Bewertung von Knotenmanagement-Methoden für Eisenbahnen

Author(s):
Roos, Samuel

Publication Date:
2006-01

Permanent Link:
https://doi.org/10.3929/ethz-a-005226932

Rights / License:
In Copyright - Non-Commercial Use Permitted
BEWERTUNG VON KNOTENMANAGEMENT-METHODEN FÜR EISENBAHNEN

Samuel Roos
Dank

Ich danke Herrn Prof. Dr. Ulrich Weidmann für die Unterstützung dieses realitätsnahen Projekts. Es gibt mir die Möglichkeit, ein aktuelles Thema zu bearbeiten. Weiter danke ich ihm für die engagierte Betreuung.

Ich danke dem betreuenden Doktoranden Herrn Marco Lüthi für die hilfreiche Unterstützung sowie für die Zusammenarbeit bei der Lösung von Schwierigkeiten betreffend die Applikation OpenTrack.

Ich danke Herrn Dr. Felix Laube für die Unterstützung der akademischen Bearbeitung des bei den SBB unter seiner Leitung laufenden Projekts Methode PULS. Entsprechend hat er mir inhaltlich hilfreich beigestanden. Er ermöglichte mir zudem den Kontakt mit weiteren Personen bei den SBB.

Ich danke Herrn Dr. Raimond Wüst von den SBB für seine kritischen Fragen und Anmerkungen, welche etliche Anpassungen ermöglichten.

Ich danke Herrn Thomas Graffanino von den SBB für die verwendeten Sperrzeiten-Daten sowie für Hinweise auf interessante Literatur.

Ich danke Herrn Michael Fankhauser von den SBB, Abteilung Trassenmanagement Luzern, für die bereitwillige Information über das derzeit angewandte Vorgehen bei der Fahrplanerstellung und im Betrieb.
Inhaltsverzeichnis

Dank .. I

Tabellenverzeichnis .. IV

Abbildungsverzeichnis ... V

1 Einführung .. 3

2 Kapazität: Definitionen und Kennzahlen .. 5
 2.1 Kennwerte .. 6
 2.2 Abstraktion der Infrastruktur ... 8

3 Bestehende Kapazitätsanalysemethoden ... 11
 3.1 Übersicht Kapazitätsanalysemethoden .. 11
 3.2 Manuell / rechnergestützt ... 11
 3.3 DONS .. 18
 3.4 CAPRES / AFAiG ... 19
 3.5 Simulation .. 20
 3.6 Burkolter (Petri Netze) .. 20
 3.7 Fahrteneinbindung ... 21
 3.8 UIC-Formel .. 23
 3.9 Fahrstrassen-Ausschlussstafel .. 24
 3.10 ANKE (Analytische Netzkapazitätsermittlung) .. 24

4 Methode PULS ... 25
 4.1 Konzeptidee .. 25
 4.2 Erstellung PULS-Raster .. 29
 4.3 Belegung (grafisch) ... 40
 4.4 Betriebsführung ... 41
 4.5 Automatisierungsmöglichkeiten ... 42
<table>
<thead>
<tr>
<th>Seite</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Methodenübersicht ... 43</td>
</tr>
<tr>
<td>6</td>
<td>Kapazitätsanalyse Knoten Luzern 47</td>
</tr>
<tr>
<td>6.1</td>
<td>Untersuchte Betriebsprogramme und angewandte Verfahren 48</td>
</tr>
<tr>
<td>6.2</td>
<td>Bestehender Fahrplan ... 48</td>
</tr>
<tr>
<td>6.3</td>
<td>Methode PULS .. 53</td>
</tr>
<tr>
<td>6.4</td>
<td>Simulation .. 62</td>
</tr>
<tr>
<td>7</td>
<td>Bewertung der Methoden ... 69</td>
</tr>
<tr>
<td>7.1</td>
<td>Vergleich Kapazitätsanalyse Knoten Luzern 69</td>
</tr>
<tr>
<td>7.2</td>
<td>SWOT-Analyse für Methode PULS 71</td>
</tr>
<tr>
<td>7.3</td>
<td>Anwendungsbereich Methode PULS 72</td>
</tr>
<tr>
<td>7.4</td>
<td>Ausblick ... 73</td>
</tr>
<tr>
<td>8</td>
<td>Literatur ... 75</td>
</tr>
<tr>
<td>9</td>
<td>Glossar .. 77</td>
</tr>
<tr>
<td></td>
<td>Anhang .. A-1</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tabelle 1 Definitionen der Kapazität, Kennwerte ...6
Tabelle 2 Kapazitätsanalysemethoden ..11
Tabelle 3 Verpulsungsarten von Weichennestern ...35
Tabelle 4 Beispielrechnung zu Abbildung 12 (Konzeptidee) ...36
Tabelle 5 Planungs- und Betriebsformen ...44
Tabelle 6 Ankünfte Personenverkehrszüge Normalspur 17:00 bis 18:00 Uhr49
Tabelle 7 Abfahrten Personenverkehrszüge Normalspur 17:00 bis 18:00 Uhr50
Tabelle 8 Zentralbahn 17:00 bis 18:00 Uhr ..51
Tabelle 9 Güterzüge / Lokzüge 17:00 bis 18:00 Uhr ...51
Tabelle 10 Rangierfahrten 17:00 bis 18:00 Uhr ..52
Tabelle 11 Zugzahlen Verdichtungsbereich Luzern: Fahrplan 200552
Tabelle 12 5 ausgewählte Zug-/Fahrwegkombinationen ...54
Tabelle 13 Performance-Vergleich ..56
Tabelle 14 Primärverspätungen im Betriebsprogramm 'Heutiges Angebot'61
Tabelle 15 Sekundärverspätungen / Fahrwegänderungen ..62
Tabelle 16 Vergleich Kapazitätsanalyse Knoten Luzern ...69
Tabelle 17 SWOT-Analyse ..71
Abbildungsverzeichnis

Abbildung 1 Warteschlangen-Modell ... 7
Abbildung 2 Stufen der Abstraktion der Infrastruktur 9
Abbildung 3 Planung Angebotskonzept mittels Netzgrafik 13
Abbildung 4 Bewirtschaftung Streckenzug mittels grafischem Fahrplan 14
Abbildung 5 Bewirtschaftung Streckenzug mittels grafischem Fahrplan 16
Abbildung 6 Bewirtschaftung Streckenzug mittels grafischem Fahrplan 16
Abbildung 7 CAPRES: Fahrplan-Sättigung mit Güterzügen 19
Abbildung 8 Petri Netz Beispiel ... 20
Abbildung 9 Beispiel Topologie Fahrstrassenknoten 21
Abbildung 10 Fahrtenabhängigkeitsplan Planfall 22
Abbildung 11 Fahrtenabhängigkeitsplan komprimiert 23
Abbildung 12 Konzeptidee PULS ... 26
Abbildung 13 Erholungsmarge .. 30
Abbildung 14 Effekt der Teilfahrstrassenauflösung (TFA) 32
Abbildung 15 Verflechtung von Gegenfahrten ... 33
Abbildung 16 PULS-Effizienzsteigerung mit Verflechtung von Gegenfahrten 34
Abbildung 17 Homogenisierung ... 38
Abbildung 18 Homogenisierung ‚Kamelhöcker’ 38
Abbildung 19	Nutzung der Zwischenpuls-Zeitscheibe (ZPZ)	39
Abbildung 20	Belegung	40
Abbildung 21	Gleisschema Luzern	47
Abbildung 22	PULS-Effizienzsteigerung mit Verflechtung von Gegenfahrten	55
Abbildung 23	Restriktionen Weichennest Gütsch	56
Abbildung 24	Kreuzung RE von/nach Bern	58
Abbildung 25	Einstellungen Preferences – verwendete Dateien	63
Abbildung 26	Später Bremseinsatz	64
Abbildung 27	Simulation	65
Kurzfassung

Schlagworte

Fahrplankonstruktion, Kapazität, Knoten, Puls, Simulation, Verdichtungsbereich

Zitierungsvorschlag

Roos, S. (2006), Bewertung von Knotenmanagement-Methoden für Eisenbahnen, Diplomarbeit, IVT, ETH Zürich
1 Einführung

Im nachfolgenden Kapitel wird der Begriff Kapazität erläutert und seine Bedeutung für die Eisenbahn aufgezeigt.

Das Kapitel 3 stellt bereits bekannte Kapazitätsanalysemethoden vor. Sie reichen von der erfahrungsbasierten Planung eines Fahrplans der Abteilung Trassenmanagement der SBB bis zu analytischen Instrumenten, welche von verschiedenen universitären Instituten hervorgebracht wurden.

Das Kapitel 5 beinhaltet eine Methodenübersicht mit Gegenüberstellung der bestehenden Kapazitätsanalysemethoden und der Methode PULS.

Um quantitative Aussagen über die Effizienz verschiedener Verfahren machen zu können, wird im Kapitel 6 exemplarisch der Knoten Luzern untersucht. Neben der Auswertung des heutigen Fahrplans als Ergebnis der derzeit angewendeten erfahrungsbasierten Planung wird unter Anwendung der Simulations-Applikation OpenTrack sowie mit der Methode PULS nach verschiedenen Strategien die Leistungsfähigkeit des komplexen Knotens im Zentrum des Schweizer Bahnnetzes ausgelotet.

Aufgrund der in Kapitel 7 zusammengestellten Resultate des Beispielfalles Knoten Luzern werden die Eigenschaften der Methode PULS in einer SWOT-Analyse zusammengestellt sowie deren Anwendbarkeit erläutert.
2 Kapazität: Definitionen und Kennzahlen

Allgemeine Definition des Begriffes Kapazität [lat. capacitas = Fassungsvermögen, geistige Fassungskraft, zu capax = viel fassen, taugen]: in der Physik Fähigkeit, elektrische Ladung aufzunehmen und zu speichern, in der Wirtschaft die maximale Leistung in der Produktion. Das Leistungsangebot von Menschen und/oder Betriebsmitteln in einem bestimmten Zeitabschnitt wird als Kapazität bezeichnet.

Im Kapitel 3 werden verschiedene Verfahren vorgestellt, die Kapazität von Eisenbahn-Anlagen zu bestimmen. Es existieren Verfahren, die Aussagen unabhängig von einem konkreten Betriebsprogramm ermöglichen und solche, die die Kapazität spezifisch einem Betriebsprogramm zuordnen. Die Tabelle 1 zeigt eine Übersicht der grundlegenden Ansätze.
Tabelle 1 Definitionen der Kapazität, Kennwerte

<table>
<thead>
<tr>
<th>Definition</th>
<th>Kennwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktion</td>
<td>Operative Machbarkeit Betriebsprogramm</td>
</tr>
<tr>
<td>Sättigung</td>
<td>Maximale Zugzahl in bestimmtem Zeitintervall</td>
</tr>
<tr>
<td>Komprimieren</td>
<td>Minimale Laufzeit für bestimmtes Betriebsprogramm</td>
</tr>
<tr>
<td>Analytisch</td>
<td>Planmässige und ausserplanmässige Wartezeiten</td>
</tr>
</tbody>
</table>

2.1 Kennwerte

Operative Machbarkeit Betriebsprogramm

Diese Kapazitätsbemessungsmethode basiert auf dem Bedarf nach effizienten Fahrplanstrukturen auf hochbelasteten Netzen in der Praxis. Das primäre Ziel ist die Erstellung eines produzierbaren Fahrplanes, die Kapazitätsanalyse ist zweitrangig. Einen wichtigen Stellenwert nehmen ein:

- Anschlussbeziehungen / Gleisbelegungswünsche
- Rangierfahrten
- Verfügbarkeit von Trassen für selten verkehrende Zugtypen
- Einschränkungen der Infrastrukturnutzbarkeit infolge Bauarbeiten oder Störungen
- Verspätungen und Verspätungsübertragung

Maximale Zugzahl in bestimmtem Zeitintervall

Um ohne Einfluss auf Züge des Taktverkehrs eine Kapazitätskennzahl bestimmen zu können, werden zusätzliche Züge in die vorhandenen Freiräume des Fahrplangefüges eingefügt. Dabei werden typische Zugsarten des bedarfsabhängigen Verkehrs verwendet, beispielsweise Güterzüge auf Strecken mit hohem Güterverkehrsaufkommen, in der Schweiz zum Beispiel auf Transitstrecken oder am Jurasüdfuss, oder durchschnittliche Zugtypen des Systemverkehrs.
Minimale Laufzeit für bestimmtes Betriebsprogramm

Um die Festlegung auf eine bestimmte Nachfrage für zusätzliche Züge bei der Sättigungs- methode zu vermeiden, wird das vollständige Betriebsprogramm soweit als möglich komprimiert. Die Zugfahrten werden soweit verschoben wie möglich, ohne jedoch die Reihenfolge zu ändern. Die Taktintervalle werden dadurch zwar auf beliebige Werte verkürzt, ihre Regelmässigkeit bleibt aber erhalten. Die Messung erfolgt in der benötigten Zeit für eine bestimmte Anzahl Züge.

Planmässige und ausserplanmässige Wartezeiten

Das Verfahren der rechnerischen Analyse von planmässigen und ausserplanmässigen Warte- zeiten stützt sich auf das bekannte Warteschlangenmodell. Je mehr Züge ein gleiches Infra- strukturelement verwenden, desto grösser wird die Wahrscheinlichkeit, dass zwei gewünschte Belegungszeiten überlappen und einer von zwei konfliktbehaf teten Zügen 'warten' muss. Ergeben sich Verzögerungen für gewisse Züge bei der Planung eines Fahrplanes, so sind dies

Abbildung 1 Warteschlangen-Modell

![Warteschlangen-Modell](image)

Quelle: Vakhtel, 2002

2.2 Abstraktion der Infrastruktur

Abbildung 2: Stufen der Abstraktion der Infrastruktur

<table>
<thead>
<tr>
<th>STUFE</th>
<th>Betrachtete Struktur der Anlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netz</td>
<td></td>
</tr>
<tr>
<td>- Fernverkehrs-Knoten</td>
<td></td>
</tr>
<tr>
<td>- Zwischenstation</td>
<td></td>
</tr>
<tr>
<td>- Strecke</td>
<td></td>
</tr>
<tr>
<td>Streckenzug</td>
<td></td>
</tr>
<tr>
<td>- Bahnhof mit umfangreicher Gleisanlage</td>
<td></td>
</tr>
<tr>
<td>- Streckengleis</td>
<td></td>
</tr>
<tr>
<td>Verdichtungsbereich</td>
<td></td>
</tr>
<tr>
<td>- Weichenregion (Fahrstrassenknoten)</td>
<td></td>
</tr>
<tr>
<td>- Gleisabschnitt</td>
<td></td>
</tr>
<tr>
<td>Fahrstrassenknoten</td>
<td></td>
</tr>
<tr>
<td>- Weiche</td>
<td>(Teilfahrstrassenknoten)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Literatur wird der Begriff 'Knoten' sowohl für die Stufe Verdichtungsbereich als auch für Fahrstrassenknoten verwendet. In dieser Arbeit ist mit 'Knoten' stets von Verdichtungsbe reichen die Rede.
2.2.1 Stufe Netz

Auf der Stufe Netz ist weniger die Kapazität massgebend als die Qualität des Angebotes (Takt, Halte, Anschlüsse). Es besteht nicht flächendeckend eine derart grosse Nachfrage, als dass ein ganzes Netz auf seine maximale Kapazität beurteilt werden muss. Die Angebotsstruktur auf der Stufe Netz gibt das gewünschte Betriebsprogramm für die Kapazitätsanalysen auf den weiteren Stufen vor.

2.2.2 Stufe Streckenzug

2.2.3 Stufe Verdichtungsbereich

2.2.4 Stufe Fahrstrassenknoten

3 Bestehende Kapazitätsanalysemethoden

3.1 Übersicht Kapazitätsanalysemethoden

Tabelle 2 Kapazitätsanalysemethoden

<table>
<thead>
<tr>
<th>Stufe Netz</th>
<th>Stufe Streckenzug</th>
<th>Stufe Verdichtungsbereich</th>
<th>Stufe Fahrstrassenknoten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative Machbarkeit Betriebsprogramm</td>
<td>Manuell / Rechnergestützt (Netzgrafik)</td>
<td>Manuell / Rechnergestützt (grafischer Fahrplan)</td>
<td>Simulation (Überprüfung)</td>
</tr>
<tr>
<td>Dons (Cadans)</td>
<td>Dons (Stations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximale Zugzahl in bestimmtem Zeitintervall</td>
<td>-</td>
<td>Capres</td>
<td>Simulation</td>
</tr>
<tr>
<td>Minimale Laufzeit für bestimmtes Betriebsprogramm</td>
<td>-</td>
<td>UIC-Formel</td>
<td>Burkolter (obere Ebene)</td>
</tr>
<tr>
<td>algebraisch</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Planmässige / ausserplanmässige Wartezeit</td>
<td>-</td>
<td>ANKE</td>
<td>ANKE</td>
</tr>
</tbody>
</table>

3.2 Manuell / rechnergestützt

Die Erstellung von Fahrplänen erfolgt heutzutage weitgehend erfahrungsbasiert. Der Computer wird insbesondere für eine rationellere grafische Bearbeitung eingesetzt, hingegen nicht für Berechnungen von Fahrplanstrukturen. Das bei den SBB verwendete Programm Viriato führt Änderungen sogleich in allen grafischen Darstellungen (Netzgrafik, verschiedene grafische Fahrpläne, Gleisbelegungspläne) nach. Dadurch sind die Auswirkungen von Modifikati-
onen einfacher fassbar. In Tabelle 2 ist ersichtlich, dass die Stufe Verdichtungsbereich nicht verwendet wird.

Die Fahrzeiten der verschiedenen Züge werden von einem isolierten, in die Jahre gekommenen Programm namens Zuglaufrechnung (ZLR) berechnet. Sie können in die Programme Viriato und Syfa übernommen werden. Inzwischen ist ein eigenes Fahrzeitberechnungselement für Viriato in Entwicklung.

Bis rund ein halbes Jahr vor dem Fahrplanwechsel erfolgt die Planung mit dem modernen Programm Viriato, welches dem aktuellen Stand der Technik entspricht und hohen Benutzerkomfort bietet. Da in den verschiedenen Bereichen der SBB das rudimentäre Programm Syfa (System Fahrplan) verankert ist, wird die weitere Planung auf diesem System vorgenommen. Die aktuellen Daten können von den Stellen der Fahrzeug-, Unterhalts- und Personalplanung abgerufen werden.

Die Fahrplanplanung erfolgt bei den SBB zehntelsminutengenau. Die Daten werden bei der grafischen Ausgabe und bei der Weitergabe an die Betriebsführung jedoch auf Minuten gerundet.

Die Übergänge zwischen den nachfolgend beschriebenen Arbeitsgängen sind ausgesprochen flüssig. Schon während der generellen Planung wird die Stabilität des Fahrplanes im Auge behalten, indem typische störungsanfällige Konstellationen vermieden werden. Um das parallele, wechselhafte Vorgehen aufzuzeigen, wird es in die eigentliche Fahrplanerstellung und die Stabilitätsbetrachtungen unterteilt.

3.2.1 Erstellung produzierbarer Planfall

Abbildung 3 Planung Angebotskonzept mittels Netzgrafik

ANGEBOTSKONZEPT

Quelle: Fahrplankonstruktions-System Viriato von SMA+Partner

Im grafischen Fahrplan werden genauere Fahrzeiten je Zugkonfiguration verwendet. Auf den Strecken werden die (in Fahrtrichtung) benützten Gleise ausgewiesen (Linienart: durchgezogen = links, gestrichelt = rechts ("banal")). In den Bahnhöfen ist der jeweilige Fahrweg nicht definiert.
Abbildung 4 Bewirtschaftung Streckenzug mittels grafischem Fahrplan

Quelle: grafischer Fahrplan der Strecke (Zürich –) Baar – Zug – Gisikon (– Luzern)

In Gleisbelegungsplänen wird die Zuordnung der Züge auf die verschiedenen Gleise eines Bahnhofes durchgeführt. Dabei müssen neben den eigentlichen Bahnhofgleisen auch die Weichenköpfe beachtet werden. Für gleichzeitige Ein- und Ausfahrten muss die Topologie über konfliktfreie Fahrwege verfügen.

Im Kernbereich der Knoten, dem zentralen Bahnhof und den unmittelbar angrenzenden komplexen Weichenregionen, sind Mitarbeiter der Betriebsführung für die genaue Zuteilung der Fahrstrassen zuständig. Im meist stark beanspruchten Raum ist der Koordinationsaufwand zwischen den verschiedenen Verantwortlichen besonders gross. Unterschiedliche Auffassungen bezüglich Risiko für Fahrplaninstabilitäten treffen aufeinander. Um die Zuverlässigkeit zu gewährleisten, werden pauschale Reserven beigegeben, welche topologische oder fahrzeug-
spezifische Effekte auffangen. Im Bereich Fahrstrassenknoten fehlt beim heutigen Verfahren eine übersichtliche Darstellungsform.

Im alltäglichen Betrieb müssen Züge oft im Knotenbereich vor geschlossenen Signalen bremsen, da sie auf der offenen Strecke und möglicherweise im Aussenbereich des Knotens vorzeitig verkehren können, ohne dass sich Konflikte ergeben. Die langsame Fahrte im Knotenbereich bedeutet aber die verlängerte Blockierung hoch belasteter Infrastrukturlemente. Um die sich daraus ergebenden Auswirkungen auf andere Züge abzufangen, benötigt das System weitere Reserven. Die mehrheitlich im Knotenbereich vorgehaltenen Reserven lassen sich in bestehenden Fahrplänen nur schlecht spezifischen Zügen oder Topologieeffekten zuordnen.

Die Fahrplanstruktur wird zehtelsminutengenau erarbeitet, bei der Weitergabe der Daten geht diese Genauigkeit jedoch verloren, da die Fahrplandaten auf Minuten gerundet werden. Die Betriebsführung kann sich somit nur auf minutengenau Vorgaben stützen.

3.2.2 Beurteilung bezüglich Stabilität

Abbildung 5 Bewirtschaftung Streckenzug mittels grafischem Fahrplan

Quelle: grafischer Fahrplan der Strecke (Zürich –) Baar – Zug – Gisikon (– Luzern)

Abbildung 6 Bewirtschaftung Streckenzug mittels grafischem Fahrplan

Quelle: grafischer Fahrplan der Strecke (Zürich –) Baar – Zug – Gisikon (– Luzern)
Bei den beiden IR Zürich – Luzern und umgekehrt wird gemäß Abbildung 6 ein kleinerer Federweg (2 Minuten) akzeptiert. Dieser funktioniert nur, wenn für den IR Zürich – Luzern im Zulauf auf die Einspur eine reduzierte Geschwindigkeit signalisiert wird (Tiefhaltung). Da seine Fahrordnung jedoch grosse Reserven aufweist, folgt dieser Zug meist der gestrichelten Linie und muss vor der Einspur warten. Deshalb wird seine anschliessende Fahrordnung so bemessen, dass er sie bei pünktlichem Verkehren des IR Luzern – Zürich auch aus dem Stand erreichen kann. Der knapp bemessene Federweg wird zudem akzeptiert, da eine leicht verspätete Ankunft im Knotenbahnhof (rechts) keine Folgeverspätungen verursacht.

3.2.3 Iterative Korrekturen, iterative Belastungserhöhung

3.2.4 Operative Betriebsführung

Der planmässige Betriebsablauf wird von der Leittechnik automatisch geführt. Den Zügen werden die vorgegebenen Fahrstrassen in der geplanten Reihenfolge zugewiesen. Das aktuelle Betriebsprogramm wird in täglich angepasster Form eingegeben. Dabei können Modifikationen der Fahrstrassenbenützung einfließen, falls die aktuelle Konstellation geeignetere Betriebsverhältnisse zulässt. Auch der Fahrdienstleiter kann während des laufenden Betriebes Modifikationen in der Fahrstrassenzuweisung vornehmen, falls sie ihm aufgrund eines vom Planfall abweichenden Betriebszustands sinnvoll erscheinen. Um die Flexibilität hoch zu hal-
ten, kann der Fahrdienstleiter auch die Abfolge von Zugfahrten tauschen oder gar so disponieren, dass zwei Züge gleichzeitig einen vorausliegenden Streckenabschnitt belegen würden und den Vorrang dem zuerst ankommenden vergeben. Der Fahrdienstleiter muss die benötigten Rangierfahrten berücksichtigen und die dafür notwendigen Fahrstrassen vergeben.

Der Kenntnisstand der einzelnen Triebfahrzeugführer über die allgemeine Betriebslage ist gering. Sie sehen nur die unmittelbar vor ihnen liegenden Signale und allenfalls diejenigen der Gegenrichtung. Aus diesen Informationen, zusammen mit der Erfahrung, versuchen sie zeitraubende Signalhalte zu vermeiden.

3.2.5 Manuelle / rechnergestützte Fahrplankonstruktion in Japan

3.3 DONs

3.4 CAPRES / AFAIG

Abbildung 7 CAPRES: Fahrplan-Sättigung mit Güterzügen

Quelle: Lucchini, Curchod, Rivier; 2001
3.5 Simulation

3.6 Burkolter (Petri Netze)

Abbildung 8 Petri Netz Beispiel

Quelle: Burkolter, 2005

3.7 Fahrtenabhängigkeitsplan

Abbildung 10 Fahrtenabhängigkeitsplan Planfall
3.8 UIC-Formel

3.9 Fahrstrassen-Ausschlusstafel

3.10 ANKE (Analytische Netzkapazitätsermittlung)

4 Methode PULS

4.1 Konzeptidee

Durch eine Rasterung der möglichen Fahrlagen von Zügen im Bereich der Zugfolgezeit kann mit der Methode PULS die Lösungsmenge für die Fahrplanplanung sehr stark reduziert werden. Durch ein geeignetes Optimierungsverfahren wird ein Lösungsbereich eingegrenzt, welcher die vorhandene Infrastruktur besonders vorteilhaft nutzt. Der verbleibende Lösungsbe reich, welcher auch auf die regelmässig verkehrenden Zugtypen zugeschnitten ist, wird als eine formale Struktur, dem PULS-Raster dargestellt. Das PULS-Raster ist nur im Falle von Änderungen an Infrastruktur oder Zugsmix neu zu erstellen, Fahrplananpassungen können jederzeit vorgenommen werden. Auf dem verschiedenartig nutzbaren PULS-Raster erfolgt die Belegung mit konkreten Zügen (Fahrplankonstruktion)

Abbildung 12 Konzeptidee PULS

Grafischer Fahrplan
(für manuelle Fahrplankonstruktion verwendete Darstellung)

Sperrzeitentreppen
(unveränderte Fahrplanlage)
- erhöhter Detaillierungsgrad
- für Infrastrukturnutzung massgebend

Pulsdauer anhand der Folgefahrten
- Reduktion der Lösungsmenge
- Restriktion Splitting
Optimierung Pulsphasen anhand der Gegenfahrten

- **Fokussieren auf Lösungsmenge mit hohem Durchsatz**
- **Restriktionen für Gegenfahrten**

Methodik

- **Verflechten von Gegenfahrten unter Ausnützung der Teilfahrstrassenauflösung**
- **Ausnützung des Puls-Spielraumes je nach Zugtyp**
- **Homogenisierung: Begrenzung der Beschleunigung einzelner Zugtypen**

PULS-RASTER

Optimiert für Infrastruktur und regelmässig verkehrende Zugtypen

Jeder Zugtyp hat innerhalb eines Pulses eine individuell definierte Fahrlage, die sich nach jeder Pulsdauer wiederholt

Grafisches Layout

Kombination ‚digitaler‘ grafischer Fahrplan und Gleisbelegungsplan

Elemente

- **PULS-Raster**
- **Topologie (Gleiszahl) je Puls**
- **Gleise zwischen Weichennestern**
- **Perrons**
- **Topologie der Weichennester**
BELEGUNG

Fahrplankonstruktion

• Rasches Auffinden von effizienten Konstellationen
• Gute Erfassbarkeit von Abhängigkeiten im Fahrplangefüge

Restriktionen für Folge- und Gegenfahrten bilden infrastrukturbedingte Einschränkungen präzise ab

• Lange Belegung Gleisabschnitt nach Weichennest
• Konflikte gewisser Zugstypen-Abfolgen aufgrund der Eigenschaften
 - Zugslänge
 - Beschleunigungsvermögen
 - Signalstandorte (Vorsignalldistanz)
 - Fahrweg (Geschwindigkeitsrestriktion)

Vergleich desselben Fahrplangefüges im gleichen Zeitmassstab

manuell

PULS
4.2 Erstellung PULS-Raster

Das PULS-Raster ist gewissermassen ein „Formular“, das eine schnelle Belegung der Infrastruktur mit üblichen Zügen nach einfachen Regeln ermöglicht. Die Vereinfachungen gehen so weit, dass der Planer Abhängigkeiten zwischen den verschiedenen Zügen sofort erkennt und Lösungsmöglichkeiten für Konfliktsituationen intuitiv erfassen kann.

4.2.1 Verdichtungsbereich / Ausgleichsbereich

4.2.2 Verpulste Weichennester

Innerhalb eines Verdichtungsbereiches werden alle Weichennester verpulst, auf welchen regelmässig Abkreuzungen stattfinden. Im PULS-Raster für den Regelfall mit uneingeschränkt nutzbare Infrastruktur nicht zu verpulsen sind insbesondere Spurwechsel, welche nur im Falle von Unterhaltsarbeiten oder Störungen verwendet werden. Verpulste Weichennester werden als Pulszonen bezeichnet.

Signale sind jedoch mehrheitlich so angeordnet, dass nur ein Weichennest dazwischen liegt, da andere Formen auch bei nicht verpulster Bewirtschaftung hinderlich sind.

4.2.3 Margen

Mit der Methode PULS wird die Permutation von Zügen ein einfach zu handhabendes Instrument der Disposition und die sich daraus ergebenden Reserven werden in vollem Umfang verfügbar. Die Belegungen von verschiedenen Zügen können flexibel abgetauscht werden. Um diesen Freiheitsgrad tatsächlich ausnutzen zu können, ist allerdings ein gewisser Teil der potentiellen Fahrmöglichkeiten durch ein jeweiliges Weichennest freizuhalten. Da die Fahrzeitreserve auf den Ausgleichsstrecken ausgewiesen wird, können rechtzeitig verkehrende Züge bereits einen früheren Puls erreichen, was eine Flexibilität auch ohne Verspätung abgetauschter Züge ermöglicht. Der Anteil nicht belegter Fahrmöglichkeiten je Pulszone wird Erholungsmarge genannt.

Abbildung 13 Erholungsmarge

![Erholungsmarge Diagramm]

<table>
<thead>
<tr>
<th>Ausweisung</th>
<th>Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 von 2 gleichzeitig möglichen Fahrwagen blockiert</td>
<td></td>
</tr>
<tr>
<td>1 von 2 gleichzeitig möglichen Fahrwagen blockiert</td>
<td></td>
</tr>
<tr>
<td>2 von 2 gleichzeitig möglichen Fahrwagen blockiert</td>
<td></td>
</tr>
<tr>
<td>2 von 2 gleichzeitig möglichen Fahrwagen blockiert</td>
<td></td>
</tr>
</tbody>
</table>

30
4.2.4 Zug-/fahrwegspezifische Sperrzeitentreppen

Zur Erstellung eines PULS-Rasters sind Sperrzeitentreppen für sämtliche verkehrenden Züge notwendig. Die Einflüsse auf die Elemente Sperrzeit und Fahrzeit, welche in einer Sperrzeitentreppen zusammengefasst sind, können vier Faktoren zugeordnet werden:

- Zugslänge (Verzögerung der Gleisfreimeldung)
- Beschleunigung (Traktion, Zuggewicht)
- Signalstandorte (Vorsignalabstand / Reservationszeitpunkt)
- Fahrweg (Geschwindigkeitsrestriktion)

4.2.5 Pulsdauer

4.2.6 Pulsphasen

Effekt der Teilfahrstrassen-Auflösung

Abbildung 14 Effekt der Teilfahrstrassenaufloesung (TFA)
Verflechtung von Gegenfahrten

Mit der Verflechtung von Gegenfahrten wird die Möglichkeit ausgenutzt, dass die Sperrzeiten der beiden Richtungen im Rahmen der durch selektive Gleisfreimeldung gewonnenen Zeitdauer überlappen können. Die bei der Definition der Pulsphasen vorzunehmende Koordination der beiden Richtungen erhält dadurch beträchtlich mehr Spielraum. Dieser kann zur höherwertigen Verpulsung benachbarter Weichennester eingesetzt werden. Im PULS-Raster kann die Verflechtung von Gegenfahrten gehandhabt werden, indem die Sperrzeit der Züge der einen Richtung systematisch gegen Ende des jeweiligen Pulses liegt.

Abbildung 15 Verflechtung von Gegenfahrten
Die Verflechtung von Gegenfahrten kann auf zwei Arten erfolgen, indem entweder die Weichenestsperre einer Richtung (z.B. Einfahrt) dicht auf die der anderen (Ausfahrt) folgt oder umgekehrt.

Pulsarten

Tabelle 3 Verpulsungsarten von Weichennestern

<table>
<thead>
<tr>
<th>Gegenfahrten im Nachbarpuls möglich</th>
<th>Sperrzeitbeginn gleichzeitig</th>
<th>Sperrzeitbeginn versetzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle</td>
<td>Vollpuls</td>
<td>Verflechtung von Gegenfahrten</td>
</tr>
<tr>
<td>teilweise</td>
<td>Vollpuls mit teilweise überlangen Sperrzeiten</td>
<td>Verflechtung von Gegenfahrten mit fallspezifischen Restriktionen</td>
</tr>
<tr>
<td>keine</td>
<td>Richtungspuls (selten)</td>
<td>Richtungspuls</td>
</tr>
</tbody>
</table>

Performance

Anteil der Kombinationen jeweils zweier Zugfahrten, welche in benachbarten Pulsen konfliktbehaftete Fahrstrassen verwenden können

Bei der Performanceberechnung je Weichennest haben solche mit Richtungspuls die Performance 0, Weichennester mit Vollpuls oder Verflechtung von Gegenfahrten ohne Restriktionen haben die Performance 1. Die Performance der ungünstigen Konstellation im Beispiel von Abbildung 16 (ohne Verflechtung von Gegenfahrten) beträgt demnach im WN1 1 und im WN2 0, die der günstigen Konstellation in beiden Weichennestern 1. Für die Performanceberechnung des im Kapitel Konzeptidee verwendeten Beispiels ergeben sich die Werte für das Weichennest 4 gemäss Tabelle 4. In den Weichennestern 1 bis 3 beträgt die Performance 1.

Tabelle 4 Beispielrechnung zu Abbildung 12 (Konzeptidee), Weichennest 4

<table>
<thead>
<tr>
<th>Zug 1. Puls</th>
<th>rot</th>
<th>dunkelgrün</th>
<th>orange</th>
<th>gelb</th>
<th>hellgrün</th>
</tr>
</thead>
<tbody>
<tr>
<td>rot</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>dunkelgrün</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>orange</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>gelb</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hellgrün</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Performance für das WN 4 beträgt demnach 23/25 = 0.92, für den gesamten Verdichtungsbereich 3.92

4.2.7 PULS-Raster-Optimierung

Optimierung Verflechtung von Gegenfahrten

Sperrzeitentreppen-Koordination

Homogenisierung

In Verdichtungsbereichen mit ausgeprägtem Güterverkehrsaufkommen zeigt die Grafik der Häufigkeitsverteilung des Beschleunigungsvermögens eine „Kamelhöcker“-Form. Infolge des allgemeinen Geschwindigkeitsunterschiedes zum Personenzugverkehr ergibt sich eine ebensolche Verteilung auch bei den Geschwindigkeiten, welche ebenfalls eine Auswirkung auf die Erstellung des PULS-Rasters hat.
4.2.8 Restriktionen

Der Zeitbereich der maximalen Überschneidung der Nutzungen von Nachbarpulsen (von der ersten Reservation des zweiten Zugbündels bis zur letzten Freigabe des ersten Zugbündels) wird als Zwischenpuls-Zeitscheibe (ZPZ) verwaltet. Die zug-/fahrwegspezifischen Eigenschaften eines Zuges verursachen einen bestimmten Bedarf in der vorangehenden ZPZ oder in der nachfolgenden oder gar in beiden. Meist sind aber für den Reservations- bzw. Freigabe-

Abbildung 19 Nutzung der Zwischenpuls-Zeitscheibe (ZPZ)

In einer Fallunterscheidung wird eruier, ob der Bedarf in der ZPZ von jeweils zwei Gruppen aggregierter Zugtypen die Länge der ZPZ übersteigt oder nicht oder ob ein Maximalwert der zug-/fahrwegspezifischen Eigenschaften mit kontinuierlichen Werten (Zuglänge, Beschleunigungswert) festzusetzen ist. Es sind sechs Abfolgen der Nutzung von Pulszonen in benachbarten Pulsen zu betrachten. Für jede Richtung die Folgefahrt, die Folgefahrt mit Splitten und die Gegenfahrt.

4.3 Belegung (grafisch)

Das grafische Layout ist eine Kombination des grafischen Fahrplanes mit dem Gleisbelegungsplan. Die Planung in der kombinierten Form ermöglicht eine gute Erfassbarkeit der Abhängigkeiten zwischen den Belegungen einzelner Gleisabschnitte (Strecke und Perrongleise).

In jedem Puls wird die für die Bele-
gung relevante Topologie schematisch in Form der an das Weichennest anschliessenden Gleisabschnitte dargestellt. Dies ermöglicht das intuitive Erkennen von Konflikten in Weichennestern.

Die Regeln für den Belegungsvorgang lauten:

1. In den Weichennestern dürfen sich keine Fahrlinien kreuzen oder sich überlagern
2. Es ist zu prüfen, ob für gewünschte gleichzeitige Fahrten durch ein Weichennest unabhängige Fahrstrassen zur Verfügung stehen (Ausschlussmatrix)
3. Sich schneidende Linien im Bereich der Gleisabschnitte sind zugelassen
4. Die gleichzeitige Belegung von Gleisabschnitten ist in folgenden Fällen möglich
 - Doppelbelegung von Perrongleisen
 - Mehrfachbelegungen von Streckengleisen, falls dies die Blockteilung erlaubt
 (dabei ist auf die Reihenfolge der Züge zu achten)
5. Bei Perrongleisen ist darauf zu achten, dass einfahrende Züge nur Pulse benutzen, welche nicht mit Pulsen des gegenüberliegenden Weichenkopfes überlappen, falls in überlappenden eine Ausfahrt stattfindet

4.4 Betriebsführung

serhalb der Bandbreite der Fahrgenauigkeitsmarge und blockieren dadurch Pulse, die sie nicht tangieren sollten. Diese Pulse müssen kurzfristig für andere Zugfahrten gesperrt werden. Im Falle von Fahrwegeinschränkungen ist die Erstellung eines neuen PULS-Rasters erforderlich, da beispielsweise die zugrunde liegenden Fahrzeiten nicht mehr zutreffen oder im Regelfall ungenutzte Spurwechsel kapazitätsbestimmend werden.

Sind die Anpassungen im Fahrplan vorgenommen und neue Pulsabfolgen für betroffene Züge belegt worden, besteht wieder ein konfliktfreier Planfall, der unter den neuen Umständen zur Ausführung kommen soll.

4.5 Automatisierungs möglichkeiten

4.5.1 PULS-Raster-Erstellung

4.5.2 Belegung

Beim Einsatz des Rechners bei der Belegung sind drei Stufen zu unterscheiden:

- **Grafische Darstellung**: Ermöglicht rationelle manuelle Handhabung. Insbesondere das Kennzeichnen der Restriktionen erleichtert die Fahrplankonstruktion.

- **Konflikterkennung**: Die präzisen Fahrlagen der einzelnen Züge sind hinterlegt, allfällige Konflikte werden angezeigt.

- **Routenfindung**: Das System findet selbständig Routen durch das PULS-Raster, es werden Optimierungsmöglichkeiten vorgeschlagen oder gar ein Fahrplangefüge für ein vorgegebenes Angebotsraster entwickelt. Der Disposition werden aktualisierte Szenarien vorgeschlagen.
5 Methodenübersicht

Im heutzutage angewandten Verfahren der Fahrplankonstruktion fehlt jedoch die Stufe Verdichtungsbereich vollständig. Sie wird teilweise durch den sehr guten Kenntnisstand der örtlichen Planer kompensiert. Ein hilfreiches Mittel zur Gewährleistung der Machbarkeit und zur Sicherstellung der geforderten Zuverlässigkeit ist die Überprüfung der komplexen Abhängigkeiten in einem Verdichtungsbereich mit Simulationsverfahren.

Einen grundsätzlich vom heutigen Vorgehen zu unterscheidenden Ansatz verfolgt das von Burkolter vorgeschlagene Verfahren sowie die Methode PULS. Beiden Verfahren ist gemeinsam, dass sie einen exakten Fahrplan erzeugen, der nicht nur produzierbar ist, sondern von Grund auf konfliktfrei. Das Verfahren Burkolter sucht den kapazitätsoptimalen Fahrplan in

Herrmann zeigt in seiner Dissertation auf, dass die Folgeverspätungen geringer ausfallen, wenn verspätete Züge koordiniert an den Portalen des Verdichtungsbereiches eintreffen. Die Züge werden verzögert, dass sie ähnlich wie in der Methode PULS zu diskreten Zeiten verkehren.

<table>
<thead>
<tr>
<th>Planung</th>
<th>Betrieb</th>
<th>Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>produzierbar</td>
<td>ereignisgesteuert (Flussmethode)</td>
<td>Manuell, Simulation</td>
</tr>
<tr>
<td>konfliktfrei</td>
<td>zeitgesteuert</td>
<td>Burkolter, Methode PULS</td>
</tr>
</tbody>
</table>

6 Kapazitätsanalyse Knoten Luzern

Abbildung 21 Gleisschema Luzern

Quelle: SBB
Die Anlage Luzern eignet sich insofern für eine beispielhafte Untersuchung, als dass auf kleinem Raum etliche für schweizerische Verdichtungsbereiche typische ungünstige Konstellationen auftreten, wie sie oben erwähnt sind.

6.1 Untersuchte Betriebsprogramme und angewandte Verfahren

- Heutiges Angebot (Abbildbarkeit mit den untersuchten Methoden)
- Sättigung (maximale Zugzahl in bestimmtem Zeitintervall)
- Komprimieren (minimale Laufzeit für bestimmtes Betriebsprogramm)
- Maximale Kapazität mit systematisiertem Angebot bzw. einheitlichen Zügen

6.2 Bestehender Fahrplan

In das bestehende Fahrplangefüge kann nach Massgabe der Reaktionsmöglichkeiten auf Störungen keine zusätzliche hochwertige Personenverkehrs-Trasse eingefügt werden. Die Kapazitätsgrenze gilt als erreicht.

Tabelle 6 Ankünfte Personenverkehrszüge Normalspur 17:00 bis 18:00 Uhr (16 Fahrten)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Typ</th>
<th>Zugnr.</th>
<th>Destination</th>
<th>Zulauf</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:03</td>
<td>RE</td>
<td>3327</td>
<td>Bern - Wolhusen</td>
<td>LIT</td>
</tr>
<tr>
<td>17:05</td>
<td>IC</td>
<td>2531</td>
<td>Bern – Zofingen – Sursee</td>
<td>EMM</td>
</tr>
<tr>
<td>17:08</td>
<td>S1</td>
<td>21163</td>
<td>Baar – Zug – Rotkreuz – Ebikon</td>
<td>EBI</td>
</tr>
<tr>
<td>17:13</td>
<td>IR</td>
<td>2181</td>
<td>Basel – Olten – Zofingen – Sursee</td>
<td>EMM</td>
</tr>
<tr>
<td>17:16</td>
<td>IR</td>
<td>2426</td>
<td>Romanshorn – St. Gallen – Arth-Goldau – Küsnacht</td>
<td>WUE</td>
</tr>
<tr>
<td>17:20</td>
<td>S6</td>
<td>21663</td>
<td>Schachen LU – Malters</td>
<td>LIT</td>
</tr>
<tr>
<td>17:25</td>
<td>IR</td>
<td>2355</td>
<td>Zürich – Zug</td>
<td>EBI</td>
</tr>
<tr>
<td>17:28</td>
<td>S9</td>
<td>21963</td>
<td>Lenzburg – Hochdorf – Emmenbrücke</td>
<td>EMM</td>
</tr>
<tr>
<td>17:35</td>
<td>IR</td>
<td>2935</td>
<td>Zürich – Zug</td>
<td>EBI</td>
</tr>
<tr>
<td>17:38</td>
<td>EC</td>
<td>252</td>
<td>Milano – Chiasso – Bellinzona – Arth-Golau</td>
<td>EBI</td>
</tr>
<tr>
<td>17:40</td>
<td>S8</td>
<td>21865</td>
<td>Olten – Sursee – Emmenbrücke</td>
<td>EMM</td>
</tr>
<tr>
<td>17:43</td>
<td>S6</td>
<td>21665</td>
<td>Langenthal – Wolhusen – Malters</td>
<td>LIT</td>
</tr>
<tr>
<td>17:45</td>
<td>S3</td>
<td>21366</td>
<td>Arth-Goldau – Küsnacht a. R. – Meggen</td>
<td>WUE</td>
</tr>
<tr>
<td>17:49</td>
<td>IR</td>
<td>2357</td>
<td>Zürich – Zug – Rotkreuz</td>
<td>EBI</td>
</tr>
<tr>
<td>17:54</td>
<td>RE</td>
<td>3581</td>
<td>Olten – Sursee – Emmenbrücke</td>
<td>EMM</td>
</tr>
<tr>
<td>17:58</td>
<td>S9</td>
<td>21965</td>
<td>Lenzburg – Hochdorf – Emmenbrücke</td>
<td>EMM</td>
</tr>
<tr>
<td>Zeit</td>
<td>Typ</td>
<td>Zugnr.</td>
<td>Zulauf</td>
<td>Destination</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>17:00</td>
<td>S9</td>
<td>21966</td>
<td>EMM</td>
<td>Emmenbrücke – Hochdorf – Lenzburg</td>
</tr>
<tr>
<td>17:05</td>
<td>RE</td>
<td>3582</td>
<td>EMM</td>
<td>Emmenbrücke – Sursee – Olten</td>
</tr>
<tr>
<td>17:10</td>
<td>IR</td>
<td>2362</td>
<td>EBI</td>
<td>Zug – Zürich – Zürich Flughafen</td>
</tr>
<tr>
<td>17:12</td>
<td>S3</td>
<td>21367</td>
<td>WUE</td>
<td>Meggen – Küsnach a. R. – Arth-Goldau</td>
</tr>
<tr>
<td>17:15</td>
<td>S6</td>
<td>21656</td>
<td>LIT</td>
<td>Malters – Wolhusen – Langenthal</td>
</tr>
<tr>
<td>17:18</td>
<td>S8</td>
<td>21866</td>
<td>EMM</td>
<td>Emmenbrücke – Sursee – Olten</td>
</tr>
<tr>
<td>17:21</td>
<td>IR</td>
<td>2181</td>
<td>EBI</td>
<td>Arth-Goldau – Schwyz – Bellinzona – Locarno</td>
</tr>
<tr>
<td>17:30</td>
<td>S9</td>
<td>21970</td>
<td>EMM</td>
<td>Emmenbrücke – Hochdorf – Lenzburg</td>
</tr>
<tr>
<td>17:35</td>
<td>IR</td>
<td>2364</td>
<td>EBI</td>
<td>Rotkreuz – Zug – Zürich</td>
</tr>
<tr>
<td>17:37</td>
<td>S6</td>
<td>21670</td>
<td>LIT</td>
<td>Malters – Schachen LU</td>
</tr>
<tr>
<td>17:42</td>
<td>IR</td>
<td>2431</td>
<td>WUE</td>
<td>Küsnacht – Arth-Goldau – St. Gallen – Romanshorn</td>
</tr>
<tr>
<td>17:45</td>
<td>IC</td>
<td>252</td>
<td>EMM</td>
<td>Sursee – Zofingen – Bern</td>
</tr>
<tr>
<td>17:49</td>
<td>S1</td>
<td>21170</td>
<td>EBI</td>
<td>Ebikon – Rotkreuz – Zug – Baar</td>
</tr>
<tr>
<td>17:55</td>
<td>IR</td>
<td>2536</td>
<td>EMM</td>
<td>Sursee – Zofingen – Olten – Basel</td>
</tr>
<tr>
<td>17:57</td>
<td>RE</td>
<td>3338</td>
<td>LIT</td>
<td>Wolhusen – Bern</td>
</tr>
</tbody>
</table>
Tabelle 8 Zentralbahn 17:00 bis 18:00 Uhr (10 Fahrten)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Typ</th>
<th>Zugnr.</th>
<th>Destination</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:04</td>
<td>IR</td>
<td>2227</td>
<td>Interlaken Ost – Meiringen – Hergiswil</td>
<td>an</td>
</tr>
<tr>
<td>17:07</td>
<td>S5</td>
<td>21566</td>
<td>Horw – Hergiswil – Giswil</td>
<td>ab</td>
</tr>
<tr>
<td>17:11</td>
<td>S4</td>
<td>21468</td>
<td>Horw – Hergiswil – Stans</td>
<td>ab</td>
</tr>
<tr>
<td>17:19</td>
<td>S4</td>
<td>22465</td>
<td>Engelberg – Hergiswil – Horw</td>
<td>an</td>
</tr>
<tr>
<td>17:22</td>
<td>S5</td>
<td>21565</td>
<td>Giswil – Hergiswil – Horw</td>
<td>an</td>
</tr>
<tr>
<td>17:37</td>
<td>S5</td>
<td>21570</td>
<td>Horw – Hergiswil – Giswil</td>
<td>ab</td>
</tr>
<tr>
<td>17:41</td>
<td>S4</td>
<td>22470</td>
<td>Horw – Hergiswil – Engelberg</td>
<td>ab</td>
</tr>
<tr>
<td>17:49</td>
<td>S4</td>
<td>22467</td>
<td>Engelberg – Hergiswil – Horw</td>
<td>an</td>
</tr>
<tr>
<td>17:52</td>
<td>S5</td>
<td>21567</td>
<td>Giswil – Hergiswil – Horw</td>
<td>an</td>
</tr>
<tr>
<td>17:55</td>
<td>IR</td>
<td>2236</td>
<td>Hergiswil – Meiringen – Interlaken Ost</td>
<td>ab</td>
</tr>
</tbody>
</table>

Tabelle 9 Güterzüge / Lokzüge 17:00 bis 18:00 Uhr (3 Fahrten)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Zugnr.</th>
<th>Zulauf</th>
<th>Destination</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:11</td>
<td>92969</td>
<td>EBI</td>
<td>Rotkreuz (Lokzug)</td>
<td>an</td>
</tr>
<tr>
<td>17:30</td>
<td>72824</td>
<td>EMM</td>
<td>Wl</td>
<td>an</td>
</tr>
<tr>
<td>17:52</td>
<td>72983</td>
<td>WUE</td>
<td>Flüelen</td>
<td>ab</td>
</tr>
</tbody>
</table>
Tabelle 10 Rangierfahrten 17:00 bis 18:00 Uhr (18 Fahrten)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Typ</th>
<th>Zugnr.</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:05</td>
<td>Lok</td>
<td>2236</td>
<td>Gleisfeld – Halle (Zentralbahn)</td>
</tr>
<tr>
<td>17:05</td>
<td>Komp.</td>
<td>21981</td>
<td>Halle – Gleisfeld (Fluchtfahrt)</td>
</tr>
<tr>
<td>17:14</td>
<td>Lok</td>
<td>2181</td>
<td>Gleisfeld – Halle</td>
</tr>
<tr>
<td>17:16</td>
<td>Komp.</td>
<td>3327</td>
<td>Halle – Gleisfeld (Fluchtfahrt)</td>
</tr>
<tr>
<td>17:19</td>
<td>Lok</td>
<td>92969</td>
<td>Halle – Gleisfeld</td>
</tr>
<tr>
<td>17:20</td>
<td>Komp.</td>
<td>21970</td>
<td>Gleisfeld – Halle (Fluchtfahrt)</td>
</tr>
<tr>
<td>17:22</td>
<td>Lok</td>
<td>2181</td>
<td>Halle – Gleisfeld</td>
</tr>
<tr>
<td>17:32</td>
<td>Komp.</td>
<td>21170</td>
<td>Gleisfeld – Halle (Stärken)</td>
</tr>
<tr>
<td>17:39</td>
<td>Lok</td>
<td>252</td>
<td>Gleisfeld – Halle</td>
</tr>
<tr>
<td>17:39</td>
<td>Lok</td>
<td>2935</td>
<td>Gleisfeld – Halle</td>
</tr>
<tr>
<td>17:46</td>
<td>Komp.</td>
<td>21972</td>
<td>Gleisfeld – Halle (Stärken)</td>
</tr>
<tr>
<td>17:49</td>
<td>Komp.</td>
<td>3338</td>
<td>Gleisfeld – Halle (Fluchtfahrt)</td>
</tr>
<tr>
<td>17:49</td>
<td>Lok</td>
<td>72824</td>
<td>RB – Gleisfeld</td>
</tr>
<tr>
<td>17:50</td>
<td>Lok</td>
<td>252</td>
<td>Halle – Gleisfeld</td>
</tr>
<tr>
<td>17:50</td>
<td>Komp.</td>
<td>2935</td>
<td>Halle – Gleisfeld</td>
</tr>
<tr>
<td>17:57</td>
<td>Komp.</td>
<td>2935</td>
<td>Gleisfeld – RB</td>
</tr>
<tr>
<td>17:59</td>
<td>Lok</td>
<td>2935</td>
<td>Halle – Gleisfeld</td>
</tr>
<tr>
<td>17:59</td>
<td>Lok</td>
<td>2227</td>
<td>Gleisfeld – Halle (Zentralbahn)</td>
</tr>
</tbody>
</table>

Tabelle 11 Zugzahlen Verdichtungsbereich Luzern: Fahrplan 2005, 17:00 – 18:00 Uhr

Ankünfte Personenverkehr Normalspur	16
Abfahrten Personenverkehr Normalspur	15
Güterzüge / Lokzüge	3
Total Zugfahrten Normalspur	**34**
Ankünfte / Abfahrten Zentralbahn	10
Rangierfahrten	18
Total Fahrten	**62**
6.3 Methode PULS

Für die Fallstudie in Luzern ist in einem ersten Schritt ein auf die vorhandene Infrastruktur und die verkehrenden Zugstypen zugeschnittenes PULS-Raster zu erstellen. Das in dieser Arbeit verwendete PULS-Raster ist als Prototyp vollkommen von Hand entwickelt worden. Es beruht auf provisorisch erzeugten Sperrtreppen-Daten; der Effekt der Teilverkehrstrassen-Auflösung wurde geschätzt.

6.3.1 Erstellung PULS-Raster

Verdichtungsbereich / Ausgleichsbereich

Verpulste Weichennester

Margen

Pulsdauer

Die Pulsdauer wird aufgrund der Zugfolgezeit auf 120 Sekunden festgelegt.

Pulsphasen

Tabelle 12 Fünf ausgewählte Zug-/Fahrwegkombinationen

<table>
<thead>
<tr>
<th>Zulauf</th>
<th>Lok</th>
<th>Anzahl Wagen</th>
<th>Wagenbauart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ebikon</td>
<td>460</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Ebikon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Littau</td>
<td>465</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Würzenbach</td>
<td>420</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Emmenbrücke</td>
<td>460</td>
<td>8</td>
</tr>
</tbody>
</table>

Die Datengrundlage bilden 5 ausgewählte Zug-/Fahrwegkombinationen je Richtung (Tabelle 12) sowie für die Ausfahrt über einen Fahrweg Richtung Littau von drei bis elf Wagen verschiedener Bauart abgestufte Kompositionen. Der Fahrweg führt in den Weichennestern Gütsch und Fluhmühle über Weichenverbindungen, auf welchen die Geschwindigkeit auf 60km/h limitiert ist. In allen Daten sind die Teilfahrstrassenauflösung sowie Fahrgenauigkeitsmargen nicht enthalten.

Die Weichennester haben folgende Eigenschaften

Vorbahnhof: - lang
- langsam befahrbar
- heute: Splitten der Einfahrten nach Weichen 26 und 32

Heimbach: - kurz
- homogene Sperrzeiten

Gütsch: - teilweise lange Vorsignalabstände
- Weichenverbindung mit Maximalgeschwindigkeit 60km/h

Fluhmühle - lange Gleisabschnitte nach Weichennest

Abbildung 22 PULS-Effizienzsteigerung mit Verflechtung von Gegenfahrten

Abfolge Ausfahrt - Einfahrt

Abfolge Einfahrt - Ausfahrt

Anhand der Darstellungen in Abbildung 22 kann die jeweilige Performance abgeschätzt werden (Tabelle 13). Es zeigt sich, dass eine Verflechtung Ausfahrt - Einfahrt im Weichennest Heimbach besonders vorteilhaft ist. Es wird deshalb ein entsprechendes PULS-Raster weiterverfolgt.
Tabelle 13 Performance-Vergleich (grobe Schätzung)

<table>
<thead>
<tr>
<th>1. Zug</th>
<th>Fluhmühle</th>
<th>Gütsch</th>
<th>Heimbach</th>
<th>Vorbahnhof</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausfahrt - Einfahrt</td>
<td>0</td>
<td>0.85</td>
<td>0.95</td>
<td>0.95</td>
<td>2.75</td>
</tr>
<tr>
<td>Einfahrt - Ausfahrt</td>
<td>0.6</td>
<td>0.1</td>
<td>0.95</td>
<td>0</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Restriktionen

Abbildung 23 Restriktionen Weichennest Gütsch
Lesebeispiel Abbildung 23

Vorgenommene Belegung:
- Ausfahrt IR
 - Richtung Emmenbrücke
 - 8 Wagen -> Fahrt gemäss RADN (keine Homogenisierung)
 - nicht über die auf 60km/h beschränkte Weichenverbindung

Restriktionen Vorpuls für Einfahrten
(eingelegter Zug als 2. Zug)
- über 60km/h-Weichenverbindung maximal 7 Wagen
- sonst keine Einschränkungen

für Ausfahrten ohne Splitten
- maximal 10 Wagen
- kein Dosto mit 10 oder mehr Wagen
(Fahrt über 60km/h-Weichenverbindung bedeutet Splitten)

für Ausfahrten mit Splitten
- kein Dosto mit 11 Wagen über 60km/h-Weichenverbindung

Restriktionen Folgepuls für Einfahrten
(eingelegter Zug als 1. Zug)
- keine Einschränkungen

für Ausfahrten ohne Splitten
- nach RADN fahrende Züge maximal 10 Wagen
- kein Dosto mit 10 und mehr Wagen

für Ausfahrten mit Splitten
- keine Einschränkungen

Unterschiedliche Fahrordnungen für gleiche Zug-/Fahrwegkombination

Die Kreuzung des RegioExpress Bern – Luzern mit seinem Gegenzug zwischen Fluhmühle und Heimbach kann aufgrund des Richtungspulses in Fluhmühle auf dem erstellten PULS-Raster nicht gemäss bestehendem Fahrplan abgebildet werden. Zumindest einer der beiden Züge bremst im heutigen Betrieb auf ein geschlossenes Signal, was der Strategie der Methode PULS widerspricht. Soll die aktuelle Fahrlage erhalten bleiben, muss von diesem Prinzip in diesem speziellen Fall abgewichen werden. Der ausfahrende RE verlangsamt seine Fahrt auf

Abbildung 24 Kreuzung RE von/nach Bern

Für die Reservation des Weichennestes Gütsch sind zwei Vorsignalgruppen massgebend, die bedeutend weiter als die Länge des Bremsweges entfernten Vorsignale für die Zufahrten Emmenbrücke und Ebikon sowie deren Wiederholungssignale, welche für die Zufahrt Littau mit Geschwindigkeitsbegrenzung auf 60km/h massgebend und in entsprechender Bremswegdistanz angeordnet sind. Im heutigen Betrieb ergeben sich bei dichter Zugfolge oft Fahrten am geschlossenen ersten Vorsignal vorbei. Mit der entsprechenden Bremsung bis zum inzwischen geöffneten Wiederholungssignal lassen sich kürzere Zugfolgezeiten für die anschließenden Blockabschnitte erreichen als bei Vorbeifahrt am offenen ersten Vorsignal. Wird dieser Effekt bei der Methode PULS nicht angewandt, lässt sich die Zugfolge von 120 Sekunden nur für Folgefahrten erster Zug von Littau, zweiter Zug von Emmenbrücke oder Ebikon her realisieren. Da der Anteil der Zufahrt Littau von allen Zügen klein ist, ist eine solche Einbusse nicht tolerierbar. Um nicht die Pulsdauer erhöhen zu müssen, soll das bestehende Regime in der Methode PULS abgebildet werden. Dies geschieht durch eine generelle Homogenisierung der Einfahrt im Bereich des Weichennestes Gütsch auf 60km/h oder die Bereitstellung zweier Fahrordnungen. Die nicht homogenisierte Fahrdnung kann in letzterem Falle vergeben werden, wenn im Vorpuls keine Belegung vorgenommen wird. Sie verursacht beträchtliche Restriktionen auf diesen. Das Regime mit zwei Fahrordnungen soll nur zur Anwendung kommen, falls Einschränkungen der Permutation ausgeschlossen werden können.

6.3.2 Belegung

Betriebsprogramm 'Heutiges Angebot'

Bewertung von Knotenmanagement-Methoden für Eisenbahnen

Januar 2006

Betriebsprogramm 'Sättigung'

Betriebsprogramm 'Komprimieren'

Betriebsprogramm 'Durchschnittlicher Zugtyp Lok mit 8 Wagen'

Betriebsprogramm 'Systematisiertes Angebot'

6.3.3 Stabilität

Tabelle 14 Primärverspätungen im Betriebsprogramm 'Heutiges Angebot' (Beispiel)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Verspätung</th>
<th>Typ</th>
<th>Zugnr.</th>
<th>Destination</th>
<th>Zulauf</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:03</td>
<td>4 min</td>
<td>RE</td>
<td>3327</td>
<td>Bern - Wolhusen</td>
<td>LIT</td>
</tr>
<tr>
<td>17:38</td>
<td>2 min</td>
<td>EC</td>
<td>252</td>
<td>Milano – Bellinzona – Arth-Golau</td>
<td>EBI</td>
</tr>
<tr>
<td>17:42</td>
<td>4 min</td>
<td>IR</td>
<td>2431</td>
<td>Küsnacht – Arth-Goldau – Romanshorn</td>
<td>WUE</td>
</tr>
</tbody>
</table>
Tabelle 15 Sekundärverspätungen / Fahrwegänderungen zu Tabelle 14

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Typ</th>
<th>Zugnr.</th>
<th>Destination</th>
<th>Zulauf</th>
<th>Verspätung</th>
<th>Fahrwegänderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:57</td>
<td>RE</td>
<td>3338</td>
<td>Wolhusen – Bern</td>
<td>LIT</td>
<td>4 min</td>
<td>nein</td>
</tr>
<tr>
<td>17:00</td>
<td>S9</td>
<td>21966</td>
<td>Emmenbrücke – Lenzburg</td>
<td>EMM</td>
<td>2 min</td>
<td>ja</td>
</tr>
<tr>
<td>17:05</td>
<td>RE</td>
<td>3582</td>
<td>Emmenbrücke – Olten</td>
<td>EMM</td>
<td>2 min</td>
<td>ja</td>
</tr>
<tr>
<td>17:08</td>
<td>S1</td>
<td>21163</td>
<td>Baar – Rotkreuz – Ebikon</td>
<td>EBI</td>
<td>2 min</td>
<td>nein</td>
</tr>
<tr>
<td>17:11</td>
<td></td>
<td>92969</td>
<td>Rotkreuz (Lokzug)</td>
<td>EBI</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>17:13</td>
<td>IR</td>
<td>2181</td>
<td>Basel – Olten – Sursee</td>
<td>EMM</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>17:40</td>
<td>S8</td>
<td>21865</td>
<td>Olten – Emmenbrücke</td>
<td>EMM</td>
<td>-2 min</td>
<td>nein</td>
</tr>
<tr>
<td>17:49</td>
<td>RE</td>
<td>3338</td>
<td>Gleisfeld – Halle (Fluchtfahrt)</td>
<td>2 min</td>
<td>-</td>
<td>nein</td>
</tr>
<tr>
<td>17:49</td>
<td>S1</td>
<td>21170</td>
<td>Ebikon – Rotkreuz – Baar</td>
<td>EBI</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>17:50</td>
<td>Lok</td>
<td>252</td>
<td>Rangierfahrt Halle – Gleisfeld</td>
<td>-2 min</td>
<td>-</td>
<td>nein</td>
</tr>
<tr>
<td>17:54</td>
<td>RE</td>
<td>3581</td>
<td>Olten – Emmenbrücke</td>
<td>EMM</td>
<td>2 min</td>
<td>ja</td>
</tr>
</tbody>
</table>

6.4 Simulation

Abbildung 25 Einstellungen Preferences – verwendete Dateien

Quelle: OpenTrack (Screenshot)

Abbildung 26 Später Bremseinsatz

Quelle: OpenTrack
Bahnhof Gütsch (ab markiertem Hauptsignal) eine kürzere Zugfolgezeit ermöglicht als der nachfolgende Blockabschnitt Heimbach. Der Zug könnte nach einer kurzen Bremsung auf ca. 55km/h bereits wieder beschleunigen, muss jedoch kurz darauf bis zur Freigabe des Blockabschnittes Heimbach durch den vorausfahrenden Zug seine Geschwindigkeit auf 40km/h drosseln. Eine beträchtliche Überschätzung der Leistung ergibt sich dadurch, dass die Reservation der Fahrstrasse unmittelbar bei Abfahrt der Züge im Bahnhof erfolgt. Im Rahmen der Optimierung des Abfahrtsprozesses ist eine Karenz von 12 Sekunden vorgesehen. Derzeit ist die Zeitspanne zwischen Einlaufen der Fahrstrasse und Abfahrt teilweise viel größer.

Abbildung 27 Simulation

Betriebsprogramm 'Heutiges Angebot'

Preferences gemäß Abbildung 25

Bei der Simulation des heutigen Angebotes und den davon ausgehenden Betriebsprogrammen 'Sättigung' und 'Kompprimieren' sind die Abfahrtszeiten gemäss Fahrplan festgelegt. Die Ankunftszeiten sind leicht variabel.

Betriebsprogramm 'Sättigung'

Set `<Luzern_heute_gesättigt>` mit `<L-satt.courses>` und `<L-satt.timetable>`

Quelle: OpenTrack
Betriebsprogramm 'Komprimieren'

Set <Luzern_heute_komprimiert> mit <L-komp.courses> und <L-komp.timetable>

Das heutige Betriebsprogramm wird soweit als möglich auf eine kürzere Zeidauer als den geplanten Stundenrhythmus komprimiert. Die Zugfahrten werden zeitlich dichtestmöglich aneinander geschoben, ohne jedoch Änderungen in der Reihenfolge vorzunehmen. Insbesondere wird die bezüglich Richtung wechselweise Benützung der Einspur am Rotsee beibehalten. Mit einer Bündelung würden sich Fahrlagen um zehn Minuten und mehr verändern, was nicht mehr mit dem heutigen Angebot vereinbar wäre. Auch bei dieser Simulation werden nur begrenzt Fahrgeweganpassungen vorgenommen. Die Gleisbelegung in Luzern wird hingegen berücksichtigt, die Aufenthaltszeiten werden jedoch entsprechend verkürzt.

Betriebsprogramm 'FLIRT'

Set <Luzern_Flirt > mit <L-flirt.courses> und <L-flirt.timetable>

Betriebsprogramm 'Durchschnittlicher Zugtyp Lok mit 8 Wagen'

Set <Luzern_durchschnitt> mit <L-durchschnitt.courses> und <L-durchschnitt.timetable>

Stabilität

7 Bewertung der Methoden

7.1 Vergleich Kapazitätsanalyse Knoten Luzern

Tabelle 16 Vergleich Kapazitätsanalyse Knoten Luzern

<table>
<thead>
<tr>
<th></th>
<th>Fahrplan heute</th>
<th>gesättigt</th>
<th>nur Flirt</th>
<th>systematisiert</th>
<th>durchschnittlich</th>
<th>komprimiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULS Zugfahrten Normalspur</td>
<td>34</td>
<td>46</td>
<td>-</td>
<td>46</td>
<td>45</td>
<td>54</td>
</tr>
<tr>
<td>PULS Rangierfahrten</td>
<td>18</td>
<td>21</td>
<td>-</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OpenTrack Zugfahrten Normalspur</td>
<td>34</td>
<td>48</td>
<td>64</td>
<td>-</td>
<td>54</td>
<td>48</td>
</tr>
<tr>
<td>OpenTrack Rangierfahrten</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Der heutige Fahrplan kann mit den untersuchten Methoden PULS und Simulation OpenTrack abgebildet werden.

Durch Komprimieren des bestehenden Fahrplanes kann die Zykluszeit mit der Methode PULS auf 54 Minuten verkürzt werden, mit der Simulations-Methode jedoch auf 48 Minuten.
Bei der Simulation ist wiederum keine Fahrgenauigkeitsmarge enthalten. Werden für einen Vergleich zur ungefähren Zugfolgezeit von 120 Sekunden jeweils 15 Sekunden hinzugeschlagen, erhöht sich die Zykluszeit um 12,5% auf ebenfalls 54 Minuten. Es zeigt sich, dass bei der Methode PULS durch die starre Pulsdauer, welche für alle Zugtypen einen genügend grossen Platzhalter bereitstellt, über den gesamten Verdichtungsbereich nur wenig Kapazität verloren geht.

Das Betriebsprogramm, welches ausschliesslich mit dem flinken Zugtyp FLIRT abgewickelt wird, kann im Rahmen dieser Arbeit nicht mit der Methode PULS abgebildet werden, da die kurzen Sperrzeiten ein dafür optimiertes PULS-Raster erfordern. Der Vergleichswert unter Berücksichtigung der Fahrgenauigkeitsmarge beträgt rund 54 Züge je Stunde.

Beim Betriebsprogramm mit einem durchschnittlichen Zugtyp mit acht Wagen ergibt sich für die Methode PULS auch nach Korrektur der simulierten Zugzahl auf 48 Züge/Stunde aufgrund der Fahrgenauigkeitsmarge eine um drei Züge niedrigere Leistung. Dies ist auf den hohen Anteil von Zügen, welche die Einspurstrecken nach Littau und Ebikon befahren, zurückzuführen. Der Richtungspuls in Fluhmühle reduziert den Spielraum stark. Wird nur die reine Sperrzeit ohne Fahrgenauigkeitsmarge berücksichtigt, wie dies bei der Simulation der Fall ist, so ist die dichte Folge Einfahrt – Ausfahrt auf konfliktbehafteten Fahrwegen möglich.
7.2 SWOT-Analyse für Methode PULS

Tabelle 17 SWOT-Analyse

<table>
<thead>
<tr>
<th>Stärken (Strengths)</th>
<th>Schwächen (Weaknesses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hohe betrieblich beherrschbare Kapazität</td>
<td>zuverlässiger Informationsfluss notwendig</td>
</tr>
<tr>
<td>rasches Auffinden guter Lösungen für ein Fahrplangefüge</td>
<td>beschränkte Abbildbarkeit bestehender Fahrpläne</td>
</tr>
<tr>
<td>Permutation als Freiheitsgrad</td>
<td>Fahrgenauigkeitsmarge für jeden einzelnen Zug</td>
</tr>
<tr>
<td>rasche Neuplanung im Störungsfall möglich</td>
<td>geringfügige Kapazitätseinbusse infolge starrer Rasterung</td>
</tr>
<tr>
<td>fahrplantechnische Flexibilität bei Angebotsplanung gewährleistet</td>
<td></td>
</tr>
</tbody>
</table>

Chancen (Opportunities) Risiken (Threats)

| klare Definition der Möglichkeiten einer Infrastruktur | technische Risiken des zeitgesteuerten Betriebes |
| Quantifizierbarkeit des Nutzens von Infrastrukturausbauten |
| Vorgabe von Kriterien für Bau von kapazitätsoptimalen Infrastrukturen |

Die Stärken ergeben sich insbesondere durch die Fokussierung auf besonders gute Lösungen für Fahrplangefüge sowie die bestechend einfache Handhabung der Belegung im Verdichtungsbereich durch die Kombination mit der Stufe Fahrstrassenknoten.

planung bleiben mit der Methode PULS ganz in der Hand des Planers. Durch die einfache Begreifbarkeit von Abhängigkeiten im Fahrplangefüge werden Optimierungen erwähnter Art sogar begünstigt.

Der zeitgesteuerte Betrieb erfordert einen umfassenderen und sehr zuverlässigen Informationsfluss. Auch die Fahrt im Ausgleichsbereich muss zeitgesteuert erfolgen. Das entsprechende Instrument namens Flex-Fahrplan sowie weitere notwendige Elemente wie der genaue Abfahrtsprozess im Bahnhof sind bei den SBB in Arbeit.

7.3 Anwendungsbereich Methode PULS

Die Methode PULS kommt zur Anwendung, wo die Lösungsfindung im Zeitkontinuum nicht zu bewältigen ist. Die typischen Fälle ergeben sich aus folgenden Bedürfnissen zur Eingrenzung der Lösungsmenge:

- Koordination paralleler Fahrten in grossen Einzel-Weichennestern (Beispiel: Aarau Ost)

- Bewirtschaftung von Weichenköpfen von zentralen Bahnhöfen mit Restriktionen aus der Gleisbelegung (Beispiel: Winterthur)

- Erfassen umfangreicher Abhängigkeiten zwischen Weichennestern auf Anlagen mit teilweise eingeschränkten Fahrwegbeziehungen (Beispiele: Luzern, St. Gallen)

- Effiziente Nutzung Wechselbetrieb (Beispiele: Luzern, Lausanne – Renens)

Weitere Netzteile können mit der Methode PULS bewirtschaftet werden, um die Neuplanung im Falle von Verspätungen zu rationalisieren. Zu diesen Anlagen gehört beispielsweise Pfäf-
fikon SZ. Aus Gründen der Kapazitätsbewirtschaftung und der Eingrenzung der Lösungs-
menge ist die Anwendung der Methode PULS jedoch nicht nötig. Nicht geeignet sind unab-
hängige Weichennester, in welchen gleichförmige Abkreuzungen stattfinden. Diese können
auch bei dichtem Verkehr gemäß ihrem individuellen Sperrzeitbedarf im Zeitkontinuum ge-
plant werden. Ein Beispiel dazu ist die Verzweigung Daillens an der Strecke Lausanne –
Yverdon. Ebenso überflüssig ist die Methode PULS bei reinen Ein- und Ausfädelungswei-
chennestern, beispielsweise Mattstetten.

Zwischen den Verdichtungsbereichen liegt im Normalfall ein längerer Streckenabschnitt,
welcher im Zeitkontinuum bewirtschaftet wird. In diesen Bereichen werden auch die Reser-
ven ausgewiesen. Verspätete Züge können einen oder mehrere Pulse aufholen, da ihre Plan-
trasse vor Eintritt in den nächsten Verdichtungsbereich eine Fahrordnung mit reduzierter Ge-
schwindigkeit vorsieht. Bis zu einem gewissen Zeitpunkt kann auch noch ein früherer Puls als
der geplante erreicht werden. Liegt nur ein kurzer Streckenabschnitt, etwa 5 bis 10 Kilometer,
mit zwei oder mehreren Blockabschnitten zwischen zwei verpulsten Weichennestern, kann
keine für die Verspätungsaufholung nutzbare Fahrzeitreserve zugegeben werden. Die Erstel-
lung des PULS-Rasters kann je Verdichungs-Teilbereich separat erfolgen, anschliessend wer-
den die beiden 'kurzgekuppelten’ Verdichtungs-Teilbereiche durch angepasste Fahrordnun-
gen miteinander verbunden. Halte innerhalb von Verdichtungsbereichen werden durch die
Anpassung der Haltezeit eingepasst.

7.4 Ausblick

Die Methode PULS ist ein effizientes Mittel, in hochbelasteten Bereichen von Eisenbahnen
zu ermöglichen. Die Verdichtungsbereiche können derart bewirtschaftet werden, dass ein bestimmtes Stabilitätsmass auch bei hoher Auslastung ge-
währleistet werden kann. Die beiden Schritte Erstellung PULS-Raster und Belegung können
amtisiert werden. Für die Erstellung PULS-Raster ist die Automatisierung in Form einer
Applikation, welche in einem eng umgrenzten Lösungsraum nach dem Optimum sucht, bei
den SBB in Arbeit. Für die Unterstützung durch den Rechner bei der Belegung kann mögli-
cherweise auf die von Burkolter vorgeschlagene Struktur der Petri Netze zurückgegriffen
werden. Der Fokus auf eine kleine, effiziente Lösungsmenge durch die Methode PULS löst
das Problem des von Burkolter vorgeschlagenen Ansatzes mit der nicht beherrschbaren Lö-
sungsmenge bei Verwendung von realistischen Daten bezüglich Zugfolgezeit, Fahrprofil etc.
Die kreisförmigen Elemente im Petri Netz entsprechen prinzipiell einem Topologieelement,
die durch das Netz wandernden Punkte (‘Token’) repräsentieren die Belegungen durch Züge.
8 Literatur

Burkolter, D. (2005), Capacity of Railways in Station Areas using Petri Nets, Dissertation, ETH Zürich

Delorme, X. (2003), Modélisation et résolution de problèmes liés à l’exploitation d’infrastructures ferroviaires, Dissertation, Université de Valenciennes

Duden (2003), Deutsches Universalwörterbuch, 5. Auflage, Dudenverlag

Forsgren, M. (2003), Computation of Capacity on Railway Networks, Masterarbeit, KTH, Schweden

Gröger, T. A. (2002), Simulation der Fahrplanerstellung auf der Basis eines hierarchischen Trassenmanagements und Nachweis der Stabilität der Betriebsabwicklung, Dissertation, RWTH Aachen

Herrmann (2005), Stability of Timetables and Train Routings through Station Regions, Dissertation, ETH Zürich

Hürlimann, D. (2005), OpenTrack, Betriebssimulation von Eisenbahnnetzen, Benutzerhandbuch zu Software-Applikation, IVT, ETH Zürich

Lucchini, L., Curchod, A. (2001), Computer-aided system for the analysis of railway network capacity, General Description of the Model, LITEP, EPF Lausanne

Mito, Y., Shinbunsha, K., Leave on time, Ausführungen zur besonders hohen Pünktlichkeit der Japanischen Eisenbahnen

SMA und Partner (2005), Konzeptionelle Angebotsplanung, Produkteinformation Applikation Viriato

Weidmann, U. (2004), Betriebsplanung im Eisenbahnverkehr, Skript PB 2, IVT, ETH Zürich
Zwaneveld, P. J., Kroon, L. G., van Hoesel, S. P.M. (1997), Routing trains through a railway station based on a Node Packing model
9 Glossar

Puls zeitlich und örtlich definiertes Element des PULS-Rasters. Die zeitliche Dauer (Pulsdauer) liegt im Bereich der Zugfolgezeit, die örtliche Ausdehnung umfasst prinzipiell einen Blockabschnitt, welcher ein Weichennest beinhaltet.

Nachbarpuls zeitlich vorhergehender oder nachfolgender Puls in derselben Pulszone.

Pulszone Weichennest bzw. Blockabschnitt, welcher in Pulsen bewirtschaftet wird.

Weichennest Bereich einer Eisenbahnanlage, welcher durch mehrere Weichenverbindungen zahlreiche verschiedene Fahrwege zulässt. Vor allem in diesen Bereichen ergeben sich die Konflikte zwischen Zugfahrten.

Pulsphase zeitliche Lage der Pulse einer Pulszone in Relation zu den Pulsen der anderen Pulszonen eines Verdichtungsbereiches.

Pulsabfolge Reihe von Pulsen in den verschiedenen Pulszonen, die eine durchgängige Zugfahrt durch den Verdichtungsbereich ermöglicht.

Folgefahrt Zugfahrt in dieselbe Richtung wie die vorangehende in kurzem zeitlichem Abstand.

Gegenfahrt Zugfahrt in der entgegengesetzten Richtung wie die vorangehende in kurzem zeitlichem Abstand.

Splitting Für Folgefahrten Benutzung eines anderen Streckengleises nach dem Weichennest, da die Sperrzeit des vorangehenden Zuges für den Gleisabschnitt nach dem Weichennest die sonst im Verdichtungsbereich realisierbare Zugfolgezeit übersteigt.

Zugtyp Zugfahrt mit bestimmten Eigenschaften bezüglich Länge und Beschleunigung sowie über bestimmten Fahrweg mit entsprechenden Signalstandorten und Geschwindigkeitsbeschränkungen.
Anhänge

A 1 Kontakte SBB

Die Ausführungen zur manuellen bzw. rechnergestützten Planung, welche derzeit bei den SBB zur Anwendung kommt, sind anhand eines Interviews mit Herrn Michael Fankhauser entstanden. Er ist Verantwortlicher für das Trassenmanagement im Raum Luzern.
A 2 Kapazitätsanalyse Luzern: Betriebsprogramme

Betriebsprogramm 'Fahrplan heute’

Betriebsprogramm 'Sättigung’

Betriebsprogramm 'Komprimieren’

Betriebsprogramm 'Durchschnittlicher Zugtyp Lok mit 8 Wagen’

Betriebsprogramm 'Systematisiertes Angebot’

Betriebsprogramm 'Stabilität’
KOMPRIMIEREN
DURCHSCHNITTLICHER ZUGTYP LOK MIT 8 WAGEN

07:00
09:00
11:00
13:00
15:00
17:00
19:00
21:00
23:00
25:00
27:00
29:00
01:00
03:00
05:00
07:00
09:00
11:00
13:00
15:00
17:00
19:00
21:00
23:00
25:00
27:00
29:00
SYSTEMATISIERTES ANGEBOT
A 3 Gleisschema Luzern

Verdichtungsbereich