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Summary

The asynchronous and time-continuous computation that takes place in bio-
logical systems is of great interest because of the capability of these systems
to interact with the real-world. In this work we explore such computation in
the spike-based winner-take-all network, by developing a theoretical model of
its performance and describing its implementation in a large-scale multi-chip
vision system.

The winner-take-all is a neuronal network that amplifies the strongest set of
inputs and suppresses output from the others. In various neuroscience models,
this function is used to make a selection out of a possible set of decisions de-
pendent on the input. As we develop artificial spike-based systems for different
applications we need a theoretical understanding of the parameter settings in
the spike-based neuronal networks where we can obtain this behavior. Previous
analyses of winner-take-all behavior have considered analog or spike-rate coded
inputs. Here we are interested in the computation in the transition between
single-spike and spike rate coding.

In the theoretical part of this thesis (Chapter 2), we show for both regular
and Poisson spike trains under which parameters the decision of the winner is
optimal, that is it makes use of all information available in the input spikes.
For inputs of regular rates the winner can be selected with only one inter-spike
interval. For inputs of Poisson rates, the performance of the network depends
on the number of spikes the neurons need to reach threshold.

In biology, the winner-take-all network is believed to be part of the cortical
microcircuit, in which it both cooperates and competes with other areas to reach
a consistent interpretation of the input. We model such context information with
self-excitation if the input is stationary, with permitted sets to embed syntactic
constraints, and with competition across winner-take-all networks to select the
strongest of a set of feature maps.

We then describe how these theoretical analyses are applied in Very-Large-
Scale-Integration technology (Chapter 3). Neurons and synapses are imple-
mented using analog transistor circuits, while spikes are represented as digital
address-events. We focus on two issues in the implementation: mismatch and
a hybrid hardware/software framework. First, mismatch in the analog transis-
tors limits the performance of the winner-take-all network. We characterize the
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iv SUMMARY

mismatch in the input synapses and discuss different schemes of compensating
the synaptic weights. Second, we present a software framework to analyze the
spike trains in the system and to add learning and adaptation capabilities by
embedding software agents in the spiking communication.

Finally, in Chapter 4, we analyze the hardware winner-take-all in a multi-
chip vision system (Caviar), consisting of an artificial retina, a bank of spike-
based convolution filters, the winner-take-all network and a learning module
that classifies trajectories of moving objects. We show that the inputs to the
winner-take-all follow Poisson statistics, although retina and convolution filters
are deterministic and exhibit only a small amount of variation. When the system
is stimulated with a moving object, the input to the winner-take-all is a spike
wave of Gaussian shape that is traveling across the neurons. With this input
we can compare the winner-take-all performance predicted by our theoretical
model with the performance of our implementation when applied to this large-
scale system that performs real-time asynchronous computation.



Zusammenfassung

Die asynchrone und zeitkontinuierliche Informationsverarbeitung biologischer
Systeme ist von großem Interesse, da sie diesen Systemen ermöglicht, in Echt-
zeit mit der Welt zu interagieren. In dieser Arbeit erforschen wir diese Rechen-
prinzipien in einem pulsbasierten neuronalen Netz zur Maximumselektion. Wir
entwickeln ein theoretisches Modell der Leistungsfähigkeit und beschreiben die
Implementierung in einem hochintegrierten Bildverarbeitungssystem.

Neuronale Netze zur Maximumselektion verstärken die stärkste Gruppe von
Eingangssignalen und unterdrücken die Aktivität der anderen Neurone. Die-
se Funktion wird häufig in neurowissenschaftlichen Modellen verwendet, um
Entscheidungen in Abhängigkeit des Eingangs auszuwählen. Um solche puls-
basierten Netzwerke in technische Applikationen umzusetzen, benötigen wir
ein theoretisches Verständnis ihrer Wirkungsweise und Parameterbereiche. Vor-
hergehende Untersuchungen von Netzwerken mit Maximumselektion haben die
Eingänge entweder als analoge Signale oder aber frequenzkodiert angesehen.
Unser Interesse gilt den Prinzipien der Berechnung im Übergang der Kodierung
als einzelne Pulse und als Pulsrate.

Im Theorieteil dieser Dissertation (Kapitel 2) untersuchen wir die Parame-
terbereiche des Netzwerks für die optimale Erkennung von Eingangssignalen mit
konstanter Rate und mit Poisson-Statistik. Wir sprechen von optimaler Erken-
nung, wenn alle in den Eingangssignalen enthaltene Informationen ausgenutzt
werden. Bei konstanter Rate kann das Netzwerk das stärkste Eingangssignal
mit nur zwei Pulsen detektieren; bei Kodierung mit Poisson-Statistik hängt die
Erkennungsleistung von der Anzahl der Pulse ab, die die Nervenzellen zum Er-
reichen ihres Schwellwertes benötigen.

Selektionsnetzwerke werden in der Modellierung von kortikalen Standard-
netzwerken eingesetzt, um Informationen verschiedener Gehirnareale gleichzei-
tig kompetitiv und kooperativ zu integrieren. Wir berücksichtigen solche Kon-
textinformationen in unserem Netzwerk durch Selbsterregung der Neurone für
stationäre Eingangssignale, durch Koaktivierungsmuster für die Integration syn-
taktischer Nebenbedingungen, und durch Selektion auf Netzwerkebene in der
Musterkennung mit Filterbänken.

Das theoretische Verständnis des Netzwerks ermöglicht die Umsetzung als
hochintegrierte Halbleiterschaltung (Kapitel 3). Neurone und Synapsen werden
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durch analoge Transistorschaltkreise implementiert; digitale Pulse modellieren
die Aktionspotentiale biologischer Nervenzellen. Wir konzentrieren uns auf zwei
Implementierungsfragen: auf Parameterschwankungen und die Integration von
Algorithmen. Parameterschwankungen in den analogen Schaltkreisen mindern
die Leistungsfähigkeit des Selektionsnetzwerks. Wir untersuchen die Parameter-
schwankungen in den Eingangssynapsen und diskutieren verschiedene Verfahren
zur Kompensation der synaptischen Gewichte. Als zweites entwickeln wir eine
hybride Hardware/Softwarearchitektur zur Analyse der Pulsfolgen im System,
und um Lern- und Adaptionsalgorithmen in die Pulskommunikation zu integrie-
ren.

In Kapitel 4 diskutieren wir die Leistungsfähigkeit des Netzwerkes einge-
bettet in ein hochintegrierte Bildverarbeitungssystem (Caviar), bestehend aus
einer künstlichen Retina, einer pulsbasierten Filterbank, dem Selektionsnetz-
werk und einem Lernmodul, das die Trajektorien sich bewegender Objekte klas-
sifiziert. Wir zeigen, daß die Signale im System der Poissonverteilung folgen,
obwohl sowohl Sensor als auch die Vorverarbeitung deterministisch sind und
nur geringe Parameterschwankungen aufweisen. Sich bewegende Objekte lösen
eine Welle von Aktivität im Profil einer Normalverteilung aus, die die Neuronen
des Netzes entlangläuft. Mit dieser Modellierung der Eingangssignale kann die
Leistungsfähigkeit des Netzwerkes in der Vorhersage des theoretischen Modells
mit der Anwendung in einem hochintegrierten System verglichen werden, um
echtzeitfähige asynchrone Rechenarchitekturen zu verstehen.
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Chapter 1

Introduction

”Biological information processing systems (’brains’) overwhelmingly
outperform their artificial counterparts.”1

This citation from the Caviar project description underscores the fact that
our current artificial computation systems, as powerful as they are when pro-
cessing large data sets, still fail miserably when compared to the interaction
capability of biological systems with the real world. Taking inspiration from
key principles of biological information processing systems to improve our arti-
ficial systems is a logical step.

Many differences between biological and artificial computational architec-
tures have been pointed out, such as the complex recurrent connectivity of neu-
rons in cortex, the co-localization of processing and local memory, or the adap-
tive properties of biological wet-ware. In this work we will emphasize another
key principle that forms the basis for interaction in real-time: the incorporation
of time into the basic building block of computation.

Modern processing and signal processing architectures execute software on
synchronously clocked hardware. At each clock cycle, the input signals are
considered to be static, and are combined in boolean functions. The duration
of the clock cycle is fixed, determined by the maximum propagation delay of
the underlying functions. The underlying building block, the gate, is seen as a
quasi-static element, as well as the functional description of its logic function.
Similarly, most descriptions of time-varying signals in engineering depend on
constant sampling frequencies, for example the sampling of sensory signals or
the fourier frequency analysis.

Neurons as the basic building blocks of biological computation do not com-
pute based on a clock but perform their computation continuously in time and
asynchronously on the input. Computation is triggered by incoming spikes
(events), and performed with functions defined on different time-scales. The

1Caviar, EU 5th framework project (IST-2001-34124), project description p.4.
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2 CHAPTER 1. INTRODUCTION

result of the computation is again sampled asynchronously by transmitting out-
put spikes to other neurons. Basically, the processing in the neuron is triggered
by the input signals and reflects the input timing. We think that this incorpo-
ration of time into the basic building block of computation is the basis for the
interaction of the whole system with the real-time world.

The same basic building block, the neuron, is repeated on all levels of ab-
straction. Throughout the hierarchy of processing, spikes can encode sensory
information, extracted features, behavior decisions and motor reactions.

The type of mathematics needed to describe such asynchronous, event-based
processing is different from conventional engineering methods, with sometimes
surprising results. For example, sampling at Poisson-distributed timepoints
leads to an alias-free frequency representation [Shapiro and Silverman, 1960].

We work towards an understanding of asynchronous event-based processing
by quantifying the performance of a simple spike-based neuronal network, a
winner-take-all. This network computes a MAX operation with respect to the
statistical properties of its inputs. We will reduce the network to a maximally
simplified, minimalistic form that captures the essence of this spike-based com-
putation, before we add biologically relevant parameters and quantify their effect
on the network behavior (Chapter 2). Having understood the basic principles,
we describe an implementation of the network in Very-Large-Scale-Integration
(VLSI) technology (Chapter 3). Embedding this building block in a large-scale
multi-chip system in the Caviar project (Chapter 4) leads the way towards
processing architectures that are inspired by computation principles found in
biological systems such as cortex.

1.1 Winner-Take-All Networks

The human brain consists of roughly 1010 neurons, of which each receives con-
nections from up to 104 other neurons. The number of connectivity patterns
that are possible with these numbers is beyond imagination and would render
any understanding of cortical processing impossible. But the cortex shows a
structure of six different layers, and the different layers show different cell types
and different connectivity patterns, preserved over the cortex. This structure
has given rise to the proposition that there is a fundamental neuronal circuit,
the so-called canonical microcircuit [Douglas et al., 1989]. This circuit speci-
fies a connectivity pattern of different cell types in the cortical layers and its
input from the thalamus. Being repeated many times in each cortical area, the
canonical microcircuit would be one of basic network-level building blocks of the
brain, and its deciphering is the key to an understanding of cortical structure.

Unfortunately, the properties of this microcircuit make it difficult for re-
searches to obtain an integral snapshot of its network: its size is below the res-
olution of magnetic resonance imaging and positron emission tomography, and
it has too many neurons for a complete anatomical reconstruction or recording
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from multiple cells. Two-photon microscopy would offer the resolution to image
such a network, but its imaging planes are parallel to cortex surface, while the
main connections of the neurons in the network extend vertically. Significant
effort has been undertaken over the last years to create a statistical map of the
neuronal circuit by detailed anatomical reconstruction of connections between
single cells [Binzegger et al., 2004]. In this statistical map, the relations of con-
nections between the cell types in the different layers are listed. At the same
time, the functional significance of this microcircuit structure is explored by
simulations in which the ratios of neuron types and connections match the ones
found by anatomy [Douglas et al., 1989, Korner et al., 1999, Maass et al., 2002,
2004].

[Douglas and Martin, 2004] derive a model of cortical function from the
anatomical data as follows: superficial pyramidal cells receive input from sub-
cortical areas, as well as from other intra- and interareal excitatory sources.
Horizontal inhibitory cells ensure that the local input is decoded consistently
with the interpretation of other intra- and inter-areal networks. This selection
mechanism is implemented by a soft winner-take-all network that cooperates
to enhance consistent interpretations of the input, and competes to suppress
inconsistent ones. Built on this stage of feature decoding is a second structure
that has a similar soft selection configuration to further process the decoded
information and to decide which output is transmitted to the motor structures.

While the actual processing might be very specific to the function the mi-
crocircuit is used in, the winner-take-all network is a very general neuronal
selection circuit. Several studies have discussed the computational power it of-
fers [Riesenhuber and Poggio, 1999, Yuille and Geiger, 1998, Maass, 1999, 2000].
It has been applied to many models of cortical processing, for example to a hi-
erarchical model of vision in cortex [Riesenhuber and Poggio, 1999], or to model
selective attention and recognition processes [Itti et al., 1998].

What are the properties of the winner-take-all selection mechanism? The
winner-take-all amplifies the strongest set of inputs and suppresses output from
the other neurons. The winner-take-all is ’hard’ if only one neuron is selected as
the winner and all other neurons are suppressed. In contrast, we use the term
’soft selection’ if several neurons are active in the output. There are several
properties that are motivated by the response of neurons in the cortex. These
properties combine digital and analog signal processing [Douglas et al., 1995,
Hahnloser et al., 2000]:

Soft selection: in contrast to selecting only one neuron as the winner, multiple
neurons are active in the output. In cortex-like implementations this fuzzy
selection is desirable for biological plausibility. We will show in Section 2.2
that co-activation of other neurons than the winner can emerge from the
variation found in the coding of cortical input signals.

Linear amplification: the activity of the winner is proportional to its input.
In contrast, a digital process would select the winner without the output
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signaling any information about the strength of its input [Douglas et al.,
1995]. In our model, the output frequency of the winner is an integer
division of the input frequency, so linearity is an intrinsic property.

Gain modulation: the modulation of the output response by background in-
put activity. The output is amplified depending on the total amount of
input the network is receiving. This can be seen as a kind of neuronal mul-
tiplication [Salinas and Abbott, 1996] and is obtained in network models
based on linear threshold units and firing rate input [Hahnloser et al., 2000,
Dayan and Abbott, 2001]. For our spike-based implementation without
lateral connectivity, gain modulation is not an intrinsic network property
and is not necessary in our desired application. Gain modulation could
be added by introducing additional lateral connectivity across the input.

Sustained activity: the persistence of the selection, that is, the output per-
sists even after the input is taken away or becomes uniform [Dayan and
Abbott, 2001, pp. 256]. This phenomenon is related to hysteresis, the
resistance of the network to follow a change in the strongest input [Hahn-
loser et al., 2000]. Our model exhibits hysteresis on a single spike based
level (Section 2.3.1), but not on the level of a sustained spiking output
without any input signal.

Signal restoration: the network restores the stimulus to a pattern that is la-
tent in the recurrent connectivity. Patterns can be simple nearest-neighbor
interaction or more complex patterns in which groups of neurons are ac-
tive. We will discuss this model of permitted and forbidden sets as defined
by [Hahnloser et al., 2000] in Section 2.5.1. These networks are comparable
with the concept of attractors, see [Dayan and Abbott, 2001, pp265].

Because of these properties the winner-take-all circuit is a smart decision
element as part of the microcircuit. Decision processes in the brain are not
localized in one specific region, but evolve in a distributed manner when different
brain regions cooperate to reach a consistent interpretation. The winner-take-
all circuit with both cooperative and competitive character is a main building
block which contributes to this distributed decision process.

Because of this functionality, the winner-take-all computation has been of
large interest to researchers. [Yuille and Grzywacz, 1989] and [Ermentrout,
1992] are classical references to theoretical analyses. In these early models, the
neurons are non-spiking, that is they receive an analog input and have an analog
output.

This analog winner-take-all computation can be efficiently implemented in
VLSI transistor circuits. With the initial circuits described in [Lazzaro et al.,
1989], a whole series of analog models, for example [Kaski and Kohonen, 1994,
Barnden and Srinivas, 1993], and implementations has been developed over the
last years [He and Sanchez-Sinencio, 1993, Starzyk and Fang, 1993, Serrano
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et al., 1994, Kincaid et al., 1996, Indiveri, 1997, Moller, 1998, Liu, 2000b, Indi-
veri, 2001, Liu, 2002].

In the last decade, spiking neuron models have gained increasing interest.
Neuron models with analog inputs and analog outputs can be converted into
models with spiking output if a thresholding operating is introduced to the
neuron. [Coultrip et al., 1992] is an early theoretical analysis, with further
descriptions in [Jin and Seung, 2002, Yu et al., 2002] and VLSI implementations
in [Indiveri et al., 2002, Chicca et al., 2004, Abrahamsen et al., 2004].

The next consideration are models with both spiking input and spiking out-
put. Theoretical analysis is focused on population models (for example [Lumer,
2000]), in which the population firing represents a graded analog value. [Indiveri
et al., 2001, Chicca et al., 2006] are VLSI implementations that use the firing
rate as an analog input and output encoding. A special case is [Carota et al.,
2004, Bartolozzi and Indiveri, 2004], in which the core of the winner-take-all is
analog, but the signals are converted to spike rates for communication with the
outside world. Other theoretical analyses consider other neuron models, such
as oscillatory neurons [Wang, 1999] or differentiating units [Jain and Wysotzki,
2004].

To our knowledge, no analysis until now has considered the effect of single
spikes and spike timing on the winner-take-all computation with spiking inputs
and outputs. This is the scope of the analysis presented in this thesis in Chap-
ter 2. We will explore the computation in the transition between single-spike
and rate coding.

[Gautrais and Thorpe, 1998] start their analysis from a similar point of view,
that is the distinction which of two input spike rates is higher, but they do not
consider sampling of this estimation in the output spikes (we could classify this
analysis as spiking input and analog output).

Having understood the basic principles of the winner-take-all operation in
theory (Chapter 2), we can approach an implementation of the winner-take-all
network on chip in Section 3.2. Comparable to the variations found in bio-
logical neurons and synapses, analog VLSI circuits exhibit variation because of
mismatch in the transistor characteristics. Mismatch changes the performance
of analog VLSI winner-take-alls. We will characterize the mismatch on the chip
in Section 3.3 and discuss compensation procedures. Second, we will discuss
how the adaptive properties of biological systems can be incorporated in the
implementation using software algorithms (Section 3.4).

1.2 Hardware Vision Architectures

Early neuromorphic implementations have focused on simple applications and
architectures. An example is the processing of visual motion, with chips that
extract motion information from the environment. We compared these three
implementations [Liu, 2000a, Higgins et al., 2005, Stocker, 2006] in the ’Senso-
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ryIntegration’ project2 [Ortelli, 2004]. Motion processing in analog VLSI imple-
mentations seems especially suitable for two reasons. First, the computation in
these models, which are partly inspired by the fly visual system, is only analog
and does not require high-level information. Second, motion processing in con-
ventional computer architectures requires a lot of resources since two or more
subsequent imager frames have to be stored and compared. However, since the
chips have to integrate additional circuits into the pixel, the fill factor that can
be obtained by these imagers is lower compared to chips that only integrate
the photoreceptor. Furthermore, it can be difficult to optimize the intermediate
stages of the computation (for example, the delay lines in case of a Reichhard
detector) since not all the intermediary results can be accessed externally. A
different approach, therefore, is to separate the functional modules into sep-
arate building blocks. [Ozalevli and Higgins, 2005] and [Indiveri et al., 1999]
are examples of motion processing systems in which the imager and the post-
processing have been separated into individual chip implementations. This, of
course, comes with an increased overhead in terms of infrastructure, since the
intermediate results have to be encoded for communication between the chips.

All sensors working on real data are subject to noise. The effect of this
noise can be decreased by integrating more global information. [Stocker, 2006]
uses a resistive grid to smooth the local motion information. [Yang et al., 2006]
propagates predicted information together with a moving edge across the chip,
following an algorithm by [Woergoetter et al., 1999]. Being able to reliably
detect information about the real-world seems to require more complex compu-
tation than just processing local features. The design and test of more complex
algorithms therefore requires more flexible system architectures than a single
chip.

The Caviar project develops a vision processing framework in which all
functional modules are separated into individual building blocks. Each building
block is defined by one particular function, for example the computation of the
temporal derivative in case of the retina. Every building block can therefore be
designed and optimized as a standalone module. All modules use the same AER
protocol definition, so different architectures can in principle be assembled to
test algorithms of larger complexity. The performance is increased by combining
the development effort of four labs, in which everyone contributes a building
block. The Caviar project can be seen as an attempt to establish a common
infrastructure for multi-chip systems.

This modular approach is one of the main differences of the interfaces of the
Caviar project to its predecessor, the Silicon Cortex (SCX) project [Deiss et al.,
1999]. SCX incorporated all functionality into one main module which in result
was too complex for the development effort of one working group. Nevertheless,
SCX laid out the foundation for a multi-module computing architecture from
which the Caviar project could use prior knowledge.

2’SensoryIntegration’ project, funded by the Institute of Neuromorphic Engineering (INE),
Maryland, U.S.
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In the next paragraphs, we will compare the Caviar system to other archi-
tectures that implement biologically-inspired computation and vision process-
ing. This is the HMAX network for biological plausibility, SpikeNET for its
spike-coding scheme, and in general feature extraction and classification sys-
tems.

The HMAX network is inspired by biologically plausible models of connectiv-
ities in the network for vision processing. Along the processing hierarchy, spikes
encode more and more information about the detected object. Spatial invari-
ance is achieved by pooling over the field of view. In Section 4.1 we will give
a detailed description and comparison of the HMAX network and the Caviar
implementation.

Stating that the communication is spike-based as in Caviar does not make
any assumptions about the specific coding scheme used in the transmission.
While traditionally the spike rate is used to encode the signal strength, other
schemes have also been proposed. [Van Rullen and Thorpe, 2001, VanRullen
and Thorpe, 2002] propose a visual information processing system, SpikeNET,
in which signals are encoded in a rank order code. Such a code provides an
efficient coding, since every neuron transmits only one spike. The information
rate per spike is therefore higher than in rate coding approaches [Gautrais and
Thorpe, 1998, Thorpe and Gautrais, 1998]. Such an encoding uses different
neuronal networks for decoding and learning [Perrinet et al., 2001, Delorme
et al., 2001]. However, some of the building blocks are similar to Caviar, for
example a convolution filter and a network with fast inhibition [Delorme, 2003].
The single spike coding scheme was shown to be efficient in the application of
visual processing in software [Thorpe et al., 2004, Delorme et al., 1999]. The
flexible architecture of Caviar could be used to implement such an efficient
coding scheme and to explore its functional performance in a hardware system
that interacts with the real-world.

The convolution stage of Caviar is used to extract features from the in-
put. Many feature extractors have been developed for technical systems. Most
artificially designed features are well optimized for a specific task, but fail to
show good performance when applied to general tasks (for example the prin-
cipal axis projection method, see [Yagi and Shibata, 2002, Yagi et al., 2002]).
Programmable features like the convolution kernels offer the freedom to adjust
the feature filters to the application. Such an architecture is the system from
[Bandyopadhyay et al., 2005], which provides programmable matrix transfor-
mations to the output of an imager.

In biology, a hierarchy of features of increasing complexity is used. At the
beginning of this hierarchy in primary visual cortex, neurons are mostly se-
lective to orientation and spatial frequency. A hardware model that describes
the extraction of orientation is [Choi et al., 2005], based on the output of the
imager in [Choi et al., 2004]. Caviar can implement orientation detection by
programming simple orientation filters as convolution kernels. However, how a
hierarchy of features with increasing complexity is constructed remains an open
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problem, a discussion which we briefly touch in Section 4.1.
Once the features are extracted they have to be classified. While the Caviar

system uses only a limited number of features and classifies these in a two-stage
hierarchy of winner-take-alls, non-spiking systems often extract large numbers
of features from the input. These features are then combined in a multi-
dimensional vector. From the huge field of implementations of classification
algorithms available in the literature, we want to name three examples relevant
for neuromorphic implementations. Radial basis functions [Madani et al., 2003]
provide a classification that is similar to the tuning curves found in the recep-
tive fields of neurons. Vector-quantizers implemented on-chip are [Ogawa et al.,
2002, Hasler et al., 2002]. [Serrano-Gotarredona and Linares-Barranco, 1996,
1997] describe implementations of the ART algorithm, a self-organizing neural
pattern recognition machine developed in the 1990s.

More higher-level algorithms like the principal component analysis or the
Fisher discriminant are cluster algorithms that can be used to extract features
with high information content for classification. These algorithms could be used
to identify interesting features about the input which can then be programmed
as convolution kernels into the Caviar system. However, these methods regard
the input data as static and do not consider the dynamic properties of the inputs
as Caviar does.

In this work we explore these dynamic properties of the input spike trains to
Caviar. In Section 4 we will describe the Caviar system in more detail. The
Caviar system provides an ideal opportunity to explore spike-based processing
with the winner-take-all network in a large-scale vision processing system. The
amount of spiking data that can be obtained through the system is unique:
no recording technique is able to record data from such an amount of single
neurons in biology. We will therefore develop data processing methods to assess
the spike train statistics, and finally to quantify the winner-take-all performance
in Section 4.4.



Chapter 2

Theory of Winner-Take-All
Operation

In this chapter we analyze the functionality of a spike-based winner-take-all
network. We see the network as an event-based classifier. The network has to
decide which neuron, the ”winner”, receives the strongest input after a certain
time interval, and it indicates its decision with an output spike. In a spiking
system, the term ’strongest input’ has to be defined: how is the input signal en-
coded in the spikes? What are the statistical properties of the spike trains? We
consider the following cases: stationary inputs of regular frequencies, stationary
inputs of Poisson distribution, the switching of the strongest input between two
neurons, and a model of non-stationary Poisson inputs in which the strongest
input is traveling across the neurons of the network.

In the case of spiking inputs of regular frequencies, we show that the per-
formance of the network can be optimal, that is the network completely sup-
presses all activity except that of the winning neuron. For this case we discuss
the boundary conditions under which the hard winner-take-all behavior takes
place.

In the case of inputs of Poisson distribution, the performance of the winner-
take-all scales with the number of spikes the neurons needs to reach threshold.
For short decision times, that is a small number of input spikes, the variation in
the Poisson input leads to variation in the output. For longer decision times, the
network averages over more input spikes, leading to a more precise decision. We
derive a formula to quantify this performance. With this formalization, we can
examine the effect of network parameters like the strength of mutual inhibition,
or self-excitation. We validate our formula with simulation data; this also allows
us to quantify the effect of leakage in the soma of the neurons.

We then extend our analysis to non-stationary inputs with time-varying
input spike rates. We answer the question whether a cascade of winner-take-all
networks with short integration times is more efficient than a winner-take-all

9
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network with long integration times. We conclude that the network outputs
should be as sparse as possible, that is a single spike as output of the network
is optimal for classification. We use this criterion to analyze a case of non-
stationary Poisson inputs in which the input is a Gaussian wave traveling across
the neurons. As we will show in Chapter 4, this is a good model of the Caviar
processing chain that computes the center of a moving object in the field of
view. We define an error function to quantify how well the stimulus location
is predicted by the winner-take-all network. In this chapter we compare the
functional description with simulation results, before we will look at the results
from the implementation in the Caviar system in Chapter 4.

In the last section of this chapter, we discuss how context information can
be embedded in the winner-take-all network through the local excitatory con-
nections, by embedding structure in the recurrent connectivity, and through
competition on the next level, across winner-take-all networks.

2.0.1 Connectivity

We assume a network of integrate-and-fire neurons that receives external excita-
tory or inhibitory spiking input. To implement a hard winner-take-all operation,
these neurons compete against one another through inhibition. In biological
networks, excitation and inhibition are specific to the neuron type. Excitatory
neurons make only excitatory connections to other neurons and inhibitory neu-
rons make only inhibitory connections. Inhibition between the array neurons
is always mediated by populations of inhibitory interneurons (Figure 2.1, a).
The inhibitory neurons are driven by the excitatory neurons, and in return they
inhibit the excitatory neurons.

To adjust the amount of inhibition between the neurons (and thereby the
strength of the competition), both types of connections could be modified: the
excitatory connections from array neurons to interneurons and the inhibitory
connections from interneurons to array neurons. In our model, we assume the
forward connections between the excitatory and the inhibitory neurons to be
strong, so that each spike of an excitatory neuron triggers a spike in the global
inhibitory neurons. The amount of inhibition between the array neurons is
adjusted by tuning the connections from the global inhibitory neurons to the
array neurons. This configuration allows the fastest spreading of inhibition
through the network and is consistent with findings in biology that the inhibitory
interneurons tend to fire at high frequencies.

With this configuration, we can simplify the network by replacing the global
inhibitory interneurons with full inhibitory connectivity between the array neu-
rons (Figure 2.1, b). This simplification is only used during the analysis; for
implementation the configuration with the global interneurons is more suitable.

Neurons in cortex integrate input from up to 10000 synaptic connections per
neuron. Since we do not consider correlation effects between single inputs, we
can summarize all input in one input signal by adding up all firing rates. This



11

(a) (b)

Figure 2.1: Simplification of connectivity: (a) with a global inhibitory neuron;
(b) with direct inhibitory connections between neurons.

assumption is especially valid for Poisson-distributed input, since combining
several spike trains with Poisson statistics results again in Poisson statistics.

In addition to the external input and the inhibitory synapses, each neuron
has a self-excitatory synapse that facilitates the selection of this neuron as the
winner in the next cycle once it has been chosen as the winner. Additional
connectivity that implements context information will be subject to discussion
in Section 2.5.

We do not consider the inhibitory inputs to the array neurons. Inhibitory
input could be added by assigning a sign to every input spike. Since the sta-
tistical properties stay the same, we disregard the external inhibitory input for
clarity.

2.0.2 Neuron Model

We assume a network of N integrate-and-fire neurons i = 1 . . .N. The mem-
brane potentials Vi satisfy the equation of a non-leaky integrate-and-fire neuron
model with non-conductance-based synapses:

dVi

dt
= VE

∑
n

δ(t− t
(n)
i )− VI

N∑
j=1
j 6=i

∑
m

δ(t− t
(m)
j ) (2.1)

t
(n)
i denotes the time of the nth spike to neuron i. The δ(t) is the delta function

defined as 1 at t=0 and 0 otherwise.
The membrane resting potential of the neurons is 0. Each neuron receives

external excitatory input and inhibitory connections from all other neurons. All
inputs to a neuron are spikes, and its output is also transmitted as spikes to
other neurons. We neglect the dynamics of the synaptic currents and the delay
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in the transition of the spikes. Each input spike causes a fixed discontinuous
jump in the membrane potential (VE for the excitatory synapse and VI for the
inhibitory). Each neuron i spikes when Vi≥ Vth and is reset to Vi = 0. Imme-
diately afterwards, it receives a self-excitation of weight Vself . All potentials
satisfy 0 ≤ Vi ≤ Vth, that is, an inhibitory spike can not drive the membrane
potential below ground.

2.1 Stationary Inputs of Regular Rates

We first discuss the case where the neurons receive spike trains of regular fre-
quency as inputs. Considering a non-leaky integrate-and-fire neuron model, the
network will select the winning neuron after receiving a pre-determined number
of input spikes. The winning neuron is the one receiving the input with the
smallest inter-spike interval.

All neurons i∈ 1 . . .N, i6=k receive excitatory input spike trains of constant
frequency ri. Neuron k receives the highest input frequency (rk >ri ∀ i6=k).

As soon as neuron k spikes once, it has won the competition. Depending on
the initial conditions, other neurons can at most have transient spikes before
the first spike of neuron k. For this hard winner-take-all mode, the network has
to fulfill the following constraints (Figure 2.2):

(a) Neuron k (the winning neuron) spikes after receiving nk = n input spikes
that cause its membrane potential to exceed threshold. After every spike, the
neuron is reset to Vself :

Vself + nkVE ≥ Vth (2.2)

(b) As soon as neuron k spikes once, no other neuron i 6=k can spike because it
receives an inhibitory spike from neuron k. Another neuron can receive up to n
spikes even if its input spike frequency is lower than that of neuron k because the
neuron is reset to Vself after a spike, as illustrated in Figure 2.2. The resulting
membrane voltage has to be smaller than before:

ni · VE ≤ nk · VE ≤ VI (2.3)

(c) If a neuron j other than neuron k spikes in the beginning, there will be
some time in the future when neuron k spikes and becomes the winning neuron.
From then on, the conditions (a) and (b) hold, so a neuron j 6= k can at most
have a few transient spikes.

Let us assume that neurons j and k spike with almost the same frequency (but
rk > rj). For the inter-spike intervals ∆i=1/ri this means ∆j>∆k. Since the
spike trains are not synchronized, an input spike to neuron k has a changing
phase offset φ from an input spike of neuron j. At every output spike of neuron
j, this phase decreases by ∆φ = nk(∆j−∆k) until φ < nk(∆j−∆k). When this
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Figure 2.2: Membrane potential of the winning neuron k (top) and another
neuron in the array (bottom). Black bars show the times of input spikes. Traces
show the changes in the membrane potential caused by the various synaptic
inputs. Black dots show the times of output spikes of neuron k.
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happens, neuron k receives (nk +1) input spikes before neuron j spikes again
and crosses threshold:

(nk + 1) · VE ≥ Vth (2.4)

We can choose Vself =VE and VI =Vth to fulfill the inequalities (2.2)-(2.4). VE

is adjusted to achieve the desired nk.
Case (c) happens only under certain initial conditions, for example when

Vk�Vj or when neuron j initially received a spike train of higher frequency
than neuron k. A leaky integrate-and-fire model will ensure that all membrane
potentials are discharged (Vi =0) at the onset of a stimulus. The network will
then select the winning neuron after receiving a pre-determined number of input
spikes and this winner will have the first output spike.

If the rate is regular, the information about the strongest input is already
contained in one inter-spike-interval. If Vth/2< VE < Vth and Vth/2< Vself <
Vth is chosen, the network also performs the selection in one inter-spike-interval.
We call this an optimal decision, since the network exploits all information in the
input. The performance of the network is as good as the information available.

The case (c) can be interpreted as hysteresis: if the strongest input switches
from neuron k to neuron j, the network exhibits hysteresis depending on the
difference in the frequencies.

Due to the spike-timing, the mechanism of competition is independent from
the number of neurons. The network can be scaled to any size, as long as the
inhibitory neuron can still completely inhibit the array neurons with one output
spike. Other models that exploit firing rate thresholds are normally dependent
to the number of neurons in the network. The performance of the network
decreases also in the case of inputs of Poisson statistics, as we will show in the
next section.

In the case of perfect network homogeneity, the network can detect the
winner optimally. In Section 3.3, we will discuss how variation in the synaptic
parameters leads to a decrease in performance.

2.2 Stationary Poisson Rates

In the case of Poisson-distributed spiking inputs, there is a probability associated
with the selection of the correct winner. This probability depends on the Poisson
rate ν and the number n of spikes needed for the neuron to reach threshold.
We first analyse the winner-take-all network with a simple example of only two
neurons labeled ’0’ and ’1’, with the connectivity shown in Figure 2.3.

The Poisson distribution is given by the probability that n spikes arrive in
time t for rate ν:

P(νt, n) =
(νt)n

n!
exp(−νt) (2.5)

We assume that in the initial state the neurons are completely discharged (V =
0). The neurons cross threshold at time t if they receive n−1 input spikes in [0; t[



2.2. STATIONARY POISSON RATES 15

ν1ν0

V V

V

0 1

self

E

I

Figure 2.3: Simplified network architecture. Two neurons labeled ’0’ and ’1’ re-
ceive input spike trains ν0 and ν1 of Poisson distribution. The synaptic strengths
are VE for the excitatory input, VI for the cross-inhibition and Vself for the self-
excitation.

and the nth one exactly at time t. The first term is given by the probability
P (n−1, νt), the second probability is the rate ν itself.

Neuron ’0’ reaches threshold at time t with the probability density

p0(t) = ν0P(ν0t, n− 1) (2.6)

Neuron ’1’ does not reach threshold until time t if it receives fewer or equal
than n−1 spikes in [0; t[:

P1(t) =
n−1∑
i=0

P(ν1t, i) (2.7)

Neuron ’0’ has the first output spike of the network if it reaches threshold
at time t (probability density p0), while neuron ’1’ does not reach threshold
(probability P1). We integrated over all times t=0 . . .∞:

P0out =

∞∫
0

P(ν0t, n−1) · ν0 ·

(
n−1∑
i=0

P(ν1t, i)

)
dt (2.8)

We first discuss the properties of Equation 2.8 in the extreme cases. For
n = 1, every input spike elicits an output spike. The probability that the first
output spike of the network comes from neuron ’0’ is the higher rate normalized
to the sum of both rates:

P0out

∣∣∣∣
n=1

=

∞∫
0

ν0e
−ν0te−ν1tdt = ν0

∞∫
0

e−(ν0+ν1)tdt =
ν0

ν0 + ν1
(2.9)
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For n→∞ or very large n, the neurons integrate over many input spikes.
The Poisson distributed rates can then be approximated by the mean rate and
the decision is deterministic:

P0out

∣∣∣∣
n→∞

→
{

1 : ν0 > ν1

0 : ν0 < ν1
(2.10)

For n→∞ the winner-take-all network would of course never produce an output
spike since it has to integrate over an infinite number of input spikes.

In the general case, the probability that the first spike of the network comes
from the neuron receiving the higher input rate increases as the neurons inte-
grate over more spikes. Equation 2.8 can not be solved symbolically, but can
be integrated numerically.

Until now we discussed the probability of the first spike the network elicits.
As soon as one neuron spikes, the other neuron is inhibited. We assume strong
inhibition (VI = Vth) and no self-excitation (Vself = 0), so that both neurons
are completely discharged after the first output spike. The neuron that spiked
is reset by its reset mechanism, the other neuron by the inhibition it receives.
The network then has no memory of its past input and integration will start
again with the initial conditions. The probability P0out that the first spike of
the network comes from neuron ’0’ is then equivalent to the probability that any
output spike of the network comes from neuron ’0’, if VI = Vth and Vself = 0.

P0out is independent of the absolute rate. To show this, we replace ν0 →
P0inν and ν1 → (1 − P0in)ν with ν = ν0 + ν1. We substitute νt → t′ and
ν dt → dt′. The integration limits (0;∞) do not change.

P0out =

∞∫
0

P(P0int′, n−1) · P0in ·

(
n−1∑
i=0

P((1− P0in)t′, i)

)
dt′ (2.11)

In this formulation the winner-take-all is a filter that increases the percentage
of spikes encoding for neuron ’0’. Figure 2.4 details this interpretation as a filter
model in signal theory.

The total input rate is a Poisson spike train of rate ν. The output rate ζ
is the sum of the output rates of each neuron. To make an output spike, the
neurons integrate over n input spikes. Neuron ’0’ receives input spikes with rate
νP0in, neuron ’1’ with rate ν(1−P0in). The sum is weighted by the probability
that neurons ’0’ and ’1’ make an output spike (P0out and 1−P0out).

ζ = P0out
νP0in

n
+ (1− P0out)

ν(1− P0in)
n

(2.12)

=
ν

n
(1− P0in − P0out + 2P0inP0out) (2.13)

The output spike train is not Poisson distributed, but will tend towards regular
rates, since the neurons integrated over n input spike for each output spike.
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0|1 0|1

Figure 2.4: Filter model of the winner-take-all network. The winner-take-all
(black box) receives a Poisson input spike train of total rate ν. Every spike
encodes either for symbol ’0’ or ’1’, with the probability of a spike coding for ’0’
of P0in. The output of the winner-take-all is a spike train with the probability
of a spike coding for ’0’ of P0out. The winner-take-all ensures P0out > P0in and
amplifies the difference between input and output probabilities.

We quantify the effect of the winner-take-all on the input and output proba-
bilities in Figure 2.5. The optimal classification would result in a step function:
for any P0in > 0.5 the output probability P0out is 1. The output performance
increases if the neurons integrate over more input spikes n. We compare the
results of our functional description with simulation results, to verify both func-
tional description and simulation routines.

In the general case (VI < Vth and Vself 6= 0), the assumption that both
neurons are completely discharged after an output spike does not hold anymore.
The neuron that spiked is reset to ground and receives self-excitation Vself . It
will reach threshold again with m spikes:

m =
⌈

Vth − Vself

VE

⌉
≤ n (2.14)

The neuron that did not spike is inhibited by the spiking neuron, which
lowers its membrane potential by VI . It will reach threshold again with p spikes,
dependent on the membrane potential at the time (t−) of inhibition.

p =
⌈

Vth −max(V (t−)−VI , 0)
VE

⌉
≤ n (2.15)

V (t−) can take any value between ground and just below the threshold voltage.
We will assume that the non-winning neuron needs p spikes to reach threshold
again. In Section 2.2.2 we will analyze if this assumption is valid.

We model the output of the network by a Markov model with inhomogeneous
transition times with two states (Figure 2.6). The states determine which of
the two neurons fired last. Each transition from state i to j has assigned a
transition probability pij and a transition time tij . In contrast to a Markov
chain, the states are only sampled when the network spikes and the transition
times between the states are not constant.
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Figure 2.5: Probability of neuron ’0’ having an output spike of the network, with
strong inhibition and no self-excitation. P0in is the probability of a spike encod-
ing for neuron ’0’ in the input rate; P0out is the probability of a spike encoding
for neuron ’0’ in the output rate. The different curves show the dependence on
the number of input spikes n the neurons are integrating over.The probability
that the first output spike of the network comes from the neuron that receives
the higher rate increases if the neurons integrate over more input spikes. The
output probabilities are independent of the input rate ν. Continuous curves:
numerical evaluation of Equation 2.11, overlaid data points: simulation results
(error bar corresponds to 10 trials with 10000 output spikes each).

Figure 2.6: Markov model of the winner-take-all network with inhomogeneous
transition times: the states determine which of the two neurons fires. The
transition probabilities pij together with the transition time tij determine the
sequence of firing.
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The transition probabilities are given by:

p00 =

∞∫
0

ν0 P(ν0t, m−1) ·
p−1∑
i=0

P(ν1t, i) dt (2.16)

p01 =

∞∫
0

m−1∑
i=0

P(ν0t, i) · ν1 P(ν1t, p−1) dt (2.17)

p10 =

∞∫
0

ν0P(ν0t, p−1) ·
m−1∑
i=0

P(ν1t, i) dt (2.18)

p11 =

∞∫
0

p−1∑
i=0

P(ν0t, i) · ν1 P(ν1t, m−1) dt (2.19)

The transition time is the number of spikes a neuron needs to reach threshold
divided by its input rate:

t00 =
m

ν0
, t01 =

p

ν1
, t10 =

p

ν0
, t11 =

m

ν1
(2.20)

The process reaches equilibrium state if transitions between the states hap-
pen with the same probability:

p01 P0out = p10 P1out (2.21)

With P1out =1− P0out we get

P0out =
p10

p01 + p10
(2.22)

This is the probability that, if a spike is emitted by the network, it is emitted
by neuron 0. If m=p, then p01 = p11 = 1 − p10, so P0out = p10 is equal to the
initial probability given by Equation 2.8.

The mean output inter-spike interval 〈∆〉 is given by the weighted sum of
the transition times:

〈∆〉 = P0p00
m

ν0
+ P1p10

p

ν0
+ P0p01

p

ν1
+ P1p11

m

ν1
(2.23)

The mean output rate of the network is then:

ζ =
1
〈∆〉

=
ν0ν1(p10 + p01)

ν0p01(p10p + p11m) + ν1p10(p01p + p00m)
(2.24)
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2.2.1 Effect of self-excitation

We can now quantify the effect of the self-excitation on the performance of the
network. We assume VI = Vth so p is independent of the membrane potential
at the time of the inhibition (Equation 2.15). Strong self-excitation improves
the probability that an output spike of the network is emitted from the neuron
with the higher firing rate (Figure 2.7). The output rate for a network that
integrates over many input spikes and has strong self-excitation is equal to a
network that integrates over fewer input spikes and has no self-excitation.
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Figure 2.7: Effect of self-excitation: the probability of a correct decision P0out

increases as the self-excitation Vself is increased. m (p) is the number of spikes
a neuron needs to reach threshold after self-excitation (global inhibition). For
m = p the curve is equal to the one shown in Figure 2.5 for n=10. For p=10
m is varied from 1 . . . 10. As the self-excitation is increased, the probability of
a correct decision increases. Numerical evaluation of Equation 2.22.

2.2.2 Effect of inhibition

Until now, we assumed the inhibition to be strong, that is one inhibitory pulse
discharges the membrane potential to the reset voltage. We now discuss the
changes in performance if the inhibition is weakened.

In Equation 2.15 we assumed that the neuron that did not spike needs
p spikes to reach threshold after being inhibited, while the neuron that spiked
last needs m spikes. If fewer spikes are needed to reach threshold after inhi-
bition (p) than after reset and self-excitation (m), a neuron that did not spike
before will have a greater probability of spiking next. The neuron that did spike
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before will have a lower probability of spiking next. In the initial state the neu-
ron that receives the strongest input is the most probable one to spike. In the
next step the network will then select a neuron that does to have spike before
and the probability of a correct decision of the network decreases. Lowering the
strength of the inhibition will therefore lead to a decrease in performance.

Our description does not make any predictions about the membrane voltage
V −

E1 of the non-winning neuron before the output spike, except 0<V −
E1 <Vth be-

cause the non-winning neuron did not spike. Let us assume that the membrane
was sitting close to threshold before the neuron receives inhibition VI . After
inhibition V +

E1 = Vth − VI . The non-winning neuron will then reach threshold
with p ≈ VI/VE spikes. With this assumption, weakening the inhibition leads
to a drastic decrease in performance (Figure 2.8, left). But depending on the
history of the spike input to the non-winning neuron, the membrane potential
will be significantly lower than Vth before the inhibition, that is less inhibition
is needed to achieve the same effect. We can address this in simulation (Fig-
ure 2.8, right), showing that the network performance does not decrease that
rapidly. For m = 10, inhibition can be decreased to about 70% of Vth before
the network shows a significant decrease in performance.

We conclude that weakening the strong inhibition always leads a decrease
in performance. For weak inhibition, the functional description underestimates
the performance of the network, while simulation shows that inhibition can be
decreased to about 70% of Vth before the network shows a significant decrease
in performance.
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Figure 2.8: Effect of inhibition. Both graphs show the performance of the net-
work if the strength of the inhibition is VI = p/nVth. In each graph, p is varied
from 10 to 1 (top left to bottom curve, m = 10). Left: numerical evaluation
of the functional description that assumes that the membrane potential of the
non-winning neuron is close to threshold before inhibition. Right: simulation
results. As can be seen by the simulation results, the assumption severely un-
derestimates the performance of the network.



22 CHAPTER 2. THEORY OF WINNER-TAKE-ALL OPERATION

2.2.3 Generalization to Networks of N Neurons

We extend the simplified case of two neurons to a network with N neurons.
Every neuron k receives a Poisson spike train of νk. The initial probabilities are

Pinit,k =

∞∫
0

νkP(νkt, n−1) ·
N∏

j=1
j 6=k

(
n−1∑
i=0

P(νjt, i)

)
dt (2.25)

The transitions can be described by the matrices (p, t) with the transitions
probabilities pkl and transition times tkl (k, l ∈ 1...N):

pkk =

∞∫
0

νk P(νkt, m−1) ·
N∏

j=1
j 6=k

(
p−1∑
i=0

P(νjt, i)

)
dt (2.26)

pkl =

∞∫
0

νl P(νlt, p−1) ·
m−1∑
i=0

P(νkt, i) ·
N∏

j=1
j 6=k,l

(
p−1∑
i=0

P(νjt, i)

)
dt (2.27)

tkk =
m

νk
, tkl =

p

νl
(2.28)

The probability of an output spike of the network originating from a neuron k
is then given by a vector P. In the equilibrium state, P∗ is the first eigenvector
of matrix p.

2.2.4 Interpretation in Terms of Information Theory

Let us discuss the classification of the winner-take-all network in terms of in-
formation theory, see Figure 2.9. We assume that the world consists of stimuli
which the sensors and the pre-processing encode in spike trains. The task of the
winner-take-all network is to classify which stimulus is present by observing the
spike trains. What is the mutual information, the information that the obser-
vation of one or several spikes provides about the stimulus? How is the mutual
information changed by the processing in the winner-take-all network?

The mutual information makes only predictions about the presence of fea-
tures in the world. It does not quantify all the information about the world that
is contained in the spike trains. The latter, the total amount of information that
can be encoded in a spike train of certain length (the entropy of a spike train),
is useful for a reconstruction of the world based on sensory output. [Reich et al.,
2001] calls this the formal information, while the attribute-specific information
asks how much information about a specific attribute is contained in the spike
train.

In our model of the world, the stimulus X can take two values ’0’ and ’1’.
The stimulus is encoded into spike trains by sensor and pre-processing. As
discussed in Figure 2.4, we assume that the winner-take-all receives a spike
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Figure 2.9: Interpretation of the winner-take-all network in terms of informa-
tion theory. The stimulus X consists of the two symbols ’0’ and ’1’, which
are encoded by sensor and pre-processing as spike trains. Every spike encodes
either for symbol ’0’ or ’1’, with P0in the probability of a spike coding for stim-
ulus ’0’. At the output of the winner-take-all the probability of a spike coding
for stimulus ’0’ is P0out. We discuss the mutual information, that is the average
information about the stimulus X obtained by observing one input or output
spike Y .

train in which the spikes encode either for symbol ’0’ or ’1’. The probability of
a spike coding for ’0’ is P0in, of a spike coding for ’1’ is (1−P0in). The output of
the winner-take-all is a spike train with the same encoding, with the probability
of a spike coding for ’0’ is P0out and (1− P0out) for a spike coding for ’1’.

P0in depends on the quality of the sensor and the pre-processing, that is
how good the stimulus is represented in the spike trains. Large variation, for
example through noise, will result in a low P0in, that is the spike train contains
both spikes encoding for stimulus ’0’ and ’1’. In the limit case of P0in =0.5, the
spike trains would not depend on the stimulus at all.

P0out depends on P0in and on the processing in the winner-take-all network,
that is on the number of spikes n the neurons need to reach threshold. For
n = 1 the winner-take-all does not perform any computation, so we can regard
an input spike as a special case of an output spike with n = 1:

P0in = P0out

∣∣∣∣
n=1

(2.29)

The output Y is the observation of one of these output spikes. The average
information that Y provides about the stimulus X is the mutual information
defined as [Rieke et al., 1996, pp.122]:

I =
∑
X

P (X)
∑
Y

P (Y |X) log2

P (Y |X)
P (Y )

(2.30)

For simplicity, we assume that the stimulus takes the two values 0 and 1
with equal probability (P (X =0)=P (X= 1)=0.5). The entropy of X is then
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S(X) = 1bit. The conditional probability P (Y |X) for observing a spike at the
input of the winner-take-all is given by the probability P0out (respectively P0in

for n = 1):

P (Y = 0|X = 0) = P (Y = 1|X = 1) = P0out (2.31)
P (Y = 1|X = 0) = P (Y = 0|X = 1) = 1− P0out (2.32)

(2.33)

Since these probability are symmetric, we get P (Y =0)=P (Y =1)=0.5:

P (Y ) =
∑
X

P (X, Y ) =
∑
X

P (X)P (Y |X) = P (X) (2.34)

We can now rewrite the Equation 2.30 for our model, to get the mutual
information about the stimulus from observing an output spike of the winner-
take-all:

I = P0out log2 (2P0out) + (1− P0out) log2 (2(1− P0out)) (2.35)

P0out and the mutual information depend on the quality of sensor and pre-
processing (P0in) and number of spikes n the winner-take-all neurons need to
reach threshold. Figure 2.10 shows this dependence.

The maximal information that can be gained by observing an spike is the
entropy of the stimulus S(X)=1bit itself.

Our winner-take-all model is equivalent to counting the input spikes. Ob-
serving one output spike of the winner-take-all is equivalent to observing the
input spike train during the time the winner-take-all is integrating.

The winner-take-all network therefore does not change the information trans-
mitted per time, but it increases the information per spike, transforming the
spike train into a sparse representation. Encoding the same information with
transmitting less symbols is equivalent to compression. The compression factor
is the ratio of input spike rate of the network over the output spike rate

f =
ν

ζ
(2.36)

with ν the input spike rate and ζ the output spike rate defined Equation 2.13.

2.3 Time-Varying Firing Rates

We now extend our analysis from stationary inputs to inputs with time-varying
firing rates.

It is a fundamental principle of the Poisson distribution that there are no
assumptions on when events occur in a certain time interval, but only on the
number of spikes in the total interval. At any given time, the spike rate is given
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Figure 2.10: (a) Probability that an output spike of the winner-take-all en-
codes for the correct stimulus, versus the number of input spikes the neurons
need to reach threshold n. For n = 1 the winner-take-all does not perform
any computation and the output probability is identical to the input. Four
input probabilities (0.6,0.7,0.8,0.9) are shown. (b) Mutual information, the av-
erage information that the observation of one output spike provides about the
stimulus, dependent on the number of input spikes the neurons need to reach
threshold n. For n =1 the winner-take-all does not perform any computation,
and the mutual information is equivalent to that obtained by observing one
input spike. With increasing number the neurons of the network are integrat-
ing over the mutual information converges to the stimulus entropy which is
1bit. The same input probabilities as in (a) are shown. Observing an output
spike of the winner-take-all is equivalent to counting the same number of input
spikes. The winner-take-all transforms the input spike train into a more sparse
representation, by increasing the mutual information per spike.
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by the probability of a spike occurring. We can therefore replace the number of
spikes νt in formula 2.8 with the integral

∫ t

0
ν(t′) dt′. This is the area under the

input spike rate function over time. Equation 2.25 generalizes to

P0 =

∞∫
0

P(
∫ t

0

νk(t′) dt′, n−1) · νk(t) ·
N∏

j=0
j 6=k

(
n−1∑
i=0

P(
∫ t

0

νj(t′) dt′, i)

)
dt (2.37)

2.3.1 Switching of Stronger Input

We first discuss the case that the stronger input switches from one neuron to the
other. With self-excitation, the network shows hysteretic behavior. As shown in
Figure 2.7, self-excitation can result in the same performance as integrating over
fewer spikes but without self-excitation. To quantify this effect for time-variant
input, we discuss the receiver operating characteristics (ROC) of the network.

We assume that neuron ’1’ receives the stronger input before switching occurs
at time t = 0 and that this input was applied long enough so that the network
reached a stable state so that the output also encodes for neuron ’1’. From
time t = 0 on, neuron 0 receives the stronger input.

We can calculate how many subsequent spikes are emitted by neuron ’1’
before the neuron ’0’ will spike. The probability of having exactly k subsequent
spikes from neuron 1 is the probability of staying k times in state 1, and then
make a transition to state 0:

(p11)k · p10 (2.38)

Summing over all possible k results in the average number of spikes k1 that
neuron 1 emits before neuron 0 spikes:

k1 = p10

∞∑
k=1

k (p11)k = p10
p11

(1− p11)2
=

p11

p10
(2.39)

For every output spike, neuron ’1’ integrates m input spikes that arrive with
rate ν1. At the moment when the switch from neuron ’1’ to neuron ’0’ occurs,
neuron ’0’ has to integrate additional p input spikes with rate ν0. The average
time to switch from neuron ’1’ to neuron ’0’ is then:

t01 =
p11

p10

m

ν1
+

p

ν0
(2.40)

The average switching time increases with the self-excitation. t01 is the time
during which the network emits spikes from the neuron that does not receive
the larger spike rate, if this neuron spiked by chance or if the stronger input
changed target from neuron ’1’ to neuron ’0’. In this time, neuron ’1’ will emit
k1 transient spikes.

We consider the first spike of neuron 0 as the criterion for a correct detection
of the changed inputs. We quantify this decision with two variables:
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PTP (t) the probability that neuron ’0’ spikes in time t after the inputs are
switched, that is the probability that the network indicates a correct decision
(true positive).

PFP (t) the probability that neuron ’0’ spikes in time t if the rates did not
switch, that is the probability that the network indicates a switch even though
the rates did not change (false positive).

With ν0 > ν1 after the switch, the fraction of a true positive after time t can
be calculated from the probability that no switch is detected and only neuron ’1’
is firing. In time t, neuron ’1’ receives on average ν1t input spikes and makes on
average ν1t/m output spikes. This is equivalent to the case the network stays
ν1t/m times in state 1:

PTP (t) = 1− (p11)
tν1
m (2.41)

A false positive is a state transition from state 0 to state 1, if we keep the
convention that ν0 > ν1. We model this case again by the probability of the
contrary event that no transition occurs from the neuron with the stronger input
(neuron ’0’):

PFP (t) = 1− (p00)
tν0
m (2.42)

Figure 2.11 shows the true and false positive rates similar to the receiver
operating characteristic curve (ROC). On ROC curves the performance of the
classifier is shown in dependence of a parameter. Varying this parameter deter-
mines the true and false positive probabilities of the classifier. For our classifier,
we use time as the parameter and draw true and false positive probabilities de-
pendent on the time when the network spikes. As for the ROC curve, the area
under the curve quantifies the classifier performance. We follow the engineering
definition of the area under the curve, which measures the area between curve
and chance level (dashed line). We call this the discrimination performance. In
Figure 2.12 we compare the discrimination performance in dependence of the
average switching time, by varying the amount of self-excitation. The discrimi-
nation performance is higher if no self-excitation and a longer integration time
is used compared to a shorter integration time with self-excitation.

We can conclude that for switching input, self-excitation does not lead to
better performance: better discrimination performance is obtained if the neu-
rons integrate over more input spikes than if they receive self-excitation, for the
same hysteresis of the network. This is consistent with our view of self-excitation
in the contect information that we discuss in Section 2.5: self-excitation helps to
exploit the fact that the inputs are stationary, which is not the case for switching
input.

2.3.2 Moving Input

One can think of an infinite number of scenarios that involve stimuli with non-
stationary spike rates. We will discuss an – as we think – representative example
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Figure 2.11: Classifier characteristics: probability of true positives versus
false positives, similar to the common receiver-operating-characteristics (ROC)
curves. Different amounts of self-excitation are shown. The network has to de-
tect a switch in the neuron that receives the stronger input. The stronger input
has a spike rate 50% higher than the other input. The curves show the classi-
fication performance dependent on the time when the network spikes first after
the switch. The area between curve and chance level (dashed line) quantifies
the classifier performance, the discrimination performance.
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Figure 2.12: Classifier characteristics: discrimination performance versus the
average switching time, the hysteresis of the network. The discrimination per-
formance is obtained from Figure 2.11. Every curve corresponds to the num-
ber of spikes the neurons need to reach threshold (n). Within each curve the
self-excitation is increased: at the left-most data point of each curve there is
no self-excitation (m = n), then for each data point along the curve the self-
excitation is increased by one, that means the winning neuron needs one spike
less to reach threshold (m=n . . . 1). The discrimination performance is better
for more spikes to reach threshold and less self-excitation than for stronger self-
excitation, see the indicated points: at the point (n=4,m=3) the neurons need
4 spikes to reach threshold and receive self-excitation equivalent to one spike. At
the point (n=5,m=5) the neurons need 5 spikes to reach threshold and do not
receive self-excitation. At (n=5,m=5) the network has a higher discrimination
performance at about the same average switching time. Similar comparison can
be made for any other pair of data points of (no self-excitation/higher n) versus
(self-excitation/smaller n).
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here: a Gauss-shape spike wave that is traveling across a line of winner-take-all
neurons. The Gauss shape is a good generalization of the output of an earlier
pre-processing stage, since it models the output of a matched-filter convolution
operation with a reasonable complex kernel. In our case, we assume a receptive-
field-like pre-processing that is repeated for each neuron. The input then results
from an object that is moving along the receptive fields. Near the ’operating
point’, that is around the neuron that we will analyze, we consider the speed of
the object to be constant. This example case is simple enough to be functionally
analyzed, but captures also the more complex case of the Caviar data, as we
will show in Chapter 4. An overview of the model is shown in Figure 2.13.

The neurons are arranged in one infinite line of neurons with numbers
i =−∞. . .∞. Without loss of generality, our analysis regards neuron 0. The
temporal distance between the neurons is d. The time-dependent input to a
neuron i, νi(t), is a Gaussian function centered on that neuron:

νi(t) =
νmax

2πσ2
exp

(
− (t− di)2

2σ2

)
(2.43)

The spike rate is normalized so that the neuron receives the rate νmax when the
input wave is aligned to the neuron.

We can compare the temporal distance d to the discriminability measure
d̂ used in psychophysics: It measures the distance between the center of two
Gaussian distributions that are normalized to σ = 1. d̂ is the overlap between
the distributions, which reflects the difficulty in separating the two distributions.
In our example, d is the distance between two neurons that receive spike input
consecutively. Nevertheless, d is also a measure of the difficulty in classifying
the ball position like the discriminibility measure in psychophysics.

As discussed in Section 2.3.1, the performance of the winner-take-all is best if
the output is as sparse as possible. In this example, each neuron should make on
average one spike when the object passes over it. The average integration time
of the winner-take-all decision is then the time the object needs to move from
one neuron to the next, d. It is natural to center this interval on the neuron, for
neuron 0 at t = 0. In this time the neuron receives a higher firing than all its
neighbors (see Figure 2.13). Integration of inputs to the winner-take-all starts
then at the intersection of two neighboring input firing rates at t = −d/2. We
use the variable T to indicate the integration time (T = t + d/2). To start the
analysis we assume that all neurons are reset at this time.

We define a helper function for the area under the input spike rate function
for each neuron i in the integration time T :

Ri(T ) =

T−d/2∫
−d/2

νi(t) dt =
νmax

2πσ2

T−d/2∫
−d/2

exp
(
− (t− di)2

2σ2

)
dt (2.44)
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Figure 2.13: Model of a moving input: An object moves across a line of neurons
of the winner-take-all network, producing a wave of activity. The neurons are
equidistantly spaced: assuming a constant velocity of the object, this results
in the temporal distance d. The neurons are numbered from −∞ to ∞. The
diagram shows the spike rate evolving over time. At a certain point in time
(thick dashed line), neuron 0 receives an input spike rate indicated by the curve
that peaks at its position. Integration of the winner-take-all network starts at
the intersection of two neighboring input curves. At an integration time T the
neuron 0 aligned to the ball position receives a number of spikes equivalent to
the light gray area under its spike input curve, whereas a neighboring neuron
receives a number of spikes equivalent to the dark gray area.
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On average, the winner should spike at T = d, receiving n spikes:

n = R0(d) =
νmax

2πσ2

d/2∫
−d/2

exp
(
− t2

2σ2

)
dt (2.45)

We will refer most of our analysis to n, the number of spikes the neurons need to
reach threshold, instead of rmax, to be able to make comparisons to Section 2.1.

We rewrite Equation 2.37 for the line of neurons i = −∞ . . .∞ and the area
under the input spike rate function Ri(T ):

Pn,d,σ =

∞∫
0

P (R0(T ), n−1) · ν0(t)
+∞∏

k=−∞
k 6=0

(
n−1∑
i=0

P(Rk(T ), i)

)
dT (2.46)

This is the probability that neuron 0 makes the first output spike after a reset
at time t = −d/2.

The rate of neuron 0 making the first output spike of the network after d/2
is equivalent to the rate of a correct decision:

rcorrect(T ) = P (R0(T, n− 1)) · ν0(T − d/2) ·
+∞∏

k=−∞
k 6=0

(
n−1∑
i=0

P(Rk(T ), i)

)
(2.47)

The rate of an incorrect decision of the network is:

rfalse(T ) =
+∞∑

j=−∞
j 6=0

P (Rj(T, n− 1)) · νj(T − d/2) ·
+∞∏

k=−∞
k 6=j

(
n−1∑
i=0

P(Rk(T ), i)

)
(2.48)

How can we infer the ability of the network to reconstruct the position of the
stimulus from the probability of a correct output spike and the output rate? The
network discretizes the stimulus position in time and space. In time, because
the output of the network is event(spike)-based; in space, since the network
can report the stimulus position only at every neuron. The ideal result of this
discretization is a staircase function as shown in Figure 2.14. This is equivalent
to decoding the output of the network with a memory of one variable, the
position, which is updated at every spike. Of course, one could think of a
more elaborate processing of the network output such as spatial and temporal
interpolation. But this interpolation is limited by the accuracy of the network
output, which is exactly what we analyse here.

Deviation of the stimulus position reconstructed from network output from
the ideal case results from two types of errors: jitter in the timing of the output
spikes; and spikes from neurons that are not aligned to the stimulus position.
We will summarize the effect of both by defining the total position error e as the
area between the stimulus position reconstructed from the network output and
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Figure 2.14: Reconstruction of object position from winner-take-all output. The
stimulus travels along a line of neurons with constant velocity (straight line).
The winner-take-all network reports the object position by eliciting a spike from
the neuron that the object is aligned to. The ideal output is a staircase function
that discretizes the object position to the neuron number (dashed line). The
network emits spikes indicating position updates (shown above the plot). With
Poisson input, the object position can not be determined optimally (continuous
staircase function). The output spikes are shifted earlier or later (jitter error);
or the networks fails to detect the correct position (classification error), such as
at position 5. We define the total position error as the area between ideal and
reconstructed stimulus position (area between dashed and continuous staircase
function), normalized to the number of neurons and the temporal distance d.
Simulation data (n = 10, d = 1, σ = 1).



34 CHAPTER 2. THEORY OF WINNER-TAKE-ALL OPERATION

the ideal case (see Figure 2.14). We norm this area to the number of neurons,
so that e denotes an average deviation of the reconstructed stimulus position
per neuron.

The jitter error is caused by variation of the time when the first neuron of
the network reaches threshold. We define ejitter as the area between the time of
the first output spike of the network and the average time d, normalized to d:

ejitter =
1
d

+∞∫
−∞

|T − d | (rcorrect(T ) + rfalse(T )) dT (2.49)

Spikes from neurons that are not aligned to the stimulus position contribute
to the classification error eclass. We assume that if the network decides on an
incorrect stimulus position, this position will be kept until the next spike of the
network at time d later. We again define the error as the area between the
correct position 0 and j, weighted by the probability Pj that neuron j makes
the first output spike of the network.

eclass =
+∞∑

j=−∞
j Pj (2.50)

=
+∞∑

j=−∞
j

∞∫
0

P (Rj(T ), n−1) · νj(t) ·
+∞∏

k=−∞
k 6=j

(
n−1∑
i=0

P(Rk(T ), i)

)
dT

We can add these two errors together to obtain the total position error e as
defined before.

e ≈ ejitter + eclass (2.51)

However, there are two problems in this approximation: the jitter area and the
classification error overlap, which means that the same area is accounted for
twice. This is dominant when both jitter and classification errors are large for
small n. The second problem is our assumption of the start of the integration at
the intersection of the input spike rate functions of two neighboring neurons (t =
−d/2). Due to the jitter in the first output spike, the next integration period
will actually start earlier or later. Results of the position error obtained by
evaluation of the functional description can therefore not be directly compared
to simulation data. Nevertheless, the data fits qualitatively (Figure 2.15).

2.4 Dynamic Synapses

Most synapses in cortex have temporal dynamics, that is they show depressing
and facilitating dynamics, see for example [Markram et al., 1998]. Depressing
synapses decrease their synaptic efficacy if stimulated with a continuous train
of action potentials. Facilitating synapses transiently increase their efficacy
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Figure 2.15: Development of area errors dependent on the number of spikes
n to reach threshold. Shown are the jitter error (variation of the timing of
the output spikes, diamonds) and the classification error (output spikes from
neurons not aligned to the stimulus position, circles), from numerical evalua-
tions of Eqns. 2.49 and 2.51. For comparison, the total area error is shown
from simulation results (crosses). In simulations, the complete line of neurons
is processed, so that the start of the integration period of the winner-take-all
depends on the time of the last output spike, whereas in the functional descrip-
tion the integration always starts at the optimal intersection of two neighboring
input waveforms. For low n, jitter and classification error include the same area
twice, therefore the sum of both would exceed the error obtained in the simu-
lation results. Error bars of the simulation data denote one standard deviation
(d = 1, σ = 1, every data point result of 100 trials with 20 neurons).
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and undergo a depression phase afterwards. The types of behavior and their
parameters found in cortex show a large variety.

A model of dynamic synapses defined in [Markram et al., 1998] is formulated
with four parameters: absolute synaptic efficacy (A), utilization of synaptic ef-
ficacy (U), recovery from depression (τrec) and facilitating time constant (τfac).
At each action potential, a fraction u of the available synaptic efficacy R is
used. This fraction is instantaneously unavailable and recovers with a time
constant τrec. The facilitation mechanism increases the fraction u used at each
action potential, starting with U and decaying with the time constant τfac. The
parameters are described by the equations

Rn+1 = 1 + (Rn(1− un+1)− 1) exp
(
−∆t

τrec

)
(2.52)

un+1 = U + un(1− U) exp
(
−∆t

τfac

)
(2.53)

∆t is the inter-spike-interval between the nth and the (n+1)th action potential.
The synaptic response generated by the nth action potential is

wn = A ·Rn · un (2.54)

A is a scaling factor to adjust the absolute synaptic efficacy.
If only depression is used, τfac is set to zero and hence un = U . [Abbott

et al., 1997] formulates Equation 2.52 with f = 1− U in the depressing case:

Rn = 1 + (fRn − 1) exp
(
−∆t

τrec

)
(2.55)

The response of the facilitating synapse to a step function in the input is
shown in Figure 2.16. Facilitation induces a short transient increase, before the
synapse goes into the depressed state.

For the facilitating synapse, we use U = 0.05, τrec = 0.4s and τfac = 1.8s as
reported as mean values in [Markram et al., 1998]. For the depressing synapse
we started our simulations with f = 0.7 and τrec = 0.2s as reported in [Abbott
et al., 1997]. In both references the variation of the parameters is above 50%.

Obviously, the steady-state response of facilitating and depressing synapses
is much smaller than their peak transient response and they will therefore sup-
press any stationary input like background noise. But what is the effect on
the input signal itself, if we assume that it has the same profile as described in
Section 2.3.2?

To compare the outputs, we weighted the input spikes with the synaptic
efficacy at an input spike. Averaging over many trials results in the product of
the mean spike rate and the mean synaptic efficacy over time, r(t)·w(t). [Abbott
et al., 1997, Markram et al., 1998] define the synaptic efficacy as the jump in
the membrane potential of the post-synaptic potential, the EPSP. The product
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Figure 2.16: Facilitating Synapse. Development of synaptic efficacy in response
to an input step function of a regular rate of 30Hz, starting at t = 0. The
facilitating synapse was implemented after [Markram et al., 1998], with U=0.05,
τrec=0.4s and τfacil=1.8s.

has the units V/s and the total input to the postsynaptic neuron is the integral∫
r(t)w(t) dt. In the case of non-dynamic synapses, input spikes arrive with a

Poisson distribution of a certain rate and each spike has a synaptic efficacy of
one. To have the same effect in the depressing (facilitating) case, that is the
same area under the curve r(t)·w(t), the synaptic efficacies are less (greater) than
1 and the spike rate is higher (lower) than in the non-dynamic case. We can
then apply our model by replacing r(t) with r(t)·w(t), although the statistical
properties of the input currents are different.

Depressing synapses broaden the input wave form, depending on the time
constant of the synapse (Figure 2.17). For very short time constants, the synapse
recovers before the next spike and the waveform is not significantly changed.
For shorter and intermediate time constants, the waveform is broadened since
the peak is reduced as the synapse goes into the depressed state. For longer time
constants, the synapse acts as an onset detector, resulting in a waveform with a
short peak and a tail with low or very low firing rate. The neuron is stimulated
only at the start of the input. The synapse is sensitive to changes in input, for
example fluctuations in background noise [Abbott et al., 1997] and will therefore
not improve the signal quality. In the case of weak depression, broadening the
input signal is similar to decreasing the discriminability d = 1, σ = 1 in our
model, leading to decreased classification performance.

For a facilitating synapse, we expect a sharpening of the input. If the time
constants of the synapse are adjusted to match that of the input waveform, the
synapse is in the facilitating state during the rising edge of the input waveform
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Figure 2.17: Effect of depressing synapses on the input waveform. The input
spike train is a Gaussian wave form with a peak spike rate of 100Hz and a
standard deviation of σ = 1. To illustrate the effect of the synaptic dynamics,
each input spike is weighted by the synaptic efficacy at the arrival time of the
spike (w). The resulting product (r · w) is the average input to the soma. The
synaptic efficacy is decreased by 30% for each input spike and recovers with
a time constant of 0.2s. Each graph shows the average of 50 trials. Without
depression, the synaptic efficacy is constant (we assume w=1) and the waveform
of the product of spike rate and synaptic efficacy is equivalent to that of the
spike rate itself (top left). For weak synaptic depression, that is fast recovery
of the depression, the input wave form is broadened and its peak amplitude
decreased (top right). With stronger depression, that is slower recovery, the
input wave is further broadened with the onset emphasized (bottom left). Even
stronger depression leads to a transient response to the onset of the input, but
fails to follow the input dynamics since the synapses are fully depressed at this
point (bottom right).
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and is depressed during the falling edge. Since the facilitating synapse model
has four parameters and the input waveform only two (standard deviation and
peak spike rate), we kept the parameters of the synapse constant as given in
the literature [Markram et al., 1998], and adjusted the parameters of the wave
form. We noticed that a certain minimum spike rate is necessary to achieve
an observable effect, because otherwise the Poisson input does not drive the
synapse into depression or facilitation consistently due to its variation.

We then varied the standard deviation of the Gaussian input (Figure 2.18).
We can distinguish three cases. (1) The standard deviation of the input wave-
form is short compared to the time constants of the synapse, (2) the synapse is
in the facilitating phase during the complete duration of the stimulation, and
(3) the resulting input waveform is not significantly changed. If the standard
deviation is too large, the synapse is mainly depressed during stimulation and
acts as an onset detector, comparable to the synapse with only depression. If
the synapse parameters match the input waveform, the synapses facilitates dur-
ing the rising edge of the stimulus and depresses during the falling edge. This
leads to a sharpening in the response of about 20%.

In conclusion, the effect of the dynamic synapses in our example of Gaussian
distributed input is surprisingly weak: since the transient input sensor does not
output any sustained responses (at least not strong enough to produce output of
the convolution chip), depressing synapses are not necessary to suppress steady-
state input.

Dynamic synapses roughly compute the derivative of the input. Computing
the derivative of a Gaussian waveform results again in Gaussian shape, and
that is the case why our input waveform does not change significantly for a
wide range of synaptic parameters. Even with careful tuning of the synaptic
parameters, the input to the neurons is only sharpened by 20%. The tuning
range is in good agreement with studies of the coding of temporal information in
dynamic synapses, in which information transfer is maximized near an optimal
frequency [Fuhrmann et al., 2002].

We assumed that the neuron receives its total input through only one synapse.
In a more biologically detailed model, the total input would be provided by in-
puts at several synapses. The effect of facilitation and depression would be even
less enhanced, at least for the stimulation rates considered here.

We can imagine that dynamic synapses are effective in a different context,
since they are widely evident in the cortex. If the input is a series of step
functions, facilitating synapses transform each onset into a short burst. The
resulting traveling series of bursts is similar to the series of Gaussian waveforms
for which we showed that the performance of the winner-take-all can be close
to optimal.
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Figure 2.18: Effect of facilitating synapses on the input waveform. Input spike
train is a Gaussian wave with a peak spike rate of 100Hz and different standard
deviations (left column).Each input spike is weighted by the actual efficacy
the synapse had at the arrival time of the spike (middle column). The synaptic
efficacy is shown on the right column. The parameters of the facilitating synapse
are taken from [Markram et al., 1998], except the absolute amplitude that only
serves as a scaling factor. The time constants are τrec = 0.4s for the depression
and τfac = 1.8s for facilitation. We omitted adjusting the absolute amplitude
since we are only interested in the shape of the input waveform and indicated
this by leaving the y-axis without units. Each graph shows the average of 250
trials. (continued on next page)
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Figure 2.18 (continued from last page): We show three cases of example input:
for short pulses, the facilitating synapse is still in the facilitating phase when
the stimulation ends (top row). The resulting input waveform is therefore not
significantly changed. If the synapse parameters match to the input waveform
(middle row), the synapses facilitates during the rise of the stimulus and de-
presses during decrease, with the peak aligned at or shortly before the peak of
the input. The input waveform is sharpened by about 20%. At the very end,
the synapse leaves the depressed state since it is not driven hard enough any
more. Due to the low input rate the strong synaptic efficacy does not contribute
significantly during this time. For longer input pulses, the synapse indicates the
onset and then broadens the input waveform in the depressing phase (bottom
row). In this mode, the synapse is sensitive to any change in its input.

2.5 Context Information

As context information we summarize all computation that extends the basic
knowledge which of the input channel is currently stronger. The context can
be temporal, that is memory of the past winning neurons, or spatial, if the
network structure encodes additional information. In this section we will discuss
such concepts in a less strict manner than the analysis of the winner-take-all
mechanism, to give the reader an outlook how the winner-take-all concept could
be extended. The ideas presented here should be seen as starting points with
preliminary data, not complete analyses.

We can interpret the self-excitation described in Section 2.2.1 as context
information: if the input is stationary, the network can exploit the knowledge
that, once the correct winning neuron is selected, this winner will continue to
be the winner. Self-excitation provides this mechanism since it increases the
probability that the neuron that spiked before will also spike next. Since the
neuron with the strongest input has the highest probability to be selected as
the winner, facilitating this neuron for the next output increases the accuracy
of the network (Figure 2.7).

For moving stimuli as defined in Section 2.3.2, the network could exploit the
fact that the object does not jump in space, but moves smoothly to neighboring
locations of its last detected position. Instead of self-excitation, neighboring
neurons are facilitated to increase their probability of spiking next. The width
of the facilitation should reflect the traveling distance of the object from one out-
put spike to the next. Facilitation of neighboring neurons can be implemented
with lateral excitatory connections, resembling the strong lateral connectivity
found in cortical circuits [Douglas and Martin, 2004]. We started to explore this
scheme with neighboring excitation in the second chip implementation (for de-
tail on the chip see Section 3.2). However, the mismatch in the used excitatory
synapse made it difficult to estimate the increase in performance. Furthermore,
the connectivity is unspecific. The connectivity is hardwired to excite all neigh-
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boring neurons, whereas an object usually moves in one direction. [Woergoetter
et al., 1999] describes a mechanism that propagates the movement information
to neighboring neurons, but at the cost of introducing a rather unusual neuron
model that requires special implementation.

2.5.1 Permitted Sets

Extending the local neighboring connectivity to embed structure in the network
is formulated in the idea of permitted sets [Hahnloser et al., 2000]. A permitted
set is a group of neurons that can be active at the same time. A forbidden set
is any set of neurons in which the neurons are not allowed to be active at the
same time. Permitted and forbidden sets can be implemented in two ways: (a)
starting with a full mutual inhibitory connectivity, for each permitted set the
inhibitory connections between all pairs of neurons of the set is removed [Xie
et al., 2001, 2002]. (b) For each permitted set, mutual excitatory connections
between all pairs of neurons of the set are added. The excitation is balanced
by unspecific global inhibition [Hahnloser et al., 2003]. Detailed mathematical
proofs based on the connectivity matrix can be summarized as follows: (1) every
subset of a permitted set is also permitted, and (2) any superset of forbidden sets
forms again a forbidden set. Following from (1) permitted sets can otherwise not
overlap; they form one large set and loose specificity. The hard winner-take-all
network is a special case of such networks in which all neurons form a forbidden
set and no permitted sets with more than one neuron exists.

Excitation in permitted sets (model b) implements signal restoration which
we discussed as part of the properties of soft winner-take-all circuits in Section 1.
If the input activates only part of a permitted set, the excitation from these
neurons will stimulate the remaining neurons of the permitted set and complete
the pattern encoded in the connectivity. This behavior can also be found in the
model (a), if the inhibitory connections between the permitted set neurons are
not removed, but replaced by weak excitatory ones.

Adding excitatory connections on top of an unspecific inhibition (model
b) is particularly attractive since it seems biologically more plausible. Since
inhibition is always mediated by inhibitory neurons, in model (a) each permitted
set would be represented by an inhibitory cell. This cell receives excitation
from the neurons in its set and inhibits all neurons in the network, except
the ones of its set. While still being a topic of discussion, such detailed local
inhibitory connectivity does not seem plausible. In contrast, model (b) could
be implemented by having unspecific local inhibition and long range excitation
which seems to implement specific connectivities.

In biology inhibitory cells is always mediated by inhibitory cells and is there-
fore unspecific, while in the first model inhibition is very specific and would re-
quire a large number of specific inhibitory cells. However, the model (b) requires
a very fine-tuned balance of excitation and inhibition in the network, since the
excitation in the permitted set has to compensate the global inhibition. While
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it is an open discussion if such an equilibrium is biologically plausible, it is dif-
ficult to implement with spiking neurons. The original model was formulated
with linear threshold units [Hahnloser et al., 2003] or current-mode VLSI cir-
cuits [Hahnloser et al., 2000]. In spiking neurons, graded analog values can still
be represented as firing rates if the variation in the spike times is limited. We
explored an implementation in the second chip version, and it turned out to be
difficult to establish a fine-tuned equilibrium between excitation and inhibition
due to the mismatch on that chip version. We therefore concentrated on the
model (a) with specific inhibition.

Figure 2.19 shows the principle of permitted sets with specific inhibitory
connectivity. From a full mutual inhibitory connectivity, all connections between
the neurons of each permitted set are removed. With input, these neurons evolve
to a co-spiking group, a set of neurons that is active at the same time.

(a ) (b )

Figure 2.19: Principle of permitted sets with specific inhibitory connectivity
(model a). Starting with a full inhibitory connectivity between all neurons (a),
the inhibitory connections between the neurons of a permitted set are removed
(b, filled neurons). These neurons form a co-spiking group. All other combina-
tions of neurons that involve at least one inhibitory connection form a forbidden
set.

Since permitted sets are not allowed to overlap, the number of permitted
sets that can be implemented in a neural network is limited. Figure 2.20 shows
an arrangement of ring- and cross-shape patterns in a two-dimensional grid. As
a proof of concept of permitted sets, we implemented a network that exploits
this structure to detect rings and crosses on the first version of our chip, see
Figure 2.21 and 2.22.

In biology, neurons do not have to follow a retinotopic organization. Still,
the capacity of a neural network to implement complex patterns is limited. In
the example of rings and crosses, we obtain a large number of neurons that
is sparsely connected. In a feedforward architecture, every pattern would be
represented by only one neuron and receive a specific connectivity from the
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( a ) (b)

Figure 2.20: Network connectivity with permitted sets to detect (a) rings and
(b) crosses. Every set of colored neurons overlaid with a black ring (cross)
represents a permitted set. All inhibitory connections between the neurons of
the permitted sets are removed, while each neuron inhibits every other neuron
that does not belong to the same set. Since permitted sets cannot overlap, the
shown setups were carefully selected to achieve a high density of sets on a two-
dimensional grid. This restrictions is not necessary if neurons can be arranged
in arbitrary configurations.

input layer.
It is therefore not efficient to use permitted sets in the first layer of sensory

processing, but they might be useful on a higher-level of abstraction. [Hahn-
loser et al., 2000] proposes to model syntactic constraints with permitted sets.
They suggest a network in which the neurons represent the strokes of which
handwritten letters are composed. The co-activation of neurons in a permitted
set would represent a letter as a combination of strokes. Combinations that do
not correspond to letters are suppressed by forbidden sets. The mathematical
details are similar to non-negative matrix factorization (NMF) [Lee and Seung,
1999].

As an excourse let us discuss the application of this concept of synaptic con-
straints to a network that plays the popular logic game ’Sudoku’. Sudoku is
played on a 9x9 grid. On each grid position the digits 0-9 can be inserted, but
each digit is only allowed once per line, column and 3x3 sub-grid. The player
starts with some given numbers and fills in the other numbers by logical de-
duction. In a permitted set application, the network consists of a 9x9x10 array.
Every neuron stands for a digit at a specific grid position. Inhibitory connec-
tions implement the synaptic constraints, that every digit is only allowed once
per grid position, per line, column and 3x3 subgrid. Every possible solution of
this connectivity forms a permitted set in the network. Obviously, the permit-
ted sets overlap largely, so that the network has to select the permitted set that
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Figure 2.21: Permitted set example implementation: Network architecture. In-
put is connected to two winner-take-alls, one encoding for rings (top), the other
for crosses (bottom), with a structure as shown in Figure 2.20. Additional con-
nectivity between the two networks can be switched on to enforce that only one
winner-take-all is active. The output consists of two readout neurons, which
represent the sum of the whole activity in each winner-take-all. A second array
represents the location of activity summed over the two arrays. The permitted
sets detect one of the two patterns, the readout reveals the identity (”what”
pathway) and its location (”where” pathway).
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Figure 2.22: Permitted set example implementation. (b) Network Activity for
the presentation of a ’+’. Input consists of a cross-shape pattern overlaid
with background activity. The winner-take-all with permitted sets encoding
for crosses filters this pattern while it suppresses all other activity. The readout
neurons indicate this with high activity at the neuron encoding for crosses. The
topological array encoding for the location of the object is not functional in this
implementation. (c) Network Activity for the presentation of a ’o’, analogous
to (b) for rings. For details of implementation, see Section 3.2.



2.5. CONTEXT INFORMATION 47

is consistent with the given digits. We propose the following readout algorithm:
background excitation drives every neuron slowly towards threshold. The neu-
rons associated with the given digits are excited stronger so that they spike and
propagate the synaptic constraints via their inhibitory connections. Neurons
that do not receive inhibition will cross threshold and represent the solution of
the game in their output spikes. However, in initial trials our implementation
failed to settle down to a permitted solution and we could not determine if due
to problems in the algorithm or the implementation.

2.5.2 Competition across Winner-take-All Networks

In the introduction we referred to the computational power of the cortical mi-
crocircuit because it processes information on several levels: within its local
computational circuit, internally in the area, and inter-areas. How can compe-
tition on several levels be incorporated in our winner-take-all model?

Linear amplification means that the output of the winning neuron is propor-
tional to its input. Our model not only has this property, but also the activity
of the inhibitory neuron is equal to the sum of the outputs of the whole array. If
only one neuron has active output (the winner), the firing rate of the inhibitory
neuron is equal to that of the winning neuron. We can therefore use the activity
of the inhibitory neuron to access the strength of the strongest input.

We combine several winner-take-all networks by adding a second inhibitory
neuron to each winner-take-all (Figure 2.23). The second inhibitory neuron
receives excitation from all primary inhibitory neurons, and inhibits each neuron
in its associated winner-take-all array. The activity of the first inhibitory neuron
is the sum of the activities of all associated array neurons. The activity of
the second inhibitory neuron is the sum of the activities of all first inhibitory
neurons, and therefore the sum of the activity of all array neurons in the network.
The second-level winner-take-all combines all separate winner-take-all networks
into one combined array.

The array neurons receive inhibition from both inhibitory neurons. In our
model, all synaptic connections are hard and transmitted without significant
delay through the network. If a neuron in the array spikes, its spike causes the
first inhibitory neuron to spike and all array neurons receive inhibition. At the
same time, the second inhibitory neuron will spike and again send inhibition
to the array neurons. Since inhibition is hard, the array neurons are already
discharged with the first spike and the second inhibition is not effective. For
all other cases, our scheme adds an inhibitory connection between the two in-
hibitory neurons which belonging to a first-level winner-take-all, to compensate
for the double inhibition.

In the Caviar project the hierarchical winner-take-all is used to determine
the strongest feature. The first-level winner-take-alls determine the strongest
input for each feature across the retinotopic field of view. The second-level
selects the strongest feature by comparing the strengths of the winner of each
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Figure 2.23: Competition across several winner-take-all networks. In our model,
not only the output of the winner is proportional to the strongest input (’lin-
ear amplification’), but also the activity of the inhibitory neuron. We use this
property to combine several winner-take-alls on a second level. In the first-
level winner-take-all, the inhibitory neuron receives excitation from each array
neurons and inhibits each neuron in return. The second-level winner-take-all
adds a second inhibitory neuron to each winner-take-all. It receives excitation
from all primary inhibitory neurons, and also inhibits each neuron in its asso-
ciated winner-take-all. In addition, an inhibitory connection between the two
inhibitory neurons belonging to a first-level winner-take-all compensates for the
double inhibition.
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feature map. The total winner is then the neuron with the strongest input
across all features.

Cascading the winner-take-alls as presented is equivalent to one large winner-
take-all that spans the total input. The separation still offers some advantages:
the local winners can be determined before competition across winner-take-alls
is activated, for test reasons (modular architecture). Second, the properties
of the winner-take-all circuit can be different, for example their neurons have
different integration parameters and different additional activity can be imple-
mented before the winner-take-all results are merged. We will come back to this
competition across winner-take-alls in the implementation Section 3.2.2.
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Chapter 3

Implementation in
Hardware

In this section we describe the implementation of the winner-take-all network
as a hybrid analog/digital custom-made chip using Very-Large-Scale-Integration
(VLSI). Neuromorphic VLSI chips implementing models of neuronal networks
have a long tradition, for example see [Mead, 1989]. The goal of this chip is to
implement a reliable, two-dimensional hard winner-take-all competition. Four
winner-take-all networks are integrated on chip and compete against each other
on a second level. In the Caviar project the chip is used as the ’object’ chip,
and the winner-take-all networks represent the feature-maps generated by the
convolution chips.

We first describe the general principles of the implementation of neuronal
networks in VLSI technology (Section 3.1). We introduce neuron and synapse
models and how their computation is captured in analog transistor circuits.
The spiking communication is captured using the address-event representa-
tion (AER), which gives the opportunity to create hybrid hardware/software
frameworks using the digital communication.

In Section 3.2 we describe the details of the implementation of the winner-
take-all network. In the course of the Caviar project, three chip versions were
designed, primarily by Shih-Chii Liu. All versions share the same architecture
of the winner-take-all network, but we addressed mismatch problems, improved
details in the architecture and the neuron circuits of each version, and we in-
creased the size of the population by a factor of four in the last chip revision.

We then describe the performance of the chip for the theoretical network
models we developed in Chapter 2. We show the winner-take-all operation
for inputs of constant currents, regular frequencies and spike trains of Poisson
statistics, in comparison to the performance predicted by our theoretical model
(Section 3.2.1). Competition across winner-take-alls as we discussed in the con-
text information section 2.5.2 is shown for the example of a rotating object,
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and then implemented as competition across chips for which we describe the
necessary new circuits in Section 3.2.2. We then focus on two issues that have
become evident in the implementation: mismatch limiting the network perfor-
mance, and how spiking neuronal networks can be configured and programmed
to include learning and adaptation capabilities. Mismatch (Section 3.3) limits
the performance of the network. We characterize the mismatch in the input
synapses and discuss different schemes of compensating the synaptic weights.
We conclude with a discussion in Section 3.3.4.

Configuring and programming spike-based VLSI networks resulted in two
software packages: the ’ChipDatabase’ software which creates a graphical user
interface for controlling the bias voltages of the on-chip circuits (described in
Appendix C), and a hybrid software/hardware framework that allows to embed
software agents in the spiking communication (Section 3.4). These agents ana-
lyze the spiking activity in the network, and implement a variety of learning and
adaptation functions which are believed to play an important role in biological
information processing.

3.1 Principles of Implementation

The cortex is probably the most complex biological structure. A recent study
describes numbers of 80,000 neurons and 450 million synapses per square mil-
limeter of cortical surface in cat visual cortex, that is every neuron receives on
average 5743 synapses from other neurons [Binzegger et al., 2004]. In addition
to this large connectivity, more complexity is added from the different neuronal
cell types, a variety of parameters for each synaptic connection, and the detailed
three-dimensional topology of each cell. How can this impressive archetype be
replicated in an artificial system? The answer is, of course, by brute simplifi-
cation, and by capturing two of the basic principles of neuronal systems: local
computation and spiking communication.

On top of these, the dynamic properties of cortex are striking. While compu-
tation and communication happen in real-time, a variety of modulation, adap-
tation and learning processes take place on different temporal and spatial scales:
from synaptic short-term depression and facilitation in the order of several hun-
dreds of milliseconds to life-long changes in the connectivity patterns of brain
regions due to development, training or psychological disorders. We will point
out that these changes can be best explored using algorithmic descriptions, and
mapped into artificial systems by embedding software agents in the spiking con-
nectivity. For an overview of adaptive processes and the complexity of biological
neurons in information processing, see [Koch and Segev, 2000].

The axon-hillock circuit, a basic neuromorphic equivalent of a neuron, was
first described in [Mead, 1989], see Figure 3.1. A biological neuron is defined
by its membrane, a lipid bilayer that insulates the interior of the cell from the
outside medium. If ions are accumulated inside the cell, the cell has a different
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potential than its surrounding, the membrane potential. In the neuromorphic
implementation, the membrane is equivalent to a capacitance which accumulates
charge on one plate while the other plate is connected to ground. The dielectric
of the capacitance takes the role of the lipid bilayer.

Figure 3.1: Implementation of local computation: the functionality of a biologi-
cal neuron (left) is implemented in a simplified transistor circuit (right). At the
dendritic tree, synapses feed input to the neuron. We use an open triangle as
symbol for an excitatory synapse, a filled circle for an inhibitory synapse and an
open circle for the neuron. Excitatory synapses inject depolarizing current onto
the membrane capacitance. If the membrane voltage rises over a threshold, the
axon hillock circuit consisting of a high-gain amplifier switches the output, and
discharges the membrane capacitance through a reset transistor.

Input from other neurons is received at synapses that are arranged along
its dendritic tree. Triggered by incoming pulses, channels through the mem-
brane open and let ions flow in or out of the cell. We model ion channels by
field-effect-transistors whose channels add or subtract charge from the mem-
brane capacitance. An excitatory synapse increases the membrane voltage, an
inhibitory synapse decreases the voltage.

There is a variety of ion channels that are selective for different charge car-
riers, and which are gated by different mechanisms, that depend on membrane
voltage, time constants and chemical transmitters, resulting in very different
synaptic currents. Changes in the synaptic properties are believed to be the ba-
sis of many learning and adaptation effects. Consequently, a variety of synapse
models and implementations have been developed (for example [Gerstner and
Kistler, 2002]). In this work we use a simple model of a synapse: the injection
of a fixed current pulse onto the membrane capacitance.

Dendrites integrate the input from all synapses. In biological neurons, the
structure of the dendritic tree adds to the computation by introducing delays,
amplification and other non-linear effects. We consider the neuron as a point
structure, that is all inputs are directly integrated on the membrane capacitance.

Once the membrane voltage rises above a certain threshold, an action po-
tential is generated in the axon hillock. Na+ ion channels in the membrane
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open to create positive feedback, which increases the membrane potential until
K+ channels open and discharge the cell to its resting potential. The result is
a sharp well-defined voltage peak, a spike. In the implementation a high-gain
amplifier compares the membrane potential to a given threshold. When its out-
put switches to high, the membrane capacitance is discharged through a reset
transistor.

The action potential travels along the axon to the synapses of targeted neu-
rons, where the process of re-transformation into a synaptic current starts again.
Transmission of the action potential is a very reliable and binary process, com-
pared to the analog computation that takes place inside the cell.

In cortex, the synaptic connections fill the three-dimensional space. Semi-
conductor structures are currently limited to two dimensions, in which the large
connectivity can not be represented. Wiring has to be virtual with the so-called
address-event representation (AER), see Figure 3.2. AER takes advantage of
the fact that an action potential can be seen as a point event in time, so many
events can be multiplexed over a high-speed digital bus.

Figure 3.2: Principle of the Address-Event-Representation (AER). Whenever a
neuron spikes, its address is recorded and placed as a digital event on a high-
speed, multiplexed bus and transmitted off-chip. Virtual wiring translates the
source address into one or several target addresses. These events are transmitted
to the receiver chip, which decodes the addresses and activates the associated
synapses.

On chip, the neuron circuits are repeated across a two-dimensional grid.
Every neuron is assigned a row and column address. Whenever a neuron spikes,
its address is placed on the multiplexed bus and transmitted off-chip, where
further processing can take place. In the same way, spikes are sent to individual
synapses: a decoder receives spikes on the multiplexed bus and activates the
synapses belonging to the transmitted addresses. In Caviar, spikes can be
transmitted with a bandwidth of up to 10MSpikes/s. The latency in interface
hardware, for example for mapping, is less than 1.2us.

Different communication schemes have been discussed and implemented, for
example [Mortara and Vittoz, 1994, Mortara et al., 1995, Boahen, 2000, Culur-
ciello and Andreou, 2003, Boahen, 2004a,b,c]. We use an asynchronous protocol
with arbitration. The arbitration ensures that a neuron can only place an event
on the bus when the bus is empty. Queued neurons are processed fair and the
protocol is non-greedy, that is no single neuron can take over the bus.
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The actual connections are implemented virtually by mapping the source
neuron addresses onto the target synapse addresses. This can be done by algo-
rithms, or with a look-up table that lists the target synapses for every source
address (Table 3.1). The table can also be used to store further properties of the
synaptic connections, which are either evaluated in the mapper (for example a
transmission probability), or transmitted with the spike to the target synapse
(for example the synaptic weight).

  
  
  

   
   
   

Table 3.1: Example of a connectivity table. For each neuron source address,
one or several target synapses are specified. The look-up table can also contain
additional parameters such as the synaptic weight or a transmission probability.

AER can be used to connect neurons and synapses on different chips, or to
create recurrent connections to synapses on the same chip. Together with spik-
ing sensors and actuators driven by spikes, complete sensory-processing systems
can be assembled (Figure 3.3).

sensors

feedforward / recurrent neuronal networks

actuators

Figure 3.3: Example of an AER spike-based processing chain.

How is the higher-level functionality of learning, adaptation and modulation
functions embedded into this hardware system? The functionality can be im-
plemented in the hardware itself, for example in analog VLSI learning synapses.
Since this requires substantial design effort due to the long manufacturing times,
we will focus on two external solutions that are based on generic hardware.

First, the parameters of the analog computation can be controlled. Bias
voltages of the circuits are used, for example, to provide a background activity
to the neurons, to change the synaptic time constants or the leakage in the
soma. These parameters are normally global to all neurons on one chip.

Second, the spike trains in the system can be recorded (monitoring), and
artificial spike trains can be injected into the system (sequencing), that for
example simulate input from higher-level areas. To interface the asynchronous
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real-time spiking communication with conventional synchronous computers, a
time-stamp is added to each recorded spike. For sequencing, the inter-spike
interval is specified for each spike. Several solutions have been developed to
interface hardware spike trains to computer systems. We use the PCIAER
board [Dante and Del Giudice, 2001] or portable logic boards, controlled through
the Universal Serial Bus (USB) [Rivas et al., 2005].

Based on the input from the spiking hardware, control algorithms can im-
plement learning and modulation functions on a software base. We describe
such a software system in detail in Section 3.4 [Oster et al., 2005]. The input
is either activity-based, that is algorithms are based on the current estimation
of the neuronal activity, or spike-based, that is computation is triggered by sin-
gle events. The algorithms are implemented as independent software agents, so
a variety of different algorithms can be concurrently active. Each agent acts
on the spiking hardware by modifying the analog parameters, sending artificial
spike trains, or modifying the connectivity table or its parameters.
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AER Synapses
Codename Neuron array size Exc. Inh. Dep.

1 tsmcneuroncaviar 4x 8x8 (+ 8 gl.inh.) 2 1 1
2 tncb 4x 8x8 (incl. 8 gl.inh.) 4 2 2
3 tnc3 4x 16x16 (incl. 8 gl.inh.) 1 2 1

Table 3.2: Overview of ’Object’ chip versions in the Caviar project.

3.2 Hardware Winner-Take-All Implementation

Our description of the network architecture is based on the principles of VLSI
implementation as we introduced them in the last section. In the Introduction
of Chapter 2 we discussed the general architecture of a winner-take-all network,
see Figure 2.1. The network consists of a population of excitatory neurons that
receives the input, and an inhibitory neuron to implement the competition. A
second inhibitory neuron is used for competition across arrays as we introduced
in Section 2.5.2. We will describe its implementation in Section 3.2.2.

We developed three versions of the chip, primarily designed by Shih-Chii
Liu. The first two chips are fabricated in the 0.35µm process of the Taiwan
Semiconductor Manufacturing Company (TSMC), the third chip in the 0.35µm
process if Austria Micro Systems (AMS). On the chip the excitatory neurons
are arranged in a two-dimensional grid and we will call them ’array neurons’
throughout this chapter. Depending on the chip version, the size of the array
is 8x8 or 16x16, see Table 3.2. Four winner-take-all arrays are integrated on one
chip.

The initial plan for this chip specified two one-dimensional arrays, one for x
and one for the y direction. Each of the two arrays sums the activity across
rows and across columns. By this, multiple inputs can lead to the detection
of spurious objects since also background activity is summed up. We therefore
changed the architecture to a full two-dimensional retinotopic array.

The arrangement of the four winner-take-all networks in the three chip ver-
sions is shown in Figure 3.4. In the first two versions, the array size is 8x8. In
the third version the array size is increased to 16x16. Each chip integrates four
arrays, so the total resolution is 16x16 for the first two version and 32x32 for the
final version. In the first version the two global inhibitory neurons of each array
were placed on the side of each array, forming an additional column between
the arrays, see Figure 3.4. They were not included in the AER communication,
since we expected that their high output spike rate would saturate the bus. We
showed in our model that the spike rates of the inhibitory neurons are equal to
that of the winning neuron in the array, so they can easily be integrated into
the array.

While the neurons are physically arranged in a two-dimensional grid, this
does not have to reflect the actual topology of the network. Through AER
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Figure 3.4: Architecture as implemented on the chip versions. Every chip ver-
sion contains four winner-take-all networks (I to IV) with each two inhibitory
neurons (upper one of the two: first inhibitory, lower: second inhibitory neu-
ron). Numbers indicate the x and y AER addresses of each neuron. (continued
on page 59)
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Figure 3.4 (continued from page 58): (a) first chip version. The 256 excitatory
neurons are tiled into four two-dimensional arrays, with the global inhibitory
neurons sitting on the side of each array. They are not part of the AER com-
munication. (b) second chip version. The inhibitory neurons are integrated into
the arrays and replace two of the array neurons. (c) third chip version. The res-
olution of each array is increased to 16x16, resulting in a total of 1024 neurons,
eight of which are inhibitory.

remapping, the input to the neurons can be connected in arbitrary topologies.
Communication with the global inhibitory neurons and self-excitation is also
independent of the position of the neurons in the array. Only if the local neigh-
boring connections are used, the network topology has to follow the hard-wired
connectivity.

Every array neuron receives excitatory and inhibitory AER input of different
types of synapses as summarized in Table 3.2. In addition, a constant current
input is used for testing. Having multiple synapses of the same type is useful
when connections of different strengths are used in the network: if the synaptic
weights can only be set globally for the whole chip, several synaptic weights can
be chosen by addressing different synapses. In most of our experiments, a pair
of excitatory and inhibitory synapses is used for the input. A second pair is
used to test internal and recurrent activity. On the input synapses the weights
are normally small so neurons integrate a large number of input spikes to reach
threshold. The other synapses are used to explore recurrent activity such as
long-range excitatory connections, or the inhibitory connectivity of permitted
sets (see Section 2.5). These weights are normally higher to show a significant
effect. All chip versions include a depressing synapse [Boegerhausen et al., 2003]
to explore effects of dynamic synapses in the network, see Section 2.4. Since
the dynamics of the synapse can be switched off it is also used as a normal
excitatory synapse.

The array neurons compete with each other through inhibition. In biology,
inhibition is mediated by inhibitory interneurons. In the winner-take-all net-
work, inhibitory neurons receive excitation from the array neurons and inhibit
them in return. For the theoretical analysis, the precise mechanism of the medi-
ation of the inhibition is not important and we replaced the inhibitory neurons
with a full mutual inhibitory connectivity between the array neurons. For the
chip implementation, mediating the inhibition through global interneurons is
efficient since these neurons sum the output of all array neurons. To implement
the sum, the membrane potential node of the first inhibitory interneuron is a
global line that is common to all neurons. Each array neuron has an excitatory
synapse to this line to excite the interneuron, see Figure 3.5. Similarly, the
spike output of the inhibitory interneuron is routed with a global line to all
array neurons and forms an inhibitory synapse at each neuron (’LI4W1’).

In addition to input and competition, the array neurons have hardwired local
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Figure 3.5: Hardwired connectivity of winner-take-all. Neurons are arranged
in a two-dimensional array. Every neuron receives excitatory and inhibitory
AER input, in addition to a constant input current for testing. Each array has
two inhibitory neurons (li1, li2) that receive excitation from the array and feed
inhibition back. The array neurons have hardwired local excitatory connections
to their nearest neighbors, and a self-excitatory connection. For details, see
text.
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excitatory connections to their nearest neighbors (’LEW’), and a self-excitatory
connection. The local-neighbor connections are intended to implement smooth-
ing of the input, but were never used in our experiments. The self-excitatory
connection (’LSELF’) is a connection by which each neuron excites itself with its
own output spike. This mechanism proved to be useful to stabilize the selection
of the winner and we will later describe the implementation in detail.

The synaptic weights of all synaptic connections is controlled with a global
bias voltage (for example ’L4IW’ for the synaptic connections from array neu-
rons to the first inhibitory neuron). If the bias is set to ground (for an exci-
tatory synapse) or to Vdd (for an inhibitory synapse), the synaptic connection
is switched off. A list of all biases and a suitable parameter range is given in
appendix B.1.

The neurons implemented on chip are of the integrate-and-fire type. The
neuron circuits of the first chip version have been used and described in previous
work, for example [Liu et al., 2001, Boegerhausen et al., 2003]. Since the details
of the circuit schematics do not affect the results discussed in this work we do
not describe the details of the circuits here. Biological details to the integrate-
and-fire neuron model can be found in [Gerstner and Kistler, 2002]. Note that
our implementation has a constant leak rate, that is the leakage is constant,
independent of the membrane potential due to leakage across the channels of
the circuit transistors. The neuron and synapse circuit schematics of the second
and third chip versions are modified to reduce the leakage currents; details will
be published later. In the mismatch section 3.3 we will discuss the basic synapse
circuit that is used on the first and the second chip version.

In the third chip version, the efficacies of the excitatory synapse and of one
of the inhibitory ones are programmable using D/A converters [Wang and Liu,
2006]. We will describe their use to compensate mismatch in Section 3.3.2.
These synapses are mainly used for the input, since the programmable weights
can be used to calibrate the mismatch. The other inhibitory and the depressing
synapse can then be used to explore recurrent connectivity.

Due to the theoretical importance of the self-excitation (see Section 2.2.1),
we modified the reset mechanism of the neuron circuit. In the first version
self-excitation was implemented with a synaptic connection of the output of the
neuron to its input. This synapse is affected by mismatch, and interferes with
the reset mechanism of the neuron soma. Starting from the second chip version,
the self-excitation is included in the reset mechanism of the neuron. Instead of
resetting the neuron to ground it is reset to a global bias. The global bias line is
not affected by mismatch. The rising edge of the reset control signal was slowed
down to decrease noise on the bias line.

In both second and third chip versions the sizes of the critical transistors
have been increased to reduce mismatch. We will discuss the performance with
mismatch in Section 3.3.3. We first demonstrate the winner-take-all competition
as it is implemented on chip.
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3.2.1 Performance

As a first test of the winner-take-all network, we stimulated the neurons with
constant input currents. With these inputs and a hard winner-take-all network,
the neuron with the strongest input current will always suppress the other neu-
rons. For this experiment, we use the intrinsic mismatch of the input transistors
to create a distribution of input currents. The input transistors of all neurons
are driven with the same bias voltage, but due to the mismatch in these transis-
tors, the effective input current will be different for each neuron, see Figure 3.6.
The winner-take-all chip can select the strongest input current optimally, that
is, it completely suppresses any other output.
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Figure 3.6: Raster plot of winner-take-all operation for stimulation with con-
stant input currents. We use the intrinsic mismatch in the input transistors to
create a distribution of input currents to the 64 neurons of the network. In the
beginning, the winner-take-all connectivity is switched off. At a time of 180ms,
the inhibition is activated and the neuron with the strongest input suppresses
any other output. Data from second chip version.

Next, we test the response of the winner-take-all network to spike trains
of regular frequencies, see Figure 3.7. As discussed in Section 2.1 the chip
can detect the winner optimally, that is it selects the highest input spike rate
after a predetermined number of spikes and suppresses the output from all other
neurons. Again, we use the intrinsic mismatch of the chip to create a distribution
of inputs. Figure 3.8 shows the time course of the winner-take-all operation.

For Poisson inputs there is a probability associated with the selection of the
correct winner. As we discussed in Section 2.2, this probability depends on
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Figure 3.7: Winner-take-all operation for stimulation with spike trains of regular
frequencies. The bars show the spike rates for the 8x8 neurons. (a) Input
spike rate distribution. Every neuron receives a spike rate of 100Hz, except
one neuron whose spike rate is increased to 120Hz. (b) Effective input, that is
the output of the network without winner-take-all connectivity, reflecting the
synaptic efficacies with mismatch. The neuron that receives an input spike rate
of 120Hz has the strongest output. (c) Output with winner-take-all operation.
The network selects the neuron with the strongest input and suppresses the
output from all other neurons.

the difference in the input rates and on the number of spikes the neurons need
to reach threshold. In Figure 3.9 we compare the performance of the chip to
the performance predicted by the theory. The data follow the prediction of the
theory, except noise in some of the data points. To reduce the effect of mismatch,
we selected neurons from the chip that have synaptic weights close together, see
Section 3.3.2 for a discussion of neuron sorting for mismatch reduction.

3.2.2 Competition across Chips

In Section 2.5.2 we discussed an architecture to perform competition across
winner-take-all networks to create a cascade of winner-take-all networks. The
inhibitory neurons of the first level compete to determine the strongest winner
across all winner-take-all networks. The scheme is used in the Caviar project.
There each winner-take-all network represents a feature-map computed by a
convolution chip. On the second level of competition the strongest feature map
is selected.

All versions of the winner-take-all chips contain four winner-take-all net-
works that cover the quadrants, see Figure 3.4. In the third version of the chip,
the resolution of the sub-arrays is increased from 8x8 to 16x16.
We first illustrate the competition across winner-take-alls in the chip implemen-
tation in Figures 3.10 to 3.12.

In Caviar each of the winner-take-all networks corresponds to a feature-
map that is computed by a convolution chip. While the numbers of sub-arrays
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Figure 3.8: Raster plot of winner-take-all operation for stimulation with spike
trains of regular frequencies. The experiment is similar to Figure 3.7, but shows
the time course of the competition. (a) Input: starting from 0ms, the neurons
are stimulated with spike trains of a regular frequency of 100Hz, but randomized
phase to avoid synchronization effects. Neuron number 42 receives an input
spike train with an increased frequency of 120Hz. (b) Output without winner-
take-all connectivity: depending on the intrinsic mismatch, the neurons reach
threshold with 6-8 input spikes and then spike with a regular output frequency.
Neuron 42 spikes first and has the highest output frequency since it receives
the strongest input of 120Hz. (c) Output with winner-take-all connectivity.
Neuron 42 with the strongest input wins the computation as soon as it spikes
first and suppresses all other neurons. Data from second chip version.
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Figure 3.9: Comparison of theoretical model and results from the second chip
version for stationary Poisson input. Data points show chip data, continuous
lines result from the model. Circles show data for N = 2 neurons in the network,
crosses for N = 8 neurons. The winning neuron receives a rate of ν0, the
non-winning a rate of ν1. In the case of 8 neurons, all non-winning neurons
receive the same rate ν1. (a) Probability of correct output versus the average
number of spikes the neurons need to reach threshold n. We give an average
number n because of the mismatch in the synaptic efficacies. The difference in
the input rate of the winning neuron ν0 versus the non-winning one(s) is 50%.
(b) Probability of correct output versus the ratio of the winner input rate to
the non-winning input. The neurons need 8 spikes to reach threshold. In both
cases, the data follow the prediction of the theory with single outliers due to
noise, for example in (a) for N =2, n≈6.5.
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Figure 3.10: Competition across four feature maps. Input to the neurons in
each feature map consists of spike trains of regular frequency and represents
a two-dimensional Gaussian distribution that rotates around the center of the
array with a frequency of 0.25Hz. The distribution is scaled so that the highest
input rate equals 1000Hz (this high rate is necessary because the network has
to determine the winner using an estimate of the instantaneous input rates on
the moving stimulus). In addition, every neuron receives a background firing of
200Hz. The input to feature map III is increased by 35% compared to the input
spike rates to feature maps I, II and IV.

on the object chip is fixed to four, the number of features at the convolution
stage is variable, given by the number of convolution chips. For example, in
the second assembly of the Caviar chain, only two convolution chips were
used which left half of the neurons of the object chip unused. We therefore
explored a scheme in which the competition across arrays can be performed as
competition across chips, see Figure 3.13. Every chip corresponds to one feature
map. This architecture is more flexible, since it accounts for a variable number
of convolution chips, and increases the resolution of each winner-take-all by four
since now the complete chip is used for a winner-take-all network and not only
a quadrant. The third version of the object chip then provides a resolution of
32x32 per feature map, matching that of the convolution chip.

Across-chip competition is implemented with a wired-OR circuit, that is a
wire common to all winner-take-all chips. On each chip, the four sub-arrays
are combined to form one large array by combining the output of the first
inhibitory neurons with an OR-circuit in the signal ’CompAcrossOut’, see Fig-
ure 3.13. Several chips compete by combining their ’CompAcrossOut’ signals
with a wired-OR. A resistor is placed on the output to pull the signal to Vdd
when no chip drives the ’CompAcrossOut’ line. The circuit for the OR gate
with open drain is shown in Figure 3.14.

The common ’CompAcrossOut’ signal is the input to the second inhibitory
neurons of all chips (’CompAcrossIn’). Since spikes from several chips in the
wired OR can collide, we added a monostable circuit, see Figure 3.15. The
design of the hard winner-take-all network prevents these collisions: as soon as
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Figure 3.11: Competition across four feature maps. Rasterplot of the output
for the four feature maps. Each dot represents one spike. From t=0 to 4s, the
winner-take-all connectivity is switched off and the neurons respond to the input
with the rotating Gaussian peak and a background firing. At time t=4s, winner-
take-all competition takes place within each feature map. All neurons except the
winners are suppressed. The position of the winning neurons follow the center
of the Gaussian peak, which rotates once in 4s. At time t=8s, the competition
between feature maps is switched on by activating the connections to the second
inhibitory neurons. Only feature map III that receives the strongest input is
active and suppresses the neurons in the other three feature maps. The output
of the inhibitory neurons is not shown. Data from second chip version.
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Figure 3.12: Competition across four feature maps. Time-binned output for
two feature maps. The three-dimensional plot shows the activity of the neu-
rons (x, y) over time (z-axis). The bin time is 40ms. A cube is shown if the
pixel spiked at least once in the given bin. Connectivity and time course as
explained in Figure 3.11. Only feature maps III and IV are shown. Data from
second chip version.
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Figure 3.13: Competition across chips. In the on-chip competition, each of the
four sub-arrays I-IV on the chip represent a feature map (see Figure 2.23). In
the competition across chips, the four sub-arrays are combined and the whole
chip represents one feature map. To combine the sub-arrays, the output of the
four first inhibitory neurons li1 is or’ed together to the signal ’CompAcrossOut’.
To implement competition across chips, this signal combines the output of the
first inhibitory neurons on other chips in a wired OR. The ’CompAcrossOut’
signal is open-drain and the wired-OR contains an external resistor R that brings
the node to Vdd if no chip is driving it to ground. The input ’CompAcrossIn’
contains an impulse former and stimulates the second inhibitory neurons that
inhibit the array neurons of all sub-arrays. Seen from the outside, the chip
contains one winner-take-all including all neurons instead the four sub-arrays.
This scheme provides more flexibility than the competition on-chip since the
number of object chips can match that of the feature maps instead of having
a fixed number of sub-arrays on one chip. In addition, we get more resolution
because the number of neurons per feature map is increased by a factor of four.
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the array neurons receive inhibition, they are reset so the inhibitory neurons
are not driven and the external line is not driven until one of the array neurons
will cross threshold again. The wired-OR circuit is therefore an easy and simple
solution to implement competition across winner-take-alls across chips.

We designed an interface board to contain up to four winner-take-all chips
that are connected with the wired-OR circuit, see Figure B.3. This board con-
tains some shorts due to manufacturing problems. When inserting more than
one chip, the board goes into power oscillations. We were not able to discover
if the source of this error is due to the manufacturing problems or problems in
the digital interface logic.
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Figure 3.14: Competition across chips: output circuit. (a) Circuit symbol,
combining the output of the four inhibitory neurons (’Inh1’ to ’Inh4’) in an
OR-gate with open-drain (’CompAcrossOut’). (b) Implementation. The spiking
output of the inhibitory neurons is combined with a standard OR gate. The
output of this gate drives the open-drain transistor M1. Width and length of
the transistors are chosen to sink a large external current. The transistor is
connected to an input pad, although logically the ’CompAcrossOut’ signal is an
output of the chip.

With this section we finish our description of the implementation of the
winner-take-all chip. The remaining sections focus on specific topics of imple-
mentation: a characterization of mismatch and mismatch compensation (Sec-
tion 3.3), and a hardware/software framework to embed learning in spiking sys-
tems (Section 3.4). Further details of the different versions of the winner-take-all
chips such as the bias settings and the PCBs can be found in Appendix B.
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Figure 3.15: Competition across chip: input circuit. (a) Circuit symbol. Pulses
on the input of the external line (’CompAcrossIn’) are formed with a monostable
to have a defined pulsewidth that can be adjusted by a bias (’pulselength’). The
output of the monostable drives the inhibitory synapses of all array neurons.
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3.3 Mismatch and Synaptic Weights

In neuromorphic chips, neurons and synapses are integrated in large arrays on
the chip. The large area covered by the array makes the individual circuits
sensitive to variations in the parameters of the manufacturing process. These
variations cause variations in operating parameters of the circuits, especially in
the threshold voltage of the transistors. Analog transistor circuits operating in
the subthreshold regime are especially sensitive to this mismatch. The result is a
large fixed-pattern noise in the synaptic properties which limits the functionality
of the chips.

To understand the basics of mismatch in analog VLSI circuits we will first
characterize the mismatch on the level of a single transistor by looking at the
effect of a single transistor that injects a constant input current into the neuron,
and measuring the output rate of the neuron. Compared to other characteri-
zations that use special test structures to quantify mismatch in transistors, for
example [Serrano-Gotarredona and Linares-Barranco, 1999], our measurements
use the integrate-and-fire neurons themselves as the output device. While the
measurement accuracy is lower, this is actually an advantage since the mismatch
is characterized with respect to the functionally relevant output of the whole
circuit. We compare data from the first two versions of the winner-take-all chip.
We then extend our analysis to spiking input, since this type of synapse is used
in the network implementation.

Calibrating mismatch in the synaptic weights is equivalent to setting all
synaptic weights to the same value. We will discuss five different strategies to
set the synaptic weights in the context of mismatch compensation.

3.3.1 Mismatch Characterization

Constant Input Current

The circuit in which we perform our measurements is shown in Figure 3.16.
The synapse transistor M1 inserts a constant input current IM1 that charges

the membrane capacitance Cmem of the neuron. When the membrane potential
crosses the threshold Vth after a time ∆t, a spike is fired and the neuron is reset
to Vreset. We measure the output spike rate f = 1/∆t for each neuron and
calculate the input current:

Cmem =
I ·∆t

Vth − Vreset
⇔ I = Cmem(Vth − Vreset)f (3.1)

We assume Cmem to be constant, since the mismatch of the poly1-poly2 and
moscap capacitances is reported to be small in this technology. In [Oster and
Liu, 2004] we showed that the variation of Vth and Vreset does not contribute
significantly to the variation of the firing rates, and that the effect of the re-
fractory period can be neglected. We therefore assume Vth and Vreset to be the
same for all neurons, see Table 3.3.
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Figure 3.16: Simplified version of the neuron circuit used to measure the con-
stant input current. Transistor M1 injects a current onto the membrane capaci-
tance Cmem. If the membrane voltage Vmem rises over a threshold Vth, the output
is switched high (in the implementation a diff-pair is used), and discharges the
membrane capacitance through a reset transistor to the reset voltage Vreset.

The second version of the winner-take-all chip has two input transistors M1
and M2 with different geometries, see Table 3.3.

Chip I Chip II
M1 M2

Cmem [fF] 62.89 270.8
Vth [V] 1.70 1.70
Vreset [V] 0 0
W×L [µm] 1.2× 1.2 2× 2 1.2× 1.2
UT [mV] 25.8

Table 3.3: Constants and specifications.

The effective current Ii of neuron i charging the capacitance is the difference
between the input current IM1 and the leak current Ileak of the soma:

Ii = IM1 − Ileak (3.2)

Transistor M1 is operated in the subthreshold regime, so we get:

Ii = I0 · exp
(
−κVgs

UT

)
− Ileak (3.3)

Vgs is relative to Vdd and is the gate to source voltage of M1.
Both IM1 and Ileak differ for each neuron i because of mismatch. In Fig-

ure 3.17 the current Ii is shown versus Vgs of M1 for the neurons with the largest
and the smallest firing rate. The subthreshold slope factor κ is equal for both
transistors, but the prescaling factor shows large variations. For low currents,
the leakage current is the dominant factor.
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Figure 3.17: I vs. Vgs for the two extreme input current transistors.

To determine the variation of the input current through transistor M1 over
all neurons, that is I0 in Equation 3.3, we choose Vgs so that all transistors are
still operated in the subthreshold regime and are not affected by Ileak. The
resulting variations measured for both versions of the chip are summarized in
Table 3.4.

Chip I Chip II
M1 M1 M2

κ - 0.798 0.70 0.70
σ(∆x/〈x〉)
IM1/2 % 62.3 19.4 38.1
σ(VT0) [mV] 18.2 6.1 11.5
AV th [µm·mV] 21.8 12.2 13.8

Table 3.4: Measurements and reference values.

The distribution of the prescaling factors I0 does not follow a Gaussian
distribution (Figure 3.18). The prescaling factor is given by:

I0 = Is exp
(

κVT0

UT

)
(3.4)

We fitted the I0 distribution by assuming a Gaussian distribution of the thresh-
old voltage. We calculated VT0 from Equation 3.3 with Ileak = 0 and I = Ith
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defined by [Eisele, 1998]:

I = Ith ≡
W

L
· 0.1µA (3.5)

The parameters µ(VT0), σ(VT0) and Is were then estimated from the I0 dis-
tribution using least-square optimization. Table 3.5 lists the parameters of the
fit.

µ(VT0) [V] σ(VT0) [mV] Is [nA]
fit 0.603 11.5 3.7

Table 3.5: Fitted parameters of I0 distribution, from a least-square fit assuming
Gaussian distribution of VT0.

Is is then calculated from Equation 3.4 using these mean values for I0 and
VT0. Figure 3.18 shows that the measured distribution of I0 is modeled well
from the assumption of a Gaussian distribution for VT0.
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Figure 3.18: I0 distribution measured (histogram) and fitted (continuous line).

We also determined the mismatch matching parameter AV th, which differs
largely for the two chip versions and is in all cases larger than reported for a
generic 0.35µm CMOS technology [Eisele, 1998].

AV th = σV th ·
√

WeffLeff = 36.5mV ·µm (3.6)

Both the fits of the I0 distribution and the parameter AV th suggest that there
are additional mismatch sources other than the threshold voltage variation given
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by Equation 3.4. For example, the model proposed by [Serrano-Gotarredona
and Linares-Barranco, 2000] uses five different parameters to model transistor
mismatch.

Parasitic differential capacitances do not contribute to the experiment here,
since they only have an effect when the input is switched on or off. We stimulated
the neurons with a constant input current which should not induce dynamic
effects.

Figure 3.19 shows the variation for the two transistors across the population
of neurons. For high firing rates, the mismatch is determined by the prescaling
factor I0 and can be roughly assumed as independent from the mean firing rate.
For low firing rates, the leakage current is the dominant factor and the total
variation is determined by the higher mismatch of the leakage currents.
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Figure 3.19: Relative variation of the output firing rate. Data is obtained for
the two transistors that charge the membrane capacitance with a constant input
current. We vary the input current to obtain different mean firing rates. The
relative variation is the standard deviation of the firing rate distribution divided
by its mean. Data from the second chip version.

Spiking Synapse

Next we measure the mismatch in the real synapse that is driven by input spikes.
Figure 3.20 show the synaptic circuit. An incoming spike, consisting of a short
pulse of about 1µs, switches transistor M2 on and copies the current Isyn set
by transistor M1 with bias Vw to the membrane capacitance.
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Figure 3.20: Spiking synapse circuit.

To characterize the synapses we stimulate them with a spike train of constant
frequency rin and measure the output frequencies rout of the neurons. We define
the dimensionless synaptic efficacy w which describes the jump in the membrane
potential relative to Vth − Vreset. Note that we do not consider conductance-
based synapses or the time course of the synaptic current here. A synaptic input
causes a fixed, instantaneous jump in the membrane potential. For example with
a synaptic efficacy of w=0.2 the neuron will reach threshold after 5 input spikes.

The neuron will only cross threshold and make an output spike at the time
it receives an input spike. To avoid that this synchronization has effects on the
accuracy of the measurement, only small values of w can be measured (Fig-
ure 3.21). To avoid influence of the soma leakage on the measurement, we use a
high stimulation frequency, so that the membrane time constant can be avoided.

w =
rout

rin
for rout < 0.1 · rin, rin �

1
τleak

(3.7)

We use rin=2.5kHz and characterize the synapses of the 248 excitatory neurons
on the chip in blocks of 62 to avoid saturation of the communication bus.

Figure 3.22 shows the relative variation of the synaptic efficacies. The prop-
erties are similar as the ones discussed in Fig 3.19, but the leakage range is less
pronounced.

3.3.2 Compensation Schemes

How can the mismatch be compensated? In this section we discuss and compare
several methods. In general, mismatch can be reduced by appropriate sizing
of the critical transistors. The models described in [Serrano-Gotarredona and



78 CHAPTER 3. IMPLEMENTATION IN HARDWARE

0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

applied synaptic efficacy (burst length)

m
ea

su
re

d 
sy

na
pt

ic
 e

ff
ic

ac
y

Figure 3.21: Effect of synchronization by stimulation with input spikes. The
neuron will only cross threshold when it receives an input spike. For high
synaptic efficacies the output of the neuron is synchronized to the input. for
example the neuron can only reach threshold with 4 or 5 spikes, but not with 4.5
input spikes. Shown is the measured synaptic efficacy as defined in Equation 3.7.
The applied synaptic efficacy is increased using the burst length adaptation
described in section 3.3.2.
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Figure 3.22: Relative variation of the synaptic efficacies for different mean firing
rates. Data from 4 independent excitatory synapses of the 2nd chip version is
shown (’exc1’-’exc4’). The transistor M1 of synapse ’exc2’ has double the width
than the other synapses. Since the mismatch is not reduced for this synapse,
the most probable mismatch source are the transistors of the current mirror,
see Figure 3.20.
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Linares-Barranco, 2000] and [Drennan and McAndrew, 2003] provide enough
detail to predict the amount of mismatch on-chip after fabrication from known
transistor widths and lengths.

A different scheme is to alter the synaptic efficacies at run-time. Chang-
ing the synaptic efficacies at run-time is also required for any implementation
of networks with graded connections, and for systems that use adaptation or
learning (we will discuss network models that exploit the intrinsic mismatch at
the end of this section).

Synaptic weights can be set on-chip or off-chip. On-chip synaptic weight set-
ting is normally used when learning algorithms are implemented on-chip. The
synapses use local learning rules, for example spike-timing dependent plasticity
(STDP). The synaptic efficacy is either stored using short-term analog mem-
ory, optionally with multistable states [Bofill-i-Petit and Murray, 2003, Riis and
Hafliger, 2004, Arthur and Boahen, 2004, Mitra et al., 2006], or using floating
gates [Diorio et al., 1996]. Such synapses incorporate biological features quite
well, for example they do not separate the memory from the processing unit.
Although these synapses are biologically inspired, they have a major drawback
in a chip implementation. In the AER communication, synapses can be mul-
tiplexed, that is multiple connections are implemented by sending spikes from
different sources to the same target synapse. If the synapses stores its parame-
ters internally, each synapse has to be implemented separately resulting in large
area consumption. [Mitra et al., 2006] reports a chip with 256 synapses per each
of the 32 neurons, in which every synapse has its own analog weight memory.

In an AER system, the synaptic connectivity of the network is implemented
by a look-up table that routes spikes from neurons to synapses and is stored
externally. It is natural to use this external memory to store the parameters
of the synaptic connections, since digital memory is cheap and available in
large sizes. The interface logic either processes the synaptic parameters during
routing (for example for stochastic spike transmission) [Mallik et al., 2005], or
it transmits the parameters to the chip for further processing. A special case is
[Serrano-Gotarredona et al., 2006] in which the synaptic weight is programmed
every time a convolution kernel is applied. The synaptic weights are loaded
from on-chip RAM memory that is integrated on-chip.

Storing the synaptic weight externally is useful if learning and adaptation
algorithms are implemented in software as we will describe in Section 3.4. In
that case, the synaptic parameters are updated directly by the algorithm.

In this analysis we focus on mismatch in the synaptic efficacies, although
all parameters of a synapse can be affected by mismatch, for example the time
constants. The synaptic efficacy is the most important parameter in our network
model. Compensating the mismatch in other parameters of a synapse would
require additional schemes to the ones described here.

We will discuss five different schemes to set the synaptic weight through
external logic. All methods can be used to compensate the mismatch intrinsic
to the chip implementation. In a neural network, the weights are initialized
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to the distribution given by the network model, and then modified through
learning. For mismatch compensation, the synaptic weights are set to be as
equal as possible across the whole population. We will use this special weight
distribution as an example case to discuss the weight setting algorithms.

Neuron Sorting

A first approach is to use only the neurons whose efficacies are close together
and to discard the neurons with outlying efficacies. This is inspired by a biolog-
ical principle that a variety of samples is grown and the non-suitable ones are
discarded, for example for the growth of axons, for genetic selection etc. In the
case of an aVLSI chip, the virtual AER wiring is altered to exclude the neurons
that are sorted out. How effective is such a strategy to reduce mismatch?

Starting with the skewed Gaussian distribution of firing rates measured from
the first version of our chip (Figure 3.23a), we sorted the neurons by the differ-
ence of their firing rate to the mean firing rate of the population. We discarded
the neurons at the end of this list, that is the neurons with outlier firing rates.
The coefficient of variation (CV) of the firing rates of the remaining population is
shown in Figure 3.23b. In the beginning the method is more efficient than a lin-
ear decrease, that is by discarding only 5% of the neurons in the population, the
CV drops from initially 33% to 28%. Then the coefficient of variation decreases
slower. We compared our result to that of a non-skewed Gaussian distribution.
The method is slightly more efficient on a skewed Gaussian distribution, since
there are more far outliers than in the Gaussian distribution.

Although the variation decreases in a superlinear way, neuron sorting is
not as efficient as we expected in reducing mismatch. Still, by discarding a
small percentage of neurons in the population the variation can be significantly
reduced. Neuron sorting is only possible if the wiring within the network is
established with the AER. If the network is hard-wired, selecting only a subset
of neurons is not possible. We use neuron sorting whenever we implement
networks that do not require the full number of neurons on the chip.

Burst-Length Adaptation

In burst-length adaptation a burst of spikes is sent to the synapse instead of
a single spike. The length of these bursts is adapted to set a specific synaptic
weight. The bursts are generated externally with the mapper interface. The
method has the advantage that it makes use of existing off-chip hardware, does
not require additional on-chip circuits, and is easy to implement.

We present results from the first chip version, showing that the method
reduces the variation in the synaptic efficacies from about 100% to 10%.

The burst is generated by repeating the same target address in the routing
table of the external spike interface module. In the PCIAER board the address
of the synapse is repeated in the list of target addresses. The USBAER mapper
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Figure 3.23: Mismatch compensation with neuron sorting. Starting from the
firing rate distribution of all neurons (a), only a subset of the neurons which have
similar synaptic efficacies are kept (b). The coefficient of variation decreases as
part of the neuron population is used. Data from second chip version, see inlay
for distribution of firing rates for stimulation with constant input currents.
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has a special entry in the mapping table that specifies how often the target
address should be repeated.

We first checked that multiple spikes sum linearly on the membrane potential
(Figure 3.24). The time constant of the synapse has to be shorter than the cycle
time of the handshake on the bus (note that this requirement excludes synaptic
models that rely on specific dynamics of the synaptic current).
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Figure 3.24: Burst of spikes sum up linearly on the membrane potential, shown
for 3 spikes. (a) one of the AER communication signals indicating that the
chip has received a event from the interface module (active low acknowledge
signal from the chip); (b) membrane potential Vk of the neuron. With every
incoming spike the membrane voltage is increased. The charging of the mem-
brane takes less time than a communication cycle, so subsequent spikes sum up
independently.

We vary the number of spikes in the burst mi for each neuron until the
neuron spikes with the desired output frequency. The output frequency can
only be an integer divider of the input frequency, because the neuron needs an
integral number of spikes to reach threshold. We used a simple algorithm to
adjust mi: all burst lengths are initialized with the same lengths, and the firing
rates are measured. If the output frequency of a neuron is below the average
frequency, mi is incremented by one, otherwise it is decremented. The process
is iterated until the coefficient of variation saturates.

We tested this method on the first version of our chip which exhibited the
largest amount of mismatch. Uncalibrated, the vector of output spike rates r
has a mean of µr =11.28Hz. On average a neuron needs 〈ni〉=8.86 input spikes
to reach threshold. The standard variation of the output rates is σr =11.69Hz
and the coefficient of variation CV =σr/µr =103.7%.

Figure 3.25 shows the resulting output firing rates after mismatch compen-
sation. The mean frequency µr = 11.60Hz is equal for the calibrated and the
uncalibrated case, but the standard deviation is now only σr =1.006Hz, resulting
in a coefficient of variation of 8.6%.
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Figure 3.25: Output firing rates of the 8x8 neuron array, (a) without and (b)
with mismatch compensation using burst-length adaptation. Each neuron is
stimulated with a constant input frequency of 100Hz. X/Y axis: neuron address;
bar height: spike rate.

The first chip exhibits also mismatch in the reset mechanism of the neu-
rons. Because of this mismatch, some neurons are not completely discharged
while others show a finite refractory period (Figure 3.26). To correct for this
mismatch with the burst-length adaptation method, we used the internal reset
mechanism of the neurons to only discharge the membrane potential by a small
voltage determined by the hysteresis capacitance. We then sent a burst of pi

inhibitory spikes to a neuron, triggered by the output spike of the neuron. The
number of spikes pi is adjusted so that all neurons are reset to the same voltage
(Figure 3.27).

On the first chip there is mismatch in the reset mechanism of the neurons
since the same circuit is used to control the discharge of the membrane capac-
itance and to set the refractory period. The circuit uses a source biase to set
the time constant, resulting in large variations. On the second chip version
we changed the circuit to have independent control of membrane reset and the
refractory period, so the neurons were not subject to this type of mismatch
anymore.

Despite its effectivity in reducing the mismatch, burst length adaptation has
the disadvantage that it requires a lot of bandwidth on the bus. Instead of send-
ing a single spike to the target synapse, multiple spikes have to be transmitted.
The average number of spikes in the bursts determines the bandwidth taken up
on the AER bus.

The resulting variation depends on the average number of spikes in the burst.
The efficiency of the algorithm decreases as the average number of spikes in a
burst is increased, that is the achieved mismatch reduction starts to saturate,
see Figure 3.28. A second effect is that the mismatch reduction is most efficient
for a large variation in the uncalibrated case.
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Figure 3.26: Mismatch in the reset voltage of the neurons, shown for some
example traces. Some neurons are not completely discharged while others show
a refractory period. Traces from first chip version.
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Figure 3.27: Compensation procedure of the reset voltage mismatch. An output
spike of the neuron (a) is routed back by the external mapper as a burst of
5 spikes to the inhibitory synapse of the neuron (b), discharging the membrane
potential (c) to a defined reset voltage.
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Figure 3.28: Mismatch reduction using burst-length adaption. Shown is the co-
efficient of variation versus the average number of spikes in a burst (data from
second chip version). For each data point, the burst lengths to each of the 256
neuron were adjusted to reduce the coefficient of variation of the population.
The mismatch reduction is most efficient for high rates of variation in the un-
calibrated state. For larger number of spikes in a burst the mismatch reduction
starts to saturate.

To quantify this behavior, we developed an optimization procedure to esti-
mate the minimum variation depending on the average number of spikes in a
burst in the calibrated case. The average burst length determines the band-
width that is taken up on the communication bus for mismatch compensation.
The algorithm is detailed in Figure 3.29.

Figure 3.30 shows the minimal variation as optimized by the algorithm,
depending on the average burst length in the calibrated case. The real chip data
(Figure 3.28) shows more variation than the theoretical optimization, since also
other factors contribute to the mismatch in the neuron firing rates.

D/A Converter

Digital-to-analog (D/A) converters are used to directly program the synaptic
weight at the time the synapse is activated. Similar to burst-length adaptation,
the synaptic weight is stored together with the target address of the synaptic
connection in the mapping table. When the connection is activated, that is
a source address that encodes for one or several connections is received, the
mapper sends two spikes to the target synapse. The first is a special address
that allows programming the D/A converter, the second is the address of the
synapse itself. We had to use two consecutive spikes since the number of bits in
the address was not large enough to hold both D/A value and synapse address.
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Figure 3.29: Procedure to estimate mismatch compensation using burst-length
adaptation. (a) Distribution of uncalibrated firing rates. The firing rates were
measured by initializing all burst lengths to 3. We do not use the measured dis-
tribution of a specific chip, but the fitted distribution that we obtained with the
mismatch characterization because our routine assumes a continuous function
for the distribution. The indicated new burst lengths show the burst length the
algorithm assigns to a neuron whose firing rate falls in the indicated range. For
example, a neuron whose firing rate is in the range indicated with ’new burst
length 1’, gets a new burst length of 1 assigned, instead of the burst length of 3
at which its firing rate was originally measured. It’s firing rate after calibration
will therefore be multiplied by 1/3, moving it closer to the mean of the distri-
bution. In (b) we repeat this procedure for all neurons in the range indicated
with ’1’, shifting the whole range of the distribution in (a) onto the mean. Sim-
ilarly, the range indicated with ’new burst length 2’ is shifted by multiplying it
with 2/3, etc. for all burst lengths. The resulting distribution is fitted with a
Gaussian distribution (smooth curve) to obtain the standard deviation of the
calibrated firing rate distribution. X-axes: the firing rates were normed to the
mean of the distribution in the calibrated case (µ=1). Y-axes: the distribution
was normed so the area under the curve is 1. The same scale is used for (a)
and (b). (continued on next page)
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Figure 3.29 (continued from last page): Inlay: distribution of burst lengths after
calibration. The algorithm optimizes the ranges of the burst lengths to obtain
the distribution with the smallest variation, with the boundary condition that
the average burst length in the calibrated case should be 3. If initial and average
burst lengths are both set to 3, the distribution of the calibrated firing rates has
about the same mean as in the uncalibrated case. For other initial or average
burst lengths, the same resulting variation can be reached, but the mean of the
distribution in the calibrated case varies. The shown example is so effective
because the initial variation is large.
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Figure 3.30: Minimal variation that can be achieved using burst length adap-
tion versus the average burst length in the calibrated case, obtained with the
optimization algorithm described in Figure3.29. The average burst length de-
termines the bandwidth that is taken on the AER bus. Starting from an un-
calibrated coefficient of variation of 60%, the mismatch drops significantly with
only 2 spikes in a burst, but saturates at longer burst lengths.
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Our D/A implementation is inspired by [Linares-Barranco et al., 2003, 2004],
and was first implemented by Ying-Xue Wang on a test chip with 16 neu-
rons [Wang and Liu, 2006]. Here we present data from this test chip. Later the
D/A converters were also used on the third chip version of the Caviar object
chip.

There is one D/A converter global for all neurons. The D/A converter gener-
ates the synaptic currents based on an external masterbias [Delbruck and Licht-
steiner, 2006]. The current is copied through a current mirror to all synapses.

We performed the same theoretical analysis for the mismatch compensation
with D/A converters as for the burst-length adaptation, see Figure 3.31. Instead
of the average burst length, the boundary condition of the optimization is the
fixed range of D/A values.

Figure 3.32 shows the reduction in mismatch that can be achieved with D/A
compensation of different resolution, assuming an initial coefficient of variation
of 50%.

Again, the mismatch calibration is most efficient for systems with large vari-
ance. If the variance is smaller, not all D/A values can be used, but only a
subset, see Figure 3.33.

The problem is that the D/A converters we considered until now span a range
from zero to a maximum current [0; Imax]. While Imax can be adjusted through
the master current to match the upper limit of the firing rate distribution, a
large portion of the lower available D/A values falls into a range that is below
the lowest spike rate, as illustrated in Figure 3.33. [Linares-Barranco et al.,
2003] propose a D/A converter that operates in the range [Imax/2; Imax]. We
use a bias current Ibias that is added to the D/A output. The total range of the
D/A converter is then [Ibias; Ibias + Imaster]. To determine Ibias and Imaster,
we first set Ibias to a current that is equivalent to the minimum firing rate in
the distribution. Imaster is then adjusted to be equivalent to the width of the
distribution. The available D/A values cover the whole range of available firing
rates, resulting in an optimal mismatch compensation.

The synaptic weights are not necessarily linear. We therefore measured the
synaptic weight for each D/A value separately, see Figure 3.34.

To minimize the mismatch we selected the D/A values for each neuron so
that the synaptic weights are as close together as possible. Figure 3.35 shows the
improvement in the variation of coefficient for different synaptic weights. For a
value of about 0.025 the resulting CV is minimal. For higher synaptic weights
not all outliers can be corrected since their value is already close to limit of the
range of D/A values. This results in a larger CV after compensation. We can
understand this effect intuitively on Figure 3.34: Selecting the same synaptic
weights is equivalent to the intersection of a horizontal line with the synaptic
weights for each neuron (dashed line). If the target synaptic weight is chosen
too high, the line will not intersect with all neurons, that is not all outliers can
be corrected.

Using D/A converters to program the synaptic weight is a powerful approach.
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Figure 3.31: Procedure to estimate mismatch compensation using D/A con-
verters. See Figure 3.29 for a description of the optimization algorithm, with
D/A value instead of the burst length. Here we assume that the uncalibrated
distribution was measured with the D/A converters initialized to a value of 4.
The algorithm does not have to consider a boundary condition like the average
burst length, since all D/A values can be chosen equally. If the initial D/A
value is chosen in the middle of the range of D/A values, the distribution of
the calibrated firing rates has about the same mean as in the uncalibrated case.
The shown example is so effective because the initial variation is large.
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Figure 3.32: Mismatch compensation achieved by different resolutions of the
D/A converter, starting from an uncalibrated coefficient of variation of 50%.

The synaptic weight is stored externally in cheap digital random-access mem-
ory (RAM). Compared to burst-length adaptation, it requires only a moderate
amount of bandwidth: if we assume that the synaptic weight is transmitted
with every spike (since in general in a neuronal network most of the synaptic
weights will be different), the amount of data transmitted on the bus is doubled,
at least for our two-spike communication scheme. In contrast to burst-length
adaptation, D/A converters require special on-chip circuits. The main design
challenge for the on-chip D/A converters is a short time until the weight settles
at the synapse, so the handshaking on the bus is not delayed.

Stochastic Spike Transmission

The last procedure to influence the synaptic efficacy that we present here
is based on stochastic spike transmission. In cortex, synaptic transmission is
reported to be unreliable, for example see [Stevens, 1993]. Only a fraction of
the spikes arriving at a synaptic bouton will trigger a response. In general, the
synaptic weight is a product of the numbers of available vesicles in the bouton,
the probability of release p, and the effect on the post-synaptic neuron.

Francisco Gomez Rodriguez implemented stochastic spike transmission on
the USBAER mapper board. Together with the synaptic connection, the map-
ping table contains an entry for the probability of release. Every time a spike
is received, a random number is generated and compared to the probability
that is stored for this synaptic target. If the random number is lower than the
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Figure 3.33: Procedure to estimate mismatch compensation using D/A con-
verters. See Figure 3.29 and Figure 3.31 for a description of the optimization
algorithm. Here we show that the mismatch compensation is less efficient if the
initial variation in the network is small. Since the D/A converter considered
here has a range of [0; Imax], only three D/A values fall onto the distribution
and can be used, see inlay.
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Figure 3.34: Measured relative synaptic weight for every D/A value and each
of the 16 neurons of the test chip. The dashed line is the synaptic weight which
results in a minimal coefficient of variation for the firing rates of the population.
Data from D/A test chip, stimulation frequency is 1kHz.

stored probability, the spike is transmitted to the target synapse, otherwise it
is discarded. The used 8 bits provide a resolution of 256 steps.

The model is appealing because it does not require additional on-chip cir-
cuitry. Due to the used digital implementation, the resolution is large and not
subject to mismatch.

Introducing a probability of release might be a crucial limitation for some
network models, especially for models based on single spikes or on regular rates,
since the statistics of the spike rates are altered. If biologically plausible Poisson
rates are used, the spike statistics are not altered, but just the firing rate is
decreased. Stochastic spike transmission then provides an easy and efficient way
of setting the synaptic weight and compensating mismatch, closely following the
biological example.

Models that Exploit Mismatch

Although mismatch in our chips is due to the manufacturing process, variation
in parameters must be present for biological synapses. The brain has found a
way to compute with a large number of imprecise building blocks, presumably
through learning and adaptation. Artificial systems consider mismatch almost
always as a limiting factor, for example [Rodŕıguez-Vázquez et al., 2003]. How-
ever, mismatch can be useful for computation. The liquid-state machine [Maass
et al., 2002] is one of the few models that exploit variation in the synaptic param-
eters for computation. In this model, a large pool of neurons forms a network
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Figure 3.35: Mismatch compensation using D/A converters. The uncalibrated
mismatch is about 40% (stars). With D/A converters, the mismatch can be
reduced to less than 5% (circles). As described in the text, the achievable
mismatch compensation is dependent on the chosen relative synaptic weight,
with a minimum at about 0.025. For higher synaptic weights not all outliers
can be corrected since their value is already close to limit of the range of D/A
values, see text. Data from D/A test chip.
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which connections are chosen randomly, as well as the synaptic parameters are
chosen from a random distribution. The computational power results from the
large amount of different functions that are formed by a network in which the
building blocks show a large amount of variability.

The parameter distribution that these neural network applications consider
is often assumed to be Gaussian. To what extent good can a Gaussian distri-
bution be approximated by the skewed Gaussian that is intrinsic in our VLSI
implementation? As shown in Figure 3.36, the distributions are fairly simi-
lar, especially if outliers with high firing rates are discarded. The Liquid-state
machine could offer an elegant approach to exploit the intrinsic mismatch for
computation. But in the liquid-state machine every synaptic connection is cho-
sen from a distribution of parameters. In our implementation using AER, one
synaptic circuit to multiplex all the synaptic connections onto one neuron. The
synaptic efficacies are then distributed per neuron, not per synapse. An im-
plementation would have to implement every synaptic connection as a separate
synapse circuit.
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Figure 3.36: Approximation of a Gaussian distribution with an exponentially
skewed Gaussian resulting from the intrinsic mismatch in the chip implemen-
tation. Many network models which consider synaptic variation assume the
weights to be Gaussian distributed. Can the intrinsic mismatch of a chip im-
plementation which follows a skewed Gaussian distribution be used for a model
that assumes Gaussian distribution? The long tail of the high synaptic weights
in the implementation can be discarded by eliminating those synapses. On the
other side, the lower synaptic weights cannot be approximated since no neurons
can be added to the population.
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3.3.3 Winner-take-all Performance with Mismatch

Mismatch in the synaptic parameters is especially a problem in the uniform
network used in the winner-take-all. Ideally, all synapses and neurons should
behave the same for the same global parameters. Due to the intrinsic mismatch
in the manufacturing process the synaptic efficacies show variation across the
chip. On the first chip version, the mismatch was about 100%. With appropri-
ate sizing of the critical transistors the mismatch was reduced to 20% on the
second version. In addition the third chip version includes D/A converters to
compensate for the mismatch. In this section we are interested in studying how
the performance of the winner-take-all is affected by the mismatch.

Measurements in biological systems show a large variety of synaptic param-
eters. [Markram et al., 1998] report coefficients of variation of above 50% for
dynamic synapses. Although this variation might seem huge, it is not necessarily
significant for computation, since the measured synapses do not have to be part
of the same function. For our winner-take-all network, all inputs contribute
to the same function and the synaptic parameters should be as homogenous
as possible. Variation in the parameters will directly affect the discrimination
performance of the network.

Let us assume that all neurons receive input of the same regular frequency.
Without winner-take-all connectivity, all neurons in the network spike with an
output spike rate rk. Due to mismatch in the synaptic efficacies, the spike
rates differ slightly. We denote this vector of output spike rates with rmax. The
neuron with the largest synaptic efficacy has the highest output rate rmax. With
winner-take-all connectivity and the same input, the neuron with the highest
firing rate wins the competition and suppresses all other neurons.

Now we assume that one neuron k will receive a stronger input than all
other neurons. How much stronger has this input to be that the winner-take-
all network will detect it? Neuron k will win the competition if its output
rate is higher than that of the currently winning neuron which spiked with
an output rate of rmax. Since the synapses can be assumed to be linear, the
required increase in the input is proportional to the difference in the output
rates rmax−rk. The input has to be increased by

ck =
rmax − rk

rk
· 100% (3.8)

Note that ck depends on the maximum firing rate in the distribution, not
directly on the variation in the firing rates. We can find an expected maximum
dependent on the size of the population.

Be g(r) the distribution of firing rates of the neuron population (or equiv-
alently, the distribution of synaptic efficacies). We draw N samples from this
distribution. For one sample, the expected value is obtained by integrating the
rate r times the probability of this rate:

∫∞
−∞ g(r)r dr. We are not looking for

the mean, but for the maximum. For one sample to be the maximum, all other
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N−1 samples have to be smaller than its value r. The probability for this is(∫ r

−∞
g(r)dr

)N−1

(3.9)

Taken together we get

〈rmax〉 = N

∞∫
−∞

(∫ r

−∞
g(r)

)N−1

g(r) r dr (3.10)

Multiplying by N considers that each of the drawn samples can become the
maximum. Figure 3.37 evaluates the maximum spiking rate for an increasing
number of neurons in the population under the assumption that the synaptic
efficacies are Gaussian distributed.
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Figure 3.37: Expected maximum value versus population size N . We assume the
firing rates r to be Gaussian distributed. Shown is the difference of the maximum
firing rate rmax and the mean firing rate µr of the population, normed to the
standard deviation of the distribution. For example, for N = 9, the expected
maximum firing rate is rmax = µr + 1.5σ.

We now measure the factors ck for the 64 neurons of the chip implementation.
All neurons are stimulated with a spike train of a regular frequency of 100Hz.
We set the parameters so that the number of input spikes needed for a neuron to
reach threshold is nine. With mismatch, the vector of output spike rates r has a
mean of µr =11.28Hz, that means on average a neuron needs 8.86 input spikes
to reach threshold. In the scenario of uncalibrated mismatch, the standard
variation of the output rates is σr = 11.69Hz and the coefficient of variation



98 CHAPTER 3. IMPLEMENTATION IN HARDWARE

CV = σr/µr = 103.7%. With uniform input, the network selects the neuron
with the highest effective excitatory weight due to mismatch as the winner,
here rmax = 42.5Hz. To select a different neuron k, its input frequency has to
be increased by ck ·100Hz. On average the increase is

〈ck〉uncalibrated =
rmax − µr

µr
≈ 277% (3.11)

We calibrated the network using burst length adaptation as described in
Section 3.3.2. The resulting coefficient of variation for the calibrated rates is
about 10%. We measured ck for each neuron by increasing its input spike rate
until it is selected as the winner at a frequency of fk. The increase factor is then
ck =(fk/100Hz)− 1. The measured ck are listed in Figure 3.38. The neuron for
which the spike rate does not have to be increased (ck = 0) is the neuron that
has the highest firing rate due to mismatch. The mean of the increase factors is

〈ck〉calibrated ≈ 10.2% (3.12)

which is about the same as the coefficient of variation of the spike rates them-
selves, that is without calibration.
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Figure 3.38: Discrimination capability of the winner-take-all with mismatch.
Shown is the distribution of increase factors ck by which the input spike rate
of a neuron k has to be increased to select this neuron as the winner. The
neuron with ck = 0 is the neuron that has the highest firing rate due to the
mismatch. Data from first chip version with mismatch calibration using burst
length adaptation.
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3.3.4 Discussion

In this section we characterized mismatch in analog VLSI implementations and
discussed schemes to compensate for it. Mismatch affects the synaptic efficacies
in two ways, with a multiplicative and an additive term (Equation 3.3). The
multiplicative term is caused by imperfect matching of the transistors in the
current mirror of the synapse. In effect, the synaptic efficacies (and the resulting
neuron firing rates) follow a Gaussian distribution that is exponentially skewed
(Figure 3.18). Since this mismatch affects the gain of the synapse, the coefficient
of variation (CV) of the synaptic weights across the network is constant for
different weights (Figures 3.19 and 3.22).

For small synaptic efficacies, variation is dominated by the leakage currents
of the transistors in the soma circuits of the neurons. This mismatch has an
additive effect since the input has to exceed the leakage currents to drive the
neuron into a spiking regime, thus the standard deviation across the neurons of
the network is constant. The variation of the leakage currents is large compared
to the variation in the synaptic efficacies (Figure 3.19). We avoid the effect of
leakage current variation by using large synaptic weights or high stimulation
frequencies when measuring the synaptic efficacies.

We compared different schemes to set the synaptic efficacies and to compen-
sate for the mismatch in the synaptic efficacies. Neuron sorting compensates
for mismatch by selecting only the neurons whose synaptic efficacies are close
together. The scheme is not efficient but easy to use if only a small part of
the neurons on a chip are needed for an experiment. Burst length adaptation
significantly reduces the mismatch for large variation in the uncalibrated case,
and we used this technique extensively on the first version of the chip. Obtain-
ing low variations in the synaptic efficacies would require too much bandwidth
on the communication bus. This is solved using on-chip D/A converters that
are programmed from external memory in the AER remapping. We presented
measurements from a test chip [Wang and Liu, 2006] that show the mismatch
compensation using D/A converters is quite effective. Another scheme, stochas-
tic spike transmission, models an effect present in biological synapses. Imple-
mented in the AER mapper, we can also use it to set the synaptic weight if
the inputs are encoded as Poisson spike rates without considering single spike
timing. Since our models depends on the timing of single spikes, we conclude
that D/A converters are the most effective scheme to compensate mismatch in
our network, and they were included in the third chip version.

In Section 3.2.1 we discussed how mismatch affects the performance of the
network to discriminate between the input frequencies. Variation in the synap-
tic parameters limits the discrimination performance since the winning neuron
has to exceed the highest spike rate of the case of uniform input. Here we
demonstrated the discrimination performance in both the uncalibrated and the
calibrated case for the first chip version. Without calibration, the spike rate of
a neuron has to be increased by 277% to select this neuron as the winner, with
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calibration only by 10%.
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3.4 Embedding Software Learning in Spiking Sys-
tems

Much recent research in spiking neural networks focuses on the dynamic proper-
ties of network models such as learning algorithms based on synaptic plasticity
and global reward signals, development of connectivity, and modulatory func-
tions such as gain control. In this section we discuss a framework that allows
the exploration of the dynamic properties of network models in real-time neural
networks by combining hardware spiking neurons and software agents. Local
analog and continuous-time computation is performed in the hardware, while
higher-level functionality is implemented in software. By higher-level function-
ality we understand whatever algorithms are not implemented in the currently
available hardware, for example learning algorithms based on synaptic plas-
ticity and global reward signals, development of connectivity, and modulatory
functions such as gain control. This new approach allows a wide variety of
algorithms to be tested quickly and could enable real-time systems with large
computational power to be assembled. The framework has been published in
[Oster et al., 2005].

Several projects have focused on combining hardware based spiking neu-
rons with dynamically reconfigurable connectivity. The Silicon Cortex (SCX)
project [Deiss et al., 1999] proposed connecting multiple chips using spiking
communication and already incorporated the possibility of building integrated
hardware and software models of the kind we propose here, although no such
models were actually implemented at that time due to the presence of a critical
bug in the host communication channel. Similar systems are used by various
groups. The IFAT system [Vogelstein et al., 2004, Mallik et al., 2005] is clos-
est to our approach, however, we separate the hardware and software parts to
achieve greater flexibility, higher performance and easier implementation of the
algorithms, for example in Matlab.

As described earlier, analog VLSI is used to implement models of biological
neurons with transistor circuits that are integrated in large arrays on a chip.
The connectivity between the neurons is implemented by the transmission of
spikes over a multiplexed bus using the address-event representation (AER)
protocol. Each spike is represented by the address of the source neuron or the
receiving synapse and is transmitted asynchronously. A mapper translates the
addresses of the sending neurons to lists of receiving synapse addresses using
a look-up table, thus allowing for arbitrary intra- and inter-chip connectivity
between neurons. Various networks and input sensors can be combined to form
a real-time multi-chip system, see Figure 3.39. A monitor translates spikes from
hardware to software, while a sequencer provides the reverse translation. The
mapper, monitor and sequencer are integrated on a PCI-AER board [Dante and
Del Giudice, 2001] which plugs into a PCI slot in a desktop computer.

The higher-level functions use software agents that are embedded in the
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Figure 3.39: Overview of the system architecture. Real-time spiking neural
networks are implemented in VLSI and integrated on a chip (top). As exam-
ples, a retina, a feedforward network and a recurrent network are shown. The
neurons communicate using the address-event representation (AER) protocol
(black arrows). A PCI-AER board monitors, sequences and remaps the spikes
to implement the connectivity. Higher-level functions such as on-line analysis,
learning algorithms, modulatory functions and artificial stimulation are imple-
mented in C++ software agents (bottom). The agents transmit and receive
spikes to and from the hardware using AER network packets and can change
the connectivity and parameters of the network by modifying the mapping table
and bias voltages (dashed arrows). Analysis agents transform the spike trains
into a frame-based format which represents the activity of a neuron population
in the chosen coding scheme (gray arrows). This allows agents implemented in
slow environments such as Matlab to be integrated into the framework. As an
example, a 3D bar chart displaying the instantaneous firing rate is shown.
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system. In this framework an agent is an independent software process that
implements a particular higher-level algorithm. At present there are agents for
spike train analysis, on-line display, learning and modulation functions and for
stimulation. Multiple agents can run concurrently. Each agent communicates
with the hardware neural network by receiving spike trains or activity from the
network, and can change the synaptic connectivity and adjust the parameters
of the neurons. Agents can also stimulate the network with artificial spike
trains, providing input from parts of the system which are not implemented in
hardware. Event-based agents, that are agents that perform computation based
on single events, are implemented in C++, while agents that operate on the
statistics of the activity of the network and do not require a low latency are
implemented in Matlab.

In the software, a spike is represented by a data structure containing its ad-
dress and a timestamp recorded when the spike is captured. The timestamp is
required to preserve timing information when the spikes are buffered. The mon-
itor agent sends blocks of spikes including their timestamps as network packets
to receiving agents. We chose UDP for this software spiking communication be-
cause it is fast and allows several agents to receive the spike trains at the same
time using multicasting. UDP, the ’user datagram protocol’ [Postel, 1980b] is
an unsecured, unidirectional protocol for the transmission of network packets.
We use network protocols to transmit data between agents because their im-
plementation is highly optimized in current operating systems and independent
from the operating system itself, in contrast to alternative transfer mechanism
as first-in-first-out queues (FIFO) or shared memory buffers. In addition the
receiving agents can run on the same computer as the sender or on different
machines.

For many applications, we are not interested in the spike train itself, but
rather in the statistics of the activity of the neurons in the network. Depending
on the chosen coding scheme, this can be the instantaneous spike rate, the spike
count, the time to the first spike, or any other suitable measure. Analysis agents
transform the spike train into one of these activity-based representations. We
implement these analyses in independent agents because they are often needed
by several agents further on in the processing. In section 3.4 we will describe an
algorithm that estimates the instantaneous spike rate with a running average.

An agent further along the processing chain requests this activity estimation.
To do so, it first specifies the list of addresses of the neurons to be monitored.
The analysis agent then transmits the activities of these neurons as a vector. We
call this ’frame-based representation’. In contrast to conventional frame-based
representations, the timing is asynchronous since the frame can be requested at
any time and the analysis agent update their activity estimation with incom-
ing spikes. Frames are transmitted between the agents using the Transmission
Control Protocol (TCP) which provides a reliable, bidirectional, point-to-point
communication channel [Postel, 1980a].

The frame-based representation makes it possible to include agents in the
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framework that have long response times. Typical examples are parsed environ-
ments such as Matlab. As an example, an on-line display agent can request
frames and display them with a fixed refresh rate independently of the amount
of spikes received.

The framework allows a variety of learning and modulation algorithms to be
explored by implementing them as agents. The agents can be either event-based
or frame-based. As an example of an event-driven agent, we implemented an
agent that uses spike-time-dependent plasticity (STDP) [Abbott and Nelson,
2000]. The agent is configured with the addresses of the post-synaptic neurons
and their pre-synaptic afferents. All incoming spikes are buffered and the agent
checks whether a post-synaptic neuron spiked. If so, the buffer is scanned for
spikes from pre-synaptic neurons that fall within the time window around the
post-synaptic spike and long-term depression or potentiation is calculated. The
synaptic efficacy is changed on the fly in the mapper’s look-up table using burst
length variation (see section 3.3.2). The performance of this implementation is
listed in Table 3.40. Exploring STDP with this software-based approach has
advantages over a hardware implementation in that the implementation time is
shorter and testing is easier, since no new hardware has to be added on chip
and all of the algorithm’s variables are accessible.

All agents including the analysis agents are derived from a common C++
base class that encapsulates the spike input over UDP and a TCP connection
that is used for frame requests and for configuring the agent. New agents can
be quickly implemented into the framework by overriding just two functions in
a derived class.

Table 3.40 shows the performance of the framework. We show both maximal
throughput for standalone agents and throughput for a typical setup using an
agent implementing STDP learning and a display agent. The main limitation on
the hardware side is the transfer of data (spikes and synaptic weight updates)
over the PCI bus. The driver for the PCI-AER board does not yet support
interrupts, and the current board does not support bus mastering (a PCI bus
mode that allows the fast transmission of large data blocks). Even with these
limitations, the measured throughput is sufficient for many experiments because
it refers to the continuous spike rate, whereas biologically plausible networks
typically exhibit bursts of spikes with high-frequency, and the average spike
rate remains well below the maximum throughput.

With its modular architecture, our framework supports multiple agents using
event or activity based computation. Software spike trains are broadcast to
multiple receivers and statistics relating to different spike coding schemes can
be requested in a frame-based representation. Thanks to the use of standard
network protocols, the system is scalable and can be distributed across several
computers. In a more complex setup, multiple agents are active, either during
different developmental stages of the network, or to perform various learning
and modulation functions in different layers of the network.

New hardware interfaces that implement the functionality of the PCI-AER
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Maximum throughput (standalone agent)

avg.(max.) CPU
rate s−1) latency load [%]

AER communication (up to 4 chips) 1.2M Spikes 1.2µs -
Monitoring:
scheduled, local 130 kSpikes 15 (90) ms <5
scheduled, remote 94 kSpikes 310 (350) ms -
busy poll 312 kSpikes 24 (63) ms 90
Synaptic efficacy updates 129 kUpdates - 98

Typical setup (multiple agents)

Monitor agent 53 kSpikes 15 (90) ms 8
STDP agent: 35
spikes of postsynaptic neurons 24 kSpikes
Synaptic efficacy updates 16 kUpdates 44 (220) ms
Spike-rate to frame conversion 53 kSpikes 25 (120) ms 3
On-line display (Matlab/X) 2.3 - 24

Figure 3.40: Performance measurements. All rates given are maximal rates at
which no or very few spikes are lost (< 1 packet in 1s). The latency gives the
mean (maximum) latency from a spike being recorded by the PCI-AER board
until it is received and processed by an agent. All measurements were done on
a standard PC (2.4GHz Pentium IV, Linux kernel 2.4.26). We tested several
timing schemes for the monitoring agent. Scheduled monitoring refers to a mode
where the agent polls the status of the hardware FIFO with a low frequency
and transfers data if the FIFO is half full. This leaves enough computation time
for other processes in between the monitor polls. Busy polling results in higher
data rates, but takes up the complete processing time on the CPU. In local
mode, spike packets are transmitted to agents on the same machine, in ’remote’
they are distributed to other computers over the network.
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board in single hardware modules have been developed as part of the Caviar
project. These hardware modules can be inserted wherever needed into the
data flow of the system. They also support much higher spike rates than the
current PCI-AER board, of up to 25MSpikes/s [Serrano-Gotarredona et al.,
2005]. Since they transfer their data to the computer over the Universal Serial
Bus (USB) [Consortium, 2000], they can be used in portable applications where
no PCI slot is available. Until now, only the USBAER framegrabber module is
integrated in the framework, while others, for example the mapper, have been
tested.

The framework we presented here can be used to quickly explore higher-
level functionality in a real-time system. Through the use of software agents, it
provides a rapid prototyping tool to test learning and modulation algorithms in
a real-time system.

Online Spike-rate Estimation Algorithm

We describe our agent that estimates the instantaneous firing rate because we
are not aware of an existing description of this algorithm. The algorithm esti-
mates the instantaneous spike rate on-line, that is with a running average. It is
equivalent to smoothing the firing rate measurements with a causal exponential
filter, see [Dayan and Abbott, 2001, pp 13.], but in our version we formulate the
algorithm iteratively, that is the estimation is updated at every incoming spike.
See Figure 3.41 for an illustration.

Estimating the spike rate takes place when a new spike is received at time t.
Let ∆ be the current inter-spike interval. The spike rate is estimated with

f̂(t) = α(∆fα)f̂(t−∆) +
(
1− α(∆fα)

) 1
∆

(3.13)

with f̂(t) the current spike rate estimation, f̂(t−∆) the spike rate estimation at
the time of the last spike. α and fα adjust the time constant of the exponential
smoothing.

Let us assume we read out the current spike rate estimation at time t′. We
define the access time ta:

ta = t′ − tlast − β ·∆ (3.14)

with tlast the time of the last spike received and β a factor that is adjusted to
estimated the change in the spike rates. The spike rate ĝ that is read out is
then calculated as

ĝ(t′) =
{

f̂(tlast) : ta < 0
f̂(tlast) · exp(ta/τ) : ta > 0

(3.15)

with τ the time constant of an expected decrease in the spike rates.
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parameter value
α 0.99

fα 10Hz
β 1.5
τ 0.5s

ĝmin 0.5Hz

Table 3.6: Parameters used in the online spike rate estimation.

We define a cut-off threshold ĝmin under which the read spike rate is set to 0:

ĝ = 0 if ĝ < ĝmin (3.16)

We empirically obtained parameters that result in a smooth graphical display
of the firing rates present in our aVLSI system, see Table 3.6.

t
last

ta

t'

f g

t

Figure 3.41: Algorithm to estimate the instantaneous spike rate of a neuron,
with event-based estimation and request-based read-out. At every incoming
spike, the estimation of the current spike rate f̂ is updated, by weighting the
last estimation and the current inter-spike-interval ∆. The weighting factors
are corrected for the asynchronous update times, resulting in a smoothed rate
measure with an exponential filter. When a readout of the current estimation is
requested (ĝ), the algorithm first checks if the estimation of the spike rate is still
valid. We assume that the firing rate did not change and the estimation is still
valid if the last spike happened less than β times the last inter-spike-interval
before the readout (dashed line). If more time has passed since the last spike
(ta > 0), we ’age’ our estimation by weighting it with an exponential function.

Our online spike rate algorithm is efficient since the computation is only
performed on incoming spikes, and the readout is independent from the estima-
tion. We use it in the analysis agent that estimates the current spike rates for
all neurons. Even for large populations of neurons no significant CPU time was
used. In contrast to counting spikes in a time window, the algorithm does not
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have to store a large amount of input spikes and is independent from problems
with the window length that might cause buffer overruns. The USBAER boards
in the frame grabber mode use a time window to count spikes. Since the time
window is global, the resolution is limited: while neurons with high firing rates
will cause the counter to overflow, neurons in the same population with low
firing rates will only send a small numbers of spikes in the time window, that
means that their spike rates are represented with only a small resolution (in
more advanced schemes the count values are smoothed at readout).



Chapter 4

Application to Vision -
Caviar

In this chapter we discuss the application of theory and implementation: em-
bedding the winner-take-all network into a multi-chip spike-based vision system.
The Caviar (Convolution AER Vision Architecture for Real-time processing)
project is a multi-lab EU-funded research project1 that explores spike-based
processing in a multi-chip vision architecture. The winner-take-all is one of
the building blocks and performs a decision on the most probable location of a
moving object that is presented to the retina.

We will first discuss the biological inspiration for the Caviar architecture
and its closest counterpart in modeling, the HMAX network (Section 4.1). We
then describe the Caviar building blocks (Section 4.2 and the experiments in
which the complete system is assembled (Section 4.3). The analysis of the data
from the system is the main part of the chapter (Section 4.4). We character-
ize the input to the winner-take-all, fitting the model of a traveling wave of
Gaussian shape that we developed in Section 2.3.2. The output, the predicted
position of the object, is used to estimate the performance of the winner-take-all
implementation in a large-scale system.

Figure 4.1 provides an overview of the Caviar architecture.

4.1 Comparison with the HMAX Network

Vision is a classical application of artificial intelligence, and many systems for
visual processing have been developed with various degree of biological plausi-
bility. One recent model is the HMAX network [Riesenhuber and Poggio, 1999]

1Caviar project is part of the FET (Future and Emergent Technologies) initiative, EU
6th framework, user-friendly information society program, sub-program life-like perception
systems. IST-2001-34124.

109



110 CHAPTER 4. APPLICATION TO VISION - CAVIAR

retina

convolution

features

scales

winner-take-all

spatio-temporal
learning

Figure 4.1: Overview of Caviar architecture. The different functions are sep-
arated into individual building blocks. The retina as the input sensor per-
forms temporal processing by detecting contrast changes and encoding them as
ON/OFF spikes. The convolution stage performs spatial processing, by con-
volving the input spikes with pre-programmed kernels. The kernels can detect
different features or different scales, depending on the programming and the
available number of convolution chips. The winner-take-all converges this in-
formation to a definite object position. The spatio-learning consists of a delay
line chip, which expands the object position over time, and an unsupervised
Hebbian learning chip that classifies the object trajectories in time. All signals
between the stages are encoded and transmitted as spikes.
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based on the ’Neocognitron’ by [Fukushima, 1980]. It is based on the exper-
imental findings that neurons in visual cortex show an increasing amount of
specificity and invariance from lower to higher visual areas. For example, cells
in the early visual areas respond strongly to oriented stimuli, while cells in the
higher visual areas respond to views of complex objects such as faces [Ungerlei-
der and Haxby, 1994].

Similarly, simple and complex cells in V1 or cat striate cortex show different
degrees of invariance: both respond strongly to oriented bars, but whereas sim-
ple cells in general have small receptive fields with a strong phase dependence,
complex cells have larger receptive fields and no phase dependence [Hubel and
Wiesel, 1962]. This observation led Hubel and Wiesel to propose a model in
which simple cells with neighboring receptive fields feed into the same complex
cell, resulting in a phase-invariant response. The idea of simple and complex
cells was generalized to obtain different types of invariance (translation, rota-
tion, scale and rotation in three dimensional space), as well as to describe cells
that respond to more complex stimuli. For this purpose, pairs of layers with
simple and complex cells are alternated. The simple cells of the next higher-
order layer receive input from the complex cells of lower complexity [Fukushima,
1980, Riesenhuber and Poggio, 1999]. The authors of the HMAX network point
out that specificity (simple cells) and invariance (complex cells) requires differ-
ent type of connectivities between the layers: simple cells build up specificity
by processing their input with a weighted sum, as commonly used in artificial
neural networks. Complex cells build up invariance by performing a MAX op-
eration on their afferents, as in a winner-take-all circuit. Alternating these two
processing principles leads to detection of quite complex objects under several
instances of invariance. In the HMAX network this is shown for the example of
paper clips that can be recognized invariant to different aspects.

The Caviar system adopts the principle of alternating the two types of
connections for the simple and complex cells: the weighted sum (simple cells)
is equivalent to multiplying the input channels with a kernel. As in HMAX,
retinotopic arranged simple cells repeat this operation over the full input space,
which is equivalent to a convolution operation. In CAVIAR, the convolution
chip performs a spike-based convolution operation with a freely programmable
kernel. Several convolution chips can be run in parallel with different kernels to
build up a population of retinotopic S1 cells that are sensitive to different input
patterns.

The winner-take-all operation is equivalent to the MAX function as per-
formed by the complex cells. The ’object’ chips implement winner-take-all net-
works in their input range. Since the chips are tiled into 4 quadrants, and
several chips can be run in parallel, multiple MAX operations can be performed
in parallel.

To understand the detailed computations performed in the HMAX network,
we reprogrammed the network with access to examine the internal variables.
See Figure 4.2 for an overview of the layers.
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MAX

weighted sum

S1

C1

C2

S2

Figure 4.2: HMAX network. The network consists of 4 layers in which convo-
lution operations (weighted sums) alternate with MAX operations. Cells in the
first simple layer S1 extract oriented edges from the input image (bottom) by
convolution with Gaussian kernels. Neurons in the first complex layer C1 pool
spatially over a subregion in S1 with the MAX operation. In the second simple
layers S2 cells generate every possible combination of the four orientations per
C1 cell. For example, an S2 cell that combines C2 cells that are selective for an
horizontal edge and an edge of 45◦ detects a corner at which these orientations
are present. In the S1, C1 and S2 layers the computation is performed in par-
allel for different sizes, the so-called ’scalebands’. In the last layer, the second
complex layer C2, neurons pool over all positions of the input image and all
scalebands, resulting in a vector of the 44 combinations of orientations. Figure
adapted from [Riesenhuber and Poggio, 1999, Figure 2].
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S1 The first simple layer is a filterbank with filters of different sizes and ori-
entations. The convolution kernels are two-dimensional second derivatives of
Gaussians, ranging in size from 7x7 to 29x29 in steps of 2 pixels. After the con-
volution operation, the filter outputs are normalized to the sum of the squared
pixel values. The filters are grouped into scalebands according to their size
(sizes 7,9 form one scaleband, then sizes 11,13,15 etc.). A MAX operation is
performed to get the strongest response within each scaleband for each pixel.
The output of the S1 layer has the dimensions norientations×nscalebands×x× y
(the output sizes x, y vary with the filter size in the scalebands).

C1 The cells of the first complex layer pool spatially over a subregion with
the MAX operation. The region of the pooling is varied with the size of the
scaleband (for example pooling over 4 neighboring pixels for the smallest scale-
band, then 6 pixels etc.). The output of C1 has the dimensions norientations ×
nscalebands × x× y, with x, y smaller than that of S1.

S2 The second simple layer calculates every combination of the four orientations
for every pixel. If for example only a horizontally oriented line was visible at
this image patch, the combination of only horizontal oriented filters will be
strongest, equivalent to multiplying the horizontal filter value by four. At a
corner, several orientations will be strong, and the combination will be high
that contains all these orientations (for example, a corner with horizontal and
vertical edge). With four orientations, every pixel is expanded to 44 = 256
combinations, resulting in ncombinations × nscalebands × x× y dimensions.

C2 Pooling in the second complex layer is extensively: for each combination,
all pixels of the image in one scaleband, and then all scalebands are pooled
in a MAX operation. The resulting output is a vector of 44 combinations of
orientations.

We checked that our reprogramming generates exactly the same output as the
original HMAX implementation.

While the different pooling steps and the processing in scalebands are mo-
tivated by the hierarchical processing in biology, the combination of oriented
edges at the S2 layer seems arbitrary. Detecting corners of different orientations
is useful for the dataset the HMAX network was designed for, that are images
of three-dimensional paper clips in different rotations. The performance of the
network for a real-world task such as face recognition is reported to be ’rather
poorly’ [Serre et al., 2002]. In this case, the performance can be significantly
improved by incorporating learning [Serre et al., 2002, Louie, 2003]. Learning
takes place at the connections C1-S2. Neurons in the S2 layer do not represent
simple combinations of orientations, but detect patterns significant for the input
images. This leads to a significant improve in performance, yielding the network
performance comparable to artificial intelligence systems [Serre et al., 2002].

Another criticism is the high amount of resources needed for the HMAX net-
work. An explicit representation of the output of the S2 stage is very demanding
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in memory, requiring a vector of over 1000 entries per filtered pixel. The HMAX
network solves this problem by combining filtering and pooling operation, so no
intermediate storage of the S2 representation is necessary. In a biological neural
network an explicit representation would be necessary.

The output of the network is classified by units that are tuned to specific
views of objects or object components (VTUs). Expansions of the HMAX net-
work pool over these VTUs, yielding object-tuned units, similar to neurons
found in the anterior inferior temporal cortex (AIT), and task-related units,
similar to neurons found in inferior temporal cortex (IT) or pre-frontal areas
(PFC) [Riesenhuber and Poggio, 2000, 2002].

With its high demand on resources, the Caviar system is not capable of
duplicating the HMAX network. The Caviar architecture does not repeat
the combination of convolution and MAX operation like HMAX does (S1/C1,
S2/C2), but restricts itself to one convolution and one winner-take-all layer.
The HMAX network shows that for a vision application the combination of
convolution and MAX operation is useful and can be repeated in a hierarchy as
a general building block. Since Caviar has only one ’simple’ and one ’complex’
layer, the basic features need to be more complex so that the network can solve
real-world tasks. The bank of convolution chips with its freely programmable
kernels offers the possibility to incorporate kernels of arbitrary two-dimensional
shape. Various theoretical frameworks to choose such kernels are available, for
example see [Ullman et al., 2002] for an approach based on mutual information.

With only one pair of simple and complex layers the system is not able
to obtain invariance against several aspects of vision, such as translation, ro-
tation, scale and three-dimensional rotation. In the current version, Caviar
achieves translation-invariance since the convolution chip performs convolution
on the full input image. Scale-invariance can be achieved to a certain extent by
programming several convolution chips with kernels of different size. Rotation
invariance, invariance against rotation in 3D-space, or invariance against small
changes in the perceived shape can only be achieved by increasing the number
of convolution chips to incorporate every possible view of an object. Here the
hierarchical organization of HMAX provides a clear advantage, although the
mechanisms by which the network achieves these invariances are still unclear.

Some of the missing invariances could be compensated with an active vision
system. In such a system the next focus of attention is selected by feature
detectors of relatively low level of complexity, but translation-invariant. After a
saccade to a point of interest, feature detectors of high selectivity recognize an
object. The complex feature detectors do not have to be translation-invariant
since the object is centered on the fovea.

Caviar can be extended in several ways. First, additional pairs of layers
performing a weighted sum and a MAX operation could be added. As in the
HMAX network, these layers do not perform retinotopic convolution operations
but require a weighted sum that is specific per pixel. This could be imple-
mented by programming the connectivity into the mapping tables, and by using



4.2. BUILDING BLOCKS 115

programmable synaptic weights for these connections. Such an extension could
already be implemented in the current architecture, if the 1-1 connectivity be-
tween the output of convolution chip and the input of the winner-take-all is
replaced by more complex synaptic connectivity.

HMAX reports an increase in performance if the features are learned. In
section 3.4 we described a framework that incorporates learning algorithms of
arbitrary complexity into spiking hardware such as Caviar.

4.2 Building blocks

One of the design goals of Caviar is to separate all functional modules into
individual building blocks. Each building block is described by one specific
function: the detection of temporal contrast edges for the retina; spike-based
convolution with programmable kernels in the case of the convolution chip;
the maximum operation of the winner-take-all network on the ’object’ chip;
and the delay line and classifier chips to learn spatio-temporal patterns in an
unsupervised spike-based learning algorithm.

We describe the modules only to the level of detail that is needed for an
understanding of the complete system, further details can be found in [Serrano-
Gotarredona et al., 2005] and the publications listed at the building blocks.
Table 4.1 gives an overview of the available modules and their communication
speed.

Building block Function Size (pixels/neurons)
Retina detects temporal contrast edges 1282x2 (on/off)
Convolution Chip programmable 32x32 convolution kernel 4x322

 (tiled / parallel)
‘Object’ Chip multi-dimensional spike-based winner-take-all 322 or 4x162

 (4 synapses each)
Delay line programmable delays 880 elements
Learning chip associative Hebbian learning 32 (64 synapses each)
Interfaces connectivity; monitoring and injecting spike trains up to 216 addresses

Table 4.1: Overview of Caviar building blocks.

Retina The design of the Caviar retina is based on a previous design by
Jörg Kramer [Kramer, 2002], and is designed by Patrick Lichtsteiner and Tobi
Delbruck at the Institute of Neuroinformatics (INI), Zurich [Lichtsteiner et al.,
2006]. It detects temporal changes in the contrast. Contrast is the change in
intensity normed by the intensity (∆I/I). The retina generates spikes if the
contrast changes exceed a threshold, for example one spike encodes a contrast
change of 10%. Positive changes in intensity, that are transitions from dark
to bright, are encoded as ’ON’ spikes, negative changes as ’OFF’ spikes (see
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Figure 4.3). Every pixel adapts to the local intensity, so for still images no
events are generated. With the local spike generation and the asynchronous
communication with the external world the retina is significantly different from
conventional frame-based imagers. For example, small but fast moving objects
can be captured with high speed.

ON
OFF

Absolute
intensity

Time

Same contrast

Figure 4.3: Principle of retina pixel operation. Contrast is the change in inten-
sity normed by the absolute intensity. The retina generates spikes per temporal
contrast change. Positive changes in intensity are represented as ’ON’ spikes,
negative changes as ’OFF’ spikes. The shown stimulus is a sine-wave that is
modulated with the same contrast independent of the absolute intensity. The
retina responds with the same pattern of ON and OFF spikes at high and low
levels of absolute intensity. Figure by Tobi Delbruck, reproduced with permis-
sion of author.

The retina has been optimized for usability and reliable operation. Com-
pared to earlier imagers, the resolution has been increased to 128x128 (times
two to count for ON and OFF spikes), and the mismatch has been reduced
to 8%. Integration and miniaturization of the interface logic has led to a com-
pact sensor if the retina is operated as a standalone module. Peak spike rate of
the retina is up to 1Meps, although real-world stimuli normally result in much
lower rates. Further details are published in [Lichtsteiner et al., 2006].

Convolution Chip The convolution chip was designed by Rafael Serrano-
Gotaredona and Bernabe Linares-Barranco at the Institute of Micoelectron-
ics (IMSE), Sevilla [Serrano-Gotarredona et al., 2006]. It performs a two-
dimensional spike-based convolution. In conventional image processing, convo-
lution normally involves processing a kernel matrix at all positions of the input
image. At each position, the output is the sum of the element-wise multiplica-
tion of kernel and underlying input image. Spike-based convolution reverses this
procedure: For each incoming spike, a kernel is copied onto the output matrix,
centered on the pixel the spike is addressing. The output matrix consists of
neurons that integrate the kernel weights on their membrane capacitance. Each
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neuron sums the input that is generated from processing the kernel for incoming
spikes at neighboring locations of the neuron. When the sum in the membrane
potential exceeds a threshold, an output spike is generated. The computation
is only based on local information and performed in continuous time. If the
input is rate-coded, the output of the spike-based convolution is equivalent to a
conventional convolution operation with thresholding.

Since the kernel weights can be positive and negative, the integration can
also result in a negative value. The convolution chip implements a neuron as a
symmetric integrator with two ranges of values. Resting and reset potential are
not at ground, but at an intermediate value, so integration can be performed
towards higher voltages for positive weights and towards lower voltages for neg-
ative weights. Consequently, two thresholds are implemented at the end of the
integration range that generate ’positive’ and ’negative’ spikes. A forgetting
mechanism drives the neuron back to the resting potential so the convolution
operation can be adjusted for time-varying input.

The convolution chip implements an array of 32x32 neurons (each with pos-
itive and negative integration). The kernel can be programmed arbitrarily with
a resolution of 4 bits up to a size of 32x32. Since each pixel considers spikes in
its surrounding as defined by the kernel, the chip processes input spikes from the
area of the 32x32 neuron array plus the size of the kernel. Multiple convolution
chips can be tiled to process a larger input space, for example 64x64 pixels.

Detailed characterization and calibration of mismatch has been performed
on the convolution chip using on-chip D/A converters, resulting in a standard
deviation of the synaptic weights of 2%. The spike-based convolution operation
allows for very fast detection of input patterns compared to conventional frame-
based approaches. Input spike rates are 3-33Meps depending on the kernel size
(see [Serrano-Gotarredona et al., 2006] for details).

’Object’ Chip The object chip, whose layout was designed by Shih-Chii Liu
at the Institute of Neuroinformatics, Zurich, reduces the dimensionality in the
input space by determining the most probable location of an object. We imple-
mented a cascade of winner-take-all networks on chip. On the first level, the
strongest input is determined within each feature map. On the second level, the
winners of each feature map compete to determine the strongest map. The reso-
lution of this chip is a total of 32x32 neurons, with 4 winner-take-all networks of
16x16 operating in parallel on the first level. We described the implementation
in detail in Chapter 3, see also [Liu and Oster, 2006].

Delay line and Learning Classifier This module was designed by Philipp
Häfliger, Dep. of Informatics, University of Oslo (UIO) [Riis and Hafliger, 2004].
It learns to classify spatio-temporal patterns using unsupervised spike-based
Hebbian learning. First, the input is expanded over time. The delay line chip
contains 880 delay stages that can each hold 8 spikes. Spikes can be inserted at
any point of the queue, and each delay stage can be programmed to output the
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spike, or transmit it to the next delay stage. With this configuration, a variety
of delays can be programmed. The output is a spatial representation of time in
terms of address space, see Figure 4.4, left.

The classifier implements a network of 32 neurons with 64 synapses each,
see Figure 4.4, right. The synapses use a learning algorithm with spike-time-
dependent plasticity. Multi-level weak analog memory stores the synaptic weights.
Global winner-take-all inhibition ensures that only one neuron has active output
at a time. This also serves to decorrelate the learning, since the winner-take-
all mechanism prevents two neurons to learn the same input pattern. Initially
every neuron is biased towards a different input pattern due to mismatch. The
neurons then learn to represent the complete input space that is presented. At
the same time (or when learning is stopped), the network behaves as a classifier
since the winner-take-all selects only the neuron with the strongest input. If
delay line and the classifier chip are combined, the module can learn and clas-
sify spatio-temporal patterns. The delay line chip expands the temporal input
pattern into address space and the classifier learns this representation. The
delays have to be chosen so that the temporal dynamics of the stimulus are
represented. For details see [Riis and Hafliger, 2004].

Delay -line chipInput ClassifierNetwork with 
learning synapses

D

D

D

D

D

D

D

D

D

D

STDP synapses
with multi-level 
bit storage

Figure 4.4: Learning of spatio-temporal patterns. Input spikes are expanded
over time with a delay line into address space. The synapses of the classifier
(triangles) implement STDP learning with multistable analog memory. Global
winner-take-all inhibition (circles) decorrelates the neurons for learning and se-
lects the strongest response for classification. Figure by Shih-Chii Liu, repro-
duced with permission of author.
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Interfaces Interface boards are essential to route spikes from one module to
another (mapping) as well as for testing and characterization (monitoring and
sequencing). Based on the PCIAER board developed in Rome (called ’genera-
tion 0’ in Caviar), a variety of interface boards has been implemented by the
group of Anton Civit, Dep. of Computer Architecture and Technology, Univer-
sity of Sevilla (USE). In most cases the Caviar boards are portable, except the
high-speed PCI-based monitoring and sequencing board (PCIAER generation
1). The portable boards are a first step towards autonomous AER systems. The
USBAER board provides frame-based sequencing and monitoring, to bridge be-
tween a conventional representation and spiking systems. See Figure 4.5 for
an overview and [Linares-Barranco et al., 2006, Berner, 2006] for details on the
Caviar interface boards.

All modules in the Caviar project use the same AER protocol definition,
that is an active-low point-to-point standard of 3.3V. In principle, the building
blocks are interchangeable and can be assembled in different architectures. To
focus the development, the Caviar system specifies a system architecture that
serves as a demonstrator. In the next section we will describe the functionality
of the system.

4.3 Experiments

We will first describe the initial interfacing of the individual building blocks,
the object chip and the convolution chip, to show their functionality. We then
present the complete processing chain in its first and second version.

4.3.1 Interfacing Object Chip to Convolution Chip

We interfaced the object chip to the convolution chip in an experiment with the
IMSE partner in 2004. Figure 4.6 shows the test setup. We controlled the setup
by two independent computers: One generates the test stimulus and configures
the convolution chip (left side), the second displays the spike rates from the
object chip and configures it (right side). The convolution chip is configured
by specialized FPGA hardware, the object chip is configured by analog bias
voltages that are generated with the dacboards and the ChipDatabase described
in Section C. The second version of the object chip was used for this test.
Figure 4.7 shows a picture of the setup.

We used two of the Caviar AER interfaces for the test: the PCIAER board
in the ’random generator mode’ in which it converts an input vector to Poisson
spike trains, and the Usbaer board in the framegrabber mode, that is the board
generates a vector of spike counts.

To display the input to the object chip without reconnecting the setup, we
disabled the inhibitory connectivity in the winner-take-all chip and recorded the
output of the object chip. This shows the effective input, that is the synaptic
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Simple monitor
~120keps

4x merger/splitter
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USBAER: USB controlled
monitor, mapper, sequencer
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PCIAERg1: PCI-bus 
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Figure 4.5: Interfaces developed in the Caviar project. (a) USBAER board,
the most versatile portable board because it can be easily programmed as a map-
per, monitor and sequencer. It provides frame-based and spike-based monitoring
modes (framegrabber and datalogger). A variety of extensions has been devel-
oped, for example a probabilistic mapper, see Section 3.3.2. (b) The PCIAER
board generation 1 provides high-speed spike-based monitoring and sequenc-
ing capabilities. (c) Merger/splitter board to combine multiple AER channels.
Up to 4 inputs or outputs can be merged or split. Connectivity schemes in-
clude broadcast or unicast modes. In the latter, the uppermost two address bits
specify the channel. (d) Simple monitor board, a bus-powered monitor board
with a microcontroller that is capable of recording slow spike rates. (e) The
USB2 board can monitor and sequence spike trains with frequencies of up to
5MHz to and from a computer using the USB2 protocol. Pictures (a) to (d)
adapted from [Serrano-Gotarredona et al., 2005], (e) Picture by Tobi Delbruck,
reproduced with permission of author.
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Figure 4.6: Overview of the test setup. The PCIAER generation 1 board is used
to generate AER artificial stimuli which are transmitted to the convolution chip.
The output of the convolution chip is directly connected to the object chip.
Output spikes of the object chip are recorded as spike count frames with the
USBAER board and displayed. Configuration of the convolution chip is done
with a special configuration FPGA board, while the bias settings of the object
chip are generated with dacboards.

Figure 4.7: Picture of the test setup. From left to right: convolution chip in
the Caviar standard PCB, object chip with two dacboards attached, USBAER
framegrabber board, laptop with on-line spike rate display.
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input with mismatch in the synaptic efficacies. Compared to the output of the
convolution chip, the spike rates are divided by the number of spikes n the
neurons need to reach threshold.

The kernel of the convolution chip was programmed with a ring-shape pat-
tern, see Figure 4.8. The stimulus was constructed to match the convolution
kernel, by centering the ring structure at pixel position (4;7). The spike rates
of the neurons active in the ring were set to their maximum spiking frequency.
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Figure 4.8: Ring-shape of size 11x11 used for testing. We used this pattern for
both the convolution kernel and the stimulus. Convolution kernel: pixels shown
in black represent maximal excitatory synaptic weights, white pixels represent
zero weights. Stimulus: the ring is centered on pixel position (4;7), and the
neurons shown in black were set to spike with maximum rate.

The convolution operation results in the a pyramid-like shape, see Fig-
ure 4.9a. The winner-take-all correctly selects the strongest input and sup-
presses all other outputs. Since we use the winner-take-all with all quadrants
combined, both inhibitory neurons of all 4 subarrays show activity (Figure 4.9b).
See Section 3.2 for a discussion of the combined winner-take-all mechanism.

For this experiment, the kernel contained only excitatory weights. If both
excitatory and inhibitory weights are used, the kernel matches the stimulus ex-
actly (matched-filter stimulus) and the output of the convolution chip can be
adjusted to directly detect the center of the stimulus, with only minor out-
lying activity. On such clean input, the winner-take-all network removes the
remaining outliers easily, see Figure 4.10.

4.3.2 Complete Processing Chain

At the Caviar project meetings in April 2005 and February 2006, the complete
processing chain was assembled. The system consists of the retina, the convo-
lution chips, the object chip and the learning module. To route the spikes from
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Figure 4.9: (a) Input to the object chip for a matched-filter response of the con-
volution chip. The convolution chip was programmed with the ring-shape stimu-
lus as shown in Figure 4.8, while the stimulus contained the same shape centered
on pixel position (4;7). The matched-filter response results in a pyramid-like
output (we will later approximate a Gaussian shape) that is affected by the
mismatch in the input synapses of the object chip. (b) Winner-take-all out-
put, correctly selecting the strongest input at position (4;7) and suppressing
all other output. The active neurons in the corners of the quadrants are the
inhibitory neurons (light gray: first inhibitory neurons, dark gray: second in-
hibitory neurons). Spike rates are not measured accurately due to an overflow
in the framegrabber counter, that is the spike rate is measured module the
counter size of 255. From theory, the activity of the first inhibitory neuron
(position 6;15) is equal to the activity in the array (position 4;7).
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Figure 4.10: Convolution operation with inhibitory weights in the kernel. In-
cluding inhibitory weights in the kernel of the convolution chip results in a
very clean output, showing the stimulus center and minor outlying activity at
the boundaries of the integration kernel. Effective input to the winner-take-all
network.

one module to another, mapper (USBAER boards) and merger/splitter boards
are inserted. In the first version of the chain (see Figure 4.11), framegrabbers
were used to display the rate activity of the neurons. On the second version of
the chain we could record the spike trains including all timing information with
the USB2 boards. Figures 4.12 and 4.13 show pictures of the test setup of both
chains.

Figure 4.14 shows the output of the system. Input to the artificial retina
comes from objects moving with constant speed (here black disks on a white
background that rotate with constant speed). The retina codes the temporal
contrast edges in a spiking representation (left inlay): white dots represent ’ON’
events, that are responses to positive contrast edges, black dots represent ’OFF’
events, that are in response to negative temporal contrast edges. The spikes are
transmitted to a set of convolution chips. Here the spike-based convolution is
programmed to detect the center of the disk that best matches the convolution
kernel (middle inlay). Four convolution chips are tiled to increase the resolution.
Positive hits of the convolution operation are represented as white dots, negative
hits as black dots. The output of the spatial filtering is cleaned by the ’object’
chip, which performs a winner-take-all which detects the current object position
using the winner-take-all operation (right inlay). White dots mark the spiking
output of excitatory neurons of the object chip; black dots show the activity
of the inhibitory neurons involved in the computation. The position of the
detected disk is expanded over time in the delay line chip, and the resulting



4.3. EXPERIMENTS 125

S
R

MA
SP

FG

C
C

MEMA
O

PCI

FG

MA

NI

MA
D

L
U

1 2 3

4
5

6

8
10

9
11

12

13
15 16

17

7

14

S = STIMULUS
R = RETINA CHIP
MA = MAPPER
SP = SPLITTER
PCI = PCI-BOARD
C = CONVOLUTION CHIP
FG = FRAME GRABBER
ME = MERGER
O = OBJECT CHIP
NI = NATIONAL INSTR. BOARD
D = DELAY LINE
L = LEARNING CHIP
U = USB-EXPRESS BOARD

Figure 4.11: Caviar setup. Input to the artificial retina is a rotating white
disc with black circles (S). The retina (R) produces spikes that code temporal
contrast edges. These spikes are routed through a mapping table (MA) and
a splitter board (SP) to a set of convolution chips (C). In the first version,
two convolution chips were used; in the second version four. Output from the
convolution chips is merged (ME) and remapped to the object chip (O). In the
first version of the chain, a PCIAER board (PCI) monitored the spikes from
the retina, while framegrabbers (FG) recorded the spike rates further down the
chain. In the second version, USB2 boards were used for all measurements.
Output of the object chip is remapped to the delay line chip (D). An additional
signal card (NI) was used to configure the delay line chip. The expansion into
time from the delay line is routed with another mapper to the learning chip (L).
While on the first version a simple USB monitor (U) was used to record the
output, in the second version the output controlled a spiking actuator. Figure
by Patrick Lichtsteiner, reproduced with permission of author.
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Figure 4.12: Caviar demonstrator, first version, setup picture. The modules
are arranged as described in Figure 4.11. Shown is: stimulus (top left corner),
retina (bottom left corner), one of the convolution chips (3rd from top left),
object chip (middle, with blue LEDs and dacboards), delay line chip (top right
corner). All other boards are USBAER interface boards and merger/splitters.
Picture by Tobi Delbruck, reproduced with permission of author.

trajectories are learned by the learning chip. The output of the learning chip is
one of its 32 neurons that span the presented input space.

Caviar makes use of the versatile coding of a spike: along the hierarchy
of processing, a spike encodes temporal contrast change (retina), an output
of the convolution (convolution chips), the estimated location of the detected
object (object chip) and the detection of a learned trajectory (learning module).
The occurrence of a spike encodes the time of the event, the address encodes the
location, while the type of the event (for example, contrast change) is determined
from the output of which stage the spike is recorded from.

The second version of the Caviar system was stable enough to make ex-
periments with different stimuli possible. We initially started with black disks
on a white background that rotates with constant speed, see Figure 4.15a. We
varied the size and number of the disks as well as the shape of the ’objects’
attached to the disk. In the next experiment we moved a disk in the direction
of the z-axis, perpendicular to the viewing plane of the retina. The four convo-
lution chips were programmed with kernels of disks in four different sizes. These
feature maps were processed by the object chip. The group of winner-take-all
networks first selects the strongest input within each of the four scales and then
their winners compete on the level of the feature maps. Since the size of the
stimulus does not change, the identity of the best matching feature map reveals
the distance of the shown disk. To test the high-speed processing capabilities
of Caviar, we used a stimulus that switches between two flickering LEDs. The
switch could be used to measure the latencies in the system. We also explored
real-world stimuli using oranges instead of rotating disks, see Figure 4.15b,c. An
orange on a string as a pendulum served as a stimulus with a still predictable
trajectory. For the most advanced stimulus, juggling with 3 oranges, a quantifi-
cation of the trajectories is difficult. Still, the convolution output was shown to
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Figure 4.13: Caviar demonstrator, second version, setup picture. (a) 128x128
retina, (b) processing chain with set of convolution chips on two boards (2nd
from top left) and object chip board (bottom right). Green boards are USB2
monitors; the others are a merger/splitter board and mapper. The learning
module is not shown. (c) spike-based actuator with control board (left) and
an actuator with two degrees of freedom with servo motors, carrying a laser
pointer. Picture by Bernabe Linares-Barranco, reproduced with permission of
author.
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Figure 4.14: Caviar system output. (Top) hybrid VLSI chips performing the
computation, (inlays) spike count representation of the output of the stages.
Input is a rotating disk with black circles. Shown is the output of the retina,
the convolution chips, the object chip and the learning module, which represents
trajectories of the input object.
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process the center of the oranges very clearly, filtering out the moving hands of
the juggler.

(a)
(b)

(c)

Figure 4.15: Stimuli used in Caviar. (a) rotating white background with black
circles attached, (b) Bernabe Linares-Barranco holding a string with an orange
attached to it into the field of view of the retina, in front of a white background,
(c) Tobi Delbruck juggling with 3 oranges.

We used a simple actuator as shown in Figure 4.13c to close the sensory-
motor loop for the first time in the Caviar system. The actuator was built
by Rafael Paz Vicente. This simple system allows two degrees of freedom with
two servo motors (yaw and tilt). It uses a microcontroller to translate the input
AER address into position commands for motors. We used a resolution of 64
positions on each axis. This was the first time that we could close the sensory-
motor loop in a completely spike-based system, that means all communication
between sensor and actuator uses AER. We demonstrated that we could build
a real-time system that draws the trajectory of a moving object onto a screen
with a laser pointer.

4.3.3 Parameters on a System Level

The processing in Caviar depends on many parameters in the individual mod-
ules. In Figure 4.16 we list the main parameters that affect the object chip. The
retina transforms the presented stimuli into spike trains. The functional param-
eters are the thresholds of the contrast changes that elicit spikes ±(∆I/I)th and
the refractory period trefract, that is how fast the pixels can generate the next
spike. The output of the convolution operation depends on the spatial proper-
ties of the programmed kernel, that is its size and shape, the effective synaptic
weights weff

2 and the forgetting time constant tforget. On the object chip, the
winner-take-all operation depends mostly on the effective synaptic weight, that
is the number of spikes n the neurons need to reach threshold. Further param-
eters are the strength of the self-excitation Vself , the leakage and any additional
connectivity that incorporates context information. All these parameters mod-
ify the statistics of the spike trains and therefore the output of the object chip.

2With ’effective weights’ we denote the change in the membrane potential normed to the
membrane threshold, for example an effective weight of 0.1 means that the neurons needs 10
spikes to reach threshold.
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As discussed in Section 2, the output of the winner-take-all can be characterized
by the classification error eclass, the output rate ζ and the jitter in the output
spikes ejitter. These are the measures of the properties of the output of the ob-
ject chip which influence the performance of the last stage, the learning module.
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Figure 4.16: Parameters on system level of the CAVIAR architecture. We show
the parameters of the stages that affect the computation in the winner-take-all,
and how the performance of the winner-take-all affects the later learning module.
In first approximation, the computation in the retina depends on the threshold
of contrast change at which a spike is generated, and the refractory period, that
is the recovery time a pixel needs to generate a subsequent spike. Computation
of the convolution chip depends on the spatial properties of the programmed
convolution kernel, the effective weights in the kernel and the time constant
of the forgetting mechanism. The winner-take-all operation depends on the
effective synaptic weights, that is the number of spikes a neuron needs to reach
threshold. Further parameters are the strength of the self-excitation Vself and
internal connectivity that incorporates context information. The performance
of the winner-take-all, that is the predicted object location, can be characterized
by the classification error, the jitter error and the output spike rate. We will
discuss these measures in Section 4.4. This output of the winner-take-all is the
base for computation in the learning module.

In the next section we will characterize the input and the output of the
object chip. The input reflects the computation based on the parameters of
the pre-processing stages, the retina and the convolution chip. The quality
of the output reflects the performance of the winner-take-all chip in correctly
predicting the position of the object seen by the retina.
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4.4 Performance of Winner-take-all Stage

In this section we will compare the performance of the winner-take-all network in
the Caviar system to the theoretical model we developed in section 2. We first
discuss how well the input to the winner-take-all fits the assumptions we made
in the theoretical model. Then we analyze the output of the winner-take-all.
Having assured that the model is applicable to both input and output data, we
can compare the performance predicted by the theory and the implementation
in an aVLSI system that operates on real-world stimuli.

4.4.1 Input Statistics

In section 2.3.2 we developed a model of a winner-take-all network in which
a wave of spikes is traveling along an one-dimensional chain of neurons. We
assumed the waveform to be of Gaussian shape, and the spike trains within to
follow the Poisson distribution. In this section, we will test these two assump-
tions on the Caviar data.

In the Caviar experiment that we consider here, the stimulus is a set of
circles of different sizes on a white background that rotates with constant speed
in front of the artificial retina. The convolution chip contains a matched-filter
kernel of one size of a circle. Output spikes from the convolution chip indicate
the detection of the convolution kernel. For this analysis we do not consider the
off-spikes that indicate negative results of the convolution operation.

Taking mismatch and statistical variation into account, we can consider each
output spike of the convolution stage as an event that denotes the presence of
the stimulus in both space and time with a certain probability. Depending on
the parameters of the convolution, the number of spikes and their relevance will
change, resulting in a different shape of the average spike waveform that forms
the input to the winner-take-all network.

In the analysis of section 2.3.2 we considered the neurons to be arranged in
a one-dimensional chain. We transform the two-dimensional Caviar input into
one dimension by considering only neurons along the trajectory of the stimulus
(Figure 4.17). This discards activity from neurons outside the trajectory of
the stimulus center. In this experiment, these outliers received less input than
neurons on the trajectory and did not evoke output spikes of the winner-take-all.
Our analysis focuses on the spatio-temporal estimation of the stimulus position,
for which only the neurons with a significant spike input are relevant.

To select input along the trajectory of the stimulus, we manually defined a
spatial region of interest consisting of a ring of one pixel width. Intersection
of this ring with the spatial representation of the input spike train selects only
input along the trajectory (Figure 4.17, right).

To assess how well the input data to the winner-take-all fits to our theoretical
model, we examine the average input to each neuron. Since the neurons are
aligned to a certain stimulus position, the input to each neuron corresponds to
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Figure 4.17: Spatial trajectory of the stimulus center. The stimulus is a disc that
rotates with constant velocity in front of the artificial retina. The convolution
stage contains a matched-filter kernel; its output is a smoothed version of the
center of the object (a). The gray level gives the spike count for one revolution
of the stimulus. For the analysis, we consider only pixels that fall onto the
trajectory of the stimulus (b). We masked these pixels with a manually defined
region of interest.
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a movement step of the stimulus. We can describe the input in response to this
step by the Peri-Stimulus-Time-Histogram (PSTH), a commonly used method
to describe spike train responses. In the PSTH, spike trains from different trials
are aligned to the stimulus onset. The histogram is obtained by binning all
spikes with a given bin time. The resulting histogram is normalized to the
number of trials, resulting in the average neuronal response to the stimulus. In
our case the stimulus is rotation symmetric, so every each input channel can be
seen as one trial of the same experiment. The PSTH is obtained by averaging
over all input channels and multiple revolutions of the stimulus.

Reconstructing the waveform from one only input is difficult, as is illustrated
by an example in Figure 4.18. We will use the PSTH to average over all input
channels.
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Figure 4.18: Estimation of waveform of the convolution output, using only one
spike train. For each inter-spike-interval isii = ti+1 − ti between two spikes at
ti and ti+1, the firing rate is calculated (1/isii) and plotted at ti+1. Due to the
variation in the times of the spikes, the resulting waveform is quite noisy.

In the Caviar experiment the position of the stimulus was not recorded,
but has to be estimated from the data. We explored the following methods:

Linear movement. By assuming the stimulus moves at a constant angular
velocity, the time of the alignment of the stimulus to the input channels can
be calculated. The center of the rotation is estimated from the center of the
spatial map (Figure 4.17). The angular velocity was estimated from the input
spike trains. For each input channel, the estimated time of alignment with the
stimulus is calculated. We aligned all input channels to the estimated time of
alignment. The resulting alignment was not good enough to perform a PSTH
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estimation. This is most probably because the angular velocity of the stimulus is
not constant, which is reasonable if we consider the simple stimulation method
with a non-calibrated motor. We will therefore estimate the stimulus alignment
directly from the data.

Median spike alignment. Aligning the input channels by their median re-
moves variation of the stimulus velocity to some extent, but suffers from an-
other source of error: for the following binning of the PSTH, every spike train
has a spike in the center bin, that is at this time all spike trains are correlated.
According to Poisson generation of the spikes not every spike train would have
exactly one spike at the peak of the rate function. We therefore use a method
that does not center the input spike trains at a common time.

Mean spike time alignment. This is achieved by aligning the spike trains
by the mean of their spike times. With the variation of the spike trains, the
mean spike times will be shuffled so that no correlation is introduced in the
spike trains.

The alignment described above can only work if the spike trains do not
contain too many outliers, that is spikes that are far apart from the overlap
time with the stimulus. In the experimental data used here there are only single
outlying spikes. We cleaned the spike trains from these outliers by iterating the
alignment procedure: first, all spike trains are aligned by their mean. We then
discard the outliers by deleting all spikes with timestamps more than 200ms
apart from the mean. The first alignment is necessary to estimate the width of
the stimulus waveform and to determine the cut-off boundary. In the second
step, the spike trains with the remaining spikes are realigned, resulting in a
better alignment with outliers removed.

Figure 4.19 shows the spike trains before alignment, but sorted by their
mean spike time. From this representation the average traveling time d from one
neuron to the next can be calculated, by averaging the difference the mean time
between each pair of neighboring input channels (see Table 4.2). Figure 4.20
shows the spike trains after alignment.

From the aligned data set the PSTH can be calculated by binning and nor-
malizing to the number of neurons and the bin time. Before we do this, we have
to check that all spike trains have about the same length, otherwise the PSTH
would be falsified (Figure 4.21).

The resulting PSTH is shown in Figure 4.22, together with a Gaussian fit.
The goodness of the fit is quite high. From the fit, the parameters σ (standard
deviation) and peak spike rate rmax are extracted. To quantify the goodness of
the fit, we extracted the parameters separately for each input channel and then
averaged over the results of each spike train, see Table 4.2.

To determine the variation in the spike times, we have to transform the
non-stationary spike trains into stationary ones. We use the time-rescaling
theorem [Brown et al., 2002, Kass et al., 2005]:
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Figure 4.19: Raster plot of the input spike trains. Input channels along the tra-
jectory are sorted in the order of the stimulus movement. Each point marks one
spike (every spike train contains about 20-40 spikes). Data from one revolution
of the stimulus disc are shown.

Parameter Caviar simulated Poisson
d 95ms ± 31% 95ms ± 9.5%
σ 46ms ± 11% 46ms ± 4.5%
νmax 373Hz ± 37% 372Hz ± 17.6%
CV 0.83 ± 23% 0.96 ± 16%

Table 4.2: Parameters of sample Caviar data set for Gaussian-shape traveling
wave. The percentage values give one standard deviation. For comparison, the
parameters of an artificially created traveling wave of Poisson spike trains with
the same means are given on the right side.
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Figure 4.20: Raster plot of the input spike trains after alignment. Input channels
are aligned to their mean, as described in the text. Each point marks one spike
(every spike train contains about 20-40 spikes). Data from one revolution of the
stimulus disc are shown.
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Figure 4.21: Histogram of the lengths of the spike train envelope of each input
channel. From the cleaned input spike trains, minimum and maximum spike
times are extracted to compute the length of the envelope. The envelope lengths
are distributed about the same mean; otherwise the PSTH would be corrupted.
Data from one stimulus revolution.
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Figure 4.22: Peri-Stimulus Time Histogram (PSTH), averaging over about 2500
trials (60 neurons and multiple revolutions of the stimulus). The red line shows
a Gaussian fit.

Time-Rescaling Theorem. Let 0 < t1 < t2 < . . . < tn < T be a realization
from a point process with conditional rate function ν(t) satisfying 0 < r(t) for
all t ∈]0, T ]. Define the transformation

Λ(tk) =

tk∫
0

ν(u)du, (4.1)

for k = 1 . . . n, and assume Λ(t) < ∞ with probability one for all t ∈]0, T ]. Then
the Λ(tk)’s are a Poisson process with unit rate.

For proof, see reference [Brown et al., 2002].
In our case we can generate new spike times Λ(tk) if we know the rate

function ν(t) that generated the original spike times tk with a point process. The
Poisson process is an unconditional point process as required by the theorem.
As rate function we use the Gaussian fit to the PSTH as obtained from the
averaged trials. It fulfills the condition 0 < ν(t) for all t ∈]0, T ] and is a smooth
function as discussed in [Kass et al., 2005]. The parameters of the Gaussian
function are the mean spike time µ and the standard deviation σ. We defined
the Gaussian function in Equation 2.43. The integration limits are the times of
the first and last spike.

t̂k =

tn∫
t0

νµ,σ(t)dt (4.2)
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The transformed spike times t̂k form a homogeneous spike train that allows us
to test for Poisson statistics. We calculate the coefficient of variation (CV) as
the standard deviation of the ISIs by their mean, see table 4.2. A coefficient
of variation close to one is a necessary condition for a Poisson spike train, but
not sufficient. If the spike trains follow a Poisson distribution, the inter-spike
intervals should follow an exponential distribution. Figure 4.23 shows the dis-
tribution of the inter-spike intervals. To understand the distribution shown
in Figure 4.23, we have to discuss what kind of errors are introduced by the
processing the Caviar chain.
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Figure 4.23: Inter-spike interval distribution after transforming the spike trains
into a homogeneous process. Data from one stimulus revolution. The continu-
ous lines show exponential fits to the complete data set (continuous line) and
excluding the minimum inter-spike interval (dashed line).

Spike trains in the Caviar system exhibits two types of variation: the first
type changes the spike rate or the number of spikes that are generated, for
example for a contrast change in the retina. The second changes the latency of
the spikes, resulting in spike jitter. We assume these errors to follow a normal
distribution, or a skewed normal distribution as we analyzed for the mismatch
intrinsic in analog VLSI, see Section 3.3. In Section 4.3.3 we discussed the
system parameters that affect the computation before the winner-take-all. All
parameters except the spatial properties of the convolution chip are subject to
mismatch induced by the analog VLSI implementation. In addition, the angular
velocity of the stimulus varies slightly since we used an uncalibrated DC motor.
Differences in the illumination lead to varying contrast changes that are recorded
by the retina.

It is not clear to us why these variations would add up to a Poisson distri-
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bution. The law of rare events states that the Bernoulli distribution converges
to a Poisson distribution for a large number of events and a small probability
of occurrence. Still, our data shows that the distribution of inter-spike-intervals
can be approximated by an exponential function (see Figure 4.23, dashed line),
which implies a Poisson distribution of the output spike trains of the convolution
chip.

On top of this distribution, sub-sampling is another source of variation:
from the retina resolution of 128x128 the input channels are sub-sampled to
64x64 for the convolution stage, and 32x32 for the winner-take-all stage. Sub-
sampling combines neighboring input channels. Since these originate from spa-
tially related stimulus input, neighboring spike trains exhibit correlations, that
is spikes happen closely after each other. When merged during sub-sampling,
this results in very small inter-spike intervals which are reflected in the peak at
minimum ISIs in Figure 4.23.

A third influence on the statistics of the input spike trains is the integration
in the neurons of the convolution stage. Since several spikes are integrated
before the threshold is reached, a Poisson distribution would be transformed in
to a more regular ISI distribution.

Although the input spike trains do not accurately follow a Poisson distribu-
tion, the Poisson approximation still fits our data set quite well, at least with
an over-imposed peak at minimum inter-spike-intervals induced by the sub-
sampling. Furthermore, the Poisson distribution is one of the most commonly
used distributions to model spike train statistics. We continue our analysis of
the Caviar data with keeping in mind that the true inter-spike interval distri-
bution deviates from Poisson statistics to a certain degree.

4.4.2 Analysis of Output

Figure 4.24 shows the output of the winner-take-all network in the Caviar
experiment for which we analyzed the input data. Two variations can be seen:
(1) variation in the number of output spikes per position, and (2) variation in
the angular velocity of the stimulus disc.

(1) As shown in the inlay of Figure 4.24, the number of output spikes per
position varies strongly. The large variation is caused by the mismatch in the
synaptic efficacies (about 20% on this third chip version), and the variation in
the input spike rates. The input spike trains show significantly more variation
in the peak spike rates than expected for a Poisson distribution, as we have
shown with an artificially created spike train in Table 4.2. This variation in the
input is reflected in the output of the winner-take-all. The standard deviation
of the peak rate is 37% and the variation in the width of the spike wave 11%.
The three independent error sources, including the mismatch in the synaptic
efficiacies, add up to 68%. In the experiment, the winner-take-all network was
tuned to generate at least one spike per stimulus position. On average each
neuron generates 5.3 output spikes with a standard deviation 3.8 spikes, that is
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Figure 4.24: Output of the winner-take-all network in the Caviar experiment.
Neurons are sorted in the order of the movement direction of the stimulus. Each
dot marks one spike. Every spike train contains about 2-9 spikes. Data during
one revolution of the stimulus disc is shown. Neuron 49 has outlier spikes which
are not significant for the later analysis. The number of output spikes per
position varies strongly,as can be seen in the magnification of the inlay.
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a coefficient of variation of 72%. The variation in the output data is therefore
only slightly higher than the expected sum of the variation in the input.

(2) The variation in the angular velocity of the rotating stimulus disc is
now visible. In the input data the variation was hidden by the large number
of spikes that were produced at each position, see Figure 4.19. We approxi-
mated the stimulus position by smoothing a polynomial function to the data
(Figure 4.24, red line). As we will discuss, this approximation is a critical step
in the estimation of the winner-take-all performance.

Variation induced by the Poisson distribution of the input results in small-
scale errors that do not introduce a systematic mismatch to the stimulus position
(it does not introduce an offset, for example). We can therefore reconstruct the
stimulus position from the data without being affected by the Poisson variation
if we use a smoothing function that only considers the large-scale structure of
the stimulus. We tested polynomial smoothing functions of degrees 5 to 9. For
a polynomial fit with a degree of less than five, the large-scale variation of the
stimulus position is not captured good enough; for degrees higher than nine also
the small-scale variation of the Poisson variation is smoothed.

To quantify the performance of the network we use the area error as discussed
in Section 2.3.2. We defined the area error e as the area between the predicted
ball position, a staircase function since the position is discretized to the neurons
of the network, and the position as indicated by the output spikes of the winner-
take-all. Figure 4.25 illustrates the procedure.

We calculated the area error e for different smoothing functions of the ball
positions, that is for smoothing with polynomials of degree five to nine. The
resulting area errors are listed in Table 4.3. The choice of the smoothing function
affects the area error significantly, with a difference of 25% between finest (0.60)
and coarsest (0.75) smoothing.

To compare the performance of the chip to our model, we calculate the
theoretical performance for our model developed in Section 2.3.2 with the pa-
rameters extracted from the input data as shown in Table 4.2. From the peak
spike rate νmax and the width of the spike wave σ we derive the optimal num-
ber of spikes the neurons need to reach threshold n=22 (Equation 2.45). The
classification performance, that is the probability of a correct object location,
is given as Pn,d,σ =0.85 (Equation 2.46). The jitter error, that is the deviation
of the output spikes from the time of the alignment of object and neurons, is
ejitter =0.33 (Equation 2.49). The total area error combining classification per-
formance and jitter error is e=0.64 (Equation 2.51). All values are summarized
in Table 4.3.

The implementation in the Caviar system reaches about the same perfor-
mance as the prediction by our model. If a 7th order polynomial is used to
extract the object position from the data, the area error in the Caviar experi-
ment and the model is equal (e = 0.64).

However, we do not think that a comparison in absolute numbers between
our model and the Caviar experiment makes sense. There are too many as-
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Figure 4.25: Reconstruction of object position from the winner-take-all output
spikes, Caviar data. The position of the stimulus is reconstructed from the
data (continuous line), see text. The ideal output of the network is an update
of the object position as soon as the object is aligned to a new neuron (dashed
staircase). In the most sparse representation the network would elicit one spike
at each vertical line of the dashed staircase function. In the Caviar data (con-
tinuous staircase), the winner-take-all network elicits more spikes than one spike
per position, as illustrated by the output spike train of the network at the top.
This leads to switching in the predicted object position, for example between
neurons 17 and 18. In addition, the output sometimes indicates an incorrect
position, for example at neurons 18 and 19, or the spike times are jittered,
for example at neurons 13 and 14. The area error e measures these errors by
considering the area between the predicted ball position (dashed staircase) and
the actual prediction from the data (continuous staircase), normalized to one
neuron.
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Performance from data:
total area error e ’poly5’ 0.75

’poly6’ 0.71
’poly7’ 0.64
’poly8’ 0.61
’poly9’ 0.60

Performance from model:
n 22
classification performance Pn,d,σ 85%
jitter error ejitter 0.33
total area error e 0.64

Table 4.3: Comparison of the winner-take-all performance for the data from
Caviar experiment and the model developed in Section 2.3.2. The total area
error e is the area between the actual object position and the position as indi-
cated by the output spikes of the winner-take-all. For the experimental data,
e varies with the degree of the smoothing function used to extract the object
position from the data, see text for discussion. Still, the area error from the
data is in the same range as the prediction by the model.

sumptions that falsify the accuracy of both model and experimental data. For
our model this is the assumption that integration in the neurons always starts
at the optimal time point, that is the intersection of the input waveforms to
neighboring neurons. Second, the definition of the classification and the jitter
error as an area counts some areas twice as discussed in Section 2.3.2. These
problems can already be seen in the comparison of model and simulation results
in Figure 2.15.

Calculating the area error from the Caviar data also has difficult assump-
tions. First, we regard a two-dimensional retinotopic stimulus as one-dimensional
by using only the neurons along the trajectory. We do not consider the distor-
tion that is introduced by this transformation. Second, our data cleaning re-
moves spikes originating from neurons outside the trajectory which might have
influenced the winner-take-all computation. The most severe problem is the
extraction of the object position from the same data that we use to calculate
the accuracy in the output of the position, by using a approximation function
that smooths the small-scale variation the we are interested in. In addition,
assuming the input to be Poisson distributed is only an approximation as we
discussed before. Taking these different error sources into account, the close
agreement of performance of the winner-take-all in the Caviar data and in the
model is quite good.

We regard the comparison of model and data as qualitative. Effort could be
undertaken to increase the accuracy of both model and data analysis. For ex-
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ample, different starting times of the integration could be incorporated into the
model. The experiment could consider data that did not involve sub-sampling.
However, the model was originally designed to give an intuitive feeling about the
principle of winner-take-all operation; and any further detail would complicate
the formulas used. The analysis of Caviar data aims at a different purpose, that
is a quantitative measure of the performance of the circuit to tune the complete
system for optimal performance. It allows us to quantify different parameter
settings in the winner-take-all network, and different parameters for the process-
ing along the Caviar chain, for example for retina and the convolution chip.
The effect of these modifications can be evaluated by the performance of the last
stage before learning is involved, that is the performance of the winner-take-all
to measure the correct object position.

In this chapter we presented a method to quantify the performance of the
implementation of the winner-take-all according to the theoretical model we de-
veloped. Emphasis was put on the evaluation how good the input data fits to our
assumption of a Poisson traveling wave. The Caviar data shows more variation
in the waveform than an artificially created spike waveform. We quantified the
Gaussian wave with the mean distance between the subsequent position, the
width of the waveform, and the peak spike rate. Taken the variation in the
stimulus, the sensor and the computation of the convolution into account, the
input data to the winner-take-all can be approximated quite well by a travel-
ing Gaussian waveform. The Caviar spike trains follow a Poisson distribution
overlaid by correlations that are induced by the subsampling in the preprocess-
ing. With this characterization of the input statistics we were able to compare
the output of our theoretical model to the implementation. Although the area
measure as the difference between estimated and measured position does not
capture all properties of the output spike train, it allows a quantification in the
stimulus position as predicted by the network. The Caviar system comes close
to the limit in the performance that is induced by the Poisson nature of the
input spike trains.

Optimal performance of the winner-take-all is obtained if the number of
spikes the neurons need to reach threshold matches the stimulus properties, as
stated by the theory. For the Gaussian traveling spike wave, this depends on
the peak spike rate and the width of the profile. In the Caviar system, these
properties change if the convolution kernel changes. In principle, the statistics
of the retina output are preserved or change only slightly if the illumination
or the speed of the stimulus changes, since the retina output encodes local
contrast changes. However, in our experiments the spike statistics change if
speed and trajectory of the stimulus are varied significantly. To obtain optimal
peformance, the winner-take-all properties have to be adjusted, that means the
synaptic weight of the neurons is retuned to match the width of the Gaussian
profile.
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Chapter 5

Conclusions

In this work we explored a spike-based neuronal network in the aspects of theory,
implementation and application. The chosen winner-take-all network, is an ideal
testbed for discussing computation in a system whose basic building blocks
perform asynchronous event-based and time-continuous processing.

Asynchronous and time-continuous computation is one of the outstanding
features of biological information processing systems compared to conventional
computer architectures. As we discussed in the introduction (Section 1), we
think that incorporating time into the basic building block of computation is
an important key for building systems that are capable of interacting with the
world in real-time. Taking inspiration from biological spiking neuronal networks
to construct artificial systems is a logical step.

Applying the principles of biological processing to engineering applications
requires a thorough understanding of the underlying computation, that is the
processing architecture, the range of network and circuit parameters and the
resulting performance. We approach such an understanding for the spike-based
winner-take-all network.

Previous analyses of winner-take-all behavior have considered analog or
spike-rate coded inputs (see Section 1.1 for an overview). These coding schemes
are useful for stationary inputs, but fail to describe the dynamic input signals
that occur in real-time spike-based processing systems for stimuli that vary with
time. We are interested in the principles of winner-take-all computation in the
transition between single spike and spike rate coding.

In the theoretical part of this thesis (Chapter 2), we derive mathematical
formulations of the winner-take-all behavior. We first simplify the network to
a minimalistic version in which two neurons act as spike counters and reset
each other through strong inhibition. Starting from [Jin and Seung, 2002], who
analyzed a winner-take-all network in the case of constant current inputs, we
derive equations for the boundary conditions of the winner-take-all behavior in
the case of input spike trains of regular frequencies (Section 2.1). For these
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inputs, the network can select the winner with only one inter-spike interval,
making the selection process very fast.

In biological systems, spike trains are often assumed to follow Poisson statis-
tics. In that case, our equations determine the probability of the winner-take-all
to correctly select the neuron that gets the strongest input. The performance
depends on the number of spikes the neurons need to reach threshold, that is
the time until the network reaches a decision, and the difference in the input
spike rates. We first discuss the case of stationary input (Section 2.2), before
we extend our analysis to time-varying input in which the stronger input signal
switches from one neuron to the other (Section 2.3.1), and finally to dynamic
input in form of a spike wave of Gaussian shape that travels across the neurons
(Section 2.3.2).

We show that the decision of the network is optimal, that is it makes use of
all the information available in the input spikes. Using information theory (Sec-
tion 2.2.4), we discuss the winner-take-all network as a classifier that reaches
a decision based on the information transmitted in the input spikes, and indi-
cates its decision with output spikes. Depending on the number the neurons
need to reach threshold, the winner-take-all increases the mutual information
that is conveyed per spike about the stimulus, thus compressing the spiking
representation.

We use our network model to examine the effect of properties typically found
in biological systems. We quantify the network performance for weak inhibi-
tion, self-excitation, dynamic synapses and variation in the synaptic parame-
ters. Weak inhibition decreases the network performance (Section 2.2.2), while
self-excitation increases the performance for stationary inputs (Section 2.2.1).
Dynamic synapses show only a slight improvement for the Gaussian inputs we
consider (Section 2.4). Variation in the synaptic efficacies limits the discrimina-
tion performance, depending on the standard deviation of the synaptic param-
eters (Section 3.3.3). In the case of weak inhibition and dynamic synapses, the
equations to describe the network performance do not hold anymore. Instead
we use simulations of spiking neurons. Our network model and the discussed
input cases set up the framework for exploring other neuron and synapse models
in the future, for example the effect of conductance-based synapses.

What are the insights from our model for the processing in biological sys-
tems? The cortical microcircuit [Douglas et al., 1989] includes a soft winner-
take-all operation where neurons cooperate to enhance consistent interpreta-
tions of the input, and compete to suppress inconsistent ones. The important
properties of this soft winner-take-all computation are linear amplification, gain
modulation, sustained activity and signal restoration as discussed in the intro-
duction (Section 1.1). The hard selection of our winner-take-all model appears
contrary to these soft properties on the first glance. But assuming biologically
relevant Poisson variation in the input, our model of a hard winner-take-all
implements ’soft selection’, that is it reaches a fuzzy decision just due to the
statistical properties of the input.
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Linear amplification is an intrinsic property of our network if strong internal
synaptic connections are used which result in strong inhibition. Self-excitation
leads to hysteresis in the network, that means the output activity persists at
the location of the recent strongest input activity (Section 2.3.1).

One feature of the microcircuit is to connect local decisions with other intra-
area and inter-area sources in both a competitive and cooperative way [Douglas
et al., 1989]. We discuss models for both cases: non-local cooperation is imple-
mented with permitted sets, in which additional connectivity patterns incorpo-
rate context information. If excitatory connections are used, this can implement
signal restoration, see Section 2.5.1 for a discussion. Non-local competition is
implemented by the mechanism of competition across winner-take-alls, in which
the individual winner-take-all networks represent feature maps that compete on
a second level (Section 2.5.2).

The amount of detail at which biological neurons and synapses have to be
modeled to achieve accurate results is a topic of discussion. We started with the
reduction of the network and the neurons to a simplified form, in which the neu-
rons count spikes and the inhibitory connections are strong. The performance
of the network can be quantified with a single equation that is numerically
solvable. We can then examine the effects of properties typically found in bio-
logical systems, for example weak inhibition and self-excitation, by comparing
the resulting network performance. This quantification allows us to assess the
importance of biological details to the accuracy of a model.

With this good understanding of the computational principles in the spike-
based winner-take-all, we can implement it using Very-Large-Scale-Integration
(VLSI) technology (Chapter 3). Neurons and synapses are implemented using
analog transistor circuits, while spikes are represented as digital address-events
(AER), see Section 3.1 for an introduction into analog VLSI and AER systems.
We describe the details of the three chip revisions that we implemented in
Section 3.2, and demonstrate that the performance follows the prediction of the
theory for inputs of constant currents, regular rates and Poisson spike trains in
Section 3.2.1.

We identified three challenges for current VLSI implementations: mismatch
limiting the functional properties of the circuits and its compensation; difficult
usage of VLSI systems due to the lack of common configuration interfaces; and
missing programming methods to add adaptation and learning capabilities.

We addressed the mismatch in Section 3.3 by characterizing variation in the
input synapses and its effect on the neuron population (Section 3.3.1). We dis-
cussed different schemes to compensate for the mismatch and to set the synaptic
efficacies in Section 3.3.2. Using D/A converters to program the synaptic weight
is the most versatile method and was implemented on the third chip version. In
the winner-take-all network, mismatch limits the discrimination performance.
With compensation using burst-length adaptation, the first chip version can
detect a different in the input rates of 10% instead of 277% in the uncalibrated
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case (Section 3.3.3).
To improve the usability, we developed the ’ChipDatabase’ software, a tool

to create a graphical user interface for controlling the bias voltages of the analog
VLSI system based on the chip specifications, documented in Appendix C.

To configure and program spike-based neuronal networks we developed a
hybrid software/hardware framework that is used to specify the connectivity,
to analyze the spiking activity and to insert artificial spike trains into the sys-
tem (Section 3.4). It allows the embedding of software agents in the spiking
communication which perform learning and adaption functions. Both the Chip-
database software packages and the spiking framework are now in regular use
by the members of the Institute of Neuroinformatics.

With the address-event representation of spikes, neuromorphic systems com-
bine analog computation with digital communication, forming hybrid analog/digital
systems. With our framework that embeds software agents, we propose to fur-
ther develop these systems into software/hardware hybrids to increase the com-
plexity of the systems to be able to cope with real-world applications.

Finally, in Chapter 4, we analyze our hardware implementation of the winner-
take-all network in a large-scale multi-chip vision application, the Caviar sys-
tem.

The Caviar project is the largest multi-chip VLSI spiking system assembled
until now with a total of 37920 neurons and pixels, combined in up to 17 separate
boards. Each of the building blocks can process spike rates of up to 10Mspikes/s,
but typical spike rates in the system are much lower as the information per spike
is increased along the chain of computation. The system consists of an artificial
retina, a bank of spike-based convolution filters, the winner-take-all network
and a learning module that classifies trajectories of moving objects.

This complexity is reached by separating the different functions of the system
into individual modules that communicate in a common infrastructure, since
each building block is characterized and optimized on its own (see Section 1.2 for
a discussion). The Caviar architecture follows both a conventional computer
vision architecture and a design inspired by biology. Extracting features with
convolution kernels and classification is a classical approach in computer vision.
At the same time, the convolution and winner-take-all networks can be seen as
a pair of simple and complex cell layers as we discussed in the HMAX network
(Section 4.1). Furthermore, the communication and processing in the system is
completely spike-based.

We first describe the building blocks of the system (Section 4.2), before
we assemble them to the complete system (Section 4.3). We then analyze the
performance of the winner-take-all in the system. We show that the output of
the higher stages of Caviar can well be approximated with Poisson statistics,
although retina and convolution filter are completely deterministic and exhibit
only a small amount of variation (Section 4.4.1). When the system sees a moving
object, the input to the winner-take-all network is a spike wave of Gaussian
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shape that travels across the neurons. This is the same input that we used for
our analysis of winner-take-all behavior in Section 2.3.2, and we can compare
the predicted performance of our theoretical model with the performance of the
implementation in a large-scale system. The achieved performance, that is the
detection of the position of a moving object the system is stimulated with, is
close to optimal in the case of Poisson statistics (Section 4.4.2).

One of the prospective application of the Caviar project is high-speed vi-
sion. Fast detection tasks do not allow the time to encode the inputs as spike
rates, but have to consider the effects of single spikes. [Thorpe et al., 2004]
describe a model that encodes and processes visual input with only one spike
per neuron using a spike-order code. In our approach we analyze the transition
from single spike codes to spike rate coding, by quantifying the performance of
the classifier dependent on the number the input spikes the network needs to
reach a decision, that is to elicit an output spike.

In its current version, Caviar does not incorporate learning or adaptation
before the very last stage. Convolution kernels and parameters of the computa-
tion of retina, winner-take-all and the delay line are chosen manually. Although
designed for a different hardware, the software framework we describe in sec-
tion 3.4 can be used to extend the static Caviar framework. Simple algorithms
can also be implemented inside the remapping infrastructure. Such an infras-
tructure has been demonstrated by the integrate-and-fire array transceiver sys-
tem [Mallik et al., 2005] that provides dynamic routing and changes parameters
of the computation based on simple learning rules.

The Caviar system provides a good test bed for analyzing data from a large-
scale spiking system. Because the output data from this artificial systems with
deterministic building blocks show the large variation of Poisson distribution,
we can use the same model of winner-take-all performance to compare results
in theory, in simulation and in the implementation in a real-world system.

With the simple actuator experiment described in Section 4.3.2 we showed
that Caviar successfully closes the sensory-motor loop in a system whose pro-
cessing is completely spike-based. Such a system offers the possibility of solving
simple real-world tasks based on visual processing without the overhead of con-
ventional frame-based architectures, and with low energy consumption. We
hope that this enables neuromorphic systems to find applications in real-time
vision processing with tight constraints on energy consumption and response
times.
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Appendix A

Abbreviations

Throughout the thesis, we use the following mathematical symbols:

r spike rate of regular frequency
ν spike rate of Poisson frequency
V Voltage or membrane potential
p Probability distribution, transition probability in a Markov

chain
P Probability, with the special case:

P(µ, n) Poisson distribution
t,T time or time interval

n, m, p, i number or index of spikes
N, k number or index of neurons

d difference of the center of two Gauss distributions with stan-
dard deviation σ
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The following abbreviations are used:

Caviar Convolution AER (Address-Event-Representation) V ision
Architecture for Real-time, EC 5th framework project IST-
2001-34124

VLSI V ery Large Scale Integration
aVLSI analog V ery Large Scale Integration

Matlab mathematical program of Mathworks, Inc.
D/A digital-to-analog (converter)

RAM random-access memory
INI Institute of Neuroinformatics, Uni-ETH Zurich, Switzerland

IMSE Institute of Micoelectronics, Sevilla, Spain
UIO University of Oslo
USE niversity of Sevilla
USB Universal serial bus
PCI Peripheral components interface

AER address-event representation



Appendix B

Chip Documentation

B.1 Biases

Table B.1: Chip biases, 1st version (tsmcneuroncaviar)

Bias name Vdef Voff type Comment Pin

General biases

Follbias 0.70V 0.00V N sets bias for follower in
pads

9

nsrcfb0 0.84V 0.00V N sets voltage for source
driver in scanner output

5

nsrcfb1 0.42V 0.00V N sets voltage for source
driver in scanner output

6

pdbiasS 0.70V 0.00V N needed to start clocking in
scanner

0

psrcfbias 2.29V 3.30V P should be matched with
nsrcf0

8

Vcas e 2.00V 3.30V P cascode 0
Vcas i 1.00V 0.00V N cascode 7

Neuron Soma

NeuronInput 3 3.30V 3.30V P sets DC input current to
neuron

5

NeuronInputInh 3.30V 3.30V P sets DC input current to
global inh neuron 2

2

NeuronInputInh2 3.30V 3.30V P sets DC input current to
global inh neuron 1

1

(continued on next page)
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Table B.1: Chip biases, 1st version (tsmcneuroncaviar), continued

Bias name Vdef Voff type Comment Pin
NeuronLeak 0.00V 0.00V N sets leak current of neuron 0
NeuronPul 2.40V 3.30V P sets rise time of discharg-

ing membrane pulse
7

NeuronPw 2.25V 3.30V P sets pulse width of output
spike

8

NeuronRefractBias 0.63V 0.00V N sets refractory period 4
NeuronResetV 0.00V 0.00V N sets reset voltage for neu-

ron
6

NeuronRp 0.98V 0.00V N sets bias current of thresh-
old comparator

5

NeuronVcas ngleak 0.00V 1.50V N sets cascode transistor of
second leak transistor to
membrane potential

0

NeuronVcas pgleak 3.30V 2.50V P sets cascode transistor of
second leak mechanism to
second leak transistor

9

NeuronVgleak 0.00V 0.40V N sets conductance of second
leak mechanism

1

NeuronVt 2.20V 0.00V N sets threshold of Vm be-
fore spike occurs

6

tau gainleak 0.00V 0.40V N sets source node of aerisyn
and second leak mecha-
nism ratio of this and
tau leak sets final current
in second leak transistor

4

tau leak 0.40V 0.40V N sets source node of leak
transistor

2

NeuronAdapTauSrc 0.00V 0.00V N sets gain in adaptation 1
NeuronAdaptBias 3.30V 3.30V P sets charge dumped per

spike in adaptation
3

NeuronCascAdapt 0.00V 0.00V N sets cascode bias in adap-
tation

9

AER and AER Synapses

ae dw 0.01V 0.00V N set depression rate in de-
pressing synapse

5

ae tau 3.19V 3.30V P sets bias in aer exc
synapse

7

ai tau 0.15V 0.00V N sets gain in aer inh
synapse

2

(continued on next page)
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Table B.1: Chip biases, 1st version (tsmcneuroncaviar), continued

Bias name Vdef Voff type Comment Pin
aiw 3 2.00V 3.30V P sets synaptic weight for

nondac inh AER synapse
1

chipreqbias 2.37V 3.30V P bias to set delay for req be-
fore addresses are valid

1

dacsettlingbias 0.46V 0.00V N bias to set delay for dac to
settle before acknowledg-
ing

0

pdbiasR 0.65V 0.00V N 2
pdbiasTX 0.85V 0.00V N 9
pubiasTX 1.93V 3.30V P 8
Pwbias 1.99V 3.30V P generates fixed pw in aer

pulse
8

rpd tau 0.00V 0.00V N sets synaptic weight of de-
pressing synapse

6

SynPubias 2.00V 3.30V P needed to generate ack to
aer circuit

1

tau dacaew 0.19V 0.00V N sets Vgs across synapse
weight of nFET in exc
synapse

9

tau dacaiw 2.73V 3.30V P sets Vgs across synapse
weight of pFET in inh
synapse use same value of
Vdd10

0

Vcm nfet 0.65V 0.50V N sets bias current for nFET
source follower bias in
aerisyn

7

Vcm pfet 2.10V 3.00V P sets bias current for pFET
source follower bias in
aeresyn

8

D/A converters

Dacpd 0.00V 0.00V N shared pin of masterbias
tie to gnd (pulse to get it
going)

5

DacVdd10 3.30V 3.30V P vdd10 power supply for
dac output

0

DacVg 1.20V 0.00V N bias for amplifier of dac 8
Vdcdac1 3 0.00V 0.00V N sets dc current for dacaiw 3
Vdcdac2 3 0.00V 0.00V N sets dc current for dacaew 4

(continued on next page)
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Table B.1: Chip biases, 1st version (tsmcneuroncaviar), continued

Bias name Vdef Voff type Comment Pin

Local Connectivity

lself 0.00V 0.00V N sets synaptic weight for lo-
cal exc synapse

3

tau le 3.30V 3.30V P Vdd 4
tau li 0.15V 0.00V N Gnd sets gain in local inh

synapse
3

Winner-take-all

l4iw 0.00V 0.00V N sets synaptic weight for
neuron to drive inh neuron
1

6

li2iexcw 0.00V 0.00V N sets exc syn wt from 4 ar-
ray inh neurons to global
inh neuron 2

1

li2iinhw 3.30V 3.30V P sets inh syn wt from global
neuron 1 to global inh
neuron 2

2

li4w1 3.30V 3.30V P sets synaptic weight for
inh neuron 1 to neuron

4

li4w2 3.30V 3.30V P sets synaptic weight for
global inh neuron 2 to
neuron

5

liglobal 0.00V 0.00V N sets inh syn wt from sp-
globalin to global neuron
2

3

spglobalpwbias 3.30V 3.30V P sets pulse width of spglob-
alin signal for competition
across chips

2

Table B.2: Chip biases, 2nd version (tncb)

Bias name Vdef Voff type Comment Pin

General biases

Follbias 0.70V 0.00V N sets bias for follower in
pads

4

nsrcfb0 0.84V 0.00V N shared with pdbiasTX.
Sets voltage for source
driver in scanner output

3

(continued on next page)
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Table B.2: Chip biases, 2nd version (tncb), continued

Bias name Vdef Voff type Comment Pin
nsrcfb1 0.42V 0.00V N sets voltage for source

driver in scanner output
4

pdbias 0.70V 0.00V N needed to start clocking in
scanner

1

pdbiasR 0.63V 0.00V N 7
psrcfbias 2.29V 3.30V P should be matched with

nsrcf0
6

pubiasR 1.90V 3.30V P 6
pubiasTX 1.80V 3.30V P 8
vcas e 2.00V 3.30V P cascode 7
vcas inh 1.00V 0.00V N cascode 6

Neuron Soma

NeuronInput 2.70V 3.30V P sets DC input current to
neuron

3

NeuronInput2 3.30V 3.30V P sets DC input current 2 to
neuron

5

NeuronInputInh 3.30V 3.30V P sets DC input current to
global inh neuron 2

3

NeuronInputInh2 3.30V 3.30V P sets DC input current to
global inh neuron 1

2

NeuronLeak 0.00V 0.00V N sets leak current of neuron 6
NeuronLeak2 0.00V 0.00V N sets leak current 2 of neu-

ron
4

NeuronPul 2.51V 3.30V P sets rise time of discharg-
ing membrane pulse

9

NeuronPw 2.01V 3.30V P sets pulse width of output
spike

8

NeuronRefractBias 0.30V 0.00V N sets refractory period 2
NeuronResetV 0.43V 0.00V N sets reset voltage for neu-

ron
4

NeuronRp 0.70V 0.00V N sets bias current of thresh-
old comparator

1

NeuronVt 1.60V 0.00V N sets threshold of Vm be-
fore spike occurs

0

NeuronAdapTauSrc 0.00V 0.00V N sets gain in adaptation 5
NeuronAdaptBias 3.30V 3.30V P sets charge dumped per

spike in adaptation
3

NeuronCascBias 0.00V 0.00V N sets cascode bias in adap-
tation

7

(continued on next page)
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Table B.2: Chip biases, 2nd version (tncb), continued

Bias name Vdef Voff type Comment Pin

AER and AER synapses

ae dw 0.00V 0.00V N set depression rate in
synapse

8

ae tau 3.30V 3.30V P sets gain in aer exc
synapse

9

aew 0.60V 0.00V N sets synaptic weight for
exc AER synapse

0

ai tau 0.00V 0.00V N sets gain in aer inh
synapse

8

aiw 2.60V 3.30V P sets synaptic weight for
inh AER synapse

7

Pwbias 2.24V 3.30V P generates fixed pw in aer
pulse

1

rpd tau 1.10V 3.30V P sets synaptic weight of de-
pressing synapse

2

SynPubias 2.30V 3.30V P needed to generate ack to
aer circuit

2

Local Connectivity

lself 0.00V 0.00V N sets synaptic weight for lo-
cal exc synapse

0

tau le 3.30V 3.30V P Vdd 6
tau li 0.00V 0.00V N Gnd sets gain in local inh

synapse
9

tau Vs 0.50V 3.30V P sets drain node of src fol-
lower transistor driven by
Vbi/Vbe

0

Vbe 3.30V 3.30V P sets synaptic weight
(value is Vbe + Vdd-
Vleake) of local excitatory
synapse

9

Vbi 3.30V 3.30V P sets synaptic weight
(value is Vbi + Vdd-
Vleaki) of local inhibitory
synapse

1

Vleak e 1.85V 2.80V P sets time constant of local
excitatory synapse

8

Vleak i 1.87V 2.80V P sets time constant of local
inhibitory synapse

2

(continued on next page)
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Table B.2: Chip biases, 2nd version (tncb), continued

Bias name Vdef Voff type Comment Pin

Winner-take-all

l4iw 0.00V 0.00V N sets synaptic weight for
neuron to drive inh neuron
1

7

li2iexcw 0.00V 0.00V N sets exc syn wt from 4 ar-
ray inh neurons to global
inh neuron 2

5

li2iinhw 3.30V 3.30V P sets inh syn wt from global
neuron 1 to global inh
neuron 2

3

li4w1 3.30V 3.30V P sets synaptic weight for
inh neuron 1 to neuron

9

li4w2 3.30V 3.30V P sets synaptic weight for
global inh neuron 2 to
neuron

8

liglobal 0.00V 0.00V N sets inh syn wt from sp-
globalin to global neuron
2

4

pulselength 3.30V 3.30V P to set length of pulse for
spglobal in

5

Table B.3: Chip biases, 3rd version (tnc3)

Bias name Vdef Voff type Comment Pin

General biases

Follbias 0.70V 0.00V N sets bias for follower in
pads

9

nsrcfb0 0.84V 0.00V N sets voltage for source
driver in scanner output

5

nsrcfb1 0.42V 0.00V N sets voltage for source
driver in scanner output

6

pdbiasS 0.70V 0.00V N needed to start clocking in
scanner

0

psrcfbias 2.29V 3.30V P should be matched with
nsrcf0

8

Vcas e 2.00V 3.30V P cascode 0
Vcas i 1.00V 0.00V N cascode 7

(continued on next page)
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Table B.3: Chip biases, 3rd version (tnc3), continued

Bias name Vdef Voff type Comment Pin

Neuron Soma

NeuronInput 3 3.30V 3.30V P sets DC input current to
neuron

5

NeuronInputInh 3.30V 3.30V P sets DC input current to
global inh neuron 2

2

NeuronInputInh2 3.30V 3.30V P sets DC input current to
global inh neuron 1

1

NeuronLeak 0.00V 0.00V N sets leak current of neuron 0
NeuronPul 2.40V 3.30V P sets rise time of discharg-

ing membrane pulse
7

NeuronPw 2.25V 3.30V P sets pulse width of output
spike

8

NeuronRefractBias 0.63V 0.00V N sets refractory period 4
NeuronResetV 0.00V 0.00V N sets reset voltage for neu-

ron
6

NeuronRp 0.98V 0.00V N sets bias current of thresh-
old comparator

5

NeuronVcas ngleak 0.00V 1.50V N sets cascode transistor of
second leak transistor to
membrane potential

0

NeuronVcas pgleak 3.30V 2.50V P sets cascode transistor of
second leak mechanism to
second leak transistor

9

NeuronVgleak 0.00V 0.40V N sets conductance of second
leak mechanism

1

NeuronVt 2.20V 0.00V N sets threshold of Vm be-
fore spike occurs

6

tau gainleak 0.00V 0.40V N sets source node of aerisyn
and second leak mecha-
nism ratio of this and
tau leak sets final current
in second leak transistor

4

tau leak 0.40V 0.40V N sets source node of leak
transistor

2

NeuronAdapTauSrc 0.00V 0.00V N sets gain in adaptation 1
NeuronAdaptBias 3.30V 3.30V P sets charge dumped per

spike in adaptation
3

NeuronCascAdapt 0.00V 0.00V N sets cascode bias in adap-
tation

9

(continued on next page)
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Table B.3: Chip biases, 3rd version (tnc3), continued

Bias name Vdef Voff type Comment Pin

AER and AER Synapses

ae dw 0.01V 0.00V N set depression rate in de-
pressing synapse

5

ae tau 3.19V 3.30V P sets bias in aer exc
synapse

7

ai tau 0.15V 0.00V N sets gain in aer inh
synapse

2

aiw 3 2.00V 3.30V P sets synaptic weight for
nondac inh AER synapse

1

chipreqbias 2.37V 3.30V P bias to set delay for req be-
fore addresses are valid

1

dacsettlingbias 0.46V 0.00V N bias to set delay for dac to
settle before acknowledg-
ing

0

pdbiasR 0.65V 0.00V N 2
pdbiasTX 0.85V 0.00V N 9
pubiasTX 1.93V 3.30V P 8
Pwbias 1.99V 3.30V P generates fixed pw in aer

pulse
8

rpd tau 0.00V 0.00V N sets synaptic weight of de-
pressing synapse

6

SynPubias 2.00V 3.30V P needed to generate ack to
aer circuit

1

tau dacaew 0.19V 0.00V N sets Vgs across synapse
weight of nFET in exc
synapse

9

tau dacaiw 2.73V 3.30V P sets Vgs across synapse
weight of pFET in inh
synapse use same value of
Vdd10

0

Vcm nfet 0.65V 0.50V N sets bias current for nFET
source follower bias in
aerisyn

7

Vcm pfet 2.10V 3.00V P sets bias current for pFET
source follower bias in
aeresyn

8

D/A converters

(continued on next page)
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Table B.3: Chip biases, 3rd version (tnc3), continued

Bias name Vdef Voff type Comment Pin
Dacpd 0.00V 0.00V N shared pin of masterbias

tie to gnd (pulse to get it
going)

5

DacVdd10 3.30V 3.30V P vdd10 power supply for
dac output

0

DacVg 1.20V 0.00V N bias for amplifier of dac 8
Vdcdac1 3 0.00V 0.00V N sets dc current for dacaiw 3
Vdcdac2 3 0.00V 0.00V N sets dc current for dacaew 4

Local Connectivity

lself 0.00V 0.00V N sets synaptic weight for lo-
cal exc synapse

3

tau le 3.30V 3.30V P Vdd 4
tau li 0.15V 0.00V N Gnd sets gain in local inh

synapse
3

Winner-take-all

l4iw 0.00V 0.00V N sets synaptic weight for
neuron to drive inh neuron
1

6

li2iexcw 0.00V 0.00V N sets exc syn wt from 4 ar-
ray inh neurons to global
inh neuron 2

1

li2iinhw 3.30V 3.30V P sets inh syn wt from global
neuron 1 to global inh
neuron 2

2

li4w1 3.30V 3.30V P sets synaptic weight for
inh neuron 1 to neuron

4

li4w2 3.30V 3.30V P sets synaptic weight for
global inh neuron 2 to
neuron

5

liglobal 0.00V 0.00V N sets inh syn wt from sp-
globalin to global neuron
2

3

spglobalpwbias 3.30V 3.30V P sets pulse width of spglob-
alin signal for competition
across chips

2
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B.2 Chip Interface PCBs
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Figure B.1: Chip interface PCB, 1st version (tsmcneuroncaviar). Top view. The
power supply (bottom left) generates the analog and digital supply voltages for
the chip (middle). Two connectors for dacboards (bottom and left) supply the
bias voltages. AER input (top) and output (right) have both CAVIAR and 20-
pin standard connectors. Test connectors allow access to dedicated test pins (top
left), to the biases and the /REQ and /ACK lines. The jumper at the right
side selects between the point-to-point and the SCX version of the CAVIAR
protocol. On this board the unused output address pins are grounded, violating
the SCX standard.
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Figure B.2: Chip interface PCB, 2nd version (tsmcneuroncaviarb). Top view.
In addition to analog and digital voltages, the power supply (bottom left) also
generates a PAD/Arbiter supply and a reference voltage for the dacboards which
allows to raise the biase voltages above 3.3V to complete shut off the P-type
transistors. Digital and analog signals are seperated as much as possible (bottom
right / top left part). The unused address lines are now buffered with external
tri-state buffer chips. Resistor pads could be used to suppress reflections on the
output lines (not used). The ring of pads around the socket is used for light-
emitting diodes that provide a blue illumination of the chip socket without
special functionality.
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Figure B.3: Chip interface PCB, 3rd version (tnc3). Top view. (continued on
next page)
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Figure B.3 (continued from last page): Chip interface PCB, 3rd version (tnc3).
Top view. The board can hold four chips in parallel to enable the across-chip
competition. Analog (left) and digital part (right) are completely separated and
feature internal split planes with one layer for ground and power. The power
pins are connected through these internal power planes. The chips share the
largest part of their biases, except a set of four biases that can be set individually
for each chip. The biases are supplied by the 3 dacboard connectors on the left.
The AER buses are merged onto a common bus (right), using a small CPLD and
a set of buffers. Only the test pins of the top-most chip are instrumentized for
measurement (top). We had problems with shorts on the board due to errors in
the manufacturing. With more than one chip the board starts to go into power
oscillations (see page 70).
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Appendix C

ChipDatabase

The ChipDatabase is a graphical system to set biases on neuromorphic analog
VLSI chips. It defines the functionality of the chip pinout and how the pins
are connected to digital/analog computer interfaces. It creates a graphical user
interface in Matlab to provide an intuitive method for tuning the biases of
neuromorphic chips. It facilitates the exchange of aVLSI chips by defining a
common interface, allowing remote tuning and the sharing of bias settings over
the web.

Neuromorphic aVLSI chips have been under investigation by a community
of researchers for a long time. Although continuous development has brought
single chips to a highly advanced level, the technology did not yet attract a
large number of applications, and the use by other people than the original chip
designers remains difficult. Setup and operation of the chips requires too much
skill and experience; more that can be expected from a novice end user. To
some degree the reason for this lays in the complexity of the analog design, but
more importantly here, many of the chips are missing basic documentation and
a convenient way of operating them. The biases have to be tuned to a narrow
operating range - and these settings are easily lost if the setup changes and
difficult to retrieve at a later time.

To push the development of neuromorphic systems to a scale that can deal
with real-world problems, the community relies on exchange and cooperation
between different labs. Much effort has been put in to facilitate the communi-
cation between the researchers themselves, for example at the annual Telluride
workshop or by the Institute of Neuromorphic Engineering (INE). On a level
of the spiking hardware, the European Union has started an extensive effort to
develop common standards (AER) with its two Caviar and ALAVLSI projects
in the life-like perception initiative. However, the exchange of the analog chips
remains difficult due to the lack of a defined biasing interface.

This ChipDatabase project addresses these problems by

• Creating a graphical user interface (GUI) that allows the user to intuitively

169
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tune an analog VLSI chip by setting biases from the standard Matlab working
environment, without knowing about the underlying hardware interfaces.

• Defining a standardized documentation of chips, adapter boards and setup that
includes names instead of cryptic pin numbers, a description of the bias function-
ality, default voltages etc., all together in a flexible, easy-to-use and extendable
database standard.

• The use of computerized D/A hardware, controlled by a high-level mathematical
language, allows an easy and complete characterization of the chips. The same
environment, together with data acquisition systems, can be used for remote
tuning of chips if they are interchanged between different labs.

All these possibilities come at a price, of course. A lot of information has to
be entered before the GUI can be used. However, it can also be seen as good
that the designer is forced to document his chip in a common standard for the
sake of easy operability. Also, the database distinguishes between the definition
of the chip itself and the test setup including adapter boards etc, which are
normally built by different developers.

This project developed from a quick hack of software that was done in one
evening. While it gained in functionality, it also suffered from an increased
complexity due to the different needs when more people started using it. Nev-
ertheless, the development has lead to a stable current version.

The ChipDatabase is used in most of the aVLSI systems at the Institute of
Neuroinformatics (INI) and in the Sensory Integration Project (INE) at univer-
sities in Tucson, AZ and Edinburgh. Usage started on the ’dacboard’ developed
in the Caviar project as the underlying D/A hardware system, and is pursuit on
its successors, the ’duckboard’ and the ’AMPA’ board. The Sensory Integration
Project used a dedicated board with additional functionality for data acquisi-
tion and processing and is weight-optimized for a flying system [Conradt, 2005].
The software package was presented in a short note with the SensoryIntegration
board in the Neuromorphic Engineering newsletter [Oster, 2005].

Figure C.1 gives an overview of the software architecture. First, all speci-
fications are entered into the database. Section C explains the format and the
required data fields. The database is used by the Matlab code to create a
graphical user interface that gives the user an intuitive control over the chip
biases (see section C). The database is parsed to translate function calls using
chip and bias names to the information about physical device and channel that
is sent to the hardware driver. In addition, bias settings, GUI layouts and other
newly created information is saved to local files that can be merged into the
database.

Database Format The database is based on the Extendable Markup Lan-
guage (XML) [Bray et al., 2006], since it offers a versatile and hierarchical format
that can be easily extended. The files can be edited with a standard text editor
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Chip pinouts

PCB, D/A assignment

Settings

XML

Graphical User Interface

setBias (Chip, BiasName, ...)

MATLAB code

setchannel (device, channel, ...)

D/A hardware drivers

Figure C.1: Architecture Overview: All specifications (chip pinouts, PCB and
D/A assignments etc) are parsed into a XML database file. The Matlab code
uses this database to translate functions with chip/bias names, issued by the
user, into the physical device/channel information that is sent to the hardware
driver. Additionally, bias settings are stored back to the database.

and displayed in any newer browser. The syntax is easily understandable by
anyone who is familiar with the concepts of HTML. Most important, Matlab
offers an easy way to import and process XML documents in a built-in java class
that complies with the Document Object Model (DOM). See [Apparao et al.,
1998] for a reference. Although undocumented by Matlab itself, all informa-
tion can be inferred from the DOM standard and standard method() calls on
the data structure.

An entry in XML format consists of tags and attributes of the form

<tag attribute1="value1" attribute2="value2" ...>content</tag>

If no content is given, it can be shortened to

<tag attribute1="value1" attribute2="value2" .../>

Hierarchical structures can be built by nesting tags as content into other tags.
Files can include arbitrary tags and attributes that are ignored during further
processing, so any kind of additional content can be added. The order of the
entries is not important.

In the database directory, a separate file is used for each item such as a
chip pinout, a PCB assignment, settings etc. The DOM requires that all data
is encapsulated in a single file, so the separate XML files are parsed into one
file before being loaded into Matlab (chipdatabase.xml). The parsing is
controlled by a Makefile. In addition, there is a perl script that builds an XML
file from text files that are easier to create. The files are differentiated by their
ending, for example .chipclass denotes an unparsed text file for a chipclass
definition, .chipclass.xml the parsed XML file. The Makefile command make
automatically takes care of the necessary parsing if the ending is known. All
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*.xml are then concatenated into the chipdatabase.xml file. The command
make clean removes all generated files. If there are .xml files from a different
source, they are automatically included if they have a known ending, and they
are not removed by the make clean command.

The following database items are currently supported by the database:

chipclass contains all information about a chip. It is a class since a setup
could contain several chips of the same type. Beside the chip pinout, additional
information such as default voltages, logical groups, etc. are included for each
bias. The following tags with their attributes are necessary to create a fully
functional graphical user interface (GUI) in Matlab:

<chipclass>: defines the chipclass with the name id. Contains the other tags
as content.

<vdd>: Supply voltage.

<package>: Package code to automatically generate a graphical pinout.

<signal>: Signal (pin) definition with the following attributes:
id Name of the signal.
pin Number of the pin on the package.
group Logical group of the signal. Biases belonging to one

group are sorted into one window by the GUI.
type Type of the signal: bias (bias), analog output (aout),

digital pin (dout, din) or power connection (power).
The following fields apply only to the type bias:

biastype Type of the transistor (N or P). Determines the direction
of the slider in the GUI.

defaultvoltage Default voltage.
offvoltage Voltage if the bias is switched off. If not given, it is

derived from the biastype.
comment Description of the bias that is displayed as a tool-tip in

the GUI.

board defines the Printed Circuit Board (PCB) that holds the chip and con-
nects its pins to the channels of the D/A boards. For the database, we are only
interested in this pin assignment, that means which pin of the chip is connected
to which channel (and type) of the D/A card. The following tags are necessary:

<board>: defines the board with the name id. Contains the other tags as
content.

<pin>: defines a pin assignment with the following attributes:
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id Number of the pin on the package.
bank Bank location (if several ’dacboards’ or subdevices are used).
channel Channel number in that bank.
type Type of the signal. To avoid confusion, the type here is refer-

enced as seen from the D/A board, in contrast to the chipclass
where it is referenced as seen from the chip. The possible types
are: A/D channel (adc), D/A channel (dac) or digital channel
(dout or din).

setup describes all elements that are used in a test setup: the chips that are
used, with unique names, and which PCB connects them to which D/A boards.
In contrast to the two definition files described before, it requires a hierarchical
structure and has to be created directly in XML.

<setup>: defines the setup with the name id. It lists the chips used in this
setup:

<chip id="" chipclass="" board="">: chip with an unique name (id) and
the given chipclass and board definition. The chip is connected to the
dacboard defined by:

<bank id="" dacboardid=""/>: The bank corresponds to the bank field spec-
ified in the board definition. The dacboardid is a unique identifier of each
’dacboard’.

This information together with the corresponding chipclass and board defini-
tions completely specifies the test setup.

setting stores a bias vector, for example a working setup, that was saved from
within Matlab.

guilayout contains a saved layout of the graphical user interface, also created
by Matlab.

The chipclass and board definitions can be generated with a helper script
from an intermediate format.

Matlab User Interface Once all necessary information is parsed into the
ChipDatabase, it is loaded into Matlab by the command

getSetup (’setupname’)

which loads the database into a java class and selects a setup. If a file chipdatabase.xml
exists in the current directory, it is loaded. Otherwise, the database is loaded
from the distribution directory.

The procedure does not have a return value, but creates two global variables:

rootnode The XML document containing the root XML node as specified by
the DOM. This node contains the complete database.
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setupnode A pointer to the node in the XML tree that contains the setup with
the specified name.

Note that these variables stay in the memory until they are explicitly cleared.
If one specifies a different setting without first clearing the rootnode, the old
XML database is used, but a warning will be issued. The built-in command
xmlwrite can be used to output the XML tree for debug purposes.

The Matlab ChipDatabase code uses the database information to translate
the names for the chips and biases into hardware driver calls. If the user or the
GUI issue the command

setBias (’ChipName’,’BiasName’, value)

Matlab parses the XML tree to get the right device and channel number.
Also, the bias voltage is referred to the chip Vdd supply voltage since the D/A
converters use values relative to their scale and resolution. See table C.1 for an
illustration of the complete algorithm. Finally the command

setchannel (dacboardid, type, channel, value)

is called on the underlying hardware driver of the D/A board.

setBias (chipname, biasname, value)

search chipname in setupnode:
get chipclass name
get board name
get vdd in chipclass node

search biasname in chipclass node:
get pin number

search pin number in board node:
get bank
get type
get channel

search bank in setup node
get dacboardid

setchannel (dacboardid, type, channel, value/vdd)

Table C.1: Algorithm to translate chip/bias names to device/channel com-
mands.

The command

guiCreate
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starts the graphical user interface (GUI). For each bias group defined in the
chipclass, a separate window is created with the chip and group name in the
title (see Figure C.2). It contains the bias names and a slider to graphically set
the bias value. The N or P marker determines the direction in which the voltage
increases. The text field lists the value that is currently set. If the off button
is checked, the bias is set to the ’off’ value. This is the offvoltage field if
specified in the chipclass. If no off voltage is specified, GND is used for a N type
bias, VDD for a P type. When the button is pressed a second time, the voltage
that was active when the bias was switched off is restored. The last button is
a push button to set the current voltage to the predefined default voltage from
the chipclass definition.

Figure C.2: Example bias group window of the Graphical User Interface

The current tuning is stored with the command

storeSetting (’name’)

This creates a file called name.setting.xml in the current directory, which
contains the biases for all chips in the current setup.

The ChipDatabase code contains several helper and library commands that
can be issued by the user. The most important are:

setBias (’ChipName’, ’BiasName’, value): sets a bias value directly with-
out using the GUI. The command is mostly used from within scripts. ChipName
can be omitted if there is only one chip in the current setup. Currently, the GUI
is not updated (see the command updateBias for this). The new bias value is
given in Volts.

value = getBias (’ChipName’, ’BiasName’): equivalent function to retrieve
the bias value that is currently set.

savetoeeproms: stores the values that are currently set in the EEPROM mem-
ory of the ’dacboard’, so they are automatically loaded when the ’dacboard’ is
powered up the next time. This prevents setting P biases to ground after a
power failure.
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Hardware Driver functions The Caviar and ALAVLSI projects use the
’dacboard’ hardware while the Sensory Integration project uses a dedicated
interface board. The functionality of these different boards is hidden from the
database code by different hardware drivers (DriverDACBoard and DriverBlimpCommands).
These drivers encapsulate any low-level communication functions that are de-
pendent on the operating system (for example, DriverBlimpCommands access
different .mex code on Windows and Linux machines). Which driver is used, is
determined by the Matlab path: The GUI calls the following commands which
have to be supplied by the drivers:

setchannel (dacboardid, channel, value, type)

value = getchannel (dacboardid, channel, type)

setchannels (dacboardid, values, type)

values = getchannels (dacboardid, type)

The division into device descriptors, subdevice types and channel numbers com-
plies with the standards set up by the comedi project, which supports drivers for
a selection of data acquisition cards. If new hardware is to be integrated into the
system, it would be desirable to include a generic interface to the standardized
comedi functions.
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W. Maass, T. Natschläger, and H. Markram. Real-Time Computing Without
Stable States: A New Framework for Neural Computation Based on Pertur-
bations. Neural Computation, 14:2531–2560, 2002.

W. Maass, T. Natschlager, and H. Markram. Computational models for generic
cortical microcircuits, chapter 18, pages 575–605. Chapman & Hall/CRC,
Boca Raton, 2004.
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