The influence of transgenic plants expressing *Bacillus thuringiensis* δ-endotoxins on arthropod diversity and trophic interactions in crop ecosystems

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich

for the degree of
Doctor of Natural Sciences

presented by
Jörg Ernst Ulrich Schmidt
Dipl.-Biol., Georg-August-Universität Göttingen
born 6 December 1971
citizen of Germany

accepted on the recommendations of

Professor Dr. P. J. Edwards, examiner
Dr. A. Hilbeck, co-examiner
Dr. S. Arpaia, co-examiner

2006
Summary

The soil bacterium *Bacillus thuringiensis* BERLINER (Bacillaceae), conventionally abbreviated as Bt, produces crystalline (Cry) proteins (δ-endotoxins), which are toxic to certain insects upon ingestion. After binding to special receptors in the midgut epithelium of susceptible species, active toxins generate pores in the gut wall, which cause lethal septicaemia. Given this well understood mode of action, the different Cry toxin groups are frequently assumed to be specific to a limited number of insect species. Genes of *B. thuringiensis* that code for the expression of Cry proteins were transferred into the genomes of several crop plant species by gene technology methods to generate resistance against important pest insects (target species) in the resulting transgenic Bt plants. As the mode of action of transgene products from Bt plants in target pests is similar to that of Bt insecticides, a similar specificity is assumed. However, studies reporting unexpected effects of transgenic Bt plants on non-target insects raised concerns that Bt plants could have a negative influence on biodiversity and ecological functions (e.g., biological pest control) in agro-ecosystems (Chapter 1). In this thesis, the issue of possible adverse effects of transgenic Bt plants on arthropod communities was addressed using non-target herbivores and predators as examples.

One aspect when studying possible adverse effects of transgenic crops on non-target arthropods is to investigate differences in the abundance of occurring taxa between transgenic and non-transgenic plants under field conditions. Further, it is important to understand the trophic relationships between non-target species within a certain crop ecosystem in order to select ecologically relevant candidates for further experiments, and to determine possible exposure pathways of transgene products within the food webs. As an example of this approach, a study was performed in experimental fields of eggplants, *Solanum melongena* L. (Solanaceae), near Metaponto in the southern Italian region of Basilicata (Chapter 2). In plots of transgenic eggplants expressing the coleopteran-active Cry3Bb toxin and near-isogenic control eggplants, arthropods were captured from the plant canopy using specially designed eclectors during two successive crop seasons. Additionally, trophic interactions between abundant taxonomic groups of the canopy-dwelling community were observed in the field in three crop seasons. While there were no statistically significant differences between plots of transgenic
and near-isogenic eggplants in the abundance of arthropods and of discriminated arthropod groups, complex relationships between elements of the community were shown. Moreover, a diet shift was documented for predators between the study years, indicating differences in possible exposure pathways between different years. This shift in emphasis between intraguild predation and omnivory (use of plant material) is discussed in connection with the marked differences in weather conditions in the study years.

The potato tuber moth, *Phthorimaea operculella* (ZELLER) (Lepidoptera: Gelechiidae), is an abundant non-target insect herbivore species in transgenic eggplants expressing the coleopteran-active Cry3Bb toxin in southern Italy (*Chapter 3*). To assess possible adverse effects on the survival and development of potato tuber moth larvae, which mine in leaves of Cry3Bb transgenic eggplants, bitrophic feeding trials on different levels of experimental complexity were conducted. The trials included (i) experiments under controlled laboratory conditions with larvae mining in leaf discs, (ii) experiments under different greenhouse conditions with larvae mining in leaves of whole potted plants, and (iii) experiments under semi-field conditions with larvae mining in caged leaves of plants in experimental field plots. None of the experiments showed statistically significant differences in pre-imaginal mortality or development time or in pupal weight between Cry3Bb transgenic and near-isogenic non-Bt expressing plants. Also, a field assessment of the number of mines and the mines per plant revealed no statistically significant differences between the treatments. Although these experiments did not reveal adverse effects for *P. operculella*, this does not have to be the case for all elements of the non-target species community.

Bitrophic-toxicological studies under controlled laboratory conditions were performed with the two-spot ladybird, *Adalia bipunctata* (L.) (Coleoptera: Coccinellidae), an abundant predator and non-target insect species in Bt crop fields (*Chapter 4*). Possible acute adverse effects of transgene products of Bt plants on its pre-imaginal survival and development were studied. Larvae were fed with flour moth eggs, which had been previously sprayed with activated Bt toxin solutions, in different concentrations or a control buffer without toxin. Two series of experiments were conducted with applications of the lepidopteran-active toxin Cry1Ab or the coleopteran-active toxin Cry3Bb in concentrations of 5, 25 and 50 μg/ml. In a third series, solutions of the empty vector cassette pBD10 were sprayed onto the flour moth eggs. Mortality rates in the larval/pupal stage were significantly higher in toxin-treated groups than in the control groups, while no statistically significant differences were documented in the mortality of pBD10 fed larvae. For Cry1Ab, a significantly higher mortality was recorded for all applied concentrations, while for Cry3Bb only a concentration of 25 μg/ml was significantly different from the control. The parameters “development time” and “weight of newly eclosed adults” were not significantly different in any of the series. The results of these studies revealed unexpected non-target effects of transgene products of Bt plants on a predacious insect,
which cannot be explained by the commonly acknowledged mode of action of Bt toxins. Moreover, the results suggest a higher toxicity of the lepidopteran-active toxin Cry1Ab for the ladybird *A. bipunctata* than the coleopteran-active toxin Cry3Bb.

Methods for testing possible adverse effects of transgenic plants and their expression products on non-target organisms are subject to intensive discussions. In particular, this includes the selection of testing species as part of the risk identification phase of environmental risk assessment programmes and the study of hazards and exposure as part of the risk analysis phase. While hierarchical/sequential tiered testing schemes derived from testing chemical substances are also discussed for transgenic plants, a coordinated integrated testing scheme is suggested in *Chapter 5*. This includes several information components: (i) descriptive field studies characterising the non-target community of a certain crop species in a certain region to select testing species, (ii) experiments under laboratory and greenhouse conditions and (iii) experiments under field conditions, both addressing adverse effects on the selected species. The experiments, which should be conducted at an increasing level of experimental complexity, are outlined using non-target herbivores and predators as examples.

In conclusion, the results of this thesis show that unexpected effects of Bt transgenes or their expression products can occur and that natural communities of non-target organisms are characterised by complex and dynamic interactions. Hence, it is necessary to assess the risks of this new agricultural technology thoroughly and provide scientific data to enable a constructive discussion about its future use (*Chapter 6*).
Zusammenfassung

Das Bodenbakterium *Bacillus thuringiensis* BERLINER (Bacillaceae), zumeist abgekürzt als Bt bezeichnet, bildet kristalline (Cry) Proteine (δ-Endotoxine), die auf bestimmte Insekten toxisch wirken, wenn sie von ihnen mit der Nahrung aufgenommen werden. Nach ihrer Bindung an spezielle Rezeptoren im Epithel des Mitteldarms empfindlicher Arten erzeugen die aktiven Toxine Poren in der Darmwand, die eine letale Vergiftung betroffener Individuen zur Folge haben. Aufgrund dieses gut bekannten Wirkungsmechanismus werden die verschiedenen Cry-Toxingruppen als spezifisch für eine begrenzte Anzahl von Insektenarten angesehen. Gene von *B. thuringiensis*, die für die Expression von Cry-Toxinen kodieren, wurden mit Hilfe gentechnischer Methoden in die Genome verschiedener Kulturpflanzenarten eingeführt, um bei den so entstandenen transgenen Bt-Pflanzen eine Resistenz gegenüber wichtigen Schadinsekten (Zielorganismen) zu erzeugen. Für Bt-Pflanzen wird eine ähnliche Spezifität angenommen, da bei Zielorganismen der Wirkungsmechanismus von Transgenprodukten aus Bt-Pflanzen mit dem von Bt-Insektiziden übereinstimmt. Untersuchungen, bei denen unerwartete Auswirkungen transgener Bt-Pflanzen auf Nicht-Zielorganismen festgestellt wurden, haben Besorgnis darüber hervorgerufen, dass Bt-Pflanzen einen negativen Einfluss auf die biologische Vielfalt und auf ökologische Funktionen (z.B. die biologische Schädlingsbekämpfung) haben können (*Kapitel 1*). Die vorliegende Arbeit greift das Problem möglicher schädlicher Auswirkungen transgener Bt-Pflanzen auf Arthropodengemeinschaften am Beispiel von Nichtziel-Herbivoren (Pflanzenfressern) und Prädatoren (Räubern) auf.

Zusammenfassung


Mit dem Zweipunkt-Marienkäfer Adalia bipunctata (L.) (Coleoptera: Coccinellidae), einem in Feldern verschiedener Bt-Pflanzenarten in Europa häufigen Räuber und Nichtzielinsekt, wurden unter kontrollierten Laborbedingungen bitrophisch-toxikologische Untersuchungen durchgeführt (Kapitel 4). Um mögliche akute schädliche Auswirkungen von Transgenprodukten aus Bt-Pflanzen auf Überleben und Entwicklung der Larven und Puppen dieser Art zu untersuchen, wurden die Larven


Zusammenfassend zeigten die Ergebnisse der vorliegenden Arbeit, dass unerwartete Auswirkungen von Bt-Transgenen und ihrer Expressionsprodukte auftreten können und dass natürliche Gemeinschaften von Nichtziel-Organismen durch komplexe und dynamische Beziehungen gekennzeichnet sind. Daher ist es notwendig die Risiken dieser neuen Agrartechnologie genau
Zusammenfassung

abzuschätzen und wissenschaftliche Daten für eine konstruktive Diskussion über ihre zukünftige Nutzung zu liefern.
Riassunto

Il batterio terricolo *Bacillus thuringiensis* BERLINER (Bacillaceae), convenzionalmente abbreviato come Bt, produce cristalli (Cry) proteici (δ-endotossine), che sono tossici per alcuni insetti dopo l’ingestione. Dopo essersi legate a recettori specifici sull’epitelio del mesentero delle specie suscettibili, le tossine attive generano dei pori nella parete intestinale portando ad una setticemia letale. Sulla base di questo noto meccanismo d’azione comune, i differenti gruppi di tossine Cry sono frequentemente ritenuti specifici per un limitato numero di specie di insetti. Geni di *B. thuringiensis* che codificano per l’espressione di proteine Cry sono stati trasferiti nel genoma di diverse piante coltivate con l’uso dell’ingegneria genetica per indurre resistenza nei confronti di importanti insetti nocivi (specie bersaglio) nelle piante transgeniche così ottenute (piante Bt). Dato che il meccanismo di azione dei prodotti transgenici delle piante Bt nei confronti degli insetti bersaglio è simile a quello degli insetticidi a base di Bt, si assume che anche la specificità delle proteine espresse in pianta sia mantenuta. Alcuni studi che riportano di effetti inattesi di piante transgeniche Bt verso insetti non bersaglio, hanno alimentato preoccupazioni che le piante Bt possano influenza negativamente la biodiversità e le funzioni ecologiche (es. il controllo biologico naturale dei fitofagi) negli agroecosistemi (capitolo 1). In questa tesi, l’argomento dei possibili effetti avversi delle piante transgeniche Bt sulle comunità di artropodi è stato affrontato utilizzando fitofagi non bersaglio e predatori come caso studio.

Un aspetto dello studio dei possibili effetti avversi delle coltivazioni transgeniche sugli insetti non bersaglio è quello di valutare le differenze nell’abbondanza dei taxa presenti fra le piante transgeniche e non transgeniche in condizioni di campo. E’ molto importante anche comprendere le relazioni trofiche tra le specie non bersaglio in uno specifico agroecosistema, sia per selezionare specie ecologicamente rilevanti candidate per ulteriori esperimenti che per determinare le possibili vie di esposizione dei prodotti transgenici all’interno delle reti alimentari. Come esempio di questo approccio, è stato svolto uno studio in campi sperimentali di melanzana (*Solanum melongena* L., Solanaceae) a Metaponto in Basilicata regione del sud Italia (capitolo 2). Sono stati raccolti durante due successive annate agrarie gli artropodi dalla chioma delle piante utilizzando degli “eclectors”
appositamente disegnati. Le catture sono state effettuate in parcelle sperimentali di piante transgeniche di melanzana esprimenti la tossina CryBb attiva contro i coleotteri e in melanzane controllo “quasi-isogeniche”. Inoltre le interazioni trofiche fra i gruppi tassonomici più abbondanti della comunità presente sulla parte aerea delle piante, sono state osservate direttamente in campo per tre annate agrarie. Sono state individuate complesse relazioni trofiche fra gli elementi della comunità; non sono state rilevate differenze statisticamente significative nella numerosità totale degli artropodi e dei singoli ordini tassonomici fra le parcelle transgeniche e quelle controllo. È stata inoltre documentata una variazione nella dieta nel corso degli anni per alcuni predatori, ciò suggerisce possibili differenze nelle vie di esposizione alla tossina nei diversi anni. Questa variazione tra la predazione “intraguild” e una maggiore enfasi sull’onnivoria (uso di materiale vegetale) è discussa nel contesto della marcata differenza nelle condizioni ambientale nei tre anni di studio.

La tignola della patata, Phthorimaea operculella (ZELLER) (Lepidoptera: Gelechiidae), è un comune insetto fitofago non bersaglio nei campi di melanzana transgenica esprimenti la tossina Cry3Bb nel sud Italia (capitolo 3). Per accertare possibili effetti negative sulla sopravvivenza e lo sviluppo delle larve di tignola che scavano gallerie nelle foglie delle melanzane transgeniche, sono stati condotti studi bitrofici a diverso livello di complessità sperimentale. Gli esperimenti sono stati condotti (i) in condizioni controllate in laboratorio con le larve alimentate con dischi fogliari delle piante, (ii) in serra con le larve alimentate con dischi fogliari o su piante intere e (iii) in “semi-campo” con le larve alimentate su foglie di piante nei campi sperimentali. Nessuno degli esperimenti ha mostrato differenze statisticamente significative sulla mortalità pre-imaginale, sul tempo di sviluppo o sul peso delle pupe fra piante transgeniche esprimenti Cry3Bb e piante controllo. Inoltre il rilievo in campo del numero di mine fogliari per pianta non ha mostrato differenze significative fra i due trattamenti. Sebbene questi esperimenti non hanno rivelato effetti negativi nei confronti di P. operculella, ciò non è necessariamente applicabile a tutte le specie non bersaglio della comunità.

Studi tossicologici bitrofici in condizioni controllate di laboratorio sono stati condotti utilizzando Adalia bipunctata (L.) (Coleoptera: Coccinellidae), un comune predatore e specie non bersaglio in campi transgenici Bt (capitolo 4). Sono stati studiati i possibili effetti negativi acuti dei prodotti transgenici delle piante Bt sulla sopravvivenza pre-imaginale e sullo sviluppo del predatore. Le larve sono state alimentate con uova di tignola della farina e sono state ricoperte con soluzioni di tossina Bt attivata in differenti concentrazioni, insieme con una soluzione tampone di controllo non contenente la tossina. Sono state condotte due serie di esperimenti con l’applicazione della tossina Cry1Ab attiva contro I lepidotteri e la tossina Cry3Bb a concentrazioni di 5, 25 e 50 µg/ml. In una terza serie, soluzioni contenenti la cassetta vuota del vettore pBD10 sono state spruzzate sulle uova di tignola della farina quale ulteriore controllo. La mortalità dei coleotteri nello stadio larvale e pupale è stata significativamente superiore nel gruppo trattato con la tossina rispetto ai gruppi di controllo, mentre
non è stata rivelata alcuna differenza significativa rispetto alle larve trattate con pBD10. Per la tossina Cry1Ab, è stata riscontrata una differenza significativa per tutte le concentrazioni applicate, mentre per la proteina Cry3Bb solo la concentrazione di 25 µg/ml è risultata significativamente diversa dal controllo. I parametri “tempo di sviluppo” e “peso degli adulti neosfarfallati” non sono risultati significativamente diversi in nessuna delle serie. I risultati di questi studi hanno rivelato effetti inattesi dei prodotti transgenici di piante Bt su un insetto predatore, che non possono essere spiegati dal modo di azione delle tossine Bt normalmente accettato. Inoltre i risultati suggeriscono una maggiore tossicità di una tossina Cry1Ab anti-lepidottero rispetto ad una tossina Cry3Bb anti-coleottero nei confronti del coccinellide _A. bipunctata_.

I metodi per testare i possibili effetti negativi delle piante transgeniche e dei loro prodotti di espressione sugli organismi non bersaglio sono ancora oggetto di discussione. In particolare, si discute anche della selezione delle specie da saggire nella fase di identificazione del rischio nei programmi di analisi del rischio ambientale. Si dibatte inoltre dello studio dei pericoli e delle modalità di esposizione alle tossine, durante la fase iniziale dell’analisi del rischio. Mentre gli schemi di analisi sequenziale del rischio, derivati dall’esperienza dei test con le sostanze chimiche, sono stati anche consigliati per le piante transgeniche, nel _capitolo 5_ viene proposto un innovativo schema di test integrati. Questo include diversi componenti informativi: (i) studi di campo descrittivi per caratterizzare la comunità degli organismi non bersaglio di una specifica coltura in una data regione al fine di selezionare le specie da testare, (ii) esperimenti in condizioni di laboratorio e di serra, e (iii) esperimenti in condizioni di campo, entrambi per accertare gli effetti avversi sulle specie selezionate. Gli esperimenti che sono necessari devono essere condotti ad un livello crescente di complessità sperimentale e vengono descritti utilizzando, come esempi, fitofagi non bersaglio e predatori.

In conclusione, i risultati di questa tesi mostrano che possono verificarsi effetti negativi inattesi dei transgeni Bt o dei loro prodotti di espressione e che le comunità naturali di organismi non bersaglio sono caratterizzate da interazioni e dinamiche complesse. E’ quindi necessario, accertare accuratamente i rischi di questa nuova tecnologia in agricoltura e fornire dati scientifici per favorire una Discussione costruttiva sul suo uso futuro (capitolo 6).