agreement with (2.65).

From (2.59) we can also gain more insight about timing jitter. As we

mentioned earlier, the effect of the phase deviation Q(t) on a clock signal
is to create jitter in the zero-crossing or transition times (see Fig. 2.12).
Let us take one of the transitions of the signal as a time reference and

let us synchronize it with t = 0. In an ideal signal, the transitions occur

at t = kTs ik = 1, 2,... ) as indicated by the arrows in Fig. 2.12. In a

signal with phase deviation O(t), the transitions appear at t = kTs + Ofc,

where Ok = Q(kTs). The expression (2.59) leads to the following model

for the timing jitter ©&.
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t = kTs t=(k+l)Ti t=(k + 2)T

yk+i 7fc+2

Figure 2.12: Timing jitter; ideal signal (solid line) and signal perturbed

by phase noise (dashed line).

Discrete-time phase noise model:

©fc = ©fc-i + Nk,

with
kTs

Nk= J 7(t' + 0(t'))iV(t')A'. (2.69)

(fc-l)Ts

The model holds generally for 0^ = O(kAt), where At is an arbitrary

positive real number (not necessarily equal to Ts, the period of xsit)).

We again consider the case where Nit) is an i.i.d. process with (finite)
variance a2. From (2.69) it follows that Nk is a zero-mean i.i.d. random

process that is independent of 0^. The variance of Nk equals

Var[Wfc] = E[N2},
kTs

= °l j E[72(t' + fl(t'))]dt'.

(fc-im

(2.70)

(2.71)

The integral in the RHS of (2.71) does not depend on k, hence the

variance of Nk is constant:

Var[Wfc] â a%. (2.72)
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Note that Nk will be (close to) Gaussian as a consequence of the CLT, as

we argued earlier [126] [85] In summary, we derived the following model

for timing jitter in a free-running clock perturbed by white noise sources

(Discrete-time model for phase noise due to white-noise

sources)

0fe = 0fe-i + Nk, (2 73)

with

Nk^Novi

In words the timing jitter 0^ undergoes a Gaussian random walk process

The variance of 0^ grows linearly with k, l e
,

E[e2]=a2Nk (2 74)

This is m agreement with experimental results McNeill observed the

linearly increasing variance for the timing of the transitions of a clock sig¬

nal generated by an autonomous oscillator with white-noise sources [129]
On the other hand, if the oscillator also contains flicker-noise sources,

the jitter variance initially grows linearly over time (due to the white

noise), but after a sufficient amount of time, it increases quadratically

(due to the flicker noise) [114]

Literature on Phase Noise in Free-Running Clocks

A large variety of phase models has been proposed m the literature 9

Most of them are restricted to particular implementations, for example
CMOS LC-oscillators [87] The more general models are usually based

on linear perturbation theory (see, e g , [77] [104] [155]) the state zit) of

the perturbed system is assumed to only slightly deviate from the state

of the unperturbed system xsit)

X(t)=xs(t) + Z(t), (2 75)

where Zit) is "small" The phase noise model is obtained by linea¬

rizing (2 47) around xsit) Unfortunately, the expansion (2 75) is invalid

9We refer to [131 pp 11 19] for a detailed overview of existing phase noise models
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for noisy oscillators, since N(t) grows unboundedly in time due to phase
drift [54] Models derived from (2 75) are therefore rather problematic,
for example, they predict the power of the oscillator signal to be infinite,
which is clearly unphysical [54]

Hajimin et al [109] (see also [78]) analyzed phase noise starting from the

non-linear expansion

X(t)=xs(t + 0(t))+Z(t), (2 76)

where 0(t) is the phase drift and Zit) is supposed to be small, as

in (2 75) They propose the following model for 0(t)

0(t) = / j(t')N{t')dt', (2 77)
J —oo

where Nit) stands for noise sources in the oscillator The difference be¬

tween the models (2 59) and (2 77) is subtle in (2 59), the function 7( )
depends on t + 0(t), whereas in (2 77), 7( ) depends on t Model (2 77) is

simpler than (2 59), but unfortunately invalid 10 It leads sometimes to in¬

correct results for example, it is not capable of predicting injection lock¬

ing, whereas model (2 59) accurately describes this phenomenon [198]

Demir et al investigated phase noise by means of Floquet theory, which

is a non-linear perturbation theory [54] [55] [57] [54] based on the expan¬

sion (2 76) The Floquet-analysis of [54] amounts to the model (2 59),
which we derived previously in a rather intuitive manner Demir et

al [55] determined how 7( ) depends on the function /( ) (cf (2 59))
7( ) turns out to be a so-called Floquet vector of /( ) In [57], also the

case where N(t) is colored stationary Gaussian noise is analyzed, it is

proved that for large t, the marginal p&(0(t)) is a Gaussian pdf with

constant mean and variance

Var[0(t)] oc [ (t-t')RN(t')dt', (2 78)
Jo

where Rn( ) is the autocorrelation function of N(t) In deriving (2 78),
it is assumed that the bandwidth of N(t) is much narrower than the

frequency ujs = 1/TS, or equivalently, it is assumed that the correlation

width of the colored noise source in time is much larger than the oscil¬

lation period Ts = 2it/ujs Demir et al [54] [55] [57] formulated perhaps

This can straightforwardly be verified by means of Fig 2 11
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the most sophisticated and rigorous theory for phase noise currently avai¬

lable, nevertheless, many important questions remain unanswered For

example, in the case of colored-noise sources, the theory predicts that

for large t the marginal p&(0(t)) is a Gaussian pdf, but it is unclear

whether 0(t) is a jointly Gaussian stochastic process Generally spea¬

king, the dependency between the phase drift 0(t) at different time in¬

stances remains largely unspecified In the following, we consider phase
noise in phase-locked loops, which are oscillators that are driven by a

reference signal

2.4.2 Phase Noise in Phase-Locked Loops

Phase-locked loops (PLL) are widely used in passband receivers for acqui¬

ring and tracking the phase of the incoming carrier (cf 2 2 2)
n

They
contain a feedback loop (see Fig 2 13) that tries to minimize the off¬

set 4>it) between the phase of the local oscillator signal and the phase of

the incoming signal, l e
,

4>(t) = 9R(t)-9L(t), (2 79)

where 9Rit) and O^it) is the phase of the incoming and local carrier

respectively Usually, the incoming carrier is generated by a free-running

clock, and its phase öß(t) drifts as a random walk A phase detector

OR\<<)
Phase

W(l)
Low-pass
FilterDetector

J
''eL{i )

VCO

Figure 2.13: Phase-locked loop

measures the phase offset </>(£), its output wit) typically depends on </>(£)
in a non-linear fashion

«;(*) =/pd(#*)) (2 80)

11 We refer to [135] for an in-depth discussion of PLLs
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The output of the phase detector wit) is passed through a low-pass filter,
which is most often of first order The resulting signal uit) is fed into

a voltage-controlled oscillator (VCO), which generates a sinusoid whose

phase Oi,it) depends on uit) in the following way

9L{t)=lu ( u(t')dt', (2 81)

where 7„ is a positive real number 12 In other words, the VCO tries to

decrease the phase error </>(£) by adjusting the phase Oi,it) of the local

carrier according to the low-pass filtered error signal

The non-lmeanty in the phase detector is responsible for the rather com¬

plex behavior of PLLs A typical realization of the phase error </>(£)
is shown in Fig 2 14 When the PLL is switched on, it has no infor¬

mation about the phase Or The initial phase error is therefore large,
but it decreases steadily in a transient regime called acquisition After

some time, the phase error has become small and the PLL is said to be

"locked" unto the incoming reference Occasionally, this quasi-stationary

regime may be interrupted due to some random disturbance, the PLL

may become unstable during a short amount of time, and then lock back

unto Ol Or, much worse, it may lock unto some neighboring stationary

point Ol + k2n/M (k G Z), where M is the alphabet size of the data

symbols modulated on the incoming carrier This phenomenon, called

cycle slip, causes large phase errors, and can drastically increase the bit

(or word) error rates Cycle slips occur with low probability in practical

systems, but they are unavoidable, especially at low SNR

The non-linearity of the phase detector seriously complicates the analysis
of PLLs As a consequence, few (exact) analytical results on phase noise

in PLLs are available Mehrotra [132] proposed a rigorous mathemati¬

cal model for PLLs, similar in spirit as the Floquet analysis of Demir

et al [54] [57] for free-running oscillators The approximate expres¬

sion (2 83) is replaced by

eL(t)= f \iu{t' + QL{t'))U{t') + ln{t' + QL{t')) M(t')]dt', (2 82)
•J —oo

where Mit) stands for the internal noise sources of the VCO The ex¬

pression (2 82) is a natural extension of the model (2 59), it is more a

12In the expression (2 83), the noise sources in the VCO are neglected, we will come

back to this issue later on
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4>{t)\

A-k/M

2tt/M -

acquisition

* locked

/

Figure 2.14: Phase error in a PLL.

precise description of the dynamics of a VCO than (2.83). Unfortunately,
the resulting stochastic differential equations for the phase error </>(£) are

hard to solve. Mehrotra only obtained (partial) results for PLL with

white noise sources. We refer to [132] for more details.

It is more common to model PLL by means of nonlinear differential equa¬

tions with additive noise sources. The expression (2.82) is approximated

by

0L(t) = M(t) + 7„ Uit')dt', (2.83)

where the stochastic process Mit) models the phase noise in the VCO.

The incoming signal is assumed to be a perfect periodic signal with ad¬

ditive noise, i.e., the phase drift of the incoming signal is not taken into

account. It has been shown that, under the additional assumption of

white noise sources, the stationary distribution of the phase noise in a

locked PLL without low-pass filter ( "first-order PLL" ) is a Tikhonov dis¬

tribution [202, Chapter 4]:

p<s>{4>)
exp(as cos</>)

2nIo{as)
< 7r) (2.84)

where Iq is the zeroth-order Bessel function of the first kind, and as is

a positive real number. No (exact) analytical results seem to exist for

PLLs with low-pass filters.13 Nevertheless, the distribution (2.84) seems

iPLLs with first-order low-pass filters ("second-order PLLs") are most often used



2 4 Phase Noise 39

to be a good approximation of experimentally obtained histograms of

the phase error in such PLLs [202, pp 112-117] Note that the Tikhonov

distribution can be well approximated by a Gaussian distribution if as

is sufficiently large

A popular approximation method [135, Chapter 2 and 3] is to linearize

the phase detector characteristic fpp>(4>), which is only valid as long as

the phase error (pit) remains small The PLL is described by linear

differential equations with additive noise sources, which can be solved by
standard linear systems theory [135, pp 48-53] (see also [110] and [132])
A key result from this analysis is that the spectrum of the phase noise is

given by

S^s) = \H(s)\2SN(s) + |1 - H(s)\2SM(s), (2 85)

where Sj^(s) and Sm(s) is the power spectral density of the additive

noise in the received signal and VCO respectively, and H(s) = eL (s\ is the

closed-loop transfer function, which is a low-pass filter As a consequence

of (2 85), the variance of the phase error Var[</>(£)] converges to the (Amte)
value

1 f°°
Var[oi(t)] = - / SJjuj)duj (2 86)

\H(ju;)\2SN(ju;) + \l-H(ju;)\2SM(j^)]du;(2 87)

The expression (2 85) indicates that, under "normal" circumstances, the

phase error in a PLL is bounded, in contrast to the situation in free-

running clocks It can also be seen from (2 85) that in order to minimize

the phase noise (pit) due to Nit), the additive noise in the received signal,
the bandwidth of H(s) should be made as narrow as possible On the

other hand, the bandwidth should be chosen wide in order to avoid the

phase noise due the VCO instabilities Mit) Both criteria are opposed to

one another, and one needs to make a compromise It is common practice

to tune the parameters of the low-pass filter such that the steady-state

phase error variance (2 87) is as small as possible [135, pp 150-153] We

underline once more that the expression (2 87) only holds as long as the

PLL is locked and the phase error is small, the behavior of the PLL with

regard to cycle slips is also often taken into account in the PLL-design

process

in practice
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2.4.3 Heuristic Models for Phase Noise

As we have seen previously, a rigorous (tractable) model for phase noise is

currently not available. However, for practical purposes, heuristic models

may suffice. The phase jitter in PLLs is sometimes approximated by

low-pass Gaussian noise. An example of such a model is the following
first-order autoregressive (AR) process [108].

(First-order AR model for phase noise in a PLL [108])

0fc = 30fc-l + Nk, (2.88)

where

Nk ~M>, T2 )

and a < 1.

The phase fluctuations in a PLL usually also contain high-pass compo¬

nents (cf. (2.85)). They are neglected in the above model. We pro¬

pose the following higher-order autoregressive-moving average (ARMA)
process as a more accurate model for phase noise in PLLs.

(Higher-order ARMA model for phase noise in a PLL)

i„ Lh

*ft ^J aiNk-i + ^J be^fk-e

£=0 =0

(2.89)

$fc rr: *fc-i + zk

La Lb

(2.90)

Tfc y ]a,£$k-£ + ^Jbefk-e
£=0 £=Q

(2.91)

Sfe = *fe-Tfe (2.92)

Ok = *fc + 3fc, (2.93)

where

Nk ~ M0^N, (2.94)

Zk ~ M),<t|- (2.95)
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The process ^ stands for the phase noise induced by the additive white

noise in the received signal (cf. the first term in (2.85)). It is generated

by passing the white noise process Nk through the low-pass filter

^) = S^4- (2-96)

The order of H(z) is given by the order of the low-pass filter in the PLL.

For example, to model first-order PLLs, which are the most widely used

PLLs, ARMA-processes of second-order (i.e., La = Lf, = 2) are the most

suitable. The coefficients ak and bk can be determined by measurements

of the phase jitter. The random-walk phase drift of the VCO is modeled

by (2.90). The process T^ stands for the low-pass filtered VCO phase

noise, generated by passing $fc through H(z). The high-pass filtered

VCO phase noise (cf. the second term in (2.85)) is modeled by S^. It is

obtained by filtering $fc by 1 - H{z) (cf. (2.91) and (2.92)). The total

phase noise in the PLL is represented by ©&, the sum of the low-pass

phase noise ^ and the high-pass phase noise S^.

The model does not incorporate flicker noise, since it is hard (if not

impossible) to represent flicker noise as an ARMA process (cf. (2.4)).
However, this is not really problematic. Only the high-pass components

of the VCO phase noise contribute to the PLL phase noise (cf. the second

term in (2.85)), hence the VCO's flicker-noise sources are usually less

critical than its white-noise sources.

The model also disregards cycle slips, it only describes locked PLLs. By

combining it with a finite state machine that models cycle slips, a more

complete (heuristic) description for phase noise in a PLL can be obtained.

The random-walk process (2.73) (or equivalently (2.88), with a = 1)
is widely used as a model for phase noise in free-running clocks. We

will mostly use that model in this thesis. Note that the random-walk

phase model is valid if the oscillator only contains white-noise sources.

It should be straightforward to extend the results of this thesis to the

(more realistic) ARMA-model (2.89)-(2.93).

2.5 Random-walk Phase Model

We extend the model (2.22)-(2.23) with random phase fluctuations.
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Random-walk phase model:

Yk=Xke^ + Nk, (2.97)

where

0fc = (0fc^1+Wrfc)mod27r: (2.98)

and

N* ~ JV*W, (2.99)

Wu ~ M0^w. (2.100)

The model describes the received symbols yk accurately if

a) a timing synchronizer tracks the timing offsets and the variance aw

is small (e.g. aw < 10~2); the expressions (2.21) and (2.21) are

then valid

b) the frequency offset v = 0,

c) the fluctuations of the phase offset 0 = Ol — Or — 2tt/r r can be

described as a random walk process.

The last assumption is for example met if the oscillators in the trans¬

mitter and receiver are free-running clocks (perturbed by white-noise

sources), the frequency /# is approximately constant, and the relative

distance between the transmitter and receiver (and hence the channel

delay t) is constant or fluctuates as a random walk.
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Factor Graphs and

Summary Propagation

This chapter aims at giving an introduction to factor graphs and the

summary-propagation algorithm on a generic level. Factor graphs are de¬

fined in Section 3.1 as graphs (in the mathematical sense) that represent

the factorization of multivariate functions. One of the most important

operations that can be performed on factor graphs is marginalization,

i.e., the computation of marginals of probability functions. Marginali¬
zation lies at the heart of many algorithms in signal processing, coding
and machine learning. As we will show, computing marginals amounts

to passing messages ("summaries") along the edges in the factor graph
of the system at hand. This generic message-passing algorithm, called

the sum(mary)-product algorithm (SPA), is introduced in Section 3.2.

Literature

In the present and next chapter, we closely follow Loeliger's tutorial

introduction about factor graphs and the summary-propagation algo¬
rithm [119].

Factor graphs have their roots in coding theory; they were originally
introduced in [103], based on earlier ideas by Tanner [190] and Wiberg

43
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et al [211] [210] In this thesis, we use the refined notation proposed by

Forney [66] (there called "normal graphs" ) We will refer to this notation

as Forney-style factor graphs, or short FFG

Since the summary-product algorithm is very generic, it has repeatedly
been re-discovered in different scientific communities The algorithm has

a long history in the context of error correcting codes Gallager's algo¬
rithm for decoding low-density parity check (LDPC) codes [72] [73], the

BCJR-algonthm [15] and the Viterbi algorithm [65] can be regarded as

early versions of the summary-product algorithm In the statistics and

machine-learning community, the algorithm is known under the name of

"probability propagation" or "belief propagation" [157] [68] and is usually

applied on Bayesian networks Yet another instance of the same princi¬

ple is the Bethe and Kickuchi method from statistical physics (see [223]
and references therein) Two standard techniques in signal processing,

l e
,
hidden-Markov models and Kaiman filtering, can also be seen as in¬

stances of the summary-product algorithm For a more detailed review of

the history of the summary-product algorithm within different scientific

fields, we refer to [103] [222]

3.1 Factor Graphs

Factor graphs belong to the family of graphical models A graphical
model is—as the name suggests—a graphical representation of some

mathematical model, it visualizes interactions between variables in a

model Examples of such models are error-correcting codes, mathema¬

tical descriptions of communications channels, input-output systems as

for example in classical filter and control theory, electrical networks,

spin glasses (which are physical models of magnetic materials), ordi¬

nary or partial differential equations, and statistical models of speech

signals, images or video sequences There are various types of graphi¬
cal models besides factor graphs, most importantly Markov random

fields [213] (which are often used in machine vision, statistics and statis¬

tical physics), Bayesian networks [157], and neural networks1 [22] The

latter two originated in the machine learning community, but have mean¬

while found their way to research fields as diverse as microbiology [80],

1We will encounter a specific type of neural network, the so-called feed-forward

neural network, in Appendix E
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particle physics [79] and geophysics [174]

Remark 3.1. (Advantages of factor graphs)
We decided to use factor graphs for the following reasons [119]

• They allow hierarchical modeling ( "boxes within boxes" )
2

• They are compatible with standard block diagrams (see, e g , Ap¬

pendix H)

• The summary-product message update rule can most elegantly
be formulated on factor graphs, especially on Forney-style factor

graphs

As already mentioned before, factor graphs represent functions Let us

have a look at some first examples

Example 3.1. (Factor graph of a function without structure)
The factor graph of the function fix\,X2, £3) is shown in Fig 3 1 (left)
edges represent variables, and nodes represent factors An edge is con¬

nected to a node if and only if the corresponding variable is an argument

of the corresponding function D

x2

X-i
ÎA

x2
ÎB

x3

Figure 3.1: Factor graph of function without structure (right) and a

function with structure (left)

The concept of factor graphs becomes interesting as soon as the function

to be represented has structure, 1 e
,
when it factors

2This feature is for example also available in commercial CAD-packages for archi¬

tectural or VLSI design The operation of "closing a box", 1 e
,
the marginalization of

the variables inside a box (subgraph), is at the core of statistical physics, whose aim is

to understand how systems of many interacting parts can display high-level simplicity

(e g ,
the kinetic theory of gasses) We refer to [188] for an elaborated philosophical

account on this issue
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Example 3.2. (Factor graph of a function with structure)
Let us assume that the function fix\,X2,x3) of Example 3.1 factors as

fix\,X2,xz) = f(xi,X2)f(x2,X3,); the factor graph of Fig. 3.1 (right)
represents this factorization. We call / the global function and f\ and fa
local functions. D

Example 3.3. The (global) function

f(x1,X2,X3,X4,X5,X6) = fA(x1,X2)fB(x3,X4)fc(x2,X4,X5)fD(x5,X6)
(3.1)

is represented by the factor graph in Fig. 3.2 D

X!
ÏA

X:i

ÎB

x4

x2
fc

X5
ÎD

x6

Figure 3.2: An example factor graph.

More formally, a Forney-style factor graph (FFG) is defined as follows:

• Factor graph: An FFG represents a function / and consists of

nodes and edges. We assume that / can be written as a product
of factors.

• Global functions: The function / is called the global function.

• Nodes/local functions: There is a node for every factor, also

called local function.

• Edges/variables: There is an edge or half-edge for every variable.

• Connections: An edge (or half-edge) representing some variable

X is connected to a node representing some factor / if and only if

/ is a function of X.

• Configuration: A configuration is a particular assignment of va¬

lues to all variables. We use capital letters for unknown variables
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X' X
lA" \X"

X
p

X"

X
A

A 1 1

A

Figure 3.4: Equality constraint node used for variable replication

(left) single node, (right) compound node, (middle) the

compound node as concatenation of single nodes

and small letters both for particular values of such variables3 and

for known (observed) variables

• Configuration space: The configuration space £1 is the set of all

configurations it is the domain of the global function / One may

regard the variables as functions of the configuration u>, just as we

would with random/chance variables

• Valid configuration: A configuration uj G £1 will be called valid

if/M^o

Remark 3.2. (Cloning variables)
Implicit in the previous definition is the assumption that no more than

two edges are connected to one node This restriction is easily cir¬

cumvented by introducing variable replication nodes (also referred to

as "equality constraint nodes" ) An equality constraint node represents

the factorization S(x — x')6(x' — x"), and is depicted in Fig 3 4 (left)
It enforces the equality of the variables X, X', and X" 4 The (single)
equality constraint node generates two replicas of X, l e

,
X' and X" If

more replicas are required, one can concatenate single nodes as shown

in Fig 3 4 (middle), combining those single nodes ("boxing") leads to a

compound equality constraint node (see Fig 3 4 (right))

Most graphical model are associated to a particular algorithm For exam¬

ple, feed-forward neural networks and the back-propagation algorithm

go hand in hand [22], Markov random fields have strong ties to Gibbs

sampling Traditionally, factor graphs are associated to the sum(mary)-
product algorithm Throughout this thesis, however, it will become clear

3This imitates the notation used in probability theory to denote chance/random
variables and realizations thereof

4The factor graph notation of [103] is obtained by replacing each equality constraint

node by a circle
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that many other algorithms can conveniently be described by means of

factor graphs
5

3.2 Summary-Propagation Algorithm

In a wide variety of problems (eg, in signal processing, coding, esti¬

mation, statistical physics, and machine learning), one is interested in

marginal probabilities of certain variables in the system We explain
now how such marginals can be computed by message passing on a fac¬

tor graph

3.2.1 Summary Propagation on Factor Trees

Example 3.4. (Marginalization of a factored function)
Let us consider again the global function f{x\, X2, x3, x4, £5, xq) of Exam¬

ple 3 3 Suppose we are interested in the marginal function

f(xs) = J3 f(x1,X2,x3,X4,x5,x6) (3 2)
Il X2 13 Ï4 16

With the factorization (3 1), we have

f(x5)= ^ fA{x\,x2) fB(x3,x4) fC(x2,X4,X5) fD(x5,x6)
X\ X2 13 X4 Xq

= ^2 fcix2,x4,x5) I ^fA(xi,x2) j 1^2
X2 X4 \ Xi / \ X3

fB(x3,x4)

fJ-fA^x2(x2) fJ,fB^Xi(x4)

p,fc^X5(x5)

^/c(x5,x6) (3 3)
V x6 /

VfD-^x5 ix5)

D

Later on we will clarify how both the back-propagation algorithm and Gibbs

sampling for example can be viewed as summary-propagation on factor graphs
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The idea behind (3.3) is to "push" the summations as much right as pos¬

sible. For example, when summing w.r.t. Xq, we can push the summation

sign to the right side of every factor except /d(x5, xq), since this factor

depends on Xq. As a result, instead of carrying out a high-dimensional

sum, it suffices to carry out simpler ones (one- and two-dimensional in

our example). The intermediate terms ^f ^x%(xt) are functions of Xt.

The domain of such a functions is the alphabet of Xt. Their meaning
becomes obvious when looking at Fig. 3.5.

The intermediate results can be interpreted as "messages" flowing along
the edges of the graph. For example, the message ^fA^X2(x2), which is

the sum J2X /a(£i, £2), can be interpreted as a message leaving node fa

along edge X.2- If both tifA^x2(x2) and tifB^X4(x4) are available, the

message ^ifc^x&(xs) can be computed as the output message of node fc
towards edge X5. The final result of (3.3) is

f(x5) = p,fc^X5(x5) p,fD^X5(x5). (3.4)

It is the product of the two messages along the same edge.

Each message can be regarded as a "summary" of what lies "behind"

it, as illustrated by the boxes in Fig. 3.5. Computing a message means

"closing" a part of the graph ("box"). The details inside such a box

are "summed out", only a summary is propagated (hence the name

summary-propagation). In the first step, the dark shaded areas in Fig. 3.5

are boxed (resulting in tifA^x2(x2) and ^fD^x&(xs)). Afterwards, the

lighter shaded box is closed (amounting to p,fc^X2(x2)), until we arrive

at (3.4).

Half-edges (such as Xi) do not carry a message towards the connected

node; alternatively, the edge may be thought of as carrying a message

representing a neutral factor 1. With this in mind, we notice that every

message (i.e., every intermediate result) of (3.3) is computed in the same

way. Consider the generic node depicted in Fig. 3.8 with messages arri¬

ving along its edges X\,..., Xn .
The message towards edge y is com¬

puted by the following rule.

Sum-product rule:

fe^/^i) * • * f^xN^f(xN) (3.5)
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Xa

fB

Xi
ÎA

x4

x2
fo

Xi
fn

X6

Figure 3.5: Summary-propagation for computing f(xs)

Xi
ÎA

X3

fB

xà

',X2
fc

xn
fD

x6

Figure 3.6: Summary-propagation for computing f(x2)

X3

0®

Î1
fB

x4

Xx

®-

0.

fA
x2

®-
®.

®®

ÎI
fc

x6

®-
®-

fD
x6

0-
®.

Figure 3.7: The SPA computes two messages along each edge Those

messages are required for calculating the marginal func¬

tions /(£i), f(x2), f(x3), f(x4), f(x5) and f(x6) The

circled numbers indicate the order of the message compu¬

tations
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Figure 3.8: Message along a generic edge

In words The message out of a node / along the edge Y is the product
of the function / and all messages towards / along all other edges, sum¬

marized over all variables except Y This is the sum-product rule In

general, messages are computed out of any edge, there is no preferential
direction The message out of a leaf node / along edge Y is the function /

itself, as illustrated in Fig 3 9

/
y

—-

Figure 3.9: Message out of a leaf node

The sums in (3 2), (3 3) and (3 5) can be replaced by any "summary ope¬

rator"
,
e g ,

the integral operator for continuous-valued variables or the

max operator for performing maximizations this leads to the integral-

product rule and max-product rule respectively

Integral-product rule:

H-*y{v) = / J f{y,xi, ,XN)

V

tJ,Xl^f{x1) fJ,XN.^f(xpf) dxi dXfq (3 6)

Max-product rule:

Vf-+y{.y) = max f(y>xi, ,xN)
Xl Xm

Mxj->/(£i) HxN^f(xN) (3 7)

The above rules can be considered as instances of the following single
rule
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Summary-product rule: The message pbf^y(y) out of a factor

node f{y,...) along the edge Y is the product of f(y,...) and all

messages towards / along all edges except Y, summarized over all

variables except Y.

We will encounter other examples of this general rule in Chapter 4. In

the same chapter, we will also consider different rules (i.e., the E-log rule

and extensions, cf. Section 4.9).

The following example shows how several marginals can be obtained

simultaneously in an efficient manner.

Example 3.5. (Recycling messages)
Suppose we are also interested in the marginal function f(x2) of the

global function fix\,X2, x3, x4, xs,x@) of Example 3.3:

f(x2) = ^ f(x1,x3,x4,x5,x6).
X\:Xz:X4:x$:Xq

This marginal can be computed by the summary-propagation depicted
in Fig. 3.6. Note that we have already computed the messages i^fA^X2 (£2),
fifB^x4(x4), and i^fD^x&(xs) in (3.3); they can be "re-used" for compu¬

ting f(x2). Eventually, f(x2) is obtained as

f(x2) = tifA^X2 (x2)nfc^x2 (x2)- (3.8)

D

From this last example, we learn that the two messages associated to an

edge are for the computation of each marginal the same. It is therefore

sufficient to compute each message once. The marginal f(y) of a certain

variable Y is the product of the two messages on the corresponding edge,
such as (3.4) and (3.8). In general, it is

f(y) = VfA^yiy) VfB^y(y) (3.9)

where fA and fB are the two nodes attached to edge Y. For half edges,
the message coming from the open end carries a neutral factor "1".

Therefore, the message from the node towards the edge is already the

marginal of the corresponding variable.
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In its general form, the summary-propagation algorithm (SPA)
computes two messages on every edge For factor graphs without loops

(factor trees), the marginals can obtained in an optimal number of com¬

putations as follows 6 One starts the message computation from the

leaves and proceeds with nodes whose input messages become available

In this way, each message is computed exactly once, as illustrated in Fig 3 7

When the algorithm stops, exact marginals, such as (3 9), are available

for all variables simultaneously

In summary

• Marginals such as (3 2) can be computed as the product of two

messages as in (3 9)

• Such messages are summaries of the subgraph behind them

• All messages (except those out of terminal nodes) are computed
from other messages according to the summary-product rule

Remark 3.3. (Scaling)
If one applies the rules (3 5) (or (3 6) and (3 7)), the values of the mes¬

sages often quickly tend to zero and the algorithm becomes instable

Therefore, it is advisable to scale the message instead of the mes¬

sage /x( ), a modified message fi( ) = 7/z( ) is computed, where the scale

factor 7 may be chosen as one wishes The final result (3 9) will then

be known up to a scaling factor, which is often not a problem In some

applications, however, the scaling factors are of central importance (see
Chapter 6)

Remark 3.4. (Message update schedule)
A message update schedule says when one has to calculate what message

For factor trees, there is an optimal message update schedule, as we

explained previously, for cyclic factor graphs, this is not the case

3.2.2 Summary Propagation on Cyclic Factor Graphs

The situation becomes quite different when the graph has cycles In

this case, the summary-propagation algorithm becomes iterative a new

6The number of computations may be reduced by additional information about

the structure of the local node functions This is the case when the factor nodes

themselves may be expressed by (non-trivial) factor trees
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output message at some node can influence the inputs of the same node

through another path in the graph The algorithm does not amount to

the exact marginal functions In fact, there is even no guarantee that

the algorithm converges' Astonishingly, applying the summary-product

algorithm on cyclic graphs works excellently in the context of coding and

signal processing, and machine learning In many practical cases, the

algorithm reaches a stable point and the obtained marginal functions are

satisfactory decisions based on those marginals are often close enough
to the "optimal" decisions

Summary-propagation on cyclic-graphs consists of the following steps

a) First, all edges are initialized with a neutral message, 1 e
,
a fac¬

tor /x( ) = 1

b) All messages are then recursively updated according to some sche¬

dule This schedule may vary from step to step
7

c) After each step, the marginal functions are computed according
to (3 9)

d) One takes decisions based on the current marginal functions

e) The algorithm is halted when the available time is over or when

some stopping criterion is satisfied (e g ,
when all messages varied

less than some small e over the last iterations)

Remark 3.5. (Understanding summary propagation on cyclic

graphs)
The theoretical understanding of summary propagation on cyclic graphs
is sparse Some particular results are available, eg, for factor graphs
with one loop [5] or, eg, factor graphs representing jointly Gaussian

densities [209] [173] Yedidia et al have shown that the fixed-points of

the sum-product algorithm are in a one-to-one relationship with zero-

gradient points of a Bethe free energy associated to the underlying pro¬

blem [223] (see also [127]) This result was later refined by Heskes,
who proved that the stable fixed-points of loopy belief propagation (l e

,

iterative sum-product algorithm) are in fact minima of the Bethe free

energy [83] These insights paved the road to alternative message-passing

algorithms such as generalized belief propagation [223], convex-concave-

procedure algorithms (CCCP) [225], and "fractional" (or "convexified" )
belief propagation [212] [205]

7For more details on scheduling, see [103]
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3.3 Factor-graph Transformation: Cluster¬

ing

In this section, we describe how the structure of a factor graph can

straightforwardly be modified by a technique called clustering [103]. For

alternative transformations such as stretching and the junction-tree method,
we refer to [103] and [6]. Let us have a look at the following example.

Example 3.6. We consider the (cyclic) factor graph of Fig. 3.10(a)
representing

fix,y,z) = fA(x)fB(x,y)fc(x,z)fD(y)fE(y,z)fF(z). (3.10)

By clustering the edges Y and Z and connecting the neighboring nodes of

both edges to the new clustered node, we obtain the factor graph shown

in Fig. 3.10(b); it represents the factorization

f'ix,y,z) = fA(x)fB(x,y,z)fc(x,y,z)f'D(y,z)fE(y,z)fF(y,z). (3.11)

The node fE connecting Y and Z in the original factor graph appears

with just a single edge in the new factor graph. Note also that there

are two local nodes connecting X to (Y,Z), i.e., also the new factor

graph is cyclic. The local nodes in the new factor graph retain their

dependencies from the original factor graph. For example, fc(x,y,z)
is connected to X and the pair (Y, Z), but it actually does not depend

on Z, hence fc(x,y,z) = fc(x,z). Similarly, f'B(x,y,z) = fB(x,y),

fc(x> y, z) = fcix, z), fD(y, z) = fD(y), f'E{y, z) = fE(y, z) and f'F(y, z)
= /f(-z), and therefore fix, y, z) = fix, y, z); both the original and the

new factor graph represent the same global function.

The cycle in the factor graph of Fig. 3.10(b) can be removed by clustering
the nodes f'B (x, y, z) and f'c(x, y, z)

f'Bc(x,y,z) = fBix,y,z)fcix,y,z), (3.12)

resulting in the factor graph of Fig. 3.10(c); the new global function is

f'ix,y,z) = fA(x)f'BC(x,y,z)f'D(y,z)fE(y,z)fF(y,z), (3.13)

which is identical to the original global function (3.10). D
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Remark 3.6. (Removing cycles by clustering)
In the previous example, we have removed a cycle from the factor graph

by clustering edges and nodes. The resulting factor graph is cycle-free
and the sum-product algorithm may be applied to compute exact mar¬

ginals. The complexity of the messages in the graph, however, has in¬

creased. Let Y and Z have alphabets Ay and Az respectively; the alpha¬
bet of the pair (Y, Z) is AyxAz. The domain size of (Y, Z) is equal to the

product \Ay\\Az\, where \Ay\ and \AZ\ denote the size of the alphabets Ay
and Az respectively. Therefore, if the messages are represented by a list

of their values (as is common practice when Y and Z take values in a fi¬

nite set), the length of the messages of (X, Y) (e.g., the message from fc
to (X, Y)) is also equal to |j4y | |j4ä |. This can imply a substantial cost in¬

crease in computational complexity of the sum-product algorithm. If the

messages are represented in alternative ways however, as for example by
Gaussian distributions, the complexity does not necessarily increase ex¬

ponentially; clustering may then be a practical solution to handle cycles.
We will demonstrate this idea in Section 5.3.7.

We end this chapter by formulating the general procedure to cluster edges

(variables) and nodes (factors) in a factor graph.

Clustering no des: Nodes /i, /2,..., fn are clustered as follows

a) Delete /i

graph,

if2, .., /„ and any incident edge from the factor

b) Introduce a new node representing the n-tuple (/i, J 2, • •
, Jn)i

c) Connect this new node to nodes that were neighbors of

j*l> J2, • • /„ in the original graph.

Clustering edges: Edges X\, X2,..., Xn are clustered as follows

a) Delete Xx , X~2, ..., Xn and any incident node from the factor

graph,

b) Introduce a replication node representing the n-tuple

(X\, X2, .. .,Xraj;

c) Connect this new node to nodes that were neighbors of

Xi, X2,. • ,xr,

in the original graph.
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Figure 3.10: Clustering transformation





Chapter 4

Phase-Estimation

Algorithms

In this chapter, we develop code-aided carrier-phase-estimation algo¬
rithms for single-carrier communications systems. In contrast to earlier

and parallel work, we mainly focus on how such algorithms can be derived

in a systematic fashion from the factor graph of the system at hand. The

starting point of our approach is to apply the sum-product algorithm on

that factor graph, which leads to intractable integrals. We consider seve¬

ral methods to approximate those integrals; each method corresponds to

a certain message type and leads to a different phase-estimation algo¬
rithm. We consider the following approximation methods:

• numerical integration,

• particle methods,

• adaptive quantization,

• gradient methods,

• expectation maximization (EM).

Before we apply each method to the particular application of carrier-

phase estimation, we will outline how each approximation method in

59
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general can be viewed as message passing on factor graphs We will

also consider well-known instances of some of the methods (e g , particle
methods such as Gibbs sampling, MCMC etc )

The Appendices D and E are heavily based on material presented in

this chapter In Appendix D, we outline how kernels can be derived

from graphical models, in particular, by the message-passing methods we

present in this chapter In Appendix E, we demonstrate how the back-

propagation algorithm for the training of feed-forward neural networks

can be derived as message-passing in factor graphs

This chapter may be of interest to readers who want to learn more about

• code-aided carrier-phase estimation, or, code-aided channel esti¬

mation in general,

• message-passing algorithms for estimation with applications to

model-based signal processing and machine learning

The results on phase estimation we present in this chapter are based

on [47] [52] [48] [44] The message-passing viewpoint presented in this

chapter was developed in collaboration with Sascha Korl

4.1 Introduction

We consider channels of the form

Yk=Xke^+Nk, (4 1)

where Xk is the channel input symbol at time k G {1,2, ,L}, Yk is

the corresponding received symbol, Ok G [0, 2n) is the unknown phase,
and Nk is complex white Gaussian noise with (known) variance 2aJv,
l e

, a2N per dimension We will use the notation X = (X\, X2, , Xf),
Y = (Y1,Y2, , YL) and Q = (Qu 62, , Ol) For the sake of definite-

ness, we assume that the channel input symbols Xk are M-PSK symbols

(cf Fig 2 7) and are protected by a binary low-density parity check

(LDPC) code 1 The coded channel input symbols Xk are transmitted in

1We refer to Appendix C for more information about LDPC-codes
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frames of L symbols. We consider the two phase models we described

in Chapter 2, i.e., the constant-phase model and the random-walk phase
model.

Constant Phase: Ok = ©o G [0,2tt), an unknown constant.

Random Walk:

©fc = (efc_1+VTrfc)mod27T,

where Wk is white Gaussian noise with known variance <r,2

(4.2)

15 J."i ••

£, :; vV • ".-T#ï.--

a •$$£&• •••••• ••'•-•-

,5
"r'*?-*$f£"

Reft]

Figure 4.1: Realization of Y in the constant-phase model; the figure

depicts the symbols Yk in the complex plane (a^ = 0.3,
0 = 0.3, L = 1000 and M = A).

Fig. 4.1 depicts a realization of Y in the constant-phase model. A realiza¬

tion of O and Y in the random-walk phase model is shown in Fig. 4.2(a)
and Fig. 4.2(b) respectively.

The algorithms we propose are approximations of the symbol-wise MAP

(maximum a posteriori) decoder (cf. Appendix A):

XfcMAP = argmax
xk JO

2-k ,-2-K

p(xk,y,0)d0 (4.3)

argmax
xk JO

,-2tt ,-2tt

...

V p(x,y,0)d0, (4.4)
Jo

Jo
t, „ c.„j

x with Xk fixed

The function p(x,y,0) stands for the joint probability function of X,

Y, and O; it is a probability density function (pdf) in 0 and y and a
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(a) Realization of ©.
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(b) Realization of V; the figure depicts
the symbols Yj. in the complex plane.

Figure 4.2: Random-walk phase model (a^ = 0.3, 0\

M = A, andcr^ = 0.05).

0.5, L = 1000,

probability mass function (pmf) in x. Note that Equations (4.3) and (4.4)
involve averaging over the phase O.

As outlined already by Wiberg in '96 [210], iterative (message-passing)
algorithms for joint decoding and channel estimation may be derived from

the factor graph of the code and the channel (see also [214]). We will

follow this principle to derive algorithms for carrier-phase estimation.

Message-passing algorithms to approximately compute (4.3) and (4.4)
may be obtained by the following procedure:

a) The probability function p(x, y, 0) is represented by a factor graph.

b) Message types are chosen and message-update rules are computed.

c) A message-update schedule is chosen.

In Step 2, finite-alphabet variables (such as Xk) are handled by the stan¬

dard sum-product rule. For continuous-valued variables (such as Ok),
however, the sum-product rule leads to intractable integrals, which can

be approximated in several ways; each such approximation corresponds
to a certain message type and results in a different phase-estimation al¬

gorithm. In some cases, we will obtain an approximation of the entire

posterior distribution p(0\y); in other cases, we will obtain only an esti¬

mate 0.
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Phase estimation is of course an old subject2 and several algorithms for

joint iterative decoding and phase estimation have recently appeared,
both for the constant-phase model as for the random-walk phase model

• Constant-phase model

A large number of synchronization algorithms for the constant-

phase model have been proposed Some of the algorithms are ad-

hoc [28] [35] [27] [189], others are based on the expectation maxi¬

mization algorithm [141] [143] [185] [144] [185] [122] [82] or the

sum-product algorithm [152] [153]

• Random-walk phase model

In parallel work, Colavolpe et al derived other phase estimators

from the factor graph of the random-walk model [36] They appro¬

ximated the sum-product messages by so-called "canonical dis¬

tributions" such as the Gaussian and Tikhonov distribution In

parallel work, Noels et al [151] derived EM-based algorithms for

the random-walk model A turbo-synchronization algorithm for an

other simple stochastic phase model was presented in [137]

This chapter is structured as follows In Section 4 2, we explain the factor

graphs We derive the sum-product message-update rules in Section 4 3

We elaborate on the update schedule in Section 4 4 The various message-

passing algorithms are described in Section 4 5 through Section 4 9, m

each of those sections, we first describe the considered estimation method

as message passing on factor graphs, then we apply the method to the

carrier-phase estimation problem Simulation results are presented in

Section 4 10 A summary of this chapter is given in Section 4 11

4.2 Factor Graphs of the System

The system described in Section 8 1 is easily translated into the factor

graph of Fig 4 3, which represents the factorization of the joint proba¬

bility function of all variables in the system The upper part of the

graph is the indicator function of the LDPC code, with parity check

nodes in the top row that are "randomly" connected to equality con¬

straint nodes ( "bit nodes" ) The function / is the deterministic mapping

2See, e g , [197] for one of the first studies on this subject
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Figure 4.3: Factor graph of LDPC code and the channel model

/ [b£\ R(log2 M) (1) R(log2M)
k > -iDkXk of the (encoded) bits B

to the (channel) symbol Xk The nodes labeled "/" ("bit mapper nodes:

correspond to the factors

Me ,(log2M)
i uk i xk

1, */(#>, ,4'°g2M))

(log2M)N
fc

0, otherwise

The bottom row of the graph represents the factors

p(yk\zk) = i27,a2N)-1 e-l«"=-^l2/2-?

" ^fc :

(4 5)

(4 6)

(4 7)

The "phase model" in Figure 4 3 is detailed in Figures 4 4 and 4 5 In

these figures, Sk is defined as Sk = eJ°fc and Zk is defined as Zk =

XkSk The top row of nodes ("multiply nodes") in Figures 4 4 and 4 5
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represents the factors 5(zk — £fcSfc). The function g is the deterministic

mapping g : Ok i—> Sk of the phase Ok to Sk; the nodes labeled "g" in

Figures 4.4 and 4.5 represent the factors S(sk — ejSfc). The compound

equality constraint node in Figure 4.4 imposes the constraint Ok = O, \/k

(cf. Remark 3.2). In Fig. 4.5, the nodes labeled p(0k\0k-i) ("phase noise

nodes" ) represent the factors

P(9k\9k-i) = (2^r1/2 J2 e-^-e^+n2^2'2^. (4.8)
n£Z

A-, I
Si

Zi

X2 Xt

So, St

Z2
o

Zr

Figure 4.4: Factor graph of the constant-phase model.

*i X,

Si S2

Zi

Oi p(92[9!
Z2

XT

St

e2 p(9l\9l-i) e,

Zr

Figure 4.5: Factor graph of the random-walk phase model.

4.3 Sum-Product Message Update Rules

We now apply the sum-product algorithm to the factor graph in Fig. 4.3,
where the factor graph of the phase model is detailed in Fig. 4.4 and Fig. 4.5.
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In this section, we compute the update rules; in Section 4.4, we explain
in which order the messages are updated.

The messages out of the nodes p(yk\zk) are the functions p(yk\zk) them¬

selves. The computation of the messages out of the bit mapper nodes

and inside the graph of the LDPC code is standard [119]; we therefore

only consider the computation of the messages inside, and out of, the

graph of the two phase models.

Straightforward application of the sum-product algorithm to the graph
of the two phase models results in the following update rules :

Equality Constraint Node (see Fig. 4.6(a))

Ma^e(9) oc / / 5(9 - 9')5(9 - 9")
Je1 Je"

•MO'^E (0>&"^B {S")d9'd9" (4.9)

= Ve^B(9)ve^B(9), (4.10)

where ©,©', and O" G [0, 2ir). Note that the message MEI^e(#) is

defined up to some scaling factor (cf. Remark 3.3). The messages

along the edges ©' and O" are computed analogously.

Multiply Node (see Fig. 4.6(b))

ME—s(s) « 53 / ^x^\x\(x)nz^\x](z)S(z-xs)dz (4.11)

= ^2^x^\x\(x)nz^\x\(xs), (4.12)
x

M0^x(£) oc f Vs^\x\(s)tiz^\x\(z)S(z - xs)dsdz (4.13)

unit circle

=

f Vs^B(s)tiz^\x\(xs)ds, (4.14)

unit circle

where X is an M-PSK symbol, Z G C, S takes values on the unit

circle, and the line integral in the RHS of (4.14) is computed over

the unit circle.



4 3 Sum-Product Message Update Rules 67

Phase Noise Node (see Fig 4 6(c))

2tt

vP^e(9) oc / tjLe,^p(e')p(e\e')d0', (4 15)

Me'-p(ö') J2 e-W-o'î+^'^M', (A 16)
n£Z

where ©, and ©' G [0,2tt) The message p,p^@/(0') along the

edge ©' is computed analogously

Phase Mapper Node (see Fig 4 6(d))

Ms^s(s) = Me^g(args),

Ms-e(0) = Ms^s(ejS),

(4 17)

(4 18)

where arg s stands for the argument of s, O G [0, 2n) and S takes

values on the unit circle

lie-

ilX

o &

(a) Equality

©

S

z

(b) Multiply

0
©

P(
g

s

(c) Phase Noise (d) Phase Mapper

Figure 4.6: Nodes in the graph of the phase models

Since the messages Mefc^g and MsW[E] m Figures 4 4 and 4 5 encode

the same information, there is no need to compute (and store) the mes¬

sages fiSk^\Ei explicitly The messages l^\x\^xk can directly be computed
from p,@k^g rather than from p,sk^^, as illustrated in Fig 4 7 The

corresponding update rule is obtained by clustering the multiply and

phase mapper nodes (cf Section 3 3) The standard sum-product rule
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Xk '

Xk '

Sk

zk \ ^w Zk T©fcfr

Figure 4.7: Multiply and mapper node, (left) the two nodes are

treated separately, and the messages along the edges Sk are

computed explicitly; (right) the two nodes are clustered.

is applied to the resulting (compound) node (dashed box in Fig. 4.7

(right)):

ME]^xfc(£fc) oc / / / 5(zk -xkSk)ô(sk - eJöfc)
0 J ,J z~k

unit circle

Mefc^s(É>fc)/«zfc^[x](^fc) d9k dsk dzk, (4.19)
r

Mefc^s(É>fc)Mzfc^[x](£fcejefc) dOk, (4.20)

oc / Vek^g(0k)e-^pjek-^2/2^d,0k, (4.21)
Jo

which is more practical to implement than (4.14). Similarly, one can

rewrite the update rule for the messages Mg^efc(#fc) out of the phase

mapper node along the Ok edges as

Ms^efc(é»fc) oc ^2^Xk^\El(xk)liZk^\E\(xke:l9k) (4-22)

oc ^2^Xk^m(xk)e-\xke?ek-yk\*/2<Tl (4.23)

According to the sum-product rule, the messages ftek^g ($fc) m Fig- 4.4

are computed as

Mefc^s (9k) oc JJ Ms^q, (9k), (4.24)
£^k

i.e., the product of all messages arriving at the equality constraint node,

except the one that arrives along the edge ©fc. However, it is more
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convenient to approximate the messages Mefc^g (Ok) by the product of

all messages arriving at the equality constraint node:

L

f^ek^g(Ok) « H^g^eAh) (4.25)
i=i

oc M@^o(öfc), (4.26)

where yUg^e (Ok) is the message leaving the equality node along the

0 edge. The approximation (4.25)-(4.26) is in practice satisfactory, since

L, the number of messages in the product (4.24) and (4.25), is typically

large (between 100 and 10.000).

The integrals in the RHS of (4.15) and (4.21) are intractable. In the

following sections, we will describe several approximative integration
methods:

• numerical integration (Section 4.5),

• particle methods (Section 4.6),

• adaptive quantization (Section 4.7),

• gradient methods (Section 4.8),

• expectation maximization (Section 4.9).

Each approximation leads to a different message-passing algorithm for

code-aided phase estimation. Before we describe each algorithm indivi¬

dually, we explain in which order the messages in Fig. 4.3 are updated,
since this order is common to all phase estimators. We treat the schedu¬

ling inside the phase model (see Fig. 4.4 and Fig. 4.5) when we describe

the individual phase estimators.

4.4 Scheduling

The messages in the graph of Fig. 4.8 are updated in the following order:

® The messages from the nodes p(yk\zk) towards the phase model.



70 Chapter 4. Phase-Estimation Algorithms

© © ©

^ "random" connections
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p(yi\zi)

'••

\_\
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Figure 4.8: Message update schedule. The circled numbers indicate

the order of the message computations.

© One or more iterations in the graph of the phase model (Fig. 4.4

or Fig. 4.5).

@ The messages from the phase model towards the mapper nodes /.

© The messages from the mapper nodes / towards the bit nodes.

© One or more iterations of the LDPC decoder.

© The messages from the bit nodes towards the mapper nodes /.

© The messages from the mapper nodes / towards the phase model.

The updates ©-© are iterated until convergence or until the available

time is over.
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4.5 Numerical Integration

4.5.1 General Idea

Numerical integration (or "grid based integration" or "quantization" ) is a

well-known technique to evaluate intractable integrals. Continuous vari¬

ables X are (uniformly) quantized, and the (intractable) integral-product
rule is replaced by a finite sum. If we apply the simplest numerical in¬

tegration scheme, i.e., the rectangular rule, the integral-product rule is

evaluated as follows.

Integral-product rule evaluated by numerical integration:

nf-^v(y) £ J3 fiy^i^, a(*w)\
-,xN J

fj.Xl-*f{x\ ) MXjy^f{xN )> (4.27)

where Xk is the * fc-th quantization level of Xk-

The integrand in the integral-product rule, i.e.,

g(y,xi,.. .,xN) = f(y,xi,. ..,xN) p,Xl_>f(xi) p,XN->f(xN) (4.28)

is approximated as a piecewise constant function (w.r.t. xi,..., £jv), as

illustrated in Fig. 4.9. The messages ftxk^f are represented by their

g(x) •

Figure 4.9: Rectangular integration rule.
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function values at the quantization levels £fc (see Fig. 4.10); we refer

to this message representation as quantized message.

fj,(x)

i ' ' ^.

x& r(*+1) ' ' ' x

Figure 4.10: Quantized message.

Remark 4.1. (Higher-order integration rules)
In (4.27) we used the rectangular integration rule, which approximates
the integrand by piecewise constant functions. One may apply more

accurate integration schemes based on higher-order polynomials [164] or

splines [196] .
We verified experimentally that the rectangular rule (4.27)

suffices for our purposes (i.e., phase estimation): the performance gain
due to higher-order integration rules turns out to be negligible. This is

not necessarily the case for other estimation problems.

4.5.2 Application

Constant-Phase Model

The forward messages p,^ and downward messages yU,s^efc are quantized

messages (see Fig. 4.11). The messages ftek^g ($fc) are approximated by

the message /xg_>e(ö) = fiE (cf. (4.25)-(4.26)). The latter is computed
in a forward sweep, as illustrated in Fig. 4.11, as a consequence, the

backward messages yU,s^efc are not required.

The update schedule is as follows:

® The message fif is initialized (cf. (4.23)):

Mf(flW)=M^ei(^), (4.29)
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where the quantization levels #W are defined as #W = 2-ki/N,
and i = 1, ,

./V

© The messages p,% are updated in a forward sweep

Mf(öW)ocMf_1(öWK^0fc(öW), (4 30)

for i = 1, ,
./V and k = 2, ,L

@ The upward messages /i[x]^xfc(£fc) are computed from the mes-

sage pi (cf (4 21))

N

M0^xj£fc)£][>£(flW)MZfc^0(xfcexp(^«)) (4 31)
i=i

for A; = 1, ,
L

®f\Xi UX2 \\Xl

Zi

n
X -^

g g

a£® !

<=)i
r

?fc
©2

Mf©

^
e,

A^@
~0

Figure 4.11: Quantized messages in the factor graph of the constant-

phase model

Random-Walk Phase Model

All messages along the 0^ edges (see Fig 4 12) are quantized messages,

l e
, Ppk^Ok-iy Mpfc^efc, Mefc^s and Pg^ek The updates are scheduled

as follows

® The messages pPk^ek and pPk^ek-i are updated in a forward and

backward sweep respectively At the phase noise nodes, one com-
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pûtes the forward messages as follows

N

pPk^ek(èM) £ Y.^-^Vki^))Pk(9^[ê{])), (4 32)
j=i

for all i = 1, ,N The backward messages pPk^ek-i are com¬

puted similarly At the equality constraint nodes, the messages are

updated as in (4 30)

© The upward messages pek^g are computed

Mefc^W) « A***-!WWWWW), (4 33)

@ The messages M[x]^xfc (xk) are obtained from the messages pek^g

N

m^Xk(xk) £^/xefc^s(0w)/xZfc^E(£fcexp(.70w)) (4 34)

for k = 1, ,
L

®t|*i t 1^2

t

Zl
_1 "^(ö2|öi)

®t*G©

Z2 °2®

\\Xl

pfitfL-l

0

©L

^

Figure 4.12: Quantized messages in the factor graph of the random-

walk phase model

4.5.3 Summary

In the numerical-integration approach

Continuous variables are (usually uniformly) quantized
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• Integrals are replaced by finite sums

• Messages are represented by their function values evaluated at the

quantization levels ( "quantized messages" )

4.6 Particle Methods

4.6.1 General Idea

A probability (density or mass) function / can be represented by a list of

samples ("particles") from /, as illustrated in Fig 4 13 3 This data type

Figure 4.13: A probability density function / and its representation

as a list of particles The radius of the particles is pro¬

portional to their weights (left) uniform weights, (right)
non-uniform weights

is the foundation of Monte-Carlo methods [171] (or "particle methods")
Integrals are evaluated as (weighted) averages over lists of samples

3It is sometimes useful to approximate a probability mass function by a list of

samples, especially, if the alphabet of the discrete random variable is large
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Integral-product rule evaluated by particle methods:

nt^Y(y) « E /fo4'lV--,4wV^'1>---'4w>, (4-35)
11, ,*N

where x£h is the ifc-th particle of the particle list that repre¬

sents pxk^f, and «4 is the weight of that particle.

In the update rule (4.35), samples from the sum(integral)-product mes¬

sages pxk^f are required. We now investigate how such samples can

be obtained. Suppose we wish to draw samples from the sum(integral)-
product message pg^x out of the generic node g (see Fig. 4.14):

fig^x(x) = E g(x^zi,-. ,zN)nzl^g(zi)-- hzn^9(zn), (4.36)
01, ,ZN

where J2 stands for summation if Zk is discrete and for integration other¬

wise. First we consider the case where the variables Zk are discrete, then

Zi

X

ZN

Figure 4.14: Message along a generic edge.

we investigate the continuous case.

Discrete variables Zk

One may generate samples from pg^x by the following procedure:

a) For each k, draw a value êk of Zk with probability proportional
to pzk^g(zk)-

b) Draw a sample x from g(x, z\,..., zn).

c) Iterate 1-2 until a sufficient number of samples are obtained.

Note that the resulting samples have uniform weights. We therefore refer

to the above sampling method (Step 1-3) as unweighted sampling.



4.6. Particle Methods 77

Alternatively, one may draw samples x from g(x, z\,..., &n) for each

valid configuration (&i,..., &n). The weight w of sample x is proportional
to

N

wxY[^Zk^g(zk)- (4.37)
fc=i

This sampling method is called weighted sampling. From the resulting
list of weighted samples, one can generate a list of uniform samples by
a technique called resampling: one draws samples x from the weighted
list with probability proportional to the weights w; a particle with large

weight w may be drawn several times, whereas a particle with small

weight may not be drawn at all. Note that weighted sampling followed

by resampling leads to unweighted samples; hence, weighted sampling in

combination with resampling is an alternative to unweighted sampling.

Remark 4.2. (Drawing samples)
In weighted as well as unweighted sampling, we need to draw samples
from a function g(x, z\,..., zn). Note that an explicit form of g is not

required. Samples x can be obtained by simulating the node operation g

("direct sampling"); in certain systems, e.g., discrete-time state-space

models, this may correspond to the integration of a stochastic differential

equation. If it is hard to sample from g directly, we may apply impor¬

tance sampling or Markov-Cham Monte-Carlo methods (MCMC). We

will describe those two sampling techniques in Section 4.6.3 and 4.6.5

respectively.

Continuous variables Zk

If the variables Zk are continuous, we distinguish the following cases:

• If a closed-form expression of the integral (4.36) is available, one

may sample from pg^x by standard techniques (e.g., importance

sampling or MCMC).

• If pzk^g are quantized messages, one proceeds as in the case of

discrete variables Zk-

• If the messages pzk^g are lists of samples, the procedure is also

very similar to the one in the discrete case. The first step in the

unweighted sampling procedure is slightly modified: for each k, one
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draws a particle êk with probability proportional to its weight Wk

In weighted sampling, one draws a sample from g(x, z\,... ,zn),
for each jV-tuple of particles (z\,..., &n). The weight w of this

sample is proportional to

N

w^Y[wk, (4.38)
fc=i

where Wk is the weight of particle êk

• If the incoming messages are single values &k, one draws samples
from g(x,z\,.. .,zN).

• Combinations of the previous cases are possible.

Specific node functions

So far, we have considered generic node functions g. We now apply the

above generic rules to two important classes of node functions: deter¬

ministic mappings and equality constraint nodes.

• (Deterministic mapping)
Suppose that the function g corresponds to a deterministic map¬

ping, for example

g(x, zi,..., zN) = 5(x - h(zi,..., zN)), (4.39)

where h maps the ./V-tuple (zi,... ,zn) to x. Samples x from

g(x, êi,..., zn) are all identical, i.e., x = h(zi,..., zn).

• (Equality constraint node)
Suppose that the node g is an equality constraint node, i.e.,

N-l

g(x, zi,..., zN) = 5(x - zi) Y[ 5(zk+i - zk). (4.40)
fc=i

The outgoing message pg^x (x) is given by:

N

Hg^x(x) oc Yl Vzk^g(x)- (4.41)
fc=l
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— If X is discrete, one draws a sample x with probability pro¬

portional to rjfc=i V-Zk^g(x)-
— If X is continuous, and closed-form expressions for the

incoming messages pzk^g are available, one may sample from

the product (4.41). This can be done in an elegant fashion by

importance sampling, as we will see later on.

— If the messages pzk^g are quantized messages, one pro¬

ceeds as in the discrete case.

— If the messages pzk^g are represented as lists of samples, it

is not straightforward to draw samples from (4.41). One usu¬

ally first generates a continuous representation such a density
trees or a mixture of Gaussian distributions for each of the in¬

coming messages pzk^g- Efficient methods have been devised

to draw samples from products of such density approxima¬
tions [88] . However, those methods are rather complicated,
and it is therefore recommendable to avoid products of par¬

ticle lists. This is in practice often possible, as we illustrate

in Section 4.6.4 (cf. Remark 4.5).
— Also combinations of the previous situations are possible, as

we will illustrate in Section 4.6.3 by the example of importance

sampling.

— If the incoming messages are single values êk, there is no

reasonable way to draw samples from (4.41). However, one

may compute the outgoing message pg^x as the average of

the incoming estimates &k'.

1
N

^x = jrjY;êk- (4-42)
fc=i

In the following, we describe five standard Monte-Carlo techniques as

instances of the above generic rules, i.e.,

• Gibbs sampling,

• importance sampling,

• particle filtering ("sequential Monte-Carlo filtering"),

• Markov-Chain Monte-Carlo methods,

• simulated annealing.
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4.6.2 Gibbs Sampling

Suppose we wish to draw samples from a multivariate probability func¬

tion /(£i, X2, , xn). This can be done by the following iterative algo¬
rithm known as Gibbs sampling [171, p. 371-407]:

a) Choose an initial value (xi, X2, , £jv).

b) Choose an index k.

c) Draw a sample Xk from

el \ A f(Xl, , Xk-1, £fc,£fc+l, • • •

, Xn) .

f(xk) = ^ 777 ^- (4.43)
l^Xk i(Xl' • • -,xk-l,Xk,Xk+l, -,XN)

d) Iterate 2-3 a "large" number of times.

The values x from the first n iterations are typically discarded (e.g.,
n=100), since they depend more on the initial value x than on the target

distribution /.

One may obtain all samples in a single run, i.e., one continues iterating
after the n initial iterations until a sufficient number of samples are

obtained. Alternatively, each sample (or a fraction of the samples) may

be generated in a separate run.

If the function f(xi, X2, , £jv) has "structure", it may become easier

to generate samples Xk (cf. Step 3). Let us have a look at a warming-up

example.

Example 4.1. (Gibbs sampling as message passing)
Suppose the global function f(x, y) factorizes as

f(x,y) = fA(x,y)fB(y), (AAA)

as depicted in Fig. 4.15(a).

Gibbs sampling from (4.44) boils down to the iterative computation of

the following messages on the factor graph of Fig. 4.15(a):

a) Message /j,x(x) arriving at X edge:

Hx(x) = fA(x,y) (4.45)
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Zi,
X

fA
V
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X
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fB
P-x jJ,Y \>N

P-x jJ,Y -? •V

X

(a) fB as

y

closed box

x y

fB

(b) Opening the box fß

Figure 4.15: Gibbs sampling as message passing.

b) Message x broadcast by X:

Sample x from:

/(*) =

Hx(x)

J2xlÂx(x)'

c) Message /LXy(y) arriving at Y edge:

Vr(y) = ÎA(x,y)

(4.46)

(4.47)

d) Message y broadcast by Y:

Sample y from:

f(y)
fß(y)pY(y)

Y,y fß(y)PY(y)'
(4.48)

The node fB may in its turn have internal structure, as depicted in

Fig. 4.15(b). The message fB(y) is then a "summary" of the graph
behind it, computed by applying the generic sum-product rule (or some

approximation) to the incident node h. In particular, if Gibbs sampling is

applied in the "box" fB (dashed box in Fig. 4.15(b)), the message fB(y)
is given by:

fB(y) = h(y,zi,...,zN), (4.49)

where &k (k = 1,..., N) is a sample from f(zk) defined as:

,, s A tlh^Zk(zk)HZk^h(zk)

J2zk ^h^Zk(zk)tizk^h(zk)'
(4.50)

D
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Mm

Y

Figure 4.16: Gibbs sampling at a generic edge Y.

The previous example can easily be extended to general factorizations /.
Gibbs sampling can be interpreted as a message-passing algorithm that

operates on a factor graph of / by iterating the following steps:

a) Select a variable (equality constraint node) Y in the factor graph

of/ (see Fig. 4.16).

b) The equality constraint node Y generates the message y by sam¬

pling from:

ri n a pi(y)... pn(v)
f, KU

f(y) = ^ t-\ TT'
4-51

l^y Pi(y) pN(y)

and broadcasts y to its neighboring nodes fk (k = 1,... ,M).

c) The nodes fk update their outgoing messages fi by applying the

sum-product rule with as incoming messages the samples y and X£

(£=l,...,M)(d.(A.8A)).

The message-passing algorithm of Example 4.1 is an instance of the above

generic scheme, as easily can be verified. In conclusion: Gibbs sampling
is equivalent to message passing on a factor graph, where each message is

represented by a single sample; obviously, one may apply Gibbs sampling

locally in a graph (and apply other approximation techniques in the other

parts of the graph).

Remark 4.3. (Gibbs sampling from joint densities)
In order to speed up the Gibbs sampling algorithm, one may group seve¬

ral variables, i.e., one may sample several variables jointly [93, p. 201].
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For instance, one could sample Xk and Xk+i from the joint probability
function

,, nA f(xi, .,£fc-l,£fc,£fc+l,£fc+2, • • -,Xn)
fArr,\

f(xk,xk+i) = -^ 7-7 ^^-. (4.52)

Z-^Xk i(xi' • • • ,xk-i,xk,xk+i,xk+2, • • -,xN)

Note that this idea is only interesting if Xk and xk+i are dependent con¬

ditioned on (xi,..., Xk—i, £fc+2, • •

•, xn), i.e., if the edges Xk and Xk+i

are incident to a common node. Indeed, if Xk and Xk+i are conditionally

independent (or equivalently, the corresponding edges are not incident to

the same node), the function f(xk,Xk+i) factorizes as

f(xk,xk+i) = f(xk)f(xk+i), (4.53)

and sampling from f(xk,Xk+i) reduces to independent sampling from

the marginals f(xk) and f(xk+i). Grouping can naturally be expressed

graphically (see Fig. 4.17(a)). The pair (y,z) is drawn from the (nor¬
malized) product of the function h(y, z) (dashed box) and the messages

arriving at the box h along the edges Y and Z. Note that the box h

may be a summary of a subgraph, as suggested in Fig. 4.17(a); the func¬

tion h(y, z) is obtained by summarizing over the internal variables of the

box h. Sampling Y and Z jointly is equivalent to "standard" sampling

(cf. Step 2) of the clustered variable (Y, Z) (see Fig. 4.17(b)).

The extension of (4.53) to higher-order joint densities is straightforward.
As the order of the joint density increases, however, it often becomes

more difficult to sample from this density.

4.6.3 Importance Sampling

Suppose we wish to compute the expectation

E/k] = £/(*)<?(*), (4-54)
X

but the naive computation of (4.54) is not tractable. If it is "easy" to

sample from /, one may generate a list samples {x^} from / and

evaluate the expectation (4.54) as

1
N

E/M = 77E^W)- (4-55)
i=i
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Y

Z

(a) Jointly sampling Y and Z

(yJ)

(y/z)

\îifz)

(Y,Z)

(yfz)

(b) Sampling the clustered variable (Y, Z)

Figure 4.17: Grouping in the context of Gibbs sampling; the vari¬

ables X and Y are clustered.
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Suppose now that sampling from / is "hard", and hence the approach

(4.55) is not feasible. One may then draw samples {x^} from a

different function h with supp(/) Ç supp(/i), and compute (4.54) as

1
N

-,M) (4.56)

where the weights wt are given by

,« f{? :«ï

h(f%))
(4.57)

The approach (4.56)-(4.57) is called importance sampling [171, p. 90-

107]. We have applied this method in (4.35). Importance sampling is

particularly natural when / factorizes, e.g.,

f(x) = fi(x)f(x). (4.58)

Af

One may draw samples {x'-*-'} , ("importance samples") from fi and

weight those samples by the function f ( "importance function" ) :

,« Mx«ï (4.59)

A message-passing view of this procedure is suggested in Fig. 4.18. The

X X

f
Mi M3

f

M2
particle list

particle list

Figure 4.18: Importance sampling as message passing.

message \ii is represented by the list of samples {x^} _. (with uni¬

form weights). For the message p2, a closed-form expression is available,

i.e., p2 = f- The outgoing message p3 is the list of samples p3 =

{x^\ w;W}
_

,
where w^ is defined in (4.59). Importance sampling

may be viewed as a particular instance of weighted sampling, where (1)
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the local node function g is an equality constraint node; (2) one of the

messages is a list of samples; (3) the other message is available in closed-

form.

Remark 4.4. (Importance sampling from fi or f)
If it is hard to directly sample from fi and f, one may use importance

sampling (4.56) (4.57) to obtain (weighted) samples pi = {x^, w^ } ,

from fi. The message p3 is represented as a list of samples {x^, «;W j ;

where (cf. (4.58))

t«W=»W/2(îW). (4.60)

This method is the key to particle filtering, which is the subject of next

section.

4.6.4 Particle Filtering

Particle filtering (or "sequential Monte-Carlo integration") stands for

forward-only message passing in a state-space model of the form

N

f(s0,s2, ...,sN,yi,y2,.. -,yN) = /a(«o) JJ fA(sk-i, Sfc)/ß(«fc, 2/fc),
fc=i

(4.61)
where (some of the) messages are represented by lists of samples [59]
(see Fig. 4.19). More precisely, the messages pk and fik in Fig. 4.19 are

Pk-l l^k Pk

fA(s k-i,s fc) \pYfc

fß(sk

Figure 4.19: Particle filtering as message passing. One time slice of

the state-space model is shown.

represented as lists of samples. In the basic particle filter, the list fik is

obtained from pk-i by weighted sampling. The sampling-importance-

resampling particle filter (SIR) uses unweighted sampling instead. In
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both particle filters, the list pk is generated from fik by importance sam¬

pling (cf. Fig. 4.18): the message fik, p\ and pk in Fig. 4.19 correspond
to the message pi, p2 and p3 respectively in Fig. 4.18.

Remark 4.5. (Smoothing by particle methods)
Along the same lines, particle methods can be used for smoothing in

state-space models, as depicted in Fig. 4.20. The forward messages (pk
and fik), backward messages (pk and fik), and upward messages p\ are

represented as lists of samples. The forward and backward messages are

updated by applying the particle filter in a forward and backward sweep

respectively. There are several ways to obtain the upward messages pf[.
One could generate them from the product of incoming particle lists fik
and pk (by means of the methods of [88], see Section 4.6.1). We propose a

simpler alternative based on importance sampling. One possible scheme

is shown in Fig. 4.21(a). The importance samples are given by pk =

I \ I N 1 N
") ( ) 1

fc'ws fc f '
and the importance function equals:

' ' > t=i

f(sk) = fiFk(sk)pYk(sk), (4.62)

where the message fik(sk) is obtained by applying the sum-product
rule to the node /A(sfc-i,Sfc) with as incoming message the particle

list pl_x = {s^fc-i^F.fc-ij
,

(cf- (4-35)), i.e.,
^ > %=i

N

ßk(sk) = ^{F,k-ifA(s{F,k-vSk)- (4.63)
i=i

The message p\ is the list of samples p\ = < sBk, wjj'k >
,
where

I ' > ) t=i

['u = «#*/(*&), (4-64)

N

« 4V^aSfc)EwÄ-i/A(4J,)fc-i,4!fc)- (4.65)

Obviously, one may exchange the roles of fik and pk, as depicted in

Fig. 4.21(b): the importance samples are now given by fik, and the

importance function equals:

f(sk) = p^(sk)pl(sk), (4.66)
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where the message Pk(sk) is obtained by applying the sum-product
rule to the node /a(ss:, Sfc+i) with as incoming message the particle

list tiB
-

<fsW w;W \N
llbL Pk+1

—

y>B,k+V wB,k+lf=1>

N

Mfc (Sfc) = 2^wB,k+ifA(sk,sBik+i (4.67)

One may generate half of the samples by the method of Fig. 4.21(a), and

the other half by the method of Fig. 4.21(b), which leads to a symmetrical
situation.

Mfc"t
Sk

Mfc-i

Mfc-i

ßk

Mfc

\4

Mfc

fA(sk-i,sk) \vX

fß(sk,yk)

Figure 4.20: Smoothing by particle methods. One time slice of the

state-space model is shown.

particle list T

closed form

particle list T

c osed form

^article list
—

=

particle list particle list

=

„

particle list

u osed form t<= osed form

(a) A first option (b) A second option

Figure 4.21: Computing pf[ by importance sampling.

Remark 4.6. (Particle filtering for constant parameters)
Particle filtering is not well-suited for inferring constant parameters. If Sk
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is constant, i.e., Sk = s and hence /a(ss:-i, «fc) = #(sfc-i — Sfc) for all A;,
the (un)weighted sampling step is trivial: the messages fik are identi¬

cal to the messages pk-i- Since importance sampling does not change
the position of the particles, but only their weights, the position of the

particles is in all lists pk identical. In other words, the particles do not

"explore" the parameter space, and the resulting approximation of the

posterior density of S is rather poor. Liu et al. [115] proposed a heuristic

scheme to deal with this problem. The idea is to introduce "artificial

evolution": the function /A(sfc-i,Sfc) = #(sfc-i — Sfc) is replaced by some

conditional q(sk\sk-i), e.g., a Gaussian distribution with mean Sfc-i-

The (un)weighted sampling step is then no longer trivial: it modifies the

position of the particles. However, artificial evolution introduces noise

in the system: the lists of samples are "wider" than the true posterior

density. Therefore, Liu et al. propose to move the particles towards the

mean of the list after each (un)weighted sampling step ("shrinkage").
Shrinkage can exactly compensate for the increase in variance due to

artificial evolution. However, it does not eliminate the distortion of the

higher-order moments.

Remark 4.7. (Particle filters: pros and cons)
Both the basic and SIR particle filter suffer from certain problems. Gen¬

erally speaking, due to the repeated sampling, small deviations from the

true densities pk and fik will accumulate and eventually lead to dras¬

tically distorted sample lists. In particular, after several iterations of

the basic particle filter, all but one particle have zero weight ("degene¬
racy"); in the SIR particle filter, all particles will eventually coincide

( "sample impoverishment" ). It is therefore recommendable to alternate

weighted and unweighted sampling to generate the lists fik [59]. Despite

sophisticated (heuristic) alternation schemes, the resulting sample lists

may still be quite far from the true densities, especially when the latter

are narrow (as in the high-SNR regime). In the literature, some other

heuristic methods have been proposed to improve the basic and SIR par¬

ticle filter, e.g., artificial evolution in conjunction with shrinkage [115]
(cf. Remark 4.6). We have tried out most of the proposed schemes. The

results of our experiments indicate that the standard particle methods

are not recommendable if high-precision results are required, i.e., poste¬
rior densities or estimates. In fact, numerical integration often amounts

to more accurate results; this method is however only applicable in low-

dimensional systems.
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4.6.5 Markov-Chain Monte-Carlo Methods (MCMC)

As in Section 4.6.3, we wish to draw samples from a probability func¬

tion ("message") / from which it is hard to sample directly. As we

explained in that section, samples from / may be obtained by impor¬
tance sampling: one draws samples from a different function h and cor¬

rects for that by weighting the obtained samples. Markov-Chain Monte-

Carlo methods (MCMC) are alternative sampling methods that are si¬

milar in spirit [171]. The idea is to sample repeatedly from an ergodic
Markov chain with stationary distribution /. We now briefly present
the most well-known MCMC method, i.e., the Metropolis-Hastings algo¬
rithm [171]. This algorithm is based on a conditional density q(y\x) from

which it is assumed to be easy to sample. In addition, q is supposed to be

symmetric, i.e., q(y\x) = q(x\y). Usually, the function q fully factorizes,

i.e.,
N

q(yi,...,yN\xi,...,xN) = Y\q(yk\xk)- (4.68)
fc=i

An example of a function q is a Gaussian distribution with mean x and

diagonal covariance matrix. The Metropolis-Hastings algorithm gene¬

rates samples x from the "target" function / by the following iterative

procedure:

a) Choose an initial value x.

b) Sample y from q(y\x).

c) Set

x = y with probability p (4.69)

where

d) Iterate 2-3 a sufficient number of times.

Note that the function / must be available up to some constant.

Similarly as Gibbs sampling, the Metropolis-Hastings algorithm can be

interpreted as a message-passing algorithm that operates on a factor

graph of /. The following steps are iterated:
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^i XM,

pi Mm

sfl PN/~7r'

y ::\ //y

N

Y

Figure 4.22: Application of the Metropolis-Hastings algorithm at a

generic edge Y.

a) Select a variable (edge or equality constraint node) Y in the factor

graph of / (see Fig. 4.22).

b) The edge Y generates the message ynew by sampling from q(y\y).

c) Set y = ynew with probability p where

a . J f(ynew)
,

with

f(y)
a pi(y)...pN(y)

EyMi(y)---Mw(y)'

(4.71)

(4.72)

The message y is broadcast to the neighboring nodes fk (k =

l,...,M).

d) The nodes fk update their outgoing messages fi by applying the

sum-product rule with as incoming messages the samples y and X£

(£=l,...,M)(d.(A.8A)).

One may group certain variables, as in Gibbs sampling (cf. Remark 4.3).

In the previous sections, we encountered several situations where we

needed to draw samples from a probability function ( "message" ). As we

explained in Section 4.6.1, sampling from a generic sum-product mes¬

sage pg^x (4.36) requires samples from g(x, &i,..., zn)', if sampling
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from g is hard, and importance sampling is for some reason inconve¬

nient, one may resort to the Metropolis-Hastings algorithm.

MCMC can also be applied in the context of Gibbs sampling, more specif¬

ically, to generate samples from f(y) (cf. (4.43)). The resulting algo¬
rithms are in the literature referred to as hybrid MCMC [171, pp. 392-

396].

MCMC can be used in the context of particle filters too [20] [97]. In

the case of filtering, the message pk is then not generated from fik by

importance sampling (cf. Fig. 4.19), instead it is obtained by means of

the Metropolis-Hastings algorithm with target function /:

f(sk) = pKskXpKsk), (4.73)

where fik(sk) is given by (4.63). As a consequence

f(sk) = ^(sk)J2wk-ifA(Sk%Sk). (4.74)

One may proceed similarly in the case of smoothing. This combined

MCMC-particle filtering approach is less prone to problems as sample

impoverishment and degeneracy, but it is computationally complex.

4.6.6 Simulated Annealing

The original simulated annealing algorithm is an extension of the Metro¬

polis-Hastings algorithm [171, pp. 163-169]. It can be used:

• to sample from a multivariate function f(xi,..., xn),

• to find the mode of the function /.

The key idea is to draw samples from functions fa, where the (positive)
exponent a increases in the course of the algorithm. The initial value

of a is close to zero (e.g., a = 0.1). If one wishes to obtain samples
from /, one halts the algorithm as soon as a = 1. If one tries to find the

mode of a, the end value of a is much larger (e.g., a = 10 or 100). Note

that for small values of a (i.e., 0 < a < 1), the function fa is flatter

than the target function /, whereas for large values of a (i.e., a 3> 1),
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the function fa mainly consists a narrow peak centered at the global
maximum of /

Simulated annealing works as follows

a) Choose an initial value (xi,X2, ,£jv)

b) Choose an initial value a (eg, a = 0 1)

c) Sample a new value y from q(y\x)

d) Set x = y with probability p, where

-m"{(7§P} ("5)

e) Iterate 3-4 a "large" number of times

f) Increase a according to some schedule

g) Iterate 5-6 until convergence or until the available time is over

Various stopping criteria and several schemes to increase a are available

in the literature 4

The principle of simulating annealing is generic It can be applied to

any message-passing algorithm, not only to the Metropolis-Hastings al¬

gorithm
5 The idea is to replace a local function / by a power fa

6 In the

course of the message-passing algorithm, a increases If one is interested

in posterior probabilities, the algorithm is halted as soon as a = 1 If

one tries to find the mode of a function, one stops the algorithm at a

larger value of a

4We refer to [171, pp 163—169] for detailed information and numerous references

5If it is interleaved with a particle method (such as Metropolis-Hastings), it is

called "stochastic annealing", otherwise, it is called "deterministic annealing"
6This only makes sense if the function / is "soft", l e

,
if it is not a Dirac delta
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4.6.7 Application

Constant-Phase Model

The forward messages pk in Fig 4 23 are represented as lists of sam¬

ples pk = {0k }^Li, whereas the downward messages pg^ek are avai¬

lable in closed-form (cf (4 23)) The messages in Fig 4 23 are computed
as follows

® Initialize the list p\ with samples drawn from pg^o1

© The particle lists pk are updated in a forward sweep by means

of importance sampling combined with the evolution/shrinkage
method of Liu et al [115] (cf Remark 4 6)

© The upward messages p^^xk(xk) are computed as weighted ave¬

rages over the list pF

N-l

M0^xfc(£fc) oc J2 WL Vzk^\El(xkexP(ßL )) (4 76)

where wf is the weight of particle Off

©tiXi \\X2 t|*Z

Zi

f4®

ëi

iL/**®

Zk
Oo

Zr O,

f4©

Figure 4.23: Particle filtering in the factor graph of the constant-phase
model
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Random-Walk Phase Model

The forward, backward, and upward messages pPk_>Qk_1, pPk^ek and

pek^g respectively are lists of samples, the downward messages pg^ek

are available in closed-form (see Fig 4 24) The messages in Fig 4 24

are updated as follows

® Initialize the lists pQt^P2 and peL^PL with samples drawn from

pg^Ql and pg^eL (cf (4 23))

© The messages pPk^ek anQl f-vk^^k-i are updated in a forward and

backward sweep respectively At the phase noise nodes, sample
lists are generated by (un)weighted sampling, this is implemented

by simply adding "phase noise" to the incoming particles (cf (4 2))
At the equality constraint nodes, importance sampling is applied

(cf Section 4 6 4)

© The messages pek^g (1 < k < L) are obtained by importance

sampling (cf Remark 4 5)

@ The messages p\x\^xk (xk) are evaluated as weighted averages over

^ /AW „,f)\Nthe lists p&k^g = {^'fc >

V
J %

N-l

M[E^xfc (xfc) â Y^ wfc*W^[x] (xk exp(j9kl))) (A 77)
t=0

>t|*i

Zi

g

t

Oi

\®

t 1*2

p(92[9i

g

©I ©

Z-x
e2

\Xl

©

p(9l\9l-i) Zt

\®

Ot

Figure 4.24: Particle filtering in the factor graph of the random-walk

phase model
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4.6.8 Summary

We summarize the main ideas of this section.

• In particle methods, probability distributions ( "messages" ) are repre¬

sented as lists of samples. Integrals are evaluated as averages

over lists of samples.

• We have given a local view of particle methods, i.e., we have shown

how particle methods can be applied at particular nodes in the fac¬

tor graph of the system at hand. In particular, we have explained
how samples can be drawn from a generic sum-product mes¬

sage. We treated discrete and continuous variables. We con¬

sidered various representations for the incoming messages, i.e.,
lists of samples, quantized messages, hard decisions, Gaussian dis¬

tributions etc. Several combinations of incoming messages amount

to existing algorithms, others to novel algorithms.

• In this setting, particle methods can straightforwardly be com¬

bined with other methods, such as gradient methods, decision-

based methods (as ICM), Kalman-style algorithms (based on Gaussian

distributions; see Appendix H) etc. In addition, such combinations

can systematically be explored.

• We have shown how standard Monte-Carlo methods can be under¬

stood from this local viewpoint:

— In Gibbs sampling, messages are represented by a single

sample.

— Importance sampling can be viewed as message passing at

an equality constraint node, where one incoming message

is available in closed form, the other is a particle list. Also

the outgoing message is represented by a particle list.

— Particle filtering stands for forward/backward message pass¬

ing on the factor graph of a state-space model, where the

forward/backward messages are lists of samples.

— MCMC is a method to draw samples from a "complicated"

probability function ( "message" ). It may be used in combina¬

tion with Gibbs sampling and particle filtering.
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— Simulated Annealing was originally formulated as a par¬

ticle method. However, simulated annealing is a generic idea,
and it can be applied to any message-passing algorithm: cer¬

tain factors (in the factor graph of the system at hand) are

raised to a positive power a; in the course of the message-

passing algorithm, the power a increases.

4.7 Adaptive Quantization

4.7.1 General Idea

In numerical integration and particle methods, integrals are replaced by
finite sums (cf. (4.27) and (4.35)). In numerical integration, the quanti¬
zation levels are uniform, whereas in particle filtering, the quantization
levels are sampled from a distribution, hence, they are non-uniform. Ob¬

viously, non-uniform quantization (and in particular particle methods)
could in principle lead to better results than uniform quantization. We

pointed out before, however, that for the particular problem of estimation

in state-space models, particle methods (i.e., particle filtering), seems

to perform worse than numerical integration, mainly due to the recur¬

sive sampling (cf. Remark 4.7). We propose an alternative (heuristic)
method to obtain non-uniform quantization levels, which in particular
situations leads to better results than uniform quantization (numerical
integration). The idea is simple: where the function f(x) attains large

values, the density of quantization levels should be large (cf. Fig. 4.13

(left)). In contrast to particle filtering, we do not try to achieve this goal

by sampling from f(x), but by shrinkage (see Fig. 4.25): the quantization
levels are recursively moved towards the mean (or maximum or median).
Suppose an initial quantization {x^l^li of x is given. Shrinkage stands

for the iterative application of the following two steps:

a) Compute the mean x:

1
N

*=^£/(*&)*&- (4-78)
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b) Move the quantization levels towards the mean

•''new (T W^old ' eX (4 79)

where e is a small positive number that may depend on the iteration

number In Fig 4 25, three iterations of this algorithm are depicted
The resulting quantization levels are obviously not samples from / The

(a) Original (uniform) quantization

f\

(b) First iteration

(c) Second iteration (d) Third iteration

Figure 4.25: Adaptive quantization by shrinkage

method works only well for ummodal distributions If / is multimodal,
one may apply a clustering algorithm first, and apply shrinkage in each

cluster Note that one may use the maximum or median rather than the

mean (4 78)

Shrinkage can be integrated in a generic message-passing algorithm that

operates on a factor graph as follows
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a) Initialize the quantization levels of all quantized variables x in the

factor graph. The quantization levels may be uniform; alterna¬

tively, they may be generated by sampling (particle list).

b) Initialize all messages.

c) Update all messages in the graph according to the sum-product rule

or a suitable approximation. In the case of quantized variables, the

sum-product rule is evaluated as in (4.27).

d) Compute the marginals f(x) of the quantized variables x.

e) Shrink the quantization levels of x based on the marginals f(x)
(cf. (4.78) and (4.79)).

f) Iterate 3-5.

4.7.2 Application

We extend the phase estimators based on numerical integration (cf. Sec¬

tion 4.5.2) with shrinkage.

Constant-Phase Model

Shrinkage is applied between step @ (computation of pk) and @ (com¬
putation of P\x\^Xk )'

N-l

= arg][>£(^)exp(Ä), (4-80)

b)

0« arg f(1 - e) exp (j9^d) + e exp(jO)] , (AM

where i = 0,1,... ,N — 1.

The update © and the shrinkage step (4.80)-(4.81) are iterated a number

of times before the update @ is carried out.
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Random-Walk Phase Model

Shrinkage is applied between step ® (computation of pek^Pk an(i l^&k^pk-i]
and © (computation of pQk^g):

N-l

0 = arg ]T MPfc+1-efc(^)Mpfc^efc(^)exp(^W), (482)
t=0

b)

Ô[± arg (1 - e) exp (jöW ) + e expfjo)!
, (4.83)

where i = 0,1,... ,N — 1.

The update ®, the shrinkage step (4.82)-(4.83), and the update © are

iterated a number of times before the update @ is carried out.

4.7.3 Summary

• Adaptive quantization is a simple heuristic method to generate
non-uniform quantization levels.

• It can easily be integrated in a message-passing algorithm with

quantized messages.

4.8 Gradient Methods

In this section, we describe steepest descent (or "steepest ascent" or

"gradient descent" ) as a message-passing algorithm. The results in this

section are based on joint work with Sascha Korl [46].

4.8.1 General Idea

It is common to represent a probability function f(x) by a single value

such as:
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• its mode xmax = argmaxa,[/(x)]

• its mean

• its median

• a sample from / (as in Gibbs sampling).

The probability function / is then approximated by the Dirac delta 5(x —

x), as illustrated in Fig. 4.26 for x = xmax.

In particular, if sum-product messages are represented by single values,
the integral-product rule is approximated as follows.

Integral--product rule evaluated by means of hard decisions:

M/- r(y) a f(y,xi,-- . ,Xjv), (4-84)

where Xk is a hard estimate <jf Xk, representing the message pxk ->/•

Dirac delta approximation

Figure 4.26: A probability density function and its approximation by
a Dirac delta located at its mode xmax.

In the rest of this section, we focus on the mode xmax = argmaxa,[/(x)].
Let us have a look at a simple example.

Example 4.2. (Mode of a message)
We consider the following model:

Yk = e^ + Nk, (4.85)
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where Nk is complex white Gaussian noise with (known) variance 2aN,
i.e., aN per dimension. We wish to estimate the unknown phase O G

[0, 2n) from N observations y = (yi,..., j/jv). The factor graph of Fig. 4.27

depicts the conditional probability density function p(y\0). The fac¬

tors p(yk\0k) are defined as

}_p-\yk-e^\f2f

2ira2

p(î/fc|0*) = ;r-2-e . (4-86)
7N

Since the factor graph is cycle-free, sum-product message passing leads

to the exact marginals. The messages fi\(0k) are given as

)A(9k) = p(Vk\9k) (4.87)
1

e-\vk-e^\f2al
2na2N

(4.88)

The message p\(0) equals

p](9) =

N

fc=i

(4.89)

=
TT

1
e-\yk-e">\2/2a%

fc=i N

(4.90)

The ML-estimate of O is the mode of p}(0) = p(y\0). Since the func¬

tion p(yk\9) is concave, the ML-estimate 9ML is obtained by solving the

equation:

dpfO)
dO

The (unique) solution of (4.91) is

= 0. (4.91)
gML

T,k=iliniyk}\

Xk=iReiyk]J

aML
-

arg ( t?N1Z"iri, ) • (4-92)

D

In the previous example, we obtained a closed-form expression for the

mode. In many practical situations, there is no closed-form expression
for the mode available. One may then apply numerical methods such as

gradient methods. The familiar steepest descent (or "steepest ascent"
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e

p(yi\9i

ei rf
p(y2\92

\yi

e2

V2

p(vn\0n)

Wn

Figure 4.27: ML estimation of the phase O from non-modulated ob¬

servations.

or "gradient descent/ascent") method tries to find 9max as follows [19]:

starting from some initial guess 0^°\ iterate the rule:

9{k+1)=9^ + XkVef(9)\m, (4.93)

for k = 1, 2, 3,..., where the parameter A^ (the "step size") is a positive
real number that may depend on k. An alternative update rule is

0(fc+i)=0(fc)+Afc Velog/(0)|ee(fc) (4.94)

The update rule (4.93) or (4.94) is iterated until a fixed point is reached

or until the available time is over. Note that rule (4.94) is often preferable
to (4.93) if g(0) strongly varies, since the logarithm in (4.94) compresses

the range of g(0).

In this section, we investigate how steepest descent can be applied in

the context of the sum-product algorithm. We start by considering the

factor graph depicted in Fig. 4.28(a), which represents the global function

f(9) = fA(9)fB(9). The gradient Ve/(0) in update rule (4.93) is given

by

Ve/(0) = fB(9)VefA(9) + fA(9)VefB(9), (4.95)

and similarly, the gradient Velog/(0) in update rule (4.94) equals

Velog/(0) = VelogfA(0) + VelogfB(0). (4.96)

Steepest descent according to rule (4.94) (and similarly (4.93)) may be

viewed as follows:
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a) The equality constraint node in Fig 4 28(a) broadcasts the esti¬

mate 6>(fc) Node fA replies with the message Ve^og fA(0)\9(k) and

likewise node fB

b) A new estimate éKfc+1) is computed as

ê^+1)=ê^+Xkhe\ogfA(9)

c) Iterate 1-2

\ tf(fc)

Vs. O

/"/^^

e(fc)
log fB(0)

fA

Xi
^

g .

x„
% O

f^
fB -

§w

e(fc)

§ik)

(a) fA and fß as (b) Opening the box fA
closed boxes

Figure 4.28: Factor graph of f(0) = fA(9)fB(9)

(4 97)

In Fig 4 28(a), the nodes fA and fB may be summaries of the subgraph
"behind" them, as illustrated m Fig 4 28(b) the function fA is a sum¬

mary of the dashed box This box contains a o the local node g, which

is connected to the equality constraint node O The summary /a(#) is

computed from the messages pxk^g> arriving at the node g from the left,

according to the sum-product rule

Îa(0) oc ~Y^g(xi, ,xn,9) Y[pxe^g(x£) (4 98)

The above gradient method requires VefA(9) and Vg log /a(#) (cf (4 97))
In the following, we show how these expressions can be computed We

distinguish three cases

a) g is an equality constraint node

b) g is differentiable

c) g corresponds to a deterministic mapping
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Equality constraint node

Oi

e„

o

U9)

(a) Equality constraint node

Xi

X„

Veg
O

(b) Differentiable node func¬

tion

Figure 4.29: Generic nodes

If g is an equality constraint node (see Fig 4 29(a)), the required gra¬

dients are computed similarly as in (4 95) and (4 96)

n n

VefA(9) = ]TveMe^@(fl) n pem^(9), (4 99)
£=1 m=lm^£

and

Velog/A(0) = ]TvelogMe^@(tf)
e=i

Differentiable node function

(4 100)

Let g(xi, , xn, 0) be differentiable w r t 0 The gradient VefA(9) can

then be computed as follows

Vö/a(ö)oc J^ Veg(£i, ,xn,0) ^Qmx£^s(££) (4 101)

Note that in (4 101), we differentiated under the integral sign, we will

always assume in this thesis that this operation is allowed 7 The up¬

date rule (4 101) can be viewed as applying the sum-product rule to the

node Veg, as illustrated in Fig 4 29(b) The incoming messages are the

standard sum-product summaries pxe^g In other words, if g is differ¬

entiable, the differentiation operator does not propagate to the subgraph

7Appendix I lists necessary conditions for differentiation under the integral sign
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on the left of g; it is (only) applied to the local node function g. This

is not the case if g corresponds to a deterministic mapping, which is the

subject of next subsection.

The gradient VelogfA(O) equals

V,log/A(ô) = ^>, (4.102)
Îa(0)

and is computed from (4.98) and (4.101). In order to evaluate Vg log /a(^),
the sum-product rule is applied both to g and Veg-

If the variables Xi are discrete (and the alphabet is not "too large"), the

expressions (4.101) and (4.102) can be evaluated in a straightforward
manner. If on the other hand those variables (or a subset of them) are

continuous, the integrals in (4.98) and (4.101) may be evaluated in several

ways.

• In some cases, a closed-form expression of (4.98) or (4.101) exists.

• The integrals in (4.98) and (4.101) can be approximated based on

canonical distributions as for example Gaussian distributions.

• The messages pxt^g(xf may be quantized messages with quanti¬

zation levels x^e), then (cf. (4.27))

VefA(9) (4.103)
n

]T Veg(x<-f\...,x^,9)l[pXk^g(xt)), (4.104)oc

%\, ,tn fc=l

and

Velog/A(0) (4.105)

£ Veg(xSf\...,xt\9)]Tk=i^g(xklk))

2^ 9\xi 7
• • • ixnn , 0) [[k=1 fiXk^g(Xk J

l\, ,ln

(4.106)

where the sums are taken over the quantization levels (which may
be different for each variable).
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• The messages pxe^g(xf) may be lists of samples {x^ } (cf. (4.35)).
Consequently

Vs/aWoc ]T yeg(x{f\...,x^\9), (4.107)

and

£ Veg{x{f\...,xt\9)
VelogfA(9) =

^

^ -^-, (4.108)
,

. . .

, J^n ,
I

*1, ,*T1

•

where the sums are taken over the lists of samples.

The incoming messages pxt^g(xf may be a hard decision X£. The

expressions (4.101) and (4.102) reduce to (cf. (4.84))

VefA(9)^Veg(xi,...,xn,9) (4.109)

and

V7 1 f (0\
Vegr(xi,...,X„,é>)

fA i-,n\
Velog/A(<9) =—-t —t—. (4.110)

g(xi,. ..,xn,0)

• Combinations of the previous options are possible.

Deterministic mapping

We consider the case where the local function g corresponds to the de¬

terministic mapping y = h(xi,..., xn, 0), i.e.,

g(xi, ...,xn,y,0) = 5(y - h(xi,. ..,xn,0)). (4.111)

We assume that h is differentiable. Let v = (xi,... ,xn). The mes¬

sage fA(9) is computed as follows

n

fA(0) oc ]T 5(y-h(v,9))pY^g(y)\{px^g(xe) (4.112)
Xi, ,Xn £=1

n

= Y,HY^g(h(v,0)) -Hnx^gixe). (4.113)
v £=1
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As a consequence

n

Vs/aWoc Yye[vY^g{h(v,9))]-Y{px^g(xe) (4.114)
v £=1

= ^2Veh(v,9) VyVY^g(y)\y=h{vß)
V

n

Y[nxe^g(xe). (4.115)
i=i

Eq. (4.115) may be viewed as applying the sum-product rule to the

node function Vg/i, as illustrated in Fig. 4.30. Besides the standard

sum-product messages pxt^g(xf, also the message Vy PY^h(y)\hiv g\
is

required, which is the gradient of a sum-product message. The mes¬

sage Vj, tlY^g(y)\hiv q)
is computed by the same rules as VefA(9)

(cf. (4.99) (4.101) (4.115)). Similarly as in (4.101) and (4.102), the up¬

date rule (4.115) can be evaluated in several ways, depending on the

data-type of the incoming messages. For example, if the incoming mes¬

sages X£ and Vj, tlY^g(y)\hix g\
are hard decisions, where x stands for

(xi,.. .,£„), then

VefA(9) oc Veg(v,9)VypY^g(y)\me). (4.116)

This rule may be familiar to the reader who has some background in

neural network theory: indeed, if one applies the rule (4.116) together
with (4.97) (4.109) and (4.110) to a factor graph that represents a feed¬

forward neural network, one obtains the well-known backpropagation

algorithm [22]. We refer to Appendix E.3 for more details.

e
Vgh

Vef

y\\ V9p

Figure 4.30: Deterministic mapping h.

We explain now how two well-known algorithms can be viewed as in-
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stances of the above generic rules: iterative conditional modes and sto¬

chastic approximation.

4.8.2 Iterative Conditional Modes

Suppose we wish to maximize a multivariate function f(xi,..., xn). This

can be done by the following iterative algorithm called Iterative Condi¬

tional Modes (ICM) (or "cyclic maximization" or "alternating maximi¬

zation" or "coordinate descent" ) :

a) Choose an initial value (xi, X2, , £jv).

b) Choose an index k.

c) Compute Xk = argmax,,. f(xk), where

el \A f(xi, ,Xk-l,Xk, £fc+l, • • • ,Xn) /,117i

f(xk) = ^ jp ^r- (4.117)

l^Xk J (Xl' • • • iXk-l,Xk,Xk+l, ,xN)

d) Iterate 2-3 a "large" number of times.

Under the assumption that / is bounded above, ICM converges to a local

maximum of /. Note that ICM is strongly related to Gibbs sampling

(see Section 4.6.2). In Gibbs sampling, one draws a sample from f(xk),
whereas in ICM one computes the mode of f(xk).

If it is hard to compute the mode Xk = argmax^ f(xk) (Step c), one may

select a value xkew which increases f(xk), i.e., f(xkew) > f(xckA) ("gene¬
ralized ICM"). The value xkew may be obtained by gradient methods.

Generalized ICM usually leads to a stationary point of /, but not necessa¬

rily to a local maximum.

ICM can readily be formulated as a message-passing algorithm:

a) Select a variable (edge or equality constraint node) Y in the factor

graph of / (see Fig. 4.16).

b) The edge Y generates the message y = argmax f(y), where

A pi(x)... pN(y)
^-mqïf(y) = ^—r~\ TT' (4.118)

2^vPi(y)...PN(y)
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Mm

Y

Figure 4.31: ICM at a generic edge Y.

and broadcasts y to its neighboring nodes fk (k = 1, ,M).

c) The nodes fk update their outgoing messages fi by applying the

sum-product rule with as incoming messages the samples y and X£

(£=1,...,M).

In the case of modified ICM, one replaces the message y = argmax f(y)
(Step c) by a value y which increases f(y). If this value is determined

by steepest descent, one obtains a similar situation as in Fig. 4.32. As

in Gibbs sampling, one may group several variables (cf. Remark 4.3).

4.8.3 Stochastic Approximation

Suppose we wish to find the mode #max of the global function f(0) =

Yie=i /f(^) ^ means of steepest descent (see Fig. 4.32). Straightforward

application of the generic rules of Section 4.8.1 (cf. Fig. 5.1) leads to the

following message-passing algorithm:

a) The equality constraint node in Fig. 4.32(a) broadcasts the esti¬

mate 0^k\ The nodes fi reply with the message Vg log/g(f?)|e(fc).

b) A new estimate 0^k+1) is computed as

N

ö(fc+1)=öW + AJ^Velog/,(ö)
ê(fc)

(4.119)
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e

Q(k) l—r-l \0^

f(9) h(9) fN(9)

(a) Standard scheduling

©l £(1) >2 §(2) §(L-i) QL q(l)
^~ - -

II | *(°> | | öd) §(L-1)

f(9) f(9) fx(9)

(b) Stochastic approximation

Figure 4.32: Gradient methods for estimating O

c) Iterate 1-2

An alternative scheme is depicted in Fig 4 32(b) The following steps

are performed in a forward sweep (k = 1, , N)

a) The equality constraint node Ok sends the estimate 9^k 1) to the

node fk The latter replies with the message Vg log/fc(ö)|e(fc_i)

b) A new estimate 9^ is computed as

§(k) = §(k-i)+Xk\7e log fk(9)
(fc-i)

(4 120)
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which is then sent to the equality constraint node ©fc+i-

The eventual estimate of O is given by Öl- Note that the update (4.120)
only involves the gradient of the local function fk, whereas (4.119) re¬

quires the gradients of all local functions. The procedure of Fig. 4.32(b)
is in the literature referred to as stochastic approximation (SA).

The stochastic approximation scheme can not only be applied to the

estimation of fixed parameters, but also to filtering and smoothing in

state-space models. The SA algorithm for estimating constant para¬

meters can directly be used for filtering in state-space models. In the

notation of Fig. 4.19 (left), the expression (4.120) takes the form:

'k-l AfcVelog/B(öfc,yfc; (4.121)

The SA algorithm for filtering may be viewed as forward-only message

passing in the graph of the state-space model, as illustrated in Fig. 4.33.

Note that update rule (4.121) takes the factor fB into account, but it

ignores the factor fA- Accordingly, the message update at the node fA
is trivial: the output message is identical to the input message 0k-i.

Ok
'k-l 'k-l

'k-l, h-l\ f

fß(9k,yk)

Figure 4.33: SA gradient method for filtering. Only one time slice of

the state-space model is shown.

Along the same lines, SA gradient methods can be used for smoothing

(see Fig. 4.34): one alternates a forward sweep of updates

äf & fl"F , ^
d\ogfB(0k,yk)

9k-e^+X a¥k

with a backward sweep of updates

d\ogfB(0k,yk)
'k+l

A
dOk

7fc-i

SB
7fc + l

(4.122)

(4.123)
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The forward and backward sweeps are initialized as Of = Of and 0N = 0N
respectively. After a sufficient number of SA forward and backward

sweeps, the eventual estimate ö|ot is obtained as the average of the for¬

ward and back estimate 9f and

îtot A
(4.124)

9totf
e*

9F

7fc-i

fc—l

fA(9k-u

'fc-i 9f

It

fß(9k,yk)

Figure 4.34: SA gradient method for smoothing.

Remark 4.8. (Stochastic approximation: pro and con)

• Pro:

SA gradient algorithms can be implemented without any knowledge

°.f fA- Or, in other words, it is not necessary to model fA explicitly.

• Con:

Since SA gradient algorithms do not take the prior model fA into

account, they often have a larger estimation error than algorithms
that do take fA into account.

4.8.4 Application

Constant-Phase Model

We present two different sum-product-based gradient methods for the

constant-phase model. The first algorithm is obtained by straightfor¬

wardly applying the generic rules of Section 4.8.1. The second method

is an SA algorithm.
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The first algorithm perform the following steps (see Fig 4 35)

® The compound equality constraint node broadcasts the current

phase estimate öold to all multiply nodes

© The latter reply with the messages
d\ogp,a^ok(6)

de
e=e°ld

@ At the compound equality constraint node, a new phase estimate

is computed according to the rule

^oid + A
d\ogpB^e(9)

dO
e=e°ld

old

fc=i

d\ogpg^Qk(0)
dO

e=e°ld

(4 125)

(4 126)

@ The upward messages p^^xk(xk) are computed

MEi^xfc(£fc) « pzk^\^{xkexp(j9new)) (A 127)

The steps ®-@ are iterated a number of times before @ is performed
The initial estimate 9 may be obtained from a non-data aided algorithm

(eg, the M-law [136])

Xi t<3) x2

'

r v

X
1

X

g V

©i

Zi

^(2
ê a

)
)

Xt

g @®

i®

Zk
o

©L

^©

ZT. § ®

Figure 4.35: Gradient descent (of sum-product messages) in the factor

graph of the constant-phase model standard approach
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The derivatives in the RHS of (4.126) are computed as follows:

d\ogpg^k(0)
=

dpg^ek(9)
d9 d9 ps^e*=v ' K '

= -^(£M*fc^fc)e-'-e39fc--'2/2^
aN

Xk

[sm9kRe(xky*k) + cos9klm(xky*k)])

Xk

where y*k stands for the complex conjugate of yk-

The SA scheme (depicted in Fig. 4.36) is a two-step procedure:

© The following operations are performed in a forward sweep

(k = l,...,N):

a) The equality constraint node ©^ sends the estimate 0^k~l> to

the node fk-, which replies with the message Ve^-Og fk(9)\g(k-i)

b) A new estimate 0^ is computed as

(k)
= §(k-i) + As

dlogpg^ek(0)
(4.130)

fc-i)
dO

which is then sent to the equality constraint node ©fc+i.

The eventual estimate of 0 is given by Ol-

© The upward messages p^^xk(xk) are computed:

M0^xfc(£fc) oc pZk^\^(xkexp(jêL)). (4.131)

Random-Walk Phase Model

Also for the random-walk phase model we present a "standard" gradient
method and an SA gradient method.

In the first approach, one alternates the following steps:
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Xi\© X2 XT

Zi

r 1

"

1
x ~"—

H
x ~"—

-|

g

© 1—J^°

-

g

ilk

©2 02 ZL

9

00 ©1 0i Zk eL éi
®

Figure 4.36: Gradient descent (of sum-product messages) in the factor

graph of the constant-phase model SA algorithm

nSf Xi

T

X

v

f X2

t \

Gi — ! !

Zi p(02|0i

© ®H@,y®

^2
^®

t Xl

p(9l\9L-i)

H

e,

^

Figure 4.37: Gradient descent (of sum-product messages) in the fac¬

tor graph of the random-walk phase model standard ap¬

proach

® The equality constraint nodes broadcast the current phase esti¬

mates 9ckA to the neighboring multiply nodes and phase noise nodes

© The multiply nodes reply with the messages de

@ The phase noise nodes reply with the messages
—og

dg

k

„„J rflogp(flfc+i|gfc)
dnu

dek

e=e°ld

e=e°ld

@ At the equality constraint nodes, a new phase estimate is computed
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according to the rule

9°id + A
(d\ogpg^ek(Ok)

dOk

d\ogp(0k\0k-i) d\ogp(0k+i\0k)
(A 132)

e=e°lddOk dOk

© The upward messages p\x\^xk(xk) are computed

MS^xfc (xk) oc MZfc^S (xk exp(jêlew)) (A 133)

The steps ®-@ are iterated a suitable number of times The initial value

of the phase 0^ can be constant, l e
,
Ok = 0 It may also be generated

by a forward SA sweep

The derivative of logpg^ek(@k) (cf RHS of (4 132)) is computed as

in (4 129) The derivatives of logp(0fc|0fc_i) and logp(0fc+i|0fc) w r t 9k

are computed as

01ogp(0fc|0fc_i)

90fc

1 J2nez(()k-9k-i+n27r)e-^-e^+n2^2/2^
aly J2„ ze-(efc-efc-1+n27r)2/2<T^

and

ologp(0fc|0fc_i)
_

ologp(0fc|0fc_i)

(4 134)

(4 135)
dOk-i dOk

If aw is small, l e
, aw <C tt, then the evaluation of the RHS of (4 134)

leads to numerical problems for large values of the difference Ok — 0fc-i,
both the numerator and denominator in the RHS of (4 134) are zero

This problem can be circumvented by the approximation

ologp(0fc|0fc_i) 1 Ae + (Ae + a)e ^w

99k
a2 -i^+ä
w

1 + e ^f

where aw < 7r, Ae = 0fc - 0k-i,

2tt if Ae < 0

(4 136)

2-K otherwise,
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and

b =
47rAe

-47rAfl

if Ae < 0

otherwise
(4 138)

©t Xi

x

t *®

z, e'@

t x2

T

X

v g

z

©tk

©2

f XL

J_

©

©

H

o,

Zr

Figure 4.38: Gradient descent (of sum-product messages) in the factor

graph of the random-walk phase model SA algorithm

In the SA algorithm (see Fig 4 38), one alternates between a forward

sweep of SA updates ®

= Ci+A
d\og pg^ek(9)

d9
i=e

and a backward sweep of SA updates ©

7fc+i
d\ogpg^Qk(9)

d9

(A 139)

(4 140)

The forward and backward sweeps are initialized as Of = Of and 0N = 0N
respectively After a sufficient number of forward and backward sweeps,

the eventual estimate is computed as the average of the forward and

backward estimate @

îtot A
h + 0fc,

The upward messages p\x\^xk are computed as @

Vm^xfxk) oc ^^(xfcexp^!0*))

(4 141)

(4 142)



4.8. Gradient Methods 119

4.8.5 Summary

We summarize the key points of this section.

• When steepest descent is combined with the sum-product algo¬

rithm, gradients of sum-product messages are required.

• If the local node function g is differentiable, the gradient of the

outgoing message is computed by the sum-product rule applied
to Veg, where the incoming messages are standard sum-product

messages (see (4.101)). In other words, the differentiation operator

does not propagate through the node g; it is only applied to the

local node function g.

• If the local node g corresponds to a deterministic mapping h,
the gradient of the outgoing message is computed by the sum-

product rule applied to Ve/i (see (4.115)). All incoming messages

are standard sum-product messages, except for one, which is the

gradient of an incoming sum-product message py. In this case, the

differentiation operator is applied to both the local node function

and the incoming message py\ in other words, the differentiation

operator propagates from node h towards the node the message py

has been sent from.

• Differentiation also propagates through the equality constraint

node (see (4.99) and (4.100)).

• The three previous observations indicate that along an edge in the

factor graph, the following messages may propagate

— standard sum-product messages,

— gradients of sum-product messages,

— hard decisions 0,

depending on

— the location of the edges at which the steepest descent update
rules are applied

— the kind of nodes that are involved.

• The sum-product messages and their gradients may be represen¬

ted in various ways. In this fashion, steepest descent can readily
and systematically be combined with other standard methods.
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• We have interpreted Iterative Conditional Modes (ICM) and sto¬

chastic approximation as message passing:

— In ICM, messages are represented by their mode.

— Stochastic approximation can be viewed as a gradient method

for parameter and state estimation with a specific message-

update schedule.

4.9 Expectation Maximization

Expectation Maximization (EM) is a popular estimation algorithm. Both

the EM algorithm and (iterative) sum-product algorithm are often viewed

as alternative methods for estimating the parameters of graphical mod¬

els. In other applications, the graphical model is used to compute the

E-step of the EM algorithm [69]. In this section, we will show how the

EM algorithm can be computed by local message updates on the fac¬

tor graph. The results in this section are based on joint work Sascha

Korl presented in [45] [100]. Earlier work on this topic was done by
Eckford [61] independently. A related idea is proposed in [82].

4.9.1 General Idea

We begin by reviewing the expectation maximization (EM) algorithm.

Suppose we wish to find

ömax = argmax/(0). (4.143)
e

We assume that f(0) is the "marginal" of some real-valued function

f(x,0):

/(0) = E/(X'0)' (4-144)
X

where J2X g(x) denotes either integration or summation of g(x) over the

whole range of x. The function f(x, 0) is assumed to be non-negative:

f(x, 0) > 0 for all x and all 0. (4.145)

We will also assume that the integral (or the sum) J2x f(x, 0) log f(x, 0')
exists for all 0, 0'. The described problem arises, for example, in the
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context of parameter estimation in state-space models. In such a context,

the variable x is itself a vector and the function f(x, 0) has a non-trivial

factor graph (see, for example, Fig. 4.40).

The EM algorithm attempts to compute (4.143) as follows:

a) Make some initial guess 0(°).

b) Expectation step: evaluate

f(k) {e) f £ f{x, 0(fc) ) log f{x, 0). (4.146)
X

c) Maximization step: compute

^fc+1) = argmax f{k)(0). (4.147)
e

d) Repeat 2-3 until convergence or until the available time is over.

The main property of the EM algorithm is

Theorem 4.1.

f(9{k+1)) >f(9{k)). (4.148)

To prove this property, we need the following lemma.

Lemma 4.1. The function

f(9, 9') = fiO') + E fix, 9') logj^ (4.149)

satisfies both

/(0,0')</(0) (4.150)

and

/(0,0) =/(0). (4.151)

D
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Proof: The equality (4.151) is obvious. The inequality (4.150) follows

from eliminating the logarithm in (4.149) by the inequality logx < x — 1

for x > 0:

He, 9') < 7(0') + E /(*> e') (j^ - i) (4.152)

= fie') + E /(*>e) ~ E ^x, e') (4.153)
X X

= fie)- (4.154)

D

To prove (4.1), we first note that (4.147) is equivalent to

§(k+i) = argmax/(0, <?«). (4.155)
e

We then obtain

/(0(fc)) = 7(0(fc),0(fc)) (4.156)

< f(0^k+1\0^) (4.157)

< /(0(fc+1)), (4.158)

where (4.156) follows from (4.151), (4.157) follows from (4.155), and

(4.158) follows from (4.150).

Corollary 4.1. The global maximum 0max of f(9) (cf. (4.143)) is a fixed

point of EM.

Proof: Assume 0(fc) = #max. Since the EM algorithm never decreases /

(cf. (4.1)), it follows that 0^ = 0max, for all i > k, hence 0max is a fixed

point. D

We prove two additional interesting properties.

Theorem 4.2. The fixed points of EM are stationary points of f(0).

Note that this statement does not imply that all stationary points of f(0)
are fixed points of EM!
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Proof: We will use the short-hand notation

VegiO) = VegiO)\e=e (4 159)

The fixed points #fixed of EM are implicitly defined as

= argmax ^/(x,0fixed) log/(x,0) (4 160)3fixed

If we define the function f(9, 6') as

7(0,0') = ]T fix,0') log fix, 6), (4 161)
X

we can rewrite (4 160) as

<9fixed = argmax/(0,0fixed) (4 162)
e

At the fixed points, the first-order derivative of /(0, 0') w r t 0 vanishes

Ve/(0fixed, 0fixed) = 0 (4 163)

Note that

Ve/(0,0') = VgY,fi*,e')logfix,e) (4 164)
X

= Y.Kx,e')Ve\ogfix,0) (4 165)
X

= ^/(x,0')Ve/(x,0)//(x,0) (4 166)
X

In (4 165) we differentiated under the integral sign We assume in this

thesis that this operation is allowed 8 From (4 166) it follows

Ve/(0,0) = ]Tve.f(x,0) (4 167)
X

= Vefiê), (4 168)

for all 0 As a consequence of (4 163) and (4 168),

Ve/(0fixed) = 0, (4 169)

and hence the EM fixed points are stationary points (or "zero-gradient

points") of/(0) D

8In Appendix 6 we list necessary conditions for differentiation under the integral

sign
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Theorem 4.3. A stationary point 0stat of / is a fixed point of EM,
if /(0, 0stat) is concave in 0.

Proof: Stationary points 0stat of / are implicitly defined as:

Ve/(0stat) = O. (4.170)

As a consequence of (4.168), it follows

Ve/(0stat,0stat) =0. (4.171)

Since by assumption /(#, 0stat) is concave in 0, we conclude that

<9stat = argmax/(0, 0stat), (4.172)
e

which means that 0stat is a fixed point of EM (cf. (4.350)). D

From Theorem 4.1 and 4.2 follows:

Corollary 4.2. If a local maximum of /(#) is a fixed point of EM, then

it is a stable fixed point. If a local minimum or saddle point of /(#) is a

fixed point of EM, then it is an unstable fixed point.

The proof is straightforward but a little technical; we omit it here.

Message-Passing Interpretation

We now rewrite the EM algorithm in message-passing form. In this

section, we will assume a trivial factorization

/(x,0) = /a(0)/b(x,0), (4.173)

where /a(0) may be viewed as encoding the a priori information about

0. More interesting factorizations (i.e., models with internal structure)
will be considered in the next section. The factor graph of (4.173) is

shown in Fig. 4.39. In this setup, the EM algorithm amounts to iterative

re-computation of the following messages:
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I fA

\\hiO)
\\fs

X

Figure 4.39: Factor graph of (4.173)

Upwards message /i(0):

m =

J2xfBix,ê^)\oghix,0)
E./bM«)

= EPB[log/B(X,0)], (4.175)

where EPB denotes the expectation with respect to the probability
distribution

PB(x|0(fc))=
/b(x'^W)

. (4.176)
Zx>fBix',eW)

y '

Downwards message 0(fc);

§(k+i) = argmax(log/A(0)-|-/i(0)) (4.177)
e

=

argmax (/A(0) • eh{8)\
. (4.178)

The equivalence of this message-passing algorithm with (4.146) and (4.147)
may be seen as follows. From (4.146) and (4.147), we have

0(*+i) =

argmax V/(x,0(fc)) log/(x,0) (4.179)
9

X

= argmaxV/A(0(fc))/B(£,0(fc))log(/A(0)/B(£,0)) (4.180)
9

X

= argmax^/B(£,0(fc))(log/A(0) + log/B(£,0)) (4.181)

h * <a\ .

Sa/B X,0W log/s X,0V\
=

argmax log/A(0) +
x

, , (4.182)
e V 22X'fBix',e(k>) j
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which is equivalent to (4.174) and (4.177).

Some remarks:

a) The computation (4.174) or (4.175) is not an instance of the sum-

product algorithm.

b) The message /i(0) may be viewed as a "log-domain" summary of

fB. In (4.178), the corresponding "probability domain" summary

eh(e) jg consist;ent with the factor graph interpretation.

c) A constant may be added to (or subtracted from) /i(0) without

affecting (4.177).

d) If /A(0) is a constant, the normalization in (4.174) can be omitted.

More generally, the normalization in (4.174) can be omitted if /A(0)
is constant for all 0 such that /A(0) f 0. However, in contrast to

most standard accounts of the EM algorithm, we explicitly wish to

allow more general functions /A.

e) Nothing changes if we introduce a known observation (i.e., a con¬

stant argument) y into / such that (4.173) becomes /(x,y, 0) =

fAiy,e)fBix,y,0).

êi\

M0i)t

02 i

M02)f M0n)f

rn
X°

r i
Xl

r
-i X2 xn-i

r '-| xn

/Bo /ßi fß2 fBn

yi V2 yn

Figure 4.40: Factor graph of (4.214).
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A Simple Example

Suppose that a binary symbol X (with values in {+1, —1}) is transmitted

over an additive white Gaussian noise (AWGN) channel with an unknown

real gain O. The channel output is

Y = 0-X + W (4.183)

where W is a zero-mean Gaussian random variable (independent of X

and O) with known variance a2. Based on the (fixed) observation Y = y,

we wish to estimate O. (We also note an inherent ambiguity in the

problem: the sign of the gain O and the sign of X cannot be determined

individually.)

A factor graph of this system model is shown in Fig. 4.41. The node

symbols in this factor graph and the corresponding factors are listed in

Table 4.1. The small dashed box labeled "pe" represents an a priori
distribution over O, which may or may not be available.

If such a prior pe, is available, the factor graph represents the probability
distribution

pix,0\y)ocpiy,0\x) (4.184)

(when the other variables are eliminated by marginalization); when no

such prior is available, the factor graph represents

pix\0,y)ocpiy\x,0). (4.185)

The factor graph of Fig. 4.41 has no cycles. Therefore, exact marginals
can be computed by the sum-product algorithm (without iterations).
Although our interest is in the EM-algorithm, it is instructive to begin

by writing down the messages of the sum-product algorithm. The sum-

product message towards the left along the edge labeled Z (= O X)
is

^Tsb^tr^) ("86)

and the sum-product message upwards along the edge Ö is

oo

MÎ(0) = EE(5(Z~X'6') ÏÏiz)dz (4.187)
X — oo
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symbol

X Z

Y

factor

(5(z — x)(5(z — y)

X z

i~

i^

Siz -x + y)

X z

}f

Siz — x y)

J\fim,a2 1 ( (x — rn)2
-.
exp'

X
V2^2

^

V 2a2

Table 4.1: Some node symbols and the corresponding local functions

(factors).
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Figure 4.41: Factor graph corresponding to (4.183).

EexP
iy-x-ef

2a2

=

exp
jy-ef
2a2

exp
jy + ef
2a2

(4.188)

(4.189)

If a prior pe, is given, the a posteriori distribution of O is

Pi0\y)ocpeie)pf0)- (4-190)

When no such prior is available, the a posteriori distribution of O is

pi0\y) oc pfO). (4.191)

Fig. 4.42 shows the message pfO) for several values of a and a fixed value

of y, i.e., y = 1. Fig. 4.43 shows how the mode #max of the message pfO)
depends on a2.

We now apply the EM algorithm to this example. The big dashed box

in Fig. 4.41 will take the role of /b in Fig. 4.39. If we close this box by
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Figure 4.42: The message p\(0) for several values of a with y = 1.

marginalizing out its internal variables W and Z, we obtain

fB(x,y,0) = y~]ö(z-x-0) p(z)dz
—OO

1 ( (y-x-0)2
—

exp
'

\[2~fa~ 2a2

The E-log message (4.174) is

hiO) = 1-1YJfBix,y,ê^)\ogfBix,y,t

with

7 = E/B(^,0(fc);

(4.192)

(4.193)

(4.194)

(4.195)

Withal =/B(+l,y,0(fc)) and/?(fc) = fBi~l,y, 0(fc)), we have

7 = a(fc)+/3(fc) (4.196)

and

(y-x-0)^
He) = 7_1E^(x^^(fc)) "logV*2 2a2

(4.197)
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ce

Figure 4.43: The (positive) mode #max of the message p j (0) as a

function of a2 (with y = 1).

\0giV2fa2

2a2
X

a(fc)(y-0)2+/3(fc)(y + 0)2

.198)

(4.199)
2a2 (««+/?«)

The E-log message /i(0) is thus a quadratic form and eh^ is a (unnor-
malized) Gaussian density; the mean and the variance of this Gaussian

density are easily identified as

mean

a(k) _ ß(k)
of (normalized) eh^ =

a{k) + ß{k)
V

and

variance of (normalized) eh^e' = a2.

(4.200)

(4.201)

Note that this is nicer than the sum-product message /«j(0) (4.189),
which is a Gaussian mixture.

The downwards message (i.e., the next estimate) eK^1) is

0(fc+1) = argmax fpe(0)-e/l(e)) (4.202)
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according to (4.178). In the absence of a prior p&iO), this simplifies to

0(fc+1) =

argmax eh<-e) (4.203)
e

a(k) _ ß(k)

««+/?«
y (4.204)

exPl-^^)-exp(-^^/
y'exp(-^^)+exp(-iHÄi)

(4-205)

eê(fc)y/<x2 _ e-ê^y/v2
~ ^ '

eê(fc)y/<T2 _|_ e-ê(fc)y/<T2
^ ' ^

= y-tanh(0(fc)y/cr2), (4.207)

where the step to (4.204) follows from (4.200).

Note that 0^k+1' has the same sign as 0^k> (independent of the sign of

y); the inherent ambiguity of the sign of © is thus resolved by the choice

of the starting value 0(°).

The fixed points of the recursion (4.207) are stationary points of p(0|y) oc

pfO). This follows from Theorem 4.3, since /i(0) (4.199) is concave. It

can also directly be verified:

dpfO) d (y-e)2 d (

—e 2<j2 _i
e

dO dO
2.2

2

(4.208)
dO

=

1 (, ^
(y-0)'

—

[iy-0)-e
2.2

2

iy + 0) -e7 2.2 ) (4.209)

= 0 (4.210)

& (4.211)

0 =

efy/v2 _ e-ey/a2
(4.212)y

eey/<j2 _|_ e-ey/<72

= y tanh(0y/a2). (4.213)

So far, all we have done is to write a simple standard example of the

EM algorithm in message-passing form. For this simple example, there

is probably no advantage for doing so. The benefits of the message

passing approach come with more richly structured models, which we

will consider in the next section.
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Nevertheless, the following aspects of this example carry over to many

larger examples Fist, we note that the E-log message is nicer than the

sum-product message (Gaussian instead of a Gaussian mixture) Second,
in the computation of the E-log message /i(0), we used the "internal"

sum-product message piz) in step (4 192),9 moreover, (4 192) is itself a

sum-product computation We shall see that the use of the sum-product

algorithm to compute E-log messages is a cornerstone of the message

passing view of the EM algorithm

Non-trivial Factor Graphs

The algorithm of the previous section still applies if 0 = (@i, , On)T
and X= (Xo, ,Xn)T are vectors However, opportunities to simplify
the computations may arise if /A and fB have "nice" factorizations For

example, assume that fB factors as

fBix,y,0) = fBoixo)fBlix0,xi,yi,Oi) fBfxn-i,xn,yn,On),
(4 214)

where y = (yi, ,yn)T is some known (observed) vector Such facto¬

rizations arise from classical trellis models and state-space models The

factor graph corresponding to (4 214) is shown in Fig 4 40

The upwards message /i(0) (4 175) splits into a sum with one term for

each node in the factor graph

hiO) = E

Each term

l°g (/bo(xo)/bi(£o,£i,2/1,0i)

fBnixn-i,xn,yn,0n)\ (4 215)

= E[log/Bo(Xo)]+E[log.fBl(Xo,X1,y1,01)] +

+ E[logfBfXn_i,Xn,yn,On)} (4 216)

hfOk) = E[log fBk iXk-i,Xk, yk, ek)] (4 217)

may be viewed as the message out of the corresponding node, as indicated

in Fig 4 40 The constant term E[log/s0(Xo)] in (4 216) may be omit¬

ted (cf Remark c in Section 4 9 1) As in (4 175), all expectations are

with respect to the probability distribution pB, which we here denote by

We come back to this issue in Section 4 9 3
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pBix\y,0). Note that each term (4.217) requires only psixk-i,xk\y, 0),
the joint distribution of Xk-i and Xk:

hf9k) = ^^pBixk-i,Xk\y,Ô)logfBkixk-i,Xk,yk,9k)- (4.218)
xk—1 xk

These joint distributions may be obtained by means of the standard

sum-product algorithm: from elementary factor graph theory, we have

PBixk-i,Xk\y,0) oc fBkixk-i,xk,yk,0) pXk-i^fBkixk-i)

Pxk^fBkixk), (4.219)

where pxk-i^fB an(l MArfc^/B are the messages of the sum-product

algorithm towards the node fBk and where "oc" denotes equality up to

a scale factor that does not depend on £fc-i, xk. It follows that

pBixk-i,xk\y,0) =

fBkixk-i,xk,yk,0) VXk-i^fBk ixk-i) Vxk^fBkixk)

Exu Y,Xk fßkixk-i,xk,y,0)tixk-1^fBkixk-i)Vxk^fBkixk)
(4.220)

Note that, if the sum product messages pxk-i^fB an(l MArfc^/B are

computed without any scaling, then the denominator in (4.220) equals

Pßiy\9), which is independent of k.

We now investigate two examples.

• The variables X may be symbols protected by a trellis code. If

the state space of the code is not too large, the messages pxk-i^fB

and pXk^fB may t>e computed by the forward and backward re¬

cursion of the BCJR algorithm [15] through the trellis of the code,
or equivalently, by a forward and backward sum-product sweep on

the factor graph of the code.

• The graph /b(x, 0) may represent a linear dynamical system

(see Appendix H and [100]). The messages pxk-i^fB an(l MArfc^/B

are then computed by a forward and backward Kaiman recursion.

In some applications, the messages Mxfc_i^/B an(l MArfc^/B are not

available in closed-form; they may then be represented in various ways



4.9. Expectation Maximization 135

such as quantized messages or lists of samples; they may also be appro¬

ximated by Gaussian distributions [100]. We come back to this issue in

Section 4.9.5.

The downwards message 0 (4.177) is

(0i,...,0„)T =

argmax (log/A(0) + M0i) + M0„)) (4-221)
01, ,ön

=

argmax f/A(0) • ehl<-9l) eh^A
. (4.222)

01, ,0n
^ '

If /A has itself a nice factorization, then (4.221) or (4.222) may be com¬

puted by the standard max-sum or max-product algorithm respectively.
This applies in particular for the standard case ©i = ©2 =

• • •

= ©n

(see Fig. 4.44):

(0i,...,0„)T = argmax(/M(01) + --- + M0„)) (4-223)
01, ,0n

=

argmax (ehl(-9l'> eh^9^) . (4.224)
01, ,0n

^ '

In addition, if the term /a(0) and all terms f1^6^ are Gaussians, the

max-product and the sum-product scheme are equivalent [117] (see Ap¬

pendix H). Therefore, the Kaiman filter can be used to solve (4.222), not

to be confused with the Kaiman filter of the E-step (4.216)-(4.218). We

can use Gaussian sum-product message passing and the standard update
rules given in Table H.2 and H.3 for this purpose.

1

1

1

©1 0 2 ©„- 1 ©„

Figure 4.44: Factor graph of ©1 = ©2 = ...

= ©-

The above derivations do not in any essential way depend on the specific

example (4.214). In principle, any cut-set of edges in some factor graph

may be chosen to be the vector 0. However, the resulting subgraphs

corresponding to /A and fB should be cycle-free in order to permit the
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computation of exact expectations (/i-messages) and maximizations (0-
messages). The /i-message out of a generic node gizi,... ,zm,0k) (cf.
Fig. 4.45) is as follows.

E-log message out of a generic node:

hiOk) =^E .. .J2p(zi, ,zm\Ôk)\oggizi ,... ; Zm 9k) (4- 225)

-i~l E---E<k^ ,
•

, Z-m, Ok) M2<!)•• • p ( Zva j

loggizi,.. •
; Zm , Uk J (4- 226)

with

7 = E-
Hi

..Y^gizi,-.-, zm,0k)pizi) fj,(zm) (4- 227)

and where p(zf ... ,/i(zOT) are standard sum- Droduct messages

If exact sum-product message passing (on a cycle-free graph) is intractable,
the message passing rule (4.226) may also be applied to a (sub) graph
with cycles, but then there is no guarantee for (4.1). Alternatively, one

may use:

• low-complexity approximations such as (structured) mean-field

approximations [94] [217] and extensions (see, e.g., [90]),

• intermediate-complexity approximations as for example

structured-summary propagation [50] [51] or generalized belief pro¬

pagation [223].

Also then, there is no guarantee for (4.1).

Remark 4.9. (Scheduling)
At every iteration of the (standard) EM algorithm (4.174)-(4.175), the

messages are computed in a specific order ( "standard schedule" ) :

a) With the current estimate 0^k\ all sum-product messages pizf
(cf. (4.226)) in the subgraph /b(x, 0) are updated.
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Ziyn

Figure 4.45: h-message out of a generic node

b) The E-log messages are computed according to the rule (4 226)
using the messages pizf updated m Step 1

c) A new estimate éK^1) is computed according to (4 175)

One advantage of representing EM as message passing is the freedom

m choosing a schedule that differs from the standard schedule 10 For

example, if the messages pizf are expensive to compute, it is natural to

re-use the messages pizf from a previous iteration, m that case, one does

not recompute the messages pizf at every iteration This may lead to

a substantial reduction of the computational complexity (see, e g , [82])
More precisely, the number of flops needed to attain a fixed point of the

EM algorithm can be significantly smaller For the sake of clarity, we

explicitly write down this alternative message-update schedule

a) Initialize an estimate 0(°)

b) Iterate the following steps

l) Compute the messages pizf

n) Compute the messages /i(0), the messages pizf from (a) are

plugged into (4 226)

m) Compute the new estimate 0(fc) according to (4 177)

iv) Iterate (b)-(c) until convergence

10Note, however, that the choice of the update schedule does not change the fixed

points of a message-passing algorithm, l e
,
the set of solutions to which the algorithm

may converge However, the schedule determines whether the algorithm converges In

case the algorithm converges, scheduling determines to which fixed point the algorithm

actually converges
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This is a double-loop algorithm; in the inner loop (b)-(c), the estimate 0

is refined, while the sum-product messages pizf are kept fixed. Obvi¬

ously, one may fix some (i.e., not all) of the messages pizf, and re¬

compute the others at every iteration, depending on the complexity of

updating pizf.

Remark 4.10. (Deterministic nodes)
We consider now a node g that represents a deterministic mapping, i.e.,

gix,z,0) = Siz — fix, 0)) (see Fig. 4.46). Literal application of (4.226)
leads to

He) = T^EE^-Zt1'^))^^^)
X z

\ogSiz-fix,0)). (4.228)

For simplicity, we assume that X and Z are discrete, and therefore

He) = 7"'EE^ " fix,e{k)))}^xix)pziz)\ogS[z - f(x,o)]
X z

(4.229)

= l-1Y,l^xix)pzifix,ê^))\ogS[fix,ê^) - fix,0)} (4.230)
X

-oo if fix, 9) f fix, 9'),
(4 231)

0 otherwise.

We used the convention OlogO = 0 in (4.230). Assuming that

/(x,0) = /(x,0')^-0 = 0',Vx, (4.232)

we can rewrite (4.231) as

1 0 otherwise,

and as a consequence:

Me)
=

/ 0 if 0^0',
1 otherwise.

(4.234)

The solution (4.234) is disturbing: the message /i(0) has its maximum at

the current estimate 0^k\ and therefore, the estimate for 0 is not refined

in the course of the EM algorithm.
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In conclusion: the E-log update rule leads to absurd results if it is applied
to deterministic nodes. In Section 4.9.3, we propose a solution to this

problem.

J* ~

\1 J-

Figure 4.46: /i-message out of a node #(x, z, 0) = Siz — fix, 0)).

4.9.2 Table of EM update rules

In this section, the local E-log update rule (4.226) is worked out for

a number of common nodes. All /i-messages (or eh) are collected in

Table 4.2, the corresponding derivations can be found in Appendix J.

The update rules in Table 4.2 can be used as building blocks for novel

EM-based estimation algorithms, as demonstrated in [100]. In Table 4.2

and in Appendix J, we denote vectors in bold in order to avoid confusion

between the scalar case and the vector case of message-update rules. So

far, we did not denote vectors in bold in order to keep the notation as

light as possible.



Table 4.2: EM Update equations for standard building blocks.

Graph Node EM update rule

1

eM-) (M m

f(xm)=M(x\m,)

Gaussian,
unknown

mean, scalar

eh(m) ^^(.m E[X],s)
X,m GR

sGRj

2

e"(m) ([J m

1
fix m)=Af(i|m V)

Gaussian,
unknown

mean

eh^ocAf(m. E[X],V)
X, m G R

V G Rnxn

V^O

3

e"W|[Js

f(xs)=N(x\ms)

Gaussian,
unknown

variance

eh{s) oc Ig (s 1 E[X2]-2mE[X] +m2\
2' 2 y

X,m GR

sGRj

4

£MV) (MV

1
/(x V) = Af(x | m V)

Gaussian,
unknown

variance

ehW oc exp (-E [(X-m)ifV-1(X-m)])

X, m G R

V G Rnxn

V^O

5

Identity
covariance

matrix

efcW oc Ig (s ^,IE[(X-m)*(X-m)])
X, m G R

V = Is

sGRj



Table 4.2: (continued)

Graph Node EM update rule

6

Diagonal
covariance

matrix

n ,

e^WocIJlgU
£=1

^ -I,IE[(X,-m,)2])
X, m G R

V = diag (s)

sGR+n

7

/(

exp (-

1«

XU*2,*) =

(x2-ax1)2/s)

Scalar multi¬

plication eh^ ocM^fa E[XiX2] E[X2]\

E[X2]
'

s J

Xi,X2GR

aGR

sGRj

8

/(

exp (-(X2-

xi1X2,a) =

4x,)»(xi-Ax,)/2s)

Auto-

regression ehW oc AT'1 (a EPdXfl-^IX^]^^1^1)

Xi,X2GRn

aGR, s GRj

A=[aff;IO]

X2 = [XaJi

9
LTJ e"W

F>—[n]

eip(-(s-c»x)2/2=)

Inner vector

product e^'a^-^c Etxx^-^txy], E[xxffH
X, c G 1"

Y GR

sgRJ



Table 4.2: (continued)

Graph Node EM update rule

10

s t I e">

Xi

/(*i,*l,.,s) =

exp {-{x2-ax±)2j2s)

Joint coeffi¬

cient/variance
estimation

scalar eh^ oc Ig (s

E[XiX2] E[X2]

E[X2}
'

s

1 E[(X2-âXi)2
2' 2

Xi,X2G

a, â G R

s, s G Rj

11

e"«!

"=H A

exp (-(^2-a^i)2/2s)

Joint coeffi¬

cient/variance
estimation

Auto-

regression

e^ocA^fa

efcW oc Ig ( s

E[X1Xf]-iE[X1X2],
E[XiXf]

1 E[(X2-ÀX1)g(X2-ÀX1)]
2' 2

Xi, X2, a G
.

s, s G Rj

X2 = [XaJi

12
^&

Finite state

machine

h(A) = y~] p(xi,X2)logaXl,x
xi,x2

f(x1,x2,A) = o.„,

Xl, X2 G Z„

aij G [0, 1]
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4.9.3 EM and compound nodes

Before applying EM, one may marginalize over certain variables. Let us

have a look at a small example.

Example 4.3. (EM and compound nodes)
Consider the global function shown in Fig. 4.47(a):

f(xi,x2,x3,0) = fA(9)fB(xi,x2,x3,9), (4.235)

with

fB(xi,X2,x3,9) = fBlixi)fB2ixi,X2,0)fBfx2,x3,0)fBfxf). (4.236)

First, we derive "standard" EM (see Fig. 4.47(b)). The two E-log mes¬

sages hi and /12 are given by:

hfO) = ^p(x1,x2|0(fc))log/ß2(x1,X2,0) (4.237)
ii,a;2

h2(9) = ^p(x2,x3|0(fc))log/ß3(x2,x3,0), (4.238)
2:2,2:3

where

p(xi,x2[9^)

= 7-1 p(xi)fB2(xi,x2,9(-k'))p(x2) (4.239)

= 7_1fBl(xi)fB2(xi,X2,9^)YJfB3(x2,x3,9^)fBfxf (4.240)
X'i

= ^1^/ß(^i,a:2,£3,0(fc)) (4.241)
X'i

p(£2,£3|0(fc))

= 7-1 pix2)fB3ix2,x3,ê(-k'>)pix3) (4.242)

= ^1(Y,fsdxi)fB2ixi,X2,9^)^fB3ix2,x3,9^)fB4ix3) (4.243)
x\

= l-1Y,fBixi,X2,x3,9^), (4.244)
x\
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with

7
f ^p(x1,x2|0(fc)) (4.245)

2:1,2:2

= ]Tp(x2,x3|0(fc)) (4.246)
22,23

= J2 fBixi,X2,x3,ê^) (4.247)
21,22,23

= /ß(0(fc)), (4.248)

and pixf, pix2), pix2) and pix3) are standard sum-product mes¬

sages:

pixf = fBfxi) (4.249)

pix2) = ^/ß1(£i)/ß2(xi,£2,0(fc)) (4.250)
21

pix2) = ^/ß3^2,£3,0(fc))/ß4(£3) (4.251)
23

M(^) = fBfx3). (4.252)

The "standard" EM algorithm alternates the update rules (4.237) and

(4.238) with the update rule:

0(fc+1) = argmax (log fA{0) + hf9) + fe2(ö)). (4.253)

Now, we follow a different approach. Before applying EM, we eliminate

the variable X2, resulting in the function /(xi, x3, 9) defined as:

/(xi,x3,0) = ^/b2(xi,x2,0)/b2(x2,x3,0). (4.254)
22

The h-message out of the (compound) node /(xi, x3, 0) (smallest dashed

box in Fig. 4.47(c)) is given by:

H9)= ^p(x1,x3|0(fc))log/(x1,x3,0). (4.255)

In summary, eliminating the variable X2 before applying the E-log rule

is equivalent to:
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a) Combining the two nodes fB2 and fBi.

b) Applying the E-log rule to the resulting compound node ("box").

The resulting EM algorithm alternates the update rule (4.255) with the

update rule:

0(fc+1) = argmax (log /A(0) + h\0)). (4.256)
e

D

Since the resulting algorithms are (standard) EM algorithms, they are

guaranteed to never decrease the global function / (cf. (4.1)).

Deterministic nodes (cf. Remark 4.10) can be handled by combining them

with nodes that represent continuous functions ( "boxing" ), as illustrated

in Fig. 4.48 (with </(x, z,0) = Siz — /(x, 0))). The E-log message h is

given by:

He) = -y-^öiz-fixJVtAiz'hlWH*,*')
x,z,z;

logY^Siz-fix,e))hiz,z')
z

= 7_1 E Hf(x, è), z')piix)pfz') log hifix,
x,z;

where 7 equals:

1 = YJHfixJ),z')piix)pfz').
x:z'

Note that we have applied the generic rule (4.258) in the simple exam¬

ple (4.183), more precisely in (4.192)-(4.193) (see Fig. 4.41).

4.9.4 Hybrid EM

In the previous sections, we have described the EM algorithm as an

algorithm that performs local computations: it computes messages on a

factor graph.

From this "local" perspective, several interesting options become obvi¬

ous:

(4.257)

9),z'), (4.258)

(4.259)
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e

/ßi
Xi X2 X3

(a) Factor graph of (4 254)

fß fßi

/A

0

9\\hi 0 1 <32 MU

Xi
fl32

Jh
-fi33

x3

(b) Standard EM

h

O /l2fli

/ßi
^!

/£
x2

h
x3

h

(c) Combining the nodes fs2 and /b3

Figure 4.47: Eliminating variables before applying EM.
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X

Z
He)

Z'

Figure 4.48: Combining the node #(x, z, t

continuous node h.

= Siz — fix, 0)) with a

One may apply the E-log update rule in some subgraph of the factor

graph of / (for estimating some variable ©); in an other subgraph,
a variable ©' may be estimated by an other message-passing esti¬

mation algorithm, such as a sum-product-based gradient algorithm
or ICM.

• At a particular node, one may combine the E-log update rule with

the sum-product rule.

In the following, we investigate the second option, referred to as hybrid
EM [100]. Consider the generic node depicted in Fig. 4.49. First, we

eliminate the variables Z[,..., Z'm by means of the sum-product rule,

resulting in the function /(^i,..., zn, Ok) (dashed box in Fig. 4.49); the

variables Z[,..., Z'm are internal variables of the box /. Then, we apply
the E-log rule to /.
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E-log message out of a box /("hybrid E-log message'') [100]:

fe(0fe) = E ..]Tp(zi,... ,zn[0k) log fizi,..., Zn, "fc ), (4.260)

7"1E-E^,...,zn,0k)pizi)-- HZn)

•log/(zi, • • •
î ^nt wfcjy (4.261)

with

7 =^E J2fizi,...
zn

, zn, 0k) pizf pi**n), (4.262)

and

fizi •••> zn,0k) «E-- .^2g(zi,...,zn,z'1 ,
. . .

, ^ra, vh)

pizi) - " " f-izm), (4.263)

where p(z y),... ,pizn),piz[),. ..,p(z'm) are standard sum-product

messages.

,Zi zn/

g

/f " "f
/7> 7>\

h(0k

Figure 4.49: Hybrid EM.

The hybrid E-rule (4.261) is of interest for the following reasons:

• A hybrid E-log message may have a simpler form than the corres¬

ponding E-log message, as we will illustrate by an example at the

end of this section (Example 4.6). As a consequence, the maximi¬

zation (4.177) may be simpler.
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• The hybrid E-rule can be applied to deterministic nodes, in

contrast to the E-log rule (cf. Remark 4.10). An example is de¬

picted in Fig. 4.50 (with g(x,z,0) = S(z — f(x,0))). One first

eliminates the variable Z by means of the sum-product rule. One

applies the E-log rule to the resulting compound node (dashed box

in Fig. 4.50). The resulting hybrid E-message h equals:

He) = 7~1E(5(z--f(x'ö)H(zH(x)
x,z

.\ogY^S(z-f(x,0))pfz) (4.264)
Z

= 7"1E^(xH(^(x'0))1°g'"î^(x'0))' (4-265)

where

7 = ]TM(xM(.f(x,0)). (4.266)

Often a deterministic node can be handled by combining it with a

neighboring continuous node, as described in Section 4.9.3. In some

situations, it is nevertheless more attractive to apply the hybrid E-

rule instead (cf. Example 4.6).

X

Z

/AW

He)

Figure 4.50: Hybrid E-rule applied to a deterministic node #(x, z, t

Siz-fix,0)).

By a hybrid EM algorithm, we denote a modification of the EM algorithm
where at some nodes in the subgraph /b(x, 0), the hybrid E-rule (4.261)
is applied instead of the E-log rule (4.226). The EM algorithm can be

viewed as a special case of the hybrid EM algorithm, where the E-log



150 Chapter 4. Phase-Estimation Algorithms

/A

0

o\\hi 0 1 ©2 MU

/ßi fß2
-i—

fß3
-.—

fß4
Xi x2 x3

Figure 4.51: A simple hybrid EM algorithm.

rule is applied at all nodes in the subgraph fB (x, 0). Let us have a look

at a simple example of a hybrid EM algorithm.

Example 4.4. (Hybrid EM)
Consider again the global function (4.267):

fixi, x2, x3, 0) = /a(0)/b! ixi)fB2 (xi, x2, 0)fBfx2,x3, 0)fBfx3),
(4.267)

shown in Fig. 4.47(a).

We apply the hybrid E-rule to the node fB2 : the variable X2 ( "internal
variable" ) is eliminated before the E-log rule is applied to the node fB2,
as illustrated in Fig. 4.51. The hybrid E-message hi is given by:

hfO) = ^p(x1|0(fc))log^/s2(x1,x2,0)M(^2) (4.268)
21 22

= ^p(x1,x2|0(fc))log^/ß2(x1,X2,0)M(^2), (4.269)
21,22 22

where p(xi, X210^)) and pix2) are given by (4.241) and (4.251) respec¬

tively.

At the node fBi, we apply the E-log rule; the E-log message /12 is again

given by (4.238). The variable X2 is now treated as a hidden variable.

The hybrid EM algorithm alternates the update rules (4.238) and (4.269)
with the update rule

0(fc+1) = argmax flog/A(0) + ^i(0) + /i2(0)) • (4.270)
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Note that the variable X2 is thus treated simultaneously as an internal

variable (at node fBf and as a hidden variable (at node fBf, in contrast

to the approach of Fig. 4.47(c), where the variable X2 is consistently
treated as an internal variable (of the box /(xi,x3,0)). Whereas the

approach depicted in Fig. 4.47(c) is guaranteed to decrease the global
function / at each iteration, there is no such guarantee for the hybrid
EM algorithm. However, we are able to characterize the fixed points of

the algorithm. D

Theorem 4.4. Assume that a factor graph of a global function /(x, 0) =

/a(0)/b(£j0) is available whose subgraph /b(x, 0) is cycle-free. The

fixed points of a hybrid EM algorithm applied on that factor graph are

stationary points of the marginal /(0).

Proof: It is instructive to first prove the theorem for the simple hybrid
EM algorithm (4.270). We consider the general case afterwards.

Note first of all that the hybrid EM algorithm (4.270) operates on a

factor graph whose subgraph /b(x, 0) is cycle-free (see Fig. 4.47(a)). By

defining the function /(0, 0') as

7(0,0') = log/A(0)+/1(0,0/) + /2(0,0,), (4.271)

with

/i(0,0') = ^p(x1,x2|0,)log^/ß2(x1,X2,0)M(^)(4.272)
21,22 22

;2(0,0') = ^P(x2,x3|0,)log/ß3(x2,x3,0), (4.273)
22,23

the rule (4.270) can be rewritten as

§(k+i) = argmax/(0, 0(fc)). (4.274)
e

The fixed points of the hybrid EM algorithm are implicitly defined by
the equation:

<9fixed = argmax/(0, 0fixed). (4.275)
e

As a consequence of (4.275), the fixed points fulfill the constraint:

Ve/(0,0fixed) =0. (4.276)
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We now show that

ve/(0,0'; Velog/(0)|e, (4.277)

First, note that

ve 7(0,0') Velog/A(0)|e,+Ve/i(0,0')

We rewrite the second term in the RHS of (4.278) as

Ve/i(0,0'

= E P(X1'X2|0') Velog^/B2(£l,£2,0)/x(£2)
22

„,,EI2 Ve/ß2(xi,x2,0)|e, pix2)

+ Ve/2(0,0') .(4.278

2l,22

= E pixi>x2\e'
Y,x2fB2ixl,x2, 0')fi~ix2)

We substitute (4.241) and (4.248) in (4.280) and obtain:

Ve/i(0,0')

=

r ,q,s E fB2iXl,X2, 0')p ixi) p (X2)
xi,x2

J2x2 VefB2jxi,X2,0)\g, pjx2)

J2X2fB2ixi,x2,e')pix2)

=

r

,Qls E ^ix^)\ZjfB2ixl,x2,e')p~ix2,
21 22

J2X2 VefB2jxi,X2,0)\g, pjx2)

J2X2fB2ixl,x2,9')pix2)

=

r ,e,s E V'ix^-)1^2i^efB2ixi,X2,0)\e, pix2)
21 22

=

r ,e,s E ^(Xl) Ve/ß2(£l,£2,0)|e/ fix2)-
2i,22

By substituting (4.249) and (4.251) in (4.284), it follows:

Ve/i(0,0')

(4.279)

(4.280)

(4.281)

(4.282)

(4.283)

(4.284)
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77^ E /ßi(Xl) Ve/ß2(£l,£2,0)|e/

Y2fB3ix2,x3,9')fB4ix3]

fßiO')

(4.285)

77777 E fBi(xi)^efB2(xi,X2,0)[g, fBfx2,x3,0')fBi(x3)
fßiO')

(4.286)

77777 ve( E fBiixi)fB2ixi,X2,0)fBfx2,x3,0')fBiix3)jfßiO')
21,22,23

= E ^e Pixi,x2\9)\e,
21,22

= Ep(2i,22|e) [Ve logp(xi,x2|0)|e,]

(4.287)

(4.288)

(4.289)

Note that (4.251) and hence (4.285)-(4.289) hold since the graph of

fBix,0) is cycle-free.

Similarly, the third term in the RHS of (4.271) can be written as

ve72(0,0')

=

7^-77777 E vix2)sJefBfx2,x3,e)[g,p~ix3) (4.290)
22,23

=

YW) ^ fBiixi)fB2ixi,x2,9') sJefB3(x2,x3,9)[g, fBi(x3)
21,22,23

(4.291)

(4.292)E Ve£>(x2,x3|0)|e,

(4.293)= Ep(22,23|e) [Ve logp(x2,x3|0)|e,].

Note that:

VgfB(x,9) =fBl(xi)VgfB2(xi,X2,9)fB3(x2,x3,9)fBi(x3)

+ fBlixi)fB2ixi,X2,0)VgfB3ix2,x3,0)fBfx3). (4.294)

Therefore, by substituting (4.286) and (4.291) in (4.271), we obtain:

= Velog/A(0)|e, +
-i— ]Tve.fB(x,0)|e, (4.295)
IB (9 ) *-f

Ve/(0,0')
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= Velog/A(0)|e, + —— VefBi9)\g, (4.296)
fß(0 )

= Vg\ogfA(0)\g,+ Vg\ogfB(0)\g, (4.297)

= Velog/(0)|e,, (4.298)

where fB(0) = E^/s^). From (4.276) and (4.298) it follows:

Ve/(0)|efiXed=O, (4.299)

or, in words: the fixed points #fixed of the hybrid EM algorithm (4.270)

are stationary points of the marginal /(0) = J2X fix, 0) of the global
function /(x,0) (4.267).

The key point in the above proof is the fact that the terms (4.286)
and (4.291) have the same form, since it leads to the equalities (4.298)
and (4.299). Note that the term (4.286) originates from a hybrid E-

message, whereas the term (4.291) originates from an E-log message.

If we had applied the E-log rule (instead of the hybrid E-rule) to the

node fB2 (cf. (4.237)), we would also then have obtained the term (4.286).

We now consider the generic node fsk depicted in Fig. 4.52, where the

variables Zi and Z't are certain components of the vector X. The corres¬

ponding term /fc(0,0') (cf. (4.272) and (4.273)) equals:

m

fk (0, 0') = E*>(*> z'\e') logE fBk iz, z', 9) n piz'f, (4.300)
z,z; z' £=1

where Z = (Z1;..., Zn), and Z' = (Z(,..., Z'm). Therefore,

Ve7fc(0,0

= ]Tp(z, z'\9') Ve log ]T fBk iz, z>, 9) f] piz>)

ST^ (
i\öi\T.z> ^efßkiz, z', Q)\g, UT=i m(4)

yAz'z^
]

Y.z,fBkiz,zi,ei)YlZivi4)

(4.301)

(4.302)

1
n m

=7777öEv^(z'^)ie'n^)n<"(^)- (4-3°3)
*B^ '

z,z' £=1 £=1

If the subgraph /b(x, 0) is cycle-free, we can rewrite (4.303) as:
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Figure 4.52: Hybrid EM.

v^H, = 7^?Vt<^N,M,)- (4-3M)

Note that the terms (4.286) and (4.291) have the form (4.304). In the

term (4.286), Z = Xx and Z' = X2, whereas in the term (4.291), the

hidden variables are given by Z = (X2,X3) and there are no inter¬

nal variables Z'. The expression (4.304) holds for any choice of hid¬

den variables Z and internal variables Z'. Note also that the expres¬

sion (4.304) makes no distinction between hidden variables and internal

variables. In particular, if both Z and Z' are treated as hidden variables

(as in standard EM), the expression (4.304) remains unchanged. Each

node fsk amounts thus to a term of the form (4.304); therefore, the equal¬
ities (4.295)-(4.299) hold for general cycle-free graphs /b(x, 0). In con¬

clusion: the fixed points #fixed of a general hybrid EM algorithm (operat¬

ing on a factor graph of /(x, 0) = /a(0)/b (£, 0) whose subgraph fB (£, 0)
is cycle-free) are stationary points of the marginal /(#) = J2xfix,0).
D

Theorem 4.4 concerns cycle-free subgraphs /b(x, 0). What if the sub¬

graph fBix,0) is cyclic? For cyclic graphs, Theorem 4.4 does not hold,

i.e., the fixed points of hybrid EM algorithms applied to cyclic sub¬

graphs fß ix, 0) are not equal to the stationary points of the marginal

/(0). But, if the fixed points are not the stationary points of the exact

marginal /(0), are they perhaps stationary points of the approximate

marginal 6(0) obtained by iterative sum-product message passing on the

subgraph /b(x, 0)1 We now show by a simple example that the answer

to that question is "no".

Example 4.5. ((Hybrid) EM on cyclic subgraphs /b(x, 0))



156 Chapter 4. Phase-Estimation Algorithms

0

/ßi -fi

H\o

Xi yzLA X2

X5 r-

fE

fB
X3

Xa

Figure 4.53: A simple hybrid EM algorithm operating on a cyclic sub¬

graph fBix, 0).

We consider the global function shown in Fig. 4.53:

/(£i, £2, £3, £4, £5,0) = /a(0)/b(£i,£2,£3,£4,£5,0), (4.305)

with

/ß(£l,£2,£3,£4,£5,l fBl(xi,xffB2(xi,X2,0)fB3(x2,x3,0)

fBfx3,xf)fBfxA,xf). (4.306)

Note that the subgraph fB (£, 0) is cyclic, in contrast to the subgraph

fBix,0) in Fig. 4.51. As in Example 4.4, we apply the hybrid E-rule to

the node fB2 and the E-log rule to the node fBi. We are interested in

the fixed points of the resulting algorithm. The algorithm may, however,
not converge and thus never attain a fixed point.

We follow the line of thought in Example 4.4; we again again start from

the function fi0,0') (4.271), which contains the terms /i(0,0') (4.272)
and 72(0,0') (4.273). Note that the equalities (4.284) and (4.290) also

hold for the factor graph of Fig. 4.53. The sum-product messages p (£1),

pix2), pix2), and pix3) in (4.284) and (4.290) are now computed

iteratwely, since the subgraph fB is cyclic; they are in general not given

by (4.249)-(4.252) respectively. As a consequence, the equalities (4.286)
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and (4.291) do not hold. It follows:

Ve7(0,0,)|e = Velog/A(0)|e,+7-1^Ar(£1)^(£2)Ve/ß2(£1,£2,0)|e,
2l,22

+ 7~1E^>(X2)^(X3)Ve fB3ix2,X3,0)\g, ,

22,23

(4.307)

where

= E t^ixi)^ix2)fB2ixi,x2,0')
2l,22

= E Vix2) VixffB3ix2,X3,0')

(4.308)

(4.309)

In analogy to (4.289) and (4.293), we can rewrite (4.307) as:

yefe,9') = Ve log/A(0)|e, +EKxitX2lg/) [Vg\ogfixi,x2,9)\g/]

+ E6(x2,X3|e0 [Ve log/(£2, £3,9)\g,}, (4.310)

where

6(£i,£2|0') =7_1 E ^ixi)l^ix2)fB2ixi,X2,9') (4.311)
2l,22

6(£2,£3|0')=7"1 E M(^2)M(^3)/ß3(^2,£3,0,)• (4-312)

Note that we write 6(-|-) and not pif) in (4.311)-(4.312), since the ex¬

pressions (4.311)-(4.312) are not the exact marginals but approximations

("beliefs"). If we define the function log7(0) as:

logm = log fAie) + EKxuX2lë) Velog/(£l,£2,0) dO

E
b(x2,x3\e) Velog/(£2,£3,0) dO, (4.313)

then

ve7(0,0') =veiog7(0) (4.314)
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From (4.276), it follows that the fixed points of the hybrid EM algorithm

are stationary points of the function /(0), where the beliefs occurring

in /(0) (cf. (4.311)-(4.313)) are computed by means of the sum-product

messages pixf, pix2), pix2), and pix3) available at convergence of

the sum-product algorithm. Note that /(#) is not equal to the mar¬

ginal 6(0) obtained by iterative sum-product message passing. The latter

is given by:

6(0) oc fAiO)pfB2^eie)pfB3^eie), (4.315)

where

M/s2^e(0) oc ^2 fß2ixi,X2,0) pixfpix2) (4.316)
2l,22

M/s3^e(0) oc ^ fBfx2,x3,0)pix2)pix3). (4.317)
22,23

Since the sum-product messages pixf, ^(£2), /x(£2) and pix3) de¬

pend on 0, we have in general:

Velog6(0)|e, f Vefie,e') , (4.318)
e'

where the RHS is given by (4.310). Therefore, the fixed points of the

hybrid EM-algorithm are not stationary points of 6(0).

If the subgraph fBix,0) is cycle-free, the beliefs 6(-|0) are equal to the

exact marginals p(-10), hence, /(0) = /(0). The fixed points of the hybrid

EM-algorithm are then stationary points of /(0).

Since the E-log rule is a special case of the hybrid E-rule, the above expo¬

sition also applies to the standard EM-algorithm (with /i-messages (4.237)
and (4.238)) applied on the graph of Fig. 4.53. D

From the previous example, it is but a small step to the following theo¬

rem.

Theorem 4.5. Assume that a factor graph of a global function fix, 0) =

/a(0)/b(£j 0) is available (whose subgraph fsix, 0) may be cycle-free or

cyclic). The fixed points of a (hybrid) EM algorithm applied on that

factor graph are stationary points of the function /(0), defined as:

log/(0)=log/A(0)+ / Eh{Ag) Velog/B(£,0) dO, (4.319)
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where the beliefs 6( |0) are computed by means of the sum-product mes¬

sages available at convergence of the sum-product algorithm

Example 4.6. (AR coefficient estimation)
We consider the system depicted m Fig 4 54(a), we wish to estimate the

Xi

N

X^v^ X2

(a) Estimation of a

Ha)\ \à

Xi ^S X2

hff

Xi

N

X^v^ X2

(b) E-log rule applied to

compound node

Ha)\ 1^

Xi X',

(c) Hybrid E-rule (d) Direct application

Figure 4.54: State transition node for scalar AR coefficient estimation

coefficient a by an EM-type algorithm The messages along the edges

Xi, X2, and X'2 are assumed to be Gaussian

In the following, we outline two approaches In the first approach, the

E-log rule (4 226) is applied to the compound node / of Fig 4 54(b)
defined as

fixi,X2,a)f-^=eSX2-aXl^ls (4 320)
'2-ks

The message ef^> leaving the box /(£i,£2,a) is given by Rule 7 of

Table 4 2

E[XXX2\ E[X2]e^a) oc Af-
E[X2}

' (4 321)
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In the second approach, we apply the hybrid E-rule (4.261), as illustrated

in Fig. 4.54(c). First, we integrate over the variable X'2, amounting to:

/(£i,a)= gixi,X2,a)px^gix2)dx2 (4.322)

= / (5(£2 — axfpx'^gix2)dx2 (4.323)

= fJ-x^giaxf (4.324)

fjfiaxi | m2,w2). (4.325)

The E-log message leaving the box fixi,a) is given by:

h\a)= I pixi[a{k))logfixi,a)dxi (4.326)
J X\

= / pixi[à^)logpx^faxfdxi (4.327)
J X\

= C-^-r fa2E[X2|â(fc)] - 2am2E[X1|â(fc)] + i-mf2) (.4.328)
2vn V /

with

C=—log(27rw2) (4.329)

and in the exponential domain

eh'W ocAf-1
m'^Xi] mi ) (4

330)

E[X2}
'

v2
I (4'^Uj

where the expectations are w.r.t. the distribution pixi\â^). Note that

the message (4.330) follows directly from the message (4.321), where

X2 = rn'2 and where s = v'2. Note also that the message (4.330) is easier

to evaluate than the message (4.321).

In certain applications, the multiplication node occurs in absence of

the addition node, as illustrated in Fig. 4.54(d). This situation oc¬

curs for example in time-dependent linear systems without input noise

(cf. Fig. H.l with B = 0 and time-dependent A-matrices). The hybrid
E-rule (4.330) can be applied directly to the multiplication node, in con¬

trast to the rule (4.321).

The extension to the vector case (autoregression), as shown in Fig. 4.55,
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eK«) I |â Ha) f Jj

AA AA

Xi
- A

Xi
- A

(a) E-log rule applied to

compound node

(b) Hybrid E-rule

Figure 4.55: Autoregression

is straightforward
11 The dashed box m Fig 4 55(a) represents the factor

1

/(xi,x2,a)
fi^r\v

exp(-l/2(x2-Ax1)JiV-1(x2-Ax1)),

with

I 0

(4 331)

(4 332)

andXi,X2 el"

The message eh^ leaving the box /(xi, x2, a) equals (cf Section J 3 2)

(4 333)e^ocAT^alm^W,,
where

W0 = wiiE [XiXf ] (4 334)
/ n n—1 \

rna=W-1l^ikE[X1[X2]k]-^ik+iE[X1[X1]k]), (4 335)
vfc=l fc=l

with [Xj] the j-th component of the (random) vector X4, and wtJ the

element ii,j) of W = V-1 ii,j = 1, ,n) Note that the expres¬

sion E [Xi [Xi]fc] stands for a vector whose ^-th component is given by

Ep^yXiU

11We will denote vectors in bold in order to avoid confusion between the scalar case

and the vector case
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The E-log message leaving the box /(xi,a) in Fig. 4.55(b) is given by:

eh{a) ocjf-^a m0,W0) (4.336)

with

W0 = wnE [XiXf ] (4.337)
n n—1

ma = W-1(^U,lfc[m2]fcE[X1]-^U,lfc+1E[X1[X1]fc]), (4.338)
fc=i fc=i

where m2 G M and V2 G Rnxn is the mean and covariance matrix of

the incoming message along the edge X'2, and wtJ is the element («, j)

of the matrix W2 = Y'f («, j = 1,..., n). The message (4.336) follows

directly from the message (4.333), where the variable X2 is set to m2

and where V = V2.

4.9.5 Extensions of EM

The evaluation of the upward message /i(0) (4.174) (E-step) and/or the

downward message 0(fc) (4.177) (M-step) is sometimes not feasible. In

the literature, several methods have been proposed to solve this problem.

If the computation of the message /i(0) is not tractable, one may com¬

pute /i(0) approximately by means of Monte-Carlo methods, an approach
called Monte-Carlo EM (MCEM) [128, p. 214-216]. The sum-product

messages piz) (cf. (4.226)) are then represented as lists of samples. The

special case where the messages piz) are represented by a single sample
is called Stochastic EM (SEM) [128, p. 216-218].

If the computation of 0(fc) (4.177) is problematic, one may carry out

the maximization in (4.177) by ICM (cf. Section 4.8.2), an approach
called Expectation Conditional Maximization (ECM) [128, p. 167

171]. As usual, several variables may be grouped in the ICM steps. In

addition, several update schedules are possible; one may update the h-

messages after each (or a certain number of) ICM step(s) ("multicycle
ECM" [128, p. 214-216]). Alternatively, if the computation of the mes¬

sages /i(0) is expensive, one may only update the /i-messages after the

ICM algorithm has converged to an estimate 0(fc). Some of the ICM steps

may be replaced by a conditional maximization of the marginal /(0),
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an approach called Expectation Conditional Maximization Either

(ECME) [128, p. 206-208]; one maximizes the marginal /(#) w.r.t. cer¬

tain components Ok of the parameter vector 0 while the other components

are kept fixed at the current estimate. In an extension of ECM called

Alternating ECM (AECM) [128, p. 183-184], the hidden variable(s)
may be chosen differently at each ICM iteration. ECME may be regarded
as a special case of AECM, where in particular ICM steps, there are no

hidden variables. Another special case of ACME is the Space Alter¬

nating Generalized EM algorithm (SAGE) [128, p. 206]; in SAGE, no

variables are grouped in the ICM steps.

Instead of ICM, gradient methods may be used to (approximately) carry

out the M-step. This approach is called gradient EM [128, p. 156-158]);
it is the subject of the next section.

4.9.6 Gradient EM

The maximization in the RHS of (4.177) is sometimes intractable. The

estimate 0(k+1'> may be determined by gradient methods.

Let us have a look at a simple example. Suppose that

/A(0)=/Ai(0l)/A2(01,02).../Arl(0n-l,0n), (4.339)

and

fßix,0) = fBaixffBfx{),xi,yi,0ffB2ixi,X2,y2,e2)

fBnix„-i,xn,yn,0n), (4.340)

as illustrated in Fig. 4.40. As we pointed out before, the probability
function fix, 0) may represent a state-space model parameterized by the

parameter 0, whose prior model is determined by /a(0)- In this case, the

downward message (4.177) equals

(0!,...,0„)T =

argmax ( log/Al(0i) +log/A2 (0i, 02) + ...

01, ,Sn

+ log/A„(0n_i,0n) + hfOf + hfOf) (4.341)

=

argmax (/äi(0i)/a2(0i, 02) • • • /A„(0n-i, 0n)...
01, ,0n

,eM»i)...eM«.))) (4.342)
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where

hkief = ^^pBixk-i,Xk\y,0)logfkixk-i,xk,yk,ek), (4.343)

and

pBixk-i,xk\y,0) =

fkjxk-i,xk,yk,e) pxk-i^fkixk-f fJ-xk^fkixk)

J2xk-1T,xkfBkixk-i,Xk,y,ê)pXk-i^fkixk-ftiXk^fkixk)
(4.344)

Oi e. e„

/Ai

hfôf\

Xo

fA

\

fß0

t

M02)f

yi t

x2

2/2

/a„

0nl

M0n)f

^n-1
p

'—i-X"n

fBn

tl yn

Figure 4.56: Factor graph of (4.339) and (4.340).

The gradient Vgh\0) = (Vg1/i(0),..., Vgrl/i(0)) required for steepest
descent is computed as follows

VeMef

= Ve4 53 PBix£-i, xe,\y,0) log fBfxe-i,xe,y, Of
xe-i,xe

= E PBix£-i,xi,\y,0)VgelogfBeixi-i,xe,y,Of
xe-i,xe

(4.345)

(4.346)

Note that (4.344) and hence also the rule (4.346) involve standard sum-

product messages. Those messages may again be represented in different
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ways, such as lists of particles, quantized messages, Gaussian distribu¬

tions etc.

m
êe

r

h è£
rn

—«- -«—

Xe-i

fAe+i

xf

fße

V£

Figure 4.57: Steepest descent as summary propagation.

Expectation maximization, in which the M-step is performed by steepest

descent, may then be formulated as follows (see Fig. 4.57):

a) The equality constraint nodes ©£ broadcast the estimates
3(fc)

b) The nodes fAt and fAl+1 reply with the messages V^log/Ae\§(k)
and Vefogf; -e+i \g(k) respectively.

c) A forward and backward sum(mary)-product sweep is performed
in the box fB.

d) The nodes fBe reply with Veeh\g(k), computed according to (4.346).

e) The new estimate é*^1) is computed:

§(k+i) =êf> + \ki\7gfogfAAm
+ VefogfAe+1\g(k} + VeMêw )• (4-347)

f) Iterate 1-5.

As usual, several update schedules are possible. For example, in or¬

der to reduce the computational cost, one may prefer not to update
the sum-product messages pxt^fB ixf (cf- Step 3) at each iteration;
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the probability functions pBix£-i,X£, \y, 0) (cf. Step 4) are then recom¬

puted according to (4.344) using the new estimate 0, but the old mes¬

sages pXe^fBeixf.

Remark 4.11. (Gradient EM vs. gradient sum-product)
If one replaces the messages Vefef (in Step 4 and 5) by the the sum-

product messages Ve<,/x/Bfc _>efc (0fc) (or Ve<, log M/Bfc^efc(0fc)), one obtains

a purely sum-product based gradient method (see Section 4.8.1).

0^e

1 /Ai fA2

02 0"-l 0n-lq

/a„

0n '

n
^

1

00 \

hf0f\

êi\

h2ie2)\

0n-lT

fen(ön)t

1
i—i

X°
r i

Xl
r

-i -A2 • • • Xn-i _H ^n
i

i Îb0 /ßi /b2 /b„

f yi t 2/2 f yn

Figure 4.58: Gradient EM: stochastic approximation.

The stochastic approximation (SA) principle can also be applied to gra¬

dient EM, as illustrated in Fig. 4.58. It amounts to forward-only message-

passing algorithms known as "recursive EM" or "online EM" [194] [207]
[102] [226] [67]. In [194] [207], online EM algorithms for estimating fixed

parameter are derived, whereas in [102] [226] [67], such algorithms are

derived for time-varying parameters.

The example (4.339)-(4.340) can easily be extended to general func¬

tions fA and fB. The gradient of the /i-message out of the generic

node giz, 0m) = gizi, z2,..., zn, 0m) (cf. Fig. 4.59) is as follows.
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Gradient of an E-log message out of a generic node:

V0ra/i(0„

J2giz,em)Vemloggiz,0m) H pze^emizf
_z_ £=1

E9(z.y II Vze^em(zf
z £=l

(4.348)

Zi

S>
g

e„

Veh

Zn

Figure 4.59: Generic node g.

We now state two interesting properties of gradient EM.

Theorem 4.6. Assume that a factor graph of a global function fix, 0) =

/a(0)/b (£, 0) is available whose subgraph fB (£, 0) is cycle-free. The fixed

points of gradient EM applied on the graph of fix, 0) are the stationary

points of /(0).

Proof: We will again use the function /(0, 0') defined as

fO, 0') f ]T fix, 0') log fix, 0). (4.349)
X

The fixed points of gradient EM are irnplicity defined as

Ve/(0,0fixed)|fixed = O. (4.350)

From (4.168) it follows

Ve/(0fixed) = 0, (4.351)

and hence the fixed points of gradient EM are the stationary points (or
"zero-gradient points") of/(0). D

Theorem 4.7. Assume that a factor graph of a global function fix, 0) =

/a(0)/b(£, 0) is available (whose subgraph fsix, 0) may be cycle-free or
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cyclic). The fixed points of a gradient EM algorithm applied on that

factor graph are the stationary points of the function /(#), defined as:

log/(0)alog/A(0) + E
b(x\6) V9logfBix,0) dO, (4.352)

where the beliefs 6(-|0) are computed by means of the sum-product mes¬

sages available at convergence of the sum-product algorithm.

The proof goes along the lines of the exposition in Example 4.5. Note

that, if the subgraph fB is cycle-free, then /(#) = /(#).

The Venn diagrams of Fig. 4.60 and Fig. 4.61 summarize our results

concerning the fixed points of EM-type algorithms; Fig. 4.60 depicts the

situation for factor graphs of fix, 0) with cycle-free subgraphs fsix, 0),
whereas Fig. 4.61 concerns arbitrary factor graphs of fix, 0), i.e., factor

graphs whose subgraph /#(£,#) may be cycle-free or cyclic.

SP of /(0) = FP of GEM

Figure 4.60: Venn diagram depicting the stationary points (SP)
of/(0), fixed points (FP) of EM, hybrid EM (HEM), and

gradient EM (GEM); for cycle-free subgraph /#(£,#).

4.9.7 Application

In the constant-phase model, the maximization step (4.177) can be car¬

ried out analytically; in the random walk phase model, the maximiza¬

tion step is intractable and we will apply steepest descent, resulting in a

gradient-EM algorithm. First we treat the constant-phase model, then

the random-walk phase model.
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SP of /(<?) = FP of GEM

FPof/(0)

Figure 4.61: Venn diagram depicting the stationary points (SP) of/(0)
and /(<?), fixed points (FP) of EM, hybrid EM (HEM),
and gradient EM (GEM); for cycle-free and cyclic sub¬

graphs fBix,0).

Constant-phase model

We start by choosing the "boxes" fA and fB appropriately. Since we

wish to estimate the phase ©, we choose the © edges as cut set of edges
that separates the boxes fA and fB (see Fig. 4.4 and Fig. 4.62). The box

fA contains all nodes that correspond to the prior of 0, i.e., all nodes

that are solely connected to 0 edges. In this case, fA exclusively contains

the equality constraint node 0, as illustrated in Fig. 4.62; all other nodes

belong to the box fB. Note that the box fB has a "nice" structure, i.e.,

fB has a non-trivial factorization. We now apply the message-update
rules (4.174) and (4.177) to the factor graph of Fig. 4.62. The message

/i(0) equals

L

He) = Y.Y.PBixk\y,ê{e))iogfBixk,yk,e) (4.353)
fc=l xk
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Figure 4.62: EM in the constant-phase model

= î>(0),
fc=i

where the function fBixk,yk, 0) is given by

fßixk,yk,e)= j> Sizk -xkSk)5isk - e°e)
J
zk

J
sk

i2ira2Nf1 e-lyk-Zkl2/2a»dzkdsk

= (2trt
2 -|-1 p-\yk-Xke?e\2l2a2N
N)

(4 354)

(4 355)

(4 356)

The small dashed boxes in Fig 4 62 represent the functions fsixk,yk, 0)
The marginalization (4 355)-(4 356) corresponds to "closing" those boxes

The distribution psixkfy, 0 ) is defined as

Pßixkfy, 0(£)) = 7fc/s(a;fc,2/fc,0(£)Wfc^[x](£fc),

where jk is a normalization factor, 1 e
,

Ik = \y2fBixk,yk,è{i))pxk^\z\ixk)\
\ xk J

(4 357)

(4 358)
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Note that fßixk, yk, O1^) is nothing but the message p^^xkixk), which

leaves the multiply node along the edge Xk (at the ^-th iteration). There¬

fore

Pßixkfy, 0(£)) = 7fcMxfc^[x](£fc)M[x]^xfc(£fc)- (4.359)

In the following, we use the short-hand notationPßixf) for pb(£fc \y, 0^).
The phase 0 has a uniform prior, i.e., /a(0) = 1 for all 0. The message

6>(£+1) equals

0(£+1) = argmax/i(0) (4.360)
0

L

= argmax^^ps(£fc)log/B(£fc,yfc,0) (4.361)
fc=l Xk

L

= &rgJ2J2PBixk) bkx*k\ (4.362)
fc=l Xk

L

= arg]T[yfc(E[£fc])*], (4.363)

where the expectation E[£fc] is defined as

E[xk] = J2PBixk)xk. (4.364)

In this particular case, a closed-form expression for the messages 0 can

thus be found. The expression (4.363) was proposed earlier by Noels et

al. [185].

Random-walk phase model

We again start by determining the boxes fA and fß ', the box fß is chosen

as in the constant-phase model. The box fA is now more interesting, as

illustrated in Fig. 4.63: it contains the nodes p(0fc|0fc_i) besides the equa¬

lity constraint nodes 0^. Both fA and fß have in this case a non-trivial

structure. We now apply the message-update rules (4.174) and (4.177)
to the factor graph of Fig. 4.63. The message /i(0), summarizing the

box fß, is again given by (4.353), since the box fß remained unchanged.
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Figure 4.63: Steepest descent-EM in the random-walk phase model

The function log/,i(0) equals

L

log fAie) = ]Tiogp(0fc|0fc-i),

where

fc=2

Pi0k\0k-f = i2^a2wf1'2 £\ ek-i+n2ir)2/2a2v

n£Z

The message 0 is computed as

0 = argmax(log/J4(0) + He))
0

L

= argmax YJ^gpi0k[0k-f +
fc=2

EEPB iXk ) l°g fB (£fc, yk, 0fc )
fc=l œfc

(4 365)

(4 366)

(4 367)

(4 368)

The maximization (4 368) can not be carried out analytically We solve

this problem by gradient EM We propose two approaches, the first al¬

gorithm is derived by straightforwardly applying the generic rules, the

second method is an SA algorithm
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The first method performs following steps (see Fig. 4.63):

® The equality constraint nodes 0^ broadcast the estimates 0k
W

© The nodes fßk reply with —^ k'

êf

© The nodes p(0fc|0fc_i) and p(0fc+1|0fc) reply with ai°sp(o^-i)

and dlogp(0fc+l|0fc)

êw
respectively.

@ The new estimate 6>(£+1) is computed:

ew

§(£+!) = ^(£) +
J dlogpi0k\0k-f

dOk

dOk

dlogpiOk+i\Ok)

flW

dhkiOf

nW dOk nW
(4.369)

© The messages p^^xkixk) are updated.

The steps ®-@ are iterated a number of times before © is carried out.

Note that the above algorithm (Step 1-6) is very similar to the steepest-

descent algorithm of Section 4.8.4. There, steepest descent is applied to

sum-product messages, whereas it is applied to the E-log messages hk

here. If one replaces hk by logpg^Qk in the above procedure (in Step ©
and @), one obtains the (first) gradient-based sum-product algorithm of

Section 4.8.4.

One obtains an SA EM algorithm by replacing the messages logpg^Qk
in the SA gradient algorithm of Section 4.8.4 by the E-log messages hk

(in Step © and @). The resulting SA EM algorithm is similar to the

algorithm developed in parallel work by Noels et al. [151].

4.9.8 Summary

The formulation of the EM algorithm as message passing on a graph has

some interesting implications:
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• A local view onto the EM algorithm has been given. It is not

necessary to handle complicated equations for the complete model.

The problem is divided into simple and small units. The global
model is built by connecting these units into a graph. The EM

algorithm is then computed by passing messages along the edges
of this graph.

• A generic update rule for EM messages on a factor graph has

been given, i.e., the E-log rule (4.226). Given the node function and

the incoming sum-product messages this rule leads to the message

sent along the edges modeling the parameters.

• A table of ready-to-use nodes has been given (Table 4.2). This

table was derived by applying the update rule (4.226) to nodes that

often occur in signal-processing applications.

• The message passing EM fits well into the factor graph frame¬

work developed so far. Once a probabilistic problem is modeled as

a factor graph, different algorithms can be used by passing different

messages along the edges of the graph. The EM messages are an

alternative among others.

• There is much flexibility in choosing a schedule which opens

up the opportunity to develop different forms of the EM algorithm,

especially online estimation algorithms.

• It is also possible to combine with other message types. Either

the E-step as well as the M-step can apply different techniques such

as simulation-based methods (stochastic EM, Monte-Carlo EM),
gradient methods (gradient EM), and decision-based methods

(AECM).

• Non-trivial a priori models for the parameters are possible. The

maximization in the E-step amounts to the max-product algorithm
on the graph for the parameters.

• A hybrid update rule has been devised, i.e., the hybrid E-rule

(4.261). The fixed points of algorithms that use the hybrid E-rule

are stationary points of the marginal /(#), as in standard EM. The

hybrid rule sometimes leads to simpler expressions. It is also be

applied to deterministic nodes, in contrast to the E-log rule (4.226).
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• The E-log rule and hybrid E-rule can be applied on cyclic sub¬

graphs fßix, 0). We characterized the fixed points of the resulting

(hybrid) EM-algorithms.

4.10 Results and Discussion

We performed simulations of the proposed code-aided phase-estimation

algorithms for the constant-phase model and random-walk phase model.

In particular, we assessed the performance of the phase estimators based

on:

• numerical integration (NI) (cf. Section 4.5.2)

• particle methods (PM) (cf. Section 4.6.7)

• adaptive quantization (AQ) (cf. Section 4.7.2)

• sum-product based steepest descent (SP-SD) (cf. Section 4.8.4)

• EM (constant-phase model) and gradient EM (GEM) (random-
walk phase model) (cf. Section 4.9.7).

We used a rate 1/2 LDPC code of length L = 100 that was randomly

generated and was not optimized for the channel at hand. The factor

graph of the code does not contain cycles of length four. The degree of

all bit nodes equals 3; the degrees of the check nodes are distributed as

follows: 1, 14, 69 and 16 check nodes have degree 4, 5, 6 and 7 respec¬

tively. The symbol constellation was Gray-encoded 4-PSK. We iterated

20 times between the LDPC decoder and the phase estimator, each time

with hundred iterations inside the LDPC decoder. In the gradient-based

algorithms and the adaptive-quantization-based algorithms, we iterated

50 times inside the factor graph of the phase model. We did not ite¬

rate between the LDPC decoder and the mapper. We optimized the

(constant) step size parameter A which occurs in the gradient-based al¬

gorithms. We considered the phase noise values af = 0 (constant-phase
model) and a2^, = 10~4 rad (random-walk phase model).

We are fully aware of the fact that this setup is rather artificial. First of

all, one normally uses longer codes (e.g., L = 10.000). Since some of the
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phase estimators are complex, however, particularly the estimators based

on (adaptive) quantization, it is convenient to use short block codes in

order to limit the required computation time

In addition, the code we used is randomly generated and is therefore not

optimized for the channel at hand It is clear that the channel capacity

can not be achieved by means of this code, which is also not our aim,

we mainly wish to compare the performance of our code-aided phase
estimators

Moreover, the phase noise may in some applications be stronger than

a2^, = 10~4 rad Pilot symbols seem then to be required The issue

of pilot sequence design, however, goes beyond the scope of this thesis,

therefore, in order to avoid the use of pilot symbols, we only consider

channels with weak phase noise For simplicity, we will also assume that

the phase ambiguity has been resolved 12

In the particle-based algorithms, the messages were represented as lists

of N = 200 particles In the numerical-integration based algorithms, the

phase was uniformly quantized over N = 200 levels, in the algorithms
based on adaptive quantization, we used N = 200 (non-uniform) quan¬

tization levels In the following, we elaborate on the performance, ro¬

bustness, convergence, and complexity of the proposed code-aided phase
estimators

4.10.1 Performance

In Fig 4 64 and Fig 4 65, the phase synchronizers for the constant-phase
model and random-walk phase model iaf = 10~4 rad ) respectively are

compared in terms of the mean squared (phase) estimation error (MSE),
in Fig 4 66 and Fig 4 67, the phase synchronizers for the constant-phase
model and random-walk phase model (ct^ = 10~4 rad ) respectively are

compared in terms of the (decoded) frame error rate (FER)

From Fig 4 64 and Fig 4 65 it becomes clear that the phase estima-

12In [52] we propose techniques to resolve the phase ambiguity (see also [216]) In

the constant-phase model, the phase ambiguity can be resolved by testing the possible

hypothesis and by choosing the most probable hypothesis This method can also be

applied to the random-walk phase model as long as the phase noise is sufficiently
small (<3yf < 10—4 rad ), otherwise, one may resort to pilot symbols
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tors based on adaptive quantization (AQ) have the smallest MSE, fol¬

lowed by the phase estimators based on numerical integration (NI), the

particle methods (PM)), the EM-based algorithm (constant phase), the

phase estimator gradient EM (GEM) (random-walk phase), and the sum-

product-based steepest descent (SP-SD) estimators. As can be seen from

Fig. 4.66 and Fig. 4.67, the FER of all code-aided phase synchronizers is

about the same; they all perform significantly better than the classical M-

law estimator, which does not use any information from the decoder [136].
The code-aided phase estimators based on adaptive quantization and uni¬

form quantization have a slightly smaller FER than the other code-aided

phase estimators.

Simulation results (not shown here) indicate that the performance of

GEM-based and SP-SD-based phase estimators does not depend on the

message-update schedule inside the factor graph of the phase model:

the standard schedule and the stochastic approximation (SA) approach

(cf. Section 4.8.3) lead to about same performance. In Fig. 4.64 to

Fig. 4.67, the results for the SA-approach are shown; the curves for the

standard schedule practically coincide (not shown).

We investigated why the EM-based algorithm and the gradient-based al¬

gorithms perform (slightly) worse in terms of MSE and FER than the

numerical-integration-based and adaptive-quantization-based approach.
The performance degradation is mainly due to two factors. First of all,
the EM-based algorithm and the gradient-based algorithms approximate

a density ( "message" ) by a single value. We quantified the resulting FER

degradation by considering a slight modification of the Nl-based algo¬
rithm for the random-walk phase model, where the upward ©^-messages

(arriving at the multiply nodes) are not represented as quantized mes¬

sages (as in the Nl-based algorithm), but as single values, i.e., as the

mode of the upward ©^-messages; all other ©^-messages are quantized

messages (as in the Nl-based algorithm). The FER gap between this

modified Nl-based algorithm and the (unmodified) Nl-based algorithm is

solely due to the single-value approximation of the upward ©^-messages.
The FER of the modified Nl-based algorithm is shown in Fig. 4.68 to¬

gether with the FER of the SP-SD-based and Nl-based algorithm. For

SNR-values smaller or equal to 2dB, the FER of the modified Nl-based

algorithm coincides with the FER of the SP-SD algorithm. At higher
SNR values, it coincides with the FER of the (unmodified) Nl-based al¬

gorithm. This is in agreement with our intuition: at high SNR, the width

of the posterior density p(0|y) is small and the Dirac-delta approxima-
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tion ("single value") is satisfactory; this is not the case at low SNR.

From Fig. 4.68 we learn that there must be additional factors that lead

to performance degradation for the SP-SD-based and EM-based estima¬

tors, since at high SNR, the Dirac delta approximation is satisfactory and

does not lead to FER degradation. A second factor is the fact that both

estimators do sometimes not convergence to the global maximum of the

marginal piô\y), but to a neighboring local maximum. Fig. 4.69 shows

histograms of phase estimates 0 obtained by the Nl-based, AQ-based, SP-

SD-based, and EM-based phase estimator for the constant-phase model

at SNR = 3dB, where the true value 0 = 0.5 rad. We resolved the phase

ambiguity by limiting the phase estimates to the interval [0,7r/2). Note

that the histograms of the EM-based and SP-SD-estimators contain a

significant number of outliers (0 = 0 and 0 = n/2), in contrast to the

histograms of the other two estimators. The outliers most often occur

when the initial estimate (generated by the M-law) is closer to a local

maximum of the marginal piô\y) than to the global maximum, as can

be seen from Fig. 4.70. This problem can often be alleviated by running
the (SP-SD-based or EM-based) phase estimator several times, each time

with a different initial estimate 0(°). Wymeersch [216] has improved the

performance of the EM-based phase estimator for the constant-phase
model by using multiple initial estimates 0(°).

4.10.2 Convergence

Fig. 4.71 and Fig. 4.72 depicts the FER of the EM-based phase estima¬

tor and the Nl-based phase estimator respectively as a function of the

number of iterations (for a^ = 0 and 10~4 rad ). The curves show that

10 iterations between the LDPC decoder and the phase estimators are

sufficient to achieve convergence. We verified that this statement also

holds for the other algorithms (results not shown here).

4.10.3 Robustness

We investigated how the performance of our algorithms depends on some

of their parameters, i.e., the number of quantization levels or particles,
and the step size A. We also verified how the performance degrades
when the (true) value for a^ is unknown to the receiver and a wrong
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Figure 4.64: MSE for the constant-phase model.

value aß f an is inserted in (4.7).

Fig. 4.73 shows how the FER of the Nl-based phase estimator (for the

random-walk phase model) varies with the number of quantization levels;
it can be seen from this figure that 100 quantization levels are sufficient.

We verified that the same holds for the AQ-based phase estimator, and

that in the particle methods, 100 particles suffice (results not shown

here).

In Fig. 4.74, the FER of the standard SP-SD estimator (for the random-

walk phase model) is shown for various values of the learning rate A

(cf. (4.132)). It can be seen that the optimum learning rate depends only

weakly on the SNR. We obtained similar curves for the other gradient-
based phase estimators (not shown here).

In Fig. 4.75, we consider the situation where the receiver uses the wrong

value of «Tat, i.e., in (4.7) a^ is replaced by a value ctr f a^. Fig. 4.75 il¬

lustrates how the MSE of the Nl-based phase estimator (for the constant-
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Figure 4.65: MSE for the random-walk phase model with af
10"4 rad2.

phase model) depends on the value <tr. As expected, the minimum MSE

is achieved when there is no mismatch, i.e., for o-r = a^.

4.10.4 Complexity

The EM-based phase estimator and the gradient-based phase estimators

have the lowest complexity, since the messages are represented by a single
value. The algorithms based on numerical integration are much more

complex. As is well known, numerical integration becomes infeasible in

high-dimensional systems. The particle methods are complex as well,
but they scale better with the dimensionality of the system. The same

holds for the approach based on adaptive quantization. In the following

section, we summarize the main points of this chapter.
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Figure 4.66: FER for the constant-phase model.

Figure 4.67: FER for the random-walk phase model with a^

10"4 rad2.
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for the random-walk phase model

10~4 rad2 for the SP-SD-based algorithm,
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rithm, where the upward ©^-messages are represented by
a single value.
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(a) EM.

(c) Sum-product based steepest

descent (SP-SD).

Adaptive quantization (AQ).

Figure 4.69: Histograms of the phase estimates 0 for the constant-

phase model (SNR = OdB); the true value is 0 = 0.5 rad.
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s—W^f-ifS^SÜ1

Figure 4.70: Initial estimate 0(°) (obtained by the M-law) vs. (fi¬

nal) estimate 0 obtained after 20 iterations of the EM-

based phase estimator (cr2^ = 0 rad ; SNR = OdB). The

true value 0 = 0.5 rad is depicted by the star centered at

(0.5,0.5).

Figure 4.71: FER of EM-based algorithm as a function of the iteration

number (cr2^ = 0 and 10~4 rad2; SNR = -1, 0, 4dB).
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Figure 4.72: FER of Nl-based approach as a function of the iteration

number (cr2^ = 0 and 10"4 rad2; SNR = -1, 0, ..., 4dB).
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Figure 4.73: FER of the Nl-based estimator as a function of the num¬

ber of quantization levels N iaf = 10~4 rad ; SNR = -1,

0, ..., 3dB).
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Figure 4.74: FER as a function of the step size A iaw = 10 4 rad ;

SNR = -1, 0, ..., 4dB).

Figure 4.75: MSE as a function of the value aR iaf = 0 rad ; a^

0.5006; SNR = 3dB).



4.11. Summary 187

4.11 Summary

In this chapter, we described how factor graphs can be used for statistical

inference, i.e., detection and estimation. Statistical inference is accom¬

plished by sending messages along the edges of the graph ("summary
propagation" or "message passing"). Different algorithms are obtained

by different message types or different message-update schedules.

We described various standard algorithms in signal processing and ma¬

chine learning as message passing on factor graphs:

• particle methods, e.g., Gibbs sampling, particle filtering, impor¬
tance sampling, simulated annealing, Markov-Chain Monte-Carlo

methods

• gradient-based methods, e.g., steepest ascent/descent

• expectation maximization (EM) and extensions, e.g., Monte-Carlo

EM, gradient EM, SAGE, etc.

• decision-based methods (e.g., iterative conditional modes).

We determined the local message-update rules for each of the above

algorithms. Those update rules may be used as building blocks for novel

estimation and detection algorithms; by listing the possible update rules

at each node in the factor graph, one can systematically derive novel

algorithms. We derived various code-aided phase-estimation algorithms
in this fashion.





Chapter 5

Computing

Cramér-Rao-Type
Bounds

In this chapter, we present message-passing algorithms to compute Cramér-

Rao-type bounds, which are lower bounds on the mmmum mean squared
error Cramér-Rao-type bounds can be used to asses the performance of

estimation algorithms, in particular, code-aided phase-estimation algo¬
rithms (see Example 5 5, Example 5 6, and Example 5 11) The results

of this chapter are based on [40] and [41]

5.1 Introduction

For many practical estimation problems1 (e g ,
code-aided carrier-phase

estimation), popular estimators such as the maximum likelihood estima¬

tor (ML), the maximum a posteriori estimator (MAP) or the minimum

mean square error estimator (MMSE) are infeasible One therefore often

resorts to approximate methods such as expectation maximization [58],
loopy belief propagation [119], gradient-based algorithms [19], Markov

1 Basic notions from estimation and detection theory are reviewed in Appendix A

189
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Cham Monte Carlo methods [171] (MCMC), particle filters [59], or com¬

binations of those methods

Suboptimal estimators are typically compared based on their mean squared
estimation error (MSE) However, the MSE is not an absolute perfor¬
mance measure, in order to determine whether a suboptimal algorithm
is close to optimal (in terms of MSE), the MSE of the minimum mean

squared error (MMSE) estimator is required Unfortunately, the mimi-

mum achievable MSE can often not be computed (neither analytically,
nor numerically), and one needs to resort to bounds on the mimimum

achievable MSE, typically, lower bounds A well-known family of such

lower bounds are the Cramér-Rao-type bounds In this chapter, we

present (novel) algorithms for computing Cramér-Rao-type bounds for

real-life estimation problems Interestingly, Cramér-Rao-type bounds are

tight for many (practical) estimation problems

For the estimation of parameters, a commonly used lower bound for

the MSE is the Cramér-Rao bound (CRB), given by the inverse of the

Fisher information matrix [199] [176] ("standard CRB") The CRB has

been computed in a wide variety of contexts, ranging from communica¬

tions (e g , [16] [206] [138] [76] [86] [183] [184] [228] [145] [146] [147] [149]
[150] [18] [227]), signal and image processing (eg, [71] [195] [111] [29]
[107] [142] [162] [70] [163] [14]), to computer vision (e g , [221] [159]) For

some applications, a closed-form expression for the CRB is available, in

other applications, eg, estimation in AR(MA)-models [71] [195] [111]
[29] [107] [142] [162] [70] [163], the derivation of CRBs is involved For

example, the CRB has been derived for AR(MA)-models without obser¬

vation noise [71] [195] [111] [29] [107] [142] [162], but for AR(MA)-models
with observation noise, the CRB seems to be intractable [163], therefore,
one often resorts to asymptotic bounds (i e

, high-SNR bounds) [70] or

to numerical algorithms [163]
2

Van Trees derived an analogous bound to the CRB for random variables,
referred to as "Bayesian CRB" (BCRB) or "posterior CRB" or "Van

Trees bound" [199] Rather surprisingly, far less attention has been given

to the BCRB than to the standard CRB The BCRB has been determined

for a few estimation problems, Tichavsky et al derived the BCRB for

filtering in state-space models with freely evolving state [192] A particle
method for computing the BCRB of [192] for the particular case of non-

2The algorithm of [163] only applies to ARMA models and is not easily extended

to other systems
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linear non-stationary dynamical systems is presented in [191] ; the method

of [191] has recently been used for computing the BCRB for various

tracking problems (see e.g., [26]).

Recently, so-called hybrid Cramér-Rao bounds have been proposed [172];
they apply to the joint estimation of parameters and random variables.

In this chapter, we consider each of the three different types of Cramér-

Rao bounds, i.e., standard, Bayesian, and hybrid Cramér-Rao bounds.

There are two general strategies to obtain Cramér-Rao-type bounds for

a given estimation problem. One may derive Cramér-Rao-type bounds

from the information matrix of the joint probability density function

(pdf) of the system at hand; alternatively, one may derive such bounds

from information matrices of marginals of the joint pdf. In this chapter,
we propose (novel) practical algorithms to compute Cramér-Rao bounds:

• following each of both strategies,

• for each of the three different types of Cramér-Rao bounds.

Our algorithms are message-passing algorithms that operate on a factor

graph of the system at hand. The algorithms can be applied to standard

estimation problems, such as:

• filtering and smoothing in state-space models,

• estimation of the parameters of state-space models,

• estimation in multiple coupled state-space models and other sys¬

tems that are most naturally represented by cyclic graphs,

• code-aided channel estimation.

The first three problems are ubiquitous in various areas of signal process¬

ing such as biomedical signal processing, speech and image processing;
the last problem appears in the context of communications. Our algo¬
rithms sometimes lead to analytical bounds; for most non-trivial estima¬

tion problems, however, the bounds involve intractable integrals, which

we then solve by Monte-Carlo integration.
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In this chapter, we will give numerous examples, ranging from toy exam¬

ples that illustrate the (sometimes abstract) concepts to more challenging

problems such as carrier-phase estimation and estimation in AR models.

Our algorithms for computing Cramér-Rao-type bounds may also lead

to novel estimation algorithms, more precisely, to estimation algorithms
that are based on the natural gradient, which is a central concept in

information geometry [7]. More generally speaking, our algorithms open

the door to promising (practical) applications of information geometry

to (estimation with) graphical models.

We organized this chapter as follows. In the next section, we review the

three Cramér-Rao-type bounds, and outline the two general strategies to

compute Cramér-Rao-type bounds. In Section 5.3, we present message-

passing algorithms for computing Cramér-Rao-type bounds from infor¬

mation matrices of joint pdfs; we illustrate the techniques by several

standard estimation problems, e.g., estimation in (general) state-space

models, carrier-phase estimation, and estimation of the parameters and

state of AR models. In Section 5.4, we propose algorithms to compute

Cramér-Rao-type bounds from information matrices of marginals. We

apply also these methods to estimation in (general) state-space models

and to estimation in AR models; we elaborate on code-aided channel

estimation. In Section 5.5, we summarize our methods and contribu¬

tions; in Section 5.6, we outline several extensions of our methods, no¬

tably, natural-gradient based algorithms (and information geometry in

general), other types of bounds, and other types of error measures.

The proofs of the lemmas and theorems of this chapter can be found in

Appendix K, unless stated otherwise.

5.2 Overview of Cramér-Rao-Type Bounds

We review:

a) the (standard) Cramér-Rao bound, which applies to parameters,

b) Bayesian Cramér-Rao bounds, which apply to random variables,
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c) hybrid Cramér-Rao bounds, which are applicable to the joint esti¬

mation of parameters and random variables

5.2.1 Standard Cramér-Rao Bound

We start by introducing our notation Let 0 = (©i, ©2, , On)T be a

parameter vector, and let Y = (Yi,Y2, ,Yn)t be a real random vec¬

tor (the extension to complex random vectors is straightforward) Sup¬

pose that piy\6) is the probability density function (pdf) of Y, which is

parametrized by 0 We consider the problem of estimating 0 from an

observation vector y = iyi,y2, ,yw)T Let the function 0(y) be an es¬

timator of 0 based on the observation y We define the error matrix E(0)
as

E(0) f EY]e[êiY) - 0)(0(y) - Of] (5 1)

The Fisher information matrix F(0)3 is given by

FtJ (0) = EF,e We« logpiY\0) vT logpiY|0)1
, (5 2)

a a

8v„
withwhere FtJiO) is the («,^)-th element of F(0), Vv =

v G M9, and v = fi, ,vq)T Note that ~FtJ is a matrix, since the

components 0^ are in general vectors The Fisher information matrix

F(0) can be computed in several ways (Lemma K 6)

F„(0) — Eq\y

= —Eeiy

VefogpiY\0)VllogpiY\0)

Ve.V£ logpiY\0)

(5 3)

(5 4)

The inverse of the Fisher information matrix is a lower bound on the

error matrix E(0) (see, e g , [199, pp 66-67], [176, pp 301-303])

Theorem 5.1. (Cramér-Rao bound)
Suppose that, for all 0

a) the error matrix E(0) of the estimator 0(y) exists,

3The Fisher information matrix not only plays an important role in statistics, but

also in information geometry [7] and machine learning (e g , [89]) (see Section 5 6)
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b) the Fisher information matrix F(0) is non-singular,

c) the support of piy\6) with respect to y does not depend on 0,

d) the pdf piy\0) is differentiable with respect to all coordinates 0t for

all y,

e) the integral B(0) = / [0(y) — e]piy\0)dy can be differentiated under

the integral sign,

f) the estimator 0(y) is unbiased, i e
, B(0) = / [Oiy)—0]piy\0)dy = 0,

Then

E(0)^F(0)"1 (5 5)

The inequality (5 5) means that the matrix D(0) = E(0) — F(0)_1 is

positive semi-defimte The inequality (5 5) is known as the Cramér-Rao

bound, but was in fact first proposed by Fisher in the early days of

statistics [63] Note that the bound merely applies to unbiased estima¬

tors 0(y) We remind the reader of the fact that the minimum mean

square error (MMSE) estimator, i e
,
the estimator that minimizes E(0),

is not necessarily unbiased 4 This is for example the case if 0 takes

values in an interval [a,b] or [a, oo), as in phase, frequency, timing and

noise variance estimation

Remark 5.1. (Singular information matrix)
The above bound only applies if the Fisher information matrix F(0) is

non-singular What if F(0) is singular7 One may then add a diagonal
matrix D to F(0), e g ,

D = el, (5 6)

where e is a "small" positive number, and I is a unity matrix If the

resulting matrix F(0) = F(0) + D is non-singular, it is a lower bound

on E(0)

E(0)^F(0)"1 (5 7)

This applies also to the other Cramér-Rao-type bounds we will encounter

in later sections

4In fact, an estimator that mimmzes E(0) for all 9 may even not exist
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Definition 5.1. (Regularity)
An estimator 0(y) and an estimation problem with conditional piy\0) are

called regular if the first five assumptions in Theorem 5.1 are met (for
all 0). Note that Assumptions 2 through 4 merely concern the estimation

problem, more precisely, the pdf piy\0), whereas Assumption 1 and 5 also

concern the estimator 0(y).

In many estimation problems, the observation vector consists of multiple

samples drawn from the (same) pdf pfO); the pdf piy\0) can then be

written as:

N

piy\0) = l[piyk\9), (5.8)
fc=i

where yk is the k-th observation, and N is the total number of obser¬

vations. The corresponding error matrix E(0) and Fisher information

matrix F(0) depend on N.

For any regular estimator (biased as well as unbiased) and any regular
estimation problem of the form (5.8), the Cramér-Rao bounds holds in

the limit of an infinite number of observations (i.e., as N —> oo); the

Cramér-Rao bound is thus an asymptotic bound ("high-SNR bound")
for any regular estimator and any regular estimation problem.

Theorem 5.2. (Asymptotic Cramér-Rao bound)
Suppose that:

a) 0 takes values in an interval [a, b], with a, b G M, and a <b,

b) the estimator 0(y) is regular, and the estimation problem (with
pdf piy\0)) is regular,

c) the conditionalpiy10) has the formpiy\6) = Y\k=i_piyk\e) for all 0 G

[a,b],

Then

lim E(0) h lim F(0)~\ V0 G (a, b) (5.9)

We refer to [75] for a particularly elegant proof of Theorem 5.2. In the

limit of an infinite number of observations (and under some additional

weak conditions), the estimation error of the ML-estimator, i.e., 0ML(y) —
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0, is a zero-mean Gaussian random vector whose covariance matrix E(0)
is given by the inverse of the Fisher information matrix

5 In other words,
the ML-estimator becomes the MMSE estimator as soon as the number

of samples is sufficiently large

Example 5.1. (CRB for the mean of Gaussian random variables)
Suppose that we draw N 11 d samples yi, ,y^ from a Gaussian dis¬

tribution with known variance a2, but unknown real-valued mean 0 We

wish to compute the CRB for the estimation of the mean 0 from the N

samples yi, ,y^ The pdf piy\0) equals

Since

N

p(y\e) = û
i

-Vk)2/2a2

L\ v7^

|jlogp(»|0)
1

N
d2

ff2

Z^~/fl2 K
2a2

N

~f2>

k=l

yk)

(5 10)

(5 11)

(5 12)

it follows

F(0) -Ei

N

f2

'^ogpiY\9) (5 13)

(5 14)

The Fisher information matrix (5 14) is a scalar, and it does not depend
on 0 From (5 5) and (5 14), it follows

EF[(0(y) -0)2] >a2/N (5 15)

As is well known, the ML-estimator of the mean 0 is given by the em¬

pirical mean Its MSE is equal to a2/N, in other words, the empirical
mean achieves the CRB (5 15)

Assume now that 0 G [a, b] with a,b G M and a < b The CRB is again

given by (5 15) Note that the CRB grows unboundedly as a2 increases,

5We refer to [176, pp 421—424] for a more precise statement of the result, including
the proof
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whereas the MSE of any estimator of 0 is bounded, since 0 takes values

in a finite interval. In other words, the CRB (5.15) is invalid if 0 G [a, b\.
This is due to the fact that all estimators are necessarily biased, and

Condition f of Theorem 5.1 is not fulfilled. On the other hand, the CRB

is valid for all 0 G (a, b) as a2 —> 0 or N —> oo (cf. Theorem 5.2). D

5.2.2 Bayesian Cramér-Rao Bounds

We again start by introducing our notation. Let X = (Xl, X2, , XfT
and Y = (Yî, Y2, , Yn)t, where Xk and Yk are real random vectors (the
extension to complex random vectors is straightforward) ; the vectors Xk

and Yk do not necessarily all have the same size. The index k may

stand for (discrete) time, i.e., X and Y may be stochastic processes.

Suppose pix, y) is the joint probability density function (pdf) of X and

Y. We consider the problem of estimating X from an observation vector

y = iyi, y2, , j/jv)t- Let the function x(y) be an estimator of X based

on the observation y. We define the error matrix E of the estimator x(y)
as

E = Exr[(x(Y)-X)(x(Y)-X)

The Bayesian information matrix J is given by

EXY VxfogpiX,Y)VllogpiX,Y)

(5.16)

(5.17)

Note that Jjj is a matrix, since the components Xk are in general vectors.

The Bayesian information matrix J can be computed in several ways

(Lemmas K.7-K.9)

Exy VxfogpiX,Y)V11°
Jjj

gpiX,Y) (5.18)

—Exy vxyliogpix,Y) (5.19)

—Exy vxyl iogpiY\x)

—Ex vxyl iogp(x)' (5.20)

Exy Vx. logpiY\X)Vl logpiY\X)

+EX ^7xjogpixyl logp (X) (5.21)
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The equality (5.19) follows from Lemma K.7, whereas (5.20) is based on

the chain rule for probabilities:

Pix,y)=piy\x)pix). (5.22)

The equality (5.21) follows from Lemma K.8 and K.9.

Note that the Bayesian information matrix J is constant, whereas the

Fisher F(x) information matrix depends on x. In general,

J = Ex [F(X)] + Ex [Vx logp(X)VTX logp(X)] . (5.23)

If the prior p(x) is uniform, it follows from (5.23):

J = Ex[F(X)]. (5.24)

If, in addition, F(x) does not depend on x, i.e., F(x) = F, then J = F.

In '68, Van Trees proved a Cramér-Rao-type bound for random vari¬

ables [199, pp. 72-73].

Theorem 5.3. (Unconditional Bayesian Cramér-Rao bound)
Suppose that:

a) the error matrix E of the estimator x(y) exists,

b) the Bayesian information matrix J is non-singular,

c) the support of piy\x) with respect to y does not depend on x,

d) the pdf pix, y) is differentiable with respect to all coordinates xt

for all (x, y) belonging to the support oî pix, y),

e) the integral B(x) = J [x(y) —x]piy\x)dy can be differentiated under

the integral sign with respect to all coordinates xt, Vx,

f ) the prior p(x) is zero at the boundary of its support ( "weak unbiased-

ness condition"),

Then

E^r1. (5.25)
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The inequality (5.25) is often referred to as the "Bayesian Cramér-Rao

bound" (BCRB), "posterior CRB" or the "Van Trees bound". An esti¬

mator x(y) and an estimation problem with joint pdf p(x, y) are called

regular if the first five assumptions in Theorem 5.3 are met. If the joint

pdf pix,y) is Gaussian, the bound (5.25) holds with equality. Note that

the BCRB also holds for biased estimators, in contrast to the CRB. The

weak unbiasedness condition (Assumption 6), however, is not necessarily
fulfilled. As for the CRB, this is for example the case when X takes

values in an interval [a,b] or [a, oo), with a,b G M and a < b
.
On the

other hand, the Bayesian Cramér-Rao bound (5.25) holds at high SNR

for any regular joint pdf p(x,y), i.e., also for a pdf p(x, y) for which the

weak unbiasedness condition is not met. In addition, the MAP estimator

achieves the bound (5.25) at high SNR.

The Bayesian Cramér-Rao lower bound (5.25) is in the literature also

referred to as unconditional Bayesian Cramér-Rao lower bound; in con¬

trast, the conditional BCRB bounds the MSE conditioned on a particular
observation y [24]. The conditional Bayesian information matrix J(y) is

defined as:

hfy) = Exl Va logpiX\y)VllogpiX\y) (5.26)

Since V'x% logp(x|y) = Wx% logp(x,y), the matrix (5.26) can also be writ¬

ten as:

J.j iy) = Ex\y Vx. logp(X, y)Vf logp(X, y) (5.27)

From Lemma K.6 follows an alternative expression for the matrix (5.26):

Jjj(y) = -Ex|f

= —EX\Y

VxyllogpiX\y)

yxyliogpix,y)

(5.28)

(5.29)

The inverse conditional Bayesian information matrix is a lower bound on

the error matrix E(y) defined as:

E(y)^Ex|y[(x(y)-X)(x(y)-Xf].

Theorem 5.4. (Conditional Bayesian Cramér-Rao bound)
Suppose that:

(5.30)

a) the error matrix E(y) of the estimator x(y) exists,
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b) the conditional Bayesian information matrix J(y) is non-singular,

c) the pdf pix\y) is differentiable with respect to all coordinates xt for

all (x,y) belonging to the support of p(x|y),

d) the prior p(x) is zero at the boundary of its support ( "weak unbiased¬

ness condition"),

Then

E(y) h J-1^) (5 31)

If pix\y) is Gaussian, the bound (5 31) holds with equality

From (5 31), an alternative lower bound on E can be derived 6

Corollary 5.1. (Alternative unconditional Bayesian Cramér-Rao bound)
Suppose that

a) the error matrix E(y) of the estimator x(y) exists for all y,

b) the Bayesian information matrix J(y) is non-singular for all y,

c) the pdf p(x, y) is differentiable with respect to all coordinates xt

for all (x, y) belonging to the support of p(x, y),

d) the prior p(x) is zero at the boundary of its support ( "weak unbiased¬

ness condition"),

Then

E^Eyfr^T)] (5 32)

The bound (5 32) is tighter than the bound (5 25)

Lemma 5.1. If J and J(y) (for all y) are non-singular, then

J-1 <EY [J^Cn] (533)

D

6To our knowledge, this bound is novel
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If the pdfpix,y) is Gaussian, the bounds (5.25) and (5.32) coincide, since

the matrix J(y) is then independent of Y.

From the CRB (5.5), one can also derive an unconditional BCRB ( "Fisher-

Bayesian Cramér-Rao bound") [206].

Theorem 5.5. (Fisher-Bayesian Cramér-Rao bound)
Suppose that, for all x,

a) the estimator 0(y) is regular, and the estimation problem (with
pdf piy\x)) is regular,

b) the estimator x(y) is unbiased, i.e., B(x) = J [x(y) — x]piy\x)dy =

0,

Then

E^ Ex [F_1(X)] . (5.34)

The bound (5.34) is tighter than the bound (5.25).

Lemma 5.2. If J and F(x) (for all x) are non-singular, then

J-^ExfF-1^)]. (5.35)

D

The Fisher BCRB (5.34) only holds for unbiased estimators, whereas

the standard and alternative unconditional BCRBs (5.25) and (5.32)
also hold for biased estimators (as long as p(x) is zero at the boundary
of its support). If the prior p(x) is non-trivial, the MMSE-estimator is

most often biased and the Fisher-Bayesian Cramér-Rao bound (5.34) is

not applicable (at finite SNR). If the pdf p(x,y) is Gaussian, and the

prior p(x) is uniform, i.e.,

pix,y) ocpiy\x), (5.36)

the bounds (5.25), (5.32), and (5.34) coincide, since the matrices F(x)
and J(y) are then independent of X and Y respectively.

Example 5.2. (BCRB for mean of Gaussian random variables)
We consider again the estimation problem of Example 5.1. Now, we
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suppose that the (unknown) real-valued mean is a random variable (with
a non-trivial prior) We denote the mean by X, and its prior byp(x) We

wish to compute the BCRBs (5 25), (5 32) and (5 34) for estimating X

from y = yi, , yN The joint pdf p(x, y) equals

N
1

pix,y) =pix) Y[
—7=

-(x-yk)2/2a2

\ f2na2

Since

d2 d2 d2
logpix,y) = -j^logpiy[x) +— logpix)

dx2 dx2

N d2
, , N

-^
+
^l°SPix),

it follows

N

^ogpiX,Y)

E

x
dx2

logp(X)

and

m -EX\Y ^ogpiX,y)
N

E Hfl^PiX)

(5 37)

(5 38)

(5 39)

(5 40)

(5 41)

(5 42)

(5 43)

Note that J and J(y) are scalar From (5 25) and (5 41) follows the

standard unconditional BCRB

Exr[(x(X)-X)2]>
N

Ex
dx2

logp(X) (5 44)

From (5 32) and (5 43) follows the alternative unconditional BCRB

ExF[(x(y)-X)2]>E,
N

EX\Y dx2
\ogpiX) (5 45)

From (5 15) and (5 34) follows the Fisher BCRB

ExW(x(y)-x)2]>
N

(5 46)
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The Fisher BCRB (5.46) is only valid for unbiased estimators, whereas

the MMSE estimator is usually biased if the prior p(x) is non-uniform.

If the prior p(x) is uniform, the bounds (5.44) and (5.45) reduce to the

Fisher BCRB (5.46). Note that

-Ex
dx2

logp(X) = Ex
dx

logp(X) >0,

and therefore (cf. Lemma K.4),

—ö
— Ex ^logpiX) <

Similarly,

N
E
X\Y ^ogpiX) <

(5.47)

(5.48)

(5.49)

In words: if the prior p(x) is non-uniform, the BCRBs (5.44) and (5.45)
are lower than the bound (5.46), which is valid for a uniform prior p(x).
This makes sense: a non-uniform prior p(x) contains additional infor¬

mation about X; the more informative the prior, the smaller the es¬

timation error will be. Not surprisingly, the BCRB (5.44) and (5.45)
reduce to (5.46) as N —> oo or a2 —> 0: as the observations become more

informative, the prior knowledge loses its importance.

Assume now that X G [a,b], with a,b G M and a < b. The standard

BCRB, alternative BCRB and Fisher BCRB are again given by (5.44),
(5.45) and (5.46) respectively. Suppose that p(x) is uniform, i.e.,

1

pix) Vx G [a,, b]. (5.50)

Both BCRBs (5.44) and (5.45) reduce then to the Fisher BCRB (5.46).
Note that the BCRB (5.46) (as the CRB (5.15)) grows unboundedly
as a2 increases, whereas the MSE of any estimator x(y) of X G [a, b] is

obviously bounded. In other words, the BCRBs (5.44) and (5.45) are

invalid for the prior (5.50). This is due to the fact that

piffOfpib). (5.51)

Nevertheless, the BCRBs (5.44) and (5.45) become valid as N —> oo

or a2 - 0 ("high SNR bound").

D



204 Chapter 5. Computing Cramér-Rao-Type Bounds

Bayesian Cramér-Rao Bounds and Marginalization

In practice, one is often interested in bounding the MSE for a parti¬
cular variable Xk, i.e., for a particular component of the vector X =

(Xi,..., XfT. For example, one may wish to compute a BCRB for the

MSE:

ExkMixfY) - XfixfY) - Xk)T]

= EXY[ixkiY) - XfixfY) - Xkf] (5.52)

= Efcfc, (5.53)

which is the k-th diagonal element of the error matrix E. Of practical
relevance is also the (weighted) average of the MSE over all components

ofX:

71 71

Y^^kEkk = ]TWfcExfcW(xfc(y)-Xfc)(xfc(y)-Xfc)T],(5.54)
fc=l fc=l

where n is the dimension of X, and Wk is a positive real number (typically,
wk = 1/n).

There are several ways to obtain a BCRB for (5.52) and (5.54). One may

derive a BCRB from the information matrix of the joint pdf p(x, y) (or
pix\y)). For example, from the standard unconditional BCRB (5.25), it

follows:

Efcfc h [J-1]**, (5.55)

and
n n

J^WfcEfcfc >z '^Jwk[3~1]kk, (5.56)
fc=i fc=i

where the unconditional Bayesian information matrix J is computed from

the joint pdf p(x,y). Note that in the RHS of (5.55) and (5.56), only the

diagonal elements of J-1 appear, the off-diagonal elements of J-1 are

not required. Along similar lines, an alternative BCRB for E^fc (5.52)
and the average (5.54) can be derived from (5.32):

VkkhEY[[3-liY)]kk\, (5.57)

and
n n

Y<wkEkk h X^fcEyftJ-^y)]**] , (5.58)
fc=l fc=l
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where the conditional Bayesian information matrix J(y) is computed
from the joint pdf p(x|y). Similarly, (B)CRBs for Efcfc(x) and ~Ekkiy)
can be derived from (5.5) and (5.31) respectively.

Alternatively, instead of deriving the BCRB from the information matrix

ofpix,y) (orp(x|y)) (cf. (5.55) to (5.58)), one may first marginalize over

some variables Xi f f k), and compute the BCRB from the information

matrix of the resulting marginal of p(x, y) (or p(x|y)). Let us have a look

at a simple example.

Example 5.3. (Marginalization and BCRB)
Let X = (Xi,X2)T, and hence p(x, y) = p(xi,X2,y). Suppose that we

wish to obtain a standard unconditional BCRB for Xi. This can be done

in two ways. One may compute the unconditional Bayesian information

matrix of p(xi, y); the inverse of that matrix is a standard unconditional

BCRB for Xi:

ExMifiY) - Xi)ixfY) - Xif]

hEx^iV^VlfogpiX^Y)]-1, (5.59)

where:

Pixi,y)= pixi,x2,y)dx2. (5.60)
J x2

Alternatively, one may derive a standard unconditional BCRB from the

unconditional Bayesian information matrix ofp(xi, X2, y), which is a 2 x 2

block matrix. More precisely, the first diagonal element of the inverse of

that matrix is a standard unconditional BCRB for Xi:

ExMifiY) - XfixfY) - XfT] h [J-1] n , (5.61)

where

-Vx1x2Y[VxlVf\ogPiX1,X2,Y)] -Ex1x2Y[VxlVf\ogPiX1,X2,Y]

-EXlx2Y[VxyflogpiX1,X2,Y)] -EXlx2Y[VxyflogpiX1,X2,Y]
(5.62)

D

Bayesian Cramér-Rao bounds for a variable Xk can thus be derived in

various ways, since one has the freedom to marginalize some variables Xi

f f k) before computing the required information matrix. Which ap¬

proach leads to the tighest bounds? For example, is the bound (5.59)
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tighter than (5.61)? An answer to those questions is given in [24] (see
also [170]): the tightest Bayesian Cramér-Rao bound for a variable Xk

is obtained by first marginalizing over all variables Xi f f k), and

by then computing the inverse information matrix of the resulting mar¬

ginal pixk,y) (or pixk\y)). For instance, the bound (5.59) is tighter
than (5.61). It is typically easier, however, to derive Cramér-Rao-type
bounds from the joint pdf (as in (5.61)) than from a marginal (as in (5.59)).7

Remark 5.2. (A common misunderstanding)
Some researchers (e.g., [148]) believe that

• Cramér-Rao-type bounds derived from joint pdfs only apply to

estimators that estimate all unknown variables jointly,

• Cramér-Rao-type bounds derived from marginal pdfs only apply to

estimators that treat some of the variables as nuisance parameters ;

the latter are not estimated explicitly, instead, they are eliminated

by marginalization.

For example, the bound (5.61) for the MSE of Xi would only hold for

estimators that jointly estimate Xi and X2, whereas the bound (5.59)
would only hold for estimators that marginalize over X2 (instead of esti¬

mating X2). According to the same researchers (e.g., [148]), the fact

that the bound (5.59) is tighter than (5.61) would imply that one should

estimate Xi and X2 jointly in order to obtain the smallest MSE for Xi,
since treating X2 as a nuisance parameter leads to a higher MSE for Xi.

This is a misconception: both BCRBs (5.59) and (5.61) hold for the

MMSE estimator of Xi (assuming that the necessary conditions are ful¬

filled), and hence for any estimator of Xi.

5.2.3 Hybrid Cramér-Rao Bounds

We now consider systems that contain random variables X as well as

parameters 0; the joint pdf of such a system is given by p(x,y|0). We

define the error matrix E(xo)(0) as

E(x°)(0)
E^rv) Erv)
E2feV) Erv)

(5.63)

7 See Example 5.9 and 5.10.
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where:

E[r\9) =

3(*e)'E^rV)

ExY\0

Ey\0

ExY\e

(0(Y)-0)(0(Y)-0)T

(ê(Y)-0)(ê(Y)-0)T_
(ê(Y)-0)(x(Y)-X)T

E2\0)

Ef^'iO)

?(xe)f
J12[Ef">i0)]q

irh EXYle[ixiY) - X)ifY) - X)T]

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

The "hybrid" unconditional information matrix H(0) is defined as:

H(0) =

Hn(ö) H12(0)
H2i(0) H22(0)

(5.69)

where:

Hn(0)

H12(0)

H12(0)

H22(0)

Exne [Ve logp(X, Y|ö)Vj logp(X, Y\0)] (5.70)

ExFie [Ve logp(X, Y[0)VTX logp(X, Y\0)] (5.71)

[H2i(0)]J (5.72)

ExFie [Vœ logp(X, Y[0yTx logp(X, Y\0)] . (5.73)

The elements of the hybrid unconditional information matrix H(0) can

also be written as:

Hn(0) = -Exr|e[VeV^logp(X,y|0)] (5.74)

H12(0) = -Exr|e[VeV^logp(X,y|0)] (5.75)

H22(0) = -EXYle[VyllogpiX,Y\0)]. (5.76)

The inverse of the hybrid unconditional information matrix H(0) is a

lower bound on the error matrix E(xo)(0).

Theorem 5.6. (Hybrid unconditional Bayesian Cramér-Rao bound [172];
see also [170])
Suppose that:

a) the error matrix E(xo)(0) of the estimator (0(y),x(y)) exists, V0,

b) the hybrid unconditional information matrix H(0) is non-singular,

V0,
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c) the support of piy\x, 0) with respect to y does not depend on x

and 0, Vx and 0,

d) the pdf pix,y\0) is differentiable with respect to all coordinates xt

and 0j, for all (x, y, 0) belonging to the support of p(x,y|0),

e the integral B^x\x) = f [x(y) —x]piy\x, 0)dy can be differentiated
>y

under the integral sign with respect to all coordinates xt, Vx and

f) the prior p(x) is zero at the boundary of its support ( "weak unbiased¬

ness condition"),

g) the estimator 0(y) is unbiased, i.e., B^-e\0) = f [0iy)—0]piy\0)dy =

O,V0,
v

h) the integral B(@\0) = f [0(y) — 0]piy\0)dy can be differentiated

under the integral sign with respect to all coordinates 0t, V0,

i) the integral B(0) = / [x(y) — x\pix,y\0)dxdy ("average bias") is

independent of 0, and can be differentiated under the integral sign
with respect to all coordinates 0t, V0,

Then

E(xo)(0) ^H(0)-1. (5.77)

From (5.77), a Cramér-Rao-type bound for 0 can be obtained as:

EF|O[(0(y) - 0)(0(F) - Of] f E(*e)
h [H-\e)] n , (5.78)

From (5.77), one also obtains an unconditional Bayesian Cramér-Rao

bound for the MSE of X:

ExnePOn - X)(x(y) - Xf] f E^e) h [H-\e)f2. (5.79)

Hybrid CRB and Marginalization

Again, one has the freedom to marginalize over certain variables Xi

before computing the information matrix. For example, an alternative

Cramér-Rao-type bound for 0 is given by:

EF|e[(0(y)-0)(%)-0)T] = E(1fe)
>- EYle[VeVjlogpiY\9)], (5.80)
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where

Piy\9)= [pix,y\9)dx. (5.81)
J X

The CRB (5.80) for 0 is derived by first marginalizing over X. The

bound (5.80) is tighter than (5.78) [170].

Remark 5.3. (Marginalization over parameters)
We consider here an alternative to the bound (5.59). One may wish

to marginalize over 0 before computing the information matrix. We

define p(x, 0, y) = 7~1p(x, y\9), where

7=
/ pix,y\0)dxdOdy, (5.82)
Jx,e

assuming that this integral converges. Now, 0 can be treated as a ran¬

dom variable, and one can compute the bound (5.59) with X2 = 0:

Exr[(x(y)-X)(x(y)-X)T]
-1

hEXY[VyllogpiX,Y)] , (5.83)

where:

pix,y)= I p(x,6,y)dß. (5.84)

Note that the error matrix in the LHS of (5.79) depends on 0, whereas

the the error matrix in the LHS of (5.83) does not depend on 0. Both

definitions of the error matrix make sense; it depends on the estimation

problem at hand which definition is the most appropriate.

5.2.4 Summary

There are two general strategies to obtain Cramér-Rao type bounds for

a variable Xk:

a) One computes the inverse information matrix of the joint pdf. The

bound is then given by a diagonal element of that matrix.

b) One marginalizes over certain (perhaps all) random variables Xi f
Xk before computing the information matrix. The bound is given

by a diagonal element of the inverse information matrix of the

resulting marginal.
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Note that the information matrix of the joint pdf is typically large, but

sparse; this sparseness can be exploited while computing the diagonal
elements. Information matrices of marginals are smaller, but they are

usually dense. Cramér-Rao-Type bounds obtained from marginals are

tighter than the corresponding bounds derived from the joint pdf.

In the following, we propose practical algorithms for each of the two

stategies. In Section 5.3, we describe a summary-propagation algorithm
to compute Cramér-Rao-type bounds from the information matrix of the

joint pdf (Strategy 1). In Section 5.4, we develop algorithms for compu¬

ting Cramér-Rao-type bounds from information matrices of marginals

(Strategy 2).

5.3 Cramér-Rao-Type Bounds From Joint

Densities

5.3.1 Standard Unconditional BCRBs

Suppose we wish to compute the standard unconditional Bayesian Cramér-

Rao bound for the MSE of a variable Xk (cf. (5.55)):

Efcfc h [J-1]**, (5.85)

or, the standard unconditional Bayesian Cramér-Rao bound for the MSE

averaged over all variables Xk (cf. (5.56)):

n n

^wkEkk h '^Jwk[3~1]kk- (5.86)
fc=i fc=i

In the RHS of (5.85) and (5.86), the inverse of the (potentially huge!)
matrix J occurs. However:

a) Only the diagonal elements of this inverse are required.

b) The joint probability density p(x, y) has in most practical systems

a "nice" structure, i.e., p(x,y) has typically a non-trivial factoriza¬

tion. As a consequence, J is often sparse.
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c) This sparseness can effectively be exploited by applying the matrix

inversion lemma (Lemma K.2).

As a consequence, the elements [J_1]fcfc can be determined by local com¬

putations that involve the inversion of matrices that are much smaller

than J. Those computations can be viewed as message passing ("sum¬
mary propagation") on a (cycle-free) factor graph of p(x,y). The sum¬

mary propagation procedure is similar to the sum(mary)-product algo¬

rithm; messages (which are in this case matrices) propagate on the factor

graph ofpix, y). They are updated at the nodes according to some rules.

The expression [J_1]fcfc is obtained from the messages along the edge Xk-

In the following, we first investigate a small working example, from which

we then extract the general summary-propagation procedure.

Suppose the pdf p(x, y) is given by

Pix,y) = [[ifiixi,yi)f2ixi,X2,x3))f3ix3,y3)jffxi,yf

kixz,yfffx3,xli,xz,xf J if7ix7,yffsixe,x7,x8)), (5.87)

as shown in Fig. 5.1. The brackets in (5.87) correspond to the boxes

in Fig. 5.1. The unconditional Bayesian information matrix of (5.87)
equals:

l+fll ff f13

12 0 0 0 0 O"
f2l f22

12 12

f23

12 0 0 0 0 0

f31 f32
12 12

j?33 i j?33 i j?33
12 T I3 T 16

f34
16

f'ib f36
16 16 0 0

0 0
f43 f

16 I
44

1
tAA

4 + 16

fib f46

16 16 0 0

0 0 fb3
16

fbi fbb 1 fbb fb6
15 T r6 16 0 0

1

0 0
f63

16

f6i

16

j?65 j?66 1 j?66
16 16 + 18

f67

18

f6S

18

0 0 0 0 0 f876 f7+ff f78
18

0 0 0 0 0 f886 f87

18

f88

18
.

(5.88)
we used the notation:

1fc —

—Exy [Vj,yliogfkix,Y)} (5.89)

= - / pix y)vx. VIT log ffx, y) dxdy (5 90)
'x,y
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Suppose we wish to compute the matrix [J 1]66, which is a lower bound

on the mean square estimation error of Xq (see (5.55)):

EXY[iXfY) - XfiXfY) - X6)T] = E66 h [J-1] 66- (5.91)

We define j(fc£) = ([J ^kf 1, where Ak i is a submatrix of A that

consists of the rows and columns k,k + 1, ...,£ of A. By applying the

matrix inversion lemma to the matrix (5.88) (cf. Lemma K.2, with A = J

and diagonal submatrices An = Ji 2 and A22 = J38), we have:

J(38) f ([J- J38J

f33 i j?33 i j?33

2 + I3 T 16

f43

16

f 30

16

f4b

16

fbb i fbb
b T 16

f46

16

+ f866
f76
18

f86

18

0

0

0

f67

18

f777 + f87
f87

18

f88

18

(5.92)

f231 0 0 0 0 0

f,32 0 0 0 0 0

M/2 +x„+ ff3+ ff

f63
16

0

0

+ f2n

f44 , f
I4 + I(

16

f6i
16

0

0

I2

12

16

fib
16

f55 i j?55
5 + 16

f6b
16

0

0

f231 0 0 0 0 0

f,32 0 0 0 0 0

16

f46
16

fb6

16

f66 i j?66

6 + 18

0

0

0

f67

f777+f877
f87
18

0

0

0

f6S
18

f88
18

(5.93)

(5.94)

where

^h^x3

if f2U
f21

f31

r2

f12

f22
r2

f32
r2

Fl3

f23
r2

f33
r2

X\

'33/

(5.95)

= f;
33 f31

r2
f32
r2

fl" f2U
f21

r2

[£

f12

r2

f22
r2

31

2
f32
r2 (5.96)

Also in (5.96), we used the matrix inversion lemma. The matrix /^/2^x3
summarizes the smallest dashed box on the left in Fig. 5.1. We now
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/l

2/1 Xi\
h h

/Xi
/ 2/5

^^X3
-

^-^ x5

h

h h
fA

2/3
2/4

X6

X7/ h

Xs-

2/7

Figure 5.1: Factor graph of (5.87).

Figure 5.2: Summary propagation for computing BCRB.
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define

:

&h^x3 + ff.
As a consequence

Vx3
, f3: f34

r6
f35
r6

f36
I6

0 0

f43
r6

f44_i_ f44
I4 + 16

f45
r6

f46
r6

0 0

j(38) =

f53
I6

f54
r6

f55_i f55
r5 T x6

f56
r6

0 0

f63
r6

f64
r6

f65
r6

ç66 1 f66

r6 T x8
f67 f68
r8 r8

0 0 0 f76
r8

f77 , f77 f78

h T x8 r8

0 0 0 f86
r8 ff ff

The matri •LVX -/e
is a summary of the second largest dashed bo

(5.97)

(5.98)

left in Fig. 5.1. Similarly as in (5.92)-(5.96), we obtain j(68) from j(38):

j(68)

where

»h +x6

Vx3

^/a ,f 66

->a:6+ X8
f67
r8

f68
r8

f76
r8

f77 , f77 f78

r7 T r8 r8

f86
r8

f87
r8

f88
r8

,f33 f34
r6

f35
r6

f36
r6

f43
r6

f44_i_ f44
M "T" r6

f45
r6

f46
I6

f53
r6

f54
r6

f55 1 f55
r5 T r6

f56
r6

f63
r6

f64
r6

f65
r6

f66
X6

(5.99)

/

(5.100)

J

The matrix l^f6^Xe is a summary of the largest dashed box left in Fig. 5.1.

Eventually, we obtain j(66) from j(68\ again by means of the matrix in¬

version lemma:

J(66)=A^x6+A*/8
where

Vfs^Xe

(

\

f66
r8

f76
r8

f86
1«

f67
r8

f77 , f77
I7 + Ig

f87

+X6,

f68
r8

f78
r8

f88

'\ \

(5.101)

(5.102)

In)

The matrix t-ifs^Xf, summarizes the right box in Fig. 5.1. Since j(66)

([J_1]6 6)_1, it follows from (5.101)

66 6 6 (/*/6 +x6 »fs +X6 (5.103)
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In conclusion, the updates (5.94)-(5.100) can be considered as "closing"
the dashed boxes in Fig. 5.1. Eventually, [J_1]66 is obtained from both

summaries arriving at the edge Xq as in (5.103). It is easy to verify that

the other diagonal elements [J_1]fcfc can be computed similarly.

From this example, it is but a small step to the summary propagation

algorithm for computing standard unconditional BCRBs. We consider

the summaries as messages that are sent out of the corresponding box,
as is illustrated in Fig. 5.2.

At nodes representing differentiable functions, messages are computed

according to the following rule.

Standard unconditional BCRB Summary Rule:

The message out of the node g(xi,..., x#, y) (see Fig. 5.3(a)) along
the edge xe s the matrix

/*Ä-tJQ
= ([(G + M)-1]Ä)-1, (5.104)

where

M = diag(Mx1-ff,---,Mx<-1-ff»0) (5.105)

Gv
A

-ExY[Vxyllogg(Xi,...,Xe,Y)} (5.106)

= -l\ix,yyxylloggixi,...,Xi,y)dxdy,
J x,y

(5.107)

where it s assumed that the integrals (5.108) exist V» and j = !,...,£.

The expression (5.104) can be written in several ways; one can permute

rows and corresponding columns of the matrices M and G (Lemma K.5).
The expectations (5.108) can most often be simplified, since the local

node g typically does not depend on the whole observation vector y, but

on a small number of components yk instead. Nevertheless, a closed-

form expression for the expectations (5.108) may not exist; the expec¬

tations (5.108) may then be evaluated by numerical integration or by
Monte Carlo methods. In the Monte-Carlo approach, one first draws a

list of samples {ix^l\y^)'\ _1
from the joint pdf p(x, y). Then, one
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evaluates (5.108) as an average over the samples {(x(J),y(J))} ,
:

r<?) „Oh (5.108)

N

G„ = -lZ^yTxfogg(x^,...,x^,y^).
3=1

It is usually easy to draw samples from p(x,y); one may generate a

sample (x, y) from p(x, y) as follows:

a) Draw a sample x from p(x),

b) Simulate the channel p(y\x) with as input x; this results in a sam¬

ple y from p(y\x).

Xi

(b) Terminal node.

91

Xk
32

(c) Equality constraint node. (d) Edge Xk.

Figure 5.3: Summary propagation.

The message out of a terminal node g(xi, y) (see Fig. 5.3(b)) is defined

as

Vg^Xt -EXeY[Vxyllogg(Xi,Y)} (5.109)

p(xi,yyxyTxfogg(xi,y)dxidy. (5.110)
xe,y

Half edges do not carry a message towards the (single) node attached to

them; alternatively, they might be thought of as carrying a zero matrix
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as message. For the equality constraint node (see Fig. 5.3(c)), the inte¬

grals (5.108) do not exist, since the node "function" /=(xi, X2, , xf =

(5(xi — X2)(5(x2 — X3)... (5(x£_i — xf is not differentiable. The equality
constraint node has its own update rule; the outgoing message AXrg^x^
is the sum of the incoming messages l^xk^H i^ = 1, f — 1):

£-1

»B^x^Ys^x^B- (5-1U)
fc=i

Deterministic nodes are handled by boxing (cf. Section 4.9.3). Eventu¬

ally, the expression [J_1]fcfc is computed from the two messages l^qi^xk
and l^g2^xk al°në the edge Xk (see Fig. 5.3(d)):

[3-1]kk = ingi^xk+»g2^xk)-1, (5-112)

resulting in the bound:

Efcfc h [J"1]** = i»gi^Xk +»92^XkT1- (5-113)

In the above, we have proposed a message-passing algorithm to compute

standard unconditional Bayesian Cramér-Rao bounds. If one wishes to

compute other Cramér-Rao-type bounds, one needs to slightly modify
the algorithm. More precisely, the rules (5.104), (5.110) and (5.113)
need to be adapted, the other rules remain unchanged. In the following,
we explain how the rules (5.104) (5.110), and (5.113) should be modified

for several other Cramér-Rao type bounds.

5.3.2 Conditional BCRBs

Suppose we wish to compute the conditional Bayesian Cramér-Rao bounds

Ekfy) h [J-^lfcfc, (5.114)

and
n n

^WkEkkiy) h^/wk[3^1iy)]kk- (5.115)
fc=i fc=i

The elements [J_1(y)]fcfc can be computed by the message-passing algo¬
rithm of Section 5.3.1, where the update rule (5.104) is replaced by the

following rule.



218 Chapter 5. Computing Cramér-Rao-Type Bounds

Conditional BCRB Summary Rule:

The message out of the node </(xi,..., xg, y) (see Fig. 5.3(a)) along
the edge Xi is the matrix

Mfl^
= ([(G + M)-1]Ä)-1, (5.116)

where

M = diagGux1^ff,...,^_1^Û) (5.117)

(5.118)

(5.119)

i,...,e.

In addition, the rules (5.110) and (5.113) need to be replaced by

»g^xt
= -EXAYyxyTxfoggiXi,y)} (5.120)

pixffyxyTxfoggixi,y)dxi, (5.121)

and

Ekfy) h [3-\y)]kk = ipgi^Xk + »g2^xkrl- (5-122)

respectively. Note that the expressions (5.119) and (5.121) involve avera¬

ging w.r.t. the posterior pdf p(x|y), whereas (5.108) and (5.110) involve

averaging over the joint pdfp(x,y). If a closed-form expression for (5.119)
and (5.121) is not available, one may resort to approximative methods

such as numerical integration or Monte-Carlo methods. In the latter

approach, the integrals in (5.119) and (5.121) are replaced by averages

over a list of samples from the posterior p(x|y). Note that it is usually

substantially more difficult to sample fromp(x|y) than fromp(x,y).

5.3.3 Alternative Unconditional BCRBs

We consider now the alternative unconditional Bayesian Cramér-Rao

bounds

EkkhEy^-fY^kk}, (5.123)

G%3 = -ExiYWxyl loggiXi, ...,Xt, y)]

= - I Pix[yyxyX]loggixi,... ,Xi,y)dx,
JX

where it is assumed that the integrals (5.119) exist Vi and j
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and

n n

Y^wkVkk h Y,wkEY [[J^cnw] • (5-124)
fc=i fc=i

If the elements EY [[J~1(Y)]kk] can not be computed analytically, they

can be evaluated as an average over a list of samples {f3>} _.
from the

pdfpiy):

N

EY [[3-\Y)]kk] = X)[J_1(î/u))]fcfc- (5-125)
3= 1

Each expression [J_1(y^)]fcfc may be determined by the message passing

algorithm of Section 5.3.2.

5.3.4 Standard CRBs

Standard Cramér-Rao bounds for the MSE of a particular parameter 0k

can be computed by the message passing algorithm of Section 5.3.1,
where the update rule (5.104) is replaced by the following rule.

Standard CRB Summary Rule:

The message out of the node giOi,.. .,0i,y) (see Fig. 5.4)
edge 0i is the matrix

along the

l*g^t = ([(G + M)-%)-\ (5.126)

where

M = diag^e^, •
•, Me^-^ 0) (5.127)

Gtj = -EnBy9ylloggi0i,...,0i,Y)] (5.128)

= - fpiy\meylloggiOi,...,Oe,y)dy, (5.129)

where it is assumed that the integrals (5.129) exist V« and j -

= !,...,£.
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Oi
Oi

®£-l

Figure 5.4: Generic node.

The rules (5.110) and (5.113) are replaced by:

A^e,
= -EneyeyTefoggiOi,Y)] (5.130)

'

piy[0yeyTefoggi0i,Y)d,y, (5.131)

and

Ekf9) h [F-^Jfcfc = i»gi^Xk+»g2^X, (5.132)

respectively. Note that (5.129) and (5.131) involve averaging w.r.t. the

pdf piy\9). If the expressions (5.129) and (5.131) are intractable, they
can be evaluated by numerical intregration or Monte Carlo integration.
Note that it is usually easy to sample from the pdf piy\9).

We illustrate the above summary propagation algorithms by two simple

examples.

Example 5.4. (Example 5.1 and 5.2 revisited)
We (re-)derive the (B)CRBs of Example 5.1 and 5.2 by mechanically

applying the message-passing algorithms we described in the above. First,
we derive the CRB (5.15), then, we derive the BCRBs (5.44), (5.45)
and (5.46).

The CRB (5.15) may be computed by the summary-propagation proce¬

dure shown in Fig. 5.5. The messages /lx Qfc along the edges Ok are

computed according to the rule (5.131), resulting in:

Vp^Ok -EY\0 ^ogpiY\0k) 1/a2 (5.133)

The message /i,g^e follows from the update rule (5.111) for equality
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piyi\9i

ei rf
piy2\92

o

e2

piyN\9N)

\yi V2 WN

Figure 5.5: Computing the CRB (5.15) by message passing.

constraint nodes:

N

fc=i

N

fc=l

2

Fie ^PiY[9k,

(5.134)

(5.135)

(5.136)= N/a

The CRB follows from (5.132):

Ei9)h[F-1i9)} = i»B^e)-1=a2/N.
We now derive the standard unconditional BCRB (5.44) (see Fig. 5.6)
The messages /j, Xk along the edges Xk are obtained from (5.110):

"

d2

dx
Vp-tXu -EXkY

— logpiY\Xk) 1/a2

(5.137)

(5.138)

The message /lx^^x is computed according to the update rule (5.111)
for equality constraint nodes:

N

f^B^x - Z^Vp^Xk
k=i

(5.139)

N

= ~

/ ^XkY
k=l

^logpiY\Xk) (5.140)

= N/a2. (5.141)
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pix)

piyfxi piy2\x2

x

Xo

\yi 'U2

xN

piyfxn)

WN

Figure 5.6: Computing the standard unconditional BCRB (5.44) by

message passing.

The message /ix^rg follows from (5.110):

Vx^b -EXY f-logpiX)
dxz

-E

x
f-logpiX)
dxz

(5.142)

The standard unconditional BCRB for X follows from (5.113):

E h [J-1] (5.143)

(5.144)
i

(5.145)

(Mb^x+Vx^b)
d2

= [N/a E

x
dx2

logp(X)

The BCRBs (5.45) and (5.46) are computed in a similar fashion. D

Example 5.5. ((B)CRBs for (unmodulated) constant phase)
We consider again the model:

Yk = e^ + Nk, (5.146)

where Nk is complex white Gaussian noise with (known) variance 2<r2
Ni

i.e., a2N per dimension, and © G [0, 2ir). We investigate the CRB for the

problem of estimating the phase 0 from N observations yi,... ,yN-

The factor graph of Fig. 5.7 depicts the conditional pdf piy\0). The
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factors piyk\0k) are defined as

piVk\9f =
2-na2N

\yk-e^\2/2a2N (5.147)

Since the factor graph of Fig. 5.7 is identical to the one of Fig. 5.5,

0

piyi\9i

ei rf
piy2\92

02

\yi 'U2

piyN\9N)

WN

Figure 5.7: Computing the CRB for estimating a constant phase.

the CRB of the problem (5.146) is computed by the message-passing

procedure we applied to obtain the CRB (5.15). The resulting CRB is

identical to (5.15), as easily can be verified.

For the problem (5.146), the CRB (5.15) is invalid at finite SNR: 0

takes values in a finite interval, and all estimators are therefore biased.

On the other hand, the CRB (5.15) is valid for all 0 G (0, 27r) as a2 —> 0

or N —> oo.

Note also that the MSE is not a suitable error measure if 9 f n, since

the phase 0 is defined up to a multiple of 27r. A similar but suitable

error measure is given by:

Si6) = [siêiy) - 9)}2piy\9)dy

f EYle si§iY) - 9)}2 ,

(5.148)

(5.149)

where 9 and 9(Y) G [0, 2ir), and s(-) is a periodic sawtooth function with

period 27r, as depicted in Fig. 5.8.

If the MSE is not a suitable error measure for the estimation problem
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Figure 5.8: Periodic sawtooth function s(0) with period 27r; one period
is shown.

(5.146), is the CRB (5.15) relevant at all for the problem (5.146)? For¬

tunately, the answer is "yes". Note first of all that

5if = E(rr) ^ Ey|Q=w (0(F) - n

where 0(F) G [0,2tt).

Moreover, due to symmetry,

5(0)=5(tt), V0g[O,2tt).

As a consequence of (5.150) and (5.151),

(5.150)

5(0) = Ey|G= 0(Y) -TT V0 G [0,2tt).

(5.151)

(5.152)

Therefore, the CRB (5.15), which also holds for 0 = tt, is a ("high-SNR")
lower bound for 5(0), for all 0 G [0, 2ir). D

5.3.5 Hybrid CRBs

Hybrid Cramér-Rao bounds for the MSE of a particular variable Zk

(random variable or parameter) can be computed by the message-passing

algorithm of Section 5.3.1, where the update rule (5.104) is replaced by
the following rule.
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Hybrid CRB Summary Rule:

Consider the generic node gizi,... ,zg,y) (see Fig. 5.9), where the

variable Zk (k = 1,2 ..., £) is a parameter (i.e., Zk = Of or a random

variable (i.e., Zk = Xf. The message out of the node alorig the edge

Zi is the matrix

Mfl^
= ([(G + M)-1]tt)_1, (5.153)

where

M= dia,g(fiZl_g,...,tiZt_i_g,0) (5.154)

Gt} = -EXYle[Vzyl log g(Zi,.. .,Zi,Y)] (5.155)

= ~ Pix, y\9yzy^j log g(zi, ...,ze, y)dxdy,
"x?y

(5.156)

where it is assumed that the integrals (5.156) exist Vi and j = 1 £

X, . . .
,
t,.

Zi
Zi

%£-!

Figure 5.9: Generic node.

The rules (5.110) and (5.113) are replaced by

A^z,
= -Exy|e[Vz,Vl[log</(^,y)]. (5.157)

and

EXYle[izkiY) - ZfifiY) - Zk)T] hifi^Zk+Vg^ZkT1- (5.158)

respectively.

The expressions (5.156) and (5.157) involve averaging w.r.t. the pdf

pix,y\9). If the expressions (5.156) and (5.157) are intractable, they
can be evaluated by numerical intregration or Monte Carlo integration.
Note that it is usually easy to sample from the pdf p(x,y|0).
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In the following sections, we compute standard unconditional BCRBs for

"standard" estimation problems:

a) Filtering in state-space models (Section 5.3.6)

b) Smoothing in state-space models (Section 5.3.6)

c) Estimation of the parameters of state-space models (Section 5.3.7).

The extension to the other BCRBs is straightforward.

5.3.6 Estimation in State-Space Models

We consider a state-space model with freely evolving state Xk .
The pdf

pix, y) of such a system is given by

N

Pix,y) =pfxf W_pixk[xk-fpiyk\xk), (5.159)
fc=l

its factor graph is shown in Fig. 5.14(a). Filtering corresponds to forward

sum-product message passing through this factor graph. The standard

unconditional BCRB for filtering is also computed in a forward sweep, as

illustrated in Fig. 5.14(b) (ignore at this point the backward messages JjP
and y«5); by applying the update rules (5.104) and (5.111) to the factor

graph of Fig. 5.14(a), one obtains the recursion {k = 0,..., N — 1):

"(G + diagC/x^O))-11~ F
_

A^fc+i —
22

A^fc + Gfc,n Gfc,i2
Gfc,21 Gk,22

'22y

Gfc,22 Gfci2i(Axfc + Gfc,ii) G fc,12

if ~ F , Y

A^fc+l T A^fc+l;

where:

GMi = EXY[-Vxyl/ogpiXk+i[Xk)]

(5.160)

(5.161)

(5.162)

(5.163)

(5.164)

Gfc,12 [Gk,2i]T=EXY[-Vxylk+1 logp(Xfc+1|Xfc)] (5.165)

Gfc,22 = EXY[-yXk+yT iogpixk+i[Xk)\

»Ï =EXY[-Vxyl/ogpiYk\Xk)].

(5.166)

(5.167)
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The recursion is initialized by:

^ = EXo[-VxylfogpoiX0)}. (5.168)

If the expectations (5.164)-(5.167) cannot be evaluated analytically, they
can easily be evaluated by Monte-Carlo methods; indeed, in most appli¬

cations, it is easy to sample fromp(xfc, Xk+f andp(xfc, yf. The standard

unconditional BCRB for filtering is then (A; = 1,..., N):

EXY[ixk(Y) - XfixfY) - Xk)T] = Ekk h i^y1, (5.169)

which was derived earlier in [192]. We have thus shown that the recur¬

sion of [192] can be viewed as forward-only message passing on the factor

graph of (5.159). In the following, we derive the standard unconditional

BCRB for smoothing, which to our knowledge is novel. Smoothing cor¬

responds to updating messages according to the sum-product rule in a

forward and a backward sweep [119]. Not surprisingly, the correspon¬

ding standard unconditional BCRB is also computed by a forward and

backward sweep (Fig. 5.14(b)); the forward recursion is given by (5.160)-
(5.168), the backward recursion for fik and [ik is analogous. The back¬

ward recursion is initialized by fiN = 0. The standard unconditional

BCRB for smoothing is given by (A; = 1,..., N):

Ekk h itâ + ßi3 + »IT' (5.170)

Example 5.6. (BCRB for unmodulated time-variant phase)
We consider a channel of the form:

Yk = e^+Nk, (5.171)

where Nk is an i.i.d. complex Gaussian random variable with (known)
variance 2a2N, i.e., a2N per dimension. The evolution of the phase 0^ is

modelled as a random-walk process:

0fc = (0fc-i+W/fc)mod27r, (5.172)

where Wk is a zero-mean (real) Gaussian random variable with known

variance af. The joint pdf of the system is given by

N

Pi0,y) = poiOo)l[pi9k\9k-fpiyk\9k), (5.173)
fc=i
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0fc-i 0fc

Pi9k\9k-f

piVk\9f

yk

where

Figure 5.10: Factor graph of (5.173)

Pi9k\9k-f = (2f4)?.^-l/2 E<
n£Z

-((ek-ek-l)+n2TT)212a2w (5.174)

and

Piyk\zf = (271-0-^) e
2 \-l „-\Vk-zk\2/2f

(5.175)

In the following, we will assume that poi9o) = 1/2tt for all 0o G [0, 2rr). A
factor graph of the model (5.173) is shown in Fig. 5.10. The figure shows

only one section ("time slice") of the graph; the total graph consists of

many such sections, one for each time index k.

We investigate here the unconditional BCRB for the problem of esti¬

mating the phase 0 from N observations yi,... ,yN- The system (5.173)
is a state-space model with freely evolving state, hence, we can apply the

update rules we derived earlier in this section. In this case,

G
kk

t~\kk+ l

rik+i fc+i
^k

t4

Er-

= -G

d2

dO
^^log^Ofc+ilOfc)

kk

Gk k

k

=
E,

•@Y
dO2 log£>(Yfc+l|0AH

1

T2

>w
-2- (5.176)

(5.177)

(5.178)

4-- (5.179)

No closed-form expression exists for Gkk; the approximation (5.176) is

satisfactory as long as a^ < 1, as can be seen from Fig. 5.11. We obtain
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aw

Figure 5.11: /-i kk

^k
of as a function of aw

the forward and backward recursion

~ F

Vk =

i i / F
i y1

-

ZT
~

"ZT [Vk-i +-ZT)
w w w

(5.180)

t*k =

-F
1

= A*fc +-r
"AT

(5.181)

A? =

1 1 ( B
1 V1

"

7f~ ~7/rVlk+l
+ a~rJ

W W w

(5.182)

M? =

-B
1

(5.183)
'w

The standard unconditional BCRB for filtering and smoothing is given

by (5.169) and (5.170), where the involved messages are given by (5.180)-
(5.183). In Fig. 5.12, those BCRBs are shown for particular values of a2N
and (Tyy- As can be seen from Fig. 5.12, the BCRB for filtering (forward
sweep) decreases as k increases; the BCRB eventually converges to a

steady-state value—as one would expect. The same holds for the BCRB

of the backward sweep. The BCRB for smoothing attains the largest
values at both ends of the block (i.e., for k = 1 and k = N); it evolves

to a steady-state value towards the middle of the block. The standard

unconditional BCRB for the MSE averaged over a block of length N=

100 is shown in Fig. 5.13. As expected, the BCRB decreases as the

>% 72

Note that the BCRBs are only valid as a2N —> 0, since the prior p(0)
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«,10 'r,
CO \

o

Figure 5.12: BCRBs for unmodulated random-walk phase model with

N = 100, aN = 0.446 rad (4dB) and af = 10"4 rad2;
Shown are the BCRB of the forward sweep, i.e., filter¬

ing (dashed line), BCRB of the backward sweep (dashed-
dotted), and BCRB of smoothing (solid).

defined as:

N

PiO)=Poi9o)l[pi9k\9k-i),
fc=i

is non-zero at the boundary of its support.

(5.184)

D

So far, we have considered state-space models with freely evolving state.

We now focus on general state-space models, i.e., input-driven state-

space models. The pdf p(w, x, y) of such a system is given by:

N

piu,x,y) =pfx0) \\piuk,Xk,yk\xk-f, (5.185)
fc=i

where U is the input process. The factor graph of (5.185) is shown

in Fig. 5.15(a), where pk stands for the factor piuk,Xk,yk\xk-f, for k =

1,2,... Applying the update rule (5.104) to this factor graph amounts
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Figure 5.13: BCRB for the MSE averaged over a block of length N -

100, with a2w = 0,10~6,10~4,10~2, and 1 rad2.

to the forward recursion (see Fig. 5.15(b)) (A; = 0,..., N — 1):

if (G + diag(/Lxf,0,0))

,F

22

A^fc + Gktn Gfcii2 Gkti3
Gfc,21 Gfcj22 Gkt23
Gk,3i Gfci32 Gk,33

and a similar backward recursion (A; = 0,...,X — 1):

/xf = ( (G + diag(0,/xf+1,0))"

Gfc,n Gfcii2 Gkti3
Gfc,2i Gfci22 + A^fc+i Gfc^ß
Gfc,31 Gfc 32 Gfc 33

where:

(5.188)

(5.189)

Gfc,n =EUXY[-VxylfogpiUk+i,Yk+i,Xk+i\Xk)} (5.190)
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Xn
Xi X2

pfxf p(xi|x0) p{x2\xi)

piyfxi

yi

(a) Factor graph

piy2\xf)

2/2

i4 Af Mf ~F

A^2 V2

= =

^~B
A^o Mf

\y

Af M27

t^

»2

y y:I

(b) Summary propagation

Figure 5.14: State space model with freely evolving state
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GM2 =EUXY[-Vxylk+ilogpiUk+i,Yk+i,Xk+i\Xk)} (5.191)

GM3 = EUXY[-Vxylk+1logpiUk+i,Yk+i,Xk+i\Xk)] (5.192)

Gfc,22 = EUXY[-VXk+ylk+i logpiUk+i,Yk+i,Xk+i\Xk)] (5.193)

Gfc,23 = EUXY[-VXk+yTUk+i logpiUk+i,Yk+i,Xk+i\Xk)} (5.194)

Gk,33=EUXY[-VUk+ylk+ilogpiUk+i,Yk+i,Xk+i\Xk)}, (5.195)

and Gfcjj = [G^^j] for i,j = 1,2 and 3. To compute the expecta¬

tions (5.190)-(5.195), the joint pdf p(«fc+i, Xfc, Xfc+i,yfc+i) is required. It

is usually straightforward to sample fromp(wfc+i,Xfc,Xfc+i, yk+i)- There¬

fore, when a closed-form expression for the expectations (5.190)-(5.195)
does not exist, they may be evaluated by Monte Carlo methods, as in

state-space models with freely evolving state. The forward recursion is

initialized by:

^ = EXo[-VxylfogpoiXo)}. (5.196)

The backward recursion is initialized by /Lxf^ = 0.

u U:I

X0 Xi x2

pfxo)
y

pi

i %

P2

2

(a) Factor graph.

AX i-t

Axf

H

i4

A*o i4

2yi

A*f

y

(b) Summary propagation.

Figure 5.15: General state-space model.
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The standard unconditional BCRB for filtering Xk is again given by

(5.169), where the messages /Lxf are now updated according to (5.186)-
(5.187); the standard unconditional BCRB for smoothing Xk is of the

form ik=l,...,N):

EXkY[ixfY) - XfixfY) - Xkf] h (/xf + /xf )" (5.197)

The messages /lx^ (see Fig. 5.15(b)) are computed from the messages /Lxf
and /Lxf as (A; = 0,..., N — 1):

M?+i = (G + diag(/x£,/i£+i,0))"
33

Gfc,n
Gfc,21
Gfc 31

rf Gfc,12
Gfcj22 + Mfe4

Gk,32

Gfc,13
Gfc,23

Gfc,33

The standard unconditional BCRB for filtering and smoothing the in¬

put Uk is given by (A; = 1,..., N):

EUkY[iûkiY) - UfiûfY) - Ukf] h [a4H '• (5.200)

The message fJ.k+1 in (5.199) is a zero matrix in the case of filtering; for

smoothing, fJ.k+1 is computed by the recursion (5.188)-(5.189).

Example 5.7. (BCRB for dynamical systems perturbed by ad¬

ditive Gaussian noise)
We consider the (non-linear) dynamical system:

Xfc+i = ffXf+Wk

Yk = hfXf + Nk,

(5.201)

(5.202)

where Xk G M, Yk G W71, ff) and hkf) are in general non-linear func¬

tions, and Wk G M and Nk G Mm are i.i.d. zero-mean Gaussian random

vectors with (known) covariance matrices Q^ G and Rfc G

respectively. A factor graph of (5.201)-(5.202) is depicted in Fig. 5.16(a).
The figure shows only one section ("time slice") of the graph; the total

graph consists of many such sections, one for each time index k. In

the following, we compute the standard unconditional BCRB for esti¬

mating the state Xk from observations yi,... ,yN- We can not directly

apply the BCRB summary-propagation algorithm to the factor graph
of Fig. 5.16(a), since the graph contains deterministic nodes, i.e., two ad¬

dition nodes and the (deterministic nodes) corresponding to fk and hk.
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=
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(a) Factor graph with deterministic nodes

Pixk\xk-f

Xk-

N
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fk +

PiVk\xk)

Xk

N
Nk

+

[yk

(b) Boxing

Figure 5.16: Factor graph of (5 201)-(5 202)
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We solve this problem by combining the deterministic nodes with conti¬

nuous nodes ("boxing") as illustrated in Fig. 5.16(b). The upper dashed

box stands for the factor:

pixk\xk-f =

l
f,-l/2fa-A(xt-1))TQ-1(xt-/t(xt_1))(„n^py fc| l>

vWnIQ*l
= Jfixk \fkixk-f,Qk) (5.204)

the other dashed box stands for the factor:

n(ii, It, 1 —

-
p-l/2(yk-hk(xk))T'R-k1(xk-hk(xk)) (K OHK')p[VkYxk)

yWrWkl
{ }

= Niyk \hixk),Rk). (5.206)

By applying the update rules of Section 5.3.1 to the graph of Fig. 5.16(b),
one obtains the forward recursion (5.160)-(5.163), and a similar back¬

ward recursion, where:

GMi = EXY[-yxyTXk logp(Xfc+i|Xfc)] (5.207)

= EJC[C£+1Q7-1Cfc+1] (5.208)

Gfc,i2 = [Gfc,2i]T=EXy[-VXfcV^+1 logp(Xfc+i|Xfc)] (5.209)

= -Ex[Cf+1]Q^ (5.210)

Gfc,22 = EXY[-yXk+yTXk+i logp(Xfc+i|Xfc)] (5.211)

= Q^1 (5.212)

III = EXY[-Vxylk logp(yfc|Xfc)] (5.213)

= Ex[Df+1R-j1Dfc+i], (5.214)

with

C^+i = ^xkfkixk) (5.215)

Dfc+i = VXfc+1^+1(xfc+1). (5.216)

The forward recursion (5.160)-(5.163) can be written as:

a4Vi = Qk1 -Qk^x[Ck+i]ipï + Ex[CTk+1Qk1Ck+i]f1

Ex^l^Q-1 + Ex[E>l+1RkyDk+i}. (5.217)

The forward recursion (5.217) was derived earlier in [192]. The backward

recursion is similar. The standard unconditional BCRB for filtering and

smoothing is given by (5.169) and (5.170) respectively.
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Figure 5.17: Factor graph of (5 218) (5 219)

We now consider the linear dynamical system8 (see Fig 5 17)

Xfc+i = AkXk + Wk (5 218)

Yk = BkXk + Nk, (5 219)

where the matrices A^ and B^ are known ("given") Note that the two

factors (5 205) and (5 206) are in this case Gaussian distributions in X

and Y

pixk\xk-f =

l
p-l/2(xk-AkXk-1)TQf(xk-AkXk-1) (K99Q)Py fc| U

fi2ffQk\
^ '

( I ) =

1
p-l/2(Vk-BkXk)TRf(xk-BkXk) (5 221)Pym k)

fi2nr\Rk\
^ '

Therefore, the joint pdf p(x,y) is Gaussian

The expressions (5 207)-(5 214) reduce to

Gfc n = ExY[-VxyIk logp(Xfc+i|Xfc)] (5 222)

= Af+1Q^1Cfc+i (5 223)

Gfc i2
= [Gfc 2i]T=Exf[-V'xylk+1 logp(Xfc+i|Xfc)] (5 224)

= -Bf+1Q-! (5 225)

Estimation in linear dynamical systems is reviewed in Appendix H
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(5.226)

(5.227)

(5.228)

(5.229)

i

(5.230)

The recursion (5.230) may look familiar to the reader who has some

background in Kaiman filtering (see Appendix H). Indeed, the recur¬

sion (5.230) is nothing but the Kaiman update rule for inverse covariance

matrices. Table H.3 contains the Kaiman update rules for two standard

(compound) nodes; the update rules for the mean (m), covariance ma¬

trix (V) and inverse covariance matrix (W) are given. If one applies the

update rules 5 and 6 for W to the graph of Fig. 5.17, one obtains (5.230).
This does not come as a surprise: We underlined earlier that the joint

pdf pix,y) of the system (5.218)-(5.219) is Gaussian; the standard un¬

conditional BCRB (5.25) holds with equality if p(x, y) is Gaussian, as we

mentioned at the beginning of this chapter. D

5.3.7 Cyclic Graphical Models

So far, we have developed message passing algorithms for computing

Cramér-Rao-type bounds for systems represented by cycle-free graphs.

Many systems, however, are most naturally represented by cyclic factor

graphs, e.g., coupled state-space models, which are ubiquitous in signal

processing. Since the summary propagation algorithms of Section 5.3.1

to 5.3.5 perform local update rules, they could in principle also be ap¬

plied to a cyclic graph. Because of the cycle(s), the algorithms would be

iterative with no natural termination; in addition, one would not obtain

the exact (B)CRBs. In order to obtain the exact (B)CRBs, one needs

to transform the cyclic factor graph into a cycle-free graph, for exam¬

ple by clustering or stretching certain nodes and edges [103]. Compu¬

ting (B)CRBs by applying the summary propagation algorithm on the

resulting cycle-free graph is most often feasible, since the computational

complexity scales cubically (not exponentially!) with the cluster size.

Gfc,22 = ExW-Vœfc+1Vffc+ilogp(Xfc+i|Xfc)]

1% = ExY[-VxylklogpiYk\Xk)]
= Bfc+lRfc+iBfc+:b

and the recursion (5.217) becomes:

A^Vi = Q^-Q^Afc+i^f + Af+1Q^Afc+i)

•Afc+iQ^ +Bfc+iRfc+iBfc+i-
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As an illustration, we compute the standard unconditional BCRBs for

the problem of estimating the parameters of a state-space model, which

is a standard problem in signal processing; we first consider constant

parameters, then, time-variant parameters. For the model with constant

parameters, we will derive the standard unconditional BCRBs explicitly

by applying the matrix inversion lemma to the unconditional Bayesian
information matrix. This will amount to message passing on a cycle-free
factor graph obtained by clustering. For the model with time-variant

parameters, we will list the message update rules for computing the stan¬

dard unconditional BCRBs (without deriving them explicitly).

From both examples, it will become clear how the general update rule

(5.104) for standard unconditional BCRBs (and likewise for the other

(B)CRB update rules) can be extended to factor graphs in which some

of the variables are represented by several edges, as is often the case after

clustering or stretching [103].

State-Space Model with Constant Parameters

As a first example, we consider a state-space model whose transition

probabilitiesp(xfc|xfc_i, 0) are parametrized by an unknown constant pa¬

rameter vector © with prior p&iO). Such a system is in general described

by the pdf

N

pf),x,y) = pçf0)pfxf) W_pixk[xk-i,9)piyk[xk)- (5.231)
fc=i

A factor graph that represents (5.231) with N = A is shown in Fig. 5.18(a).
As an illustration, we compute the standard unconditional BCRB for the

variable X3 and 0; the other variables Xk (A; = 0,1, 2, 4) can be handled

similarly. As in Section 5.3.1, we will determine the BCRBs by recur¬

sively applying the matrix inversion lemma (Lemma K.2). It will amount

to BCRB summary propagation on the tree depicted in Fig. 5.18(c), ob¬

tained by clustering the state variables Xk and the parameter ©, as

shown in Fig. 5.18(b).
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The unconditional Bayesian information matrix of (5.231) equals:

where

fOO i f00

l0 Til
fOl
ii 0 0 f06

II 0

II
,rii

i fii i fii
yi +ii +12

f12

12 0 fie . fie

ii +I2 0

0
f21

x2 y222+f222+f322 f23
I3 ff+ff 0

0 0 f32
I3 y3 +13 +14

f36 . j.39

I3 +I4
f34
I4

feo
ii

fei . j.ei

Il +I2 ff+ff f93 . f63 f99 1
v^4 »ee

13 +14 te t2^î=iIî
f6i
I4

0

e

0 0 f43
I4

f40
I4

44, f44
y4 +14

(5.232)

f00
r0

A

-Ex[Vœ0Vj0logp0(*o)], (5.233)

f88
Ie

A

-Ee[Ve S7TelogpeiO)\, (5.234)

and for k = 1,... ,4,

yf = -Exre[VœfcV^logp(yfc|Xfc)], (5.235)

ffcJ = -Exe[V^V^logp(Xfc|Xfc_i,©)], (5.236)

ff = -Exe[V^V^logp(Xfc|Xfc_i,©)], (5.237)

ff â [ff]T, (5.238)

ff = -Exe[VeVjlogp(Xfc|Xfc_i,©)]. (5.239)

The first four rows and columns of J correspond to Xo through X3,
whereas the fifth and the sixth row and column correspond to © and X4

respectively. Obviously, one has the freedom to order the rows and

columns in the Bayesian information matrix as one wishes. We have cho¬

sen this specific order to make the connection to BCRB summary propa¬

gation as clear as possible. From the standard unconditional BCRB (5.25)
and the definition (5.232) of the unconditional Bayesian information ma¬

trix, it follows:

EXY[ix3(Y) - XfixfY) - X3)T] h [J-%4 (5.240)

EeW(0(y)-0)(0Cn-e)T] h [J^V (5.241)

In the following, we compute [J_1]44 and [J_1]s5 by means of the ma¬

trix inversion lemma. First, we apply this lemma to J (cf. Lemma K.2
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with A = J, An = Ji i and A22 = J2 6), which leads to

j(26) a([j_!- 2 6)

yï+ff+f,

ff y222+f222+f322 f23
I3

f91 . f 91

Il +I2 ff+ff

\r334-f334-f3

y3 +13 +14

f93 1 f 93

I3 +I4

fie 1 fie
ii +I2

ff+ff
f39 . f39
I3 +I4

4 fC+E

fxlu 0 0 0 fI
eo

(f0+f«

f43
I4

oo\-i

i,F 4-f11 f12

Ml, 11+12 19

f21 22 _if22 _if2
12 y2 +12 +13

12

f22 .

f ,fei
Atl,21+t2

f32
I3

f92 . f92

12 +I3

0

0

\r334-f334-f33

y3 +13 +14

f93 . f93

I3 +I4

li

f/° 0 0 0 ff°

Mfiirf
ff+ff
f39 . f39
13 +14

An,22T2_,l=2 ^

(5.242)

0

0

f3'

14

f9

I4

44, f44

y4 +14

f94

(5.243)

0

0

f34
I4

y4 +14

where

with

Af

and

F A ~ F

Mi = Mi

~F

Mi,n
~ F

Ml,21

~F

Ml,12
~ F

Ml,22

f00
If) f|

00

We now define

flO

fSO

fOl

îf
cdl
rl

Mi
(7 A

0

M?,

foe

fie

ff
2 3

(5.244)

(5.245)

(5.246)

(5.247)

therefore

Mo"

Af

Mo,11

Mo,21

Mo,12

Mo,22

[Mf + Fi]"

fOO
r0

2 3

(5.248)

(5.249)
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where

and

M,
F A

Fi

llF
Mo,11

0 nF
Mo,12

0 0 0

Mo,21 0 Mo,22

fOO
rl

fOl
ri

foe
ri

flO
rl ff fie

ri

ceo
ri

c81
rl

fee
ri

.

(5.250)

(5.251)

The matrix /j,f is the summary of the left most dashed box in Fig. 5.18(b),
whereas fi1 summarizes the two left most dashed boxes. One obtains

the message /Lxf from fi1 by incorporating the observation y-y accor¬

ding to (5.244). The latter is nothing but the BCRB message update
rule (5.111) for equality constraint nodes, applied to the component Xi;
the entries corresponding to O remain unchanged.

Along the same lines, one obtains

J(36) f ([J- 36

+ ff
_.22 i f22 i f22
y2 + 12

f32
l3

v33

y3

ff + if

+ f333 + £

f93 . f93
I3 + I4

33

4

ff+ff
f39 . f39
I3 + I4

Ml,22 T 2-,r=2 Lt

f49
I4

ff 0 0 f! i]TKii+f2iir1[:ff 0 0 f91

F

M2,ll + f322 M2.12 T I3

f32
I3

F ,
f92

M2.21 + l3

0

v33

y3 + f333 + f.
33

4 1^ + t
39

4

f34
I4

f94

f93 . f93
I3 + I4

l,F
+
V4 fe

M2,22 T 2-,r=3 h

f49
I4

.44

(5.252)

y4

[4

+ f|
,44

f34
I4

f94
I4

,r44
,
f4

y4 + I4
44

(5.253)

(5.254)

where

F & ~ F , U

1*2=^2+^2 1 (5.255)

_ F A

M2 =

~ J? ~ w

M2,ll M2,12
_ F ~ F

M2,21 M2,22

[Mf + Fa]-1
2 3

(5.256)
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and

with

rf =

yf o

0 0
(5.257)

Mf

i/F 0 i/F
Mi,ii

u
Mi,12

0 0 0

nF 0 nF

Ml,21
u

Ml,22

(5.258)

and

r2
f21

r2

fei
r2

f12

r2

f22
r2

f62

fie
r2

f2e
r2 (5.259)

The matrices /lx2 an(i A2 can be interpreted as messages, as depicted
in Fig. 5.18(c). The message [iF is computed from /lx2 by incorporating
the observation 2/2 according to (5.255), which is completely analogous
to (5.244).

One obtains j(46) from j(36) as follows

j(46) a

([J_1] 46J

M3,ll

M3.21

f33
"

M

fS3

p43

M3,12

M3,22

f3e

c4e

f34
M

r4

yr

(5.260)

(5.261)

where
J? A > j?

M3 =M3 M37, (5.262)

_ F A

M3 =

~ T? ~ J?

M3,ll M3,12
~ F ~ F

M3,21 M3,22

[Mf + Fs]-1
2 3

(5.263)

(5.264)

and

..u A \yf 0

M3
-

0 0
(5.265)
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with

and

Mi

'3 =

11F
A*2,ll

0 M2,12

0 0 0

nF
M2,21

0 M2,22

f22
r3

f23
r3

f2e
r3

f32
r3

f33
r3

f3e
r3

c82
r3

c83
r3

fee
r3

.

(5.266)

(5.267)

Similarly, J*-45-1 is given by

J(45) "([J-1^

where

M3

Ml" Mf M3

M3,ll + M3,ll M3,12 + M3,12
F _i_

~ B F ~ B

M3,21 + M3,21 M3,22 + M3,22

A3,11 A3,12

A3,21 A3,22

/ / f33
r4

f3e
r4

f34
M

c83 fee fS4

I \
f43

.
r4

f4e
r4 y|4 + f444 J

^ v1

A 2/

(5.268)

(5.269)

(5.270)

(5.271)

(5.272)

We now define

M4
M4,ll M4,12

M4,21 M4.22

0 0

0 y44
(5.273)

As a consequence,

((

Af =

V

f33
M

fS3
r4

f43
r4

f3e

M4,ll

A*4,21
f4e

c34

M4,12

M4,22

c84
r4

f44
r4

^ v1
j

(5.274)
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11 ,,B i
f44 f43

A*4,ll
T I4 I4

,.B ,
f40

A*4,12
T I4

-'\ \
-1

= f34 f33
I4 I4

e38

r4 . (5.275)

Iv ,.B , c84 c83

. M4,21
T I4 I4

,.b ,
fee

M4,22
T I4

. J2 3/

= (([»tf+'OJ"1 (5.276)

with

"

m|ii 0 m|i2o
'

Mf = 0 0

. m|2i 0

0

M4,22 J

, (5.277)

and

f33 c38 f34
I4 I4

F4 =
c83
r4

fee fS4
i4 i4

(5.278)

f43
L x4

f4e f44
i4 i4

The equality (5.275) follows from Lemma K.5. Note that the back¬

ward recursion (5.276) is analogous to the forward message update equa¬

tions (5.249), (5.256), and (5.264).

Eventually, [J_1]44 is obtained as

[J-1] 44

.
.tot

A*3,ll
.
.tot

M3.21

.
.tot

A*3,12
.
.tot

M3.22

(5.279)

11

The diagonal elements [J-1],, corresponding to the other coordinates Xk

(A; = 1, 2, 3) can be determined along the same lines. The diagonal ele¬

ment [J_1]55, corresponding to O, is given by

[J"].
.
.tot

A*3,ll
.
.tot

A*3,21

.
.tot

A*3,12
.
.tot

M3,22

(5.280)

22

In conclusion: the diagonal elements of the inverse unconditional Bayesian
information matrix can be computed by message passing, as illustrated

in Fig. 5.18(c). The messages are computed in a forward and backward

sweep.
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The forward messages are updated in two steps: first, the intermediate

ges fik are obtained from Mfc-i (cf- (5.249), (5.256), and (5.264))
ik=l,...,N):

_ F A

Mfc =

~ F ~ F

Mfc,ii Mfc,12
~F ~ F

Mfc,21 Mfc,22

[Mf_i+Ffc]-
2 3

where

Mf_i à

uf 0 uf

Mfc-i,ii u Mfc-i,i2

0 0 0

uf 0 uf

Mfc-i,2l u Mfc-i, 22

(5.281)

(5.282)

(5.283)

and

'fc =

ffc-lfc-l
1fc

f fc —1 fc

1fc
ffc-ie
1fc

ffcfc-1
Ik

f fcfc

1fc
ffce
1fc

f8k-l
L Ik

c8k

Ik
fee
rfc J

(5.284)

Next, the messages /lxf are computed from fik and /lx^ (cf. (5.244),
(5.255), and (5.262)) (A; = 1,..., N):

F A ~ F
, U

Vk = Vk +Vk,

where

uu
-

Mfc —

yfcfc Q

0 0

(5.285)

(5.286)

The backward messages ßk and fxk (A; = 1,..., N) are determined like¬

wise.

The forward recursion is initialized as:

F &

Mo =

F F

Mo,il Mo,12
F F

Mo,21 Mo,22

the backward recursion is initialized as:

,,~ _ Mat,ii Aw,i2

Mat,21 Mw,22

cOO

o f2

0 0

0 0

(5.287)

(5.288)
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We define the messages iff as (A; = 1,..., N):

tot

Mfc
~ F

Mfc

Mf
Mfc

Af

(5.289)

(5.290)

The standard unconditional BCRB for the variable Xk is then obtained

as ik=l,...,N):

ExvfxfY) - XfixfY)

>-

.
.tot

Mfc,n
.
.tot

Mfc,21

.
.tot

Mfc,12
.
.tot

Mfc,22

- //tot
—

Mfc,ii (Mfc,2i) (Mfc,22) Mfc,i2-

Similarly, the standard unconditional BCRB for O is given by

EeW(0(y)-e)(0(y)-ef]

^

..tot ..tot

Mfc,11 Mfc,12

.
.tot

Mfc,21

tot

Mfc,22
f.ytot \F /tot

lMfc,i2j lMfc,n

(5.291)

(5.292)

(5.293)

(5.294)

(5.295)

(5.296)

where k is arbitrary, i.e., the standard unconditional BCRB for O can

be obtained from any message /ff (A; = 1,..., X).

State-Space Model with Time-Dependent Parameters

As a second example, we again consider a state-space model whose tran¬

sition probabilities pixk\xk-i,9f are parametrized by an unknown pa¬

rameter vector Ofc. Now, the parameter vector Ofc is time-variant: it is

described by a state-space model. The pdf of such a system is given by:

pi0,x,y) fpfxo) \\_pixk\xk-i,Ok)piyk\xk) pfOi) ^Qp(0fc|0fc_i)
\fc=l / \fc=2 /

(5.297)
which is depicted in Fig. 5.19(a). The system (5.297) consists of two

(coupled) state-space models: one for Xk, the other for O^.
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The BCRBs can be computed by message passing on the tree shown

in Fig. 5.19(c), which was obtained by clustering the state variables Xk

with the parameters O^ (see Fig. 5.19(b)).

In the following, we will list the message update rules for the standard

unconditional BCRBs; they can be derived by means of the matrix inver¬

sion lemma, as in the previous example. The extension to other BCRBs

it straightforward.

The messages are updated in two steps; first, the (intermediate) mes¬

sages fik are obtained from Mf-i as (A; = 1,..., X — 1):

~ F

Mfc

~F ~ F

Mfc,ii Mfc,12
~ F ~ F

Mfc,21 Mfc,22

[Mf_ Ffc]"
23

(5.298)

(5.299)

where

M
fc-i

0 Mf-1,12
uF

Mfc-i,ii

0 0 0

nF 0 nF

Mfc-i,2i
u Mfc-i 22

(5.300)

'fc =

ffc—i fc—i ffc—lfc ffc—lfc

lk lk lk

•fcfc-1

fc

•fcfc-1

fc

f fcfc

k

f fcfc

Ik

çkk
lkr
çkk
Ik

(5.301)

and

f*j
1fc

pfcfc A

-Exe[Vxy* logpiXk\Xk-i,Ok)}

ff = -Exe[V^V^logp(Xfc|Xfc_i,Ofc)] =

-Exe[VefcVT logp(Xfc|Xfc_i, Ofc)].

fj*
1fc

1

(5.302)

fk%

Ik

T

(5.303)

(5.304)

Then, the messages /lxf are computed from ßk as (A; = 1,..., X):

F A

Mfc =

F F

Mfc,ii Mfc,i2
F F

Mfc,21 Mfc,22

(5.305)
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Pi(0i) ©i p{02\0i) ©2 p(63\e2) e3

Po(xo) xt X2

Xn

p(xi\x0,6i) p(x2\xi,02)

p(yfi)

p(x3|x2,ö3)

p(y2\x2)

2/1

(a) Factor graph

©1 ©2

2/2

Xt x2
^0

= =

\* Y Ul2

K

ßo

2/1 2/2

(b) Clustering

(Xo,öi) (XiA) (xue2) (x2,62) (x2,03) (x3,03)

pr

Af
x.

Mi

pf

ß2

-F

ß2

ßl Xo

ß2

ß2

ßS

ß3

fi

2/1 2/2

(c) Summary propagation

Figure 5.19: Estimation of (time-dependent) parameters of a state-

space model.
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where

and

Mf

M
u A

M^+M^+Gfc+i

~ F n
~ F

Mfc,11 u Mfc,12

0 0 0

~ F n
~ F

Mfc,21 u Mfc,22

diagQ-^,0,0)

1 2

G fc+i

0 0 0

0 „fc+lfc+1
Sfc+1

„k+ik
Sfc+l

0 „fcfc+i
Sfc+l Sfc+i .

ifl ± -Exr[V\xyTXklogpiYk[Xk)]

gf = -Exe[VesV^logp(Ofc|Ofc_i)]^

(5.306)

(5.307)

(5.308)

(5.309)

(5.310)

'é
T

(5.311)

The backward messages fik and fik (A; = 1,..., X) are updated similarly.

The forward recursion is initialized as:

F &

Mo =

F F

Mo,il Mo,12
F F

Mo,21 Mo,22

-Ex0[VœoVFlogpo(X0)] 0

0 -Eei[VeiVFlogpi(Oi)]

The backward recursion is initialized as

Mw =
Mat, ii An,i2

Aw,21 Aw,22

0 0

0 0

(5.312)

,(5.313)

(5.314)

We define the messages iff as (A; = 1,..., X):

tot

Mfc Af + Mf

Mf + Af

(5.315)

(5.316)
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The standard unconditional BCRB for the variable Xk is then obtained

as ik=l,...,N):

ExYfxfY) - XfixfY) Xkf]

>-

..tot ..tot

Mfc,11 Mfc,12
.
.tot

Mfc,21
.
.tot

Mfc,22

„tot _ ('„tot \T /..tot \-l

Mfc,ll \H-k,2l) \H-k,22) M
tot

fc,12-

(5.317)

(5.318)

(5.319)

Similarly, the standard unconditional BCRB for the variable O^ is given

by(A; = l,...,X):

EeY[i9kiY)-Ok)i9kiY)-Ok)

-i
/ / ur;, urïo

Fl

..tot ..tot

Mfc,21 Mfc,22

tot

Mfc,22 (Mf

,T

12 (»IX Mfc,21-

(5.320)

(5.321)

(5.322)

5.3.8 Cramér-Rao-type Update Rules Revisited

Clustering and stretching typically amounts to graphs in which some

of the variables are represented by several edges (e.g., O in Fig. 5.18(c)
and Ofc in Fig. 5.19(c)). The generic update rules of Section 5.3.1 to 5.3.5,

however, are only applicable to factor graphs where each variable corres¬

ponds to one edge. From the previous two examples, we can learn how

the update rule (5.104) (for standard unconditional BCRBs) can be ex¬

tended: one simply needs to generalize the update rules (5.282), (5.299),
and (5.306). In the following, we investigate how the rule (5.104) (for
standard unconditional BCRBs) should be adapted; the update rules for

the other (B)CRBs are modified similarly.

First, we need to introduce some definitions. Let S be a set of n vari¬

ables, i.e., S = {xi,x2, ,xn}. Suppose <?(xi, X2,... ,xn) is a real-

valued function of these variables. In Fig. 5.20, a factor graph of g is

shown, where Sk ik = 1,... ,£) stands for a (non-empty) subset of S,

such that S = Si L) S2 D Si. Let Si = {xi, X2,..., xm} (to < n),
without any loss of generality. The messages fik along the edges Sk

are X^ x X^ block matrices, where X^ is the cardinality of Sk. Each row

and column of the block matrix fik corresponds to one variable in Sk.
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Si-i

Figure 5.20: BCRB update rule.

We denote the submatrix of fik at row s and column t by fik at.
We

define the n x n block matrices Mfc as (A; = 1,..., £ — 1):

Mfc,„ =
fxk st

if row s and column t of fxk correspond to x% and x3,

0 otherwise,

(5.323)
where MktiJ is the submatrix on the *-th row and j-th column of Mk.

The «-th row and column of Mfc correspond thus to Xt.

We define the matrix G:

G

On

Gn-ll

G„i

Gln-1 Gir,

Gn- ln-l Gn_l,

^wn-l ^r

(5.324)

where

G, -ExY[VxyfloggiXi,... ,Xn,Y)} (5.325)

pixi, ...,xn, yyxy13 logg(xi, ..

., x„, y)dxdy, (5.326)

assuming this integral exist V« and j = 1,..., n.

We are now able to state the generic update rule.
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Extended standard unconditional BCRB Summary Rule:

The message fin, leaving the node g along the edge Sk, is computed

^=((CG + M)-1)iJ-1, (5.327)

where
£-1

M = ^M, (5.328)
k=l

The expression (5.327) can be written in several ways; one can permute

rows and corresponding columns of the matrices Mfc and G (Lemma K.5).

We illustrate the rule (5.327) by a simple example.

Example 5.8. (Extended BCRB Summary Rule)
We derive the update rule (5.306) (for standard unconditional BCRBs)
from (5.327) (see Fig. 5.19 and Fig. 5.21). In this case, £ = 3, S =

{Xk, Ok, Ofc+i}, Si = {Xfc, Ofc}, S2 = {Xfc+i}, S3 = {Xfc, Ofc}, to = 2,

Xi = 2, X2 = 1, X3 = 2, Xi = Xfc, X2 = Ofc, X3 = Ofc+i, and

ff(xfc,0fc,0fc+i)=F(0fc+i|0fc). (5.329)

The involved messages are:

Mi = Af (5.330)

M2 = Mfc7 (5.331)

Ma = Mf- (5-332)

The matrices Mfc (cf. (5.323)) equal:

Mi = Mf (5.333)

M2 = M^, (5.334)

where MF and M^7 are given by (5.307) and (5.309) respectively. The

matrix G (5.324) of the node function (5.329) is given by (5.309). With

the previous definitions, the rule (5.327) boils down to (5.306).

D
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(Xfc, Ofc) (Xfc, Ofc+i)

Af
Xi, uu

Mfc

Mf

yk

Figure 5.21: BCRB update rule (5 327) example

Example 5.9. (Hybrid CRBs for estimation in AR-models)
We consider the following problem9 Let Xi,X2, be a real random

process ("auto-regressive (AR) model") defined by

Xfc — aiX„_i + a2Xfc_2 + anXk- M Uk, (5 335)

where ai, ,«m are unknown real parameters, and Ui,U2, are real

zero-mean Gaussian random variables with variance afj We observe

Yk — Xk Wk (5 336)

where Wk is (real) zero-mean white Gaussian noise with variance a\
We write (5 335) and (5 336) in state-space form as

Xfc = AX„_i +bUk

Yk = cTXk+Wk,

with

Xfc :

A

[Xk, ,
xk—fc-M+lJ

I

A A

b=c = [i,o, ,or

«i, » «M

(5 337)

(5 338)

(5 339)

(5 340)

(5 341)

(5 342)

In (5 340), the matrix I is the (M — 1) x (M — 1) identity matrix and 0

is a zero vector of dimension M — 1 The AR model (5 337)-(5 338) is

Here, we will denote vectors in bold for convenience
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often used in signal processing, for example, to model speech signals or

biomedical signals (e.g., EEG (ElectroEncephalogram) signals).

In the following, we consider the hybrid CRBs for the joint estimation of

the state Xfc, the coefficients ai,..., um, and the variances afj and a^.

More precisely, we consider the hybrid CRBs obtained from the infor¬

mation matrix of the joint pdf p(x, y,u, w[&, af, af). We will show that

those hybrid CRBs are unfortunately loose. In Section 5.4.6, we will de¬

rive tighter Cramér-Rao-type bounds for this estimation problem, based

on the information matrix of marginals of p(x, y, u, w|a, af, afj)

The probability density function of the model (5.337)-(5.338) is given

by:

pix, y,u,w\a, <Jw,d\f)
N

= p(x.o) \\pi^k\^k-i,Uk,a)piyk\^k,Wk)piuk[a2J)piwk[a'2/),
fc=i

(5.343)

where:

p(xfc|xfc_i,Wfc,a) = (5(xfc-b«fc - Axfc_i) (5.344)

Piwk[a2w) = Xriwk\0,a2w) (5.345)

pffal) = AA(Wfc|0,4) (5.346)

p(yfc|xfc,Wfc) = (%fc - cTXfc - wk). (5.347)

In the following, we will assume that no prior p(x.o) is specified (i.e., the

priorp(xo) is "uniform"). A factor graph for the system model (5.337)-
(5.338) is depicted in Fig. 5.22; the figure shows only one section of the

graph.

Note that the graph of Fig. 5.22 is cyclic and contains deterministic

nodes, i.e., two addition nodes, and three matrix multiplication nodes.

We need to convert the cyclic graph into a cycle-free graph before we

can apply the summary propagation algorithm to compute the hybrid
CRBs. In addition, we need to eliminate the deterministic nodes. By

clustering and boxing, as shown in Fig. 5.23, we obtain the cycle-free

graph of Fig. 5.24. The box /ifc stands for the factor (A; = M,..., N):

/i(xfc,Xfc_i,a, a\j) = / (5(xfc-b«fc-Axfc_i)A/"(Mfc | 0, cry) dwfc(5.348)
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= A/^Xfc-Axfc-i) (5.349)

/ M \

= J\f[xk-^2 anXk-n | 0, off (5.350)

= ffxk,. ..,xk-M,'A, a2,), (5.351)

whereas the box /2,fc represents the factor ik = 1,..., N):

i2(xfc,yfc,o-Jv) = / (5(yfc-cTXfc - Wfc)A/"(wfc I 0, cr^) dwfc (5.352)
Jwk

= A%fc-cTXfc \0,a2w) (5.353)

= A%fc-Xfc \0,a2w) (5.354)

= f2ixk,cr2v,yk)- (5.355)

We are now ready to apply the (extended) hybrid CRB summary propa¬

gation algorithm to the graph of Fig. 5.23. As a first step, we determine

the matrices G^ and G^2) (cf. (5.324) and (5.327)), defined as:

g£> = -ExnaLa2wa2jyzyllogfiiXk,...,Xk-M-i,*,vl)} (5.356)

Pix,y\a,aw,au)
,y

XzyTz logffxk, .,Xk-M,a.,afj)dxdy (5.357)

G),'
=

-Exnaialralyzy1Zilogf2iXk,a2w,Yk)] (5.358)l(2)
- -v - ~r^.V£log/2(X, ~2

p(a;,y|a,o-w>°'L/)Vz,Vj log f2ixk,a%/,yk)dxdy, (5.359)
z,y

with Zt G {Xk, , Xk-M, ai,..., cim, av, aw}.

After some straightforward algebra (see Appendix K), one obtains the
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Xfc_i

N

b

I

'w

N-
iT^fcJ-

yk

Figure 5.22: Factor graph of (5.337)-(5.338).
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Xfc_i

b

T

N-
,WkX

<i fc /2 fc

yk

Figure 5.23: Clustering and boxing

(Xfc_i,a,o-^,o-^)— (Xfc, a, 0-^,0-^)— (Xfc, a,a%, crw;

/:1 fc
/2 fc

2/fc

Figure 5.24: Tree representing the AR-model (5 337)-(5 338)
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matrix G^:

G(D:

7t
ala2

0 0

ataM 0 0

a2aM 0 0

-afta-f._ aff

0 0

0 0

S^L

0 0

where

The matrix G^2) equals:

Cl3 — E[Xfc_jXfc_

G(2) =

"

1
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
1

2"w -

0 0

(5.360)

(5.361)

(5.362)

Given the matrices G^ and G^2\ it is straightforward to derive the

hybrid BCRBs:

Ef^y)-^)2] > -^ (5.363)
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E[iawiY)-aw)2] > j--^- (5.364)

E[(â„(y)-a„)2] > 0. (5.365)

We leave the derivation of the hybrid BCRBs for Xfc as an exercise for

the reader. The resulting hybrid BCRBs are loose; this may directly
be seen from the matrices G^ and G^2\ i.e., even without computing
the bounds explicitly. The off-diagonal submatrices of G^ and G^2) are

zero; this implies, for example, that the hybrid CRB for Xfc is identical to

the unconditional BCRB for Xfc with known AR parameters ai,..., «m,

«Ty and a^y. In other words, the hybrid CRB for Xfc does not take the

fact into account that the AR parameters are unknown, hence, the bound

is loose. The same holds for the hybrid CRBs for the AR parameters

ai,..., «M and the variances afj and af; for example, the hybrid CRB

for afj does not depend on af and it does not take the fact into account

that X is unkown. In Section 5.4.6 (cf. Example 5.10), we will derive

tighter Cramér-Rao-type bounds for this estimation problem (from the

information matrix of marginals). We will numerically evaluate those

bounds together with the hybrid CRBs we have derived here. D

5.4 Cramér-Rao-Type Bounds From Mar¬

ginal Densities

So far, we have derived Cramér-Rao-type bounds from the inverse infor¬

mation matrix of the joint pdf of the system at hand. In this section,

we derive such bounds from inverse information matrices of marginal

pdfs. The resulting bounds are often intractable; we present numerical

algorithms to evaluate the bounds.

5.4.1 Standard CRB

We consider a system consisting of random variables X and parame¬

ters O. The joint pdf of the system is given by p(x, y\6). We wish to

compute the standard Cramér-Rao bound for O (cf. (5.80)):

(0(y)-0)(0(y)-0fE
(X@)
ii

EY\0
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where

^F"1(0)

â EF,e[Ve logpiY\0)VJ logpiY\0)]_1
= -EF|e[VeV^logP(y|0)]"1,

Piy\9) = / pix,y\0)dx.

(5.366)

(5.367)

(5.368)

(5.369)

The following lemma paves the road to a numerical algorithm for compu¬

ting the bound (5.366)-(5.368).

Lemma 5.3. If the integral J pix,y\0)dx is differentiable under the

integral sign (w.r.t. 0), then

EF|e[Ve logp(y|0)Vipogp(y|0)]

EY\0 Exiby [Ve logp(X, Y\0)} Exier[Ve logp(X, Y\0)]J

(5.370)

D

An equality similar to (5.370) has been proved earlier in the context of

code-aided synchronization [149]. The expression in the RHS of (5.370)
is usually as difficult to evaluate (analytically) as the expression in the

LHS, in fact, both expressions are often intractable. One may then resort

to numerical methods; the expression in the RHS of (5.370) suggests the

following (numerical) algorithm to determine the bound (5.366)-(5.368):

a) Generate a list of samples {{/^{fi fromp(y|0).

b) Evaluate the expression:

Ex|er Velogp(X,y(j)|

for j = 1,..., N.

c) Compute the matrix F^N\0):

(5.371)

N

F(Ar)wHE
3=1

EX\0Y VelogpiX,y^\

EX\0Y Velogp(X,y(j)|

(5.372)
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The matrix F^N\0) is an approximation of the Fisher information ma¬

trix F(0). The approximation becomes more accurate as the number of

samples X increases:

N

lim F(Ar)(0) = F(0). (5.373)

Eventually, we replace the Fisher information matrix F(0) in (5.366)-

(5.368) by the approximation F^N\0):

v(xe) a

Hi11 — &y\b

h F^iO)

(0(y)-0)(0(y)-0)J

i

(5.374)

Remarks:

• It is usually easy to sample from piy\0).

• The expression (5.371) is sometimes available in closed form (see,
e.g., Example 5.10). If the expression (5.371) is intractable, one

may use Monte-Carlo methods: the expression (5.371) is then eval¬

uated as an average over a list of samples from p(x|0, y^).

In the following, we list expressions similar to (5.370) for other Cramér-

Rao-type bounds. They can be used to evaluate the (B)CRBs numeri¬

cally, similarly as in (5.372) and (5.374).

5.4.2 Standard Unconditional BCRB

We now consider a system with random vectors X and Z; the joint pdf
is given by pix,z,y). We wish to compute the standard unconditional

BCRB for X (cf. (5.59)):

E^Exrp(y)-X)(x(y)-X)T]

h J-1 (5.375)

= Exy [Vx logp(X, Y)VTX logp(X, Y)]
_1

(5.376)

= -Exy[VxVI logp(X, Y)]
_1

, (5.377)
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where

Pix,y) = / p{x,z,y)dz. (5.378)

An expression similar to (5.370) can be derived.

Lemma 5.4. If the integral J p(x, z, y)dz is differentiable under the

integral sign (w.r.t. x), then

EXY[VX logp(X, YyTx logp(X, Y)]

=
E

XY EzlXY[Vx logp(X, Z, Y)] EzlXY[Vx logp(X, Z, Y)]1

(5.379)

D

Lemma 5.4 amounts to the following algorithm to determine the bound

(5.375)-(5.377):

a) Generate a list of samples {a;(--'-),y(--'-)}{Li fromp(x,y).

b) Evaluate the expression:

EZ\XY V
x log pixf\Z,y^) (5.380)

for j = 1,..., N.

c) Compute the matrix JW;

1
N

3= 1

J(W) = ^E\Ez\XY VxlogpixM,Z,yM)

EZ\XY VxlogpixP\Z,y^)

(5.381)

The bound (5.375)-(5.377) is eventually computed as:

E^ExW(x(y)-x)(x(y)-xf]

y [jW1_1 (5.382)
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5.4.3 Conditional BCRB

We again consider a system with joint pdf p(x, z,y). Now, we wish to

compute the conditional BCRB for X:

Eiy) fExlY[ify) - X)ify) - Xf]

h3-\y) (5.383)

= EX[Y [VxlogpiX\yyllogpiX\y)]_1 (5.384)

= EX{Y [Vx logp(X, yyl \ogpiX, y)]
_1

(5.385)

= -Ex\y [VxVl\ogpiX\y)]_1 (5.386)

= -Ex\y [VxVl \ogpiX, y)]
_1

, (5.387)

where

rf,Wâ /*.*>* ,5.388,

To this end, we slightly modify Lemma 5.4.

Lemma 5.5. If the integral f p(x, z, y)dz is differentiable under the

integral sign (w.r.t. x), then

Ex|F [VxlogpiX,yyllogpiX,y)]

= ExlY [ez{xy [Vx logp(X, Z, y)\ EZ{XY [Vx logp(X, Z, y)]1

(5.389)

D

A numerical algorithm for computing (5.383)-(5.387) follows directly
from Lemma 5.5. The algorithm is analogous to the algorithm (5.380)-
(5.382) for standard unconditional BCRBs. We leave the details as an

exercise for the reader.

5.4.4 Alternative unconditional BCRB

Lemma 5.5 can also be used to compute the alternative unconditional

BCRB:

EfEXY[ixiy)-X)ixiy)-X)T]
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hEY[J-\y)]

E> Ex|f [Vx logp(X, yyTx \ogpiX, y)]
1

h~EY ExlY[VyllogpiX,y)Y

(5.390)

(5.391)

(5.392)

The expectation Ex|r [•] in (5.391) can be evaluated according to (5.389).
The resulting algorithm for computing (5.390)-(5.392) is strikingly simi¬

lar to the algorithm (5.380)-(5.382) for computing standard uncondi¬

tional BCRB (5.375)-(5.377). Instead of the matrix jW (5.372), one

computes the matrix J(N).

N

UN) A

X Z-^iN
3=1

EZ\XY Vxlogpifi\Z,y^)

EZ\XY Vxlogpifi\Z,y^)

(5.393)

The bound (5.390)-(5.392) is eventually evaluated as:

EfEXY[ify)-X)ixiy)-X)T}

y J
(N)

(5.394)

In words: the bound (5.394) is determined by averaging inverse matrices,
whereas the bound (5.382) is determined as the inverse of an average

matrix. The bound (5.394) involves numerous matrix inversions, whereas

the bound (5.382) requires only one matrix inversion; the bound (5.394)
is therefore more costly to evaluate (but tighter!) than (5.382).

5.4.5 Hybrid BCRB

We now consider a system with random vectors X and Z, and parame¬

ters O; the joint pdf is given by pix,z,y\0). We wish to compute the

hybrid BCRB for X:

EXY\e[ifY) - X)ifY) - Xf] f E2f'J) h [H"1^)] 22

(5.395)
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where

H(0) =

Hn(0)
H2i(0)

Hi2(0)
H22(ö)

(5.396)

and

Hn(0)

Hi2(0)

Hi2(0)

H22(ö)

Exne [Ve logp(X, Y\9)Vj logp(X, Y\9)] (5.397)

ExF|e [Ve logp(X, Y|0)v£ logp(X, F|0)] (5.398)

[H2i(0)f (5.399)

Exne [VœlogP(X,y|0)V^logp(X,y|0)] , (5.400)

Pix,y\0) = / pix,z,y[0)d,z. (5.401)

The expressions (5.397)-(5.400) can be evaluated as follows.

Lemma 5.6. If the integral Jzpix,z,y\0)dz is differentiable under the

integral sign (w.r.t. x and 0), then

Exne [Ve logp(X, Y\0)Vj logp(X, Y\0)]

EXY\0 EZ|xre[Ve logp(X, Z, Y\0)} EzlXYe [Ve logpiX, Z, Y\0)Y

(5.402)

Exne [Ve logp(X, Y[0)VTx logp(X, Y\0)]

= EXYle[EzlXYeye logp(X, Z, Y\0)} Ez\XYe\VX logp(X, Z, Y\0)f

(5.403)

Exne [V, logp(X, Y[0yTx logp(X, Y\0)]

= EXYle[EzlXYe \VX logp(X, Z, Y\0)} Ez\XYe \VX logp(X, Z, Y\0)f
(5.404)

D

A numerical algorithm to compute the bound (5.395) may readily be

extracted from Lemma 5.6. We leave the details as an exercise for the

reader.
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5.4.6 Parameter Estimation in State-Space Models

In Section 5.3.7, we determined BCRBs for estimation in state-space
models. We derived those bounds from the joint pdf p(x, 0,y). Here,
we derive such bounds from marginal pdfs. We investigate the standard

unconditional BCRB for O (cf. (5.377)):

EeW(0(y)-O)(0(y)-O)T]

h J-1 (5.405)

= EeY [Ve logp(0, Y)Vj logp(0, Y)]
_1

(5.406)

= -EeY[VgVj logP(0, Y)]
_1

, (5.407)

where

Pi9,y) = pi0,x,y)dx. (5.408)

First, we consider the state-space model with constant parameters; its

pdfp(0, x,y) equals (see Fig. 5.18(a)):

N

pi0,x,y) = peiO)poix0) Y\_Pixk\xk-i,9)piyk\xk)- (5.409)
fc=i

By applying Lemma 5.4, we have:

Eer[Ve logp(0, Y)Vj logp(0, Y)]

= EerfExieFlVe logp(e, X, Y)] Ex|er[Ve logp(e, X, Y)f .

(5.410)

We rewrite the expression Ex|er [Ve logp(@, X, Y)] in the RHS of (5.410)
as:

Ex,eF[Velogp(0,X,y)]
N

= Exier yelogpei9)} + EEx|er [Velogp(Xfc|Xfc_i,0)] (5.411)
fc=i

N

= Velogpei9) + YJEx\eY [VelogPiXk\Xk-i,9)}. (5.412)
fc=i
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PeiO)
O

pfxf
Xn

Xi X2 x.

p(xi|xo,0) p(x2|xi,0)

piyi\xi)

pix3[x2,0)

piy2\x2)

\yi \U2 W3

Figure 5.25: Unconditional BCRB for estimating (constant) parame¬

ters of a state-space model.

The expression Ex\eY [Ve logp(Xfc|Xfc_i, 0)] in the RHS of (5.412) can

be computed as:

Ex|er[Velogp(Xfc|Xfc_i,0)]
= Exfc_1xfc|er[Velogp(Xfc|Xfc_i,0)]

Xfc — 1 *s Xfc

(5.413)

p(xfc,Xfc_i|0, y)Velogp(xfc|xfc_i,0)dxfc_idxfc, (5.414)

where the joint pdf p(xfc,Xfc_i|0, y) may be determined by the sum-

product algorithm, as depicted in Fig. 5.25:

p(xfc,Xfc_i|0,y)

PXk-^Pkixk-fpXk^Pkixfpixklxk-

Ixk-! IXkl1xk.1^pkixk-i)nxk^pkixk)pixk\xk-i,ô)dxk-idxk'
(5.415)

As a consequence, the expression (5.410) may be evaluated by the fol¬

lowing algorithm:

a) Generate a list of samples {0^3\ y^}^=1 from p(0, y).

b) For j = 1,...,X:
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i) Compute the messages p,xk^Pk_1 and p,xk^Pk by a forward

and backward sum-product sweep.

ii) Evaluate the expression:

E

X\0Y VelogpiX,0^,y^) (5.416)

using (5.411)-(5.415), and the messages computed in i)

c) Compute the matrix J^:

N

J(W)^E
3=1

EX\0Y VelogpiX,0^,y^)

EX\0Y VelogpiX,0^,y^)

(5.417)

Eventually, we evaluate the bound (5.405)-(5.407) as:

EeW(0(y)-O)(0(y)-O)T]

y [aw1-1 (5.418)

The algorithm can straightforwardly be extended to state-space models

with time-dependent parameters: one needs to slightly modify the expres¬

sions (5.412)-(5.415); the computation of (5.416) then involves a forward

and backward sum-product sweep in the factor graph of Fig. 5.26.

Example 5.10. (CRBs for estimation in AR model)
In Example 5.9, we computed hybrid CRBs for the joint estimation of

the state and parameters of AR models; we derived those hybrid CRBs

from the information matrix of the joint pdf of the AR model. Here, we

derive Cramér-Rao-type bounds (for the same estimation problem) from

the information matrix of marginals. We outline a (numerical) method to

compute the CRB (5.368) for the parameters ai,..., um, o'u and af. In

Appendix K, we propose a similar method to compute the hybrid CRB

(5.395) for Xfc. We compute both bounds numerically, since they are

not tractable analytically; on the other hand, the bounds of Example 5.9

are tractable, but unfortunately loose.
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PÜ/il^i) piy2\x2)

2/1 2/2

Figure 5.26: Unconditional BCRB for estimating (time-dependent) pa¬

rameters of a state-space model

The CRB (5 368) for O = (ai, , a«, afj, af) can be determined by the

algorithm of Section 5 4 1 We outline how the expression (5 371) may

be evaluated for the AR model (5 343) Substituting (5 343) in (5 371)
amounts to

N

Ex\by [Ve logp(0, X, y)] = EEx|er [Ve log ffXk, , Xfc_M, a, <%)]
fc=i

N

+ J2Ex\eY [Velogf2iXk,yk,vw)],
fc=i

(5 419)

where fi and f2 are given by (5 350) and (5 354) respectively The expres¬

sion Ex|er [Velog/i k] and Ex|Qf [Velog/2 fc] in the RHS of (5 419)
can be computed from sum-product messages arriving at the nodes fi
and /2 (cf (5 414) and (5 415)) Those messages are computed for a

given observation vector y, and for given values of the parameters a, af,
and afj 10 As a consequence, the sum-product messages are available

in closed-form they are Gaussian messages, computed in a forward and

backward Kaiman recursion (cf Appendix H) In Appendix K, we ex¬

plain how the expectations Ex|er [Vglog/i fc] and Ex|er [Velog/2 fc]

In the estimation problem at hand the parameters are obviously not given, they
need to be estimated
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N

X„-i
Jl t"

— A

N
iT^fc 1

+

'IV f I
2/fc

Figure 5.27: Computing Gaussian messages (along the edges Xfc) in

a forward and backward Kaiman recursion, for a given
observation vector y, and given parameters a, a^, and a^.

may be computed from the Gaussian messages.

In summary, the algorithm we propose for computing the bound (5.368)
for O = (ai,..., aM, afj, a^f performs the following steps:

a) Generate a list of samples {{/^{fi fromp(y|a, aWi (Ju)

b) For j = 1,. ,X:

i) Compute the Gaussian messages /Uxfc^/i k
and i^xk^f2 k by a

forward and backward Kaiman recursion.

ii) Evaluate the expression:

E, VelogpiX,fV[a,af,a(j) (5.420)

using (K.152)-(K.157), and the messages computed in bi.

c) Compute the matrix F^N\9):

N
1

F(Ar)w=^E
3= 1

E, Velog^X^la,^2,)
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VglogpiX^^la,^,^)]7, .

(5.421)

The CRB (5.368) for O is computed as the inverse of fW(0).

Along similar lines, one can compute the hybrid CRB (5.395) for Xfc (A; =

1,..., X) from the marginal p(xfc, y\&, a^, afj). We refer to Appendix K

for more information.

In Fig. 5.28 to Fig. 5.35, we present numerical results. In Fig. 5.28, the

standard CRB for a is shown for several values of af and X; we consider

the case where afj and a^ are known as well as the case where those

two parameters are unknown, i.e., where they need to be estimated. In

Fig. 5.29, we compare the standard CRB for a (for the case where afj
and af are unknown) to the MSE of a practical estimation algorithm,

i.e., the grid-based algorithm of [101] that jointly estimates the state X

and the parameters a, afj and a^. The grid-based algorithm of [101] is

complex, therefore, we could only average its squared estimation error

over 100 simulations; the dashed curves are therefore rather "noisy".

In Fig. 5.30, the standard CRB and the hybrid CRB for afj (with un¬

known a and af) are shown for several values of af and X. As we

pointed out before, the hybrid CRB for a^ does not depend on a\y.
In Fig. 5.31, we show the standard CRB for a^ for the case of known

(unknown) a and a^. In Fig. 5.32, we compare the standard CRB

for afj (with unknown a and af) to the MSE of the grid-based algo¬
rithm of [101].

The standard CRB and the hybrid CRB for af are shown in Fig. 5.33 for

several values of a^ and X (where a and afj are assumed to be unknown).
In Fig. 5.31, the standard CRB for a^ for the case of known/unknown
a and afj are shown. Fig. 5.35 shows the standard CRB for af (with
unknown a and af) together with the MSE of the grid-based algorithm
of [101].

Note that the standard CRBs are nicely tight; they allow us to certify
that the grid-based algorithm of [101] is close to optimal.

E
xy.

D



274 Chapter 5. Computing Cramér-Rao-Type Bounds

800 900 1000

Figure 5.28: Standard CRB for a with known (dashed) and un¬

known (solid) afj and af; afj = 0.1 and af =

0.1/0.01/0.001/0.0001/0.00001. The CRBs for known

a2, = 0.1 and a2w = 0.0001,0.00001 coincide (dashed
lines).

5.4.7 Code-Aided Channel Estimation

We now consider the problem of code-aided channel estimation; sym¬

bols C/fc, protected by an error-correcting code (with indicator func¬

tion If)), are transmitted over a channel with memory; the state of

the channel is denoted by Xfc, whereas Yk stands for the channel ob¬

servation at time k. The probability function of this system is given

by
N

piu,x,y) =pfxf Y\_pixk,yk\uk,xk-fliu), (5.422)
fc=i

as depicted in Fig. 5.36. The box at the top represents the indica¬

tor function If), the row of nodes at the bottom stands for the fac¬

tors poixo) and p(xfc, yfak, Xk-f- We wish to compute the standard

unconditional BCRB for the estimation of Xfc (the extension to other

BCRBs is straightforward).

In principle, one could compute the standard unconditional y the algo¬
rithm of Section 5.4.3 (with Z = U). With the pdf (5.422), the expec-
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Figure 5.29: Standard CRB for with unknown a^ and (solid)
together with the MSE of the grid-based algorithm of [100]
(dashed); a^ = 0.1 andaf = 0.1/0.01/0.001. Also shown

is the standard CRB for a with known afj = 0.1 and

af = 0 (dashed-dotted line).

100 200 300 400 500 600 700 800 900 1000

X

Figure 5.30: Hybrid CRB (dashed) and standard CRB (solid) for a^;

al = 0.1 and a2^ = 0.1/0.01/0.001/0.0001/0.00001.
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1U

m
« 10"4
u

100 200 300 400 500 600 700 800 900 1000

X

0.1 and afFigure 5.31: Standard CRB for afj; a(j
0.1/0.01/0.001/0.0001/0.00001; known (dashed) and un¬

known (solid) (T2^ and a.

100 200 300 400 500 600 700 800 900 1000

X

Figure 5.32: Standard CRB (solid) for a2v together with the MSE of

the grid-based algorithm of [100] (dashed); afj = 0.1 and

af = 0.1/0.01/0.001.
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3
Pi
ü

100 200 300 400 500 600 700 800 900 1000

X

Figure 5.33: Hybrid CRB (dashed) and standard CRB (solid) for a\
afj = 0.1 and a2^ = 0.1/0.01/0.001/0.0001/0.00001.
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Figure 5.34: Standard CRB for af; a\j = 0.1 and af =

0.1/0.01/0.001/0.0001/0.00001; known (dashed) and un¬

known (solid) a^y and a.
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Figure 5.35: Standard CRB (solid) for af together with the MSE of

the grid-based algorithm of [100] (dashed); a

a2w = 0.1/0.01/0.001.
\j = 0.1 and

tation Ejy|xr [Vj, logp(X, U, Y)] in the RHS of (5.379) can be evaluated

EmxY[VxlogpiX,U,Y)}
N

= Vœlogpo(X0) + Y,Vuk\XY[VxlogpiXk,Yk\Xk-i, Uf]. (5.423)
fc=i

An expression similar to (5.423) has been derived in [148]. The second

term in the RHS of (5.423) involves the marginals pfk\x, y). For most

practical probabilistic codes (e.g., LDPC codes or turbo-codes), those

marginals are hard to obtain—with exception of (short-memory) convo-

lutional codes. Note that replacing the exact marginals by marginals

by approximations obtained from an iterative decoder (as suggested in,

e.g., [148] for standard CRBs) does not amount to the (exact) BCRBs.

One may obtain accurate approximations of the marginals by means of

Gibbs sampling, which is, however, a time-consuming procedure.

Whereas it is often difficult to compute the exact BCRBs for code-aided

channel estimation, it is usually feasible to derive upper and lower bounds

on the BCRB. Upper bounds are obtained by assuming that the symbols
are independent and uniformly distributed (i.u.d.). On the other hand,
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Figure 5.36: Code-aided channel estimation.

if one assumes that the symbols are known, one obtains lower bounds

(so-called "modified" BCRBs (MBCRB)). At sufficiently high SNR, the

modified BCRBs coincide with the (true) BCRBs; at high SNR, the bit

(and frame) error rates are low (e.g., BER < 10~2), and the symbols can

therefore be considered as (almost) "known". Communications systems

usually operate at low bit (and frame) error rates, therefore, modified
BCRBs typically suffice.

Example 5.11. (Modulated random-walk phase model)
We consider here the (modulated) random-walk phase model (4.1)-(4.2).
The BCRBs for this model are intractable, however, modified BCRBs

are easy to obtain. In fact, we already computed the modified (standard
unconditional) BCRB in Example 5.6, where we investigated the unmo¬

dulated random-walk phase model (cf. Fig. 5.13). In Fig. 5.37, we show

this modified BCRB (for the MSE averaged over a block of length 100)
together with:

• an upper bound based on i.u.d. symbols,

• a result obtained by substituting approximate marginals (from an

LDPC-decoder) in (5.423),

• the MSE of a practical message-passing estimator, i.e., an estimator

that uses adaptive quantization (see Section 4.7.2).

As can be seen from Fig. 5.37, the upper bound (based on i.u.d. symbols)
is loose; the curve obtained from approximative marginals is (at low SNR)
not a lower bound on the BCRB: for SNR values below — ldB, the curve
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Modified BCRB (Known Symbols)

Upper Bound (Uniform Prior)

Approximate Marginals

Adaptive Quantization

1 2

SNR [dB]

Figure 5.37: Lower and upper bounds on the BCRB for the modu¬

lated random-walk phase model with X = 100, and

af = IQ-4 rad2.

lies above the MSE of the practical estimator. At high SNR (i.e., SNR >

3dB), the curve obtained from approximative marginals coincides with

the modified BCRB. Also the MSE of the practical estimator coincides

with the modified BCRB for those SNR values. In other words, we can

certify that the practical estimator is close to optimal for SNR > 3dB.

The latter SNR region is the most relevant: the BER at 3dB and 4dB

is about 10~2 and 10~3 respectively (not shown here); at SNR values

below 3dB, the error rates are too high for most practical purposes.

In Fig. 5.38, we show the modified BCRB for filtering and smoothing as a

function of the position k inside the block (for a^ = 0.446 rad (4dB) and

aw = 10~2 rad); also shown is the MSE of the practical phase estimator.

It can be seen from this figure that the MSE of the practical estimator

coincides with the modified BCRB
.

D
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Figure 5.38: Modified BCRBs for the modulated random-walk phase
model with X = 100, aN = 0.446 rad (4dB) and

aw = 10~2 rad; Shown are the MBCRB of the forward

sweep, i.e., filtering (dashed line), MBCRB of the back¬

ward sweep (dashed-dotted), and MBCRB of smooth¬

ing (solid). Also shown is the MSE of the phase estimator

that uses adaptive quantization (diamonds).
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5.5 Summary

We summarize here the main results of this chapter.

• We started by reviewing the three main types of Cramér-Rao

bounds (CRB): standard, Bayesian, and hybrid Cramér-Rao

bounds, which are applicable to parameters, random variables and

the joint estimation of parameters and random variables respec¬

tively.

• We outlined the two main strategies to compute Cramér-Rao

bounds: one may derive Cramér-Rao bounds from the inverse in¬

formation matrix of the joint pdf; alternatively, one may obtain

such bounds from inverse information matrices of marginals.

• We proposed novel algorithms to compute CRBs:

— following each of both strategies,

— for each of the three types of CRBs.

Our methods are message-passing algorithms, operating on the

factor graph of the system at hand. We derived the local update

rules, each time starting from a simple working example.

• We treated several applications:

— filtering in (general) state-space models,

— smoothing in (general) state-space models,

— estimation of the parameters of state-space models,

— code-aided channel estimation.

We considered various examples of state-space models:

— linear and non-linear dynamial systems,

— the (modulated and unmodulated) random-walk phase model,

— AR models.
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5.6 Outlook

• In this chapter, we have exclusively focused on the squared error

loss function. Cramér-Rao-type bounds have recently been derived

for other types of loss functions
, i.e., for loss functions that are

bounded below by a function of the form g(x) = [x[£ for £ > 2 [167].
It needs be verified whether our methods can also be applied to

Cramér-Rao-type bounds for those loss functions.

• Our methods seem to apply to several other types of bounds,

i.e., Weiss-Weinstein bounds [208], Bobrobsky-Zakai bounds [25],
and Bhattacharyya bounds [21]. Those bounds are often tighter

(at low SNR) than the Cramér-Rao-type bounds, however, they
are more complicated. Recently, Reece et al. evaluated those three

bounds for the problem of filtering in state-space models [169] (see
also [168]); they obtained forward recursions that are similar to the

forward recursion of [192], i.e., the standard unconditional BCRB

for filtering. It should be straightforward to extend the results

of [169] (and [168]) to general estimation problems, following the

line of thought of this chapter. Interestingly, the Weiss-Weinstein

bound also applies to discrete variables.

• Information matrices are not only the key to Cramér-Rao-type

bounds, they also play an important role in information geo¬

metry. Information geometry deals a.o. with the geometry of the

(non-Euclidean) space of parametrized statistical models (with pa¬

rameters O). The (unique) invariant metric of this parameter space

turns out to be the Fisher information matrix. By means of the

Fisher information matrix, one can for example define the distance

between distributions or the steepest-descent direction (in the pa¬

rameter space) of a function fiO). Since the parameter space is

non-Euclidian ("curved"), the steepest-descent direction of/(f?) is

not given by its (Euclidean) gradient, but by its natural gra¬

dient [7] [8], defined as

Vefi9) = F-\9yefi9). (5.424)

Amari [7] proposed optimization algorithms based on the natural

gradient ("natural-gradient adaption"); for several interesting ap¬

plications (e.g., training of feed-forward neural networks), those

optimization methods converge significantly faster (up to three or¬

ders of magnitude!) than the standard gradient methods (based
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on the Euclidean gradient) [156] The chief drawback of natural-

gradient adaption, however, is that it requires the inverse of the

Fisher information matrix For many sophisticated probabilistic

models, this matrix is not tractable However, as we have shown,
the Fisher information matrix can often readily be computed nu¬

merically, which could lead to novel natural-gradient algorithms

Note that natural-gradient algorithms may conveniently be deri¬

ved in context of factor graphs and summary propagation,
we have shown in Section 4 8 how (Euclidean) gradients can be

computed by message passing, in this chapter, we have developed

message-passing algorithms for computing Fisher information ma¬

trices (cf Section 5 4)

As we pointed out, the computation of Fisher information matrices

often involves sum-product messages If it is not feasible to com¬

pute the latter exactly, they may be computed approximately by

sum-product message passing on cyclic graphs, this amounts to

approximate Fisher information matrices, which, obviously,
do not lead to the correct Cramér-Rao bounds, those approximate
Fisher information matrices, however, can be the basis for (low-
complexity) natural-gradient algorithms

A potential application is estimation in single- or multi-channel

AR(MA) models (cf Example 5 10), which are useful models

for blind source separation and blind deconvolution [34], re¬

cursive ( "online" ) natural-gradient algorithms for (single- or multi¬

channel) AR(MA) models can readily be derived (cf Example 5 10),
simulations are required to assess the complexity-performance trade¬

off of such algorithms More generally, natural-gradient algorithms

may become an (even more) important tool in model-based signal

processing

• The Fisher information matrix can also be used to derive so-called

Fisher kernels (proposed by Jaakkola et al [89]) from probabilis¬
tic models n For a given probability model piy\0) with parameters

O and observations Y, the Fisher kernel is defined as

Kiyx,y3) = Wj\ogpiyx\6)F-\e)We\ogpiy3\e) (5 425)

The mam difficulty is also here the computation of the inverse in¬

formation matrix Our methods for computing information matrix

11 For a brief introduction to kernel methods and for a discussion on how kernels

can be computed from graphical models, we refer to Appendix D
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allow us to derive Fisher kernels from sophisticated probabilistic
models—also for this purpose, one may use iterative sum-product

message passing, amounting to approximate Fisher information ma¬

trices. The inversion of (dense) Fisher information matrices can be

carried out approximately but efficiently by imposing structure

on those matrices.

In general, our methods for computing Fisher information matrices

(with our without approximations) may lead to novel kernel-based

algorithms for classification, compression and clustering of images
and biomedical and speech signals.





Chapter 6

Computing Information

Rates of Continuous

Channels with Memory

We present here a numerical method to compute information rates of

continuous channels with memory We will apply the method to the

random-walk phase model The results of this chapter are based on [49]

6.1 Introduction

We consider the problem of computing the information rate1

J(X,Y) = km -fXi, ,Xn,Yu ,Yn) (6 1)
n^oo n

between the input process X = (Xi,X2, ) and the output process

Y = (Yi ,Y2, ) of a time-invariant discrete-time channel with memory

Let xrk = (xfc,Xfc+i, ,xn) and xn = (xi,X2, ,xn) We will assume

1 Basic notions from information theory are reviewed in Appendix B

287
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that there is an ergodic stochastic process S = (So, Si, S2, ) such that

n

Pixn,yn,So) =pis0) Y[pixk,yk,sk\sk-i) (6.2)
fc=l

for all n > 0 and with pixk, yk, Sfc|sfc-i) not depending on k.

For finite input alphabet X (= range of Xf and finite state space S

(= range of Sk), a practical method for computing the information rate

(6.1) was proposed in [12] [179] and [160].2 In [13], this method was

described in greater generality and extended to the computation of upper

and lower bounds on the information rate of very general channels (see
also [10]). Another method to compute an upper bound was presented
in [11]. A method to approximately compute information rates of finite-

state channels is proposed in [181]; and it is based on generalized belief

propagation [223].

In this chapter, we extend the methods of [12] and [13] to continuous state

spaces S. For the sake of clarity, we will assume that S is a bounded

subset of R", the z/-dimensional Euclidean space; the input alphabet X

may also be continuous. The key to this extension is the use of Monte-

Carlo integration methods ("particle filters") [59] (cf. Section 4.6.4).

This chapter is structured as follows. In Section 6.2, we review the basic

idea of [12] as presented in [13]. In Section 6.3, we show how particle
methods allow to deal with a continuous state space; in Section 6.4,

we apply the resulting algorithm to the random-walk phase model. In

Section 6.5, we summarize this chapter.

6.2 Review of Basic Method

We briefly review the basic idea of [12] as presented in [13]. We first

note that, as a consequence of the Shannon-McMillan-Breiman theo¬

rem (cf. Theorem B.6 and B.7), the sequence — -logp(Xn) converges

with probability 1 to the entropy rate i7(X), the sequence — — logp(Yn)
converges with probability 1 to the differential entropy rate h(Y), and

the sequence — — logp(Xn, Yn) converges with probability 1 to Ü~(X) +

2See [62] for an alternative approach).
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Figure 6.1: Computation of piyn) by message passing through the fac¬

tor graph of (6.2).

h(Y\X). From these observations, the quantity fX;Y) = h(Y)
h(Y\X) can be computed as follows:

a) Sample two "very long" sequences xn and yn.

b) Compute logp(xn), logpiy"), and logp(xn, yn). If h(Y|X) is known

analytically, then it suffices to compute logpiy").

c) Conclude with the estimate

Î(X; Y) = - logp(x, yf - - logp(x") - - logpiyf (6.3)
n n n

or, if h(Y\X) is known analytically, 1(X;Y) = — —logpiyn) —

hiY\X).

The computations in Step 2 can be carried out by forward sum-product

message passing through the factor graph of (6.2), as is illustrated in

Fig. 6.1. If the state space S is finite, this computation is just the forward

sum-product recursion of the BCJR algorithm [15].

Consider, for example, the computation of

Piyf Pixn,yn,sn0), (6.4)

where J gix)dx stands for the summation of g(x) over its support if x

is discrete, otherwise, it stands for integration. Define the state metric

pfsf = pisk,yk)- By straightforward application of the sum-product
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algorithm, we recursively compute the messages (state metrics)

Mfc(sfc) = Pk-iisk-i)pixk,yk,Sk\sk-i)d,xkdsk-i (6.5)
J Xk Jsk-i

pixk,yk,sk)dxkdsk-1 (6.6)

for k = 1, 2, 3,... The desired quantity (6.4) is then obtained as

piyf = / M„(S„), (6.7)

the sum of (or the integral over) all final state metrics.

For large k, the state metrics p,k computed according to (6.5) quickly
tend to zero. In practice, the recursion (6.5) is therefore changed to

Mfc(sfc) = Afc/ / Hk-iisk-i)pixk,yk,Sk\sk-i)d,xkdsk-i, (6.8)
Jxk 'sk-i

where Ai, A2, ...are positive scale factors (cf. Remark3.3). We will

choose these factors such that

Pkisf = l (6.9)
Sk

holds for all k. It then follows that

1
n

1
-Y,\og\k = —\ogpiyn). (6.10)
n

z—'
n

k=i

The quantity — — logpiyn) thus appears as the average of the logarithms
of the scale factors, which converges (almost surely) to h(Y).

If necessary, the quantities logp(xn) and logpixn,yn) can be computed

by the same method, see [13].

6.3 A Particle Method

If both the input alphabet X and the state space S are finite sets, then

the method of the previous section is a practical algorithm. However,
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we are now interested in the case where S (and perhaps also X) are

continuous, as stated in the introduction. In this case, the computation
of (6.8) is a problem.

This problem can be addressed by Monte-Carlo methods known as par¬

ticle filtering [59]. Such algorithms may be viewed as message-passing al¬

gorithms where the messages (which represent probability distributions)
are represented by a list of samples ( "particles" ) from the distribution

(cf. Section 4.6.4). In particular, we will represent the message p,k by

a list {Skli}e=1 of X samples and we will represent the distribution

Pk-iisk-i)pixk, Sk\sk-i) by a list of X three-tuples fsk-i,i,Xk,i,skf.
From (6.8) and (6.9), we then obtain

xkl= j j j Pk-iisk-i)pixk,Sk\sk-i)piyk\xk,Sk,Sk-i)dskd,xkdsk-i
J SkJ XkJ Sk-l

(6.11)

1
N

~ T?^Pyk\Xk,Sk,Sk-iiyk\xk,£,Sk,£,Sk-i,£)- (6-12)
£=1

The recursive computation of (6.8) is then accomplished as follows.

a) Begin with a list {§k-il£}£=1 that represents p,k-i-

b) Extend each particle §k-i,e to a three-tuple if-i/,Xk/fkf by

sampling from p(xfc, sk\sk-i).

c) Compute an estimate of A^ using (6.12).

d) Resampling: draw X samples from the list ff-i/, Xk/, ff}l=1

by choosing each three-tuple with probability proportional to

PYk\Xk,Sk,Sk-iiyk\xk,£, Sk,£, Sk-lf-

e) Drop §k-i,e and Xk,e of each new three-tuple and obtain the new

list {sk,e}e=v

Remark 6.1. (Applicability of the particle method)
In Step 2 of the above algorithm, one needs to draw samples from

pixk, Sfc|sfc_i). A closed-form expression forp(xfc, Sk\sk-f is not required
for that. The state transitions may for example be described by a sto¬

chastic difference equation (e.g., (2.89)-(2.95)). The required samples are
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then generated by "simulating" the stochastic difference equation. For

example, simulating the model (2.89)-(2.95) involves drawing samples nk

and Zk from A/"o <j2 and J\f0 a2 respectively (cf. (2.94) and (2.95)). The

state transitions may also be modeled by a stochastic differential equa¬

tion (e.g., (2.59) or (2.82)). First the "continuous" time axis is replaced

by a "discrete" time axis, i.e., the stochastic differential equation is con¬

verted into a stochastic difference equation (e.g., by the Euler-Maruyama
method [84]). Then the resulting stochastic difference equation is simu¬

lated. Alternatively, the samples may in principle be obtained by mea¬

surements; the particle method may thus even be applied in complete
absence of a mathematical model for the state transitions.

The observation model PYk\xk,Sk,Sk-i^ however, has to be available in

closed-form (cf. Step 3 and 4).

6.4 A Numerical Example

We consider the random-walk phase model (4.1)-(4.2). The input sym¬

bols are i.u.d; the signal constellation is 4-PSK. For this channel, the

application of the method of Section 6.3 is straightforward; the results

are shown in Figure 6.2. For these computations, we simulated chan¬

nel input/output sequences of length n = 105-106 and used X = 104

particles.

Also shown in Figure 6.2 is a tight lower bound on the information rate,
which is obtained from using a quantized-phase channel model (with 5000

quantization bins) as an auxiliary channel in the bound of [13]. Note

that the results of both approaches practically coincide. Also shown is

the information rate for the case where af = 0, i.e., for the complex
AWGN channel with i.u.d. 4-PSK input signals. It is noteworthy that

the curves for a^ = 0 and a^ =0.01 coincide.

Figure 6.3 depicts the estimate fX;Y) as a function of the number of

iterations; we consider ten runs of the particle method and ten runs of

the method based on the quantized-phase channel model.
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Figure 6.2: Information rates for the channel (4.1)-(4.2) with i.u.d. 4-

PSK input symbols.

Figure 6.3: /(X; Y) as a function of the iteration number k for ten runs

of the particle method (dashed) and ten runs of the quan¬

tization method (auxiliary-channel bound of [13]) (solid);
SNR = lOdB and aw = 0.5 rad.
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6.5 Summary

We summarize here the main results of this chapter.

• By using particle methods, we have extended the method of

[12] to channels with a continuous state space. Such methods

can also be used to compute the auxiliary-channel bounds of [13].
In contrast to methods based on quantization, particle methods

remain practical for high-dimensional state spaces.

• The particle methods allow us to compute information rates of

state-space models whose state transitions are described by sto¬

chastic differential equations or stochastic difference equa¬

tions. For such models, the previous methods (e.g., [12]) only lead

to bounds on the information rates.

• The accuracy of our methods depends not only on the sequence

length n, but also on the number of particles X.



Chapter 7

Capacity of Continuous

Memoryless Channels

We present a numerical method to compute lower and upper bounds on

the capacity of continuous memoryless channels We present numerical

results for the Gaussian channel with peak-power and average-power con¬

straints, we outline how the method can be extended to channels with

memory such as channels with phase noise (e g ,
random-walk phase

model) The results of this chapter are based on [39]

7.1 Introduction

We consider the problem of computing lower and upper bounds on the

capacity [178]x

Cfsnpf frfx)rfy\x)\og^-^fSnpIiX,Y) (7 1)
p(x) J x J y P(y ) p(x)

of a memoryless channel piy\x) with input X and output Y, where piy) =

f pix)piy\x) Both X and Y may be discrete or continuous If x is dis-

1 Basic notions from information theory are reviewed in Appendix B
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crête, f </(x) stands for the summation of g(x) over its support, other¬

wise, it stands for integration.

For memoryless channels with finite input alphabets X and finite output

alphabets y, the capacity (7.1) can be computed by the Blahut-Arimoto

algorithm [9] [23]. Recently Matz et al. [125] proposed two modifica¬

tions of the Blahut-Arimoto algorithm that often converge significantly
faster than the standard Blahut-Arimoto algorithm. Vontobel et al. [204]
extended the Blahut-Arimoto algorithm to channels with memory and

finite input alphabets and state spaces.

For memoryless channels with continuous input and/or output alphabets,
the Blahut-Arimoto algorithm is not directly applicable. In this paper,

we extend the Blahut-Arimoto algorithm to such channels. It is similar

in spirit as the algorithm of Chapter 6 for computing information rates

of continuous channels with memory. The key idea is again to repre¬

sent probability distributions by lists of samples ("particles" or "mass

points"; see Section 4.6). In the proposed algorithm, the input distrib¬

ution pix) is represented as a particle list Cx. The list Cx is updated

by alternating maximization [187]: first the weights of the particles are

updated while the positions of the particles are kept fixed; the Blahut-

Arimoto algorithm [9] [23] (or one of the extensions of [125]) can be used

for this purpose. Next the positions of the particles are optimized while

their weights remain fixed; this can be carried out by several iterations

of a gradient method such as steepest ascent or the Newton-Raphson
method [19].

The proposed algorithm is related to the algorithm presented in [4]. The

latter, however, becomes unstable for certain SNR-values; our algorithm
does not suffer from numerical instabilities. Our algorithm is also similar

to the algorithm proposed by Chang et al. [31]; also there, the input
distribution is represented as a particle list Cx. The algorithm of [31]
determines all local maxima xmax of the relative entropy _D(p(y |x)||p(y))
after each update of the weights, where f>iy) is the output distribution

corresponding to Cx; those maxima are subsequently appended to the

particle list. Finding all local maxima of a function is unfortunately often

infeasible, especially in high dimensions. In addition, there may be an

infinite number of local maxima. The algorithm of [31] is therefore often

impractical. Lafferty et al. [105] proposed an alternative algorithm based

on Markov-Chain-Monte-Carlo methods (MCMC). The MCMC-based

algorithm of [105] is significantly more complex than our algorithm: the
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complexity of the former grows quadratically in the number of iterations,
whereas the complexity of our algorithm depends linearly on the number

of iterations; both algorithms seem to converge after about the same

number of iterations. In addition, each iteration of the MCMC-based

algorithm requires vastly more computations compared to our method.

This chapter is structured as follows. In Section 7.2, we briefly review

the Blahut-Arimoto algorithm [9] [23] and two recently proposed alter¬

natives [125]. In Section 7.3, we outline our particle-based algorithm.
We present numerical examples in Section 7.4. We summarize the main

results of this chapter in Section 7.5. In Section 7.6, we list topics for

future research.

7.2 Review of the Blahut-Arimoto Algorithm
and Extensions

We start by reviewing the Blahut-Arimoto algorithm [9] [23] and the two

extensions of [125]. The Blahut-Arimoto algorithm is an alternating-
maximization algorithm [187] for computing the capacity (7.1). One

starts with an arbitrary probability (mass or density) function p(°\x).
At each iteration k, the probability function p^k\x) is updated according
to the rule:

P{k)ix) = -Lyp(fc-D(x)exp(l?(p(y|x)|b(fc-1)(y))), (7.2)

where D iqf)[[pf)) is the Kullback-Leibler divergence (or "relative en¬

tropy"; cf. Appendix B) defined as

£>(<z(-)b(-))= fqiflog-^-, (7.3)
Jx Pix)

the expression p(k\y) is given by

P{k)iy) = I p{k\x)piy[x), (7.4)
Jxex

and the factor Z^ normalizes the probability function p^k\x):

zWàf p(k-1\x)exp(Dipiy\x)\\p^iy)j). (7.5)
Jxex v J
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The mutual information fk^ corresponding to the input probability func¬

tion p(k\x) is given by:

I{k)=l pWix)Dipiy\x)\\p^iy)). (7.6)
Jxex

If after n iterations the gap between fn\ which is a lower bound on the

capacity (7.1), and m&xxex D (piy\x)\\p(n\y)), which is an upper bound

on (7.1), is sufficiently small, i.e., when

maxD(piy\x)\\p^iy))-I^ < e, (7.7)
xEX

where e a "small" positive real number (e.g., e = 10~5), one halts the

algorithms and concludes with the estimate C = fn^.

Matz et al. [125] proposed two related algorithms for computing the

capacity of memoryless channels, i.e., the so-called "natural-gradient-
based algorithm" and the "accelerated Blahut-Arimoto algorithm". Both

algorithms often converge significantly faster than the standard Blahut-

Arimoto algorithm.

In the natural-gradient-based algorithm, the probability function p^ (x)
is recursively updated by the rule [125]

p^ix) = p^-^ix) [l + M« • (DipiyWWpV'-Viy)) - J(fc-1})] , (7.8)

where jfk^ is a positive real number ("step size"). Note that p^k\x)
in (7.8) is guaranteed to be normalized. The accelerated Blahut-Arimoto

algorithm updates p^k\x) as [125]

P{k)ix) = Ayp(^i)(x)exp (}i^-D{piy\x)\\p^\y))) , (7.9)

where Z^ is a normalization constant.

Many channels have an associated expense of using each of the input

symbols. A common example is the power associated with each input

symbol. A constrained channel is a channel with the requirement that

the average expense be less than or equal to some specified number Emax.

The capacity at expense E is defined as [23]

CiE)f sup / [pix)piy\x)log Piy^ = sup I(X;Y),
p(x)EPEJxJy JxPix)piy\x) p(x)EPE

(7.10)
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where

Pe = {p pix) = l,pix) >0,Ef f pixfix) <Emax\,

(7.11)
and IK = R or C The Blahut-Arimoto algorithm can be extended to

constrained channels; the recursion (7.2) is replaced by [23]

P{k\x) = --\r/k-1\x)^p{pipiy[x)[[p^\y)) - Se(x)), (7.12)

where s a positive real number [23]. After n iterations of (7.12), one

obtains the following bounds on C(i?) [23]:

/(") < C\E) < max \Dipiy\x)\\p{n)iy)) - se(x)j + s£(n), (7.13)
xex L J

where

E(k) A /p(fc)(x)e(x). (7.14)

Note that p^ and hence E^ depend on s. One chooses s so that (1) the

condition E^n> < Emax is satisfied; (2) the gap between the upper and

lower bound (7.16) is as small as possible. To that end, the parameter s

may be adjusted after each update (7.12).

When there are multiple constraints E3 = fxpix)e3ix) < Eax f =

1,..., L), the recursion (7.2) is replaced by

1

P{k)ix) = -M^-D(x)exp(l?(p(y|x)|b(")(y)) -]TSjej(x)) (7.15)

and (7.16) is adapted as

3=1

/(") < C\E) < max

XfzX
Dipiy\x)\\p^iy))-J2s3e3ix)

3=1

Y,*A
(n)

3=1

(7.16)

The two Blahut-Arimoto-type algorithms of [125] can similarly be ex¬

tended to constrained memoryless channels.
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7.3 A Particle Method

When X and Y are discrete, the Blahut-Arimoto-type algorithms re¬

viewed in the previous section are practical. Otherwise, the Blahut-

Arimoto updates (7.2), (7.8), and (7.9) cannot be carried out as such.

We tackle this problem in a straightforward fashion: we represent the

input distribution p(x) by a ("long", but finite) particle list

£x = {(xi,wi), (x2, w2),..., ixN,wN)}. (7-17)

For some channels, the capacity-achieving input distribution is known to

be discrete (see e.g., [30] and references therein); the capacity-achieving

input distribution can then exactly be represented by a (finite) list Cx.

On the other hand, if the capacity-achieving input distribution is conti¬

nuous, it can obviously not exactly be represented by a (finite) list Cx ;

nevertheless, it may be well approximated by such a list, especially if X

is large (e.g., X = 106) and the dimension of the input space X is small.

If one represents the input distribution p(x) by a particle list Cx, the

original infinite-dimensional optimization problem (7.1) reduces to the

finite-dimensional optimization problem:

C = max/(x, w), (7.18)
x:w

where w = (wi,..., wn), x = (xi,..., xjv), and the expression fx, w)
stands for

Iix,w)àJT f wlPiy\f) log Äil. (7.19)
j=i Jy p{y>

The output distribution p(y) corresponds to the input distribution p(x) =

Cx, i.e.,
N

p(y) = ^2wrPiy\f)- (7.20)
i=i

The mutual information /(x, w) (7.19) involves integrals that are often

intractable; they may be evaluated by numerical integration (e.g., by the

trapezoidal rule) or by Monte-Carlo integration. In the latter approach,
the expression (7.19) is computed as:

IHM = ^££Wîlog^41, (7.21)
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where yhJ for j = 1,..., M are samples from the conditional pdfs piy\f).

The estimate C (7.18) is a lower bound on the capacity (7.1). Note that

the mutual information fX;Y) is concave w.r.t. the distribution p(x),
whereas fx, w) is non-convex w.r.t. the positions x and the weights w.

The list of particles C*x that achieves C (7.18) is given by:

C*x = {ix\,w*f,ix*2,w*2),...,ix*N,w*N)} = argmax/(x,w). (7.22)
x:w

The maximization in (7.22) is carried out over the positions x and over

the weights w. In principle, one can solve (7.22) by alternating maximi¬

zation [187]:

w(fc) = argmax/^-1), w) (W-step) (7.23)
W

fk) = argmax J(x,w(fc)) (X-step), (7.24)
X

where fk> = ix\ ,..., xN ) and w^k> = iw\ ,..., wN ) are the positions
and weights respectively at the A;-th iteration. In the W-step (7.23), the

weights w are optimized while the positions fk~^ of the particles are

kept fixed. The W-step can be accomplished by the Blahut-Arimoto al¬

gorithm [9] [23] or one of the two extensions proposed in [125], since the

input alphabet X = fk~^ is discrete. In the X-step (7.24), the posi¬
tions x are optimized while the weights w^k' of the particles remain fixed;
this optimization problem is non-convex and often difficult. Therefore,
instead of performing the maximization (7.24), we select the positions
x(fc) such that

Dipiy\x[k))\\p^iy)) > DipiyYx^^-^iy)), (7.25)

for i = 1,..., N with

N

Piy){k-1/2) = Ew!fc:]Piy\^l))- (7-26)
i=i

From (7.25) it follows:

l(xW,wW) > /(x^-1),«;«). (7.27)

Positions fk^ that fulfill the condition (7.25) can be obtained by means

of a gradient method as, e.g., steepest ascent or the Newton-Raphson
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method [19]. In steepest ascent for example, the alphabet x is updated

according to the rule:

xf = xf
l)
+ Xk -7--Dipiy\xt)\\piy))

d.Xo
(7.28)

X(k—1) yj (fc)

where A^ ( "step size" ) is a positive real number that in general depends
on k; note that the pdf piy) (cf. (7.20)), which appears in the RHS

of (7.28), depends on x = (xi,..., xjv).

By adapting the step size A^ according to the Armijo rule [19], one can

guarantee (7.25) and hence (7.27). The partial derivative occurring in

the RHS of (7.28) can be evaluated as:

d f d
----Dipiy\f)\\piy)) = / piy\f)---logpiy[f)
OX% J y

ÖX%

t . ,
Piy\xf piy[xf\

1 + log —q—s wt .

piy) piy) J
(7.29)

If the integral in the RHS of (7.29) is not available in closed-form, it

may be computed by means of numerical integration or Monte-Carlo

integration. In the update rule (7.29), the positions fk^ are obtained

from the positions fk~^ by a single steepest-ascent step; obviously, the

positions fk^ may also be determined by multiple subsequent steepest-

ascent steps.

In summary, we propose the following algorithm:

a) Start with an initial list of mass points

c^f{i^\wf\i^\wf\...,i^,wf)},

with uniform weights w\ = 1/X for i = 1,..., X, where X is

sufficiently large.

b) W-step:
Determine the new weights w^k> by solving (7.23); this can be done

by means of the Blahut-Arimoto algorithm [9] [23] or one of the

extensions of [125].
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c) X-step:
While the weights w/fc) remain fixed, move the points fk~^ in or¬

der to increase lifk^1\ w^) (e.g., by means of a gradient method),
which results in a new set of points fk\

d) Iterate 2-3.

After n iterations, a lower bound Z/n) for the capacity (7.1) is eventually
obtained as:

C>L(n)=/(x(n),w;(n)). (7.30)

An upper bound on the capacity (7.1) is given by

UW = maxD(p(y|x)||^n)(y)) > C, (7.31)
xEX

where p^n\y) is the output distribution corresponding to the input dis¬

tribution pix) = £{x] (cf. (7.20)).

Since the sequence fk^ is non-decreasing, i.e., /(fc+1) > /(fc) and mu¬

tual information is bounded from above, the algorithm converges to a

local maximum of /(x,w). The algorithm may converge to the capa¬

city-achieving input distribution if the latter is discrete, especially if the

number X of particles is sufficiently large, the dimension of the input

space X is small, and the initial list £(°) sufficiently covers the input

space X. Convergence to the capacity-achieving input distribution is

only guaranteed, however, in the limit of an infinite number of particles.

The proposed algorithm can straightforwardly be extended to constrained

channels (cf. Section 7.2): in the W-step, one iterates the recursion (7.12)
(or one of the extensions of [125]); after each W-step, one may adjust the

parameter s (cf. (7.12)). In the X-step, one moves the points fk~^ in

order to increase lifk^1\ w^) + sEifk^1\ w^) (e.g., by means of a

gradient method), where

N

Eix,w)=y Wje(xj). (7.32)
i=i

After n iterations, one obtains the following lower bound on the capacity

C\E) (7.10):

CiE) > L{-n\E)flifn\w^). (7.33)
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An upper bound on C(S) (7 10) is given by

+ s£(x(n),w>(n)) >CiE)

(7 34)

7.4 Numerical Example: Gaussian Channel

By means of the above algorithm, we computed the capacity of a Gaussian

channel described by the equation

Yk=Xk+Nk, (7 35)

where Xk G R, and X^ is an 11 d zero-mean real Gaussian random

variable, independent of Xk, with (known) variance a2 We considered

the average-power constraint E[X2] < P and two different peak-power

constraints, i e
, Pr[|X| > A] = 0 and Pr[0 < X < A] = 1

In the simulations, we used 100 particles x and between 100 and 1000

alternatmg-maximization iterations,2 each such iteration consisted of

1000 accelerated Blahut-Arimoto iterations (W-step) and 20 steepest

descent updates (X-step) Our experiments have shown that, for the

problem at hand, the accelerated Blahut-Arimoto algorithm converges

faster than the natural-gradient based Blahut-Arimoto algorithm [125],

we optimized the constant step size jfk^ = p (for all k) of the accelerated

Blahut-Arimoto algorithm (cf (7 9)), resulting in the value p = 3 (for
all k) We compute /(x,w) (7 19) by numerical integration

In order to assess the performance of our method, we considered a channel

for which the capacity and corresponding input distribution are available

in closed-form, i e
,
the Gaussian channel (7 35) with average-power con¬

straint E[X2] < P As is well known, the capacity C (in bits per channel

use) of that channel is given by [178]

C/ = ilog2(l + ^) (7 36)

Fig 7 1(a) shows the expression (7 36) (for P = 1) together with the

lower bound fn\E) (7 33), where the signal-to-noise ratio (SNR) is

lfn\E) = max Dipiy[x)[[p^n\y) - se(x))
xfX

.

2The number of required iterations increases with the SNR
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^
X

SNR [dB]
(a) Capacity. (b) Input distribution.

Figure 7.1: Gaussian channel with constraint E[X2] < 1.

defined as

SNR[dB] = 10 log10

P

(7.37)

Also shown in Fig. 7.1(a) is an approximation Ü^n\E) of the upper

bound Ij(n\E). Since the input alphabet X is unbounded, the upper

bound lfn\E) (7.34) is intractable; the estimate Û^n\E) of lfn\E) is

obtained by restricting the maximization (7.34) to the interval [-10,10],

ffn\E) max

œ£[-10,10]
Dipiy\x)\\p^iy))-seix) sEifn\w^)

(7.38)
It can be seen from Fig. 7.1(a) that U^n\E) and fn\E) are practically

equal to the capacity C. The deviation between fn\ £An) and C is

about 10~5 bits/channel use. The accuracy could in fact be improved by

increasing the number of particles and iterations.

It is well known that the capacity-achieving input distribution is a zero-

mean Gaussian distribution A/"(0, P) with variance P [178]. In Fig. 7.1(b),
this distribution is shown together with the particle-based approximation

(for P = 1). Again, the exact and the numerical results practically coin¬

cide.

Fig. 7.2 shows the results for Gaussian channel with average-power con¬

straint E[X2] < P and peak-power constraint Pr[|X| > A] = 0 (A = 1

and P = 0.5). Fig. 7.2(a) shows the lower bound Z/n) and upper bound

£/(") on the channel capacity as a function of the SNR (7.37). It can
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be seen from Fig. 7.2(a) that both bounds coincide. In Fig. 7.2(b),
the capacity-achieving input distributions are depicted: the dots are the

constellation points, their probability mass is encoded in the grayscale

(white: p = 0; black: p = 0.5). The capacity-achieving input distribution

for this channel is discrete (see e.g., [30] and references therein). Note

that our algorithm does not make use of that fact: it has to determine

both the number and the position of the mass points of the capacity-

achieving input distribution. As an illustration, the capacity-achieving
cumulative input distribution Fix) is depicted in Fig. 7.2(c) for SNR =

13dB. Fig. 7.2(d) shows how the particles explore the input space du¬

ring the iterations: initially, the particles are uniformly distributed in

the interval [—1,1]; they gradually move towards the signal points of the

capacity-achieving input distribution (cf. Fig. 7.2(c)).
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(a) Capacity.
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(b) Input distribution.

Figure 7.2: Gaussian channel with constraints E[X2] < 0.5 and

Pr[|X| > 1]=0.
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Fig. 7.3 shows the results for the Gaussian channel with peak-power
constraint Pr[|X| > A] = 0 (with A = 1). Fig. 7.3(a) shows the lower

bound Z/n) and upper bound U^ on the channel capacity as a function

of the SNR, which is defined as SNR[dB] = 10 log10 [K^ ; both bounds

again coincide. Fig. 7.3(b) shows the corresponding input probability
mass functions.

SNR [dB]
(a) Capacity.

1 5

1

05

0

-0 5

-1

-1 5
0 5 10

SNR [dB]

(b) Input distribution.

Figure 7.3: Gaussian channel with constraint Pr[|X| > 1] = 0.

Fig. 7.4 shows the results for the Gaussian channel with peak-power con¬

straints Pr[0 < X < A] = 1 (with A = 1). This channel is a simple
model for free-space optical communication. Before we discuss the re¬

sults, we briefly elaborate on free-space optical communication. (We
will closely follow [140].) Free-space optical communication systems are

nowadays commercially available (see [161], and references therein); they
are mostly used for short metropolitan links, as illustrated in Fig. 7.4(a).
The transmission of the input signal is performed by light emitting diodes

(LED) or laser diodes (LD), as depicted in Fig. 7.4(b) [161]; conventional

diodes emit light in the infrared spectrum. The main characteristic of a

free-space optical communications channel is that the impact by noise is

mostly due to ambient light, other noise sources can often be neglected;

therefore, the noise can be assumed to be independent of the input. The

direct line-of-sight path is often dominant, as a consequence, the im¬

pact of inter-symbol interference due to multi-path propagation can be

neglected. Due to eye safety and the danger of potential thermal skin

damage, the optical peak-power has to be constrained.3

3See, e.g., http://www. lasermet.com/resources/classification-overview.html.
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Fig. 7.4(c) shows (1) the lower bound Z/n) and upper bound U^ on the

channel capacity, which, as before, coincide; (2) analytical upper and

lower bounds by Moser et al. [140]4; (3) the information rates correspon¬

ding to the input constellation X = {0,1} ("ON/OFF keying"), which

is frequently used in practical free-space optical communications sys¬

tems [161]. In Fig. 7.4(d), the capacity-achieving input constellations are

depicted. Note that ON/OFF keying achieves capacity for SNR-values

below lldB, which are realistic SNR-values [161].

(a) Application.

Transmitter unit Receiver unit

Input optical fiber

"k— —à

I \ Infrared beam / \

(b) Communications system [161].

Output optical fiber

(c) Capacity.

-<'

5 10 15 20

SNR [dB]

(d) Input distribution.

Figure 7.4: Gaussian channel with Pr[0 < X < 1] = 1.

4We have plotted the low-power bounds proposed in [140]. The high-power lower

bound of [140] is for A = 1 looser than the low-power lower bound. The high-power

upper bound only holds for large values of A, it is trivial for A = 1.
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7.5 Summary

• We proposed a simple numerical algorithm to compute (lower
and upper bounds on) the capacity of continuous memoryless
channels. The input distribution is represented by a finite list

of mass points; the list is computed by alternating maximiza¬

tion: first, the weights of the mass points are updated by means

of the Blahut-Arimoto algorithm (with the current positions of the

mass points as input alphabet), then, the positions of the mass

points are optimized (while the weights of the mass points are

fixed); this non-convex optimization problem is handled by gra¬

dient methods.

• We have presented numerical results for the Gaussian channel

with average-power and/or peak-power constraints. The algorithm
seems to lead to accurate results both for discrete and for conti¬

nuous capacity-achieving input distributions. Note that the algo¬
rithm does not need to know in advance whether the capacity-

achieving input distribution is discrete or continuous.

• The algorithm is not guaranteed to converge to the capacity-

achieving input distribution, in practice however, it usually does if

the capacity-achieving input distribution is discrete.

7.6 Outlook

• The methods of this chapter can be extended to channels with

memory, e.g., inter-symbol-interference channels (ISI). The gen¬

eral idea is again simple: one interleaves the Blahut-Arimoto-type

algorithm of [204] (W-step) with gradient ascent (X-step). The

resulting algorithm involves forward and backward sweeps in which

sum-product messages and gradients of sum-product messages are

computed (cf. Section 4.8.1). We have implemented such algo¬
rithms and we obtained promising preliminary results. Further

investigation of those algorithms is needed.

• It would be interesting to extend our methods to the computation
of rate distortion functions [178].





Chapter 8

Analog Electronic Circuit

for PN-Synchronization

This chapter is not directly related to the problem of carrier-phase esti¬

mation. However, it is strongly related to (1) the problem of synchroniza¬

tion, more specifically, pseudo-noise (PN) synchronization; (2) message

passing on factor graphs, in particular, the implementation of message-

passing algorithms as dynamical systems (analog electrical circuits).

More precisely, we present a clockless low-power analog circuit that syn¬

chronizes to pseudo-noise (PN) signals. The circuit operates in conti¬

nuous time and does not contain a digital clock; in other words, it avoids

the problem of timing synchronization.

The circuit is derived by translating a discrete-time message-passing al¬

gorithm into continuous time. The circuit exhibits the phenomenon of

entrainment—we thus establish a connection between entrainment and

statistical state estimation.

The results of this chapter are based on joint work with Matthias Frey,
Neil Gershenfeld, Tobias Koch, Patrick Merkli and Benjamin Vigoda [201].
My personal contribution concerns the statistical estimation aspect, and

not the hardware implementation nor measurement of the circuit.

311
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8.1 Introduction

Pseudo-random signals play an important role in spread-spectrum com¬

munications [182] [139] in various measurement systems. In such systems,

the synchronization of pseudo-random ( "pseudo noise" ) signals is a pro¬

blem of significant interest. The standard solution to this problem is

based on correlating the incoming signal with (a segment of) the pseudo¬
random signal, which leads to a long acquisition time if the period of the

signal is large.

Perhaps the most popular class of pseudo-random signals are generated

by linear-feedback shift registers (LFSRs). Both Gershenfeld and Grin¬

stein [74] and Yang and Hanzo [219] [220] observed that LFSR sequences

can be synchronized by means of a "soft" or "analog" LFSR. The ap¬

proach of [74] is system theoretic: the soft LFSR is a dynamical system
with entrainment capabilities (cf. [158] [38] [3]) obtained by embedding
the discrete state space of the LFSR into a continuous state space. In

contrast, the (better) soft LFSR of [219] [220], which was independently
obtained also in [50], is derived from statistical estimation; it achieves

quick synchronization—e.g., after 150 samples at 0 dB for an LFSR with

a period of 215—1 samples—at very low computational cost. Related algo¬

rithms, some of them more complex and more powerful, were presented
in [50] [51] [133] [32] [224].

Here, we connect the dynamical systems view of [74] with the statistical

view of [219] [220], both in discrete time and in continuous time. First,
we derive the soft LFSR of [219] [220] as forward-only message passing in

the corresponding factor graph. We then propose a new continuous-time

analog of both the LFSR and the soft LFSR, both suitable for realization

as electronic circuits. We actually implemented one such circuit, and we

report some measurements. It is thus demonstrated that continuous-

time dynamical systems (such as clockless electronic circuits) with good
entrainment properties can be derived from message passing algorithms
for statistical state estimation. Such systems/circuits may have substan¬

tial advantages in terms of speed and/or power consumption over digital

implementations in some applications, and they may enable entirely new

applications. However, such applications are outside the scope of this

thesis.

This chapter is organized as follows. We begin by stating the discrete-
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time problem in Section 8.2. In Section 8.3, we review maximum-likelihood

estimation and its interpretation as forward-only message passing in a

cycle-free factor graph. In Section 8.4, we obtain the soft LFSR as

forward-only message passing through another factor graph, and we

present some simulation results. A continuous-time analog of the (discrete-
time) LFSR is proposed in Section 8.5. The corresponding continuous-

time analog of the soft LFSR and its realization as an electronic circuit

are described in Section 8.6. Some measurements of this circuit are re¬

ported in Section 8.7. In Section 8.8, we summarize the main results of

this chapter; in Section 8.9, we outline several topics for future research.

Some details of alternative versions of the soft LFSR (sum-product, max-

product, and Gershenfeld-Grinstein) are given in Appendix L.

8.2 Noisy LFSR Sequences

For fixed integers £ and m satisfying 1 < £ < rn, let

X = X_m+i,... ,X_i,Xo,Xi,X2,... (8.1)

be a binary sequence satisfying the recursion

Xk = Xk-£ © Xk-m (8.2)

for k = 1,2,3,..., where "©" denotes addition modulo 2. Any such

sequence will be called a LFSR (linear-feedback shift register) sequence.

For k > 0, the m-tuple [X]k = iXk-m+i, , Xk-i,Xf will be called

the state of X at time k. The sequence Xi,X2,... is observed via a

memoryless channel with transition probabilities piyk\xf- The situation

is illustrated in Fig. 8.1 for £ = 1 and m = 3; the boxes labeled "D" are

unit-delay cells.

Note that the restriction to two right-hand terms ("taps") in (8.2) is

made only to keep the notation as simple as possible; all results of this

paper are easily generalized to more taps. We also remark that, in most

applications (and in our examples), LFSR sequences with the maximal

period of 2m — 1 are preferred, but this condition plays no essential role

in this paper.

From the received sequence Yi, Yi, , Yn, we wish to estimate the state

[X]n of the transmitted sequence. The computation of the maximum-
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Xk

e
memoryless
channel

D D D

—m xk — 9 Xk Yk

Figure 8.1: LFSR sequence observed via a noisy channel.

likelihood (ML) estimate is straightforward and well known [182]; how¬

ever, the complexity of this computation is proportional to n2m, which

makes it impractical unless m is small.

In the examples, we will assume that the channel is defined by

Yk = Xk + Zk

with

Xk =

1, ifXk

-1, ifXk

(8.3)

(8.4)

(i.e., binary antipodal signaling) and where Z = Zi,Z2,... is white

Gaussian noise (i.e., independent zero-mean Gaussian random variables)
with variance a2.

8.3 ML Estimation, Trellis, and Factor Graphs

Let us recall some basic facts. First, we note that the mapping ih [x]k
(from sequences to states) is invertible for any k > 0: from the forward

recursion (8.2) and the backward recursion Xk-m = Xk © Xk-£, the

complete sequence x is determined by its state at any time k.

Second, we consider the maximum-likelihood (ML) estimate of [X]n.

Using the notation yn = iyi,... ,yn) and xn = (x_m+i,... ,xn), the

ML estimate of [X]n is the maximum (over all possible states [x]n) of
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Figure 8.2: Factor graph (Forney-style) corresponding to the trellis of

the system in Fig. 8.1.

So Si
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yi

s3

x.
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Figure 8.3: Forward-only message passing through the factor graph of

Fig. 8.2.

the likelihood function

Piyn\[x}n)=piyn\xf
n

= Y[piyk\xk)

(8.5)

(8.6)
fc=i

For the channel (8.3), maximizing (8.6) amounts to maximizing the cor¬

relation between xn and yn.

Third, we note that the computation of (8.6) may be viewed as the

forward recursion of the BCJR algorithm [15] through the trellis of the

system or—equivalently—as forward-only message passing through the

corresponding factor graph. Let us consider this more closely.
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A factor graph of our system is shown in Fig. 8.2. The nodes in the

top row of Fig. 8.2 represent {0,1}-valued functions J(sfc_i, Xk, sf that

indicate the allowed combinations of old state Sk-i = [x]k-i, output

symbol Xk, and new state Sk = [x]k- The nodes in the bottom row of

Fig. 8.2 represent the channel transition probabilities piyk\xf- As a

whole, the factor graph of Fig. 8.2 represents the function

n

piyn\xn)Jixn, sn) = 11 Jisk-i,xk, sk)piyk\xk) (8.7)
fc=i

(defined for arbitrary binary sequences xn), where

n

Jixn,sn)f\{jiSk-i,Xk,Sk) (8.8)
fc=i

is the indicator function of valid LFSR sequences, which may also be

viewed as a uniform prior over all valid xn.

It then follows from basic factor graph theory [103] [119] that the a

posteriori probability distribution over Sn = [X]n (and thus the MAP

/ ML estimate of Sn) is obtained from forward-only sum-product mes¬

sage passing as illustrated in Fig. 8.3. Since the trellis has no merging

paths, the sum-product rule for the computation of messages reduces to

a product-only rule and coincides with the max-product rule. By taking

logarithms, the product-only rule becomes a sum-only rule; for the chan¬

nel (8.3), this amounts to a recursive computation of the correlation

between xn and yn.

8.4 The Soft LFSR

Another factor graph for our system is shown (for £ = 1 and m = 3) in

Fig. 8.4. This factor graph represents the function

n

piyn\xn)Jixn) = Y[ S[xk © xk-£ © xk-m]piyk\xk), (8.9)
fc=i

where 5[] is the Kronecker delta and where J(xn) = \Yl=i 5[xk ©Xfc_£©

Xk-m] is the indicator function for valid LFSR sequences according to (8.2)
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Figure 8.4: Factor graph corresponding directly to Fig. 8.1.

Pk-

D D

PB,k

Pk-£

D
Pk PA,k yk

Figure 8.5: Computation of messages in Fig. 8.4 by a "soft LFSR".

As this factor graph has cycles, the standard sum-product and max-

product algorithms become iterative algorithms. Such algorithms were

investigated in [32] and [224]. Here, however, we stick to (non-iterative)
forward-only message passing. Since (full-state) forward-only message

passing is optimal in Fig. 8.3, there is hope that (scalar) forward-only

message passing in Fig. 8.4 might do well also. In any case, forward-only

message passing in Fig. 8.4 amounts to a simple recursion, which may be

interpreted as running the received sequence Y through the "soft LFSR"

circuit of Fig. 8.5. The quantities pA,k, PB,k, and pk in Fig. 8.5 are the

messages indicated in Fig. 8.4. Note that the same message pk is sent

along two edges out of the equality check node corresponding to Xk

The computation of these messages (as indicated in Fig. 8.5) is a stan¬

dard application of the sum-product or max-product rules. Each mes¬

sage represents "pseudo-probabilities" pf)) and pif, e.g., in the form



318 Chapter 8. Analog Circuit for PN-Synchronization

p(0)/j5(l) or j5(0) — pif. For the latter representation, the explicit sum-

product update rules are as follows:

Initialization: pk = 0 for k = —rn + 1, —rn + 2,..., 0.

Recursion (for k = 1, 2, 3,...):

=

pjyk\xk =0) -pjyk\xk = l)
(8 lQs

piyk\xk = 0) +piyk\xk = 1)

for AWGN exp(2yfc/cr^) - 1

(8.11)
exp(2yfc/cr2) + 1

PB,k = Pk-£ Pk-m (8-12)

PA,k + PB,k
,„ 1Qs

Mfc =

T—"
'—

(8-13)
-1 + PA,k PB,k

Equation (8.10) holds for a general memoryless channel while (8.11) is

the specialization to the channel specified at the end of Section 8.1. At

any given time k, an estimate of Xk is obtained as

Xk =

i°: if/k-°n (8.14)
\ 1, if pk <0

v >

and [X]k = iXk-m+i, , Xk-i,Xf is an estimate of the state [X]k-

The sum-product update rules for the case where the messages represent

the ratio j5(0)/p(l) are given in the appendix together with the max-

product rules and the analog LFSR of [74].

Simulation results for maximum-length LFSR sequences with memory

m = 15 and m = 31 are given in Figures 8.6-8.8. All these figures show

plots of the probability of synchronization

Psyncfk)fp[[X}k = [X]k) (8.15)

either vs. the time index A; or vs. the signal-to-noise ratio 1/a2 where a2

is the noise variance.

As is obvious from these plots (and from similar plots in [219] [220] [50])
the soft LFSR quickly achieves synchronization for sufficiently low noise

power (up to about 0 dB) but fails for high noise power. It is remarkable
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Figure 8.6: 1 - Psyncik) for the LFSR with m = 15 (^ = 1) at

SNR = 0 dB. Algorithms (in the order of increasing perfor¬

mance): G.-G. soft LFSR [74]; sum-product soft LFSR;

max-product soft LFSR; maximum likelihood (ML).

Figure 8.7: 1 - Psyncik) for the LFSR with m = 31 f, = 3) for three

different signal-to-noise ratios: SNR = -2.92 dB (<r = 1.4),
SNR = 0 dB (er = 0), and SNR = 4.44 dB (er = 0.6).
Algorithms: max-product soft LFSR and sum-product soft

LFSR.
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that the max-product algorithm gives better performance than the sum-

product algorithm, but the difference is small.

We also note that better performance can be achieved both with more

complex forward-only message passing [50] [51] and with iterative mes¬

sage passing, cf. [32] [224].

8.5 A Continuous-Time Pseudo-Random Gen¬

erator

We now proceed to an analog of Figures 8.1 and 8.5 in continuous time.

Our proposal for a continuous-time analog of Fig. 8.1 is shown in Fig. 8.9.

The signal X(t) in Fig. 8.9 takes values in the set {+1, —1}- The multi¬

plier in Fig. 8.9 corresponds to the mod-2 addition in Fig. 8.1.

How should we translate the delay cells in Fig. 8.1 to continuous time?

An obvious approach would be to simply translate them into continuous-

time delay cells. However, ideal continuous-time delay cells cannot be

realized by real circuits (except perhaps in optics); even a delay line (e.g.,
a piece of wire) has a low-pass characteristic.

We therefore choose to replace the discrete-time delay cells of Fig. 8.1

by low-pass filters with transfer functions Hfs) and i?2(s) as shown

in Fig. 8.9. Since the output signal of such filters is not restricted to

{+1,-1}, we introduce threshold elements between the filter outputs

and the multiplier, which reduce the filtered signals to their sign (+1 or

— 1). These threshold elements have no counterpart in Fig. 8.1 (and will

create a small problem in the receiver).

The memoryless channel in Fig. 8.1 is translated into the additive white

Gaussian channel shown in Fig. 8.9.

The type of signal X(t) generated by the circuit of Fig. 8.9 is illustrated

in Fig. 8.10 (top). From our simulations, it appears that the signal X(t)
is generically periodic. The actual signal depends, of course, on the two

filters. In our examples, the first filter (with transfer function Hfs)) is

a 5-th order Butterworth filter with —3 dB frequency 1.6 kHz, and the

second filter (with transfer function iÏ2(s)) is a cascade of 6 such filters.

With these filters, the circuit of Fig. 8.9 is a dynamical system with a
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max-product soft LFSR; maximum likelihood (ML).
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Figure 8.9: Continuous-time analog to Fig. 8.1 with low-pass filters in¬

stead of delay cells.
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Figure 8.10: Top: example of pseudo-random signal X(t) generated

by the circuit of Fig. 8.9. Middle: noisy signal Yit) as in

Fig. 8.9 at SNR = 0 dB. Bottom: measured output signal

Xit) of the circuit of Fig. 8.11 fed with Yit).

35-dimensional state space. The resulting signal X(t) is periodic with a

period of 34 ms, 10 ms of which are shown in Fig. 8.10 (top).

It should be emphasized that, at present, we do not have a theory of such

circuits and we cannot predict the period of the generated sequence X(t).
However, our simulation experiments (e.g., in [99] [42] [43]) suggest that

a long period—"long" meaning many zero-crossings—requires a high-
dimensional state space.

8.6 A Circuit that Locks onto the Pseudo-

Random Signal

A continuous-time analog to the soft LFSR of Fig. 8.5 matched to the

pseudo-random generator of Fig. 8.9 is shown in Fig. 8.11. The linear
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Figure 8.11: Continuous-time analog of Fig. 8.5.

filters Hlis) and i?2(s) in Fig. 8.11 are identical to those in Fig. 8.9. All

signals in Fig. 8.11 should be viewed as approximations of expectations

of the corresponding signals in Fig. 8.9 (conditioned on the previous

observations). Note that, for {+1, —1} valued signals, the mean coincides

with the difference p~i+l) — j5( — 1). It follows that the multiplier ® in

Fig. 8.11 computes (the continuous-time analog of) the message pA,ff
according to (8.12); the box @ in Fig. 8.11 computes (the continuous-time

analog of) the message pk according to (8.13); and the box ® computes

(the continuous-time analog of) the message pA,k according to (8.11). All

these computations can be done by simple transistor circuits as described

in [121] [123] [116] (where the pseudo-probabilities p~i+l) and j5( —1) are

represented by a pair of currents).

Consider next the filtered signals. Let S*i(t) denote the output signal of

the filter i?i(s) in Fig. 8.9 and let hft) be the impulse response of that

filter (i.e., the inverse Laplace transform of Hfs)). We thus have

/oo hffXit-fdr (8.16)
-OO

and

/oo hiiT)E[Xit-T)]dr (8.17)
-oo

where the expectation is a (time dependent) ensemble average based on

the (time dependent) pseudo-probabilities j5(+l) and j5( —1). It follows

that the output of the filter i?i(s) in Fig. 8.11—which is given by the

right-hand side of (8.17)—is the expected value of S*i(t). In other words,
all signals in Fig. 8.11 may be viewed as (approximations of) expectations
of the corresponding signals in Fig. 8.9.
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Figure 8.12: Differential transistor pair.

So far, all computations have been locally exact in the same sense as

in the discrete-time case (i.e., ignoring cycles in the factor graph). This

fails, however, for the threshold elements in Fig. 8.9: the (instantaneous)
expectation of the output signal of such a threshold element is not de¬

termined by the (instantaneous) expectation of its input signal. At this

point, however, practical considerations strongly suggest to implement
the boxes ® and © by the circuit of Fig. 8.12. This circuit accepts as

input a voltage and produces as output two currents I+ and J_ propor¬

tional to pi+1) and p~i — l), respectively.

This same circuit is also used to implement the box ® exactly (where
the amplification A depends on the SNR and on the temperature). As

an implementation of ® and ©, the circuit is an approximation; it would

be exact (for the correct choice of a) if the distribution of the filtered

signals —more precisely, the full sum-product message at the input of

the soft-threshold elements—would be the logistic distribution

ß (e~*f + e "2/ j

with mean p and variance Trß/fS [ISA, Appendix E]. In our experiments,
the amplification a of these circuits was manually adjusted for the best

performance.

8.7 Some Measurements

Simulation results of analog circuits are often subject to doubt concerning
their robustness with respect to non-idealities. We therefore built the
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system of Fig. 8.11 as an actual (clockless) electronic circuit with discrete

components. The filters were realized as active RC filters with integrated

operational amplifiers.

For the measurements, the clean signal X(t) as well as the noisy signal
Yit) were created by simulating the circuit of Fig. 8.9 on a (digital)
computer; the noisy signal Y it) was then passed as input to the electronic

realization of Fig. 8.11. A typical measured output signal X(t) is shown

in Fig. 8.10 (bottom).

Some measurements of this system are given in Figures 8.13-8.15. For

the measurements of Figures 8.13 and 8.14, the signal Yit) is replaced by
a constant signal with value — 1 for t < 0. Both figures show the squared
error (SE) (X(t) —X(t))2 averaged, first, over a sliding window and then,
over a number of experiments. Fig. 8.13 shows the SE (averaged over

10ms and over 5 experiments) vs. the time t; Fig. 8.14 shows the SE

(averaged over Is and over 5 experiments) vs. the SNR at time t = A s

(which is the steady state). Note that the receiver achieves good syn¬

chronization for an SNR down to about 0 dB. Not surprisingly, a signal
with a longer period (top in Fig. 8.14) is more difficult to synchronize
than a signal with a shorter period (bottom in Fig. 8.14).

It is instructive to observe what happens when the input to the receiving
circuit is switched off for a while as illustrated in Fig. 8.15. Before the

interruption, the receiver is synchronized. The signal Yit) is then masked

(i.e., overwritten by zero) for 20 ms. During the interruption, X(t) and

X(t) drift apart and the averaged SE increases. The figure shows the

signals X(t) and X(t) around the critical moment when Yit) is switched

on again.



326 Chapter 8. Analog Circuit for PN-Synchronization

sliding mean of SE vs time

- SNR = -4dB

- SNR = OdB

SNR = 4dB

Figure 8.13: Average squared error vs. time after switching the trans¬

mission on.

Figure 8.14: Average squared error in steady state vs. SNR. Dashed

curve: pseudo-random signal with shorter period (7 ms

instead of 34 ms, achieved with H2is) = Flfsf instead

of H2is) = Hfsf).
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Figure 8.15: Resynchronization example with modified Yit) (top),
sliding-window squared error (2nd from top), X(t) (2nd
from bottom), and X(t) (bottom) at SNR = 0 dB. The

plots of X(t) and X(t) are zoomed to the interval marked

by the dashed lines.
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8.8 Summary

• Gershenfeld and Grinstein demonstrated the synchronization of

LFSR sequences (both in discrete time and in continuous time) by
an "analog LFSR", which was obtained by embedding the discrete

state space of the LFSR into a larger continuous state space. In

this chapter, we derived such dynamical systems from message-

passing algorithms for statistical state estimation.

• First, we noted that the soft LFSR proposed by Yang and Hanzo

may be obtained by forward-only message passing through a

factor graph.

• Second, we proposed a new continuous-time analog of both the

LFSR and the soft LFSR that can be realized as a practical elec¬

tronic circuit.

• We have thus established a connection between statistical state

estimation and the phenomenon of entrainment of dynamical

systems.

8.9 Outlook

• Dynamical systems (e.g., electronic circuits) with better entrain¬

ment capabilities may be obtained from more powerful (more
complex) message-passing algorithms.

• So far, only message-passing algorithms for detection (i.e., infer¬

ence of discrete variables) have been implemented in analog elec¬

tronic circuits, i.e., analog decoding circuits (see [123] and references

therein) and the pseudo-noise synchronization circuit we presented
in this chapter. The extension to estimation seems to be largely

unexplored. Expectation-Maximization-based and gradient-
based estimation algorithms seem natural candidates for imple¬
mentation in analog electronic circuits. EM often leads to simple

expressions, whereas gradient-based algorithms naturally lead to

feedback loops.

One immediate application of this idea in the area of communica¬

tions is code-aided estimation of the channel state, which may
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lead to adaptive analog circuits that are able to track the channel

state. However, there are also potential applications beyond com¬

munications. In the late 80's, Mead [130] pioneered neuromor-

phic engineering, i.e., the development of artificial computing

systems that use the physical properties and information repre¬

sentations found in biological nervous systems. Following that

principle, Mead [130] (and later also other researchers, e.g., [113])
developed low-power analog circuits for applications in low-level vi¬

sion ( "silicon retina" ) and audio-signal processing ( "silicon cochlea" )
In such applications (e.g., in hearing aids), the available power is

seriously limited, and digital solutions are often not suitable. It

seems promising to underpin and extend the neuromorphic engi¬

neering paradigm with insights from statistical estimation (the
"message-passing paradigm"), following the line of thought in this

chapter.

• Quantum systems intrinsically compute probabilities. In fact,

they do that in a very efficient manner: they can update the proba¬

bility mass function of n bits in a single computation; on a classical

computer, this requires in general in the order of 2 computations.
This fact may lead to efficient implementations of detection and es¬

timation algorithms. Although we made some progress in this area,

we are still far from a first working (toy) system. A major bot¬

tleneck is the fact that inference algorithms require non-unitary

operations and marginalization; it is not clear how such opera¬

tions can be implemented efficiently in quantum-computing sys¬

tems.





Chapter 9

Conclusions and Outlook

9.1 Summary

This thesis was, on the one hand, about a particular problem, i.e., carrier-

phase synchronization; on the other hand, it was about general methods,

i.e., message-passing algorithms operating on factor graphs. We will

summarize our results by following the latter thread.

We described how factor graphs can be used for statistical inference,

i.e., detection and estimation. Statistical inference is accomplished by

sending messages along the edges of the graph ( "summary propagation"
or "message passing"). Different algorithms are obtained by different

message types or different message update schedules.

We described various standard estimation/detection algorithms in signal

processing and machine learning as message passing on factor graphs:

• particle methods, e.g., Gibbs sampling, particle filtering, impor¬
tance sampling, simulated annealing, Markov-Chain Monte-Carlo

methods

• gradient-based methods, e.g., steepest ascent/descent, natural-gra¬
dient algorithms

331
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• expectation maximization (EM) and extensions, e.g., Monte-Carlo

EM, gradient EM, SAGE, etc.

• decision-based methods (e.g., iterative conditional modes)

• the back-propagation algorithm for training feed-forward neural

networks.

We determined the local message update rules for each of the above al¬

gorithms. They may be used as building blocks for novel estimation and

detection algorithms. By listing the possible update rules at each node

in the factor graph, one can systematically derive novel algorithms. We

derived various phase-estimation algorithms in this fashion. We demon¬

strated how message-passing algorithms for inference can be implemented
as dynamical systems, in particular, as analog electrical circuits. In parti¬

cular, we have developed a clockless low-power analog circuit that syn¬

chronizes to pseudo-noise sequences.

Factor graphs can also be used for other (related) tasks. In this disser¬

tation, we have devised message-passing algorithms to compute infor¬

mation matrices and Cramér-Rao-type bounds. The latter allow us to

assess practical estimation algorithms, e.g., our phase-estimation algo¬
rithms. Our algorithms for computing information matrices may lead to

novel natural-gradient-based algorithms.

Information matrices are also the key to kernel methods, i.e., Fisher ker¬

nels [89]. Our methods for computing information matrices may enable

us to derive Fisher kernels from sophisticated graphical models. We also

explained how probabilistic kernels and product kernels may be deri¬

ved from graphical models. In combination with kernel methods, factor

graphs can be used for virtually any task in machine learning, as for

example clustering, classification, and novelty detection.

A different application of factor graphs is the computation of information

rates of (discrete) communications channels with memory. In [12], it has

been shown how information rates for such channels can be computed

by forward-only messaging on the graph of the state-space model that

represents the channel. We extended this result to continuous channels,

e.g., channels with phase noise. We also described how the capacity (or
lower bounds on the capacity) of continuous channels can be computed.
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9.2 Outlook

Phase Estimation

• Extension to other phase models. We derived phase estimation al¬

gorithms for the constant-phase model and the random-walk phase
model. Those algorithms could be extended to more sophisticated

phase models, in particular, the models we described in this thesis.

• Other synchronization tasks. We merely focussed on phase estima¬

tion. Following the line of though of this thesis, message-passing

algorithms for other synchronization tasks may be derived.

• Analysis of synchronization algorithms. We have proposed vari¬

ous algorithms for phase estimation and performed simulations to

asses their performance. Our algorithms (and synchronization al¬

gorithms in general) may also be analyzed by semi-analytical tools

as for example density evolution.

Computation of information rates and capacities

• Information rates. We proposed a method for computing the in¬

formation rate of continuous channels with memory; as an illus¬

tration, we applied the method to the random-walk phase model.

The techniques could also be applied to more sophisticated phase
model and other types of channel models, e.g., related to timing

synchronization.

• Capacities of continuous channels with memory. We outlined how

our method for computing capacities (or lower bounds on capa¬

cities) for memoryless channels can be extended to channels with

memory. We have recently implemented such algorithms, but they
need to be further analyzed.

Novel applications

• Kernel methods. We outlined several general strategies to derive

kernels from factor graphs, i.e., Fisher kernels and probabilistic
kernels. In the machine learning literature, such kernels are usually
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computed on cycle-free factor graphs. The extension to cyclic factor

graphs may lead to novel applications.

• Information geometry. Our methods to compute Fisher informa¬

tion matrices can be used for several other applications, i.e., for

deriving Fisher kernels and natural-gradient-based algorithms for

sophisticated graphical models. Such algorithms need to be imple¬
mented and tested.

• Reinforcement learning. One of the learning methods which we

did not address in this thesis is reinforcement learning. It needs

to be investigated whether also this method could be integrated in

the factor-graph framework.

• Combining learning methods with model-based approaches. In some

applications, the probability function of only a part of the system

may be known, for the other part of the system, only a list of

i.i.d. samples may be given. Such systems may be represented by
factor graphs in which some nodes are known, others are unknown

and need to be learned from the available samples. The unknown

nodes could be represented by a neural network, kernel machine or

density tree. Such hybrid systems seem to be largely unexplored.

• Message passing and dynamical systems. We demonstrated how

message-passing algorithms can be implemented in analog elec¬

tronic circuits. Other natural candidates for the implementation of

message-passing algorithms are opto-electronic systems and quan¬

tum systems.

• Representation of signals. In this thesis, all signals were represen¬

ted in time-domain. In some applications, (a part of) the system

is most naturally described in the Fourier domain. Alternatively,

signals may be represented by means of wavelets or filterbanks. Re¬

lated topics are redundant representations of signals (and systems)
and (adaptive) quantization of continuous signals. Signal represen¬

tation is a central theme in signal processing, which could be more

intensively explored in the context of message passing.



Appendix A

Estimation and Decision

Theory

In this Appendix, we review some basic notions from estimation, detec¬

tion and learning theory We will keep the exposition informal, we refer

to [176] for a more rigorous and more detailed treatment

A.l Estimation theory

The standard estimation problem is depicted in Fig A 1 Based on the

measurement Y = y of a (discrete or continuous) random variable Y with

alphabet y, we wish to estimate the value x of a variable X We assume

that for each observation Y = y, a function /y(x) is at our disposal
that encodes all available information about X The "cost" associated

with each estimate x of the true value x is quantified by a real-valued

source

X

observation
Y

fy)
X

Figure A.l: Estimation problem
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function fx, x). Note that the variables X and Y can be scalars, vectors,

or matrices. In the following, we deal with the questions:

• What is a "good" estimator?

• Which estimators are used in practice?

— How do they generate an estimate x from ffx) and fx, x) ?

— In what sense are they good?

Obviously, there are various ways to define "good" estimators; one may

be interested in the performance of the estimator

a) for all possible values x,

b) on the average,

c) in the worst case.

Minimax estimation tries to minimize the worst-case cost. We do not

treat this topic here since it is not directly relevant for this thesis; we

refer to [176, pp. 167-174] for more information.

In classical estimation theory, one focusses on the cost for all values

of x simultaneously. The variables X and Y are in this context real or

complex scalars or vectors and the cost function of interest is fx,x) =

\x — x\2. The variable X is regarded as a "non-random" parameter: one

does not introduce a prior px(x) for X. The function fyix) is then a

probability function in y parameterized by the unknown parameter x; the

standard notation is fyix) = piy; x), but we will write fyix) = pY\xiy\x)
instead. We now investigate the key concepts in classical estimation

theory: consistency, unbiasedness, and efficiency.

• (Consistency)
Let y" be a sequence of n observations, i.e., y" = (yi, y2, , yf.
We say that an estimator x iff) that estimates the value of X based

on the sequence y" is consistent if

lim xiYf) =X w.p.l. (A.l)
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• (Unbiasedness)
An estimator x(y) is called unbiased if

E[x(Y)\X = x]à f xiy)pnxiy[x)d,y = x (A 2)
Jy

for all x

• (Efficiency)
Assume X is real or complex If an estimator minimizes the esti¬

mation error MSE(x, x) = E[\x(Y) — x|2|X = x], it is said to be

efficient If it minimizes E[|x(y) — x|2|X = x] for all x, it is called

uniformly efficient

Remark A.l. (On consistency)
It seems reasonable to require that an estimator attains the true value in

the limit of an infinite amount of data Most estimators used in practice

are consistent

Remark A.2. (On unbiasedness)
For particular estimation problems, all estimators are necessarily biased

For example, assume that X takes values in a finite interval [a, b] or an

half-infinite interval [a, oo) If

mmEp(y) -a|2|X = a] > 0, (A3)
x(y)

all estimators x(y) are biased

Remark A.3. (On efficiency)

• At first sight, efficiency may seem a natural candidate for an op-

timahty criterion Unfortunately, this criterion can not directly
be adopted minimizing the error function E[|x(y) — x|2|X = x]
w r t x(y) leads to the trivial solution x(y) = xf Such an es¬

timator is obviously not realizable, since x is the unknown value

we are trying to find out' This problem may in fact occur for any

criterion of the form E[«(x,x(y))|X = x]

• The classical approach to solve this problem, is to focus on unbiased

estimators with minimum MSE(x, x) (for all x) For some esti¬

mation problems, such estimators exist and can be implemented

1This can be proved by solving the corresponding Euler-Lagrange differential equa¬

tion
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However, a biased estimator may have a smaller MSE(x, x) than

any unbiased estimator (see [186] for a convincing example). Even

worse, the set of unbiased estimators may be empty, as we stated

before.

In many practical situations, an unbiased estimator with minimal MSE(x, x)
for all x cannot be found or does not exist; a popular alternative is the

maximum likelihood estimator.

Maximum likelihood estimation:

xMLiy) = argmaxpFiX(|/|x).
x£X

The maximum likelihood estimate xML is the argmax (a.k.a "mode") of

the function fix) = pY\xiy\x).

In Bayesian estimation, one tries to find an estimator that minimizes the

expected cost, which is the cost averaged over all values of x of X:

E[«(X,x)] = EY[Ex\Y[K(X,x)\Y = y]\, (A.4)

nix,xiy))pY\xiy\x)pxix)dxdy. (A.5)

In other words, instead of trying to find an estimator that has the best

performance for all values x simultaneously—which is asking too much,
as we have seen—one hopes to find an estimator that has the best perfor¬
mance on the average. Obviously, for a given value x, there may be an

estimator that yields a smaller cost than the Bayesian estimator.

In this context, the variable X is treated as a random variable with

prior pxix). The function fix) is defined as

fyix) = Px\rix\y)

_

PY\xjy\x)pxjx)

lxPY\xiy\x)pxix)dx'

where the equality (A.7) is known as Bayes' rule—hence the name "Bayesian
estimation".

//
J x J II

(A.6)

(A.7)
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How does a Bayesian estimator generate an estimate x from fyix) =

px\Yix\y)7 If one minimizes the conditional cost for any observation Y =

y, ie
,

E[k(X, x)\Y = y] = / fx,xiy))px\Yix[y)d,x, (A 8)
J X

then one obtains the Bayesian estimation rule 2

Bayesian estimation:

xBAYESiy) = argmmE[K(X,x)|y = y]
xex

The Bayesian estimator also minimizes the average cost (A 4) When X

and X are real or complex valued and k(x, x) = |x — x|2, then the

Bayesian estimator reduces to the minimum mean squared error esti¬

mator (MMSE)

Minimum mean squared error estimation:

xMMSfy)àE[X[Y = y]

The MMSE estimator is thus given by the expectation of the conditional

probability function fix) = Px\Yix\y) and yields the estimation error

E[|X - xMMSE(y)|2|y = y}= Var[X|y = y] (A 9)

The conditional expectation is m fact the optimal estimate for a large
class of cost functions, as the following theorem indicates [199, pp 60-62]

Theorem A.l. If the cost function k(x, x)

• only depends on the error x = x — x, i e
, k(x, x) = k(x),

• is symmetric, i e
, k(x) = k(—x) for all x,

• is convex, ie
, faxi + (1 — a)x2) > afxi) + (1 — a)«(x2) for

any a G (0,1) and for all xi,X2,

2
Strictly speaking, argmin returns a set If the set contains several elements, then

we randomly pick one of these, otherwise, we return the single element
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and the posterior density px\Yix\y) is symmetric about its mean mx =

E[X|y = y], i.e., px\Yimx - x\y) = px\Yimx + x\y) for all x, then

the estimate x that minimizes any average cost E[k(X)] in this class is

identical to

xMMSE = mx=E[X|y = y]. (A.10)

This invariance to the choice of a cost function is a useful feature, since

it is often not a priori clear which k(x) should be chosen. In many

estimation problems, however, the density px\Yix\y) is not symmetric
about its mean and, as a consequence, Theorem A.l does not hold.

Besides Bayesian estimators, also widely used in practice is the maximum

a-posteriori estimator (MAP).

Maximum a-posteriori estimation:

xMAFiy) = argmaxpx\Yix[y).
x&X

Summarizing:

Practical estimators differ in the way the function ffx) is deter¬

mined, and how the estimate x is extracted from ffx):

• in Bayesian and MAP estimation, the function ffx) is given

by the posterior probability function px\yix\y); in ML estima¬

tion, fyix) =pY\xiv\x).

* in ML and MAP estimation, the estimate x is the argmax

(a.k.a. "mode") of ffx); in the MMSE estimator, it is the

mean.

Remark A.4. (Likelihood)
The function pY\jfy\x), viewed as a function of x (with fixed value of y),
is often called the "likelihood function", hence the name maximum like¬

lihood estimation.

Remark A.5. (Blockwise vs. symbolwise estimation)
Assume X and Y are random vectors. The blockwise maximum a-

posteriori estimator is given by

*MAP(y) = argmaxPX|Y(x|y), (A.ll)
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whereas the symbolwise MAP-estimator equals

CAP(y) = argmaxpx,|Y(x,|y). (A.12)
x%

Note that the vector of symbolwise MAP-estimates (xfAP, xfKV,..., x"AP)
is in general not equal to the blockwise MAP-estimate xMAP. Similarly,
the blockwise and symbolwise maximum likelihood estimators are defined

as

*ML(y) = argmaxpY|X(y|x), (A.13)
X

and

xTLiv) = argmaxpY.|x.(yW- (A.14)
x%

respectively, where generally ffff, iff1*, , ff) f xMh. Along the same

lines, one can define the blockwise and symbolwise MMSE estimator.

If x"MSE is the symbolwise MMSE estimate of xt, then

(xfMSE, xfMSE,..., x%MSE) = *MMSE, where £MMSE is the blockwise esti¬

mate.

Remark A.6. (Classical learning)
In the estimation problem, a function ffx) is given that encodes all

available information about the true value x. If we instead only have

a finite number of i.i.d. samples T> = {(xi, yf,..., (xjv, yw)} from the

probability function pXYix,y) at our disposal, then the problem is not

called estimation but "learning". Many learning algorithms are based

(explicitly or implicitly) on a proposal function PxY\&ix> y\0) (parame¬
terized by 0) that "models" the true (unknown) function pXYix,y). In

the classical learning paradigm, the parameters 0 are estimated from the

available data T>, for example by the ML rule

<9ML = argmax;p(:D| (9), (A.15)
e

N

= argmax TTpXF|o(xî,yî|é»), (A.16)
e

,%=i

or approximations thereof. The model pXYix,y) is given by

PxYix, y) =pXY\cfx, y\0). (A.17)

An estimate x of the true value x may for example be obtained by the

MAP rule based on pXYie.
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In this setting, learning boils down to estimation. The boundary between

learning and estimation is generally rather fuzzy, and the estimation

techniques we propose in this thesis can often be applied to problems in

machine learning.

Remark A.7. (Bayesian learning)
In the Bayesian learning paradigm, the learning parameters 9 are in¬

terpreted as random variables with prior poiO). One usually chooses a

prior poiO) that assigns most probability to "simple" models. The pa¬

rameters 0 are not estimated explicitly; instead, the model pXYix,y) is

obtained by marginalizing over 0

pXYix,y)f fPxYleix,y\0)peiO)dO. (A.18)
Je

One advantage of this approach is that the uncertainty concerning 0 is

explicitly taken into account. In contrast, the model (A.17) does not

incorporate this information, it merely uses the estimate 0. In addition,
the Bayesian paradigm automatically amounts to simple models that

sufficiently explain the data without unnecessary complexity. We refer

the reader to the excellent tutorial [193] for additional information on

Bayesian methods in machine learning.

A.2 Decision theory

We still consider the setup depicted in Fig. A.l, where we wish to infer

the value of X based on an observation Y = y. In contrast to the

previous section, we assume here that X is a discrete random variable,

i.e., a stochastic variable that takes value in a finite or countable infinite

set X. The problem is then not called estimation, but detection instead.

The Bayesian detection rule is given as follows.

Bayesian detection:

xBAYES(y) = argniin
xEX

E[K(x,x)|y == y]

= argmin
xÇiX

y «(x
xX

,x)pxix)pY\xiy[x).
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Of special interest is the error function

k(x,x)= ( °' XfX (A.19)
y i, x f x.

The conditional expected cost is then equal to the probability of error

given the observation Y = y

E[fX,x)\Y = y] = ]T P(X = x|y = y) (A.20)
XfzX x^x

= Pixfx\Y = y). (A.21)

The Bayesian detection rule that minimizes this error probability is called

the maximum a-posteriori detector.

Maximum a-posteriori detection:

xUAPiy) = argminP(x f x[Y =

xeX

-y)

= argmaxPx|y(x||/).
xEX

The maximum likelihood rule remains unchanged.

Maximum likelihood detection:

xML(y) = argmaxPy | x(y[x).
x£X

We now discuss the maximum a-posteriori decision rule for several sce¬

narios important in (channel) decoding.

Example A.l. (Block-wise decoding)
We set

X = U (vector to be estimated)

y = Y (measurement)

X = Ûblock (estimate).

Minimization of Perr0r = -Pbiock = P[U f U] leads to the decision rule
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û (y) = argmax Puy(u, y) = argmax maxPuxY(u, x, y).
uEWfc ul/fc x£A*»

The introduction of the codeword vector X does not change the problem
as X is assumed to be a deterministic function of U (see Section 2.1).
The decision taken for component i (1 < i < k) of ûblock(y) can also be

written as

Mb (y) = argmax max PuY(u,y) = argmax max Puxy(u, x, y).

Note: The well-known Viterbi-Algorithm efficiently performs the task

of finding the block-wise estimate in the case of convolutional or trellis

codes. D

Example A.2. (Symbol-wise decoding)
For each i = 1,..., k we set

X = Ut (variable to be estimated)

y = Y (measurement)

X = Ufm
°

(estimate).

Minimization of Perr0r = -PSymboi = P[Ûi f Ut] leads to the decision rule

Ä:ymbol(y) = argmaxPt/iY(«»,y)
«»eu

argmax J^ -Puxy(u, x, y) (& = 1,..., k).

D

Remark A.8. (Marginalization and maximization)
The joint probability function Puxy(u, x, y) appears in the expressions
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for block-wise- and symbol-wise-decoding. However, one needs to per¬

form different operations to get the block-wise/symbol-wise estimates;

marginalization leads to the symbol-wise estimates, whereas the block-

wise estimates are obtained by maximization. Both operations are at

the heart of many detection and estimation algorithms; in Chapter 3,

we show that those operations can be carried out as message passing on

cycle-free factor graphs. In the case of cyclic factor graphs, one can still

apply the same message-passing algorithm, but the results might not be

the same as with "correct" block- or symbol-wise decoding as defined in

Examples A.l and A.2.





Appendix B

Notions from

Information Theory

Let us consider Fig. 2.1, which depicts a basic block diagram of a digital
communications systems. In Section 2.1, we shortly describe each indi¬

vidual block; here, we address a question that concerns the system as a

whole :

What is the highest rate R at which information can be trans¬

mitted over a given physical channel?

Shannon [178] has proved that it is possible to transmit data with as few
errors as desired if one is willing to use (very long) channel codes of rates

smaller than channel capacity; we refer to this operation mode as reliable

communications. In other words, the number of "non-confusable" wave¬

forms for n uses of a communications channel grows exponentially with n,

and the exponent is the channel capacity. Shannon established that the

capacity of a wide variety of channels can be expressed as the maximum

mutual information between the channel input and output [178]; in other

words, Shannon's channel capacity theorem not only promises that re¬

liable communication is possible at a non-zero rate, it also provides an

explicit expression for the maximum rate. This expression is, however,
often intractable. Moreover, Shannon's channel capacity theorem gives

347



348 Appendix B Notions from Information Theory

us almost no practical guidelines on how optimal transmission can be

achieved

In the following, we will review the channel capacity theorem for memory¬

less channels and for stationary ergodic channels with memory But first,
we need to introduce some important concepts, in this section, we closely
follow the book of Cover and Thomas [37]

B.l Definitions and theorems

We introduce the concept of entropy, which is a measure for the uncer¬

tainty of a random variable

Definition B.l. (Entropy of a discrete random variable)
The entropy of a discrete random variable X with probability mass func¬

tion (pmf) pxix) is defined as

HiX) f-YJPxix)logbPxix) (Bl)
X

D

The entropy Ü~(X) is a functional of the distribution pxix), it does not

depend on the actual values taken by the random variable X Moreover,
the entropy Ü~(X) is concave1 in pxix) The choice of the base b deter¬

mines the unit When 6 = 2, the unit is called bit When 6 = e, the

other base commonly used in information theory, the unit is called nat

In the sequel, we will use the logarithm to the base 6 = 2 and the unit is

thus bit We will use the convention that 0 log2 0 = 0

We extend the previous definition to pairs of random variables

Definition B.2. (Joint entropy)
The joint entropy iî(X, Y) of a pair of discrete random variables (X, Y)
with joint distribution p(x, y) is given by

HiX,Y) f -Y,PxYix,y)log2PxYix,y) (B 2)
x y

1A function f is called concave, if —/ is convex, a function / is said to be convex

if for all xi, X2 and 0 < A < 1, /(Aici +(1 — X)%2) < A/(xi) + (1 — A)/(iE2) Convex

and concave junctionals are defined likewise
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D

We define the conditional entropy of a random variable given another

Definition B.3. (Conditional entropy)
The entropy of a discrete random variable X conditioned on a discrete

variable Y is given by

HiX\Y) = - Y^PxYix, y) log2Px\Yix[y) (B 3)
x y

D

Differential entropies, joint and conditional differential entropies of conti¬

nuous random variables are defined by replacing the summation by in¬

tegration
2

They are denoted by the lower-case letter h, i e
, h\X),

/i(X|y), and hiX,Y) respectively In the rest of this section, we make

the following conventions (1) if x is discrete, X]xgix) stands for the

summation of #(x) over its support, otherwise, it stands for integration,

(2) the expression i7( ) stands for entropy if the argument of i7( ) is

discrete, it stands for differential entropy otherwise

The notions of conditional entropy and joint entropy are connected by a

chain rule

Theorem B.l. (Chain rule)

HiX, Y) = HiX) + H(Y\X) (B 4)

The divergence is a measure of the "distance" between two probability
distributions p and q

Definition B.4. (Divergence)
The divergence between two probability distributions p( ) and </( ) is

defined as

D(p||9)â^(x)log2A (B5)
x

1\X)

D

2As in every definition involving an integral or a density we should include the

statement if it exists
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In the above definition, we use the convention that 0 log - = 0 and p log ^ =
oo. The divergence is always positive with equality if and only if p = q.

It is not a true distance, as it is not symmetric, i.e., in general Dip[[q) f
Diq\\p). The divergence is also called "relative entropy" or "Kullback-

Leibler distance".

Theorem B.2. (Convexity of divergence)
The divergence _D(p||</) is convex in the pair (p, q), i.e., if (pi, qf and ip2, (72)
are two pairs of probability mass functions, then

DiXpi + il-X)p2\\Xqi + il-X)q2) < XD(pi\\qi) + (1 - \)D(p2 [[q2) (B.6)

for all 0 < A < 1.

We now introduce mutual information, which is a measure of the amount

of information that one random variable contains about another random

variable; alternatively, it may be interpreted as the reduction in uncer¬

tainty of one random variable due to the knowledge of the other.

Definition B.5. (Mutual information)
Consider two random variables X and Y with joint probability mass

function p(x, y). The mutual information fX; Y) is the relative entropy

between the joint probability mass function pXYix,y) and the product

pxix)pYiy) distribution, i.e.,

77v v^
A V^ i m

Pxvix,y)
m

Tix'>Y)
=

Vpxr(x,y)log2—--—-- (B.7)

f^ Pxix)pYiy)

v^ ( \ ( \ m
PY\xiy\x)

=

y^Px x)pY\xiy x log2 ——, B.8

where pYiy) is the output distribution defined as

Pviy) = ^Pxix)pY\xiy[x). (B.9)
X

D

Remark B.l. (Mutual information and entropies)
In terms of entropies, we can write the mutual information as

fX;Y) = HiX)-HiX\Y) (B.10)

= H{Y)-H{Y\X). (B.ll)
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Remark B.2. (Mutual information as divergence)
The mutual information between the input X and the output y of a

discrete memoryless channel can be rewritten as a divergence in the fol¬

lowing way

fX;Y) = Y.P*WEPY\xiy\x) log2
PY lX(y (B.12)

= Y,pxix)D(pY]xi-\x)\\pYi-)). (B.13)
X

Theorem B.3. (Convexity of mutual information)
The mutual information fX;Y) is a concave function of pxix) f°r

fixed pY\xiy[x) and a convex function of py\xiy\x) f°r fixed pxix).

We now consider stochastic processes. The entropy rate of a stochastic

process is the rate at which the entropy grows with n.

Definition B.6. (Entropy rate)
The entropy rate of a stochastic process X is defined as

HiX) à hm -HiXi,X2,...,Xn), (B.14)
n^oo n

when the limit exists. The RHS expression is the per-symbol entropy

rate. One can also define a related quantity for entropy rate:

H'iX) = lim -F(Xn|Xn_1,..., Xf, (B.15)
n^oo n

where the RHS expression is the conditional entropy rate of the last

random variable given the past. For stationary stochastic processes, both

quantities HiX) and H\X) are equal. D

Let us now consider two important examples.

Example B.l. (i.i.d. Process)
Let Xi, X2,..., Xn be a sequence of independent and identically distri¬

buted (i.i.d.) random variables. Applying the chain rule yields

HiX) = lim -HiXi, X2,..., Xf = HiXf. (B.16)
n—>oo n

D
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Example B.2. (Markov chain)
As a consequence of the Markov property, the entropy rate of a Markov

Chain is

HiX) = lim -F(Xn|Xn_1, ...,Xf = F(Xn|Xn_1). (B.17)
n—>oo Tfj

D

Definition B.7. (Information rate)
The information rate between two stationary and ergodic processes X

and y is defined as

fX;Y)f lim -IiXi,X2,...,Xn;Yi,Y2,...,Yn) (B.18)
n—>oo n

= lim -\HiXi,X2,...,Xn)

-HiXi,X2,...,Xn\Yi,Y2,...,Yn)~\ (B.19)

= HiX) -HiX\Y) (B.20)

= F(y) - H(Y\X) (B.21)

when the limit in (B.18) exists. D

If X is the input and Y is the output process of a communications chan¬

nel, the limit in (B.18) exists if the channel law preserves the property of

stationarity and ergodicity of the input process. We call such channels

ergodic channels.

Of crucial importance in information theory is the Asymptotic Equipar-
tition Property (AEP), which is related to the notion of typicality;
AEP is the key to data compression and is one of the main ingredients
in Shannon's proof of the channel-capacity theorem. It also opens the

door to numerical algorithms for computing information rates and chan¬

nel capacities, one of the topics of this thesis. AEP and typicality are a

direct consequence of the weak law of large numbers.

Theorem B.4. (Weak law of large numbers)
Let Xi, X2,..., Xn be i.i.d. random variables. Define the random variable

-

A 1
xn = — y Xk. (B.22)

fc=i
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Then

lim Pr[|X„ - E[X]| > e] = 0, Ve > 0. (B.23)
n—>oo

Theorem B.5. (AEP for i.i.d. processes)
Let Xi, X2,..., Xn be i.i.d. random variables and distributed according
to probability function px (x). Then

lim Pr
n—>oo

-logPxiXi,X2,... ,Xn) - HiX)
n

> e 0, Ve > 0.

(B.24)

AEP allows us to divide the set of all sequences into two sets, the set

of typical sequences, where the sample entropy is "close" to the ensem¬

ble entropy, and the set of non-typical sequences containing all other

sequences. The following definition formalizes this idea.

Definition B.8. (Typical sequences)
Let Xi, X2,..., Xn be i.i.d. random variables and distributed according
to probability function pxix). A typical set X" with respect to the

probability measure px(x) is the set of sequences (xi, x2,..., xn) G Xn

having the following property:

2-n(H(X)+s) <px(XuX2t...tXn) <2-»("W-*). (B.25)

D

As a consequence of the asymptotic equipartition property (AEP), the

typical set has probability nearly 1 and all elements of the typical set are

nearly equiprobable. The elements of the set are called typical sequences

and their number is nearly 2nHtyX\ All other sequences have proba¬

bility nearly zero. In summary: "almost all events are almost equally

surprising".

The Shannon-McMillan-Breiman theorem states that AEP also holds for

stationary ergodic processes with finite alphabet. Barron extended the

Shannon-McMillan-Breiman theorem to processes with infinite alpha¬
bets [17].

Theorem B.6. (AEP: Shannon-McMillan-Breiman theorem)
If HiX) is the entropy rate of a finite-valued stationary ergodic process

X = Xi,X2,.. . ,X„, then

--logpxiXi,X2,...,Xn)^HiX), w.p.l. (B.26)
n
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Theorem B.7. (Generalized Shannon-McMillan-Breiman theo¬

rem [17])
If /i(X) is the differential entropy rate of a continuous-valued stationary

ergodic process X = Xi, X2,..., Xn with density pxiXi, X2,..., Xn),
then

--logpxiXi,X2,...,Xn)^hiX), w.p.l. (B.27)
n

The Shannon-McMillan-Breiman theorem suggests a simple numerical

method to compute the entropy rate HiX):

a) Sample a "very long" sequence x = (xi, x2,..., xn) from px(x).

b) The sample sequence entropy rate is an estimate for the entropy

rate of X:

H = --\ogpxiXi,X2,.. .,Xn) « HiX). (B.28)
n

In Chapter 6, we provide more details on this numerical method.

B.2 Channel capacity

B.2.1 Memoryless channels

Shannon has proved [178] that the capacity of a memoryless channel

with finite discrete input alphabet X, finite discrete output alphabet 3^

is given by the following expression.

Capacity of (unconstrained) discrete memoryless channel:

C = max/(X;y),
px

where the maximum is taken over all input probability mass functions px

on X. Any input distribution px that maximizes the mutual information

between X and Y is called a capacity-achieving input distribution. Such

a distribution is not necessarily unique; in contrast, the corresponding

output distribution is unique.
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Remark B.3. (Properties of capacity)

a) C >0 since IiX;Y) > 0.

b) C<log|-¥| since C = max fX;Y) < maxF(X) = log |^|.

c) C < log \y\ for the same reason.

Since fX; Y) is a concave function over a close convex set, a local max¬

imum is a global maximum. From properties (2) and (3), it follows that

the maximum is finite, hence we are justified to write maximum instead

of supremum in the definition of capacity. The maximum can in prin¬

ciple be found by standard non-linear optimization techniques such as

gradient descent. Since the objective function fX; Y) is concave in px,

gradient-based algorithms are guaranteed to converge to the global max¬

imum. An efficient alternative to compute the capacity C for discrete

memoryless channels is the Blahut-Arimoto algorithm (see Section 7.2).

The input of the channel often needs to fulfill certain conditions. The

capacity of a discrete memoryless channel with the requirement that the

average cost be less than or equal to some specified number E is given

by [178]

Capacity of constrained discrete memoryless channel:

C= max I{X;Y).
Px<EPr

By Pe
,
we denote the set of probability mass functions over X satisfying

the constraint J2xPxix)eix) < E.

For only a small number of memoryless channels, a closed-form expres¬

sion for the capacity is available. Shannon [178] has computed the capac¬

ity for the AWGN channel with an average-energy constraint. Assuming
that the input power equals P and that the power of the Gaussian noise

is a2, the capacity is given by

C = ilog2(l + ii). (B.29)
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The capacity-achieving input distribution is a zero-mean Gaussian pdf
with variance equal to P If logarithms to the base two are used (as we
will generally do), the unit of capacity is bits/symbol Note that if the

input is unconstrained, the capacity of the AWGN channel is infinite

In Chapter 7, we present a numerical algorithm to compute the capacity

(or tight lower bounds on the capacity) of peak-power and/or average-

power constrained continuous memoryless channels

B.2.2 Channels with memory

Dobrusm [60] generalized Shannon's result for memoryless channels with

finite alphabets to the continuous-alphabet case with memory
3

Capacity of constrained continuous channel with memory

C= km - sup I(X,Y),

where X = (Xi,X2, ,Xn), Y = (Yi,Y2, ,Yn) and Pc is the set of

all probability densities px over Xn satisfying the constraints

1

-]TEM[e(Xfc)]<£, (B30)
fc=i

and

\Xk\>A wpl for A; = 1,2, ,n (B 31)

3It is assumed that the channel is information stable This roughly means that

the input that maximizes mutual information and its corresponding output behave

ergodically We also assume that there is no feedback
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Coding Theory

Most of the following definitions can be found in any elementary text

about coding theory, eg [112] We will follow the exposition in [203]

As is standard, we will only use row vectors Every code will be a block

code, i e
,
a code of finite length

1

Definition C.l. (Codes)

• (Block code)
An (n, M) block code C of length n and size M over some alpha¬
bet A is a subset C of size M of An, the set of all n-tuples over A

The parameter n is called the length of the block code An element

x of C is called a codeword

• (Membership indicator function )
The membership indicator function Ic of a code C is defined as

Ic An ^{0,1} x^[xeC] (CI)

• (Linear code)
A block code is linear if A = F is a field and the set of all codewords

forms a fc-dimensional subspace (code space) of Fn Usually the

1Most of the time, we will use the shorter "code" instead of "block code" Note

that in this thesis, when we talk about a code we always mean a channel code, in

contrast to a source code or a line code See also Sec 2 1
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field F is a, finite field ¥q, i.e., the set {0,1,..., q
— 1} with modulo-*/

arithmetic. An [n, k] linear code is a linear code of length n and

dimension k.

• (Binary code)
A binary code is a linear code with F = F2.

D

Definition C.2. (Linear Codes)
Let C be an [n, k] linear code over ¥q.

• (Generator matrix)
The code C can be defined by a generator matrix G whose rows

form a basis of the code space; therefore G must have size k x n.

Each codeword x G F can be written as x = u • G with a suitable

uëFj. u consists of the information symbols whereas x consists

of the channel symbols. If all information symbols appear one-

to-one somewhere in the channel symbols, the encoding is called

systematic.

• (Parity-check matrix)
Equivalently, C can be defined by a parity-check matrix H whose

rows span the space orthogonal to the code space. Such a matrix

must fulfill G • HT = 0, where G is a any generator matrix of the

code. For every codeword x G C it follows that x • HT = 0. Note

that the rows of H need not be a basis of the space orthogonal to the

code space, they can also form an over-complete basis. Therefore,
H has n columns and at least n — k rows.

• (Rate)
The rate of the code is defined to be R = RiC) = k/n. If G is

a generator matrix, R = #rows(G)/#col(G) is the ratio of the

number of rows of G over the number of columns of G. If H is a

parity-check matrix, R = 1—rank(H)/n > 1—#rows(H)/#col(H).
D

Example C.l. (Binary linear block code)
Fig. C.l shows a small example of linear a code of length n = 3, dimension

k = 2, redundancy n — k = 1, rate R = k/n = 2/3, and alphabets
U = X = F2 with generator and parity-check matrices

g=(j ; ;), h=(i i i),
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u i—> x = x(u)

(0,0) » (0,0,0)
(1.0) » (1,1,0)
(0,1) » (0,1,1)
(1.1) » (1,0,1)

Figure C.l: Example of a simple linear code with U = X = {0,1},
k = 2, n = 3. Left: Mapping of u to x for a binary
linear [3, 2, 2] code. Right: graphical visualization of that

mapping.

where the mapping u i—> x(u) = u • G is given in the table in Fig. C.l.

D

Definition C.3. (LDPC codes)
Let C be an [n, k] linear code over ¥q.

• (LDPC code)
The code C is called a low-density parity-check (LDPC) code if it

has a parity-check matrix which has very few ones per row and per

column. 2 More precisely, when considering LDPC code families for

n —> oo, one usually requires that the number of ones per column

and the number of ones per row grow slower than the block length
or that these numbers are even bounded.

• (Regular LDPC code)
The code C (defined by a low-density parity-check matrix H) is

called a (wcoi, wrow)-regular LDPC code if the Hamming weight of

each column of H equals wcoi and if the Hamming weight of each

row of H equals wrow. The equality nwco\ = mwIOW relates wcoi

and wIOW, where m is the number of rows of H.

• (Irregular LDPC code)
The code C (defined by a low-density parity-check matrix H) is

called an irregular LDPC code when the Hamming weights of the

columns vary and/or the Hamming weights of the rows vary. For

more information on (irregular) LDPC codes, see [124].
D

2Detailed information about LDPC codes can be found in [1] and [2].
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Kernel Methods

In this appendix, we review the most important concepts behind kernel

methods; we will closely follow [120]. We refer to [177] [180] for further

information.

We also elaborate on how kernels can be computed from graphical models

(Section D.5).

D.l Introduction

Since the mid-1990's, so called "kernel methods" have been drawing much

attention. Such methods combine and extend most advantages both of

neural networks and of classical linear techniques.

Kernel methods can be used for regression, classification, clustering, and

more. A kernel based regression function Rn —> R : y = (yi,..., yn) i—> x

looks as follows:
m

x = ^Wjfy, y(j)) +w0. (D.l)
3= 1

The vectors y^\ ...

, y*--1 G M are (the y-component of) the training

samples and wq, ... ,wm are real coefficients (weights). The function
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k : R x R —> R, which must satisfy certain conditions (to be discussed

later), is referred to as the kernel.

An example of a kernel function is

«(^')=exp(-fcfl
Note that:

• The kernel function has no parameters that need to be adjusted.

• The sum in (D.l) runs over all training samples.

The weights w3 can be determined by minimizing the average squared
error

/ \2

ASE = - E xW - ZX«fow> y{J)) - w° (D-3)
m

e=i \ 3=1 j

on the training data (a^1), y*-1-1),..., (x(m\y(m)), which amounts to a

least squares problem. Other cost functions than the ASE are often used

in order to force most weights w3 to zero. Since such cost functions are

chosen to be convex (in the weights), the optimal weights can be found

by efficient algorithms. In consequence (and in sharp contrast to neural

networks), kernel methods do not normally need heuristic optimization
methods.

The choice of a suitable kernel function—which depends on the application—
is the most important step in kernel methods. The domain of the kernel

function need not be Rn; in fact, it can be almost any set, including
non-numerical data such as strings and images.

The subsequent processing (regression, clustering, classification, ... ) is

done by optimal (linear or convex) methods and is essentially indepen¬
dent of the application.

(D.2)
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D.2 Feature Space Interpretation

A first step of many data analysis methods is to transform the data by
some (fixed) mapping

4> : data space —> feature space (D.4)

before applying some adaptive algorithm (e.g., a neural network). In

this chapter, we will always assume that the feature space is a Hilbert

space. A Mercer kernel (hereafter simply kernel) is defined to be the

inner product in some feature space:

niz,y) = {4>iz),4>iy)). (D.5)

A main insight behind kernel methods is as follows:

a) With suitable choices of the feature space and of the mapping </>,
the task (regression, classification, ... ) may be solvable by linear

methods or by convex optimization...

b) ...
with algorithms that require only the computation of inner pro¬

ducts in the feature space.

c) Moreover, the inner product in high-dimensional (even infinite-

dimensional) feature spaces can often be expressed by quite simple
kernel functions.

d) It follows that we do not need to actually evaluate the mapping </>;
it suffices to evaluate the kernel function k.

We will work out points 2 and 4 for regression. However, it should be

remembered that both the feature space and the mapping </> are usually
not made explicit; the actual computations in kernel methods involve

only the kernel function.

D.2.1 Regression

We consider nonlinear regression by means of linear regression in feature

space. Let S be the original data space and let the feature space be Rn.

We wish to find a mapping

S -> R : y ^ (f>iy)Th (D.6)
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with h = fii,..., hn)T G R such that the average squared error (ASE)

1
m

ASE=-V
rn < J

M) 4>[yf) (D.7)

on the training data ix^\ y*-^), t = 1,..., m, is as small as possible.

It turns out that this problem is essentially the same as the linear regres¬

sion problem. If we define the column vector x = (x^,... ,x^m^)T and

the matrix

^ f (V(y(1)),...,</>(y(m)))T
( 4>iy{1))i 4>iy{1)h 4>iy{1))n \

4>iy{2))i 4>iy{2)h 4>iy{2))n

V 4>iy{m))i 4>iy{m)h 4>iy{m))n )
the average squared error may be written as

m • ASE = ||x - Atphf = (x - A0/i)T(x - A^h).

It then follows that h may be obtained from

A^Afi = A^x.

(D.8)

(D.9)

(D.10)

(D.ll)

However, the point of kernel methods is to avoid solving (D.ll)—in fact,
to avoid 4> at all. Instead, we wish to express the regression function

(D.6) in terms of the kernel fy, z) = 4>iy)Tff).

Theorem D.I. Let g be any function g : S —> R : y i—> #(y) = <f>iy)Th
with 4> : S -> R and h G R. Then there exists a function g' : S -> R :

y l~^ g'iy) = 4>iy)Th' with the following properties:

a) g' and g give the same values on the training set: g'iy) = <?(y) for

yG{y(D,...,y()}.

b) g' can be written as

g'iy) = ^2wjKiy,y
0=1

b)\ (D.12)

with real coefficients wi,..., wm that depend on the training set.
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It follows that the coefficient vector h that minimizes the ASE (D.7) can

be replaced by an equivalent vector h' which allows to write the function

(D.6) in the form (D.12).

Proof of Theorem D.l: Let V be the subspace of Rn spanned by

<f>iy^),..., (/»(y*--1) and let V1- be the orthogonal complement of V in

Rn. Let h = hy + hv± be the decomposition of h into hy G V and

hv± G VL. Since <f>iyW)Thy±. = 0 for I = 1,..., m, we have

4>iy^)Th = 4>iy^)Thy for £=l,...,m. (D.13)

Choosing h' = hy thus guarantees Property 1 of Theorem D.I. Moreover,

by the definition of V, we can write hy as

with w3 G R. Thus

hy = ^wj(/>(y(j))
3=1

(D.14)

g'iy) = 4>iy)Thv (D.15)
m

= 4>iy)TY.w^y{J))
0=1

(D.16)

m

= ]T«^(y)T<My(j))
3=1

(D.17)

m

= ^WjK(y,y(j)).
3=1

(D.18)

D

D.3 Support Vector Machines

If the regression function (D.l) is trained to minimize the ASE on the

training data, then virtually all weights w3 will probably be nonzero.

Replacing the ASE by other cost functions opens the possibility to force

a large fraction of the weights to zero. Those training samples y^3' for

which Wj is nonzero are called support vectors. This approach can also

be carried out for classification.
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Such support vector machines are attractive because the regression (or
classification) function can be evaluated more efficiently. The determina¬

tion of the optimal weights takes a little more effort, but is still a convex

problem for which efficient algorithms are available.

D.4 On Kernels

Kernels can be characterized as follows. Recall that a symmetric real

n x n matrix A is positive semi-definite if xTAx > 0 for every x G Rn.

Theorem D.2 (Characterization of Kernels). A function

k:SxS->R (D.19)

(which is either continuous or has a finite domain S) is a kernel if and

only if the following two conditions hold:

a) k is symmetric (i.e., fz, y) = fy, z))

b) for every finite subset {yi,... ,yn} of S, the matrix

/ fyi,yf Kiyi,y2) ... fyi,yn) \

«(2/2,2/1) «(2/2,2/2) ••• «(2/2,2/n)
(D 20)

\ «(2/n,2/l) ••• K(2/n,2/n) /

is positive semi-definite.

(The proof is not hard, but we omit it.)

So far, we have encountered only one explicit kernel function: the Gaussian

kernel (D.2). Another kernel is the function

R» xl»^l: iy,z) ^=yTAz (D.21)

where A is a symmetric positive semi-definite nxn matrix over R. (The
proof requires some standard linear algebra.)

More kernels can be constructed from the following theorem.

Theorem D.3. Let «i and k2 be kernels over S x S. The following
functions are also kernels over S x S:
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a) fy,z

b) fy,z

c) fy,z

d) fy,z

e) fy,z

= nfy, z) + n2iy, z)

= anfy, z) for any positive aGR

= Kiiy, z)K2iy,z)

= fiy)ff) for any function / S —> R

= Kfgiy),gf)) for any kernel «3 over R x Rn and any

function g S - R

f) «(y, z) = pinfy, z)) for every polynomial p(x) with positive co¬

efficients

The proof is left as an exercise

D.5 Kernels from Graphical Models

In this section, we investigate how kernels can be computed from a

graphical model 1

Suppose that we wish to process—1 e
, cluster, compress, classify, etc —a

data set T> = {yi, ,{/n} by means of some kernel method

Assume that we have determined a graphical model piy, x\0) that to some

extend is able to "explain" the data T>, by 0 we denote the parameter

vector of the model, x is the vector of hidden variables, and y are the

observed variables For example, the data T> may be a set of EEG signals,
which we model by a multi-channel ARMA model piy, x\0)

We wish to incorporate the available model piy, x\0) m our kernel method

As is clear from the exposition m the previous sections, the model piy, x\0)
should then somehow be encoded m the kernel, since the kernel is the

sole element m a kernel method that depends on the application at hand

Once the kernel is specified, the subsequent processing (clustering, com¬

pression, classification, etc ) is accomplished by standard optimization

tools (independently of the application) [180] [177]

In the following, we will explore several ways to derive kernels from

graphical models We will outline how the message-passing techniques
of Chapter 4 may be used m this context

1The extension to a family of graphical models is straightforward
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D.5.1 Probabilistic Kernel

A first option is the so-called probabilistic kernel [180]:

k(2/»,2/j) = ^PÜJi^^fiy^x^), (D.22)

where the parameters 0 are obtained from the whole data set T>, e.g., by
ML-estimation:

N

êML,tot a

argmaxTTp(^) (D.23)
e 7=i

N

= argmax^Q^p(yj,x|e»). (D.24)
6

î=l X

It is easy to verify that (D.22) is indeed a kernel (cf. Theorem D.3).

D.5.2 Product Kernel

An alternative is the so-called product-kernel [91]. Each data point yt is

mapped unto a probabilistic model piy\y%) defined as:

piy\y%) = ^Piy\x, 0)pix\6, yt), (D.25)
X

where the parameters 0 is estimated by means of the sample yl, e.g., by
ML estimation:

<9ML = argmaxp(yî|é») (D.26)
e

= argmax\^p(yj, x\0). (D.27)
e

X

The product-kernel is computed as follows:

k(2/»,2/j) = ^2,piy\y%)piy\y0)- (D.28)
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D.5.3 Fisher Kernel

A third approach is the so-called Fisher kernel, defined as [89]:

niyx,y3) = Ttf\ogpiyx\ê)?-\ê)Ve\ogpiy3\ê), (D.29)

where piy\0) is defined as:

Piy\e) = Y^p(y>x\0)> (D-3°)
X

and the estimate 0 is obtained from the whole data set T>, e.g., by ML-

estimation (D.24). The matrix F(0) is the Fisher information matrix

ofpiy\0) (cf. Section 5.2.1).

D.5.4 Discussion

Some remarks:2

• The three types of kernels we listed in the above involve sums

and/or integrals and maximizations. In particular:

a) The expressions (D.22), (D.25), and (D.30) involve summa¬

tion/integration over x.

b) The expression (D.28) involves summation/integration over y.

c) The expressions (D.24) and (D.27) involve maximization over 0.

In principle, the summations/integrations and the maximizations

may be carried out (exactly) by applying the sum-product algo¬
rithm and max-product algorithm respectively on a suitable (cycle-
free) factor graph.

For example, if the system at hand is a linear system perturbed by
Gaussian noise sources, the sum-product algorithm boils down to

Kaiman recursions (cf. Appendix H).

If the variables X are discrete, the sum-product algorithm may

reduce to applying the BCJR-algorithm [15] on a trellis of the sys¬

tem.

2 Some of our observations may be novel.
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• The sum/max-product algorithm may, however, lead to intractable

expressions, more precisely:

a) sums with an unwieldy number of terms,

b) intractable integrals,

c) intractable maximizations.

Intractable sums (Problem 1) may be computed approximately by

applying the (iterative) sum-product algorithm on a cyclic graph.

Intractable integrals (Problem 2) may be approximated by applying
the (iterative) sum-product algorithm on a cyclic graph in combina¬

tion with numerical integration or Monte-Carlo methods (cf. Chap¬
ter 4).

Intractable maximizations (Problem 3) may be performed approx¬

imately, e.g., by ICM, EM, or gradient methods (cf. Chapter 4).

Note, however, that such approximations may not always lead to

a kernel! Therefore, certain approximations are not allowed (if we
wish to derive kernels). We investigate each of the three kernels in

more detail:

Probabilistic kernel:

If one computes the sum/integral in (D.22) approximately by
the iterative sum-product algorithm, one does not obtain a

kernel in general. However, the sum/integral may be evalu¬

ated by means of Monte-Carlo integration.

The maximization (D.24) may be carried out by any estima¬

tion method as for example EM, ICM, and gradient methods

(cf. Chapter 4).

Product kernel:

In order to obtain a kernel, piy[yt) (cf. (D.28)) may be any

function, i.e., it does not need to be defined as in (D.25).
Therefore, the sum/integral in (D.27) may be evaluated by

any approximative method; moreover, the parameter 0 may

be determined by any method.

If the sum/integral in (D.28) is computed by iterative sum-

product message-passing, one does not obtain a kernel; how¬

ever, (D.28) may be evaluated by numerical or Monte-Carlo

integration.
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Fisher kernel:

In order to obtain a kernel, piy\0) may be any function and

F_1(ö) may be any positive definite matrix. Therefore, one

has the freedom to use approximative methods to carry out the

sum/integral in (D.30), resulting in an approximation qiy\0)
of piy\0) (D.30). One may then obtain an approximation of

F(0) as

Ffê) = Ep(y|e) [Veqiy\0)Vjqiy\0)] (D.31)

or as

Ff9) = E,(y|e) [Veqiy\9)Vjqiy\9)] . (D.32)

The matrices Fp and Fq are guaranteed to be positive semi-

definite—also in the case where the expectations in (D.31) and

(D.32) are computed by numerical integration or Monte-Carlo

methods. If those two matrices are moreover positive definite,

they can be used to construct kernels:

"pitiM = Vjlog9(&|0)F-H0)Velog9(&|0), (D.33)

and

«,(&,&) = Vjlogqiy^F^iê^elogqiy^ê). (D.34)

It is noteworthy that the matrices Fp and Fq are not guaran¬

teed to be positive semi-definite if the expectation in (D.31)
and (D.32) is carried out by the iterative sum-product algo¬
rithm.

Note also that in order to obtain a kernel, one can use any

method to estimate 0.

• It is straightforward to combine the three different approaches. In

addition, it is not very difficult to come up with variations on the

same theme.

We have outlined three different strategies to generate kernels from graphi¬
cal models. We pointed out how message-passing techniques can be

used in this context. However, several important question remains un¬

answered: which of the three classes of kernels should we use after all?

Is any of the above kernels optimal in some sense? A definite answer to

such questions seems not to have been formulated yet in the literature,
and goes beyond the scope of this exposition.
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Neural Networks

This section reviews the main ideas behind feed-forward neural networks;
we will closely follow [120].

We will also explain how the back-propagation algorithm, which is widely
used to train feed-forward neural networks, can be regarded as message

passing on factor graphs.

E.l Multi-Layer Perceptron

A perceptron is a mapping

R"^R: iyi,...,yn)^gs[w0 + YJwkyk\ (E.l)

with real parameters wq, ... ,wi and where gs is the step function

, .
f 0 if x < 0

, .

gsix) = { 1 ifx>0
(E.2)

Such perceptrons are classifiers with two decision regions that are sepa¬

rated by a plane.
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20 = 1

2/0 = 1

ZM

Figure E.l: Two-layer perceptron

We will proceed directly to multi-layer perceptrons. A two-layer percep¬

tron is a mapping

»n
,
in>m

iyi,---,yf >-> if,---fm)

with

M

& =^S +E4^» +»

(E.3)

(E.4)
i=i

with real parameters w and wL and with functions g and grout as
"3i

""

k3

discussed below. With yo = 1 and with

9\Y,W3iy' (E.5)
V=o /

for j = 1,..., M and with zq = 1, the mapping (E.4) becomes

(M

J2Wk3)z3
3= 0

(E.6)

The structure of such a two-layer perceptron is illustrated in Fig. E.l.
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Figure E.2: Sigmoid (left) and tanh (right).

The function g in (E.4) and (E.5) is usually either the logistic sigmoid
function

ai*) = Tf—ï (E-7)
1 + e

x

(which may be viewed as a "soft" version of the step function (E.2)) or

the hyperbolic tangent function

gix) = tanh(x) = (E.8)
ex -\- e

x

see Fig. E.2. The function gout in (E.4) is usually one of the following
functions: the sigmoid (E.7) or the hyperbolic tangent (E.8) or simply

gix) = x. (E.9)

Note that gout and g need not be the same function. In contrast to the

step function (E.2), the functions (E.7)-(E.9) are everywhere differen¬

tiable.

The variables zi,... ,zm are called hidden variables (or hidden nodes).
In (E.4) and in Fig. E.l, we have two layers of weights and one layer
of hidden nodes. The generalization to networks with more layers is

straightforward.

Multi-layer perceptrons (with at least two layers of weights) can represent

essentially any continuous mapping to arbitrary accuracy. The training of

such networks (i.e., the determination of the weights from input/output
samples) is a nonlinear optimization problem that can be solved with

a variety of methods, but none of these methods is guaranteed to find

optimal values for the weights.
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For many applications, two layers of weights suffice. Additional layers
are sometimes used to build special properties (e.g., symmetries) into the

network.

Two-layer perceptrons can be used both for regression and for classifica¬

tion. In the former case (regression), the network is (e.g.) supposed to

represent the function

R^R"1:^,...,^)^ E[X1} ...,Xm\Yi=yi,...,Yn=yn]
(E.10)

for some real random variables Xi,... ,Xm. In this case, the output

function gout is usually chosen to be the linear function (E.9). With

this choice of gout, it is obvious from (E.6) that the determination of the

second-layer weights wf (for fixed first-layer weights ur ') is a least-

squares problem; in this case, only the first-layer weights w need to be

determined by nonlinear optimization methods.

For classification applications, the network is (e.g.) supposed to represent

the function

r^Rm: (yi,...,y„) »

rPiXGCi\Yi=yi,...,Yn =--Vn),- .,PiXGCm\Yi--= 2/1,- •

i *n Vn

(E.ll

where X is some random variable and where Ci,... ,Cm are the diffe¬

rent classes. In this case, a natural choice for gout is the sigmoid func¬

tion (E.7).

Training means the determination of the weights from training data

(E.12)

(fi) fi)) (fi) ,.(ih

(x-^ ,...,xm )fyi ,
. . . ,yn )

where N is the number of samples. For regression as in (E.10), the

natural error function (to be minimized on the training data) is the

average squared error

N m 2

1
2

ASE=4EE4£)-6(2/W)
• (E.13

N
1=1 k=l
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For classification (conditional probability estimation) as in (E.ll), we

define the random variables Xk, k = 1,..., rn, as the indicator variables

for the classes Ck'-

Note that, in this case, the training data (E.12) is assumed to contain

samples of Xk, k = l,...,m (not X). The error function (E.13) can

still be used: it is an easy exercise to prove that, in the limit of infinitely

many training data, the functions Çkiyi, , 2/n) that minimize (E.13) will

(almost surely) converge to the desired function (E.ll). (Nevertheless,
other error functions may work better in this case.)

E.2 Back-Propagation of Derivatives

Let E denote some error function (such as, e.g., (E.13)), which (for fixed

training data) is a nonlinear function of the weights. A key feature

of multi-layer perceptrons is that the derivative |^ can be efficiently

computed for all weights w in the network. With these derivatives, we

can optimize the weights by a steepest-descent method; moreover, some

more advanced optimization methods (such as the conjugate gradient

algorithm) need these derivatives as well.

We describe the computation of these derivatives for the two-layer net¬

work of Fig. E.l; the extension to networks with more layers is obvious.

We begin with the top layer. Let

(E.15)

(E.16)

(E.17)

(E.18)

«fc

M

A v-A (2)

3= 0

so that (E.6) becomes

^ = goufaf-

We then have

dE dE do.k

<> dak dwfj
dE

=

fl Z3
dctk
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with

dak d£k

Now to the bottom layer. Let

ßj =
n

V^ (1)
2_^w3i y*

j=0

so that (E.5) becomes

Z3 = 9ißo)-

We then have

dE dE dß3

d^ dß3 dwW
J1

dE

ao
y%>

dß3

dE
.

, s
dE

,^ s
= 2/outK)---- (E.19)

(E.20)

and the key to all is

(E.21)

(E.22)

(E.23)

dE
=

^fc)E_dak ,

^

dff ^ dak dff
y '

_dz^jfdE_dak
dß3 l~idak dz

dE

Wk3
k=l

=

^)E4?|| (E.26)

All these quantities can now be computed as follows. For fixed inputs
and fixed weights, we first compute all ß3 and z3 and then all otk and

£k by a forward (bottom-to-top) pass through the network. We then

compute, first, all derivatives -ß^- by (E.19), and second, all derivatives

W- by (E.26) by a backward (top-to-bottom) pass through the network.

The desired derivatives af and afn
can then be obtained from (E.18)

dwf dw(1) v '

and (E.23), respectively.
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E.3 Back-Propagation of Derivatives

as Message Passing

In Section 4.8.1, we claim that, if one applies the generic rules for compu¬

ting derivatives of sum-product messages on a factor graph that repre¬

sents a feed-forward neural network, one obtains the back-propagation

algorithm of Section E.2. Here, we work out the details.

Fig. E.3 depicts a factor graph that represents the feed-forward neural

network of Fig. E.l; more precisely, the graph represents the function:

fify,w) = fç-ay,))- (E.27)

The graph does not incorporate the error function E7(x, £) (e.g., the

ASE (E.13)) and the training data {ixf\ y{e))}^=r
We handle the error function E7(x, £) and the training data as follows.

We interpret the training of the weights as an estimation problem. In

this setting, the random variables £ are observed through the (artificial)

noisy channel:

pix[£) â e-E(x'*\ (E.28)

We write pif) instead of pif) since the observation model is artificial.

Since the error function i?(x, £) most often has the form

m

Eixf) = ]T£fc(xfc,£fc), (E.29)
fc=i

we can rewrite (E.28) as:

pix[£) â e-E(x'Ü (E.30)
m

= fi e-Ek(-Xk'ik) (E.31)
fc=i

oc

fc=i

f[p(xk\Ck). (E.32)

The random variables Y are directly observed.
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The corresponding factor graph is shown in Fig. E.4. The graph repre¬

sents the function:

N m

pixf\y,w) = n^'^-^nrfi^) (E-33)
1=1 k=l

N m

= UHtW-t(vW,v>))l[p(xW\tP). (E.34)
1=1 k=l

The boxes denoted by "FF NN" are detailed in Fig. E.3; they stand for

the function /(£, y, w). From the observations of £ and Y (i.e., the train¬

ing data {(x^), y^)}p_-, ), we wish to estimate the random variables W

(i.e., the weights in the feed-forward neural network) as:

w = argmini?(x,£(y, w)) (E.35)
w

= argmax / logffx\Ç)fify,w)dÇ (E.36)

= argmax E^^«,) [logp(x|£)] , (E.37)
w

where x and y in (E.37) are given by the training data. The expectation
in (E.37) can be carried out by means of the sum-product algorithm,
which in this case is a trivial computation. The maximization in (E.37)
can in principle be accomplished by applying the max-product algorithm
on the graph Fig. E.4, where the boxes "FF NN" are considered as com¬

pound nodes, i.e., they are not replaced by the graph of Fig. E.3. From

this perspective, the graph of Fig. E.4 is cycle-free, and applying the

max-product algorithm on Fig. E.4 leads to the mode (E.37).

What we have done so far is to rewrite the error function E as an ex¬

pectation and to show that the training of a feed-forward neural network

can formally be carried out by sum/max-product message-passing on a

suitable factor graph. So far, the message-passing view does probably
not buy us much. The key point is, however, that the computation (E.37)
is usually intractable. Therefore, we need to resort to approximate tech¬

niques. And at this point, the message-passing view is arguably useful:

on the graph of Fig. E.4 (or any transformed factor graph), one may apply
the message-passing methods of Chapter 4 such as particle methods

(e.g., MCMC), EM, ICM, gradient methods (e.g., steepest descent or

natural-gradient descent), or combinations of those methods.
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The factor graph of Fig. E.4 is also interesting for a different reason. The

graphs suggest us to draw additional nodes (as illustrated in Fig. E.5),
in particular:

• a node that represents a prior pwiw) for the weights w.

• nodes that represent a noisy channel piy\z) for the observation

of Y. (In Fig. E.5, we have depicted a memoryless channel; of

course, more sophisticated observation models could be handled.)

• nodes that represent a prior pzf) for the random variables Z.

• nodes that represent a noisy channel pix\0 for the observation

of£.

The graph of Fig. E.5 represents the function

N

Pix, f z, y, w) = pziz)pwiw) Y[
i=i

<*(£«-£(*(*>,«;))

n p(x3 k] )pixf \c;) )j ( n p(y? \z3
3= 1 3= 1

(E.38)

The training data is most often noisy, which can be modeled explicitly by

including the observation model piy\z) and pix\0 in the factor graph, as

in Fig. E.5. In the neural-networks literature, the training data is most

often pre-processed in an ad-hoc manner. If we model the observation

process explicitly, the pre-processing follows directly by message passing

on the graph of Fig. E.5, as shown in Fig. E.6. Also here, one may use

the catalogue of message-passing tools presented in Chapter 4, as one

wishes.

The computation (E.37) now takes the form:

w = argmin / [Eix,èiz,w))pix\x)piy\z)pwiw)pziz)dzdx] (E.39)

= argmax / logffxlOfif z,w)pix\x)
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piy[z)pwiw)pziz)dzdxd,£, (E.40)

= argmaxEs(a;i£iXi!/i0it„)[logp(x|£)]> (E.41)
w

where

gix, f X, y, z, w) = /(£, z, w)pix\x)piy\z)pwiw)pziz). (E.42)

In the following, we will not explore the graphs of Fig. E.5 and Fig. E.6

any further. Instead, we will focus our attention on the back-propagation

algorithm outlined in E.2: we will show that, if one applies the generic
rules for computing gradients of sum-product messages (on the factor

graphs of Fig. E.3 and Fig. E.4), one obtains the back-propagation algo¬
rithm of Section E.2.

If we wish to determine the weights W (cf. (E.35)-(E.37)) by a gradient

method, the derivatives of the sum-product messages along the Vy-edges
are required. In Section 4.8.1, we explain how derivatives of generic

sum-product messages can be computed. We will use the update rules

of Section 4.8.1 in the following.

As an illustration, suppose we wish to compute the derivative of the

(2)
sum-product message along the edge W^ coming from the incident

multiply node (cf. Fig. E.3). We will derive the required computations
from Fig. E.7, which shows the subgraph of Fig. E.3 that is relevant for

the computations at hand.

The edge w is incident to a multiply node. A multiply node is a deter¬

ministic node, hence, we apply rule (4.115), resulting in:

VWlpB^Wliwf = VWlhizi,wi)V7lp7l^Bfi)\7i=h{~uWi), (E.43)

= 5iV7lM7l^S(7i)l7l=âl^, (E.44)

where we used the short-hand notation TT^i for W^ , hfi, wi) = zi-wi,

and the incoming message pZl^^fi) is represented by the estimate z\.

Note that the derivative V7l Mti^[x](7i) is required. This derivative is

computed similarly. We apply the rule (4.115) to the incident addition

node, resulting in:

V7lM7i-0(7i) = V«iMa1^H(ai)|ai=;i(-o+7i+ -2+ +-m). (E.45)
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The derivative Vai pai^^iaf is computed by applying the rule (4.115)
to the node gout, resulting in:

yaipai^miai) = Vaisrout(ai)|ai %/iÇl^s(£i)|Çi=Sout(ai). (E.46)

The message Vç1/u,ç1^s(£i) is given by:

Vfc^i-fltéi) = V^log^xiia) (E.47)

= -V^Efxifi), (E.48)

i.e., the derivative of the logarithm of pixi\f) (cf. (E.37)), which is also

equal to minus the derivative of the error function Efxi, f). By com¬

bining the expressions (E.44)-(E.48), one obtains (E.18)-(E.19). Along
similar lines, one can derive (E.23)-(E.26).

In conclusion, we have shown how the back-propagation rules (E.18)-
(E.26) follow by mechanically applying the generic rules of Section 4.8.1.

As we pointed out, the required derivatives can be computed in two

steps. The first step is a bottom-top sweep, in which, for fixed inputs
and fixed weights, all ß3 and z3 and then all otk and £& are updated. This

(bottom-top) sweep is depicted in Fig. E.8, where the message-passing

procedure inside the boxes "FF NN" is detailed in Fig. E.10.

In a second step, all derivatives -ß^- are computed by (E.19), and all

derivatives W- are computed by (E.26) by a backward (top-to-bottom)

pass through the network. The desired derivatives dE2) and dE1) can

then be obtained from (E.18) and (E.23), respectively. The message-

passing procedure of the second step is depicted in Fig. E.9, where the

message passing inside the boxes "FF NN" is detailed in Fig. E.ll.

Remark E.l. (Scheduling)
The update of the weights can be scheduled in several ways. One may

for example apply stochastic approximation (see Section 4.8.3).
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Figure E.3: Factor graph representing a feed-forward neural network.
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Figure E.ll: Backpropagation as message passing: top-bottom sweep

inside the feed-forward neural-network.





Appendix F

Some Distributions

F.l The Gauss distribution

The Gaussian distribution A/"(x | m,v) (or "normal distribution") with

mean (and mode) m and variance v is defined as:

Xi ix \m,v)f -L= exp
Mx ~ m) \

x G R- (F n
f2irv \ 2v

Alternatively, A/"(x | m, v) is denoted by A/" 1(x | m, w), where w = v
l

is called the precision.

In the vector case, the normal distribution is defined as:

AT!(x | m, W) = J^- exp f-±(x-m)ffW(x-m)) ,
x G R",

(F.2)
and if V = W 1 exists as:

AA(x | m, V) = —=A_exp (-^(x-m^V^tx-m)) ,
x G R».

(F.3)
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F.2 The inverted gamma distribution

The inverted-gamma distribution Ig (x | a, ß) with parameters a and ß

(a, ß G M) is defined as:

ßOL

Ig(x I a,ß) = -f-x-{a+1f--, x>0. (F.4)
T(a)

The mean E[X], variance Var[X] and mode M [A] of the distribution are:

E[X] =
-?—

a > 1 (F.5)
a — 1

VarW=
{a-ma -2)

a>2

M[X] = -£-. (F.7)
a + 1



Appendix G

Gaussian Densities and

Quadratic Forms

We closely follow [120] in this appendix. Multi-variable Gaussian densi¬

ties are closely related to quadratic forms. A quadratic form is a function

q : Rn -> R or Cn -> R of the form

qix) = (x - m)HWix - rn) + c (G.l)

= xHWx-2ReixHWm) +mHWm + c, (G.2)

where IF is a positive semi-definite n x n matrix. The case where all

quantities in (G.l) are real-valued and q is a function Rn —> R will be

referred to as "the real case" ; the case where q is a function Cn —> R will

be referred to as "the complex case".

A n-dimensional Gaussian distribution is a function Rn —> R or Cn —> R

of the form

/(x)=7e-«W, (G.3)

where </(x) is a quadratic form as in (G.l) with positive definite W and

with a scale factor 7 such that J"_ /(x) dx = 1.

We note without proof that, in the real case, the corresponding covariance

matrix is \W~l and in the complex case, the covariance matrix is W^1.
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In the following theorem, the vector x is split into two components:

x = (y, z). Then (G.l) can be written as

qiy,z)=(iy-mY) , f - mz) J (^ ^ ){ z _ ^ j.
(G.4)

Theorem G.l. (Gaussian Max/Int Theorem)
Let qiy,z) be a quadratic form as in (G.4) with IFii positive definite.

Then

/OO e-q(-v'zUy oc maxe-'f»'^ (G.5)
-oo

y

= e-min»^'0). (G.6)

where "oc" denotes equality up to a scale factor.

Proof: Let us first consider the integral over (G.l):
oo />oo

e~qW dx = e-c / e-^W-0') dx (G.7)
-oo •'

— oo

/•°o
„

= e~c / e^C^-) w(x-m) rjx (G.8)
J —oo

r°° h

= e-c / e"»
Wa!

dx (G.9)
J — oo

/°°
H

= e-mmœq(x) /
e-x ffIfc (G.10)

Now consider (G.4) as a function of y with parameter z. Clearly, this

function is of the form (G.2) with IFii taking the role of W. It thus

follows from (G.10) that

e i(y>z)dy = e-mlnyq(y'z*> / e-yHWl-iydy. (G.ll)

But the integral on the right-hand side does not depend on z, which

proves (G.6). D

Theorem G.2. (Sum of Quadratic Forms)
Let both A and B be nonnegative definite matrices (which implies that

they are Hermitian). Then

ix-a)HAix-a) + ix-b)HBix-b) = xHWx-2ReixHWm)+mHWm+c
(G.12)
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with

W = A + B (G.13)

m = iA + B)*iAa + Bb) (G.14)

and with the scalar

c=ia-b)HAiA + B)#Bia-b). (G.15)

We also note

Wm = Aa + Bb. (G.16)

We omit the proof here.





Appendix H

Kaiman Filtering and

Related Topics

In this section we review several topics related to Kaiman filtering and

smoothing; we will closely follow [120].

H.l Introduction to Kaiman Filtering

Many problems in signal processing and control theory can be put into

the following form (or some variation of it). Let X = (Ao, Xi, X2,...)
and Y = (Yi, Y2, • • •) be discrete-time stochastic processes that can be

described by the linear state-space model

Xk = AXk-i + BUk (H.l)

Yk = CXk + Wk. (H.2)

The input signal U = fJi, IJ2, .) is a white Gaussian process (i.e.,
Uk is zero-mean Gaussian, independent of Ui, IJ2, , Uk-i, and has the

same distribution as Ui). The signal W = (Wi, W2,...) is also a white

Gaussian process and independent of U. All involved signals (A, Y, U,

W) are real or complex vectors (e.g., Xk takes values in MN or CN), and

A, B, C are matrices of appropriate dimensions.
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® ®

Ui If
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X2
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Yi Y*

Figure H.l: Linear state-space model driven by white Gaussian noise

and observed through AWGN channel.

This type of model can be described by the factor graph of Fig. H.l. The

nodes labeled ® and © represent Gaussian distributions. For example,
if Uk is real-valued and scalar, then the nodes labeled ® represent the

function

ÄK)._L-exp(i|). (H.8)

Complex and vector-valued Gaussian variables will be discussed later.

The single node ® stands for the distribution of the initial state An.

We will assume that this is also a Gaussian distribution or else it is

the constant 1 (in which case this node may be omitted from the factor

graph).

The other nodes in Fig. H.l represent deterministic relations, which give
rise to factors involving Dirac deltas. For example, a matrix multiplica¬
tion Zk = CXk gives rise to the factor 5fk — Cxf.
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The global function that is represented by Fig. H.l is the joint probability

density of all involved variables. More precisely, for any positive integer

n, the first n sections of the factor graph represent the density

/(x0,..., x„, mi, ..., un, wi,..., wn, yi,..., y„)
n

= fixo) Y\fiuk) Iixk\xk-i,uk) fiwf fiyk\xk,wk) (H.4)
fc=i

n

= fixo) Y\_ fiuk) Kxk - Axk-i - Buk) fiwf fyk - Cxk - wk).
k=i

(H.5)

Suppose we have observed (Yi,... ,Yn) = (yi,..., yf) and we wish to

estimate Xm. This leads to the following classical problems:

m = n (filtering): estimating the current state;

m < n (smoothing): estimating some past state;

m > n (prediction): estimating some future state.

All these estimates can be efficiently computed (with complexity linear

in n) by the Kaiman filtering (or Kaiman smoothing) algorithm. We

will derive these algorithms as message passing in the factor graph of

Fig. H.l. All messages will be Gaussian distributions—represented, e.g.,

by a mean vector and a covariance matrix. Since the factor graph has

no cycles (and since all message computations will be exact), the sum-

product algorithm will yield the correct a posteriori distributions. For

both the filtering and the prediction problem, a single left-to-right sweep

of message computations (referred to as the forward recursion) will do; for

the smoothing problem, an additional right-to-left sweep (the backward

recursion) is also required.

The derivation of Kaiman filtering and smoothing as summary propaga¬

tion in the factor graph makes it easy to generalize both the problem and

the estimation algorithms in many ways and to adapt it to many applica¬
tions. Such applications include, e.g., various parameter estimation tasks

in a communications receiver; the factor graph approach makes it easy to

integrate such estimation algorithms together with the error correcting
decoder into a coherent iterative message passing receiver architecture.
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If all variables in Fig. H.l are real scalars (which implies that all matrices

in Fig. H.l are scalars as well), all messages will be one-dimensional

Gaussian distributions. In other words, all messages are functions of the

form

and are fully described by their mean m and their variance a2. The

rules for the computation of the messages are tabulated in Table H.l. As

only one of the two messages along any edge (say A) is considered, the

corresponding means and variances are simply denoted rnx, <Jx, etc.

The proofs of the message computation rules of Table H.l are not dif¬

ficult. Rule 3 amounts to the well-known fact that the mean of aX is

arnx and the variance of aX is a2 times the variance of X. Rule 4 is (in
the scalar case) equivalent to Rule 3. Rule 2 amounts to the well-known

fact that the mean of X + Y is rnx + rny and (assuming that X and

Y are independent) the variance of X + Y is the sum of the variances.

Note that these three rules hold for the mean and the variance of ar¬

bitrary distributions; the Gaussian assumption is not needed for these

rules. However, Gaussian input messages clearly lead to Gaussian output

messages.

Rule 1 of Table H.l requires more work. Applying the sum-product rule

with integration instead of summation (and with a scale factor 7 yields

/oo
/>oo

/ ôf -x)5f -y) pxix) pYiy)dxdy (H.7)
-00 J — 00

= 1 Pxiz)pyiz) (H.8)

1 (-jz-mx)2\ 1 f-jz-rnY)2\
=

7vi^rxpl 2*% ) viwexpl 24 )
(H.9)

After some computations, this leads to

with rnz and a\ as in Table H.l and where 7 was chosen such that

f_ pzf) = 1. (The details are left as an exercise.)

A remarkable property of Table H.l is that all variances are computed

only from other variances; the means are not used. In the standard setup
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A Z

Y\\

Six — y)(5(x — z)

mz =

'mx/o~x +'mY/aY

l/a2x + 1/4

1/4 = 1/4 + 1/4

A
+

Z

w

Six + y + z)

mz = —rnx — 'my

Or, = aX^CTy

X Y

(5(y — ax)

my = amx

2 2 2
a
y
=

azax

X Y

Six — ay)

my = mx/a

4 = 4/fl2

Table H.l: Computation of scalar Gaussian messages consisting of

mean m and variance a2.
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A Y

-<—

fix)
Mb(x)

fy\x)

Figure H.2: Backward message in chain rule model.

of Fig. H.l, this means that the variances can be computed off-line, prior
to any observation.

It is also worth pointing out that, in any chain rule model as in Fig. H.2,
the backward message ^fx) is neutral as long as the variable Y is not

observed:

Pbix) = / fiy\x)dy (H.ll)
J — OO

= 1. (H.12)

This applies, in particular, to the backwards (right-to-left) messages from

the "unobserved" future in Fig. H.l. (Such neutral messages may be

considered as limits of Gaussian distributions with variance a2 —> oo.)

Unfortunately, the scalar Kaiman filter is of little practical use. While

both the input Uk and the output Yk are sometimes (i.e., in some appli¬

cations) scalars, the state Xk is almost always a vector. The resulting

complications will be considered in the following section.

H.2 Kaiman Filtering: Vector Case

At this point, the reader should familiarize himself with the material in

Appendix G.

In particular, we point out that Theorem G.l has a number of remarkable

consequences:

• For Gaussian distributions, eliminating variables by marginaliza¬
tion coincides with eliminating them by maximization. This im¬

plies, in particular, that the sum-product (integral-product) mes¬

sage computation rule coincides with the max-product rule.
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• Minimizing a quadratic cost function (say </(y, z)) over some of the

variables (say y) is equivalent to marginalizing the corresponding
Gaussian distribution.

• Successive elimination of variables by sum-product message passing
in a Gaussian factor graph is equivalent to solving a quadratic
minimization problem by a series of successive minimizations. In

particular, Kaiman filtering may be viewed as a general recursive

least-squares algorithm.

The vector form of the message computation rules of Table H.l are given
in Table H.2. (The proofs are given in [117].) All messages are assumed

to be of the form (G.3); they are represented by the mean vector m and

either the "cost" matrix W (or "potential" matrix) or the covariance ma¬

trix V = W_1. Note that the rules in Table H.l can often be simplified
if the involved matrices are invertible.

In general, the matrices W and V are only required to be positive semi-

definite, which allows to express certainty in V and complete ignorance
in W. However, whenever such a matrix needs to be inverted, it had

better be positive definite.

The direct application of the update rules in Table H.2 may lead to

frequent matrix inversions. A key observation in Kaiman filtering is that

the inversion of large matrices can often be avoided. In the factor graph,
such simplifications may be achieved by using the update rules for the

composite blocks given in Table H.3. In particular, the vectors Uk and

Wfc in Fig. H.l have usually much smaller dimensions than the state

vector Xk', in fact, they are often scalars. By working with composite
blocks as in Fig. H.3, the forward recursion (left in Fig. H.3) using the

covariance matrix V = W_1 then requires no inversion of a large matrix

and the backward recursion (right in Fig. H.3) using the cost matrix W

requires only one such inversion for each discrete time index.

Strictly speaking, the term "Kaiman filtering" refers only to the forward

(left-to-right) recursion through Fig. H.l as in Fig. H.3 (left). In this

context, the quantity

GKalman f VXAHG (H.13)

= VxAHiVY + AVxAH)-1 (H.14)

which appears in Rule 5 of Table H.3 is traditionally called Kaiman gam.
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A Z

—- —*

Y t

Six — y)(5(x — z)

mz

Xz

Wz

(Wx +WY)#iWxmx + Wymy)

XxiXx+XyfVy

Wj + Wy

A
+

Z

fi
(5(x + y + z)

mz

Xz

Wz

—rnx — my

Xx + Xy

= W1(W1+Wy)#Wi

A
A

Y
my = Amx

VY = XVXAH

(5(y — Ax)
W

i

Y
= A--"WXA-

X
A

Y

Six — Ay)

my = (AflWxA)*AflWxrax
VY = A"1VXA-H

WY = AHWXA

if A is mvertible

Table H.2: Computation of multi-dimensional Gaussian messages con¬

sisting of mean vector m and covariance matrix V or

W = V-1. Notation: (.)H denotes Hermitian transposi¬
tion and (.)# denotes the Moore-Penrose pseudo-inverse.
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5

A

•mz = rnx + V^A^G i'my — Arnx)

Xz=Xx- VxAHGAVx

Wz = Wx + AHWFA

with G = {yy + avxah)_1

—

z

—-

.t

A

rlt

6

A

mz = —mx — Amy

Vx = A^VyA-11

Wz = Wx - WxAHAHWx

with H = (Wy + AHWxAy1

+
z

—-

t

A

rlt
i

i
'

A is inve rtible

Table H.3: Update rules for composite blocks.
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(
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Figure H.3: Use of the composite-block rules of Table H.3.





Appendix I

Differentiation under the

Integral Sign

Theorem 1.1. Suppose /(x,y) and ff are defined and continuous

for all x G [a, b] and y G [c, d]. Let

gix) = / fix,y)dy. (1.1)

Then g is differentiable and

dgix) fddfix,y)
\Ai*As J f-,

yJds

dy. (1.2)

Proof: We refer to [106, p. 276]. D

Theorem 1.2. Suppose /(x,y) and ff are defined and continuous

for all x G [a,b] and y G [c,d]. Let the functions ufx) and «i(x) and

their first derivatives be continuous for x G [a, b] with the range of «n

and «i in (c, d). Let

r-ui(x)

gix) = / fix,y)dy. (1.3)
•'tio(i)

407
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Then g is differentiable and

dgix) dufx) ,,dufx) fUl{x) <9f(x, y)
-/(x,mi(x))— fix,ufx))—— + I -—dy.

(1.4)

(X*/^ (X*/^ (X*/^ } 11 c ( rr \ ^*^

Proof: We refer to [166, p. 426]. D

Theorem 1.3. Suppose /(x,y) and ff are defined and continuous

for all x G [a, b] and y > c. Assume that there are functions </>(x)
and 4>ix) which are > 0 for all x G [a,b], such that |/(x, y)| < </>(y)
and | ff | < ipiy) for all x and y, and such that the integrals

4>iy)dy and / 'fy)dy (1.5)

converge.

Let

Then g is differentiable and

dgix) f°°dfix,y)

gix) = / fix,y)dy. (1.6)

dy. (1.7)
(X*/^ /

^>
(_/*/^

Proof: We refer to [106, pp. 337-339]. D

Theorem 1.4. Suppose /(x,y) and ff are defined and continuous

for all x G [a, b] and y > c. Assume that

^P^dy (1.8)
öx

converges uniformly for all x G [a, b], and that

gix) = I fix,y)dy (1.9)

converges for all x G [a, b].

Then </ is differentiable and

dgix) f°°dfix,y)
dy. (1.10)

Proof: We refer to [106, p. 340]. D



Appendix J

Derivation of the EM

Update Rules

J.l Mean Estimation

J. 1.1 The Scalar Case

h(m) j | "i

ßx^ff) \\x

Figure J.l: Factor graph node for a Gaussian distribution with un¬

known mean.

We consider the situation depicted in Fig. J.l. The node in Fig. J.l

represents the function:

/(x,m) = -J= expf-^-^V (J.l)
V27TS V 2s J

where m G R is the unknown mean and s G R+ the known variance of

409
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the Gaussian distribution. The /i-message is computed as follows:

him) = j pix[rf ') log/(x, m)dx

pix[rf '

1 i
x — m i

- log(2^s) -
V '

\ dx
2 2s

= C -

-^ (m2 - 2mE[A|m(fc)])
,

2s V /

where C is a proper scaling constant. As a consequence,

eh^ocAf(m E[A|m^]

(J.2)

(J.3)

(J.4)

(J.5)

J. 1.2 The Vector Case

In the vector case, the node function equals:

f (x, m) = —. = exp f —(x — m)ifV_1(x — m)M '

yWJfV] I 2

The /i-message is given by:

/i(m) = / p(x|m(-fc-)) log/(x, m)<ix

= C - - [m^V^m - 2mifV-1E[X|m(fc)"

As a consequence,

e^^ocA^fm E[X|m^],V

(J.6)

(J.7)

(J.8)

(J.9)

J.2 Variance Estimation

J.2.1 The Scalar Case

We consider the situation depicted in Fig. J.2. The node in Fig. J.2

represents the function

(x — rn)2
*

fix,s) =
1

f2ffs
exp

2s
(J.10)
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Hs)\\\s
N

Figure J.2: Factor graph node for a Gaussian distribution with un¬

known variance.

where s G R+ is the unknown variance and m G R the known mean of

the Gaussian distribution. The /i-message is computed as follows:

his) = pix\fk >) log fix, s)dx
J x

= [ pix\fV)
1 (

X ffb I

- log(2^s) -
V

2g

'
) dx

1 E[(A m)2 I s«]

Therefore,

eh{s) oc Ig (s 1 1

'2'2 E[(A- -m)2 I â«"

where Ig denotes an inverted gamma distribution.

(J.ll)

(J.12)

(J.13)

(J.14)

J.2.2 The Vector Case

In the vector case, the node function equals

/(x,V)
1 ( l

, exp I —(x — m) V (x — m)
vWFl v 2

The /i-message is therefore:

h(V)= /"p(x|V«)log/(x,V)dx
= C - \ log |V| - ^E [(X - m)HV-1(X - m) v(fc)

(J.15)

(J.16)

(J.17)
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J.2.3 Special Forms of V

V = Is, s GR+:

his) = C - | log s - J-E [(X - uifiX - m)] (J.18)

*'>
= Ig (s j ^, ^E [(X - m)*(X - m)] Y (J.19)e

V = diag(s),sGR+n:

fe(s) = c -

2
E logs^ - E ^7Et(^ - m^)2] (J-2°)
£=1 £=1

£

71

( 1 1 \

fife (*' -^Ep^-m,)2]). (J.21)oc

=1

J.3 Coefficient Estimation

J.3.1 The Scalar Case

Here, the problem of estimating the coefficients of an autoregressive (AR)
system is considered. The function /(xi,X2, a) is defined as:

/(xi, X2, a) = (5(x2 — axi), (J.22)

where a G R is the scalar AR coefficient. Computing the message hia) for

this node leads to a singularity problem because of the Dirac delta (J.22).
We can avoid this problem by combining the Dirac delta with a conti¬

nuous neighboring node. In the AR model, there is also a driving input

(or control input) as depicted in Fig. J.3. The dotted box in the graph
to the left is represented by the node to the right.

The function represented by the graph in Fig. J.3 is

r, \
l ( ix2-axf2\

fixi,x2,a)
= —== exp . (J.23)

V2tys V 2s J
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„h(a)\

Xl 4^
eh(a) j lâ

Xl I I X2
a

Figure J.3: Factor graph of the state transition node for a linear state-

space model.

The message hia) becomes:

hia) = / pixi,X2\ar ') log/(xi, X2, a)dxidx2

1
, ,n „ (x2 —axi)2

p(xi,x2|a(fc)) ( --log(27Ts)
2s

(J.24)

dxidx2 (J.25)

C-^- fa2E[A!2|â(fc)] -a2E[AiA2|â(fc)] +E[A22|â(fc^
, (J.26)

2s V /

with

C = --log(27rs). (J.27)

Because (J.26) is a quadratic form, it is convenient to send the message

eh(a) msteaci 0f hia):

eh^ ocM-fa
E[AiA2|â(fc)]
E[A2|â(fc)]

E^lâ^Js-1 (J.28)

J.3.2 The Vector Case

The function /(xi, X2, A) is defined as:

/(xi,x2,A)
fi2ffV\

^

V 2

with A G Rnxn. The message /i(A) becomes

exp --(x2 - Axi)a V-X(x2 - Ax

(J.29)
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ma) j ha
xi X2

Figure J.4: Factor graph of the state transition node for the vector

case.

KA)= f p(xi,x2|Â(fc))log/(xi,X2,A)dxidx2 (J.30)
•/xi,X2

p(xi,X2|Â«)<H
(x2-Axi)wV-1(x2-Axi)dxidx2 (J.31)

C-- (E[XfV-1X2|Â(fc)] - 2E[XfV-1AXi|Â^]

-E[XfAffv-1AXi|Â(fc);

= C--E
2

|X2-AXi||2/_ Â«

with

77 1

C=--log(27r)--log|V|

(J.32)

(J.33)

(J.34)

Unfortunately, (J.33) does not have a nice form in A. Unless a special
structure is imposed onto A, it is impossible to parameterise (J.33).

J.3.3 The AR Case

Here, a special case of Section J.3.2 is treated. The function /(xi,X2,a)
is defined as

/(xi,x2,a) =

with

exp (—(x2 - Axi)ifV"1(x2 - Axi) ) ,

I 0

(J.35)

(J.36)
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The message /i(a) becomes

hia.) = / p(xi,x2|a(fc))log/(xi,x2,a)dxidx2
"'xi,X2

= C
~n p(xi,x2|a(

/ 'xi.xj

(J.37)

*W\

(x2 - Sxi - cxfa)ifV"1(x2 - Sxi - cxfa)dxidx2, (J.38)

with

C

and where

77 1

-log(27r)--log|V|,

S =
0H

I 0
= (1,0,...,0)H.

(J.39)

(J.40)

The product Axi is separated in the shifting operation Sxi, which shifts

every element in the vector xi one position down, and the inner vector

product cxfa.

We write the RHS of (J.38) as a quadratic form in a:

(k)\hia) = C - - / p(xi,x2|a'
^ ixi,X2

(x2 - Sxi - cxfa)ifV"1(x2 - Sxi - cxfa)dxidx2, (J.41)

= C - |e [(x2 - Sxi - cxfa)ifV-1(x2 - Sxi - cxfa)] (J.42)

= C'-^E [-mfW0 a - aHW0 m0 + aHW0 a] , (J.43)

where C is an irrelevant constant and

W0 = E [Xic^V-^Xf] (J.44)

m0 = W^E [XicifV-1(X2 - SXi)] . (J.45)

Note that cHV_1c is nothing but the element [V-1] , i.e., the element

(1,1) of the matrix V-1. Therefore, we can rewrite (J.44) as

Wa=[V_1]llE[XlXf]- (J-46)

Note also that cHV_1 is the first row of W = V-1, i.e.,

cHV_1 = iwii,Wi2,...,Win), (J.47)
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where wtJ is the element («, j) of W («, j = 1,..., n). On the other hand,
it is easy to verify that

cifV-1S = (Wi2,...,W;i„,0). (J.48)

By substituting (J.47) and (J.48) in (J.45), we obtain:

m0 = W^E [XicifV-1(X2 - SXi)] (J.49)

= W-1 (E [XicHV-1X2] -E [Xic^V-^Xi]) (J.50)

Cn

n—1 \

]T whkE [Xi [X2]fc] - ]T «'i.fc+iE [Xi [Xi]fc] , (J.51)
k=l k=l J

where [XJ is the j-th component of the (random) vector X4 (« = 1, 2; j =

l,...,n).

In this case, the message eh^ has the parametrization:

eh^ocAT-1(sL^ma,Way (J.52)

where ma and Wa is given by (J.51) and (J.46) respectively.

Special cases

V = diag(s),s=(si,...,s„)GR+":

W0 = —E [XiXf] (J.53)
si

uia=W-1-E[Xi[X2}1} (J.54)
«l

= E[XiXf]~1E[Xi[X2]1]. (J.55)

W0 = -E [XiXf ] (J.56)
s

m0=E[XiXf]_1E[Xi[X2]i]. (J.57)

V = Is, s G
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J.4 Joint Coefficient and Variance Estima¬

tion

J.4.1 The Scalar Case

Here, the problem of jointly estimating the coefficients and the variance

of the driving noise of an autoregressive (AR) system is considered. The

S "

eh(a)\\\ \\\eh(s)
Xl X2

f(xi,X2,a,s)

Figure J.5: Factor graph of the state transition node for joint coeffi¬

cient/variance estimation.

node function /(xi,X2,a, s) is defined as

/(xi,x2,a, s) =
1

/27TS
exp

(x2 — axfA
2~s (J.58)

with aGR the scalar AR coefficient.

The message hia, s) becomes

h(a, s) pixi,X2\f >, §( ') log/(xi, X2, a, s)dxidx2 (J.59)

p(xi,x2|â(fc),s(fc))
1 (x2-axi)2',

J
-- log(27Ts) ) dxidx2

C-\logs-±-{a2E
-a2E AiA2|â(fc),s(fc)

A2|â(fc),s«

+ E A2|â(fc),s«

(J.60)

(J.61)

with

C=--log(27r). (J.62)
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The message (J.61) is both a function of a and s. To find the maximum,
all partial derivations of hia, s) are set to zero. From

dhfj,, s)
da

pixi,x2[àf\fhf (Xl{X2 aXl))dxidx2 i
V s )

= 0

dhfj,, s)
ds

= 0,

it follows that

J.63)

(J.64)

pixi,X2[af\fk>) ( -— H —- J dxidx2(J.65)
i,i2 \ 2s 2s J

(J.66)

fc+i) E[AiA2|â«,s«])(k+i) =

E[A2|â(fc),s(fc)]

â(fc+i)=E[(A2-â(fc+1)Ai)2|â(fc),s(fc)

(J.67)

(J.68)

As can be seen from (J.67) and (J.68), in certain situations, the esti¬

mation of a and s is decoupled. We therefore may send the following

messages separately:

eh^ oc Af-

f^ oc Ig s

E[AiA2|â(fc),sW] E[A2|âW,s(fc)]'
E[A2|â(fc),s(fc)]

' W)

1 E[(A2-â(fc+1)Ai)2|â(fc),sW]A
2' 2

In certain situations, the estimation of a and s is coupled, but one may

still send the messages ef^> and eh^ of (J.4.1). This corresponds to

approximating the M-step by ICM (cf. Section 4.9.5).

If one wishes to perform the exact M-step, one needs to send the (exact)
message eh(a>s^ defined as:

e^'^ocA/"-1 [a E[AiA2|a(fc),sW] E[A2|aW,s(fc)]'
E[A2|â(fc),s(fc)]

' ~s
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J.4.2 The AR Case

The node function /(xi,X2,a, s) is defined as

/(xi,x2,a, s

VW)

1 ( (x2-Axi)H(x2-Axi;
exp

'

2s

with

A =

aH

I 0

(J.69)

(J.70)

and xi, x2 G R, a G Rn, V = Is.

The message /i(a, s) becomes:

/i(a, s) = / p(xi,x2|â(fc)s(fc))log/(xi,X2,a,s)(ixi(ix2 (J.71)

1
(k)è(k)\C-- p(xi,x2|âWs

2s A1,x2

(x2 — Sxi — cx^a)H(x2 — Sxi — cx^a)dxidx2, (J-72)

with

77 1

C=--log(27r)--log|V|

and where

S =
0H

I 0
c = (l,0,...,0)H

(J.73)

(J.74)

Again, the estimation of a and s is decoupled in certain situations. We

may then send /i(a) and his) separately:

e^ocAT^,
eh^ oc Ig ( s

m0,W0 ,
,

1 E[(X2-Â(fc+1)Xi)H(X2-Â(fc+1)Xi)]
"2' 2

where

w« = é)E [x^xf]

m0 = T7IYW-1E[Xi[X2]i]
s(fc)

(J.75)

(J.76)
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with [XJ is the j-th component of the (random) vector Xj.

If the estimation of a and s is coupled, one may still send the messages

separately. This corresponds again to approximating the M-step by ICM

(cf. Section 4.9.5). If one wishes to perform the exact M-step, one needs

to send the (exact) message eh^a,s^ defined as:

e/l(a's)ocAA-1(a|m0(s),W0(s))

where

Wa(s) = -E[XiXf]

m0(s) = -W-1E[Xi[X2]1],

(J.77)

(J.78)

with [XJ is the j-th component of the (random) vector X4

J.5 Finite State Machine

This node is not used in this thesis. Nonetheless, its derivation is shown

here, because it appears in one of the prime applications of the EM

algorithm. The function of a node implementing the state transition of

A

h(A)\\\Â
xi

- A
X2

Figure J.6: Factor graph node of the state transition node for the finite

state machine.

a finite state machine is (cf. Fig. J.6)

fixi,x2,A) = aXlX2 = ^cv,(5[xi -i]6[x2 - j], (J.79)
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where S[.] denotes the Kronecker delta. The /i-message is

fe(A) = ]T P^i^2 I A(fc)) l°g fixi,X2,A) (J.80)

= Y Pixi,x2 I Â^^loga^^. (J.81)
Xl,X2

This message can be represented as matrix with individual elements

p(xi,x2 | A^)logaXuX2.

To find the estimate A, one has to compute the derivations

datJ

with the constraint

Therefore

dhiA)
+ }dgjA) =

pfj | ÂW) _xLq

giA) = 1-^^ = 0.

£

A
_pjl,3\kW)

<*3-
A

(J.82)

(J.83)

(J.84)

To find the value of the Lagrange multiplier A plug (J.84) into the con¬

straint (J.83)

E^ = AE^^iA(fc)) = 1 (J-85)
£ £

A = 5>(M|Â(fc)). (J.86)
£

The new estimates of the transition probabilities atJ thus becomes

Pfj I ÂW)

j:epf£\ÂW)
(J.87)

J.6 Computing the expectations
of Table 4.2

In this section it is explained how the expectations in the message pass¬

ing EM update rules of Table 4.2 are computed from the sum-product

messages when the incoming messages are Gaussian.
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J.6.1 Scalar case

The expectation E[AiA2|â(-fc-)] is derived from the density p(xi,X2|â(-fc-))
which is given by

p(xi,x2|â(fc)) oc nxl^fixi)fixi,X2,àf'))nx2^fix2) (J.88)

ocA/"(x|mi,2,Wi,2) (J.89)

where x = (x2,xi)H, the node function is

/(xi,x2,â(fc))
/2tts

exp
(x2 — â^xi)

2s
(J.90)

and the incoming message px-i^fixf) is Gaussian with mean mi and

weight wi and similarly m<i and W2 for ^X2^fix2)- (J.88) can be inter¬

preted as propagating three augmented messages through an equality-
node. We, therefore, can apply the update rule of Table H.l extended to

three incoming messages. The mean vectors and weight matrices of the

augmented messages are

mi = (0,mi)H

m2 = (m2,0)if

m/ = 0

Wi

w2

wf

0 0

0 wi

U>2 0

0 0

1 r i -a

s —a a2
_

(J.91)

(J.92)

(J.93)

The vector and the matrix (J.93) are found by comparing the coefficients

of

ifl^pl = (x _ rhffWfx - ùif (J.94)

The joint density (J.88) is a Gaussian with mean vector and weight
matrix

mi)2 = (Wi + Wf + W2) '(Wiini + W/m/ + W2m2)

= wf ( W2'm2

Wii2 = Wi + Wf+W2-

The correlation matrix finally is

E[A2] E[AiA2
E[A2Ai] E[A2]

= Wj2 + mij2m^2-

(J.95)

(J.96)

(J.97)

(J.98)
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J.6.2 Vector case

ISHere the joint density of Ai and A2 given a^k'

p(xi,x2|â(fc)) oc/iXl^/(xi)/(xi,x2,â(fc))/ix2^/(x2)
ocA/Yx| mii2,Wii2)

where xi, X2 and x are the following vectors:

xi = (x„_i, x„_2, • •

•, xn-M)H

X2 = ixn, Xn-i, . . .

, X„_M+l)

x = (xn, Xn_l, . . .

, Xn_M+l, Xu-m)

The augmented mean vectors and weight matrices are

nii = (0,mi)H Wi =

ni2 = (m2,0)H W2 =

m/ = 0

0 0H 1

0 Wi

w2 0H
'

0 0

w,

1 —ai -an

— 0,1 a2

aia2

aia2

n2

an-l &n Q>n—1

-a-n Qm^m- 1 «n
.

*H

*H

(J.99)

(J.100)

(J.101)

(J.102)

(J.103)

(J.104)

(J.105)

(J.106)

(J.107)

(J.108)

The vector (J. 106) and the matrix (J. 108) are found by comparing
the coefficients of

\Xn Z^fc=l Q'kXn — k)
(x-m/W^x-m;) (J.109)

The joint density (J.99) is Gaussian with mean vector and weight matrix

\-lt , w.. , w.^ (J.HO)my = (Wi + Wf + W2) ^Wiriii + W/rii/ + W2m2)

W
1,2

0

WiHli

AV2m2

V 0

Wii2 =Wi+W/+W2.

(Jill)

(J.112)
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The correlation matrix finally is

E[XfA2E[X2]
E[A2Xi] E[XiXf] Wjj + m^m^. (J.113)



Appendix K

Mathematical

Background of Chapter 5

Lemma K.l. Let A = >z 0, where An, A12, A21, and
An A12

A21 A22

A22 are n x n, n x m, m x n, and rn x rn submatrices respectively. Let

A22 be nonsingular.
Then (An - Ai2A221A2i) h 0. D

Proof: A ^ 0, which by definition means that vTAv > 0, \/v G Rn+m.

Let v = [«i«2]T, where vi G 1" and V2 G Rm.

Then vTAv = f[A.nvi + vfA12V2 + w2rA2iwi + vlf^ A22V2 > 0.

Define now v^ = —vfA^A^, then

rj-t rj-t rj-t rr~i r~r~t

v Av = «i An^i + «i A12W2 + v2 A2i«i + v2 A22W2 (K-l)

= vjAn^i + vjA12AfA22W2 + «f^i^i + «2rA22«2 (K.2)

= wfAn^i - W2rA22W2 + «f^l^l + «2rA22«2 (K.3)

= «f(An-Ai2A221A2iK >0,VviGRn. (K.4)

In (K.2), we have used the fact that A22 is nonsingular.
The equalities (K.3) and (K.4) follow from the definition of v2.

As a consequence of (K.4), (An — A^A^ A21) >z 0. D

425
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Let A =

,
where An and A22 are nonsingular n x n

Lemma K.2. (Matrix inversion Lemma)

An A12

A21 A22

and m x m submatrices respectively, such that (An — Ai2A221A2i) and

(An — A22A7/-L A12) are also nonsingular.
Then A is also nonsingular with

[A-1]u = Au1+Au1Ai2(A22-A2iAu1Ai2)-1A2iA-i (K-5)

= (Aii-Ai2A221A2i)-1 (K.6)

[A-x]12 = -Au1Ai2(A22-A2iAu1Ai2)-1 (K.7)

= -(Aii-Ai2A221A2i)-1Ai2A221 (K.8)

[A-x]21 = -(A22-A2iAu1Ai2)-1A2iAu1 (K.9)

= -A221A2i(Aii-Ai2A221A2i)-1 (K.10)

[A-1]^ = A221+A221A2i(Aii-Ai2A221A2i)-1Ai2A221 (K.ll)

= (A22-A2iAu1Ai2)-1. (K.12)

D

Proof: We refer to [33, pp. 8-9]. D

Lemma K.3. Let A, B G Rnxn.

A ;- 0 & BTAB ;- 0. (K.13)

D

Proof:

A >- 0 means by definition that vTAv > 0, for all v G Rn.

In particular, define v = B« with u G Rn. As a consequence,

mtBtABm > 0, for all u G Rn. Hence, BTAB ;- 0.

BTAB ;»- 0 means by definition that vT~BTA~Bv > 0, for all v G R.

Defining u = B«, we have uTAu > 0, for all u G Rn. Hence, A >- 0.



427

D

Lemma K.4. Let A, B G Rnxn, and suppose that A >- 0, B >- 0,
A h B and BT = B. Then:

B-^A"1. (K.14)

D

Proof: A ^ B means that D = A — B ^ 0. We show now that F =

B-1 — A-1 = B-1 — (B + D)-1 is positive semi-definite. First, note

that F is well-defined, since positive definite matrices are non-singular.
Note also that:

(B + D)(B"1 - A_1)(B + D)T

= (B + D)(B-1-(B + D)-1)(B + D)T (K.15)

= (B + D)B"1(B + D)T-(B + D)T (K.16)

= (B + D)T + DB"1(B + D)T-(B + D)T (K.17)

= DB X(B + D)T (K.18)

= DB"1BT + DB XDT (K.19)

= D + DB"1DT. (K.20)

In (K.20), we have used the fact that BT = B. Since the RHS of (K.20)
is positive semi-definite (cf. Lemma K.3), the same holds for the LHS

of (K.15). From Lemma K.3, we conclude that F is positive semi-definite,

hence, B-1 h A-1. D

Lemma K.5. Let A be a nonsingular n x n matrix. Then

i[p3An-i)kk=[A-i]kkj ikf%,kfj) (K.21)

and

([F'Af*]-1),, = [A-1]^, (K.22)

where P3 is the permutation matrix obtained by permuting the «th and

jtli row in the n x n unity matrix. D

Proof: Note that the matrix P3 AP3 is obtained from A by permuting
the «th and jtli row and column. It is well-known that
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where

(adjointAf = (-l)î+JdetA^\ (K.24)

and A^*) is obtained from A by erasing the «th row and jtli column.

It holds that

defP3AP3) = det2(PJ)det(A) = (l)2det(A) = det(A), (K.25)

[adjoint^ AFJ)] fcfc
= (-l)2fcdet[(FJ AP3fk)] (K.26)

= det[i{P3fk^A^kk\P3fk^)} (K.27)

= det[A(fcfc)] (K.28)

= [adjointA]fcfc, ikfiffj) (K.29)

and

[adjoint(PJAPJ)]M = flf3det[iP3 AP3ff (K.30)

= det[Ato>] (K.31)

= [adjointA]n. (K.32)

As a consequence

([P3An-l)kk
adjointe Af*')fcfc

det(pJApJ)
(K.33)

(adjointA) fcfc

detA
(K.34)

= [A-^fc. ikftffj) (K.35)

and similarly

i\P3AP3}~X = i^-%3- (K.36)

D

Lemma K.6. If

a) Vg piy\0) and Ve^Vjpiy\0) exist V6> and y,

b) EF,e [-Ve.V£ logp(y|0)] andEF|0 [vefogp(Y[9)^1 logp(Y\e)

exist,
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then EFie -ve.vr iogP(Y\e) = EY\e V,aJogpiY\0)V$fogpiY\0)
D

Vofiy\0)dy = / piy\e)Vj3 logpiy\0)dy = 0.

Proof: Differentiate both sides of the equation f piy[9)d,y = 1

w.r.t. 9j. From Assumption 1, it follows

and

p(#)Ve.V£ logp(y|0)dy + / VeAyfim, logPiy\e)dy = 0.

Therefore,

Ey|Q[Ve.V£ logp(y|ö)] = -Eyle[VeJogpiY\e)Vl logp(y|0)],

where the expectations in both sides are well-defined (Assumption 2). D

Lemma K.7. If

a) X/x pix,y) and V^Vf p(x, y) exist Vx and y,

b) E*y Vx.logp(X,y)VTlogp(X,y)

and Exy -vxyTxiogpix,Y) exist,

c) Ix
y ^x^xfix, y)dxdy = 0,

thenEXY -vxyTxiogpix,Y) = EXY vxiogpix,Yyliogpix,Y)
D

Proof: From Assumption 1, it follows

V

and

Ifix, y) = Pix, y)Vl3 logp(x, y), (K.37)

VxyTXjPix, y) = Vx^ ipix, yyTXj \ogpix, y)) (K.38)

= Pix, y)Vx, logpix, y)Vl3 logp(x, y)

+pix,yyxyTxfogpix,y). (K.39)
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Integrating both sides over X and Y, one obtains

Pix, y)Vx, logp(x, y)VXj logp(x, yflxdy

x ' y

Pix, yyxyXj logp(x, yflxdy

0,

(K.40)

(K.41)

(K.42)

(K.43)

where (K.42) follows from Assumption 3.

As a consequence

EXy[VxyllogpiX,Y)}
= -EXy[VxJogpiX,Yyl logpiX,Y)},

where the expectations in both sides are well-defined (Assumption 2). D

Lemma K.8. If

a) Vx piy\x) and V^Vf piy\x) exist Vx and y,

b) Exy \vx^ logp(y|A)Vf3 logpiY\X)

and Exy -vxyf \ogpiY\x) exist,

then Exy -vxyl \ogpiY\x) E

XY XJxfogpiy[xyI logpiY[X)

D

Proof: Differentiate both sides of the equation f piy\x)dy
w.r.t. Xj. From Assumption 1, it follows

^xfiy\x)dy = j piy\xyXj logpiy\x)dy = 0.

y Jy

and

Piy\xyxyXj logpiy\x)dy + / V^p(y|x)Va.3 logpiy\x)dy = 0.

y Jy

Multiplying both sides with p(x) and integrating over x, we obtain:

EXY[Vxyl logpiY\X)} = -EXY[VXt logpiY\X)Vl logpiY\X)},

where the expectations in both sides are well-defined (Assumption 2). D
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Lemma K.9. If

a) Vx pix) and \/xyx pix) exist Vx,

b) Ex[-VxyllogpiX)

<o fxv*yi'Pixfx = 0,

and Ex Vx.logp(X)VT logp(A) exist,

then Ex X7xyl logp(A) =Ex Vx. logp(A)Vf3 logp(A) D

Proof: As a consequence of Assumption 1, Vf p(x) = p(x)Vf logp(x)
and

V*.V£>(z) = Vx.(p(x)V^logp(x))
= p(x)V^ logp(x)Vf3 logp(x) +p(x)V^Vf3 logp(x).

If one integrates both sides over x, as a consequence of Assumption 3,

one obtains:

pixyxfogpixyx iogpix)dx + / pixyxyx iogpix)dx = o.

^a; •'y

Therefore,

Vx[Vxyl logp(A)] = -Ex[VXt logpiXyl logp(A)],

where the expectations in both sides are well-defined (Assumption 2). D

Lemma K.IO. Let A be a random square matrix, almost surely positive
definite. Then,

(EIA])-1 =< E [A-1] (K.44)

D

For a proof, we refer to [24].
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Proof of Theorem 5.1

The estimator 6>(y) is supposed to be unbiased (Assumption f), i.e.,

5(0) = A%) - e]piy\e)dy = 0. (K.45)
Jy

Differentiating both sides with respect to ©, we have

VeJ[êfy)-eMy\V)dy = fvef[êfy) -0>(y|0))dy (K.46)
J
y Jy

= St0 / piy\0)dy
Jy

+ [[63iy)-03]VeXy\8)dy (K.47)
Jy

= -6*3 + f&iy) - o3]Ve.Piy\o)dy (K-48)
Jy

= 0. (K.49)

The equality (K.46) follows from Assumption c and e. Note that if

the integration limits in B(0) = / [#(y) — S\piy[0)dy depended on 6

(cf. Assumption c), additional terms would appear in the RHS of (K.46)
(cf. Theorem 1.2). The equality (K.48) follows from the fact that piy\6)
is a probability function in Y.

As a consequence of Assumption d:

Vepiy\0) = Ve logpiy\e)/piy\0). (K.50)

Substituting (K.51) in (K.48), one obtains:

5X3 = f[êfy)-e]]piy\Syefogpiy\e)dy. (K.51)
Jy

Now, we define the vector v as

v = [êfy) -9i,..., êfy) - 6n, Veilogpiy\e),..., VeJogpiy\0)}T,
(K.52)

and the matrix C„ as

Cv=EY]e[vvT] =

E(6») I

I F(0)
(K.53)
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where I is a unity matrix. The RHS of (K.53) follows from (5.1), (5.2),
and (K.51). The matrix C^ is well-defined as a consequence of As¬

sumption 1 and 2. Note that C^ ^ 0, since uTCvu = uTEv[vvT]u =

Ev[uTvvTu] = Ev[\vTu\2] > 0,Vw. Since C^ ^ 0 and F(0) is non-singular

(cf. Assumption 2), we can apply Lemma K.l; hence, E(0) ^ F_1(0). D

Proof of Theorem 5.3

First, note that:

V~ [p(x)B,(x)] VXj pix) I [xfy) - xt]piy[x)d,y (K.54)

V*. I [xfy) -x,,]p(x,y)dy (K.55)

^3 / Pix,y)dy

+ / [xiiy) -xiyxjfx,y)dy. (K.56)
Jy

In the equality (K.54), we used the definition of B(x). The equality (K.56)
follows from Assumption c and e. Note that if the integration limits in

B(x) = f [x(y) — x]piy\x)dy depended on x (cf. Assumption c), addi¬

tional terms would appear in the RHS of (K.56) (cf. Theorem 1.2).
Now we integrate both sides of (K.56) with respect to x

Vx [Bfx)pix)]dx (K.57)

=-fj pix,y)dxdy+ [fiy) - xiyxjfx,y)dxdy
Jx,y Jx,y

(K.58)

-S,, [fiy) - xfyx pix,yflxdy
x,y

"*3 ' I [fiy)-xt}pix,yyxfogpix,y)dxdy
Ix,y

= 0.

(K.59)

(K.60)

(K.61)
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The equality (K.59) follows from the fact that p(x,y) is a probability

function; the equality (K.61) follows from Assumption d.

We define the vector v as

v = [xi(y)-xi, ..

., x„(y)-x„, VXllogp(x, y),..., VXrllogp(x, y)]T,
(K.62)

and the matrix C„ as

Cv=Exy[w
E I

I J
(K.63)

where I is a unity matrix; the matrix C^ is well-defined as a consequence

of Assumption 1 and 2. Since C^ ^ 0 and J is non-singular (cf. Assump¬
tion 2), we can apply Lemma K.l; hence, E ^ J-1. D

Proof of Theorem 5.4

First, note that:

V^ [ifiy) - xt)pix\y)} = -5t:Jpix[y) + [xfy) - x%yXjpix[y). (K.64)

As a consequence of Assumption c, the derivatives in (K.64) are well-

defined. We now integrate both sides of (K.64) with respect to x

V^ ffiy) - xt)pix\y)] dx (K.65)

= -Sij / pix\y)dx+ / [xfy) - xfXXjpix[y)dx (K.66)
J X J X

= -S%3 + / [x%(y) - x%]Vx3p(x\y)dx (K.67)
J X

= -S%3 + / [x%(y) - xt]p(x\y)\7X3 logp(x\y)dx (K.68)
J X

= 0. (K.69)

The equality (K.67) follows from the fact that pix\y) is a probability

function; the equality (K.69) follows from Assumption d.

We define the vector v as

v = [xi(y)-xi, .. . ,x„(y)-x„, VXllogp(x|y), ..

.,
VxJogpix\y)]T,

(K.70)
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and the matrix C„ as

r py„i t i

(K.71)CvfEx\y[vvT} Hy) I

where I is a unity matrix; the matrix C^ is well-defined as a consequence

of Assumption 1 and 2. Since C^ ^ 0 and J(y) is non-singular (cf. As¬

sumption 2), we can apply Lemma K.l; hence, E(y) ^ J_1(y). D

Proof of Lemma 5.1

Note that

J = Ey[J(y)]. (K.72)

The inequality (5.33) follows from (K.72) and Lemma K.10. D

Proof of Theorem 5.5

Note that the inequality (5.5) (with © replaced by A) holds for all x.

One obtains the inequality (5.34) by first multiplying both sides of (5.5)
with pix), and by then integrating both sides over x. D

Proof of Lemma 5.2

Note that

J = Ex[F(A)] + Ex [yxlogpiXyTxlogpiX)} , (K.73)

and Ex [Vx logp(A)V^logp(A)] h 0. Therefore,

J^Ex[F(A)], (K.74)

and, as a consequence of Lemma K.4,

J-1^(Ex[F(A)])-1. (K.75)

From Lemma K.10, we have:

(ExIF(A)])-1 < Ex [F-\X)] . (K.76)

The inequality (5.35) follows from (K.75) and (K.76). D
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Proof of Theorem 5.6

The following proof is similar to a proof by Reuven et al. [170] for a

related bound, i.e., the hybrid Barankin bound; the hybrid CRB is a

particular instance of the hybrid Barankin bound, as shown in [170].

irst, note that:

yxfpix)Bf\x)} = v,3

= vI;

pix) / [xfy) - xl]piy[x,9)dy

[fiy) -xfpix, y\9)dy

(K.77)

(K.78)

= ~^3 / Pix,y\0)dy

+ / [xfy) - xtyXjpix, y\9)dy. (K.79)
Jy

In the equality (K.77), we used the definition of B^x\x). The equa¬

lity (K.79) follows from Assumption d and e. Note that if the integration

limits in B^x\x) = f [x(y) — x]piy\x)dy depended on x (cf. Assump¬

tion c), additional terms would appear in the RHS of (K.79) (cf. Theo¬

rem 1.2).
Now we integrate both sides of (K.79) with respect to x

>(x)
yXj[Bffx)pix)}dx (K.80)

= -fi +

pix,y\9)dxdy + \ [xfy) - xfw'Xjpix,y\9)dxdy

(K.81)

(K.82)[xfy) - xtyXipix, y\6)dxdy
x,y

= -fj + / [fiy) - xfpix, y\9yXj logp(x, y\9)dxdy
Jx,y

0.

(K.83)

(K.84)

The equality (K.82) follows from the fact that p(x,y) is a probability

function; the equality (K.84) follows from Assumption f. As a conse-
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quence,

[xfy) -xt]pix,y[9yXi logpix,y[9)d,xdy = 6tJ. (K.85)

The estimator 0(y) is supposed to be unbiased (Assumption g), i.e.,

ß(°)(0)= f[9iy)-9]piy\9)dy= f [9iy)-9]pix,y\9)dxdy = 0. (K.86)
J y -Jx,y

Differentiating both sides with respect to 0, we have

Ve, / [9fy) -9fpix, y[9)dxdy

Vef[9fy) - 9fpix,y\9))dxdy (K.87)
x,y

= ~f3 + / \03iv) - 90y9Ax,y\0)dxdy (K.88)
J
x,y

= 0. (K.89)

The equality (K.87) follows from Assumption c and h. Note that if the

integration limits in B^@\9) = f [0(y) — 9]pix,y\9)dxdy depended on 9

(cf. Assumption c), additional terms would appear in the RHS of (K.87)
(cf. Theorem 1.2).

As a consequence,

\o3iy) -9JyeAx,y\e)dxdy = ÖK. (K.90)

Note that

x,y

[9fy) - 9J]pix,y\0yxJogpix,y\9)dxdy (K.91)
x,y

PM ~ 9,yxJfx,y\9)dxdy (K.92)
,y

[§fy) - e3]dy f VxJfx,y\9)dx (K.93)
iy J x

= 0. (K.94)
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The equality (K.94) follows from Assumption f.

From Assumption i, it follows:

Ve [xfy) - xfpix, y\9)dxdy
x,y

[xfy) - xtye pix, y\9)dxdy

[xfy) - xfpix,y[9)\Je logpix,y[9)d,xdy

= 0.

(K.95)

(K.96)

(K.97)

(K.98)

We define the vector v as

v = [xfy) -xi,.. .,xfy) -xn,9fy) -9y

VXllogp(x, y\9),..., VxJogpix, y\9),

Vejogpix, y),..., Vefogpix, y\9)]T,

, Smiy) — 9m,

and the matrix C^ as

Cv fEXY\e[vvT} =

E(xe\9) I

I H(x)

(K.99)

(K.100)

where I is a unity matrix, and the RHS follows from (5.68), (5.69), (K.85),
(K.90), (K.94), and (K.98); the matrix C^ is well-defined as a conse¬

quence of Assumption 1 and 2. We apply Lemma K.l, and obtain (5.77).
D

The matrices G^ and G^2) (cf. Example 5.9)

We compute the the matrices G^ and G^2) (cf. (5.357) and (5.359)):

n(i) A p
"11

~~

^Af |a,<rf„,<T?

r(l)
_ p

"î+lj+1
—

^XYla.cr^.cr?

d2logfiik
d2xk

d2 log fi,k

dxk-tdxk-.

(K.101)

(K.102)

(K.103)
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ihJ = 1, ,M)

G(D

G

.+11

r(i)

(1)
2M+12M+1

= E
XY\ a,<rw,(Tr

~ffogJfk_~
dxk-tdxk

E

(i = l,...,M)

92log/i,fc

r(i)
"m+î 1+j

G(i)
M+il

G
(i)
M+i2M+l

G
(i)
Î+12M+1

da, d>
* j

-^-ExFla.^.^I^fc-^fc-j] (*,.? = 1,...,M)

— ^XY\

1

~2of~

1

-~2of

a,(Tw,(Tr

-E

ïd 2logfi,k

-

d2a2v \

KY Ww^u

_

Xk

M

E
£=1

d£Xk-£

E
T2 „2'XF|a,<Tf„,(T

a

d2 log /i,fc

daf)xk-

a

= E

A^XY\a,a2w,al[xk-3]
U

0 (»,j = l,...,M)

92log/i,fc
XFI a,<Tw,<rr daf)xk

1

V>XY\a,a2w,a2fxk-i]

= 0 («

=
E

jxy| a,(Tw,(Tr

,M)

92log/i,fc
daßof

—EXr|a,<7^,<4
a
'u

0 («

Xk—i I ^fc

M

E
£=1

d£Xk-£

= E
XY\ a,<rw,(Tr

,M)

^2log/i,fc
dxk-tda2r

(K. 104)

(K.105)

(K.106)

(K.107)

(K. 108)

(K.109)

(K. 110)

(K. 111)

(K. 112)

(K. 113)

(K. 114)

(K. 115)

(K. 116)

(K. 117)

(K. 118)

(K. 119)

(K. 120)

(K. 121)
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= -^-E, Xk

M

/, a.£Xk-£

£=1

G
(i)
12M+1

= 0 (» = 1,...,M)

'd2 log /ifc
E,

dxkda?r

= 0

^11 = ^XY^a^^l

1
~

~~2~

Xk

M

/, a.£Xk-£

£=1

d2 log /2,fc

>w

r(2)
"2M+2,2M+2

= E,

92xfc

92log/2,fc
d2af

-TEXY\Bi,a^,af7[iyk -Xk)2]
'w uw

^f

r(2)
"l,2M+2

= E,
92log/2,fc
dxkdal

w

= —~EXY\a,<T*v,<Tlr[yk-Xk}=0.

The other elements of G^ and G^2) are zero.

Proof of Lemma 5.3

(K.122)

(K.123)

(K.124)

(K.125)

(K.126)

(K.127)

(K.128)

(K.129)

(K.130)

(K.131)

(K.132)

(K.133)

Note that

PiyW) = I pix,y\9)dx,

and therefore,

VePiy\9) = Ve / pix,y\9)dx

(K.134)

(K.135)
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Vepix,y\9)dx (K.136)

pix, y\9)Vg log pix, y\9)dx (K.137)

= piy\9) f pix\9,yyelogpix,y\9)dx. (K.138)

In (K.136), we made use of the assumption of differentiability under the

integral sign.

As a consequence,

Velogpiy\9) = Vepiy[9) /Piy[9) (K.139)

pix[9,yyelogpix,y[9)dx (K.140)

= Ex|eWVelogp(A,y|0)]. (K.141)

Therefore,

EF|e[Velogp(y|0)V^logP(y|0)]

= EF,e [Ex|QF[Velogp(A,y|0)]Ex|eF[Velogp(A,y|0)]T" .

(K.142)

D

Proof of Lemma 5.4

Note that

Pix,y) = I pix,z,y)dz, (K.143)
J z

and therefore,

Vxpix,y) = Vx pix,z,y)dz (K.144)
J Z

X7xpix,z,y)dz (K.145)

pix,z,y)Vxlogpix,z,y)dz (K.146)

= Pix,y) piz\x,y)Vx logpix, z,y)dz. (K.147)
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In (K.145), we made use of the assumption of differentiability under the

integral sign.

As a consequence,

Vxlogpix,y) = Vxpix,y)/pix,y) (K.148)

pf\x, y)Vx log pix, z,y)dz (K.149)

= EzlXY[Vxlogpix,Z,y)]. (K.150)

Therefore,

Exy [Vx logp(A, Y)VTX logp(A, Y)]

= Exy [ez\xy [V, logp(A, Y, Z)\ Ez\xy [V, logp(A, Y, Z)f .

(K.151)

D

CRB for estimation in AR model: CRB for O (cf. Example 5.10)

The components of (the vectors) Ex\0Yyelog fif &ndEx\@Y\S7e^og f2tk]

(with O = (ai,..., a,M, o"2/, of), cf. (5.419)) can be written as :

EX|a<7^<4y[Va>g ffXk, • •

•, Xh-M, a, fj)\
i

M

Xk-t (Afc — 2_^ UiXk-f— —ö-Ej
erf

(K.152)
e=i

M

E

— -T^X\^^wfY[Xk-tXk] -} ^atEx^c^q^YyXk-tXk-ff)
aU

£=1

(K.153)

VCT2 log/i(Afc,..., Afc_M, a, a\

M

~2Ö2+1ff^X^'Jw'JuY (Afc — 2_^ 0-£Xk-£ (K.154)
t=l

M

2of
' 2of\Ex^<^Y[Xk] ~ ^zf^^Xlaa^alYiXkXk-^
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M M

Y^ E aeamEX\aa2wa^
e=i m=l

Xk-£Xk-

E, Vff2 lOg^Xfc,^,^)

ffr + ^pr^x^^^Y [ivk - xk)2]

(K.155)

(K.156)
'w 'w

'w 'w

y\ - 2ykEX\aiJirlj?TY[xk]
+EX\.2<72~ ' 2fff-fk

~

^yli^x\a<Jw<JîrYf'ii ' ^x\*°w°uY

The other components are zero, e.g.

E, V<T2log/2(Afc,cr2v,yfc) = 0.

[xl]

(K.157)

(K.158)

In Appendix J.6, we explain how the correlations E[AjAj] can be

puted.

CRB for estimation in AR model: hybrid CRB for Afc (cf. Exam¬

ple 5.10)

We derive a hybrid CRB for the variable Afc (A; = 1,..., N) from the

marginal p(xfc, y\a, af, af. The key is Lemma 5.6 with X = Xk,

Z = X-k = (Ai,...,Afc_i,Afc+i,...,AAr), and © = ia,af,af; the ex¬

pressions (5.402)-(5.404) can be evaluated along the lines of (5.372). In

the following, we explain how the expectations E^|xre[Ve log £>(•)] and

Ez\xY<fyx log £>(•)] in (5.402)-(5.404) maybe determined. The compo¬

nents of EZ|xre[Velogp(-)] are similar to (5.419) and (K.152)-(K.157):
one needs to replace the expectations over p(x|a, of, a^, Y) by expecta¬
tions over p(xfc|xfc, a, af,a1j,Y). We have:

E
Xk\xk,a-,<?w>aÛ

N

,T2w,fY [Ve logp(0, xfc, Afc_i..., Afc_M, y)\

fc=i

= E Exk Xk^a^^lY [Ve log /i(xfc, Afc_i
..., Afc_M, a, af]

N

+ ^Vefog/2(xfc,yfc,a2v), (K.159)
fc=i
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and,

E ,a2w,alfyalog ffxk, Xk+1 ..., Xk-M, a, af]Xk\Xk,&

- -JT^x^^^ a2Y

au

= TTEXk\Xk,a,alr,alY[Xk-t]
aU

M

Xk-t (Xfc — 2_^ a£Xk-£

1
M

X>EXk\Xk,a,a2,a2Y
'U „_

Xk-tXk-£

=1

(K.160)

(K.161)

EXk\Xk,*,<T2 ,a2Y V^ log/i(Xfc, .. .

, Afc_M,a,CTL

-

-ffT + fZÄfl -2J2aeXkExkXk,^2w,fy\-Xk-£]
" u £=1

M M

J2J2 aeamEXk\Xk,a,a2w,c
t=l ra=l

Xk-fXk-

EXk\Xk,*,a2w,alY VCT2: logf2iXk,af,yk)

1 !
, ,2

+

7T^iyk -xk)
2<

'

2af

(K.162)

(K.163)

Along similar lines, one obtains Ez\XY&yxlogpix, Z,y\9)]:

E
Xk\xk,a-,<?w>aÛ

M

,T2w,fY [Vœfc fogp(0, Xfc, Afc_i, . . .

, Afc__M, y)]

— 2^Exfc|xfc,a,<T^,<T2rF[Va;fc log/i(xfc+m, Afc_i+m ..., Afc_M+m,a, af)]
m=0

+ VXfclog/2(xfc,yfc,cr21/), (K.164)

where:

M

Z^^x^Xk^a^^lyf^xk log/i(xfc+m, Afc_i+m ..., Afc_M+m,a, af]
m=0

M

-fI
+ 2^fIExk\xk,a.,d2v,a2rY[Xk-e\

1
M

ZT E aExk
u m=l

xk,a.,d2v,a2rY[Xfc+mJ
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M M

a£a„

~Y, Y, -^-Exk\xk,*,<r2w,fY[Xk-£+f, (K.165)

and

m=l£=l <-

Vœfc log /2(xfc, yk, af) =

2
• (K.166)

aw

In Appendix J.6, we explain how the correlations E[XjXj] can be com¬

puted.





Appendix L

Alternative Message

Update Rules for the

Soft LFSR

For the convenience of the reader, we explicitly state all computations
in the soft LFSR for an alternative (more standard) version of the sum-

product algorithm, for the max-product (min-sum) algorithm, as well as

for the analog LFSR of Gershenfeld and Grinstein.

L.l Sum-Product LFSR for Likelihood Ra¬

tio Representation

If the messages represent the ratio j5(0)/p(l) of the pseudo-probabilities,
the sum-product update rules of the soft LFSR are as follows.

Initialization: /xfc = 1 for Ä; = —rn + 1, —rn + 2,..., 0.

Recursion (for k = 1, 2, 3,...):

pjykfxk = Q)
n n

PA,k =
—,—; 7- (L.l)

piykfk = l)

447



448 Appendix L. Alternative Message Update Rufes for the Soft LFSR

for AW(3N ,_ , 2\

exp(2yfc/cr ) (L.2)

B,k
=

1 + Pk-£ Pk-m

Pk-£ + Pk-m
(L.3)

Pk = PA,k PB,k (L.4)

At any given time k, an estimate of Xfc is obtained as

and [Xfc] = (Xfc_m_|_i,..., Xfc_i,Xfc) is an estimate of the state [Xfc].

L.2 Max-Product (Max-Sum) Soft LFSR

We state the max-product soft LFSR [103], [119] for the case where the

messages represent In (p(0)/p(l)).

Initialization: pk = 0 for k = —rn + 1, —rn + 2,..., 0.

Recursion (for k = 1, 2, 3,...):

piyfxk = o)
PA,k =

Pfkfk = i)
(L.6)

for AWGN

2yk/cr2 (L.7)

\PB,k\ = mill {\/J,k-£\, \pk-m\} (L.8)

sgn(/uBjfc) = sgnfk-f sgnfk-m) (L.9)

Pk = PA,k + PB,k (L.10)

where sgn(x) denotes the sign of x. Finally, we have

Xk =

l°f [î/k-°n (L.ll)
\ 1, if Mfc <0

K '

In fact, (L.7) may be replaced by

PA,k = yk, (L.12)

which amounts to multiplying all messages by <r2/2 and does not change
the estimate (L.ll).



L.3. Analog LFSR by Gershenfeld and Grinstein 449

L.3 Analog LFSR by Gershenfeld and Grin¬

stein

In [74], Gershenfeld and Grinstein obtained a discrete-time "analog"
LFSR by embedding the discrete dynamics of the LFSR into a conti¬

nuous state space. They showed that such an analog LFSR entrains to a

LFSR sequence even if the latter is modulated by a weak data signal. An

extension of this approach to continuous time (using ideal continuous-

time delay cells) is also given in [74]. In the setup of Chapter 8, the

analog LFSR of [74] can be described as follows.

Initialization: pk = 0 for k = —rn + 1, —rn + 2,..., 0.

Recursion (for k = 1, 2, 3,...):

PA,k == yk (L.13)

PB,k =
- cos

(1 ~

Pk-£
,

1 ~

TV

.

V 2

l^k—m \

2 J.
(L.14)

Pk == (1 - f PB,k + -PA,k (L.15)

or, alternatively,

Pk
PB,k if WPA,k\ - 1\ >S

,L 16>
(1 - e)pB,k +e sgfPA,k) otherwise

and

Xfc
a | 0, if pk > 0

1, if pk < 0
(L.17)

In this formulation (and differing from [74]), the "hard" logical values 0

and 1 are represented as +1 and —1, respectively. It should be noted

that [74] does not explicitly consider noise at all.

In our simulations, we used (L.16) with ö = oo and optimized e (« 0.4

for large SNR).





Abbreviations

AR Auto-Regression
AWGN Additive White Gaussian Noise

BCRB Bayesian Cramér-Rao Bound

CLT Central Limit Theorem

CRB Cramér-Rao Bound

EM Expectation Maximisation

GEM Gradient EM

HCRB Hybrid Cramér-Rao Bound

HEM Hybrid EM

HMM Hidden Markov Model

ICM Iterative Conditional Modes

i.i.d. independent identically distributed

LFSR Linear Feedback Shift Register
MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

ML Maximum-Likelihood

MMSE Minimum Mean Squared Error

MSE Mean Squared Error

pdf probability density function

pmf probability mass function

SA Stochastic Approximation
SNR Signal-to-Noise Ratio

SPA Summary-Propagation Algorithm
w.r.t. with respect to
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List of Symbols

Elementary

X Random variable (or vector)
x Value of random variable (or vector) X

x Estimate of variable (or parameter or vector) x

X Random vector

x Value of random vector X

x Estimate of vector (or parameter) x

A Matrix

= Definition

oc Proportional to

= Set to equality

Algebra

Ring of integers
Field of real numbers

Field of positive real numbers

Field of non-negative real numbers

Field of complex numbers

453

Z

R

R+

R+

C



454 List of Symbols

Linear Algebra

AT Transpose of matrix A

AH Hermitian transpose of matrix A

diag (• • • ) Diagonal matrix

Trace(-) Trace operator

I Identity matrix

Probability

,a2)Mi

A/"(. |m,V)

Af-f . |m,W)

Scalar Gaussian distribution with mean p and vari¬

ance a2

Multivariate Gaussian distribution with mean vec¬

tor m and covariance matrix V

Multivariate Gaussian distribution with mean vec¬

tor m and weight matrix W

W Weight matrix of a Gaussian distribution

V Covariance matrix of a Gaussian distribution

m Mean vector of a Gaussian distribution

Ig ( . | a, ß) Inverted-gamma distribution with parameters a, ß

E[X] Expectation of r.v. X

Var[X] Variance of r.v. X

M[X] Mode (i.e. maximum) of the distribution of r.v. X

Factor graph

Pf^xix) Message leaving node / along edge X

px^fix) Message arriving at node / along edge X

/i(0) Local EM message
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Miscellaneous

0(fc) estimate of 0 in the k-th iteration

[x]j *-th element of vector x

[A] Element of matrix A in row i and column j
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