The role of debranching enzymes in starch metabolism

Author(s):
Delatte, Thierry Laurent

Publication Date:
2006

Permanent Link:
https://doi.org/10.3929/ethz-a-005210271

Rights / License:
In Copyright - Non-Commercial Use Permitted
The role of debranching enzymes in starch metabolism

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

For the degree of Doctor of Sciences

Presented by:
Thierry Laurent, DELATTE

Master of Science from Wageningen University (NL)
Born 22/11/1976
Citizen of France

Accepted on the recommendation of
Prof. Samuel Zeeman, examiner
Prof. Nikolaus Amrhein, co-examiner

2006
Summary

Starch is the most widespread storage carbohydrate in plants. It is a primary product of photosynthesis, in addition to sucrose, and a long-term storage compound. Starch is composed of two homopolymers of glucose: amylose and amylopectin. Amylose is essentially linear whereas amylopectin is comprised of linear chains linked to each other by branch points. Neighbouring chains of amylopectin form highly organized secondary and tertiary structures which are the basis of semi-crystalline granules. Three enzymes families contribute to amylopectin synthesis. Starch synthases (SS) catalyze linear chain elongation and branching enzymes (BE) redistribute linear chains and form branch points. Interestingly, debranching enzymes (DBE) are also required to facilitate starch granule formation, although their exact contribution is a subject of some debate.

The aim of this work was to analyze the roles of DBEs in starch metabolism. To do this, I systematically knocked out each of the four DBE-encoding genes (isoamylase 1 (ISA1), isoamylase 2 (ISA2), isoamylase 3 (ISA3) and limitdextrinase LDA) in Arabidopsis thaliana and analyzed the mutant phenotypes. My research shows that similar phenotypes result from mutations in both ISA1 and ISA2 and suggest that both proteins function together as one DBE, specialised for tailoring amylopectin structure. Abnormal amylopectin and soluble phytoglycogen accumulate in their absence. In AtLDA mutants there is no effect on the plant’s metabolism, whereas Atisa3 mutants had a clear starch-excess phenotype, indicating a role in starch degradation. Yet significant starch degradation still occurs during the night in the absence of ISA3. To understand this, I analysed double knockouts and found that AtLDA/Atisa3 plants displayed a more severe starch excess phenotype than Atisa3. This leads me to propose a model in which AtISA3 and AtLDA have distinct roles in starch degradation.

I generated all possible multiple knockout combinations and surveyed their phenotypes. The results show that any one of the three DBE activities (LDA, ISA3 or ISA1/ISA2) is sufficient to allow starch granule synthesis, at least in some tissues. However, in the absence of DBE activity, large quantities of soluble glucans accumulate and are inefficiently metabolised. In addition, a small amount of non-granular, yet insoluble glucans were found. Therefore, DBEs are not absolutely required for insoluble glucan synthesis, but appear to be necessary for normal starch metabolism.
L'amidon est la méthode de choix utilisée par les plantes pour stocker les hydrates de carbone. Cet élément de stockage à long terme est aussi un produit principal de la photosynthèse au même titre que le sucre. L'amidon est constitué de deux homo-polymères de glucose: l'amyllose et l'amélopectine. L'amyllose est essentiellement linéaire, alors que l'amélopectine est constituée de chaînes linéaires associées entre elles par des points de branchement. Ces chaînes adjacentes forment des structures secondaires et tertiaires à haut degré d'organisation qui constituent la base des granules semi-créatelline. Trois familles d'enzymes participent à la production de ce polymère. Les enzymes de synthèse (SS) catalisent l'allongement des chaînes linéaires. Les enzymes de branchement (BE) redistribuent les chaînes linéaires et forment des points de branchements entre elles. Il est intéressant de noter que la troisième activité est attribuée aux enzymes de débranchement (DBE) qui favorisent la formation de granules, mais leur contribution exacte est sujet à controverse.

Le but de ce travail a été de déterminer le rôle joué par les DBEs dans le métabolisme de l'amidon. Mon approche a constitué à systématiquement éliminer les quatre gènes codant pour les DBEs (isoamylase 1 (ISA1), isoamylase 2 (ISA2), isoamylase 3 (ISA3) et limitdextrinase (LDA)) chez l'Arabidopsis thaliana et d'analyser le phénotype de ces mutants. Ma recherche montre la grande similitude phénotypique existant entre les mutants Atisa1 et Atisa2, cette similitude suggère que ces deux enzymes fonctionnent ensemble pour former une seule activité DBE, qui façonne l'amélopectine. En leur absence les plantes concernées accumulent une amélopectine anormale ainsi qu'un glucane soluble (i.e. phytoglycogen). Alors que dans le mutant AtlDA le métabolisme ne semble pas affecté, Atisa3 accumule de l'amidon en excès, ceci implique ISA3 dans la dégradation de l'amidon. Nonobstant, une quantité substantielle d'amidon est dégradée durant la nuit en l'absence de ISA3. Pour comprendre ce phénomène j'ai étudié le double mutant AtlDA/Atisa3 et j'ai trouvé que ces plantes accumulent plus d'amidon que Atisa3. Cette observation m'a permis de formuler un modèle expliquant le rôle joué par ISA3 et LDA dans la dégradation de l'amidon.

J'ai généré toutes les combinaison possibles à partir des quatre gènes mentionnés ci-dessus et étudié leur phénotypes. Les résultats montrent qu'une des trois activités DBE (AtLDA ou AtISA3 ou AtISA1/AtISA2) est suffisante pour favoriser la synthèse de glucane sous forme de granules, au moins dans certains tissus. Néanmoins, en l'absence de DBE, les plants accumulent de grandes quantités de glucanes solubles qui sont métabolisées de façon...
inefficace. Par ailleurs, une petite quantité de glucan insoluble mais non granulaire est aussi présente. Ces résultats me permettent de conclure que les DBEs ne sont pas essentielles à la synthèse de glucans insolubles mais nécessaires à la synthèse des granules d'amidon.