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Abstract

This thesis is focused on the finite temperature behavior of vortices in type

II superconductors. While thermal fluctuations are usually weak in standard

low temperature superconductors, their effect is boosted in the new high

temperature compounds. The reason is two-fold: on the one hand, the small

coherence length enhances the impact of fluctuations, on the other hand

these compounds are characterized by an extreme anisotropy which renders

the vortex system softer than in standard isotropic materials. The thermal

fluctuations manifest themselves in the zero magnetic field superconducting

transition and, at finite fields, in the melting of the vortex lattice. The goal

of this thesis is to shed light on the relevance of dimensionality or, more

generally, of geometric constraints in the context of these phase transitions.

Novel and interesting features emerge from the results of our analysis, e.g. the

appearance of non-standard topological excitations ('fractional-flux' vortices)
in systems with a finite number of superconducting layers and an intriguingly

rich surface behavior at the melting transition of the vortex lattice.

It is well known that the effect of thermal fluctuations is strongly en¬

hanced when the dimensionality of the system is reduced. For example, in a

zero magnetic field a single film, strictly speaking, cannot be superconduct¬

ing, since two-dimensional (Pearl) vortices involve a finite self-energy, and

thus are excited at any finite temperature, breaking the phase coherence of

the superconductor. On the other hand, for a three-dimensional bulk lay¬

ered superconductor, in the limit of vanishingly small Josephson coupling,

the transition into the normal phase takes place at a finite temperature and

is induced by the Berezinskii-Kosterlitz-Thouless (BKT) type unbinding of

pairs of (pancake) vortices. The huge difference in behavior observed in these

two limiting cases is the motivation to study intermediate systems composed

of a finite number A" of layers. In a first part of the thesis, we examine how

the magnetic properties of two-dimensional vortices depend on the number

of layers N. We find that when more than one layer is present, a single

two-dimensional vortex traps a magnetic flux which is only a fraction of a

flux quantum $0 = hc/2e. The appearance of such 'fractional-flux' vortices

has important consequences for the finite temperature behavior of samples

with a finite number of layers. While the true thermodynamic transition
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in a multi-layer system takes place at T = 0 and is associated with vortex

stacks, the analog of the Pearl vortices in a single film, the superconducting

transition in the individual layers is due to the BKT unbinding transition of

fractional-flux vortices. This BKT transition occurs at a finite temperature

which depends on the total number A" of layers via the value of the trapped

fractional flux. By means of renormalization group techniques, we analyze

the BKT unbinding transition for a bi-layer system and discuss its potential

observation in a specific experimental setup with a counterflow geometry.

We point out interesting analogies with the bi-layer quantum Hall system at

total filling v = 1.

The second part of the thesis is devoted to the study of the thermody¬

namic behavior of a vortex system at finite magnetic fields. In particular,

we concentrate on the effect of an a6-surface on the melting transition of

the vortex lattice in a layered superconducting material. It is known that in

standard solids the surface can assist the nucleation of the liquid phase and

may lead to the suppression of the overheated solid phase ('surface melting').

However, this behavior is not generic and there are experimental systems

where the surface remains solid up to the bulk melting transition ('surface

non-melting'). We study the impact of the surface on the melting transition

of the vortex system in two different ways. We first tackle the problem start¬

ing from the solid phase by means of a self-consistent analysis of the stability

of the two-dimensional lattices. We find that for a large part of the phase

diagram the lattice on the surface becomes unstable below the bulk melting

transition, while it remains stable above the melting line for very large and

very low magnetic fields. Then, we use a novel approach based on the com¬

bination of a mean-field substrate model and the classical density functional

theory to obtain a more complete description of the problem. We first check

the validity of this new approach by studying the melting transition in a

bulk system. We then include the presence of the surface and obtain that,

depending on the magnetic field, both the 'surface melting' and the 'surface

non-melting' scenarios are realized. We find that the 'surface melting' regime

occupies the major part of the low-field phase diagram in agreement with the

experiments, which show no evidence for the overheated solid phase. Finally,

we locate the multi-critical point which marks the crossover between the

'surface melting' and 'surface non-melting' regimes at low magnetic fields.
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Sintesi

Questa tesi è incentrata sul comportamento a temperature finite di vortici

nei superconduttori di tipo II. Se da un lato le fluttuazioni termiche sono

generalmente deboli nei superconduttori con bassa temperatura critica, il

loro effetto è potenziato nei nuovi materiali ad alta temperatura. I motivi

sono due: da una parte la piccola lunghezza di correlazione accresce l'impatto

delle fluttuazioni, dall'altra questi composti sono caratterizzati da un'estrema

anisotropia che accentua la mobilità del sistema di vortici rispetto a materia¬

li isotropi. Le fluttuazioni termiche sono responsabili, a campo magnetico

nullo, délia transizione di fase nello stato superconduttore e, a campi ma-

gnetici finiti, délia fusione del reticolo di vortici. L'obiettivo di questa tesi

è di chiarire l'effetto délia dimensionalità o, più generalmente, di restrizioni

geometriche su queste transizioni di fase. Dalla nostra analisi sono emersi

risultati nuovi ed interessanti, ad esempio la presenza di eccitazioni topo-

logiche non-standard (vortici con flusso frazionario) in sistemi composti da

un numéro finito di strati superconduttori e la varietà di comportamento

delle superfici quando il reticolo di vortici fonde.

E ben noto che l'effetto delle fluttuazioni termiche è fortemente accentu-

ato quando la dimensionalità del sistema è ridotta. Per esempio, strettamente

parlando, un film non puo essere nello stato superconduttore, perche i vortici

due dimensionali (vortici di Pearl) sono caratterizzati da un'energia finita e

vengono eccitati termicamente a qualsiasi temperatura finita, distruggendo

la coerenza délia fase superconduttrice. In superconduttori a strati composti

da un numéro infinito di film senza accoppiamento Josephson la transizione

nella fase normale avviene a temperatura finita ed è indotta dalla transizione

di Berezinskii-Kosterlitz-Thouless (BKT) alla quale coppie neutre di vortici

due dimensionali ('pancake vortices') si separano. La sostanziale differenza di

comportamento in questi due casi limite giustifica lo studio, svolto in questa

tesi, di sistemi composti da un numéro finito A" di strati superconduttori.

Nella prima parte délia tesi si esamina corne le proprietà magnetiche dei vor¬

tici due dimensionali dipendono dal numéro A" di strati. Quando è présente

più di un film, si osserva che ad un vortice è associato un flusso magnetico che

è solo una frazione di un quanto di flusso $0 = hc/2e. La presenza di questi

vortici con flusso frazionario ha importanti conseguenze sul comportamento a
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temperatura finita. Anche se la vera transizione nello stato superconduttore

avviene a T = 0 ed è associata a pile di vortici ('vortex stacks'), l'analogo dei

vortici di Pearl in un unico film, la transizione nei singoli film è dovuta al

disaccoppiamento di tipo BKT dei vortici con flusso frazionario. Questa tran¬

sizione BKT si manifesta ad una temperatura finita che dipende dal numéro

A" totale di strati. Per mezzo di un'analisi basata sul gruppo di rinormaliz-

zazione, si studia la transizione BKT per un sistema composto da due film e

si esamina un particolare setup sperimentale che ne permette l'osservazione.

Infine, si evidenziano analogie interessanti con il sistema Hall quantistico a

doppio film e filling totale v = 1.

La seconda parte délia tesi è dedicata allô studio del comportamento

termodinamico del sistema di vortici a campi magnetici finiti. In particolare,

si studia l'effetto di una superficie con orientazione ab sulla fusione del reticolo

di vortici nei superconduttori a strati. E noto che in solidi convenzionali la

superficie puö assistere la nucleazione délia fase liquida e puo di conseguenza

determinare l'eliminazione delle fase solida surriscaldata ('surface melting').

Tuttavia, questo comportamento non è l'unico possibile ed esistono sistemi

sperimentali in cui la superficie resta solida fino alla transizione di fusione

('surface non-melting'). In questa tesi si esamina l'impatto délia superficie

sulla transizione di fusione del reticolo di vortici con due tecniche differenti.

In un primo momento si affronta il problema basando l'analisi sulla fase

solida per mezzo di uno studio autoconsistente délia stabilità dei reticoli due

dimensionali. In una grande porzione del diagramma di fase il reticolo sulla

superficie diventa instabile prima che il sistema fonda al suo interno, mentre

rimane stabile al di sopra délia linea di fusione per campi magnetici molto

elevati e molto deboli. In seguito, si è adottato un nuovo approccio fondato

sulla combinazione di un modello di campo medio e délia teoria classica del

funzionale densità alio scopo di ottenere una descrizione più compléta del

problema. Si è dapprima verificata la validità di questo nuovo approccio

studiando la transizione di fusione in un sistema infinito. Si è poi introdotta

la presenza di una superficie e si è cosi ottenuto che, in funzione del campo

magnetico, si verificano entrambi gli scenari surface melting e surface non-

melting. La maggior parte del diagramma di fase a campi magnetici deboli

è occupata dal regime di surface melting come provato dagli esperimenti

che hanno dimostrato l'assenza délia fase solida surriscaldata. Infine, si è

analizzato il punto multi-critico che détermina il crossover tra i regimi di

surface melting e di surface non-melting a campi magnetici deboli.
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Chapter 1

Introduction

The discovery of high temperature superconductivity by Bednorz and Müller

back in 1986 [1] has triggered an enormous experimental and theoretical re¬

search activity in condensed matter physics. Since then, the study of high

temperature superconductors has developed in three main directions with dif¬

ferent but interconnected goals: understanding the microscopic mechanism

producing such high transition temperatures, unravelling the phenomenolog-

ical properties of these new materials, and developing compounds ready for

new technological applications. This thesis deals with the phenomenology of

high temperature superconductors and in particular with the properties of

strongly fluctuating vortex systems.

The phenomenology of the high temperature superconductors (HTSC) is

by itself a heterogeneous and fascinating field [2]. The research endeavors

have been manyfold and have covered different aspects, such as the structure

of vortices, their dynamical behavior and the impact of quenched disorder

due to the material defects. However, probably the major focus of the recent

phenomenological studies of the properties of HTSC has been on the effect

of thermal fluctuations. In fact, due to the high transition temperature and

the large anisotropy of these new materials, HTSC show an intriguing finite

temperature behavior and a rather complex phase diagram.

Thermal fluctuations are usually small in isotropic bulk superconductors,

while they are strongly enhanced in systems with a strong anisotropy. In

HTSC, a clear example of this effect is given by the Bi- and Tl- based com¬

pounds, e.g. Bi2Sr2CaiCu208+y (BiSCCO), which are characterized by an

extreme anisotropy due to their pronounced layered structure. In layered ma¬

terials, vortex lines are described in terms of two-dimensional vortices (pan-

1



cake vortices) [3-5], residing in the superconducting layers, joined together

by Josephson vortices between the layers. In the limit of infinitely large

anisotropy, the inter-layer Josephson coupling vanishes and only pancake

vortices remain. The relevant thermal fluctuations have a two-dimensional

nature and lead to features which are typically found in two-dimensional

fluctuating systems. For example, the superconducting transition in zero

magnetic field occurs via a Berezinskii-Kosterlitz-Thouless (BKT) [6,7] type

transition, which is described in terms of the unbinding of pancake, i.e.,

two-dimensional, vortices.

Thermal fluctuations are also relevant in the description of the finite field

behavior of HTSC. In fact, the regular vortex lattice predicted by Abrikosov

[8] cannot withstand the enhanced vortex motions at large temperatures and

melts into a vortex liquid phase over a wide portion of the phase diagram.

The melting transition of the vortex lattice has been intensively investigated

in the last 15 years. Although first theoretical proposals trace back to the pre-

HTSC era, with the works by Eilenberger [9], by Huberman and Doniach [10]
and by Fisher [11] (the latter two for thin superconducting films), attention

to the relevance of this transition for HTSC has been drawn by the works of

Nelson [12] for low-field regime and by Houghton, Pelcovits, and Sudb0 and

by Brandt [13,14] for higher fields.

The melting transition is most prominent in highly anisotropic materials

like BiSCCO. While the first approaches to this problem were based on the

Lindemann analysis of the stability of the solid phase [2,15], a more detailed

picture of the transition has been obtained by means of more sophisticated

techniques such as the classical density functional theory (DFT) [16] or a

mean-field type 'substrate model' [17]. The layered structure of these ma¬

terials strongly influences the characteristics of the melting transition. A

remarkable consequence is the appearance of a wide regime in the phase

diagram which is essentially described in terms of (quasi)-two-dimensional
fluctuations. In fact, at high values of the external magnetic field the three-

dimensional vortex system splits into weakly coupled two-dimensional vortex

lattices in each layer. In this limit the melting line approaches the melting

temperature T^D of a vortex system in a single superconducting layer. Go¬

ing to lower magnetic fields, the three-dimensional nature of the problem is

relevant and the melting of the vortex system is due to three-dimensional

fluctuations. As a result, the lattice becomes suffer and the transition tem¬

perature is pushed to values higher than T^D. Finally, at vanishingly small
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Introduction

fields, the melting line approaches the BKT unbinding temperature. Again
two-dimensional fluctuations become the prominent ones; in this case two-

dimensional vortex-anti-vortex fluctuating pairs. Hence, the melting line of

the layered superconductors interpolates between the two-dimensional melt¬

ing transition at high-fields and the two-dimensional BKT transition at very

low fields, while it is determined by three-dimensional vortex fluctuations in

between.

The work in this thesis is motivated by this interplay between two-

dimensional and three-dimensional fluctuations. The main and new emphasis

of this thesis is the study of systems with a finite number of superconducting

layers, which represent the intermediate case between a single film in two

dimensions and a bulk layered system in three dimensions. Our goal is to

shed light on the relevance of dimensionality or, more generally, of geometric

constraints in the finite temperature behavior of layered superconductors.

Astonishingly, very interesting and novel results come out of this apparently

simple problem.

A first example is given by the appearance of non-standard topological

excitations. We find that two-dimensional vortices in systems with a finite

number of layers trap only a fraction of a flux quantum $0 = hc/2e (thus
the name 'fractional-flux' vortices) [18-21]. The reduced trapped flux as¬

sociated with these vortices is due to the presence of the additional layers

which modify the magnetic screening properties in multi-layered systems.

These non-standard topological excitations play a central role in the zero-

field transition. They involve a self-energy which diverges logarithmically

with the system size and, thus, they can only be excited in neutral pairs.

These pairs undergo a BKT unbinding transition at a finite temperature.

However, this transition is not associated with the superconducting transi¬

tion, as it is in bulk layered systems. In fact, in samples with a finite number

of layers, besides fractional-flux vortices, vortex stacks penetrating through

the full array of layers also appear. They involve a finite self-energy, and thus

are thermally excited at any finite temperature. Free vortices break the su¬

perconducting coherence and thus the transition into the normal phase occurs

at T = 0 in multi-layer systems and it is due to thermally activated vortex

stacks. However, this transition is weak and further decreases in relevance

the larger the number of layers is. Instead, the BKT transition gains in rele¬

vance and transforms into the bulk superconducting transition as the number

of layers increases. By means of a real space renormalization group analysis
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we study the interplay between the unbinding transition of fractional-flux

vortices and the thermally activated vortex stacks. Below the BKT unbind¬

ing transition counterflow currents, i.e., currents with opposite orientations

in different layers, can flow without dissipating energy. The BKT transition

is then associated with the destruction of superconductivity in the individual

planes as manifested in the counterflow superconducting response. We show

how to trace this transition in a transport experiments.

The finite geometry has also a strong impact on the melting transition

at finite magnetic fields. Melting is a first order phase transition. Like

any other discontinuous transitions, it involves the appearance of metastable

phases and thus exhibits hysteretic behavior in cycling through the tran¬

sition. However, in ordinary crystals it is known that, while it is possible

to undercool the liquid, it is usually impossible to overheat the solid above

the transition temperature. This remarkable asymmetry is due to the un¬

avoidable presence of surfaces [22-24]. In a first-order transition, to escape

from a local metastable minimum, the system must overcome an activation

barrier, usually via nucleation of a small germ of the thermodynamically

stable phase. For the melting transition, the nucleus of the liquid phase is

omnipresent and it is given by the surface. Hence, on approaching the tran¬

sition temperature melting starts from the surface, removing the metastable

solid phase. Even if the bulk transition is discontinuous, the surface melts

in a continuous fashion and favors a smooth glide of the liquid phase into

the bulk ('surface melting'). However, this behavior is non-generic and there

are examples of surfaces which can remain solid up to the melting transi¬

tion ('surface non-melting'), such as for example the (111) surface of lead.

The question if the surface of vortex solid undergoes a continuous (surface-

melting) or a discontinuous (surface non-melting) transition does not have

a unique answer, since, as we will see, both scenarios are possible for this

system. We have studied the problem in two different ways, firstly we have

analyzed the stability of the solid phase in a semi-infinite system by means

of a self-consistent elastic theory and, secondly, we have refined our analysis

with the help of the classical density functional theory [25,26], which offers a

reliable order parameter theory of the melting transition. As a result, we have

found that both discontinuous or continuous surface melting are predicted

for this system, depending on the value of the magnetic field. We obtain

a discontinuous transition for very high and very low magnetic fields and

a continuous surface melting in the intermediate regime. This remarkable
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Introduction

result is accompanied by the appearance of surface multi-critical points on

the melting line, marking the crossover point from one scenario to the other.

The reason for this complex surface behavior lies in the different nature of

fluctuations along the melting line. While in the limits of low and large mag¬
netic fields the relevant fluctuations are two-dimensional and the surface is

ineffective, in the intermediate regime the full three dimensional nature of

the problem becomes relevant and the surface effects are prominent.

The outline of this thesis is as follows: we start in Chapter 2 by describing

the basic concepts of vortex physics, putting the major emphasis on the

aspects which are relevant for the specific topics that we analyze in the

thesis. In Chapter 3, after the description of (Pearl) vortices in isolated

superconducting films, we present new results about the magnetic properties

of vortices in systems with a finite number of magnetically coupled layers.

These results are the basis for the analysis of Chapter 4, where we study

the thermodynamic behavior of systems with a finite number of layers in

zero magnetic field. In Chapters 5 and 6, we concentrate on the melting

transition of the vortex system at finite magnetic fields. To prepare the

discussion of surface melting, we present in Chapter 5 a novel analysis of

the bulk melting transition which is based on the combination of a mean-

field substrate model and the classical density functional theory. We prove

the thermodynamic consistency of the approach by deriving the Clausius-

Clapeyron equation, resolving inconsistencies of previous studies [27]. The

effect of the surface is then considered in Chapter 6. We begin with an

analysis of the properties of the solid phase and study the stability of the

vortex lattices close to the surface. Secondly, we adapt the DFT analysis of

Chapter 5 to include the effects of the surface. We study this problem both

analytically and numerically and demonstrate the existence of both surface-

melting and surface-non-melting scenarios for the vortex system. In order

not to break the flow of the discussion, we have moved few technical details of

the calculations to the appendices. In Appendix A we present two different

derivations of the renormalization flow equation which we use in Chapter 4

to describe the zero-field behavior of the bi-layer system. In Appendix B

we calculate the vortex core energy, which we use to determine the starting

points of the renormalization flow in Chapter 4. In Appendix C we present

an analysis of the gradient approximation used in the DFT analysis of surface

melting.
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Chapter 2

Basic Concepts

2.1 Introduction

The aim of this chapter is to introduce the basic concepts in the physics

of type II superconductors, reserving particular attention to the properties

which are relevant for the issues that we analyze in the thesis. We start

in Sec. 2.2 by presenting the Ginzburg-Landau and London descriptions of

anisotropic superconductors. Subsequently, in Sec. 2.3 we concentrate on

type II superconductors and on the properties of a single vortex line. We

then present in Sec. 2.4 the elastic description of the vortex lattice, focusing

on the special case treated in this thesis where the external magnetic field H

is oriented along the symmetry axis (the c-axis) of the superconductor. We

continue in Sec. 2.5 by discussing the effect of thermal fluctuations on the

mean-field phase diagram and in particular the melting transition of the vor¬

tex lattice. Section 2.6 is devoted to the analysis of the properties of layered

materials with an infinite number of superconducting layers. We introduce

the Lawrence-Doniach model and we discuss the basic topological defects of

these layered materials: Josephson vortices (in Sec. 2.6.1) and pancake vor¬

tices (in Sec. 2.6.2). Finally in Sec. 2.6.3, we introduce the limiting case of

magnetically coupled superconducting layers, which describes the extremely

anisotropic materials on which this thesis is focused.
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2.2 Ginzburg-Landau and London theories

2.2 Ginzburg-Landau and London theories

The transition from the normal to the superconducting state is a second

order phase transition which is brought about by the breaking of the U(l)

gauge symmetry associated with the conducting electrons. The quantum

liquid which arises from this phase transition is conveniently described in

terms of a complex order parameter field, i.e., a macroscopic wave function,

rip(r) = \rip(r)\et,f(-r\ where the modulus \r<p(r)\ is proportional to the density

of superconducting electrons and the phase tp(r) describes the broken gauge

symmetry. Similar to the ordinary Landau theory of second order phase tran¬

sitions, the Ginzburg-Landau theory is based on the postulate that the free

energy functional T for the superconducting state can be expressed through

an expansion of the complex order parameter ^(r), which is assumed small

near the critical temperature Tc. Requiring a free energy which remains in¬

variant under gauge transformations of the electromagnetic field, Ginzburg

and Landau proposed the expression [28]

where A is the vector potential of the microscopic magnetic field (mag¬
netic induction) B = V x A in Gaussian units. The Ginzburg-Landau

parameter ß > 0 is assumed temperature independent, whereas a(T) =

— |cu(0)| (1 — T/Tc) changes sign at the transition temperature Tc. The ef¬

fective charge is given by e* = — 2e, according to the microscopic theory of

Bardeen, Cooper, and Schrieffer (BCS) [29] about the formation of Cooper

pairs. We choose the unit charge e > 0 to be positive. The three parameters

mß denote the effective masses along the main axes of the crystal. In our anal¬

ysis we consider the two different cases of isotropic, mß = m for ß = 1, 2, 3,

and uniaxially anisotropic materials, mx = my = m and mz = M. For the

latter we introduce the mass anisotropy ratio

e2 = m/M < 1. (2.2)

While the isotropic case serves mainly to introduce the basic concepts of vor¬

tex physics, high-temperature superconductors, and in particular the layered

materials which we will consider in this thesis, are characterized by a strong

anisotropy. In this thesis the coordinate system is chosen with the z-axis
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parallel to the c-axis of the material and the x- and y-axes in the isotropic

a6-plane.

In the absence of an external magnetic field, the minimum of the free

energy functional occurs at if) = 0 for T > Tc (a > 0) or for T < Tc at

l^o|2 = -^ (a<0).

The difference in the free energy density / = TfV (with V the volume)
between the superconducting (if) = if)0) and normal states (if) = 0), by defini¬

tion, is equal to the opposite of the condensation energy, which is expressed

through the critical thermodynamic magnetic field as [30]

f - f
--£ --%V1 (23)/s /n~

2/3
~

Syr
• [ 6)

Let us consider for the moment the isotropic case, i.e., e = 1. By minimizing

the free energy (2.1) with respect to the order parameter if>*(r) and applying

the Maxwell equation js = c/4tt (V x B), the Ginzburg-Landau equations

are obtained

fi2 f 2iri \2
a^ + ß\^ + —^V + —AJ V = 0, (2.4)

i = -^(V* + !A>"a« (2-5)

where we introduced the quantum flux unit $0 = hc/2e ~ 2.068 • 10~7Gcm2.

The second equation describes the diamagnetic supercurrent js of the super¬

conductor. The equations are governed by the two characteristic lengths for

a superconductor: the coherence length £ and the penetration depth A. The

meaning of these fundamentals parameters can be understood easily from

the equations (2.4) and (2.5). In a situation with no magnetic fields we can

restrict the analysis to a real function g(r) = 1 — \if)(r)\/if)o, describing the

relative variation of the condensate density from its asymptotic value; the

equation (2.4) becomes

i2V2g
-2g = 0, Ç2

=
^—

=
^—. (2.6)^ y y ' ^

2m\a(T)\ l-T/Tc
y '

The relation above shows that the order parameter decays with a length of

the order of the coherence length £ which diverges at Tc, as expected for a

second order phase transition.

9



2.2 Ginzburg-Landau and London theories

Similarly, the penetration depth A comes into play when we consider the

response of the system to an external magnetic field. For a weak magnetic

field we can neglect variations of the modulus of the order parameter, i.e.,

\if)\ = if)o. Taking the curl on both sides of Eq. (2.5), we obtain the London

equation

[1 - A2V2]B = 0, (2.7)

where we used the relation V x (V x B) = V(V • B) — V2B and the Maxwell

equation V • B = 0. The most important consequence of Eq. (2.7) is that

magnetic fields are screened from the interior of a superconductor (Meissner

effect) over a distance given by the penetration depth

X2(T)
=

mC
=

^° (o R)

[ }
167re2|Vo(T)|2 1-T/TC'

[ ' }

The penetration depth diverges when the critical temperature is approached

from below, due to the vanishing density of superconducting electrons.

The thermodynamic field Hc can be expressed through the two charac¬

teristic lengths

c~

2v/2vrAe'
The superconductor can hold currents without dissipating energy up to the

maximal value given by the depairing current density [30]

cHr
* =

« <2-10)

for larger currents Cooper pairs unbind and the motion of normal electrons

produces a finite dissipation.

Alternatively, Eq. (2.7) can be derived within the framework of the Lon¬

don theory, which is based on the assumption that the energy of a supercon¬

ducting system is fully described by the kinetic energy of the supercurrents

js and the magnetic energy associated with the field B. Combining these two

terms we obtain the London free energy functional

S = So + ^J d3r[B2 + X2L(VxB)2],

where Al is the London penetration depth, which is defined by

(2.11)

, 9
rnc2

Al = t J,
2.12

47mse/

10
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where ns is the density of superconducting electrons. The first term in the

integral is the magnetic field energy, while the second term is the kinetic

energy due to the supercurrents. Varying £ with respect to B, we obtain

the (second) London equation, which has the same form as (2.7), with Al

instead of A. The London theory is valid within the whole temperature range

0 < T < Tc as long as the magnetic field does not significantly suppress

the order parameter. For systems with A/£ 3> 1, (strongly type II, see

next section), the latter condition is fulfilled for a large portion of the phase

diagram and, therefore, the London theory provides an adequate description.

Note that we distinguish between the extrapolated zero temperature pa¬

rameter A0 and the BCS expression A(0) ~ \f2\c, at T = 0. In this thesis we

will use the interpolation formula for the penetration depth

which describes accurately both T — 0 and T — Tc limits. Finally, connect¬

ing the London and Ginzburg-Landau theories near Tc requires the definition

|V>o(T)| = (ns(0)/4)(l - T2/T2). At T = 0 the density of superconducting

electrons ns(0) is equal to the electronic density n and IV'oWl is the density

of (Cooper)-paired electrons.

The analysis which we have carried out in this section can be extended

to anisotropic materials, by considering the tensorial dependence of the cor¬

relation length and the penetration depth. As a consequence of the uniaxial

asymmetry, the out-of-plane components Ac = X/e and £c = eÇ are related

through the anisotropy factor to the respective in-plane components A = Xab

and £ = £a&. Both Ginzburg-Landau and London equations are modified

accordingly, we refer to [31] for details.

2.3 Vortices

Ginzburg and Landau pointed out in their seminal paper that the ratio,

-=S- <2-14)

which is nowadays referred as the Ginzburg-Landau parameter, plays an im¬

portant role on the phenomenological properties of superconductors. They

noted that while going from k < \j\[2 to k > \j\[2 the interfacial energy of

11



2.3 Vortices

H k

Figure 2.1: Mean field phase diagram for a type II superconductor. Below

the lower critical field Hci the magnetic field is expelled from the sample

(Meissner-Ochsenfeld effect). In the intermediate regime Hci < H < Hc2 the

magnetic field penetrates the sample in the form of a regular triangular array

of vortices carrying each a magnetic flux $0 (Schubnikov phase). Above the

upper critical field Hc2, superconductivity is destroyed and the system is in

the normal phase.

a normal metal-superconductor interface changes sign and becomes negative

in the latter case. The full consequences of this remark were subsequently

analyzed in depth by Abrikosov [8] who showed that systems with k > \j \f2

exhibit a highly non trivial (mean-field) phase-diagram and proposed to clas¬

sify the materials according to their value of k: type I for k < \j\[2 and

type II for k > \j\[2. Whereas for type I materials the mean-field phase

diagram is composed of two phases, the superconducting state below the line

(T,HC(T)) and normal metal above it, in type II systems the full destruction

of the superconducting order parameter occurs in two stages. At the first

critical magnetic field HC\(T),

Hcl(T) t*^-Ink, (2.15)

12
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the external magnetic field starts penetrating into the superconducting sys¬

tem in the form of vortices carrying a quantized magnetic flux $0 = hc/2e.

Going to large values of the external magnetic field, the density of vortices

increases up to the second critical field,

HC,(T) = ^L, (2.16)

at which vortices overlap and superconductivity is completely destroyed.

Hence, the phase diagram of a type II material is composed of three phases

(cf. Fig. 2.1): i) the Meissner phase for H < Hci, n) the Schubnikov phase

for Hci < H < HC2, and in) the normal phase for H > HC2.

In order to describe the properties of the Schubnikov phase we start with

the analysis of a single vortex. The latter is characterized by a non trivial

structure of the order parameter field ip = \ip\ exp(—i(p), with <p = ez x R/R
the azimuthal unit vector. The phase p = —<p turns by an angle 2tt, driving

a circulating current (from (2.5) and (2.8)),

where the phase twist is described by the singular gradient Vp = —ezxH/R2.
Near the center of the phase twist the currents are large and suppress the

order parameter to zero at the center. This core region extends radially up

to a distance of order £ and cuts the divergence of (2.17) for R — 0. The

rotating currents generate a magnetic field and thus bind a finite magnetic

flux to the vortex within a distance A where it saturates to the flux unit $o-

This property can be easily obtained by integrating (2.17) along a circular

loop 7# of radius R

d\j=
°

4vrA2
$o-$t(Ä) , (2.18)

where $t(-R) = 2ttA1j>(R) is the magnetic flux accumulated by the vortex

within the distance R. For distances R ^$> X, transverse magnetic screening

suppresses the circulating currents and

<£t(R^oc) = %, (2-19)

resulting in the so called 'flux quantization'. Note however, that this con¬

dition is not general and it is only valid when the left hand side of (2.18)

13



2.3 Vortices

vanishes; hence, the quantity which is always quantized is the fluxoid

$t(E) +— / dl-j = $0. (2.20)
C JfR

If we neglect the vortex core region, we can obtain a good description

of the vortex properties within the London theory. The presence of the

quantized flux is enforced in the London equation (2.7) by introducing a

source term

[1 - A2V2]B(R) = %52(R)ez. (2.21)

Within the London theory the vortex core is neglected and vortex lines are

modeled as one dimensional objects. Here we assume a straight vortex line,

pointing along the z-axis. For this special case the analysis remains valid

also when anisotropic materials are considered, with A being the in-plane

penetration depth. The solution of this equation is given by the zero-order

Bessel function K0 (B = Bez)

B(R) = ^Ko(R/X), (2.22)

which has the asymptotics

BW « ^%ln(fi/A), £ < R « A, (2.23)

For smaller distances R < £, the London theory is no longer applicable and

a solution of the Ginzburg-Landau equations is required.

From the form of the magnetic field B we can easily derive the self-

energy per unit length ev of an isolated vortex line within London theory.

Inserting the vortex solution in the total free energy (2.11), one obtains that

for strongly type II materials (k>1) the largest contribution to the energy

comes from the kinetic energy associated with the rotating currents

ekm = ^ jd2R(V x B)2 « (i^)2 JX ^ = eodlnK, (2.25)

where in the last equality we have defined the line energy

*o = (|y2- (2.26)

14
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Accounting for the total vortex energy requires to add the contributions

due to the magnetic field and the normal-core condensation energy. A pre¬

cise estimation of all terms can be done only within the framework of the

Ginzburg-Landau approach and gives [32]

£o In k + 0.497 (2.27)

For a detailed description of each term entering in the total energy see Ap¬

pendix B.

Next, let us consider the interaction energy of two straight vortex lines

at Ri and R2 at a distance R = |R2 — Ri| 3> £. Due to the linearity of the

London equation, the total local magnetic field at a point R can be written

as a superposition of the magnetic fields associated with each of the two

vortices, i.e., B(R) = £>i(R) + £>2(R). Substituting this expression into the

(2.11), the total line energy of the two-vortex system can be written as a sum

of two distinct terms

e = 2ev + V(R). (2.28)

The first term in this expression is the self energy of the vortices. The second

term is the interaction we are looking for,

A2 f

V(R) = — j> B! x (V x B2) • ds2, (2.29)

where we used the Stokes' theorem and the integration is along a loop en¬

circling the vortex at position R2. Finally, the integral is simply expressed

as

V(R) = ^-B(R). (2.30)

Therefore, the interaction energy between the vortices is proportional to the

magnetic field B(R) produced by any of the two vortices and tested at the

core location of the second one. We obtain a logarithmic repulsive potential

for short distances, which dies off exponentially for separations larger than

the penetration depth:

( R
-In—, i?<A,

V(R) « 2e0 { r— (2.31)
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2.4 Vortex lattice and elasticity

Differentiating Eq. (2.30) yields the corresponding force F which acts on the

vortex; in vector form one obtains the transverse Lorentz force

F = — j x ez, (2.32)
c

where again we have used the Maxwell equation to express the spatial deriva¬

tive of the magnetic field in terms of the current j produced by the first vortex

at the core location of the second one. Eq. (2.32) is valid in general and de¬

scribes the effect of any arbitrary current j on a vortex line.

2.4 Vortex lattice and elasticity

In the mixed phase, i.e., for magnetic fields in the range Hci < H < Hc2, a

finite density nv = B/§0 = a^2 of vortices penetrates into the superconduc¬

tor (Schubnikov phase). The equilibrium state, which minimizes the total

energy as given by the sum of all pairwise repulsive interactions, corresponds

to a triangular lattice with lattice constant aA = (2/v/3)1^2ßo- hi this thesis

we will only consider external magnetic fields which are directed along the z-

axis. In this case the equilibrium positions are parametrized in the a6-planes

as (v = (m, n))

R
V

v^ 2m n

naA, aA
K„

= 2vr
*-v

2n — m m

V3aA aA

(2.33)

in real (Rv) and Fourier (Kv) space. To describe the vortex system outside

its equilibrium configuration we introduce the two-dimensional displacement

field u,

where k = (K,kz) and rv = (Rv,z) and the integral extends over the two-

dimensional Brillouin zone in the plane and is cut off along kz for \kz\ > 7r/£.
A convenient approximation is to replace the hexagonal Brillioun zone by

a circular one with radius KBZ = \/~Äit/ao, preserving the correct vortex

density. The London free energy of a distorted lattice with vortex positions

sv(z) = rv + uv(z) is [2]

f[M] = jY,[ds^ ds»v(K - S^D- (2-35)
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# • •

y

compression

y

shear tilt

Figure 2.2: Possible elastic deformations of the vortex lattice: compression,

shear, and tilt. The equilibrium positions of the vortices are plotted in grey,

the distorted ones in black.

where the integration is understood over the line segments dsv and dsß and

V(r) is the interaction between two vortex segments

V(r) = -e
-r/X (2.36)

with an appropriate short distance cut-off for r < £. This cut-off can be

provided, for example, by the model potential

V(r) = 4irX2 I ^elk-rV(k), V(k) =
&

-i2k2

2vra 1 + X2k2 £,2'
(2.37)

Within elastic theory, the free energy (2.35) is expanded to quadratic

order in the displacement fields uv and the free energy difference of a distorted

configuration relative to the equilibrium state becomes [33]

£\a(k)$a/,(k)U/,(k), (2.38)T~\ [u] = -

'BZ (2*y
a,ß

where the elastic matrix $ is related to the microscopic potential via

(2.39)

and

faß(k) = (kakß + oaßk2)V(k). (2.40)

Due to the symmetries of the triangular lattice the only non vanishing

elastic moduli turn out to be those associated with compression, tilt, and

17



2.4 Vortex lattice and elasticity

shear deformations (see Fig. 2.2); the elastic free energy then contains only

three terms

•^ei[u]= iy^[cn(k)|K.u(k)|2 (2.41)

+c66|K±-u(k)|2 + c44(k)fc2|u(k)|2],

where C\\, c44, and c66 denote the compression, tilt, and shear modulus re¬

spectively. The elastic matrix follows directly from comparing (2.38) and

(2.41),

$a/3(k) = [cii(k) - c66] KaKß + 6aß [cmK2 + c44(k)fc2] . (2.42)

Whereas the shear modulus cm turns out to be non-dispersive, i.e., k inde¬

pendent [33,34]

Cm
WW2 H'

( }

both the compression Cn(k) and the tilt c44(k) moduli are strongly dispersive

(non-local in real space) due to the long range nature of the vortex interaction

[33]

c11(k)«c44(k)^TTi^. (2.44)

These expressions for en and c44 are obtained within the continuum isotropic

approximation, which neglects the periodic structure of the vortex lattice

and treats it as a continuous elastic manifold. From a technical point of view

this approximation corresponds to retaining only the term v = 0 in (2.39).

Finally, for low vortex density the vortex interaction is exponentially small,

leading to an exponential softening of the shear and compression moduli

en « 3c66, (2.45)

ao/A
\ \ 1/2

vrA \ £0
c66 ~ I 7— ] —e

6an J A2

Including the effects of anisotropy and terms v ^ 0 in the elastic sum, one

obtains important modifications close to the boundary of the Brillouin zone.

We are particularly interested in the tilt modulus which is conveniently split

into two different contributions [13,35]

C44(k) = c°4(k) + C^4(k), (2.46)
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where c44(k) is the non-local contribution (cf. (2.44) for e = 1)

C«(k) = If 1 + A^ + A^f
{2M)

and the correction oc B is due to the vortex line energies

^k>~#2S +A^A^^H1 + T^)l- <2-48»

2.5 Melting of the vortex lattice

The mean-field phase diagram is based on the assumption that fluctuations of

the order parameter are small and therefore can be neglected. A quantitative

measure of the importance of thermal fluctuations is given by the dimension-

less Ginzburg number Gi which derives from a comparison of Tc with the

(T = 0) condensation energy in the coherence volume (the Boltzmann con¬

stant is set to unity throughout the thesis, kB = 1); in an anisotropic material

it reads
1 / T \2

^TdTTÄT), (2-49)
2 ^ Hc0eÇ0,

where i7c0 and £0 are the extrapolated values at T = 0 of the critical field and

the in-plane correlation length. Within the temperature window 1 — T/Tc <

Gi, thermal fluctuations become important and the mean field approach of

the Ginzburg-Landau type fails to describe the system. In conventional low-

Tc materials, due to the large value of the correlation length, the Ginzburg

number is small (of order œ 10~8 typically) and the mean-field theory turns

out to be extremely accurate. However, in high-Tc materials fluctuations gain

dramatically in importance (Gi ~ 0.01 in YBCO) due to the small values

of the correlation length £0 and of the anisotropy parameter e. For these

materials the mean-field description becomes inadequate for a large portion

of the phase diagram. Moreover, note that the width of the fluctuation regime

increases with field, Gi(H) = Gi1/3[H/Htc20
12/3

One of the most prominent effects of fluctuations is the appearance of the

melting transition of the vortex lattice at fields below Hc2. Above melting,

while vortices are still present, the translational symmetry associated with

the Abrikosov lattice is broken. The resulting vortex liquid phase shows

features characteristic of the normal state, such as an ohmic response under

the driving action of an external current. Hence, the superconducting-normal
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0 Tc T

Figure 2.3: Schematic phase diagram of a strongly fluctuating type II su¬

perconductor. The vortex lattice undergoes a melting transition at a field

Hm, below the upper critical field Hc2. At low magnetic fields, magnetic

screening turns the vortex interaction exponentially weak and the melting

line re-enters. The vortex liquid exhibits an ohmic response and the vortex-

liquid and normal-metal phases are separated only by a crossover at Hc2.

transition is associated with the melting of the vortex lattice. The Hc2-

line marks only a crossover from a normal phase with zero order parameter

(above) to a normal phase which is characterized by a finite but strongly

fluctuating order parameter (below).

Although the first suggestion that the vortex lattice may undergo a melt¬

ing transition is due to Eilenberger [9] back in 1967, this transition has at¬

tracted real attention only after the discovery of high temperature super¬

conductors [12-14]. From the experimental side, a first evidence of jumps in

magnetization and entropy have been provided by Zeldov et al. and Schilling

et al. [36,37].

Gaining a full theoretical understanding of the melting transition is a

difficult issue and parts of this thesis will deal with this problem in detail.

However, a first rough idea of the location of the melting line in the phase

diagram can be obtained from a Lindemann analysis of the stability of the

20



Basic Concepts

solid phase. Starting from the continuum description of the vortex lattice,

one calculates the mean thermal fluctuation (u2) and compares it with the

lattice spacing a0- If these quantities become comparable, i.e., when (u2) ~

c2ag, then the lattice undergoes a melting transition. The parameter cl is

usually chosen to be a constant of order cl ~ 0.1 — 0.3. The mean-squared

thermal fluctuation (u2) is easily calculated from the equipartition theorem:

(u2)
d3k

(2vr)3

T T

(2.50)
-cmK2 + c44(k)fc2 cu(k)K2 + c44(k)fc2-

Here we concentrate on the first term which describes the shear/tilt modes;

the second term involving the compression modes produces a smaller con¬

tribution and, hence, can be neglected. For an anisotropic material we

use the expression c66 = eo/4«o and approximate the tilt modulus with

c44 ~ 4ne2eo/ciQK2. From the Lindemann criterion we obtain the melting

line
ttV T2

/ T2\
Bm = Zy^foWl - —V (2.51)

ttV4 Tz

Approaching low magnetic fields, ao 3> A, the shear and compression moduli

become exponentially small, cf. (2.45). As a consequence the melting line

re-enters at low magnetic fields towards small temperatures, see Fig. 2.3.

2.6 Layered systems

Up to now we have used a continuum description of the material, which is

a good assumption as long as the anisotropy is not too large. However, the

high temperature superconductors are characterized by a markedly layered

structure and, hence, by a large anisotropy (small e). In particular, for

materials like Bi- al Tl- based compounds the discreteness of the structure

becomes a crucial property and a description in terms of weakly coupled

superconductors is more appropriate. The commonly used model to describe

these systems was introduced by Lawrence and Doniach [38]. They consider a

set of superconducting layers with order parameter ipn separated by a distance

d,

T[ipn,A] = d **£ a\ip„

h2

2Md2
Wn+ie

11 f1-'

0
Jn'

(n+l)d

ß

dzAz

\A
2m

(2)

A

v

d3r

2ni
A(2) ip,

I3!
8vr'

(2.52)
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where the first term in the second line describes the (Josephson) coupling

between neighboring layers. The anisotropic GL functional is recovered as a

special case by approximating this coupling term as a derivative along z. The

expressions V(2) and A(2) denote the planar component of V and A respec¬

tively. Neglecting variations of the modulus of the order parameters, we go

over to the corresponding London theory describing coupled superconducting

planes

F[K A] = / d2R£-^ Y. [ (V<2Vn + fQA(2)

2771
+ Md2(1"COS$ra'ra+l) '<*§ (2.53)

where we have defined the gauge invariant phase difference $„,„+1 between

layers n and n + 1,

&n,n+l — Pn+l
~

Pn +
2vr

$

{n+l)d

dzA7.
0 Jnd

(2.54)

The saddle-point equations which are associated with the functional (2.53)
read (throughout the thesis we fix the gauge of the vector potential so that

V • A = 0)

X2AA(2) = dJ2ô(z-nd)

47T
L\AZ = —ji sin $ra+i.

c

A(2) £o
2vr

v(2V,

A2 A(2V,
2tt
—V(2)A(2) = sin $,

n/n—l
sin$.

n-\-l,m

(2.55)

(2.56)

(2.57)

where A(2) denote the planar component of A = V2 and we have defined the

Josephson length A = d/e and the Josephson current density

JJ
c$0e2

8vr2A2d
Joe

d'
(2.58)

Equation (2.56) is in fact the Josephson equation [39]. It describes the z

component of the superconducting current jz arising from the tunneling of

Coopers pairs between adjacent layers.

Here we have chosen to describe the system in terms of the period d of the

layered structure and the planar bulk penetration depth A. Alternatively, one
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pancake vortex

d

a

Josephson vortex

Figure 2.4: Structure of layered superconductors. Conducting layers (drawn
as planes) are separated by non metallic barriers. The layering produces

strong uniaxial anisotropy with a symmetry axis c (small e). Vortex lines

break up into pancake vortices threading the layers, joined by Josephson

vortices between the planes.

can use the thickness ds of the superconducting layers and the penetration

depth As of the planes. These two description are equivalent if ds/X2 = d/X2
which guarantees equal superfluid sheet densities.

In a theory described by the free energy (2.53), there exist more compli¬

cated topological excitations than the vortex lines we have presented in the

discussion of continuous materials. Due to the layered discrete structure, two

elementary species of vortices come into play: 2D pancake vortices [3-5], for

which the phase twist is restricted to one superconducting plane, and Joseph-

son vortices, which are described in terms of 27r-turns of the phase-difference

between neighboring planes. As a result, a distorted vortex line is composed

of pancake vortices directed along the c-axis joined by Josephson vortices

threading through the junctions between the superconducting layers, cf. Fig.

2.4. In the following we first shortly analyze a single Josephson vortex and

then continue with the discussion of the properties of pancake vortices.
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Figure 2.5: Sketch of the magnetic field lines of a pancake vortex. The

magnetic field is screened on a distance z ~ A perpendicular to the planes.

2.6.1 Josephson vortices

Applying a magnetic field along the a6-plane, the flux lines are described in

terms of Josephson vortices. The vortex is associated with a 27r-phase twist

between neighboring superconducting planes and by a strongly anisotropic

pattern of the circulating currents. The Josephson vortex is described from a

set of coupled differential equations that are obtained from the phase equation

(2.57),

( d2\
k2d2x$n+l>n = \2 +

—

J sin $„+!,„ - sin $ra+2,„+i - sin $„,„_!• (2.59)

The core region is elliptic with extensions A in the planes and d perpendicular

to them. Therefore, for in-plane distances i?< A the tunneling currents are

small and the Josephson vortex has not built up yet. Outside the core region,

the discreteness and non-linearity of (2.59) is irrelevant and one obtains that

the driving phase difference and, hence, the Josephson currents vanish beyond

a length Ac = A/e in the a6-plane and A along z. Hence, whereas A and d

describe the size of the anisotropic core, Ac and A determine the magnetic

size of the Josephson vortex.
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2.6.2 Pancake vortices

We now consider a magnetic field along the c-axis and discuss the structure

of a vortex starting from its two dimensional constituents (pancake vortices).
We discuss the case of an infinite array of Josephson uncoupled (e = 0) super¬

conducting layers and derive the magnetic field generated by a 2D pancake

vortex placed at the layer n = 0. The vector potential has only in-plane

components (A = A(2)) which satisfy the London equation

V2A-^A = ^V^^), (2.60)

where the phase twist generates the source term in the right hand side,

V'p = —ez x R/R2. Here, we treat the layered superconductor within a

continuum approximation, neglecting small modulations of order d/X across

the layers and we write J2ndô(z — nd)A(z) = A(z) in (2.55), (see [5] for

a solution accounting for the discrete structure). In layered materials like

BiSCCO, d/X is typically œ 10~2. Due to the radial symmetry of the source

term, the solution of Eq. (2.60) has only an azimuthal component which takes

the form [5]

MR,z) = ^ r*« f^KR) e-yfi^H. (2.61)^ ' J
2A J0 2vr VA2X2 + 1

V ;

The associated magnetic field

BB,«^fw(e"WA-Te""/A) <2'62)

decays exponentially on a distance z ~ A perpendicular to the layers, result¬

ing in field lines which escape to the side, see Fig. 2.5.

Next, let us consider the interaction between pancake vortices. We start

with the Lorentz force between two vortices

F = $où/c, (2.63)

which, as it has been shown in [3], remains valid in layered systems. The

current j^ in (2.63) is the current produced by one pancake vortex at the

location of the (two-dimensional) core of the second one. Equation (2.63)

yields a strongly anisotropic force and, thus, interaction between pancake
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2.6 Layered systems

vortices. The force (2.63) exhibits drastically different properties depending
if the pancake vortices reside on the same layer or on different ones.

When the two pancake vortices reside in the same layer, the force is

obtained from the supercurrent density at z = 0. The latter obeys the

expression

U(R, z = 0) = ^[^ - A^(R, z = 0)], (2.64)

and it is driven by the 27r-twist of the phase <p of the complex order parameter

(first term). We obtain the second term taking z = 0 in (2.61) and performing

the integration over K,

UR-z = 0) = Tx^l-^R/^ <2'65)

As a consequence of this result, the limiting value of the magnetic flux

$t(-R) = 27rRA(f,(R, z = 0) trapped by a pancake vortex is much less than $0

$t = $t(i? _ oo) = (d/2X)% < $o- (2.66)

This result is a clear evidence that 'flux quantization' is not fulfilled. How¬

ever, the fluxoid is always quantized. In fact, combining (2.65) and (2.64),
we find that the superconducting current j,j>(R) decays as 1/R up to infinity

and thus gives a finite contribution in the fluxoid (2.20). This current term

compensates the small magnetic flux $t < $0, yielding the exact value $0 for

the fluxoid. Another consequence of $t < $0 is that the self-energy (2.25) of

a single pancake vortex turns out to be logarithmically divergent due to the

asymptotic behavior oc 1/R of the currents (L is the system size),

L

Ä

Therefore a single pancake vortex is not an allowed excitation in an infinite

system, i.e., L — 00. Going back to the Lorentz force, the two vortices repel

with a force

m) = ^{l.îm.y (2,8)

Integrating the force along R we obtain that the nearly unscreened currents

produce a logarithmic interaction out to all distances

E< A,

VZ=0(R) ^-2e0d {
*

^ D
(2.69)

A<E.

Epvtt£0dlnT. (2.67)

1
R

-H1-
d\R

m —

2XJ X

26



Basic Concepts

The latter expression has to be compared with the strongly screened interac¬

tion between vortex lines (2.31). If we neglect the small modification of the

prefactor of the logarithm at large scales, i.e., if we write 1 — d/2X ~ 1, we

obtain that in-plane pancake vortices interact with a repulsive potential

Vz=o(R) = -2e0dlnj, (2.70)

like charged particles in two dimensions (2D Coulomb gas or one component

plasma, OCP).

Considering two pancake vortices in different planes, the current (2.64)
which enters the Lorentz force (2.32) does not contain the driving phase V<p

term

u(R,z^0) = -^A4>(R,z). (2.71)

Hence, the force in (2.63) is due to the vector potential alone, Eq. (2.61).

Integrating the force on R back from infinity, using (2.61), we find the out-

of-plane interaction

w=-«4[fott?0 <2-72)

This potential has the asymptotic limits

r r2

Vz(R)^e0dj{

4|z|A
R

y

, i?<|z|<A,

|z|<i?<A, (2-73)

In—, A<E.
A

For separations \z\ > X the interactions decay exponentially oc exp(—|z|/A).

In-plane (2.69) and out-of-plane (2.73) components of the interaction are

drastically different. While vortices residing in the same plane interact re¬

pulsively, the interaction turns out to be attractive between different layers.

Moreover, the out-of-plane interaction is an order d/X ~ 1/100 weaker than

the in-plane one and it extends over a large number X/d = 100 of layers. This

attractive potential is responsible for the formation of vortex stacks, which

are the analogue of vortex lines in continuous materials. Flux quantization

is recovered for a vortex stacks by summing the small fluxes ~ (d/X) $o

trapped by each pancake vortex over the ~ X/d vortices which reside within
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a distance A perpendicular to the planes. The difference between in-plane

and out-of-plane components can be traced back to the expressions for the

vortex current (2.64) and (2.71). The superconductor reacts to the presence

of the phase twist oc V<p by producing opposite, i.e., diamagnetic, currents

oc A. Hence, whereas the phase twist generates a repulsive interaction which

is the relevant contribution in the plane, the out-of-plane interaction is weak

and attractive due to the diamagnetic currents oc A.

A finite Josephson coupling between the layers further penalizes the in¬

troduction of a single pancake vortex. In addition to the electromagnetic

energy, the interlayer Josephson coupling contributes an infinite energy, now

linear in the system size L. Thus, the logarithmic vortex interaction will turn

linear (vortex confinement) for distances R > A, due to the formation of a

Josephson vortex between the two vortices. The expressions for the pancake

vortex interactions (2.69) and (2.72), which we have derived by accounting

only for the magnetic energy, remain valid for distances smaller than the

Josephson length A. For highly anisotropic materials with A = d/e ^$> X,

this magnetic interaction applies for a wide range of inter-vortex distances.

2.6.3 Magnetically coupled layers (e —> 0 limit)

In this thesis, we will consider the limit of infinite anisotropy (e — 0)
which describes magnetically coupled layered superconductors with vanish-

ingly small Josephson coupling. Such an analysis is aimed at materials like

BiSSCO (e < 1/500, cf. [40]) or artificial layered systems, for which the

Josephson coupling can be made arbitrarily small with an appropriate choice

of the material parameters. Within this limit, a finite phase difference be¬

tween adjacent layers does not contribute to the energy and does not induce

inter-plane tunneling currents. Josephson vortices are ruled out and the al¬

lowed topological excitations are given by combinations of pancake vortices

(and anti-vortices). Due to the absence of Josephson coupling, the remaining

interactions between pancake vortices are of a pure magnetic origin, cf. the

last section.

The impact of thermal fluctuations is enhanced by anisotropy, cf. (2.49),

making the thermodynamic behavior of such magnetically coupled layered

systems of particular interest. The fluctuations assume a two dimensional

character and their relevance is quantified by the two dimensional Ginzburg
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number

where e00 = 2e0(T = 0) is the Ginzburg-Landau expression for e0 extrapo¬

lated to T -»• 0. For BiSSCO one obtains Gï(2D) ~ 0.03.

The two dimensional nature of fluctuations has several interesting con¬

sequences [2]. For example, at zero external magnetic field, neutral pairs

of pancake vortices and anti-vortices are the relevant thermal fluctuations.

The transition into the normal state is of the Berezinskii-Kosterlitz-Thouless

type [6, 7] and is triggered by the unbinding of vortex-anti-vortex pairs at

the transition temperature TBKT = e0d/2. Going to finite magnetic fields, the

relevant thermal fluctuations are the deformations of the vortex lattice which

trigger the melting transition into the vortex liquid state. At large magnetic

fields the strong in-plane vortex repulsion dominates over the out-of-plane

interactions and the melting line approaches the 2D melting temperature

T œ 0.014Sod of each individual plane [42]. The third dimension becomes

relevant at low magnetic fields, stifling up the two-dimensional lattices and

pushing the melting transition to higher temperatures, see Fig. 2.6. The

melting line then interpolates between T^D at large B and TBKT at B = 0.

The liquid phase occupies a much wider portion of the phase diagram as

compared to a continuous anisotropic material, see Fig. 2.3.
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0.4 T/e0d

Figure 2.6: Melting line in a magnetically coupled layered superconductor

(after [41]). The unit of the magnetic field is B\ = $o/A2. The melting line

interpolates between T ~ 0.014 e0d at large magnetic fields and TBKT =

e0d/2 at B = 0 (see also Chapter 5), delimiting a wide liquid region.
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Chapter 3

Vortices in finite layered

systems

3.1 Introduction

As we have seen in the previous chapter, in going from a continuous super¬

conductor to a layered one, the properties of vortices are strongly modified.

Continuous vortex lines split into two dimensional pancake vortices with ex¬

tremely anisotropic interactions. Whilst these defects are restricted to a

single layer, the whole superconductor provides an embedding in three di¬

mensions and the (dia)magnetic response involves all superconducting planes.

As a consequence, changing the geometry of the superconductor, the mag¬

netic response of the system and, hence, the properties of the vortices are

modified. In this chapter, we present a thorough analysis of the properties

of two-dimensional vortices in the general situation when the system is com¬

posed of a finite number of superconducting layers. We start out in Sec. 3.2

with the known case of a vortex in an isolated superconducting film, which

was originally studied by Pearl [43]. Then, we continue the analysis by con¬

sidering an arbitrary number of layers in Sec. 3.3. We devote particular

attention to the modification of the value of the total flux $t trapped by a

vortex as this determines its self-energy and the interaction properties. This

result is the key point in the discussion about the B = 0 thermodynamic

behavior which we present in Chapter 4. Finally, in Sec. 3.4 we describe

in detail how the interactions between pancake vortices are modified in a

semi-infinite sample; this will provide the basis for the analysis of the surface
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melting of the vortex lattice in Chapter 6.

3.2 Pearl vortex (single film)

Let us consider a thin film superconductor (single layer at z = 0) of thickness

ds and penetration depth As 3> ds with a vortex centered in the origin.

Combining Eq. (2.64) with the Maxwell equation for the vector potential A

we have to solve

V2A = |v2^ A 5(z) (3.1)

in free space [44]. Exploiting the cylindrical symmetry, we find the azimuthal

component of the vector potential describing a Pearl vortex,

A^(R,z) = % [
Jo

dK JX(KR)
2lT 1 + Apearl-^

-K\z\ (3.2)

where Apeari = 2X2/ds ^$> As is the Pearl length and J\ is a Bessel function.

The associated magnetic field decays like r/r3, resembling the field of a posi¬

tively charged magnetic monopole in the upper half space (a negative one in

the lower half space, see Fig. 3.1). For z = 0, we can carry out the integration

and obtain

Alf>(R,z = 0) =
$n $r

2nR 4Apearl
y"l(-R/Apearl) + #-l(-R/Apearl) (3.3)

where H_i is the Struve function and Y~i the Bessel function of the second

type. The vector potential admits the following asymptotic behavior in the

plane
$0 /-, Apearf

T(^(JR> Apeari,Z = 0) 1 ') (3.4)
2irR\ R

The magnetic flux trapped within a distance R adds up to a full flux quantum

$t = $0 within the distance ~ Apeari, leading to a decaying current j oc 1/R2
at large distances R ^$> Apeari, cf. Eq. (2.64). Hence, an isolated Pearl vortex

involves a finite self-energy

Et ' e0GÜri(Apearl/£) (3.5)

and represents an elementary topological excitation of the system (e0d =

($o/47rA)2, since ds/X2 = d/X2, cf. Sec. 2.6). This expression has to be

compared with the corresponding self-energies of a vortex line (2.27) and a
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A=
ds

d.

Figure 3.1: Sketch of the magnetic field lines for a Pearl vortex. The shaded

area corresponds to the thin superconducting film.

single pancake vortex in an infinite system (2.67). The trapped magnetic

flux reaches an entire quantum flux, hence the self energy is finite. However,

currents are present up to the distance Apeari 3> As and the self-energy is

(logarithmically) larger than the one associated with a line vortex.

The current produces a screened logarithmic interaction V(R) between

two Pearl vortices, attractive for a vortex-anti-vortex pair,

V(R) « 2e0d

In

In

R

T
Apeari

R <^. Apeari,

\Pearl

(3.6)

R
XPearl <E,

where £ is the coherence length. Transverse screening cuts the logarithmic

interaction at large distances R ^$> Apeari- Note, that the asymptotic value is

reached algebraically oc 1/R and not exponentially like for a bulk vortex line

(2.31). This is an effect of the presence of stray magnetic fields due to the

finite geometry of the system.

3.3 Finite number of superconducting layers

We turn to the case of an arbitrary but finite number N of layers [20,21] and

derive the properties of a pancake vortex placed on the n-th layer (n = 1

corresponds to the top surface layer). The equation for the vector potential
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A reads

V2A-y2A = y2Q-Vp + A)ö(z), -d<<z<d>,

V2A = 0, z < -dK and z> dy, (3.7)

where dK = (N — n)d, dy = (n — l)d denote the overall thickness of the pro¬

tecting layers above and below the plane containing the vortex, see Fig. 3.2;

the total thickness of the system is (N — l)d and A2 = X2d/ds. In Eq. (3.7)
the three dimensional space is split in three regions: i) the layer at z = 0,

where the vortex resides (source term oc ö(z)); n) the superconductor which

is described by the London equation (2.7) for —dK <z<d>; finally, in) the

free space where the vector potential is governed by the Maxwell equation.

The presence of the additional screening term oc A in current density on the

right hand side of (3.7) depends on the implementation of the continuum

description; its effect is of subleading order in d/X for thick samples, i.e.,

with Nd ^$> X, but it is required to obtain the correct limit in the case of

an isolated superconducting film (see previous section). The vector potential

associated with the vortex assumes the form

„ .„ ,
$0d [°° dKJAKR) e,„ ,

.

,

where

f(K,z)= [l-ad,(K)]e-K+\z\ + ad,(K)eK+\z\, (3.9)

describes the z-dependence within the superconductor, i.e., in the region

—dK < z < 0 if we set d' = dK and in the region 0 < z < d> if we choose

d! = d>; here,

aAK) =

{K+ + K)*t~* + {K+-K)>
(3-10)

and K+ = \JK2 + 1/A2 is the screened wave number. The denominator

C(K) assumes the form

C(K) = [1 - 2ad<(K)]K+ + [1 - 2ad>(K)]K+ + -^—. (3.11)
Apeari

The field outside the superconductor is obtained by replacing d' and z > 0

(d' and z < 0) by d> (—dK) in (3.9) and correcting by the additional factor

exp[K(d> — z)] (exp[K(d< + z)]). The Pearl vortex and the pancake vortex
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d.

Figure 3.2: A vortex in a 2D superconducting layer of thickness d is placed

between two superconductors of finite thickness d> and dK.

discussed in Sec. 3.2 and Sec. 2.6.2 are recovered respectively with dK = dy =

0 and dK = dy = oo.

First we use (3.8) at z = 0 in order to calculate the value of the total

magnetic flux $t = &(R — oo) trapped by a vortex. At distances R larger

than A, A(R, z = 0) assumes the asymptotic form

T^(JR>A,z = 0)~$t /
Jo

$t
,

$t

dK JX(KR)
~2^ 1 + AeffX

Aeff ' v AeflF27T.R 4Aeff

where, in comparison with the solution for the thin film of Eq. (3.2),

2 - tanh2(d</A) - tanh2(d>/A)
eff( ' U)~

tanh(d</A) + tanh(d>/A) + d/X

is the effective penetration depth and

$od/A

(3.12)

(3.13)

$t{N,n) =
tanh(d</A) + tanh(d>/A) + d/X

(3.14)

is the trapped flux (see also [18,19]). At distances larger than Aeff, the vector

potential A^(R, z = 0) takes the asymptotic form

A^(R^> Aeff,z = 0)
2nR

1
Aeff

~R (3.15)

Eq. (3.15) generalizes the expressions (3.4) and (2.65) obtained previously for

the single layer film and the bulk infinite stack. The penetration depth Aeff

and the trapped flux $t are strongly affected by stray fields; the expressions
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3.3 Finite number of superconducting layers

(3.13) and (3.14) interpolate between the values $t = $0 and Aeff = Apeari

for a thin film and $t = d$0/2X and Aeff = 0 for an infinite layer bulk

superconductor. Note that in thick samples Aeff drops to values smaller than

A and approaches zero in the bulk, consistent with Eq. (2.65), where the

corrections to the asymptotic value of the flux are exponentially small for

i?> A.

For a thin A-layer system, with (N — l)d ^C A, the trapped flux of Eq.

(3.14) is easily rewritten into the simpler form [18-21]

$t(A) « ^ (3.16)

and the dependence on the layer position n cancels out. The decrease $t =

§o/N in the trapped flux with an increasing number of layers can be easily

understood with the following simple argument: consider the case of a single

pancake vortex in a bi-layer system. The magnetic field produced by the

vortex varies on scale A. In the limit of a small layer spacing, d ^C A, the

magnetic field penetrating both layers is approximately the same and so is

the flux. Furthermore, a vortex stack penetrating both layers corresponds

to a Pearl vortex and carries a full flux quantum $0- The flux associated

with one pancake vortex in a bi-layer system is then half the value trapped

by the Pearl vortex and thus $t = $0/2, in agreement with (3.16). This

argument is easily extended to the multi-layer case as long as the thickness

(N — l)d of the system remains smaller than A. To stress the important

property $t < $0, we will introduce the name 'fractional-flux' vortices for

this kind of topological objects.

With the appearance of additional protecting layers, the transverse screen¬

ing of the vortex singularity becomes incomplete, i.e., $t < $o- As a conse¬

quence of the fluxoid quantization, the (l/i?)-behavior of the currents extends

to infinite distances and the attraction between oppositely charged vortices

residing in the same layer is logarithmic to all scales,

R ^ Aeff,

V(R)*2e0d{ J
, *. D

(3-17)

Aeff <C R,

but involves a reduced prefactor oc 1 — $t/$o at large distances R ^$> Aeff.

Within the terminology adopted for the 2D Coulomb gas problem, we observe

that the screening parameter 1 — $t/$o acts as a renormalization of the

£'

¥+(--*)]n-5-
$0/ Aeff
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effective 'charge' at distances R ^> Aeff. Hence a vortex carries a full 'charge'

for R <C Aeff and a reduced one for R ^$> Aeff.

3.4 Semi-infinite geometry

We consider now a semi-infinite geometry with the superconductor filling

the upper half-space z > 0. This discussion is particularly relevant for the

analysis of the surface effects on the melting of the vortex lattice (Chapter

6). A pancake vortex placed at z' generates a vector potential field satisfying

the following set of equations, (cf. Eq. (3.7) with d> = z' and d> = oo, the

additional term oc A in the right hand side is irrelevant in this limit)

V2A-^A = ^Vp S(z - z'), z > 0,

V2A = 0, z<0. (3.18)

In a semi-infinite system, the modification from bulk properties is largest

at the surface. To give an idea of this modification, we first solve Eq. (3.18)
for a pancake vortex placed on the surface z' = 0. The associated vector

potential within the superconductor (z > 0) is

where K+ = \/X~2 + K2; a similar expression with the replacement —K+z —

—K\z\ in the exponent describes the potential within the vacuum z < 0. The

corresponding magnetic field resembles that of a Pearl vortex in the vacuum

(half magnetic monopole) and takes the form characteristic of a bulk pancake-

vortex within the superconducting region (z > 0), see Fig. 3.3. For z = 0,

the integral in (3.19) can be carried out

MR,* = o) =^ l-A(l_e-*/A (3.20)

The total flux trapped by the surface pancake vortex is $t(0) = d&o/X, twice

the bulk value, cf. also (3.14). Comparing (3.20) with the corresponding

expressions for the Pearl vortex (3.4) and the bulk pancake vortex (2.65),
one sees that the magnetic length is the bulk penetration depth A and both

the exponential and algebraic decay are present, with the latter dominating
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z/A, o-

-4

Figure 3.3: Magnetic field lines of a pancake vortex placed on the surface.

The shaded half-space corresponds to the superconducting region.

at large scales. As we will see, this slow 1/R dependence becomes important

in the discussion of surface melting of the vortex lattice.

Next, we consider two pancake vortices residing on the same layer, cf. Fig.

3.4(a). As we have argued before, their interaction includes the contributions

from both terms in Eq. (2.64), the driving source Vp and the vector potential

A and it obeys the expression

vz,,zl(R) -2end

i
R

111
T>

In
A

In
R

Ä'

E<A,

A<E,

(3.21)

where §t(z) is the magnetic flux trapped by a pancake vortex placed at a

distance z away from the surface. The surrounding layers affect the vortex

properties via their (dia)-magnetic response, by reducing the value of the

total trapped flux §t(z) < $o- From (3.14) with d> = oo, dK = z', we obtain

the interpolating formula §\[z) between the values (d/A)$0 on the surface

and (<i/2A)$o m the bulk,

$t(z') = ^(l + e-2^). (3.22)

The combination of (3.22) with (3.21) confirms that the modification of the

strength of the in-plane interaction is only of order d/X. If we ignore contri¬

butions of this order arising from magnetic screening, the in-plane interaction
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(a) in-plane VZyZ (R) (b) out-of-plane VZrZ<(R)

R R

vacuum vacuum

Figure 3.4: Geometry of the model. A layered superconductor fills the half

space with z > 0. The interaction between two pancake vortices is affected by

the semi-infinite geometry and by the strong anisotropy, leading to a strong

logarithmic repulsion between pancake vortices which reside within the same

layer (a) or to a weak logarithmic attraction between pancake vortices in

different layers (b).

is independent of z. Within this approximation, vortices in the same layer

feel a repulsive logarithmic interaction,

VZtZ(R)^-2e0dlnj, (3.23)

a potential corresponding to the two-dimensional Coulomb gas (one compo¬

nent plasma) with charge e2 — 2e0d.

3.4.1 Out-of-plane interaction

For two pancake vortices in different layers (cf. Fig. 3.4(b)), the current (2.71)
which enters the Lorentz force (2.63) does not contain the contribution from

the driving phase Vp. Hence, the force in (2.64) is due to the vector potential

A alone. The central quantity in the discussion is the magnetic field which

is produced by a single pancake vortex placed in a semi-infinite sample. By

solving Eq. (3.18), we obtain the vector potential at the point (R, z) inside

the superconductor produced by a pancake vortex placed at the origin of the

layer at z',

a fr> ^n ,.ft.
®od f+^dKJiiKR)

MR,z>0,z>>0)
=

—l ^4^x

e-K+\z-z>\ + K+-Ke_K+{z+z,^ (3_24)
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Note again the symmetry z <- z'. We first extract the total flux $t(z,z')
induced in the layer at z by a pancake placed at a distance z' from the surface

$t(zy) = ^(e-MA + e-^'^). (3.25)

The trapped flux §t(z) = &t(z, z) recovers the expression of Eq. (3.22). If

we add pancake vortices in a stack, the trapped flux is quantized and equal

to $o, i-e.,

/ dz'$t{z,z') = $o. (3.26)
Jo

The symmetry z <- z1 allows us to interpret (3.26) equivalently as the sum

over all layers of the magnetic fluxes produced by a single pancake vortex.

By inserting the vector potential (3.24) in (2.32) and (2.64), we obtain an ex¬

pression for the force between two pancake vortices residing in different layers

z t^ z''. By integrating it over R we arrive at the out-of-plane interaction

x
. e-K+\z-z'\ +

K+ ~ K
c-K+(z+z')

K+ + K

The interaction is given by the sum of a bulk- (first) VZ_Z,(R) and a stray-

field term (second) V*z, (R), where the latter becomes negligible at a distance

~ A away from the surface.

For small in-plane distances, i.e., i? < A, the contribution of the stray

field potential to the overall vortex interaction energy can be neglected:

VZZ,(R) ^C Vzh_z,(R), see Fig. 3.5. Thus, for R <C A, the potential coincides

with the bulk one (2.73)

d \ a\?R7>W R<-\z~A<-\
VzAR)^Sod-{

4'Z Z|A
(3.28)

A I R
I —, \z- z'\ < i?< A.

As expected, the out-of-plane interaction is weaker with respect to the in-

plane case (3.23) due to the small pre-factor d/X. However, this interaction

extends over many (X/d) layers.

On the other hand, for larger in-plane distances, i.e., for R ^$> X, we find

relevant modifications of the out-of-plane interaction at the surface

VAR) - eod^-^lnf +£o4e-(^')/A(lnf + ^)- (3.29)
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SMALL IN-PLANE SEPARATION i?« X

(a) semi-infinite (b) bulk

Vz,Z'(R) ylz'W
z *

vacuum

Figure 3.5: For small in-plane separations, i.e., E< A, the total energy for

the out-of-plane interaction in a semi-infinite system (a) is equivalent to the

one of a translation invariant bulk (b) system VZ_Z,(R).

The first term has a bulk origin (2.73), whereas the terms which follow vanish

away from the surface. Combining the terms, we can rewrite (3.30) in the

more convenient form

VzAR) = 2eQd\^l\n^ + ye-e+^Al (3.30)
L "Pq A A Kj

We identify two different terms: a logarithmic attractive interaction (first)
and an algebraic repulsive potential (second). The logarithmic interaction

can be analyzed in terms of mirror vortices (see Fig. 3.6): a test vortex at

z then effectively experiences a logarithmic attraction from two bulk-type

vortices, the real one at z' and a fake mirror vortex with equal sign at —z',

see Fig. 3.6. Finally the algebraic repulsion associated with the second term

in (3.30) is again due to the stray magnetic field and produces a surface

softening (cf. the discussion in Chapter 6 of the melting of the vortex lattice

in the presence of a surface).

3.4.2 Semi-infinite stack

In this section, we calculate the magnetic field produced by a complete vortex

stack close to the surface, by adding the contributions of aligned pancake
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3.4 Semi-inhnite geometry

LARGE IN-PLANE SEPARATION R » X

(a) semi-infinite

Vz.z'(R)

z *

(b) bulk

Vz-z'(R)

(c) image vortex

V*+Z.(R)

+

-z

Figure 3.6: For large in-plane separations, i.e., R ^$> X, the total energy for

the out-of-plane interaction in a semi-infinite system (a) can be split in (b) a

translation invariant bulk term VZ_Z,(R) and (c) an additional one VZ+Z,(R)
that can be interpreted in terms of an image vortex placed in —z.

vortices. Integrating up Eq. (3.24) on z', we obtain the total vector potential

due to a vortex stack (z > 0) [45]

A (Rz)-^
A2 jo

dKJjjKR)
2vr K2

1
K e~K+z

In the bulk z — +oo one recovers the standard expression

Ast&dk(R,z > A) £o f°° dK ,h(KR)

Wo ~2^~K\~
$o

2nR !-tfl(f

(3.31)

(3.32)

(3.33)

which leads to an interaction oc K0(R/X), cf. (2.30) (with (2.24)). On the

other hand, at the surface (z = 0) the integration over K gives

Artack(-fh z — 0)
$0 t(r\k(r

^xh\2x)K<Yx)
\ (3.34)

where I\ and K0 are modified Bessel functions, of the first and zero order

respectively. At large distances we obtain

___o_(x _ _\
2ttR \ R,

Tstack(i?> A,z = 0) (3.35)
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z/l

-4-

Figure 3.7: Magnetic field lines of an aligned pancake vortex stack near

the surface of a semi-infinite sample. The shaded area corresponds to the

superconducting region.

this expression can also be derived from the integral of (3.30) over z'. From

the first term in (3.30) we obtain that a full vortex line traps a whole flux

quantum $o, like in the bulk (the mirror term in (3.30) compensates the lack

of superconducting planes in z < 0). At the surface, modifications appear

due to the residual algebraic potential in (3.30) which adds up to yield the

second term in (3.35). The stray field in the free half-space takes the form

(z<0)
$n r° ,„J1(KR)e-Kz

^T-stack(-K) Z) dK- (3.36)
2nX2 J0 ~"K+(K + K+Y

The flux lines of the corresponding magnetic field are shown in Fig. 3.7.

Combining (3.31) with (2.71) and (2.63), we obtain the magnetic com¬

ponent of the Lorentz force (without the contribution from the source term

oc Vp). Integrating over R back from infinity the associated line interaction

is derived,

* stack \-R-l Z)
2e0d

Jo KK\\ XH

-K+z

K4
(3.37)

From this expression at z = 0, including the contribution of the source term,

we obtain the interaction per unit length between the tips of two vortices at
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3.4 Semi-inhnite geometry

the surface (z = 0)

-In-, i?<A,

V(R, z = 0) « 2e0 <(
^

(3.38)

^' A<<jR-

The logarithmic interaction at short scales turns to an 1/R-algebraic behavior

at large distances [44]. This long range interaction is not present in the bulk,

cf. (2.31), and it is due to the stray magnetic fields.
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Chapter 4

Thermodynamic behavior at

zero magnetic field

We discuss the zero-field thermodynamic behavior of superconducting sys¬

tems with a finite number of magnetically coupled layers. We assume an ideal

situation with no Josephson coupling. Pancake vortices, i.e., two-dimensional

vortices residing within individual layers, trap a fraction of a full quantum

flux and involve a self-energy which diverges logarithmically with the system

size. On the other hand, full pancake vortex stacks, which correspond to Pearl

vortices in a single layer setup, involve a finite self-energy and are thermally

excited at any finite temperature. Their presence suppresses the supercon¬

ductivity in all layers together, while the counterflow superconductivity, i.e.,

relative to different layers, is preserved. This remaining superconducting re¬

sponse is finally destroyed via the unbinding of intra-layer neutral pairs of

pancake vortices. They undergo an unbinding transition of the Berezinskii-

Kosterlitz-Thouless type at a given finite temperature which depends on the

total number of layers. This unbinding transition also affects the thermally

excited vortex stacks, triggering their dissociation. By means of renormal¬

ization group techniques, we analyze the dissociation transition for a bi-layer

system and discuss its potential observation in a specific experimental setup

with a counterflow geometry. We point out interesting analogies with the

bi-layer quantum Hall system at total filling v = 1.
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4.1 Introduction

4.1 Introduction

Topological excitations play a central role in statistical physics. The un¬

binding of topological defects, e.g. phase slips in superconducting wires [46],
vortices in thin superfluid films [47], and dislocations in two dimensional crys¬

tals [48], drive specific phase transitions which have attracted much interest.

Similarly, the transition of layered superconductors into the normal state in

zero magnetic field is due to the proliferation of two dimensional vortices [2].
In fact, in the absence of pinning forces, under the action of an external

current the vortices move and dissipate energy, producing a finite linear re¬

sistivity like in a normal metal [49]. Many studies, both theoretical and

experimental [50-52], concentrated on thin films or on bulk layered super¬

conductors and investigated these systems in relation with the Berezinskii-

Kosterlitz-Thouless [6,7] (BKT) pair unbinding transition. Here, we extend

the analysis to systems with a finite number of layers and show that new

interesting properties emerge in these systems.

The basic prerequisite [6] for the appearance of a BKT transition is the

logarithmic interaction between topological defects. In uncharged superflu-

ids, e.g. 4He, this logarithmic interaction extends to infinity and the system

undergoes a BKT transition at a finite temperature [6]. In a superconducting

film the charged currents couple to the vector potential A. Magnetic screen¬

ing leads to the suppression of the currents at the Pearl length Apeari- Pearl

vortices trap a full flux $0 and acquire a finite, although large, self energy

-E-Peari = £odhiApeari/£> cf. (3.5). At distances larger than Apeari, the loga¬

rithmic interaction is cut off and vortices interact only via a weak algebraic

potential. At any non-zero temperature, free Pearl vortices are thermally

generated at a finite density npeari oc exp(—Epear\/T). The putative BKT

transition at T^KT = ë0d/2 (ë0 is the appropriate [53] renormalized value of

Eq) then is preempted by the thermal activation of Pearl vortices. Therefore,

in a single superconducting film the superconducting to normal transition is

shifted to T = 0. However, due to the large value of the self-energy -Epeari,

the number of thermally excited Pearl vortices is small [54]. The unbinding

of vortices on scales smaller than Apeari produces a sharp crossover at TgKT,
which has been observed in many experimental studies, e.g. [51,52].

Going to a bulk layered system with N ^$> X/d, two dimensional topo¬

logical excitations transform from Pearl vortices to pancake vortices. The

additional layers produce further magnetic screening and expel the magnetic
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Thermodynamic behavior at zero magnetic held

field associated with a pancake vortex in the transverse direction (see Fig.

2.5); a pancake vortex traps a reduced flux, $t = d$0/2A. The in-plane log¬

arithmic interaction between pancake vortices extends to arbitrary lengths,

resulting into a true pancake vortex unbinding transition of BKT type at

Tbkt ~ s0d/2. In a bulk layered system the role of vortex lines is played by

vortex stacks. They involve a self-energy Es = N£0dlïiX/Ç which grows lin¬

early with the thickness Nd and, hence, for large N they can penetrate into

the system only under the action of a finite external magnetic field. Hence, at

zero magnetic field, as no thermally excited vortex stacks are present, the su¬

perconducting to normal transition is induced by the proliferation of pancake

vortices within the individual layers and it occurs at the finite temperature

Tbkt [50]. As it was pointed out in Ref. [5], this unbinding transition can also

be interpreted in terms of the dissociation of vortex stacks. Both transitions

are based on the in-plane logarithmic pancake vortex interaction; removing a

single pancake vortex out of an aligned vortex stack by a distance R involves

the same logarithmic energy cost as the creation of a pancake vortex-anti-

vortex pair of size R. As a consequence, at Tbkt the vortex stacks break

apart and dissolve into unbound pancake vortices.

The difference between the thermodynamic behavior of a single film and a

bulk layered superconductor motivates our study of the intermediate case of

systems composed of a finite number N of superconducting layers. We start

in Sec. 4.2 with the analysis of the intra-layer vortex unbinding transition

temperature Tbkt and discuss its dependence on the value $t of the total

trapped magnetic flux. We then concentrate in Sec. 4.3 on the bi-layer system

and discuss, using a renormalization group analysis, the competition between

the T = 0 transition induced by thermally excited vortex stacks and the finite

temperature pancake vortex unbinding transition in individual layers. We

determine the I-V characteristic and show how to track the dissociation of

the vortex molecules in a counterflow geometry in Sec. 4.3.4. We discuss the

experimental requirement and the impact of disorder on the phase transition

in Sees. 4.3.5 and 4.3.6. Finally, in Sec. 4.3.7 we propose an interesting

analogy with the bi-layer quantum Hall system at filling v = 1.
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4.2 Thermodynamics of N superconducting layers

Figure 4.1: Sketch of the magnetic field lines for (a) a single fractional-flux

vortes ($t = &o/N) and (b) a pancake vortex stack ($t = $o) in a system

composed of five superconducting layerd (N = 5). The shading intensity

relates to the intensity of the magnetic field.

4.2 Thermodynamics of TV superconducting

layers

Systems which are composed of a finite number N of layers exhibit a rather

rich thermodynamic behavior, somewhat intermediate between the single
film (N = 1) and the bulk layered superconductor (N = oo). In A-layered

systems, we encounter different types of topological defects: pancake vortex

stacks (see Fig. 4.1(b)) and two dimensional vortices (see Fig. 4.1(a)).
Pancake vortex stacks involve, like Pearl vortices in an isolated film, a full

flux quantum $0, and thus a finite self energy Es = A£o^hi(Aeff/£) (from

(3.5)). Hence, free vortex stacks are thermally generated at any non-zero

temperature in a finite density ns oc exp(—Es/T) and destroy superconduc¬

tivity in all layers together. Given the linear dependence on the number of

layers N, in thick samples this transition becomes exponentially weak and

disappears altogether in a bulk system.

On the other hand, single pancake vortices trap a magnetic flux §o/N

(cf. Eq. (3.16)), which is a fraction of a complete quantum flux (see Fig.

4.1(a)). This reduction in trapped flux is the result of the modified transverse

screening which depends on the number of protecting layers. The incomplete

screening due to $t(A0 < ^o implies an infinite interaction range for N > 1

and hence vortex-unbinding establishes a finite temperature BKT transition
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Figure 4.2: Dependence of the total flux and the superfluid density jump at

the transition on the total number of layers for the surface (dashed line) and

the bulk (solid line). A large value X/d = 10 has been chosen for illustrative

reasons.

[18,19] which depends on N

^
BKT r>

' X (4.1)

As usual [53], the line energy e0 undergoes renormalization due to ther¬

mal fluctuations and we have to make use of the proper renormalized value

ëo = £§°(TBkt) (depending on the number N of superconducting layers). At

this unbinding transition, free pancake vortices proliferate within the individ¬

ual layers, suppressing superconductivity in the individual layers. The finite

range of the interaction in the thin film (N = 1) transforms the transition

into a crossover; this is consistent with (4.1) as a full flux quantum $0 is

trapped by the Pearl vortex, $t = $0. However, differently from the case of

a single superconducting film, for N > 1 fractional flux vortices undergo a

true finite temperature Berezinskii-Kosterlitz-Thouless [6, 7] (BKT) transi¬

tion. The presence of one additional 'protecting' layer changes the situation

dramatically: transverse screening reduces the trapped flux to half its value,
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4.2 Thermodynamics of N superconducting layers

®t = ^0/2, thus extending the range of the logarithmic interaction to infinity

and pushing the transition temperature to a finite value ëod/4. Adding more

layers (N), the trapped flux $t = &o/N decreases further until assuming the

asymptotic value $t = d&o/2X in a bulk superconductor where Tbkt ~ ëod/2
is largest, see Fig. 4.2. Similarly, the jump in the superfluid density [47] at

the phase transition depends on the number of layers via the screening factor

1 — $t/$o; the maximal jump is realized in the bulk case where it assumes

the value of an uncharged superfluid, Tbkt ~ 8m/n2Dh27r (enhanced by a

factor 4 due to pairing).

Summarizing in systems with a finite number of layers, two different tran¬

sition take place: 1) a T = 0 transition, which is induced by vortex stacks in

all layers and 11) a finite temperature transition at Tbkt due to the unbinding

of pancake vortices in the individual layers. Whereas the superconducting

transition is associated with the first (like in a single superconducting film),
the latter suppresses the superconductivity in the individual layers. As it was

pointed out in [5] for the case of a bulk system (see discussion above), the

pair unbinding at Tbkt can be equivalently viewed as the stack dissociation.

Therefore, the intra-layer BKT transition is associated with the dissociation

of vortex stacks into fractional flux vortices, rather than describing the tran¬

sition into the normal phase. However, at this point it is natural to rise the

question whether this finite temperature pairs-unbinding/stack-dissociation
BKT transition can be detected or it is completely preempted by the pres¬

ence of vortex stacks. In the next sections we will show how one can remove

the effect of vortex stacks for current-sensitive experiments with the help of

an appropriate experimental setup, thus allowing to observe the finite tem¬

perature BKT transition.

4.2.1 Other multicomporient systems

The appearance of a finite temperature phase transition due to the pro¬

tecting action of additional superconducting layers has its counterpart in

multigap superconductors [55-57] and is often associated with the term 'flux

fractionalization' (similar results were also found in the context of micro¬

scopic studies of high-Tc superconductivity in Refs. [58,59], see also [60]).
In the case of multi-gap superconductors, different superconducting compo¬

nents correspond to disconnected sheets of the Fermi surface; beside normal

vortices, involving a rotation of all components together, one can consider

50



Thermodynamic behavior at zero magnetic held

vortices with a core limited to one component alone, the analogue of pan¬

cake vortices in the layered system. Therefore, the creation of a topological

defect in one superconducting component or layer induces screening currents

in the other components/layers via coupling to the common gauge field A.

The additional screening provided by these 'protecting' components/layers
inhibits the trapping of a full flux quantum $0 needed in order to screen the

driving field associated with the vortex singularity at long distances. As a

result, the effect of the singularity persists up to infinite distances (though
with a 'charge' renormalized by the factor (1 — $t/$o)), similar to the situa¬

tion in a neutral superfluid where screening is entirely absent. We note that

the Josephson coupling between the superconducting layers or the internal

coupling between the components of a multigap superconductor spoils this

phenomenon: the Josephson coupling introduces a new length scale A = d/e

beyond which pancake vortex pairs are confined with a potential rising linear

with distance (cf. Sec. 2.6.1), thus inhibiting their unbinding and quenching

the BKT transition. The Josephson coupling can be (made) small in arti¬

ficial layered material; on the other hand, the internal Josephson effect in

a multi-component superconductor cannot be tuned and is not necessarily

small [61].
A more promising proposal [62], albeit only theoretical so far, is hydro¬

gen which, at low temperatures and under the effect of an elevated pressure,

is supposed to become a two-component superconductor (with components

respectively associated with paired electrons and protons). For this system,

tunneling between the electronic and protonic components is naturally ex¬

cluded. However, the large pressure which is required to liquify hydrogen has

not been achieved yet.

Finally, another systems which shows interesting analogies with the sys¬

tems that we are studying is the bi-layer quantum Hall system at total filling

v = 1 [63,64]. This system hosts 'fractional' topological excitations, called

nierons. They are composed of vortices which carry a fractionalized elec¬

tronic charge ±e/2 and are associated with oppositely flowing currents in

the two layers. We will come back to describe this analogy in detail in Sec.

4.3.7.
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4.3 Bi-layer system and I-V measurement

4.3 Bi-layer system and I-V measurement

Here, we are interested in the possibility to observe the particular effects due

to the presence of incomplete transverse screening in multi-layer systems in

an experiment. The setup where the fractional-flux vortices make their most

prominent appearance is the bi-layer system with N = 2. This configuration

has attracted much attention in the past in the context of the flux-transformer

which was originally proposed by Giaever [65-67]. Here, rather than studying

the magnetic coupling between the layers at finite external applied magnetic

field, we discuss the modifications of the BKT transition due to the presence

of fractional-flux vortices.

A vortex which resides in only one layer traps half a flux quantum $o/2
and the associated BKT unbinding transition occurs at Tbkt = ëod/A. The

bi-layer system hosts two different kinds of topological excitations: i) half-

flux vortex-anti-vortex pairs within the individual layers (cf. Fig. 4.3(b) for a

single vortex) and n) full vortex stacks, cf. Fig. 4.3(a). On the one hand, the

loss of superconductivity in both layers is related to the appearance of full

vortex stacks, which involve a finite self-energy and are thermally excited at

any finite temperature. On the other hand, at Tbkt individual fractional-flux

vortices unbind and thermally excited vortex stacks dissociate. As we will see

below, this transition is associated with the destruction of the counterflow

superconducting response.

A convenient tool that allows to probe the nature of the superconducting

and normal phases as well as the transition itself is the measurement of the

current-voltage characteristic. In the bi-layer system, the shape of the I-

V characteristic is determined by both full vortex stacks, which play the

role of Pearl vortices in the film and are present at any finite temperature,

and half-flux vortex-anti-vortex pairs in individual layers, which undergo

an unbinding transition at Tbkt = ëod/4. In a standard geometry where the

current flows in parallel through the two layers, the drag motion of thermally

activated full vortex stacks produces an ohmic response at small drive for any

finite temperature. However, the particular topology where the two super¬

conducting layers are connected at one edge, see Fig. 4.3(c), preserves the

special screening properties of the bi-layer system, while 'shortcircuiting' the

ohmic response of full vortex stacks. Feeding and removing the current at

the remaining free ends of the film, the forces acting on the two half-flux

vortices of one stack compensate one another and thus they do not produce
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Thermodynamic behavior at zero magnetic held

Figure 4.3: Topological defects in bi-layer systems (we assume the same

material with penetration depth As): (a) Pearl vortex in a film or vortex

stack in a bi-layer superconductor, (b) half-flux (hf) vortex in a bi-layer

superconductor. The density of field lines and the shading proportional to the

field intensity B illustrate the difference in trapped flux. Both the interlayer

distance and the film thickness are d, ds ^C Aeff, hence the geometric structure,

e.g. single or double layer, is not visible on scales of the order of the magnetic

length Aeff. (c) Experimental setup suppressing the impact of full vortex

stacks on the current-voltage characteristic and allowing for the identification

of half-flux vortices.
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4.3 Bi-layer system and I-V measurement

a linear resistivity. In this way, the stack dissociation transition is associated

with the suppression of the superconducting (superfluid) response in the

counterflow channel. The non-linear current-voltage characteristic V oc Ie"

then is determined by the current-induced unbinding of half-flux vortex-anti-

vortex pairs residing in the individual layers and an additional contribution

from current-assisted evaporation of stacks. The I-V characteristic then

carries the signature of fractional-(i.e., half-)flux vortices and their unbinding

at Tbkt- The specific properties of the bi-layer system produce a modified

I-V curve; half-flux vortices manifest themselves at currents lower than a

typical small value Jeff- At the transition temperature Tbkt, the exponent

changes from a = 3 to a = 5 with increasing current, a consequence of the

half-quantum flux trapped by the individual vortices.

Note that this experiment can be generalized to the case of any even

number of layers by connecting alternatively opposite edges in the layer array.

The total sheet current, which is given by the sum of the sheet currents in

individual layers adds up to zero and thus does not exert a net force on the

vortex stacks.

In the following, we first present a quantitative analysis of the thermo¬

dynamic properties of the bi-layer system, in particular, the crossover from

unscreened to half-flux vortices and their unbinding at Tbkt- We then make

use of these results in the determination of the current-volt age characteristic

and identify the specific features signalling the presence of half-flux vortices.

4.3.1 Pancake-vortex unbinding transition

The thermodynamic properties of two-dimensional superfluids are conve¬

niently described by a renormalization group analysis. Here, we extend

the conventional discussion in a thin film [6, 68] to a bi-layer system. We

concentrate on configurations where both vortices reside in the same layer,

see section 4.3.2 below for a discussion of vortex-stacks involving vortices in

different layers. The interaction energy between a pair of half-flux vortices

derives from the vector potential A(R) with the trapped flux $t = $o/2,
see Eq. (3.12), and the effective penetration depth Aeff = X2/d of the double

layer, cf. Eq. (3.13). The T = 0 interaction energy of a half-flux vortex pair

separated by R derives from integrating the force (2.68),

V(R) = 2s0dJ ^rdR', (4.2)
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Figure 4.4: Screening factor q(l = I11R/Ç) for the bi-layer system. We use

the parameter Aeff/£ = 102 5
(see section 4.3.5), producing a screening length

/eff = ln(Aeff/£) ~ 5.76. Pancake vortices interact with only half the original

strength at distances beyond /eff-

where the dimensionless parameter

q(R) = 1
$n

~~'

2
(4.3)

includes the effects of magnetic screening and acts as a space dependent

dielectric function interpolating between q œ 1 at distances R ^C Aeff and

q œ 1/2 for R ^$> Aeff. The interaction potential in (4.2) crosses over to half

its value at the scale Aeff when the flux reaches the asymptotic value $o/2 (see

Fig. 4.4). In the following, in analogy with the two-dimensional Coulomb

gas, we can view the function q(R) as a scale dependent dielectric function,

which screens the 'full charge' of the vortices to half its value at scales R ^C

Aeff. With this terminology q(R) describes the crossover from 'full-charged'

at short scales to 'half-charged' (or equivalently half-flux) vortices at large

distances.

In the following, we perform a simple scaling analysis which relies on the

(quasi)-logarithmic R dependence of the potential V(R). This scheme is then

accurate for slowly varying functions q(R) without scale. Here, q(R) changes

on the screening length Aeff and our analysis is accurate only on small and

large scales, while it is interpolating in between.

At finite temperatures, the interaction V(R) is renormalised by the pres-
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4.3 Bi-layer system and I-V measurement

ence of fluctuating vortex-anti-vortex pairs of size smaller than R. The

effective interaction

V(R) = 2wT [R «W^V, (4.4)
Jç R

accounts for these fluctuations via the scale dependent superfluid density

K(R) with K(£) = K0 = Sç,d/iiT. The function K(R) derives from a scal¬

ing analysis adapting the standard Kosterlitz scaling scheme [69,70], which

exploits the analogy to the Coulomb gas, to the bi-layer system. Up to an

additional factor q(R) describing the particular screening properties of the

bi-layer system, the scaling equations take the usual form (see Appendix A),

dlK-l(l) = 4n3q(l)y2(l),

dly(l)=[2-nq(l)K(l)]y(l), (4.5)

where / = ln(R/^). The auxiliary function y(R) is the renormalised vortex

fugacity at the distance R. Integrating the second equation of (4.5), we

obtain the expression
"

K(R')q(R')
i ex i) —TV i

where y2(R) is the number of vortex-anti-vortex pairs of extension R in a

system of linear size R. Here, y(£) = y0 = exp(—Ec/T) is the fugacity

due to the vortex core with energy Ec ~ rjEod and rj is a number of order

unity. By estimating the condensation energy lost in the vortex core we

obtain the value r\ = 0.38, cf. Appendix B. A real space RG analysis of the

vortex partition function makes the approximations in (4.5) more explicit (see

Appendix A.2): integrating out small vortex pairs of (log)-size [1,1 + 81], the

renormalized interaction involves a new shape function qi(R). However, in

order to close the RG scheme, we have to neglect the new terms oc duq and

approximate V2Vt(R) = 2n[ql(Çl)8^(R) + dRqi(R)/2nR] « 2m(^)8^(R).
This approximation then preserves the shape of the function qi(R), qi(R) =

q(R)Ki/K0, yielding the recursion relations Eqs. (4.5) as a final result. The

above approximation is unproblematic at the critical point Tbkt = ëod/i
where large (half-flux) vortex pairs unbind. On the other hand, corrections

may become relevant near the crossover temperature T^KT = ë0d/2: the

results describing the crossover in the unbinding of 'half-charged'- and 'fully-

charged' vortices at Aeff should be considered as an interpolation only. In the

following, we proceed with the analysis of the flow equations (4.5).

vm =

»(f)'°*[-^ ^1^4 (4.6)

56



Thermodynamic behavior at zero magnetic held

Conventional Kosterlitz scaling

Assuming a constant q = 1 (i.e., ignoring transverse screening), the usual

Kosterlitz scaling equations produce the well known RG flow shown in the

upper graph of Fig. 4.5. The temperature T defines a starting point for the

flow on the line y0 = exp(—7rr]K0) through the temperature dependence of

Kq = Sod/iïT. At low temperatures the flow approaches the line of fixed

points y = 0 with K — K describing the superfluid density at large dis¬

tances. At high temperatures the lines escape to K = 0 and high fugacity,

describing a normal state with free vortices. The transition between these

two regimes takes place at the universal value of the (renormalised) superfluid

density K* = 2/tt; the corresponding transition temperature TgKT = Sod/2
has to account for the renormalization in the line energy Sq. Introducing

the difference variable x\ = 2 — ttK close to the critical point, the scaling

equations become

dlXl(l) = 4vrV(/)[2 - Xl(l)]2 « 16ttV(/),

dly(l)=xl(l)y(l). (4.7)

Multiplying the first equation by X\(l) and the second by y (I) and taking

their difference, one obtains

^[16vrV(/)-x2(/)] = 0. (4.8)

Integrating this expression over /, one finds scaling trajectories in the form of

hyperbolae 167r2y2 — x\ = cq. The parameter c0 is the integration constant,

its value depends on the starting point for the flow and, thus, on tempera¬

ture. Away from the critical point the hyperbolae approach the asymptotics

167r2y2 = x\, i.e., 47r2y2 = (2K~l/n — l)2. Close to the critical point, we

can distinguish three different kinds of trajectories, see Fig. 4.5: i) collapsing

semi-hyperbolae, x = —^Jl%n2y2 — c0, with c0 < 0 u) diverging full hy¬

perbolae, +ny = \Jx2 + c0, with c0 > 0 and in) diverging semi-hyperbolae,

x = +y/167r2y2 — Co, with Co < 0.

The trajectories which follow the collapsing semi-hyperbolae converge on

the line of fixed points and describe a state with a finite effective superfluid

density. On the other hand, the diverging hyperbolae escape towards K = 0,

describing a normal state. The typical length £Kt = £exP(^KT) at which free

vortices are present (correlation length) is related to the distance at which

the fugacity assumes a value of order unity. Close to the critical transition
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4 3 Bi-layer system and I-V measurement

y0(z-1)

Figure 4 5 Upper graph numerical solution of the RG flow trajectories for

a conventional KT scanario (q = 1) The critical point is at KTC = 2/tt The

dotted line corresponds to the possible initial points j/o = exp(—0 38ti /K^1),
with r] = 0 38 (see text and Appendix B) Trajectories which remain be¬

low [if;?]-1 converge towards y = 0 and K — K At high temperatures

the lines escape to K = 0 and high fugacity, describing a normal state

with free vortices Lower graph sketch of the trajectories close to the

critical point K* = 2/tt, lQir2y2 — x\ = cq, with x\ = 2 — ttK We

can distinguish three different kinds of trajectories i) collapsing semi-

hyperbolae, x = —y^l67r2y2 — c0, with c0 < 0 n) diverging full hyper¬

bolae, +ny = \Jx2 + c0, with c0 > 0 and in) diverging semi-hyperbolae,

X = +y/167T2y2 — Co, With Co < 0
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Thermodynamic behavior at zero magnetic held

temperature the parameter c0 is small c0 C 1. Combining the first equation

in (4.7) with the expression defining the hyperbolic trajectory, one obtains

I =

/16"2"C° dx^ [+°° dx± /Z
(4 9)

7xi(o) 16vr2y2
~

7_oo A + Co V co
'

where in the evaluation of the integral we have extended the integral to the

whole axis, since the main contribution comes from the vicinity of the critical

point, i.e., from x\ <
cq. For temperatures close to the critical temperature

TgKT, °ne can expand Co ~ (T — T*KT)/T*KT and one obtains the temperature

dependence of the correlation length £Bkt(T) ~ £exp[l/-y/(T — T|kT)/T|kt]-
Critical fluctuations close TgKT produce a correlation length which exhibits

a non-analytical dependence on temperature. Beside the collapsing semi-

hyperbolae and and the diverging full-hyperbolae which we have just dis¬

cussed, also the diverging semi-infinite hyperbolae (cf. lines in) in Fig. 4.5)
are possible trajectories of the RG flow in the vicinity of the critical point.

They are symmetric to the collapsing semi-hyperbolae, but their flow is to¬

wards the y — oo fixed point rather than towards y = 0. These lines do not

enter in the description of a standard BKT transition, which is analyzed only

by means of the collapsing semi-hyperbolae and the diverging full-hyperbolae.

However, trajectories which follow the diverging semi-hyperbolae become im¬

portant in the analysis of the bi-layer system and describe the unbinding of

half-flux vortices for a wide range of temperatures (see below).

Description of the RG flow

Accounting for the non-trivial screening properties in the bi-layer as de¬

scribed by the screening factor q(l), the flow lines are modified as shown in

Fig. 4.6 (cf. also Ref. [68] for an RG analysis of the transition in a supercon¬

ducting film accounting for transverse screening). A new transition appears

at the universal value of the (renormalised) superfluid density K(2) = 4/tt,

corresponding to a transition temperature TbkT. For temperatures lower

than the critical value TbkT, i.e., for trajectories with K~l remaining below

[fQ,2']-1 = 7r/4, the flow coincides with the standard one for q = 1, with

the fugacity y — 0, see line (a) in Fig. 4.6; we can ignore the small modi¬

fications appearing beyond the screening length Aeff. At high temperatures

T > Tbkt, the flow first follows the q = 1 trajectory until screening reduces

the interaction between vortices to half its value at Aeff. The flow then turns
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4.3 Bi-layer system and I-V measurement

yo(K~')

Figure 4.6: RG flow for the bi-layer system with Aeff/£ = 1025, and

rj = 0.38 (see Appendix B), restricting the possible initial points to the line

y0 = exp(—0.387T/ÄQ-1). The critical point is located at K{2) = 4/tt. Scal¬

ing trajectories first follow the conventional flow with q = 1 until screening

reduces the 'charge' to a value 1/2 at the scale Aeff (marked with a bullet).
At low temperatures, 'half-charged' vortex pairs remain bound and the fu¬

gacity y flows to zero, while the superconducting density K renormahzes

to K > 4/V. For temperatures T > Tbkt vortex-pairs unbind (y — oo,

K — 0) following the scaling trajectories associated with 'half-charged' vor¬

tices (q = 1/2). The dashed lines describe the flow trajectories with q = 1.

While for the trajectories (a), (b), and (d) these lines are not visible because

they are masked by the RG flow with the full function q(l) (solid lines), for

(c) the two trajectories split (for this line the correlation length is of the same

order of the effective penetration depth, £hf ~ Aeff).
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Figure 4.7: Numerical solution of (4.5) for different initial values (K0~1,y0),
(d) below Tbkt, (c) and (b) above T^t, and (a) above TgKT. Note the linear

dependence of y (I) and the extended plateaux for K~l, justifying the two-

stage RG procedure with a restart at (K~l,y). The change in slope (from
2 — ttK to 2 — ttK/2) appearing in y (I) is located at the scale /eff, where half

of the 'charge' is stripped.

around to follow the trajectory describing free 'half-charged' vortices above

the unbinding transition at Tbkt, see line (b) in Fig. 4.6. Finally, at higher

temperatures T > T^KT (corresponding to KTC = 2/tt) the trajectories diverge

along the conventional ones with q = 1, see line (d) in Fig. 4.6. The screening

length Aeff introduces a scale in the problem, producing a different behavior

at short and large scales and allowing trajectories associated with different

values of q to cross, see, e.g., lines (c) and (d) in Fig. 4.6.

'Full-charged' vortices, / < /eff

For a quantitative analysis we approximate the flows in the two regimes: for

/ < /eff = ln(Aeff/£) we replace q(l) with the constant q = 1 ('full-charged'

vortices) and for / > /eff with q = 1/2 and combine them afterwards, see

Fig. 4.8. Analytical estimates (see below) and numerical integration of the

full flow equations (cf. Fig. 4.7) confirm the validity of this approximation

scheme for temperatures T < T*KT.
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4.3 Bi-layer system and I-V measurement

Integrating the flow equations (4.5), the superconducting density K first

undergoes a (small) renormalization (on the scale lr = 1/(ttK — 2)), while

the fugacity y collapses. Sufficiently below TgKT, this transitory regime ex¬

tends over a short scale lr ^C /eff. Beyond lr the fugacity is small and from

the first equation in (4.5) we obtain that the superfluid density assumes a

constant value K(IA) œ K^L\ = K. The value of the renormalised fugacity

is estimated with the help of the second equation in (4.5)

%(/)= [2-nK]y(l). (4.10)

From the integral of this equation we find the new starting point (K~l,y =

J/(Aeff)) at the scale Aeff, where

/ £ \ ttK-2

^»f
• (4-11)

Aeff'

Rewriting (4.11) in the form y = j/0(Aeff/£)2exp[—T(Aeff)/T] and compar¬

ing with (4.6) then tells us that vortices acquire an additional self-energy

T(Aeff) = êoGUn(Aeff/£) 3> Ec from the kinetic energy of supercurrents.

'Half-charged' vortices, / > Zeff: 1) mean field regime

Second, we restart the flow at (K~l,y) using (4.5) with q = 1/2. Following

step by step the analysis of Eqs. (4.7) and (4.8), we obtain that the trajec¬

tories close to the critical point (K{2) = tt/4, 0) correspond to the family of

hyperbolae

(2vn/)2 - (4/ttK - l)2 = c. (4.12)

At low temperatures T < Tbkt the factor 2 — tiK/2 < 0 and the fugacity

y continues to decrease, hence 'half-charge' vortices remain bound, cf. line

(a) in Fig. 4.8. The flow line passing through (tt/4, 0) (dashed-dotted in

Fig. 4.8 with (27ry)2 = (4/ttK — l)2) defines the critical temperature Tbkt-

On this line the flows of full- and 'half-charged' vortices join at the point

([KA~\yi2) ~ yo(£/Aeff)2), where [KA~l = vr/4 - ttV2)/2. Above T$T,
the q = 1/2 lines diverge towards K~l — oo and describe the collapse of

the superfluid density. The typical scale £hf = £exP(^hf) where free half-

flux appear then is related (cf. Eqs. (4.5)) with the distance at which the

renormalised fugacity assumes a value of order unity.

Above but close to the transition temperature Tbkt, the correlation length

£hf of the system derives from the integration of the diverging full hyperbolae
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Thermodynamic behavior at zero magnetic held

between the two separatrixes (cf. line (b) in Fig. 4.8) and (line u) in the lower

graph of Fig. 4.5). In this regime the trajectory is directly influenced by the

critical point (K{2) = 7r/4,0). However, this critical regime is very narrow,

\4/ttK — 1| < 2ny(2), since y{2) ^C 1 (anyhow, we will analyze this regime

below).

Away from this narrow critical regime, i.e., for temperatures correspond¬

ing to 4/ttK — 1 3> 2ny (line (c) in Fig. 4.8) the flow is not affected

by the critical fluctuations at 7r/4, but is rather described by the diverg¬

ing semi-hyperbolae (cf. lines in) in lower graph in Fig. 4.5) which yield a

mean-field type unbinding of the half-flux vortices. Integrating (4.5) from

(K~l > 7r/4, y) with a constant value for K = K we obtain the fugacity (see

Fig. 4.7)

y(l) = y exp [(2 - nK/2)(l - /eff)] (4.13)

(the same result follows from integrating y(l) with the q(l) as given by (4.3),

y(l) = j/oexp[2/ — ttK j0 dl'q(l')). Using (4.13) with y(/hf) ~ 1, we find the

correlation scale [71,72]

2
/hf ~/eff-4_7ri^logy (4.14)

and combining this result with (4.11), we obtain the density ^hf ~ 1/Cm °f

free half-flux vortices
-, t 2/tvK 2ttK

Summarizing, we find that the density of free q = 1/2 vortices at the tran¬

sition temperature Tbkt (and below TgKT) is low, a consequence of the small

parameter £/Aeff. Moreover, critical fluctuations are only relevant very close

to the critical temperature. Away from this narrow critical regime the tran¬

sition is well described by the mean-field expression (4.15). On approaching

TgKT we have K = 2/tt and the correlation length becomes comparable to

the screening length, cf. (4.15).
In order to express the above results in terms of the temperature deviation

At = (T —Tbkt)/Tbkt, we have to establish the connection K(T). We define

the new variable x2(T) = 2-nK(T)/2 and write x2(T) « [2-nK(2)/2]+a2At
with the coefficient a2 of order unity whose precise value depends on the core

energy Ec = rjEod. Within the mean-field regime at temperatures larger than

At 3> 87ry(2)/a2 the corresponding result reads (cf. (4.15), we approximate
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4.3 Bi-layer system and I-V measurement

bound

y critical region

mean-field

unbinding

Figure 4.8: Sketch of the RG flow close to the critical point K{2) = 4/tt.
The dotted line represents the renormalised values (K~l,y) evaluated at the

screening length Aeff where half of the 'charge' is stripped. At this location

the flow lines for / < /eff with q = 1 change over to those for 'half-charge'

vortices valid at large distances / > /eff. Pancake-vortices remain bound at

low temperatures with K~l < tt/4, see curve (a). In the critical region near

K{2) the trajectory follows hyperbolae with (27ry)2 — (4/ttK — l)2 = c > 0, see

(b), while K flows to zero along trajectories with c < 0 when vortices have

lost half of their charge, see (c). The dashed-dotted line marks the separatrix

with c = 0. The point ([X(2)]_1, y(2)) defines the critical temperature Tbkt-

The plot is largely magnified for illustrative reasons.
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Thermodynamic behavior at zero magnetic held

2 - itKi2)/2 = -4vry(2) « 0 and thus x2(T) « a2At)

A2« /£A/yö\4/«2At

"""(r)K#(^) (4-16)

Finally, we comment on the effect of fluctuating pairs on the screen¬

ing function q(R): thermally activated vortex-anti-vortex pairs modify the

screening properties of the superconducting layers, changing the penetration

depth Aeff. Below TgKT, the renormalised value K plays the role of the ef¬

fective superfluid stiffness at distances shorter than the correlation length

£hf > Aeff, see Fig. 4.7. Substituting Aeff — (K0/K)Xe^ we can account for

the modification of screening due to vortex-anti-vortex pairs.

'Half-charged' vortices, / > lefi: 2) critical regime

The unbinding of 'half-charge' vortices just above Tbkt is described by the

hyperbolae (27ry)2 — (4/ttK — l)2 = c. Above but close to the transition

temperature Tbkt ,
the correlation length £hf of the system derives from the

integration of the hyperbolic solution and follows the standard critical KT

behavior with Im ~ /eff + 7r/(2\/|c|), cf- Eq. (4.9). This critical behavior of

the correlation length is restricted to the narrow regime where \A/ttK — 1| <

2ny(2) close to the critical point (line (b) in Fig. 4.8); at the right boundary

the correlation length assumes the value £hf ~ Aes exp[l/(47ry(2))], a large

value indeed (see Appendix A. 3, where we analyze the crossover between the

critical and the mean-field regimes). The narrowness of this critical regime is

a consequence of the exponentially small value of the renormalised fugacity

which strongly suppresses critical fluctuations.

In terms of the temperature variable we obtain a critical regime of width

At ~ 87ry(2) /a2 where the density of half-flux vortices is given by the standard

expression

nhi(T) « -^exp^vVAt) (4.17)
Aeff

with b2 = 7T/2\f2y{2)a2. Therefore, the critical regime shows the standard

behavior associated with a BKT transition. However, the large value of the

(renormalized) fugacity restrict the regime of validity to a very narrow win¬

dow of temperatures. The unbinding is then described within the the mean

field unbinding (4.16), which exhibits a modified temperature dependence.
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4.3 Bi-layer system and I-V measurement

Figure 4.9: The correlation length /hf = m(£hf/£) of the bi-layer system as a

function of Kq1 .
The length has been extracted from the numerical solutions

of (4.5) with initial values (K0~1,y0(K0~1)) = (K0~1,exp(—r]7r/K0~1))j with

rj = 0.38, by imposing the condition y (Im) = 1- The correlation length

(bulk line) diverges on approaching the critical temperature of the by-layer

system Tbkt = Sod/4 (dotted vertical line). The line interpolates between the

mean-field unbinding of half-screened vortices (4.14) and the standard KT

correlation length of an unscreened system (with constant q = 1) at large

temperatures. The dashed line in the graph corresponds to the correlation

length of the unscreened system, with a transition temperature TgKT = Sod/2.
The inset shows a close up of the larger graph for values of £m ~ ^eff, i-e-, for

temperatures around TgKT. Note the linear dependence (4.18) on temperature

of £m below TgKT.
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'Half-charged' vortices, / > le{{: 3) close to TgKT = S0d/2

At higher temperatures, close to but below TgKT = Sod/2, we reexpress the re¬

sult (4.14) in terms of the new temperature difference Ati = (T— T£KT)/T£KT.

Using the expansion X\(T) = 2 — ttK(T) ~ a\Ati, we obtain the density of

half-flux vortices

1 9-i_„ I A* I / £ \ 2+2ai|A*i|

^f(T)«-y02+ai|Atll(^) - (4-18)

The result (4.18) is valid provided that the renormalised superfluid density

K shows a broad plateau, i.e., as long as /eff 3> lr; this translates into a

temperature regime aiAti < — l//eff- The half-flux vortex density at the

upper edge of this regime assumes the value um ~ yl/(eXA)2- At higher

temperatures beyond TgKT the correlation length first decreases till £hf < Aeff.

For even higher temperatures the vortices unbind before losing their 'charge'

and the half-flux vortex density is given by the standard expression

^hf(T)«^exp(-2v/61/At1), (4.19)

where the constant b\ relates to a\ via b\ = 7r/8y\ai (here y\ ~ l/47r/eff is

the value of the fugacity on the separatrix). In experiments on thin super¬

conducting films [51,52] typical values b\ ~ 2 — 16 have been found. The

validity of (4.19) extends down to temperatures for which £hf ~ Aeff which

translates into deviations a\At\ > 7r2/2/eff. This leaves us with a narrow

temperature window |Ati| < l/ai/eff for which we cannot provide a simple

and accurate expression for the density of half-flux vortices. We note that in

this problematic regime, magnetic screening and vortex unbinding occur at

the same scale and the scaling equations (4.5) are only approximately valid.

4.3.2 Vortex stacks and their evaporation

Thermally activated stacks, i.e., bound pairs of half-flux vortices residing in

different layers, preempt the superconducting phase transition of the bi-layer

system at Tbkt- Given the large self-energy Es = 2EC + 2e0^ln(Aeff/^) of a

vortex stack, the transition at T = 0 is a very weak one, with only few stacks

present at finite temperature. Accounting for renormalisation due to bound

half-flux vortex pairs, we obtain the stack density
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4.3 Bi-layer system and I-V measurement

where Es denotes the properly renormalized self-energy. The stack density

(4.20) determines the correlation length £s ~ 1/s/rTs beyond which supercon¬

ductivity is lost in the bi-layer system. However, superconductivity is still

preserved within the individual layers, as stacks do not screen the interaction

between pancake vortices; indeed, considering the force of a pancake vortex

acting on a straight stack we find it to vanish rapidly beyond the effective

screening length Aeff. This is easily understood from the force expression

(2.32) (together with (2.64) and (2.71)): while the pancake vortices in the

same layer repel with a force oc (1 — $(i?)/$o), the second pancake vortex

in the stack is attracted with a force oc — $(i?)/$0- Beyond Aeff the trapped

flux equals $t = $0/2 and the forces compensate. The same argument ap¬

plies to a system of N < X/d layers, where the stack vortex residing in the

same layer as the pancake vortex experiences a repulsive force oc (1 — 1/N),
while the N —1 other vortices in the stack are attracted with a force oc 1/N.

Also, this is consistent with the bulk situation, where a single pancake vortex

does not drive a vortex stack beyond the scale A. Hence, individual pancake

vortices in a layer do not move stacks at distances beyond Aeff and there is

no screening due to stacks.

Let us next study the thermodynamics of individual stacks in the bi-layer

setup. The interaction between the two half-flux vortices constituting the

stacks is due to screening currents induced in the opposite layer [73,74]. As

compared to the intra-planar interaction, the inter-plane interaction misses

the singular phase term driving the current density and hence the force is

due to the induced flux $(_R)/$0 = [1 — q(R)] alone, thus leading to the

interaction potential (cf. Eq. (4.4))

W^rp1-^-. (4,!)

In (4.21) we have assumed that A(R,d) = A(R,0) since the magnetic field

escaping in between the two planes is of order d/X. Note the slow growth of

the potential Vp_p at small distances R ^C Aeff which goes over into a strong

logarithmic attraction between half-flux vortices at large distances. Hence

the long-distance interaction between half-flux vortices constituting a stack is

identical to the logarithmic interaction between half-flux vortex-anti-vortex

pairs in individual layers; the unbinding of the latter at Tbkt is equivalent to

the evaporation of the former [5].

Although vortex stacks do not destroy superconductivity in the individual
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layers of the bi-layer structure, they do contribute to the downward renormal¬

ization of the superfluid stiffness K. Similar to half-flux vortex-anti-vortex

pairs in individual layers, the thermal fluctuations of stacks generate dipoles

screening the interaction between other vortices; pairs separated by a dis¬

tance R correspond to stacks misaligned by R and contribute to the screen¬

ing on scales larger then R. Accounting for the polarizability of stacks in the

derivation of the RG equations, we obtain the modified set (see Appendix A)

dlK~\l) = ^3y2(l)q(l)+4Ay2s(l)q(l),

dlV(l) = [2-nq(l)K(l)]y(l),

dWs(l) = {2-n[l-q(l)]K(l)}yB(l), (4.22)

where ys(l) is the fugacity of a vortex in a stack displaced a distance R =

£exp(Z) from its partner vortex in the opposite layer. Such distorted stacks

contribute a dipole moment equal to the one of vortex pairs with separation

R and thus contribute equally to the renormalization of the superfluid density

K (cf. (4.22)). Note the different screening factors q(l) and [1 — q(l)] in the

equations for the pair- and stack-fugacities diy and diys accounting for the

different interactions V and Vp-P, cf. Eqs. (4.4) and (4.21).
The density of vortex stacks is small due to their large self energy Es,

hence the fugacity ys starts out with a small value

ys(0) = e-^2T = yo(^-YK, (4.23)
vAeff/

and thus its effect on the flow of K~l is negligible at small scales. Assum¬

ing K~l < tt/2, y renormahzes downward with increasing /, while ys(l) ~

ys(0) exp(2/) increases until both fugacities meet at the screening length Aeff.

At larger scales / > /eff, q(l) ~ 1/2 and the two fugacities flow in parallel

with (we use y = ys(0) exp(2/eff), cf. (4.11) and (4.23), and assume a constant

K = K, cf. Fig. 4.7)

y(l)=ys(l)=ye{2-7TRm-^), (4.24)

producing a twice larger renormalization of K~l. Hence we find that stacks

equally contribute to the renormalization of the superfluid density K at dis¬

tances beyond Aeff. Vortex stacks simply reduce the correlation length £hf by

a factor 2l/<yi~lïK\ weakly enhancing the vortex density, without modifying

the nature of the unbinding transition at Tbkt = Sod/A.
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Figure 4.10: Numerical solution of (4.22) for two different initial values

(K0~1,y0) below (upper) and above (lower) the transition temperature TbkT;

the two fugacities j/o and ys(0) are related via Eq. (4.23). Note the linear

dependence of y (I) and the change in slope, from 2 — ttK < 0 to 2 — ttK/2
for y and from 2 to 2 — ttK/2 for ys, at the scale /eff, where the 'charge' is

stripped.

4.3.3 Summary of the results of the analysis

We summarize here the main results of the renormalization group analysis,

cf. Fig. 4.11. Thermally activated vortex stacks are present in the system at

any finite temperature. However, their self-energy is large and their density

is small, cf. the small factor £/Aeff in (4.20). Hence, this T = 0 transition is a

weak one. The effect of free vortex stacks is to destroy superconductivity in

the composed system, by suppressing the stiffness of the double-layer system.

On the other hand, below Tbkt = Sod/4 the superconductivity in the in¬

dividual layer is preserved. The effect of this remaining superfluid stiffness

is reflected in the properties of sustaining counterflow currents without dis¬

sipating energy. In fact, under the action of opposite currents in the two

layers the vortex stacks do not move and the superconductive response is

preserved. Above the BKT temperature T
(2)

Sod/4 free 'half-charged'
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few free stacks few 'half-charged' vortices many 'full-charged' vortices
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Figure 4.11: Phase diagram of the bi-layer system at zero external magnetic

field. For temperatures between 0 and Sod/4 only complete vortex stacks

appear, suppressing superconductivity in the two layers together. Above

Tbkt = Sod/4 half-flux vortices with q = 1/2 unbind, destroying the super¬

conductivity in each layer alone. At the crossover transition temperature

Sod/2, vortices with q = 1 proliferate boosting the value of the linear resis¬

tance.

(i.e., half flux) vortices unbind. They suppress the single layer stiffness and

destroy the counterflow superconducting response. However, also this transi¬

tion is weak, since the half-flux vortices are characterized by a big magnetic

'core' and thus appear just above Tbkt with a low density, due to the small

factor £/Aeff in (4.15). Increasing the temperature above the crossover value

TgKT = S0d/4, vortices unbind on a scale smaller than the effective penetra¬

tion depth Aeff. Magnetic screening is therefore ineffective and 'full-charged'

vortices proliferate in a large density in the system, cf. (4.19).

4.3.4 I-V characteristic

The presence of half-flux vortices can be traced in an experiment measuring

the current-voltage characteristic. In the connected geometry of Fig. 4.3, the

effect of an applied dc current is to stretch pairs and full vortex stacks, while

the drag motion of complete vortex stacks is inhibited by the counterflow ge¬

ometry. In the following, we proceed with an analysis of the current-induced

unbinding of half-flux vortex pairs residing in one layer; the contribution from

the evaporation of full vortex stacks is either smaller (at small distances) or

equal to the one produced by the pair-unbinding in individual layers and
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4.3 Bi-layer system and I-V measurement

does not modify the results of this section.

An applied dc sheet current / = jd modifies the energy of the vortex-

anti-vortex pairs in a individual layer,

(m=2fR+mwdn,_mR
Jç R c

Below the unbinding temperature Tbkt ,
free half-flux vortices are created by

thermal fluctuations once the pair overcomes the activation barrier

In —-, Rc<- Aeff,

Uc « 2èod i
\ I R

ln-^T-ln—1, Rc > Aeff,
ç 2, Aeff

where

Rc = jq(Rc)^jC (4.26)

is the distance at which the maximum of Uc occurs and I0 = 2ë0dc/^oC is the

sheet depairing current (2.10), up to the factor 2/(3-\/3)- Applied currents

smaller than

IeS = Io4-> (4-27)
Aeff

probe lengths larger than the magnetic length Aeff and the effects of half-flux

vortices become accessible.

The equilibrium density um of free half-flux vortices is derived from the

steady state solution of the rate equation [75]

f2
dtnM = T - ^2f, (4.28)

7~rec

where T oc exp(—Uc/T) is the production rate of free half-flux vortices and

£2/rrec is the recombination parameter. The applied sheet current / drags

the free half-flux vortices, resulting in a finite Bardeen-Stephen resistivity [49]

p = 2iï^2pnnM scaling as

P~Pn,
.J.nK

A) aA '
Ik '•"

f J n.
ttK

(tJ ' />/eff'
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where pn is the resistance of the normal state. The strong current dependence

of the dissociated pair density then yields an algebraic I-V characteristic of

the form
V /I\°(.t,i)

(4.29)
V V/0

with an exponent which depends on the temperature T and the driving sheet

current /via

a(T, I) = l+ 7iK(T)q(I). (4.30)

The exponent a depends explicitly on the 'charge' associated with the vor¬

tices: at short scales, conventional q = 1 vortices are probed and a = 1 + ttK.

On the other hand, large distances probe 'charge' q = 1/2 vortices and the

exponent a is reduced to a = 1 + ttK/2. The crossover between these two

regimes appears at the sheet current Jeff ^ h where the density of free

half-flux vortices is already quite small, um ~ 1/A2ff at TgKT = Sod/2 and

^hf ~ £2Aeff at the true transition point Tbkt = Sod/4. At these two tem¬

peratures, the exponent a assumes the universal values 3 at TgKT and large

currents and 3(5) at Tbkt and small(large) currents.

The temperature Tbkt defines a resistive transition due to the proliferation

of unbound free half-flux vortices. Above Tbkt the exponent a then jumps

to unity for currents smaller than

ht ~ icJ-, (4.31)
Çhf

probing distances larger than the correlation length A The ohmic resistance

at low currents is determined by the density of free half-flux vortices

P^Pn(-r)2. (4-32)

For larger currents the probing length is shorter than A and pairs are still

bound, resulting in an algebraic characteristic.

In the mean-field regime above Tbkt we can make use of (4.15) and find

the location of the crossover at

T
.

Aeff (Ç^0\2/a2At
,oo,

Iht^Io-z-i-; , (4.33)
Ç V ^eff /

as well as the temperature dependent resistivity

^~ /AeffWeV^V7"2^ (AaA\
P(T)-P„(—) (^) , (4.34)
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Uo.Vo)

log///0

Figure 4.12: Qualitative sketch of the I-V characteristic. At low temper¬

atures (right hand side) the voltage depends algebraically on the applied

current with an exponent a > 3, while the characteristic turns ohmic at high

temperatures (left hand side). The regime close to the critical temperatures

TgKT and Tbkt contains the interesting features associated with half-flux vor¬

tices. The current scale Jeff ~ ^o(C/Aeff) (vertical dashed line) separates the

physics of conventional (/ > Jeff probing lengths R < Aeff) from 'half-charged'

vortices (/ < Jeff probing lengths R > Aeff). At Tbkt the I-V curve exhibits

the characteristic exponents 3 and 5 at small and large currents; the crossover

from 5 to 3 traces the crossover from q = 1 conventional vortices to half-flux

vortices with q = 1/2. At intermediate temperatures Tbkt < T < TgKT the

slopes decrease and an additional ohmic regime due to free 'half-charged'

vortices appears at low currents when distances beyond A are probed (the
dotted line marks the corresponding current A)- At temperatures T > TgKT
the ohmic regime takes over and leaves only a small non-linear region at high

currents probing conventional q = 1 vortices.
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due to free 'half-charged' vortices. Hence the measurement of A or p in this

regime provides direct access to the correlation length A and its mean-field

like temperature dependence.

4.3.5 Experimental requirements

In order to observe the finite temperature BKT transition at Tbkt ,
the system

size must be larger than the effective penetration length Aeff, since only at

this length the magnetic flux saturates to its value $o/2. Accounting for

the temperature dependence of the penetration depth and using the relation

(4.1) which fixes the jump in the superfluid density at the transition, we

obtain [54]

Aeff(T^T) - T°2fCIV (4-35)
l
BKT m iv

Hence, a typical value for low Tc materials is Aeff ~ 1mm, whereas it is re¬

duced by an order of magnitude in high Tc superconductors. The largeness of

this transverse screening length is the major and most critical hurdle against

the observation of fractional-flux vortices.

A second issue is the separation between the two layers: on the one

hand it should be large enough to prevent Josephson coupling producing

linear confinement of vortex-anti-vortex pairs, on the other hand, a large

distance d% between the layers would promote leaking of the magnetic field,

thus modifying the value of the trapped flux $t. Hence, in order to observe

$o/2 vortices, both the interlayer distance d and the layer thickness ds have

to be small compared to the bulk penetration depth A. Separating the two

superconducting layers by an insulator, the Josephson current density jj can

be made arbitrarily small and the Josephson length A = \/(jo/jj)A (from

(2.58)), beyond which vortex pairs are linearly confined, arbitrarily large.

Hence, an insulator of a few nm thickness is sufficient to push A beyond

Aeff and the two apparently contradictory requirements can still be satisfied

simultaneously.
A further complication arises from the mean-field temperature depen¬

dence oc (1 — T2/T2)1/2 of the Ginzburg-Landau parameters A and £. As

a result, the Kosterlitz-Thouless temperatures Tbkt and TgKT are pushed

closer to the mean-field critical temperature Tc. The parameter quantifying

the strength of fluctuations is the two-dimensional Ginzburg number (2.74),
Gi(2D) = Tc/(2e00d) « 1; as a result one finds that (T|KT - T^T)/T|KT «
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4.3 Bi-layer system and I-V measurement

4GV2D), (Tc - TA)/TC « 4Gi{w). The Ginzburg number thus fixes the rel¬

ative distance between the transition temperatures and its value must be

larger than the experimental temperature sensitivity in order to distinguish

between the different transition temperatures.

Finally, we have to discuss the high voltage sensitivity required for the

observation of the characteristic features in the I-V curves. As we have

seen above, all signals related to 'half-charged' vortices are compromised

by the small factor £/Aeff, which is a consequence of the large self-energy

associated with the screening currents extending out to Aeff. This small

factor determines the density of half-flux vortices in the relevant regime and

thus fixes the required voltage sensitivity. Its correct estimate must account

for the intrinsic dirtiness of the thin film. First, a small electronic mean free

path £ reduces [76] the value of the coherence length: at zero temperature

it becomes A ~ VCco^, with A the corresponding value of the pure bulk

material at zero temperature. At the same time, the penetration depth is

increased, Ado ~ A\jA/^- In a thin film, the mean free path is of the order

of the layer thickness, £ ~ ds and we obtain the estimates

F J3/2

-MT^^LS-IO-4^/2^, (4.36)
Aeff Aco

Gz(2D)«3.2-10-9Tc^^, (4.37)

where all lengths are measured in A and temperatures in Kelvin; here the

penetration length Ac0 is the film penetration and not the corresponding bulk

value Aj?0 (A20 = [X^0]2ds/d). The results (4.36) and (4.37) tell us that given

the (clean) material parameters Aco and A it is not possible to maximize

both parameters Gi(2B) and £/Aeff simultaneously by varying the remaining

free parameter ds. A reasonable compromize can be achieved if we choose a

material with Ac0 ~ A ~ 1000 A, Tc ~ 10 K, and a thickness ds ~ 500 A; this

yields £/Aeff ~ 10~2 5 and Gi(2B) ~ 10~4. With an experimental sensitivity for

voltage measurements in the pico-Volt range [77] and Vb ~ p+joL ~ 10 mV

(we assume pn ~ 100 //Hem, j0 ~ 102 A/cm2, and a system size L ~ 1 cm)
we can extend the voltage axis in Fig. 4.12 down to log(V/Vb) ~ —10. At

TbkT the small parameter £/Aeff ~ 10~2 5
pushes the 'slope 5' regime down to

log(V/Vo) ~ —5-2.5 = —12.5; hence the observation of the upturn to a slope

3 at lower currents pushes the resolution limit of present days experiments

(see Fig. 4.12). It is this 'double appearance' of a 'slope 3' characteristic
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at high temperatures/high currents and at low temperatures/low currents

which is the most clear signature of fractional-flux vortex unbinding. Alter¬

native ways to trace the presence of fractional-flux vortices are i) to look

for the characteristic mean-field type resistivity below TgKT, cf. (4.34), or n)
to identify the algebraic upturn in the I-V characteristic at temperatures

below TgKT and currents smaller than Jeff (note that the temperature TgKT
is identified through its characteristic 'slope 3' regime at large currents; in

the conventional scenario, the I-V characteristic exhibits only a downturn at

temperatures below TgKT).

Alternatively, one can access directly the value of the flux at low tem¬

peratures, for example with a scanning SQUID microscope [78]. In a finite

perpendicular magnetic field vortex stacks penetrate into the bi-layer and

arrange in a regular two dimensional lattice. A dc counterflow current in the

proposed experimental setup of Fig. 4.3(c) separates each vortex stack into

two half-flux vortices. If the two half-flux vortices can be kept at a fixed

distance R ^$> Aeff, the total trapped flux $o/2 of each half-flux vortex can

be measured.

4.3.6 Effects of disorder

The above derivation of the I-V characteristic does not account for the effects

of disorder on the unbinding transition. Thermally generated vortices expe¬

rience a disordered energy landscape and may remain stuck around favorable

pinning sites rather than move and dissipate. However, the main properties

of the I-V characteristic considered here are derived close to the mean-field

critical temperature where thermal fluctuations are large and pinning is ex¬

pected to be irrelevant.

The effect of the material defects is usually two-fold [2]: on the one hand

inhomogeneities produce a variation of the electronic mean free path £ (8£

pinning); on the other hand, particularly in high temperature materials, the

value of critical temperature is not constant throughout the sample (8TC

pinning). Within the framework of the Ginzburg-Landau theory, the effect

of 8£ pinning is described by variations of the effective mass m, whereas 8TC

pinning produces fluctuations of the coefficient a of the quadratic term in if),

cf. Eq. (2.1). Here, we are mainly interested in the first of these two, since

our experimental proposal is based on low Tc materials, for which variations

of Tc are usually absent or extremely weak, since defects should not produce
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4.3 Bi-layer system and I-V measurement

modifications in Tc (cf. Anderson's theorem [79]).
In the theory of weak collective pinning [80] the total energy £pm of com¬

peting pinning centers averages to zero. On the other hand the fluctuations

of the pinning energy do not vanish and lead to a finite contribution

A = KnV/2- (4-38)

Let us characterize the disorder potential by the three-dimensional density

nt and the individual pinning forces /pin and consider their effect on a single

vortex. The mean free path £ is related to the impurity density and the

scattering cross section through the relation £ = l/nta. Thus, this analysis

applies to the case of 8£ pinning. Only defects within a distance £ away from

the vortex center contribute to the pinning energy. Due to the competition

between different pins, the individual pinning forces add up only within the

volume £2d and the (fluctuations in the) pinning energy can be written as

A = x/M/pmC2- (4-39)

Comparing the Lorentz force with the total pinning force one obtains that

vortices remain pinned for currents smaller than a typical critical value Ic,

The individual pinning force can be related to the defect cross-section a by

means of /pin = H2a(Co/0 ~ £o(Co/0(a/C2) [81]- Hence, the critical current

becomes

k*j!L(l-TlTc?/\ (4.41)
lo V £d

By means of the quasi-classical expression of the resistivity R of the film in

the normal state

R - iA- <4-42>

with me the electronic mass, n the electronic density, and r the relaxation

time, we can rewrite the mean free path as

where Rq = h/e2 is the quantum resistance, vf the Fermi velocity and fcp

the Fermi momentum. In dirty superconductors the ratio R/Rq is of the
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order of the two-dimensional Ginzburg number [54], R/Rq ~ Gi(2I>). Hence,

using (4.43) in (4.41), we recast the result in the following form

T-
« Gi(2D\fa~A, (4.44)

from which we obtain that the critical current Ic is suppressed by a factor

GV2D) with respect to the depairing current I0 near Tc. With GV2D) ~ 10~4,
1 — T/Tc ~ 4Gi(2I>), and ak2F of order unity [81] we have Ic/Io of order 10~4,
which is smaller than Tff/T) ~ 10~2 5. Hence, pinning due to variations of the

mean free path does not mask the features of the I-V characteristic below

Tff-

Microscopically, beside modifying the mean free path, disorder can also

produce spatial fluctuations of the critical temperature Tc. Even if these

fluctuations are usually small in low Tc materials, the consequences of this

different microscopic pinning mechanism must be careful accounted for, since

close to Tc even extremely small 8TC fluctuations may become relevant. In

fact, if the typical Tc fluctuation are of the order of GV2D), different regions of

the system may become normal, producing a 'percolated' granular supercon¬

ductor. Introducing the parameter 7^ which describes the 8TC fluctuations

((8TA)ôTA')) = lTT28(r — r0), the critical current obeys the relation [2]

Ic rw 1

(445)
Io V diAl-T/TA'2'

and diverges when T approaches Tc. To avoid that this 8TC pinning could

mask the main features of the I-V characteristics, one needs a small critical

current Ic ^C Jeff and hence a small 7^. This requires a largely uniform

critical temperature within the sample, and, hence, a good quality of the

film.

4.3.7 Analogy with the bi-layer quantum Hall system

An interesting analogy appears when comparing the present system with the

bi-layer quantum Hall setup at total filling v = 1. For small interlayer separa¬

tions (d/£ ~ 2, with £ = ^Jhc/(eB) = AAAB the characteristic magnetic

length) the bi-layer quantum Hall system shows a remarkable coherent state,

which is nowadays well established both experimentally [82,83] and theoret¬

ically [63,64]. Due to strong quantum fluctuations, even in the absence of

interlayer tunneling, each electron lowers its energy by going into a coherent
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superposition, i.e., with a well-defined relative phase, of states with a fixed

layer index. The broken coherent phase can be described in different ways,

such as an interlayer excitonic Bose condensate [84] or as a planar ferromag-

net [85] in the pseudo-spin variable, describing the layer occupation. In this

last formalism one defines the z-component of the pseudo-spin to label the

layer occupation, i.e., spin-up (f) corresponds to the upper layer and spin-

down (1) to the lower one. Hence, Sz = (A ~ Aj)/2 is proportional to the

charge imbalance between the two layers. A finite value (Sz) is penalized by

the charging energy ('easy-plane' anisotropy)

e2

#c=^, (4.46)

where C is the capacity of the double layer. Thus, this 'easy-plane' term

prefers a pseudo-spin pointing in the xy plane, i.e., (Sz) = 0. The coherent

phase p is associated with the angle of the pseudo-spin in the xy plane with

respect to the x axis. In the coherent state the full electronic wave function

^ is described by a BCS-type wave function [86]

i*)=n77f(iî+et¥,cii)i°)' (4-47)
k

where ck * (ck , ) is the creation operator of an electron with momentum k

in the upper (lower) layer and |0) is the vacuum state. In the absence of

tunneling the total energy does not depend on the value of the global phase

p and thus the system exhibits a broken U(l) symmetry, which is associated

with the phase p. One can define the order parameter

V(R) = <*{(R)*Î(R)> = ^, (4.48)

where ^j(R) (^{(R)) creates an electron in the upper (lower) layer at the

position R and no = 1/2tt£2 is the electronic density.

Let us now consider the topological excitations in this system. While the

energy does not depend on the value of p, it depends on the spatial gradient

Vp. When the fluctuations of the out-of-plane component of the pseudo-spin

are small, the energy can be written as [87]

H = d2R
Ps,— n2 .

(hnoe/2) 2

2
(Vy) +

2C
mi ' (449)

/i
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where the second term comes from the capacity energy (4.46), mz = (Sz),
and Cß is related to the capacity per unit area [64]. The superfluid stiffness

ps arises from the loss of optimal Coulomb exchange in the presence of a

phase gradient [64]. Topological excitations associated with the vortices in

this interlayer phase p are called merons [64]. They are characterized by a

non-singular core. Close to the core position, the three-dimensional pseudo-

spin can exit out of the xy plane paying a finite capacity energy (due to

the second term) instead of a singular contribution coming from the first

term. Due to the (half)-flip of the pseudo-spin along the z-axis, a meron

carries a finite charge ±e/2, which is a fraction of the electronic charge e.

Merons in the bi-layer setup appear in four different species and can be

identified by the value of the charge ±e/2 and vorticity ±1. Each meron

alone involves a logarithmically divergent self-energy and therefore, like in

the case of a multilayered superconductor, excitations correspond to neutral

topological objects. Combining merons with opposite vorticity in pairs can

give rise to charged (±e) or uncharged configurations, corresponding to pairs

of equally or opposite charged merons. Due to the underlying broken U(l)

symmetry, the unbinding of meron-pairs is supposed to be of the BKT type

and leads to the suppression of the interlayer phase coherence at high enough

temperatures.

Let us now consider the bi-layer superconductor in order to shed light

on the similarities with the bi-layer quantum Hall setup. Also in the su¬

perconductor system the half-flux vortices appear in four species, with ±1

vorticity in each layer. The analogy between these topological objects and

the merons in the quantum Hall setup can be made clear by means of an

opportune variable change in the superconducting system. Instead of the

phases p\ and p2 in the individual layers, we consider the phase difference

p(R) = ^i(R) ~~ ^(R) and the phase average p+(R) = [<£i(R) + (/92(R)]/2.
The presence of a conventional vortex stack is induced by a phase twist in

the p+, while the phase difference p remains constant. On the other hand,

half-flux vortices are associated with a finite vorticity of p. We can therefore

distinguish vortices and anti-vortices in the phase difference p. In order to

obtain a full description of the four possible kinds of half-flux vortices we

need another variable. To this end, we can choose1 the value of the trapped

1 Another possibility is to define the variable mz(R) = [n-i(R) — n2(R)]/2noo, where

n-i (n-2) is the superfiuid density and n^ the asymptotic value of both n\ and n-2 in the

first (second layer). For equivalent layers is rnz = 0 except at the location of the core of a

81



4.3 Bi-layer system and I-V measurement

magnetic flux ±$0/2. In this way, we obtain a full description of the four

kinds of vortices: a (anti)-vortex in the upper layer corresponds to vortic¬

ity + 1 (—1) and flux +$o/2 (—$o/2), while a (anti)-vortex in the second

layer corresponds to vorticity —1 (+1) and flux —$o/2 (+$o/2). Hence, the

formal analogy to the bi-layer superconducting system is achieved by going

from magnetically charged vortices to vortices carrying an effective electronic

charge (thus, by replacing the elementary flux with the elementary charge

$o — e). Moreover, in both systems one obtains that the first correction

to the logarithmic interaction between half-flux vortices/merons is algebraic

oc 1/R, due to the Coulomb interaction for the quantum Hall setup and

to the stray-fields for the bi-layer superconductor (from the second term in

(3.15)).
From the experimental point of view both the physics of fractional flux

vortices and merons can be accessed in basically two ways. First, by test¬

ing the interlayer coherence/correlation by a drag experiment. This idea in

the context of bi-layer superconductors goes back to the flux transformer

firstly developed by Giaever [65], where the current is pushed through one

layer only (primary) and the induced voltage is measured in the opposite

one (secondary). In the quantum Hall setup electrons move together coher¬

ently and a voltage drop appears also in the secondary layer, even though

no external current is applied [82]. In the superconductor system the volt¬

age appears due to the motion of vortices in the primary layer, which drag

along vortices in the secondary layer due to the attractive magnetic interac¬

tion [65,67]. Clearly this effect is enhanced with an applied magnetic field

by increasing the density of vortex stacks. A second experiment requires the

counterflow geometry we have proposed to trace the appearance of half-flux

vortices. Opposite currents do not couple with charged excitations (charged
merons pairs/stacks) but only with the relative displacement of its (fraction-

alised) components, yielding no linear contribution to the resistivity. Hence,

in the counterflow geometry both the bi-layer quantum Hall system and the

bi-layer superconductor show a superfluid response [83] (i.e., dissipationless

flow), allowing a direct access to the specific properties of merons/fractional
flux vortices.

half-flux vortex. In terms of these variables one can obtain a free-energy similar to (4.49),
cf. also Ref. [88].

82



Thermodynamic behavior at zero magnetic held

4.4 Conclusions

Summarizing, in this Chapter we have presented a detailed analysis of the

BKT transition in superconducting systems with a finite number of layers.

The effectiveness of magnetic screening depends on the number of layers, pro¬

ducing qualitative differences in the thermodynamic behavior. The reduced

(fractional) magnetic flux $t trapped by a two-dimensional vortex extends

the logarithmic inter-vortex interaction to infinite distances, like in neutral

superfluids where magnetic screening is absent. The main consequence is the

appearance of a finite temperature BKT transition at which fractional-flux

vortices-anti-vortex pairs unbind. However, to describe the full thermody¬

namic behavior of these multi-layered superconductors one also has to ac¬

count for the effect of vortex stacks, which like Pearl vortices in a single film,

are thermally excited at any finite temperature and push the superconduct¬

ing transition to T = 0. We have discussed how to eliminate in an experiment

the effect of these thermally activated vortex stacks, in order to access the

finite temperature BKT transition. In the connected experimental setup of

Fig. 4.3 stacked vortices do not move, inhibiting the appearance of a linear

resistivity at low applied currents. The effect of stray fields modifies the

standard BKT scenario for the vortex unbinding transition; within an RG

approach we have shown how the density of free vortices above the transition

increases slowly with temperature, due to the large kinetic energy acquired

below the effective penetration depth Aeff, see Fig. 4.11. We have discussed

in detail the precise form of the I-V characteristic, including the effects of

magnetic screening. The presence of fractional-flux vortices can be accessed

by probing the system with small currents and it is associated, for example,

with the change of the exponent a at TbkT (V oc Ia): a = 3 at low currents

to a = 5 at larger currents. The value of the current which distinguishes

between these two different regimes is at Jeff = (C/Aeff)^o- The requirement

of having a large factor £/Aeff contradicts the demand of a sufficient large

separation between the transition temperatures TgKT and TbkT, i.e. of a large

Ginzburg number. We have shown how to optimally compromise between

these two opposite requirements in order to observe the main features of the

I-V characteristic with nowadays voltage and temperature sensitivities.

We have pointed out rather striking analogies with the properties of the

bi-layer quantum Hall setup at filling v = 1. In both systems the second layer

leads to the appearance of vortices carrying a fractionalized flux (charge).
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Combination of these elementary vortices into topological neutral pairs yields

finite energy excitations with unit or zero flux (charge). Charged excitations

correspond to standard vortices (vortex stacks), which describe the physics of

single film systems. The internal degrees of freedom can be experimentally

accessed in a counterflow geometry. In this manner charged vortex pairs

(stacks) are left inert, allowing to study the properties of neutral vortex

pairs and their unbinding into fractional flux vortices (merons).
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Chapter 5

Melting of the Vortex Lattice:

Bulk

We study the melting of the pancake vortex lattice in the limit of vanish-

ingly small Josephson coupling, implementing the idea of the substrate model

within the framework of the classical density functional theory. We obtain a

simple free energy functional in terms of a scalar order-parameter profile and

analyze the properties of the solid-liquid transition. Restricting the anal¬

ysis to density configurations with an integer number of vortices, the free

energy describes correctly the negative magnetization jump found in the ex¬

periments. We demonstrate the thermodynamic consistency of the theory by

deriving the Clausius-Clapeyron relation from our free energy. Finally, we

study the properties of a solid-liquid interface.

5.1 Introduction

The melting transition of the vortex lattice is one of the most remarkable as¬

pects of the phenomenology of high-temperature superconductors. It is now

both theoretically [12-14,16] and experimentally [36,37] well established that

enhanced thermal fluctuations make the Abrikosov lattice unstable towards

the formation of a vortex liquid over a large part of the B-T phase diagram.

The impact of thermal fluctuations is boosted in layered materials like BiS-

CCO due to their extreme anisotropy, cf. (2.49), favoring the appearance

of the liquid phase over an even wider portion of the phase diagram, see

Sec. 2.6.3. Here, we concentrate our analysis on the limiting case e — 0 of

85



5.1 Introduction

magnetically coupled layers, which serves as a guideline to understand these

materials and allows for an accurate theoretical analysis.

The first theories for the melting of the vortex lattice were based on the

Lindemann analysis (cf. Sec. 2.5 and [13,89]), which provides a stability

criterion for the solid phase. Although being not rigorous, the Lindemann

melting scenario has been reasonably accurate in predicting the position of

the first-oder melting transition. However, a more detailed description is

needed to characterize the transition completely.

Even if only the electromagnetic interaction is considered, a precise analy¬

sis of the melting transition is a challenging task due to the long-range char¬

acter of the interactions between pancake vortices, cf. (2.70) and (2.73). At

large magnetic fields the strong in-plane vortex repulsion dominates over the

out-of-plane interactions and the melting line approaches the 2D melting

temperature T^D of isolated planes. On the other hand, ignoring the possi¬

bility of low-field reentrance [12], at vanishingly small magnetic fields only

few pancake vortex stacks are present in the system. Thermal fluctuations

trigger the evaporation of isolated vortex stacks at TBKt, in correspondence

with the zero-field two-dimensional Berezinskii-Kosterlitz-Thouless (BKT)
transition (cf. last Chapter TBKt = TAt ~ Sod/2). For intermediate val¬

ues of the external magnetic field the melting line interpolates between the

BKT transition temperature TBKt ^ T close to the critical temperature Tc

and the two-dimensional lattice melting temperature T^D ^C Tc and the full

three-dimensional character of the system comes into play.

From a theoretical point of view, the particular properties of the poten¬

tial (2.69) and (2.73) allow for an elegant 'mean-field' approach [17] which

has been successfully used to describe the fluctuations of the pancake vortex

lattice. Due to the large difference between the in-plane and out-of-plane

components of the interaction, one can proceed with a dimensional reduc¬

tion of the problem to an effective two dimensional one. In the e — 0 limit,

the tilt modulus becomes strongly dispersive, cf. (2.48), Cu(kz) oc 1/k2, and

the tilt elastic energy oc cAkz)k2\uA)\2 in (2.41) generates a simple har¬

monic potential oc u2. Each pancake vortex feels this harmonic potential

arising from the vortex stack to which it belongs, in addition to the in-plane

interaction. As a result, the system can be analysed in terms of a two-

dimensional Coulomb gas under the effect of this substrate potential. One

can then study the stability of this effective two dimensional system by means

of standard techniques, such as the self-harmonic elastic approximation [90],
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and locate the solid instability line (see also Chapter 6). Finally, the de¬

termination of the melting line requires information of the liquid phase as

well. In [17], the melting line has been located via a comparison of the free

energies of the solid phase with numerical estimates of the free energy of the

liquid (from Monte Carlo simulations of the two dimensional one component

plasma). Extensive Monte Carlo and molecular dynamics simulations [41] of

the three-dimensional pancake vortex system have confirmed the validity of

this 'substrate' model and the accuracy of its results.

The extreme anisotropic limit of zero Josephson coupling between the

layers has also been analyzed by means of classical Density Functional The¬

ories (DFT) [16,27,91] .
If we compare the results of these previous DFT

approaches to the melting line obtained numerically, we find consistent re¬

sults at large magnetic fields larger than B œ 0.55a (B\ = $o/A2). However,

going to the low field regime the disagreement between the two theories is

substantial, since the DFT melting line lies at much higher temperatures.

Another problem of previous DFT studies is the value of the magnetization

jump across the transition. It is experimentally well known [36] that the vor¬

tex lattice shows a negative jump in magnetization, leading to a solid phase

which is less dense than the liquid, similar to the situation in the ice-water

transition. Besides direct observation of the magnetization jump itself, this

feature is also consistent with the negative slope of the melting line in the

B-T phase diagram and the Clausius-Clapeyron relation. However, previous

DFT analyses of the freezing transition led to a physical inconsistent picture

with a positive density change but a negative slope of the melting line.

In this Chapter, we adapt the DFT analysis to include the main ideas from

the substrate approach. The difference with the previous DFT approaches

lies in the determination of the direct correlation function. Whereas in the

previous analyses this was derived ab initio from the microscopic vortex inter¬

actions using the hypernetted chain approach or more elaborate extensions,

here we use a direct correlation function which combines results from Monte

Carlo simulations of 2D logarithmically interacting particles with the sub¬

strate potential. Within this new approach we obtain a simple expression

for the free energy which can be extendend to the study of inhomogeneous

cases. Moreover, we prove the thermodynamic consistency of our approach

by showing how to obtain the negative density jump across the transition, by

including a constraint which enforces an integer number of particles per unit

cell [92]. Contrary to former claims [27], we demonstrate that no higher order
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correlation function (three point or more) is needed in order to obtain this

negative density jump. Moreover, we demonstrate the thermodynamic con¬

sistency of the theory, by deriving the Clausius-Clapeyron relation from the

DFT free energy. Finally, we extend the analysis to study non-homogeneous

states. We derive a fully three dimensional free energy which is capable of de¬

scribing the coexistence of solid and liquid phase. We discuss the properties

of the interface, in particular its width and the free energy cost.

5.2 Classical Density Functional Theory

In this section, we introduce the classical density functional theory. For

simplicity, we consider here a generic three-dimensional system of point-like

particles interacting via a two-body potential V(r); the modifications needed

to describe the pancake vortex system are presented in the next section. The

convenient thermodynamic potential to study the melting transition is the

grand canonical free energy Q(ß,T, V) which is obtained from the partition

function

e"n/r = Ei/e^%"*IlF' (5-1}
N=0

' J
t=l th

where N is the total number of particles, ß the chemical potential (ß =

§oHL/4tt for a 3D vortex system with L the thickness) and Ath the thermal

length. The determination of Ath is only required to fix the additive constant

in the entropy. However, in our following analysis we only deal with energy

differences and terms containing Ath will drop out.

Following the classical Density Functional Theory of freezing outlined by

Ramakrishnan and Yussouff [25,93], we choose the uniform liquid as the

reference state and consider the difference in free energy due to the appear¬

ance of finite density modulations. The spatial arrangement of vortices is

described in terms of the density field defined through

N

pA) = 5>(r-r*)> (5-2)
%=\

where rt is the position of the z-th particle (the index ß emphasizes that

pß(r) describes the microscopic density, i.e., non averaged, cf. see below) To

analyze the finite temperature behavior of the system we consider the density
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p(r), averaged over thermal fluctuations

p(r) = A(r)), (5.3)

where the brackets (...) denote the thermal average. The liquid and the solid

phases are characterized by qualitatively different density fields p(r): in the

liquid phase the vortices are delocalized across the system and the averaged

density is constant p(r) = p3D; on the other hand the solid phase is charac¬

terized by a strongly modulated p(r), with pronounced peaks at the lattice

points. The appearance of finite density modulations is a consequence of

particle-particle correlations arising from the microscopic interactions V(r).
The simplest way to include the effects of the two body potential is via

the virial expansion [94]: one begins with the ideal gas partition function

and accounts for interactions in a systematic perturbative high temperature

expansion in terms of the Mayer function /(r) = exp[—V(r)/T] — 1. The

disadvantage of this approach is that the virial expansion remains analytic

to all finite orders. Hence, it cannot describe the melting transition which is

associated with the appearance of a singularity in the free energy.

On the other hand, the classical DFT is based on the assumption that

the free energy can be written as a functional of the averaged density p(r),
which plays the role of the order parameter of the transition. Again, one

starts from the ideal gas free energy describing a non interacting liquid, but

the correlations are included via an effective quadratic term in the density

modulations 8p(r) = p(r) — p3D. Within this approximation the grand canon¬

ical free energy difference relative to the uniform liquid reads

8Q[p(r)] f , r p(r)
T

=1 d3r |p(r) In^
- 8p(r)

-]- fd3r'8p(r)c(\r-r'\)8p(A]- (5.4)

The first two terms generalize the standard free energy of an ideal gas to the

case of non-homogeneous systems [95]. The double integral term incorporates

the effects of interactions up to second order in the density difference 8p.

This is the term which is responsible for the appearance of finite density

modulations, which are absent in a non-interacting system. Therefore, the

key input in this theory is the function c(r), so-called direct pair correlation

function, which has to be calculated to account for the correlations in the

reference liquid.

89



5.2 Classical Density Functional Theory

The direct pair correlation function can be related to more transparent

physical quantities such as the static structure factor [93,94]. We start from

the microscopic density-density correlator

(SpAApAi)) = 5>(ri "r*) " f^Wte - A - p3D]). (5.5)
S3

where 8pß(r) — Pß(r) ~ P3D- The Fourier transform of the density-density

correlator defines the structure factor1 [94]

Sfa) = -^ J dAdAe-^-^iSpAAp.A))- (5-6)

An important physical quantity related to the structure factor is the pair

correlation function

Hr) = jr^ j dA Y,{W + r - r.) - A] [Stf ~ A " P"])

= (^/rfVfe(r'+ r)^(r0) " f^' (5-7)

in the last line the delta function term comes from the diagonal terms in

the sum (i = j), which are present in the definition of the density-density

correlator, but not in the pair correlation function. The structure factor can

then be rewritten in terms of the pair correlation function

S(q) = l+p3D/i(q). (5.8)

Another function which is commonly used to describe the correlation in

the liquid phase is the so-called pair distribution function, which is defined

through

= l + h(r). (5.9)

The Fourier transform of <jf(r) produces an additional term (27r)3#(q) when

compared to the Fourier transform of h(r). This term is sometimes included

in the definition of the structure factor, e.g. in [93].

1In [93] this expression is named Ursell function (up to a factor l/p3°). The structure

factor contains an irrelevant additional (2ir)3ö(q).
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Next, we calculate the structure factor from the free energy (5.4). The

second functional derivative of the free energy with respect to p(r) evaluated

at p(r) = p3D is the (functional) inverse of the density-density correlator (see
also [93])

Ô%^
= KWi)«^))]-1

ô^pAMAA)]

= -L5(r2-r1)-c(\r2 - A) (5-10)
p3D

The functional inverse can be easily calculated in Fourier space. Using (5.6)
we find the relation between the structure factor and the direct correlation

function

slq) =
T^(+y

<5'n)

Therefore, apart from additive constants (or delta functions in real space), the

direct correlation function c(q) is the functional inverse of the structure factor

S(q) (or, in real space, of h(r) or g(r)). In Eq. (5.11), following standard

practice of liquid-state theory, we have defined the Fourier transform of the

direct correlation function c(q) with an explicit factor p3D (dimensionless
Fourier transform)

c(q)=p3D j d3vc(v)e-l<i-\ (5.12)

The q = 0 mode of the structure factor is related through the fluctuation-

dissipation theorem to the isothermal compressibility of the system, i.e.,

S(q = 0) = ((A2) - (A)2)/(A)2 = p3DTkt (the isothermal compressibil¬

ity of the ideal gas is A = ^/(AA) and

1-c(«=0) = ^k;- (5-13)

The study of the free energy functional (5.4) requires knowledge of the

direct correlation function c(r), a quantity which is usually obtained from

the liquid state theory. As in the virial expansion, it is possible to write a

diagrammatic expansion for c(r) in terms of the Mayer function f(r). For

weak potentials, high-order correlations can be neglected and c(r) is given

by the first (unperturbed) term

V(r)
c(r) « f(r) « --^-. (5.14)
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In order to obtain a better estimate for c(r), higher order terms in the per¬

turbation expansion must also be included. This is usually done by selecting

specific classes of diagrams out of the complete perturbative series. The ap¬

proach that is most widely used is the hypernetted chain (HNC) closure,

an approximation scheme which, however, is known to underestimate liquid-

state correlations. The strategy we pursue here is different: we exploit the

specific properties of the pancake vortex lattice by considering the system as

a collection of two dimensional systems of log-interacting particles subject to

a periodic modulated substrate potential due to the other layers, similarly

to the substrate model approach [17]. The correlator c(r) then combines

an in-plane correlator cZyZ(R), arising from the strong in-plane logarithmic

interaction, and the weak out-of-plane potential — VZyZ>(R)/T.

5.3 DFT-substrate approach

With respect to standard liquids, the pancake vortex system exhibits a strong

uniaxial anisotropy. Hence, we consider separately the in-plane (R) and out-

of-plane (z) dependencies: in particular p(r) — pz(R) becomes a sequence (in

z) of two dimensional densities and similarly we define the density variations

ôpz(R) = pz(R) —

p and the direct pair correlation function cZyZ>(\R — R'|)

(note that p is a 2D density). The DFT free energy of Eq. (5.4) can be

adapted to the anisotropic vortex liquid

6Q\pz{K)]_ fdz,rrT)^ pz(R)
= Ad'R

T Id
p,(R)ln^^-^(R)

P

1 f dz' i

~2 J ^2RV(RK,'(|R-R'I)<W(R')] • (5-15)

The only input needed in the DFT free energy is the direct correlation func¬

tion cZyZ>(R). Our approach implements the substrate model for the deter¬

mination of the pair correlation function, by separating the contributions

of the strong in-plane logarithmic repulsion from the weak out-of-plane but

long-range attraction,

cz,AR) = dc2V(R)ô(z - z') - -lAlll_ (5.i6)

where VZyZ>(R) is the out-of-plane interaction (cf. Eq. (2.72) for a bulk system

or Eq. (3.27) for a semi-infinite system).
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Within the planes, vortices are strongly correlated due to the repulsive

logarithmic interactions (we neglect the small contributions of order d/X
and use (2.70)). Hence, we can approximate cZyZ(R) with the direct cor¬

relation function c2I>(R) of the two dimensional logarithmically interacting

particles (also known as one component plasma, OCP). The effect of the

out-of-plane interaction on the in-plane component cZyZ(R) is small, since

Vz,z'^z(R) appears in the perturbative expansion at least to quadratic or¬

der oc [fz,z'MR)? ~ [Vz,z>AR)/TY ~ (d/A)2 [94]. Instead of using an

approximate scheme, such as the HNC equation, we used results of Monte

Carlo simulations of the two-dimensional OCP at various coupling constants

T = 2e0d/T to extract c2B(R). These simulations have been performed by

Gautam Menon on a system of 256 particles, using an alternative to the tra¬

ditional Ewald summation method proposed recently by Tyagi [96]. Ther¬

modynamic data and correlations were averaged over ~ 3 x 103 independent

measurements following equilibration. The program was benchmarked using

available numerical results for correlations and thermodynamic functions. In

the simulations, the pair correlation function h(R) = g(R) — 1 was calculated

and then Fourier transformed to yield the structure factor S(K) and finally

the direct correlation function c(K) = 1 — 1/S(K).
In the determination of the out-of-plane direct correlation function cZyZi (R)

we neglect the higher order correlations and approximate it with the lead¬

ing unperturbed value —VZyZ>(R)/T (cf. Eq. (5.14)). This is consistent with

the approximation we have used for the in-plane part, since higher orders in

cz,z'(R) involve at least terms of the type [fZyZ'^z(R)]2 ~ (d/X)2.
At a mean-field level the thermodynamically stable state corresponds to

the minimal free energy configuration of the functional (5.15). Then, the

density functions pz(R) must obeys the saddle point equation

ln^ = J ^-Jd2R'cZyA\R-R'\)6pAR'). (5.17)

A key quantity in our discussion is the molecular field £z(R) [25,26,97] defined

through

&(R) = ln^. (5.18)
P

At the minimum of the free energy, combining the saddle point equation

(5.17) with (5.18), the molecular field becomes

&(R) = f^f fd2R'cZyA\R-R'\)öPAR'). (5.19)
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The molecular field represents the average potential produced by the mod¬

ulated density. However, whereas Eq. (5.18) defines the molecular field, Eq.

(5.19) is only valid at the minimum.

5.4 Free energy in Fourier space

In thermodynamic equilibrium all superconducting planes are equal and the

averaged vortex density pz(R) becomes independent of the layer position z;

we write p^(R) = p(R)- Next, instead of seeking the exact form p(R) which

solves the non-linear integral equations (5.17), we restrict our analysis to

a simple family of periodic functions which models the modulations of the

density in the solid phase. In the following, we concentrate on the simplest

case, retaining only the first Fourier components of the density in a triangular

lattice

^
= i + v + yAKvR = i + v + pgKl (R), (5.20)

where the vectors Ki are the first reciprocal lattice vectors of the frozen

structure and depend on the area a of the unit cell, ß = ôp(Ki)/p is the

Fourier component of the density with wave length K\, and r\ = ôp(K = 0)/p
the relative density change. In a consistent picture the size of the unit cell

a in the crystalized structure and the value of the density jump are related

and, thus, K\ and r\ are not independent variables (we will come back to this

issue in the next section). The function

gKl (R) = J^ etKl'R = 2 cos(2x) + 4 cos(x) cos(y) (5.21)
Ki

includes the sum on the six first reciprocal lattice vectors, cf. (2.33); in the

last equality we have defined the dimensionless variables x = xKi/2 and

y = A>yKi/2. We also write a similar Ansatz for the molecular field

£(R) = < + &*i (R), (5.22)

retaining only the zeroth and first Fourier components, ( and £ respectively.

This Ansatz for £(R) is justified by noting that the saddle point equation

for p(R) involves the convolution of the density and the direct correlator.

However, in the liquid phase c(K) decays rapidly to zero (cf. Fig. 5.1) and

the full Fourier series of p(R) can be truncated after few terms. In a fully
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0 K/G

Figure 5.1: Direct correlation function at T/sod = 0.1 (r = 20) for the

two-dimensional OCP, cw(K) from MC simulations and Ah(K) = c2I>(K) —

VstAK)/T = c2D(K) + 2AK)/dK+ (cf. (5.28)) for the full three-dimensional

pancake vortex system at the melting magnetic field Bm (Bm/B\ œ 0.099 for

T/eod = 0.1). We define our unit of length G = (8ir2p/AÎ)l/2- At melting

the full three-dimensional correlator assumes the value c2°b = Ah(A = cc ~

0.856, cf. (5.47). The substrate potential VstAA modifies the full correlator

AL(K) in two different ways as compared to the in-plane correlation function

c2I>(K): i) it enhances the correlations of the liquid, pushing the melting to

temperatures larger than T^D and n) it shifts the peak of the correlation

function to a value of K which is smaller than G, and therefore it leads to a

cristallized structure with a density smaller than the liquid one, i.e., nv < p.
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consistent theory, the term £gKl(R) generates higher components öp(Kn),
which however are irrelevant for a rapidly decaying c(K).

The Fourier components of p(R) and £(R) are not independent and can

be related through (5.18). With the help of the following relations (from the

orthogonality of the Fourier basis)

- [d2Rg(R) = 0, - [ d2R[g(R)]2 = 6, (5.23)
a Ja a Ja

by filtering out the zeroth and first Fourier components of p(R) = pexp(( +

AAR)), we obtain the relations

(5.24)

(5.25)

This function is unaffected by rescaling of the unit cell area a (equivalently,
does not depend on the length of the vector K\).

Substituting the Ansätze (5.20) and (5.22) in the DFT free energy (5.15),
one obtains the two-dimensional free energy density (d is the interlayer spac¬

ing)

c = -*(O + Mi + v),

/«=i ;v«),
where we have defined the function

$(£) = In

ß Ja

s<b
_

d on

T pV T

as a function of the order parameters rj and ß

5cü2Av,pAi)

(5.26)

T
(i + AMi + ri-AA-v

+ Aß - -^Y1- - 3cZ(A)ß2, (5-27)

where ^ has to be understood as a function of r\ and ß through (5.24). In

(5.27) we have defined the correlator

cZ(K) = f^cz(K) = c2-(K) -J^W1' (5-28)

where cz(K) = cZy0(K) and VZ(K) is the dimensionless Fourier transform of

the bulk out-of-plane pancake vortex interaction (2.72)

VZ(K) 2neopd
'2

T TK2X2K4
e-K+\z\ = -a(K)AA, (5.29)

96



Melting of the Vortex Lattice: Bulk

with K+ = VK2 + A"2 (cf. Chapter 3), a(K) = 27re0pd2/TK2X2K+ and

fz(K) = exp(—K+\z\). Note the additional p factor due to the dimensionless

definition of the Fourier transform, cf. (5.12). The out-of-plane interactions

contribute to the correlator through the total stack potential

\AAAl= r°°dzVz(K)= 2a{K)
T J_^ d T dK+

(5.30)

which enhances the nearest neighbors correlations, cf. Fig. 5.1.

Within this approach only the K = 0 and the K = K\ components of the

correlator are present in the expression for the free energy (5.27). Particular

care must be taken when considering c2°b(0), which should reproduce the

compressibility of the system as we know from (5.13). In the limit of small

K, it is known that the OCP correlation function shows the asymptotic

behavior [42]

e^K^a^-f^A- <5-31>

where the first (divergent) term is simply the Fourier transform of the loga¬

rithmic potential and describes the incompressibility of the OCP. The second

term is due to the liquid correlations and can be derived from the virial equa¬

tion [94]. In the full correlator c2Dh(K), the divergent term of c2I>(K) cancels

out with an opposite term in the stack potential. This assures the charge

neutrality of the full three dimensional system; in the usual OCP charge

neutrality is due to the oppositely charged uniform background, here, this

effect is due to the third dimension, i.e., to the presence of full vortex stacks.

Including the second term in the expansion of the stack potential in c2°b(0),
we obtain

1-C(0)«f2| = î^. (5.32)

with B\ = $o/A2. We have neglected the correlation (second) term in c2D

(5.31), this approximation is valid down to fields B/B\ ~ 0.05. The results in

(5.32) is consistent with (5.13) and the compressibility of the vortex system.

In fact using the relation between compressibility and compression modulus

kt = l/cn(0), where from (2.44) cn(0) = B2/4ir, Eq. (5.13) yields 1 -

cs°b(0) = ^odcn/BT = <&oBd/4irT. Therefore, the substrate model discussed

reproduces prior results correctly. Only at very low fields (B < 0.055a), the

correlation term in c2D becomes relevant leading to an incorrect result. Hence,

in this particular limit, one should also include the effects of the higher order

out-of-plane correlations, which are neglected in our substrate model. In the
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forthcoming analysis, we neglect the effect of the correlation term in (5.31)
and use (5.32) for c2°b(0) for any value of the magnetic field. However, as

we will see, c2°b(0) affects only weakly the location of the melting line, which

can be derived essentially from AL(Ki), i.e., at a finite value of K = K\.

The equation (5.27) is one of the fundamental results in this Chapter.

The thermodynamic state of the system is associated with the minimum of

(5.27) with respect to r\ and ß. The liquid state is always a minimum and

corresponds to an uncompressed and homogeneous state, i.e., with rj = 0

and ß = 0. Depending on the values of the magnetic field B and of the

temperature T, a second minimum may appear at a finite value of ß ^ 0,

describing a solid phase. If the free energy value of this second minimum is

less than the free energy of the liquid, i.e., if at the solid minimum 5u2f/h < 0,

then the system freezes.

5.5 Constrained theory

Within our approximation for p(R), the state of the system is characterized

only by two parameters: the density modulation ß at the first reciprocal lat¬

tice vector and the density change r\ across the transition. However, a theory

based on the Ansatz (5.20) and the functional (5.15) is not fully consistent.

The problem, as it was pointed out in [92], is that in (5.20) the size of the

unit cell a and the density jump r\ are independent variables. This theory

therefore may lead to the appearance of states with a non-integer occupancy

per unit cell and, hence, not to a correct description of the solidification of

the liquid. To solve this inconsistency only states with a fixed and integer

total number of particles per unit cell should be considered. Hence, one has

to proceed with a constrained minimization of the free energy, introducing

a Lagrange multiplier \ which enforces the so-called 'perfect crystal' condi¬

tion [92]

d2Rp(R) = 1, (5.33)

i.e., each unit cell contains exactly one vortex. With this additional term the

free energy density becomes

s"h (v,pAi,x) Suj2°h (v,ßAi) X fd2Rp(R)-l\, (5.34)
JaT T pa

where 5uj2Aq,ß,Ki) is (5.27). Substituting the Fourier Ansatz in the La¬

grange multiplier term, we obtain the expression for the constrained free

98



Melting of the Vortex Lattice: Bulk

energy

5Aub(v,ßAi,x)
T

ôu2Av,P,Ki)
T

X (! + »/)-(§ (5.35)

where G is the length of the first reciprocal lattice vector associated with

a solid with the same density of the liquid (G2 = 8ir2p/Ai). The 'perfect

crystal' constraint of (5.33) yields a relation between rj and K\ (last term in

square brackets in (5.35))

nm = [ § 1. (5.36)

The case K\ = G describes an incompressible system, since the solid and

the liquid have the same density. However, an ordinary first order phase

transition is characterized by a finite jump of the density, and hence by a

non-zero rj. Consistently with our constrained theory, a finite rj corresponds

to the crystallization into a solid with a first reciprocal lattice vector K\ =

8AnN/Ai which is not related to the liquid density, K\ ^ G2. When K\> G

the solid is denser than the liquid, like in standard materials, whereas K\ < G

leads to an anomalous density jump with a solid which is less dense than the

liquid, similarly to what happens in the water-ice transition.

Minimizing (5.35) with respect to ß, rj, and K\, we obtain the following

relations

C = cZ(A)ß,

x = -m + a-cZ(o)A

3G2ß2dcZ(K)
x =

(5.37)

(5.38)

2*. ÔK !*•
<5'39)

which have to be completed with the constraint (5.36) coming from the mini¬

mum with respect to \ and the equation (5.24) relating £ with ß. Combining

(5.37)-(5.39) and (5.24), we can eliminate £ and \. The saddle point equa¬

tions for rj and ß can be written as

ß
[1 + V] Jv

d2Rg(R)exp ßcZ(K1)g(R)

d2Rexp ßcZ(A)g(R)

1-^5,(0)
HcZAA)

3G2ß2dcZ(K)

2KX dK KX

(5.40)

(5.41)
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5.6 Incompressible limit and melting line

where rj and K\ are related by (5.36). The homogeneous (ß = 0) and un¬

compressed (rj = 0) liquid always solves these equations. However, at low

temperatures, other non-uniform solutions (ß ^ 0) may appear. If their cor¬

responding free energy is smaller than the liquid, öu2^ < 0 the system freezes

into the periodic (crystal) structure.

The equations (5.40) and (5.41) can also be obtained directly from the

free energy (5.27),

^Z(v,p)
= öu2Av,pAA))^ (5_42)

where K\ is written as a function of rj via (5.36). The minimization of

5uJ2Arq, ß)/T with respect to rq and ß yields the saddle point equations (5.40)
and (5.41).

5.6 Incompressible limit and melting line

The pancake vortex system is incompressible (|c2°b(0)| 3> 1) for a wide por¬

tion of the phase diagram and the corresponding value of the density jump

is small, i.e., ?)Cl. In this limit, the free energy becomes a function of ß

alone,

S-^A = *4£("r=0'") = e«")" - *iV - *«<"», <•>«)

where c2°b = AL(G) and £(//) is implicitly defined by

M£) = $'(0/6. (5.44)

For the 3D vortex system, the whole effective three dimensional function

Ah is given by the sum of two contributions: the OCP correlation function

c2D and the stack potential Vstack(G) (5.30). Whereas the first depends only

on the temperature, the latter depends also on the vortex density and thus

on the magnetic field

2TG2 1 + X2G

c2D(T) + y^ ^
, (5.45)V ;

2vrT [1 +(8tt2/A$)B/Bxy
y '
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-0.02' ' ' ' ' ' ' '

0 0.2 0.4
n

Figure 5.2: Profiles of the two dimensional free energy difference du2I>(ß)

(5.43) as a function of the order parameter ß, in correspondence to the values

(from above to below) c2D = c(G) = 0.80, 0.83, 0.845, 0.856 (= cc critical,

thicker line), 0.87. At melting the order parameter jumps from the solid

minimum at ßs ~ 0.51 to ß\ = 0, overcoming the activation barrier öuA ~

0.0065 T.

where we use p/G2 = V3/(8n2) and A2G2 = (8it2 /A>)B/Bx, with Bx =

$o/A2.
At large values of B, the inter-plane interaction is negligible and the full

correlator reduces to the 2D-OCP component c211. The temperature enters

via the T-dependence of the direct correlation function c2D (T), changing the

coefficient of the quadratic term (like in the (\A Landau theory). We obtain

this quantity directly from MC simulations; the results are shown in the upper

plot of Fig. 5.3. Increasing the temperature, the liquid loses its correlation,

S(G) decreases, and so does c2D, cf. Eq. (5.11). As a function of ß, the

free energy exhibits the shape of a Landau theory describing a first order

phase transition. In Fig. 5.2 we plot the free energy as a function of ß for

different values of c2D. At large temperatures, the correlator c2D is small

and ou2B(ß) exhibits only one minimum at ß = 0 with a value ou2B(0)/T =

0, in correspondence with the (homogeneous) liquid phase. Decreasing the

temperature (which corresponds to increasing values of c2D), a second local
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5.6 Incompressible limit and melting line

minimum ßs (metastable solid) with energy

= 3c2V
- $(c2IVs) (5.46)

ÖU2B(ßs) 2

T

appears in addition to the liquid one at ß\ = 0. Freezing occurs when the

liquid and solid minima assume the same value of the free energy, i.e., when

ou2B(ßs) = 0. Within our one component theory, this condition is equivalent

to a simple equation for the correlator [26]

c2D = cc « 0.856. (5.47)

Going to even lower temperatures, c2D further increases, the solid minimum

goes down ou2B(ßs)/T < 0, and the crystal becomes the only thermody-

namically stable phase. Monte Carlo simulation [42] show that the 2D-OCP

freezes at T^D ~ £o<^/70 where however the correlator assumes the value

c2D œ 0.77 < cc (r = 2sod/T = 140). This disagreement is due to the

approximations we have adapted in our analysis. In particular, at low tem¬

peratures, the higher order peaks become important and more terms in the

Fourier expansion have to be retained [95].
At lower magnetic fields, the inter-plane correlation becomes important

and the 2D correlations c211 are augmented by the stack potential Ktack(G).
The critical condition <?°b(T, B) = cc can be solved together with (5.45) and

yields a simple expression for the melting line BAA

bat) _Vs\ Vsr
i

Bx 8vr2 4tt(cc-c2D(T))
(5.48)

This melting line is plotted in Fig. 5.3 (lower) together with the numerical

results of the MC/MD simulations [41]. We find a better agreement when

compared with the previous DFT studies where the direct correlation func¬

tion has been derived ab initio through approximative closure schemes such as

the hypernetted chain or the more elaborate Rogers-Young approach [16,91].
In particular this novel approach approximates well the numerical results for

small values of the magnetic fields (B < 0.5 B\), for which previous studies

show a substantial disagreement.
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Figure 5.3: Upper graph: values of the first peak at Kmax œ G of the in-plane

two-point direct correlator c2B(K) as a function of T/eod = 2/r, from Monte

Carlo simulations of the two dimensional one component plasma (OCP).
Lower graph: comparison of the melting line obtained from the substrate-

DFT analysis (solid line) with the result of full numerical simulations [17]

(dashed line).
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5.7 Density jump and Clausius-Clapeyron relation

5.7 Density jump and Clausius-Clapeyron re¬

lation

If we want to quantify the density jump across the transition, we need to

consider the saddle point equation (5.41) for rj

1

V ^{cfAKA) + JGß\J^iK)
„

, (5-49)
1-^(0) L ^ *""'

2(1 + 77/2) dK KX

where we have used K\ = Gi/1 + rj ~ G(l + rj/2) to linear order in rj from

(5.36). Previous analyses of the freezing of the pancake vortex system were

based on the unconstrained free energy (5.27), by fixing K\ in correspondence

to the value of K at which the first peak of in-plane correlation function takes

place. In the unconstrained theory, the equation for rq contains only the first

term in (5.49), since the second term is due to the Lagrange multiplier, cf.

(5.39); hence, within the unconstrained theory, one obtains ('nc' stands for

not-constrained)

_

_

$(cl>s)
^

$(c2>s)
%c ~

i - Cb(o)
~

AA)
' ( }

where in the last line we have assumed a small compressibility, i.e., |c2°b(0)| 3>

1. Given that c2°b(0) < 0 and ^(c^hßs) > 0, the sign of rj is always positive.

This result contradicts the Clausius-Clapeyron relation and the experimental

evidence that vortices, like water, freeze into a solid which is less dense than

the liquid. In a magnetic system the Clausius-Clapeyron relation reads [31]

AB=-4,A.(f^)-\ (5.51)

where AB = B\ — Bs = qB\ = —tj^oP is the jump in magnetic induction and

As = (S\ — Ss)/V the jump in entropy density. Ignoring the small difference

between H and B, equation (5.51) can be rewritten as ('CC stands for

Clausius-Clapeyron)

47rAsfdBAA\-1 (,,0,
^c =

-i^"(-rfr-J
• (5-52)

Combining (5.52) with the negative slope of the melting line BAA °^ Eq.

(5.48), we obtain that the density jump is negative, tjgg < 0. Therefore,

a theory with a positive rq and a melting line with a negative slope is not

thermodynamically consistent.

104



Melting of the Vortex Lattice: Bulk

The second term in (5.49) resolves this inconsistency. In standard 2D

systems the first maximum of the direct correlation function is placed at

Kmax ~ G, and hence ô^c2°b(G) (and the second term in (5.49)) is zero.

However, for the 3D pancake vortex system the substrate potential shifts the

first peak of AL(K) to a value of K which is smaller than G, Kmax < G (cf.

Fig. 5.1). Hence, the derivative dxAbAi) ~ ^K<^h(G) in the second term

of (5.49) is negative and a negative solution for rj becomes possible. Next, we

confirm the thermodynamic consistency of the constrained theory, by showing

that (5.49) and the Clausius-Clapeyron equation (5.52) are equivalent. To

compare (5.52) with (5.49), we need to calculate the jump in entropy density

As in (5.52). The latter is given by the T derivative of the free energy

pdöuZ pT d öuZ

As
d dT V,ß

ab

d dT T V,ß

3Tpß2 dclA^)
_

TpdcZ(0)o
„

STpAdclA^)
d dT 2d dT

V ~

d dT
' [b-b6)

where we have used that öu2f/h = 0 along the melting line. The second term

is of order rj2 ^C 1 and can be neglected when compared to the first one. In

order to calculate the entropy jump and tjcc ,
we need to evaluate the partial

derivative dcA(Ki)/dT at melting. The standard way [26,27] is to extimate

dcA(Ki)/dT from the temperature dependence of the solid structure factor.

Here we proceed in a different way. Comparing (5.49) with (5.52) and (5.53),
we see that in the first equation appears the partial derivative of c2°b with

respect to K\ whereas the second equation contains the partial derivative

with respect to T. To compare the two different expressions for rq we need

to find a way to connect these two partial derivatives. This relation can be

found from the critical condition which determines the melting line.

The system freezes when the free energy at the solid minimum vanishes.

Substituting the values of the molecular field ßs and of r]s at the minimum

in the free energy (5.27), the freezing condition reads

^^ = Al(Ki)ß2s - (1 + VsAAAKAs) = 0, (5.54)

where K\ is related to r]s through (5.36) and we have neglected the term

(1 ~~ csub(0))?7s '
which is quadratic in tjs. At the minimum the molecular field

£s and the order parameter ßs are related through £s = AL(Ki)ßs, so (5.54)
can be rewritten as

C2

c2AA)
(1+ %)$(&) = 0. (5.55)
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5.7 Density jump and Clausius-Clapeyron relation

For incompressible systems the same equation remains valid when one sets

Ss

Ô2D
3^ - HA = 0. (5.56)

From the discussion in the last section we know that this equation is equiv¬

alent to the simple condition c2°b = cc, cf. (5.47). Comparing (5.56) with

(5.55), it is simple to realize that the freezing equation in the compressible

theory is equivalent to the one in the incompressible limit if one replaces

c2°b(Xi)[l + r](Ki)] by Ab- Therefore, we can write a critical condition sim¬

ilar to (5.47) that is valid for a compressible system

<%,{T,K1)[l+V{K1)]=cc, (5.57)

where we have written explicitly both the T- and the K\-dependences of the

correlator. In (5.57), the correlator depends indirectly on the microscopic

magnetic field B in the solid phase through K\ via

/87T2 5\!/2

Since the microscopic magnetic field jumps across the transition, the micro¬

scopic magnetic field in the liquid is B\ = $oP = B/(l + rq) ^ B. Along
the melting line Bm(T), K\ can be written as a function of T only by using

(5.58), i.e. K\ = Ki(Bm(T)). Hence, at melting the LHS of (5.57) can be

written as a function of the temperature alone; taking the derivative of (5.57)
with respect to T, we obtain

dcZ(T,A)
=

cZAAjdvAJdKABm
dT 1 + vAi) dKx dB dT

dcZAAiïdAdBm

dKx dB dT
'

We need to compute the derivative

dKj
_

A
_

G

~dB ~2B~ 2Bx(l + vßY

where we have used B = B\(l + rq) and the linearized relation between K\

and G in (5.58). Inserting Eq. (5.59) (with the help of (5.60) and (5.36)) in

(5.53), we obtain the entropy jump across the transition

(5.59)

(5.60)

As=3-^
dB,

AbiTAi)
,

G dcZ(T,K)

r] 2(l + r7/2) dK KX At- (5-61)
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Inserting this expression in (5.52), we obtain the density jump rjcc described

by the Clausius-Clapeyron relation

~ZAAT,KA2
,

3G/i2
?7cc

4vrpT

T

1

B2 d

dcZAA)

l-Cb(O)

I + 77 2(1 + ?7/2)

3cZ(T,A)ß2
,

3Gß2

KxdK

dcZAA)
1 + 77 2(1+77/2) dK Kx

(5.62)

where in the last line we have used dB2/+npT = d<&oB\/4irT = 1 — c2°b(0)
from (5.32). The first term in the square brackets in (5.62) can be rewritten

with the help of (5.54). As a final result we obtain

'qcc =

l-c2uDb(0)
HcZAA)

3Gß2 dcZAA)

2(1 + 77/2) dK Kx-

= 77, (5.63)

which is exactly Eq. (5.49). Thus, we conclude that the saddle point equa¬

tion (5.49) is fully consistent with the Clausius-Clapeyron relation. Note

that this result is valid when one considers the constrained DFT. Within

the (standard) unconstrained theory, the expression which determines 77 is

given by (5.50), which misses the second term in (5.49) and, hence, is not

thermodynamically consistent.

To obtain an estimate of the density jump across the transition we have

preformed a numerical minimization of the constrained free energy (5.35).
The system freezes when the solid minimum exhibits the same free energy of

the liquid phase, i.e., when oüj(r]s,ßs) = 0. In Fig. 5.4 we present the results

of our numerical analysis for various values of T. For each temperature we

show the density jump at the transition; as expected, we find a negative value

of 77. However, the modulus of the density jump 77 is always small, between

\rj\ ~ 10~4 at low temperatures (large magnetic fields) and \rj\ ~ 10~2 for large

temperatures (low fields). The effect of such a small 77 on the determination

of the melting line and on the value of ßs in the solid phase is negligible.

5.8 Solid-liquid interface

In the last section we have shown how to obtain a consistent result for the

density jump across the transition. Given the small value of \rj\, however, its

determination is not important for the derivation of the melting line and the

discussion in Sec. 5.6 based on the incompressible limit remains valid. More¬

over, within the incompressible limit we can study more complex problems,
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Figure 5.4: Values of the density jump 77 across the transition as a function of

temperature for the 3D bulk vortex system. The density jump 77 is negative

and small, of order 10~4 at low temperatures (large magnetic fields) rising

to 10~2 at larger temperatures (low magnetic fields). Inset: log-plot of the

absolute value of rj.

such as inhomogeneous situations with a non constant order parameter along

z. In the following we will consider two (related) examples: i) a solid-liquid

interface (see below) and ii) the effect of surfaces on the melting transition

(cf. next chapter).
Let us consider an interface parallel to the ab plane between a solid and a

liquid domain. As a first step, we have to modify the Ansatz for the density

in order to keep track of the z-dependence of the order parameter

Pz(R)

p

= 1+% + ßzg(R) (5.64)

and equivalently for £z. For each value of z, the Fourier components of pz(R)
and £z(R) are still related via the expressions (5.24). For this inhomogeneous

situation the full z-dependence in the bulk direct correlator cz is relevant.

We write

c2D dö(z) + afz,

where in the last line we have defined the function f2

and the quantity ä = AG) = npTd/G2X2G+, with G+ = \JG2 + A-2

(5.65)

fz(G) = exp(-G+\z\)
The
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associated DFT 3D free energy density (A is the sample area)

5uj 1 5Ü

~pÄT
(5.66)

becomes a functional of the order parameter profile ßz

öu[ßz
T

dz

~J

dz

f dz'
_

-®{Çz) + oCzßz - 3 / —cz_z>ßz>ßz (5.67)

(5.68)

The first term describes the local two dimensional free energy of a uniform

system (5.43) with the full correlator c2°b. The additional non local term in

(5.68) quantifies the energy cost due to variations of the order parameter.

Along the melting line Bm(T) the solid and the liquid assume the same

value of the free energy and can coexist. Below we analyze the situation

when half of the system is in the liquid state and the other half is solid.

The corresponding profile of ßz takes the form of a soliton with boundary

conditions p^-oo = 0 (liquid) and ßz^+QO = ßs (solid), where &js2°b(0)/T =

^Aub(Ps)/T = 0. The properties of the interface between the two phases

depend on the non-local term in the free energy functional (5.68). For a large

part of the phase diagram (see Appendix C), it is possible to approximate

the full non-local theory with a local one, by proceeding with a gradient

expansion [98,99] of the kernel (5.65); inserting ßz> ~ ßz + (dßz/dz)(z' — z)
in (5.65), we obtain

Öv[ßz
T

with the elastic scale

dz S<b(ßz)
.

lp2

T +2
dßz

dz
(5.69)

(2 =
3«

= A
23Ai

+00J j 2
12a

r

27T [1 + (8tt2/VS)BAA/Rx]2'
(5.70)

This local approximation describes well the full non-local free energy if the

profile ßz varies slowly over the extension 1/G+ of the kernel. We have

checked that this condition is fulfilled for T > 0.04 Sod, which corresponds to

not too high magnetic fields B < 0.5B\ (see Appendix C).
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5.8 Solid-liquid interface

Figure 5.5: Profile of the order parameter ßz describing an interface between

a liquid (p^-oo = 0) and a solid (ßz^+QO = ps ~ 0.51). It has been obtained

numerically by solving the differential equation (5.71). The width of the

interface is approximately £e ~ 4.05 (we define it as the full width at half

maximum of the function dßz/dz), where £ is defined in (5.70).

Now we can estimate the main properties of the solid-liquid interface, e.g.

its width and free energy cost. We write the Euler-Lagrange equation of the

free energy functional (5.69)

It
,d2ßz d fôAAPz)
dz2 dß\ T

(5.71)

and the corresponding energy conservation relation (the integration constant

is zero for a soliton solution)

dpz
=

1 25uj2APz)
dz £\ T

The energy Tsl of the interface (soliton) is estimated as

dz

(5-72)

Tsl = T
d
£
,2(dpA2

dz AAA-^1 (5.73)

£ 2ôu2I>

ct-A^
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where ôu2B ~ 0.0065 T is the barrier in the energy density between the solid
max CV o

and liquid minima on the melting line and ps ~ 0.51 (cf. thick line in Fig.

5.2). The constant G is of order unity and requires to evaluate the integral in

(5.73). From a numerical analysis one obtains G ~ 0.69. The energy can also

be estimated from the first expression in (5.73), by writing dßz/dz ~ ßs/£e
and from the consideration that the relevant part of the integration domain

extends over a distance £e. Hence,

Therefore, by combining (5.73) together with (5.74), we can extract the width

£e of the interface between solid and liquid

4 « £
,

ßs
« CA (5.75)

Again, the value of the constant Ge must be obtained numerically. Defining £e

as the full width at half maximum of the derivative dßz/dz, we find Ge ~ 4.05,

see Fig. 5.5. At low fields, B — 0 (and T — TBKt), the soliton becomes wider

than the bulk penetration depth £e œ 8A, from (5.75) and (5.70). In the

limit of large fields the intra-layer interactions dominate the inter-layer ones,

leading to a system of decoupled 2D planes which melt independently (cf.
the vertical asymptotic of the melting line £>m(T) in correspondence to the

melting temperature of the individual layers T+"1). For large B, £e agrees with

this picture of independent layers, since it assumes the asymptotic behavior

£e ~ (B\/B)X which goes to zero for B ^$> B\. However, this final result

cannot be completely trusted, since equation (5.70) is based on the gradient

expansion which is not justified for B ^$> B\. In this limit, one needs to go

back to the full non-local problem. We have tackled numerically this problem

and, as a result of our analysis, we have found that the full theory produces a

sharper interface than the one coming from the gradient approximation (see

Appendix C).

5.9 Conclusions

In this chapter we have presented an analysis of the freezing of the uncou¬

pled pancake vortex system based on classical density functional theory. We

have solved the thermodynamic inconsistency of former studies which contra¬

dicted the Clausius-Clapeyron relation, by restricting the analysis to states
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with an integer number of vortices per unit cell. We determine the direct

correlation function of the pancake vortex liquid, combining the results from

Monte Carlo simulations of the two dimensional one-component plasma for

the in-plane component with the out-of-plane correlator from perturbation

theory. Despite of the simplicity of this technique, we have obtained su¬

perior results when compared with previous DFT analyses. Moreover, this

technique is easily extended to the study of non-homogeneous states. Besides

the study of an interface between a liquid and a solid domain, our substrate-

DFT approach can be used to discuss the impact of surfaces on the melting

transition, which we will describe in detail in the next chapter.

Finally, our substrate-DFT approach can be applied to other problems,

such as the effects of specific externally imposed surface potentials. Recent

experiments investigate the response of vortices in BiSCCO to a weak per¬

turbation induced by pinning structures created on the sample surface [100].
In our calculation, such surface pinning would be implemented as an im¬

posed external potential acting on the first pancake vortex layer. Within our

method we could then describe the response of the pancake vortex system

in layers far away from the surface as well as the interplay between periodic

surface pinning favoring order and thermal fluctuations favoring the liquid

phase.
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Chapter 6

Melting of the Vortex Lattice:

Surface

In this final chapter, we study the effects of an a6-surface on the vortex solid

to vortex liquid transition in layered superconductors. In the limit of van¬

ishing inter-layer Josephson coupling, the weak out-of-plane but long-range

interaction between pancake vortices justifies a treatment in terms of separate

2D vortex systems in the presence of a self-consistently computed substrate

potential generated by neighboring layers. Due to the absence of protecting

layers in the neighbourhood of the surface, the vortex lattice formed in this

region is more susceptible to thermal fluctuations. Within a self-consistent

elastic description, we find that the solid layer at the surface becomes un¬

stable at temperatures below the bulk thermodynamic melting transition.

Adapting the density functional theory of freezing to study the effect of the

surface, we obtain that both discontinuous and continuous surface melting

are possible for this system, with the latter scenario occupying the major

part of the low-field phase diagram. The formation of a quasi-liquid layer

below the bulk melting temperature inhibits the appearance of a superheated

solid phase, yielding an asymmetric hysteretic behavior which has been seen

in experiments [101].

6.1 Introduction

Melting should involve, in common with other discontinuous phase transi¬

tions, the appearance of metastable phases, namely an undercooled liquid
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below the transition temperature Tm and a overheated solid above it. Hence,

hysteretic behavior is expected upon cycling through the transition. How¬

ever, experiments on the layered, high-Tc superconductor BiSSCO [101] re¬

veal an asymmetric hysteresis, characterized by the appearance of only the

supercooled liquid and no overheated solid. Similar behavior is displayed by

ordinary crystals, in particular in metals [23,24,102], where such an asym¬

metry is understood to be a consequence of surface (pre-)melting: surfaces

act as nucleation centers for the liquid, thereby inhibiting a metastable solid

above the melting transition. However, such surface melting is not generic

and there are experimental systems, e.g. Pb(lll), Al(lll), and Al(110),
where the surface remains solid up to the bulk melting transition [24]. Here,

we study the effects of an (a6)-surface on the vortex lattice melting, showing

that, as the strength of the magnetic field is varied, the same surface may

exhibit either a 'surface non-melting' or a 'surface melting' behavior. The

latter scenario applies to the major part of the low-field phase diagram, in

agreement with experiments [101].
A first order phase transition is characterized by a finite jump of the

order parameter. Within a Landau mean field theory, the free energy devel¬

ops two equivalent minima at the transition. These minima correspond to

the coexisting solid and liquid phases. Away from but close to the coexis¬

tence line, the free energy exhibits a local minimum which corresponds to a

metastable phase in addition to the global minimum. To escape from such a

local metastable minimum, the system must overcome an activation barrier.

This escape from the metastable state occurs through nucleation of small

droplets of the thermodynamically stable phase. If the radius of the droplets

exceeds a given critical value, the stable phase propagates into the system.

When the energy barrier disappears, no metastable minimum is present and

the critical radius of the droplet vanishes.

A general phenomenon associated with the appearance of metastable

states is the presence of hysteresis in cycling through the transition. On

cooling or on heating, the system can remain trapped in the metastable

state and the actual transition will occur not at the melting temperature Tm

but at some temperature close to it, depending on the particular sample and

the experimental conditions.

Even if locating the transition itself requires that the bulk free energies of

the two phases to be compared, a criterion which is unaffected by the presence

of the surface, surfaces can drastically modify the hysteretic behavior. For
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example, in the case of the melting of conventional solids, the atoms at the

surface experience a weaker stabilizing potential. An analysis of the stability

of crystals in the presence of a surface, as it was done in Ref. [103] for a

semi-infinite atom chain, shows that the enhanced motion of surface atoms

makes the lattice on the surface unstable at a lower temperature than in the

bulk. This suggests that the surface may represent a favorable nucleation site

for the liquid phase. However, the state of the system beyond the surface

instability point cannot be addressed by stability arguments alone.

A better description of the melting transition in the presence of a sur¬

face requires to include the effects of both the solid and the liquid phases

[104-106]. On a phenomenological level, this can be done within the frame¬

work of a Landau theory, in terms of the natural order parameter of the

melting transition, i.e., the Fourier components of the particle density. The

destabilizing effect of the surface can be accounted for by introducing a sur¬

face term favoring the appearance of the liquid at the interface [22,107].

Qualitatively different scenarios are possible depending on the strength of

the surface term. For relatively large perturbations the surface assists the

formation of the liquid at the melting transition and removes the overheated

solid. As a function of temperature, the order parameter goes continuously

towards the liquid minimum at the transition temperature (named surface

melting [24] or 02 transition [22]), even if the order parameter in the bulk

jumps discontinuously. For weak surface perturbations, an alternative sce¬

nario applies. As in the bulk, the order parameter at the surface jumps

discontinuously to the liquid minimum across the transition, although from

a reduced value (surface non-melting or 0\ transition). In this case, the

surface does not inhibit the appearance of the overheated solid phase.

In the following, we start from a 'microscopic' theory which accounts for

the modification of the inter-vortex interactions at the surface. The analysis

of the effect of the surface proceeds into two different ways. First, in Sec.

6.2 we use the substrate model to study the stability of the pancake vortex

lattice close to the surface. Whereas, in both the B — 0 and B — oo

limits the surface turns out to be irrelevant, for intermediate values of B we

obtain that on the first layers the lattice becomes unstable below the bulk

melting line. Therefore, in this regime we expect important precursor effects

at the surface. Then, from Sec. 6.3 on, we change our approach and study

the problem within the framework of the substrate-DFT theory that we have

developed in Chapter 5. We present an analytical solution of the problem and

115



6.2 Stability analysis

show that depending on the value of the magnetic field the system exhibits

either a 'surface non-melting' or a 'surface melting' behavior. Finally, in

section 6.4 we confirm the validity of our analytical approach by a direct

numerical solution of the DFT equations.

6.2 Stability analysis

At large temperatures thermal fluctuations trigger the dissolution of the vor¬

tex lattice. A plausible mechanism for this effect comes from the anharmonic

terms in the free energy that soften the crystal, eventually rendering it un¬

stable above a typical temperature Tu. Between the melting temperature Tm

and Tu > Tm (spinoidal region), although the liquid is the stable minimum,

the system can remain trapped in the solid phase. Experimentally, in this

temperature window non reproducible effects should show up, resulting in

the typical hysteretic behavior of first order phase transitions.

A study of the stability of the vortex lattice based on the substrate model

was presented in [17]. The anharmonic crystal is described in the framework

of an effective harmonic theory whose elastic moduli are softened by thermal

fluctuations. The instability temperature of the solid is then identified with

the limiting value for which a solution is possible within this self-consistent

theory. Here, we generalize the analysis of [17] to the more complicated case

of a semi-infinite sample, with a surface parallel to the a6-planes [108]. The

presence of the surface modifies the elastic properties of the pancake vortex

lattice in two ways: i) via the appearance of stray fields modifying screening

and thus the interaction between pancake vortices; n) via the weakening

of the overall out-of-plane potential due to the absence of pancake vortices

above the surface. We will see that, for a large part of the phase diagram, the

softer crystals at the surface turn unstable below the thermodynamic melting

transition. This suggests the presence of important precursor effects at the

surface.

6.2.1 Substrate model

Even though a complete stability analysis of the full three-dimensional prob¬

lem is very complicated, the strong anisotropy in the in-plane and out-of-

plane interactions allow for an elegant and precise handling of the problem

via a dimensional reduction to two dimensions. Each pancake vortex feels an
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overall aligning force from the remaining vortices in the stack which arises

from the sum of many (X/d) small terms (oc d/X). For small vortex displace¬

ments the attractive potential is quadratic,

Vstack(^) ~ -a0(z)u2z, (6.1)

where ao(z) accounts for the overall out-of-plane interaction

a0(z) = V d2Az',z(R) = 9lVtAR, z) (6.2)
z'+z

R=0 R=0

where Vz>yZ(R) is the out-of-plane magnetic interaction (3.27) between pan¬

cake vortices in a semi-infinite geometry and Ktack(i?, z) the magnetic inter¬

action of a pancake vortex in a semi-infinite stack (3.37). Performing the

second derivative in (6.2) with help of (3.37), we obtain

Mz) = ^l dKM^ TTkA)- (6-3)

The large K divergence of the substrate strength is an artifact of the London

approximation which does not account for the suppression of the supercon¬

ducting density close to the vortex core. Using an upper cut-off of order

~ l/£ with A 3> £, we obtain the bulk result

ao(oo) « -^ln- (6.4)

while at the surface

m\
£°d

i
A ao(oo)

«o(0) ~ ^p
ln
7
=

—£— (6-5)

This result is easily understood: for short distances the out-of-plane vortex

interaction (3.28) at the surface coincides with the bulk one. Thus, the

surface substrate strength is only half the bulk one, since it is due to a semi-

infinite vortex stack.

At finite temperatures, the vortices still feel a quadratic potential, but its

strength is reduced by the thermal fluctuations. We account for this thermal

softening in a self-consistent manner by choosing the strength of the harmonic

potential a(z) to match the thermal average (...) of the real potential,

Az) =
Ydl(Vz>A"z-nz,\))- (6.6)/ j

^x

Z^Z'
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Equation (6.6) requires to evaluate the thermal average over the in-plane

displacements of the vortices in (3.27). Hence, we need to calculate the term

(d2x Jo(K\uz> — uz\)); for Gaussian fluctuations, we can use the identity

(d2uAo(K\nz, - uz\)} = -^ d±Kl{A\^--^A

= --K2e-K2{{ul)+{u2z'))/A, (6.7)

where (u2) is the mean squared thermal displacement of vortices within the

layer z. Hence, the substrate potential becomes a functional of the whole

fluctuation profile

£qCP r°° e-K\{ul)+{A/A
"MtâW =^rY, I dKK

x
(e-K^z-z'\ + ^±^-e-K^z+z'A. (6.8)

V K+ + K ) K '

Again, we find that the substrate potential depends on z and, thus, it is

different at the surface and in the bulk. However, we will see below that the

thermal fluctuations strongly reduce this difference when compared to the

T = 0 results (6.4) and (6.5),

6.2.2 Evaporation of an infinite and of a semi-infinite

vortex stack

Before tackling the full problem of a semi-infinite system at finite magnetic

fields, we study the low-field limit in detail. We show that the enhanced

thermal fluctuations strongly reduce the difference between cuo(0) and cü0(oo),
and that the surface is essentially ineffective in this limit. We start the

discussion with the infinite bulk case [17], which serves as a guideline to

illustrate the substrate approach.

In the bulk, the system is translation invariant and the value of the pan¬

cake vortex fluctuations are independent of z. With the definition (u2) =

(u2,), the substrate potential becomes

pnCp r°°
„^

-K+\z\-K2(u>)/2

a{{u2)) = -wj0 KdKY,- JA
• (6-9)
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Going over to a continuous description along z', the sum over all layers can

be written as

j>-^-yi « r dAe-K^-A
_ 1} (6.10)

z'+z
^-°° d

where we have been careful to exclude the layer with the test vortex at z.

We have to retain this contribution, although it is of order d/X, if we want

to study the modifications of the vortex stack dissociation at the surface.

Carrying out the integral over z', we obtain

2„ sod2 A r^r,e-K2{v2)/2
a{{u)) = ^Jo KdK^l-\-dK--lY ^

As the temperature of the vortex stack dissociation transition is approached

from below, vortex fluctuations become large: (u2) ^$> A2. In this limit we

can carry out the integral over K, yielding

Using the equipartition theorem for quadratic potentials, we obtain a second

relation between (u2) and a,

2T

<u > =
«my

(<U3)

We can therefore solve for the fluctuations and obtain

22À

(u2) ~
1 _ r , (6.14)

-BKT

where we have defined (cf. (4.1) together with (2.66))

Combining (6.12) together with (6.14), we see that the substrate potential

collapses exactly at the BKT transition temperature Akt- At this tempera¬

ture the vortex fluctuations diverge, leading to the dissociation of the stack

into unbound pancake vortices, as discussed in Chapter 4. Thus, the sub¬

strate potential is able to reproduce correctly the evaporation of the vortex

stacK at -/bkt-

In a semi-infinite geometry, the system loses its translation invariance

along z. As a consequence, the pancake vortex fluctuations (u2) are not
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constant throughout the sample and the z dependence must be retained

in the calculations. The solution of the problem in terms of the substrate

potential requires to handle a coupled set of integral equations for different z.

However, if we are only interested in an estimate of the substrate potential

at the dissociation transition, we can equivalently look at the in-plane BKT

vortex-anti-vortex pair unbinding. By combining (3.22) with (4.1), we find

that the surface superconducting layer undergoes a BKT transition at

TbkT = ^(i-^)- (6.16)

Surface vortices dissociate at a slightly lower temperature with respect to the

bulk but the effect is small, of order d/X. Hence, the collapse of the individual

vortex stack in the bulk and at the surface occurs approximately at the same

temperature TAt ~ A^, showing that, in this single stack/low-field limit,

the (T = 0) difference between the substrate potential at the surface and in

the bulk is strongly reduced.

6.2.3 Surface instability of the pancake vortex lattice

At any finite magnetic fields, the pancake vortices arrange themselves in

aligned 2D lattices, resembling the triangular lattice of vortex lines which we

have described in Sec. 2.4. The relevant excitations correspond to deforma¬

tions u(R, z) of the 2D lattices which are described, for each z, by the elastic

2D free energy

AD[u] = -^ / d2Kul(KAAK,z)ui(-K), (6.17)
OTT JBZ

where $tJ(K,z) is the elastic matrix of the lattice at z and ulz is the z-th

component of the 2D displacement at z (i = x,y).
At high magnetic fields, the in-plane interactions become the dominant

ones and the system splits into independent 2D lattices. For a two dimen¬

sional triangular crystal, the in-plane elastic matrix $ contains only the com¬

pression (ötj-KtK3)$(K) = cmK2 and the shear KtK3$(K) = cxl(K)K2

projections. Ignoring small contributions of order d/X in (3.21), pancake

vortices repel logarithmically on all scales, cf. Eq. (3.23). The long range

interaction makes the system incompressible: retaining only the v = 0 term

in (2.39), we find a strongly dispersive compression modulus

4nepdnl
C^\K) =

—^2—' (6-18)
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which is divergent for long wave deformations K — 0. On the other hand,

due to the long range nature of the inter-vortex interactions, the calculation

of the shear elastic modulus becomes a highly non-trivial task, since all terms

in the elastic sum must be retained. Nevertheless a solution of this problem

is available in the context of uncharged superfluid systems [34], e.g. 4He. As

a final result, the expression (2.43)

cm = —j—, (6.19)

which was derived for the screened logarithmic potential oc K0(R), remains

valid also for unscreened logarithmically interacting particles. This result

can be understood with the following simple argument. If we rewrite (6.19)

cm = Sodny/4 = h2nsnvd/16m the charge e drops out and, thus, magnetic

screening does not play a role in the determination of cm (ns is the superfluid

density, we have used the expression (2.26) and $0 = hc/2e). Hence, an

unscreened logarithmic potential and a screened one (e.g. K0(R)) generate

the same shear modulus (2.43). In the high field limit the surface does not

enter in the elastic constants. Hence, the system is composed of independent

and equal 2D lattices of vortices which interact with the same logarithmic

interaction. As a result, the instability temperature is equal in all layers and

the surface turns out to be ineffective also in the limit B ^$> B\.

So far we have shown that in both the low and high magnetic field limits

no important effects from the surface can be expected. However, for interme¬

diate values of B the full three dimensional nature of the problem is relevant.

Each 2D lattice feels a periodic stabilizing potential from the pancake vortex

stacks, which stiffens the elastic modes of the 2D logarithmically interact¬

ing vortices. Within the self-consistent harmonic approximation (SCHA) the

energetic contributions associated with the elastic distortions of the lattice

are described by an effective quadratic hamiltonian with renormalised elastic

moduli,

%(K, z, [{u2z)]) = $£(K, (u2z)) + nMz, [(ul)])ôv. (6.20)

The 2D elastic matrix, softened by pancake vortex fluctuations, is

$£(K, (u2z)) = eodn2v J] [/* (K„ + K) - /-(K,)], (6.21)

where /„(K) = K1Kj(4tï/K2) exp[—K2(u2)] is reduced by the vortex fluc¬

tuations via the Debye-Waller factor. It follows that the 2D shear elastic
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constant c66((«2)) is softened within the SCHA by the thermal fluctuations

(m2). It recovers the usual form for the 2D vortex lattice at T = 0, where

(u2) = 0. The stack potential at finite magnetic field derives from the sum

over the vectors of the reciprocal lattice K.v

a(z, [{A}]) = 27rnveod2 y^ /
^

Jo

oo dz, e-^««?>+(«2/»/4

K+
- K

d X2K
V

e-KÎ\z-z>\ + "v
"Ve-KÏ{z+z>) ) ^ (g_22)

K+ + KV

with K+ = \JK2 + 1/A2. The difference between the bulk and the surface

lattices is due to the substrate potential, which can differ appreciably when

thermal fluctuations are not too large (cf. the discussion of the T = 0 limit

for a(z) in Sec. 6.2.2).
The surface breaks the translation symmetry in the z direction, making

the determination of the substrate potential a non-trivial task. Within the

SCHA, one has to solve the following set of equations (for different z) for the

fluctuations (u2) self-consistently,

(u2z) = T J^ ^[$-i]M(K,z, (u2z)), (6.23)

where (u2) enters also in the elastic matrix. In particular, the substrate

potential a(z, [(A)]) depends on the fluctuation profile (u2) and couples

different positions z in (6.23). Assuming a circular Brillouin zone with KBZ =

V+jî/ao, the integral over K yields

(U2>= TL—infi- *6«)tf!z

4ncm((u2)) V nvo;(z, [(m2,)]),
T

4ncAKA + a(z,[(u2z,)])'
(6-24)

The stack evaporation and the high field limit are recovered as special cases

of (6.24). At low magnetic fields the elastic moduli can be neglected in

comparison to the substrate potential, giving (u2) = 2T/a(z, [(A)])- On

the other hand, at large magnetic fields the relevant modes are the shear

deformations. The substrate potential acts as a large K cut-off for shear

fluctuations which otherwise would diverge logarithmically. Therefore, the

substrate potential provides only a small logarithmic correction to the two
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dimensional scenario. In this regime, even if the substrate potential at the

surface is reduced with respect to the bulk (cf. Eqs. (6.4)-(6.5)), the system

is effectively two dimensional and no relevant modifications appear at the

surface.

To tackle the full problem at any value of the magnetic field we have

solved Eq. (6.23) numerically by testing different variational Ansätze for the

function (u2). For a given shape of the fluctuation profile (u2), we can carry

out the integral in z in (6.22) and derive an expression for the substrate

potential as a function of few variational parameters. Solving a convenient

number (equal to the number of the variational parameters) of Eqs. (6.23)
at different values of z, we can fix the values of the parameters and find an

approximate solution for the function (u2). The accuracy of the solution can

be checked by inserting the fluctuation profile back in the right hand side of

Eq. (6.23) and examining the accuracy of the solution of the self-consistent

set of equations for arbitrary z.

We have found that the exponential Ansatz

(u2z) = (ul) + e-z^((u2)-(ul)) (6.25)

characterized by the three free parameters (u2), (A), and r yields results ac¬

curate to about 1.5%. Inserting this Ansatz in (6.22), we obtain an expression

for the substrate potential as a function of these three parameters

e-K*((u*(z))+(ul))/4
a(z) = Treodruy 2_^ -— (6.26)

k^o
ÀKv

-k+z^jxk+t T(-AX+r, Kue-z'Xr, Ku)

+ eK^z(KAXKtr T(AX+r, Kue~zlTX, oo)

where Ku = (K2/4)((u2) — (A)) and T is the incomplete Euler Gamma

function

T(x,a,b)= j eAx~ldt. (6.27)
Ja

By inserting Eq. (6.26) in (6.23) for a given value of z, one obtains an equation

with the three unknown variables (u2) and (A) and r. Considering Eq. (6.23)
for three different values of z (we choose z = 0, z = A/2 and z = oo), we
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obtain the values of (u2) and (u2)) and r. The values of these parameters

depend on temperature and magnetic field. For a fixed value of T, at low

fields we always find larger fluctuations at the surface (u2) > (A), suggesting

that the surface lattices are softer than the bulk ones and, thus, more sensitive

to thermal fluctuations. Increasing the value of the magnetic field, both (u2)
and (A) increase up to the field Bsuif where no solution is found at the

surface, z = 0. We interpret this results as the instability of the surface

layer. The instability line (Tsurf, Bsuii) in the phase diagram is then obtained

by calculating the value of Bgui{ for different temperatures T. The instability

is triggered by enhanced fluctuations at the surface which produce a large

(u2), cf. [103]. We obtain that along the surface instability line the mean

squared displacement (u2) on the surface layer becomes comparable with the

lattice constant (u2) ~ 0.1 a2,. This result is consistent with a Lindemann

parameter cl ~ 0.3, cf. Sec. 2.5.

It is known that the SCHA usually overestimates the instability tem¬

perature [90]. A more accurate scheme is provided by the 2-Vertex SCHA

(2V-SCHA) [90], which includes more anharmonic terms in the perturba¬

tion expansion about the harmonic approximation. In Fig. 6.1 we show

the instability line for the surface layer calculated within a 2V-SCHA us¬

ing an exponential Ansatz for the fluctuation profile. We compare this re¬

sult with the bulk instability line and melting line, as obtained in [41] from

Monte Carlo/molecular dynamics simulations. We find that for temperatures

T/eod < 0.205 the surface becomes unstable below the bulk thermodynamic

melting temperature. As a result, we conclude that in this temperature

regime the solid phase is stable below the surface instability line, where a

solution for the self-consistent set of equations can be found in all layers.

We can also conclude that above the bulk instability line, no solid, not even

a metastable one, can appear. However, within this analysis one cannot

describe the state of the system between surface and bulk instability lines,

where both the liquid and solid phases should be accounted for. To obtain

a complete picture one needs a better analysis, able to treat both solid and

liquid phases on equal footing, cf. the density functional theory analysis in

the next sections.

At low magnetic fields, which correspond to temperatures larger than

T/e0d ~ 0.205 (see inset of Fig. 6.1), we find that the surface instability line

lies above the melting line. In this regime we expect no important effects

from the surface. This agrees with the analysis of the dissociation of an
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bulk instability
— surface instability
-- melting line

m0d

Figure 6.1: Results of the stability analysis of the vortex lattice at the surface

(solid line) and comparison with the bulk instability line (dotted line) and

the bulk melting line (dashed line) of Refs. [17, 41]. The magnetic field

unit is Bx = $o/A2. The melting temperature T^/e0d « 1/70 « 0.014 of

the individual two dimensional layer [42] is showed by the dashed vertical

line. At low magnetic fields (inset) the surface becomes unstable above the

bulk melting line. In this high-temperature/low-field regime we expect no

important effect from the surface.
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isolated vortex stack at the beginning of this section, where we have found

no modifications on the surface (up to order d/X).

6.3 DFT analysis of the surface melting

A more detailed study of the effects of the surface on the melting transition

requires an analysis which is not limited to the solid phase alone. To this

end, a more convenient technique is provided by the substrate-DFT approach

which we have used in Chapter 5 to study the melting transition in the bulk.

This approach provides us with an accurate order parameter theory which

can handle both solid and liquid phases in a unified manner [109].
The energy difference relative to the homogeneous liquid is given by the

expression (5.67) for a non uniform order parameter in a bulk system. The

presence of a surface modifies the bulk expression (5.67) in two ways: i) the

superconductor occupies only a half-infinite space z > 0, n) stray magnetic

fields modify the vortex interaction and hence the direct correlation function

cZyZ>; therefore, for the present system the free energy density becomes

«^[//.z] f°° dz

T
=

I ~d
f°° dz'

_

-$(&) + §£zHz - 3 / —rCZyZlßzlßz
, (6.28)

'0 d

where £z is understood as a function of ßz through ßz = &'(£z)/6 and $(£)
is defined in (5.25). In (6.28) the function

cz,z> = c2Ddö(z - z') - VZyZ,(G)/T (6.29)

is the direct correlation function cZyZ> = cZyZ>(G) evaluated at the first recip¬

rocal lattice vector (G2 = 8ti2p/A> = 8tv2B/i/3$o)- It includes the effects of

stray fields through the out-of-plane interaction VZyZ>(G) of Eq. (3.27) and re¬

places the translation-invariant expression cz-z> = c2Bdô(z — z') — VZ-Z>(G)/T
in (5.67). From (3.27), we obtain the dimensionless Fourier transform of the

out-of-plane potential,

Vz,z'(G)
=

irTd / G+\z_z>\ G+ - G
G+(z+z>)

T G2X2G+ V C+ +G

= -Afz-z>+ßfz+z>), (6.30)

with G+ = \JG2 + A 2 and Y = 2sod/T the one component plasma parame¬

ter. In (6.30) we have defined the function fz = fz(G) = exp(—G+|z|) and
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the quantities ä = a(G) = 7rpTd/G2X2G+ and ß = (G+ — G)/(G+ + G).
After some simple algebraic manipulations the free energy can be written in

the more convenient form

5co[ßz] f°° dz iScoZA)
,

3â f°° dz'
2

teG [°°dz I00 dz' -

+
gAg-Jo -dl -df>+«w> (6-31)

where like in (5.68) the first term describes the free energy of a homogeneous

system (5.43)

= 6^(ß)ß-3c3A2-^Aß)), (6-32)
T

with the full correlator c3D = c2D — VstaAG)/T (cf. (5.26)) which includes

the contributions from the 2D OCP in-plane component c2D and the bulk

substrate potential VstaAG)/T = —2ä/G+d. Comparing (6.31) with the

corresponding bulk expression (5.68), we see that the surface free energy

contains a mirror term (the term oc fz+zi in the first line) and a pure surface

term (second line), see the discussion in Sec. 3.4.1.

The configuration of the system is derived from the saddle-point of (6.31).
Minimization with respect to ßz provides us with the integral equation

f / A[^z~z *z+z'^ßz~ ßz''

12aG_rdz'f n <a^\

+AAAI Afz+Z'ßz'
= °-

(6-33)

In the following, we first acquaint ourselves with the formalism by studying

the B « 0 and large field limits. Then, we present the full analysis at

arbitrary values of the magnetic field.

6.3.1 Large magnetic field and B « 0 limits

Let us consider firstly large magnetic fields, i.e., B ^$> B\. In this limit, the

contribution of the out-of-plane potential vanishes (G ~ (B/Qo)1^2 — oo and

ä — 0) and the system decouples into independent two-dimensional systems.

Only the intra-layer interaction becomes relevant in this limit; hence, the free

energy is simply
5uj[ßz] b>>bx f°° dz SAAPz)

(6 34)
T In d T
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6.3 DFT analysis of the surface melting

This free energy is given by the bulk expression (cf. Fig. 5.2), which we have

already studied in Sec. 5.6. In this high-field limit the correlator Ab (cf-

(5.45)) reduces to the 2D-OCP component c211 which is z-independent. The

saddle point equation dßzouj2Aßz)/T = 0 does not depend on z and the so¬

lution is given by a constant order parameter profile. Thus, no modifications

occur at the surface for B ^$> B\.

In the opposite limit of B ~ 0 (G ~ 0), ä remains finite. Since G+ ~ 1/A,
the surface term in (6.31) is negligible and the free energy becomes

6APz] b^o [°° dz\5u)2Aßz) 3ö f°° dz' - - 2i
+ TT

/ —r(jz-z' + jz+z')(ßz-ßz') • (6.35)
T ./n d

0
T 2

.L d
0

The solution of the associated saddle point equation,

d^{ßz) + GäjT^L/U, + fz+Aßz - ßz') = 0, (6.36)

contains an additional term as compared to (6.35). However, this additional

term involves the difference ßz
—

ßz> and thus it is equal to zero for a constant

profile of the order-parameter. As a result, the bulk constant solution is still

a valid solution and the surface is irrelevant also in this limit.

We can conclude that for both B œ 0 and B ^$> B\ the surface does not

lead to a modification of the bulk behavior, in agreement with the results of

the stability analysis in Sec. 6.2.3

6.3.2 Low magnetic fields

At any finite magnetic fields, the B œ 0 expression of the free energy func¬

tional (6.35) is modified by the presence of the additional surface term (cf.

(6.31))

öojAz]
_

6c*G f00 (h A ALj
~T~-gAG~+Jo iJo rJfz+z,fÂzfÂZ'

6äG / f°° dz
r „

\2
.

e-G+zßz) . (6.37)
Cr + Ct^ \Jo ^

This new term is produced by the modifications of the pancake-vortex in¬

teractions close to the surface and acts as a destabilizing potential (~ ßl)
which favors the appearance of the liquid phase on the topmost layers. In

real space this term is associated with the oc 1/R repulsive potential induced

by the stray magnetic field, cf. the second term in (3.30). When the bulk

128



Melting of the Vortex Lattice: Surface

is in the solid phase, the non-local elastic energy in (6.35) competes against

this surface term (6.37) by favoring the bulk solid solution. This interplay

between the surface potential and the elastic energy is the key point in the

discussion of the surface melting.

Similarly to the Landau-theory description of a first order phase transi¬

tion in a semi-infinite system [107], diverse scenarios may arise depending

on the strength of the surface destabilizing potential. The different sce¬

narios can be distinguished by the behavior of the order parameter on the

surface at the bulk transition temperature. For weak surface modifications

the order parameter on the surface ß0 jumps across the melting line from

0 < ßo < //oo = Ps to zero, leading to a discontinuous surface melting (named
surface non-melting in [24] or 0\ transition in [22]). On the other hand, for a

sufficiently strong destabilizing potential the order parameter goes continu¬

ously to zero when the system melts at Tm (surface melting or 02 transition)
even if the transition is discontinuous in the bulk.

To make progress analytically, we have to simplify the non-local terms in

(6.33). Concentrating on the bulk, i.e., z ^$> 1/G+, both mirror and surface

terms can be ignored. For not too large values of the magnetic fields, we can

adopt a gradient expansion of the non-local elastic term oc fz-z>, cf. Sec. 5.8

and Appendix C. As a result we obtain the differential equation

(2dA
=

d SAAßz)
,6 3gs

dz2 dß T

e com-with £2 = (6a/d) J0+°° dz fzz2 = 12a/dG3+. Equation (6.38) has to b

pleted with a boundary condition, which has to be provided by the surface

part of the integral equation. In the following, we restrict the analysis to

small values of the order parameter at the surface in order to study the in¬

terplay between continuous and discontinuous surface melting scenarios. In

this regime the bulk potential can be approximated as

^|^ - 3(1 - AP2, (6-39)

since c3D = cc ~ 0.856 at melting. The saddle point equation becomes a

linear integral equation

_

f°°dz'
-

6(1 - cc)ßz + 6a —r[fz-z> + fz+z'](ßz ~ ßz') +
Jo d

12aG Adz'- .

t
.

129



6.3 DFT analysis of the surface melting

which contains three terms: two dimensional potential (first), non-local elas¬

tic term (second) and the pure surface term (third). Separating the non-local

terms from the local ones, we obtain

12a i f°° dz' -

6(1 - oc) + -J7^- ßz = 6ä —j-[fz-z> + ßfz+z'] ßz>, (6.41)
dGA

where we have used f0°°(dz' /d)[fz-z> + fz+z>] = 12a/GA and again ß =

(G+ — G)/(G+ + G). This kind of integral equations are commonly found

in the study of boundary problems, e.g. in the analysis of the surface effects

on the superconducting transition [76,110]. For the latter case, the equation

which determines the superconducting gap A(r) is a non-local integral equa¬

tion with a structure similar to (6.41). In the bulk the kernel is translation

invariant. Close to Tc, a gradient expansion reduces the non-local equation

into the local Ginzburg-Landau equation (2.4). The presence of the surface

enters in the kernel of the original non-local theory via an additional 'mirror'

term, similar to the oc fz+zi term in (6.41). However, a major difference

between these two similar problems is given by the different nature of the

bulk phase transitions: first order for melting and second order for the su¬

perconducting transition. In the case of a second order phase transition the

coefficient of the quadratic term in the bulk free energy goes to zero at the

transition point, cf. the coefficient a ~ (T — Tc) in (2.4). Hence, the first

term in the square brackets in the LHS of (6.41) would be absent.

Equation (6.41) can be rewritten as

Pz = AlfriJo dz'[^,+^']^,> (6-42)

with r = dG+(l — cc)/2ä = 6(1 — cc)/(G+)2. In this formula the difference

between a first and a second order bulk transition enters in the normalization

of the integral in the RHS, through the parameter r, which is r ^ 0 for a

first order transition and r = 0 for a second order one (due to the absence of

the linear term from the bulk free energy (6.41)).
In general, the solution of an integral equation like (6.42) is a non-trivial

task, which usually cannot be carried out exactly. However, in the present

case a straightforward solution is possible due to the particular exponential

structure of the kernel. In fact, by taking the second derivative of (6.42) and

making use of the identity

£_-G+\z-z>\
= _2G+8(Z _ z/) + G2 e-G+\z-A (g_43)

dzz
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Melting of the Vortex Lattice: Surface

we find that the integral equation yields the same differential equation (6.38)
derived previously in the bulk by means of a gradient expansion,

(l + r)£2^*£2^ = 6(l-Aßz-, (6.44)

here we have used the linearized force dß5uj2Aß)/T = 6(1 — cc)ßz. We drop

the small renormalization factor (1 + r) ~ 1, which is absent in the gradient

expansion of the bulk equation. This difference is due to the higher order

derivatives dzßz that are neglected in the gradient expansion (see Appendix

C). This differential equation admits two exponential solutions. For the case

of a second order bulk transition, due to the absence of a linear term in the

bulk free energy, the differential equation which is obtained after derivation is

d2ßz/dz2 = 0 which is solved by a linear function [76]. Anyway, in both cases

the differential equations coincide with the linearized bulk equations (6.38)
and show no trace of the surface term oc ß. Thus, the integral equation

(6.42) is equivalent to the bulk differential equation (6.44) and the effect of

the surface terms is to provide a boundary condition at z = 0. This is a

lucky coincidence due to the particular exponential structure of the kernel.

Normally, the bulk solution is not valid in the vicinity of the surface and the

problem becomes much more difficult to solve.

To solve the integral equation (6.42), we need to find the boundary con¬

dition which is provided by the surface term. We first write the general

solutions of the bulk differential equation

fr = AelG+z + Be~lG+z, (6.45)

where 72 = r/(l+r). Here we retain the small correction (1+r) in (6.44) since

the following analysis is based on the linearized integral equation (dropping
this term leads to results which are correct to order r, in agreement with the

precision of the gradient expansion). Inserting this Ansatz back into (6.42),
we obtain

AejG+z + Be-lG+z = AejG+z + Be-lG+z (g_4g)

2(1+ r) ,1 — 7 1 + 7/ VI+7 1 — 7'

In order to fulfill this equation the term in the square brackets in the second

line must be zero. This requirement selects a unique value of the ratio B/A,

B 7(p+l)-(p-l)
A rtß + i) + (ß-iy

(6.47)
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6.3 DFT analysis of the surface melting

Finally, we can calculate the logarithmic derivative at z = 0, which is the

relevant boundary condition in our forthcoming analysis (we define ß'z =

dzßz)

^
= gJ—^L = G. (6.48)

ßz z=0 1+ ß

This final relation can also be derived directly without solving the differential

equation at the surface. One only needs to calculate the value of the order

parameter and its derivative at z = 0 from (6.42),

/~i roc

Po = 0/1
^(1 +ß) I dzfzßz,

dßz

dz

2(1 + rA rAo

G4

on ,

,G+(l-ß) / dzfzßz.
z=o 2(1 + r) Jo

The ratio ß'0/ßo does not depend on the function ßz which drops out. As a

result we recover (6.48), which remains valid for the case of a bulk second

order phase transition (r = 0). In the limit B œ 0 in (6.48), the boundary

condition becomes ß'0 = 0, since G ~ 0. Hence, the constant bulk solution

goes though and the surface is not relevant, in agreement with the results of

the last section.

The analysis of the boundary value problem (6.38) and (6.48) follows

the one in Ref. [107]. Combining the boundary condition (6.48) with the

expression for the 'conserved energy' originating from the bulk equation

^=^|H (6.49)

we find an algebraic relation which determines the value of the order param¬

eter ßo at the surface,

,dG = J?^BL. (6.50)

The liquid surface ß0 = ß\ = 0 is always a solution and we deal with a

continuous surface melting (02 scenario) if it is the only one. Once a second

solution with ßo > 0 is present, the surface undergoes a discontinuous (0\)

transition, see Fig. 6.2. Using the full expression for the potential on the

RHS of (6.50), we find that (6.50) admits two solutions for large T (very
small fields B) and only the ßo = 0 solution for small temperatures (larger

magnetic fields), cf. the solid line in Fig. 6.3. Since both the continuous

and the discontinuous melting scenarios are present, a multi-critical point
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multi-critical point

2D
N
1/2

Figure 6.2: Graphical solution of (6.50) for ß0. We plot separately the RHS

of (6.50), y/25uj2Apo)/T, and the LHS, £Gßo, for different values of the slope

£G. For £G < \/6(l — cc) we find an intersection point at a ßo > 0 (beside

ßo = 0). This finite value is the residual order parameter on the surface

(Oi scenario, surface non-melting). For £G = ^/6(1 — cc) the straight line

is tangent to ^25uj2Apo)/T at ß0 = 0, the finite solution has disappeared,

and only ß0 = 0 remains (multi-critical point). Again for £G > \/6(l — cc)
the solution is only ß0 = 0 (02 scenario, surface melting).

separating the two different kinds of transitions must exist. The equation

which locates the critical-point derives simply from (6.50) by considering the

quadratic expansion of the potential 5uj2Aß)/T (cf. Fig. 6.2)

£(Zme, -DmcJLr V-^mcJ

V6(! " êc)
1 -^ (Tmc,Bmc) « (0.29 £0d, 0.007BA). (6.51)

Hence, for T < Tmc the surface undergoes a continuous transition. The

surface then acts as a nucleus for the liquid phase, preventing the appearance

of the solid metastable phase. On the other hand, for large temperatures

T > Tmc the order parameter at z = 0 still undergoes a residual jump and

the double-sided hysteretic behavior is restored, see Figs. 6.6 and 6.7.
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Figure 6.3: Residual value of the order parameter at the surface: analytic

(solid line) from (6.50) and full numerical solution (stars) see Section 6.4.

For T < Tmc the surface undergoes a continuous transition (02), whereas

for T > Tmc the order parameter at z = 0 still exhibits a residual jump at

melting.

High-field limit

Finally, at high magnetic fields the layers melt independently following a

first-order type 2D melting scenario. The order parameter ß0 in the topmost

layer then undergoes a finite jump and the surface non-melting (0!) scenario

applies. The presence of a discontinuous 0\ regime at high fields implies the

existence of a second multi-critical point. While our analytical approach is

not applicable anymore, since it is based on the gradient expansion which is

not justified in this regime, numerically we have found clear indications of a

finite jump at high fields (B œ 10 5a). However, a more elaborate version

of the DFT is required for an accurate determination of this multi-critical

point [95]. In particular, approaching the melting temperature of each 2D

lattice, the higher order peaks in the OCP correlation function c2I>(K) become

important (Kn > G). Hence, higher components in the Fourier expansion

of the density have to be retained [95], in order to obtain a more precise

description of the high field regime.
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6.3.3 Analysis of the continuous surface melting and

of the multi-critical point

The fact that a discontinuous bulk transition may turn continuous at the sur¬

face is somewhat non-trivial. To obtain a better insight into the mechanism

of the continuous surface melting, we present here a slightly different, more

qualitative, analysis. We describe the surface melting process in the language

of the entry of the liquid through the boundary. The appearance of a liquid

layer at the surface, while the bulk remains solid, implies the existence of an

interface between the two phases, which is described by a soliton-like profile

of the order parameter. The entry of the liquid can happen in two different

ways: i) the soliton can slide smoothly from the boundary at Tm (surface

melting, 02) or n) it starts entering the system but it remains pinned at the

surface at Tm (surface non-melting, 0\). To distinguish these two scenarios

we need to calculate the energy of the soliton and the pinning energy. We

do this within the local theory

SçAA= fdz rôuZ(Pz) i_£2 /^m
2 lpG26{z)\

(6.52)
T J dV T 2 \ dz J 2

^ v }\ y }

This equation provides a local approximation of the full non local theory of

(6.31). The saddle point equation of (6.52) reproduces the equation of state

(6.38) with the boundary condition (6.48) at z = 0.

Like in the previous section, we concentrate on the case when the order

parameter at the surface is small. Such an analysis can describe a continuous

surface melting behavior or a weak discontinuous surface transition and the

multi-critical point between them. In the following analysis, we estimate

the energy of a liquid-solid interface as a function of its distance zs from the

surface. The bulk solution remains valid also in the vicinity of the surface, cf.

last section. We can then study the problem within a variational scheme, by

taking as a convenient variational function a bulk soliton ßf(zs) and displace

it rigidly at different distances zs from the surface ('si' stands for solid-liquid

interface), see Fig. 6.4. In the following we need the function /j,q(zs), i.e.,

the relation between the value of the order parameter on the surface and the

soliton position zs. For a soliton which is well inside the sample, ßo(A can

be approximated as

ßs0\zs) « e-G+^Za. (6.53)

This relation is derived by the solution of the linearized bulk equation (6.38)
and thus it is valid when ßsQl is in the soliton tail (here we neglect the renor-
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0 £s

Figure 6.4: Sketch of a solid-liquid interface placed at a distance zs away

from the surface. The surface destabilizing term Tsurf(zs) in (6.54) favors

the entry of the liquid-solid interface at the surface, producing a repulsive

potential on the soliton. On the other hand, the energy cost to push the

soliton into the system generates an attractive potential Esi(zs). Depending

on which term is dominant, either a continuous or a discontinuous surface

transition is realized.

malization factor (1 + r) ~ 1 which would appear in the exponent from the

solution of the non-local integral equation (6.44)); the exact ßo(zs) requires

to account for the full solitonic shape but is not needed in our analysis.

We proceed now to estimate the energy due to a surface liquid domain of

size zs, which is given by ou[ßsz(zs)]. In the following, we want to calculate

the soliton energy not only at the bulk transition temperature Tm but also

at T close to it. However, for T ^ Tm, the free energy ou[ßsz(zs)] is not finite

due to the infinite contribution coming from the bulk solid ôAAPs) ¥" 0

(ßs = ßsAA- In order to obtain a finite energy, which correctly estimates

the soliton energy E^TÎ(zs) in the presence of the surface we have to subtract

this infinite contribution. Hence, we define

E^A) = öuAz(Zs)] - (L/d)ÔU2APsA)

~ Tsurf(zs) + EsAs) ~ (zs/d)öoj2APsA), (6.54)

where L — oo is thickness of the sample. Note, that E^TÎ(zs)/L — 0, since

the thermodynamic limit accounts only for the contribution of the bulk. Here
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we are exactly trying to capture the effects of the surface, thus we subtract

the bulk free energy in (6.54). In the last line of (6.54) we have split Et^rt(zs)
in three different contributions, which we discuss separately in the following.

The first term Tsurf (zs) is the energy due to the surface (third) term in (6.52).
The second and third term estimate the soliton energy due to the first two

terms in (6.52). Away from Tm the presence of a liquid layer of thickness

~ zs, produces a contribution linear in zs. This is due to the finite difference

between the liquid and the solid free energies, —ôAAPsA) > 0- We have

written the additional argument T in &js2°b to make explicit the temperature

dependence: 6uj2sAPsAm) = 0 and öuh(ßB,T < Tm) > 0. Finally, Tsl(zs)
is the energy due to the interface, i.e., to the non-constant part of the order

parameter profile. This energy depends on the soliton position, since for a

finite zs the soliton has not fully entered in the system and, hence, the energy

due to the missing part of the tail has to be subtracted from the total energy

Es\ = Tsl(oo), see Fig. 6.4. Whereas Es\(zs) penalizes the entrance of the

soliton and, thus, favors the solid phase, Tsurf(zs) promotes the formation

of the liquid phase at the surface. Depending on which term is dominant,

either a continuous or a discontinuous surface transition is realized. In the

following we proceed to estimate these two terms.

The total energy of the soliton consists of potential, &Js2°b, and elastic,

oc (ß'z)2, energies, which combined together yield (see Eq. (5.73))

EJz,} =
* r- Jip

= ^ _

er ,**>
diJA

/ä&äöö
d Jßf(zs) VT d Jo VT

«Tsl-v/6TT^T^^M, (6.55)

where Es\ is the total interface energy which is given by (5.73) at T = Tm.

In the last line of (6.55) we have expanded the 2D potential for small values

of ß. Next, the surface term in (6.52) is easily calculated,

EsAzs) = T^^à. (6.56)

Combining all terms, we obtain the soliton energy (6.54)

lTm-T
t
£TApso\zsA

ElAA) « EA + --^r^zs + tlll^IL iG _ yAA^A , (6.57)
p im a z L

where we have expanded the solid free energy term around the melting tem¬

perature Tm, ôAub(PsA) ~ ^s2uDb(^s,Tm) + dTöu2APsAm)(T - Tm) and we
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have used the definition of the latent heat / = TmAs = Tm(s\ — ss) =

-(p/d)TmdT5uj2APsAm) and SAAPsAj = 0.

Now we are ready to discuss the difference between the continuous and

the discontinuous surface melting scenarios. At the melting transition, i.e.,

when T = Tm, a finite order parameter at the surface leads to a positive or

a negative energy contribution depending on the quantity in square brackets

in (6.57). When is £G > \/6(l — cc), the soliton enters completely inside

the sample at T = Tm, leading to the propagation of the liquid phase into

the bulk (surface melting). On the other hand, for weak surface potentials,

£G < a/6(1 — cc), the entry of the interface costs a positive energy and, thus,

the soliton remains pinned at the surface at Tm. However, to find the pinning

location of the soliton a more detailed analysis is required, accounting for the

higher order terms in (6.55) (we have solved this problem numerically, see

Fig. 6.5). The two different behaviors are separated by the multicritical

point, whose location is given by

£(Tmc, Bmc)G(Bmc) = y/6{l-cc). (6.58)

This equation coincides with (6.51).
Since the surface melting behavior is continuous, it can be characterized

by specific critical exponents upon approaching Tm. In particular we can

look at how the soliton position zs depends on T. The position of the soliton

is found from the minimum of (6.57)

^T)~-2TT^ln ld(Tm - T)

2AG+p£Tl(£G - v/6(l-cc))_

~|ln(l-t)|, (6.59)

where in the last line we have defined the reduced temperature t = T/Tm.

Hence, the soliton slides into the system logarithmically with t [22]. Next,

we study how the residual order parameter on the surface goes to zero. Com¬

bining (6.59) together with (6.53), we find

ß0(T)~(l-tA2. (6.60)

These results are standard in the theory of surface melting when only short-

range interactions are present [22].
For a continuous surface melting transition the soliton propagates into

the bulk at Tm, leading, in a semi-infinite system, to the coexistence of the
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Figure 6.5: Energy as a function of the soliton position zs. Note the minimum

for T = 0.33 e0d > Tmc (01; pinned soliton) which has disappeared at T =

0.28e0d < Tmc (02, depinned soliton).

liquid and the solid. The interface deep in the bulk produces the maximum

free energy cost, E^TÎ(zs — oo) = Es\ (see Sec. 5.8). This energy is only an

interface energy and, hence, its contribution vanishes in the thermodynamic

limit. In realistic finite systems, one has to account for the effect of the

opposite surface. Approaching Tm from below both surfaces undergo a con¬

tinuous melting transition. The two surfaces act like two nucleation points

for the liquid phase, giving rise to two opposite solitons. The system is then

composed of a sequence of liquid-solid-liquid regions. At Tm the two solitons

merge and the intermediate solid domain vanishes altogether. Hence, the

solid cannot be overheated above the melting temperature.

Finally, the appearance of the multi-critical point (Tmc,Bmc) along the

melting line can be interpreted as a surface-depinning transition of the solid-

liquid interface (soliton). Whereas in the surface non-melting regime the

soliton remains pinned to the surface at the melting temperature, in the sur¬

face melting regime the pinning barrier disappears, since the soliton always

experiences a repulsive potential. We have calculated this potential numeri¬

cally in both the surface melting and surface non-melting regimes, using the

following scheme: we place a bulk soliton at different distances from the sur¬

face and evaluate numerically the total non-local energy (6.31) as a function
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of the position zs of its (half-height) center. In Fig. 6.3, we present two dif¬

ferent curves, one at T = 0.33 e0d > Tmc and another at T = 0.28 e0d < Tmc.

Whereas for the higher temperature the potential exhibits a stable minimum

close to the surface at which the soliton remains pinned, decreasing the tem¬

perature the minimum moves deeper into the bulk and disappears altogether

at 1mc •

6.4 Numerical analysis

In order to check the accuracy of our analytical approach, we have carried out

a numerical solution of the saddle point equations (6.33). As a preliminary

step, we write (6.33) in a slightly different form which is more convenient

for our numerical study. From the variation of (6.28) with respect to ßz, we

obtain that at the saddle point £z and ßz are related by

f°° dz'
_

Cz = / —rCZyZ>ßz>. (6.61)

Combining this expression with the relation (cf. (5.44))

Pz = $'(£,)/6, (6.62)

where the function $ is defined in (5.25), we obtain a set of integral equations

which determine the order parameter profile ßz

"°° dz'

i
<'2

Az =

dRg(R)exp / —cZyZ-ßz-g(R)

f r f°° dz'
/ cfRexp / —cZyZ>ßz>g(R)

(6.63)

where we have written explicitly $' and the function g(R) is defined in (5.21).
Our numerical solution is based on the recursive solution of the saddle point

equations (6.63).
We first discretize the z axis in N = 1000 values {zt} with a fixed distance

z% — z%-\ = Az = 0.04 A (for T > 40 we use a smaller step size Az = 0.01 A ~

d, since the soliton interface becomes sharper). We start from a constant solid

phase and initialize the values of {ßt} as ß% = ßZr = ßs, for any i. Then, from

Eq. (6.61), we derive the molecular field profile ^ in correspondence to the

values A}- We calculate the RHS of equation (6.62) for i = 1,..., imax, while

keeping the last values (i = imax+l,..., 1000) unchanged, and obtain the new
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A = ^'(A)- We compare {//" } with {ßA and if both the inequalities ß$
—

ßo < 10~5 and (1/N) ^(/i" ~~ PzJ < f0~5 are satisfied, we accept {//" } as

the order parameter profile. Otherwise, the procedure is iterated recursively

until a stable solution (fixed point) is reached. We take imax = 750; for this

value we have checked that the connection between the numerical solution

for i ^ imax and the constant bulk value for i > imax is smooth (we find

a small jump at imax, (ßtmax+i - ßtmax)/ßtmax ~ 10"5)- Usually convergence

is obtained after a reasonable number of iteration (< 100), however in the

proximity of a continuous surface transition the convergence becomes slow

and problematic. This critical slowing down makes it difficult to track the

sliding of the soliton inside the bulk. To avoid this problem, for these critical

cases we start our iteration from a more convenient initial state. Instead of

initiating the profile in the bulk homogenous solid, we chose to start from

a bulk soliton at the position which minimizes the total surface free energy

(cf. Fig. 6.5 and discussion in the last section). In this case the convergence

is extremely rapid.

In Figs. 6.6 and 6.7, we show two different examples of the order parame¬

ter profile for two different values of the temperature: i) T = 0.08 Sod < Tmc

in Fig. 6.6, at which the surface undergoes a continuous transition and ii)
T = 0.33 Sod > Tmc in Fig. 6.7 for which a discontinuous surface transition

takes place.

For T = 0.08 Sod, the surface undergoes a continuous (02) transition. In

Fig. 6.6, we show different order parameter profiles for different values of the

magnetic field. The value of B increases from top to bottom (see also the

caption of Fig. 6.6). At low magnetic fields, the profile is almost constant

(cf. the topmost line), since the surface kernel 5ujs is negligible and the sys¬

tem is translationally invariant. Going to larger values of the magnetic field,

the modifications of the interlayer potential on the surface become relevant,

reducing the value of the order parameter at the surface. This corresponds

to the results of the stability analysis of Sec. 6.2, which indicates that the

vortex solids are softer closer to the surface and thus more susceptible to

thermal fluctuations. Upon increasing the magnetic field further towards the

thermodynamic melting transition, vortex density modulations become van-

ishingly small close to the surface. The numerical solution shows that the

order parameter on the surface goes continuously to zero (liquid), instead of

jumping from a finite value (solid). The surface assists the penetration of the

liquid phase by the formation of a quasi-liquid nucleus. The continuous tran-

141



6.4 Numerical analysis

M*
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Figure 6.6: Numerical solutions of the order parameter profile ßz at the

surface, for different values of the external magnetic field at T = 2e0d/T =

25, corresponding to T = 0.08e0^- At this temperature the bulk melts at

Bm/B\ œ 0.1528. The lines from top to bottom correspond to the magnetic

fields with values B/Bx = 0.01, 0.05, 0.1, 0.125, 0.145, 0.15, Bm/Bx - 10"4,

Bm/B\ —10~5, Bm/B\ —10~6. While approaching this value the soliton slides

into the bulk (see the bottom three lines). The surface undergoes an 02 type

transition, i.e., ß0 approaches zero (liquid phase) continuously.
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M*
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Figure 6.7: Numerical solutions of the order parameter profile ßz near the

surface at T = 0.33 Sod (r = 6) for different values of the magnetic field.

The freezing field is Bm/B\ œ 0.002396 (thicker line). The lines from top

to bottom correspond to the magnetic fields with values B/B\ = 0, 0.0001,

0.0005, 0.001, 0.0015, 0.002, 0.0022, 0.00235, Bm/Bx, BJBX + 10"5. The

order parameter at the surface jumps discontinuously to zero; hence, the

surface transition is in the class 0\. In this case, the surface does not preclude

the appearance of the overheated solid. Numerically it is possible to obtain

a non uniform solution even at magnetic fields B > Bm larger than the

freezing one (cf. lowest thin line), corresponding to a metastable configuration

(overheated solid).
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sition on the surface eliminates the hysteresis above the melting transition,

by preventing the appearance of a metastable overheated solid phase.

In constrast to this scenario, at larger temperatures T = 0.33 Sod > Tmc

(Fig. 6.7) the surface undergoes a discontinuous transition, although with a

reduced jump in comparison with the bulk. Again starting from low magnetic

fields (topmost line) the order parameter is constant, due to the smallness of

the surface destabilizing potential. Increasing B, the value of ßo decreases,

still showing a larger suppression than in the bulk. However, the surface

potential is not strong enough to push ßo to zero and at melting (thick

line) the surface still exhibits a finite order parameter. The transition to the

homogeneous liquid phase then occurs via a finite jump everywhere, including

the surface. This discontinuous transition is compatible with the appearance

of the metastable phase. Indeed, numerically it is possible to obtain a non

uniform solution even at magnetic fields which are larger than freezing one

(lowest line, below the freezing one).

Finally, we check the accuracy of our analytical approach in estimating

the location of the multi-critical point (Tmc, Bmc). We plot the residual value

of the surface order parameter at melting as a function of the temperature in

Fig. 6.3, together with the solution of (6.50). For a continuous surface melting

transition the order parameter is exactly zero at melting. Numerically, we

associate the value ß0 = 0 to situations where the soliton potential does

not show a stable minimum as a function of zs (see Fig. 6.5). Otherwise, we

estimate the finite value of ßo within the iterative solution of the saddle point

equations, which we have described above. The agreement of the numerical

and analytical results results is excellent, in particular in the vicinity of the

multi-critical point.

6.5 Conclusions

In this chapter, we have analyzed the impact of an a6-surface on the melting

transition of the pancake vortex lattice. We have used a self-consistent elastic

theory to study the stability of the solid phase close to the surface. Whereas

both the low and large fields limits are not affected by the presence of the

surface, for intermediate fields we found that the lattices on the first layers

become unstable below the bulk melting temperature. To obtain a better

insight into the problem, we have adapted the DFT-substrate approach of

Chapter 5 to include the presence of the surface. We have found that, for
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intermediate values of the magnetic field, the surface undergoes a continu¬

ous melting transition and assists a smooth propagation of the liquid into

the bulk. This result reveals the origin of the asymmetric hysteresis at the

melting transition observed by Soibel et al. [101]: as a consequence of free

surfaces which can act as nucleation sites for the liquid phase. Moreover,

we have found that at low and large magnetic fields the surface transition

turns discontinuous like in the bulk, in agreement with the results of the

stability analysis which showed no important effect from the surface in this

regime. The surface continuous and discontinuous transitions are separated

by a multi-critical point. Whilst a precise location of the high-field multi-

critical point goes beyond the limits of validity of our analysis, we have

located the low-field multi-critical point by means of an analytical solution

of the DFT equations and confirmed numerically the result of the analysis.
An effect which we have not included in our analysis is the impact of the

reentrance of the melting line at low magnetic fields. As we have seen in Sec.

2.5, at low magnetic fields the interaction between full vortex lines is strongly

screened. This leads to a softening of the vortex lattice with exponentially

small shear and compression moduli (cf. (2.45)) and to the reentrance of the

melting line towards small temperatures. However, our analysis is based on

the substrate model which builds on the assumption that the elementary

objects are the pancake vortices, which interact logarithmically on all scales.

The shear modulus associated with the 2D pancake vortex lattices does not

become exponentially small at very low magnetic fields, cf. Eq. (6.19). Thus,

it remains unclear if (and how) the substrate model can be extended to study

the reentrance of the melting line. Nevertheless, the effect of a surface for very

low fields is an interesting question. In fact, in this regime stray magnetic

fields produce an algebraic interaction between the tips of the vortex lines

(3.38) instead of the exponentially small bulk interaction (2.31). This may

lead to a highly unconventional scenario (proposed in [111]) where the tips

of the vortex lines on the surface are arranged in a regular lattice while the

vortex system is already melted in the bulk. Hence, in this case the surface

plays a role which is opposite to the one played in the standard surface

melting scenario, since it favors the appearance of the solid instead of the

liquid. The impact of this 'surface solidification' on our results remains an

interesting open question.
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Chapter 7

Conclusions

'Let's assume the solution is another one, then your result is wrong.

In this thesis, we have discussed the thermodynamic behavior of supercon¬

ducting systems with a finite number of layers, or more generally, with geo¬

metrical constraints. Summarizing, the two major findings of the thesis are:

i) the finite temperature BKT transition associated with the unbinding of

'fractional-flux' vortices in systems with a finite number of layers (see Chap¬

ter 4); n) the complex behavior of surfaces at the melting transition of the

vortex lattice, as manifested by the appearance of both surface-melting and

surface-non-melting scenarios and the occurrence of multi-critical points at

low and large magnetic fields (see Chapter 6).

7.1 Observing fractional-flux vortices

In Chapter 3 we have studied the properties of vortices in systems composed

of a finite number N of superconducting layers. While in a single film a vortex

binds a whole quantum flux $0, already by adding one additional layer the

trapped flux is reduced to half its value $o/2. Increasing the number N

of layers, the trapped flux decreases further as Qq/N. This reduction in

flux has several consequences, the most important being the extension of

the logarithmic interaction between fractional-flux vortices to all distances

and the appearance of a finite temperature BKT transition associated with

the unbinding of pairs of fractional-flux vortices. This transition describes
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7.1 Observing fractional-äux vortices

the destruction of the superconducting response in the counterflow channel

and can be traced experimentally in transport measurements as proposed in

Chapter 4.

Layered superconductors are an example, probably the simplest, of mul-

ticomponent superconductors. Recently, several other systems have been

put forward as possible realizations of such multicomponent superconduc¬

tors. Here, we would like to comment these different proposals and their

potentiality in revealing fractional flux-vortices in an experiment.

A first example is given by multi-gap superconductors such as MgB2

[55-57]. For these systems, disconnected sheets of the Fermi surface give

rise to distinct superconducting components. Differently from layered super¬

conductors, the components are not geometrically separated but correspond

to internal degrees of freedom. In these systems the tunneling of Cooper

pairs between the different condensates is not prohibited and, in a generic

situation, a finite Josephson coupling remains between the different compo¬

nents. This finite coupling leads to the confinement of vortex-anti-vortex

pairs and inhibits their unbinding. Hence, fractional-flux vortices are not

easily observed in multi-gap superconductors [61].
A second, more exotic, proposal is metallic hydrogen [62]. At low tem¬

perature and under the effect of a high pressure, both electrons and protons

are supposed to condensate, giving rise to a two-component superconductor.

Tunneling between protonic and electronic components is naturally prohib¬

ited and the Josephson coupling is absent. However, the extreme pressure

needed to liquify hydrogen is still out of reach for present experimental tech¬

niques. Hence, the observation of fractional flux vortices in metallic hydrogen

remains only an interesting theoretical proposal.

A major difference of layered superconductors as compared to the other

proposals is that the components are separated in space. This implies two

advantages: i) in artificial systems Josephson coupling can be suppressed

(to a large extent) by an appropriate choice of the material parameters and

the sample geometry; n) the superconducting components (layers) can be

individually accessed in experiments. This second point is the key property

that allows to observe fractional-flux vortices. As we have seen the appear¬

ance of free fractional-flux vortices is accompanied with the destruction of

the counterflow superconducting stiffness, i.e., the ability of carrying currents

with opposite orientation in different layers without dissipating energy. To

probe the counterflow response it is necessary to access individually the com-
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ponents and to drive opposite currents. This is obviously a more difficult,

if not impossible, task to realize in superconductors with multiple intrinsic

components.

The appearance of a counterflow superfluid is not specific to layered su¬

perconductors. As we have seen in Chapter 4 another example is the bi-layer

quantum Hall setup at filling v = 1. At low temperatures the bi-layer enters

an interlayer coherent state, even in the absence of any tunneling between

the layers [63]. The properties of this coherent phase has been accessed in

the same type of counterflow experiment which we have proposed in the

study of the BKT unbinding of fractional-flux vortices [83]. The half-flux

vortices in a bi-layer superconductor (existing in one of two layers and with

± vorticity) correspond to merons with a fractionalized charge ±e/2 and ±

vorticity [64]; bound neutral meron pairs have their analogue in intralayer

vortex-anti-vortex pairs, while bound charged merons correspond to vortex

stacks. Similarly to half-flux vortex pairs, meron-pairs are supposed to un¬

dergo a BKT transition, leading to the destruction of the interlayer phase

coherence. The analogy between the bi-layer superconductor and the bi-layer

quantum Hall setup seems an interesting example of a charge-magnetic-flux

duality. A more detailed study might unravel further interesting connections

between these two different systems.

7.2 Surface melting vs. surface non-melting

In Chapters 5 and 6 we have investigated the melting transition of the vortex

lattice, with and without a surface. We have implemented a novel substrate-

DFT approach, which, despite of its simplicity, has proven to be a reliable

tool to capture the main features of the melting of the pancake vortex system.

A particularly interesting result, which we have presented en passant in our

analysis, is the derivation of the Clausius-Clapeyron relation, which provides

a consistent description of the retrograded melting line together with the

sign of the density jump across the transition. This derivation requires a

constrained free-energy which accounts for the discrete nature of the vortices

and proves the thermodynamic consistency of the theory. We would like to

emphasize that this derivation is not specific to the vortex system but remains

valid for ordinary solids. We have then studied the impact of the surface on

the melting transition. We have shown that the surface can undergo both a

continuous transition (surface melting) or a discontinuous transition (surface
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7.2 Surface melting vs. surface non-melting

non-melting), depending on the value of the magnetic field. For intermediate

fields the surface undergoes a continuous transition and the overheated solid

is preempted by the formation of a liquid layer/nucleus at the surface.

In a conventional solid, the structure of the crystal and the interactions

are dictated by the chemistry of the material. Hence, for a given material

and surface orientation, the surface either melts continuously or remains

solid up to the bulk transition temperature. As we have seen, the vortex

system is quite different. The vortex density (and thus the lattice constant

and the strength of the vortex interactions) can be varied to a large extent

simply by changing the value of the external magnetic field. Hence, the vortex

matter defines a highly tunable system and its phenomenology is considerably

richer than the one of standard solids. The simultaneous occurrence of both

surface melting and surface non-melting scenarios in one material leads to

the appearance of multi-critical points and is an example of the consequences

of the high tunability of vortex matter.

Finally, we have to point out that our analysis has not exhausted all

possible aspects in the discussion of the impact of surfaces on the melting

transition. An open issue, which unfortunately cannot be tackled within the

framework of our DFT-substrate analysis, is how the surface non-melting

scenario is modified at extremely low fields by the reentrance of the melting

line. Simple arguments [111] show that the surface can stabilize the solid

phase, leading to a highly non-conventional 'surface solidification'. A full

quantitative description of this effect is missing and remains an interesting

subject for future investigations.
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Appendix A

RG equations for the bi-layer

A.l Derivation of the RG equations

Here we discuss the derivation of Eqs. (4.5) and (4.22) within a simple linear

response theory. The analysis generalizes the one of Ref. [70] by including the

effects of magnetic screening. We will use the language of the two-dimensional

Coulomb gas and describe the pancake (anti) vortices as positive (negative)

charges A)V£od. This analogy is exact for log-interacting particles and thus

for the distances at which the function q remains constant. Given the long

plateau of the screening function q and the relatively short crossover, we

will make use of the properties of the 2D Coulomb gas in all our analysis.

We first concentrate on the effect of fluctuating vortex-anti-vortex pairs.

In the language of the 2D Coulomb gas, magnetic screening acts as a first

scale dependent dielectric function which modifies the Coulomb interaction

between oppositely charged vortices as in (4.2). Thermally activated pairs

produce a downwards renormalization of the force strength

- 2eodq(R)
F{R)

-TIrW'
( }

where the total dielectric constant is

e(R)/q(R) = l + 47rX(R), (A.2)

and x(R) is the susceptibility of all dipoles of size smaller than R. We can

write

A
X(R)= R'dR'd9dn(R',9)a(R'), (A.3)

Jo
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where dn(R, 9) the density of pairs of size R and orientation 9 (it has dimen¬

sions of length-4) and a(R) is the polarizability of a single dipole of size R,

which is

*(R) = £^R2. (A.4)

The polarizability is not modified by the inter-particle interaction and, there¬

fore, by the screening factor q(R). In fact, the vortex interaction derives from

the Lorentz force (—$oj/c) acting on the vortex core, thus no factor q enters

in the analysis at this point. The dipole density

2 -V(R)/T

dn(R',9) = V-^jA (A.5)

depends self-consistently on the renormalised interaction energy of (4.4) and

thus on q(R). Combining (A.4) and (A.5) in (A.3), one finds (K0 = Sod/T,

K(R) = Ko/e(R) and / = \n{R/£))

I£1R
= kA + 4Ay20 f dl'q(l'Al'-2^tdl"K^l"\ (A.6)

q{i) Jo

Defining the auxiliary function y as in (4.6), we obtain the set of differential

equations (4.5) for K(l) and y(l) by taking the derivative with respect to /

and neglecting terms of order q'.

We can account for the fluctuating free vortex stacks in a similar analysis;

the new dielectric function reads

e(R)/q(R) = 1 + 4ttx(R) + 47rXs(R), (A.7)

where Xs(R) is the susceptibility of all free stacks whose pancake vortices are

moved apart to a distance smaller than R. The density dns(R, 9) stems from

the total energy needed to create two vortices in opposite layers

Vs(R) = Es + VPAR), (A.8)

where Es is the self energy of a straight vortex stack. The average distance

between two free stacks is always larger than the effective penetration length

£s 3> Aeff. Hence, vortex stacks contribute appreciably to e only at R ^$> Aeff

and behave essentially like vortex-anti-vortex pairs (l—q(R ^$> Aeff) ~ q(R ^$>

Aeff) ~ 1/2). As a result, the vortex-stack polarizability reads as(R) =

a(R) = SodR2/2T and from Eq. (A.7) one obtains the scaling relations Eqs.

(4.22).
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A.2 Alternative derivation

The derivation of the scaling equations presented in Sec. A.l requires rather

uncontrolled approximations which remain implicit within the language of

the 2D Coulomb gas. Here, we report an equivalent and more systematic

derivation, which is based on a real space renormalization analysis of the

partition function of the vortex system. Neglecting scales smaller than the

correlation length £, we can accurately describe the system as particles (of size

£) with the interaction of Eq. (4.2). Assuming an overall vortex neutrality,

we can write the partition function in the grand-canonical ensemble [112],

°° V2N r
2N

rPr-

z=y.jA n^-* (A.9)
N=0

\ ' JDx,D2,...,D2n-x,D2n l=i
?

where Dt is the volume available to the i-th vortex

Dt = V-^2d3, (A.10)

and dj is the disk of radius £ centered around the j-th vortex. The Hamilto-

nian reads

where pt is the charge (±1) of the vortex i. The total number of particles

is 2A, N with positive charge (odd indices) and N negative (even indices).
The basic renormalization group step consists in integrating out the effects

of one small vortex pair of size [£,£ + 8£], thus going from a system of 2A

particles to 2(N — 1) particles with a modified interaction. Increasing the

short distance cut-off, we approximate

2N ,2 r
2N

rti

D,...D2N %=l
Î2 JD'x-D'2N l=l

£

A

d2r\ f d2r\ f d2r
3

0 zL^ I
,

- -

,

11 C2 I t2 I t2 '

1

%+J JD'1...Dk...DJ...D'2Nk^hJ Ç Jd, Ç Jd, Ç

where contributions of order higher than ö£ are neglected and D[ is defined

like Dt but with an increased short distance cut-off £ + 8£. In the second
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A.2 Alternative derivation

term of Eq. (A. 12) we use the decomposition of the Hamiltonian

^U(|rfc-r||) « 2 J2 P*(r* - r,) • W(rfc - rt) +

+ Y, V(\rk-n\), (A.13)
k,l^i,3

where we have expanded linearly the potential and used U(£) = 0 (cf. Eq.

(4.2)). Combining terms, one obtains

00 v2N r
2N

rl2r

N=0
y ' JV

i=l
s

i1+*? /f?^? exp [2 z_> -r^) • w(r* -r*)

Expanding the last exponential (it's argument is of order 8£), the linear term

is odd and vanishes. The quadratic term after partial integration can be

written

2^8£ - 27T y^ J] U(|rfc - r|)V2U(|rfc - v\)8£, (A.15)

where we have introduced the quantity 8£ = 8Ç/Ç. In the description of the

modified interaction enters the following expression

I(x)= [ d2rV(\x-r\)X72V(r). (A.16)

In order to close the scaling scheme, we implement an adiabatic approxima¬

tion for the interaction, neglecting terms of order q'(l) and write V2V(r) =

27r[q(Ç)8(2)(r) + q'(r)/2irr] ~ 27rq(Ç)8(2)(r). The approximation is valid for

slowly varying functions q(r) and, thus, when £p <C Aeff or £p 3> Aeff. Within

the adiabatic approximation one obtains /(x) = 2irq(£y)V(x) and the func¬

tional shape of the interaction is preserved in each RG step. The scaling

analysis then continues in the standard way, the short distance cut-off is in¬

creased to £ + 8£, and the starting partition function is recovered once we

define

qi+Si(R) = qe(R) ~ (2n)2qe(Oqe(R)y2e8£, (A.17)

and

yi+si = yi + 2Vi8£ + yM£)5t + 0(y3). (A.18)
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Finally, we find a new renormalised system that is described by a new inter¬

action qi(R) and a modified fugacity yg. Within the adiabatic approximation

we can write qe(R) = q(R)Kg/K0 and we recover the recursion relations Eq.

(4.5).

A.3 Solution of the RG equations

The scaling equation can be solved exactly (cf. Ref. [71]). The solution of a

trajectory which passes through the point (K0~1,y0) (with q = 1/2) reads

2 K-1
y2(K~l) = - (K-'-K^-jln—j +y2. (A.19)

tia L 4 K0 J

Integrating the first of Eqs. (4.5), we can extract the correlation length Im-

In the critical region, the result is

/hf~U + — x (A.20)
2v/(27ry)2 - (4K~1/k - I)2

fK 4K-1/ir - 1
x arctan —.

V2 v/(2vry)2 - (4K-l/n - l)2

which close to the left separatrix the standard KT yields the result

7T

kf ~ /eff H
,

(A.21)
2v/(2vry)2 - (AR-1/* - l)2

and Im = /eff + l/(4vry) ~ /eff + f/(47ry(2)) at the right separatrix. On the

right of the separatrix one finds, after straightforward integration,

2K~l
/hf~/effH

, -

=x (A.22)
K^iAK-1/* - l)2 - (2ny)2

4K-1/tt - 1 + v/(4K-l/7T-l)2(27ry)2
x In

2vry

which connects smoothly with Eq. (A.20) on the right separatrix. For 4K l/n-

1>^, one obtains

/hf~/eff+9 V/9111"' (A-23)
2 — 7TÄ/2 y

which is Eq. (4.14).
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Appendix B

Calculation of the core energy

Connecting the results of the scaling analysis of Chapter 4 with experimen¬

tally accessible quantities requires a precise estimate of the vortex self-energy.

Many different terms contribute to the core energy Ec and a complete account

demands a numerical study of the Ginzburg-Landau equations. A thorough

analysis of the problem for a bulk line vortex was performed in Ref. [32],
where the total line energy was calculated

£v = £o(hi| + 0.5). (B.l)

Defining ev(R) as the self-energy of a vortex due to contributions up to

a distance R from the vortex center, we can extract the core line energy

from the correction to the leading logarithmic term when Ç C i? < A, i.e.,

ev(R) = ec + £0hi(-R/£). In this range the effects of magnetic screening are

negligible and the result remains valid also for Pearl and pancake vortices

(with arbitrary layer number N). Hence, only the condensation energy and

the corrections of the kinetic term due to currents close to £ enter in evalua¬

tion of ec. Instead of calculating ec directly one can use the result in Ref. [32]
and subtract the contributions arising from distances larger than R, e>(R),
from the total energy. Being far from the core, the condensate density has

approached its asymptotic value and the London theory is applicable. Ac¬

counting for both contributions from currents and fields one gets [30]

£>{R) = £B + e>{R) = £o(ln^ + 0.12), (B.2)

where Sb ~ 0.5eo is the total contribution from the magnetic fields and

£^(R) = £o[ln(A/-R) — 0.38] is the contribution from currents at distances
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larger than R. Finally, we obtain ev(R) = et — £> = £o[m(-R/£) + 0.38] and

ec = 0.38e0- (B.3)

Moreover, by using the results in Ref. [32] we can estimate each of the con¬

tributions which combine into ec. Summarizing, we have the condensation

energy S\ = (e0/2) j(l — j2)2 RdR = 0.5e0 (/ = IV'l/IV'ool is the modulus of

the order parameter relative to the asymptotic value), kinetic currents due

to variations of the modulus e2 = e0 J f'2RdR = 0.56e0, from these we can

extract the remaining kinetic term e3 = £o(m R/Ç — 0.4) = e0 hi(R/a£), with

a ~ 1.4, which coincides with the result of Clem [113].
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Appendix C

Gradient expansion

C.I Kernel in Fourier space

In this appendix we prove the validity of the gradient expansion (5.69) for

the DFT free energy in the low-field regime. We start from the expression of

the bulk free-energy (5.68)

8uj[ßz] f dz 8u2Ti(ßz) 3 f dzdz'
. ., ,„

.L^j
_

/ sub^;
, /

-cz_z,(ßz-ßz,)2 (C.I)
T J d T 2J d2

and calculate the saddle point equation

f dz'
,

d (8u2\(ßz)\
,„

.

-6JTc,-,te-,,)
=

^(^), (C.2)

which has to be compared with the corresponding equation coming from the

approximated local theory (5.71)

2d2ßz
_

d (8uh(ßz)\
e~d^-dil\ T J' {LJ)

The bulk kernel (5.65) reads

cz = c2Dd8(z) + äfz, (C.4)

where fz = exp(—G+|z|) and a = a(G) = 7rpTd/G2X2G+. Note that the

first #-term in (C.4) does not contribute to the non local term in the free

energy (Cl).
The difference between the two left-hand side terms of (C.2) and (C.3)

is more conveniently analyzed in Fourier space. In the case of the local
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Gl Kernel in Fourier space

theory, the second derivative term is clearly diagonal in Fourier space and its

components read

£2k2ßk =
3 ßk, (C.5)

where we have used the definition (5.70) oî£. Considering now the full theory,

the left hand side of (C.2) is also diagonal in Fourier space

6(cfc - cfc=oK =
dG+(k* + G*+fk

=

l + (k/G+)2ßk- (C-6)

From the comparison of (C.6) with (C.5) it becomes clear that for small

wavenumbers k ^C G+, i.e., for variations on scales larger than 1/G+, the

gradient expansion approximates well the full non local theory. Therefore,

one needs only to compare the typical length of the soliton ~ £ with the size of

the kernel 1/G+. In Fig. Cl (upper), we show the product £G+ as a function

of T = 2e0d/T. The length £ is larger than G+, for T < 70, proving that for

large values of T the gradient expansion is not justified. For small values of

T the soliton varies on a scale which is larger than 1/G+ and the gradient

expansion provides an accurate approximation to the full non-local theory.

In fact, expanding (C.6) to second order, we can estimate the error as few

percents (k/G+)2 « 1/(4£G+)2 < 0.02 (where we used £e « 4£, cf. (5.75)).
To confirm this analysis we have solved numerically the integral equation

(C.2) imposing the boundary conditions /i^-oo = 0 and /i^oo = ^soi- The

results for different values of T are plotted in Fig. Cl, together with the

soliton of the approximated local theory (thicker line). We have rescaled the

z axis in units of the elastic length £. As expected, for low values of T we

obtain a perfect collapse of the data. On the other hand, for large T the

kink in the non-local theory is much sharper than the soliton in the local

theory and, therefore, the gradient expansion approximates poorly the exact

result. Finally, we can estimate that the gradient expansion approximates

well the non-local theory for T < 50, which corresponds to T > 0.04 e0d and

B<0.5BX.

160



Gradient expansion

C.2 Linearised saddle-point equation

For small values of ßz, we can expand the potential in the RHS of the equation

(C.2). Hence, we write, cf. (6.39),

^(^M)«6(i-Ee)fe (C7)

where we consider the system at melting, i.e., c2°b = cc to make a clear

connection with the discussion in Sec. 6.3.2. Inserting (C.7) and (C.6) in

(C.2), we obtain the equation of 'motion' in Fourier space

'2;„2
-tk 1 ,

6(1 -CC)

(£G+)2
ßk = 6(1 - cc)ßk. (C.8)

We can transform this equation back to real space

(l + r)£2^ = 6(l-cc)ßz, (C.9)

where like in Eq. (6.44) we have defined the parameter r = dG+(l — cc)/2a =

6(1 — cc)/(G+£)2. The higher derivatives which are neglected in the gradient

expansion produce a small renormalization of the elastic term (1 + r) ~ 1 as

compared to (C.3).
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C.2 Linearised saddle-point equation

0.25

Figure Cl: Upper: plot of the ratio between £ and kernel extension 1/G+
as a function of T = 2e0d/T. Lower: comparison of the soliton derived

within the local approximation (thicker line) with the results of the full non¬

local theory for different values of T = 6,40,80,100,130. For T = 6, upon

rescaling z in units of £, the soliton collapses on the solution of the local

approximation. Little deviations are present at T = 40 (first distinguishable

line in the plot), at which however the soliton is still well approximated by

the gradient expansion. At higher T's (the most visible lines correspond to

T = 80,100,130) the difference is appreciable: the full non-local theory leads

to a modified shape of the soliton with a much shaper interface.

162



Bibliography

[1] J. G. Bednorz and K. A. Müller, Z. Phys. 64 (1986).

[2] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and

V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

[3] A. Buzdin and D. Feinberg, J. Phys. France 51, 1971 (1990).

[4] M. V. Feigel'man, V. B. Geshkenbein, and A. I. Larkin, Physica C

167, 177 (1990).

[5] J. R. Clem, Phys. Rev. B 43, 7837 (1991).

[6] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

[7] V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971).

[8] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

[9] G. Eilenberger, Phys. Rev. 164, 628 (1967).

[10] B. A. Huberman and S. Doniach, Phys. Rev. B 43, 950 (1979).

[11] D. S. Fisher, Phys. Rev. B 22, 1190 (1980).

[12] D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988).

[13] A. Houghton, R. A. Pelcovits, and A. Sudb0, Phys. Rev. B 40, 6763

(1989).

[14] E. H. Brandt, Phys. Rev. Lett. 63, 1106 (1989).

[15] L. I. Glazman and A. E. Koshelev, Phys. Rev. B 43, 2835 (1991).

[16] S. Sengupta, C. Dasgupta, H. R. Krishnamurthy, G. I. Menon, and

T. V. Ramakrishnan, Phys. Rev. Lett. 67, 3444 (1991).

163



BIBLIOGRAPHY

[17] M. J. W. Dodgson, A. E. Koshelev, V. B. Geshkenbein, and G. Blatter,

Phys. Rev. Lett. 84, 2698 (2000).

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

V. Pudikov, Physica C 212, 155 (1993).

R. G. Mints, V. G. Kogan, and J. R. Clem, Phys. Rev. B 61, 1623

(2000).

J. R. Clem, cond-mat/0408371 (2004).

A. De Col, V. Geshkenbein, and G. Blatter, Phys. Rev. Lett. 94,

097001 (2005).

R. Lipowsky, Phys. Rev. Lett. 49, 1575 (1982).

J. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett. 54, 134

(1985).

U. Tartaglino, T. Zykova-Timan, F. Ercolessi, and E. Tosatti, Physics

Reports - Review Section of Physics Letters 411, 291 (2005).

T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979).

T. V. Ramakrishnan, Phys. Rev. Lett. 48, 541 (1982).

P. S. Cornaglia and C A. Balseiro, Phys. Rev. B 61, 784 (2000).

V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i. Teor. Fiz. 20, 1064

(1950).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175

(1957).

M. Tinkham, Introduction to Superconductivity 2nd ed., McGraw-Hill

Book Co, Singapore, 1996.

G. Blatter and V. B. Geshkenbein, The Physics of Superconductors,

volume 1, K. H. Bennenmann and K. Emerson, Springer, Berlin, 2003.

C R. Hu, Phys. Rev. B 6, 1756 (1972).

E. H. Brandt, J. Low Temp. Phys. 26, 735 (1977).

V. K. Tkachenko, Zh. Eksp. Theor. Fiz. 29, 1763 (1969).

164



BIBLIOGRAPHY

[35] A. Sudb0 and E. H. Brandt, Phys. Rev. B 43, 10482 (1991).

[36] E. Zeldov et al., Nature 375, 373 (1995).

[37] A. Schilling et al., Nature 382, 791 (1996).

[38] W. E. Lawrence and S. Doniach, Proceedings of the twelfth Interna¬

tional Conference on Low Temperature Physics, Kyoto, page 361, E.

Kanda, Keigaku, Tokyo, 1971.

[39] B. D. Josephson, Phys. Lett. 1, 251 (1962).

[40] S. Colson et al., Phys. Rev. Lett. 90, 137002 (2003).

[41] H. Fangohr, A. E. Koshelev, and M. J. W. Dodgson, Phys. Rev. B 67,

174508 (2003).

[42] J. M. Caillol, D. Levesque, J. J. Weis, and L. P. Hansen, J. Stat. Phys.

28, 325 (1982).

[43] J. Pearl, Appl. Phys. Lett. 5, 65 (1964).

[44] J. Pearl, J. Appl. Phys. 37, 4139 (1966).

[45] G. Carneiro and E. H. Brandt, Phys. Rev. B 61, 6370 (2000).

[46] J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 198 (1967).

[47] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).

[48] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

[49] J. Bardeen and M. J. Stephen, Phys. Rev. 140, 1197A (1965).

[50] S. N. Artemenko, I. G. Gorlova, and Y. I. Latyshev, JETP Lett. 49,

655 (1989).

[51] A. M. Kadin, K. Epstein, and A. M. Goldman, Phys. Rev. B 27, 6691

(1983).

[52] A. T. Fiory and A. F. Hebard, Phys. Rev. B 28, 5075 (1983).

[53] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys.

Rev. B 16, 1217 (1977).

165



BIBLIOGRAPHY

[54] M. R. Beasley, J. E. Mooij, and T. P. Orlando, Phys. Rev. Lett. 42,

1165 (1979).

[55

[56

[57

[58

[59

[60

[61

[62

[63

[64

[65

[66

[67

[68

[69

[70

[71

[72

[73

[74

[75

Y. Tanaka, Phys. Rev. Lett. 88, 017002 (2002).

E. Babaev, Phys. Rev. Lett. 89, 067001 (2002).

E. Babaev, Nucl. Phys. B 686, 397 (2004).

S. Sachdev, Phys. Rev. B 45, 389 (1992).

J. P. Rodriguez, Phys. Rev. B 49, 9831 (1994).

G. E. Volovik, The universe m a helium droplet, Springer, 2002.

D. Gorokhov, cond-mat/0502083 (2005).

E. Babaev, A. Sudb0, and N. W. Ashcroft, Nature 431, 666 (2004).

X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 1811 (1992).

K. Moon et al., Phys. Rev. B 51, 5138 (1995).

I. Giaever, Phys. Rev. Lett. 15, 825 (1965).

J. W. Ekin, B. Serin, and J. R. Clem, Phys. Rev. B 9, 912 (1974).

J. W. Ekin and J. R. Clem, Phys. Rev. B 12, 1753 (1975).

B. Horovitz, Phys. Rev. B 47, 5947 (1993).

J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

A. P. Young, Phys. Rev. B 19, 1855 (1979).

P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

Y. Saito, Z. Phys. B 32, 75 (1978).

M. D. Sherrill, Phys. Rev. B 7, 1908 (1973).

J. R. Clem, Phys. Rev. B 12, 1742 (1975).

B. I. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979).

166



BIBLIOGRAPHY

76] P. G. de Gennes, Superconductivity of Metals and Alloys, Addison-

Wesley Publishing Company, 1966.

77] P. L. Gammel, L. F. Schneemeyer, and D. J. Bishop, Phys. Rev. Lett.

66, 953 (1991).

78] F. Tafuri, J. R. Kirtley, P. G. Medaglia, P. Orgiani, and G. Balestrino,

Phys. Rev. Lett. 92, 157002 (2004).

79] P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

80] A. I. Larkin and Y. N. Ovchinnikov, J. Low Temp. Phys. 34, 409

(1979).

81] E. V. Thuneberg, J. Kurkijärvi, and D. Rainer, Phys. Rev. B 29, 3913

(1984).

82] M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. West,

Phys. Rev. Lett. 88, 126804 (2002).

83] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.

Rev. Lett. 93, 036801 (2004).

84] A. H. MacDonald, Phyisica (Amsterdam) 298B, 129 (2001).

85] K. Yang and et al, Phys. Rev. Lett. 72, 732 (1994).

86] H. Fertig, Phys. Rev. B 40, 1087 (1989).

87] S. M. Girvin, Proc. 11th international conf. on recent progress in many-

body theories, in Advances m Quantum Many-Body Theory, edited by

R. Bishop, T. Brandes, K. Gernoth, N. Walet, and Y. Xian, World

Scientific, 2001.

88] E. Babaev, L. D. Fadeev, and A. J. Niemi, Phys. Rev. B 65, 100512

(2002).

89] G. Blatter, V. B. Geshkenbein, A. Larkin, and H. Nordborg, Phys.

Rev. B 54, 72 (1996).

90] M. J. W. Dodgson, V. B. Geshkenbein, M. V. Feigel'man, and G. Blat¬

ter, cond-mat/0007072 (2000).

167



BIBLIOGRAPHY

[91] G. I. Menon, C Dasgupta, H. R. Krishnamurthy, T. V. Ramakrishnan,

and S. Sengupta, Phys. Rev. B 54, 16192 (1996).

[92] B. B. Laird, J. D. McCoy, and A. D. J. Haymet, J. Chem. Phys. 87,

5449 (1987).

[93] P. M. Chaikin and T. C Lubensky, Principle of condensed matter

physics, Cambridge University Press, United Kingdom, 1995.

[94] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic

Press, London, 1986.

[95] Y. Singh, Physics Reports 207, 351 (1991).

[96] S. Tyagi, Phys. Rev. E 70 (2004).

[97] J. Chakrabarti, H. R. Krishnamurthy, and A. K. Sood, Phys. Rev.

Lett. 73, 2923 (1994).

[98] A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 74, 2559 (1981).

[99] D. W. Oxtoby and A. D. J. Haymet, J. Chem. Phys. 76, 6262 (1982).

[100] Y. Fasano, M. D. Seta, M. Menghini, H. Pastoriza, and F. de la Cruz,

PNAS 102, 3898 (2005).

[101] A. Soibel et al., Nature 406, 282 (2000).

[102] A. R. Ubbelohde, The Molten State of Matter, Wiley, New York, 1978.

[103] L. Pietronero and E. Tosatti, Solid State Commun. 32, 255 (1979).

[104] A. Trayanov and E. Tosatti, Phys. Rev. Lett. 59, 2207 (1987).

[105] A. Trayanov and E. Tosatti, Phys. Rev. B 38, 6961 (1988).

[106] R. Ohnesorge, H. Löwen, and H. Wagner, Phys. Rev. E 50, 4801

(1994).

[107] R. Lipowsky and W. Speth, Phys. Rev. B 28, 3983 (1983).

[108] A. De Col, V. B. Geshkenbein, G. I. Menon, and G. Blatter, Physica

C 404, 119 (2004).

168



BIBLIOGRAPHY

[109] A. De Col, G. I. Menon, V. B. Geshkenbein, and G. Blatter, Phys.

Rev. Lett. 96, 177001 (2006).

[110] V. Mineev and K. Samokhin, Introduction to unconventional supercon¬

ductivity, Gordon Breach, Amsterdam, 1999.

[Ill] D. A. Huse, Phys. Rev. B 46, 8621 (1992).

[112] S. Pierson, Phys. Rev. B 51, 6663 (1995).

[113] J. R. Clem, J. Low Temp. Phys. 18, 427 (1974).

169



BIBLIOGRAPHY

170



List of Publications

6 A. De Col, G.I. Menon, V.B. Geshkenbein, and G. Blatter,

"Surface melting of the vortex lattice",

Phys. Rev. Lett. 96, 177001 (2006).

5 A.A. Abdumalikov Jr, V.V. Kurin, C Helm, A. De Col, Y. Koval, and

A.V. Ustinov,

"Nonlocal electrodynamics of long ultra-narrow losephson junctions:

Experiment and theory",

cond-mat/0411573.

4 A. De Col, V.B. Geshkenbein, and G. Blatter,

"Dissociation of vortex stacks into fractional-flux vortices",

Phys. Rev. Lett. 94, 097001 (2005).

3 A. De Col, V.B. Geshkenbein, G.I. Menon, and G. Blatter,

"Surface effects on the pancake vortex phase diagram",

Physica C 404, 119 (2004).

2 A. De Col and T.B. Liverpool,

"Statistical mechanics of double helical polymer",

Phys. Rev. E 69, 061907 (2004).

1 S. Ciccariello and A. De Col,

"Zero-temperature perturbative calculation of the magnetic susceptibil¬

ity of the free fermion system",

Eur. J. Phys. 22, 629 (2001).

171





Curriculum Vitae

Personal Data

Name:

Date of Birth:

Nationality:

Alvise De Col

February 3, 1977 (Venezia, Italy)
Italian citizen

Education

1983-1996

1996

1996-2001

2000-2001

2001

2001-2005

Primary and Secondary school in Venezia (Italy)
Final degree: Diploma di Maturità Classica

Undergraduate studies in physics at the University of Padova (Italy)

Exchange student at Imperial College, London (UK)
Master thesis on "Statistical Mechanics of double helical

polymers" under the supervision of Dr. T.B. Liverpool

Graduate studies at the Institute of Theoretical Physics

at ETH-Ziirich under the supervision of Prof. G. Blatter

173





Acknowledgments

I would like to express my gratitude to my supervisor Gianni Blatter for bet¬

ting on an atypical (= definitely non-swiss) student the day he accepted me

as his graduate student. He initiated this thesis in a very rich and interesting

field, which from time to time I found a little bit too mature. In spite of

my misgivings, the results that have come out of the project he proposed me

have been surprisingly beautiful. I enjoyed the tempo and the style of the

scientific (and non-scientific) discussions we had, despite of the long queu¬

ing time outside his office. I am particularly indebted to him for giving me

the opportunity to present my results at many conferences all around the

world and the freedom to work often in Leiden. I also wish to express my

gratitude to Dima Geshkenbein for critically reviewing my calculations, for

always pointing out old papers of russian physicists related to my work, and

for all the imaginary chess games we fought (and the ones we did not play). I

profited a lot from his critical insights in physics, his magical skills in solving

integrals, and his historical erudition. A special thank goes to Erio Tosatti

for co-refereeing this thesis and for his interest in my work.

I wish to thank Christian Helm for his neverending patience shown in answer¬

ing all my questions and for carefully reading the manuscript of this thesis.

It is also a great pleasure to thank Matthew Dodgson for stimulating discus¬

sions and for providing me a numerical code of his still disputed 2V-SCHA

method. An important contribution to the results of this thesis has come

out of the discussions with Gautam Menon during his short visit at ETH. I

profited a lot from his expertise on classical density functional theory. I am

very grateful to Wim van Saarloos for giving me the opportunity to work

often at the Lorentz Instituut. I also would like to thank Valéry Pokrovsky,

John Clem, and Cristiane de Morais Smith for inviting me at Texas A&M,

Iowa State University, and University of Utrecht. A particular thank goes to

John Clem for the lovely dinner in his wonderful house in Ames.

175



I wish to express my gratitude to all members of Gianni's group: Christian,

Fabian, Helmut, Jerome, and Sebi. I doubt that anybody will ever beat our

time-outs. For a lucky set of circumstances I started my Ph.D. together with

a group of colleagues which immediately became good and close friends. I

am particularly indebted to Jérôme for being my personal german teacher

and adviser (those coffees have been definitely well spent); Paolo for the very

long discussions and the superb dinners (even if you will never convince me

that one should put mascarpone on a pizza); Igor for handing in this thesis

on my behalf and for his fine taste in the choice of the movies for our cinema

nights ('come on'); Martin for showing me the best side of Switzerland. Fur¬

thermore, I wish to thank Carlo, Christoph, Leni, Matze, Michèle, Philippe,

Simon, Sam, Slavo, all my other Ph.D. colleagues, Denise, Etusch, and Irene

for the nice time together at the ITP. I hope that the new Ph.D. generation

will be able to reproduce the pleasant atmosphere of these years.

It is not possible to name all the people with whom I shared unforgettable

moments in these four years. Still, I would like to thank my flatmate Léon

and all my friends here in Zürich, in Leiden, in Venice, and in Padova (among
them I have to mention the famiglia arroganti and relatives).

I am also very grateful to my parents and my grandmother for their moral

support over the last four years, for having encouraged me to undertake this

wonderful experience abroad, and for always showing an unselfish trust in

me and in my choices.

I would like to dedicate these last words to my desert rose, Chiara. Neither

english nor any other language can express my gratitude and my love. I will

rather let the loud and strong dutch wind which is blowing outside talk on

my behalf, it reminds me of you...

176



177



Als Zarathustra aber allem war, sprach er also zu seinem Herzen:

"Sollte es denn möglich sein! Dieser alte Heilige hat m seinem Walde

noch Nichts davon gehört, dass Gott tot ist!"

F. W. Nietzsche


