Conditions for market penetration of hydrogen fuel cell cars in the transportation sector

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

For the degree of

DOCTOR OF SCIENCES

presented by
Daniel A. Krzyzanowski
Master of Science (Delft University of Technology, the Netherlands)
born 01.03.1974
citizen of Poland

Accepted on the recommendation of
Prof. Dr. Alexander Wokaun, examiner
Prof. Dr. Konrad Hungerbühler, co-examiner
Socrates Kypreos, co-examiner

Zürich, June 2006
Acknowledgements

In this place, I would like to thank all those who have helped in achieving all that has been reflected in this document, and more which may not be put in words. The presented results of the work are the outcomes of my 3½ year stay at the Paul Scherrer Institute as well as prior years of study, which allowed me to gain the knowledge necessary to tackle the research topic. My very special appreciation goes to: Socrates Kypreos (former Head of the Energy Modelling Group (EEM), PSI), my direct supervisor, for his patience and trust in me, for 'submerging' with me into the meanders of optimisation modelling; Prof. Dr. Alexander Wokaun (Head of the ENE Department, PSI), the Godfather of my dissertation, for his helpful comments, insightful questions and suggestions; Prof. Dr. Konrad Hungerbühler (Faculty of Chemistry, ETH Zürich) for his comments and suggestions in completion of this dissertation; Dr. Leonardo 'leo' Barreto (Head of the Energy Economics Group, PSI) for all the hours spend together going through the codes, graphs and all that the models were willing (or often not) to reveal; Prof. Peter Bots and Prof. Warren Walker (Faculty of Technology, Policy and Management, Technical University of Delft, the Netherlands) for introducing me into the multidimensional world of policy analysis, for showing me the tools and teaching me on how to ask questions and find answers.

Finally, but not lastly, great thanks go to all my friends and colleagues who made sure I could complete the research with a smile and competence (in alphabetical order): Ania and Tomek Anders, Olivier Bahn, Piotr 'bodi-bodecki' Bodek, Peter Burgherr, Roberto Dones, Timur 'goldentime' Gül, Stefan Hirschberg, Robert 'bob' Krakowski, Bettina Moehrle, Florian 'flo' Nagel, Peter 'pane Havranek' Rafaj, Jeremy 'J' Sager, Marco 'manolo' Santis, Thorsten F. 't-man' Schulz, Michal 'misiek' Slaski & Asia, Michael 'der man der spielt' Spielmann, Marek 'marecki' Tulej and many more who despite not being mentioned here will always stay in my heart and memories.

The financial support of the Swiss National Science Foundation in the context of the NCCR-Climate project, the Alliance for Global Sustainability and the EU CASCADE MINTS project is gratefully acknowledged.

I would like to thank my family for all their love, support and standing by me in good and bad times, proving that anything may be achieved if you just put your heart and mind to it. To Magda, for making all the kilometres much shorter than in the SI units.

I dedicate this work to my aunt Ewa.
Abstract

The transportation sector, similarly to other large-scale systems like heat or electricity networks, carries numerous benefits and burdens. In the case of the transportation sector the benefits comprise of the support of the economical development as well as mobility for citizens. Nevertheless it also carries heavy environmental and climate burdens (local pollutants and CO₂), and dependency on oil, which often has unstable prices and lacks security of supply. In the light of the mentioned disadvantages, it is claimed by many that by mid century we could be considering alternatives.

In this study an assessment of the potential conditions which would need to be fulfilled in order for hydrogen to substitute the conventional oil-based transportation system, has been presented.

The research has been carried out using three different optimization models, which focused on different time frames (2000-2050/2100), world regions (from single to global scale) and sub-sectors of the transportation sector (from passenger vehicles, buses to road freight and other aggregated modes). All of the models employed were equipped with state-of-the-art Endogenous Technological Learning, which allows for cost reduction of selected technologies, as a function of increasing cumulative capacity.

The primary execution of the analysis employed extensive sensitivity analysis of various factors which could have potential impacts on market penetration of hydrogen fuelled fuel cell vehicles. The tested factors included: fuel cell prices, their respective learning rates (as element of the introduced endogenous technological learning), initial number of vehicles launched to the market, trends in oil prices, dynamics of hydrogen infrastructure build-up, internalisation of external costs of local pollutants (NOₓ, SOₓ) and global greenhouse gases (CO₂) as well as government supportive policies for fuel cell vehicles (cash-back promotions, preferential crediting options and “demonstration vehicle” projects).

The results of the study suggest that the two most crucial elements are the price of fuel cells (price ought to be in the range of 600 US$/kW by the time the fuel cells are ready from market deployment) and their potential to further reduce costs as a function of growing market popularity (learning rate of 15% or more). Further, the results of the study suggest that the development of the infrastructure may be of
lesser importance in the early years of the switch to hydrogen based mobility. However, this importance should not be omitted in long term planning. The results further suggest that in the case when the fuel cells are on a break-even point, the governments may have numerous policy measures as to initiate the switch. Such policy measures may include internalisation of externalities (negative impacts of pollution coming from the transportation sector), demonstration and deployment tactics as well as direct subsidies to fuel cells in form of cash-back promotions for the purchase of fuel cell vehicles as well as preferential credits for projects which contribute to the build-up of the hydrogen infrastructure.

Results of the study suggest that short term policy instruments, which could aid the transition to hydrogen based transportation sector, ought to be targeted at the fuel cell vehicles themselves (especially the fuel cells stack) as their cost is the most significant obstacle. Moreover, promoting the fuel cell vehicles may be a very promising policy tool. This may increase the popularity of fuel cell vehicles, triggering the demand for this type of cars. Furthermore, promotion of hydrogen fuel cell vehicles could contribute to the number of vehicles in service, which in turn would contribute to the cost reduction of fuel cells (expressed in the modelling framework as Endogenous Technological Learning). Further, the results suggest that long run policy instruments target the build-up of fully fledged hydrogen infrastructure, which could prove to be a bottle neck for the development of hydrogen based transportation in a long timeframe. Moreover, long term policy options could target penalisation of emissions (such as CO₂, NOx and SOx) which originate from technologies generating fuels as well as vehicles themselves. Such policy option could impose more pressure and cause a more dynamic shift to hydrogen option.

The study, apart from bringing results suggesting condition for possible market penetration of hydrogen fuel cell vehicles, contributed also to the extension of the modelling framework of the GMM (Global Markal Model) in terms of more explicit representation of the global transportation sector. GMM is widely used by numerous research and governmental institutions, which can benefit from the expansion. The expansion makes GMM a more robust tool for designing and evaluation of environmental policies.
Kurzfassung

In dieser Arbeit wird eine Einschätzung der nötigen Bedingungen vorgenommen, unter denen Wasserstoff das konventionelle ölabhängige Transportsystem ersetzen könnte.

Gleichzeitig zeigen die Ergebnisse dieser Arbeit, dass langfristig wirksame Policy-Instrumente den Aufbau einer Wasserstoffinfrastruktur zum Ziel haben, da es sonst zu Engpässen in der Entwicklung eines wasserstoffbasierten Transportsektors kommen könnte. Langfristig wirksame Policy-Optionen könnten beispielsweise Emissionen (wie CO2, NOx und SOx) sowohl aus der Herstellung von Treibstoffen als
auch aus ihrer Verwendung zum Ziel haben. Eine solche Policy Option könnte den Druck und damit die Dynamik einer Umstellung auf Wasserstoff erhöhen.

Table of contents

Acknowledgements ... 2
Abstract .. 3
Kurzfassung.. 5
Table of contents ... 8
List of abbreviations .. 10
1 Introduction .. 14
 1.1 The transportation sector - benefits and burdens .. 14
 1.2 Research scope .. 16
 1.3 Methodology .. 18
 1.4 Structure ... 20
2 Description of tools and inputs ... 21
 2.1 Vehicle technologies ... 22
 2.2 Fuel generation technologies ... 25
 2.3 Demands for transportation .. 30
 2.3.1 Demands for personal transportation (Personal vehicles and Buses) 30
 2.3.2 Demands for freight transportation (Trucks) .. 36
 2.4 Learning-by-doing, the costs reduction mechanism ... 39
 2.5 Sensitivity analysis assumptions ... 44
 2.6 Interpretation of sensitivity analysis runs .. 49
3 Does the hydrogen fuelled FC vehicle stand a chance? Analysis conducted with FinalTRA 51
 3.1 Introduction to FinalTRA - H2FC in “laboratory” market conditions 51
 3.2 FinalTRA - model description ... 51
 3.3 FinalTRA - assumptions on data input ... 55
 3.4 FinalTRA - sensitivity analysis ... 56
 3.4.1 Price of fuel cells vs. fuel cell learning rates ... 59
 3.4.2 Price of fuel cells vs. change in oil price ... 60
 3.4.3 Price of fuel cells vs. initial number of vehicles ... 62
 3.4.4 Learning rates vs. initial number of vehicles ... 62
 3.4.5 Learning rates vs. hydrogen pipeline growth rates .. 64
 3.5 FinalTRA - conclusions from the analysis .. 65
4 Market penetration of advanced transportation technologies. Analysis conducted with 67
 CUBE
 4.1 Introduction to CUBE - the complexity of full hydrogen fuel chains 67
 4.2 CUBE - model description ... 68
 4.3 CUBE - assumptions on data input ... 73
 4.4 CUBE - sensitivity analysis ... 74
 4.4.1 Price of fuel cells vs. fuel cell learning rate (H2FC penetration) 78
 4.4.2 Price of fuel cells vs. fuel cell learning rate (penetration of other technologies) 79
 4.5 CUBE - conclusions from the analysis ... 83
5 Market penetration of advanced technologies on global scale. Analysis conducted with 85
 GMM
 5.1 Introduction to GMM - broad scale market entrance of advanced technologies 85
 5.2 GMM - assumptions on data input ... 86
 5.3 GMM - sensitivity analysis ... 86
 5.4 GMM - conclusions from the analysis ... 89
 6 Consistency across model results .. 91
 6.1 Consistency: H2FC-kW vs. H2FC-LRN ... 92
 6.2 Consistency: H2FC-LRN vs. CCoH2Fc ... 95
 6.3 Consistency: H2FC-kW vs. CCoH2Fc ... 98
 6.4 Consistency: H2FC-kW vs. BBL ... 100
7 Global impacts of advanced transportation technologies .. 103
 7.1 GMM: 2000-2050 Base-case ... 104
 7.2 The catalyst role of the Government ... 105
 7.3 Environmental burdens of the transportation sector ... 107
List of abbreviations

AFR Africa
 Region made up of all the countries on the African continent

ASIA
 Centrally planned Asia, South Asia and Pacific Asia
 Region made up of Asian countries not members of former soviet
 Union and far east countries (Koreas, Vietnam, Malaysia, etc.)

BBL Price of crude oil

CC Cumulative Capacity
 The cumulative capacity is the sum of all the capacities installed
 (delivered to the market) in the timeframe from the moment a
 technology started ‘producing’ to the given time (for example the
 end of the time horizon of the analysis)

CCo Initial Cumulative Capacity

CCoH2FC Initial number of hydrogen fuelled fuel cell vehicles launched to the
 market

CCoH2FC Initial Cumulative Capacity of Hydrogen (H2) Fuel Cell Vehicles

CDA Causal Diagram Analysis

CPA Centrally Planned Asia
 Region made up of such centrally planned countries as China,
 Mongolia and Nepal

crf Capital Recovery Factor
 This factor allows for discounting of investments costs of a given
 technology over it’s technological lifetime

EEFSU Eastern Europe and Former Soviet Union
 Region made up of former Soviet Union and Eastern Block countries
 (Slovakia, Hungary, Romania, Poland, etc.)

EEU Eastern Europe
 Region made up from the former Eastern Block countries (Slovakia,
 Hungary, Romania, Poland, etc.)

ETL Endogenous Technological Learning

ETL Investment Costs, which undergo Endogenous Technological
 investment Learning
etlcost Investment Costs, which undergo Endogenous Technological Learning, specified for passenger cars specific to each particular vehicle type. This cost covers such items as for example the fuel cells which are an essential element of the hydrogen fuel cell car. The given parameter may be directly read from the data tables.

EXT EXT region externality internalisation scaling factor

FIXOM Fixed Operations Maintenance Costs
Costs related to operation of a technology, independent if the technology is being used or not; such costs are accounted if a technology is on the market and may be operational. FIXOMs usually include such elements as insurance costs, operating personnel, etc.

FSU Former Soviet Union
Region made up from the former Soviet Union (currently Russian Federation, Belarus, Lithuania, Ukraine, etc.)

Gasoline Gasoline passenger car
Gasoline-electric hybrid Gasoline-electric hybrid passenger car

gdp Gross Domestic Product
gdp ppp Gross Domestic Product referred in Purchase Power Parity
gdp/capita Ratio of GDP to capita (population) economic indicator
h2 Final price of hydrogen
h2fc Hydrogen (H2) Fuel Cell Vehicle
h2fc initial Initial cost of the Hydrogen (H2) Fuel Cell
h2fc-kw Cost of 1kW of fuel cell stack used in a hydrogen fuelled fuel cell vehicle
h2fc-kw floor Hydrogen (H2) Fuel Cell price Floor Cost
h2fc-lrn Hydrogen (H2) Fuel Cell Learning Rate
h2kw Hydrogen (H2) Fuel Cell price
hst High Speed Transport
lafm Latin America, Africa and Middle East
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>Latin America</td>
</tr>
<tr>
<td>MEA</td>
<td>Middle East</td>
</tr>
<tr>
<td>NAM</td>
<td>North America</td>
</tr>
<tr>
<td>non-ETL</td>
<td>Non-Endogenous Technological Learning index; this index indicates that the discussed costs do not undergo the Endogenous Technological Learning costs reduction mechanism</td>
</tr>
<tr>
<td>OOECD</td>
<td>Western Europe and Pacific OECD</td>
</tr>
<tr>
<td>PAO</td>
<td>OECD countries in the Pacific Ocean</td>
</tr>
<tr>
<td>PAS</td>
<td>Other Pacific Asia</td>
</tr>
<tr>
<td>PPL-GR</td>
<td>Hydrogen Pipeline Growth Rate</td>
</tr>
<tr>
<td>pr</td>
<td>Progress Ratio</td>
</tr>
<tr>
<td>PV</td>
<td>Present Value</td>
</tr>
</tbody>
</table>

The parameter is calculated as \(1/(1+DR)^t \) where DR is the Discount Rate, and serves the purpose of discounting the investment costs.
well as including their individual, technology specific costs

SC **Specific cost** (at given cumulative capacity)

SCo Initial **specific costs** of the first unit of production at given initial cumulative capacity

VAROM **Variable Operations Maintenance Costs**
Costs directly related to the operation of a given technology. Using an example of a personal car, such costs usually accounts for engine oil, tyres, break pads, etc. In the case of for example hydrogen generation technologies these costs would include lubricants used for hardware, cleaning of the equipment, production related checkups, etc.

v-km **Vehicle km**
1 km travelled by a road vehicle

WesternEurope Index designating the West European countries (equivalent to the WEU region)

WEU **Western Europe**
Region made up from the former Western European Block countries (EU 15 with Switzerland and Turkey)
1 Introduction

1.1 The transportation sector – benefits and burdens

In modern societies, almost every form of human activity is accompanied by energy consumption. This resulting energy demand may be associated with direct application of energy (in form of heat or electricity) or other application such as transportation allowing for mobility. While the heat and electricity sectors have been broadly discussed by numerous researchers, the transportation sector still provides much space for exploration as to suggest pathways for development, which may improve its operation. Today transportation is one of the indispensable elements of every countries economy. From moving people, animals, materials to transportation of final end products, the transportation sector has a major impact on how citizens and goods reach their destinations. As economies develop, so does the demand for transportation which allows further development and well being of societies. Therefore, over the past century one may notice a strong bond and dependency of nations on their transportation sectors (BP 2005).

However, since the developments of the gasoline and diesel engines, most of the transportation systems have started depending on these two technological solutions. This has created a dependency between the ever needed transportation and oil, which is the primary source for creating gasoline and diesel. This dependency has created in many regions of the world a “supply security” problem, which is vital for effective and undisturbed functioning of the transportation sector. Moreover, increased activity during the last century has placed the transportation sector among one of the main emitters of CO₂ and local pollutants. The resulting combination of oil security supplies, increasing price of oil and the environmental burdens have imposed a question if oil based transportation should be altered. If possible, this change would allow for such improvements so that security of fuel supply could be maintained, while at the same time the environmental soundness and fuel price stability were secured. Many options which are discussed broadly on scientific and political levels include switching to more advanced vehicle technologies (like gasoline/diesel-electric hybrids) and a possible switch to other alternative fuels (Keith and Farell 2003; Kröger, Fergusson et al. 2003). The first discussed option is already being implemented today; this may be observed in the fact that many vehicle
manufacturers include in their vehicle portfolio cars with low fuel consumption (like the “Lupo 3L” from VW) or cars with hybrid power trains (like “Prius” from Toyota, “Insight” from Honda or “Ram Diesel Hybrid” from Dodge). Nevertheless, the hybrid vehicles and highly efficient diesels are dependant on gasoline and diesel, and still pollute the environment. Therefore, one may perceive this strategy as a time ‘buyer’, leaving the mentioned problems with the need to be solved eventually.

In terms of alternative fuels the discussions point to numerous choices (methanol or bio-diesel to mention the two), however one of them in particular seems quite promising. It is claimed by many, that hydrogen could be such an alternative fuel (Fergusson 2001; Farrel, Keith et al. 2003; Hekkert, Faaij et al. 2004; Service 2004; Wokaun, Baltensperger et al. 2004).

Hydrogen based transportation could bring numerous benefits and prove far superior of a solution than the currently existing oil dependant transportation system. Firstly, hydrogen as fuel is a cleaner, in terms of environmental concerns, as compared to gasoline or diesel. Secondly, if hydrogen based mobility would become a reality one may think of fuel cell vehicles; this means, vehicles with a fuel cell stack and an electric motor, which have a much higher efficiency than cars equipped with conventional internal combustion engines. Thirdly, hydrogen may be generated locally from numerous primary energy sources (conventional as well as renewable), which could secure generation and supply of fuel and additionally stimulate local economy. Experts point to many more arguments in favour of hydrogen based mobility, such as lower noise levels coming from fuel cell vehicles as compared to conventional cars, hydrogen is a safer fuel as compared to gasoline – both in terms of human impacts (safety) as well as the natural environment (emissions, leakages, etc.).

Nevertheless, today the hydrogen based mobility is still a concept. This is mainly due to technical and economical reasons. Currently fuel cells are still under development, while with still significant deficiencies (for example the lifetime of the membranes) they are priced above any level of competitiveness. Moreover, the hydrogen infrastructure is basically inexistent. Nevertheless, numerous business enterprises as well as scientific institutions and governments are intensively working on the hardware and conditions essential for the hydrogen based mobility. Looking at the
progress which has been achieved over the past decades, one may picture that in the coming 30 years a transition to hydrogen based mobility may become a reality (Pridmore and Bristow 2002).

1.2 Research scope
In this research the main stress has been placed on analysis of the conditions which would need to be met in order to allow the hydrogen based mobility to become a reality. The analysis of the issue has been initiated by defining research questions which would need to be addressed in order to suggest an answer to the main question of the analysis. Among numerous research and methodological questions, the following have been outlined:

- Can, and under which conditions, hydrogen transportation replace the oil based transportation sector?
- Which elements of the transportation and energy sector would need to be considered to resolve the issue?
- Which technological options are/will be there, which could facilitate hydrogen based transportation?
- What are the critical elements of technologies supporting hydrogen based transportation?
- What are the strengths/weaknesses and thresholds characteristics of technologies supporting hydrogen based transportation?
- What methodological framework would be necessary to draw a guide path for addressing the issue of potential future developments of hydrogen based mobility?
- What methodological tools would be required for the analysis?

Later, having defined the research and preliminary methodological questions which would need to be addressed, a methodological framework was established as to outline the steps which would need to be carried out as to facilitate the analysis for answering of the research issues. The diagram, in form of a goal tree, illustrates the methodological framework (conceptual approach) to the analysis of the issue (Figure 1).
Can, and if so, hydrogen based transportation replace the oil based transportation sector?

Scenario analysis

Selection of modelling tools, parameters and decisions

Vary & analyse potential influencing factors

Uncertainty analysis

Establish potential influencing factors on market penetration of fuel cell vehicles

Expand methodology/tools

Develop tool(s) for simplified methodology testing

Establish simplified methodology for testing the hypothesis 'hydrogen go/no-go'

Define aggregated transportation sub-sectors

Establish vehicles technologies (economy, ecology, growth, etc, parameters)

Establish fuel chain elements (economy, ecology, development, growth, etc, parameters)

Establish regional, time dependant demands for transportation

Establish availability of data for regional demands for transportation

Define explicit transportation sub-sectors

Establish availability of data for sectorial descriptions (modes, shares, general trends, etc.)

Establish transportation sectors

Figure 1 Schematic diagram of methodological approach within the research framework of the dissertation

Next, after having prepared the main methodological framework, a task was established to develop methodological tools which would directly facilitate the analysis.
1.3 Methodology

On the basis of the established research questions, assumed methodological approach, in-house1 knowledge and experience from other researchers (Barreto and Kypreos 1999; Babiker, Reilly et al. 2001; Breugem, van Vuuren et al. 2002), it has been decided that the most appropriate way of tackling the issue of the future potential for hydrogen to become the core of the transportation sector would be using an optimisation modelling framework.

Due to the complex nature of the system analysed, the analysis would be carried out step wise. Firstly, using crude and general assumptions as to outline the corner stones of the system and its potential behaviour. Later, expanding the modelling framework as to include a more detailed characterisation of the transportation sector. Lastly, the findings from the first two parts would be tested in a full scale energy model.

In terms of tool development for each step of the analysis the following tools have been developed:

Step 1 General assumptions modelling and evaluation

In the first phase, a stand-alone optimisation model was created. Using a simplified market conditions, the results were to show if the “hydrogen transportation” is at all a realistic possibility. This analysis was carried out using a model called FinalTRA, which analysed the sub-sector of personal vehicles, in a single world region in a timeframe of 100 years (2000-2100).

Step 2 Extended analysis of the transportation sector

Achieving positive results, that indeed, the “hydrogen transportation” is a realistic option, the analysis was deepened by substituting several of the exogenous inputs (like the price of hydrogen) to the model, with endogenous ones. This approach resulted in a more realistic representation of the analysed system in a model called CUBE. The modelling framework of CUBE was, similarly to FinalTRA, restricted to one world region, and a timeframe of 100 years (2000-2100).

Step 3 Full scale energy systems analysis

1 of the Paul Scherrer Institute, Energy Economics Modelling Group
Lastly, the hydrogen transportation was placed in a global level, within the framework of the GMM model (Kypreos 1996; Loulou, Goldstein et al. 2004).

More detailed description of each of the models used has been presented in the following chapters (Chapters: 3.1 Introduction to FinalTRA – H₂FC in "laboratory” market conditions, 4.1 Introduction to CUBE – the complexity of full hydrogen fuel chains, 5.1 Introduction to GMM – broad scale market entrance of advanced technologies).

The following diagram illustrates the application of the methodological framework and tools developed as to facilitate an environment for tackling the research questions (Figure 2).

Figure 2 Schematic diagram illustrating steps carried out within the research framework of the dissertation.
1.4 Structure

The rest of the document has been organised as follows. In Chapter 2 (Description of tools and inputs) the input data for the modelling framework is presented. Here the reader will find a detailed description of technologies used for transportation (vehicles), generation, transmission and distribution of fuels, as well demands for transportation. In the following part, Chapter 3 (Does the hydrogen fuelled FC vehicle stand a chance? Analysis conducted with FinalTRA) the inputs are put together in a simplified market allocation model called FinalTRA, with the aim of addressing the question if hydrogen transportation is a feasible option. The results include first sensitivity analyses, pointing to relevant factors, which may have a substantial influence on the market diffusion of the hydrogen transportation sector. Later, in Chapter 4 (Market penetration of advanced transportation technologies. Analysis conducted with CUBE), the modelling framework was expanded in a model called CUBE with the aim of addressing the question of how the chances of hydrogen based transportation could change in a more realistic representation of the transportation sector with a significantly higher number of endogenous parameters. The results contain more information of the factors promoting and/or limiting the development of hydrogen based transportation system. Next, in Chapter 5 (Market penetration of advanced technologies on global scale. Analysis conducted with GMM) the hydrogen option is introduced into the global transportation, modelled using an optimisation model called GMM (Kypreos 1996; Loulou, Goldstein et al. 2004). Later, in Chapter 6 (Consistency across model results) a methodological assessment of the consistency of the results coming from all three models is presented. Following this, in Chapter 7 (Global impacts of advanced transportation technologies) the results of policy analysis, aiming at introduction of sustainable alternatives to the current oil-based transportation system, are presented. In final part of this document, Chapter 8 (Conclusions) conclusions from all phases of the analysis are drawn and recommendations for policy analysis are presented.
2 Description of tools and inputs

The modelling framework of the transportation sector, in this analysis, concentrates on a global scale, with the world divided into 5 main regions (GMM-model type division); this has been illustrated below (Figure 3).

Figure 3 Division of the world into regions, as used in FinalTRA, CUBE and GMM

The timeframes used for the analysis consisted of two: one being a short-range (2000-2050, used in GMM) and one being a long-range (2000-2100, used in FinalTRA and CUBE).

The transportation sector consists of many modes, like personal vehicles, buses, passenger railroad, airplanes, etc. For the analysis presented in this document, three modes have been selected, being Personal Vehicles, Buses and Road Freight Transportation\(^2\). The choices of different modes and timeframes for models used have been illustrated on the following diagram (Figure 4). A more detailed description of the specific modes and transportation technologies has been presented in the descriptive part of each of the models used in the analysis.

\(^2\) Freight trucks, with a payload of 35-40 tonnes (similar to the U.S. class 8 trucks)
2.1 Vehicle technologies

One of the main constituents of the transportation sector are the vehicles in operation. For the analysis with the first two models (FinalTRA and CUBE) only the personal vehicles have been selected as to allow flexibility and reduce the calculation time of the models. In GMM however, this has been expanded as to include apart from personal vehicles also buses and heavy road freight. Each of the models has used the same technological description of the included vehicles (Table 1).

Each of the vehicle technologies representing vehicles for a given sub-sector has been selected in such way as to allow for comparability. Therefore for Personal Vehicles the representative car is a 5-seater, with a weight of ~1,350kg and an engine capacity ~2 l (gasoline) or 1.9 (diesel). The illustrative vehicle may be compared to Audi A4 or Honda Accord. The annual mileage has been assumed to be 17,000 km/year (Roder 2001; Breugem, van Vuuren et al. 2002; Pridmore and Bristow 2002; Ogden, Williams et al. 2004).

In the sub-sector of buses, the buses have been described on the basis of a model bus which is an average city bus with 45 passenger seats; the annual mileage has been assumed to be 45,500 km/year (Pelkmans, De Keukeleere et al. 2001; Brager 2003). In the road freight sub-sector the trucks selected are the represented by a 19 ton pay load truck (US Class 8) with an annual mileage of 134,000 km/year (DaimlerChrysler 2003; Ergudenler and Jennejohn 2005).
Table 1: Description of vehicle technologies as used in the analysis with FinalTRA, CUBE and GMM models (Austin, Dulla et al. 1999; Contadini 2000; Weiss, Heywood et al. 2000; Metschies 2001; Pelkmans, De Keukeleere et al. 2001; Roder 2001; L-B-Systemtechnik 2002; Brager 2003; DaimlerChrysler 2003; Litman 2003; Toyota 2003; Hekkert, Faaij et al. 2004; Ogden, Williams et al. 2004)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>2000</td>
<td>18,600</td>
<td>70</td>
<td>8.1</td>
<td>0.3502</td>
<td>Non-ETL technology</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>2000</td>
<td>20,500</td>
<td>70</td>
<td>8.1</td>
<td>0.4081</td>
<td>Non-ETL technology</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Gasoline-electric hybrid</td>
<td>2000</td>
<td>22,000</td>
<td>70</td>
<td>8.1</td>
<td>0.7648</td>
<td>10</td>
<td>2,000[^4]</td>
<td><0.1%</td>
</tr>
<tr>
<td>Electric</td>
<td>2050</td>
<td>22,500</td>
<td>100</td>
<td>8.1</td>
<td>1.7800</td>
<td>10</td>
<td>2,000[^5]</td>
<td>-</td>
</tr>
</tbody>
</table>

[^3] “Non-ETL technologies” are subject to time-dependant improvement of fuel efficiency, which is 7.5% per decade. Because of the assumption on the high efficiency of the “ETL technologies” they are not subject to time dependent improvement of fuel efficiency. The competitive position of the ETL technologies, despite lack of improvement on fuel efficiency may be sustained by ETL cost reduction mechanism of the ETL part of the costs (more description on ETL has been presented in Chapter 2.4 Learning-by-doing, the costs reduction mechanism).

[^4] Cost related to the ETL of the battery

[^5] Cost related to the ETL of the battery

[^6] First year when the vehicles are available to be launched onto the market, however, despite the fact they are available, the optimisation system is free to do the market launch at later time.
24 Description of tools and inputs

<table>
<thead>
<tr>
<th>Type</th>
<th>Base Year</th>
<th>Initial Cost</th>
<th>Lifetime</th>
<th>CF</th>
<th>Efficiency</th>
<th>Technology</th>
<th>Cumulative Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus – Diesel</td>
<td>2000</td>
<td>250,000</td>
<td>3000</td>
<td>653</td>
<td>0.0495</td>
<td>Non-ETL technology</td>
<td>~60%</td>
</tr>
<tr>
<td>Bus – CNG</td>
<td>2000</td>
<td>320,000</td>
<td>3000</td>
<td>653</td>
<td>0.0286</td>
<td>Non-ETL technology</td>
<td>~40%</td>
</tr>
<tr>
<td>Bus – Electric</td>
<td>2000</td>
<td>350,000</td>
<td>3000</td>
<td>653</td>
<td>0.0856</td>
<td>10</td>
<td>150,000</td>
</tr>
<tr>
<td>Bus – H₂ Fuel Cell</td>
<td>2010</td>
<td>850,000</td>
<td>3000</td>
<td>653</td>
<td>0.0750</td>
<td>5-20</td>
<td>50,000-250,000</td>
</tr>
<tr>
<td>Truck – Diesel</td>
<td>2000</td>
<td>167,000</td>
<td>20</td>
<td>146</td>
<td>0.0732</td>
<td>Non-ETL technology</td>
<td>100%</td>
</tr>
<tr>
<td>Truck – Diesel-electric hybrid</td>
<td>2010</td>
<td>170,000</td>
<td>20</td>
<td>146</td>
<td>0.0682</td>
<td>10</td>
<td>35,000</td>
</tr>
</tbody>
</table>

7 Hydrogen fuel cell vehicle consists of a base personal car chassis with an electric motor, control devices, an onboard hydrogen storage (worth 15,000 US$) and a 50kW fuel cell stack (worth 5000 US$); this price is the floor cost; during market penetration the price of the fuel stack is increased with the ETL element (its value is related to the cumulative market penetration and resulting reduction of price)

8 Full price of a 50kW fuel cell stack; the ranges covers the prices of fuel cells from 200-1000 US$/kW
2.2 Fuel generation technologies

In all models the transportation sector description also includes the specification of fuels which are used for vehicles; the complexity of the descriptions varies however from model to model. This description defines steps from the extraction/generation of primary fuels, through conversion, transmission and final distribution to appropriate types of vehicles. An illustrative diagram has been presented below (Figure 5).

![Illustrative representation of fuel chains as used in GMM](image)

Figure 5 Illustrative representation of fuel chains as used in GMM

The specific elements included in each analysis have been specified in later parts describing each of the models in more detail.

The following tables present the specifications of the hydrogen fuel chains characteristics which have been used in the analysis with the three models (Table 2 through Table 4).

The remaining description of the fuel chains as used in GMM may be found in the MARKAL Family of Models documentation (Loulou, Goldstein et al. 2004).
Table 2: Description of hydrogen generation technologies as used in the analysis with CUBE and GMM models (Simbeck and Chang 2002)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Investment costs (^9) [US$/GJ H(_2)]</th>
<th>FIXOM</th>
<th>VAROM</th>
<th>Feedstock Type</th>
<th>Operation fuel Type</th>
<th>Efficiency</th>
<th>Efficiency</th>
<th>Lifetime [years]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas reforming with compression (215 atm)</td>
<td>38.73</td>
<td>1.94</td>
<td>4.56</td>
<td>Natural gas</td>
<td>1.3123</td>
<td>0.053</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Natural gas reforming with pipeline compression (75 atm)</td>
<td>13.30</td>
<td>0.67</td>
<td>0.40</td>
<td>Natural gas</td>
<td>1.3123</td>
<td>0.022</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Natural gas reforming with liquefaction</td>
<td>22.40</td>
<td>1.11</td>
<td>0.88</td>
<td>Natural gas</td>
<td>1.3123</td>
<td>0.337</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Resid with pipeline compression (75 atm)</td>
<td>31.16</td>
<td>1.55</td>
<td>1.28</td>
<td>Residuals from oil refining</td>
<td>1.3157</td>
<td>0.077</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Coal reforming with compression (215 atm)</td>
<td>75.46</td>
<td>3.77</td>
<td>6.37</td>
<td>Hard coal</td>
<td>1.4409</td>
<td>0.158</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Coal reforming with pipeline compression (75 atm)</td>
<td>43.62</td>
<td>2.17</td>
<td>1.79</td>
<td>Hard coal</td>
<td>1.4409</td>
<td>0.108</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Coal reforming with liquefaction</td>
<td>57.10</td>
<td>2.86</td>
<td>2.54</td>
<td>Hard coal</td>
<td>1.4409</td>
<td>0.450</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

\(^9\) The investment costs presented here have not been annualised; therefore in order to obtain the annualised value of the investment costs one needs to multiply the presented investment cost with CRF (Capital Recovery Factor). For technologies which have a technical lifetime of 20 years, with a discount rate of 5% the CRF = 0.08 (EQ. 28)
<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass with compression (215 atm)</td>
<td>76.13</td>
<td>3.81</td>
<td>6.48</td>
<td>Biomass</td>
<td>1.3157</td>
<td>0.189</td>
</tr>
<tr>
<td>Biomass with pipeline compression (75 atm)</td>
<td>49.69</td>
<td>2.48</td>
<td>2.29</td>
<td>Biomass</td>
<td>1.3157</td>
<td>0.145</td>
</tr>
<tr>
<td>Biomass with liquefaction</td>
<td>60.97</td>
<td>3.05</td>
<td>2.96</td>
<td>Biomass</td>
<td>1.3157</td>
<td>0.460</td>
</tr>
<tr>
<td>Electrolysis with compression (215 atm)</td>
<td>115.88</td>
<td>5.79</td>
<td>0.49</td>
<td>Water</td>
<td>1.5748</td>
<td>1.634</td>
</tr>
<tr>
<td>Electrolysis with pipeline compression (75 atm)</td>
<td>95.33</td>
<td>4.77</td>
<td>0.29</td>
<td>Water</td>
<td>1.5748</td>
<td>1.634</td>
</tr>
<tr>
<td>Electrolysis with liquefaction</td>
<td>101.40</td>
<td>5.07</td>
<td>0.35</td>
<td>Water</td>
<td>1.5748</td>
<td>1.935</td>
</tr>
</tbody>
</table>

For the analysis three types of transmission modes were selected. Firstly, a low pressure diesel truck delivery. Secondly, pipeline which could deliver hydrogen from the centralised generation sites to the fuelling station. The pipeline contrary to other two modes may not be created quickly, however once constructed allows for large thru-outputs ensuring reliability of deliveries. Lastly, a diesel truck carrying liquefied hydrogen. The last option, although flexible, requires hydrogen to be liquefied at the generation plant, which in turn involves demand for electricity for the operation of compressors (Table 3).
Table 3 Description of hydrogen transmission technologies as used in the analysis with CUBE and GMM models (Simbeck and Chang 2002)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Investment costs(^\text{10})</th>
<th>FIXOM + VAROM</th>
<th>Input/output efficiency of H(_2) transmission</th>
<th>Operation fuel type</th>
<th>Efficiency</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-ETL costs [US$/GJ H(_2)]</td>
<td>[%]</td>
<td>[US$/GJ H(_2)] [%]</td>
<td>$\text{[GJ/GJ H}_2\text{]}$</td>
<td>[years]</td>
<td></td>
</tr>
<tr>
<td>Truck (215 atm compression)</td>
<td>23.75</td>
<td>Non-ETL technology</td>
<td>13.08</td>
<td>0.997</td>
<td>Diesel</td>
<td>0.099</td>
</tr>
<tr>
<td>Pipeline (215 atm)</td>
<td>101.57</td>
<td>13.73 10</td>
<td>6.14 0.997</td>
<td>Electricity</td>
<td>0.006</td>
<td>20</td>
</tr>
<tr>
<td>Truck (liquefied)</td>
<td>2.19</td>
<td>Non-ETL technology</td>
<td>1.12</td>
<td>0.997</td>
<td>Diesel</td>
<td>0.006</td>
</tr>
</tbody>
</table>

For the distribution of hydrogen to end consumers three types of fuelling stations have been selected. In order to match the three pressures in the delivery chains (75 atm, 215 atm and liquefied) the stations have been specified accordingly. For the end consumer the stations would provide the same service, however because of the predeceasing fuel chain their overall financial and technical performance varies (Table 4).

\(^{10}\) The investment costs presented here have not been annualised; therefore in order to obtain the actual value of the investment costs one needs to multiply the presented investment cost with CRF (Capital Recovery Factor) which allows for annualisation. For technologies which have a technical lifetime of 20 years, with a discount rate of 5% the CRF = 0.08, while for technologies with a 10 year technical lifetime (also 5% of discount rate) CRF = 0.13 (EQ. 28)
Table 4 Description of hydrogen distribution technologies as used in the analysis with CUBE and GMM models (Simbeck and Chang 2002)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Investment costs11</th>
<th>FIXOM+ VAROM</th>
<th>Input/output efficiency of H_2 distribution</th>
<th>Operation fuel</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-ETL costs</td>
<td>ETL costs</td>
<td>Learning rate</td>
<td>[US$/GJ H_2]</td>
<td>[%]</td>
</tr>
<tr>
<td>Low pressure (75 atm)</td>
<td>35.71</td>
<td>2.58</td>
<td>10</td>
<td>2.49</td>
<td>0.997</td>
</tr>
<tr>
<td>High pressure (215 atm)</td>
<td>35.71</td>
<td>3.39</td>
<td>10</td>
<td>2.17</td>
<td>0.997</td>
</tr>
<tr>
<td>Liquefied</td>
<td>46.99</td>
<td>2.58</td>
<td>10</td>
<td>1.82</td>
<td>0.997</td>
</tr>
</tbody>
</table>

11 The investment costs presented here have not been annualised; therefore in order to obtain the actual value of the investment costs one needs to multiply the presented investment cost with CRF (Capital Recovery Factor) which allows for annualisation. For technologies which have a technical lifetime of 20 years, with a discount rate of 5% the CRF = 0.08 (EQ. 28)
2.3 Demands for transportation

2.3.1 Demands for personal transportation (Personal vehicles and Buses)

The demand for personal transportation, which includes: Personal Vehicles (personal cars) and Buses have been calculated using the approach suggested by Schafer and Victor (Schafer and Victor 2000).

This approach is based on the concept of Travel Time Budget (TTB), which indicates that world-wide, citizens spend an average, fixed amount of around 1 hour a day for commuting. This includes work-office travel, as well as vacational travel, household trips, etc. The estimated TTB includes travel by different modes of transport – ranging from bipeds, personal automobiles to public transport and airplanes. Additionally, it has been noticed that the preference of citizens to travel with specific modes of transport is dependant on the income measurement (GDP/capita). Hence, citizens of countries with high GDP/capita level tend to use faster and more expensive modes of transport (for example airplanes), while citizens from lower-income countries, with low GDP/capita, tend to use slower modes.

The above mentioned observations have been described using mathematical equations, which allow the implementation into a modelling framework. In this study, a modified version of Schafer and Victor equations was applied as to more effectively work within the modelling environment. In what follows, the equations used have been presented. More information on TTB and the estimates on the dependency between preferences for mode transportation and shift to faster modes, is available elsewhere (Schafer and Victor 2000).

The overall demand for transportation, as a function of GDP/capita is defined as presented in EQ. 1 (Schafer and Victor 2000), where the demand for a given time period is directly derived from the GDP/Capita index for a given time period and region.
\[TV(t) = \log \left(\frac{\text{GDP}(t)}{G} - H \right)^* \text{GDP}(t)^{E+F} \]

Where:
- **TV** = Overall demand for passenger transportation [passenger km]
- **t** = Time index
- **GDP** = GDP/capita, expressed in USD [USD'95]
- **G, H, E, F** = constants (Schäfer and Victor 2000) adopted for the GAMS code

Further, out of the overall demand for transportation demands for specific modes are obtained in forms of shares, which is described in the following equations (EQ. 2 through EQ. 5) (Schäfer and Victor 2000). The shares of each mode for a given time period are directly derived from the total demand for a given region and time period.

\[S_{\text{Rail}}(t) = I^* \left(\frac{1}{(TV(t) - J)^K} - \frac{1}{(240000 - J)^K} \right) \]

Where:
- **S_{\text{Rail}}** = Share of railroad transportation [share of 1]
- **I, J, K** = constants (Schäfer and Victor 2000) adopted for the GAMS code
- **TV** = Overall demand for passenger transportation [passenger km]

\[S_{\text{HighSpeed}}(t) = S^* 10^{e\left(-T^*(TV(t) - U)\right)} + V \]

Where:
- **S_{\text{HighSpeed}}** = Share of high speed transport (airplanes and ultra fast trains) [share of 1]
- **I, J, K** = constants (Schäfer and Victor 2000) adopted for the GAMS code

\[12 \text{ Due to the precision limitations of the GAMS software, the constants were recalculated as to include the available precision rate of GAMS, hence the constants presented here are more precise as the ones actually entered to the GAMS code.} \]
Description of tools and inputs

TV Overall demand for passenger transportation [passenger km]

\[
S_{Bus}(t) = \frac{BK}{(TV(t) - TV_{Bus}(1990))^{BM}} + BC - S_{Rail}(t)
\]

Where:
- \(S_{Bus}\) Share of bus transportation [share of 1]
- \(t\) Time index
- \(TV\) Overall demand for passenger transportation [passenger km]
- \(BK,BM,BC\) constants (Schäfer and Victor 2000) adopted for the GAMS code

\[
S_{PersonalVehicle}(t) = 1 - S_{Bus}(t) - S_{Rail}(t) - S_{HighSpeed}(t)
\]

Where:
- \(S_{PersonalVehicle}\) Share of personal cars [share of 1]
- \(t\) Time index

Addition of all the shares (buses, personal cars, trains and high speed transport) yields 1.

The values of the original constants used for the calculation of the demand projection in the personal transportation sub-sector have been presented below (Table 5).

The regional division as proposed in the original source (Schäfer and Victor 2000) used an 11-region division, which is different to the GMM 5-region division. The Adjustment of refitting was established by means of adding values of regions which ought to be aggregated according to the GMM world region division.

The illustrative example of the changes for LAFM region, as observed by Schäfer and Victor, has been presented below (Figure 6). The later diagram (Figure 7) illustrates the development of the demand for personal cars across the 5 regions as used in GMM, which has been the primary demand used for the market balances.
Figure 6 Modal changes in the demand for passenger transportation (LAFM illustrative example)

Observing the following diagram (Figure 7) one may notice a decline in the demand for personal vehicle transportation in some of the regions (for example NAM) by the end of the time horizon. This drop in the demand is a result of the modal change – as citizens become wealthier they tend to switch to more expensive modes of transport (namely high speed transport). Therefore, in the long run, the more and the faster economies develop, the more of an abrupt modal switch may be observed, hence reduction in the demand for transportation in given sub-sectors.
Figure 7 Demand for passenger transportation in the five geographical regions in the sub-sector of personal vehicles
Table 5: Specification of constants (dimensionless) for the estimation of demand projections for personal transportation (Schafer and Victor 2000)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAM</td>
</tr>
<tr>
<td>E</td>
<td>0.766</td>
</tr>
<tr>
<td>G</td>
<td>40.2</td>
</tr>
<tr>
<td>H</td>
<td>61.19</td>
</tr>
<tr>
<td>I</td>
<td>122.7</td>
</tr>
<tr>
<td>J</td>
<td>6262</td>
</tr>
<tr>
<td>K</td>
<td>1.00</td>
</tr>
<tr>
<td>L</td>
<td>1195</td>
</tr>
<tr>
<td>M</td>
<td>-3248</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>Q</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>1.009</td>
</tr>
<tr>
<td>V</td>
<td>-0.009</td>
</tr>
<tr>
<td>T_vo</td>
<td>-</td>
</tr>
</tbody>
</table>
2.3.2 Demands for freight transportation (Trucks)

Of the date this work is prepared, no comprehensive studies have been found which were carried out in order to establish the projections for freight transportation on a world scale13. Therefore, for the purpose of the presented in the further parts analysis, a set of projections of freight demands for 5 world regions (according to GMM division) have been established. The data which has been used for calculating the projections originated from various sources like governmental agencies and statistical offices (National Bureau of Statistics of China 1997; World Energy Council 1998; World Energy Council and International Institute for Applied Systems Analysis (IIASA) 1998; BTS 2000; U.S. Department of Transportation 2000; Luxembourg Office for Official Publications of the European Communities 2001; Davis and Diegel 2002; Government of India Planning Comission 2002; Landwehr and Marie-Lilliu 2002; Nguyen 2002; U.S. Department of Transportation 2002; Ergudenler and Jennejohn 2005; Gerilla, Teknomo et al. 2005).

In order to find satisfying projections on the development in the demand for freight transportation, the collected historical data has been correlated with different economic parameters (like GDP, population, GDP expressed in PPP, etc.). Having established the correlations, it has turned out that the best correlation has been established when relating the demand for freight transportation and GDP/capita index (R^2 in the range of 0.95). Then, using the correlation to GDP/capita, the demands for freight transportation have been extrapolated until the year 2050.

Due to the availability of data, the initial calculations have been done using the 11-region division (Schäfer and Victor 2000), which at later stage were aggregated. The extrapolations of the demand for road freight have been conducted manually (manual fitting) using in-house knowledge. During the fitting it has been observed that several regions followed similar fitting patterns. Therefore, EQ. 6 illustrates the fitting in the regions of NAM and WEU while the remaining regions have been described using EQ. 7.

13 Only partial and regional demands have been found, which later have been used in the long term demand projections as presented in this work.
\[
D_{\text{DF}}_{\text{Reg}}(t) = A_{\text{Reg}} + B_{\text{Reg}} \times 10^{(\text{GDP/Capita})_{\text{Reg}}} \times C_{\text{Reg}}
\]

\[
D_{\text{DF}}_{\text{Reg}}(t) = A_{\text{Reg}} \times (\text{GDP/Capita})_{\text{Reg}}^B_{\text{Reg}}
\]

Where:
- \(D_{\text{DF}}\) Demand for freight transportation [G T-km]
- \(\text{Reg}\) Region indicating index
- \(t\) Time index
- \(A,B,C\) Manual fitting coefficients
- \(\text{GDP/Capita}\) GDP/Capita index, according to IIASA B2 scenario (World Energy Council and International Institute for Applied Systems Analysis (IIASA) 1998)

In the following table, the respective manual fitting coefficients have been presented (Table 6).

Table 6 Manual fitting coefficients (dimensionless) for the estimation of freight demand

<table>
<thead>
<tr>
<th>Region</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAM</td>
<td>4.5326</td>
<td>2.0000</td>
<td>1.5274</td>
<td>0.9730</td>
</tr>
<tr>
<td>LAM</td>
<td>678.3021</td>
<td>0.4816</td>
<td>-</td>
<td>1.0000</td>
</tr>
<tr>
<td>WEU</td>
<td>3.3199</td>
<td>2.0000</td>
<td>1.3276</td>
<td>0.9827</td>
</tr>
<tr>
<td>EEU</td>
<td>23.0964</td>
<td>0.8466</td>
<td>-</td>
<td>0.9984</td>
</tr>
<tr>
<td>FSU</td>
<td>320.1963</td>
<td>0.1263</td>
<td>-</td>
<td>0.9997</td>
</tr>
<tr>
<td>MEA</td>
<td>419.3916</td>
<td>0.4422</td>
<td>-</td>
<td>0.9997</td>
</tr>
<tr>
<td>AFR</td>
<td>101.7454</td>
<td>0.8033</td>
<td>-</td>
<td>0.9999</td>
</tr>
<tr>
<td>CPA</td>
<td>345.2089</td>
<td>0.7682</td>
<td>-</td>
<td>0.9872</td>
</tr>
<tr>
<td>SAS</td>
<td>262.0416</td>
<td>0.7585</td>
<td>-</td>
<td>1.0000</td>
</tr>
<tr>
<td>PAS</td>
<td>439.8483</td>
<td>0.6734</td>
<td>-</td>
<td>1.0000</td>
</tr>
<tr>
<td>PAO</td>
<td>216.6110</td>
<td>0.6564</td>
<td>-</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
In order to provide the projections according to GMM 5-region division, the values of the calculated demands were added accordingly. The results have been presented below (Figure 8 and Table 7).

![Figure 8](image)

Figure 8 Demands for freight transportation for 5 world regions

Table 7 Demands for freight transportation for 5 world regions [G T km]

<table>
<thead>
<tr>
<th>Year</th>
<th>NAM</th>
<th>EEFSU</th>
<th>LAFM</th>
<th>ASIA</th>
<th>OOECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1,887</td>
<td>517</td>
<td>2,005</td>
<td>2,100</td>
<td>1,570</td>
</tr>
<tr>
<td>2005</td>
<td>2,428</td>
<td>542</td>
<td>2,345</td>
<td>2,650</td>
<td>1,860</td>
</tr>
<tr>
<td>2010</td>
<td>2,969</td>
<td>568</td>
<td>2,640</td>
<td>3,155</td>
<td>2,199</td>
</tr>
<tr>
<td>2015</td>
<td>3,510</td>
<td>593</td>
<td>2,908</td>
<td>3,650</td>
<td>2,550</td>
</tr>
<tr>
<td>2020</td>
<td>4,051</td>
<td>606</td>
<td>3,149</td>
<td>4,168</td>
<td>2,844</td>
</tr>
<tr>
<td>2025</td>
<td>4,584</td>
<td>631</td>
<td>3,387</td>
<td>4,585</td>
<td>3,159</td>
</tr>
<tr>
<td>2030</td>
<td>4,861</td>
<td>653</td>
<td>3,600</td>
<td>5,040</td>
<td>3,467</td>
</tr>
<tr>
<td>2035</td>
<td>5,174</td>
<td>669</td>
<td>3,815</td>
<td>5,472</td>
<td>3,765</td>
</tr>
<tr>
<td>2040</td>
<td>5,487</td>
<td>689</td>
<td>4,018</td>
<td>5,914</td>
<td>4,069</td>
</tr>
<tr>
<td>2045</td>
<td>5,800</td>
<td>704</td>
<td>4,199</td>
<td>6,330</td>
<td>4,371</td>
</tr>
<tr>
<td>2050</td>
<td>6,112</td>
<td>722</td>
<td>4,379</td>
<td>6,780</td>
<td>4,665</td>
</tr>
</tbody>
</table>
2.4 Learning-by-doing, the costs reduction mechanism

A learning, or experience, curve shows how experience improves performance in a given activity. Thus, a generic learning curve relates a certain performance index to a quantity measuring cumulated experience (Wright 1936; Robinson 1980; Laitner and Sanstad 2004). The most common specification (and the one applied here), describes the specific investment cost of a given technology as a function of the cumulative capacity, which is used as a proxy for the cumulated knowledge. The curve reflects the fact that some technologies may experience declining costs as a result of increasing adoption into the society, due to the accumulation of market penetration (Manne and Barreto 2004).

The customary form to express an experience curve (learning-by-doing) is using an exponential regression is presented below Eq. 8 (Argote and Epple 1990) and on the following diagram (Figure 9).

\[
SC(C) = SC_0 \cdot CC^{-b}
\]

Where:
- SC: Specific cost (e.g. US$/kW for electricity generation technologies)
- CC: Cumulative capacity
- b: Learning index
- SC_0: Specific cost of the first unit

Figure 9 Graphical illustration of learning curve
The learning index b defines the effectiveness with which the learning process takes place. It constitutes one of the key parameters in the expression above. Usually, for simplicity its value is not given but the progress ratio (or the learning rate) is specified instead. The progress ratio (pr) is the rate at which the cost declines each time the cumulative production doubles. For instance, a progress ratio of 80% implies that the costs are reduced to 80% when the cumulative capacity is doubled. The relation between the progress ratio and the learning index can be expressed as presented in Eq. 9.

$$pr = 2^{-b}$$

An alternative is to specify the learning rate (Ir) defined as presented in Eq. 10.

$$Ir = 1 - pr$$

The parameter a may be computed using one given point of the curve (usually the starting point SC_0, C_0 is specified) as presented in Eq. 11.

$$SC(CC) = \frac{SC_0}{(C_0)^{-b}}$$

The curve is very sensitive to the progress ratio specified and to the starting point (SC_0, CC_0). The future progress ratio of a given technology can be uncertain. Also, the definition of the starting point may pose difficulties for future, or currently in the pre-commercial stage, technologies for which data concerning actual cumulative capacity or costs may not be available or reliable (Mattsson and Wene 1997; McDonald and Schrattenholzer 2001).

As an illustration of the sensitivity to its defining parameters, Figure 10 presents a hypothetical learning curve with different values of the progress ratio (0.81, 0.85, 0.90) with a common starting point ($SC_0=5000$ US$/kW$, $CC_0 = 0.5$ GW). An additional curve with $pr=0.85$ but a different starting point ($SC_0=5000$ US$/kW$, $CC_0=2$ GW) is also presented in this figure.
The linear form in the logarithmic scale should not drive to the interpretation that ever decreasing costs can be expected. In fact, with each consecutive cumulative capacity doubling, the absolute cost reduction obtained is smaller than in the previous one. In addition, every new capacity doubling is more difficult to obtain over time - this means that eventually a high level of penetration is needed to double the capacity. Therefore, one may notice that as the cumulative capacity grows, the specific cost tends to a “boundary” value, below which it shall not fall. The “floor cost” reflects the cost which the specialists believe to be a pragmatic expectation of the actual costs of a given technology at the time (and capacity installed) it reached its full maturity (Messner 1997). Graphical illustration of the learning curve as presented above (Figure 9) indicates the discussed floor cost level. The floor cost may however be placed below, above or at the point to which the cost curve tends to (as denoted on the mentioned diagram). As the floor cost defines a ‘theoretical’ level, it does not need to be related to the dynamics of the cost curve.

For commercial technologies such as wind turbines, gas turbines or photovoltaics it is usually possible to extract learning curves from historical data. It is, however, very difficult to make estimations of cost trends for technologies which are at the edge of
market introduction such as fuel cell applications in the transport sector. Mostly, only researchers working for private companies have estimates on expected cost reductions due to research and development. These companies and research centres are very reluctant to disclose cost data, since those might allow for drawing conclusions on company strategies. On rare occasions however such data is disclosed. An example of such data for innovative powertrain technologies is displayed in Figure 11 (Cisternino 2002). They correspond to the sum of target cost for each of the fuel cell powertrain components such as reformer, processor and fuel cell stack. The diagram also shows the price evolution of the mass produced internal combustion engine powertrain baseline technology, which price increases from €2,000 in 1995 to €2,500 in 2025. It can be assumed that the cost for this baseline powertrain could be an indicative floor cost for the innovative technologies which undergo the learning-by-doing (endogenous technological learning, ETL) cost reduction. One should therefore understand by this, that the alternative technology, which undergoes "learning" costs reduction, once introduced on the market starts with a price of the powertrain higher then the one of the conventional technologies. As the popularity of the alternative technology increases, its price decreases as function of market penetration. The price of the alternative powertrain reduces from the base price, until it reaches a competitive level to the conventional powertrain (the floor cost of the alternative powertrain). As the definite lower bound of the costs reduction may not be precisely estimated at the current level of knowledge, an assumption is made how far the alternative powertrain cost can be reduced. Therefore, the price of conventional powertrain indicates what could or should be the floor cost for the "learning" technologies, as at this level, if the floor costs is at the level of conventional technologies, it is possible for the "learning" technologies to be competitive in terms of costs. This however does not take into consideration fuel price and customer preferences, which could consider other factors (for example prestige image of new technology or environmental considerations) for deciding which technological option to purchase.
Figure 11 Projected cost reduction for innovative powertrain technologies. Full power fuel cell (FC) and internal combustion engine (ICE) powertrains have 40 kW power. The hybrid fuel cell configuration has 20 kW continuous from the FC and 20 kW peak from a battery pack, and the battery powered has 40 kW peak power with 18 kWh storage capacity (Cisternino 2002).

Figure 12 shows the learning curve (cost vs. cumulative capacity) extracted from the data by Fiat in a log-log presentation in order to determine the progress ratio and the initial investment costs. The initial investment costs are taken from Figure 11 and correspond to the ones at 1,000 produced units per year, which seems to be lowest realistic number for mass production of powertrains. With help of the fit in Figure 12, the initial investment cost for even lower production numbers could be extrapolated.
2.5 Sensitivity analysis assumptions

Design of policies targeted at achieving a specified goal, ought to aim at such elements of the overall system which, when influenced, would produce a favourable change in the system. However, influence of such points should, apart from providing a plausible influence on the system, be cost attractive, technically and administratively feasible. Therefore the analysis of the transportation system ought to be linked with understanding of factors influencing the system. This understanding of the transportation sector may be achieved by using a technique, commonly used in System Dynamics modelling and Policy Analysis, called the “causal diagram analysis” (CDA). The CDA is based on construction of a network of factors influencing the system. Creation of a CDA allows for pin-pointing of factors, which may be influenced. Later translation of CDA into a mathematically expressed model, allows observation of how the analysed system changes depending on the different values of influenced factors. Therefore, the more detailed the description, hence the number of factors, of the system is, the closer to the real-life conditions the modelled system shall be. However, it is advisable to keep in mind that in such complex systems as the transportation sector, the number of factors may be extensive.
Capturing of all the factors may in many cases impose a serious time and computational constraints. In this analysis an attempt has been made to capture the most important factors, from the perspective of technological description of the system. Many factors however have been put aside, and not included in the analysis due to such reasons as limited data availability or significant difficulties to express them in an optimisation modelling framework.

For the purpose of analysing the transportation sector and answering the question of its potential developments, a CDA diagram has been created (Appendix A: Causal diagram for establishing sensitivity analysis factors).

Having created a CDA, the recognised factors were quantified and described in more detail. The table below contains the description of the influencing factors (Table 8).
Table 8 Causal Diagram Analysis – specification of factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Unit</th>
<th>Description / Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price of variable operations & maintenance costs</td>
<td>[US$/v-km]</td>
<td>Cost of expenditures which are directly proportional to the operation of the vehicle (tyres, oil, etc.)</td>
</tr>
<tr>
<td>Price of fixed operations & maintenance costs</td>
<td>[US$/v-km]</td>
<td>Cost of expenditures which are independent of vehicle operation (insurance, etc.)</td>
</tr>
<tr>
<td>Cost of 1km travel non-ETL</td>
<td>[US$/v-km]</td>
<td>Part of the overall cost of travelling related to the non-ETL part of the investment costs</td>
</tr>
<tr>
<td>Cost of 1km travel ETL</td>
<td>[US$/v-km]</td>
<td>Part of the overall cost of travelling related to the ETL part of the investment costs</td>
</tr>
<tr>
<td>Demand section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand for mobility by trains</td>
<td>[G v-km]</td>
<td>Externally derived from Travel time Budget and GDP/Capita, as specified in Chapter 2.3.1</td>
</tr>
<tr>
<td>Demand for mobility by HST</td>
<td>[G v-km]</td>
<td>Externally derived from Travel time Budget and GDP/Capita, as specified in Chapter 2.3.1</td>
</tr>
<tr>
<td>Demand for mobility by personal cars</td>
<td>[G v-km]</td>
<td>Externally derived from Travel time Budget and GDP/Capita, as specified in Chapter 2.3.1</td>
</tr>
<tr>
<td>Demand for mobility by buses</td>
<td>[G v-km]</td>
<td>Externally derived from Travel time Budget and GDP/Capita, as specified in Chapter 2.3.1</td>
</tr>
<tr>
<td>Modal substitution factor</td>
<td>Dimensionless</td>
<td>Externally derived from Travel time Budget and GDP/Capita, as specified in Chapter 2.3.1</td>
</tr>
<tr>
<td>Description of tools and inputs</td>
<td>Chapter 2.3.1</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Demand for freight transportation</td>
<td>[G v-km]</td>
<td>Own estimates, as specified in Chapter 2.3.2</td>
</tr>
</tbody>
</table>

Fuel section

<table>
<thead>
<tr>
<th>Input</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needed fuel price</td>
<td>[US$/GJ]</td>
<td>Derived from the final price of fuel and vehicle efficiency</td>
</tr>
<tr>
<td>Final fuel price</td>
<td>[US$/GJ]</td>
<td>Sum of costs related to generation, transmission and distribution</td>
</tr>
<tr>
<td>Fuel tax</td>
<td>[US$/GJ]</td>
<td>Governmental, region and time specific fuel tax</td>
</tr>
<tr>
<td>Price of fuel generation</td>
<td>[US$/GJ]</td>
<td>Sum of costs related to fuel generation</td>
</tr>
<tr>
<td>Price of fuel transmission</td>
<td>[US$/GJ]</td>
<td>Sum of costs related to fuel transmission</td>
</tr>
<tr>
<td>Price of fuel distribution</td>
<td>[US$/GJ]</td>
<td>Sum of costs related to fuel distribution</td>
</tr>
<tr>
<td>Efficiency of fuel generation</td>
<td>[GJ IN / GJ OUT]</td>
<td>Ration between input and output in terms of energy value flows</td>
</tr>
<tr>
<td>Efficiency of fuel transmission</td>
<td>[GJ IN / GJ OUT]</td>
<td>Ration between input and output in terms of energy value flows</td>
</tr>
<tr>
<td>Efficiency of fuel distribution</td>
<td>[GJ IN / GJ OUT]</td>
<td>Ration between input and output in terms of energy value flows</td>
</tr>
<tr>
<td>Price of feedstock</td>
<td>[US$/GJ]</td>
<td>Region and time specific price of materials (primary fuels) used for generation of fuel</td>
</tr>
<tr>
<td>FIXOM & VAROM</td>
<td>[US$/GJ]</td>
<td>Additional costs related to operation of infrastructure (insurance, staff, rent, etc.)</td>
</tr>
<tr>
<td>Investment costs</td>
<td>[US$/GJ]</td>
<td>Investment capital needed to establish given element of infrastructure</td>
</tr>
<tr>
<td>Price of operations fuel</td>
<td>[US$/GJ]</td>
<td>Fuel used for running stage of the fuel can (f.eg. diesel for trucks moving fuels)</td>
</tr>
</tbody>
</table>
Vehicle-Technology Section

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel efficiency</td>
<td>[v-km/GJ]</td>
<td>Efficiency of the overall vehicle (power train and road efficiency)</td>
</tr>
<tr>
<td>Final price of vehicle</td>
<td>[US$]</td>
<td>Showroom price for the end customer</td>
</tr>
<tr>
<td>Price of non-ETL component</td>
<td>[US$]</td>
<td>Cost of vehicle elements not subject to ETL costs reduction</td>
</tr>
<tr>
<td>Price of ETL component</td>
<td>[US$]</td>
<td>Cost of vehicle elements subject to ETL costs reduction</td>
</tr>
<tr>
<td>Learning rate</td>
<td>[%]</td>
<td></td>
</tr>
<tr>
<td>Size of initial launch</td>
<td>[Number of vehicles]</td>
<td>Number of vehicles entering the market as the first batch</td>
</tr>
</tbody>
</table>
On the basis of the constraints of the modelling framework, results of the initial runs and the availability of data, the following factors have been selected for the sensitivity analysis runs:

- Price of fuel cells
- Learning rates of fuel cells
- Trends in oil price changes
- Dynamics of infrastructure

The ranges for which the mentioned factors were tested have been specified in each of the sections corresponding to specific models used.

2.6 Interpretation of sensitivity analysis runs

The results of the sensitivity analysis have been presented from the perspective of a given technological option (f.e.g. the hydrogen fuel cell vehicle) as a percentage of overall market penetration. The following explanatory diagram and interpretation illustrate the specification (Figure 13).

Figure 13 Explanatory illustration of "Cumulative amount of v-km delivered"
The “Cumulative amount of v-km delivered” is therefore expressed as presented in EQ. 12.

\[
CA_{T1} = \frac{F_{T1}}{F_{T1} + F_{T2}}
\]

\[
CA_{T2} = \frac{F_{T2}}{F_{T1} + F_{T2}}
\]

Where:

CA Cumulative amount of v-km delivered by given technology [%]
T1 “Technology 1” designating index
F Cumulative amount of v-km delivered by given technology [v-km]
3 Does the hydrogen fuelled FC vehicle stand a chance? Analysis conducted with FinalTRA

3.1 Introduction to FinalTRA – H₂FC in “laboratory” market conditions

One of the first questions which needed to be addressed was if the hydrogen fuel cell vehicle, using simple and generalised assumptions, could be a competitor on the transportation market. In order to answer this question a simple optimisation model was created. The model has been named FinalTRA, created during the first period of the research by Socrates Kypreos, and facilitated the first element of the analysis.

3.2 FinalTRA – model description

The non-ETL part of the costs of transportation by various technologies which have been used in the model have been calculated according to the following equation, which has been developed using in-house knowledge (EQ. 13).

\[
C_{\text{NonETL}} = \left(\frac{\text{crf} \times P_{\text{Tech}} + \text{FIXOM}_{\text{Tech}} + \text{VAROM}_{\text{Tech}} + F_{\text{Tech}}}{\text{AM}_{\text{Tech}}} \right) \times 1000
\]

Where:

- \(C_{\text{NonETL}} \): Cost of travelling with a technology which does not undergo learning [$/k v-km]
- \(\text{crf} \): Capital recovery factor: \(\text{crf} = \frac{\text{DR} \times (1 + \text{DR})^{\text{TL}_{\text{Tech}}}}{(1 + \text{DR})^{\text{TL}_{\text{Tech}}} - 1} \), where \(\text{DR} \) is the discount rate of 5%, and \(\text{TL} \) the technical lifetime of a given technology
- \(P_{\text{Tech}} \): Technology specific vehicle purchase price [US$]
- \(\text{AM}_{\text{Tech}} \): Technology specific annual mileage travelled [k v-km]
- \(\text{FIXOM}_{\text{Tech}} \): Technology specific annual fixed costs (insurance, road tax, etc.) [US$/year]
VAROM$_{\text{Tech}}$ Technology specific annual variable maintenance costs associated with travelling of the annual mileage (service repairs, maintenance checks, tires, etc.) [US$/year]

F_{Tech} Technology specific costs of technology specific fuel [US$]

E_{Tech} Technology specific fuel efficiency [%]

The formulation of the learning part of the costs, associated with the reduction of costs as function of cumulative installed capacity has been done using the Mixed Integer Programming (FinalTRA and GMM). The equations below illustrate this procedure (EQ. 14 through EQ. 21) (Barreto 2001), additionally a set of graphs illustrates the approach (Figure 14 and Figure 15).

Figure 14 Representation of costs reduction according to the "learning" approach: specific cost (SC) as function of cumulative capacity (CC)

Figure 15 Representation of costs reduction according to the "learning" approach: cumulative capacity (CC) vs. total cost (TC) with indication of MIP coefficients
The cumulative capacity is expressed as a summation of continuous lambda variables (EQ. 14) (Barreto 2001).

\[
C_{Tech,t}^{CC} = \sum_{i=1}^{N} \lambda_{Tech,i,t}
\]

EQ. 14

The cumulative cost is expressed as a linear combination of segments expressed in terms of the continuous lambda and binary delta variables (EQ. 15 through EQ. 17)(Barreto 2001).

\[
TC_{Tech,t} = \sum_{i=1}^{N} a_{i,Tech} \delta_{Tech,i,t} + \beta_{i,Tech} \lambda_{Tech,i,t}
\]

EQ. 15

With:

\[
\beta_{i,Tech} = \frac{TC_{i,Tech} - TC_{i-1,Tech}}{CC_{i,Tech} - CC_{i-1,Tech}}
\]

EQ. 16

\[
a_{i,Tech} = TC_{i-1,Tech} - \beta_{i,Tech} CC_{i-1,Tech}
\]

EQ. 17

The reader should note that, for each learning technology, one delta variable is defined for each segment of the piecewise learning curve and time period. When this segment of the learning curve becomes active, this delta variable is set to one while the delta variables associated to the other segments are set to zero.

The logical conditions to control the active segment of the cumulative curve are as follows (EQ. 18 and EQ. 19)(Barreto 2001).

\[
\lambda_{Tech,i,t} \geq CC_{i,Tech} \delta_{Tech,i,t}, \quad \lambda_{Tech,i,t} \leq CC_{i-1,Tech} \delta_{Tech,i,t}
\]

EQ. 18
The sum of delta binary variables is forced to one (EQ. 19) (Barreto 2001).

\[\sum_{i=1}^{N} \delta_{\text{Tech}, i, t} = 1 \]

Using the fact that experience must grow or at least remain at the same level, additional constraints are added to the basic formulation, helping to reduce the solution time (EQ. 20) (Barreto 2001).

For \(t=1, \ldots, T, \ te=1, \ldots, TE, i=1, \ldots, N \)

\[\sum_{P=1}^{i} \delta_{\text{Tech}, P, t} \geq \sum_{P=1}^{i} \delta_{\text{Tech}, P, t+1}, \quad \sum_{P=1}^{N} \delta_{\text{Tech}, P, t} \leq \sum_{P=1}^{N} \delta_{\text{Tech}, P, t+1} \]

The investment cost \(I_{\text{Tech}, t} \) associated to the investments in learning technologies is computed as described below (EQ. 21) (Barreto 2001).

\[I_{\text{Tech}, t} = T_{\text{Tech}, t} - T_{\text{Tech}, t-1} \]

Having established the costs of the technologies, their activity is matched with the externally defined demand. The match has been obtained using the following equation (EQ. 22), which has been developed using in-house knowledge.

\[X_{\text{gen}, t} * n_{\text{gen}} \geq X_{\text{car(H2FC)}, t} / n_{\text{car}} \]

\[X_{\text{car}, t} / n_{\text{car}} \geq \text{Demand}_t \]

Where:
- \(X \) Activity of technology
- \(\text{gen} \) Hydrogen generation technology index
- \(\eta \) Efficiency
- \(\text{car} \) Personal vehicle technology index
- \(t \) Time index
- \(\text{Demand} \) Demand for passenger car transportation
Having established the supply/demand balance, in the next step the objective function has been prepared using in-house knowledge, which links the activity of technologies with the appropriate costs and the demand (EQ. 23).

\[
PVC = \sum_{t=2100}^{t=2000} \sum_{\text{Tech}} PV_t \cdot \text{DISPP} \cdot X_{\text{Tech}} \cdot \left(C_{\text{Non-ETL}} + IC_{\text{Tech},t} \right)
\]

Where:

- PVC: Present value of costs, subject to minimisation by optimisation
- PV: Present value factor, where \(PV = \frac{1}{(1+DR)^t} \) and DR being the discount rate
- DISPP: Discounting to present period factor (\(\text{DISPP} = 7.722 \) as \(\sum_{t=2000}^{t=2100} (1+DR)^t \) and DR being the discount rate)
- \(X \): Activity of technology
- \(\text{Tech} \): Technology designating index
- \(C_{\text{Non-ETL}} \): Cost of travelling with a technology which does not undergo learning
- \(IC_{\text{Tech},t} \): Integral of costs related to the learning component of travelling by a specific technology

In further parts of this work, the reader may find the source code of FinalTRA with the mentioned formulation as used in GAMS code (Appendix A: Causal diagram for establishing sensitivity analysis factors).

3.3 FinalTRA - assumptions on data input

Similarly to the models which follow (CUBE and GMM) FinalTRA uses the same input data. Due to the simplicity of the initial modelling framework of FinalTRA the model, on contrary to later models, has many factors which are externally defined. The table below specifies the parameters which are endogenous and exogenous (Table 9).
Table 9: FinalTRA – specification of exogenous and endogenous parameters (U.S. Department of Energy 2003; Energy Information Administration 2004; IFTA 2004)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Endogenous</th>
<th>Exogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>increase of +5%/decade after 2010</td>
</tr>
<tr>
<td>Oil price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other primary fuels</td>
<td>Electricity: 12 US$/GJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural gas: 6 US$/GJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard coal: 2 US$/GJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomass: 4 US$/GJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gasoline: linear relation to price of oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diesel: linear relation to price of oil</td>
<td></td>
</tr>
<tr>
<td>Hydrogen fuel chain</td>
<td>Fixed price for hydrogen at fuelling station</td>
<td></td>
</tr>
<tr>
<td>Other fuel chains</td>
<td>Fuels for transportation provided as fuel price at fuelling station</td>
<td></td>
</tr>
<tr>
<td>Upper limit for vehicle</td>
<td>+10%/year</td>
<td></td>
</tr>
<tr>
<td>penetration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower limit for vehicle</td>
<td>- 10%/year</td>
<td></td>
</tr>
<tr>
<td>penetration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 FinalTRA – sensitivity analysis
In the designing of the "base case", conducted using FinalTRA, an assumption has been made that there shall be no governmental initiative for imposing a CO₂ tax on the emissions coming from utilisation of fuels in the transportation sector. The new,
alternative technologies are developing at quite dynamic learning rates (15% decrease of costs with the doubling of the installed capacity). One may observe that the market structure does not change over time, as the predominant role in the Personal Vehicle sector is still played by the gasoline-fuelled engines with a similar share of the diesel fuelled vehicles as in the year 2000 (Figure 16). However one may notice a shift towards advanced technologies such as the Advanced Gasoline or the gasoline-electric hybrid. By 2050 one may observe first appearance of H2FCs. The learning rate and relatively high to hydrogen prices of conventional fuels allow for successful market penetration of H2FC. By the end of the modelling timeframe (2100) H2FC capture much of the market share.

FinalTRA which operates under numerous generalised assumptions has the “advanced” versions of gasoline and diesel vehicles. Both of the vehicles differ from the “base” cars as defined in the input table (Table 1) in that their fuel efficiency is increased by 10%, while all other parameters are kept at the same values.

![Figure 16](image-url)
FinalTRA: "Base Case" of distribution of market shares for different types of vehicles (hydrogen fuel cell stack price: 600$/kW, hydrogen learning rate: 15%)

Next, a set of factors was chosen for testing using FinalTRA for the potential influence on the market penetration of hydrogen fuel cell vehicles (Table 10).
Table 10 Specification of factors used in the sensitivity analysis (FinalTRA)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2FC-LRN</td>
<td>2.5 ... 20%</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>Constant</td>
</tr>
<tr>
<td>H_2FC-kW</td>
<td>200 ... 1000 $/kW</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>600 $/kW</td>
<td>Constant</td>
</tr>
<tr>
<td>H_2FC-kW Floor</td>
<td>100 $/kW</td>
<td>Constant</td>
</tr>
<tr>
<td>BBL</td>
<td>-5 ... +5% / decade</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>+5% / decade</td>
<td>Constant</td>
</tr>
<tr>
<td>PPL-GR</td>
<td>+2.5 ... 17.5% / year</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>10% / year</td>
<td>Constant</td>
</tr>
<tr>
<td>CCo$_{H2}$FC</td>
<td>75,000...700,000 vehicles</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>75,000 vehicles</td>
<td>Constant</td>
</tr>
</tbody>
</table>

Later, the selected factors were paired (Table 11) and the runs were conducted. The list of abbreviations and a more detailed explanation of the selected factors which were used the reader may find in the earlier parts of this work (Section “List of abbreviations” and Chapter 2.6 Interpretation of sensitivity analysis runs).

Table 11 FinalTRA: Combination of pairs of influential factors used in the sensitivity analysis

<table>
<thead>
<tr>
<th>1st Factor</th>
<th>H$_2$FC-LRN</th>
<th>H$_2$FC-kW</th>
<th>CCo$_{H2}$FC</th>
<th>BBL</th>
<th>PPL-GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$FC-LRN</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$FC-kW</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CCo$_{H2}$FC</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBL</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PPL-GR</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4.1 Price of fuel cells vs. fuel cell learning rates

The first pair of factors which have been considered is composed of the learning rate and the price of the fuel cell used for the fuel cell stack as presented below (Figure 17).

Examination of the graph above indicates that even at relatively high prices of fuel cells (in the range of more than 400 USD/kW14) market penetration of hydrogen fuelled vehicles is possible. However, the learning rate is an equally important factor. At low learning rates (less than 10\%) penetration is possible if fuel cell are at a price of around 400 US$/kW. The results of this analysis suggest that there is a synergetic and complementary effect. The synergy may be observed by considering that if

14 The value of 400 USD/kW is in comparison to current fuel cell prices in the range of one fifth. Keeping in mind that fuel cell vehicles shall not be available in the next 5-6 years, and the current reduction of prices, one may hope that by the time fuel cell vehicles are introduced to the market, the price of the fuel cells may already be in the range as considered in this analysis.
learning rates are high enough (10% or more) and the price of the fuel cell is in the range of 500 US$/kW the combined effect allows for successful market penetration under the assumptions of FinalTRA modelling framework. The complementary effect may be observed, by analysing a case where the initial price of the fuel cell is high (more than 700US$/kW) however for a long term market penetration this can be reduced by presence of high learning rates (18% or more). The results of the analysis suggest that the price of the fuel cells and their potential to reduce cost as function of market penetration are a significant factor influencing the possible market penetration of hydrogen fuel cell vehicles. The availability of market share which can be taken over by the fuel cell vehicles is limited by the externally implied bounds (growth rates). Therefore, in long run as the fuel cell powertrain becomes competitive the market share won by fuel cell vehicles, independent of the economical performance, may not reach a higher level than the technology specific growth rate.

3.4.2 Price of fuel cells vs. change in oil price
The second pair of factors which have been analysed in terms of influence on the penetration of hydrogen fuelled fuel cell vehicles was the price of fuel cells and the of price oil (Figure 18).
Does the hydrogen fuelled FC vehicle stand a chance? Analysis conducted with FinalTRA

Figure 18 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2kW and BBL factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%)

The results of this analysis indicate that, assuming the conditions of FinalTRA, oil price which is already at a high level, may cast a shadow on the competitors of hydrogen vehicles – the conventional cars. This fact has a direct translation to gasoline and diesel prices, which in turn have a major impact on conventional vehicles as well as the more advanced hybrid technologies. However, the simplified approach used in FinalTRA does not consider if an increase in oil price could have an impact on final price of hydrogen, as very likely in the first phase of the hydrogen economy transition, hydrogen could be delivered by trucks. This issue shall be elaborated in further parts of this analysis with CUBE and GMM models.

Nevertheless, keeping in mind general assumptions of FinalTRA one may draw a conclusion that oil prices at the levels as assumed in FinalTRA or higher most probably shall aid in the possible transition to hydrogen based transportation.
3.4.3 Price of fuel cells vs. initial number of vehicles

The following pair which has been tested for the potential influence on the market penetration of fuel cell vehicles was the initial number of vehicles launched to the market and the price of fuel cells (Figure 19). Similarly to the previous parts of the analysis, the results of this analysis point to the fact that the more influential factor is the price of the fuel cells. The initial number of vehicles seems to be influencing only the extent of the penetration, which results in a higher market share by the end of the modelling timeframe. FinalTRA with a time frame of 100 years allows for many potential doublings of the amount of vehicles which enter the market, hence penetration may be observed. The initial number of vehicles serves only as a seed value for the deployment.

Figure 19 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2kW and CCoH2fc factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%)

3.4.4 Learning rates vs. initial number of vehicles

Next, the initial number of vehicles has been paired with learning rates as to determine the potential influence on the market penetration of fuel cell vehicles (Figure 20).
Does the hydrogen fuelled FC vehicle stand a chance? Analysis conducted with FinalTRA

Figure 20 FinalTRA: Graphical illustration of market penetration of H$_2$FC in the context of variable H2FC-LRN and CCoH$_2$FC factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%)

Similarly to the analysis in which the price of fuel cells was paired with the initial number of vehicles launched to the market, also the learning rates seem to display similar influence as the initial price of the fuel cells. Mainly, due to the amount of time which FinalTRA may use for the allocation of fuel cell vehicles, by the end of the time horizon, there has been enough room as to provide doublings which make the fuel cells competitive. The initial number of vehicles launched to the market in combination with high potential to further reduce the price of the fuel cells (learning rates of more than 10%) allows for successful market penetration. In the case when the learning rates provide a very prospective reduction of costs (learning rates of more than 10%) there is enough time in the modelling framework as to achieve a substantial number of doublings and increase the overall market share which could be taken by the fuel cell vehicles.
3.4.5 Learning rates vs. hydrogen pipeline growth rates

Lastly, the learning rates of the fuel cells have been paired with the growth rate at which the hydrogen pipeline network can develop (Figure 21).

Figure 21 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2FC-LRN and PPL-GR factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%)

The results of this analysis suggest that there is an impact of the development rate at which the pipelines are set up. This is due to the fact, that in long range planning once could foresee that the hydrogen infrastructure would be based on pipelines (length around 150-300km) which deliver the hydrogen from the generation plants to fuelling station. In the cases when the fuelling stations are remotely localised, one could foresee delivery by trucks or local generation of hydrogen. However, in the case of large suburban areas citizens might find it troublesome when the city roads would be congested by trucks delivering the fuel. Increased traffic could increase the fuel consumption of delivery trucks, which would result in an increase of price of hydrogen delivered to the end consumer. Therefore, the growth rates of the pipeline infrastructure, although not so relevant in short term, for a long term planning of the
hydrogen based transportation could be a crucial influencing factor (Ogden 1999; Schoenung 2002).

3.5 FinalTRA – conclusions from the analysis

The first part of the analysis, which was aimed at establishing the conditions under which hydrogen based transportation, could be a feasible and cost attractive option was initiated by developing a simple costs optimisation model called FinalTRA. The working area of the model was a single world region made up of USA and Canada, where in the timeframe 2000-2100 the personal passenger car sector was analysed. Most of the assumption in the model, except the endogenous technological learning has been introduced externally – from demands for passenger transportation, vehicle efficiencies to prices of primary and final fuels.

The analysis with FinalTRA was to deliver an answer to the first of the research questions which was "is hydrogen based transportation a feasible option?". Despite many general assumptions and uncertainties in respect to the future potential performance of hydrogen based mobility, the results coming from the runs with FinalTRA have suggested, that indeed hydrogen based transportation is a feasible option. The uncertainties on many parameters have been assessed in FinalTRA by means of extensive sensitivity analysis, in which key factors were varied during the model runs and their potential impact on the future market penetration of hydrogen fuelled fuel cell vehicles was observed. The results of the analysis with FinalTRA have suggest the following conclusions.

Hydrogen based transportation is a feasible option, especially in the light of growing oil prices. The most crucial element which probably shall be decisive for the future of fuel cell vehicles is the price of the fuel cell element. However, provided that the price of fuel cells would be in the range of 600 US$/kW or less there is a high possibility that fuel cells vehicles shall become strong competitors for the conventional technologies like gasoline or diesel cars. The gasoline-electric hybrid vehicles seem to be a competition to the fuel cell cars, however with the rising prices of oil their distant future may be questionable as they too depend on gasoline. Nevertheless, the hybrids may provide a bridge towards the fully mature advanced technologies like the fuel cell or electric vehicles. Another factor which may have a
strong influence on market penetration of future fuel cell cars is the potential to further reduce the price of the fuel cell stack as market penetration progresses. Therefore, the results suggest that a **learning rate in the range of 12% or more** could provide prospective background for successful deployments. Results of the analysis with FinalTRA further suggest that the **initial number of vehicles as well as growing prices of oil do not have a strong influence** on the potential market penetration of fuel cell vehicles. Today’s price of oil has past 50US$/bbl, which already puts the hydrogen based transportation in a favourable position in terms of fuel costs. Any more rises in the oil price may therefore only increase the benefits of hydrogen based mobility.

In respect to the hydrogen infrastructure, the results obtained from the analysis with FinalTRA suggest that the **growth rates of hydrogen pipelines have a large impact only in long term perspective**. This is due to the fact that very likely, at the time when there is little demand for hydrogen, the fuel shall be distributed by trucks or shall be generated locally. Because pipelines are a long term investment, one could foresee their creation after a large demand for hydrogen emerges, as a result of increased number of fuel cell vehicles on the roads.
4 Market penetration of advanced transportation technologies. Analysis conducted with CUBE

4.1 Introduction to CUBE – the complexity of full hydrogen fuel chains

As described in the previous section, the results of the analysis using FinalTRA have showed that hydrogen fuelled fuel cell vehicle could become a market player, under specific conditions. However, the earlier model (FinalTRA) contained a generalised description of one of the crucial elements of the hydrogen based transportation, namely the hydrogen fuel chains. Parts of the analysis conducted using FinalTRA have suggested that for a more precise evaluation of the potential of hydrogen fuelled vehicles to penetrate the transportation market, a more insightful look in the light of detailed description of the hydrogen fuel chains would be required. To address this, a new model based on similar assumption as FinalTRA was created. The expanded framework was fitted into a new model, designed especially for this stage of the analysis called CUBE. CUBE is a non-linear (NLP formulation), optimisation model, which similarly to FinalTRA, focuses on one world region (NAM) in a timeframe from 2000 to 2100. Similarly to FinalTRA, CUBE includes the learning-by-doing cost reduction mechanism (ETL), which has been described in more detail earlier (Chapter 2.4 Learning-by-doing, the costs reduction mechanism). As compared to FinalTRA, CUBE contained the following extensions of the modelling framework:

- full representation the hydrogen prices, expressed as so called “fuel chains”
- application of advanced tools for sensitivity analysis

15 The name “CUBE” originates from the possibility of carrying out sensitivity analysis with the transportation model, and the results are presented in 3D graphs, which have a cubical shape
16 By fuel chains, one should understand a total pathway of the fuel before reaching the final consumer, and these are generation, transmission and final distribution at fuelling stations
17 From the historical perspective how the analysis was conducted, CUBE was the first model which was able to produce extensive sensitivity analysis. At a later stage, a step back was taken in order to apply the developed tools also for the runs with FinalTRA. Later, the tools which came from the research conducted with CUBE were also introduced to the analysis conducted using the GMM model.
4.2 CUBE – model description

The basic principle, which is the backbone for CUBE calculations, is that the computation framework is based on activities of elements of fuel chains and vehicles competing on the transportation market. Each element of the fuel chain is linked with the ‘next-in-line’. This linking includes all step (technology and economy) related characteristics. The principle has been illustrated in a simplified way on the figure below (Figure 22).

Figure 22 Schematic illustration of activity match as used in CUBE

The intermediary steps of generation, transmission, distribution and final activity of vehicles are further lined up, as to specify exact fuel chains (for example: linking of biomass with biomass gasification plant generating hydrogen, transport of hydrogen by trucks, distribution from fuelling stations, and finally, consumption by H2FC, which complete the illustrative fuel chain). A more detailed diagram illustrating all the chains present in CUBE is presented in the Appendix (Appendix B: CUBE and GMM: Hydrogen full fuel chain diagram).

The equations below describe in more detail the relations between activities on intermediary steps (EQ. 24 through EQ. 28). One should keep in mind when
considering the following equations, that general variables have been used. Therefore, activity (denoted by "XE") or cumulative activity (denoted by "YE") of any technology is distinguished by using appropriate indexes. In the modelling framework, however, dependant on the type of technology, the units used are appropriate for the outcome. Hence, the activity of vehicles is given in [G v-km] while for the fuel generation and handling technologies it is expressed in [GJ].

All of the equations which follow, describing the activity links, have been developed according to in-house knowledge (EQ. 24 through EQ. 27).

In the first step, the generation of fuels is linked to their appropriate transmission modes (EQ. 24).

\[X_{E_{\text{gen}},t} \times \eta_{\text{gen},t} \geq X_{E_{\text{tran}},t} \]

Where:
XE Activity of a given technology (for gen, tran and dis [GJ]; for vehicle technologies [G v-km])
gen Generation of fuel index
tran Transmission of fuel index
t Time index
\(\eta \) Input/output process efficiency

Next, the transmission of fuel is linked to their respective distribution (EQ. 25).

\[X_{E_{\text{tran}},t} \times \eta_{\text{tran},t} \geq X_{E_{\text{dis}},t} \]

Where:
XE Activity of a given technology (for gen, tran and dis [GJ]; for vehicle technologies [G v-km])
tran Transmission of fuel index
dis Distribution of fuel index
t Time index
\(\eta \) Input/output process efficiency
After this step, the distribution of fuels is linked with appropriate activity of vehicles (EQ. 26).

\[
XE_{dis,t} \times n_{dis,t} \geq XE_{car,t} \div n_{car,t}
\]

EQ. 26

Where:
- \(XE\) Activity of a given technology (for gen, tran and dis [GJ]; for vehicle technologies [G v-km])
- \(dis\) Distribution of fuel index
- \(t\) Time index
- \(\eta\) Input/output process efficiency
- \(car\) Personal car vehicle index

Then, the activity of vehicles is matched with the overall demand for transportation by personal vehicles (EQ. 27).

\[
\sum_{car,t} XE_{car,t} \geq Demand_t
\]

EQ. 27

Where:
- \(XE\) Activity of a given technology (for gen, tran and dis [GJ]; for vehicle technologies [G v-km])
- \(car\) Personal car vehicle index
- \(t\) Time index
- \(Demand\) demand for activity of vehicles [G v-km]

Finally, the linked activities are associated with respective costs in the objective function, and made subject to optimisation procedure with the aim of finding the least total discounted system cost (EQ. 28). The objective function has been established using in-house knowledge. The optimisation aims at such composition of the market as to obtain overall least cost (with respective constraints like growth and decline rates).
EQ. 28

\[
\text{OBJF} = \text{PV} \times \text{DISCPP} \times \sum_{t} \sum_{\text{tech}} \text{XE}_{\text{tech},t} \times \left(\text{crf} \times \left(\text{inv}_{\text{tech},t} + \text{linv}_{\text{tech},t} \right) \times \left(\frac{\text{YE}_{\text{tech}}}{\text{YE}_{\text{tech},0}} \right)^{\text{lrn}_{\text{tech}}} \right)
\]

\[
+ \text{fixom}_{\text{tech},t}
\]

\[
+ \text{varom}_{\text{tech},t}
\]

\[
+ \text{feedstock}_{\text{gen},t} \times \eta_{\text{gen},t}
\]

\[
+ \text{fuel}_{\text{gen,tran.dis,},t} \times \eta_{\text{gen,tran.dis,},t}
\]

\[
+ \text{fuel}_{\text{convcar,},t} \times \eta_{\text{convcar,},t}
\]

Where:

- **OBJF**: Objective function value
- **PV**: Present value factor: \(\text{pv} = \left(\frac{1}{1 + DR} \right)^{t} \), where \(DR \) is the discount rate
- **DISCPP**: Discounting to present period factor (\(\text{DISPP} = 7.722 \) as \(\text{DISPP} = \sum_{2100}^{2000} (1 + DR)^{t} \) and \(DR \) being the discount rate)
- **t**: Time index
- **t_max**: Last period of the timeframe
- **tech**: General technology designating index (comprised of gen, trans, dis and car)
- **crf**: Capital recovery factor: \(\text{crf} = \frac{\text{DR} \times (1 + DR)^{TI_{\text{tech}}}}{(1 + DR)^{TI_{\text{tech}}}-1} \), where \(DR \) is the discount rate of 5%, and \(TL \) the technical lifetime of a given technology
- **inv**: Technology specific, non-learning investment costs \([$/v$-km] \) or \([$/GJ] \) – dependant on the output
- **linv**: Technology specific, learning investment costs \([$/v$-km] \) or \([$/GJ] \) – dependant on the output
- **YE**: Technology specific cumulative capacity
- **YE_{0}**: Starting (at market launch, or already present on the market) technology specific cumulative capacity
- **lrn**: Learning rate [%]
fixom
Fixed operation and maintenance costs [$/v-km] or [$/GJ] – dependant on the output

varom
Variable operation and maintenance costs [$/v-km] or [$/GJ] – dependant on the output

fuel
Running fuel costs, necessary for operation of a given technology [$/GJ]

feedstock
Input fuel costs, necessary for operation of a given technology [$/GJ]

convcar
Subset of the personal vehicles, which comprises of all vehicles apart from the hydrogen fuel cell personal car

η
Technology specific efficiency

nfeedstock
Feedstock designating index

nfuel
Fuel designating index

While the data for generation, transmission and distribution technologies may be directly introduced as presented earlier (Table 1), the data for vehicles needs to have the annual mileage included. Therefore, the INV and LINV parameters in EQ. 28 for personal vehicles are expressed as described below (EQ. 29).

\[
INV_{\text{car},t} = \frac{\text{purchaseprice}_{\text{car}}}{\text{am}_{\text{car}}} \quad \text{LINV}_{\text{car},t} = \frac{\text{etlcost}_{\text{car}}}{\text{am}_{\text{car}}}
\]

Where

inv
Technology specific, non-learning investment costs [$/v-km] or [$/GJ] – dependant on the output

linv
Technology specific, learning investment costs [$/v-km] or [$/GJ] – dependant on the output

t
Time index

purchaseprice
Purchase price of a vehicle (Table 1)

car
Personal vehicle technology index

am
Annual mileage of a vehicle (17,000 km/year)

etlcost
Cost of the ETL element (Table 1)
In further parts of this work, the reader may find the source code of CUBE with the mentioned formulation as used in GAMS code (Appendix D: CUBE source code).

4.3 CUBE – assumptions on data input

The data, which has been used in analysis with CUBE, is the same as the one used in the analysis conducted with FinalTRA, as well as the analysis which has been conducted with GMM18. The data applied has been presented in the earlier chapters (Chapter 2, Description of tools and inputs) as well as on the following diagrams (Figure 23 and Figure 24).

![Figure 23](image)

Figure 23 Prices of fuels as used in CUBE

18 Chapter 5 - Market penetration of advanced technologies on global scale. Analysis conducted with GMM
74 Market penetration of advanced transportation technologies. Analysis conducted with CUBE

Figure 24 Price of travelling by personal vehicles as used in CUBE; the diagram illustrates the potential reduction in the price of travelling with H2FC, which could be reached if H2FC would penetrate the market. The case of the hydrogen fuel cell vehicle has an illustrative example of the most cost attractive hydrogen cost share – hydrogen generated from natural gas and transported liquefied by trucks. (CUBE Base case: H2FC-kW: 600$/kW; H2FC-LRN: 15%)

4.4 CUBE – sensitivity analysis
The work conducted using the model CUBE, similarly to the analysis conducted with other models, was initiated by developing a “base case” – a scenario where the model is free to allocate technologies according to the least cost optimisation algorithm. The result of this step has been presented below (Figure 25).
In CUBE base case, the beginning of the century is dominated by the gasoline vehicles. Later, as the hybrid technologies have not yet matured enough, the dominating position is played by the diesel vehicles. However, this domination is rapidly ended by mid century when the gasoline-electric hybrids penetrate at maximal rates. However, as the fuel prices grow, so does the competitiveness of the hydrogen fuel cell vehicles. The H2FC’s start to steadily push away the gasoline-electric hybrids and establish their market position quite firmly in the last decade of this century. However, starting from their introduction in 2050, electric vehicles also emerge. Due to the significant market penetration of gasoline-electric hybrids and H2FC’s they keep a marginal share of the market. Nevertheless, by the end of the century, alike the H2FC’s they begin to establish a firm market position. One could stipulate, that if the analysis time frame would be longer, one could observe a competition between the two (H2FC and electric vehicles) in the next century.

Comparing the results of the base case obtained from the analysis with CUBE and the earlier results obtained with the analysis conducted with FinalTRA (Figure 16) one may observe that the market share which in the results from FinalTRA was taken...
by advanced gasoline cars, in the results from CUBE were taken by the diesel and the gasoline-electric hybrid cars. The reason for this lays in the fact that FinalTRA, on contrary to all the other models, did not contain time-dependant fuel efficiency improvement of the vehicles (the time dependant improvement of fuel efficiency was captured by means on introducing an “advanced” version of the gasoline and diesel vehicles which were able to penetrate the market in 2010). In the specification used in CUBE, such time-dependant efficiency improvement is present (all types of vehicles, except for the fuel cells and electric cars). Therefore, by the time the gasoline vehicles (CUBE) could reach a level of time-dependant efficiency as to be competitive against other types of vehicles (diesels and gasoline-electric hybrids), the overall costs optimisation algorithm has found that the more efficient way of allocating the market shares would be to favour diesels and gasoline-electric hybrids, which resulted in the diminishing share of gasoline cars in favour of other types of vehicles. Moreover, one should bear in mind the growing prices of oil, which are unfavourable for the gasoline and diesel vehicles. The oil price to a much lesser extend influences the market penetration of gasoline-electric hybrids, which are far superior in terms of fuel efficiency to the portrayed gasoline and diesel cars. All of the models (FinalTRA, CUBE and GMM) are perfect foresight models; therefore the optimisation algorithm “foressees” all possible end-solutions and picks the one with the lowest overall cost. In the case of the market take-over by gasoline and advanced gasoline vehicles (FinalTRA) and later entrance of gasoline-electric hybrids and fuel cell vehicles, one should bear in mind that the algorithm sees that the hydrogen fuel cell vehicles shall have the lowest cost (once enough doublings according to the ETL costs reduction mechanism occur). Therefore, the main market allocation occurs in the time prior to the market penetration of hydrogen fuel cell vehicles, which penetrate at maximal rates. The algorithm employed in FinalTRA henceforth sees the best allocation by favouring the gasoline and advanced gasoline cars, while in the case of CUBE – the algorithm opts for quench the market penetration of gasoline cars and favouring the diesels and the gasoline-electric hybrids.

As mentioned earlier (Chapter 2.5 Sensitivity analysis assumptions), selected factors have been tested for their influence on the market penetration of the advanced
Market penetration of advanced transportation technologies. Analysis conducted with CUBE vehicles, namely the hydrogen fuel cell vehicles. The modelling framework of CUBE, for the purpose of the sensitivity analysis and later presentation of the results, has been prepared in such way that during a single sensitivity analysis run a pair of factors is varied, as presented below (Table 12). The results of the analysis are therefore presented on three-dimensional graphs, which have allowed for establishing of general trends, and in many cases, also threshold values for selected factors. The analysis, including the variations of pairs, has been conducted maintaining the remaining model parameters constant. These parameters have been specified below (Table 13).

Due to the overwhelming amount of results, obtained in the course of the analysis, the following parts have been structured as follows. In the first part, a detailed presentation of a single sensitivity run has been presented from the perspective of the H2FC. Later, the same case is analysed from the perspective of other vehicles present on the market (gasoline, diesel, gasoline-electric hybrid and electric vehicles). Lastly, a summary of the full set of runs is presented and conclusions from the whole analysis are drawn. In the later parts of this document, a comparison between the results obtained from all the models shall be presented (Chapter 6, Consistency across model results).

<table>
<thead>
<tr>
<th>1st Factor</th>
<th>H2FC-LRN</th>
<th>H2FC-kW</th>
<th>CCoH2FC</th>
<th>BBL</th>
<th>PPL-GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2FC-LRN</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2FC-kW</td>
<td>✓</td>
<td>x</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CCoH2FC</td>
<td>✓</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBL</td>
<td>✓</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>PPL-GR</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Table 13 Specification of factors used in the sensitivity analysis (CUBE)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂FC-LRN</td>
<td>2.5 ... 20%</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>Constant</td>
</tr>
<tr>
<td>H₂FC-kW</td>
<td>200 ... 1000 $/kW</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>600 $/kW</td>
<td>Constant</td>
</tr>
<tr>
<td>H₂FC-kW Floor</td>
<td>100 $/kW</td>
<td>Constant</td>
</tr>
<tr>
<td>BBL</td>
<td>-5 ... +5% / decade</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>+5% / decade</td>
<td>Constant</td>
</tr>
<tr>
<td>PPL-GR</td>
<td>+2.5 ... 17.5% / year</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>10% / year</td>
<td>Constant</td>
</tr>
<tr>
<td>CCo₉H₂FC</td>
<td>75,000...700,000 vehicles</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>75,000 vehicles</td>
<td>Constant</td>
</tr>
</tbody>
</table>

The list of abbreviations and a more detailed explanation of the selected factors which were used the reader may find in the earlier parts of this work (Section "List of abbreviations" and Chapter 2.6 Interpretation of sensitivity analysis runs).

4.4.1 Price of fuel cells vs. fuel cell learning rate (H2FC penetration)

Similarly to the analysis conducted with FinalTRA, the results of runs carried out with CUBE show similar tendencies (Figure 26). There is a strong relationship between the learning rate and the initial price of fuel cells. The results suggest that a higher learning rate allows for market penetration staring from a higher initial cost. A learning rate of 15% allows for successful market deployment when the price of the fuel cells is in the range of 600 US$/kW. In the case the fuel cells are above this value, more dynamic learning rates would be expected in order to provide grounds for market penetration.

In the most favourable conditions when the fuel cell vehicles penetrate the market, by the end of the modelling timeframe they reach an overall market share of slightly more than 3%. This is independent on the degree of favourability of the conditions. This is due to the fact, that in the modelling framework the competing technologies
may penetrate at a given, externally fixed growth rate. In reality however one could expect the growth rate to depend on the market performance.

Figure 26 CUBE: Graphical illustration of market penetration of H2FC in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)

4.4.2 Price of fuel cells vs. fuel cell learning rate (penetration of other technologies)

The availability of market share which can be taken over by hydrogen fuel cell vehicles is limited by the externally implied bounds (growth rates). Therefore, in long run as the fuel cell powertrain becomes competitive the market share won by fuel cell vehicles, independent of the economical performance, may not reach a higher level than the technology specific growth rate. A similar constraint is bounding also the other types of vehicles.

Nevertheless, as long as the competitive technologies do not enter the market (for example in the first periods of the analysis timeframe) the position of most widely

[Diagram description is provided as per the figure 26 caption.]

Learning rate [%]

Cumulative amount of v-km delivered in timeframe 2000-2100 [% of total market share]

H2FC initial cost [$/kW]
spread technologies is dominant. Due to the fact that the advanced technologies have a low initial capacity (75,000 vehicles per region) and there is a limited time to build up capacity, their share in the cumulative amount of vehicle-kilometres is significantly smaller than the ones of technologies which are already present on the market. Nonetheless, the results of the sensitivity analysis indicate conditions (in this case different learning rates and initial prices of fuel cells) at which the advanced technologies are able to push out the technologies already present on the market. In the case of gasoline vehicles (Figure 27) one may observe a similar pattern to the one of H2FC (Figure 26), which shows that the higher the learning rate and the lower the initial price of fuel cells, the more penetration of H2FC vehicle penetration may be observed, hence a decrease in penetration of gasoline vehicles.

Figure 27 CUBE: Graphical illustration of market penetration of gasoline vehicles in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)
The penetration of diesel vehicles (Figure 28) and gasoline-electric hybrids (Figure 29) exhibit similar patterns as the ones described earlier. Provided that the learning rates and initial price of the fuel cells are competitive all three technologies (gasoline, gasoline-electric hybrid and diesel) give room to advanced technology of fuel cells. One should bear in mind that the changes are in the range of 1/10 of a percent; this is due to the fact that in the 70 years (2030-2100) when the fuel cell vehicles are available to penetrate the market, within externally imposed market expansion rates, they can conquer at maximum ~3% of the total market share.

Figure 28 CUBE: Graphical illustration of market penetration of diesel vehicles in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)
Figure 29 CUBE: Graphical illustration of market penetration of gasoline-electric hybrid vehicles in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)

Market positioning of the electric vehicles does not impose any challenges for the penetration of the fuel cell vehicles. On the basis of the technological and economical performance as described earlier (Table 1), the electric vehicles may be considered as the next stage for the development of the transportation sector. As of the time the electric vehicles are introduced (2050) they slowly penetrate the market at an even pace independent on the market performance of other competing technologies (Figure 30). The equally flat plain is the result of the fact that the electric vehicle penetrates at maximum growth rate allowed in the constraints of the modelling framework, while its penetration is undisturbed by the competition independent of market conditions.
Figure 30 CUBE: Graphical illustration of market penetration of electric vehicles in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)

4.5 CUBE – conclusions from the analysis

The results of the analysis conducted with CUBE, a non-linear optimisation algorithm (NLP) model, brought similar conclusions as the ones which came from the earlier analysis with FinalTRA. Within a more detailed, than the one of FinalTRA, modelling framework the results of the analysis conducted with CUBE confirm that hydrogen based transportation system has a significant potential to become a feasible option. Nevertheless, the results show that one of the critical elements might be the price of the fuel cells, which constitute the major element of the overall cost structure of travelling with fuel cell vehicles (Figure 22).

Further the results confirmed the conclusions which have been drawn after the analysis conducted with FinalTRA:

- In order to provide a successful possibility for fuel cell vehicles to penetrate the market, the fuel cell price ought to be in the range of 600 US$/kW by the time the vehicles are introduced to the market.
Moreover, a potential for costs reduction in at the level of 14% would be a benefit which could strengthen the potential for the development of hydrogen based mobility.

The current and future projections of oil prices provide a favourable position for hydrogen as fuel; nevertheless the price of oil is already so high that the further possible growth of prices may even more strengthen the financial benefit of hydrogen over oil-based fuels.

The growth rate, at which the hydrogen pipeline infrastructure may grow has a moderate impact on the development of the hydrogen based mobility.

Due to the fact that with both models (FinalTRA and CUBE) similar runs have been conducted, in the later part an overview and comparison of the results shall be presented (Chapter 6 Consistency across model results).
5 Market penetration of advanced technologies on global scale. Analysis conducted with GMM

The third, and the last, model used in this analysis was GMM. GMM is a global edition of the full energy system model MARKAL. GMM, similarly to the two earlier used models (FinalTRA and CUBE) is a perfect foresight, costs optimisation model which uses a MIP optimization algorithm.

GMM shares the following items with the simplistic models used in the first two parts of the analysis.

- Technological database
- External demand for transportation
- External prices of oil (defined on purpose to reproduce recent price changes)
- Endogenous technological learning for selected technologies

The advantage of GMM modelling framework is that it provides a picture of the whole of the energy system, including industry, households and transportation (Loulou, Goldstein et al. 2004). This allows for better evaluation of policy measures, as GMM is able to picture the overall impact of policies. This allows for observing if any feedback loops exists, once transport specific policies are introduced. Due to the fact that GMM is a more complex model containing much more detail, than the two remaining ones (FinalTRA and CUBE), the modelling timeframe is 50 years (2000-2050). GMM, similarly to other models used in this research, is a perfect foresight model, therefore the calculations algorithm is able to “knows” the potential effects at the end of the timeframe already in the moment when the conditions of the first period are analysed.

5.1 Introduction to GMM – broad scale market entrance of advanced technologies

GMM, an advanced edition of the MARKAL model (Fishbone and Abilock 1981), is equipped with the state of the art endogenous technological learning. The implementation of this feature to GMM has been carried out by Barreto (Barreto 2001) using the Mixed Integer Programming (MIP) technique. MIP approach allows linearization of otherwise non-linear, non-convex problems. A simplified introduction
of ETL using MIP has also been introduced in FinalTRA; therefore the mathematical description used in FinalTRA (as described in Chapter 3.2 FinalTRA - model description) reflects the methodology which has been introduced in GMM.

5.2 GMM - assumptions on data input
The data, which has been used in analysis with GMM, is the same as the one used in the analysis conducted with FinalTRA, as well as the analysis which has been conducted with CUBE. The data applied has been presented in the earlier chapters (Chapter 2, Description of tools and inputs).

5.3 GMM – sensitivity analysis
The starting point of the analysis was the development of the “base case” which was a basic scenario where the model is free to allocate the technology mix according to overall, least-cost optimization algorithm. The base case is therefore free of any external interventions like governmental subsidies or extra taxation. In the base case of GMM, as illustrated below (Figure 31), the first 30 years of this century are primarily dominated by two types of vehicles, namely with gasoline and diesel power trains. Later, as the hybrid technology has matured more, it is the gasoline-electric hybrid that begins to dominate the market. In the first quarter of the century, major fuel cell producers and developers were able to solve technical problems related to the operation of fuel cells (like limited life time of membranes) (Bruijn de 2005), and by the time the fuel cells are ready for preliminary market launch, their price is at the level of 600 US$/kW. Moreover, manufacturers of fuel cell see possibilities for further costs reduction, provided that a significant demand for fuel cells would appear (fuel cell learning rate 15%). Additionally, steadily growing oil prices (oil price reaches an average of around 70 US$/bbl by the end of the modelling timeframe) which are unfavourable for vehicles based on conventional fuels, suggest that a change to an alternative transportation option could be feasible. Despite all of the favourable for hydrogen based mobility conditions, the hydrogen transportation does not lift off. This is mainly due to the fact, that fuel cells are still too expensive for potential customers; additionally the potential customer is faced with a problem of limited access to the fuelling network. The lack of fuelling facilities is in a way a
“chicken&egg” problem. Fully fledged fuelling infrastructure is not constructed, as no noticeable demand exists; while on the other hand, no demand can be triggered as the potential buyers see a significant drawbacks in the possibilities of fuelling their hydrogen fuel cell vehicles. In order to break this "chicken&egg" problem, an external incentive is required. The fuel cell developers and manufacturers have invested significant sums during the first quarter of the century and could be reluctant to continue investments at such pace (mobile fuel cell would remain as back-stop technology, with perspective of launching at later time) while only a marginal share of individual users would be willing to commit themselves to investments into vehicles with majorly limited access to fuelling network. Therefore, the remaining potential body which could provide the initiative for the switch to hydrogen based mobility is the government. The possible directions of governmental support have been presented in the further parts of this document (Chapter 7 Global impacts of advanced transportation technologies).

![Figure 31](image_url)
Figure 31 GMM: "Base Case" of distribution of market shares for different types of vehicles
Similarly to the presentation of the results in the earlier chapters (Chapter 4.4 CUBE – sensitivity analysis) in what follows a single illustrative case of sensitivity analysis has been presented in more detail. Due to the multitude of results obtained, the full range of results acquired has been presented in a concise way and compared with the results obtained from the analysis using the remaining two models in the further parts of this work (Chapter 6 Consistency across model results).

The illustrative example of the exercises carried out using GMM covers a sensitivity analysis which was focused on analysing the potential influence on the future market penetration of hydrogen fuel cell vehicles analysing two factors, namely the change in oil price and the learning rate of the fuel cells. The graphical illustration of the results has been presented below (Figure 32).

![GMM base case](image)

Figure 32 GMM: Graphical illustration of market penetration of H₂FC in the context of variable LRN and BBL factors (with all other factors constant, hydrogen fuel cell floor cost: 100 $/kW)

The results of this part of the analysis suggest that the determining factor, considering the pair learning rate and change in oil price, is the learning rate. Earlier trail runs, which have not been reported here, suggested that the oil price already at a level of more than 30 US$/bbl is high enough to support the possible market penetration of the fuel cell vehicles. Nevertheless, comparing the overall costs of
travelling by different types of vehicles, the investment costs related to the fuel cell vehicle (car body as well as the fuel cell stack) play a dominating role in respect to the competitiveness of the hydrogen car (Figure 24). Reduction of this cost by means of the considered learning rate seems to be crucial. Even if the assumed prices of oil would increase even more, they would improve the market competitiveness of fuel cell vehicles, however most probably would not be able to outbalance the investment costs of the fuel cell cars and the necessary need for further costs reduction of fuel cells. On the other hand, the learning rate of the fuel cells has a significant potential to reduce the learning part of the investment costs and in result allowing fuel cell vehicles to be much more competitive. The results of this analysis, in reference to learning rates, suggest that above 15% there is enough potential to reduce the price of the fuel cell stack to the level where successful market penetration of hydrogen fuelled vehicles could be possible.

5.4 GMM – conclusions from the analysis

The analysis conducted with GMM allowed the examination of the influence of selected factors on possible market penetration of hydrogen fuelled fuel cell vehicles. Despite numerous similarities in the approach which was applied while using the earlier two models, analysis with GMM provided more benefits in terms of the overall view on the possible developments in the transportation sector. The benefits of using GMM over the two previous models (FinalTRA and CUBE) included among others:

- possibility to observe the potential market penetration of fuel cell vehicles in the full frame of the energy system in more than one part of the transportation sector (FinalTRA and CUBE contained only passenger vehicles, while GMM contained also specific data related to heavy road freight and buses as well as generalised data for other, fuel-specific, aggregated modes of transport),

- possibility of including in the analysis cluster learning factors; in GMM the key component used in fuel cell vehicles (fuel cells) as well as batteries used in the hybrid-electric vehicles profited in terms of ETL performance from all technologies which employed the mentioned technological elements (for example, the ‘learning’ of the fuel cells in personal vehicles benefits from
market penetration from other types of vehicles like fuel cell buses, and *vice versa* (Seebregts, Bos et al. 2000),

- possibility of analysing the impact of environmental policies applied not only to the end-of-pipe emissions of pollutants (strictly originating from vehicles themselves), but also emissions originating from other fuel chains (natural gas, coal, biomass, etc.),

- possibility to broaden the geographical area to global scale, allowing the incorporation of region specific data; the two earlier models (FinalTRA and CUBE) focused only on the highly developed region of North America, which due to high GDP/capita may more easily accept more expensive technologies.

The results of the analysis with GMM in principle confirmed the findings from the exercises with two simplified models, suggesting that the potential to further reduce the costs of the fuel cells *(learning rates) as well as the price of fuel cells are the key elements* which may stand in the way of successful market penetration of hydrogen fuel cell vehicles. This part of the analysis, with the comparison to the results coming from the two prior models, has been presented in the following part of this work (Chapter 6 Consistency across model results).

Nevertheless, the broadness of the model in terms of numerous fuel chains and related characteristics has shown that the **possibility of switching to hydrogen based transportation sector is a much more complex issue** than the one pictured in the ‘small’ models. However, this complexity has indicated numerous areas which could be influenced as to promote the switch to hydrogen based mobility. The results of this specific policy analysis have been presented in more detail in the later parts of this work (Chapter 7 Global impacts of advanced transportation technologies).
6 Consistency across model results

The three models (FinalTRA, CUBE and GMM) which have been used in the analysis of the possible development in the transportation sector have been all focused on the same target issue, which was possible market penetration of hydrogen fuel cell vehicles under different market conditions. However, the three models differ in the extend of their complexity, in terms of representation of the transportation sector, time frame as well as the algorithm which was used to perform the calculations. The table below presents major differences across the models (Table 14).

<table>
<thead>
<tr>
<th>Element</th>
<th>FinalTRA</th>
<th>CUBE</th>
<th>GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>MIP</td>
<td>NLP</td>
<td>MIP</td>
</tr>
<tr>
<td>Timeframe</td>
<td>2000-2100</td>
<td>2000-2100</td>
<td>2000-2050</td>
</tr>
<tr>
<td>Single run calculation time</td>
<td><5 sec</td>
<td><5 sec</td>
<td>15-55 min</td>
</tr>
<tr>
<td>Regions</td>
<td>NAM</td>
<td>NAM</td>
<td>NAM, OOECD, ASIA, LAFM, EEFSU</td>
</tr>
<tr>
<td>Energy sectors</td>
<td>Transportation</td>
<td>Transportation</td>
<td>Full energy system</td>
</tr>
<tr>
<td>Transportation modes</td>
<td>Personal cars</td>
<td>Personal cars</td>
<td>Personal cars, Buses, Trucks, other19</td>
</tr>
<tr>
<td>ETL technologies</td>
<td>Fuel cells</td>
<td>Fuel cells</td>
<td>Fuel cells, batteries, other20</td>
</tr>
<tr>
<td>Fuel chains</td>
<td>Hydrogen (aggregated)</td>
<td>Hydrogen (full specification)</td>
<td>All fuels</td>
</tr>
<tr>
<td>Energy prices</td>
<td>External with fuel specific +1...+5%/decade increase</td>
<td>External with fuel specific +1...+5%/decade increase</td>
<td>Internal and external, with global +1 to +5%/decade increase with</td>
</tr>
</tbody>
</table>

19 Aggregated according to fuel type
20 in different energy sectors – like solar panels
Consistency across model results

<table>
<thead>
<tr>
<th>Emissions</th>
<th>region specific initial prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>CO₂</td>
</tr>
<tr>
<td>Environmental pollutants specified for</td>
<td>CO₂, NOx, SOx</td>
</tr>
<tr>
<td>Personal vehicles, aggregated hydrogen fuel chain</td>
<td>Full energy system</td>
</tr>
</tbody>
</table>

Despite the mentioned differences, one could expect that the results ought to allow for drawing conclusions which are consistent across models. One could expect small differences in the results from all three models, nevertheless these should not indicate significant discrepancies, which would question the integrity of the whole multi-step analysis process. To address the issue of the consistency across the results coming from all three models, in the following a comparison between the results of the runs which were carried out for all three models has been presented (Figure 33 through Figure 42).

6.1 Consistency: H2FC-kW vs. H2FC-LRN
The first pair of factors which has been tested for the influence using all three models was the initial price of fuel cells and the fuel cell learning rate (Figure 33 through Figure 35).
Figure 33 Consistency across models (FinalTRA): H2FC-kW vs. H2FC-LRN

Figure 34 Consistency across models (CUBE): H2FC-kW vs. H2FC-LRN
The results of this set of runs suggest, considering results from all three models, that both parameters are equally important for the penetration of fuel cell vehicles. All results suggest that the higher the learning rate and the lower the initial cost of fuel cells, the more prospective is the market penetration. Comparing results from all models one may notice that the results from FinalTRA and CUBE suggest a cumulative market share or around 3-4% (at full market penetration), while in the case of the results from GMM this value is in the range of 1-1.5%. The explanation for this is that GMM uses a shorter timeframe as the remaining models; therefore if fuel cell vehicles are able to penetrate they may not reach such penetration as in the case of FinalTRA or CUBE, because in GMM the fuel cell vehicles have 'only' 20 years for penetration, while in the case of the other models the available time is 70 years. Comparing the results originating from FinalTRA and CUBE, one may notice that the FinalTRA results tend to be more optimistic – a lower learning rate and a higher initial price of fuel cells allows for market penetration. The reason for this is that FinalTRA uses aggregated fuel chains, which implies hydrogen to be slightly cheaper
as in the case of CUBE. Example of such aggregation may be the lack of fuel cost needed for the trucks to deliver hydrogen. This number may be small at first glance, however considering a large scale, long time frame and growing prices of oil, this element is able to influence the overall results.

Moreover, one may observe that despite the fact that all models used the same setting for the base case, in the case of FinalTRA and CUBE, the fuel cells penetrate the market. However, looking at the results from GMM it may be noted that in the base case the fuel cells do not penetrate the market. The reason for this is quite similar to the already mentioned one about the time frame. All of the optimisation models are perfect foresight, therefore the model 'sees' the potential evolution of technologies in a given timeframe. As the price of fuel cells is linked to the ETL costs reduction mechanism, which in turn is dependant on the cumulative number of vehicles present on the market, in the case of the GMM base case the model has calculated that the fuel cell vehicles may not become competitive, under the base case assumptions, within the given timeframe. Therefore, the model 'decides' not to go for the fuel cell vehicle option, as not enough time space is available for fuel cells to develop in terms of ETL cost reduction (not enough cumulative capacity may be build up in the given timeframe with implied growth rates). Nevertheless, the results from the other models suggest that if the timeframe is longer (50 years longer as compared to the timeframe of GMM), the fuel cell vehicles have enough time to accumulate the necessary capacity as to allow promising cost reduction.

The results from GMM do not display such linearity as the results from the remaining models. The reason for this lays in the complexity of the interactions in GMM which portrays the whole of the energy system. Nevertheless, the results from GMM confirm the general tendency that higher learning rates and lower initial cost of fuel cell benefit the market propagation of fuel cell vehicles.

6.2 Consistency: H2FC-LRN vs. CCoH2FC

The next pair of factors which potentially may influence market penetration of fuel cell vehicles was made up from the fuel cell learning rate and the initial number of vehicles launched to the market. The comparison of the results from all three models has been presented on the following diagrams (Figure 36 through Figure 38).
Consistency across model results

Figure 36 Consistency across models (FinalTRA): H2FC-LRN vs. CCoH2fc

Figure 37 Consistency across models (CUBE): H2FC-LRN vs. CCoH2fc
Figure 38 Consistency across models (GMM): H2FC-LRN vs. CCoH2FC

All of the results of this part of the analysis, originating from the three models, point to the same conclusion, which is – the higher the initial number of vehicles launched to the market, the higher is the share they may take over, in the model specific time frame. Similarly to the results of the previous analysis (Chapter 6.1 Consistency: H2FC-kW vs. H2FC-LRN) the results of this one suggest that the picture drawn by FinalTRA is more optimistic than the one coming from CUBE. While the results of FinalTRA indicate that there is no matter how large the starting capacity is a learning rate of more than ~12% allows for full market penetration, the results from CUBE suggest that at higher initial starting capacities (more than 300,000 vehicles) more dynamic learning rates would be required (14% or more). The explanation for this lays in the differences which the models ‘see’ at the end of the time analysis frame, which is directly related to the algorithm used (MIP in the case of FinalTRA and LP in the case of CUBE). The tendency of the results coming from the analysis done with GMM suggest similar conclusions as the ones originating from FinalTRA – a learning rate of more than 15% is able to facilitate such cost reduction, independent on the starting capacity, as to allow successful market penetration of fuel cell vehicles. One should bear in mind, that the results of GMM consider only a starting capacity of
personal vehicles; nevertheless the fuel cells are also used in buses (cluster learning component for both types of vehicles) which also contribute to the starting amount of fuel cells used on the market.

Looking at the results coming from all three models one may notice a consistent conclusion, which is that with the increased (as compared to the base case, which for all models was 75,000 vehicles) starting capacity, a learning rate of 15% may allows for successful market penetration of fuel cell vehicles.

6.3 Consistency: H2FC-kW vs. CCoH2FC

Nextly, the pair made up from the initial cost of fuel cells and the initial number of vehicles launched to the market was considered for consistency across the three models. The results of the runs carried with the three models have been presented below (Figure 39 through Figure 41).

![Figure 39](Consistency across models (FinalTRA): H2FC-kW vs. CCoH2FC)
Consistency across model results 99

Figure 40 Consistency across models (CUBE): H2FC-kW vs. CCoH2FC

Figure 41 Consistency across models (GMM): H2FC-kW vs. CCoH2FC
The results of FinalTRA and CUBE show similarities when considering the price of fuel cells to be lower than 700 US$/kW. Above this threshold, the results of FinalTRA tend to be more optimistic, as compared to the ones from CUBE, suggesting that even at higher prices of fuel cells the penetration is possible. Nevertheless, one should bear the notion in mind while examining these results, that the representation of hydrogen price is limited in FinalTRA as compared to CUBE. This results in the fact, that in FinalTRA the overall cost of travelling with a fuel cell vehicles is slightly lower as the ones in CUBE or GMM.

The results originating from the analysis with GMM show similar trends and conclusions as the results coming from the remaining two models. All the results suggest that the starting capacity has preliminary influence on the final, overall market share which may be captured. This is a result that in all models, the potential to penetrate the market (assuming a technology is competitive) is governed by the initial number of vehicles launched to the market and a growth rate. Therefore, as in all the cases the growth rates were constant, the initial number of vehicles was decisive. Nevertheless, the results suggest that market penetration may be achieved, under the assumption of all other factor constant, if the price of the fuel cells shall be lower than 850 US$/kW and the initial market launch shall be considerable (more than 100,000 vehicles).

6.4 Consistency: H2FC-kW vs. BBL

The last pair of factors, which was tested using all three models, was the pair made up of the initial price of the fuel cells and the possible trends in the price of oil. The results of the runs conducted with FinalTRA, CUBE and GMM have been presented below (Figure 42 through Figure 44).
Consistency across model results

Figure 42 Consistency across models (FinalTRA): H2FC-kW vs. BBL

Figure 43 Consistency across models (CUBE): H2FC-kW vs. BBL
The results of all three models suggest that the oil price is already high, and does not have a significant influence. The results confirmed preliminary trial runs which suggested that a price of over 30 US$/bbl is already giving hydrogen an advantage over oil based fuels. Considering the most preferable scenario for conventional vehicles, the results of the three models suggest that a reduction in the overall price trend of 5%/decade still keeps the oil prices at a considerably high level\(^\text{21}\).

Nevertheless, any increase in the price of oil may only improve the position of hydrogen as fuel. What has not been taken under consideration in this work, mainly due to the limitations of the modelling framework, is the possible response of countries to extreme high prices of oil. In reality if the oil price continues to rise so significantly, one could be expecting in the coming years governmental interventions to promote alternative fuels as to counterbalance the negative impacts of the oil price trends.

\(^{21}\) The price of oil of 55 US$/bbl (2010) with a decrease of 5%/decade results in ~47US$/bbl (2050) and ~38 US$/bbl (2100)
7 Global impacts of advanced transportation technologies

The transportation sector is an all present and vital part of every county’s economy. It serves for the commuting of citizens and moving of goods and at the same time supports the economical development. As the economies develop, there is an observable increase in the demand for transportation – both in the passenger and freight sub-sectors. This increase for transportation demand has many, long term implications such as depletion of primary resources (fuels), on which transportation is very dependant, and an increase in carbon dioxide and local pollutants emissions, originating primarily from road vehicles.

In the past years, the environmental concern for the sustainable development and functioning of the transportation sector has been broadly discussed especially in highly industrialized regions like Europe or North America. The environmental burdens carried by the currently functioning oil-based transportation system, to a significant extent, contribute to the emissions of CO₂ as well as nitrogen and sulphur oxides. These environmental pollutants have a major, negative impact on the well being of societies. As reported by the European Commissions Project ExternE “[…] the vast majority (over 95%) of the total damage costs is due to health impacts, and among health costs the dominant item is reduced life expectancy. Chronic bronchitis is also important, and so are impacts for asthmatics. Cancers have also been quantified, but their contribution to the total cost is very small.” (Rabl and Spadaro 2000). To address this issue, estimates have been prepared on the financial impacts of externalities (negative effects of pollutants emissions). The analysis results suggest that in order to accurately assess the performance of the transportation system, these externalities ought to be accounted for (McCubbin and Delucchi 1999; Rabl and Spadaro 2000; Ogden, Williams et al. 2001).

Therefore, in the light of the constantly growing demand for transportation and its resulting side effects, many claim that by mid century mankind might be looking for other options as to mitigate the negative impacts of the current transportation system. These options might include changing to more efficient, but still petroleum based, technologies or switching to a different, more environmentally friendly fuel. One of such options which is broadly discussed is hydrogen based mobility and hydrogen fuel cell vehicles (Wokaun, Baltensperger et al. 2004).
Today, vehicles based on fuel cells and fuel cells themselves are still in experimental phase, commercially not available, while the hydrogen infrastructure is, in essence, non-existent. Nevertheless, considering the progress which has been achieved in the fuel cell technology during the last 10 years, one could imagine that in the coming 25 years (by the year 2030) it could be possible that the research in fuel cell technology overcomes technical and economical difficulties and allows for preliminary, mass scale, market deployment. Nevertheless, one could foresee that if major technical and economical difficulties are resolved, there still might be a need for additional support as to allow the beginning of the transition to a hydrogen based transportation.

In this chapter, the work has been focused on assessing potential governmental policy instruments which could aid successful market penetration of hydrogen fuel cell vehicles.

7.1 GMM: 2000-2050 Base-case

The starting point of the analysis was the development of the “base case” which was a basic scenario where the model is free to allocate the technology mix according to overall, least-cost optimization algorithm. The base case is therefore free of any external interventions like governmental support or extra fiscal burdens. In the base case of GMM, as illustrated below (Figure 31), the first 30 years of this century are primarily dominated by two types of vehicles, namely the gasoline and diesel engine powered. Later, as the hybrid technology has matured more, it is the gasoline-electric hybrid that begins to dominate the market. In the first quarter of the century, major fuel cell producers and developers were able to solve technical problems related to the operation of fuel cells (like limited life time of membranes), and by the time the fuel cells are ready for preliminary market launch, their price is at the level of 600 US$/kW. Moreover, manufacturers of fuel cell see possibilities for further costs reduction, provided that a significant demand for fuel cells would appear (fuel cell learning rate 15%). Additionally, steadily growing oil prices (oil price reaches an average of around 70 US$/bbl by the end of the modelling timeframe) which are unfavourable for vehicles based on conventional fuels, suggest that a change to an alternative transportation option could be feasible (O'Driscoll 2005). Despite all of the
favourable for hydrogen based mobility conditions, the hydrogen transportation does not lift off. This is mainly due to the fact, that fuel cells are still too expensive for potential customers; additionally the potential customer is faced with a problem of limited access to the fuelling network. The lack of fuelling facilities is in a way a "chicken&egg" problem. Fully fledge fuelling infrastructure is not constructed, as no noticeable demand exists; while on the other hand, no demand can be triggered as the potential buyers see a significant drawbacks in the possibilities of fuelling their hydrogen fuel cell vehicles. In order to break this "chicken&egg" problem, an external incentive is required. The fuel cell developers and manufacturers have invested significant sums during the first quarter of the century and could be reluctant to continue investments at such pace (mobile fuel cell would remain as back-stop technology, with perspective of launching at later time) while only a marginal share of individual users would be willing to commit themselves to investments into vehicles with majorly limited access to fuelling network. Therefore, the remaining potential body which could provide the initiative for the switch to hydrogen based mobility is the government (L-B-Systemtechnik 2002; Litman 2003).

7.2 The catalyst role of the Government
As a result of numerous relations with other sectors of the economy, high dependency on the services provided to other sectors and citizens as well as with impact on the environment, the transportation sector is a very complex system. One of the challenges is to establish such conditions, so that the services provided by the transportation sector may allow for continuity in terms of service delivery (reliability), cost optimal allocation of technology and fuel mix (cost optimal) as well as causing least possible environmental impact (environmental soundness).

One of the numerous issues, which is often discussed, is the security of fuel supplies. In respect to the transportation sector, it is security of deliveries of oil on which a significant part of the transportation system is based. Last years have proven many times that due to the conflicts in the Middle East and natural disasters the continuity of this delivery may be threatened. A possible initiation of the switch towards hydrogen based transportation could allow for limiting the dependency on imported fuels (Grant 2003; Talhelm 2005).
However, dependency on oil deliveries also carries another burden, namely the variability of price (Talhelm 2005). Transportation is an indispensable element of every country's economy; therefore the demand for fuels like gasoline or diesel is very inelastic. Moreover, the fuels may not be easily substituted due to the technologies (types of vehicles) present on the streets. This fact has a strong implication on the economical development. A rise of fuel prices causes an increase in the price of all articles, hence escalates the overall cost of final products for local markets and export.

A possible switch to a hydrogen based transportation system in many ways is able to provide improvements over the current, oil-based transportation system. However, this switch would require long term planning and consistent persuasion of strategies despite possible lack of popularity in the first phases of the introduction (Greene 2004).

The transportation sector, similarly to other areas like the energy sector, has a large inertia which implies significant amount of time and investments to be made before relevant changes may take place. Therefore, changes which could take place as to improve the performance of the transportation sector are usually long term oriented. These changes however, in the first phases of their introduction, may not always be popular as usually they involve extra costs, efforts and changes in the current functioning of the system. Therefore, despite long term potential beneficial effects, such changes are prone to technology lock-out. This mechanism inclines that a given solution may be "locked out" as a result of unfavourable perception at the time it is introduced. An example of such lock-out could be the case of fuel cell vehicles. In the first period of market introduction their high cost discourages potential buyers. This in turns results in lack of sales, which eventually hinders the costs reduction (as function of increasing installed capacity). The potential buyers are usually unable to perceive the long term benefits such as costs reduction as market penetration evolves, improvement of air quality or overall running costs of operating a fuel cell vehicle. Nevertheless, the technology lock-out could be overcome through external support, such as governmental demonstration, R&D and propagation programs.

A possible switch to a hydrogen based transportation sector could well address the mentioned concerns as well as bringing additional benefits.
- Hydrogen could be generated locally (national level), which could allow for independence on oil imports.
- Local (national) generation of hydrogen could serve as a mechanism to promote local entrepreneurs.
- A broad range of primary sources which can be used for generation of hydrogen could allow for securing a wide primary resource mix for the generation of hydrogen.
- Overall cost of hydrogen at a retail station in combination with high efficiency of fuel cell vehicles could provide a lower cost-benefit of hydrogen based transportation over currently functioning oil based transportation.
- Focus on hydrogen based transportation may boost the research&development of technologies contributing to realizing the hydrogen based mobility. This research could result in numerous technological spillover effects.
- Introduction of hydrogen based transportation could allow for limitation of emissions of CO₂ and local pollutants, hence mitigating climate change.

Nevertheless, the mentioned benefits may be reached if long term planning is taken under consideration, despite high initial costs which would be required. A significant part of the funds needed for such action plans could be resourced from complementary policies. For example: on one hand penalization of CO₂ polluters, while on the other hand supporting (with the acquired funds from penalization) zero-emission technologies.

7.3 Environmental burdens of the transportation sector

As the economies develop, so does the demand for transportation and the amounts of emissions coming from road vehicles. Due to the nature of the fuels like gasoline and diesel, the functioning of the oil-based transportation sector is strongly bound to externalities (side effects) originating from the emissions of carbon dioxide and local pollutants. These pollutants carry with them a potential of deteriorating health of humans in terms of increasing acute morbidity, chronic morbidity, mortality and cancer. Therefore, the emissions ought to have a cost associated, related to the damage they impose (Greene and Schafer 2003). Evaluation of the value of
associating costs to the negative effects of air pollution is a complex task as it is necessary to combine the relationships between the epidemiological data, which links to illness, with the results form the economic data, which allows placing monetary value on illness. As the difficulty of this task is extensive, this research has been resourced to the studies which have already been carried out in the field of valuing of externalities (McCubbin and Delucchi 1999). Considering policy measures which aim at improving the functioning and the performance of the transportation system one should bear the facts of externalities in mind.

To address this issue of assigning costs related to the negative impacts of externalities, an analysis was conducted in which the costs of the harmful impacts of CO₂, NOx and SOx emissions coming from the transportation sector were included. As the basis for the analysis the estimated values for external costs of the mentioned pollutants originating from the transportation sector were used. The indicative values which have been elaborated by many unfortunately have two main shortcomings. Firstly, they display quite a broad range of estimated costs (a range between 25-650 US$/ton for CO₂ and in the range of 520 to over 70,000 US$/ton for SOx and NOx emitted; the price ranges for SOx and NOx are separate, however they lay in a similar cost range) and secondly are limited to only few world regions (mainly Western Europe and the State of California in USA) (McCubbin and Delucchi 1999; Ogden, Williams et al. 2001). Therefore, following the available studies targeting the estimation of externalities, to allow for introduction into the GMM modelling framework average values for the externalities associated with selected pollutants have been calculated and scaled to fit the GMM regional division. The average values have been calculated on the basis of the data as presented in the results of the Externe Project (McCubbin and Delucchi 1999; Ogden, Williams et al. 2001). The scaling has been done using a developed methodology of relating the mitigation costs of a given pollutant to GDP_{ppp}/capita index of selected regions (Markandya and Boyd 1999; Hirschberg, Heck et al. 2003; Hischberg, Heck et al. 2003; Rafaj 2005). The mentioned scaling approach as first step assumes of linking between population density of a given region, with the population density of a region which the reference studies cover (f.ex. population density between Western Europe (member of OOECD) and Asia). This scaling link has been presented below (Table 15)(Rafaj 2005).
Table 15 Scaling of externalities – population density factors

<table>
<thead>
<tr>
<th>Determinant for scaling</th>
<th>SOx</th>
<th>NOx</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density factor</td>
<td>High</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0.75</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Next, in order to capture the differences in the regional economic development level and allow for linking to the reference value of externalities for Western Europe, an equation is established (EQ. 30) (Markandya and Boyd 1999; Hirschberg, Heck et al. 2003; Hischberg, Heck et al. 2003; Rafaj 2005) which references the GDP_{ppp}/capita of the analyzed region to the reference region (Western Europe).

\[
\text{EQ. 30}
\]

\[
\text{EXT}_{\text{region, time}} = \text{EXT}_{\text{reference value, Western Europe, 2000}} \times \frac{\text{GDP}_{\text{region, ppp, time}}}{\text{GDP}_{\text{Western Europe, ppp, 2000}}}
\]

Having established the relationship between the population density scaling (Table 15) and a relationship between the economic developments in terms of GDP_{ppp}/capita the scaling factors are calculated (Table 16). Using the IIASA B2 economic development scenario (World Energy Council and International Institute for Applied Systems Analysis (IIASA) 1998) for GDP_{ppp} the externality scaling factors are calculated for the consecutive time periods and regions as used in GMM (Figure 45).
Table 16 Values of external costs and regions specific scaling factors

<table>
<thead>
<tr>
<th>Region</th>
<th>Time period</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
<td>2020</td>
<td>2030</td>
<td>2040</td>
<td>2050</td>
</tr>
<tr>
<td>NAM</td>
<td>2.0</td>
<td>2.2</td>
<td>2.3</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>OECD</td>
<td>1.3</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>EEFSU</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>ASIA</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>LAFM</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Reference values:
- CO₂: 25 US$/ton
- NOₓ: 6,500 US$/ton
- SOₓ: 9,300 US$/ton

The mentioned external costs have been introduced into GMM which provided a scenario in which the negative impacts of emissions originating from the transportation sector are charged as to balance out the effect. The results have been presented below (Figure 46).

22 CO₂ is a global pollutant, hence it does not undergo scaling
The results of the case suggest that if the external costs are internalized, the dominating role in the later part of the analysis timeframe would be played by the gasoline-electric hybrid vehicles. This is due to the fact that gasoline-electric hybrid vehicles, despite being based on gasoline, display much better fuel and environmental performances as compared to gasoline or diesel vehicles. Later, as the fuel cell vehicles develop enough, one can observe the beginning of the switch towards hydrogen in the last decade of the analysis timeframe.

Nevertheless, introduction of measures which would fully cover the estimated damages (Figure 45) caused by the pollution coming from the transportation sector could require very harsh fiscal measures. Therefore, in the later parts of this work less drastic measures have been described, which would allow for improvement of the performance of the transportation sector.

7.4 Selective internalization of external costs

In the light increasing environmental pollution coming from oil-based transportation sector and semi-favourable conditions to initiate the transition to hydrogen based transportation, governments world-wide could start the initiative by internalizing
external costs. The imposed costs apart from bringing the benefit of delivering extra funds to compensate for environmental damage caused by the transportation sector, could also serve as a trigger for the transition to hydrogen based mobility. In the analyzed cases is has been assumed that governments are willing to initiate the switch. Therefore, in this part of the analysis, the governments have two possibilities to penalize for the environmental impacts. Firstly by internalizing the external costs related to the CO₂ emissions coming from generation of fuels as well as emissions coming from vehicle themselves (additional taxation of the fuel) (Azar, Lindgren et al. 2003). Secondly, using the same assumptions as above, but by penalizing the emissions of local pollutants (sulphur and nitrogen oxides). While the first option can be quite easily introduced, the second one is more difficult to capture. This is mainly due to the fact that already in earlier years strict environmental standards on NOx/SOx emissions have been imposed which covered the issue (examples of this can be the European EURO or the American CAFE emissions standards) (U.S. Department of Transportation 2000). Therefore, in this analysis the NOx/SOx internalization was considered as a distant alternative which could serve as an additional measure provided that the effects of all the other policy measures are insufficient (IEA (International Energy Agency) 2002a; IEA (International Energy Agency) 2002b; IEA (International Energy Agency) 2004). The level of NOx/SOx penalization is incomparably higher (per unit of pollutant emitted) than the one of carbon dioxide; this is due to the fact that NOx/SOx emissions are significantly lower in quantity than carbon dioxide emissions (comparison: a conventional family car emits ~220 g CO₂/km travelled, while simultaneously, the same vehicle emits only 0.05 g NOx/ km travelled and no SOx emissions). Therefore, to impose any noticeable effect of NOx/SOx external costs internalization, one should expect penalization of three orders of magnitude higher than as the one for carbon dioxide emissions (Choudhury, Weber et al. 2004). In this part of the analysis a series of runs with variable levels of both internalization pathways was carried out. The results have been presented below (Figure 47).
These tactics, despite not being particularly targeted at the promotion of the hydrogen based mobility, apart from penalizing the emitters also provide the indirect influence of putting fuel cell vehicles in a more favourable light as compared to the conventional, more polluting technologies. Nevertheless, without the environmental initiatives, the level of fuel cell prices, producer’s potential to further reduce their price and steadily growing prices of primary fuels, place the hydrogen based transportation on a break even point. The results of this analysis suggest that even a minor intervention in form of emissions internalization is, apart from internalizing the cost of externalities, also sufficient to trigger the change towards hydrogen based mobility. Nevertheless, one should bear in mind that environmental penalization influences hydrogen based transportation too, as only generation of hydrogen through carbon-free primary sources like electrolysis, with electricity coming from a non-emitting source (for example solar energy or nuclear power plants to mention the two) and transmitting the hydrogen via pipelines does not produce any “penalisable” emissions. In any other case, the price of hydrogen rises as a result of the internalization of external costs. However, despite the additional costs related to externalities, the final price of hydrogen can still be attractive for hydrogen based transportation sector. This is due to the fact that the price of hydrogen rises significantly less than the price of oil-based fuels which emit much more...
“penalisable” emissions. Overall, these tactics result in a general rise of fuel prices, however creating the hydrogen based mobility to be more economically attractive as compared to conventional mobility.

7.5 Governmental support

Despite the growing global environmental concerns, one could imagine a situation where the emissions are controlled, capture, storage and mitigation options are in operation and governments do not wish to further emphasize the path of penalizing polluters. Considering such case, the possibilities of promoting fuel cell vehicles by other means, namely financial benefits, have been considered.

For this policy two strategies were analysed: to directly influence the market price by means of demonstration project support, and another strategy to directly influence the market price of fuel cells by creating favourable conditions.

To begin with, the first strategy of supporting the demonstration projects has been presented, and in the later part the direct marketing influence.

The “demonstration project” strategy assumes promoting fuel cell vehicles by means of pilot, demonstration cars at more favourable prices to the end consumer. In real terms this leads to a preliminary market launch of fuel cell vehicles at prices lower than their actual value. This demonstration project approach allows increasing of the installed capacity (an increase of market popularity) and secondly allows for price reduction. The resulting increase in market penetration and potential for further price reduction may be later utilized by means of the endogenous technological learning, which permits costs reduction as function of increasing cumulative capacity. The demonstration launches could be pictured in the following, illustrative way. At the time the fuel cell vehicles are ready to enter the market, they are still at an uncompetitive level. Therefore, an initiative could be formed to support first 60,000 vehicles. Therefore, the initial 60,000 ‘demonstration’ vehicles may be purchased at a discount of 100US$/kW (giving a benefit of 5,000US$/vehicle). However, as soon as customers are willing to purchase more than the demonstration launch pack, the favorable 100US/kW bonus is raised. The prices of vehicles free of the bonus are at the level the price level of the demonstration with what they were able to ‘learn’
during the preferential deployment less the bonus. The following diagram illustrates this strategy (Figure 48).

![Diagram of SC [US$/kW] vs. Log (CC)](image)

Figure 48 Demonstration projects – graphical illustration of costs reduction

Reading the presented above diagram (Figure 48) and considering the mathematical expression of ETL costs reduction (Chapter 2.4 Learning-by-doing, the costs reduction mechanism) one may read, how the initial cost of the fuel cells change (Table 17).

<table>
<thead>
<tr>
<th>Learning rate</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC₀</td>
<td>600 US$/kW</td>
</tr>
<tr>
<td>CC₀</td>
<td>10,000</td>
</tr>
<tr>
<td>CC²³</td>
<td>None</td>
</tr>
<tr>
<td>SC</td>
<td>600</td>
</tr>
</tbody>
</table>

The illustrative values have been introduced into GMM as to probe what is the potential influence of this strategy. The diagram below illustrates the outcomes of this strategy (Figure 49).

²³ Number of vehicles in the demonstration project
In the direct market influence strategy three tactics were analysed. The proposed tactics are as follows. Firstly to directly support fuel cells, by means of compensating mobile fuel cell vehicle customers with a fixed reimbursement for every kW of fuel cells purchased. This type of tactic has been already applied in many countries over the past years and has proven to be successful – both in terms of effects, as well as in terms customer satisfaction (Katz and Payne 2000; Payne and Katz 2000; Somasundaram 2004).

Secondly, the tactic in which the government by means of support may allow for preferential credits for hydrogen infrastructure buildup projects (lower discount rates for infrastructure) has been considered.

Lastly, a combined strategy with two tactics: internalization of externalities (CO₂, NOx and SOx) and 100,000 demonstration vehicles has been presented.

The selected tactics were entered into GMM and a series of runs was conducted. The results have been presented below (Figure 50 and Figure 51).
The hydrogen based transportation, despite growing prices of oil and preliminary stage of competitiveness of the fuel cell technology, is on the break-even point. The results of the first analysis, in which the potential influence of direct governmental support to fuel cells was evaluated, suggest that even with minor governmental support, the break-even point can be surmounted. This is due to the fact that the most decisive element of the fuel cell technology, and the hydrogen based mobility, is the price of the fuel cells.

Next, the potential for the impact of preferential credits for projects which result in development of hydrogen infrastructure (fuelling stations, pipelines, local and central generation plants, etc.) has been considered. The results of the analysis have been presented below (Figure 51).
The results of the analysis suggest that the average discount rates which have been assumed for the runs with GMM (5%) keep the hydrogen based mobility on a go/no-go break-even point. Outcomes of the sensitivity runs suggest that there is a potential of promoting hydrogen based mobility, using the tactic of preferential credits for hydrogen infrastructure projects (Ogden 1999). The existence of this threshold is related to the nature of GMM. GMM is a perfect foresight model, which in many cases uses an “all or nothing approach”, moreover the algorithm used in GMM is very sensitive to small changes in parameters, which result in thresholds (which is the case in this example). Observing the presented graph (Figure 51) one may notice different levels of overall market share which is captured by fuel cell vehicles (~1.1% in case of a 4.5% discount rate and over 1.4% in the case of a 2% discount rate). The reason for this outcome is that the altered discount rates allow technologies (in this case hydrogen infrastructure) to become competitive, however at different time periods. In case the discount rates are low, hydrogen infrastructure becomes cheaper ‘earlier’ thus giving a green light to the market launch of vehicles. This
results in more vehicles present on the market, hence a larger market share during the analyzed period of time. On the other hand, if the discount rates would be higher than the base case assumption (5%), hydrogen delivered is more expensive, hence eliminating the possibility of successful market penetration by fuel cell vehicles.

Lastly, on the basis of the findings from the earlier parts of this analysis, a case in which two tactics are simultaneously introduced was considered. The first tactic selected was to charge the external costs (NOx, SOx and CO2) and second tactic was the introduction of the 100,000 demonstration vehicles promotion project. The graphical illustration of results of this part of the analysis has been presented below (Figure 52).

![Figure 52](image)

Figure 52 Combined effect of two tactics - internalization of external costs and the 100,000 demonstration vehicles project

The results of this part of the analysis display similarities with the case in which only the externalities were accounted for. As a result of the combination of the two mentioned tactics technologies which show higher emission rates (lower environmental performance) are penalized and hydrogen fuel cell vehicles are given
an opportunity of more favourable market conditions as they display much sounder environmental performance. Moreover, the demonstration projects of 100,000 supported vehicles allow for a reduction of fuel cell prices, which in turn could provide promising conditions for a broad scale market penetration of fuel cell vehicles.

One should bear in mind that the mentioned tactics of fuel cell support in terms of cash-back promotions may be questioned from the perspective of who should actually cover the difference between the favourable and actual market price. Therefore, the presented results ought to be taken more as a result of sensitivity analysis, rather than real life policy measures.

7.6 Conclusions from the analysis of global impacts, conducted with GMM

In this part of the research the results of analysis which has been aimed at establishing potential ways for supporting a transition towards hydrogen based transportation has been presented. It may be stated that a transition to a more sustainable fuel is quite likely to happen as currently the transportation system carries numerous burdens with it – such as steadily growing prices of fuels and increasing emissions of CO₂ and local pollutants.

The results of this analysis suggest, assuming the current state of the transportation sector, trends in oil prices, ambitions of fuel cell manufactures and numerous hydrogen fuel cell demonstration projects, that the transition to hydrogen based mobility could be the choice for the future. However, the results point to the fact that the transition might need additional measures for initiation. This is due to the fact, that hydrogen based mobility is a "chicken&egg" problem. With no demand for hydrogen, there are no incentives to create the necessary infrastructure, while with no infrastructure available – there is no apparent demand for hydrogen. However, this loop could be broken. It is quite likely that the governments may have a significant influence in this matter. Using various fiscal instruments, the governments could be able to influence the improvement of climate protection and simultaneously stimulate the beginning of a transition towards hydrogen based mobility.
In this part of the research few of such instruments, which are targeted at improving the negative impacts and characteristics of oil-based transportation and at the same time promoting hydrogen fuel cell vehicles, have been presented. Firstly analyzed the potential influence of internalization of external costs related to the environmental emissions has been considered. The results of this part of the analysis suggest that, assuming long term strategic planning, penalization of emitters of carbon dioxide and/or local pollutants such as nitrogen and sulphur oxides may serve as a tool to initiate a switch towards hydrogen and provide the possibility of charging the polluters for the negative impacts of externalities. Penalisation of emitters of environmental pollutants punishes both the conventional fuels (like gasoline and diesel) as well as hydrogen. However in the case of hydrogen this penalization is less apparent. This is due to two facts. Firstly, production of gasoline and diesel is, in terms of total fuel chains performance, more polluting than comparable fuel chains for hydrogen. Secondly, the efficiency of vehicles using conventional fuels is significantly lower than the one of fuel cell vehicles. These two facts result in a combined effect – conventional vehicles consume more fuel, which additionally is fiscally burdened with external costs (overall cost higher than hydrogen), hence their economic performance is considerable reduced as compared to the case with no environmental “taxation”. The results suggest that CO₂ penalization of already 50 US$/ton CO₂ would shift the overall benefit towards hydrogen based mobility. In respect to local pollutants penalization, current trends suggest that this issue is addressed by means of emissions standards. Therefore, in the analysis this potential policy instrument has been approached in a methodological way. Nevertheless this policy instrument could be an option which could bring a ‘double’ benefit. Firstly, by redeeming the costs of externalities from the polluters; secondly, by creating new fuel price structure which could support the transition to hydrogen based mobility. Keeping in mind however that the mentioned pollutant emissions are regulated by means of standards, one ought to consider this policy tool to be applied provided other measures would not be sufficient.

Next, a case in which the policy instruments would be targeted specifically at the costs related with the transportation sector has been elaborated. Following known examples of direct support to new, emerging technologies, the extent of potential
influence of direct support to fuel cells in terms of "cash-back" promotions has been researched. As seen in Figure 24, the significant share of the overall costs of travelling using hydrogen fuel cell vehicles are the investment costs related to the stack. However, there is a large potential to reduce this cost, provided that fuel cells would broadly enter the market (as function of ETL – costs reduction related to an increase of market penetration). Nevertheless, the fuel cell vehicles, on the basis of the assumptions used in GMM, are on the verge of being cost competitive. Therefore, an initiative is needed to promote this change. Aiming at the most expensive element of the cost structure (costs related to the fuel cell stack) could result in a successful transition towards hydrogen based mobility. The results of this analysis suggest that a support of 50US$/kW or more would be fully sufficient to provide a successful outcome (50 US$/kW would provide the customer with some 2,500 US$ of cash return upon a purchase of a vehicle with a 50kW stack).

A tactic, which is primarily aimed at promoting fuel cell vehicles has been also analysed. The tactic assumes that a certain number of initial vehicles is sold to final consumers at preferential prices. However, as soon as the preferential quota is exhausted, the consumers are resourced to purchases at market price. This tactic has shown that during the demonstration phase of hydrogen switch, the demo-vehicles contribute to the increased popularity of vehicles (increased cumulative capacity) as well as allow for costs reduction by means of ETL.

Next, a tactic, which aims at promoting the hydrogen infrastructure has been analysed. The results of the analysis suggest that in the first period when the fuel cell vehicles start to penetrate the market, because of the small scale, hydrogen may be delivered by trucks or generated locally. However, at later time, when a substantial demand for hydrogen exists, a stable delivery of hydrogen could be supported by a pipeline infrastructure and large scale hydrogen generation plants. Allowing preferential credits for hydrogen pipeline projects may give an initiative to develop a fully fledged hydrogen economy. In this analysis a constant discount rate has been assumed, however in reality one could rather opt for much higher reductions (discount rates at a level of 2% or even lower) in the first periods when the infrastructure is created, and gradually bringing the interest rates back to the
base level of 5% by the time the hydrogen based mobility gained a larger market share.

Lastly, combination of tactics was analysed, which joins two tactics: internalization of external costs and 100,000 demonstration vehicles. This combined tactic has shown to have a double benefit. Firstly, it is possible to redeem the costs to cover the environmental burdens of externalities, and secondly to promote the switch towards hydrogen based transportation.
8 Conclusions

8.1 Modelling the transportation sector

The transportation sector is an inseparable element of every economy. Unfortunately, due to technological developments and specific advantages of the gasoline and diesel engines, for the last century the transportation sector has been bound to oil as primary source for gasoline and diesel fuels. Despite providing beneficial services contributing to the development of economies, the transportation sector carries also numerous burdens such as reliability on oil deliveries as well as emission of pollutants which result from combustion of both of the mentioned fuels in conventional engines. The inelasticity of the demand for transportation, dependency on oil and its rising prices over the past years, have increased the cost which needs to be paid in order for the transportation sector to continue its operation. In the light of the environmental burdens, market inelasticity, dependency on oil deliveries as well as the unfavourable rises in the oil price, many claim that if this situation progresses mankind might be searching for an alternative source of fuel for the transportation sector. Out of numerous possible options which are discussed, hydrogen is considered as a prospective candidate.

Hydrogen as fuel when used in vehicles with a fuel cell/electric motor combination does not emit any pollutants. Moreover, hydrogen may be generated from several primary energy sources such as natural gas, coal, biomass or high tech solutions such as solar or nuclear powered electrolysis, which may be set up locally. However, despite many benefits, the prospects for hydrogen based mobility in the nearest future are questionable. This is mainly due to the facts that today there is no infrastructure which could deliver hydrogen to end users, while the key technological component (fuel cells) is still in the development phase. Nevertheless, considering the developments which have been achieved over the past decades in the field of fuel cells, one could picture that around 2030 a switch to hydrogen based transportation could be initiated.

This work has been aimed at addressing the issue of the conditions which would need to be fulfilled in order to provide the grounds for a transition to hydrogen based transportation sector. Large scale introduction of hydrogen to the market could inflict numerous changes in the whole of the energy sector, therefore as to allow grasping
of the issue, the analysis for the prospects of hydrogen based transportation has been limited to road vehicles.

As the complexity of the issue is quite significant, the presented analysis has been carried out step wise – from generalised assumptions and their testing to detailed research which employed indications from prior, general steps. The analysis has been primarily done using various (in terms of optimisation algorithm, complexity and detail level of the transportation sector description) optimisation models.

The first step in the presented analysis was resourced to a fairly crude model FinalTRA, which was designed as to provide the answer to the question if hydrogen based transportation is a feasible option at all. FinalTRA, a MIP (Mixed Integer Programming) optimisation algorithm model, was focused on the personal vehicle sub-sector in one world region (North America) in the time frame 2000-2100. The pictured sub-sector of the transportation system was represented by 7 types of vehicles (conventional gasoline and diesel, advanced gasoline and diesel, gasoline-electric hybrid, hydrogen fuel cell and electric) which competed in the arena of personal cars. Prices of fuels have been externally introduced, allowing the model for a pure optimisation allocation of the technology mix. The results, despite using generalised assumptions and descriptions, have suggested that indeed, hydrogen based transportation is a feasible option, however under specific conditions. The results suggested that considering the cost structure of transportation, for the advanced technologies the highest significance have the costs directly related to vehicle purchase, while for the conventional technologies it is the price of fuels. For the case of hydrogen fuel cell vehicles the major constituent of the vehicle price (investment cost) is the fuel cell stack, made up of single fuel cell elements. In view of today’s prices of fuel cells being in the range of 2,000 US$/kW or more, the price of a vehicle equipped with a 50kW stack would sore above 100,000 US$, which most probably would be restrictive for the majority of potential customers. However, due to progress, this price may be reduced firstly by RD&D (research, development and demonstration), and secondly once the fuel cell vehicles are ready for market deployment by means of costs reduction mechanisms (illustrated in FinalTRA by
means of ETL – Endogenous Technological Learning). The results of the analysis conducted with FinalTRA, suggested that if the price of the fuel cells, by the time they are ready for market penetration (assumed in the year 2030), shall be at the level of 600US$/kW or lower, and additionally further potential for price reduction shall exists (learning rate of 12% or more) the hydrogen based transportation system may quite likely be facing very favourable conditions for a widespread. The results suggested that the soaring prices of oil are at the level, which gives hydrogen as fuel, a significant benefit over gasoline or diesel. Therefore, any increases or stable trends in the current price of oil most likely shall be beneficial for the prospects of hydrogen as fuel.

The promising results which originated form the analysis conducted with FinalTRA, gave the signal to further elaborate the issue of the potential for the development of hydrogen based transportation sector. Therefore, the modelling framework was expanded using another optimisation model called CUBE. CUBE, on contrary to FinalTRA, employed a different optimisation algorithm (NLP – Non-Linear Programming). Similarly to FinalTRA, the new model was restricted to the same world region (North America), transportation sub-sector (personal vehicles) and timeframe (2000-2100). However, the hydrogen fuel chains were expanded as to include financial and technological details of each of the fuel supply steps. This resulted in a full representation of the fuel chains – from generation, transmission, distribution to final utilisation in personal vehicles. Each of the steps was characterised in terms of technological and financial aspects. Moreover, the technologies which were used in CUBE used a time dependant improvement of fuel efficiency (time dependant fuel improvement reduced the number of vehicles portrayed from 7 to 5, eliminating the advanced versions of gasoline and diesel cars), which in a simplified way captured the developments in the powertrain research. The results from the analysis conducted with CUBE also proved optimistic and confirmed the findings of the earlier analysis with FinalTRA. However, the increase in the complexity of representation of the fuel side, resulted in a slightly less optimistic results as the ones portrayed by FinalTRA. This is due to the fact that FinalTRA employed a generalised end price of hydrogen for the consumer, while the
representation in CUBE allowed for much more scrupulous characterisation. The extended representation in CUBE included numerous factors which were omitted earlier. Few of such factors among other were: costs of the fuel needed to deliver hydrogen by trucks in the beginning of the 'hydrogen era' when no pipeline infrastructure is available or limitation on the pipeline network developments while the penetration of fuel cell vehicles is still very limited.

The results coming from the analysis carried out with CUBE suggested that the price of fuel cells would need to be at the level of 600 US$/kW with a further potential to reduce this costs (learning rate of 14% or more). Furthermore, the influence of the pipeline infrastructure may be negligible in the first periods when the fuel cells are only in the early stage of market penetration, however once a larger share of market is captured by fuel cell vehicles the infrastructure may prove to be a bottleneck.

Next, the hydrogen transportation sector was transferred to a full scale energy model. The reason for this transfer laid in the necessity of analysing the case when the fuel cells are not competitive enough, hence needing additional, 3rd party support. This analysis could only be carried out employing a full energy system portraying model, as implementation of ‘hydrogen promoting’ strategies could influence other sectors of the energy system. The outcomes of such influences could not have been explored using simplified models (FinalTRA and CUBE) as both of them were restricted only to the transportation sector. The model chosen for this part of the analysis was called GMM and was a global version of the MARKAL model. GMM used the same optimisation algorithm as FinalTRA (MIP). As compared to the other two models GMM differed in many respects – the model portrayed whole of the energy system (heat and electricity production chains, commercial and domestic utilisation of heat and electricity and also the newly specified transportation sector) on a global scale (5 world regions) in a timeframe 2000-2050. Similarly to other models, GMM was equipped with state of the art formulation of the endogenised technological learning (costs reduction mechanism).

Analysis with GMM was made up of two steps. The first one tested the feasibility of hydrogen transportation sector similarly to the two prior models. The second step
tested the supporting policies for the influence, in the case the hydrogen transportation would be on a non-prevailing break-even point.

The results of the first step of the analysis suggested that in the timeframe 2000-2050 the possibility of hydrogen based transportation in becoming a reality could be quite bleak. This finding was contrary to the prior findings originating from FinalTRA and CUBE. The reason for the lack of market penetration in the analysis carried out using GMM, originated from the fact that GMM (similarly to FinalTRA and CUBE) is a perfect foresight model. Therefore, already at the beginning of the calculations the model 'sees' all potential development paths of each individual technology. In the case of fuel cell vehicles, the main costly element is the fuel cell stack. This cost may be reduced, however only in combination with extensive market penetration, which would fulfil the ETL costs reduction formulation. In the case of fuel cells, GMM runs showed that the fuel cells may not reach a competitive level as not enough capacity may be build-up in the analysis timeframe (50 years as compared 100 for the other two models). Nevertheless, further analysis of the results coming from GMM suggested that the fuel cell vehicles are on a break-even point. Therefore, the second step of the analysis was carried out, which aimed at researching the possibilities of overcoming this threshold.

8.2 Long term analysis – future prospects of hydrogen based transportation sector

The results of all the parts of the analysis have show that indeed, hydrogen based transportation is a feasible option for the future. Hydrogen based transportation sector may prove in many ways superior to the currently functioning one which is based on oil. Among the numerous advantages one could name lower pollution (hydrogen is a clean fuel) and lack of dependency on oil mining countries. Nevertheless, before hydrogen lifts off, there is a strong need for improvement. The long-term analysis, which dealt with many uncertainties, was conducted using FinalTRA and CUBE. To address the uncertainties, the analysis was made up of numerous sensitivity runs which tested different levels of potentially influencing factors on the possible market penetration of hydrogen fuel cell vehicles. The factors which were tested comprised of the fuel cell prices (in the range from 200 to 1,000
US$/kW), their learning rates (from 2 to 20%), initial number of vehicles launched to the market (from 75,000 to 700,000 vehicles) and the possible trends of oil prices after the year 2010 (from a decrease of 5%/decade to an increase of 5%/decade). Out of all factors tested, the price of the fuel cells and their learning rates have proved to be of most significance. Based on the results of the analysis carried out, the improvement is especially important in the case of the cost of fuel cells which make the core of the fuel cell vehicle. The results of the analysis carried out suggest that a price of 600 US/kW and further potential to reduce the price (learning rates of more than 14%) would put the hydrogen mobility on the right track.

The transportation sector, similarly to other large systems like the heating or electricity systems, is burdened with large inertia. This means that the results of changes executed today are observable after a long period of time. Moreover, due to the scale of the transportation sector such changes require consequence in execution as well as substantial financial support.

The results of the analysis have suggested that hydrogen based mobility may become a reality, however changes would need to take place. Such changes may include extensive research in fuel cells and promotion of the findings. This approach is already valid, as even today one can be its witness. Fuel cell manufacturers (like Ballard) are already reducing the prices of fuel cells, while large scale vehicle manufacturers (like Daimler-Chrysler or BMW) and governments (like European Commission) support the research, development and deployment of pilot projects (like 'CUTE' - the hydrogen bus demonstration project).

8.3 Hydrogen based transportation by mid century?

The early years of initiating the switch towards hydrogen based transportation may prove to be difficult in terms of finances. One may presume that in the first periods, when the fuel cell vehicles are still a novelty, market penetration may be hindered by the financial aspects. However, results of the analysis presented here suggest that there are numerous policy options which could assist in these difficult periods.

The short term analysis which was carried out using GMM, similarly to the runs with FinalITRA and CUBE, dealt with many uncertainties. Therefore, the short-term response of the transportation sector was tested for the potential influence of the
same list of factors which were tested with the two prior models as well as additional ones. The list of potentially influencing factors was expanded by tests of internalisation of CO₂ emissions (from 15 to 250 US$/ton CO₂), internalisation of local pollutants as NOx and SOx (from 1,000 to 10,000 US$/ton of pollutant emitted), introduction of demonstration projects (from 12,500 to 150,000 promotional vehicles), subsidies for purchase of fuel cells in form of ‘cash-back promotions’ (from 10 to 100 US$/kW) as well as preferential credits for the build-up of hydrogen infrastructure (discount rates from 2 to 7.5%). The factors which were tested could serve as potential mechanisms for policy options.

Some of the mentioned policy instruments despite not being directly targeted at the hydrogen switch, may show to be quite effective in promoting hydrogen fuelled vehicles. Example of such policy measure may be the internalisation of external costs related to the negative impacts of air pollution originating from the combustions of gasoline and diesel. Policies targeted at redeeming the expenses resulting from endangering human life penalise technological options which are environmentally unfriendly, in the result putting the ‘friendly’ ones in a prospectus position. Such policy measures as internalisation of CO₂, NOx or SOx emissions may therefore bring a double benefit. Firstly by recovering the financial means for the mitigation of negative impacts of externalities, and secondly by promoting the hydrogen based mobility as a more sound option.

Supporting measures in the field or demonstration and deployment may equally bring benefits. Demonstration vehicles on one hand present the new technology to a broader audience while on the other trigger the interest in the new options. Moreover, this measure allows for building up the capacity of fuel cell vehicles (initial, forced market penetration), which on the long run could allow for costs reduction as function of the ETL costs reduction mechanism. An additional measure could be attractive crediting options for fuel cell vehicles. Such combination could attract potential clients. Examples of such joined policies could have been observed in the past in the cases of solar panels as well as the gasoline-electric hybrid vehicles (Hochschild and Hochschild 2002; Solarcentury 2003; Clayton 2005; ACEEE 2006; Energy Saving Trust 2006).
At later periods, when the fuel cell vehicles become more popular and significant demand may be observed, the results of the analysis suggest that stress ought to be placed on the development of a reliable, high thru-output network supplying hydrogen. This may be achieved by developing a pipeline infrastructure. The results of the analysis suggest that despite immediate absence of the necessity in the early phases of transition to hydrogen based transportation, at later stages lack of such infrastructure could be a possible bottleneck for further developments. To overcome this difficulty an effective policy measure could be introduced which would provide preferential crediting options for projects which contribute to the creation of such network. Results of the analysis suggest that interest rates of 3.5% could stimulate the dynamics of pipeline infrastructure developments.

8.4 Possible further steps
The results presented in this work have showed few guidelines on how the switch to hydrogen based mobility could be achieved. However, the results and tools applied here in many respects were generalised, based on assumptions and limited. As the research process indicated, the more detailed description of the system, the more precise advice may be presented. Significant developments may be observed across the presented research, which started off with very general assumption and their representation, and later over numerous sub-steps have been broadened and refined. Still, much improvement may be done as to specify the picture of the transportation sector with the optimisation modelling framework. Expansion of the geographical regions and the region-specific database could allow observing in more detail the potential developments of the system. Furthermore, a more regional description could provide information on region specific policy measures which could be employed. One of major limitations of the GMM modelling framework is the limited timeframe. As of the time the research was conducted it was not possible to expand neither the timeframe nor the technological database of GMM. This was primarily due to the limitations of data availability which would need to be collected, and secondly to the data reliability. Analysis of such complex systems as the transportation sector, due to its inertia, may be better performed if a longer
timeframes and extensive databases are available to test the potential changes in the system.

Development of new technologies is to a significant extent related to the research and development, which is one of the shortcomings of the presented modelling framework. Neither of the models contained a module which would allow for assessing the potential of R&D expenditures to promote fuel cells. However, this limitation is not only the problem of the presented here modelling framework, as a very limited number of studies attempts to deal with the issue of R&D in the frame of optimisation models. One of such pioneers could be the study conducted by Kuvoritakis, which employs an extended formulation of ETL (the 2 Factor Learning approach) (Kouvaritakis N., Soria A. et al. 2000). However the mentioned study contains many issues which are questionable from the point of translating the real-life dynamics into the optimisation framework. Development of an effective and realistic translation of the R&D on the development of existing and new technologies could be a very powerful upgrade to the optimisation modelling framework.

The optimisation framework however, has one key element which may be questioned by many. Optimisation models present the 'plausible' scenario, however they do not display pathways on how this may be achieved. Therefore, a potential niche which could be to explore the combination of an analysis which in the first step would produce this plausible scenario (application of optimisation models) and later defining the pathways how this scenario could be achieved (this could be done using f.e.g. Systems Dynamics modelling framework).
9 References

Barreto, L. (2001) Technological Learning In Energy Optimisation Models And Deployment Of Emerging Technologies. PhD dissertation, DISS. ETH Nr 14151; Department of Mechanical Engineering, Swiss Federal Institute of Technology Zurich (Zurich (Switzerland))

Barreto, L. and S. Kypreos (1999) Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype (PSI Bericht Nr. 99-08), Paul Scherrer Institute, Villigen, Switzerland

Fergusson, M. (2001) Analysis for PIU on transport in the energy review Institute for European Environmental Policy,

References 135

Heston, A., R. Summers, et al. (2002) Penn World Table Version 6.1 Center for International Comparisons at the University of Pennsylvania (CICUP),

Kypreos, S. (1996) The MARKAL-MACRO model and the climate change (PSI Bericht Nr. 96-14), Paul Scherrer Institute, Villigen, Switzerland

L-B-Systemtechnik (2002) GM well-to-wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems - a European study L-B-Systemtechnik GmbH, Ottobrunn, Germany

Nguyen, L. X. (2002) National Transportation Statistics Bureau of Transportation Statistics (U.S. Department of Transportation), Washington (DC), USA

Ogden, J. M., R. H. Williams, et al. (2001) Toward a hydrogen-based transportation system (Final draft 8 May 2001) Center for Energy and Environmental Studies, Princeton NJ (USA)

Pelkmans, L., D. De Keukeleere, et al. (2001) Emissions and fuel consumption of natural gas powered city buses versus diesel buses in real-city traffic VITO - Flemish Institute for Technological Research (Belgium),

Pridmore, A. and A. Bristow (2002) The role of hydrogen in powering road transport (Tyndall Working Paper No. 19), Institute for Transport Studies, University of Leeds (UK) and Tyndall Centre for Climate Change Research (UK),

Roder, A. (2001) Integration of life-cycle assessment and energy planning models for the evaluation of car powertrains and fuels. Doctoral dissertation, Diss. ETH No. 14291; Department of Chemistry, Swiss Federal Institute of Technology (Zurich)

U.S. Department of Transportation, Bureau of Transportation S., U.S. Department of Commerce, Census Bureau; Statistics Canada; Transport Canada ;Instituto Mexicano del Transporte; Instituto Nacional de Estadistica, Geografia e Info
rmatica; Secretaria de Communicaciones y Transportes (2000). *North American Transportation in Figures* (BTS00-05). in Washington, DC, USA.

Wokaun, A., U. Baltensperger, et al. (2004) The Role of Hydrogen in a Future Sustainable Energy System, Under which Circumstances does a Hydrogen Economy Make Sense? (Executive Summary of a Seminar Series held at PSI during First Semester 2004), Paul Scherrer Institute (Villigen, Switzerland) and ETH (Zuerich, Switzerland), Villigen (Switzerland)

World Energy Council (1998) Global Transport and Energy Development: The Scope for Change World Energy Council,

List of figures

Figure 1 Schematic diagram of methodological approach within the research framework of the dissertation ... 17

Figure 2 Schematic diagram illustrating steps carried out within the research framework of the dissertation ... 19

Figure 3 Division of the world into regions, as used in FinalTRA, CUBE and GMM 21

Figure 4 Illustration of modes and timeframes used in FinalTRA, CUBE and GMM 22

Figure 5 Illustrative representation of fuel chains as used in GMM 25

Figure 6 Modal changes in the demand for passenger transportation (LAFM illustrative example) ... 33

Figure 7 Demand for passenger transportation in the five geographical regions in the sub-sector of personal vehicles ... 34

Figure 8 Demands for freight transportation for 5 world regions 38

Figure 9 Graphical illustration of learning curve ... 39

Figure 10 Learning curves for different learning rates ... 41

Figure 11 Projected cost reduction for innovative powertrain technologies. Full power fuel cell (FC) and internal combustion engine (ICE) powertrains have 40 kW power. The hybrid fuel cell configuration has 20 kW continuous from the FC and 20 kW peak from a battery pack, and the battery powered has 40 kW peak power with 18 kWh storage capacity (Cisternino 2002) ... 43

Figure 12 Learning curve of Figure 11 in the log-log representation in order to determine the progress ratios ... 44

Figure 13 Explanatory illustration of "Cumulative amount of v-km delivered" 49

Figure 14 Representation of costs reduction according to the "learning" approach: specific cost (SC) as function of cumulative capacity (CC) .. 52

Figure 15 Representation of costs reduction according to the "learning" approach: cumulative capacity (CC) vs. total cost (TC) with indication of MIP coefficients 52

Figure 16 FinalTRA: "Base Case" of distribution of market shares for different types of vehicles (hydrogen fuel cell stack price: 600$/kW, hydrogen learning rate: 15%) 57

Figure 17 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, hydrogen price: 26 USD/GJ, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW) ... 59

Figure 18 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2kW and BBL factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%) ... 61

Figure 19 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2kW and CCoHFC factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%) ... 62

Figure 20 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2FC-LRN and CCoHFC factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%) ... 63

Figure 21 FinalTRA: Graphical illustration of market penetration of H2FC in the context of variable H2FC-LRN and PPL-GR factors (with all other factors constant, hydrogen price: 26 USD/GJ, hydrogen fuel cell floor cost: 100 $/kW, hydrogen fuel cell learning rate: 15%) ... 64

Figure 22 Schematic illustration of activity match as used in CUBE 68
Figure 23 Prices of fuels as used in CUBE
Figure 24 Price of travelling by personal vehicles as used in CUBE; the diagram illustrates the potential reduction in the price of travelling with H2FC, which could be reached if H2FC would penetrate the market. The case of the hydrogen fuel cell vehicle has an illustrative example of the most cost attractive hydrogen cost share – hydrogen generated from natural gas and transported liquefied by trucks. (CUBE Base case: H2FC-kW: 600$/kW; H2FC-LRN: 15%)...
Figure 25 CUBE: "Base Case" of distribution of market shares for different types of vehicles (hydrogen fuel cell stack price: 600$/kW, hydrogen learning rate: 15%)...
Figure 26 CUBE: Graphical illustration of market penetration of H2FC in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)...
Figure 27 CUBE: Graphical illustration of market penetration of gasoline vehicles in the context of variable H2kW and H2FC-LRN factors (with all other factors constant, oil price growth: +5%/decade, hydrogen fuel cell floor cost 100 $/kW)...
Figure 51 Sensitivity analysis of the potential impact of preferential discount rates for hydrogen infrastructure build up on the market penetration of hydrogen fuel cell vehicles ... 118

Figure 52 Combined effect of two tactics - internalization of external costs and the 100,000 demonstration vehicles project ... 119

Figure 53 CUBE and GMM: Hydrogen full fuel chain diagram ... 145
List of tables

Table 1 Description of vehicle technologies as used in the analysis with FinalTRA, CUBE and GMM models (Austin, Dulla et al. 1999; Contadini 2000; Weiss, Heywood et al. 2000; Metschies 2001; Pelkmans, De Keukeleere et al. 2001; Roder 2001; L-B-Systemtechnik 2002; Brager 2003; DaimlerChrysler 2003; Litman 2003; Toyota 2003; Hekkert, Faaij et al. 2004; Ogden, Williams et al. 2004)23

Table 2 Description of hydrogen generation technologies as used in the analysis with CUBE and GMM models (Simbeck and Chang 2002)26

Table 3 Description of hydrogen transmission technologies as used in the analysis with CUBE and GMM models (Simbeck and Chang 2002)28

Table 4 Description of hydrogen distribution technologies as used in the analysis with CUBE and GMM models (Simbeck and Chang 2002)29

Table 5 Specification of constants (dimensionless) for the estimation of demand projections for personal transportation (Schafer and Victor 2000)35

Table 6 Manual fitting coefficients (dimensionless) for the estimation of freight demand37

Table 7 Demands for freight transportation for 5 world regions [G T km]38

Table 8 Causal Diagram Analysis – specification of factors46

Table 9 FinalTRA – specification of exogenous and endogenous parameters (U.S. Department of Energy 2003; Energy Information Administration 2004; IFTA 2004) ...56

Table 10 Specification of factors used in the sensitivity analysis (FinalTRA)58

Table 11 FinalTRA: Combination of pairs of influential factors used in the sensitivity analysis ...58

Table 12 Combination of pairs of influential factors used in the sensitivity analysis (CUBE)77

Table 13 Specification of factors used in the sensitivity analysis (CUBE)78

Table 14 Specification of main differences between FinalTRA, CUBE and GMM91

Table 15 Scaling of externalities – population density factors109

Table 16 Values of external costs and regions specific scaling factors110

Table 17 Change of the specific cost of fuel cells as result of demonstration projects ... 115
Appendix A: Causal diagram for establishing sensitivity analysis factors
Appendix C: FinalTRA source code

1 OPTION LIMROW = 1000;
2 OPTION LIMCOL = 1000;
3 OPTION SOLPRINT = on;
4 OPTION SYSOUT = On;
5 OPTION ITERLIM = 1000000;
6 OPTION DOMLIM = 1000000;
7 $OnLISTING
8
9 Set reg /USA/ ;
10 set iter /1*2/ ;
12
13 Scalars
14 Disc discount rate /0.05/
15 Period length of time periods /10/ ;
16
17 Alias (tal,tp);
18 Alias (REG,MREG);
19
20 SET TCH 'TECHNOLOGIES'
21 / TGSL 'Personal - conventional gasoline' ,
22 TGSA 'Personal - ADV gasoline' ,
23 TDSL 'Personal - diesel' ,
24 TDSA 'Personal - ADV diesel' ,
25 THYB 'Personal - hybrid gasoline-electric' ,
26 THFC 'Personal - H2 FC' ,
27 TMFC 'Personal - methanol FC' ,
28 TELC 'Personal - electric' ,
29 NGLQH2 'Natural gas reforming (liquid)' ,
30 NGPLH2 'Natural gas reforming (pipeline)' ,
31 NGTTH2 'Natural gas reforming (tube trailer)' ,
32 RCPLH2 'Resid (pipeline)' ,
33 CRLQH2 'Coal reforming (liquid)' ,
34 CRPLH2 'Coal reforming (pipeline)' ,
35 CRTTTH2 'Coal reforming (tube trailer)' ,
36 BMLQH2 'Biomass (liquid)' ,
37 BMPLH2 'Biomass (pipeline)' ,
38 BMTTH2 'Biomass (tube trailer)' ,
39 ELLQH2 'Electrolysis (liquid)' ,
40 ELPLH2 'Electrolysis (pipeline)' ,
41 ELTTH2 'Electrolysis (tube trailer)' /
42
43 Set DMD(TCH) 'Automobile technologies'
44 / TGSL 'Personal - conventional gasoline' ,
45 TGSA 'Personal - ADV gasoline' ,
46 TDSL 'Personal - diesel' ,
47 TDSA 'Personal - ADV diesel' ,
48 THYB 'Personal - hybrid gasoline-electric' ,
49 THFC 'Personal - H2 FC' ,
50 TMFC 'Personal - methanol FC' ,
51 TELC 'Personal - electric' ,
52
53 set prc(tch) ' Processes to generate hydrogen'
54 / NGLQH2 'Natural gas reforming (liquid)' ,
55 NGPLH2 'Natural gas reforming (pipeline)'
Appendix C: FinalTRA source code

56 NGTTH2 'Natural gas reforming (tube trailer)'
57 RCPLH2 'Resid (pipeline)'
58 CRLQH2 'Coal reforming (liquid)'
59 CRPLH2 'Coal reforming (pipeline)'
60 CRTTH2 'Coal reforming (tube trailer)'
61 BMLQH2 'Biomass (liquid)'
62 BMPLH2 'Biomass (pipeline)'
63 BMTTH2 'Biomass (tube trailer)'
64 ELLQH2 'Electrolysis (liquid)'
65 ELPLH2 'Electrolysis (pipeline)'
66 ELTTH2 'Electrolysis (tube trailer)'
67
68 SET ENC 'ENERGY CARRIERS'
69 / GSL 'Gasoline'
70 DLS 'Diesel'
71 ELC 'Electric'
72 MTH 'Methanol'
73 H2 'Hydrogen'
74 NGA 'Natural gas'
75 HCO 'Hard Coal'
76 BIO 'Biomass'
77 REN 'Renewables'
78 NUC 'Nuclear'
79
80 SET ENV 'environmental emissions'
81 / CO2 'Carbon Dioxide'
82
83 $include data.dd
84
85 set LL/1*20/;
86 scalar discpp discound of annual cost-flow within a period to the beginning of the period;
87 discpp= sum(ll $(ord(ll) LE period), (l+disc)**(- ord(ll)));
88 * parameter ctax(tp) time variable carbon tax; specified in data.dd
89 Parameter tax(tp) Global carbon tax - dollars per ton;
90 * ctax=300; this is read in from data.dd
91 tax(tp) = ctax(tp);
92 *tax(tp) $(ord(tp) gt 2) = 0.0;
93
94 ***
95 ***
96 *DK separation of input data for sensitivity analysis runs (28.07.2005)
97 *$include techdata.dat
98 ***
99 ***
100 PARAMETER MA(DMD,ENC)
101 /
102 TGSL.GSL 1
103 TGSA.GSL 1
104 TDSL.DSL 1
105 TDSA.DSL 1
106 THYB.GSL 1
107 THFC.H2 1
108 TMFC.MTH 1
109 TELC.ELC 1
110
PARAMETER FPRICE(ENC,TP);
* calibration for 2000
* FPRICE(ENC,TP)=PRICE(ENC)*(1.+GRPRICE(ENC)/100)**((ORD(TP)-1)*PERIOD);
* FPrice('GSL','2000') = 5.79;
* FPrice('DSL','2000') = 5.00 ;
* FPrice('ELC','2000') = 12 ;
* FPrice('MTH','2000') = 23 ;
* FPrice('H2', '2000') = 0 ;
* FPrice('NGA','2000') = 6 ;
* FPrice('HCO','2000') = 2 ;
* FPrice('BIO','2000') = 4 ;
* FPrice('ren','2000') = 0 ;
* FPrice('nuc','2000') = 8 ;
* all the next periods
* FPRICE(ENC,TP)$((Ord(tp) GT 1)=PRICE(ENC)*(1.+GRPRICE(ENC)/100)**((ORD(TP)-1)*PERIOD);

display "Fuel prices in USD per GJ ", fprice;

PARAMETER MARKET(DMD,ENC,TP);
MARKET(DMD,ENC,TP) = MA(DMD,ENC);

parameter tpdata(dmd,dat,tp);

* C02 emmisions for dmd via fuels in [tonnes C02/PJOF FUEL INPUT]

parameter
*/
CO2.TGSL 0.071
CO2.TGSA 0.071
CO2.TDSL 0.073
CO2.TDSA 0.073
CO2.THYB 0.071
CO2.THFC 0.0
CO2.TMFC 0.0
CO2.TELC 0.0

*/;

parameter
*/
CO2.NGLQH2 0.0453
CO2.NGPLH2 0.0453
CO2.NGTTH2 0.0453
CO2.RCPLH2 0.0875
CO2.CRLQH2 0.0906
CO2.CRPLH2 0.0906
CO2.CRTTH2 0.0906
CO2.BMLQH2 0.1169
CO2.BMPLH2 0.1169
CO2.BMTTH2 0.1169
CO2.ELLQH2 0.0
CO2.ELPLH2 0.0
CO2.ELTTH2 0.0
Appendix C: FinalTRA source code

165
166 SET etl(dmd);
167 etl(dmd) $(TCHDATA(DMD,"LR") gt 0) = YES;
168
169 SET petl(prc);
170 petl(prc) $(DATPRC(prc,"LR") gt 0) = YES;
171
172 display etl,petl;
173
174 parameter gencost(prc,tp);
175 parameter crfprc(prc);
176 parameter lifeprc(prc);
177 lifeprc(prc) = DATPRC(PRC,"life")*period;
178
179 * Generation cost is given in USD-2000 per GJ
180
181 crfprc(prc) = (disc*(1+disc)**(lifeprc(prc)))/((1+disc)**(lifeprc(prc))-1);
182 gencost(prc,tp) =
183 * non-learning part
184 DATPRC(PRC,"INVC")*crfprc(prc)/3.6/8.76/DATPRC(PRC,"af")
185 + DATPRC(PRC,"fixom") + DATPRC(PRC,"varom")
186 + sum(enc, MAPRC(prc,ENC)*fprice(enc,tp))/DATPRC(PRC,"EFF")
187
188 * learning part
189 * + DATPRC(PRC,"ILCOST")*crfprc(prc)/3.6/8.76/DATPRC(PRC,"af")
190 *
191 ;
192
193 display gencost;
194
195 PARAMETERS
196 START(dmd) starting year of technology availability
197 LIFE(dmd) life of technology in years
198 EFF(dmd,tp) efficiency kvkm per GJ
199 INV_floor(dmd,tp) specific investments in USD(00) per kvkm travelled per year
200 ILC(dmd) initial learning costs in USD(00) per kvkm travelled per year
201 FIXOM(dmd,tp) fix O&M in USD(00) per kvkm
202 VAROM(dmd,tp) var O&M in USD(00) per kvkm
203 fuelc(dmd,tp) fuel cost in USD per 1000vkm
204 costkmini(dmd,tp) initial cost per 1000 pkm by ETL cars[$ a 1000 vkm]
205 costkm_nl(dmd,tp) non-learning fraction of car costs [$ a 1000 vkm]
206 costkm_le(dmd,tp) learning fraction of car costs [$ a 1000 vkm]
207 crfac(dmd) capital recovery factor;
208
209 START(dmd) = TCHDATA(DMD,"START");
210 LIFE(dmd) = TCHDATA(DMD,"LIFE")*period;
211 scalar fueleffimp improvement of fuel efficiency in % over decade/7.5/;
212
213 Eff(dmd,'2000') = tchdata(dmd,'eff');
214 Loop (tp$(ord(tp) GT 1),
215 eff(dmd,tp) = tchdata(dmd,'eff') * ((1+fueleffimp/100)**((Ord(tp)-1))
216);
217 * Loop(tp$(ord(tp) GT 1) , EFF(dmd,tp) = (TCHDATA(DMD,'EFF')) ;
218 * ((1+fueleffimp/100)**(Ord(tp)))) ;
219 display 'fuel test', eff;
Appendix C: FinalTRA source code

```
INV_floor(dmd,tp) = TCHDATA(DMD,"Ifloor");
FIXOM(dmd,tp) = TCHDATA(DMD,"FIXOM");
VAROM(dmd,tp) = TCHDATA(DMD,"VAROM");
ILC(dmd) = TCHDATA(dmd,"ILCost");

crfac(dmd) = (disc*(1+disc)**(life(dmd)))/((1+disc)**(life(dmd))-1);

* 1 GJ fuel makes EFF kvkm and costs MA(f)*fprice(f) USD;
* -> 1 MA(f)*fprice(f)[USD/GJ]/eff(DMD)[kvkm/GJ] => [USD/kvkm]

FUELC(dmd,tp) = sum(enc, MARKET(DMD,ENC,tp)*fprice(enc,tp))/EFF(dmd,tp);

*non learning part

SCALAR KMYEAR 1000 KM PER YEAR /17.5/


costkm_nl(dmd,tp) = inv_floor(dmd,tp)*crfac(dmd)/KMYEAR + FIXOM(dmd,tp) + FUELC(dmd,tp) + VAROM(dmd,tp);

costkm_le(dmd,tp) = ILC(dmd)*crfac(dmd)/KMYEAR;

display "price for travelling:"
"non-learning: ",
costkm_nl,
"learning part: ",
costkm_le,
"CO2 tax: ",
tax;

* for the moment include learning separately in the demand and cost

Parameter Irn(dmd) Learning parameter;
Parameter Irnp(prc) Learning parameter;

lrn(dmd) = log ((100 - tchdata(dmd,"lr")) / 100) / log(2);
lrnp(prc) = log ((100 - datprc(prc,"lr")) / 100) / log(2);

prat(dmd) = l + lrn(dmd);
pratp(prc) = l + lrnp(prc);

display "check Irn, Irn, PRAT, Irnp, pratp;

* 1000 cars times 1 persons times 20000 km per annum makes 20 million thus one billion p-km
* corresponds to 50000 cars a relatively low and acceptable value to initiate learning ie after
* reaching a stage of commercialization

*Scalar initial cumulative production of starting technologies /5.66/;

parameter dmdtp(dmd,tp);
dmdtp(dmd,tp) = 1;
dmdtp(dmd,tp) $(ord(tp) It start(dmd)) = 0;
```
Appendix C: FinalTRA source code

278 display dmdtp;
279 parameter pdmtp(prc,tp);
280 pdmtp(prc,tp)=1;
281 pdmtp(prc,tp) $(ord(tp) lt datprc(prc, "start")) =0;
282 display pdmtp;
283 *$offtext
284
285 Parameter accpO(prc,reg) Initial cumulative production - PJ of processes;
286 *100*initial= 10PJ
287 *accpO(petl,reg) = 1.1*initial/eff("THFC","2000");
288 accpO(prc,reg) = 1.1*initial/eff("THFC","2000");
289
290 Parameters
291 defc maximum decline factor
292 expf maximum expansion factor
293 pv(tp) present value factor
294 bbb(dmd) learning by doing parameter
295 aad(dmd) Coefficient of the learning curve
296 bbbp(prc) learning by doing parameter
297 aap(prc) Coefficient of the learning curve
298
299 pv(tp) = (l/(l+disc))**(period*(ord(tp)-l));
300 *assignment to calibrate learning by doing
301 bbb(dmd)=-log(prat(dmd))/log(2);
302 bbbp(prc)=-log(pratp(prc))/log(2);
303
304 *assignment of coefficient of the learning curve
305
306 aa(dmd)=costkm_le(dmd,"2000")*(sum (reg, acc0(dmd,reg)))**bbb(dmd);
307 aap(prc)=gencost(prc,"2000")*(sum (reg, acc0o(prc,reg)))**bbbp(prc);
308
309 * annual growth and declining rates in percent
310
311 Parameters
312 CarExpand(dmd,reg,tp) expansion constrain for car technologies
313 GenExpand(prc,reg,tp) expansion constrain for fuel generation technologies
314 CarDecline(dmd,reg,tp) declination constrain for car technologies
315 decline(tp) declination constrain for anything else
316 ;
317
318 DECLINE(TP)=10;
319
decline(tp) = (1- decline(tp)/100)**period;
320 CarExpand(dmd,reg,tp) = (1+ techexpand(dmd,reg,tp)/100)**period;
321 CarDecline(dmd,reg,tp) = (1- techdecline(dmd,reg,tp)/100)**period;
322 GenExpand(prc,reg,tp) = (1+ h2genexpand(prc,reg,tp)/100)**period;
323
display "decline check", cardecline, carexpand, genexpand;
324
325 VARIABLES
326 COST_NLP present value of costs - billion $
327
328 POSITIVE VARIABLES
329 XE(dmd,reg,tp) mobility supplying technology - 10**9 car-km per year
330 YE(dmd,tp) accumulated mobility by technology - 10**9 car-km per year
Appendix C: FinalTRA source code

Equations

BALTALL(reg,tp) .. NTRA(reg,tp) =e= OILTRA(reg,tp) + GASTRA(reg,tp) +
H2TRA(reg,tp) + ETRA(reg,tp) + BIOTRA(reg,tp) +
HCOTRA(reg,tp) + RENTRA(reg,tp);

BALTOIL(reg,tp) .. OILTRA(reg,tp) =e= (le-3)*sum((dmd),
market(dmd,"gsl",tp)/eff(dmd,tp)* XE(dmd,reg,tp)) +
(1e-3)*sum((dmd), market(dmd,"dsl",tp)/eff(dmd,tp)*
XE(dmd,reg,tp));

DECH2(reg,prc,tp) .. decline constraints for production of H2 by process

EXPH2(reg,prc,tp) .. expansion constraints for production of H2 by process

YDFH2(prc,tp) .. definition of accumulated supplies of H2 by process

*constraints on the market development region & time specific

EQ_Gasoline_conv(tp,reg) .. conventional gasoline should not be produced after 2020

EQ_Diesel_USA(tp) .. diesel should not have more than 2% of market share in USA

EQ_Conv_Diesel_fadeout(tp) .. conventional diesel fades out

EQ_MeFC_out(tp) .. Methanol FC is not out of the analysis

EQ_H2(tp) .. production of hydrogen in the beginning should trucks

EQ_H2Pipeline(tp) .. after reaching a 10% market penetration of h2fc pipeline infrastructure is build

XH(prc,reg,tp) .. Hydrogen supply by technology - PJ per year

YH(prc,tp) .. accumulated h2 supply by technology - PJ per year

NTRA(reg,tp) .. non-electric for transport

OILTRA(reg,tp) .. oil for transport

GASTRA(reg,tp) .. gas for transport

H2TRA(reg,tp) .. hydrogen for transport

ETRA(reg,tp) .. electricity for transport

BIOTRA(reg,tp) .. biofuel for transport

HCOTRA(reg,tp) .. hco for H2

RENTRA(reg,tp) .. solar for H2;
XH(prc,reg,tp) + (1e-3)*(sum((prc), MAPRC(prc,"gsl")/datprc(prc,'eff')*
XH(prc,reg,tp));

BALTGAS(reg,tp) .. GASTRA(reg,tp) =e= (1e-3)*sum((dmd),
market(dmd,"nga",tp)/eff(dmd,tp)*XE(dmd,reg,tp)) + (1e-3)*(sum((prc), MAPRC(prc,"nga")/datprc(prc,'eff')*
XH(prc,reg,tp));

BALTH2(reg,tp) .. H2TRA(reg,tp) =e= (1e-3)*sum((dmd),
market(dmd,"h2",tp)/eff(dmd,tp)*XE(dmd,reg,tp)) + (1e-3)*sum((dmd), market(dmd,"elc",tp)/eff(dmd,tp)*
XE(dmd,reg,tp)) + (1e-3)*sum((dmd), market(dmd,"mth",tp)/eff(dmd,tp)*)
XE(dmd,reg,tp)) + (1e-3)*sum((dmd), market(dmd,"mth",tp)/eff(dmd,tp)*)
XE(dmd,reg,tp))

BALTHCO(reg,tp) .. HCOTRA(reg,tp) =e= (1e-3)*(sum((prc), MAPRC(prc,"hco")/datprc(prc,'eff')*
XH(prc,reg,tp));

BALTren(reg,tp) .. RENTRA(reg,tp) =e= (1e-3)*(sum((prc), MAPRC(prc,"ren")/datprc(prc,'eff')*
XH(prc,reg,tp));

YDF(dmd,tp) .. YE(dmd,tp) =e= sum(reg, acc0(dmd,reg)) + sum(tal$(ord(tal) le (ord(tp)-l)), period*sum(reg,
XE(dmd,reg,tal)));
DemH2(reg,tp) . .
sum (prc, XH(prc,reg,tp)* dataprc(prc, "EFF")) = g=
sum((dmd), market(DMD,"H2",tp)/eff(dmd,tp)*
XE(dmd,reg,tp));

*constrains on the market development region & time specific************

EQ_Gasoline_conv(tp,reg).. XE('tgs',reg,tp)$(Ord (TP) GE 8) =l= 10;

EQ_Diesel_USA(tp).. XE('tdsl','usa',tp) + XE('tdsa','usa',tp) =l= 0.02 *
demand(tp,usa);

EQ_Conv_Diesel_fadeout(tp)
 $(Ord(TP) GE 4)..
 XE('tdsl','usa',tp) =E= 0;

EQ_H2Pipeline(tp)..
 XH('NGPLH2','usa',tp)
 +XH('RCPLH2','usa',tp)
 +XH('CRPLH2','usa',tp)
 +XH('BMPLH2','usa',tp)
 +xh('ELPLH2','usa',tp)
 =L= 5000;

EQ_H2(tp)..
 XH('NGLQH2','usa',tp)
 +XH('NGTTH2','usa',tp)
 +XH('CRLQH2','usa',tp)
 +XH('CRTTH2','usa',tp)
 +XH('BMLQH2','usa',tp)
 +xh('ELTQH2','usa',tp)
 =L= 500;

EQ_MeFC_out(tp)...
 XE('tmfc','usa',tp) =e= 0;

*present value costs

EQ_OBJNLP..
 COST_NLP =e=0.001*sum(reg, sum(tp,pv(tp)*(
static costs dmds
 discpp*sum(dmd, costkm_nl(dmd,tp)*XE(dmd,reg,tp))
*static costs prcs
 + discpp*sum(prc, gencost(prc,tp)*XH(prc,reg,tp))
*dynamic costs dmds
 + discpp* sum(etr, costkm_le(etr,tp)*XE(etr,reg,tp)*(YE(etr,tp)/sum(Mreg,
acc0(etr,reg)))**lrn(etr))
*dynamic costs prcs
 +discpp* sum(petr, gencost(petr,tp)*XH(petr,reg,tp)*(YH(petr,tp)/sum(Mreg,
acc0(petr,reg)))**lrnp(petr))
 carbon taxes DMD
 + discpp*tax(tp)*(sum((dmd), env_tact("co2",dmd)/eff(dmd,tp)* XE(dmd,reg,tp)))
*carbon taxes PRC
Appendix C: FinalTRA source code

```plaintext
+ discpp*tax(tp)*(sum((prc, env_prd("co2",prc)/datprc(prc,'eff')* XH(prc,reg,tp)))

*********************************************************************** bounds **********************************************************************

* bound tch before start to zero, after bound lo to 4 pc of demand or for etl to acc0, upper to 70 pc of regional demands

*general
XE.fx(dmd,reg,tp) $(dmdtp(dmd,tp) eq 0) = 0.0;
XE.UP(dmd,reg,tp) = 1.01*demand(tp,reg);
xe.fx(dmd,reg,tp)$ (ORD(tp) lt Tchdata(dmd,"Start")) = 0;
YE.UP(DMD,TP)$ (ord(tp) ge 1) = sum( (REG, tal) $(ord(tal) le ord(tp)), PERIOD*DEMAND(TP,reg));
YE.LO(ETL,tp) = sum(reg, acc0(etl,reg));

*calibration for cars available in 2000
xe.lo(dmd,reg,tp)$ ( (ORD(tp) eq 1)$ (Tchdata(dmd,"Start") eq 1 )
  ) = 0.99*acc0(dmd,reg);
xe.up(dmd,reg,tp)$ ( (ORD(tp) eq 1)$ (Tchdata(dmd,"Start") eq 1 )
  ) = 1.01*acc0(dmd,reg);

*starting of cars available later then 2000
xe.up(dmd,reg,tp)$ ( (ORD(tp) eq Tchdata(dmd,"Start"))$ (Ord(tp) GT 1 )
  ) = 1.01*acc0(dmd,reg);

*H2 generation
XH.LO("b2h",reg,tp)$ (pdmtp("b2h",tp) eq 1 ) = accp0("b2h",reg);
XH.UP(prc,reg,tp)$ (ord(tp) ge datprc(prc,"start")) =0.7*demand(tp,reg)/eff("THFC",tp);
YH.LO(prc, TP) =sum(reg, accp0(prc,reg));
XH.fx(prc,reg,tp)$ (pdmtp(prc,tp) eq 0 ) = 0.0;
XH.lo(prc,reg,tp)$ (pdmtp(prc,tp) eq 1 ) = XE.lo("THFC",reg, tp)/eff("THFC",tp);

***Model segment***************
MODELB_D_NLP /

EQ_OBJNLP
DEM
DEC
EXP
YDF
BALTALL
BALTOIL
BALTGAS
BALTH2
Balte
BALTB
BALTHCO
BALTREN
```

Parameters

\[\text{lrng}(\text{dmd, tp}) \quad \text{learning costs - c$ per car km} \]
\[\text{xnlp}(\text{reg, dmd, tp}) \quad \text{production-nlp} \]
\[\text{ynlp}(\text{dmd, tp}) \quad \text{cumulative production-nlp} \]
\[\text{crtx}(\text{tp}) \quad \text{carbon taxes - $ per ton} \]
\[\text{demnew}(\text{tp, reg}) \quad \text{the numerical value of demand} \]
\[\text{demexact}(\text{tp, reg}) \quad \text{the exact demand function} \]
\[\text{demratio}(\text{tp, reg}) \quad \text{the demand ratio} \]

\[\text{SOLVE LBD_NLP minimizing COST_NLP using NLP;} \]

* ITERATIVE PARTIAL EQUILIBRIUM PROCEDURE:
* solve first for reference development to define \(\text{priceO} \)
* solve again with a tax to define new prices
* solve again with adjusted demands

\[\text{SOLVE LBD_NLP minimizing COST_NLP using NLP;} \]

\[\text{priceref}(\text{reg, tp}) = \text{DEM.M}(\text{reg, tp})/\text{DISCPP}/(1/(1+\text{disc})^{\text{period}*(\text{ORD}(\text{tp})-1)}) ; \]

*INCLUDE NOW A TAX
*the tax is now time variable, so no need for the gt2 condition

\[\text{tax}(\text{tp}) $(\text{ord}(\text{tp}) \gt 2) = \text{ctax}; \]

\[\text{tax}(\text{tp}) = \text{ctax}(\text{tp}); \]

* solve again for adjusted carbon taxes

\[\text{SOLVE LBD_NLP minimizing COST_NLP using NLP;} \]

\[\text{pricetax}(\text{reg, tp}) = \text{DEM.M}(\text{reg, tp})/\text{DISCPP}/(1/(1+\text{disc})^{\text{period}*(\text{ORD}(\text{tp})-1)}) ; \]

* checkpoint 0 - priceref after first run*,
\[\text{priceref}; \]

* INCLUDE NOW A TAX

\[\text{tax}(\text{tp}) $(\text{ord}(\text{tp}) \gt 2) = \text{ctax}; \]

\[\text{tax}(\text{tp}) = \text{ctax}(\text{tp}); \]

* solve again for adjusted carbon taxes

\[\text{SOLVE LBD_NLP minimizing COST_NLP using NLP;} \]

\[\text{pricetax}(\text{reg, tp}) = \text{DEM.M}(\text{reg, tp})/\text{DISCPP}/(1/(1+\text{disc})^{\text{period}*(\text{ORD}(\text{tp})-1)}) ; \]

* checkpoint1*,
\[\text{demand}, \]
592 pricetax,
593 priceref;
594
demand(tp,reg) $(ord(tp) gt l)$(pricetax(reg,tp) gt 1))
595 =demand(tp,reg)*(pricetax(reg,tp)/priceref(reg,tp))**(-.25);
596
display
597 "checkpoint2",
demand,
598 pricetax,
599 priceref;
600
601 SOLVE LBD_NLP minimizing COST_NLP using NLP;
602
603 lrng(etl,tp)=costkm_le(etl,tp)*YE.L(etl,tp)/sum(reg,
604 acc0(etl,reg)))**lrn(etl)+costkm_nl(etl,tp);
605 pricetax(reg,tp)= DEM.M(reg, tp)/DISCPP/(l/(l+disc)**(period*(ORD(tp)-l)));
606
display "check", pricetax;
607 $offtext
608 *$include partial.gms
609
610 Parameter costkmetl(dmd,TP) cost of 1000 vkm by ETL technologies;
611
costkmetl(dmd,TP)= costkm_nl(dmd,tp) ;
612
costkmetl(etl,TP)= costkm_nl(etl,tp) + costkm_le(etl,tp)*
613 (YE.I(etl,TP)/sum(reg, acc0(etl,reg)))**lrn(etl)
614);
615
616 ** all that for testing
617 purposes
618
619 *FUEL BALANCES
620
621 PARAMETER
622 PRIMARY(ENC,TP) global total co2 emissions as sum of generation of H2 and
623 CO2(ENC,TP) mobility activity
624 co2h2generation(prc,reg,tp) emissions comming from H2 generating technologies
625 realcostkmetl(dmd,tp) full costs of travelling by a vehicle
626 ;
627 PRIMARY(ENC,TP)= (1e-3)*sum((dmd,REG), market(dmd,enc,tp)/eff(dmd,tp)*
628 XE.L(dmd,reg,tp)) + (1e-6)*sum(((prc,REG), MAPRC(PRC,ENC)/datprc(prc,’eff’)*
629 XH.L(prc,reg,tp)));
630
631 CO2(ENC,TP)= (1e-3)*12/44* (sum((dmd,REG), env_tact("co2",dmd)*market(dmd,enc,tp
632)/eff(dmd,tp)* XE.L(dmd,reg,tp)))
633 + (sum((prc,REG), env_prc("co2",prc)*MAPRC(PRC,ENC)/datprc(prc,’eff’)*
634 XH.L(prc,reg,tp)));
635
636 *lll
637 co2h2generation(prc,reg,tp) = XH.L(prc,reg,tp) * env_prc("co2",prc) ;
638
639 * Hydrogen is an secondary energy carrier (only the primary source should be included in the
640 balance)
641 PRIMARY("h2",TP)=PRIMARY("H2",TP)-PRIMARY("h2",TP) ;
realcostkmetl(dmd, tp) = costkmetl(dmd, tp)
+
tax(tp)*sum(enc, (MARKET(DMD, ENC, TP) * ENV_TACT("CO2", DMD))/EFF(DMD, TP)

DISPLAY realcostkmetl, costkmetl, tax, env_tact, eff;

*DK check on the prices of hydrogen
Parameter h2price(prc, tp) price of hydrogen from different sources;

h2price(prc, tp) =
static *discpp*(gencost(prc, tp));
gencost(prc, tp);
dynamic *+discpp* sum(petl, gencost(petl, tp)*XH.I(petl, 'usa', tp)*(YH.I(petl, tp)/sum(Mreg, accp0(petl, 'usa')))**lrnp(petl)) ;
display 'XXX', h2price;

***************OUTPUT OF RESULTS
Put F1;
Put ' h2kw=', tchdata('THFC', 'ILCOST'),
' lr=', tchdata('THFC', 'LR'),
' BBL at ', fuelpricegrowth('gsl'), ' % ',
' co cars=', inicar,
' pipeline growth=', H2genexpand('NGPLH2', 'usa', '2000') /;
Put 'technologies', ';
Loop (TP, Put TP.tl, ';');
Put /;
*CARS
Loop (DMD,
put DMD.tl, ';');
Loop (tp, put xe.l(dmd, 'USA', tp), ';');
put /;
);
*GENS
Loop (PRC,
put PRC.tl, ';');
Loop (tp, put xh.l(prc, 'USA', tp), ';');
put /;
);
PutClose;

File data.dd

*CO2 tax

parameter ctax(tp) CO2 tax
/
2000 0
2010 0
2020 0
2030 0
2040 0
2050 0
2060 0
2070 0
2080 0
2090 0
2100 0
/;

*demand for mobility

PARAMETER demand(,reg) demand per category region and year - reference case;
PARAMETER demand(tp,reg) demand per category region and year - reference case;
* in billion Vkm per year

table rgrowth(reg,tp)

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
USA 0.021 0.012 0.007 0.005 0.001 0.0 0.0 0.0 0.0 0.0
;

TABLE DEMAND(tp,reg)

USA

2000 3605.4
2010 4431.8
2020 4978.0
2030 5332.6
2040 5583.1
2050 5538.8
2060 5329.1
2070 4873.6
2080 4324.2
2090 3846.1
2100 3762.7
;

*LOOP (TP,
demand(tp+1,reg) =demand(tp,reg)(1+rgrowth(REG,TP))**period ;
*)
display
"checkpoint",
demand;

Appendix C: FinalTRA source code

747 *expansion constrains for each vehicle type
748 **
749 table techexpand(dmd,reg,tp)
750 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
751 2100
752 TGSL_USA 8 5 0 0 0 0 0 0 0 0
753 *advanced gasoline
754 TGSA_USA 0 40 40 20 17 15 15 15 15 15
755 *conventional diesel
756 TDSL_USA 9 9 5 0 0 0 0 0 0 0
757 *advanced diesel
758 TDSA_USA 75 75 78 29 26 10 7 0 0 0
759 *hybrid gasoline-electric (prius)
760 THYB_USA 15 10 10 10 10 15 10 5 5 5
761 *hydrogen fuel cell
762 THFC_USA 10 10 10 10 10 10 10 10 10 10
763 *methanol fuel cell
764 TMFC_USA 15 15 15 15 15 15 15 15 15 15
765 *electric
766 TELC_USA 1 2 6 7 9 9 9 5 5 5
767 ;
768 **
769 *decline constrains for each vehicle type
770 **
771 table techdecline(dmd,reg,tp)
772 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090
773 2100
774 TGSL_USA 15 15 15 15 15 15 15 15 15 15
775 *advanced gasoline
776 TGSA_USA 15 15 15 15 15 15 15 15 15 15
777 *conventional diesel
778 TDSL_USA 25 75 75 75 75 15 15 15 15 15
779 *advanced diesel
780 TDSA_USA 15 15 15 15 15 15 15 15 15 15
781 *hybrid gasoline-el
782 THYB_USA 15 15 15 15 15 15 15 15 15 15
783 *hydrogen fuel cell
784 THFC_USA 15 15 15 15 15 15 15 15 15 15
785 *methanol fuel cell
786 TMFC_USA 15 15 15 15 15 15 15 15 15 15
787 *electric
788 TELC_USA 15 15 15 15 15 15 15 15 15 15
789 ;
790
791 *Prices of fuels
792
793 PARAMETER FPRICE(ENC,TP) price of fuels time dependant;
794 *calibration for year 2000 (oil is at 28 usd per bbl)
795 FPrice('GSL','2000') = 18.07 ;
796 FPrice('DSL','2000') = 16.25 ;
797 FPrice('ELC','2000') = 12 ;
798 FPrice('MTH','2000') = 23 ;
799 FPrice('H2','2000') = 0 ;
800 FPrice('NGA','2000') = 2.5 ;
FPrice('HCO','2000') = 2 ;
FPrice('BIO','2000') = 4 ;
FPrice('ren','2000') = 0 ;
FPrice('nuc','2000') = 8 ;

*calibration for year 2010 (oil is at 55 usd per bbl)
FPrice('GSL','2010') = 29.45 ;
FPrice('DSL','2010') = 21.48 ;
FPrice('ELC','2010') = 12 ;
FPrice('MTH','2010') = 23 ;
FPrice('H2', '2010') = 0 ;
FPrice('NGA','2010') = 6 ;
FPrice('HCO','2010') = 2 ;
FPrice('BIO','2010') = 4 ;
FPrice('ren','2010') = 0 ;
FPrice('nuc','2010') = 8 ;

* calibration for all the other years 2020-2100

Parameter fuelpricegrowth(enc) increase of primary fuel price per decade
/
GSL 5
DSL 5
ELC 1
MTH 1
H2 1
NGA 1
HCO 1
ren 1
nuc1 0
/

Loop (TP$(ORD(TP) GT 2),
Fprice(enc,tp) = Fprice(enc,tp-l)^(fuelpricegrowth(enc)/100+1)
);

*SCENGEN CCo
scalar inicar cumulative production of starting technologies /700.0/;
parameter initial cumulative production of starting technologies;
initial = inicar * 1000 * 17500 / 1e9;

*bblgrowth growth of oil prices /2.5/;

*processes for H2 production

* set prc(tch) ' Processes to generate hydrogen' /NGLQH2..... /;
set prdat /eff, af, life, start, invc, fixom, varom, ilcost, lr /;

| prc | prdat | period | period | us$/gj | us$/gj | us$/gj | us$/gj | us$/gj | -
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NGLQH2</td>
<td>2</td>
<td>2</td>
<td>0.80</td>
<td>0.90</td>
<td>87.91</td>
<td>5.23</td>
<td>4.56</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>NGPLH2</td>
<td>4</td>
<td>2</td>
<td>0.80</td>
<td>0.90</td>
<td>136.85</td>
<td>9.30</td>
<td>0.40</td>
<td>13.73</td>
<td>10</td>
</tr>
<tr>
<td>NGTTH2</td>
<td>2</td>
<td>2</td>
<td>0.80</td>
<td>0.90</td>
<td>81.86</td>
<td>16.01</td>
<td>0.88</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RCPLH2</td>
<td>4</td>
<td>2</td>
<td>0.64</td>
<td>0.90</td>
<td>154.71</td>
<td>10.18</td>
<td>1.28</td>
<td>13.73</td>
<td>10</td>
</tr>
<tr>
<td>CRLQH2</td>
<td>2</td>
<td>2</td>
<td>0.64</td>
<td>0.90</td>
<td>124.64</td>
<td>7.06</td>
<td>6.37</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix C: FinalTRA source code

```
859 CRPLH2  4  2  0.64  0.90  167.17  10.80  1.79  13.73  10
860 CRTTH2  2  2  0.64  0.90  116.56  17.76  2.54  0.00  0
861 BMLQH2  2  2  0.67  0.90  125.31  7.10  6.48  0.00  0
862 BMPLH2  4  2  0.67  0.90  173.24  11.11  2.29  13.73  10
863 BMTTH2  2  2  0.67  0.90  120.43  17.95  2.96  0.00  0
864 ELLQH2  2  2  0.75  0.90  165.06  9.08  0.49  0.00  0
865 ELPLH2  4  2  0.75  0.90  218.88  13.40  0.29  13.73  10
866 ELTTH2  2  2  0.75  0.90  160.86  19.97  0.35  0.00  0
867 ;
868
869  parameter maprc(prc,enc)
870  /
871 NGLQH2.nga  1
872 NGPLH2.nga  1
873 NGTTH2.nga  1
874 RCPLH2.dsl  1
875 CRLQH2.hco  1
876 CRPLH2.hco  1
877 CRTTH2.hco  1
878 BMLQH2.bio  1
879 BMPLH2.bio  1
880 BMTTH2.bio  1
881 ELLQH2.nuc  1
882 ELPLH2.nuc  1
883 ELTTH2.nuc  1
884 /
885
886 SET DAT /START,LIFE,EFF,Ifloor,FIXOM,VAROM, ILCost, LR/;
887
888  ********************************************vehicle technologies
889 TABLE TCHDATA(DMD,*)
890   *   kvkm/GJ   $95/CAR   $/kvkm   $/kvkm   $/kvkm -
891   *
892   kvkm/PJ   START   LIFE   EFF   Ifloor   FIXOM   VAROM   ILCost   LR
893 TGSL  1  1  10  18600  70.00  8.10  0  0
894 TGSA  2  1  0.3512  19500  70.00  8.10  0  0
895 TDSL  1  1  0.4081  20500  70.00  8.10  0  0
896 TDSA  2  1  0.4693  21500  70.00  8.10  0  0
897 THYB  2  1  0.7648  22000  70.00  8.10  2000  10
898 *assuming 50kw stack, with 500USD/kw: 50kw^500usd=25000 usd
899 *floor cost at 100usd/kw, assuming the base chassis at 15000+50kw stack=20000 for FC
900 vehicles
901 TMFC  4  1  1.20  25000  50.00  8.10  25000  0
902 THFC  4  1  1.20  20000  50.00  8.10  30000  20.00
903 TELC  6  1  1.78  20500  100.0  8.10  2000  10;
904
905  ********************************************
906 *expansion constrains for each H2 generation technology
907  ********************************************
908 table H2genexpand(prc,reg,tp)
909 2000  2010  2020  2030  2040  2050  2060  2070  2080  2090
910 2100
911 *Natural gas reforming (liquid)
912 NGLQH2.USA  15  15  15  15  1  1  1  1  1
913 *****Natural gas reforming (pipeline)
914 NGPLH2.USA  10  10  10  10  10  10  10  10  10  10
915
```
Appendix C: FinalTRA source code

Parameter acc0(dmd,reg) Initial cumulative production - 10**9 v-km;
acc0('TGSL','USA') = 0.98*Demand('2000','USA')
; acc0('TGSA','USA') = Initial ;
acc0('TDSL','USA') = 0.02*Demand('2000','USA')
; acc0('TDSA','USA') = Initial ;
acc0('THYB','USA') = Initial ;
acc0('THFC','USA') = Initial ;
acc0('TMFC','USA') = Initial ;
acc0('TELC','USA') = Initial ;
File /out.dk/;

Option LIMROW = 1000;
OPTION LIMCOL = 1000;
OPTION SOLPRINT = on;
OPTION SYSOUT = on;
OPTION ITERLIM = 1000000;
OPTION DOMLIM = 1000000;
*Option R旬maxj = 1.00e+7
$OnLISTING

Scalars
disc rate /0.05/
Period length of time periods /10/
faki scaling factor for OBJ function /1e-2/
;

Set Tech 'TECHNOLOGIES' /
cars
TGSL 'Personal - gasoline',
TDSL 'Personal - diesel',
THYB 'Personal - hybrid gasoline-electric',
THFC 'Personal - H2 FC',
TMFC 'Personal - methanol FC',
TELC 'Personal - electric'
gen
H2NGLQ 'Natural gas reforming (liquid)',
H2NGPL 'Natural gas reforming (pipeline)',
H2NGTT 'Natural gas reforming (tube trailer)',
H2RCPL 'Resid (pipeline)',
H2CRLQ 'Coal reforming (liquid)',
H2CRPL 'Coal reforming (pipeline)',
H2CRTT 'Coal reforming (tube trailer)',
H2BMLQ 'Biomass (liquid)',
H2BMPH 'Biomass (pipeline)',
H2BMTT 'Biomass (tube trailer)',
H2ELLQ 'Electrolysis (liquid)',
H2ELPL 'Electrolysis (pipeline)',
H2ELTT 'Electrolysis (tube trailer)',
MeGSLQ 'Methanol generation - from biomass, see excel for tech description',
MeARLQ 'Methanol generation - from biomass, see excel for tech description',
MeSCLQ 'Methanol generation - from biomass, see excel for tech description',
MeSCMR 'Methanol generation - from biomass, see excel for tech description',
MeHGAR 'Methanol generation - from biomass, see excel for tech description',
MESCME 'Methanol generation - from biomass, see excel for tech description',

*transmission
H2PL 'H2 transmission by pipeline',
H2TT 'H2 transmission by tube trailer',
H2LQ 'H2 transmission by liquified',
MeTR 'Methanol by truck',

*distribution
H2FSPL 'H2 fuelling station pipeline connected',
H2FSTT 'H2 fuelling station low pressure',
H2FSLQ 'H2 fuelling station high pressure',
MeFSNE 'Methanol fuelling station (new)',

Appendix D: CUBE source code

MeFSMO 'Methanol fuelling station (retrofitet)

Set cars(tech) 'cars'

/ TGLS 'Personal - gasoline'
TDSL 'Personal - diesel'
THYB 'Personal - hybrid gasoline-electric'
THFC 'Personal - H2 FC'
TMFC 'Personal - methanol FC'
TELC 'Personal - electric'
/

Set fuelchainmember(tech) 'members of the fuel chain'

/ H2NGLQ 'Natural gas reforming (liquid)'
H2NGPL 'Natural gas reforming (pipeline)'
H2NGTT 'Natural gas reforming (tube trailer)'
H2RCPL 'Resid (pipeline)'
H2CRLQ 'Coal reforming (liquid)'
H2CRPL 'Coal reforming (pipeline)'
H2CRTT 'Coal reforming (tube trailer)'
H2BMLQ 'Biomass (liquid)'
H2BMPL 'Biomass (pipeline)'
H2BMTT 'Biomass (tube trailer)'
H2ELLQ 'Electrolysis (liquid)'
H2ELPL 'Electrolysis (pipeline)'
H2ELTT 'Electrolysis (tube trailer)'
MeGSLQ 'Methanol generation - from biomass, see excel for tech description'
MeARLQ 'Methanol generation - from biomass, see excel for tech description'
MeSCLQ 'Methanol generation - from biomass, see excel for tech description'
MeSCMR 'Methanol generation - from biomass, see excel for tech description'
MeHGAR 'Methanol generation - from biomass, see excel for tech description'
MESCSR 'Methanol generation - from biomass, see excel for tech description'
H2PL 'H2 transmission by pipeline'
H2TT 'H2 transmission by tube trailer'
H2LQ 'H2 transmission by liquefied'
MeTR 'Methanol by truck'
H2FSPL 'H2 fuelling station pipeline connected'
H2FSTT 'H2 fuelling station low pressure'
H2FSLQ 'H2 fuelling station high pressure'
MeFSNE 'Methanol fuelling station (new)'
MeFSMO 'Methanol fuelling station (retrofitet)'
/

Set chainpath chain paths /H2cpl, H2ctt, H2clq, MeLQ/;

Set gen(fuelchainmember) 'generation technologies'

/ H2NGLQ 'Natural gas reforming (liquid)'
H2NGPL 'Natural gas reforming (pipeline)'
H2NGTT 'Natural gas reforming (tube trailer)'
H2RCPL 'Resid (pipeline)'
H2CRLQ 'Coal reforming (liquid)'
H2CRPL 'Coal reforming (pipeline)'
H2CRTT 'Coal reforming (tube trailer)'
H2BMLQ 'Biomass (liquid)'

Appendix D: CUBE source code

H2BMPL 'Biomass (pipeline)
H2BMTT 'Biomass (tube trailer)
H2ELLQ 'Electrolysis (liquid)
H2ELPL 'Electrolysis (pipeline)
H2ELTT 'Electrolysis (tube trailer)
MeGSLQ 'Methanol generation - from biomass, see excel for tech description'
MeARLQ 'Methanol generation - from biomass, see excel for tech description'
MeSCLQ 'Methanol generation - from biomass, see excel for tech description'
MeSCMR 'Methanol generation - from biomass, see excel for tech description'
MeHGAR 'Methanol generation - from biomass, see excel for tech description'
MESCSR 'Methanol generation - from biomass, see excel for tech description'
Set tran(fuelchainmember) 'transmission'
H2PL 'H2 transmission by pipeline'
H2TT 'H2 transmission by tube trailer'
H2LQ 'H2 transmission by liquified'
MeTR 'Methanol by truck'
Set dis(fuelchainmember) 'distribution'
H2FSPL 'H2 fuelling station pipeline connected'
H2FSTT 'H2 fuelling station low pressure'
H2FSLQ 'H2 fuelling station high pressure'
MeFSNE 'Methanol fuelling station (new)'
MeFSMO 'Methanol fuelling station (retrofitet)'
Set genmap (gen,chainpath) 'link of generation to fuelchain'
(H2NGLQ,H2CRLQ,H2BMLQ,H2ELLQ).H2clq,
(H2NGTT,H2CRTT,H2BMTT,H2ELTT).H2ctt,
(H2NGPL,H2RCPL,H2CRPL,H2BMPL,H2ELPL).H2cpl,
(MEGSLQ,MEARLQ,MESCLQ,MESCMR,MEHGAR,MESCSR).MELQ
Set tranmap (tran,chainpath) 'link of transmission fo fuelchain'
(H2LQ).H2clq,
(H2TT).H2ctt,
(H2PL).H2cpl,
(MeTR).MELQ
Set dismap (dis,chainpath) link of distribution to fuelchain'
(H2FSPL).H2clq,
(H2FSTT).H2ctt,
(H2FSPL).H2cpl,
(MeFSNE,MeFSMO).MELQ
Set fuels fuels
gasoline,
diesel,
hydrogen,
biomass,
Appendix D: CUBE source code

167 naturaIgas,
168 resid,
169 coke,
169 methano
169 electricity,
170 temp
171 /;
172
173 Set param technology specification parameters
174 /INV,LINV,LR,FIXOM,VAROM,IEFF,FEFF,AF,LIFE,AVA/;
175
176 $include techdata.dat
177
178 Table effimp(tech,tp) improvement of technology performance relative to the initial efficiency
179
180 2000 2010 2020 2030 2040 2050 2060 2070 2080
181 182 cars
183 2090 2100
184
185 TGSL 1 2 2 3 3 4 4 5 5 6
186 6
187 TDSL 1 3 4 5 6 7 8 9 10 11
188 12
189 THYB 1 2 2 3 3 4 4 5 5 6
189 6
190 THYB 1 1 1 1 1 1 1 1 1 1
192 *
191 TMFC 1 1 1 1 1 5 7 9 11 13
190
191
191
192
193 generation
194
195 H2NGLQ 1 1 1 1 1 1 1 1 1 1
196
197 H2NLPL 1 1 1 1 1 1 1 1 1 1
198
199 H2NGTT 1 1 1 1 1 1 1 1 1 1
200
201 H2RCPL 1 1 1 1 1 1 1 1 1 1
202
203 H2CRLQ 1 1 1 1 1 1 1 1 1 1
204
205 H2CRPL 1 1 1 1 1 1 1 1 1 1
206
207 H2CRTT 1 1 1 1 1 1 1 1 1 1
208
209 H2BMPL 1 1 1 1 1 1 1 1 1 1
210
211 H2BMLQ 1 1 1 1 1 1 1 1 1 1
Appendix D: CUBE source code

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>H2ELTT</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>206</td>
<td>MeGSLQ</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>207</td>
<td>MeARLQ</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>208</td>
<td>MeSCLQ</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>209</td>
<td>MeSCMR</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>210</td>
<td>MeHGAR</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>211</td>
<td>MESCSR</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>212</td>
<td>*transmission</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>H2PL</td>
<td>1 1 1 1 2 2 2 3 3 3</td>
</tr>
<tr>
<td>214</td>
<td>H2TT</td>
<td>1 1 1 3 4 5 5 6 6 7</td>
</tr>
<tr>
<td>215</td>
<td>H2LQ</td>
<td>1 1 1 3 4 5 5 6 6 7</td>
</tr>
<tr>
<td>216</td>
<td>METR</td>
<td>1 1 1 3 4 5 5 6 6 7</td>
</tr>
<tr>
<td>217</td>
<td>*distribution</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>H2FSPL</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>219</td>
<td>H2FSTT</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>220</td>
<td>H2FSLQ</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>221</td>
<td>MEFSNE</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>222</td>
<td>MEFSMO</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

```
table decline(tech,tp) expand coefs
2000 2010 2020 2030 2040 2050 2060 2070 2080
2090 *cars
2110

<table>
<thead>
<tr>
<th>Year</th>
<th>TGSL</th>
<th>TDSL</th>
<th>THYB</th>
<th>THFC</th>
<th>TMFC</th>
<th>TELC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2030</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2040</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2050</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2060</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2070</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2080</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
```

Generation
```
2090 *generation
2100
```

<table>
<thead>
<tr>
<th>Year</th>
<th>H2NGLQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>10</td>
</tr>
<tr>
<td>2030</td>
<td>10</td>
</tr>
<tr>
<td>2040</td>
<td>10</td>
</tr>
<tr>
<td>2050</td>
<td>10</td>
</tr>
<tr>
<td>2060</td>
<td>10</td>
</tr>
<tr>
<td>2070</td>
<td>10</td>
</tr>
<tr>
<td>2080</td>
<td>10</td>
</tr>
<tr>
<td>Line</td>
<td>Code</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>238</td>
<td>H2NGPL</td>
</tr>
<tr>
<td>239</td>
<td>H2NGTT</td>
</tr>
<tr>
<td>240</td>
<td>H2RCPL</td>
</tr>
<tr>
<td>241</td>
<td>H2CRTT</td>
</tr>
<tr>
<td>242</td>
<td>H2VRPL</td>
</tr>
<tr>
<td>243</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>244</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>245</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>246</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>247</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>248</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>249</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>250</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>251</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>252</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>253</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>254</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>255</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>256</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>257</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>258</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>259</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>260</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>261</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>262</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>263</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>264</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>265</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>266</td>
<td>H2FVTQ</td>
</tr>
<tr>
<td>267</td>
<td>H2FVTQ</td>
</tr>
</tbody>
</table>
268 ;
269 Parameter DEMAND(tp) demand for transportation
270 /
271 2000 3605.4
272 2010 4431.8
273 2020 4978.0
274 2030 5332.6
275 2040 5583.1
276 2050 5538.8
277 2060 5329.1
278 2070 4873.6
279 2080 4324.2
280 2090 3846.1
281 2100 3762.7
282
283
284 /
285 YEO('TGSL') = 0.97*Demand('2000');
286 YEO('TDSL') = 0.025*Demand('2000');
287 YEO('THYB') = 0.005*Demand('2000');
288
289 Parameter mapfuel(tech,fuels) mapping of fuels
290 /
291 *cars
292 293 TGSL.gasoline 1
294 TDSL.diesel 1
295 THYB.gasoline 1
296 THFC.hydrogen 1
297 TMFC.methanol 1
298 TELC.electricity 1
299
300 *generation
301 H2NGLQ.electricity 1
302 H2NGPL.electricity 1
303 H2NGTT.electricity 1
304 H2RCPL.electricity 1
305 H2CRPL.electricity 1
306 H2CRTT.electricity 1
307 H2BMLQ.electricity 1
308 H2BMP.electricity 1
309 H2BMTT.electricity 1
310 H2ELLQ.electricity 1
311 H2ELPL.electricity 1
312 H2ELTT.electricity 1
313 MeGSLQ.temp 1
314 MeARLQ.temp 1
315 MeSCLQ.temp 1
316 MeSCMR.temp 1
317 MeHGR.temp 1
318 MESCRR.temp 1
319
320 *transmission
321 H2PL.temp 1
322 H2TTT.diesel 1
323 H2LQ.diesel 1
324 METR.diesel 1
325
326 *distribution
Parameter mapinput(tech,fuels) mapping of input commodity

* cars

TGS(temp) 1
TDSL.temp 1
THYB.temp 1
THFC.temp 1
TMFC.temp 1
TELC.temp 1

* generation

H2NGLQ.naturalgas 1
H2NGLP.naturalgas 1
H2NTT.naturalgas 1
H2RCPL.resid 1
H2CRLQ.coke 1
H2CRPL.coke 1
H2CRTT.coke 1
H2BMLQ.biomass 1
H2BMPL.biomass 1
H2BMTT.biomass 1
H2EL1Q.temp 1
H2EL2Q.temp 1
H2EL3Q.temp 1
MeGSLQ.biomass 1
MeARLQ.biomass 1
MeSCLQ.biomass 1
MeSCMR.biomass 1
MeHGAR.biomass 1
MESCSR.biomass 1

* transmission

H2PL.temp 1
H2TT.temp 1
H2LQ.temp 1
METR.temp 1

* distribution

H2FSPL.temp 1
H2FSTT.temp 1
H2FLQ.temp 1
MEFSNE.temp 1
MEFSMO.temp 1

* parameter fuelpricegr(fuels,tp) prices of fuels changeing over time;

*fuelpricegr(fuels,'2000')=l;

*Loop(tp$(Ord(tp) GT 1), fuelpricegr(fuels,tp)
= fuelpricegr(fuels,tp-1)^(fuelgrowthindex(fuels,tp-1)/100+1));

parameter chain(fuelchainmember,chainpath) mapping of gen-tran-dis to create fuel chains

/
Appendix D: CUBE source code

*generation

H2NGLQ.h2clq 1
H2NGPL.h2cpl 1
H2NGTT.h2ctt 1
H2RCPL.h2cpl 1
H2CRLQ.h2clq 1
H2CRPL.h2cpl 1
H2CRTT.h2ctt 1
H2BMLQ.h2clq 1
H2BMPL.h2cpl 1
H2BMTT.h2ctt 1
H2ELLQ.h2clq 1
H2ELPL.h2cpl 1
H2ELTT.h2ctt 1
MeGSLQ.melq 1
MeARLQ.melq 1
MeSCLQ.melq 1
MeSCMR.melq 1
MeHGAR.melq 1
MESCSC.melq 1
H2PL.h2cpl 1
H2TT.h2ctt 1
H2LQ.h2clq 1
METR.melq 1

*transmission

H2FSPL.h2cpl 1
H2FSTT.h2ctt 1
H2FSLQ.h2clq 1
MEFSNE.melq 1
MEFSMO.melq 1

*distribution

THFC.h2 1
TMFC.meoh 1

Set carfuel set for car-fuelchain link/meoh, h2/;
Set Isfuelchainmember(tech) set of technologies for the last step of the fuel chain

/ thfc,tmfc,
h2fspl,h2fstt,h2fslq,mefsne,mefsmo/;
Set chaincar(lsfuelchainmember) /thfc,tmfc/;
Set chainstation(lsfuelchainmember) /h2fspl,h2fstt,h2fslq,mefsne,mefsmo/;

Parameter mapfuelchain(lsfuelchainmember,carfuel) mapping of fuel chains to cars

/ h2fspl,h2fstt,h2fslq,mefsne,mefsmo/;

Parameters

pv(tp) present value factor
crf(tech) capital recovery factor
Scalar
discpp discount to 1st year of period
RDrate R&D costs reduction rate;
Set discppset /1*10/;

\[\text{pv}(tp) = \frac{1}{(1+\text{disc})^{\text{period}+(\text{ord}(tp)-1)}}; \]

\[\text{crf}(tech) = \frac{\text{disc}*(1+\text{disc})^{\text{(techdata}(tech,\text{life})*\text{period})}}{((\text{disc}+1)^{\text{(techdata}(tech,\text{life})*\text{period}))-1)}; \]

\[\text{discpp} = \sum(\text{discppset}, (1+\text{disc})^{-\text{Ord}(\text{discppset})}); \]

\[\text{RDrate} = \log(0.9)/\log(2); \]

VARIABLES
COST NLP present value of costs - thousand of $
;

POSITIVE VARIABLES
*cars

XE(tech,tp) activity of technology - 10**9 car-km per year or GJ
YE(tech,tp) accumulated activity of technology - 10**9 car-km per year or GJ

RD(tech,tp) activity of R&D for techs
RDE(tech,tp) cumulative activity of R&D for techs

Equations
EQ_demvkm(tp) vkm-demand balance

*fuel chains

EQ_gentra(tp,chainpath) Generation-transmission balance
EQ_tradis(tp,chainpath) Transmission-distribution balance
EQ_discars(tp,carfuel) Distribution-car consumption balance

EQ_cumulativeT0(tech,tp) calculation of cumulative capacity for the 1st year
EQ_cumulative(tech,tp) calculation of cumulative capacity

EQ_expand(tech,tp) Expansion of technologies
EQ_decline(tech,tp) Decline of technologies

EQ_MeOH_out(tech,tp) MeOH is out of the analysis

EQ_cumulativeRD(tech,tp) Cumulative capacity of R&D
EQ_RD_growth(tech,tp) Expansion constrain of R&D
EQ_RD_decline(tech,tp) Decline constrain of R&D

EQ_OBJNLP Objective function
;

EQ_gentra(tp,chainpath)...
Sum(gens$genmap(gen,chainpath), xe(gen,tp)*techdata(gen,'ieff')*techdata(gen,'af'))
=e= Sum(tran$tranmap(tran,chainpath), xe(tran,tp));

EQ_tradis(tp,chainpath)...
Sum(tran$tranmap(tran,chainpath), xe(tran,tp)*techdata(tran,'ieff')*techdata(tran,'af'))
=e= Sum(dis$dismap(dis,chainpath), xe(dis,tp));

EQ_discars(tp,carfuel)..
Sum(chain_station$mapfuelchain(chain_station, car_fuel),
xe(chain_station, tp)*techdata(chain_station, 'ieff')*techdata(chain_station, 'af')) = g =
Sum(chain_car$mapfuelchain(chain_car, car_fuel), xe(chain_car, tp)/techdata(chain_car, 'ieff'))

EQ_demvkm(tp).. Sum(cars, xe(cars, tp)) =e= demand(tp);

entrance and penetration of techs

*general - let's not go crazy with market penetration
xe.up(cars, tp) = 1.02*demand(tp);
*those not available penetrate at 0
XE.fx(tech, tp)$(ord(tp) LT techdata(tech, 'ava')) = e = 0.0;

*first year calibration
XE.up(tech, tp)$((ord(tp) EQ 1) AND (ord(tp) EQ techdata(tech, 'ava'))) = e = 1.01*YE0(tech);
XE.lo(tech, tp)$((ord(tp) EQ 1) AND (ord(tp) EQ techdata(tech, 'ava'))) = e = 0.99*YE0(tech);

*initial launch
XE.UP(tech, tp)$((Ord(tp) GT 1) AND (Ord(tp) EQ techdata(tech, 'ava'))) = e = YE0(tech);
XE.Io(tech, tp)$((Ord(tp) EQ 1) AND (Ord(tp) EQ techdata(tech, 'ava'))) = e = 0.99*YE0(tech);

*expansion/declination
EQ.expand(tech, tp+l)$((Ord(tp) GE techdata(tech, 'ava'))).. XE(tech, tp+l) =e= XE(tech, tp) * ((expand(tech, tp)/100+1)**period);
EQ.decline(tech, tp+l)$((Ord(tp) GE techdata(tech, 'ava'))).. XE(tech, tp+l) =e= XE(tech, tp) * ((1-decline(tech, tp)/100)**period);

*other bounds which were used earlier for something
XE.lo(tech, tp)$((ord(tp) gt 1) AND (ord(tp) EQ techdata(tech, 'ava'))) = e = 0.99*YE0(tech);
YE.fx(tech, tp)$(ord(tp) LT techdata(tech, 'ava')) = e = 0.01*YE0(tech);
YE.Io(tech, tp) = e = 0.01*YE0(tech);

EQ.MeOH_out(tech, tp).. YE('tmfc', tp) =e= 0;

R&D

Parameter
RDSC0 Initial cost of R&D
RDCC0 Initial CC0 of R&D;
RDCC0 = 1;
RDScalar
RDindex R&D learning index of 10% /10/
*keep in mind the units!!! in the OBJfunction, demand is in 1e9 vkm, costs are in 1e3$/1e3
vkm, so we get 1e9 vkm * 1$/1$, hence the result is in
*1000e9 $, so for R&D if we want to invest 10mln $, then express it as 1e-03$
RDUC unit cost of R&D /0.01/;

EQ_RD_growth(tech, tp+1)$((techdata(tech, 'lr') NE 0)).. RD(tech, tp+1) =l= RD(tech, tp)*2;
EQ_RD_decline(tech,tp+1)$((techdata(tech,'lr') NE 0).. RD(tech,tp+1) = g= RD(tech,tp)*0.1;

* R&D is present
EQ_cumulativeRD(tech,tp)$((techdata(tech,'lr') NE 0)
.. RDE(tech,tp) = e= RDE(tech,tp-1) + RD(tech,tp);

* obj-function equation fix

* first launch to the market
RD.up(tech,tp)$((techdata(tech,'lr') NE 0)
.. RDCC0;

RD.lo(tech,tp)$((techdata(tech,'lr') NE 0)
.. = 0;

Parameter
blbd(tech,tp) learning coef for LBD
bibs learning coef for LBS;

* learning techs - not present on the market
blbd(tech,tp)$((techdata(tech,'lr') NE 0) AND (Ord(tp) GE techdata(tech,'ava')) = (log((100-
techdata(tech,'lr'))/100)) /log (2);

* learning techs - present on the market
blbd(tech,tp)$((techdata(tech,'lr') NE 0) AND (Ord(tp) LT techdata(tech,'ava'))) = 1;

* non-learning techs
blbd(tech,tp)$((techdata(tech,'lr') EQ 0) = 1;

bibs = (log((100-RDindex)/100)) /log (2);

************************QBjp_C"TIVE FUNCTION FOR NLP

EQ_OBJNLP.. COST_NLP = e填写

EQ_OBJNLP.. COST_NLP = e填写
Appendix D: CUBE source code

593 * learning component of investments
594 +XE(tech,tp)*crf(tech)*techdata(tech,'linv')
595 * LBD
596 blbd(tech,tp))
597 * LBS
598 * (((RDE(tech,tp)+1e-6) /RDCC0)**
599 blbs)
600)
601)
602 ***Model segment***************
603 MODEL LBD_NLP /
604 **
605 *cars
606 EQ_demvkm
607 EQ_gentra
608 EQ_tradis
609 EQ_discars
610 EQ_MeOH_out
611 *EQ_cumulativeT0
612 EQ_cumulative
613 EQ_expand
614 EQ_decline
615 *R&D
616 *EQ_cumulativeRD
617 *EQ_RD_growth
618 *EQ_RD_decline
619 *total
620 EQ_OBJNLP
621 /;
622 option NLP=CONOPT3;
623 *option NLP=MINOS5;
624 Solve LBD_NLP minimizing COST_NLP using NLP;
625 Display xe.l
626 *,ye0
627 *,ye.l
628 *,ye0
629 *,rd.l
630 *,rde,l
631 *,costkm
632 *,rdcc0
633 *,pv
634 *,crf
635 *,discpp
636 ,blbd
637 ,blbs
638 176
Appendix D: CUBE source code

648 649 ;
650 651 Put Fl;
652 653 Put 'h2kw=',techdata('thfc','linv'),',lr=',techdata('thfc','lr'),
654 655 'mekw=',techdata('tmfc','linv'),',lr=',techdata('tmfc','lr'), ' BBL=',basefuelprice /;
656 657 Put 'technologies' /;
658 659 Loop (TP, Put TP.TL, ';'); Put /;
660 661 Loop (tech,
661 662 put tech.tl, ';';
662 663 Loop (tp, put xe.l(tech,tp), ';');
663 664 put /;
664 665)
665 666 PutClose;
666 667 *
667 668 *$include h2bump.gms

File techdata.dat

<table>
<thead>
<tr>
<th>Tech</th>
<th>INV</th>
<th>LINV</th>
<th>LR</th>
<th>FIXOM</th>
<th>VAROM</th>
<th>IEFF</th>
<th>FEFF</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGSL</td>
<td>1062</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>8.1</td>
<td>1</td>
<td>0.3054</td>
<td>1</td>
</tr>
<tr>
<td>TDSL</td>
<td>1171</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>8.1</td>
<td>1</td>
<td>0.4081</td>
<td>1</td>
</tr>
<tr>
<td>THYB</td>
<td>1257</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>8.1</td>
<td>1</td>
<td>0.7648</td>
<td>1</td>
</tr>
<tr>
<td>THFC</td>
<td>941</td>
<td>1714</td>
<td>20.0</td>
<td>70</td>
<td>8.1</td>
<td>1</td>
<td>1.2000</td>
<td>1</td>
</tr>
<tr>
<td>TMFC</td>
<td>1012</td>
<td>1714</td>
<td>15</td>
<td>70</td>
<td>8.1</td>
<td>1</td>
<td>1.2000</td>
<td>1</td>
</tr>
<tr>
<td>TELC</td>
<td>1285</td>
<td>200</td>
<td>10</td>
<td>70</td>
<td>8.1</td>
<td>1</td>
<td>1.7800</td>
<td>1</td>
</tr>
<tr>
<td>Gen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2NGLQ</td>
<td>38.73</td>
<td>0</td>
<td>0</td>
<td>1.94</td>
<td>4.56</td>
<td>0.762</td>
<td>0.3369</td>
<td>0.9</td>
</tr>
<tr>
<td>H2NGPL</td>
<td>13.30</td>
<td>0</td>
<td>0</td>
<td>0.67</td>
<td>0.40</td>
<td>0.762</td>
<td>0.0216</td>
<td>0.9</td>
</tr>
<tr>
<td>H2NGTT</td>
<td>22.40</td>
<td>0</td>
<td>0</td>
<td>1.11</td>
<td>0.88</td>
<td>0.762</td>
<td>0.0528</td>
<td>0.9</td>
</tr>
<tr>
<td>H2RCPL</td>
<td>31.16</td>
<td>0</td>
<td>0</td>
<td>1.55</td>
<td>1.28</td>
<td>0.76</td>
<td>0.0771</td>
<td>0.9</td>
</tr>
<tr>
<td>H2CRLQ</td>
<td>75.46</td>
<td>0</td>
<td>0</td>
<td>3.77</td>
<td>6.37</td>
<td>0.694</td>
<td>0.4505</td>
<td>0.9</td>
</tr>
<tr>
<td>H2CRPL</td>
<td>43.62</td>
<td>0</td>
<td>0</td>
<td>2.17</td>
<td>1.79</td>
<td>0.694</td>
<td>0.1082</td>
<td>0.9</td>
</tr>
<tr>
<td>H2CRTT</td>
<td>57.10</td>
<td>0</td>
<td>0</td>
<td>2.86</td>
<td>2.54</td>
<td>0.694</td>
<td>0.1583</td>
<td>0.9</td>
</tr>
<tr>
<td>H2BMLQ</td>
<td>76.13</td>
<td>0</td>
<td>0</td>
<td>3.81</td>
<td>6.48</td>
<td>0.76</td>
<td>0.4600</td>
<td>0.9</td>
</tr>
<tr>
<td>H2BMPL</td>
<td>49.69</td>
<td>0</td>
<td>0</td>
<td>2.48</td>
<td>2.29</td>
<td>0.76</td>
<td>0.1448</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Appendix D: CUBE source code

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Tech</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>H2BMTT 60.97 0 0 3.05 2.96 0.76 0.1894 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>H2ELLQ 115.88 0 0 5.79 0.49 0.635 1.9348 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>H2ELPL 95.33 0 0 4.77 0.21 0.635 1.6341 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>H2ELTT 101.40 0 0 5.07 0.35 0.635 1.6343 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MeGSLQ 21.58 0 0 0.86 0.52 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>MeARLQ 24.95 0 0 1.00 0.59 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>MeSCLQ 22.24 0 0 0.89 0.58 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>MeSCMR 19.78 0 0 0.79 0.57 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>MeHGar 24.91 0 0 1.00 0.56 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>MECSMR 20.95 0 0 0.84 0.54 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>H2PL 101.57 0 0 6.14 0 0.997 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>H2TT 23.75 0 0 13.08 0 0.997 10.10 0.9 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>H2LQ 2.19 0 0 1.12 0 0.997 166.66 0.9 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>METR 0.7842 0 0 0.008 0.0408 0.998 285.71 0.9 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>H2FSPL 35.71 0 0 2.49 0 0.997 57.0181 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>H2FSTT 35.71 0 0 1.82 0 0.997 114.0363 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>H2FSLQ 46.99 0 0 2.17 0 0.997 142.5242 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>MEFSNE 0.5932 0 0 0.38 0 0.997 1 0.9 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>MEFSMO 0.2542 0 0 0.38 0 0.997 1 0.9 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*transmission

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Tech</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2010</td>
<td>2020</td>
<td>2030</td>
</tr>
<tr>
<td>2090</td>
<td>2100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*cars

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>TGSL 10 10 10 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TDLS 10 10 10 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>THYB 10 10 10 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>THFC 10 10 10 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TMFC 10 10 10 10 10 10 10 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TELC</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>53</td>
<td>*generation</td>
<td>H2NGLQ</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>H2NGPL</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>H2NGTT</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>H2RCPL</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>H2CRLQ</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>H2CRPL</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>H2CRTT</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>H2BMLQ</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>H2BMPL</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>H2BMTT</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>H2ELLQ</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>H2ELPL</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>H2ELTT</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>MeGSLQ</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>MeARLQ</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>MeSCLQ</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>MeSCMR</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>MeHGAR</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>MESCNR</td>
</tr>
<tr>
<td>72</td>
<td>*transmission</td>
<td>H2PL</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>H2TT</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>H2LQ</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>METR</td>
</tr>
<tr>
<td>76</td>
<td>*distribution</td>
<td>H2FSPL</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>H2FSTT</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>H2FSLQ</td>
</tr>
</tbody>
</table>
Parameter YEO(tech) initial capacities

Parameter fuelgrowthindex (fuels) growth rate for fuels after 2010

Scalar BaseFuelPrice BBL price;
BaseFuelPrice = 55;

Parameters
OilPrice price of oil in $ a GJ
GasolinePrice price of gasoline
DieselPrice price of diesel;

*from the original runs
*GasolinePrice = (BaseFuelPrice/22.96)*1000/(3.7854118*30.618);
*DieselPrice = GasolinePrice * 0.865;

*including taxation and transmission
OilPrice = BaseFuelPrice / (159 * 30.618 / 1000);
GasolinePrice = BaseFuelPrice / (159 * 30.618 / 1000) + BaseFuelPrice / (159 * 30.618 / 1000) * 1.6;
DieselPrice = GasolinePrice * 0.75;

parameter fuelorgprice(fuels,tp);
*fuel pricing for 2000
fuelorgprice('gasoline' , '2000') = 18.07;
fuelorgprice('diesel' , '2000') = 16.25;
fuelorgprice('hydrogen' , '2000') = 0;
fuelorgprice('biomass' , '2000') = 3.6;
fuelorgprice('naturalgas' , '2000') = 2.5;
fuelorgprice('resid' , '2000') = 0.5;
fuelorgprice('coke' , '2000') = 5.86;
fuelorgprice('methanol' , '2000') = 0;
fuelorgprice('electricity', '2000') = 12.5;
fuelorgprice('temp' , '2000') = 0;

*fuel pricing for 2010
fuelorgprice('gasoline' , '2010') = GasolinePrice;
fuelorgprice('diesel' , '2010') = DieselPrice;
fuelorgprice('hydrogen' , '2010') = 0;
fuelorgprice('biomass' , '2010') = 3.6;
fuelorgprice('naturalgas' , '2010') = 2.5;
fuelorgprice('resid' , '2010') = 0.5;
fuelorgprice('coke' , '2010') = OilPrice;
fuelorgprice('methanol' , '2010') = 0;
fuelorgprice('electricity', '2010') = 12.5;
fuelorgprice('temp' , '2010') = 0;

Loop (TP$(ORD(TP) GT 2),
 fuelorgprice(fuels, tp) = (fuelgrowthindex(fuels)/100+1)*fuelorgprice(fuels, tp-1)));
display 'paliwa',
ioprice,
gasolineprice,
dieselprice,
fuelorgprice;
182 Appendix D: CUBE source code

192
193 File F1 /out.DK/;
194 *

Curriculum Vitae

Name: Daniel A. Krzyzanowski
Date of birth: 1st March 1974
Place of birth: Gdansk, Poland
Nationality: Polish

Education register

<table>
<thead>
<tr>
<th>Dates</th>
<th>School/College/University</th>
<th>Subject/Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.2003</td>
<td>Swiss Federal Institute of Technology Zurich (ETHZ)</td>
<td>PhD study on Hydrogen Economy; Long Term Mitigation Options with Emphasis on the</td>
</tr>
<tr>
<td></td>
<td>(Zürich, Switzerland)</td>
<td>Transportation Sector</td>
</tr>
<tr>
<td>09.1999</td>
<td>Delft University of Technology (Delft, Netherlands)</td>
<td>Master of Science degree (MSc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of System Engineering, Policy Analysis and Management</td>
</tr>
<tr>
<td>10.1994</td>
<td>Technical University of Gdansk (Gdansk, Poland)</td>
<td>Bachelor of Science degree (BSc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Chemistry, Environment Protection and Management</td>
</tr>
<tr>
<td>10.1993</td>
<td>University of Torun (Torun, Poland)</td>
<td>Law Faculty; Semester I and II</td>
</tr>
<tr>
<td>09.1989</td>
<td>Secondary School no. 5 and 10 (Gdansk, Poland)</td>
<td>Grades 1~4; A-levels</td>
</tr>
<tr>
<td>09.1984</td>
<td>International School of Lusaka (Lusaka, Zambia)</td>
<td>Grades 4,5 and Form 1</td>
</tr>
<tr>
<td>09.1981</td>
<td>Primary School no. 71 (Gdansk, Poland)</td>
<td>Grades 13, 68</td>
</tr>
</tbody>
</table>

Professional experience

<table>
<thead>
<tr>
<th>Dates</th>
<th>Organisation</th>
<th>Position held</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.2002</td>
<td>United Nations</td>
<td>External Consultant for the project "Capacity Building for the Rapid Commercialisation of Renewable Energy in China (CPR/97/G31)"</td>
</tr>
<tr>
<td>09.2001</td>
<td>Ecofys Polska (Poznan, Poland)</td>
<td>Project Manager (field: biomass/project development)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co-ordinator Biomass Group and Municipal Services</td>
</tr>
<tr>
<td>07.2000</td>
<td>Ecofys bv (Utrecht, Netherlands)</td>
<td>Project Manager (field: biomass)</td>
</tr>
<tr>
<td>12.1999</td>
<td>Ecofys bv (Utrecht, Netherlands)</td>
<td>Apprenticeship</td>
</tr>
<tr>
<td>03.1999</td>
<td>Municipality of Gdansk, Department of Environment Protection and Agriculture (Gdansk, Poland)</td>
<td>Waste Management Officer</td>
</tr>
</tbody>
</table>
The results of the work presented in this document have been disseminated to the broader community in form of the following contributions:

Krzyzanowski D.A., Kypréos S., Gutzwiller L., Barreto L. (2005) – “Implications of Technology Learning in Energy-Economy Models of the Transportation Sector”; Report to the Alliance for the Global Sustainability (AGS); Report no.: PSI-PR-05-06, Paul Scherrer Institut, Villigen (Switzerland)

