
Diss. ETH No. 16578

A Neuromorphic VLSI System for Modeling
Spike–Based Cooperative Competitive Neural

Networks

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

(ETH ZURICH)

for the degree of
Doctor of Natural Sciences

presented by
ELISABETTA CHICCA

Dipl.-Phys. Università di Roma “La Sapienza”
born April 1, 1972

citizen of Rome, Italy

accepted on the recommendation of
Prof. Dr. Rodney J. Douglas, examiner

Dr. Giacomo Indiveri, co-examiner
Dr. Daniel Kiper, co-examiner

2006

Abstract

Neuromorphic engineering is an emerging research field which explores methodologies for
implementing biologically inspired systems in hardware. It has a key role in neuroscience
as a means for testing hypotheses concerning the computation carried out by the brain,
while at the same time it promotes the development of artificial systems capable of achiev-
ing performance figures comparable to those of biological neural systems. I am interested
in applying neuromorphic engineering methods as a tool for understanding cortical compu-
tation and its relation to recurrent intra-cortical connectivity.

This thesis describes the development and testing of a neuromorphic VLSI implementa-
tion of a spiking recurrent cortical network model and the hardware/software infrastructure
required to operate it. The local connectivity of my neural network is an abstract repre-
sentation of the cooperative–competitive connectivity observed in cortex, which is believed
to play a major role in shaping cortical responses and selecting the relevant signal among
distractors and noise. The hardware/software infrastructure allows us to build multi–chip
systems, to configure the inter–chip and intra–chip connectivity, to provide external stimuli
to the multi–chip system and to monitor the activity of all chips, providing a highly flexible
tool for testing complex systems.

I performed software simulations and real–time experiments with the working chip to
demonstrate that the spiking network exhibits the complex behaviors predicted by well
known theoretical studies on more abstract models (e.g. dynamic field theory, rate model)
of similar architectures. I carried out experiments with both artificially generated, well con-
trolled stimuli and “real” sensory data generated by a silicon retina chip. In the latter case, I
implemented (in collaboration with my collegue Patrick Lichtsteiner) and tested a two chip
vision based system for exploring computational models of feature selectivity in a real-
world scenario, and so demonstrated the feasibility of real-time inter-chip communication
through our hardware/software infrastructure. Such a feasibility proof is a necessary step
for evolving the neuromorphic systems developed so far into complex and scalable systems
endowed with sophisticated computational capabilities.

The VLSI spiking recurrent network and the hardware/software infrastructure described
in this thesis provide a highly flexible platform to test the computational properties of co-
operative competitive neural networks in real–time, and allows us to test the role of spike
timing with real–world stimuli.

The insights gained through with this work, the technology developed and the method-
ologies derived provide an important stepping stone toward the understanding and practical
application of recurrent, cooperative–competitive neural networks.

i

ii Abstract

Keywords: neuromorphic, VLSI, neural networks, Integrate–and–Fire (I&F) neuron, Ad-
dress Event Representation, cooperative competitive networks, orientation selectivity.

Prefazione

L’ingegneria neuromorfa è un campo di ricerca emergente che esplora le metodologie per
progettare sistemi fisici prendendo ispirazione dalla biologia. Essa ha un ruolo fondamen-
tale come mezzo per valutare ipotesi riguardo la computazione eseguita dal cervello e, allo
stesso tempo, promuove lo sviluppo di sistemi artificiali capaci di raggiungere prestazioni
confrontabili a quelle dei sistemi neurali biologici. Il mio interesse principale riguarda l’u-
tilizzo delle metodologie dell’ingegneria neuromorfa come strumento per comprendere i
processi computazionali che avvengono nella corteccia cerebrale e la loro relazione con la
connettività ricorrente corticale.

Questa tesi descrive lo sviluppo e l’analisi di una trasposizione in VLSI neuromorfo
di un modello di rete ricorrente corticale e l’infrastruttura hardware/software per farla fun-
zionare. La connettività locale della rete neurale rappresenta in modo astratto la connettiv-
ità di natura cooperativa e competitiva presente nella corteccia cerebrale, la quale si pensa
abbia un ruolo fondamentale nel plasmare l’attività corticale e nell’amplificare i segnali
che codificano l’informazione, sopprimendo quelli che derivano da distrattori e rumore.
L’infrastruttura hardware/software sviluppata ci permette di costruire sistemi multi–chip,
configurare la connettività inter–chip ed intra–chip, fornire stimoli esterni al sistema multi–
chip e monitorare l’attività di tutti i chip, fornendo cosı̀ uno strumento flessibile per testare
sistemi complessi.

In questo lavoro ho eseguito simulazioni software ed esperimenti con il chip in tempo
reale per dimostrare che la rete neurale artificiale esibisce gli stessi comportamenti comp-
lessi descritti da studi analitici su modelli di architetture simili. In questi esperimenti la rete
ricorrente è stata stimolata sia con stimoli generati artificialmente sia con stimoli percettivi
“reali” generati da una retina artificiale. In quest’ultimo caso, ho realizzato e caratterizzato
(in collaborazione con Patrick Lichtsteiner) un sistema visivo composto da due chip per stu-
diare possibili modelli computazionali per la selettività a caratteristiche dello stimolo visivo
(come ad esemprio, orientamento) in uno scenario realistico. Questo sistema dimostra la
funzionalità della comunicazione tra chip in tempo reale attraverso l’infrastruttura svilup-
pata. Questa prova di funzionalità rappresenta un passo fondamentale per lo sviluppo di
sistemi neuromorfi in architetture complesse e scalabili dotate di proprietà computazionali
elaborate.

La rete VLSI ricorrente realizzata con neuroni integrate–and–fire e l’infrastruttura
hardware/software descritte in questa tesi costituiscono uno strumento flessibile per inda-
gare le proprietà computazionali delle reti neurali, cooperative e competitive, in tempo
reale e permette di verificare ipotesi riguardo al ruolo delle temporizzazioni tra gli impulsi

iii

iv Prefazione

neuronali attraverso l’uso di stimoli realistici.
I risultati ottenuti con questo lavoro, la tecnologia sviluppata e la metodologia proposta

rappresentano un ulteriore passo verso la comprensione e l’applicazione pratica delle reti
neurali competitive e cooperative.

Parole chiave: neuromorfo, VLSI, reti neurali, neurone Integrate–and–Fire (I&F),
Address Event Representation (AER), reti cooperative e competitive, selettività
all’orientamento.

To Daniele and Giulia

v

Contents

Abstract i

Prefazione iii

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of this Thesis . 3

2 The Address–Event Representation and Event–Based Neuromorphic Systems 5
2.1 The Address–Event Representation . 5
2.2 Analysis of Time Multiplexing Techniques 6

2.2.1 Sequential Scanning . 8
2.2.2 ALOHA Access Protocol . 9
2.2.3 Priority Encoder . 10
2.2.4 Arbitrated Access . 10
2.2.5 Summary . 11

2.3 Arbitrated AER for Multi–chip Systems 12
2.4 AER Hardware Infrastructures . 14
2.5 The PCI–AER Hardware Infrastructure 15

2.5.1 The PCI–AER Board . 15
2.5.2 Supporting Software . 20

3 Analog Circuits for Implementing Spike Based Processing Models 23
3.1 Subthreshold MOSFET Characteristic . 23
3.2 Differential Pair and Transconductance Amplifier 25
3.3 Capacitive Voltage Divider . 28
3.4 Current Mirror . 29
3.5 Current Mirror Integrator . 30

3.5.1 Response to Spike Trains: Approximate Solution 31
3.5.2 Response to Spike Trains: General Analytical Solution 33

3.6 Excitatory and Inhibitory Synapses . 34
3.7 The Adaptive Synapse . 34

3.7.1 Experimental Results . 38
3.8 The Integrate–and–Fire Silicon Neuron 41

vii

viii Contents

3.9 Discussion . 44

4 Cooperative–Competitive Neural Networks 45
4.1 Analytical Methods Applied to Cooperative–Competitive Networks 47
4.2 The Neural Code . 50
4.3 Neural Coding in Ring of Neurons Competitive Networks 51
4.4 Software Simulation of the Ring of Neurons Competitive Network 53

4.4.1 Sharpening and Suppression of Less Effective Stimuli 53
4.4.2 Hysteretic Behavior . 55

4.5 Discussion . 56

5 VLSI Competitive Networks of Spiking Neurons 59
5.1 The IFRON Chip: a VLSI Implementation of a Spiking Cooperative Com-

petitive Network . 61
5.1.1 Chip Architecture . 62
5.1.2 Circuits . 66

5.2 IFRON Chip Experiments . 72
5.2.1 Basic Building Blocks Behavior 72
5.2.2 Basic Network Behavior . 74
5.2.3 Sharpening and Suppression of Least Effective Stimuli 75

5.3 Discussion . 81

6 A Multi-Chip Neuromorphic System for Feature Selectivity 83
6.1 Orientation Selectivity Using a Silicon Retina and the IFRON chip 87

6.1.1 The TMPDIFF Chip . 87
6.2 Orientation Selectivity Experiments . 88
6.3 Discussion . 95

7 Conclusions 97
7.1 Ideas for Further Work and Outlook . 99

A The M/G/1 Queue and the Pollaczek-Khinchin formula 101

B PCI-AER Library Interface Specification 103
B.1 Introduction . 103
B.2 Description of the PCI–AER Library Functions 103

B.2.1 Common Functions Applicable to More Than One Sub-device . . . 103
B.2.2 Monitor Sub–device . 105
B.2.3 Sequencer Sub-device . 108
B.2.4 Mapper Sub-device . 110

C IFRON Software Simulation Tool 115

D Arbiter UPI Code 117

Contents ix

Abbreviations and Symbols 135

Bibliography 137

Curriculum Vitae 147

List of Figures

2.1 Schematic diagram of an AER chip–to–chip communication example
(adapted from [37]). 7

2.2 Merit criterion versus number of cells for three different access protocols
(adapted from [33]). 12

2.3 Point–to–Point handshake protocol. 13
2.4 SCX handshake protocol. 13
2.5 PCI–AER board. 16
2.6 PCI–AER header board. 17
2.7 Block diagram of the PCI–AER interface board. 18

3.1 Schematic drawing of the physical structure of an n–type MOS transistor. . 24
3.2 Symbols for an n–type MOS transistor and a p–type MOS transistor. 25
3.3 The current Ids as a function of Vds. 26
3.4 Schematic diagram of the differential pair. 27
3.5 Transconductance amplifier. 27
3.6 Capacitive voltage divider. 28
3.7 Current mirror. 29
3.8 Current Mirror Integrator (CMI). 30
3.9 Schematic diagram of the excitatory synapse. 35
3.10 Schematic diagram of the adaptive synapse. 35
3.11 Voltages across the facilitating capacitor Cf and the depressing capacitor

Cd in response to a 50 Hz spike train (analytical derivation). 37
3.12 Output current of the adaptive synapse in response to a 50 Hz spike train

(plot of the analytical expression of the current). 37
3.13 Schematic diagram of the chip architecture. 39
3.14 Steady state amplitude of the EPSP as a function of presynaptic frequency

for three different values of V wf . 40
3.15 Steady state amplitude of the EPSP as a function of presynaptic frequency

for six different values of V wd. 40
3.16 Normalized EPSP amplitude in response to the first ten pulses of a 20Hz

train of spikes for three different values of V wd. 41
3.17 Schematic diagram of the integrate–and–fire neuron. 42

4.1 Schematic representation of the ring–of–neurons architecture. 52
4.2 Feature tuning curve sharpening. 54

xi

xii List of Figures

4.3 Suppression of less effective stimuli. 55
4.4 Hysteretic behavior. 56

5.1 Chip layout legend. 61
5.2 IFRON chip architecture and schematic representation. 63
5.3 IFRON chip layout and photograph. 64
5.4 IFRON layout. 65
5.5 Layout of the I&F neuron. 67
5.6 Layout of the adaptive synapse. 67
5.7 Handshaking circuit for the AER input. 68
5.8 Layout of the AER input decoder. 68
5.9 Layout of the AER output. 70
5.10 The one–dimensional voltage scanner. 71
5.11 The IFRON chip test setup. 73
5.12 Network response to homogeneous constant input current with all synaptic

connections disabled. 74
5.13 Membrane potentials. 75
5.14 Strong WTA behavior. 76
5.15 Traveling wave. 76
5.16 Raster plot of the input stimulus used in the sharpening experiment. 77
5.17 Raster plot of the activity of the feed–forward network in response to the

stimulus shown in Fig. 5.16. 77
5.18 Sharpening. 78
5.19 Raster plot for the suppression experiment: feed–forward network response. 79
5.20 Raster plot for the suppression experiment: recurrent network response. . . 79
5.21 Suppression for three different values of global inhibition. 80
5.22 Suppression for several values of lateral excitation. 80

6.1 Feed–forward model of the organization of simple receptive fields (adapted
from [59]). 85

6.2 AER vision system setup. 89
6.3 AER vision system setup (photograph). 89
6.4 Integrated response of the silicon retina to oriented flashing bars 90
6.5 Tuning curves for the feed–forward and the feed–back model of orientation

selectivity. 91
6.6 Tuning curves for the feed–forward and the feed–back model of orientation

selectivity for the neuron with vertical preferred orientation. 92
6.7 Population data. 93

A.1 Evolution of the residual service time over time. 102

C.1 Structure of variables used in the IFRON software simulation tool. 116

List of Tables

2.1 Summary of the characteristics of four access algorithms for AE communi-
cation channels. 11

5.1 Characteristics of the spiking WTA networks described in the literature. . . 60

6.1 Parameters obtained by least–squares fitting of the data to the von Mises
distribution. 94

xiii

Chapter 1

Introduction

“As engineers we would be foolish to ignore the lessons of a billion years of
evolution” - Carver Mead, 1993

1.1 Motivation

Biological systems perform complex processing tasks on a scale and speed that can not
be achieved by conventional digital computers. Machine simulation of human functions
has been a challenging research field since the advent of digital computers. Despite the
resources dedicated to this field, humans still outperform the most powerful computers
in relatively routine functions such as vision. For example, in spite of about 50 years of
research in the field of pattern recognition, the general problem of recognizing complex
visual patterns with arbitrary orientation, location and scale remains largely unsolved [67].
Artificial systems have been implemented to solve more specific tasks in the field of pattern
recognition, for example, the problem of character recognition. Machine simulation of
character recognition has been the subject of intensive research for the last three decades,
yet it is still far from achieving performances comparable with those of humans [8].

Computation in biological systems is based on completely different principles from
those used in conventional digital computers. The disparity between the effectiveness of
computation in the nervous system and in a computer is primarily attributable to the way
the elementary devices are used in the systems, and to the kind of computational primi-
tives they implement [87]. In digital systems the elementary devices are transistors whose
physical properties are not exploited as computational primitives: the representation of in-
formation relies on digital values, ignoring the analog nature of transistors. The elementary
operations, or computational primitives, are usually the logical operations AND, OR, and
NOT.

Neuromorphic engineering plays a key role in the development of artificial systems
capable of achieving performance figures comparable to those of the biological neural sys-
tems. This emerging research field is a methodology for implementing biologically inspired
devices, comprised of artificial neurons and synapses, and combinations of sensory and
computational modules in hardware. The term neuromorphic was coined by Carver Mead
in the late ’80s to describe Very Large Scale Integration (VLSI) systems comprised of ana-

1

2 Chapter 1. Introduction

log circuits and built to mimic biological neural cells and architectures [88]. The main
idea behind neuromorphic engineering is to implement the same basic operations as those
of the nervous system starting from the elementary operations defined by transistor device
physics. Mead pointed out that the same physical principles apply to the conductance of a
transistor operated in subthreshold and to the macroscopic conductance of a population of
voltage–gated channels1, giving rise to an exponential dependence on the applied voltage
in both cases.

Implementing artificial neural systems to perform specific tasks is not the only aim of
neuromorphic engineering. Neuroscience can take advantage of full–custom neuromorphic
integrated circuits as a means for testing hypotheses concerning the computation carried
out by the brain. The neocortex is often considered the relevant brain structure in studying
the evolution of intelligence because higher cognitive abilities are generally associated with
neocortical functions, and primate encephalization is primarily a result of increased neo-
cortical size [45, 68, 104]. Humans do not have the largest brain or cortex but they have the
largest number of cortical neurons, the highest conductance velocity and smallest distances
between cortical neurons [102]. Therefore human cortex probably has the greatest infor-
mation processing capacity. As the neural circuits in the cortex are primarily responsible
for the intelligent performance of our brain, I believe it is important to apply our research
to the design of VLSI neuromorphic systems that implement models of cortical circuits.

The neocortex, so called because it is the area of the brain acquired most recently in
evolution, is formed of a folded sheet of cells varying between 2 and 4 mm in thickness,
and is the most superficial part of the cortex. The most striking morphological feature of
the neocortex is that its neurons are arranged in six well-defined layers. Although this six-
layer structure is characteristic of the entire neocortex, the thickness of individual layers
varies in different functional regions of cortex [71]. In addition to this horizontal layer
structure, a vertically oriented columnar elementary pattern of organization is present in
the cerebral cortex. It takes the form of units called modules or columns, each involving
thousands of neurons in repeating patterns [98]. The observation that the somatic sensory
cortex comprises elementary units of vertically linked cells was first noted in the 1920s by
the neuroanatomist Rafael Lorente de Nó, based on his studies in the rat. In the 1950s, elec-
trophysiological experiments indicated the presence of a similar repeating structure in cats,
and later in monkeys. Vernon Mountcastle found that vertical microelectrode penetrations
in the primary somatosensory cortex of these animals encountered cells sensitive to identi-
cal mechanical stimuli at the same location. Soon after this pioneering work, David Hubel
and Torsten Wiesel discovered a similar arrangement in the cat primary visual cortex [59].
Each column in the primary visual cortex is about 30−100 µm wide and 2 mm high. Cells
within a column share the same retinal position and preferred orientation, for this reason
these groupings are called orientation columns.

There is reason to believe that, despite significant variation across cortical areas, the
1The membrane proteins that give rise to selective permeability are called ion channels: each kind of ion has its

own preferred channel through which it passes more easily than other kinds of ions. Individual channels open or close
in a stochastic manner. Voltage–gated channels are able to sense the electrical potential across the membrane and the
probability that any given channel is open varies with the membrane potential.

1.2. Outline of this Thesis 3

pattern of connectivity between cortical neurons is similar throughout neocortex. This im-
plies that cortex is a kind of general purpose computer, with various regions specialized to
perform certain tasks [43, 44]. An intriguing hypothesis about how computation is carried
out by the brain is the existence of a finite set of computational primitives used through-
out the cerebral cortex. If we could identify these computational primitives and understand
how they are implemented in hardware, then we would make a significant step toward un-
derstanding how to build brain-like processors.

There is an accumulating body of evidence that suggests that one such computational
primitive consists of a recurrent network of neurons with a well defined excitatory/in-
hibitory connectivity pattern [43]. The neurons of this network cooperate through excitatory
connections and compete through a global inhibitory neuron or a population of inhibitory
neurons. An important property of this specific network is the ability to perform signal
restoration. Signal restoration is a crucial attribute of a computing system, since it provides
reliability of computation. In digital computers, signal restoration is performed locally on
the output physical variable of each node, where each state variable is restored to a binary
value. The process of computation is very different in biological systems. A neuronal
system is analog, therefore there are no discrete values to which a state variable can be
corrected. Small perturbations can easily cause the system to deviate from the correct com-
putation. Therefore, analog computations are intrinsically more sensitive to noise. Despite
this, biological systems perform highly reliable computation. I believe that the robustness
of biological computation is achieved through cooperative–competitive interaction among
elementary units of recurrent networks. In these systems, the output of each node is not
only a function of the local input, but is also influenced by the activity of other nodes. If
the output of a single node is affected by noise, its activity will be corrected by other nodes
and signal restoration will be based on the context of the signal.

This thesis is about the analog VLSI implementation of an instance of such a coop-
erative neural system and the hardware/software infrastructure to operate it. The neu-
ronal circuit I implemented in hardware consists of a VLSI network of integrate-and-fire
(I&F) neurons and dynamic synapses. The connectivity within this network models the
cooperative–competitive nature of connectivity observed in the cortex. The I&F neurons
cooperate through local recurrent connections while a global inhibitory neuron is used for
the competitive part of the computation. The VLSI circuit I developed is able to select
relevant signals among distractors and noise, thus performing signal restoration.

1.2 Outline of this Thesis

This thesis is divided into seven chapters. In this chapter I gave some introductory remarks
on the motivation for building a programmable multi-chip VLSI system for exploring the
computational capabilities of cooperative competitive networks. In chapter 2 I introduce the
Address–Event Representation (AER) for inter–chip communication, review different ac-
cess topologies for Address–Event communication channels and present a PCI–AER hard-
ware infrastructure for building event–based multi–chip systems. Chapter 3 provides an

4 Chapter 1. Introduction

introduction to the devices and the basic analog circuits required to understand the neuro-
morphic circuits used throughout the thesis. Also, I describe the I&F silicon neuron and the
adaptive silicon synapses implemented in my VLSI neural network. In chapter 4 I discuss
the origins of cooperative–competitive network models and the analytical methods used to
characterize them. I then introduce the specific architecture implemented in the context
of this thesis and present simulation results. The VLSI implementation of this particular
cooperative–competitive spiking network (the IFRON2 chip) and the results obtained by
testing its behavior in response to well–controlled artificial stimuli are described in chapter
5. Both the software simulation and the hardware implementation show that the spiking
version of the cooperative competitive neural network exhibits the key features present in
previously proposed continuous models. In particular, the original results obtained with the
IFRON chip show the robustness of these features to real–world conditions. This robustness
and the reliability of the complete hardware infrastructure are further demonstrated in the
experiment described in chapter 6: using my VLSI neural network, the hardware inter–chip
communication infrastructure and a silicon retina (designed by Patrick Lichtsteiner under
the supervision of Dr. Tobias Delbruck) we implemented a multi–chip system for modeling
orientation selectivity tuning of neocortical cells. I conclude the thesis by summarizing the
results achieved and discussing ideas about further work and outlook in chapter 7.

2IFRON stands for I&F Ring of Neurons.

Chapter 2

The Address–Event Representation and
Event–Based Neuromorphic Systems

To build complex neuromorphic systems with significant computational power and high
flexibility we need to resort to multi–chip systems. For example, a common strategy is to
separate the sensing stage (silicon retinas, silicon cochleas) from further computing stages
(spiking neural networks), transmitting signals between chips. In this case, the main ad-
vantages are the possibility of achieving higher density in the sensing stage, allowing con-
vergence of the output of multiple sensors to a single processing stage, divergence from
one sensor to multiple processing modules, and constructing hierarchical processing stages
using multiple instances of the same chip. However, in these systems the inter–chip con-
nectivity across chip boundaries is severely limited by the small number of input–output
connections available with standard chip packaging technology (of the order of a few hun-
dreds pins). One strategy for overcoming this problem is to use time–division multiplexing.
The activity of analog VLSI neurons, as for biological neurons, is sparse, from a few Hz to
a couple of hundred Hz. The speed of digital buses (tens of megahertz) can be traded for
connectivity among spiking networks by sharing a few wires to communicate (infrequent)
events. If the signals to be transmitted across chips are encoded by spikes (i.e. stereo-
typed non–clocked digital pulses), as it is the case for most neuromorphic devices, the most
efficient communication protocol that can be used is based on the Address–Event Represen-
tation (AER) [20, 37, 77, 84]. In this representation, input and output signals are real–time,
digital events that carry analog information in their temporal structure (inter–spike inter-
vals).

In this chapter I first review the different access topologies that have been proposed for
AE communication channels, and then describe the specific AER hardware infrastructure
and the supporting software developed and used for the research project described in this
thesis.

2.1 The Address–Event Representation

The AER uses binary–encoded words to represent address events: log2(N)–bit packets that
uniquely identify one of N sources. Each word encodes the address of the sending node (see

5

6 Chapter 2. Address–Event Representation

Fig. 2.1). Events generated by sending nodes are communicated through the channel to one
or more external receivers. Different approaches are available for the transfer of the data
between the transmitting array of neurons and the channel. The access technique refers to
the algorithm describing the behavior of the access circuit, which is the part of the sending
chip that allows the transfer of the data to the channel. When more than one sending node
attempts to transmit their addresses at the same time, an event collision occurs. We can
distinguish two classes of access technique considering how the algorithm deals with event
collisions: arbitrated and non–arbitrated AER.

In arbitrated AER [15, 37, 77, 84], an arbiter decides which of a number of colliding
events has the right to access the transmission channel and queues the losers of this competi-
tion. This method introduces distortions in the temporal structure of events when collisions
occur. Distortions can be minimized by improving the arbitration technology and shorten-
ing the time needed to process a single event. The arbitrated AER communication protocol
was first introduced by Mahowald [84]. In her PhD thesis, she described a neuromorphic
visual system composed of three subsystems: a silicon retina, a stereocorrespondence chip
and a silicon optic nerve. The silicon optic nerve implements an inter–chip communication
protocol that takes advantage of the pulse coding of the silicon retina. A self–timed digital
multiplexing technique using an AER takes care of sending pulses from the silicon retina to
the stereocorrespondence chip. The stereocorrespondence chip is designed to use the AER
communications framework to receive data from two retina chips and estimate the location
of objects in depth using the bilateral retinal input.

Another line of research has concentrated on non–arbitrated AER schemes [22, 92, 93].
Mortara et al. [92, 93] proposed a transmission circuit and algorithm that perform error de-
tection to discard colliding events (event loss). This approach simplifies the encoding hard-
ware, reducing the transmission time and therefore the probability of collisions. However,
this is a lossy encoding of the neural activity, since colliding events will be thrown away.
Brajovic [22] proposed a lossless address–event encoding which provides the identity of
up to t (t>= 2) colliding events. If there are more than t simultaneous events, then their
addresses are not recoverable and they are lost. The number t is determined by the size of
the encoder.

In this work I used the arbitrated AER protocol originally proposed by Mahowald [84].
My choice in favor of preventing data loss is supported by the availability of good arbitration
technology, which allows us to assume that distortions introduced in the temporal structure
of events are negligible.

2.2 Analysis of Time Multiplexing Techniques

A comparative study of access topologies for AE communication channels has been pre-
sented by Culurciello and Andreou in [33]. In this section I summarize their analysis and
results, and emphasize the results that support my choice of using arbitrated AER.

The design of a communication channel to implement point–to–point connectivity
among neuromorphic chips has to deal with several specifications. The channel capacity is

2.2. Analysis of Time Multiplexing Techniques 7

3

2

1

Inputs

Encode Decode

Address Event Bus

Source

Chip

3

2

1

Outputs

3 2 1 2 1 32

Destination

Chip

Action Potential

Address-Event

representation of

action potential

Figure 2.1: Schematic diagram of an AER chip–to–chip communication example (adapted
from [37]). The address event bus transmits the encoded address of a sending node on the source
chip as soon as it generates an event. On the receiver chip, the incoming address events are decoded
and transmitted to the corresponding receiving node.

defined as the maximum transmission rate (inverse of the minimum communication cycle
period). The mean time required for coding and decoding the event from the sending node to
the receiving node is called latency and its standard deviation is called temporal dispersion.
With conventional polling techniques, nodes are sequentially invited to transmit and latency
increases proportionally with the number of sending nodes. When an event–driven trans-
mission is implemented, latency is proportional to the number of active neurones, which
is usually much smaller than the total number of neurons due to the infrequent nature of
neural activity. Temporal dispersion can be minimized giving priority to new events. Event
queuing leads to a temporal dispersion proportional to the cycle time.

The integrity of the channel is defined as the fraction of events delivered to the correct
receiving node. This is related to the problem of event collisions. As already mentioned
in section 2.1, there are two possible ways of dealing with collisions: arbitrated coding
and non–arbitrated collision–detection coding. In the first technique, originally proposed
by Mahowald [84], arbitration schemes are used to handle event collisions. An arbitra-
tion binary tree is used to select the event transmitted on the Address Event (AE) bus;
colliding events are queued and transmitted after the current event. Since collisions are re-
solved through queuing, distortions are introduced in the temporal structure of events when
collisions occur. An alternative way of dealing with collisions is through non–arbitrated
collision–detection coding [93]. In this case the AE transmitted is valid only in absence
of collisions. When a collision occurs, the AE is not valid and should be discarded by the
receiver. This approach, compared with arbitration, decreases the probability of collisions
which makes the sampling of the events simpler, however it has the disadvantage of event
loss due to collisions (lower integrity).

Let us consider how the AEs are transferred from the transmitting nodes to the channel.
I will discuss four different access techniques and corresponding access circuits. A quality
metric Q is defined to estimate the best access technique:

Q = max
fAC

(
S(G, fAC)

Pc(G, fAC)µsys(G, fAC)

)

8 Chapter 2. Address–Event Representation

fAC is the function performing the mapping from the sequence of events generated in the
spiking network to the sequence of multiplexed data transmitted by the channel; the best
access technique is the one which maximizes Q with respect to fAC . G is the normalized
offered load. S, Pc and µsys are functions of fAC and G. They are defined as the normal-
ized throughput of the channel (usable portion of the channel capacity), the power used by
the access system, and the average latency, respectively. S and G are normalized by the
transmission time Tchan, the inverse of the channel rate Fchan.

Using this metric Culurciello and Andreou compare throughput and theoretical ex-
pected latency for the following four access algorithms: (1) sequential scanning, (2) the
ALOHA–based algorithm, (3) a priority encoder and (4) an arbitration tree.

2.2.1 Sequential Scanning

In the sequential scanning case the activity of the array is sequentially and repeatedly sam-
pled, and the events of each active node are transmitted in a predetermined sequence. This
is a synchronous approach, controlled by an external clock, which does not adapt to the
activity of the sending nodes (e.g. video signals). It is particularly suited to transmit uni-
formly distributed events. Two consecutive scans of the same sending node are performed
with a mean time interval

Tsr = TchanN

where N is the number of nodes in the array. The variability of Tsr is, in general, very
small, as well as the variability of the latency between requests and acknowledges from the
receiver (handshaking signals) producing a practically deterministic statistic of the scanning
registers. Collisions in access to the channel are not possible using this approach. Only the
selected node can transmit its activity; events generated by other nodes are queued until the
scanning process reaches the active nodes. A slow channel can still be considered to induce
collisions since it does not transmit events fast enough, causing data saturation. Collision
probability increases with increasing number of sending nodes N (constant capacity), and
decreases for increasing capacity of the channel (constant N).

The maximum throughput, S, is given by

S = G =
Tsr

Tevent

= NfeventTchan

where Tevent = 1/fevent gives the average array inter–event time, and fevent is the event
rate. S increases linearly with the number of sending nodes, until data loss occurs when it
saturates to the bandwidth of the channel.

An estimation of the average latency is given by half of the mean time between two
scans of the same sending node:

µsys =
Tsr

2
=

TchanN

2

As for the throughput, the average latency increases linearly with an increasing number of
nodes.

2.2. Analysis of Time Multiplexing Techniques 9

The high throughput of scanning is subject to the condition that the activity of the array
is adapted to the scanning frequency. Neuromorphic systems usually generate signals with a
very high dynamic range, which would be truncated if adaptation or automatic gain control
was used to reduce the firing rate. Therefore, sequential scanning is not a suitable access
algorithm if data loss cannot be tolerated.

2.2.2 ALOHA Access Protocol

The ALOHA access protocol [113] is the simplest asynchronous access algorithm. The
ALOHA network was an early computer networking design, created at the University of
Hawaii in 1970 under the leadership of Norman Abramson and Franklin Kuo. In this event
driven type of access, the active node sends an event as soon as the event is generated.

Let us assume that each sending node produces Poisson distributed events (a reasonable
hypothesis for neuromorphic chips). The activity of the whole array will have a Poisson
distributed sum of Poisson point processes. For a generic Poisson train of events with mean
firing rate, f , the probability P (k, T) of obtaining k events in the observation window T is:

P (k, T) =
(fT)k

k!
e−fT

In our case, f is the inverse of the average array inter–event time (f = 1/Tevent = fevent).
We are interested in the observation window given by Tchan, the inverse of the channel rate
fchan:

P (k, G) =
Gk

k!
e−G

where G = Tchan/Tevent. An event is transmitted without a collision if the previous event
occurs at least Tchan seconds earlier, and the next event occurs at least Tchan seconds later:
no other events should occur in a time window of 2Tchan seconds centered around the cur-
rent event. Given the Poisson distribution of input events, the probability of an event to be
transmitted without a collision is p(0, 2G) = e−2G, therefore the probability of an access
collision is:

pcoll(Tchan) = 1− p(0, 2G) = 1− e−2G

The throughput, S, of the channel is given by the load, G, multiplied by the probability
of a successful transmission, p(0, 2G) = e−2G, and can be expressed as a function of the
collision probability:

S = Ge−2G =
1− pcoll

2
ln

(
1

1− pcoll

)

The latency, µsys, is a function of the collision rate:

µsys =
1

1− pcoll

Tchan (2.1)

The ALOHA access protocol generates data loss, and should be used when the probability
of collision is sufficiently low to guarantee a low rate of event losses.

10 Chapter 2. Address–Event Representation

2.2.3 Priority Encoder

The Priority Encoder (PE) algorithm is similar to the ALOHA access protocol. It is an
event–driven, asynchronous access protocol in which any cell (identified by an ordering
number) can access the channel at any time, provided that the channel is free. In the case
of a collision, only the cell identified by the lowest number (fixed priority) can access the
channel, while requests from cells generating the colliding events are queued. Depending
on the implementation of the PE channel, different behaviors can occur in response to a
collision. If there is no buffering between the PE and the asynchronous channel, when a
collision occurs the higher PE cell wins and accesses the channel for communication, even
if a lower priority cell is already waiting for the acknowledge from the receiver. In this case
the receiver either randomly gets one of the two addresses and the other event is lost, or it
gets the logical OR of the two addresses (both events are lost). To improve the response
to collisions, buffering of inputs can be used to disable any change in the buffer until the
current handshaking cycle is terminated. This implementation excludes the possibility of
randomly discarding one of two colliding events, but spurious events might be detected if
the receiver is fast enough to detect glitches at the output of the PE during its settling time.
The unbuffered PE is analogous to an ALOHA access protocol when events are sparse and
the probability of collisions is low. The collision probability and the channel throughput, S,
have the following expressions:

pcoll(Tchan) = 1− p(0, 2G) = 1− e−2G

S = Ge−2G

For buffered PE access, the channel throughput is given by:

S = min (1, G)

The latency of the system has the same expression as for the ALOHA access algorithm (see
Eq. 2.1). Similarly to ALOHA, PE is not a suitable access algorithm if data loss cannot be
tolerated. Furthermore, the collision probability should be low to minimize the number of
lost events.

2.2.4 Arbitrated Access

Arbitrated access can be used to improve the efficiency of all asynchronous access algo-
rithms. An event–driven arbitration scheme queues colliding events instead of discarding
them, and thus obtains higher channel throughput. Latency is increased by the additional
time required for the arbitration circuitry to identify the winning cell. Queuing and in-
creased latency alter the inter–event time distribution of the array activity. In [15], Boahen
presents an exhaustive analysis of arbitrated access which I summarize in the following. To
derive latency and throughput of the channel, a well–known result from queuing theory is
used: the Pollaczek–Khinchin mean value formula (see appendix A). It gives a compact
expression for the average waiting time w in the queue [73]:

w =
λx2

2(1−G)

2.2. Analysis of Time Multiplexing Techniques 11

Access Access Throughput Throughput Circuit Integrity
Type Modality S (low N) S (high N) Complexity

Sequential Externally Low High Low ≤ 1
scanning driven
ALOHA Self driven Low Low Low ≤ 1
or PE
Arbitrated Self driven Low High High 1

Table 2.1: Summary of the characteristics of four access algorithms for AE communication chan-
nels. Only arbitrated access guarantees no data loss (integrity equals 1), but it requires high circuit
complexity.

where λ is the mean rate of incoming Poisson distributed events. In our case x = Tchan,
λ = G/Tchan and we assume that the service time x is always equal to Tchan, and therefore
xn = T n

chan. The mean of the number of cycles spent waiting is then given by:

m =
w

Tchan

=
G

2(1−G)

Let us consider the activity of a neural population that is responding to a stimulus. The
activity of the population is clustered at temporal locations where the stimulus is presented
and it is clustered at spatial locations defined by the stimulus. It has also an unstructured
stochastic component given by noise in the input and in the system. These statistically–
defined clusters are called neuronal ensembles. We can express the latency of the channel
as a function of the neuronal latency µ of the ensemble ε. Let us assume that Tchan is short
enough to transmit half the spikes in an ensemble in µ seconds, that is:

µ

Tchan

=
Nε

2G

where Nε is the number of spikes in the ensemble and 1/G is the average number of cycles
used to transmit one spike. The latency µsys of the channel or wait time can be expressed
as a fraction of the neuronal latency µ:

µsys ≡ (m + 1) Tchan

µ
=

G

Nε

(
2−G

1−G

)

Since every spike is eventually transmitted the throughput S is equal to the load G. When
collisions occur the cost of the high throughput is represented by a longer latency. This
access algorithm is used when event losses can not be tolerated. Fast arbitration circuitries
has to be designed to minimize latency.

2.2.5 Summary

Table 2.1 summarizes the characteristics of the four access algorithms described in this
section. In Fig. 2.2, the merit criterion Q is plotted as a function of the number of sending
nodes. Given the sparseness of neuromorphic systems’ activity, sequential scanning is the
least appropriate access algorithm for transmission of these type of data. A self driven

12 Chapter 2. Address–Event Representation

Figure 2.2: Merit criterion versus number of cells for three different access protocols (adapted
from [33]). The plot shows that when the number of cells in the sending chip is low (smaller
than 105), the ALOHA access protocol offers the best performance. When the number of cells is
high (greater than 105), the probability of collisions increases. An increased number of collisions
dramatically affects the performance of the ALOHA access protocol, reducing its throughput and
increasing its latency. In this case the arbitrated access protocol is shown to be the most efficient.

access modality is certainly more efficient when the sending nodes are silent most of the
time. Arbitrated access is preferable to ALOHA and priority encoder algorithms, if the
timing skew introduced is negligible and loss of data cannot be tolerated by the system. For
large numbers of sending nodes, arbitrated access shows the best performances. Typical
numbers of sending nodes in the most recent neuromorphic implementations range from
hundreds, to hundreds of thousands of nodes, arranged in one or two dimensional arrays,
encouraging the choice of arbitrated AER. Arbitrated circuitry has a large overhead in terms
of circuit and layout design, compared with non–arbitrated schemes. But as standard CMOS
technology improves and we begin to design arrays with large number of neurons, the
proportion of the arbiter layout with respect to the rest of the system becomes smaller and
smaller. For example, in a 0.35 µm chip with 256 neurons and ≈ 10000 synapses, the core
of the chip occupies an area of 6.8 mm2 whereas the arbiter layout area is 0.4 mm2 (about
6% of the core area).

2.3 Arbitrated AER for Multi–chip Systems

The AER protocol originally proposed by Mahowald [84] is for single sender, single re-
ceiver systems. This is known as the Point–to–Point (P2P) AER protocol [1]. The process

2.3. Arbitrated AER for Multi–chip Systems 13

Initiation

Request

Acknowledge

Data Valid

Data

Figure 2.3: Point–to–Point handshake protocol. A node within the sender chip initiates a handshake
cycle by prompting the sender to make a request (initiation signal). After making a request, the
sender puts the data on the address event bus. Since the address lines may take different amounts
of time to stabilize a data valid line is used to signal when the data on the address bus are set. The
receiver acknowledges receipt of the data and the initiation signal is reset to let the sender drop the
request and complete the handshake cycle.

\Initiation

\Request

Data

\Acknowledge

Figure 2.4: SCX handshake protocol. A node within the sender chip initiates a handshake cycle by
prompting the sender to make a request. The sender can write the data on the AE bus only after the
receiver acknowledges. The handshake cycle is complete only when both request and acknowledge
are reset.

of sending events from one chip to the other is regulated by a handshake (see Fig. 2.3).
A simple handshake involves two chips: a sender chip and a receiver chip. A node in the
sender chip initiates an event by activating a request signal. The receiver chip must an-
swer the request by activating an acknowledge signal, after which it reads the data on the
address–event bus. After the acknowledge signal is activated, the sender chip removes the
request to let the receiver chip removes the acknowledge signal. The handshake cycle is
completed when the acknowledge signal is removed by the receiver chip, and another cycle
can be initiated by a node in the sender chip.

Systems containing more than two AER chips can be assembled using additional, off–
chip arbitration. These off–chip arbiters can also use lookup–tables and processing ele-
ments to remap, time–stamp and perform digital operations on address–events [34, 37].
The P2P protocol is not suitable for multi–chip systems because the sender drives the ad-
dress bus, shared by all senders in this case, as a consequence of activating the request. In
a multi–chip system only the acknowledged sender should drive the address bus, to prevent
data corruption in case two senders attempt to send an event at the same time.

In 1998, Deiss et al. [37] proposed the SCX–1 Local Address–Event Bus (LAEB) for

14 Chapter 2. Address–Event Representation

multi–chip AER systems (SCX stands for Silicon Cortex, see section 2.4). The authors
presented a communication protocol for multiple senders and multiple receivers on the
same address bus. Each chip connected to the local address bus has a dedicated pair of
request and acknowledge lines. The handshake protocol is represented in Fig. 2.4.

A recent successful evolution of the AER is the burst–mode “word–serial” address–
event link proposed by Boahen [16, 17, 18]. This design uses address–events to commu-
nicate between cells in the same or in different bidimensional arrays. Row and column
addresses are not transmitted in parallel, as in previous designs, but serially. The loss in
speed due to serial transmission is compensated by not retransmitting the row address if
the next event is from the same row: row activity is encoded in a burst consisting of the
row address followed by a column address for each active cell. Multi–chip systems can
be build in a chain extending the single–transmitter-single–receiver link using merges and
splits1 (see [30] for an example of such architecture).

2.4 AER Hardware Infrastructures

The hardware infrastructure is an essential instrument to fully characterize neuromorphic
prototype chips. This infrastructure has to provide ways to stimulate and monitor the activ-
ity of a single chip. In addition, it has to be able to interface several chips and dynamically
define the connectivity among them, implementing complex multi–chip systems. Further-
more, it should allow logging of data from all chips, allowing off–line analysis.

Different approaches can be pursued to build neuromorphic multi–chip systems: ded-
icated full–custom circuits can be implemented to support specific AER devices, or a
general–purpose full–custom architecture can be designed to host any AER device compli-
ant to a certain standard. Several multi–chip systems have been implemented with both ap-
proaches. Examples of dedicated full–custom multi–chip systems are described in [30, 57].
These systems comprise EPROMs or FPGAs for remapping of the addresses, but they do
not include any device to store the activity of the AER chips (requiring a separate acquisi-
tion instrument, usually a logic analyzer, to look at the system behavior) or to stimulate the
chips with synthetic trains of spikes.

More general architectures have been proposed [34, 37, 106] to interconnect, monitor
and stimulate several AER devices. The first example of a general–purpose multi–sender
multi–receiver communication framework for AER devices, called Silicon Cortex (SCX),
is the one proposed in 1998 by Deiss et al. [37]. SCX is a fully–arbitrated AE infrastruc-
ture which can support up to six AER chips; larger systems can be assembled by linking
together multiple boards. SCX provides a method of building a distributed network of local
busses sufficient to build an indefinitely large system, co–ordinating the activity of multi-
ple sender/receiver chips on a common bus. The user can configure arbitrary connections
between neurons, set analog parameters and monitor the activity of the neurons.

The most recent communication frameworks [34, 106] follow two different strategies.
1The merge circuit combines the address events at its input with address events generated by the neuron array and

sends them off chip via a transmitter. The split circuit makes two copies of the AER events appearing at its input.

2.5. The PCI–AER Hardware Infrastructure 15

In the context of the CAVIAR project2, Serrano–Gotarredona et al. [106] proposed a dis-
tributed system in which a USB–AER board can be programmed to perform one of five
different functions: (1) mapping of addresses, (2) capture of timestamped AEs, (3) repro-
duction of time–stamped sequences of AEs in real time, (4) transformation of sequence of
frames into AEs in real time, (5) histogram AEs into sequences of frames in real time. Ad-
ditional PCBs are used to record AE traffic on the AER bus; split one AER bus into 2, 3 or
4 busses; merge 2, 3 or 4 AER busses into a single bus; and capture time–stamped AEs to
a computer.

The hardware infrastructure described in this chapter, originally conceived and built by
Vittorio Dante in Rome at the Physics Laboratory of the Italian Institute of Health [34],
follows a different approach. It consists of a single full–custom general–purpose PCI board
(the PCI–AER board) hosted in a workstation, that allows connection of up to four sender
and four receiver chips, building a multi–chip system with arbitrary intra– and inter–chip
connectivity, stimulating receiver chips with synthetic trains of spikes, monitoring and log-
ging the activity of the sender devices. AER systems built using the PCI–AER board require
a workstation in the loop and therefore are not as portable as the CAVIAR system, never-
theless these systems are more convenient for rapid prototyping tests, data analysis, and
on–line reconfigurability.

This board and its supporting software are the unique result of a team effort of several
researchers from different institutions over several years. The Linux driver for the PCI–
AER board was written by Adrian Whatley at INI. I contributed by writing library and test
code for using the board, by debugging the setup, and by acting as the first beta–tester with
a VLSI AER multi–neuron chip (described in chapter 5).

2.5 The PCI–AER Hardware Infrastructure

2.5.1 The PCI–AER Board

The need for a custom device to easily interact with neuromorphic chips with spiking neu-
ral networks quickly increased with the emergence of the AER protocol as a standard for
communication between these chips. In 2000, at the Physics Laboratory of the Italian Insti-
tute of Health (Rome, Italy) the PCI–AER project was started to provide flexible and easy
interaction between a standard personal computer and an interconnected system of possi-
bly heterogeneous AER chips. The PCI–AER board provides real–time routing between
neuromorphic chips, with programmable connectivity, monitoring and stimulation of up
to four chips and a communication bridge between AER and the PCI bus. The PCI-AER
board takes the form of a 33MHz, 32-bit, 5V PCI bus add-in card (see Fig. 2.5) installed
in a host personal computer. A 68-way cable is used to connect the PCI–AER board to a
small header board (see Fig. 2.6) which can be conveniently located on the benchtop, and
provides connectors for up to four AER receivers and four AER senders. The header board
also electrically buffers the signals to and from the receivers and senders. Senders must use

2CAVIAR is the acronym of the European funded project IST–2001–34124: Convolution AER Vision Architecture
for Real Time.

16 Chapter 2. Address–Event Representation

M
ap

p
er

 F
IF

O

F
P

G
A

 2
M

o
n

it
o

r
 F

IF
O

S
eq

u
en

ce
r

 F
IF

O

F
P

G
A

 1
P

C
I

In
te

rf
ac

e
S

R
A

M
6

8
 P

in
 C

ab
le

 C
o

n
n

ec
to

r

Fi
gu

re
2.

5:
PC

I–
A

E
R

bo
ar

d.
T

he
de

vi
ce

s
in

vo
lv

ed
in

th
e

im
pl

em
en

ta
tio

n
of

th
e

th
re

e
m

aj
or

fu
nc

tio
na

lb
lo

ck
s

(s
ee

Fi
g.

2.
7)

ar
e

hi
gh

lig
ht

ed
:

M
O

N
IT

O
R

,
M

A
PP

E
R

,a
nd

SE
Q

U
E

N
C

E
R

FI
FO

s,
FP

G
A

1,
an

d
FP

G
A

2.
T

he
SR

A
M

is
us

ed
to

ho
ld

th
e

m
ap

pe
r’

s
lo

ok
–u

p
ta

bl
e.

A
68

pi
n

ca
bl

e
co

nn
ec

to
r

is
us

ed
to

co
nn

ec
tt

o
th

e
he

ad
er

bo
ar

d
(s

ee
Fi

g.
2.

6)
.T

he
PC

Ii
nt

er
fa

ce
m

an
ag

es
th

e
co

m
m

un
ic

at
io

n
w

ith
th

e
ho

st
pe

rs
on

al
co

m
pu

te
rt

hr
ou

gh
th

e
PC

Ib
us

.

2.5. The PCI–AER Hardware Infrastructure 17

68 Pin Cable

Connector

Cable Driver

External

Power Supply

To Receiver

Chips

Sequencer

Connector

From Sender

Chips

Status LEDs

Figure 2.6: PCI–AER header board. The header board is connected to the PCI–AER board through
a 68-way cable and it can be conveniently located on the benchtop. The header board provides
connectors for up to four AER receivers and four AER senders plus the SEQUENCER connector.
The external board has five LEDs, three yellow and four red. Close to the 68 pin connector there
is the Power ON LED. Next to it there are FIFO Full alert LEDs for the MAPPER, MONITOR
and SEQUENCER respectively. The yellow LEDs are used to indicate the status (LED on means
enabled) of the three functional blocks (SEQUENCER, MONITOR, and MAPPER respectively).

the SCX multi-sender AER protocol [36], in which request and acknowledge signals are
active low, and the bus may only be driven while the acknowledge signal is active. Receivers
may use either this SCX protocol, or they may choose to use a P2P protocol [1] in which
request and acknowledge are active high and the bus is driven while request is active. Which
protocol is generated by the board may be selected under software control.

As illustrated in Fig. 2.7, the PCIAER board can perform three functions which are
executed by blocks we refer to as the monitor, sequencer, and mapper. These blocks are
controlled by two FPGAs (FPGA1 and FPGA2 in Fig. 2.5) on the board.

The PCI–AER board has four main components:

Arbiter Up to four sender chips can be connected to the PCI–AER board. The on board
arbiter implements arbitration of events generated by the different sender chips. This
allows multiple sender devices to access the AE bus.

Monitor Arbitrated events generated by the sender chips are time–stamped and recorded
by the monitor. Stored events can be then accessed from the personal computer via
the PCI bus. This is useful for logging data, and it allows the user to analyze the
activity of the connected devices off–line, without affecting the performance of the
system.

Sequencer Using the sequencer, up to four receiver chips can be stimulated with pre–
defined spike trains. Synthetic spike trains can be generated using the personal com-
puter and downloaded to the board via the PCI bus.

Mapper The connectivity pattern between up to four sender chips and up to four receiver
chips is implemented by the mapper. Transceiver chips can be connected as sender

18 Chapter 2. Address–Event Representation

FPGA 1

FPGA 2

PCI-AER BOARD

MONITOR

SEQUENCER

MAPPER-IN
PCI to Local Bus

Interface

a
c

o
L

u
B l

s

MAPPER-OUT
AER

DEMUX

SRAM

2M Word

TIMER

32 Bit Counter

8Kx18bit

Async. FIFO

8Kx18bit

Async. FIFO

8Kx18bit

Async. FIFO

ARBITER
Arbiter
Input
MUX

b
a

C
ot

el
e

H
dr

a
o

B r
e

d
a

I
C

P
s

u
B

Figure 2.7: Block diagram of the PCI–AER interface board showing its three major functional
blocks, i.e. the MONITOR, the SEQUENCER, and the MAPPER (divided into MAPPER–IN and
MAPPER–OUT). These (and other blocks) are implemented in two FPGAs on the PCI–AER board.
Also shown are the FIFOs, the interface to the PCI bus, the SRAM used to hold the mapper’s look–
up table, the cable buffers, and the interconnecting buses.

and receiver at the same time, using the PCI–AER to externally configure their “in-
ternal” connectivity. Arbitrary network topologies can therefore be implemented and
reprogrammed on–line.

Using these components the board implements the functions described below.

Monitoring

The PCI–AER board can monitor the spiking activity of up to four sender chips. The
monitor captures and timestamps events coming from the attached AER senders via an
arbiter, and makes those events available to the personal computer for further processing.
A timer is implemented in one of the FPGAs, and when an incoming address–event is
read, a timestamp is stored along with the address in an 8KWord First–In First–Out (FIFO)
memory. This FIFO decouples the management of the incoming address–events from read
operations on the PCI bus, the bandwidth of which must be shared with other peripherals in
the personal computer such as the network card. Interrupts to the host personal computer
can be generated when the FIFO becomes half–full and/or full, and in the ideal case, the
driver will read time stamped address–events from the monitor FIFO whenever the host

2.5. The PCI–AER Hardware Infrastructure 19

CPU receives a FIFO half–full interrupt at a rate sufficient that the FIFO never fills or
overruns, given the rate of incoming address–events. Each event is stored in the form
of three successive 18 bits words. The two most significant bits of the word encode the
type of information stored in the other 16 bits. A word can contain four different type of
information: AE, Time High (16 most significant bits of the 32 bits word encoding the
time–stamp), Time Low (16 less significant bits of the 32 bits word encoding the time–
stamp), Error or Control code. The time resolution can be set to four different values: 1, 10,
50 or 100 µs. The AE is coded differently depending on the number of sender chips:

1 sender chip 16 bit address word.

2 sender chips The most significant bit of the AER address encodes the chip label. The
address word is encoded by the remaining 15 less significant bits.

4 sender chips The two most significant bits of the AER address encode the chip label.
The address word is encoded by the remaining 14 less significant bits.

Stimulating

The PCI–AER board can be used to stimulate receiver chips using synthetic trains of AEs.
This function is implemented by the sequencer. These events may for example represent
a pre–computed buffered stimulus pattern, but they might also be the result of a real time
computation. This allows, for instance, software simulations of VLSI devices to provide
input to real VLSI hardware while the former VLSI devices are still under development.
As soon as the real device is available, the software simulation can be seamlessly replaced.
Like the monitor, the sequencer is decoupled from the PCI bus using an 8KWord FIFO. The
host writes an interleaved sequence of words representing addresses and time delays to the
sequencer FIFO. The sequencer then reads these words one at a time from the FIFO and
either emits an address–event or waits the indicated number of microseconds. The events
generated can be transmitted on any of the four output channels.

Mapping

Events coming from sender chips can be mapped to receiver chips using the PCI–AER
board. The use of a transceiver chip combined with this function allows programmable
connectivity between neurons on the same chip. Different chips can also be interfaced by
defining a connection table among their neurons. The mapper can operate in three different
modes:

Pass–through The input address events are simply replicated on the output.

One–to–one The input address events are used as pointers to a look–up table stored in
the mapper SRAM. The retrieved content of the table for each input address is the
target address on the output.

20 Chapter 2. Address–Event Representation

One–to–many Each input address event generate multiple output events to different
targets. The input address is used as a pointer to the first memory location (in the
mapper SRAM) of a list of targets.

The mapper has a FIFO which decouples the asynchronous reception of the incoming ad-
dress events from the generation of outgoing address events. Once configured and after
the look–up table has been filled with the required mappings, the mapper operates entirely
independent of the host personal computer. All of the necessary operations, including table
look–up, are performed by one of the FPGAs on the PCI–AER board.

2.5.2 Supporting Software

Low level control of the PCI–AER board is carried out by a Linux software driver which
allows the operating system to access and modify the status of the board. The driver sup-
ports up to four PCI–AER boards in one machine. The logically separate functions of
the Mapper, Monitor and Sequencer are supported by three minor devices for each board.
The separation of Mapper, Monitor, and Sequencer has the advantage of giving the desired
degree of granularity of control over simultaneous use policy (not more than one process
may open each minor device, but separate processes may be used for reading, writing and
mapping control). The Linux driver for the PCI–AER board was developed by Adrian M.
Whatley at the Institute of Neuroinformatics (University and ETH Zurich).

A user of the hardware infrastructure should not need to understand and use the driver
interface to be able to test neuromorphic chips. Instead of accessing a particular configura-
tion register to set the appropriate value for using a defined functionality of the board, the
user should be able to simply use the desired functionality through more high level software
functions. For this purpose a library of C functions was implemented.

The PCI–AER library is a set of low/intermediate level functions useful for accessing
and controlling the PCI–AER board. They can be used in spike train generation code, in
data–logging code and in other programs that need to access the PCIAER board. Specifi-
cally, library calls allow the user to easily perform all operations supported by the PCI–AER
board and driver. For example, the following sequence of operations can be executed to read
and store the activity of all senders connected to the PCI–AER board:

1. Open Monitor.

2. Read n AEs (where n is an arbitrary number).

3. Close Monitor.

These high level commands open the driver and call a set of low level routines to perform the
required operation. Many other high level commands are included in the library and App.
B contains a detailed description of all library calls. I initially developed most of these
commands under the supervision of Adrian Whatley and participated in the debugging of
the library. The code has been further debugged and enhanced by Adrian Whatley and other
collegues.

2.5. The PCI–AER Hardware Infrastructure 21

All the software is implemented in C language and can be easily used with a Matlab
interface to develop an user–friendly access system to the chips through the PCI–AER
board.

Chapter 3

Analog Circuits for Implementing Spike
Based Processing Models

Neuromorphic engineering makes use of analog very–large–scale–integrated (VLSI) cir-
cuits to implement biologically–inspired processing systems. Analog circuits perform
massively parallel real–time computation with many orders of magnitude less power than
general–purpose computers.

In this Chapter, I will introduce some basic analog circuits necessary for understanding
the neuromorphic circuits I used as building blocks in my system. I start with a quick
review of the Metal–Oxide–Semiconductor Field Effect Transistor (MOSFET) device [81,
88], move on to two transistor circuits that are basic blocks for the silicon synapses, describe
the transconductance amplifier used in the silicon neuron, the neuron circuit itself and an
adaptive synapse circuit, able to model short–term depression and facilitation effects. Since
almost all the neuromorphic circuits I used in my system are operated in the subthreshold
regime, in the next section I will discuss the MOSFET device and the analog circuits always
referring to this regime.

3.1 Subthreshold MOSFET Characteristic

The MOSFET is composed of a Metal–Oxide–Semiconductor (MOS) structure (gate) and
two diffusions (drain and source). A schematic drawing of the structure of an n–type MOS
transistor is shown in Fig. 3.1. The substrate is p–type (holes are the majority carriers). The
drain and source diffusions are heavily doped n–type (electrons are the majority carriers).
The channel is the region underneath the gate and between the drain and source diffusions.
The charge in the channel is carried by electrons. The p–type MOS has an n–type channel
where the charge is carried by holes supplied from the p–type source and drain regions.

23

24 Chapter 3. Building Blocks

n+

n+

W

gate
drain

source

p

L

 SiO2 Polysilicon

Figure 3.1: Schematic drawing of the physical structure of an n–type MOS transistor. Two n+
diffusions in the p substrate implement the drain and source regions. The gate is implemented by a
polysilicon layer isolated from the channel by a SiO2 layer.

In a CMOS process, the n–FETs and p–FETs are fabricated on the same substrate. In the
process I used, n–FETs are implemented in the common p− substrate and p–FETs in an
n–well within the substrate.

The MOS transistor has four terminals (MOSFET symbols for both n and p–type tran-
sistors are shown in Fig. 3.2): the source (S), the drain (D), the gate (G) and the bulk (B).

The expression for the current that flows between drain and source is

Ids = I0e
qVg
KT

(
e−

qVs
KT − e−

qVd
KT

)
(3.1)

where
I0 = qDN0e

−q
Φ0
KT

W

L

is the dark or leak current. In the derivation of the Ids current, the Early effect and the fact
that only part of the voltage applied to the gate is present on the channel are neglected [81].
Taking into account these two effects and using Vds for Vd − Vs, we can write:

Ids = I0e
qκVg
KT e−q Vs

KT

(
1− e−q

Vds
KT +

Vds

Ve

)
(3.2)

where κ is the capacitive coupling ratio from gate to channel [81] and Ve is the Early voltage.
Typical values for κ are between 0.5 and 0.9, while Ve varies from 20 V to 750 V depending
on the transistor’s length L.

3.2. Differential Pair and Transconductance Amplifier 25

G

S

D

B G

S

D

B G

S

D

B

G

S

D

B G

S

D

B G

S

D

B

(a)

(b)

Figure 3.2: Symbols for (a) an n–type MOS transistor and (b) a p–type MOS transistor. The bulk
terminal can be omitted when connected to ground for n–type MOS and to the power supply for
p–type MOS. Throughout the rest of this thesis we will use the symbols in the rightmost column.

Two regions of operation can be distinguished depending on the value of the drain–to–
source voltage: the linear (or ohmic) region and the saturation region (see Fig. 3.3). For a
given gate voltage Vg, in the linear region the current increases linearly with Vds, while in
the saturation region the current is independent of Vds (if the Early effect is negligible).

When Vds is small (linear or triode region) a linear function is obtained from the Tay-
lor’s series expansion of Eq. 3.1:

Ids = I0e
q

κVg−Vs
KT

q

KT
Vds

For Vds > 4KT/q (saturation region) the exponential in Eq. 3.2 is much smaller than
one and so can be neglected and, again neglecting the Early effect, the current is approxi-
mately given by

Ids = I0e
q

κVg−Vs
KT . (3.3)

3.2 Differential Pair and Transconductance Amplifier

The transconductance amplifier, used in the I&F neuron (see section 3.8) is a device that
generates an output current which is a function of the difference between its two input
voltages. It is composed of two basic circuits: the differential pair and the current mirror

26 Chapter 3. Building Blocks

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

V
ds

 (V)

I ds
 (

nA
)

V
gs

=0.55

V
gs

=0.53

V
gs

=0.51

V
gs

=0.49

V
gs

=0.47

V
gs

=0.45

Figure 3.3: The current Ids as a function of Vds, for Vgs between 0.45 V and 0.55 V , as measured
from a Spice simulation. The current is linear for small values of Vds (ohmic or linear region) and is
approximately constant for Vds > 4UT (saturation region). The slight increase of Ids for increasing
values of Vds in the saturation region is due to the Early effect.

(see section 3.4). A schematic circuit of the differential pair is shown in Fig. 3.4. The
MOSFET Mb acts as a voltage controlled current source. The current, Ib, is set by the bias
voltage, Vb. The sharing of this current between M1 and M2 depends on the difference
between the two input voltages, V1 and V2. Assuming that all transistors are operated in
the subthreshold saturation domain and have the same subthreshold slope factor κ, we can
compute I1 and I2 as a function of the bias current and the input voltages. We can use the
I–V relationship in the saturation region (Eq. 3.3) for transistors M1 and M2:

I1 = I0e
κV1
UT

− V
UT (3.4)

I2 = I0e
κV2
UT

− V
UT (3.5)

The bias current is the sum of I1 and I2:

Ib = I1 + I2 = I0e
− V

UT

(
e

κV1
UT + e

κV2
UT

)

Solving for V we obtain:

e
− V

UT =
Ib

I0

1

e
κV1
UT + e

κV2
UT

Combining this equation with Eq. 3.4 and 3.5 yields

I1 = Ib
e

κV1
UT

e
κV1
UT + e

κV2
UT

= Ib
1

1 + e
κ

UT
(V2−V1)

I2 = Ib
e

κV2
UT

e
κV1
UT + e

κV2
UT

= Ib
1

1 + e
− κ

UT
(V2−V1)

3.2. Differential Pair and Transconductance Amplifier 27

Ib

V1 M1

Mb

M2 V2

Vb

I1 I2

V

Figure 3.4: Schematic diagram of the differential pair. The voltage bias Vb sets the total current
Ib (bias current) that can flow in the circuit. The bias current flows in one of the two branches
depending on the difference between the two input voltages V1 and V2. When one bias voltage is
greater than the other (and the difference between them is at least in the order of a few Ut/κ) the
current flows only in its branch.

Ib

V1 M1

Mb

M2 V2

Vb

I1 I2

M3 M4

Iout

Vout

(a)

V1

V2

Vb

Vout

−

+

(b)

Figure 3.5: (a) Schematic diagram of the transconductance amplifier. The transconductance am-
plifier is composed of a differential pair (see Fig. 3.4) and a current mirror (see Fig. 3.7). The
current mirror is used to subtract the two output currents of the differential pair. (b) Symbol of the
transconductance amplifier. The symbol provides a compact representation of the transconductance
amplifier to be used in complex circuits. The terminal for the bias voltage Vb is often omitted.

28 Chapter 3. Building Blocks

C1

V=V0

C2

A

(a)

C1

V

C2

A
+

− ∆V

(b)

Figure 3.6: Capacitive voltage divider. (a) Initially capacitors C1 and C2 are in parallel and a
voltage V0 is present on their common node. (b) When a voltage ∆V is applied on node A the
voltage on the common node is changed by ∆V C2

C1+C2 .

If V1 − V2 is greater than zero and of the order of a few UT /κ, then I1 ∼ Ib and I2 ∼ 0. If
V1 − V2 is smaller than zero and of the order of a few UT /κ, then I1 ∼ 0 and I2 ∼ Ib.

To implement the transconductance amplifier, a current mirror is used to subtract the
two output currents of the differential pair (see Fig. 3.5). As long as all the MOSFETs stay
in saturation and the bias current is in the subthreshold regime, the output current of the
transconductance amplifier is given by

Iout = I1 − I2 = Ib
e

κV1
UT − e

κV2
UT

e
κV1
UT + e

κV2
UT

= Ib tanh
κ(V1 − V2)

2UT

The transconductance amplifier is often used as a comparator in the open loop configuration.
The output voltage is high when V1 > V2, and it is low when V1 < V2 [81]. This property is
used in the implementation of the I&F neuron (see section 3.8) to compare the membrane
voltage with the threshold for spike emission.

3.3 Capacitive Voltage Divider

The capacitive voltage divider, composed of two capacitors, is used in the I&F neuron
circuit to implement a positive feed–back involved in the generation of the output pulse. In
this context, the relevant behavior is the response to an abrupt change in the voltage on one
node of one capacitor (see node A in Fig. 3.6). Initially (see Fig. 3.6(a)) the two capacitors
are connected in parallel and the voltage, V , on their common node is equal to V0. If Q is
the total charge stored on the two capacitors, we can write:

Q = V0(C1 + C2)

A sudden change in the voltage on node A produces a change in the voltage, V , on the com-
mon node. This change can be computed by applying the principle of charge conservation
to the charge stored into the two capacitors before and after the sudden change in voltage:

V0(C1 + C2) = V C1 + (V −∆V)C2

3.4. Current Mirror 29

M2M1

IoutIin

Vg

(a)

M1 M2

Iin

Vg

Iout

(b)

Figure 3.7: Current mirror. The current mirror is used to replicate currents. The replicated current
has the opposite sign of the original current, and can be an amplified or reduced version of it.
(a) Schematic diagram of the n–type current mirror. (b) Schematic diagram of the p–type current
mirror.

We can then write the following expression for the voltage:

V = V0 + ∆V
C2

C1 + C2
(3.6)

When a voltage, ∆V , is applied between the ground rail and capacitor C2 the voltage on
the common node is changed by ∆V C2

C1+C2
.

3.4 Current Mirror

The current mirror is a simple circuit used to replicate, amplify and reduce the amplitude of
currents. Several output currents can be generated from a single input current. The output
of the current mirror replicates the input current, multiplied by a factor that is function
of the transistors’ geometry. The schematic diagrams of an n–type and a p–type current
mirror are shown in Fig. 3.7. The MOSFET M1 is called master because the reference
current flows through it; the MOSFET M2 is called slave because it generates the replicated
current. The master transistor is a diode–connected MOSFET (Vgd = 0; the transistor is
operated in saturation). The input current univocally determines the gate voltage of the
master transistor. If the slave transistor is geometrically identical to the master transistor,
and as long as the slave is operated in saturation, the output current is equal to the input
current. In the most general case, the parameters related to the technology are identical for
the two transistors but their geometry is different. For subthreshold input currents we can
write

Iin =
µε

tox

W1

L1

eκVg/UT

Iout =
µε

tox

W2

L2

eκVg/UT

30 Chapter 3. Building Blocks

Vτ

C

ID

IC

Iout

Vin

Iin

(a)

Vτ

Vin

C

Iin

ID

IC

Iout

(b)

Figure 3.8: Current Mirror Integrator (CMI). The CMI, composed of two transistors in the current
mirror configuration (see Fig. 3.7) and one capacitor, implements a non–linear integration of its
input current. (a) Schematic diagram of the n–type CMI. (b) Schematic diagram of the p–type CMI.

where µ is the electrons or holes mobility, ε is the permittivity and tox is the thickness of
the oxide. The output current is then given by

Iout =
W2

W1

L1

L2

Iin

3.5 Current Mirror Integrator

The Current Mirror Integrator (CMI) is a non–linear integrator often used to implement
silicon synapses for spiking neural networks [20, 53, 62, 100]. This circuit is composed
of two transistors and one capacitor (see Fig. 3.8). Assuming that all transistors are in the
subthreshold saturation region, we have:

n–type CMI p–type CMI

Iout(t)
ID(t)

= e
Vτ
UT = A Iout(t)

ID(t)
= e

Vτ−Vdd
UT = A

IC(t) = C dVin(t)
dt

= IC(t) = C d
dt

(Vdd − Vin(t)) =

= Iin(t)− ID(t) = Iin(t)− ID(t)

Vin(t) = UT

κ
ln Iout(t)

In0
Vdd − Vin(t) = UT

κ
ln Iout(t)

Ip0

where κ is the subthreshold slope factor and UT is the thermal voltage. Combining the

3.5. Current Mirror Integrator 31

three equations above, we obtain the dynamics of the output current (Iout) for the CMI
circuit (valid for n and p–type circuits):

dIout(t)

dt
=

κ

CUT

Iout(t)

(
Iin(t)− Iout(t)

A

)
(3.7)

Solving this first order differential equation separately for Iin(t) = Iin0 and Iin(t) = 0, we
can obtain the response to a current pulse:

Iin(t) = Iin0u̇ (t− t0)

where u(t) is a step function and t0 represents the onset of the step.
For Iin(t) = Iin0, the output current can be expressed as follows:

Iout(t) =





Iin

2
tanh

(
κIin

CUT
t− 1

2
ln

(
Iin−Iout(0)

Iout(0)

))
+ Iin

2
forIin > Iout(0)

Iin

2
coth

(
κIin

CUT
t− 1

2
ln

(
Iout(0)−Iin

Iout(0)

))
+ Iin

2
forIin < Iout(0)

When Iin(t) = 0, the output current is given by

Iout(t) =
Iout(0)

κ
CUT

Iout(0)t + 1

The output current increases proportional to a hyperbolic tangent when the step is ap-
plied, and decreases proportional to 1/t after it is removed.

3.5.1 Response to Spike Trains: Approximate Solution

We are interested in the response of the CMI to a spike train, which is the typical input for
a synapse. In his PhD thesis, Boahen [14] proposed the following approximate analytical
solution for the response of a CMI to a spike train. Rewriting Eq. 3.7 as follows we can
obtain an approximate solution for the output current Iout(t):

QT

Iin(t)

d(1/Iout(t))

dt
=

1

AIin(t)
− 1

Iout(t)

where QT = CUT /κ. In the most general case, we can write the solution of this first order
differential equation in the form of the integral equation:

Iout(t) =
Iout(t0)

Iout(t0)
AQT

∫ t

t0

e
− 1

QT

R u
t Iin(s)ds

du + e
− 1

QT

R t
t0

Iin(u)du

where t0 is the onset time of the first input pulse. For a sequence of instantaneous current
pulses at the input, the general solution reduces to

Iout(t) =
Iout(t0)

Iout(t0)
AQT

(
n∑

j=1

e
− 1

QT

Pn
i=j qi (tj − tj−1) + (t− tn)

)
+ e

− 1
QT

Pn
i=1 qi

32 Chapter 3. Building Blocks

for tn ≤ t < tn+1, where ti = t0, t1, t2, ... (with t0 < t1 < t2 < ...) are the times at
which the pulses occur and {qi} are the amounts of charge that each spike supplies. When
the dynamics reach the steady–state each input spike adds the same amount of charge qα

on the capacitance. The current flowing through the output transistor (in saturation) is
Iout = In0 exp (κVin/UT). If a charge qα is stored into the capacitor, there is a change in
the input voltage given by ∆Vin = qα/C. The output current is then given by

I ′out = In0e
κ

Vin+∆Vin
UT = Ioute

κ qα
CUT = Ioute

qα
QT .

We define 1 + α ≡ exp (qα/QT) as the factor by which the output current is multiplied by
each input spike. In this case we obtain:

Iout(t) =
Iout(t0)

Iout(t0)
AQT

(
n∑

j=1

(1 + α)j−(n+1) (tj − tj−1) + (t− tn)

)
+ (1 + α)−n

We can break this equation into two parts:

Iout(t) =
Iout(t

+
n)

Iout(t
+
n)

AQT
(t− tn) + 1

, tn ≤ t < tn+1 (3.8)

Iout(t
+
n) =

Iout(t0)

Iout(t0)
AQT

n∑
j=1

(1 + α)j−(n+1)(tj − tj−1) + (1 + α)−n

(3.9)

Where t+n is the instant immediately after the time of the input spike (tn). If the inter–spike
intervals are all the same (T ≡ tj − tj−1, j = 1, 2, ...) we can sum the geometric series in
the denominator of Eq. 3.9 and obtain

Iout(t) =
Iout(t

+
0 + nT)

Iout(t
+
0 +nT)

AQT
(t− (t+0 + nT)) + 1

, t+0 + nT ≤ t < t+0 + (n + 1)T

Iout(t
+
0 + nT) =

1

1

ÎT
+

(
1

Iout(t0)
− 1

ÎT

)
(1 + α)−n

, n = 1, 2, ...

ÎT ≡ α
AQT

T

In the steady–state we can consider (1 + α)−n ¿ 1, and the current immediately after
each spike converges to ÎT . The time taken to reach this equilibrium depends only on the
number of spikes, and scales proportionally to the frequency of the input train. This analysis
demonstrates how the circuit integrates regular trains of spikes and reaches a steady state
which is function of the input (α and T), the circuit geometry (QT) and its biasing (A).
When the stimulation finishes, the output current decays approximately as 1/t (see Eq. 3.9).

This approximate solution assumes that the input pulses are instantaneous, and does not
take into account the dependence of α on the circuit and input signal parameters.

3.5. Current Mirror Integrator 33

3.5.2 Response to Spike Trains: General Analytical Solution

Another strategy to obtain an exact and more general expression of the CMI’s response is to
study the dynamics of the input voltage, Vin, in response to the applied pulses. The output
current can be derived from Vin using the equation for the transistor subthreshold saturation
region (Iout = In0 exp (κVin/UT)). Furthermore, to compute a steady state solution, we
examine the case in which the spike duration (∆t) and the interval between spikes (T) are
constant. The dynamics of Vin is described by the following equation:

C
dVin(t)

dt
= Iin(t)− In0

A
e

κVin(t)

UT (3.10)

where




Iin(t) = Iin for ti < t < ti + ∆t

Iin(t) = 0 for ti + ∆t < t < ti + ∆t + T = ti+1

and ti ≡ t0 < t1 < t2... are the times at which the pulses occur. Solving Eq. 3.10 separately
for the two conditions mentioned above, we obtain:





Vin(t) = −UT

κ
ln

[
e
− Iin

QT
(t−ti)

(
e
−κVin(ti)

UT − In0

AIin

)
+ In0

AIin

]

Vin(t) = −UT

κ
ln

[
In0

AQT
(t− ti −∆t) + e

−κVin(ti+∆t)

UT

] (3.11)

where QT = CUT /κ, and the two equations are valid for ti < t < ti + ∆t and ti + ∆t <

t < ti+1 respectively. Using these equations it is possible to show that

T < QT

(
A

In0

− 1

Iin

)(
1− e

− Iin
QT

∆t

)

is the necessary condition to accumulate charge on the capacitor. The output current is
simply derived from Eq. 3.11, as mentioned above:





Iout(t) = 1

e
− Iin

QT
(t−ti)

“
1

Iout(ti)
− 1

AIin

”
+ 1

AIin

; ti < t ≤ ti + ∆t

Iout(t) = 1
1

AQT
(t−ti−∆t)+ 1

Iout(ti+∆t)

; ti + ∆t < t ≤ ti+1

34 Chapter 3. Building Blocks

Steady State

At the steady state, Vin(ti) = Vin(ti+1), Vin(ti + ∆t) = Vin(ti+1 + ∆t) ∀i and the input
voltage, Vin, oscillates between the two values





Vin(ti) = UT

κ
ln


 1−e

− Iin
QT

∆t

In0
AQT

T+
In0

AIin

1−e

− Iin
QT

∆t

!




Vin(ti + ∆t) = −UT

κ
ln


 In0T

AQT

e

Iin
QT

∆t−1

! + In0

AIin




The output current then oscillates between the two values




Iout(ti) = A
T

QT

0
B@1−e

− Iin
QT

∆t

1
CA

+ 1
Iin

Iout(ti + ∆t) = A
T

QT

0
B@e

Iin
QT

∆t
−1

1
CA

+ 1
Iin

The steady–state current increases with decreasing interval T between two consecutive
spikes of the input train, increasing A, increasing amplitude of the input current Iin and
increasing pulse width ∆t (as already shown in the approximate solution).

3.6 Excitatory and Inhibitory Synapses

Excitatory and inhibitory synapses can be easily implemented using p–type and n–type CMI
(see section 3.5) respectively. To be able to stimulate these synapses using the AER proto-
col, we need a few more transistors. A circuit diagram of a complete excitatory synapse,
including AER interfacing circuits, is shown in Fig. 3.9. Since we are interested in im-
plementing two–dimensional arrays of silicon synapses, the circuit can be selected by a
row and a column signal (VQy and VQx). Transistors M1 and M2 in Fig. 3.9 act as digital
switches, and the current set by the bias voltage, Vw, on transistor M3 flows only when both
the row and column signals, VQy and VQx, are high. Transistors M4 and M5 and the capac-
itor C implement the current mirror integrator, as described in section 3.5. Transistor M6

is a cascode transistor controlled by the bias voltage Vcasp, used to isolate the output of the
synapse from the voltage changes occurring at the membrane voltage of the post–synaptic
neuron.

3.7 The Adaptive Synapse

Silicon synapses are circuits, typically used in VLSI networks of I&F neurons [14, 28,
41, 66], that implement models of biological synapses. Recent developments in the neu-
roscience community show that biological synapses are not simple interfacing elements

3.7. The Adaptive Synapse 35

M3

C

Vτ

M2

M1

M6

M5M4

VQx

VQy

Vw
Iout

Vcas

Figure 3.9: Schematic diagram of the excitatory synapse. Transistors M4 and M5, and capacitor C,
implement a p–type CMI (see Fig. 3.8). The input current of the CMI is set by the bias voltage Vw,
and can flow only when the synaptic circuit is stimulated (both VQx and VQy are high). Transistors
to prevent pump charge effect by transistor M1 and M2 (see Fig. 3.10) are omitted in the drawing,
but included in the implemented circuit.

M3

Vτf

M2

M1

M6

M5M4

VQx

VQy

Vwf

If

Vcasp

Vpu

M7
M8

M9
M10

Vpix_ack

Vwd

M13

M14

M11

M12

Vτd

Vcasn

Iout

Cf

Cd

Id

Figure 3.10: Schematic diagram of the adaptive synapse. Transistors M4–M5, and capacitor Cf

implement the facilitating CMI of the synaptic circuit. Transistors M12 and M14, and capacitor
Cd, implement the depressing block. Transistors M7–M8 prevent pump charge effects [20] by
transistors M1 and M2. When the synapse is stimulated (both VQx and VQy are high), the facilitat-
ing CMI integrates the current set by the bias voltage Vwf , and the depressing CMI integrates the
current set by the bias voltage Vwd.

36 Chapter 3. Building Blocks

for transmitting signals between neurons, but play an important computational role in bi-
ological neural networks [83]. One of the peculiar properties of biological synapses is
their ability to exhibit short-term plasticity: the dynamic modulation of synaptic strength
by the timing of the input stimulation [123]. Although there has been significant progress
in understanding the mechanisms underlying short-term synaptic plasticity, its functional
relevance in neural circuits remains relatively obscure. Several hypotheses have been pro-
posed for the computational role of short-term synaptic plasticity [122], including local
gain control [2], stimulus specific adaptation [25], and nonlinear temporal summation [26].
Practical constraints on computational resources restrict the testing of these hypotheses to
relatively small simulated networks, simple input signals, or long simulation times. Silicon
implementations of synapses that exhibit short–term plasticity are suitable for evaluating
the computational roles of synaptic adaptation in large networks of spiking neurons, using
complex stimuli and in real-time [100]. I propose an analog circuit for implementing such
a type of synapse. The core of the adaptive synaptic circuit consists of two CMIs [14, 61]
(see section 3.5), which integrate the input spikes and produce a positive (facilitating) and a
negative (depressing) current with different dynamics. Each time an input spike arrives, the
facilitating CMI adds a set amount of charge onto its integrating capacitor, modifying the
facilitating current accordingly. At the same time, a different amount of charge is summed
onto the capacitor of the depressing CMI, modifying the depressing current. The positive
facilitating and negative depressing current are then summed to generate the net output
current.

The proposed AER synaptic circuit is shown in Fig. 3.10. The facilitating CMI is imple-
mented by transistors M4–M5 and by capacitor Cf . The depressing CMI is implemented
by M12 and M14 and by Cd. Both CMIs are connected to circuit blocks that implement
the AER interface (transistors M1–M2 and M9-M10, all acting as digital switches).

The AER part of the synaptic circuit operates as follows: upon the arrival of a request
signal, the row and column encoders set the voltages VQy and VQx of the synapse identified
by the row and column addresses high (see Fig. 3.13). Transistor M9 then generates the
AER acknowledge signal transmitted back to the sender device. When the synapse is ad-
dressed, transistors M1–M2 and M10 are active and the currents set by the bias voltages
V wf and V wd flow through transistors M3 and M11 respectively. The capacitors Cf and
Cd integrate these currents, changing the voltages across them. The bias voltages V τf and
V τd are used to change the temporal dynamics of the facilitating and the depressing parts
of the synapse. The facilitating current, If , has an exponential dependence on the voltage
across capacitor Cf and on the voltage V τf ; similarly, the depressing current, Id, changes
exponentially with the voltage across capacitor Cd and with V τd. The synaptic output cur-
rent, Iout, is the sum of the output currents of the two CMIs (when they are not limited by
the cascode transistors M6 and M13). To derive the dynamics of Iout in response to a train
of spikes, we need to evaluate the response of the two CMIs.

If we consider an input train of spikes with fixed duration (∆t) for which ti =

t0, t1, t2, ... (with t0 < t1 < t2 < ...) are the times at which the pulses occur, the volt-

3.7. The Adaptive Synapse 37

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

V
ol

ta
ge

 (
V

)

V(C
f
) (V)

V(C
d
) (V)

Figure 3.11: Voltages across the facilitating capacitor Cf and the depressing capacitor Cd in re-
sponse to a 50 Hz spike train (analytical derivation). The facilitating CMI is set to reach the steady–
state after the first input spike. The depressing CMI is set to reach the steady–state after several
input spikes (5 in this example). The different time constants of the two CMIs produce the total
output current shown in Fig. 3.12.

0 0.05 0.1 0.15 0.2 0.25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

Io
ut

 (
µ

A
)

Figure 3.12: Output current of the adaptive synapse in response to a 50 Hz spike train (plot of the
analytical expression of the current) produced by the dynamics of the facilitating and depressing
CMIs shown in Fig. 3.11. The output current is mainly due to the facilitating CMI for the first
few spikes. The depressing current slowly increase until it has an effect on the output current and
produces an adaptive total response.

38 Chapter 3. Building Blocks

age across the capacitor Cf is given by (see section 3.5)

V (Cf)(t) = −UT

κ
ln

[
e
− Iwf

QT
(t−ti)

(
e
−κV (Cf)(ti)

UT − I0

AIin

)
+

I0

AIwf

]
(3.12)

V (Cf)(t) = −UT

κ
ln

[
I0

AQT

(t− ti −∆t) + e
−κV (Cf)(ti+∆t)

UT

]
(3.13)

where QT = CUT /κ and Iwf is the current set by the bias voltage V wf . Equation 3.12
holds during the spike (ti < t ≤ ti +∆t), and Eq. 3.13 holds between two spikes (ti +∆t <

t ≤ ti+1). If the interval between spikes is constant and equal to T, a steady state is reached
and the voltage oscillates between two values. Analogous equations can be written for the
voltage across the capacitor Cd. Figure 3.11 shows these voltages in response to a 50 Hz

spike train for typical values of the parameters in Eqns. 3.12 and 3.13. The depressing part
of the circuit is set to be slower than the facilitating one, to produce a negative current that
slowly “depresses” the output of the synaptic circuit, implementing a synapse that exhibits
short–term depression. Between spikes the voltage across the depressing capacitor, Cd, can
be bigger than the voltage across the facilitating capacitor, Cf , leading to a negative output
current. To prevent this, I added a transistor acting as a digital switch to block the negative
current when the input spike is not active. The equations for the facilitating and depressing
current can be derived using the expression for the voltages across the capacitors Cf and Cd

respectively and the drain–source current for the transistor subthreshold saturation region
(Ids = I0 exp (κVgs/UT)). The resulting output current, Iout = If−Id, is plotted in Fig. 3.12
(the depressing part of the current Id was set to zero whenever the input spike is not active).

3.7.1 Experimental Results

To characterize the response properties of the synaptic circuit, I fabricated a prototype
chip using a standard 1.5µm CMOS technology. The chip (see Fig. 3.13) implements an
AER transceiver neural network, and comprises several instances of the circuit shown in
Fig. 3.10, leaky integrate–and–fire neurons of the type described in [62] (see section 3.8)
and AER interfacing circuits.

The response of the synaptic circuit was tested by stimulating it with periodic trains of
pulses at different frequencies, and by measuring the change in the voltage across the input
capacitor of the leaky integrate–and–fire neuron connected to it. In biology this change
is commonly referred to as an excitatory post synaptic potential (EPSP). The EPSP was
measured using the Cursor function of a Tektronix oscilloscope model TDS 420A. This
function allows two cursors to be placed on the acquired trace, and to measure the distance
between them. Placing the cursors at the lower and upper end of the EPSP gives us a
measure of the EPSP amplitude in voltage. The measurement error associated with each
cursor is half of the minimum step of the cursor itself, which depend on the selected voltage
scale. The total measurement error is then given by the amplitude of the minimum step
allowed to the cursor.

The four voltages V wf , V τf , V wd and V τd (see Fig. 3.10) are used to shape the EPSP

3.7. The Adaptive Synapse 39

SOMA

SOMA

SOMA

Column encoder

R
o
w

e
n
c
o
d
e
r

T
o

A
E
R

o
u
t
p
u
t

c
i
r
c
u
i
t
s

Column address

R
o
w

a
d
d
r
e
s
s

AER input
request signal

S S S S S S S S

S S S S S S S S

S S S S S S S S

Figure 3.13: Schematic diagram of the chip architecture. Every square marked with an S represents
a silicon synapse. When an AER request signal arrives, the column and row encoders generate an
input pulse on the addressed synapse (filled square). The output spikes are sent to the on–chip AER
output circuits which generate address–event signals.

dynamics. Specifically, they were set in a way to make the facilitating current reach its
steady state before the depressing one. In this way the circuit’s overall behavior models a
depressing synapse.

I measured the steady state amplitude of the EPSP in response to input trains of spikes
with frequencies ranging from 5 to 100Hz (see Fig. 3.14 and 3.15). Before measuring the
plotted data, I measured the steady state amplitude 10 times in the same conditions and
verified that the fluctuations of the EPSP are negligible compared to the measurement error.
The error bars in Fig. 3.14 and 3.15 represent the measurement error of the oscilloscope, and
each data point corresponds to a single measurement. I observed a decreasing steady state
EPSP amplitude for increasing frequency, as reported for biological synapses [2]. Figure
3.14 and 3.15 show how this function can be modified by changing, for example, the bias
voltage V wf of the facilitating CMI weight and the bias voltage V wd of the depressing
CMI weight, respectively. Differences in how these two parameters affect the steady state
EPSP at high and low frequencies derive from the different regimes in which the two CMIs
are operated (see Fig. 3.11).

The contribution of each input spike to the dynamic modulation of the synaptic strength
is shown in Fig. 3.16, where the response to a 20Hz train of spikes is plotted for six dif-

40 Chapter 3. Building Blocks

0 20 40 60 80 100
0

100

200

300

400

500

Frequency (Hz)

S
te

ad
y

S
ta

te
 E

P
S

P
 (

m
V

)

Vw
f
=1.050 V

Vw
f
=1.000 V

Vw
f
=0.950 V

Figure 3.14: Steady state amplitude of the EPSP as a function of presynaptic frequency for three
different values of V wf (see upper right inset in graph). The data (measured with V τf = 4.91 V ,
V wd = 4.19 V , and V τd = 0.15 V) show that in this particular configuration of the synaptic circuit,
the weight of the facilitating CMI strongly affects the steady EPSP only at low frequencies.

0 20 40 60 80 100
0

200

400

600

800

1000

Frequency (Hz)

S
te

ad
y

S
ta

te
 E

P
S

P
 (

m
V

)

Vw
d
=4.23 V

Vw
d
=4.21 V

Vw
d
=4.19 V

Vw
d
=4.17 V

Vw
d
=4.15 V

Vw
d
=4.13 V

Figure 3.15: Steady state amplitude of the EPSP as a function of presynaptic frequency for six
different values of V wd (see upper right inset in graph). The data (measured with V τf = 4.89 V ,
V wf = 1.793 V , and V τd = 0.1 V) show that changes in the weight of the depressing CMI have
an effect on the steady EPSP which is stronger for high frequencies than for low frequencies.

3.8. The Integrate–and–Fire Silicon Neuron 41

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

Spike #

E
P

S
P

 A
m

pl
itu

de
 (

m
V

)
Vw

d
=4.23 V

Vw
d
=4.21 V

Vw
d
=4.19 V

Vw
d
=4.17 V

Vw
d
=4.15 V

Vw
d
=4.13 V

Figure 3.16: Normalized EPSP amplitude in response to the first ten pulses of a 20Hz train of
spikes for three different values of V wd (see lower left inset in graph). The data were measured
with all other parameters set to the same values as reported in Fig. 3.15.

ferent values of the depressing weight (V wd = 4.13 V , 4.15 V , 4.17 V , 4.19 V , 4.21 V

and 4.23 V). The measurement was repeated 5 times for each value of the depressing
weight. Each data point is the mean over the five measurements; the error bar represents
the maximum maximum of the measurement error and the standard deviation of the mea-
sured values. Both the EPSP measured at the steady state and the rate at which the steady
state is reached are sensitive to this parameter.

3.8 The Integrate–and–Fire Silicon Neuron

The implementation of the single neuronal cell can be done at different level of complex-
ity. The analog circuit can model the dynamics of ionic currents [99], implementing the
Hodgkin–Huxley model [58] to produce a detailed simulation of the integration of inputs
and the spike generation. This type of circuit usually requires a large number of transistors
and bias parameters, and hence is not suitable to build large arrays of neurons. On the other
extreme, it is possible to model the neuron as a Linear Threshold Unit (LTU): the output
of the cell is zero for low inputs and it is a linear function of the input for inputs higher
than a fixed threshold. The output of the cell can be seen as a mean firing rate. This is
a very simple model, which can be implemented with a few transistors and needs a small
number of bias parameters [55]. The main disadvantage of the LTU is that temporally cor-
related activity cannot be simulated to explore temporal dynamics of neuronal interaction.
In between this two extremes we have the Integrate–and–Fire (I&F) neuron. It is a spiking
model, but does not try to mimic the mechanisms for the generation of spikes of biological
cells.

42 Chapter 3. Building Blocks

−+

I i
n

V
rf

r

V
th

r

V
p
w

C
r

V
p
b

C
fb

V
le

ak

C
m

V
o
u
t

V
so

m
a

/V
o
u
t

(a
)

τ
ad

ap

I a
d

ap

V
so

m
a

C
ad

ap

/V
o

u
t

V
ad

ap

(b
)

Fi
gu

re
3.

17
:

Sc
he

m
at

ic
di

ag
ra

m
of

th
e

in
te

gr
at

e–
an

d–
fir

e
ne

ur
on

.
(a

)
W

he
n

V
o
u
t

=
0

(n
o

ou
tp

ut
sp

ik
e)

,t
he

in
pu

tc
ur

re
nt

I i
n

is
lin

ea
rl

y
in

te
gr

at
ed

by
th

e
so

m
a

ca
pa

ci
ta

nc
e

C
=

C
m

+
C

f
b
.

A
s

V
m

em
cr

os
se

s
fr

om
be

lo
w

th
e

th
re

sh
ol

d
vo

lta
ge

,V
th

r
,t

he
ou

tp
ut

vo
lta

ge
is

dr
iv

en
to

V
d
d
,a

nd
an

ou
tp

ut
sp

ik
e

is
em

itt
ed

.
T

he
ou

tp
ut

vo
lta

ge
is

th
en

dr
iv

en
to

gr
ou

nd
,a

nd
th

e
tim

e
ne

ed
ed

to
re

se
ti

ti
s

co
nt

ro
lle

d
by

th
e

bi
as

vo
lta

ge
s

V
p
w

(w
hi

ch
se

ts
th

e
du

ra
tio

n
of

th
e

ou
tp

ut
sp

ik
e)

an
d

V
r
f
r

(w
hi

ch
se

ts
th

e
du

ra
tio

n
of

th
e

re
fr

ac
to

ry
pe

ri
od

).
T

he
bi

as
vo

lta
ge

V
le

a
k

is
us

ed
to

co
nt

ro
lt

he
le

ak
cu

rr
en

t,
w

hi
ch

is
ac

tiv
e

on
ly

in
ab

se
nc

e
of

sp
ik

es
(t

he
sp

ik
e

du
ra

tio
n

do
es

no
td

ep
en

d
on

th
e

le
ak

cu
rr

en
t)

.
(b

)
Sp

ik
e

fr
eq

ue
nc

y
ad

ap
ta

tio
n

is
im

pl
em

en
te

d
by

a
C

M
I

w
hi

ch
in

te
gr

at
es

th
e

ou
tp

ut
sp

ik
es

an
d

ge
ne

ra
te

s
a

ne
ga

tiv
e

cu
rr

en
tI

a
d
a
p

to
re

du
ce

th
e

sp
ik

in
g

fr
eq

ue
nc

y.

3.8. The Integrate–and–Fire Silicon Neuron 43

Networks of I&F neurons have been shown to exhibit a wide range of useful com-
putational properties, including feature binding, segmentation, pattern recognition, onset
detection, input prediction, etc. [82]. These types of networks are very well suited for VLSI
implementation [47]. Recent and growing interest in pulse–based neural networks (for
which detailed simulations are CPU–intensive), together with the emergence of a standard
that allows VLSI neurons to communicate using asynchronous pulse–frequency modulated
events (see chapter 2), have led to the development of a large number of VLSI implemen-
tations of networks of I&F neurons [28, 65, 66, 79, 85, 91].

The neuron circuit I use is an I&F leaky neuron based on circuits proposed by Mead
[88] and by van Shaik et al. [117]. The neuron linearly integrates the total afferent current,
and when a threshold is crossed it emits a spike and the integrated voltage (or membrane
voltage) is reset to its initial value. The subthreshold dynamics can be described by the
equation governing the voltage across a capacitor (which represents the membrane voltage
of the cell):

Vmem(t) = Vmem(t0)− 1

C
Ileak(t)t +

1

C

∫ t

t0

I(t′)dt′ (3.14)

where I(t) is the sum of all excitatory and inhibitory input currents, Ileak is the leak current
and C is the soma capacitance. As Vsoma crosses the threshold, θ, a spike is emitted and
the membrane potential is reset to Vreset. Equation 3.14 must be complemented by the
condition that Vsoma cannot go below a minimal value Vrest, which represents the resting
potential of the neuron.

A schematic diagram of the circuit implementing the neuronal dynamics is shown in
Fig. 3.17. The total dendritic input current, I(t) = Iexc − Iinh, is injected into the soma
capacitance, C = Cm + Cfb (as shown in Fig. 3.17(a)). The leak current, Ileak, is set
by the bias voltage Vleak, and is turned off during the emission of a spike such that the
duration of the spike does not depend on the leak current. As Vmem crosses from below the
threshold voltage, Vthr, the output of the comparator switches from ground to the positive
power supply rail, Vdd (spike activation). A positive feed–back loop, implemented by the
capacitive divider Cm-Cfb, increases Vmem by V dd

Cfb

Cm+Cfb
(see section 3.3). The positive

feed–back guarantees that small fluctuation of Vmem around Vthr are not possible. When
Vout is high, the current set by the bias voltage Vpw can flow and discharge the capacitor
Cm causing the membrane voltage Vmem to decay linearly. As Vmem crosses again (this
time from above) the threshold voltage, the output of the comparator goes back to the
ground level. As a consequence, the first inverter sets its output high and switches on the
n–type transistor of the second inverter, allowing the capacitor Cr to be discharged at a rate
controlled by Vrfr. This bias voltage controls the length of the neuron’s refractory period:
the current flowing into the node Vmem is discharged to ground, and the membrane voltage
does not increase for as long as the voltage on Cr (Vout) is high enough. Figure 3.17(b)
shows the CMI (see section 3.5) implementing spike–frequency adaptation. In [61] Hynna
and Boahen demonstrated how to implement spike–frequency adaptation by connecting a
CMI in negative–feedback mode to any I&F circuit. A negative current Iadap is generated
by the CMI as the adaptation capacitor, Cadap, integrate the current set by Vadap in response

44 Chapter 3. Building Blocks

to output spikes generated by the I&F neuron.

3.9 Discussion

In this chapter I described the main elementary circuits widely used in neuromorphic en-
gineering, and which I use to implement the VLSI spiking neural network described in
Chap. 5. Although the silicon neuron circuit I described has been used for quite some time
by the neuromorphic community, the adaptive synaptic circuit I proposed is an original con-
tribution. To analytically characterize the synaptic circuit used in the network, I proposed
a mathematical description of the CMI dynamics in response to input spikes, extending the
analysis presented in [61]. I used the equations describing the CMI dynamics to simulate
the synaptic response in the neural network software simulation described in section 4.4,
predicting the behavior of the VLSI neural network described in section 5.1 as accurately
as possible.

The measurements performed on the synaptic circuit by varying the input frequency
and the bias voltages are consistent with the mathematical analysis, confirming that second
order effects can be safely neglected when simulating the circuit behavior in software. The
mathematical formulation presented here can be useful to aid the design of novel circuits
comprising instances of CMIs.

Chapter 4

Cooperative–Competitive Neural Networks

A competitive network typically consists of a group of interacting neurons which compete
with each other in response to an input stimulus. The neurons with highest response sup-
press all other neurons to win the competition. Competition is achieved through a recurrent
pattern of connectivity involving both excitatory and inhibitory connections. Cooperation
between neurons with similar response properties (e.g. close receptive field or stimulus
preference) is mediated by excitatory connections. Competition and cooperation make the
output of an individual neuron depend on the activity of all neurons in the network and
not just on its own input. As a result, cooperative–competitive networks performs not only
common linear operations but also complex non-linear operations. The linear operations
include analog gain (linear amplification of the feed–forward input, mediated by the re-
current excitation and/or common mode input), and locus invariance [56]. The non–linear
operations include non–linear selection or soft winner–take–all (WTA) behavior [6, 35, 55],
signal restoration [35, 42], and multi–stability [6, 55]. For linear networks, the response to
two superimposed inputs applied to two different locations is given by the sum of the re-
sponses to each input. For cooperative–competitive network, non–linear selection occurs
and the output is an amplified version of the response to the strongest input alone. Signal
restoration is performed when a noisy input is applied: a pattern is stored in the connectiv-
ity of the network and only the part of the signal correlated with this pattern is amplified,
random noise is therefore suppressed through competition. Cooperative–competitive net-
works also exhibits multi–stability: when two stimuli have roughly the same amplitude the
network can select either one stimulus or the other, depending on the initial conditions.

The computational abilities of these types of networks are especially useful for feature–
extraction and pattern classification problems [11, 12, 110]. Localized competitive interac-
tions have been used to detect elementary image features (e.g. orientation) [11, 110]. In
these networks, each neuron represents one feature (e.g. vertical or horizontal orientation);
when a stimulus is presented the neurons cooperate and compete to enhance the response
to the features they are tuned to and to suppress background noise. When cooperative–
competitive networks are used for solving classification tasks, common features of the in-
put space can be learned in an unsupervised manner. For example, Bennett [12] showed
that competition supports unsupervised learning because it enhances the firing rate of the
most excited neurons (i.e. the ones receiving the strongest input) which, in turn, triggers

45

46 Chapter 4. Cooperative–Competitive Networks

learning.
Recurrent cooperative–competitive networks are believed to play a central role in corti-

cal processing. A majority of synapses in the mammalian cortex originate within the cortex
itself [13, 43]. Neurons with similar functional properties are aggregated together in mod-
ules or columns and most connections are made locally within the neighborhood of a 1 mm
column [71]. Cooperative–competitive network models try to emulate the cortical pattern of
connectivity and to study its role in processing sensory inputs and in generating behavioral
outputs.

Cooperative and competitive computation in neural networks was first studied system-
atically in the context of decision making [6]. In 1977, following the proposal of a series
of neural models that included cooperative and competitive computation, Amari and Arbib
developed a unifying mathematical framework to study these models. In particular, they
were inspired by three specific models: the model of the role of the vertebrates’ reticular
formation of the brainstem in deciding the overall mode of behavior of the organism (e.g.
sleeping, fighting, fleeing or feeding) proposed in [72], the model of how the frog’s tectum
decides the snapping position for catching a fly [40], and the model of the use of stereop-
sis to recognize depth in space [38]. In their study Amari and Arbib use the concept of
dynamic neural fields [5]. The cooperative–competitive neural network is described as a
continuous medium rather than a set of discrete neurons. A differential equation describes
the activation of the neural tissue at different positions in the continuous network.

After this seminal study the research on recurrent neural networks was further stim-
ulated by experimental and theoretical considerations providing additional evidences sug-
gesting that local cortical circuits may play an important role in shaping neuronal responses
in cortex [44, 110].

In 1994, Douglas et al. [42] used a different approach for analyzing cortical circuits
and proposed the cortical amplifier model: a population of identical neurons, connected to
each other with the same excitatory synaptic strength, sharing a common inhibitory feed-
back and the same input. The cortical amplifier can be represented by an equivalent circuit
with a single input conductance, an excitatory conductance representing the positive feed-
back and an inhibitory conductance representing the negative feedback. By showing that
the cortical amplifier exhibits a closed loop current gain greater than one while still guaran-
teeing stability the authors argue that cortical circuits are able to restore analog signals on
the basis of the data stored in their connectivity and to produce selective neuronal responses
while maintaining electrical stability in the cortex. They also discuss the performance of a
recurrent network of cortical amplifiers implementing orientation tuning in the presence of
noisy input signals and noisy connections. The model network performs signal restoration
by amplifying the correlated signal in a pattern that was stored in the connectivity of the
network and without amplifying the noise [42].

In 1998, Hansel and Sompolinsky presented a detailed model for cortical feature selec-
tivity [56]. They provide analytical methods for studying simplified network models and
show how these models can account for some of the emergent cooperative cortical prop-
erties that are either stationary or evolve on relatively slow time scales. They focused on

4.1. Analytical Methods Applied to Cooperative–Competitive Networks 47

the rate model of one–dimensional networks that code the value of a single feature variable
of the applied stimulus, studied the conditions for the emergence of simple spatial patterns
consisting of a single domain of activity, and analyzed how strongly this patterns are af-
fected by the intrinsic circuit parameters and by the properties of the input stimulus. They
also used numerical simulations to study the properties of a network with the same architec-
ture as that of the rate model but with spiking neurons with conductance–based dynamics.
The qualitative similarity between rate and spiking models is evident from the numerical
simulation results.

In section 4.1, I describe the analytical methods that have been used to study
cooperative–competitive networks, in which neurons are modeled using linear or sigmoidal
activation functions (rate model) and information is encoded in the mean firing rates of
neurons (computed accordingly with the activation function). In section 4.2, I discuss the
motivations for implementing spiking versions of these models. In sections 4.3 and 4.4, I in-
troduce the specific architecture I focused on and present results from a software simulation
of this network, respectively.

4.1 Analytical Methods Applied to Cooperative–Competitive
Networks

Theoretical analysis of patterns of activity in cooperative–competitive networks of neurons
has been pioneered by Amari and Arbib [6]. They noticed the analogies among three spe-
cific models of different biological systems and attempted to set them in a common unifying
framework of competition and cooperation. The three models under investigation were: the
model of the role of the vertebrates’ reticular formation of the brainstem in deciding the
overall mode of behavior proposed by Kilmer et al. [72]; the model of how the frog’s tec-
tum decides the snapping position proposed by Didday [40]; and the model of the use of
stereopsis to recognize depth in space proposed by Dev [38].

The model proposed in 1969 by Kilmer, McCulloch, and Blum [72] was one of the first
models of decision making in neural circuitry to explicitly use cooperative–computation (as
opposed to executive control). Kilmer et al. suggested that the function of the vertebrates’
reticular formation of the brainstem is to determine the overall mode of behavior of the
organism (e. g. sleeping, fighting, fleeing or feeding). Their model, inspired by anatomical
data, comprises several modules, each receiving a sample of the overall system input. The
modules assign weights to the different modes of behavior on the basis of their input. The
modules are coupled: each module readjusts its weights in relation to the activity of other
modules to which it is connected. Kilmer et al. suggested a connection scheme which would
eventually lead to consensus, with a majority of the modules assigning the greatest weight
to a single node. Their model represents the first prototype for a whole class of general
models of competition and cooperation that have been since proposed [44, 56, 110].

The second model is related to the snapping behavior of the frog in response to a fly–
like stimulus in a certain region around the head: the frog turns so that its midline is pointed
at the fly, and it zaps the fly with its tongue. When two fly–like stimuli are presented (either

48 Chapter 4. Cooperative–Competitive Networks

of which is strong enough to elicit a snapping response when presented alone) the frog
could react in three different ways: it snaps at one of the two stimuli, it snaps at the center
of mass of the two stimuli, it does not snap. Didday [40] modeled the tectum: the visual
region of the midbrain which receives information from the retina and, in particular, from
a class of cells called bug detectors (they are sensitive to a stimulus wiggling like a fly
applied in a specific region of the visual field). In Didday’s simulated tectum, each region
(corresponding to a region in the visual field) contains a “sameness” cell whose activity
(a weighted sum of activity elsewhere) is used to suppress activity within its own region.
In this way, competition among different regions suppress all but the region with strongest
activity.

The third model approaches the problem of segmentation on depth cues. Depth in space
is encoded in the difference of the retinal coordinates of the projection of a point in space on
the two eyes (disparity). Psychological data which proved that stereofusion can occur with-
out cognitive cues were presented by Julesz in 1971 [70]. He used random–dot stereograms:
each eye sees a totally random pattern in which there are correlations between the inputs
to the two eyes. Specifically, the two eyes are stimulated by an identical copy of the pat-
tern, except for a region within the image which is shifted in position, yielding a disparity.
In addition to the correct correlation of points in the two retinae, there are many spurious
correlations and computation is required to ignore them. Eventually, disparity matching
takes place and the perception of surfaces at different depths arises. The model proposed
by Dev [38] is a neural model of depth surfaces perception in random–dot stereogram. The
detection of surfaces in random–dot stereograms is a clear example of segmentation on the
basis of a single feature, retinal disparity. The model assumes a retinotopic organization
of feature detectors: they are arranged in an array such that the spatial relations within the
retinal images are maintained in the feature detector array. This assumption implies that
a cluster of features in the visual input activate a localized region in the feature detector
array. Two types of interaction are postulated to occur in the network. Mutual excitatory
connections exist between neurons at different location but detecting the same feature and
the strength of these connections falls off with increasing distance between the neurons.
All neurons inhibit each other and the strength of the inhibitory connections falls off with
distance. Such inhibitory interaction leads to competition between neurons.

In analyzing these three specific models Amari and Arbib first considered the so called
primitive competition model. This model consists of a set of n excitatory discrete elements
and one inhibitory element, the full competition model is obtained connecting neighboring
excitatory neurons to form a continuous field. The excitatory elements connect to them-
selves (self–excitation) and to the inhibitory element; the inhibitory elements connects to
all the excitatory elements. They show that the excitatory elements compete through the
activation of the inhibitory element. Eventually the element which receives the maximum
input stimulus wins and remains in the excited state, while all other elements stay in the
quiescent state. Due to the presence of self–excitation, the winning element will remain
in the excited state even if another input stimulus becomes bigger than one to the winning
element, unless the difference between the new strongest input and the input to the current

4.1. Analytical Methods Applied to Cooperative–Competitive Networks 49

winner is very large.
Inspired by this cooperative–competitive model, Hansel and Sompolinsky proposed an

analogous model in which the state of each neuron is described by a single continuous vari-
able which represents its activity level averaged over a short period of time (rate model)
[56]. They considered a network of neurons that code for sensory features. The feature
is represented as a scalar with a finite range of values (e. g. orientation, ranging from
−π/2 to π/2) and periodic boundary conditions are assumed. Each neuron is selective to a
particular range of feature values and it fires maximally when a particular value of the fea-
ture is present in the input stimulus (preferred feature). The synaptic efficacy between two
neurons is a function of the difference in preferred feature of the two neurons: interactions
are assumed to be strongest in magnitude for neurons that have identical preferred feature
and to get weaker as the difference between preferred features increases. They analyzed a
simplified version of the model in which a single rate variable represents the activity of the
population of neurons characterized by the same preferred feature. They first focused on
stationary states of the network and studied the effect of local connectivity on the shape of
these stationary activity profiles. Depending on the relative strength of the external input,
on the local excitation, and on the local inhibition, three different regimes of operation are
observed. In the first regime the afferent input is dominant and determines the activity pro-
file. The second regime is characterized by broad inhibition, which may sharpen the tuning
of the neurons. In both these regimes the tuning is mainly determined by the external input
and the activity of the network in response to a uniform stimulus is uniform. In the third, or
marginal regime, the strong excitatory feedback leads to the emergence of intrinsic stable
states with a single “hill” of activity. The width of the “hill” is a function of the spread of re-
current excitation while the height depends on the stimulus intensity. When a non–uniform
input is applied in this regime, the position of the “hill” is determined by the position of the
maximum in the input profile.

Hansel and Sompolinsky also studied the response of their network model to stimulus
features that change over time (not considered by Amari and Arbib). They considered
the case in which, after a stationary response to a stimulus is reached, a sudden shift in
position is applied to the input stimulus. They distinguish two regimes characterized by
weak and strong cortical modulation. To analyze the weak modulation regime they consider
the extreme case of uniform cortical interaction (zero modulation) and show that the initial
activity profile decays while the final one grows in amplitude and no activity is observed in
intermediate locations between the initial and final activity profile locations. In the strong
modulation regime or marginal phase (strongly modulated cortical interactions and weakly
tuned stimulus) the center of the activity profile slowly moves toward the center of the final
activity profile.

The methodologies introduced by Amari and Arbib, as well as those proposed by
Hansel and Sompolinsky represent valid analytical tools for analyzing the response proper-
ties of the VLSI network I designed (see section 4.3 and chapter 5), when considering mean
firing rates of output neurons. However, in general, mean rate models cannot account for
aspects of spike timing and spike correlations that may be important for understanding the

50 Chapter 4. Cooperative–Competitive Networks

computation carried out by nervous systems. In the next Section, I summarize the key mo-
tivations for implementing spike based neural network models. Hansel and Sompolinsky
also analyzed the network architecture described above with conductance–based dynamics
appropriate for cortical neurons. Spiking networks are too complex for an analytical study,
therefore they carried out numerical simulations to study the properties of the network. In
accordance with our results, the authors showed that the main qualitative predictions of the
rate mode hold also for their spiking model, in agreement with simulations results from a
spiking model of orientation selectivity [110] and with experimental data from my VLSI
implementation (see chapter 5).

4.2 The Neural Code

One fundamental question about the brain is how neurons encode information. The tradi-
tional view is that it is the mean firing rate that encodes the signal. This view arises from
the classic early work of Adrian [4], which comprises much of what we know nowadays
about neural coding. In 1928, Adrian summarized the results of his experimental work on
sensory neurons1 in a monograph [4]. His experiments and their implications proposed
three governing principles for the neural code: the all–or–none law, rate coding and adap-
tation. As already observed for muscles and motor neurons, Adrian showed that there is
an all–or–none relation between the stimulus and the activity which it produces: either the
stimulus is strong enough to produce an impulse in the sensory neuron or it is too weak and
no response is elicited. Adrian’s second observation was that the intensity of the stimulus is
coded by the discharge rate of the receptor (rate coding): he recorded an increasing rate in
response to increasing stimulus intensity. Furthermore, he reported that the discharge rate
decreases over time when a static stimulus is applied (adaptation).

Adrian’s findings strongly influenced following explorations of the code used by the
nervous systems. However, recent experimental evidences point out the importance of tim-
ing in the neural code (for example, see [115]). The main problem of the rate coding
hypothesis is the long integration time required to acquire the information coded in the in-
put train of spikes. Rate can be simply represented by the spike count in some time window
divided by the duration of the time window. The time window should be long enough to
contain a “reasonable” number of spikes. If we consider a typical firing rate of 50 Hz, the
time window should be in the order of 100–500 ms to have at least 5–25 spikes in the aver-
aging period. The information flow in the cortical hierarchy, from the sensory input to the
output motor areas, involves at least five to ten processing steps [49]. If at each step the neu-
rons have to average over a time window of 100 ms to acquire the information transmitted
by its afferents, the complete processing chain would take from 500 ms to 1 s.

In 1996, Thorpe et al. showed that humans detect objects in complex scenes within
400–500 ms [115]. The authors used a go/no–go categorization task in which subjects have
to decide whether a previously unseen photograph of a complex scene flashed for 20 ms

contains an animal or not. They showed that the visual processing needed to perform this
1Adrian recorded the activity of stretch receptors in the frog’s muscles stretched by various weights.

4.3. Neural Coding in Ring of Neurons Competitive Networks 51

highly demanding task can be achieved in under 150 ms2.
Given the large number of processing stages in primate visual systems, the classifica-

tion time estimated by Thorpe et al. is inconsistent with the idea of temporal rate coding
introduced above. An alternative view to rate coding, which has recently gained increas-
ing support, is that the information is encoded in the precise times at which spikes occur
[48, 69, 101, 115]. The temporal coding hypothesis proposes that additional information,
beyond that carried by the mean rate, is encoded in the temporal structure of spike trains.

Rieke et al. analyzed the importance of time in the neural code in their book “Spikes”
[101]. They support the idea that single spikes are important on the basis of the following
evidence: a spike train can be used to estimate directly the waveform of unknown stimuli;
using an information theory framework they demonstrated that individual spikes can carry
more than on bit of information; in principle, the occurrence of individual spikes or spike
pairs at definite times can allow precise discrimination.

Johansson and Birznieks studied the control of fingertip actions in the context of object
grasping [69]. Specific fingertip actions are triggered by accidental slips or unexpected
perturbations within ∼ 65 ms. About 45 ms are required for peripheral nerve conduction
and muscular force generation and only 15 ms are left for central processing; too little
time to allow for averaging over several processing steps. Johansson and Bierznieks used
recordings from peripheral somatosensory nerve fibers in humans to test whether direction
of fingertip force and object shape can be encoded by the time of the first spike evoked in
population of tactile afferents. They showed that the order in which these fibers fire their
first action potential after stimulus onset provides reliable information about the direction
of force and the shape of the surface contacting the fingertip.

Gawne et al. [48] tested the responses of monkeys’ striate complex cells to oriented
stimuli with different contrast. They found that, even though the response strength is pri-
marily driven by the orientation of the stimulus, the response latency is more a function
of the stimulus contrast. On the basis of this result, they hypothesized that synchroniza-
tion based on latency could make a strong contribution to the process of organizing neural
responses to different objects.

There is a large body of literature on the role of spike timing in neural coding. A
complete review is beyond the scope of this thesis; the few examples mentioned above
are meant to point out that an increasing number of experimental works are being carried
out to validate the temporal coding hypothesis. Nevertheless the question of mean rate vs.
temporal coding is still controversial.

4.3 Neural Coding in Ring of Neurons Competitive Networks

I am interested in exploring the computational properties of cooperative–competitive neu-
ral networks both in the mean rate and time domain, as a means for understanding corti-

2The reaction time gives an upper limit for the time required for categorization given that it includes time for button
pressing (around 200–300 ms). Furthermore, the author used EEG to compare average brain potentials generated on
correct “go” trials with those generated on correct “no–go” trials and they demonstrated that the two potentials diverge
very sharply at around 150 ms after stimulus onset.

52 Chapter 4. Cooperative–Competitive Networks

Figure 4.1: Schematic representation of the ring–of–neurons architecture. Empty circles represent
excitatory neurons and the filled circle represents the global inhibitory neuron. Solid/dashed lines
represent excitatory/inhibitory connections. Connections with arrowheads are monodirectional, all
others are bidirectional.

cal computation. Massively parallel VLSI networks of I&F neurons can be implemented
to emulate complex neural systems in real-time. Networks of this type can, in principle,
scale up to any arbitrary size with no effect on simulation time. Furthermore, the AER
infrastructure described in chapter 2 allows us to build complex multi–chip systems with
reconfigurable inter–chip and intra–chip connectivity. For hardware implementation of a
recurrent cooperative–competitive network I chose a specific architecture which I analyzed
and implemented in VLSI: the ring of neurons (RON).

The RON is a simple cooperative–competitive network with a ring architecture (see
Fig. 4.1). The network comprises a one dimensional array of excitatory neurons each con-
nected to their first neighbors in a closed loop. These local connections reflect the existence
of local interactions observed in neocortex. A global inhibitory neuron receives input from
all the excitatory neurons in the ring and returns inhibition to all of them. This architec-
ture and similar variants have been used to model response properties of cortical neurons
[11, 23, 54, 55, 56, 66, 103] and neurons in other brain areas [121]. In particular, Hahnloser
et al. [55] describe a silicon implementation of the RON that uses linear threshold units to
model the neuron’s transfer function (mean rate model). Their neuronal network comprises
self–, first– and second–neighbor connections with variable strength for the excitatory neu-
rons. The output of the excitatory neurons is an electrical current which is positive or null.

Hahnloser et al. showed that the network exhibits several interesting behaviors typical
of cortical processing. Gain modulation is observed when a uniform background excita-
tion is applied in addition to the stimulus: the amplitude of the population response varies
linearly with background amplitude. An example of gain modulation observed in posterior
parietal cortex is described in [7]. The RON behaves as a WTA when two localized stimuli
are presented: it selects one of the stimuli while completely suppressing its response to the
other. As in the model studied by Amari and Arbib, the stimulus with highest amplitude
is always selected when the amplitude of the two stimuli are sufficiently different. When
two stimuli with roughly the same amplitude are applied, the network may select either one
stimulus or the other. In this case, the initial conditions are very important to determine
which stimulus is selected by the network. Once a stimulus has been selected, the network
tends to maintain its state and it is insensitive to small changes in the relative amplitude of
the two stimuli (hysteretic behavior).

4.4. Software Simulation of the Ring of Neurons Competitive Network 53

4.4 Software Simulation of the Ring of Neurons Competitive
Network

As for the spiking model proposed by Hansel and Sompolinsky described in section 4.1, an-
alytical solution of the RON cannot be obtained. Before proceeding to a full–custom VLSI
design of the network I designed a software simulation tool in C to explore its computational
properties using integrate–and–fire neurons, and compare them with the linear–threshold–
units.

The code used for the simulation is based on an event–driven strategy [86]. This strat-
egy exploits the fact that cortical neurons interact by means of action potentials: events
which are rare and localized in time. In the interval between two events, the state variables
associated with a model neuron or a synapse evolve deterministically and in a predictable
way. It is thus only necessary to update the network’s state variables when an event (a spike)
occurs. The spiking simulation tool I developed is based on C code provided by Prof. Ste-
fano Fusi. I modified the existing code to implement the ring of neurons architecture and
to model the dynamics of my synaptic VLSI circuits. In the original version of the soft-
ware, simple dynamics for both the synaptic couplings (delta correlated) and the external
input (constant current) were used. The I&F neurons receive delta–shaped Excitatory and
Inhibitory Post Synaptic Potentials (EPSPs and IPSPs), and constant external excitatory
currents. The final version includes the analytical equations of the hardware circuit for the
synaptic dynamics. The software was designed in a modular fashion, to easily allow the
implementation of different dynamics for the synapses.

A detailed description of the C code implementing the simulated I&F RON is provided
in App. C.

4.4.1 Sharpening and Suppression of Less Effective Stimuli

I performed software simulations to determine the parameter regimes that lead to sharpen-
ing and suppression of less effective stimuli. The RON sharpens the input suppressing the
weakest part of it and the noise and amplifying the strongest signals, when it is operated
in a soft WTA regime. This occurs when lateral excitation, coupled with excitatory input,
is strong enough to overcome inhibition in the most active neurons. I demonstrated the
ability of the RON to exhibit soft WTA behavior with a simple experiment (see Fig. 4.2).
The neurons were stimulated with the same Gaussian distributed input profile, and the RON
activity was measured for three different values of lateral coupling strength. For weak lat-
eral coupling, a thresholding effect is observed (inhibition is stronger than excitation) and
the input is suppressed. A real sharpening effect is observed for intermediate lateral cou-
pling: the strongest inputs are amplified and the weakest ones are suppressed. For strong
lateral coupling, synchronization of all the active neurons occurs and they fire at the same
frequency. As expected, synchronization decreases the output firing rate of the network:
the neuronal activity in the completely synchronized network is driven only by the external
input, because the local connections are active either during the refractory period of the
active neurons or right before the emission of the spike. These results show that the timing

54 Chapter 4. Cooperative–Competitive Networks

5 10 15 20 25 30
0

50

100

150

200

Neuron address

M
ea

n
F

re
qu

en
cy

 (
H

z)

No coupling

Weak lateral excitation

Medium lateral excitation

Strong lateral excitation

Figure 4.2: Feature tuning curve sharpening. The continuous line in the plot represents the activity
of the neurons (mean firing rate) in response to the input current when local connectivity is disabled.
The other three curves represent the activity of the network in response to the same input current,
for a fixed strength of the global inhibition and three different values of the strength of lateral
excitation. When the lateral excitation is much weaker than the global inhibition, the activity of all
neurons is suppressed (weak lateral excitation). Amplification of activity of the neurons receiving
the strongest input and suppression of activity of the neurons receiving the weakest input can occur
when lateral excitation is strong enough to overcome inhibition in the most active neurons (medium
lateral excitation). Synchronization of the most active neurons occurs when the lateral excitation
is strong enough to elicit a spike in the postsynaptic neurons for each spike of the presynaptic
neuron (strong lateral excitation). The activity of the inhibitory neuron is not shown in the graph.
The inhibitory neuron is not active when the local connectivity is off, when it is stimulated by
the excitatory neurons of the network, its frequency (not shown in the graph) ranges from 350 to
700 Hz, depending on the strength of the lateral excitation.

of spikes has an effect on the network dynamics that are not expressed in the rate models.
The soft/hard WTA behavior was also characterized using three Gaussian inputs with

different amplitudes, applied at the same time to different locations. To measure suppres-
sion I computed the difference between the maximum output frequency (fmax) of the neu-
rons to the input profile and the mean frequency of all active “non–winner” neurons (fnw),
normalized by the sum:

SI =
fmax − fnw

fmax + fnw

(4.1)

This index is equal to one for hard WTA behavior (only the winning neuron is active,
fnw = 0, and it is smaller than one for soft WTA behavior (more than one neuron are active
and fmax − fnw < fmax + fnw). Figure 4.3 shows the suppression , SI , as a function of
the strength of the excitation to the global inhibitory neuron (wei) for several values of the
strength of the inhibition to the excitatory neurons (wie) and fixed lateral excitation strength.
The network acts as a soft WTA for weak coupling between the excitatory neurons and the
global inhibitory neuron. When this coupling is strong the neuron receiving the highest

4.4. Software Simulation of the Ring of Neurons Competitive Network 55

0 1 2 3 4 5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

w
ei

 (arbitrary units)

S
up

pr
es

si
on

 in
de

x

Figure 4.3: Suppression of least effective stimuli. Suppression index SI (defined in the text) as a
function of the strength of the excitation to the global inhibitory neuron (wei) for several values of
the strength of the inhibition to the excitatory neurons (wie), and fixed lateral excitation strength.
The network operates as a hard WTA (only one neuron is active and the suppression index SI is
equal to one) when there is strong coupling between the excitatory neurons and the global inhibitory
neurons (high wei and wie).

input drives the inhibitory neuron to suppress all other excitatory neurons and the network
exhibits a hard WTA behavior (SI = 1). When the same experiment is performed with lin-
ear threshold units instead of I&F neurons similar results are observed with smooth curves.
The non–monotonic derivative observed for some of the curves is another characteristic
of networks of spiking neurons, that is not observed in mean rate models, and it is due to
synchronizations and oscillations induced by the coupling among neurons.

4.4.2 Hysteretic Behavior

It has been shown that the mean rate model of the RON can exhibit hysteretic behavior
[55]. When two stimuli are sufficiently different from each other in amplitude the network
always selects the strongest one. When two stimuli have roughly the same amplitude the
network can select either one stimulus or the other. In this case the initial conditions are
very important to determine which stimulus is selected by the network. Once a stimulus has
been selected the network tends to maintain its state and it is insensitive to small changes
in the relative amplitude of the two stimuli.

I demonstrated that the spiking version of the RON can also exhibit this behavior, as
shown in Fig. 4.4, where the center of mass of the network activity is plotted as a function
of the amplitude of input to neuron number 8 (ranging from 1.5 to 2.5). In addition to this
input, neuron number 27 is stimulated with a fixed amplitude (2, marked by a vertical line)

56 Chapter 4. Cooperative–Competitive Networks

1.5 2 2.5
5

10

15

20

25

30

Input to neuron 8

C
en

te
r

of
 m

as
s

w
el

=5
w

el
=10

w
el

=15
w

el
=20

w
el

=25

Figure 4.4: Hysteretic behavior. Neuron number 27 receives a constant input current (marked
by the vertical line), neuron number 8 is stimulated by an input current which first increases and
then decreases, ranging from a value smaller than the constant input applied to neuron 27 to a
value bigger than the constant input applied to neuron 27. Arrowheads pointing down represent the
situation in which the input amplitude to neuron 8 increases, arrowheads pointing up represent the
situation in which the input amplitude to neuron 8 decreases. Hysteretic behavior is observed for
high values of lateral coupling and the amplitude of the hysteretic cycle is not modulated by the
strength of the lateral coupling.

input. Arrowheads pointing down represent the situation in which the input amplitude to
neuron 8 increases from 1.5 to 2.5. Arrowheads pointing up represent the situation in which
the input amplitude to neuron 8 decreases from 2.5 to 1.5. Hysteretic behavior is observed
for strong lateral coupling. However the amplitude of the hysteretic cycle is not modulated
by the intensity of the lateral coupling. This is due to the fact that the hysteretic behavior
is observed only in the extreme situation in which all the active neurons are synchronized.
In these conditions, increasing the intensity of the lateral coupling does not modify the
network activity. This behavior is not observed in the mean rate model of the RON, where
synchronicity effects are not present and the amplitude of the hysteretic cycle is modulated
by the strength of the lateral connections [55].

4.5 Discussion

In this chapter, I summarized the mathematical frameworks described in the literature to
model cooperative–competitive networks and motivated the importance of spike timing as
a possible coding space in addition to mean rate. I demonstrated, by means of software
simulations, that a small network of spiking neurons, with a simple architecture comprising
recurrent excitation and global inhibition, can replicate the results observed in continuous

4.5. Discussion 57

cooperative–competitive networks.
These software simulations were useful to find the relevant regions in parameter space

in which the desired behaviors are observed, and for verifying that a VLSI implementation
of a spiking RON was worthwhile making. The VLSI chip described in the next chapter was
used to test the same behaviors in more complex scenarios, with noisy real–time inputs (see
chapter 6). The only observed limitation of the spiking network compared with the contin-
uous model is related to the hysteretic behavior. The spiking RON exhibits hysteresis only
in the extreme case of completely synchronized activity of the active neurons. Since the
effect of cooperation cannot be increased beyond this limit a further increase in the strength
of lateral coupling does not affect the amplitude of the hysteretic cycle. Several modifica-
tion to the RON architecture can be tested to improve the hysteretic behavior. For example,
synchronicity effects could be reduced by using a population of inhibitory neurons instead
of a single inhibitory neuron and the effectiveness of cooperation can be increased by using
self excitation [42, 55]. The hardware system composed of the VLSI implementation of
the spiking RON (see next chapter) and the AER infrastructure (see chapter 2) provides a
powerful tool to explore these and further hypotheses.

Chapter 5

VLSI Competitive Networks of Spiking
Neurons

Several examples of VLSI competitive networks of spiking neurons can be found in the lit-
erature [3, 29, 39, 60, 66, 96]. In 1992, De Yong et al. [39] proposed a VLSI winner–take–all
spiking network consisting of 4 neurons. The authors implemented the WTA mechanism
through all-to-all inhibitory connections. They showed how their network exhibits two dif-
ferent behaviors depending on the time constant of the Inhibitory Post-Synaptic Potential
(IPSP) relative to the time period of the incoming signal. The network acts as a temporal
WTA (only the first neuron to receive an input spike becomes active and wins the compe-
tition) when the time constant of the IPSP is longer than the period of the slowest input
signal. The network behaves as a maximum frequency network (only the neuron receiving
the train of spikes with highest frequency becomes active) when the period of the fastest
input signal is longer than the time constant of the IPSP.

In 1993, a different VLSI WTA chip was proposed by Hylander et al. [60]. Their
network used global inhibition to implement the WTA behavior. It consists of three I&F
neurons and a global inhibition generator (as opposed to all-to–all inhibitory connectivity).
The three neurons feed their outputs to the global inhibitory generator, which feeds back
inhibition to all the neurons in the network. Each neuron is stimulated by the dot product of
a specific weight vector and a common input vector of pulse-width-modulated input signals.
Only the neuron receiving the largest input dot product produces output spikes.

Both De Young et al. and Hylander et al. presented examples of very simple networks
consisting of a few neurons, and under basic testing showed the ability of their networks to
select one winner. More recent implementations of spiking VLSI WTA networks consist
of larger networks and show more complex behavior thanks also to more advanced VLSI
processes and testing instruments currently available.

In 2001 Indiveri et al. [66] presented a network consisting of 32 excitatory neurons and
1 global inhibitory neuron. The authors characterized the behavior of the network using
the mean rate representation and Poisson distributed input spike trains. They showed the
network could exhibit soft WTA behaviors modulated by the strength of lateral excitation
and investigated the network’s ability to produce correlated firing, combined with the WTA
function.

59

60 Chapter 5. Spiking VLSI Competitive Networks

A
ut

ho
rs

Y
ea

r
V

L
SI

N
W

TA
m

ec
ha

ni
sm

Te
st

s
In

pu
t/O

ut
pu

t

Te
ch

.

Y
on

g
19

92
2µ

m
4

al
l–

to
–a

ll
in

hi
bi

tio
n

ha
rd

W
TA

in
tim

e
sp

ik
es

/

et
al

.
an

d
fr

eq
ue

nc
y

sp
ik

es

H
yl

an
de

r
19

93
2µ

m
3

gl
ob

al
in

hi
bi

tio
n

W
TA

be
ha

vi
or

pu
ls

e–
w

id
th

–m
od

ul
at

ed

et
al

.
si

gn
al

s/
sp

ik
es

In
di

ve
ri

20
01

1.
2µ

m
32

gl
ob

al
in

hi
bi

tio
n

an
d

m
ea

n
ra

te
so

ft
W

TA
A

E
R

sp
ik

es
/

et
al

.
re

cu
rr

en
te

xc
ita

tio
n

an
d

sy
nc

hr
on

y
A

E
R

sp
ik

es

O
st

er
an

d
20

04
64

al
l–

to
–a

ll
in

hi
bi

tio
n

ha
rd

W
TA

A
E

R
sp

ik
es

/

L
iu

an
d

se
lf

-e
xc

ita
tio

n
A

E
R

sp
ik

es

A
br

ah
am

se
n

20
04

0.
6µ

m
48

gl
ob

al
re

se
tti

ng
W

TA
be

ha
vi

or
cu

rr
en

t/

et
al

A
E

R
sp

ik
es

C
hi

cc
a

20
04

0.
8µ

m
31

gl
ob

al
in

hi
bi

tio
n

an
d

m
ea

n
ra

te
so

ft
W

TA
A

E
R

sp
ik

es
/

et
al

.
re

cu
rr

en
te

xc
ita

tio
n

A
E

R
sp

ik
es

Ta
bl

e
5.

1:
C

ha
ra

ct
er

is
tic

s
of

th
e

sp
ik

in
g

W
TA

ne
tw

or
ks

de
sc

ri
be

d
in

th
e

lit
er

at
ur

e.
Se

ve
ra

lf
or

m
s

of
co

m
pe

tit
io

n
(a

ll–
to

–a
ll

in
hi

bi
tio

n,
gl

ob
al

re
se

tti
ng

,e
tc

.)
ha

ve
be

en
us

ed
to

im
pl

em
en

tW
TA

be
ha

vi
or

.O
nl

y
th

re
e

re
se

ar
ch

gr
ou

ps
us

ed
re

cu
rr

en
te

xc
ita

tio
n

to
im

pl
em

en
tc

oo
pe

ra
tiv

e
be

ha
vi

or
s.

5.1. The IFRON Chip 61

Figure 5.1: Chip layout legend. The layers representing Well, Diffusion, Poly1 and Poly2 are
shown in the left column. p–FETs sit in the n–doped Well (see section 3.1). The Diffusion layer
implements an n+ diffusion when it is placed in the substrate, or a p+ diffusion when it is placed
in the n–doped Well. The transistors’ gates are implemented by a Poly1 layer crossing a Diffusion
polygon. Poly1 can also be used to route signals. Poly2 is placed on top of Poly1 to implement
Poly1–Poly2 capacitors. The layers representing Contact, Metal1, Metal2 and Via are shown in the
right column. The Contact layer is used to make contacts from any kind of diffusion, Poly1, and
Poly2 to Metal1. The Via layer implements contacts from Metal1 to Metal2.

More recent VLSI implementations of WTA networks were presented in 2004. Oster
and Liu [96] presented a 64 neuron network that used all-to-all inhibition to implement hard
WTA behavior. Stimulated using spike trains with constant frequency, the network selects
the neurons that receive the spike train with shortest inter spike interval (ISI). Measure-
ments of the discrimination capability of the WTA network were presented, showing that
the network discriminates an input of higher spike rate if its frequency, f · 100Hz, is higher
than the other inputs at least by (f − 1) · 100Hz.

Abrahamsen et al. [3] presented a time domain WTA circuit based on simple self-
resetting I&F neurons. In this network the WTA mechanism is implemented by resetting
all neurons in the array as soon as the winner fires. Since all neurons in the array are reset
at the same time, the next neuron to fire will be the one with the strongest input current.
The authors described a chip containing two 48 neuron WTA and 4 separate neurons for
test purposes, and present data from both networks showing WTA behavior.

I presented a recurrent network comprising 31 excitatory neurons and 1 global in-
hibitory neuron [29]. This network is an evolution of the one presented by Indiveri et
al. in 2001. It differs from that of Indiveri because it includes second neighbor excitatory
connections in addition to first neighbor excitation, and can be operated in open– (linear
array) or closed–loop (ring) conditions. In this chapter I describe my VLSI implementation
of the RON, and present data from the fabricated chip. Furthermore, I demonstrate more
complex soft WTA behavior of the network in response to Poisson distributed spike trains.

5.1 The IFRON Chip: a VLSI Implementation of a Spiking
Cooperative Competitive Network

I designed a VLSI implementation of the spiking RON network: the IFRON chip. The
IFRON chip has been fabricated in a 0.8 µm, n–well, double metal, double poly, CMOS
process using the Europractice service. Figure 5.1 shows all the layers used to draw the

62 Chapter 5. Spiking VLSI Competitive Networks

layout for this aVLSI technology. The layout of the IFRON chip is shown in Fig. 5.3. Two
neural networks were implemented on the same chip for different purposes; only one was
used for the study described in this thesis. We described the other network (designed by Dr.
Giacomo Indiveri) and presented experimental results on spike timing dependent plasticity
in a recent paper [65]. The layout of the array of neurons described here (see Fig. 5.4),
including the AER input and output sections, covers an area of about 1.1 × 1.9 mm2. The
layout of one column of the array, including the I&F neuron, the 16 AER and 6 local
synapses covers an area of about 31 × 1500 µm2. Only about 6% of this area is occupied
by the neuron (31× 86 µm2).

In theory, this network can scale up to any arbitrary size, both in terms of the number
of neurons and the number of synapses. In practice, the network size is limited by the
AER bandwidth available. If we consider a network of neurons configured via the PCI-
AER board with 30% connectivity (a typical figure used in modelling studies), in which
typically only 10% of the neurons fire at a mean rate of 100Hz, the speed of the currently
available AER circuits limits the maximum number of possible neurons to approximately
1000. Using the same 0.8 µm CMOS technology used for the current device, an array
of 1000 × 300 I&F neurons and synapses would require a silicon area of approximately
31× 20 mm2.

5.1.1 Chip Architecture

The architecture of the VLSI network of I&F neurons is shown in Fig. 5.2(a). It is a two-
dimensional array containing a row of 32 neurons, each connected to a column of afferent
synaptic circuits. Each column contains 14 AER excitatory synapses, 2 AER inhibitory
synapses and 6 locally connected (hard–wired) synapses. When an address-event is re-
ceived, the synapse with the corresponding row and column address is stimulated. If the
address-events routed to the neuron integrate to the neuron’s threshold voltage, then that
neuron generates an address-event which is transmitted off-chip. Arbitrary network archi-
tectures can be implemented using off–chip look–up tables by routing the chip’s output
address-events to one or more AER input synapses. The synapse address can belong to a
different chip, therefore arbitrary multi-chip architectures can be implemented.

Synapses with local hard–wired connectivity are used to realize a competitive network
with nearest neighbor and second nearest neighbor interactions (see Fig. 5.2): the 31 neu-
rons of the array send their spikes to local excitatory synapses on the global inhibitory
neuron; the inhibitory neuron, in turn, stimulates the local inhibitory synapses of the 31
excitatory neurons; each excitatory neuron stimulates its first and second neighbors on both
sides using two sets of locally connected synapses. The first and second neighbor connec-
tions of the neurons at the edges of the array are connected to pads. This allows us to leave
the network open, or implement closed boundary conditions to form a ring of neurons [55],
using off-chip jumpers.

All of the synapses on the chip can be switched off. This allows us to activate either
local or AER synaptic connections, or to use both groups simultaneously. In addition, a uni-
form constant DC current can be injected to all the neurons in the array. The amplitude of

5.1. The IFRON Chip 63

E E E E E E II I E

E E E E E E II I E

E E E E E E II I E

E
E

E
E

E
E

A
E

R
 O

U
T

P
U

T

A
E

R
 I

N
P

U
T

E E E E E E II I E

E E E E E E II I E

E E E E E E II I E

AER INPUT

E EI I E

(a
)

(b
)

Fi
gu

re
5.

2:
IF

R
O

N
ch

ip
ar

ch
ite

ct
ur

e
an

d
sc

he
m

at
ic

re
pr

es
en

ta
tio

n.
(a

)
N

et
w

or
k

ar
ch

ite
ct

ur
e.

Sq
ua

re
s

re
pr

es
en

te
xc

ita
to

ry
(E

)
an

d
in

hi
bi

to
ry

(I
)

sy
na

ps
es

,
tr

ap
ez

oi
ds

re
pr

es
en

t
I&

F
ne

ur
on

s.
T

he
I&

F
ne

ur
on

s
ca

n
tr

an
sm

it
th

ei
r

sp
ik

es
of

f-
ch

ip
an

d/
or

to
lo

ca
lly

co
nn

ec
te

d
sy

na
ps

es
(s

ee
te

xt
fo

r
de

ta
ils

).
(b

)
Sc

he
m

at
ic

re
pr

es
en

ta
tio

n
of

th
e

co
nn

ec
tiv

ity
pa

tte
rn

im
pl

em
en

te
d

by
th

e
in

te
rn

al
ha

rd
-w

ir
ed

co
nn

ec
tio

ns
(c

lo
se

d
bo

un
da

ry
co

nd
iti

on
).

E
m

pt
y

ci
rc

le
s

re
pr

e-
se

nt
ex

ci
ta

to
ry

ne
ur

on
s

an
d

th
e

fil
le

d
ci

rc
le

re
pr

es
en

ts
th

e
gl

ob
al

in
hi

bi
to

ry
ne

ur
on

.
So

lid
an

d
da

sh
ed

lin
es

re
pr

es
en

te
xc

ita
to

ry
an

d
in

hi
bi

to
ry

co
nn

ec
tio

ns
re

sp
ec

tiv
el

y.
C

on
ne

ct
io

ns
w

ith
ar

ro
w

he
ad

s
ar

e
m

on
o–

di
re

ct
io

na
l,

al
lo

th
er

s
ar

e
bi

di
re

ct
io

na
l.

64 Chapter 5. Spiking VLSI Competitive Networks

IF
R

O
N

(a
)

(b
)

Fi
gu

re
5.

3:
IF

R
O

N
ch

ip
la

yo
ut

an
d

ph
ot

og
ra

ph
.(

a)
L

ay
ou

to
ft

he
IF

R
O

N
ch

ip
(2

67
0
×

28
80

µ
m

2
).

It
co

m
pr

is
es

tw
o

lin
ea

ra
rr

ay
s

of
I&

F
ne

ur
on

s.
T

he
to

p
ar

ra
y

(h
ig

hl
ig

ht
ed

w
ith

a
ye

llo
w

re
ct

an
gu

la
r

an
d

en
la

rg
ed

in
Fi

g.
5.

4)
is

th
e

ar
ra

y
de

sc
ri

be
d

in
th

is
th

es
is

.
(b

)
IF

R
O

N
ch

ip
ph

ot
og

ra
ph

.
T

he
sm

al
lr

ot
at

ed
sq

ua
re

in
th

e
ce

nt
er

is
th

e
IF

R
O

N
ch

ip
.I

ts
bo

nd
pa

ds
(o

ut
pu

tp
ad

of
th

e
ch

ip
)a

re
co

nn
ec

te
d

by
m

et
al

w
ir

es
to

a
PG

A
84

ho
st

in
g

pa
ck

ag
e.

5.1. The IFRON Chip 65

AER Output

AER Synaptic

Matrix

I&F Neurons and

local synapses

AER Input

Fi
gu

re
5.

4:
IF

R
O

N
la

yo
ut

.
E

nl
ar

ge
m

en
to

f
th

e
to

p
pa

rt
of

th
e

IF
R

O
N

ch
ip

,i
m

pl
em

en
tin

g
th

e
ar

ra
y

of
I&

F
ne

ur
on

s
de

sc
ri

be
d

in
th

is
th

es
is

.
Fr

om
le

ft
to

ri
gh

tw
e

ca
n

id
en

tif
y

th
e

fo
llo

w
in

g
bu

ild
in

g
bl

oc
ks

:A
E

R
in

pu
t,

A
E

R
sy

na
pt

ic
m

at
ri

x,
lo

ca
lr

ec
ur

re
nt

sy
na

ps
es

,a
rr

ay
of

I&
F

ne
ur

on
s,

an
d

A
E

R
ou

tp
ut

.

66 Chapter 5. Spiking VLSI Competitive Networks

this current can be set through a global bias voltage.

5.1.2 Circuits

Neuron and Synapse

The circuit implementing the neuron is described in section 3.8. It is a leaky I&F neuron:
it linearly integrates the total afferent current until a threshold is crossed. It then emits a
spike and the integrated voltage (or membrane voltage) is reset to its initial value. An n–
FET operated in subthreshold implements a linear leak, which is switched off during spike
emission. The neuronal circuit also implements spike–frequency adaptation, a refractory
period and threshold voltage modulation mechanisms [64]. The layout of the I&F neuron
is shown in Fig. 5.5, it occupies an area of 85 × 32 µm2. The circuit incorporates four
capacitors (see also the schematic diagram in Fig. 3.17(a)) which take ∼ 25% of the total
area: the membrane capacitor Cm with a capacitance of 128 fF , the feedback capacitor
Cfb with a capacitance of 122 fF , the capacitor implementing the refractory period Cr

with a capacitance of 67 fF , and the capacitor of the CMI (see Sec. 3.5) implementing
spike–frequency–adaptation Cadap with a capacitance of 40 fF . All the biases are routed
vertically using Poly1; power supply and ground connections are routed horizontally with
Metal1 (top and bottom respectively).

The synaptic circuit is described in section 3.7. It implements an adaptive synapse
whose output current adapts to the input frequency and reaches a steady state if the input
frequency is constant. The layout of the synaptic circuit is shown in Fig. 5.6; it occupies an
area of 34 × 32 µm2. The circuit includes two capacitors (see also the schematic diagram
in Fig. 3.10) which take ∼ 30% of the total area: the facilitating capacitor Cf with a ca-
pacitance of 56 fF , and the depressing capacitor Cd with a capacitance of 109 fF . All the
biases are routed vertically using Poly1 and Metal1; analog power supply and ground con-
nections are routed horizontally with Metal1 and Metal2 (top and bottom respectively); the
digital power supply signal is routed vertically with Metal1. The output current is routed
horizontally with Metal2. The output currents of all synapses in the same row are summed
through Kirchoff’s law on this Metal2 wire, which is connected to the membrane capaci-
tor of the post–synaptic neuron placed in the same row (see horizontal Metal2 wire in the
neuron layout in Fig. 5.5).

AER Circuits

I used AER input and output circuits schematics designed by Prof. Kwabena Boa-
hen [15] (http://www.neuroengineering.upenn.edu/boahen/index.htm), with contributions
by Prof. Timmer Horiuchi (http://www.isr.umd.edu/Labs/CSSL/) and Prof. Charles Hig-
gins (http://www.ece.arizona.edu/˜higgins/). I drew the layout for these circuits and wrote
silicon compiler code in C to automate the layout of the input/output AER infrastructure
using the Layout–Editor’s (L-Edit) User–Programmable Interface (UPI) from Tanner Re-
search, Inc. (see Appendix D).

The layout blocks I designed, together with the silicon compiler code I wrote are used

5.1. The IFRON Chip 67

Cm

Cr Cfb

Cadap

Figure 5.5: Layout of the I&F neuron. It occupies an area of 2720 µm2; 25% of this area is
devoted to Poly1–Poly2 capacitors, the rest is devoted to transistors and routing. The Poly1 plate
of the membrane capacitor, Cm, of the feedbeack capacitor, Cfb, of the capacitor implementing the
refractory period, Cr and the capacitor of the CMI (see Sec. 3.5) implementing spike–frequency–
adaptation, Cadap, have an area of 237, 213, 133, and 91µm2 respectively. Global biases are routed
vertically with Poly1 wires; power lines are routed horizontally with Metal1 wires. Neurons are
mirrored vertically to share contacts and power supply wires over adjacent rows.

Cf

Cd

Figure 5.6: Layout of the adaptive synapse. It occupies an area of 1088 µm2; 30% of this area is
devoted to Poly1–Poly2 capacitors, the rest is devoted to transistors and routing. The Poly1 plate
of the facilitating capacitor, Cf , and the depressing capacitor, Cd, have an area of 61, and 120µm2

respectively. Global biases are routed vertically with Poly1 and Metal1 wires, analog power lines
are routed horizontally with Metal1 and Metal2 wires, digital power supply is routed vertically with
Metal1. Synapses are vertically mirrored to isolate digital and analog circuitry and share contacts
and power supply wires over adjacent rows.

extensively by VLSI designers at the INI, by our colleagues in Rome at the Italian National
Institute of Health (http://neural.iss.infn.it/) and in Vienna at the Austrian Research Centers
(http://www.arcs.ac.at/).

In the chip described here, AER input events can be lost from the receiver chip if the
time interval between two consecutive events is too short. This problem is related to the
input handshaking circuit, which has been replaced with a new circuit in our latest designs.
In the chip I describe here, the AER input handshake is managed by the circuit shown
in Fig. 5.7. In response to a chip request generated by an external sender (ChipReq), the
circuit generates a pixel request (PixReq) and a chip acknowledge (ChipAck) in reply. A

68 Chapter 5. Spiking VLSI Competitive Networks

Vpu

ChipReq ChipAck
ChipReq

PixReq

PixAck

Figure 5.7: Handshaking circuit for the AER input. The circuits has two input and two output
signals: it generates an acknowledge signal (ChipAck) and a pixel request in response to an incom-
ing request (ChipReq) generated by an external sender. The addressed pixel must generate a pixel
acknowledge (PixAck) in response to the PixReq signal.

Figure 5.8: Layout of the AER input decoder. The input handshaking circuit’s layout is shown on
the left. Three address decoder blocks are shown on the bottom right.

pixel acknowledge (PixAck) must be generated by the stimulated pixel to allow the circuit to
correctly process the following event. Hence, a correct behavior of the circuit assumes that
processing of the pixel request and the following occurrence of the pixel acknowledge takes
less time than the minimum interval between two consecutive chip requests. Stimulating
the chip in different experiments, I observed the lack of effect of some of the input spikes
when the PCI-AER board sent events as fast as possible. This occurs in two cases:

• the sequencer of the PCI-AER board sends two consecutive spikes with zero delay;

• a one–to–many mapping is stored in the mapper’s look–up table and used to map
events from a sender chip to a receiver chip.

These observations led to the design of a different input handshaking circuit, called the
conventional C–element (see [108] for details), which is now being used for new chips de-

5.1. The IFRON Chip 69

signed at the INI. The output of the C–element is set when both inputs are high, and cleared
when when both inputs are low. The C–element receives the ChipReq and NotPixAck sig-
nals as input, and generates the PixReq signal as output (also used as the ChipAck signal).
The circuit prevents the loss of input events, because it does not allow the generation of a
new PixReq until the previous event is completely processed by the pixel and a PixAck is
generated.

The AER output circuitry comprises an array of edge triggers, an address–encoder and
an arbiter. The edge triggers are used to decouple the I&F neurons from the output arbiter,
so that their dynamics is not influenced by how quickly their output spikes are processed
by the arbiter. I used, as an edge trigger, the same circuit used to implement the AER input
handshaking. This choice relies on the assumption that the time needed for the arbiter to
process an output event is shorter than the inter–spike interval. This assumption might not
be true when the inter–spike interval is short and the activity of the neuronal array is highly
synchronized, in which case the AER output of my chip stops working. An alternative
design [65] avoids this problem by using the output spike of the neuron as a request signal
for the arbiter, delaying the reset of the neuron (increasing the spike duration) until the
PixAck signal is received.

The address-encoder generates a unique binary address for each neuron whenever the
arbiter acknowledges a spike emitted by that neuron. This address is the AE transmitted to
other AER receiver devices connected to the AE bus.

When two neurons spike simultaneously, a “collision” occurs and one of the two neu-
rons is queued by the arbiter (see also chapter 2). Arbitration can be performed by a recur-
sive procedure:

1. Divide the neurons into two groups.

2. Choose one group, making sure there is an active neuron in the chosen group.

3. If the chosen subgroup has more than one active neuron, repeat Steps 1 and 2 within
this group.

4. Else, send the address of the active neuron.

This strategy is implemented using a binary tree structure of simple two input arbiter ele-
ments [84]. N−1 arbiter elements are required to implement a one–dimensional arbiter for
an array of N sending nodes. Each arbiter element receives two Request signals from the
lower level of the tree, and generates a single request signal for the next higher level of the
tree. Each arbiter element will acknowledge the selected input Request only after receiving
an Acknowledge signal from the next level. The time required to complete the arbitration
is determined by the amount of time required for a Request to propagate to the top level of
the tree and for the Acknowledge to propagate back down.

The layout of the arbiter tree and address encoder is shown in Fig. 5.9. This layout
was generated by running the silicon compiler code written to implement the recursive
algorithm [15]. I translated the LComp code written by Dr. Kay M. Hynnä (University of
Pennsylvania, http://www.seas.upenn.edu/˜kmhynna/) into UPI code. The L–Edit UPI pro-

70 Chapter 5. Spiking VLSI Competitive Networks

Fi
gu

re
5.

9:
L

ay
ou

t
of

th
e

A
E

R
ou

tp
ut

.
It

oc
cu

pi
es

an
ar

ea
of
∼

10
00
×

23
0µ

m
2
.

T
he

ar
bi

tr
at

io
n

tr
ee

(c
om

po
se

d
by

31
ar

bi
te

r
el

em
en

ts
)

is
fo

ld
ed

to
m

in
im

iz
e

ar
ea

,M
et

al
1

w
ir

es
ar

e
us

ed
to

ro
ut

e
th

e
co

nn
ec

tio
n

be
tw

ee
n

th
e

ar
bi

te
re

le
m

en
ts

.

5.1. The IFRON Chip 71

−

+

SR

/out

outin

/in

/out out

SR

/out

outin

/in

/out out

SR

/out

outin

/in

/out out

SR

/out

outin

/in

/out out

SR

/out

outin

/in

/out out

−

+

−

+

−

+

−

+

SOMA SOMASOMASOMASOMA

Vout

Clock

Vbias

Sync

PD

Figure 5.10: The one–dimensional voltage scanner used to measure the membrane voltage of the
I&F neurons in the array. The membrane voltage of the neurons is serially multiplexed onto a
single output line Vout. Only on shift register (labelled ‘SR’) can hold a low bit and connect the
corresponding membrane voltage to the output line Vout. The p–FETs logically OR together all the
shift–register outputs so that a new low bit is generated by the Sync line when only high bits are left
in the register. The Sync line can therefore act as a synchronizing signal to trigger the oscilloscope
sweep.

vides tools for automating, customizing, and extending the L–Edit command and function
set. UPI is based on C-language macros that describe actions or sets of actions to be per-
formed automatically. Macros can draw from a large number of available functions, vari-
ables, and data types to specify and modify the whole range of L–Edit operations. LComp
is a set of high–level C functions for L–Edit UPI. LComp functions provide a means to
easily create and position instances of cells, add cell geometry, and perform other basic
cell operations with simple programming. The tree generated by the UPI code is folded
so that it occupies minimum space at the edge of the neuron array [84]. The UPI code for
generating the arbiter tree is described in Appendix D.

Voltage Scanner

Mixed digital–analog serial multiplexers (scanners) are useful to measure analog signals. In
the IFRON chip a one–dimensional voltage scanner [89] is used to observe the behavior of
the membrane voltage of the I&F neurons in the array. A schematic diagram of the scanner
used is shown in Fig. 5.10; it comprises an array of digital shift–registers (SR), an array of
transconductance amplifiers in the follower configuration, an array of p–FETs connected to
a pull–down n–FET, implementing a wired OR, an array of switches, a pull–down transistor
and an inverter. The scanner multiplexes the read out membrane voltage of the neurons
serially, onto a single output line. At any point in the scan sequence only one neuron sends
its membrane voltage into the output line. The blocks at the bottom of Fig. 5.10 represent

72 Chapter 5. Spiking VLSI Competitive Networks

the digital shift register that controls the scanning process. The scanner requires an input
Clock signal to sequentially scan the whole array. With each Clock cycle, whatever bit is in
a given stage is shifted to the next one. Typically, there will be a single register that holds
a low bit (out = Gnd); all other registers will hold a high bit (out = V dd). The register
which holds a low bit determines the neuron membrane voltage that will be connected to
the output line (Vout) through the amplifier in the follower configuration. The Clock line is
a global single–phase clock input. The p–FETs logically OR together all the shift–register
outputs so that a Sync low bit is generated when only high output bits are left in the register.
This arrangement is self–initializing and requires no off–chip control. This trick is managed
by the Sync line: it is pulled high if there is a low bit at any stage (only high bits are loaded
into the shift register when one register holds a low bit and drives the output line Vout); it
is pulled low by a pulldown transistor (biased with the voltage PD) and generates a new
low bit only when there is no low bit in the register. In addition to generating a new low
bit the Sync line acts as a synchronizing signal to trigger the oscilloscope sweep. Since the
shift–registers are static devices, they hold their values without refreshing. Hence, we may
view the membrane voltage of a particular neuron continuously by stopping the scan at that
neuron.

5.2 IFRON Chip Experiments

To test the IFRON chip I built the setup described in Fig. 5.11. It comprises three main
parts: the IFRON chip mounted on a custom PCB, the PCI–AER board, and a host PC used
to control the PCI–AER board via the PCI bus. I designed the custom PCB to host the
IFRON chip, to set its biases, to access output pins, and to connect the AER input/output to
the PCI–AER board. The PCI–AER board is used to stimulate the chip with synthetic spike
trains, generated using the PC and downloaded to the board via the PCI bus, to monitor
the activity of the chip, time–stamp its output events, record them in the monitor FIFO and
finally log them on the PC. I wrote a set of Matlab scripts to perform off–line data analysis,
for characterizing the response properties of the network.

The AER infrastructure allows us to measure the activity of population of neurons sim-
ilarly to extracellular recordings performed in neurophysiology experiments. The repre-
sentation of these data is usually in the form of raster plots. In a raster plot the x–axis
represents time and the y–axis can either represent different trials of the same experiment,
or spike trains originating from different neurons. The raster plots presented here show the
activity of all neurons in the IFRON chip, and the y–axis represents the neuron address.

5.2.1 Basic Building Blocks Behavior

Initially I performed a set of basic experiments to test the functionality of the main building
blocks of the chip: the neurons; the synapses; and the AER sections.

In the first experiment, I switched off all the local hard-wired connections, injected a
constant DC current to all the neurons and monitored their spiking activity using the PCI-
AER board. Figure 5.12 shows a raster plot of the expected regular firing observed. The dif-

5.2. IFRON Chip Experiments 73

P
C

I

A
E

R

A
E

R

IFWTA

PC
GENERAL

PURPOSE

PCI-AER

NEUROMORPHIC

AVLSI

Figure 5.11: The IFRON chip test setup. A schematic drawing of the test setup is shown on the
left. The setup consists of three main parts: the IFRON chip mounted on a custom PCB (bottom
right), the PCI–AER board (represented by a picture of only the PCI–AER header board, on the
center right), and a host PC used to control the PCI–AER board via the PCI bus (top right).

ferences in mean firing rate are due to device mismatch effects, both in the input transistors
and in the I&F neuron circuit elements. There are two causes which produce transistor mis-
match [107]: device physical parameters, such as doping concentrations, junctions depth,
implants depth, oxide thicknesses, etc. are not constant (random perturbation are observed
along a die); and device physical parameters present a certain gradient variation along the
die. The effect of the gradient variation is clearly visible in the mean firing rate plotted
in Fig. 5.12, and is compatible with typical values measured for transistors’ mismatch in
current [107].

In a second experiment, I tested the competitive network topology (without lateral in-
teractions) by switching on the connections both from the excitatory neurons to the global
inhibitory neuron, and from the global inhibitory neuron to the excitatory neurons. In this
case, in addition to the constant DC current, the excitatory neurons receive inhibitory cur-
rents from their local inhibitory synaptic circuit driven by the global inhibitory neuron,
which tend to decrease their output firing rates. Conversely the global inhibitory neuron
receives, in addition to the constant input current, excitatory inputs that increase its mean
firing rate. The analog membrane potential of all the neurons in the array can be mea-
sured through the on–chip voltage scanner described in section 5.1.2. Figure 5.13 shows
the membrane potential of one excitatory I&F neuron in the network, next to the membrane
potential of the global inhibitory neuron.

74 Chapter 5. Spiking VLSI Competitive Networks

0 0.1 0.2
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 50
Mean f (Hz)

Figure 5.12: Network response to homogeneous constant input current with all synaptic connec-
tions disabled. Left panel: raster plot of the network activity. Right panel: mean output frequencies.
The differences in mean output frequency are due to device mismatch effects both in the input
transistors and in the I&F neuron circuit elements.

5.2.2 Basic Network Behavior

To test the chip’s behavior at the network level, I performed an additional set of experiments.
In these experiments I activated the network’s hard-wired connections to implement two
different types of competitive networks with lateral connections. In both cases I activated
the hard-wired connections from the excitatory neurons to the inhibitory one,as well as the
connections from the inhibitory neuron to the excitatory ones, stimulated the network by
injecting a constant DC input current to all the neurons, and used the PCI-AER board to
monitor the network spiking activity.

In the first experiment, symmetric nearest neighbor lateral connections were activated.
Even in this extremely simplified case, with constant homogeneous inputs and symmetric
connectivity, the network was able to produce a classical “strong” WTA behavior. Although
all neurons should receive the same input current, due to device–mismatch effects, noise and
differences in initial one neuron wins the competition and suppresses all other ones via the
inhibitory neuron, while exciting nearest neighbors (see Fig. 5.14). As the coupling between
neurons was set to be relatively strong, the excitatory and inhibitory neurons synchronized
their spiking activity.

In the second experiment, I activated both first and second neighbor excitatory connec-
tions. When the strength of these connections is asymmetric and global inhibition is strong
enough, the network generates a traveling wave of activity, as shown in Fig. 5.15. Global
inhibition allows the winning neurons to suppress all the others, and the asymmetric lateral
excitation propagates the activity in one direction. The neurons at the edge of the array

5.2. IFRON Chip Experiments 75

0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

M
em

br
an

e
po

te
nt

ia
l (

V
)

Time (s)
0 0.05 0.1

0

0.5

1

1.5

2

2.5

3

Time (s)

Figure 5.13: Membrane potentials. Left panel: membrane potential of an excitatory I&F neuron
in the network. The neuron integrates a constant DC current while receiving inhibitory spikes from
the global inhibitory neuron. Right panel: membrane potential of the global inhibitory neuron. This
neuron integrates the same constant DC current while receiving excitatory inputs from all the active
excitatory neurons in the array.

were connected to form a ring [55], so that the wave could propagate cyclically through the
array.

In both experiments the spiking activity of the neurons is highly synchronized. This is
a consequence of the parameters used in these experiments. These are extreme cases, used
to characterize the architecture with its hard–wired competitive network topology, in which
the input is a simple homogeneous constant current, and the strength of the connections is
set to relatively high values which to amplifies the small differences in neuronal activity
due to mismatch parameters.

5.2.3 Sharpening and Suppression of Least Effective Stimuli

The IFRON chip implements a network with a specific pattern of connectivity implement-
ing cooperation and competition between neurons, and can perform complex non–linear
operations similar to those described in more general cooperative competitive networks
(see Chap.4). These networks have often been used to model cortical feature selectivity
[11, 56] and typically tested with bell-shaped sensory inputs. In this context we can iden-
tify the neurons’ address space with any particular feature space and the AER gives us the
opportunity to arbitrarily map the desired feature space to the neurons’ address space.

To be able to use the VLSI network in a multi–chip system receiving complex sensory
stimuli I first explored its behavior using artificial well controlled stimuli. I performed ex-
periments analogous to those performed with the software simulation and described in sec-

76 Chapter 5. Spiking VLSI Competitive Networks

0 0.5 1 1.5 2
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 10 20
Mean f (Hz)

Figure 5.14: Strong WTA behavior. Left panel: raster plot of the network activity in response to
a constant DC input current with lateral excitatory (first neighbor) connections, excitatory to in-
hibitory connections and global inhibition activated. Competition completely suppresses the non
winning neurons, and cooperation induces the three winning neurons to spike synchronously, acti-
vating the global inhibitory neuron (represented by the neuron with address 1). Right panel: mean
output frequencies. All active neurons in the network (including the inhibitory one) are synchro-
nized, and thus spike at the same mean frequency.

0 2 4 6
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 5 10
Mean f (Hz)

Figure 5.15: Traveling wave. Left panel: raster plot of the network activity in response to a constant
DC input current with asymmetric excitatory first and second nearest neighbor connections and with
global inhibition. The neuron with address 1 is the global inhibitory neuron. Right panel: mean
output frequencies.

5.2. IFRON Chip Experiments 77

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 50 100
Mean f (Hz)

Figure 5.16: Raster plot of the input stimulus used in the sharpening experiment. The stimulated
neurons receive Poisson spike trains with a constant mean frequency over time, and a Gaussian
profile over address space. The right panel shows the mean frequencies of the input trains. The
output of the feed–forward network in response to this stimulus is shown in Fig. 5.17.

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 20 40
Mean f (Hz)

Figure 5.17: Raster plot of the activity of the feed–forward network in response to the stimulus
shown in Fig. 5.16. The activity of the network simply represent the input stimulus, as the local
connectivity of the network is disabled. The right panel shows the mean frequencies measured for
the output spike trains.

78 Chapter 5. Spiking VLSI Competitive Networks

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Neuron address

M
ea

n
F

re
qu

en
cy

 (
H

z)

No coupling

Global Inhibition

Weak lateral excitation

Strong lateral excitation

Figure 5.18: Sharpening. All curves represents the mean output frequencies of the IFRON neurons
in response to the same stimulus, for different strengths of recurrent coupling (neuron number 1
is the global inhibitory neuron). When the local coupling is disabled the activity of the IFRON
neurons simply reflect the applied input (see continuous line) and the global inhibitory neuron is
not active. When global inhibition is enabled, the excitatory neurons stimulate the global inhibitory
neuron which, in turn, inhibits the excitatory neurons. Hence, the activity of the excitatory neurons
is suppressed (dotted line). When lateral excitation is added to global inhibition, the recurrent
connectivity amplifies the activity of the most active neurons and suppresses the activity of the
others (dashed–dotted and dashed lines).

tion 4.4. The input stimuli in the software simulation consisted of constant DC currents,
while in the hardware system I stimulated the IFRON chip via the input AER synapses
(described in section 3.6) with Poisson distributed spike trains.

I tested the sharpening behavior using Poisson distributed input spike trains with con-
stant mean frequencies over time. To emulate a bell–shaped sensory input I modulated the
mean frequency using Gaussian functions over space (neuron addresses). Figure 5.16 shows
a raster plot of the input stimulus used to stimulate the network in a first set of experiments.
Using this stimulus I explored the parameter space repeating the experiment several times,
with different bias settings to modulate the strength of the local connectivity. Figure 5.17
shows the response of the feed–forward network to the stimulus. Since the local connec-
tivity is disabled, the activity of the network reflects the filtering properties of the synaptic
and neural circuits together. To evaluate the effect of cooperation and competition on the
network activity we compare this activity (represented by a continuous line in Fig. 5.18)
to the output of the recurrent network in response to the same input stimulus for different
bias settings (represented by a dotted, dashed–dotted, and dashed line in Fig. 5.18). When
only global inhibition is enabled (no recurrent excitation) a thresholding effect is observed
and the activity profile is globally shifted to lower mean frequencies: the inhibitory neuron
uniformly reduces the activity of all excitatory neurons. When lateral excitation is also en-

5.2. IFRON Chip Experiments 79

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 20 40
Mean f (Hz)

Figure 5.19: Raster plot for the suppression experiment: feed–forward network response. The
left panel shows the raster plot of the activity of the network in response to two Gaussian shaped
inputs with different amplitude (in terms of mean frequency) composed by Poisson trains of spikes.
Since the recurrent coupling is disabled the activity of the network reflects the applied input and the
global inhibitory neuron (address number 1) is not active. The right panel shows the mean output
frequencies of the neurons in the network.

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n

ad
dr

es
s

0 20 40
Mean f (Hz)

Figure 5.20: Raster plot for the suppression experiment: recurrent network response. The left
panel shows the raster plot of the activity of the network in response to the same input applied to
the feed–forward network (see Fig. 5.19). The right panel shows the mean output frequencies of
the neurons in the network. The recurrent connectivity (lateral excitation and global inhibition)
amplifies the activity of the neurons with highest mean output frequency and suppresses the activity
of other neurons (compare with right panel of Fig. 5.19).

80 Chapter 5. Spiking VLSI Competitive Networks

5 10 15 20 25 30
0

5

10

15

20

25

Neuron address

F
ee

df
or

w
ar

d
ne

tw
or

k
−

 m
ea

n
fr

eq
ue

nc
y

(H
z)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 m
ea

n
ac

tiv
ity

V
wei

 = 800 mV

V
wei

 = 850 mV

V
wei

 = 900 mV

Figure 5.21: Suppression for three different values of global inhibition. The red trace (left axis)
represents the baseline: the activity of the neurons in response to the external stimulus when the
local connections are not active (feed–forward network). The black traces (right axis) are obtained
by dividing the activity of the network with local connectivity by the baseline activity. The black line
indicates the border between amplification and suppression. The neurons that receive the strongest
inputs can amplify their activity through local connectivity as long as the inhibition is not too strong.

5 10 15 20 25 30
0

5

10

15

20

25

Neuron address

F
ee

df
or

w
ar

d
ne

tw
or

k
−

 m
ea

n
fr

eq
ue

nc
y

(H
z)

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
ea

n
ac

tiv
ity

V
wlatexc

 = 600 mV

V
wlatexc

 = 820 mV

V
wlatexc

 = 830 mV

V
wlatexc

 = 850 mV

Figure 5.22: Suppression for several values of lateral excitation. The red trace (left axis) represents
the baseline: the activity of the neurons in response to the external stimulus when the local connec-
tions are not active (feed–forward network). The black traces (right axis) are obtained by dividing
the activity of the network with local connectivity by the baseline activity. The black line underline
the edge between amplification and suppression. For high lateral excitation the neurons that receive
the strongest inputs can amplify their activity through local connectivity.

5.3. Discussion 81

abled, the global inhibition acts differently on different neurons: the most active neurons
successfully cooperate to drive the global inhibitory neuron and suppress the least active
neurons. As a result, amplification of the activity of the most active neurons occurs. In
summary, depending on the relative strength of lateral excitation and global inhibition, net-
work activity can be suppressed or amplified in a selective way (as already shown by the
software simulation in section 4.4). The number of active neurons is always reduced by the
local connectivity and sharpening is observed.

Suppression of less effective stimuli was tested using two Gaussian shaped inputs with
different amplitude (in terms of mean frequency) composed by Poisson trains of spikes.
Two examples of raw data for these experiments in the feed–forward and recurrent net-
work conditions are shown in Fig. 5.19 and 5.20 respectively. The output of the network
is shown in Fig. 5.21 for three different values of the strength of global inhibition (modu-
lated using the weight of the connection from the excitatory neurons to the global inhibitory
neuron) and a fixed strength of lateral excitation (Vwexc = 800 mV). The activity of the
recurrent network is compared with the activity of the feed–forward network (“baseline”
activity plotted in Fig. 5.19 and represented by the red continuous curve in Fig. 5.21) in
response to the same stimulus, to easily estimate the effect of the recurrent connectivity:
the black line shows the border between amplification (above) and suppression (below).
The most active neurons cooperatively amplify their activity through lateral excitation and
efficiently drive the global inhibitory neuron to suppress the activity of other neurons (con-
tinuous and dashed black lines in Fig. 5.21). When the strength of global inhibition is high
the amplification given by the lateral excitatory connections can be completely suppressed
(dashed–dotted line in Fig. 5.21). A similar behavior is observed when the strength of lateral
excitation is modulated (see Fig. 5.22). For strong lateral excitation (continuous, dashed,
and dashed–dotted black lines in Fig. 5.22), amplification is observed for the neurons re-
ceiving the input with highest mean frequency and suppression of neurons stimulated by
trains with lower mean frequencies occur. When lateral excitation is weak (dotted line in
Fig. 5.22) the activity of all neurons is suppressed.

The non–linearity of this behavior is evident when we compare the effect of recurrent
connectivity on the peak of the lowest hill of activity and on the side of the highest hill of
activity (e.g. neuron 23 and 11 respectively, in Fig. 5.21). In the feed-forward network (red
line) these two neurons have a similar mean output frequency (∼ 12 Hz), nevertheless the
effect of recurrent connectivity on their activity is different. The activity of neuron 11 is
amplified by a factor of 1.24, while the activity of neuron 23 is suppressed to a factor of 0.39

(continuous black line). This difference shows that the network is able to act differently on
similar mean rates depending on the spatial context, distinguishing the relevant signal from
distractors and noise.

5.3 Discussion

The hardware system composed by the spiking VLSI neural network presented in this chap-
ter and the AER infrastructure described in chapter 2 provides a flexible tool for simulating

82 Chapter 5. Spiking VLSI Competitive Networks

in real–time network architectures similar to those studied by Amari and Arbib [6], Douglas
et al. [42], Hansel and Sompolinsky [56], and Dayan and Abbott [35], and described in the
previous chapter. The AER infrastructure allows us to test the network’s local connectivity
properties using arbitrary train of spikes as input stimuli. Furthermore, local connectivity
can be disabled and arbitrary network topologies can be implemented by mapping AER
output events to AER input synapses through the PCI–AER board. Multi–chip sensory sys-
tems can be built using AER sensory devices (e.g. silicon retina, silicon cochlea) to provide
input spikes to one or more multi–neuron chips in parallel, which may be interconnected
with recurrent and/or hierarchical connection schemes. An example of such a system is
described in the next chapter, where we present a two chip architecture implemented to test
a recurrent model of orientation tuning.

The spiking VLSI implementation of the cooperative competitive neural network pre-
sented in this chapter exhibits complex non–linear behaviors. These have been observed
in biological neural systems and extensively studied in continuous models, but never be-
fore demonstrated in a hardware spiking system. Specifically, the recurrent network can act
differently on different neurons exhibiting similar mean output rates in the absence of re-
current connectivity: it amplifies the activity of neurons belonging to the selected stimulus
and suppresses the activity of neurons belonging to distractors or at noise level. This prop-
erty is particularly relevant in the context of signal restoration. I believe that this is one of
the mechanisms used by biological systems to perform highly reliable computation, restor-
ing signals on the basis of cooperative–competitive interaction among elementary units of
recurrent networks and hence on the basis of the context of the signal.

Chapter 6

A Multi-Chip Neuromorphic System for
Feature Selectivity

One of the most important questions that has been investigated to understand cortical cir-
cuitry and computation concerns the origin of orientation selectivity in neurons of primary
visual cortex [109, 110, 111]. The receptive field of simple cells in cats comprises elon-
gated ON and OFF subfields1, arranged side–by–side, with their long axes parallel to the
axis of the preferred orientation of the cell [59]. The models of mechanisms responsible
for orientation selectivity have been controversial since the discovery of this phenomenon
by Hubel and Wiesel [59]. Originally, it was believed that the primary origin of the ori-
entation selectivity of simple cells was due to feed–forward convergence of thalamic input
(feed–forward model) [59]. Subsequent experimental studies suggested that this contribu-
tion alone is insufficient to account for all properties of orientation tuning observed in the
visual cortex, leading to the proposal for the involvement of recurrent intracortical excita-
tion and inhibition (feed–back model) in orientation selectivity.

In the feed–forward model proposed by Hubel and Wiesel [59], orientation selectivity of
cortical simple cells is generated by elongated patterns of converging thalamic inputs, char-
acterized by concentric ON/OFF–center receptive fields. Orientation selectivity emerges
automatically from the arrangement of thalamic input (see Fig. 6.1). The essence of the
feed–forward model is a linear summation stage: input from presynaptic thalamic neurons
is summed by cortical simple cells, which also implement a non–linear rectification stage
(the threshold for action potential filters out small inputs evoked by improperly oriented
stimuli). Some experimental evidence supports the feed–forward model (see [46] for a re-
view). Since the response of simple cells is supposed to be mainly determined by their
thalamic inputs, many of their properties should be consistent with those of thalamic cells.
In fact, several similarities can be found between the two receptive field types: for exam-
ple, the existence of ON and OFF subfields [59], comparable width of simple cell subfields
and thalamic cell receptive field centers [94] and similar dynamic responses to flashing
bars [94]. Another prediction of the feed–forward model concerns the relationship between
sharpening of the tuning of thalamic cells and aspect ratio of their subfields. More elon-
gated subfields give rise to a greater difference between the thalamic input at the preferred

1Illumination of part or all of an ON subfield increases the firing of the cell, whereas a light shone in the OFF region
suppresses the firing.

83

84 Chapter 6. Orientation Selectivity

orientation and at a different orientation, affecting the sharpening of the tuning curve. In
cells with long narrow subfields, a relatively small shift in stimulus orientation will move
a large portion of the stimulus out of the subfield, generating a marked drop of activity in
response to the stimulus. Accordingly, the more elongated a simple cell’s subfields, the
more sharply orientation tuned the cell should be. Experimental results are consistent with
this prediction [46]. Observed tuning, however, is sharper than that predicted by the simple
feed–forward model [97]. Other predictions consistent with experimental evidences are re-
lated to synaptic connections between thalamic cells and cortical simple cells, and spatial
organization of thalamic input to simple cells [46].

Despite this evidence consistent with the feed–forward model, there are simple cells’
response properties that cannot be explained by it. For example, the sharpening of orienta-
tion tuning is not explained by the weakly tuned thalamocortical excitation [116]. Further-
more, contrast–invariance of the sharpness of orientation tuning is not consistent with the
feed–forward model. The width of the orientation tuning curve of simple cells is invariant
under change in stimulus contrast [105]; only the height of the tuning curve increases with
contrast. Since the response of geniculate relay cells increases with increasing contrast of
the stimulus [27], the feed–forward model cannot explain contrast–invariance of sharpness
in cortical simple cells. Several other properties of simple cells are not explained by the
feed–forward model (for a review, see [46, 111]) and can only be explained with models
which include recurrent cortical connectivity. Furthermore, it has been shown that most
of the excitatory input to cortical cells comes from cortical cells and thalamic input pro-
vides only a small fraction of the total [13]. This experimental evidence further support the
hypothesis of a dominant role of intra–cortical connectivity in shaping orientation tuning
curves of cortical simple cells.

An alternative hypothesis, that takes into account the role of intracortical connections
and provides an explanation for the sharp tuning, has been proposed in the form of several
feed–back or recurrent models [11, 56, 110]. A key feature of these models is that mutually
excitatory connections among cells with similar preferred orientations amplify the weak
thalamic input (compared with the input from other cortical cells) and mutually inhibitory
connections among cells with different preferred orientation stabilize the response of the
cortical network and sharpen the tuning of simple cells (the geniculate input is generally
assumed to be poorly tuned for orientation).

Several experimental observations are consistent with these feed–back models. Feed–
back models of cortical orientation selectivity exhibit contrast–invariance of sharpness [11,
56, 110]. They also explain time-dependent changes in orientation preference [97]. Local
inactivation with injection of GABA of functionally characterized sites in visual cortex
can disrupt orientation selectivity of cells hundreds of microns away [32], supporting the
hypothesis that local cortical connectivity plays a major role in shaping orientation tuning.

Waves of activity appear and propagate in the cortex even in the absence of a stimulus
[9], showing the tendency of the cortex to amplify small inputs and converge to one of the
stable attractors determined by the recurrent connectivity.

The pattern of connectivity described in the feed–back models is easily implemented in

85

Figure 6.1: Feed–forward model of the organization of simple receptive fields (adapted from [59]).
A large number of thalamic cells (of which four are illustrated in the upper right) have receptive
field with ON centers arranged along a straight line. They all excite a cortical cell, the receptive
field of which will then have an elongated ON center (dashed line in the receptive field diagram on
the left). The tuning of the cortical cell emerges automatically from the elongated arrangement of
thalamic input.

our VLSI device using the local hard–wired connections described in chapter 5. The major
simplification in our system, compared to the recurrent models described in literature, is
that each silicon neuron represents a population of cortical neurons. I used the IFRON chip
to implement orientation tuned neurons in a multi–chip system comprising a silicon retina
as sensing stage. The system is the result of a collaboration with Patrick Lichtsteiner (a
PhD candidate at the Institute of Neuroinformatics) who designed the silicon retina under
the supervision of Dr. Tobias Delbruck.

Several theories have been proposed to explain the origin of orientation selectivity in
primary visual cortex, and several hardware models of orientation selectivity have been
implemented in VLSI (e.g. [24, 31, 80, 118]). These systems are useful tools to explore the
computational properties of models of brain information processing in real–time, with real–
world stimuli. They provide real-time simulation of the implemented models, regardless of
the size of the network even while simulating spiking neurons. Furthermore, as the feature
size of the VLSI technology shrinks, more and more sophisticated signal processing can
be performed at the pixel level. By taking advantage of the body of knowledge about how
the retina and the visual cortex operate, the state of the art in focal–plane image processing
will advance and lead to the development of efficient artificial sensory systems that extract
salient information in real time.

In 1997, Venier et al. [118] proposed a system comprising two analog chips: a silicon
retina and a “cortical layer” chip. The silicon retina performs pohototransduction of an
image, edge enhancement (high–pass filtering) and current–to–pulse frequency conversion
of the filtered image. Pulses from the retina chip are transmitted to the “cortical layer” chip
and distributed into a “projective field”: events generated by a retinal pixel are received by
several target cells in the “cortical layer” chip. The detection of oriented stimuli is based on
the programmed (through a few bias lines) elongation of the projective field, which matches
the desired preferred orientation.

In 1999, Cauwenberghs and Waskiewicz [24] presented a hardware implementation of

86 Chapter 6. Orientation Selectivity

a neural based edge detection operator, called the boundary contour system and introduced
by Grossberg and Mingolla in 1985 [51, 50]. In their chip, a distributed nearest neighbor
resistive network is used to implement long–range cooperative interactions. The angular
resolution of the system is rather poor (multiples of π/3), and is achieved by means of a
hexagonal arrangement of pixels.

In 2001, Liu et al. [80] proposed a system comprising two analog chips: a silicon
retina and a multi–neuron network. The retinal pixels detect transients in irradiance, and
their output is coded in the form of pulses. Positive temporal irradiance transients (dark–
to–bright transitions) and negative irradiance transients (bright–to–dark transitions) appear
at two different outputs of each pixel. These two outputs are separately amplified and they
drive two different integrate–and–fire neurons within the pixel. This silicon retina chip is
the precursor of the silicon retina and used as sensory stage in our orientation selective
system (described in section 6.1.1). In Liu et al.’s implementation, the activity of the retinal
pixels is sent to the multi–neuron network: spikes from a selected set of pixels within two
orthogonally oriented rectangular regions on the retina are mapped onto two corresponding
orientation selective neurons on the multi–neuron chip. The multi–neuron network consists
of a recurrent network of integrate–and–fire neurons. The local connectivity of the network
is the same described in chapter 5, except for the absence of second neighbors excitatory
connections.

The multi–chip system described in this chapter is an evolution of the one proposed by
Liu et al. It differs from that of Liu et al., because it uses recurrent excitation in addition to
recurrent inhibition, it models several (instead of two) orientation selective neurons and it
uses different circuit implementations for the silicon neurons and synapses. In our multi–
chip orientation selectivity system we model a more realistic network, in which neurons
with similar preferred orientation cooperate, and neurons tuned to different orientations
compete2.

Another recent multi–chip implementation of orientation selective neurons was pro-
posed by Choi et al. in 2004 [31]. The system consists of a silicon retina and several chips
containing arrays of neurons with the same orientation tuning but with different receptive
field centers and spatial phases. For each receptive field center location there are four neu-
rons, which can be grouped into two pairs of ON and OFF neurons, with spatial phase
offsets of 0 and −π/2 radians. In [31] the authors presented both a feed–forward and a
feed–back model of orientation selectivity.

Our approach differs from that of Cauwenberghs and Waskiewicz, in that our system
has the sensing stage decoupled from the computational stage (as in [31, 80]). In this way
the sensing stage can have a higher fill factor and the computational stage can be more
modular and more easily expanded. Also, our system differs from the one proposed by
Choi et al. where neurons were tuned to the same orientation but different retinal positions.
Our system is flexible, because it depends only on the connection pattern among many
similar processing elements, the neurons. Thus, the computational part of the system is not

2The features of the multi–neuron network were not completely exploited in the orientation tuning experiments pre-
sented by Liu et al. Only two of the 16 excitatory neurons were used to implement orientation tuned simple cells and the
recurrent excitation was not activated during the experiments.

6.1. Orientation Selectivity Using a Silicon Retina and the IFRON chip 87

explicitly designed for orientation selectivity. Instead, it models a more generic cortical
module [44, 43] that can be applied to the detection of other features (motion, texture, etc.),
and to other sensory modalities (e.g. audition).

6.1 Orientation Selectivity Using a Silicon Retina and the
IFRON chip

The selective orientation system we developed consists of two neuromorphic VLSI chips,
the PCI-AER board described in chapter 2 and supporting hardware (see Fig. 6.2 and 6.3).
The neuromorphic chips are an address-event temporally differentiating imager [78] (TM-
PDIFF chip) described in section 6.1.1 and the IFRON chip described in chapter 5.

The AEs generated by the TMPDIFF chip in response to visual stimuli are sent to the
IFRON chip, after having been routed by the PCI-AER board mapper (see section 2.5.1).
The PCI-AER board monitor (see section 2.5.1) is used to read all AEs (generated by the
two chips), time-stamp them and log them on the host PC (see Fig. 6.2).

The supporting hardware comprises a custom Digital to Analog Converter (DAC) board
[95] for setting the analog biases of the neuromorphic chips, an LCD screen for presenting
visual stimuli, and a workstation for hosting and controlling the PCI-AER board, program-
ming the DAC board and controlling the LCD screen.

6.1.1 The TMPDIFF Chip

Visual scenes contain high density information: a one–second–long, uncompressed NTSC3

video segment amounts to about 22 MB of data [74]. Real–time transmission and process-
ing of visual data is therefore a major challenge. However, image data tends to be highly
redundant and can be substantially compressed without appreciable information loss. Suit-
able prior coding and reduction of image data performed at the sensory stage can be used
to decrease the load of data transmission and processing. Neuromorphic silicon retinas are
a biologically inspired solution for real-time applications because they exploit massively
parallel processing at the front end and compression of image information before any trans-
mission takes place [19]. Human retinas perform spatial and temporal filtering directly in
the retina and transmit data via digital pulses to the subsequent visual processing stages
[90]. Various approaches to focal-plane image processing are underway in the neuromor-
phic engineering community. The late Jörg Kramer opted for pure temporal filtering [76],
suitable for high compression rates and dense implementations. Lichtsteiner et al. imple-
mented an improved implementation of Kramer’s integrated optical transient sensor: the
TEMPDIFF chip (see [78] for a detailed description).

The TMPDIFF chip implements the sensing stage of our system. The chip produces
asynchronous address-events in response to temporal changes in brightness. The stream of

3Short for National Television System Committee. The NTSC is responsible for setting television and video standards
in the United States. The NTSC standard for television defines a composite video signal with a refresh rate of 60 half-
frames (interlaced) per second. Each frame contains 525 lines and can contain 16 million different colors.

88 Chapter 6. Orientation Selectivity

events encodes contrast changes rather than absolute illumination intensities. The retinal
computation is optimized to deliver relevant information and to discard redundancy using
high temporal and low spatial resolution, similar to the biological magnocellular pathway
[120]. As the TMPDIFF chip responds only to temporal changes in log intensity, static
scenes produce no output. Image motion produces spike events that represent relative
changes in image intensity. This operation in continuous form is represented mathemat-
ically by the following temporal relation on the pixel illumination I:

d

dt
log I =

dI/dt

I
(6.1)

This temporal derivative is self-normalized. Through this normalization, the derivative
encodes relative contrasts rather than absolute illumination differences. Contrasts are de-
termined by differences in reflectance of objects independent of overall scene illumination.
The events generated by TMPDIFF are changes in Eq. 6.1 that exceed a threshold and are
ON or OFF type depending on the sign of the change since the last event. Pixel output
consists of the stream of ON and OFF events. The imager, more thoroughly described
in [75, 78], consists of an array of 32x32 pixels, a y-arbiter, an x-arbiter and a common
address bus with two encoders [20]. An event occurring in a pixel is typically communi-
cated to the outside of the chip as an 11-bit address that encodes the pixel X-Y location
and the polarity (ON or OFF) of the event. Events are processed asynchronously in order
of their arrival time. In case of colliding events the later events are queued. The imager is
a real–time device, as events are typically communicated within 100ns of their occurrence.
The AER communication system is particularly well suited for this application because it
dedicates the full communication bandwidth to the active pixels of the imager and preserves
timing information.

6.2 Orientation Selectivity Experiments

In our setup, orientation selectivity is achieved by both feed–forward and recurrent com-
putation of the retinal activity: the feed–forward connectivity is implemented by appropri-
ately mapping connections from the TMPDIFF pixels to the IFRON chip (via the PCI–AER
board); recurrent connectivity is implemented by activating local recurrent connections on
the IFRON chip. The feed–forward mapping is set so that each IFRON neuron collects all
the TMPDIFF events coming from a 4 pixel wide straight line with a specific orientation.
We programmed 31 sets of mapping tables that map pixels arranged along 31 differently
orientated straight lines onto the 31 excitatory neurons of the IFRON chip.

In our experiments we displayed flashing oriented white bars on a dark background to
the TMPDIFF chip. The activity of the TMPDIFF chip was monitored by the PCI–AER
board and transmitted via the PCI–AER board mapping tables to the IFRON chip. Using
the PCI–AER board we time–stamped and logged both the TMPDIFF and IFRON address–
events for data analysis. To characterize the system we collected the system’s activity in
response to bars of 30 different orientations chosen independently of the set of pre–wired
preferred orientations. Each oriented bar was flashed at a rate of about 3Hz. The monitoring

6.2. Orientation Selectivity Experiments 89

AER

A
E

R

A
E

R

P
C

I

TMPDIFF IFWTA

DAC

PCLCD
DVI

U
S

B
A

N
A

L
O

G

V
IS

U
A

L
 S

T
IM

U
L

A
T

IO
N

PCI-

AER

GENERAL

PURPOSE

CUSTOM

PCBs

NEUROMORPHIC

AVLSI

Figure 6.2: AER vision system setup. The PCI-AER board routes output events of the TMPDIFF
chip in response to visual stimuli to the IFRON chip and monitors the activity of both chips. The
PC controls the LCD screen for stimulus presentation, the PCI-AER board and the DAC board.

Figure 6.3: AER vision system setup. The top left picture shows the full running setup. A flashing
bar is displayed on the LCD screen, in front of which the TMPDIFF chip is positioned. The PCB
hosting the TMPDIFF chip (yellow circle and bottom left picture) is parallel to the screen and the
field of view of the TMPDIFF chip central area is aligned with the center of the screen. The top
right picture shows the IFRON chip mounted in its hosting PCB. The IFRON PCB is connected to
the PCI–AER header board, on the top left part of the picture.

90 Chapter 6. Orientation Selectivity

Figure 6.4: Integrated response of the silicon retina to oriented flashing bars

of the address–event data lasted for 25 seconds, starting 5 seconds after stimulus onset. The
initial part of the stimulation period was ignored in order to capture the system’s steady
state behavior. Figure 6.4 shows the integrated response of the TMPDIFF chip to the 30
orientations as gray scale images.

We repeated the same experiment for two different conditions, in terms of the local
connectivity of the IFRON chip. In the first condition the biases of the IFRON chip were
set to implement a purely feed–forward model: local recurrent synapses were inactive and
the neurons’ input was completely determined by the activity of the retinal pixels. Subse-
quently, we activated the recurrent connectivity to implement the feed–back model main-
taining all other parameters unchanged. Three sets of local synapses were used: first neigh-
bor excitatory to excitatory synapses to simulate the mutually excitatory connections among
cells with similar preferred orientation, inhibitory and excitatory synapses connecting the
global inhibitory neuron to the excitatory neurons and vice versa to simulate the mutual
inhibition among cells with different preferred orientation.

Orientation tuning curves (i.e. graphs of neural response vs. stimulus orientation) are
typically measured in experiments related to the characterization of orientation selectivity
in visual cortical neurons [112]. The recorded activity of the IFRON neurons was used to
compute the mean firing rate of each neuron in response to the visual stimuli and tuning
curves were obtained by plotting these data for each neuron as a function of orientation (see
Fig. 6.6). Differences in the tuning curves across neurons are mainly due to experimental
artifacts related to the AER infrastructure, namely loss of events at the input of the IFRON
chip (see section 5.1.2).

The central pixels of the TMPDIFF chip are mapped to all neurons of the IFRON chip,

6.2. Orientation Selectivity Experiments 91

0

2
0

4
0 0

2
0

4
0 0

2
0

4
0

0
9

0
1

8
0

0

2
0

4
0

0
9

0
1

8
0

0
9

0
1

8
0

0
9

0
1

8
0

0
9

0
1

8
0

0
9

0
1

8
0

0
9

0
1

8
0

0
9

0
1

8
0

O
ri

e
n

ta
ti

o
n

 (
d

e
g

re
e

)

Mean Frequency (Hz)

Fi
gu

re
6.

5:
Tu

ni
ng

cu
rv

es
fo

r
th

e
fe

ed
–f

or
w

ar
d

(d
as

he
d

lin
e)

an
d

th
e

fe
ed

–b
ac

k
(s

ol
id

lin
e)

m
od

el
of

or
ie

nt
at

io
n

se
le

ct
iv

ity
.

T
he

m
ea

n
fr

eq
ue

nc
y

(H
z)

of
ea

ch
ne

ur
on

is
pl

ot
te

d
as

a
fu

nc
tio

n
of

st
im

ul
us

or
ie

nt
at

io
n.

T
he

to
p

le
ft

gr
ap

h
sh

ow
s

th
e

ac
tiv

ity
of

th
e

in
hi

bi
to

ry
ne

ur
on

,t
he

ot
he

rg
ra

ph
s

sh
ow

th
e

ac
tiv

ity
of

th
e

ex
ci

ta
to

ry
ne

ur
on

s
(a

ba
rr

ep
re

se
nt

in
g

th
e

re
tin

al
pi

xe
ls

m
ap

pe
d

to
th

e
ne

ur
on

,i
.e

.i
ts

pr
ef

er
re

d
or

ie
nt

at
io

n,
is

sh
ow

n
in

th
e

to
p

ri
gh

to
fe

ac
h

pl
ot

).
T

he
tu

ni
ng

cu
rv

es
of

th
e

fe
ed

–f
or

w
ar

d
m

od
el

ha
ve

a
la

rg
er

am
pl

itu
de

an
d

a
sm

al
le

r
ha

lf
–w

id
th

at
ha

lf
–h

ei
gh

tc
om

pa
re

d
to

th
e

tu
ni

ng
cu

rv
es

of
th

e
fe

ed
-b

ac
k

m
od

el
.

92 Chapter 6. Orientation Selectivity

0 90 180
0

5

10

15

20

25

30

35

40

M
ea

n
F

re
qu

en
cy

 (
H

z)

Orientation (degree)

FF fit
FF data
FB fit
FB data

Figure 6.6: Tuning curves for the feed–forward (dashed line and filled circles) and the feed–back
(solid line and empty circles) model of orientation selectivity for the neuron with vertical preferred
orientation (enlargement of the second left panel in the first row of Fig. 6.5). The lines represent the
von Mises functions fitted to the data, represented by circles and errorbars (standard deviation over
the measured mean frequency.)

therefore each neuron also receives input events when its non–preferred orientation is pre-
sented to the retina. The effect of this “baseline” input is clearly visible in the feed–forward
model, where the activity of the IFRON neurons simply reflect the input from the retina.
In this case, the frequencies in the tuning curves are greater than zero for all orientation
and a maximum is observed at the preferred orientation. In the feed–back model, baseline
activity is suppressed and activity in response to the preferred orientation is amplified (see
Fig. 6.5 and 6.6).

We fitted the tuning curves to quantify the effect of recurrent connectivity on the re-
sponse of the orientation selective neurons. The von Mises function is one of the most
widely used functions to fit experimental data obtain from orientation tuned visual cortical
cells in the neuroscience community [112]; it is defined as

M(θ) = Aek[cos2(θ−φ)−1] (6.2)

where A is the value of the function at the preferred orientation φ, and k is a width param-
eter, from which the half–width at half–height θ0.5 may be calculated (in radians) as:

θ0.5 = 0.5arccos[(ln0.5 + k)/k]; k > −0.5ln0.5 (6.3)

The von Mises function approximates a Gaussian in shape over a biologically likely range
of values of k. A least–squares fit of the data to the von Mises function was used to estimate
the parameters of the tuning curve of each neuron.

6.2. Orientation Selectivity Experiments 93

5
10

15
20

25
30

51015202530 Amplitude FB (Hz)

A
m

pl
itu

de
 F

F
 (

H
z)

(a
)

15
20

25
152025

θ 0.5 FB (degree)

θ
0.

5 F
F

 (
de

gr
ee

)

(b
)

Fi
gu

re
6.

7:
(a

)
Po

pu
la

tio
n

da
ta

fo
r

th
e

am
pl

itu
de

of
th

e
tu

ni
ng

cu
rv

e
at

th
e

pr
ef

er
re

d
or

ie
nt

at
io

n
(f

ee
d–

ba
ck

ve
rs

us
fe

ed
–f

or
w

ar
d

m
od

el
).

E
ac

h
po

in
t

re
pr

es
en

ts
a

si
ng

le
ne

ur
on

.P
ar

am
et

er
A

of
E

q.
6.

2
es

tim
at

ed
by

fit
tin

g
tu

ni
ng

cu
rv

es
in

th
e

fe
ed

–b
ac

k
m

od
el

is
pl

ot
te

d
ag

ai
ns

tt
he

sa
m

e
pa

ra
m

et
er

es
tim

at
ed

fr
om

fe
ed

–f
or

w
ar

d
m

od
el

’s
tu

ni
ng

cu
rv

es
.

A
ll

po
in

ts
lie

ab
ov

e
th

e
di

ag
on

al
,s

ho
w

in
g

ho
w

ac
tiv

ity
is

am
pl

ifi
ed

in
th

e
fe

ed
–b

ac
k

m
od

el
w

ith
re

sp
ec

tt
o

th
e

fe
ed

–f
or

w
ar

d
m

od
el

.(
b)

Po
pu

la
tio

n
da

ta
fo

rt
he

ha
lf

–w
id

th
at

ha
lf

–h
ei

gh
to

ft
he

tu
ni

ng
cu

rv
e

(f
ee

d–
ba

ck
ve

rs
us

fe
ed

–f
or

w
ar

d
m

od
el

).
A

lm
os

ta
ll

po
in

ts
lie

be
lo

w
th

e
di

ag
on

al
,s

ho
w

in
g

ho
w

ac
tiv

ity
is

sh
ar

pe
ne

d
in

th
e

fe
ed

–b
ac

k
m

od
el

w
ith

re
sp

ec
tt

o
th

e
fe

ed
–f

or
w

ar
d

m
od

el
.

94 Chapter 6. Orientation Selectivity

Feed–forward Model Feed–back Model
Mean STD Mean STD

A (Hz) 10 2 19 4

θ0.5 (◦) 21 2 19 2

Baseline activity (Hz) 1.7 0.6 0.07 0.11

Preferred orientation error (◦) 3 2 3 2

Table 6.1: Parameters obtained by least–squares fitting of the data to the von Mises distribution.
The mean and standard deviation (STD) over the population of 31 orientation selective neurons are
reported.

Figure 6.6 shows the tuning curve of the neuron tuned to vertical orientation: the data
and the von Mises fitted function are plotted for both the feed–forward and feed–back
model. The data points used to perform the fits are the mean frequency of the neurons
computed over the 25 s of data acquisition. It is not appropriate to use the standard devia-
tion of this mean as a measure of the variability of our data because it represents an intrinsic
variability generated by the way the measurement is performed. The IFRON chip is stim-
ulated only during and shortly after the appearance and disappearance of the bar, when the
ON and OFF pixels of the TMPDIFF chip are activated by the visual stimulation. High
variability is induced in the pattern of activity of the TMPDIFF and IFRON chips, with
bursts of events during the appearance and disappearance of the flashing bar and gaps of no
activity in between. Ideally, the activity within a single burst could be used to compute the
mean frequency in response to the stimulation and be considered as a single measurement.
The mean and standard deviation over many repetitions of this measurement would provide
a good estimation of the mean frequency and its variance. To allow a simpler manipulation
of the data and start from a more reliable ‘single’ measurement, we decided to divide our 25
s acquisition time into five intervals each 5 s long, and consider the mean over this interval
as a single measurement of the neurons’ mean frequency in response to the stimulus. The
variability of our data (shown as error bars in Fig. 6.6) is then computed as the standard
deviation over the five measured frequencies.

To evaluate the goodness of the fits we used the R–squared value (the square of the
correlation between the measured values and the values predicted by the fit). It can take on
any value between 0 and 1, with a value closer to 1 indicating a better fit. We calculated
R–squared for all the fits: the mean of all the computed values is 0.982 with a standard
deviation of 9 × 10−3, which indicate that on average the fits can explain 98% of the total
variation in the data.

Figures 6.7(a) and 6.7(b) show the estimated amplitude and half–width at half–height
respectively, for all the neurons in the network in the feed–back versus the feed–forward
configuration. All data points lie above the diagonal in Fig. 6.7(a), showing that the re-
sponse to the preferred orientation is amplified in the feed–back network with respect to the
response in the feed–forward network. Sharpening of the tuning is shown in Fig. 6.7(b),
where data points tend to lie below the diagonal. The population mean values of these pa-

6.3. Discussion 95

rameters plus the baseline activity and the preferred orientation error are listed in Tab. 6.1.
On average, the peak activity in the feed–back network is twice the peak activity in the
feed–forward network and the ratio between the half–width at half–height for the two con-
figurations is 0.9 (feed–back over feed–forward).

6.3 Discussion

With the experiment described in this chapter we validated the AER communication in-
frastructure described in chapter 2, making extensive use of the PCI–AER board mapper
and monitor blocks (see section 2.5.1), and tested the IFRON chip properties in response to
“real” sensory input data (i.e. not an artificially generated train of events). We also showed
that recurrent orientation selective models are robust to “real world” tests producing the
expected response properties even in the presence of mismatch, experimental artifacts, am-
bient noise, etc.

The multi–chip system described here represents only a first attempt to implement a
complex hardware system using the hardware infrastructure described in chapter 2. It was
a useful step to demonstrate that the hardware components and the software modules de-
veloped can be used to build more complex multi–chip systems that respond to real–world
stimuli in a reliable way, and that closely reproduce the computation performed by cortical
networks.

Chapter 7

Conclusions

In this dissertation, I have presented the development and testing of a cooperative–
competitive neural network fabricated using analog CMOS VLSI technology (the IFRON
chip). I believe that full–custom neuromorphic integrated circuits can be used as a means
for testing hypotheses concerning the computation carried out by the brain, and I think
the system I developed provides a relevant contribution to understanding the role of spik-
ing recurrent cooperative–competitive networks in neural computation. I demonstrated that
the spiking VLSI neural network I designed is able to perform the same linear and non–
linear operations observed in biological systems and performed by continuous models of
cooperative–competitive networks. To prove these properties are robust to noise and that
the network can operate in complex systems, I performed an orientation selectivity experi-
ment in collaboration with Patrick Lichtsteiner. We connected a silicon retina to the IFRON
chip to implement orientation tuned neurons and tested the role of recurrent connectivity in
shaping the tuning curves. We demonstrated that cooperative–competitive connectivity can
play an important role in sharpening the tuning curves, as already known from theoretical
models and numerical simulations of orientation selectivity.

The work presented in this dissertation builds upon novel analog VLSI circuits, the
AER multi–chip communication infrastructure, theoretical models and VLSI based sys-
tems that I contributed to develop. Analog VLSI building blocks for spiking neural network
models are described in chapter 3. I provided a short description of the FET subthreshold
characteristics and simple analog circuits used in the implementation of the I&F neuron
and the synapse. The I&F neuron is the most suitable model for VLSI implementations
[47, 88]. It can be implemented by a compact low–power circuit controlled by a reasonable
number of parameters [64]. Although the I&F neuron does not model the dynamics of ionic
currents, it emulates the mechanism by which data is encoded and transmitted in biological
nervous systems: the nerve–pulse representation or spike emission. The ability of the I&F
neuron to recognize spatio–temporal spike features depends crucially on temporal synaptic
integration [52]. Temporal summation of separated inputs can take place only if temporal
integration of the input is performed at the level of the synapse. These considerations sup-
port the choice of the CMI (described in Sec. 3.5) to implement the synaptic dynamics as
opposed to using pulsed current source synaptic circuits. I presented a detailed mathemati-
cal analysis of the pulse response of the CMI which I used in the software simulation of the

97

98 Chapter 7. Conclusions

neural network, and which can be used to aid the design of novel synaptic circuits in future
chips.

The AER infrastructure used to test the IFRON chip and to build the orientation selec-
tivity system is described in chapter 2. It is a flexible infrastructure, useful for rapid pro-
totyping of AER chips. It allows stimulation of neuromorphic chips with synthetic spike
trains, monitoring and logging of output AEs for off–line analysis, mapping the output of
any transceiver chip to its input to implement arbitrary network topologies and interconnec-
tion of several chips with arbitrary one–to–one or one–to–many connectivity.

Models of recurrent cooperative–competitive networks and the analytical methods ap-
plied to them are described in chapter 4. These networks are thought to represent an ele-
mentary computational unit of the cerebral cortex [43]. They have been extensively studied
by means of several analytical approaches with simplified assumptions about the neural
dynamics (mean rate approach). The possible roles of spike timing in the computation per-
formed by these networks has not been comprehensively explored yet, and the hardware
system described in this dissertation represents a powerful tool to test different hypotheses
in this field.

The specific architecture of the spiking cooperative–competitive network I imple-
mented using a standard CMOS VLSI technology is described in chapter 5. It consists
of a ring of excitatory I&F neurons with recurrent connections (first and second neigh-
bors), and a global inhibitory neuron which is excited by all the neurons in the ring. I
demonstrated that this simple architecture has the ability to perform linear and non–linear
operations similar to those performed by biological neural systems.

The chip I designed was fabricated using a 0.8 µm CMOS process, and contained a
network with 32 neurons and 698 synapses in an area of ∼ 2 mm2. We are currently
designing new chips using a more advanced 0.35 µm technology, with 256 neurons and
8192 synapses (in an area of 10 mm2). The circuits I designed are largely technology
independent, and operate fully in parallel. In principle, networks of this type can scale
up to any arbitrary size. In practice, the network size is limited by the maximum silicon
area and AER bandwidth available. Given the current speed and specifications of the AER
interfacing circuits [18] and the availability of silicon VLSI technology, there is room to
increase network size by at least two orders of magnitude.

Experiments performed with a multi–chip implementation of an orientation selective
system are described in chapter 6. The main purpose of these experiments was to test
the ability of AER infrastructure to perform a complex task (monitoring the activity of two
chips and performing one–to–many mapping from the retinal pixels to the IFRON neurons),
and to test the robustness of the computation performed by the IFRON chip in response to
“real” sensory input data, in presence of noise due to experimental artifacts (specifically,
failures of integration of input events by the IFRON chip), ambient noise, device mismatch,
etc.

7.1. Ideas for Further Work and Outlook 99

7.1 Ideas for Further Work and Outlook

The cooperative–competitive network architecture can be enriched in several ways. The
presence of a single global inhibitory neuron easily synchronizes the activity of the exci-
tatory neurons, limiting the complexity of the IFRON chip behavior (e.g. synchronization
prevents the possibility of modulating the amplitude of the hysteretic cycle, as described in
section 4.4.2). This effect can be reduced by implementing the competition among the exci-
tatory neurons with a population of inhibitory neurons, as opposed to one global inhibitory
neuron. Each neuron in the inhibitory population might be stimulated by all competing
excitatory neurons in addition to an external source of noise (e.g. a Poisson train of spike
independently generated for each inhibitory neuron). To test different patterns of connec-
tivity between the inhibitory and excitatory populations we can take advantage of the AER
infrastructure’s flexibility. Two instances of the same chip containing local recurrent exci-
tatory connections can be used to implement the two populations; the AER infrastructure
can route events between neurons on the two chips according to an arbitrary mapping table.
The local recurrent excitatory connections would be enabled in the chip implementing the
excitatory population, and disabled in the chip implementing the inhibitory population.

The implementation of two–dimensional arrays of neurons would allow computations
on more complex input spaces (e.g. bi–dimensional feature spaces) to be performed. The
two–dimensional structure poses a more strict limit on the number of synaptic circuits per
neuron, to limit area consumption. Linear summation of input currents can be very im-
portant in such a network where a common strategy to reduce hardware is to have a single
synapse circuit mimic inputs from many different cells. Self–excitation can also be included
in the local connectivity to reinforce cooperative interactions.

Although several examples of successful multi–chip networks of spiking neurons have
been recently proposed (e.g. [31, 63, 91]), there are still a number of practical problems
that hinder the development of truly large-scale, distributed, massively parallel networks
of VLSI I&F neurons. One of these problems lies in the difficulty of setting the weight of
individual synapses. In [65] we demonstrated how plastic synaptic circuits allow us to cope
with this problem, by setting the synaptic weights via a spike–based learning algorithm.
We described a spiking VLSI neural network in which the weight of any synapse in the
array can be changed by setting the pre– and post–synaptic mean firing rates to appropriate
values. This property allows us to implement learning mechanisms useful for real-time
unsupervised learning tasks, or to arbitrarily set (bistable) synaptic weights in a supervised
way, without requiring dedicated wires for each synapse.

The role of temporal correlation in neural coding is still being actively investigated.
The hardware system proposed here is a powerful tool to test hypotheses about the temporal
code, and guarantees real–time performance irrespective of the size of the neural network
implemented.

A new design of the IFRON chip is desirable to proceed in the directions mentioned
above. The new revision of the IFRON chip should include:

• More reliable input/output AER circuits (already included in more recent chip designs

100 Chapter 7. Conclusions

implemented at INI, and currently under testing), to avoid loss of synchronized events
at the input and failure of the AER output for synchronized network activity under
high output rates.

• A two–dimensional array of spiking neurons.

• Competition performed through a population of inhibitory neurons.

• An implementation of learning in the synaptic circuit.

• A novel synaptic circuit designed by Bartolozzi and Indiveri [10] to reproduce the
time course observed in excitatory and inhibitory post–synaptic biological currents.
It is a linear integrator, with independent control of time constant, synaptic weight
and synaptic scaling parameters.

The IFRON chip, its future revisions, as well as similar AER multi–neuron chips re-
cently developed [28, 30, 65, 79, 91, 114, 119] represent the main building blocks for
complex AER multi–chip neuromorphic systems. These systems are starting to play an
increasingly significant role in basic research in the field of neuroscience. One major ad-
vantage of these systems is that they can be scaled up by connecting several instances of
the same analog VLSI chips, without degrading the overall system performance. This is
a necessary condition for building real–time neuromorphic sensory systems which can be
driven by real–world stimuli and tested in realistic conditions. Besides being useful mod-
eling tools for testing different computational hypotheses in real–time, these systems and
the technological advancements promoted by their development start to be competitive with
conventional digital architectures also for commercial and medical applications [21].

Appendix A

The M/G/1 Queue and the Pollaczek-Khinchin
formula

Complex neuromorphic systems with significant computational power and high flexibility
can be built in the form of multi-chip systems. In these systems, the inter–chip communi-
cation is carried out by the Address–Event Representation (AER) described in Chap. 2. In
AER, a binary word encoding the address of the sending node (active neuron) represents
the address event transmitted through the AE bus. Different approaches are available for
the transfer of the data between the array of sending nodes and the AE bus. In arbitrated
AER (see section 2.1), an arbiter decides which one of a number of colliding events has the
right to access the transmission channel, and queues the losers of this competition. Queu-
ing affects the latency of the transmission channel. Being able to estimate this latency is
important for evaluating the amount of jitter introduced in the timing of spikes during the
transmission of events. To derive the latency of the channel we resort to queuing theory.
The queue generated by the arbitration of neural activity is an M/G/1 queue1, which is char-
acterized by a Poisson arrival process at mean rate of λ arrivals per second, and an arbitrary
distribution for service times. When a new event arrives at the queue, it must wait for the
event in service (if there is one) to complete the remaining service time, and for all events
which arrived before it but which have not begun service (assuming first-come-first-serve
scheduling). The expectation of the waiting time, w, an event spends waiting in queue
before beginning service is

w = r + Nqx

where r is the mean (or expected) residual service time of the event in service at the arrival
time of the new event, Nq is the mean number of waiting events at the instant of arrival and
x is the mean service time. Nqx is therefore the mean time needed to serve a single event.
We can use Little’s result (one of the more famous formulas from queuing theory [73]) to
express the mean queue length, Nq, in terms of the waiting time:

Nq = λw

1M stands for memoryless and implies a Poisson arrival process; G stands for general and refers to the service time
distribution; 1 is the number of servers in the queuing system.

101

102 Appendix A. The M/G/1 Queue and the Pollaczek-Khinchin formula

tx1 xnx2

r(t)

Figure A.1: Evolution of the residual service time over time.

Substituting this into the expression for w gives

w = r + λwx = r + ρw =
r

1− ρ
(A.1)

where the utilization factor, ρ = λx, is the product of the average arrival rate times the
average service time. Graphical arguments can be used to deduce the mean residual service
time (see Fig. A.1). The average of the sawtooth curve in Fig. A.1 is the sum of the areas
of the triangles divided by the length of the interval. The number of triangles is determined
by the arrival rate λ: the mean number is λt.

r =
1

t

n∑
i=1

1

2
x2

i =
n

t

1

n

n∑
i=1

1

2
x2

i = λ
1

2
x2

Substituting this into the expression for w (Eq. A.1) gives the Pllaczeck-Khinchin mean
formula for the waiting time

w =
λx2

2(1− ρ)

The mean waiting time is used to calculate the mean latency for the transmission channel.
As shown in section 2.1 the latency of the transmission channel is proportional to the mean
waiting time, which should be as small as possible to not alter substantially the timing of
the transmitted events.

Appendix B

PCI-AER Library Interface Specification

Adrian M. Whatley and Elisabetta Chicca
19 January 2004

Interface revision 1.10

B.1 Introduction

The PCI–AER library is a set of low/intermediate level functions useful for accessing and
controlling the PCI–AER board. They will be used in spike–train generation code, in data-
logging code and in other programs that need to access the PCI–AER board.

B.2 Description of the PCI–AER Library Functions

The driver divides the functionality of the PCI–AER board into separate minor devices
for the monitor, sequencer and mapper. The library, and hence this document, follows
this organization. However, some functions are applicable to more than one of these sub–
devices, and are documented first to avoid duplication of information.

Function prototypes and structure typedefs are found in a header file called pciaerlib.h.
Constants are declared in pciaer.h. The library itself is called libpciaer.a. This document is
not final. It describes the library interface as of revision 1.10 of pciaerlib.h.

Unless otherwise described, all functions return 0 for success or an errno value other-
wise.

B.2.1 Common Functions Applicable to More Than One Sub-device

int PciaerGetVersionInfo(int handle, pciaer version info t *pvi);
Given a handle to an open sub-device, this function fills the supplied
pciaer version info t structure pointed to by its argument with the version
number of the driver, the contents of the release registers of the two FPGAs and the
contents of the S5920’s revision identification register (RID). The FPGA release and
driver version information is divided within the respective unsigned short into a high byte
containing a major version number and low byte containing a minor revision number. This

103

104 Appendix B. PCI-AER Library Interface Specification

function can be called on any of the sub-devices and requires that the device was opened
for read access.
typedef struct {
unsigned short driver version;

unsigned short fpga1 release;

unsigned short fpga2 release;

unsigned char s5920 revision id;

} pciaer version info t;

int PciaerSetCounterPeriod(int handle, int period us);
int PciaerGetCounterPeriod(int handle, int *pPeriod us);
These two functions deal with the AER Clock Period. The ...Set... function accepts an
argument specifying the period in microseconds between counter updates. The only valid
values are 1, 10, 50 and 100. The ...Get... function fills the int pointed to by its second
argument with one of these values according to the current status. These functions can
be called using a handle to either the monitor or sequencer sub-device. If an attempt is
made to set the period via a handle opened on the monitor while the sequencer is open or
vice versa, the function will fail returning EBUSY to prevent the meaning of the counter
period being changed part way through a data acquisition using the monitor or part way
through a data transmission using the sequencer, unless both devices were opened by the
same process, in which case that process is assumed to know what it is doing. The ...Set...
function requires that the handle was opened for write access; the ...Get... function requires
only read access.

int PciaerResetCounter(int handle);
This function resets the counter to 0. No argument other than a handle opened on either the
monitor or sequencer is used. If an attempt is made to reset the counter via a handle opened
on the monitor while the sequencer sub-device is open or vice versa, the function will fail
returning EBUSY to prevent the monitor disrupting the sequencer’s use of the counter or
vice versa, unless both devices were opened by the same process, in which case the process
is assumed to know what it is doing. This function requires that the handle was opened for
write access.

int PciaerSetArbConfig(int handle, int arbconf);
int PciaerGetArbConfig(int handle, int *pArbconf);
These two functions deal with how many devices are multiplexed into the ar-
biter. The ...Set... function takes an argument which should be one of the values
PCIAER IOC ARB 0 16, PCIAER IOC ARB 1 15 or PCIAER IOC ARB 2 14. The
names of these constants reflect the way the 16 available bits are split between channel
number and actual AE bits. The ...Get... function fills the int pointed to by its second
argument with one of these values according to the current status. These functions can be
called using a handle to either the monitor or mapper sub-device provided that the handle

B.2. Description of the PCI–AER Library Functions 105

was opened for write access for the ...Set... function, and for read access for the ...Get...
function.

int PciaerSetSeqArbChannel(int handle, int ch);
int PciaerGetSeqArbChannel(int handle, int *pCh);
These two functions deal with which channel of the arbiter the sequencer output is
connected to. The ... Set... function uses its ch argument to specify the number of the
arbiter channel (0, 1, 2 or 3) to which the sequencer is connected. The ...Get... function
fills the integer pointed to pCh with one of these values according to the current status.
These functions can be called using a handle to either the sequencer or mapper sub-device
provided that the given handle was opened for write access for the ... Set... function and
for read access for the ...Get... function.

int PciaerGetFifoDepth(int handle, int *pDepth);
This function fills the integer pointed to by pDepth with the depth of the FIFO belonging
to the subdevice to which the handle refers, i.e. the number of words (not events or bytes)
it can hold. Note that for the monitor FIFO, when time labels are enabled, each event
requires three FIFO words, so a monitor FIFO with a depth of 64K could hold a maximum
of 21845 complete time-stamped events; and for the sequencer FIFO each event typically
requires two words, a delay and an address, so a 64K deep sequencer FIFO might hold only
32K words but might hold slightly more if not every event requires a delay. This function
requires that the given handle was opened for read access.

int PciaerResetFifo(int handle);
This function resets the FIFO belonging to the sub-device to which the handle refers, clear-
ing any events that may be queued. The handle must have been opened for read access on
the monitor subdevice or write access on either the sequencer or mapper sub-device.

B.2.2 Monitor Sub–device

int PciaerMonOpen(unsigned int iBboard, int flags, int *pHandle);

Opens the monitor sub-device on the given PCI-AER board, indexed from 0. The
flags are the same as those that may be supplied to the system call open; the only relevant
possibilities here are O RDONLY, O WRONLY, O RDWR, and O NONBLOCK.

Each board’s monitor sub-device may only be opened by a single process to ensure
that multiple processes cannot read from it simultaneously thus erroneously splitting the
incoming data into multiple streams. If the device is already open, PciaerMonOpen will
return EBUSY. Otherwise no special action is taken on opening the device, since the monitor
is always enabled to prevent sending devices (chips) from hanging waiting for a request to
be acknowledged. Note that when the monitor device is opened, the monitor FIFO may
contain stale, possibly very stale data. Applications must call PciaerResetFifo if they want
to be sure of reading recent data. Opening the device will never block.

106 Appendix B. PCI-AER Library Interface Specification

If and only if the open is successful (i.e. when the return value is 0) a handle to the
monitor sub–device is returned in the integer pointed to by the third parameter.

int PciaerMonClose(int handle);
Closes the monitor sub-device referred to by its argument. The device is marked as no
longer busy, and can then be re-opened. Otherwise no special action is taken on closing
the device, since the monitor is always enabled to prevent sending devices (chips) from
hanging waiting for a request to be acknowledged. The monitor FIFO may continue to be
filled by incoming address-events.

int PciaerMonReadRaw(int handle, int *p, unsigned int nToRead, unsigned int *pn-
Read);
PciaerMonReadRaw attempts to read up to nToRead 32-bit data words from the moni-
tor sub-device referenced by handle into the buffer starting at p. If and only if the return
value indicates success (0), the number of words actually read is placed in the unsigned int
pointed to by pnRead.

Both blocking and non-blocking read will be supported. If the monitor FIFO is empty,
in the blocking case the function will block, whereas in the non-blocking case the function
will return EAGAIN. Otherwise, if the Monitor FIFO is not empty, as many 32-bit words
as possible will be read from the FIFO and placed into the user’s buffer (i.e. until the FIFO
becomes empty, or the end of the user’s buffer is reached).

The 32 bit data words read from the monitor are formatted as follows:

Value of {data word & Meaning of data word &
MONITOR DWORD TYPE MASK} MONITOR DWORD DATA MASK}
MONITOR DWORD AER ADDR AE address value
MONITOR DWORD TIME HI High order word of time at which AE occurred
MONITOR DWORD TIME LO Low order word of time at which AE occurred
MONITOR DWORD ERROR Error code

Whether or not time values are present in the stream of words read depends on whether
time labels are enabled see the PciaerMonSetTimeLabelFlag and PciaerMonGetTimeLa-
belFlag functions. If the time values are present, they are in units of the AER clock update
period (see the PciaerSetCounterPeriod and PciaerGetCounterPeriod functions).

long PciaerMonRead(int handle, pciaer monitor read ae t *p, unsigned int nToRead,
unsigned int *pnRead);
In contrast to PciaerMonReadRaw, the PciaerMonRead function attempts to read whole
events rather than words from the monitor. PciaerMonRead attempts to read up to
nToRead events from the monitor sub-device referenced by handle into the buffer
starting at p. If and only if the return value indicates success (0L), the number of events
actually read is placed in the unsigned int pointed to by pnRead. The events read are
represented by structures of type pciaer monitor read ae t:
typedef struct

B.2. Description of the PCI–AER Library Functions 107

unsigned int ae;

unsigned int time us;

pciaer monitor read ae t;

In these structures, the time us field is not valid if time labels are not enabled (see
the PciaerMonSetTimeLabelFlag and PciaerMonGetTimeLabelFlag functions) but if time
labels are enabled, the times are always in milliseconds, irrespective of the current AER
clock update period.

PciaerMonRead exhibits the same blocking / non-blocking behaviour as PciaerMon-
ReadRaw.

Three different kinds of error conditions may be encoded in the long return value.
If the return value is 0L there is no error. If the upper half of the the long value is
zero and the lower half non-zero, then the lower half represents an errno value resulting
from an error being reported from the kernel/driver level. If the lower half of the return
value is zero and the upper half non-zero, then the upper half represents a hardware
generated error code from a MONITOR DWORD ERROR word in the stream of words
read from the device. Finally, if both halves of the long are non-zero, the whole long is
a negative number (e.g. -1L, -2L etc.) representing a protocol error detected by the library.

long CookWithTimeLabels(const int *pRaw, unsigned int nRaw, pci-
aer monitor read ae t *pCooked, unsigned int nToCook, unsigned int *pnUsedRaw,
unsigned int *pnCooked);
long CookWithoutTimeLabels(const int *pRaw, unsigned int nRaw, pci-
aer monitor read ae t *pCooked, unsigned int nToCook, unsigned int *pnUsedRaw,
unsigned int *pnCooked);
These two functions are used internally by PciaerMonRead to translate buffers containing
raw streams of words read from the device into buffers containing events, and may also be
called by the user to perform the same task. Which function to use depends on whether
time labels are present in the raw data. The parameters to the functions are as follows:

pRaw Pointer to source buffer containing raw data
nRaw Number of words available at pRaw for translation
pCooked Pointer to destination buffer of event structures
nToCook Maximum number of events to be written to pCooked
pnUsedRaw Pointer to an integer receiving the number of raw source

words processed
pnCooked Pointer to an integer receiving the number of events placed into the

destination buffer

Both functions return a long which encodes error conditions in the same format as
described under PciaerMonRead above.

int PciaerMonSetChannelSel(int handle, int Ch);
int PciaerMonGetChannelSel(int handle, int *pCh);

108 Appendix B. PCI-AER Library Interface Specification

These two functions deal with which channels are actually monitored. The ...Set... function
uses Ch to specify a 4-bit mask containing a 1 for each channel which should be monitored,
and a 0 for each channel which should not be monitored. The ...Get... function fills the
integer pointed to by pCh with such a bit mask according to the current status. The ...Set...
function requires that the given handle was opened for write access; the ...Get... function
requires only read access.

int PciaerMonSetTimeLabelFlag(int handle, int lblflag);
int PciaerMonGetTimeLabelFlag(int handle, int *pLblflag);
These two functions deal with the monitor’s Time Label flag. If the ...Set... func-
tion is called with the lblflag argument zero, time labels will be disabled,
MONITOR DWORD TIME HI and MONITOR DWORD TIME LO words will not ap-
pear in the raw data stream read by PciaerMonReadRaw, and the times in the event
structures delivered by PciaerMonRead will be meaningless. Otherwise, if the lblflag
argument is not zero, time labels will be enabled, MONITOR DWORD TIME HI and
MONITOR DWORD TIME LO words will appear in the raw data stream read by Pciaer-
MonReadRaw, and the times in the event structures delivered by PciaerMonRead will be
meaningful. The ...Get... function sets the int pointed to by its pLblflag argument to 0
or 1 according to the current status of the flag. The ...Set... function requires that the given
handle was opened for write access; the ...Get... function requires only read access.

int PciaerMonGetFifoFlags(int handle, int *pFlags);
This function fills the integer pointed to by pFlags with a status word con-
taining a combination of the monitor FIFO flag bits PCIAER IOC MON EMPTY,
PCIAER IOC MON HALF FULL and PCIAER IOC MON FULL, together with some other
reserved bits. This call can be used to determine whether a subsequent read call might be
able to read a half or a full FIFO’s worth of data. Just how much that is depends on the
depth of the FIFO. This function requires that the given handle was opened for read access.

B.2.3 Sequencer Sub-device

int PciaerSeqOpen(unsigned int iBoard, int flags, int *pHandle);
Opens the sequencer sub-device on the given PCI-AER board, indexed from 0. The flags
are the same as those that may be supplied to the system call open; the only relevant
possibilities here are O RDONLY, O WRONLY, O RDWR, O NONBLOCK and O SYNC.

Each board’s sequencer sub-device may only be opened by a single process to ensure
that multiple processes cannot write to it simultaneously thus erroneously interleaving data.
If the device is already open, PciaerSeqOpen will return EBUSY.

If and only if the open is successful (i.e. when the return value is 0) a handle to the
sequencer subdevice is returned in the integer pointed to by the third parameter.

int PciaerSeqClose(int handle);
Closes the sequencer sub-device referred to by its argument. This will block unless and

B.2. Description of the PCI–AER Library Functions 109

until the sequencer FIFO is empty, or a signal is received. (If this behaviour is not desired,
the user should call PciaerResetFifo on the handle before calling PciaerSeqClose.) After
this condition is met, the Sequencer hardware (including the sequencer FIFO) is disabled
and the device is marked as no longer busy so that it can subsequently be re-opened.

int PciaerSeqWriteRaw(int handle, const int *p, unsigned int nToWrite, unsigned int
*pnWritten);
PciaerSeqWriteRaw attempts to write up to nToWrite 32-bit data words to the sequencer
sub-device referenced by handle from the buffer starting at p. If and only if the return value
indicates success (0), the number of words actually written is placed in the unsigned int
pointed to by pnWritten.

Data words to be written to the Sequencer FIFO should be formatted as follows:

Value of {data word & Meaning of data word &
SEQUENCER DWORD TYPE MASK} SEQUENCER DWORD DATA MASK}
SEQUENCER DWORD END SEQUENCE none
SEQUENCER DWORD AER ADDRESS AE address value
SEQUENCER DWORD DELAY Relative delay in units of current

AER Clock Period
SEQUENCER DWORD WAIT TIME Absolute value of counter to wait for

Both blocking and non-blocking write will be supported. If the sequencer FIFO is full,
in the blocking case the function will block, whereas in the non-blocking case the function
will return EAGAIN. If the sequencer FIFO is not full, as many words as possible will be
written to the FIFO from the user’s buffer (i.e. until the FIFO becomes full or the end of
the user’s buffer is reached). If the O SYNC file flag is set and O NONBLOCK is not set, the
call will not return until all of the words in the user’s buffer have been written to the FIFO.

int PciaerSeqWrite(int handle, const pciaer sequencer write ae t *p, unsigned int
nToWrite, unsigned int *pnWritten);
In contrast to PciaerSeqWriteRaw, the PciaerSeqWrite function attempts to write whole
events rather than words to the sequencer. PciaerSeqWrite attempts to write up to
nToWrite events to the sequencer device referenced by handle from the buffer starting
at p. If and only if the return value indicates success (0), the number of events actually
written is placed in the unsigned int pointed to by pnWritten. The events read are
represented by structures of type pciaer sequencer write ae t:
typedef struct

unsigned int isi us;

unsigned int ae;

pciaer sequencer write ae t;

PciaerSeqWrite exhibits the same blocking / non-blocking behaviour as PciaerSe-
qWriteRaw.

110 Appendix B. PCI-AER Library Interface Specification

int PrepareRawWriteBuffer(const pciaer sequencer write ae t *pEvents, unsigned
int nEvents, unsigned int *pRawSeqWordsBuffer, unsigned int nRawSeqBuffer-
Words, unsigned int *pnEventsConverted, unsigned int *pnRawSeqBufferWord-
sUsed);
This function is used internally by PciaerSeqWrite to translate buffers containing events
formatted as described under PciaerSeqWrite above into buffers containing raw sequencer
words as required by PciaerSeqWriteRaw and may also be called by the user to perform
the same task. The parameters to the function are as follows:

pEvents Pointer to source buffer containing
pciaer sequencer write ae t structures

nEvents Number of pciaer sequencer write ae t

structures available for
translation at pEvents.

pRawSeqWordsBuffer Pointer to destination buffer to receive
raw sequencer words

nRawSeqBufferWords Maximum number of words to be written to
pRawSeqWordsBuffer

pnEventsConverted Pointer to an integer receiving the number of
complete source event structures for which the
function has written a representation into the
destination buffer at pRawSeqWordsBuffer

pnRawSeqBufferWordsUsed Pointer to an integer receiving the number of
words the function has written into the
destination buffer at pRawSeqWordsBuffer

int PciaerSeqFlush(int handle);
If the sequencer FIFO is not empty, PciaerSeqFlush will block until it is empty.

int PciaerSeqGetFifoFlags(int handle, int *pFlags);
This function fills the integer pointed to by pFlags with a status word contain-
ing a combination of the sequencer FIFO flag bits PCIAER IOC SEQ EMPTY,
PCIAER IOC SEQ HALF FULL and PCIAER IOC SEQ FULL, together with some
other reserved bits. This function requires that the given handle was opened for read access.

B.2.4 Mapper Sub-device

int PciaerMapOpen(unsigned int board, int flags, int *pHandle);
Opens the mapper sub-device on the given PCI-AER board, indexed from 0. The flags are
the same as those that may be supplied to the system call open; the only relevant possibilities
here are O RDONLY, O WRONLY and O RDWR.

Each board’s mapper sub-device may only be opened by a single process. If the device
is already open, PciaerMapOpen will return EBUSY. Otherwise no special action is taken
on opening the device, since the mapper hardware is always enabled by default. Opening

B.2. Description of the PCI–AER Library Functions 111

the device will never block.
If and only if the open is successful (i.e. when the return value is 0) a handle to the

mapper sub-device is returned in the integer pointed to by the third parameter.

const volatile pciaer mapper sram t * PciaerMapGetMapperMemory(int handle);
The primary means of access to the mapping tables is intended to be via the various func-
tions of this library whose names end in “Mapping”. The mapper SRAM can also be read
directly by obtaining a pointer to it using this function, but reading from this memory will
only produce valid results while mapper output is disabled and the mapper is not busy (see
the functions PciaerMapOutputEnable etc.). This direct access is intended primarily for use
in debugging, and direct write access is not permitted in order to guarantee the integrity of
the mapping tables. For information about the structure of the mapping tables in the mapper
SRAM, refer to the hardware documentation.

If the function fails, a null pointer is returned.

int PciaerMapClose(int handle);
Closes the mapper sub-device referred to by its argument. The device is marked as
no longer busy, and can then be re-opened. If mapper output has been disabled using
PciaerMapOutputDisable, mapper output is re-enabled. Otherwise no special action is
taken on closing the device.

int PciaerMapSetMapping(int handle, unsigned short source, unsigned short count,
const unsigned short *pDestList);
This function establishes a new mapping or replaces the existing mapping from the given
source AE to the list of count destination AEs at pDestList. This requires that
handle was opened for write access. Mapping output is suspended for the duration of
the call. If there is insufficient free contiguous mapper memory available on the device,
the function will fail returning ENOSPC. In this case, calling PciaerMapCompact may help
(see below).

int PciaerMapClearMapping(int handle, unsigned short source);
This function deletes all mappings for the given source AE. This requires that handle
was opened for write access. Mapping output is suspended for the duration of the call.

int PciaerMapGetMappingCount(int handle, unsigned short source, unsigned short
*pCount);
If and only if this function returns success (0), it places the count of the number of
destination AEs for the given source AE into the unsigned short pointed to by
pCount. This requires that handle was opened for read access. Mapping output is
suspended for the duration of the call.

int PciaerMapGetMapping(int handle, unsigned short source, unsigned short bufsize,

112 Appendix B. PCI-AER Library Interface Specification

unsigned short *pBuffer, unsigned short *pCount);
If and only if this function returns success (0), it places a list of the destination AEs for the
given source AE into the buffer pointed to by pBuffer. The size of the buffer must be
specified in terms of sizeof(unsigned short) in bufsize. If the buffer is too
small to contain the complete list of destination addresses for the given source address, the
function returns EINVAL. On success, the actual number of valid destination addresses is
placed in the unsigned short pointed to by pCount. This function requires that handle
was opened for read access. Mapping output is suspended for the duration of the call.

int PciaerMapAddToMapping(int handle, unsigned short source, unsigned short
count, const unsigned short *pDestList);
int PciaerMapDeleteFromMapping(int handle, unsigned short source, unsigned short
count, const unsigned short *pDestList);
These functions respectively add or delete the list of count destination addresses pointed
to by pDestList to or from the current set of destination addresses for the given
source AE. They both require that handle was opened for write access. Mapping
output is suspended for the duration of the calls. If there is insufficient free contiguous
mapper memory available on the device, PciaerMapAddToMapping will fail returning
ENOSPC. In this case, calling PciaerMapCompact may help (see below).

int PciaerMapFindNextMapping(int handle, unsigned short *pSource);
Replaces the integer pointed to by pSource with the next source address-event for
which a mapping exists after the one specified. This function causes mapping output to be
suspended for the duration of the call and requires that handlewas opened for read access.

int PciaerMapGetMappingsBitVector(int handle, void *p);
Fills the 8K of memory pointed to by p with a bit vector in which a 0 represents a source
address-event for which a mapping does not exist and a 1 represents one for which a
mapping does exist. This function causes mapping output to be suspended for the duration
of the call and requires that handle was opened for read access.

int PciaerMapClearAllMappings(int handle);
Clears the mapper’s memory to a state in which no address-events are mapped. This
function causes mapping output to be suspended for the duration of the call and requires
that handle was opened for write access.

int PciaerMapCompact(int handle);
Forces maximal compaction of the on-device mapping tables. This function causes
mapping output to be suspended for the duration of the call, which may be a considerable
period of time. It requires that handle was opened for write access.

int PciaerMapOutputEnable(int handle);

B.2. Description of the PCI–AER Library Functions 113

int PciaerMapOutputDisable(int handle, int wait);
int PciaerMapGetOutputState(int handle, int *pState);
These three functions deal with whether output from the mapper is or is not enabled. By
default, mapper output is enabled, but reading or writing the mapper’s hardware SRAM
contents via the above function calls or via the memory mapped into user space using Pci-
aerMapGetMapperMemory will only produce valid results while mapper output is disabled
and the mapper is not busy. When using the library functions to read or write mapping
table entries, the driver guarantees that this condition is satisfied by suspending mapping
output for the duration of the call. However, when reading the memory mapped into user
space using PciaerMapGetMapperMemory, the user program must ensure using these three
functions that mapper output is temporarily disabled and idle before it inspects the RAM
and must enable it again afterwards.

The ...Enable function uses no argument, other than the handle to the mapper.
The ...Disable function uses its wait argument as follows. If the argument is 0, the call

returns immediately after disabling the mapper output, and it is the user’s responsibility to
determine when the mapper becomes idle. If the argument is non-zero, the call will not
return until the mapper has become idle and the results of reading from the RAM will be
meaningful.

The ...GetOutputState function fills the integer pointed to by pState with a sta-
tus word containing a combination of the bits PCIAER IOC MAP OUT ENABLED and
PCIAER IOC MAP OUT BUSY. Both bits must be zero before accesses to the mapper
RAM are meaningful.

The ...Enable and ...Disable functions both require that the handle was opened for write
access; the ... GetOutputState function requires only read access.

int PciaerMapSetChannelSel(int handle, int ch);
int PciaerMapGetChannelSel(int handle, int *pCh);
These two functions deal with which channels’ input is actually processed by the mapper.
The ...Set... function uses ch to specify a 4-bit mask containing a 1 for each input channel
which should be processed by the mapper, and a 0 for each channel which should be
ignored by the mapper. The ... Get... function fills the integer pointed to by pCh with such
a bit mask according to the current status. The ...Set... function requires that handle was
opened for write access to the device; the ...Get... function requires only read access.

int PciaerMapGetFifoFlags(int handle, int *pFlags);
This function fills the integer pointed to by pFlags with a status word contain-
ing a combination of the mapper FIFO flag bits PCIAER IOC MAP EMPTY and
PCIAER IOC MAP FULL, together with some other reserved bits. This function requires
that handle was opened for read access.

int PciaerMapGetFifoFillCount(int handle, int *pCount);
int PciaerMapResetFifoFillCount(int handle, int *pCount);

114 Appendix B. PCI-AER Library Interface Specification

Both of these functions fill the integer pointed to by pCount with the number of times
the mapper FIFO has filled since the last reset of the mapper FIFO fill count; PciaerMap-
ResetFifoFillCount then resets it. PciaerMapResetFifoFillCount can also be called with
pCount null, in which case it will still reset the FIFO fill count. If pCount is non-null, both
functions require that handle was opened for read access. PciaerMapResetFifoFillCount
also requires write access.

int PciaerMapSetOutputConfig(int handle, int conf);
int PciaerMapGetOutputConfig(int handle, int *pConf);
These two functions deal with the configuration of the mapper output. The ...Set...
function uses conf to specify one of the values PCIAER IOC MAP OUT PASS THRU,
PCIAER IOC MAP OUT 1 TO 1 or PCIAER IOC MAP OUT 1 TO MANY for the current
mapper output configuration. The ...Get... function fills the integer pointed to by pConf

with one of these values according to the current configuration. The ...Set... function
requires that handle was opened for write access; the ...Get... function requires only read
access.

int PciaerMapSetDemuxConfig(int handle, int conf);
int PciaerMapGetDemuxConfig(int handle, int *pConf);
These two functions deal with the configuration of the AER demultiplexer on
the mapper output. The ...Set... function uses conf to specify one of the
values PCIAER IOC MAP DEMUX 0 16, PCIAER IOC MAP DEMUX 1 15 or
PCIAER IOC MAP DEMUX 2 14. The names of these constants reflect the way the
16 address bits are split between channel number and actual AE bits. The ...Get... function
fills the integer pointed to by its argument with one of these values according to the current
configuration. The ...Set... function requires that handle was opened for write access; the
...Get... function requires only read access.

int PciaerMapSetProtocol(int handle, int protocol);
int PciaerMapGetProtocol(int handle, int *pProtocol);
These two functions deal with the type of AER protocol used on the mapper
output. The ...Set... function uses protocol to specify one of the values
PCIAER IOC MAP AER P2P or PCIAER IOC MAP AER SCX indicating the classic
point to point, four phase handshake protocol or the shared bus, data only driven on ac-
knowledge protocol respectively. The ...Get... function fills the integer pointed to by pPro-
tocol with one of these values according to the current status. The ...Set... function requires
that handle was opened for write access; the ...Get... function requires only read access.

Appendix C

IFRON Software Simulation Tool

I designed a software simulation tool in C to explore the computational properties of the
IFRON. Simulation results obtained with different parameters settings and for different sets
of input stimuli are described in Section 4.4.

The spiking simulation tool I developed is based on C code provided by Prof. Stefano
Fusi. I modified and extended the existing code to implement the RON architecture and to
model the dynamics of my synaptic VLSI circuits. The final version includes the analytical
equations of the hardware circuit for the synaptic dynamics described in chapter 3.

The simulation tool can compute the activity of several sets of neural populations. Each
population is defined by a C structure:
typedef struct {

Neuron ∗n ; / / p o i n t e r to the neurons ’ vec to r
/ / t ab l e o f sp ikes (c i r c u l a r b u f f e r)

TableOfSpikes TOS;
Parameters para ; / / parameter s t r u c t u r e f o r the neurons
ParaSyn parasyn [MAXP] ; / / synap t i c parameter s t r u c t u r e s
/ / (one f o r each popu la t ion on the axon)

} Popula t ion ;

The branching of the Population structure is represented in Fig. C.1.
The simulation tool loops through its main function, that in turn calls the following

functions:
i n t ReadPara ()
i n t I n i t ()
i n t Evolve ()

The ReadPara() function reads user defined parameters and sets proper values to the
neurons’ and synapses’ parameters (see para. and parasyn[TP]. respectively, in Fig. C.1).
The initialization routine Init() allocates the memory to store the dynamic variables used to
compute the activity of the neurons in the simulated populations. The Evolve() function com-
putes the neuron and synapse dynamics. Within the Evolve() function another loop reads the
table of spikes and computes all the synaptic currents elicited by the spikes. The computed
currents are then used to update the state of all neurons (integrated membrane potential) and
update the table of spikes including the neurons that reached the spike emission threshold
because of the integrated current.

115

116 Appendix C. IFRON Software Simulation Tool

P
o
p
u
la

ti
o
n

P
.

N
e
u
ro

n
 *

n

n
[i
].

N
s
y
n
[T

P
]:
 n

u
m

b
e
r

o
f
s
y
n
a
p
s
e
s
 f
ro

m
 n

e
u
ro

n
 i
 t
o
 p

o
p
u
la

ti
o
n
 T

P

S
y
n
a
p
s
e
s
 o

n
 t
h
e
 a

x
o
n

fo
r

e
a
c
h
 T

P
s
[a

x
o
n
in

d
e
x
][
T

P
].

p
o
s
ts

y
n
n
e
u
:
ta

rg
e
t
n
e
u
ro

n

e
p
s
p

T
a
b

le
 o

f
s
p
ik

e
s

T
O

S
.

n
s
p
k
s
:
n
u
m

b
e
r

o
f
s
p
ik

e
s
 e

m
it
te

d

s
p
k
s
[n

th
]:
 i
n
d
e
x
 o

f
th

e
 n

e
u
ro

n
 t
h
a
t
e
m

it
te

d
 t
h
e
 n

th
 s

p
ik

e

P
a
ra

m
e
te

rs
p
a
ra

.

N
:
n
u
m

b
e
r

o
f
n
e
u
ro

n
s

th
re

s
h
o
ld

:
th

re
s
h
o
ld

 f
o
r

s
p
ik

e
 e

m
is

s
io

n

re
s
e
tm

e
a
n
:
re

s
e
t
m

e
m

b
ra

n
e
 v

o
lt
a
g
e
 (

m
e
a
n
 v

a
lu

e
)

re
s
e
tv

a
r:

 r
e
s
e
t
m

e
m

b
ra

n
e
 v

o
lt
a
g
e
 (

v
a
ri
a
n
c
e
)

re
s
ti
n
g
:
re

s
ti
n
g
 p

o
te

n
ti
a
l

re
fr

a
c
to

ry
:
re

fr
a
c
to

ry
 p

e
ri
o
d

p
a
ra

s
y
n
[T

P
].

P
a
ra

m
e
te

rs
 o

f
s
y
n
a
p
s
e
s
 f

ro
m

P
 t
o
 T

P
 (

o
n
 t
h
e
 a

x
o
n
 o

f
P

 n
e

u
ro

n
s
)

m
e
p
s
p
:
m

e
a
n
 e

p
s
p

s
e
p
s
p
:
v
a
ri
a
n
c
e
 o

f
th

e
 e

p
s
p

Fi
gu

re
C

.1
:S

tr
uc

tu
re

of
va

ri
ab

le
s

us
ed

in
th

e
IF

R
O

N
so

ft
w

ar
e

si
m

ul
at

io
n

to
ol

.

Appendix D

Arbiter UPI Code

Silicon compilation is performed through a computer program that generates integrated cir-
cuits’ layouts from a high-level specification. I wrote C code to construct the tree structure
of the output arbiter described in section 5.1.2. The layout of the IFRON chip (see chapter
5) was designed using the layout editor L-Edit provided by Tanner Research. L-Edit in-
cludes a User–Programmable Interface (UPI) for automating, customizing, and extending
the L-Edit command and function set. The UPI is based on C-language macros that describe
actions or sets of actions to be performed automatically on layout cells. Macros can draw
from a large number of available functions, variables, and data types to specify and modify
the whole range of L-Edit operations. The UPI macros are also used to create a higher
level of abstraction represented by a set of functions that form the Tanner “LComp” silicon
compiler. LComp functions provide a means to easily create and position instances of cells,
add cell geometry, and perform other basic cell operations with simple programming.

I translated the LComp code written by Dr. Kay M. Hynnä (University of Pennsylvania,
http://www.seas.upenn.edu/ kmhynna/) into UPI code (listed in this appendix) for automat-
ing the construction of AER arbiter trees. The tree generated by the UPI code is folded so
that it occupies minimum space at the edge of the neuron array [84].

module arb comp module {

#include ” arb comp . h ”

/∗ make support c e l l s f o r a r b i t e r ∗ /
void MakeArbCell (LCoord p i t c h d i f f , char axis , long NumIn)
{

i n t i ;
L Instance newInstance ;
LPoint repeat cn t , de l t a ;
LRect mbb;
LCe l l arbTopaxis , b lankCe l l ;
char STR[5 0] ;
char MSG[1 0 0] ;
char out [1 5] , r i g h t [1 5] , l e f t [1 5] , i n [1 5] , r ou t [1 5] ;
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
/ / make 2 inpu ts a r b i t e r c e l l / /
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
s p r i n t f (out , ” a rbbu f in2%c ” , ax is) ;

117

118 Appendix D. Arbiter UPI Code

s p r i n t f (in , ” a rbbu f in2 ”) ;
s p r i n t f (rout , ” r t i n 2 ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” a r b c e l l%c ” , ax is) ;
s p r i n t f (in , ” a r b c e l l ”) ;
s p r i n t f (rout , ” r t a r b ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” arb 2%c ” , ax is) ;
s p r i n t f (l e f t , ” a rbbu f in2%c ” , ax is) ;
s p r i n t f (r i g h t , ” a r b c e l l%c ” , ax is) ;
i f (A l ign0 2x (out , l e f t , r i g h t)==1)

return ;

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
/ / make top a r b i t e r c e l l / /
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
s p r i n t f (out , ” a rbbu f in1%c ” , ax is) ;
s p r i n t f (in , ” a rbbu f in1 ”) ;
s p r i n t f (rout , ” r t i n 1 ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” arbtop%c ” , ax is) ;
s p r i n t f (in , ” arbtop ”) ;
s p r i n t f (rout , ” r t a r b t o p ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” a r b r t b l a n k%c ” , ax is) ;
s p r i n t f (in , ” a r b r t b l a n k ”) ;
s p r i n t f (rout , ” r t a r b b l k ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” Arb i te rTop%c ” , ax is) ;
s p r i n t f (l e f t , ” a rbbu f in1%c ” , ax is) ;
s p r i n t f (r i g h t , ” arbtop%c ” , ax is) ;
i f (A l ign0 2x (out , l e f t , r i g h t)==1)

return ;

/ / Arbi terTopX
s p r i n t f (out , ” Arb i te rTop%c ” , ax is) ;
s p r i n t f (STR, ” Arb i te rTop%c ” , ax is) ;
arbTopaxis=LCe l l F ind (cF i le ,STR) ;
i f (! arbTopaxis)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” ,STR) ;
LDia log A le r tBox (MSG) ;
return ;

}
/ / b lankCe l l
s p r i n t f (in , ” a r b r t b l a n k%c ” , ax is) ;
s p r i n t f (STR, ” a r b r t b l a n k%c ” , ax is) ;
b lankCe l l =LCe l l F ind (cF i le ,STR) ;
i f (! b lankCe l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” ,STR) ;
LDia log A le r tBox (MSG) ;
return ;

}

119

mbb=LCell GetMbb (b lankCe l l) ;
g l d e l t a =LPoin t Set (mbb. x1−mbb. x0 , 0) ;
g l r e p e a t c n t =LPoin t Set (B i t s (NumIn−(NumIn /2) −1) ,1) ;
i f (A l i g n x (out , i n)==1)

return ;

s p r i n t f (out , ” a r b r t t h%c ” , ax is) ;
s p r i n t f (in , ” a rb r t t hB ”) ;
s p r i n t f (rout , ” r t a r b r t t h B ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
g l r e p e a t c n t =LPoin t Set (1 , 1) ;
g l d e l t a =LPoin t Set (0 , 0) ;
s p r i n t f (in , ” a rb r t t hA ”) ;
i f (A l i g n y (out , i n)==1)

return ;

s p r i n t f (out , ” arbr tupdn%c ” , ax is) ;
s p r i n t f (in , ” arbrtupdnB ”) ;
s p r i n t f (rout , ” r ta rb r tupdnB ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
g l r e p e a t c n t =LPoin t Set (1 , 1) ;
g l d e l t a =LPoin t Set (0 , 0) ;
s p r i n t f (in , ” arbrtupdnA ”) ;
i f (A l i g n y (out , i n)==1)

return ;

s p r i n t f (out , ” a r b r t v e r t%c ” , ax is) ;
s p r i n t f (in , ” a r b r t v e r t ”) ;
s p r i n t f (rout , ” r t v e r t ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” a rb r tup%c ” , ax is) ;
s p r i n t f (in , ” a rb r tup ”) ;
s p r i n t f (rout , ” r t a r b r t u p ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” a rb r tdn%c ” , ax is) ;
s p r i n t f (in , ” a rb r tdn ”) ;
s p r i n t f (rout , ” r t a r b r t d n ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
s p r i n t f (out , ” a rbbu f in0%c ” , ax is) ;
s p r i n t f (in , ” a rbbu f in0 ”) ;
s p r i n t f (rout , ” r t i n 0 ”) ;
i f (MakeRouting (out , in , rout , p i t c h d i f f)==1)

return ;
}
/∗ ∗∗∗
∗∗ Creates an a r b i t e r w i th NumIn inpu ts and re tu rns ∗∗
∗∗ the name of the c e l l . Our convent ion i s to c a l l ∗∗
∗∗ an N−i npu t a r b i t e r c e l l ” arb NX ” , where N i s number ∗∗
∗∗ of i npu ts and X i s ax is argument . ∗∗
∗∗∗ ∗ /

char ∗ArbMake (long NumIn , char axis , LCoord p i t c h d i f f)
{

char ∗Name,∗ Arb i te r0 ,∗ Arb i te r1 ,MSG[1 0 0] ;
long Arb0Inputs , Arb1Inputs , RouteLevel ;

120 Appendix D. Arbiter UPI Code

i n t i ;
LCe l l ou tCe l l , arb0Cel l , a rb1Cel l ;
L Instance NextRow , Bottom ;
char i n [1 5] , out [1 5] ;
LTransform loc t rans fo rm , tmp transform ;

Name=(char ∗) mal loc (sizeof (char)∗3 2) ;
A r b i t e r 0 =(char ∗) mal loc (sizeof (char)∗3 2) ;
A r b i t e r 1 =(char ∗) mal loc (sizeof (char)∗3 2) ;
s p r i n t f (Name, ” arb %i%c ” , NumIn , ax is) ;

/ / u n r o l l recu rs ion i n f o l l o w i n g cases :
i f (ArbCreated [NumIn])

return (Name) ;
i f (NumIn==2)
{

s p r i n t f (Name, ” arb 2%c ” , ax is) ;
return (Name) ;

}

/ / s p l i t a r b i t e r i n t o a bottom and top h a l f
/ / w i th the f o l l o w i n g number o f i npu ts and
/ / c a l l y o u r s e l f to create the c e l l s :
Arb1Inputs=NumIn / 2 ; / / top h a l f
A r b i t e r 1 =ArbMake (Arb1Inputs , axis , p i t c h d i f f) ;

Arb0Inputs=NumIn−Arb1Inputs ; / / bottom h a l f
A r b i t e r 0 =ArbMake (Arb0Inputs , axis , p i t c h d i f f) ;

/ / c a l c u l a t e the number o f r o u t i n g l e v e l s requ i red
/ / on r i g h t o f a r b c e l l to get to top o f r o u t i n g l e v e l
/ / count s t a r t s from 0 not 1 ; ” 0 ” takes 1 b i t
RouteLevel= B i t s (Arb0Inputs −1);

/ / Bu i l d ” arb NumInaxis ” from these two c e l l s

/ / p lace bottom h a l f
i f (A l i gn0 y (Name, A r b i t e r 0)==1)

return ;

/ / p lace 2− i npu t a r b i t e r c e l l to hook up the
/ / top and bottom h a l f
g l r e p e a t c n t =LPoin t Set (1 , 1) ;
g l d e l t a =LPoin t Set (0 , 0) ;
s p r i n t f (out , ” a rbbu f in0%c ” , ax is) ;
s p r i n t f (in , ” a r b c e l l%c ” , ax is) ;
i f (A l i gn 2x (Name, out , i n)==1)

return ;
l o c t r ans fo rm =t rans form ;

/ / now place the top h a l f
i f (GetyCoord (Name)==1)

return ;
tmp transform=t rans form ;
i f (A l i g n y (Name, A r b i t e r 1)==1)

return ;

Arb0Wir ing (Name, Arb0Inputs , ax is) ;

121

/ / p lace r o u t i n g c e l l to connect top & bottom
/ / to r o u t i n g i n t o a r b c e l l
t rans form= loc t r ans fo rm ;
/ / rou te center 2− i npu t a r b i t e r s i gna l s l e f t / r i g h t
/ / across to the c o r r e c t r o u t i n g l e v e l
s p r i n t f (in , ” a r b r t t h%c ” , ax is) ;
for (i =1; i <RouteLevel ; i ++)
{

i f (A l i g n x (Name, i n)==1)
return ;

}
s p r i n t f (in , ” arbr tupdn%c ” , ax is) ;
i f (A l i g n y (Name, i n)==1)

return ;
t rans form . t r a n s l a t i o n . y= tmp transform . t r a n s l a t i o n . y ;
Arb1Wir ing (Name, Arb1Inputs , ax is) ;

/ / i n d i c a t e t h a t ” arb NumInX ” has been created
ArbCreated [NumIn] = 1 ;
return (Name) ;

}
/∗ ∗∗
∗ Get coord ina te to a l i g n v e r t i c a l l y the next ins tance
∗∗ ∗ /

i n t GetyCoord (char ∗ i n p u t C e l l)
{

i n t i ;
LRect mbb;
LCe l l i n C e l l ;
char MSG[1 0 0] ;
i =0;
/ / I npu t Ce l l
i n C e l l =LCe l l F ind (cF i le , i n p u t C e l l) ;
i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , i n p u t C e l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
mbb=LCel l GetMbbAl l (i n C e l l) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;
return (i) ;

}
/∗ ∗∗
∗ Get coord ina te to a l i g n h o r i z o n t a l l y the next ins tance
∗∗ ∗ /

i n t GetxCoord (char ∗ i n p u t C e l l)
{

i n t i ;
LRect mbb;
LCe l l i n C e l l ;
char MSG[1 0 0] ;
i =0;
/ / I npu t Ce l l
i n C e l l =LCe l l F ind (cF i le , i n p u t C e l l) ;
i f (! i n C e l l)
{

122 Appendix D. Arbiter UPI Code

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , i n p u t C e l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
mbb=LCel l GetMbbAl l (i n C e l l) ;
t rans form . t r a n s l a t i o n . x=mbb. x1 ;
t rans form . t r a n s l a t i o n . y=mbb. y0 ;
return (i) ;

}
/∗ ∗∗ ∗ /
void Arb0Wir ing (char ∗Name, long ArbInputs , char ax is)
{

/ / Routes s igna l s f o r A r b i t e r (N−N/ 2) (bottom one)

i n t i ;
long Arb0Inputs , Arb1Inputs ;
char i n [1 5] ;

/ / S p l i t A r b i t e r (N−N/ 2) i n t o i t s top and bottom h a l f s
Arb1Inputs=ArbInputs / 2 ;
Arb0Inputs=ArbInputs−Arb1Inputs ;
i f (GetxCoord (Name)==1)

return ;
i f (Arb0Inputs ==1)
{

/ / p lace c e l l t h a t rou tes s igna l s r i g h t and up
s p r i n t f (in , ” a rb r tup%c ” , ax is) ;
A l i g n y (Name, i n) ;

}
else
{

/ / p lace blanks t i l l you get to top c e l l
s p r i n t f (in , ” a r b r t b l a n k%c ” , ax is) ;
A l i g n y (Name, i n) ;
for (i =2; i <Arb0Inputs ; i ++)

A l i g n y (Name, i n) ;
/ / then place c e l l t h a t rou tes s igna l s r i g h t and up
s p r i n t f (in , ” a rb r tup%c ” , ax is) ;
A l i g n y (Name, i n) ;

/ / then rou te them up to top edge
s p r i n t f (in , ” a r b r t v e r t%c ” , ax is) ;
for (i =1; i <Arb1Inputs ; i ++)

A l i g n y (Name, i n) ;
}

}
/∗ ∗∗ ∗ /
void Arb1Wir ing (char ∗Name, long ArbInputs , char ax is)
{

/ / Routes s igna l s f o r A r b i t e r (N/ 2) (top one)

i n t i ;
long Arb0Inputs , Arb1Inputs ;
char i n [1 5] ;

/ / S p l i t A r b i t e r (N/ 2) i n t o i t s top and bottom h a l f s
Arb1Inputs=ArbInputs / 2 ;
Arb0Inputs=ArbInputs−Arb1Inputs ;
i f (Arb0Inputs ==1)

123

{
/ / p lace c e l l t h a t routes s igna l s down
s p r i n t f (in , ” a rb r tdn%c ” , ax is) ;
A l i g n y (Name, i n) ;

}
else
{

/ / rou te s igna l s from bottom edge to top c e l l
s p r i n t f (in , ” a r b r t v e r t%c ” , ax is) ;
A l i g n y (Name, i n) ;
for (i =2; i <Arb0Inputs ; i ++)

A l i gn y (Name, i n) ;
/ / then place c e l l t h a t routes s igna l s down
s p r i n t f (in , ” a rb r tdn%c ” , ax is) ;
A l i g n y (Name, i n) ;
/ / p lace blanks t i l l you get to top edge
s p r i n t f (in , ” a r b r t b l a n k%c ” , ax is) ;
for (i =1; i <Arb1Inputs ; i ++)

A l i gn y (Name, i n) ;
}

}

/∗ ∗∗ ∗ /
i n t MakeRouting (char ∗ outpu tCe l l , char ∗ i npu tCe l l , char ∗ r o u t i n g C e l l ,
LCoord p i t c h d i f f)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , i nCe l l , r o u t C e l l ;
LTransform t rans fo rm loc ;
LInstance newInstance ;
LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
}

/ / I npu t Ce l l
i n C e l l =LCe l l F ind (cF i le , i n p u t C e l l) ;
i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , i n p u t C e l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
/ / Routing Ce l l
r o u t C e l l =LCe l l F ind (cF i le , r o u t i n g C e l l) ;

124 Appendix D. Arbiter UPI Code

i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , r o u t i n g C e l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}

t r ans fo rm loc =LTransform Zero () ;
t r ans fo rm loc . t r a n s l a t i o n . x =0;
t r ans fo rm loc . t r a n s l a t i o n . y =0;
repea t cn t =LPoin t Set (1 , 1) ;
de l t a =LPoin t Set (0 , 0) ;
newInstance=LInstance New (outCe l l , i nCe l l , t r ans fo rm loc , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t r ans fo rm loc . t r a n s l a t i o n . x=mbb. x0 ;
t r ans fo rm loc . t r a n s l a t i o n . y=mbb. y1 ;
i f (p i t c h d i f f !=0)
{

repea t cn t =LPoin t Set (1 , p i t c h d i f f) ;
de l t a =LPoin t Set (0 ,100) ;
newInstance=LInstance New (outCe l l , r ou tCe l l , t rans fo rm loc , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;

}
else
{

mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;

}
return (i) ;

}
/∗ ∗∗ ∗ /
i n t A l i gn x (char ∗ outpu tCe l l , char ∗ i n p u t C e l l)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , i n C e l l ;
L Instance newInstance ;
/ / LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log Aler tBox (MSG) ;
i =1;
return (i) ;

}
}

/ / I npu t Ce l l

125

i n C e l l =LCe l l F ind (cF i le , i n p u t C e l l) ;
i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , i n p u t C e l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
newInstance=LInstance New (outCe l l , i nCe l l , t ransform , g l r e p e a t c n t , g l d e l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x1 ;
t rans form . t r a n s l a t i o n . y=mbb. y0 ;
return (i) ;

}
/∗ ∗∗ ∗ /
i n t Al ign0 y (char ∗ outpu tCe l l , char ∗ i n p u t C e l l)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , i n C e l l ;
LInstance newInstance ;
LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
}

/ / I npu t Ce l l
i n C e l l =LCe l l F ind (cF i le , i n p u t C e l l) ;
i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , i n p u t C e l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
t rans form=LTransform Zero () ;
t rans form . t r a n s l a t i o n . x =0;
t rans form . t r a n s l a t i o n . y =0;
repea t cn t =LPoin t Set (1 , 1) ;
de l t a =LPoin t Set (0 , 0) ;
newInstance=LInstance New (outCe l l , i nCe l l , t ransform , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;
return (i) ;

}
/∗ ∗∗ ∗ /

126 Appendix D. Arbiter UPI Code

i n t A l i gn y (char ∗ outpu tCe l l , char ∗ i n p u t C e l l)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , i n C e l l ;
L Instance newInstance ;
/ / LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log Aler tBox (MSG) ;
i =1;
return (i) ;

}
}

/ / I npu t Ce l l
i n C e l l =LCe l l F ind (cF i le , i n p u t C e l l) ;
i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , i n p u t C e l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
newInstance=LInstance New (outCe l l , i nCe l l , t ransform , g l r e p e a t c n t , g l d e l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;
return (i) ;

}
/∗ ∗∗ ∗ /
i n t Al ign 2x (char ∗ outpu tCe l l , char ∗ l e f t C e l l , char ∗ r i g h t C e l l)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , l C e l l , r C e l l ;
L Instance newInstance ;
LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log Aler tBox (MSG) ;
i =1;

127

return (i) ;
}

}
/ / I npu t l e f t Ce l l
l C e l l =LCe l l F ind (cF i le , l e f t C e l l) ;
i f (! l C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , l e f t C e l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
/ / I npu t r i g h t Ce l l
r C e l l =LCe l l F ind (cF i le , r i g h t C e l l) ;
i f (! r C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , r i g h t C e l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
newInstance=LInstance New (outCe l l , l C e l l , t ransform , g l r e p e a t c n t , g l d e l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x1 ;
t rans form . t r a n s l a t i o n . y=mbb. y0 ;
newInstance=LInstance New (outCe l l , rCe l l , t ransform , g l r e p e a t c n t , g l d e l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x1 ;
t rans form . t r a n s l a t i o n . y=mbb. y0 ;
return (i) ;

}
/∗ ∗∗ ∗ /
i n t Al ign0 2x (char ∗ outpu tCe l l , char ∗ l e f t C e l l , char ∗ r i g h t C e l l)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , l C e l l , r C e l l ;
LInstance newInstance ;
LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
}

/ / I npu t l e f t Ce l l
l C e l l =LCe l l F ind (cF i le , l e f t C e l l) ;
i f (! l C e l l)
{

128 Appendix D. Arbiter UPI Code

s p r i n t f (MSG, ” Ce l l %c (l e f t) does not e x i s t ” , l e f t C e l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
/ / I npu t r i g h t Ce l l
r C e l l =LCe l l F ind (cF i le , r i g h t C e l l) ;
i f (! r C e l l)
{

s p r i n t f (MSG, ” Ce l l %c (r i g h t) does not e x i s t ” , r i g h t C e l l) ;
LD ia log A le r tBox (MSG) ;
i =1;
return (i) ;

}
t rans form=LTransform Zero () ;
t rans form . t r a n s l a t i o n . x =0;
t rans form . t r a n s l a t i o n . y =0;
repea t cn t =LPoin t Set (1 , 1) ;
de l t a =LPoin t Set (0 , 0) ;
newInstance=LInstance New (outCe l l , l C e l l , t ransform , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x1 ;
t rans form . t r a n s l a t i o n . y=mbb. y0 ;
newInstance=LInstance New (outCe l l , rCe l l , t ransform , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x1 ;
t rans form . t r a n s l a t i o n . y=mbb. y0 ;
return (i) ;

}
/∗ ∗∗ ∗ /
i n t Al ign2 y (char ∗ outpu tCe l l , char ∗botCe l l , char ∗ t opCe l l)
{

i n t i ;
char MSG[1 0 0] ;
LCe l l ou tCe l l , bCel l , t C e l l ;
L Instance newInstance ;
LPoint repeat cn t , de l t a ;
LRect mbb;

i =0;
/ / Output Ce l l
ou tCe l l =LCe l l F ind (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

ou tCe l l =LCell New (cF i le , ou tpu tCe l l) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , ou tpu tCe l l) ;
LD ia log Aler tBox (MSG) ;
i =1;
return (i) ;

}
}

/ / I npu t bottom Ce l l
bCel l=LCe l l F ind (cF i le , bo tCe l l) ;
i f (! bCe l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , bo tCe l l) ;
LD ia log A le r tBox (MSG) ;

129

i =1;
return (i) ;

}
/ / I npu t top Ce l l
t C e l l =LCe l l F ind (cF i le , t opCe l l) ;
i f (! t C e l l)
{

s p r i n t f (MSG, ” Ce l l %c does not e x i s t ” , t opCe l l) ;
LD ia log Ale r tBox (MSG) ;
i =1;
return (i) ;

}
t rans form=LTransform Zero () ;
t rans form . t r a n s l a t i o n . x =0;
t rans form . t r a n s l a t i o n . y =0;
repea t cn t =LPoin t Set (1 , 1) ;
de l t a =LPoin t Set (0 , 0) ;
newInstance=LInstance New (outCe l l , bCel l , t ransform , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;
newInstance=LInstance New (outCe l l , t C e l l , t ransform , repeat cn t , de l t a) ;
mbb=LInstance GetMbb (newInstance) ;
t rans form . t r a n s l a t i o n . x=mbb. x0 ;
t rans form . t r a n s l a t i o n . y=mbb. y1 ;
return (i) ;

}
/∗ ∗∗ ∗ /
char ∗MakeEncoder (i n t NumIn , char axis , LCoord p i t c h)
{

/ / make the address b i t vec to r
i n t numbits= B i t s ((long) (NumIn−1)) ;
unsigned mask ;
unsigned code ;
i n t i , j ;
long DeltaY , xpos ;
LCe l l ou tCe l l ;
char out [1 5] , i n [1 5] , in0 [1 5] , in1 [1 5] , r ou t [1 5] ,STR[100] ,MSG[1 5 0] ;
char ∗encoder ;

encoder =(char ∗) mal loc (sizeof (char)∗3 2) ;

s p r i n t f (in0 , ” arb0addr%c ” , ax is) ;
s p r i n t f (in , ” arb0addr ”) ;
s p r i n t f (rout , ” r t a rbadd r ”) ;
i f (MakeRouting (in0 , in , rout , p i t c h)==1)

return ;
s p r i n t f (in1 , ” arb1addr%c ” , ax is) ;
s p r i n t f (in , ” arb1addr ”) ;
s p r i n t f (rout , ” r t a rbadd r ”) ;
i f (MakeRouting (in1 , in , rout , p i t c h)==1)

return ;
i f (GetyCoord (in1)==1)

return ;
DeltaY=t rans form . t r a n s l a t i o n . y ;
xpos= t rans form . t r a n s l a t i o n . x ;
s p r i n t f (encoder , ” encoder%c ” , ax is) ;
ou tCe l l =LCell New (cF i le , encoder) ;
i f (! ou tCe l l)

130 Appendix D. Arbiter UPI Code

{
s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , encoder) ;
LD ia log A le r tBox (MSG) ;
return ;

}
t rans form=LTransform Zero () ;
t rans form . t r a n s l a t i o n . x =0;
t rans form . t r a n s l a t i o n . y =0;
g l r e p e a t c n t =LPoin t Set (1 , 1) ;
g l d e l t a =LPoin t Set (0 , 0) ;
mask=pow(2 , numbits)−1;
for (i =1; i <=NumIn ; i ++){

i f (A l i g n x (encoder , in1)==1)
{

s p r i n t f (MSG, ” Er ro r ”) ;
LD ia log Ale r tBox (MSG) ;
return ;

}
code=mask ˆ (i −1);
for (j =1; j <=numbits ; j ++)
{

i f (g e t b i t s (code , numbits−j , 1)==0)
{

i f (A l i gn x (encoder , in0)==1)
{

s p r i n t f (MSG, ” Er ro r ”) ;
LD ia log Ale r tBox (MSG) ;
return ;

}
}

else i f (g e t b i t s (code , numbits−j , 1)==1)
{

i f (A l i gn x (encoder , in1)==1)
{

s p r i n t f (MSG, ” Er ro r ”) ;
LD ia log Ale r tBox (MSG) ;
return ;

}
}

else
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng encoder ”) ;
LD ia log A le r tBox (MSG) ;
return ;

}
}

t rans form . t r a n s l a t i o n . y+=DeltaY ;
t rans form . t r a n s l a t i o n . x=xpos ;

}
return (encoder) ;

}
/∗ ∗∗ ∗ /
char ∗MakeCore2Arb (i n t NumIn , char axis , LCoord p i t c h)
{

LCel l ou tCe l l , i n C e l l ;
char out [1 5] , out0 [1 5] , i n [1 5] , r ou t [1 5] ,MSG[1 5 0] ;
LPoint repeat cn t , de l t a ;
long DeltaY ;
char ∗core2arb ;

131

core2arb =(char ∗) mal loc (sizeof (char)∗3 2) ;

s p r i n t f (out , ” a r b l o g i c%c ” , ax is) ;
s p r i n t f (in , ” a r b l o g i c ”) ; / / a r b i t e r c e l l
s p r i n t f (rout , ” r t a r b l o g i c ”) ; / / r o u t i n g c e l l
i f (MakeRouting (out , in , rout , p i t c h)==1)

return ;
i f (GetyCoord (out)==1)

return ;
de l t a =LPoin t Set (0 , t rans form . t r a n s l a t i o n . y) ;
s p r i n t f (core2arb , ” core2arb%c ” , ax is) ;
ou tCe l l =LCell New (cF i le , core2arb) ;
i f (! ou tCe l l)
{

s p r i n t f (MSG, ” Er ro r i n c rea t i ng %c c e l l ” , core2arb) ;
LD ia log Ale r tBox (MSG) ;
return ;

}
i n C e l l =LCe l l F ind (cF i le , out) ;
i f (! i n C e l l)
{

s p r i n t f (MSG, ” Ce l l a r b l o g i c does not e x i s t ”) ;
LD ia log Ale r tBox (MSG) ;
return ;

}
t rans form=LTransform Zero () ;
t rans form . t r a n s l a t i o n . x =0;
t rans form . t r a n s l a t i o n . y =0;
repea t cn t =LPoin t Set (1 ,NumIn) ;
LInstance New (outCe l l , i nCe l l , t ransform , repeat cn t , de l t a) ;
return (core2arb) ;

}
/∗ ∗∗ ∗ /
i n t B i t s (i n t num)
{

i n t p , i ;
i =0;
p=0;
do
{

p=pow(2 , i) ;
i ++;

}while (p<num) ;
return (i −1);

}
/∗ ∗∗ ∗ /
unsigned g e t b i t s (unsigned x , i n t p , i n t n)
{

return (x>> (p+1−n)) & ˜ (˜ 0 << n) ;
}
/∗ ∗∗ ∗ /
void MakeArbi ter (i n t NumIn , LCoord p i t c h d i f f , char ax is)
{

/ / main a r b i t e r f u n c t i o n
/ / cons t ruc ts a r b i t e r c a l l e d name−a r b i t e r ,
/ / w i th NumIn inpu ts and p i t c h p i t c h
/ / s t r i n g name i s a lso used as p r e f i x f o r a l l c e l l s cons t ruc ted
char ∗ a r b i t e r , out [1 5] , top [1 5] ,∗ core2arb ,∗ encoder ;

132 Appendix D. Arbiter UPI Code

char MSG[1 5 0] ;
i n t i ;

i f (NumIn<1 | | NumIn>257){
s p r i n t f (MSG, ” arb : number o f i npu ts ou ts ide range 1 to 257 ”) ;
LDialog MsgBox (MSG) ;
return ;

}
/ / I n i t i a l i z e ar ray used to t r ack a r b i t e r s t h a t have a l ready been
/ / created so we don ’ t rec rea te them .
for (i =0; i <257; i ++)

ArbCreated [i] = 0 ;
MakeArbCell (p i t c h d i f f , ax is , NumIn) ;
a r b i t e r =ArbMake (NumIn , axis , p i t c h d i f f) ; / / make a r b i t e r
encoder=MakeEncoder (NumIn , axis , p i t c h d i f f) ; / / make encoder
core2arb=MakeCore2Arb (NumIn , axis , p i t c h d i f f) ; / / make c o r e 2 a r b i t e r
s p r i n t f (out , ” a r b i t e r%c ” , ax is) ;
A l ign0 2x (out , core2arb , encoder) ;
A l i g n y (out , a r b i t e r) ;
s p r i n t f (top , ” Arb i te rTop%c ” , ax is) ;
A l i g n y (out , top) ;

}
/∗ ∗∗
∗ MAIN FUNCTION
∗∗ ∗ /

void ArbCompMacro (void)
{

i n t k ;
double b i tscheck ;
LCoord p i t c h d i f f ;
f l o a t p i t c h a r b ;
LCe l l cCe l l ;
LRect mbb;
char STR[5 0] ,MSG[100] , ax is ;
char ∗ a r b i t e r ;

cCe l l = L C e l l G e t V i s i b l e () ;
c F i l e = LCe l l Ge tF i l e (cCe l l) ;
i f (! cCe l l | | ! c F i l e)
{

s p r i n t f (MSG, ” Er ro r g e t t i n g cu r ren t f i l e or c e l l ”) ;
LD ia log A le r tBox (MSG) ;
return ;

}
arbCe l l =LCe l l F ind (cF i le , ” a r b c e l l ”) ;
i f (! a rbCe l l)
{

s p r i n t f (MSG, ” Ce l l a r b c e l l does not e x i s t ”) ;
LD ia log A le r tBox (MSG) ;
return ;

}
mbb=LCel l GetMbbAl l (a rbCe l l) ;
p i t c h a r b =(f l o a t) (mbb. y1−mbb. y0) / 1 0 0 0 . ;
s p r i n t f (STR, ” %3.1 f ” , p i t c h a r b) ;
s p r i n t f (MSG, ” Enter p i t c h i n um (min %3.1 f um) ” , p i t c h a r b) ;
i f (LDia log InputBox (” P i t ch ” ,MSG,STR)==0)

return ;
sscanf (STR, ”%f ” ,& p i t c h p i x) ;
i f (p i t c h p i x <p i t c h a r b)

133

{
LDialog MsgBox (” P i xe l too smal l ! ! ”) ;
return ;

}
p i t c h d i f f =(i n t) (1 0 . ∗ (p i t c h p i x−p i t c h a r b)) ;
s p r i n t f (STR, ” 16 ”) ;
s p r i n t f (MSG, ” Enter number o f p i x e l s (power o f 2 ! !) ”) ;
i f (LDia log InputBox (” Number o f p i x e l s ” ,MSG,STR)==0)

return ;
sscanf (STR, ”%d ” ,&NumIn) ;
k =0;
while (b i tscheck <(double) NumIn)
{

b i tscheck=pow ((double) 2 . , (double) k) ;
k++;

}
i f (b i t scheck ! = (double) NumIn)
{

s p r i n t f (MSG, ” Er ro r : number o f p i x e l s ! ! check %d ” , b i t scheck) ;
LDialog MsgBox (MSG) ;
return ;

}
s p r i n t f (STR, ”X”) ;
s p r i n t f (MSG, ” Enter ax is ”) ;
i f (LDia log InputBox (” Axis ” ,MSG,STR)==0)

return ;
sscanf (STR, ”%c ” ,& ax is) ;
MakeArbi ter (NumIn , p i t c h d i f f , ax is) ;

}

void arb comp macro reg is ter (void)
{

LMacro Register (” Create A r b i t e r ” , ” ArbCompMacro ”) ;
}

}

arb comp macro reg is ter () ;

Abbreviations and Symbols

AE Address Event

AER Address Event Representation

CAV IAR Convolution AER Vision Architecture for Real Time

CMI Current Mirror Integrator

CMOS Complementary Metal–Oxide–Semiconductor

EPROM Erasable Programmable Read–Only Memory

EPSP Excitatory Post Synaptic Potential

fAC Function defining the access algorithm of a specific communica-
tion channel

Fchan Channel rate, inverse of the transmission time Tchan

fevent Event rate

FIFO First–In First–Out

FPGA Field–Programmable Gate Array

G Offered load for a communication channel (normalized by Tchan)

I&F Integrate–and–Fire

IFRON Integrate–and–Fire Ring of Neurons

IPSP Inhibitory Post Synaptic Potential

ISI Inter Spike Interval

MOSFET Metal–Oxide–Semiconductor Field Effect Transistor

µsys Average latency

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect, a local bus standard devel-
oped by Intel Corporation

pcoll Collision probability

135

136 Abbreviations and Symbols

PGA Pin Grid Array

PE Priority Encoder

P (k, T) Probability of obtaining k events in the obsevation time window T

P2P Point–to–Point

RON Ring of Neurons

Q Quality Metric

S Throughput of a communication channel (normalized by Tchan)

SCX Silicon Cortex

SI Suppression Index

SR Shift Register

Tchan Transmission time

Tsr Mean time interval between two consecutive scans of the same
sending node in a sequential scanning access algorithm

UPI User Programmable Interface

V LSI Very Large Scale Integration

w Average waiting time

WTA Winner–Take–All

Bibliography

[1] The Address-Event Representation Communication Protocol AER 0.02. Caltech in-
ternal memo, February 1993. http://www.ini.unizh.ch/˜amw/scx/std002.pdf.

[2] L. Abbott, K. Sen, J. Varela, and S. Nelson. Synaptic depression and cortical gain
control. Science, 275(5297):220–223, 1997.

[3] J.P. Abrahamsen, P. Hafliger, and T.S. Lande. A time domain winner-take-all network
of integrate-and-fire neurons. In 2004 IEEE International Symposium on Circuits
and Systems, volume 5, pages V–361 – V–364, May 2004.

[4] E. D. Adrian. The Basis of Sensation: The Actions of the Sense Organs. Lowe and
Brydone Printers LTD., London, 1928.

[5] S. Amari. Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields.
Biological Cybernetics, 27:77–87, 1977.

[6] S. Amari and M. A. Arbib. Competition and Cooperation in Neural Nets. In J. Met-
zler, editor, Systems Neuroscience, pages 119–65. Academic Press, 1977.

[7] R. A. Andersen, G. K. Essick, and R. M. Siegel. Encoding of Spatial Location by
Posterior Parietal Neurons. Science, 230(4724):456–8, 1985.

[8] N. Arica and F. T. Yarman-Vural. An Overview of Character Recognition Focused
on Off-Line Handwriting. IEEE Transactions on System, Man and Cybernetics - Part
C, 31(2):216–33, 2001.

[9] A. Arieli, D. Shoham, R. Hildesheim, and A. Grinvald. Coherent Spatiotempo-
ral Patterns of Ongoing Activity Revealed by Real-Time Optical Imaging Coupled
With Single-Unit Recording in the Cat Visual Cortex. Journal of Neurophysiology,
73(5):2072–93, 1995.

[10] C. Bartolozzi and G. Indiveri. Silicon synaptic homeostasis. In Brain Inspired Cog-
nitive Systems 2006, 2006.

[11] R. Ben-Yishai, R. Lev Bar-Or, and H. Sompolinsky. Theory of Orientation Tuning
in Visual Cortex. Proceedings of the National Academy of Sciences of the USA,
92(9):3844–3848, April 1995.

[12] A. Bennett. Large Competitive Networks. Network, 1:449–62, 1990.

137

138 Bibliography

[13] T. Binzegger, R. J. Douglas, and K. Martin. A Quantitative Map of the Circuit of Cat
Primary Visual Cortex. Journal of Neuroscience, 24(39):8441–53, 1994.

[14] K. A. Boahen. Retinomorphic Vision Systems: Reverse Engineering the Vertebrate
Retina. Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1997.

[15] K. A. Boahen. Point-to-Point Connectivity Between Neuromorphic Chips Using
Address-Events. IEEE Transactions on Circuits and Systems II, 47(5):416–34, 2000.

[16] K. A. Boahen. A Burst-Mode Word-Serial Address-Event Link – I: Transmitter De-
sign. IEEE Circuits and Systems I, 51(7):1269–80, 2004.

[17] K. A. Boahen. A Burst-Mode Word-Serial Address-Event Link – II: Receiver Design.
IEEE Circuits and Systems I, 51(7):1281–91, 2004.

[18] K. A. Boahen. A Burst-Mode Word-Serial Address-Event Link – III: Analysis and
Test Results. IEEE Circuits and Systems I, 51(7):1292–300, 2004.

[19] K.A. Boahen. A retinomorphic Vision system. IEEE Micro, 16(5):30–39, October
1996.

[20] K.A. Boahen. Communicating Neuronal Ensembles between Neuromorphic Chips.
In T. S. Lande, editor, Neuromorphic Systems Engineering, pages 229–259. Kluwer
Academic, Norwell, MA, 1998.

[21] K.A. Boahen. Neuromorphic Microchips. Scientific American, pages 56–63, May
2005.

[22] V. Brajovic. Lossless Non-Arbitrated Address-Event Coding. In 2003 IEEE Interna-
tional Symposium on Circuits and Systems, volume 5, pages V–825 – V–828, May
2003.

[23] M. Camperi and X. J. Wang. A Model of Visuospatial Working Memory in Prefrontal
Cortex: Recurrent Network and Cellular Bistability. The Journal of Computational
Neuroscience, 5:383–405, 1998.

[24] G. Cauwenberghs and J. Waskiewicz. Focal–Plane Analog VLSI Cellular Implemen-
tation of the Boundary Contour System. IEEE Transactions on Circuits and Systems
– I, 46(2):1064–71, 1999.

[25] F. S. Chance and L. F. Abbott. Input–specific adaptation in complex cells through
synaptic depression. Neurocomputing, 38(40):141–46, 2001.

[26] F. S. Chance, S. B. Nelson, and L. F. Abbott. Synaptic Depression and the Temporal
Response Characteristics of V1 Cells. The Journal of Neuroscience, 18(12):4785–
99, 1998.

Bibliography 139

[27] H. Cheng, Y. M. Chino, E. L. III Smith, J. Hamamoto, and K. Yoshida. Transfer
Characteristics of Lateral Geniculate Nucleus X Neurons in the Cat: Effects of Spa-
tial Frequency and Contrast. Journal of Neurphysiology, 74(6):2548–57, 1995.

[28] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, S. Fusi, and
P. Del Giudice. A VLSI recurrent network of integrate–and–fire neurons connected
by plastic synapses with long term memory. IEEE Transactions on Neural Networks,
14(5):1297–1307, September 2003.

[29] E. Chicca, G. Indiveri, and R. J. Douglas. An event based VLSI network of integrate-
and-fire neurons. In Proceedings of IEEE International Symposium on Circuits and
Systems, pages V-357–V-360. IEEE, 2004.

[30] T. Y. W. Choi, P. A. Merolla, J. V. Arthur, K. A. Boahen, and B. E. Shi. Neuromor-
phic Implementation of Orientation Hypercolumns. IEEE Transactions on Circuits
and Systems I, 52(6):1049–1060, 2005.

[31] T. Y. W. Choi, B. E. Shi, and K. Boahen. An ON-OFF Orientation Selective Address
Event Representation Image Transceiver Chip. IEEE Transactions on Circuits and
Systems I, 51(2):342–353, 2004.

[32] J. M. Crook, Z. F. Kisvárday, and U. T. Eysel. Evidence for a Contribution of Lat-
eral Inhibition to Orientation Tuning and Direction Selectivity in Cat Visual Cor-
tex: Reversible Inactivation of Functionally Characterized Sites Combined with Neu-
roanatomical Tracing Techniques. European Journal of Neuroscience, 10:2065–75,
1998.

[33] E. Culurciello and A. G. Andreou. A Comparative Study of Access Topologies for
Chip-Level Address-Event Communication Channels. IEEE Transactions on Neural
Networks, 14(5):1266–77, September 2003.

[34] V. Dante, P. Del Giudice, and A. M. Whatley. PCI-AER – Hardware and Software
for Interfacing to Address-Event Based Neuromorphic Systems. The Neuromorphic
Engineer, 2(1):5–6, 2005. http://ine-web.org/research/newsletters/index.html.

[35] P. Dayan and F. Abbott. Theoretical Neuroscience: Computational and Mathemati-
cal Modeling of Neural Systems. MIT Press, 2001.

[36] S. R. Deiss, T. Delbrück, R. J. Douglas, M. Fischer, M. Mahowald, T. Matthews,
and A. M. Whatley. Address-Event Asynchronous Local Broadcast Protocol. World
Wide Web page, 1994. http://www.ini.unizh.ch/˜amw/scx/aeprotocol.html.

[37] S. R. Deiss, R. J. Douglas, and A. M. Whatley. A Pulse-Coded Communications
Infrastructure for Neuromorphic Systems. In W. Maass and C. M. Bishop, editors,
Pulsed Neural Networks, chapter 6, pages 157–78. MIT Press, 1998.

140 Bibliography

[38] P. Dev. Perception of Depth Surfaces in Random–dot Stereograms: a Neural Model.
International Journal of Man–Machine Studies, 7:511–28, 1975.

[39] M. R. DeYong, R. L. Findley, and C. Fields. The Design, Fabrication, and Test of
a New VLSI Hybrid Analog-Digital Neural Processing Element. IEEE Transactions
on Neural Networks, 3(3):363–74, 1992.

[40] R. L. Didday. A Model of Visuomotor Mechanisms in the Frog Optic Tectum. Math-
ematical Biosciences, 30:169–80, 1976.

[41] C. Diorio, P. Hasler, B.A. Minch, and C. Mead. A single-transistor silicon synapse.
IEEE Transactions on Electron Devices, 43(11):1972–1980, 1996.

[42] R. J. Douglas, M. A. Mahowald, and K. A. C. Martin. Hybrid analog-digital archi-
tectures for neuromorphic systems. In Proc. IEEE World Congress on Computational
Intelligence, volume 3, pages 1848–1853. IEEE, 1994.

[43] R. J. Douglas and K. A. C. Martin. Neural Circuits of the Neocortex. Annual Review
of Neuroscience, 27:419–51, 2004.

[44] R.J. Douglas, K.A.C. Martin, and D. Whitteridge. A Canonical Microcircuit for
Neocortex. Neural Computation, 1:480–488, 1989.

[45] R. I. M. Dunbar. Neocortex Size and Group Size in Primates: a Test of the Hypothe-
sis. Journal of Human Evolution, 28:287–96, 1995.

[46] D. Ferster and K. D. Miller. Neural Mechanisms of Orientation Selectivity in the
Visual Cortex. Annu. Rev. Neurosci., 23:441–71, 2000.

[47] S. Fusi and M. Mattia. Collective behavior of networks with linear (VLSI) Integrate
and Fire Neurons. Neural Computation, 11:633–52, 1999.

[48] T. J. Gawne, T. W. Kjaer, and B. J. Richmond. Latency: Another Potential Code for
Feature Binding in Striate Cortex. Journal of Neurophysilogy, 76(2):1356–60, 1996.

[49] W. Gerstner. What is Different with Spiking Neurons? In H. Mastebroek and
J. E. Vos, editors, Plausible Neural Networks for Biological Modelling. Kluwer Aca-
demic, 2001.

[50] S. Grossberg and E. Mingolla. Neural Dynamics of Form Perception: Boundary
Completion, Illusory Figures, and Neon Color Spreading. Psychological Review,
92:173–211, 1985.

[51] S. Grossberg and E. Mingolla. Neural Dynamics of Perceptual Grouping: Textures,
Boundaries, and Emergent Segmentations. Perception and Psychophysics, 38:141–
71, 1985.

Bibliography 141

[52] R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike timing–
based decisions. Nature Neuroscience, 9:420–428, 2006.

[53] P. Häfliger and M. Mahowald. Weight vector normalization in an analog VLSI arti-
ficial neuron using a backpropagating action potential. In Neuromorphic Systems:
Engineering Silicon from Neurobiology, chapter 16, pages 191–196. World Scien-
tific, 1998.

[54] R. Hahnloser, R. J. Douglas, M. Mahowald, and K. Hepp. Feedback interactions be-
tween neuronal pointers and maps for attentional processing. Nature Neuroscience,
2:746–752, 1999.

[55] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. J. Douglas, and S. Seung. Digi-
tal selection and analog amplification co-exist in an electronic circuit inspired by
neocortex. Nature, 405(6789):947–951, 2000.

[56] D. Hansel and H. Somplinsky. Methods in Neuronal Modeling, chapter Modeling
Feature Selectivity in Local Cortical Circuits, pages 499–567. MIT Press, Cam-
bridge, Massachusetts, 1998.

[57] C. M. Higgins and C. Koch. A Modular Multi-Chip Neuromorphic Architecture for
Real-Time Visual Motion Processing. Analog Integrated Circuits and Signal Pro-
cessing, 24:195–211, 2000.

[58] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. Journal of Physiology,
117:500–44, 1952.

[59] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional ar-
chitecture in the cat’s visual cortex. Jour. Physiology, 160:106–54, 1962.

[60] P. Hylander, J. Meador, and E. Frie. VLSI Implementaion of Pulse Coded Winner
Take All Networks. In Proceedings of the 36th Midwest Symposium on Circuits and
Systems, volume 1, pages 758–761, 1993.

[61] K. Hynna and K. Boahen. Space–rate coding in an adaptive silicon neuron. Neural
Networks, 14:645–656, 2001.

[62] G. Indiveri. A 2D Neuromorphic VLSI architecture for modeling selective atten-
tion. In S.-I. Amari, C. L. Giles, M. Gori, and V. Piuri, editors, Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks; IJCNN2000,
volume IV, pages 208–213. IEEE Computer Society, 2000.

[63] G. Indiveri. A Current-mode Hysteretic Winner-take-all Network, with Excita-
tory and Inhibitory Coupling. Analog Integrated Circuits and Signal Processing,
28(3):279–291, September 2001.

142 Bibliography

[64] G. Indiveri. Neuromorphic Selective Attention Systems. In Proc. IEEE International
Symposium on Circuits and Systems, pages III–770–III–773. IEEE, May 2003.

[65] G. Indiveri, E. Chicca, and R. Douglas. A VLSI array of low-power spiking neurons
and bistable synapses with spike–timing dependent plasticity. IEEE Transactions on
Neural Networks, 17(1):211–221, Jan 2006.

[66] G. Indiveri, R. Mürer, and J. Kramer. Active vision using an analog VLSI model of
selective attention. IEEE Transactions on Circuits and Systems II, 48(5):492–500,
May 2001.

[67] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical Pattern Recognition: A Review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:4–37, 2000.

[68] H.J. Jerison. Evolution of the Brain and Intelligence. New York: Academic Press,
1973.

[69] R. S. Johansson and I. Birznieks. First spikes in ensembles of human tactile afferents
code complex spatial fingertip events. Nature Neuroscience, 7(2):170–7, 2004.

[70] B. Julesz. Foundations of Cyclopean Perception. University of Chicago Press, 1971.

[71] E. R. Kandel, J.H. Schwartz, and T. M. Jessell. Principles of Neural Science. Mc
Graw Hill, 2000.

[72] W. L. Kilmer, W. S. McCulloch, and J. Blum. A Model of the Vertebrate Central
Command System. International Journal of Man-Machine Studies, 1:279–309, 1969.

[73] L. Kleinrock. Queueing Systems, volume II: Computer Applications. Wiley, 1976.

[74] C. Koch and B. Mathur. Neuromorphic Vision Chips. IEEE Spectrum, 33(5):38–46,
May 1996.

[75] J. Kramer. An integrated optical transient sensor. IEEE Transactions on Circuits
and Systems II, 49(9):612–628, Sep 2002.

[76] J. Kramer. An ON/OFF transient imager with event-driven, asynchronous readout.
In Proc. IEEE International Symposium on Circuits and Systems, May 2002.

[77] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie. Silicon au-
ditory processors as computer peripherals. IEEE Transactions on Neural Networks,
4:523–528, 1993.

[78] P. Lichtsteiner, T. Delbruck, and J. Kramer. Improved ON/OFF temporaly differenti-
ating address-event imager. In 11th IEEE International Conference on Electronics,
Circuits and Systems., pages 211–214. IEEE, December 2004.

[79] S.-C. Liu and R. Douglas. Temporal coding in a silicon network of integrate-and-fire
neurons. IEEE Transactions on Neural Networks, 15(5):1305–1314, Sep 2004.

Bibliography 143

[80] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, T. Burg, and R. Douglas. Orientation-
selective aVLSI spiking neurons. Neural Networks, 14(6/7):629–643, 2001.

[81] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, and R. Douglas. Analog VLSI:Circuits
and Principles. MIT Press, 2002.

[82] W. Maass and C. M. Bishop. Pulsed Neural Networks. MIT Press, 1998.

[83] W. Maass and E. D. Sontag. Neural systems as nonlinear filters. Neural Computa-
tion, 12(8):1743–72, 2000.

[84] M.A. Mahowald. VLSI analogs of neuronal visual processing: a synthesis of form
and function. PhD thesis, Department of Computation and Neural Systems, Califor-
nia Institute of Technology, Pasadena, CA., 1992.

[85] U. Mallik, R. J. Vogelstein, E. Culurciello, R. Etienne-Cummings, and G. Cauwen-
berghs. A Real-Time Spike-Domain Sensory Information Processing System. In Pro-
ceedings of IEEE International Symposium on Circuits and Systems, volume 3, pages
1919–1922, 2005.

[86] M. Mattia and P. Del Giudice. Efficient event–driven simulation of large networks of
spiking neurons and dynamical synapses. Neural Computation, 12:2305–29, 2000.

[87] C. Mead. Neuromorphic Electronic Systems. Proceedings of the IEEE,
78(10):1629–36, October 1990.

[88] C.A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA,
1989.

[89] C.A. Mead and T. Delbrück. Scanners for Visualizing Activity of Analog VLSI Cir-
cuitry. Analog Integrated Circuits and Signal Processing, 1:93–106, 1991.

[90] M. Meister and M. J. Berry II. The Neural Code of the Retina. Neuron, 22:435–50,
1999.

[91] P. Merolla and K. Boahen. A Recurrent Model of Orientation Maps with Simple and
Complex Cells. In Advances in Neural Information Processing Systems, volume 16,
pages 995–1002. MIT Press, December 2004.

[92] A. Moratara and E. A. Vittoz. A Communication Architecture Tailored for Ana-
log VLSI Artificial Neural Networks: Intrinsic Performance and Limitations. IEEE
Transactions on Neural Networks, 5(3):459–66, 1994.

[93] A. Mortara, E. Vittoz, and P. Venier. A communication scheme for analog VLSI
perceptive systems. IEEE Journal of Solid-State Circuits, 30:660–9, 1995.

[94] W. H. Mullikin, J. P. Jones, and L. A. Palmer. Receptive–Field Properties and Lam-
inar Distribution of X–Like and Y–Like Simple Cells in Cat Area 17. Journal of
Nurophysiology, 52(2):350–71, 1984.

144 Bibliography

[95] M. Oster. Tuning aVLSI chips with a mouse click. The Neuromorphic Engineer,
2(1):9, 2005. http://ine-web.org/research/newsletters/index.html.

[96] M. Oster and S.-C. Liu. A Winner-take-all Spiking Network with Spiking Inputs. In
11th IEEE International Conference on Electronics, Circuits and Systems (ICECS
2004), 2004.

[97] X. Pei, T. R. Vidyasagar, M. Volgushev, and O. D. Creutzfeldt. Receptive Field
Analysis and Orientation Selectivity of Postsynaptic Potentials of Simple Cells in
Cat Visual Cortex. Journal of Neuroscience, 14(11):7130–40, 1994.

[98] D. Purves, D.R. Riddle, and A.S. LaMantia. Iterated Patterns of Brain Circuitry (or
How the Cortex Gets Its Spots). Trends Neurosci., 15:362–368, 1992.

[99] C Rasche and R. Douglas. An Improved Silicon Neuron. Analog Integrated Circuits
and Signal Processing, 23(3):227–36, 2000.

[100] C. Rasche and R. Hahnloser. Silicon Synaptic Depression. Biological Cybernetics,
84(1):57–62, 2001.

[101] F. Rieke, D. Warland, R. de R. van Steveninck, and W. Bialek. Spikes. The MIT
Press, 1997.

[102] G. Roth and U. Dicke. Evolution of the brain and intelligence. Trends in Cognitive
Sciences, 9(5):250–7, 2005.

[103] E. Salinas and L.F. Abbott. A model of multiplicative neural responses in parietal
cortex. Proc. Natl. Acad. Sci., 93:11956–11961, October 1996.

[104] T. Sawaguchi. Relative brain size, stratification, and social structure in anthropoids.
Primates, 31:257–72, 1990.

[105] G. Sclar and R. D. Freeman. Orientation Selectivity in the Cat’s Striate Cortex Is
Invariant with Stimulus Contrast. Experimental Brain Research, 46:457–61, 1982.

[106] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gómez-Rodrı́guez, H. Kolle Riis, T. Delbrück, S. C. Liu, S. Zahnd,
A. M. Whatley, R. J. Douglas, P. Häfliger, G. Jimenez-Moreno, A. Civit, T. Serrano-
Gotarredona, A. Acosta-Jiménez, and B. Linares-Barranco. AER Building Blocks
for Multi-Layer Multi-Chip Neuromorphic Vision Systems. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems,
volume 15. MIT Press, Dec 2005.

[107] T. Serrano-Gotarredona and B. Linares-Barranco. Systematic Width-and-Length De-
pendent CMOS Transistor Mismatch Characterization and Simulation. Analog Inte-
grated Circuits and Signal Processing, 21(3):271–296, December 1999.

Bibliography 145

[108] M. Shams, J. C. Ebergen, and M. I. Elmasry. Modeling and Comparing CMOS
Implementations of the C–Element. IEEE Transactions on VLSI Systems, 6(4):563–
7, 1998.

[109] R. Shapley, M. Hawken, and D. L. Ringach. Dynamics of Orientation Selectivity
in the Primary Visual Cortex and the Importance of Cortical Inhibition. Neuron,
38:689–99, 2003.

[110] D. C. Somers, S. B. Nelson, and M. Sur. An Emergent Model of Orientation Selec-
tivity in Cat Visual Cortical Simple Cells. The Journal of Neuroscience, 15:5448–65,
1995.

[111] H. Sompolinsky and R. Shapley. New Perspective on the Mechanisms for Orienta-
tion Selectivity. Current Opinion in Neurobiology, 7:514–22, 1997.

[112] N. V. Swindale. Orientation Tuning Curves: Empirical Description and Estimation
of Parameters. Biological Cybernetics, 78:45–56, 1998.

[113] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

[114] F. Tenore, R. Etienne-Cummings, and M.A. Lewis. A programmable array of silicon
neurons for the control of legged locomotion. In Proceedings of IEEE International
Symposium on Circuits and Systems, pages 349–352. IEEE, 2004.

[115] S. Thorpe, D. Fize, and C. Marlot. Speed of Processing in the Human Visual System.
Nature, 381:520–2, 1996.

[116] T. W. Troyer, A. E. Krukowski, N. J. Priebe, and K. D. Miller. Contrast-
Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning
and Correlation-Based Intracortical Connectivity. The Journal of Neuroscience,
18(15):5908–27, 1998.

[117] A. van Schaik, E. Fragnière, and E. Vittoz. An Analogue Electronic Model of Ventral
Cochlear Nucleus Neurons. In Proceedings of the Fifth International Conference on
Microelectronics for Neural, Fuzzy and Bio-inspired Systems; Microneuro’96, pages
52–59, Los Alamitos CA, February 1996. IEEE Computer Society Press.

[118] P. Venier, A. Mortara, X. Arreguit, and E. A. Vittoz. An Integrated Cortical Layer
for Orientation Enhancement. IEEE Journal of Solid–State Circuits, 32(2):177–86,
1997.

[119] R. J. Vogelstein, U. Mallik, and G. Cauwenberghs. Silicon spike-based synaptic ar-
ray and address-event transceiver. In Proceedings of IEEE International Symposium
on Circuits and Systems, pages 385–388. IEEE, 2004.

[120] B. A. Wandell. Foundations of Vision. Sinauer Associates, Inc. Sunderland, Mas-
sachusetts, 1995.

146 Bibliography

[121] X. Xie, R. H. R. Hahnloser, and H. S. Seung. Double-ring network model of the
head-direction system. Physical Review E, 66(4):04192, 2002.

[122] M.Z. Zador and L.E. Dobrunz. Dynamic synapses in the cortex. Neuron, 19:1–4,
July 1997.

[123] R. S. Zucker and W. G. Regehr. Short-term synaptic plasticity. Annual Review of
Physiology, 64:355–405, 2002.

Curriculum Vitae

Personal Information

Phone +41 44 635 3371 53 Business Ad-
dress

Institute of

Fax +41 44 635 30 Neuroinformatics
E-mail chicca@ini.phys.ethz.ch Uni/ETH Zurich

Winterthurerstrasse 190
CH-8057 Zurich

NationalityItalian Private Address Altwiesenstrasse 270
Gender Female CH-8051 Zurich
Marital
status

Married

Birthday April 1st, 1972 Languages Italian (mother language),
English (fluent), French
(basic), German (beginner)

Education

April 2006 Doctorate of Natural Sciences. Swiss Federal Institute of Tech-
nology (ETH), Zurich. Dissertation: A Neuromorphic VLSI Sys-
tem for Modeling SpikeBased Cooperative Competitive Neural
Networks. Accepted on the reccomendation of: Prof. R. J. Dou-
glas, Dr. G.Indiveri, and Dr. D. Kiper

September 1999 “Laurea” degree (Master equivalent) in Physics. Line of study:
Electronic and cybernetics. University of Rome 1 “La Sapienza”
(Italy). Degree Thesis: A VLSI neuromorphic device with 128
neuronsand 3000 synapses: area optimization and project Advi-
sors: Prof. D. J. Amit and Dr. Gaetano Salina

147

Teaching Experiences

Winter term 2004/2005 Supervising semester projects
July 2003 Basic Analog VLSI Tutorial (with Dr. G. Indiveri) at the

Workshop of Neuromorphic Engineering, Telluride 2003
Winter term 2000/2001 Lab teaching assistant to the course Computation in Neuro-

morphic aVLSI Systems, instructors J. Kramer, T. Delbruck,
S. Liu and G. Indiveri

Workshops

June 29th July 19th, 2003 Workshop of Neuromorphic Engineering Telluride 2003
July 1st 21st, 2002 Workshop of Neuromorphic Engineering Telluride 2002
February 25th 27th, 2002 Neural and Artificial Computation Zurich
June 26th July 15th, 2000 Workshop of Neuromorphic Engineering Telluride 2000

Conferences

May 25th 28th, 2003 IEEE International Symposium on Circuits and Systems (IS-
CAS2003)

September 24th 29th, 2001 World Congress on Neuroinformatics University of Tech-
nology, Vienna

VLSI design

Tanner Tools Schematic capture (S-Edit), layout editor (L-Edit), LVS and
simulation (T-Spice). UPI and L-Comp.

Cadence Tools Schematic capture (Composer), layout editor (L-Edit), all
DIVA and simulation.

Computer Capabilities

Familiar with computer
technology

Unix, Linux, Windows, MS Dos.

Programming languages C, Matlab, Assembler, Fortran.

148

Publications

Journal Papers:
E. Chicca, A. M. Whatley, V. Dante, P. Lichtsteiner, T. Delbruck, P. Del Giudice, R. J.
Douglas, and G. Indiveri A multi-chip pulse-based neuromorphic infrastructure and
its application to a model of orientation selectivity, Submitted to IEEE Transactions
on Circuits and Systems I, Regular Papers, 2006
G. Indiveri, E. Chicca, and R. J. Douglas A VLSI array of low-power spiking neurons
and bistable synapses with spiketiming dependent plasticity, IEEE Transactions on
Neural Networks, 17:(1) 211-221, Jan, 2006
D. D. Ben Dayan Rubin, E. Chicca, and G. Indiveri Characterizing the firing propri-
eties of an adaptive analog VLSI neuron, Lecture Notes in Computer Science, 3141:
189-200, 2004
E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, L. Carota, S. Fusi, and
P. Del Giudice A VLSI recurrent network of integrate-and-fire neurons connected
by plastic synapses with long term memory, IEEE Transactions on Neural Networks,
14:(5) 1297-1307, Sep. 2003

Refereed Conference Papers:
E. Chicca, G. Indiveri, and R. J. Douglas Context dependent amplification of both
rate and event-correlation in a VLSI network of spiking neurons, Advances in Neu-
ral Information Processing Systems (NIPS), 2006, (In Press)
E. Chicca, P. Lichtsteiner, T. Delbruck, G. Indiveri and R. J. Douglas Modeling ori-
entation selectivity using a neuromorphic multi-chip system, Proceedings of IEEE
International Symposium on Circuits and Systems, 2006
E. Chicca, G. Indiveri, and R. J. Douglas An event based VLSI network of integrate-
and-fire neurons, Proceedings of IEEE International Symposium on Circuits and Sys-
tems, V-357-V-360,2004
G. Indiveri, E. Chicca, and R. J. Douglas A VLSI reconfigurable network of
integrate-and-fire neurons with spike-based learning synapses, Proceedings of 12th
European Symposium on Artificial Neural Networks (ESANN04), 405-410, 2004
E. Chicca, G. Indiveri, and R. J. Douglas An adaptive silicon synapse, Proceedings of
IEEE International Symposium on Circuits and Systems, 1: I-81-I-84, May, 2003
E. Chicca, and S. Fusi Stochastic synaptic plasticity in deterministic aVLSI net-
works of spiking neurons, Proceedings of the World Congress on Neuroinformatics
468-77, Frank Rattay(Eds.), ARGESIM/ASIM Verlag, 2001

149

