Investigations of Ligands for Cu-Catalyzed Conjugate Addition Reactions

A dissertation submitted to the EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH

for the degree of Doctor of Sciences

Presented by

Pablo Zarotti

Dipl. Natw. ETH
Born July 10, 1976
Citizen of Trasadingen (SH)

Accepted on the recommendation of

Prof. Dr. Erick M. Carreira, examiner
Prof. Dr. Antonio Togni, co-examiner

Zürich 2006

Acknowledgments

I am grateful to Professor Erick M. Carreira for the possibility to work under his supervision during my Ph. D. For respecting my wish to work on asymmetric catalysis and not on total synthesis, even when the first projects were not so successful, I thank him a lot. He was always interested in my projects and we had a lot of fruitful discussions. It was important for me that he trusted in my chemical abilities also in hard times.

I would like to thank Professor Antonio Togni for the coexamination of this thesis.
Andrew, Shinji, Corey and Florian are acknowledged for proofreading this thesis. Their suggestions were always very valuable.

I have spent a lot of time in the G336 in the last four and a half years. Starting from an all German speaking lab to a non German speaking lab, a lot of different characters moved in and out. We always had a stimulating working atmosphere and a good tune in our lab, which was very important for me. In order of appearance these nice people are: Didi, Tobias, Junichi, Alex, Takashi, José, Corey and Boris.

The benefit of such an international group like the Carreira-Group is that you can meet people from all over the world. I enjoyed the discussions about different cultures and perspectives. It was also nice to meet these people outside the lab up in the Swiss mountains. All our trips to Mulegns are very present to me. I will never forget these days with: Andrea, Didi, Tobias, Anne, Thomas, Chika, Lee, Junichi, Eriko, Takashi, Ayako, Yuji, Nao, Alex, Segal, Maya, José, Corey, Shinji and Andrew.

Joining the PINAP team finally brought success into my life as a chemist. The collaboration with Thomas, Takashi, Chika, Aschi, Shinji and Andrew was stimulating and fruitful. Personally I enjoyed the teamwork much more than working on my own.

Aschi and Georg I would like for introducing me into the world of computers. I also thank Aschi for many other things.

I thank Franziska for the personal and encouraging birthday letters.
I would like to thank my parents for financial support during my studies and for their mental support during my Ph. D. Their daily encouraging phone calls during writing this thesis are warmly acknowledged.

Finally, I would like to thank my wife Andrea for her love and support during these difficult years and for standing all my bad moods even when she was not responsible for them. Her efforts to keep my social life outside the lab alive are highly appreciated. I am glad that I can spend more time in the future with her and our sunshine Elio.

Publications

(1) Knöpfel, T.F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. "Catalytic, Enantioselective, Conjugate Alkyne Addition" J. Am. Chem. Soc. 2005, 127, 9682-9683.

Patents
(1) US Application No. 11/149,643

Poster Presentations
(1) Knöpfel, T. F.; Zarotti, P.; Carreira, E. M. "Enantioselective Conjugate Addition of Phenylacetylene Catalyzed by Cu in Water" ETH-Tag by Lonza, Visp, June 2005.

Table of Contents

Abstract iii
Zusammenfassung vi
List of Abbreviations and Acronyms ix
Chapter 1 1
Modifications of the PINAP Ligand for Optimum Performance in the Cu-Catalyzed Conjugate Addition of Alkynes to Meldrum's Acid Derived Acceptors 1
1.1 Introduction 1
1.1.1 Conjugate Additions Employing Metal Alkynylides 1
1.1.1.1 Conjugate Addition of Lithium and Grignard Alkynylides 2
1.1.1.2 Conjugate Addition of Aluminium Alkynylides 4
1.1.1.3 Conjugate Addition of Boron Alkynylides 5
1.1.1.4 Conjugate Addition of Copper Alkynylides 5
1.1.1.5 Conjugate Addition of Zinc Alkynylides 7
1.1.1.6 Conjugate Addition of Alkynes Involving Pd-, Rh- and Ru- Catalysis 9
1.1.2 Enantioselective Conjugate Additions of Alkynes 10
1.1.3 QUINAP 12
1.1.3.1 Synthesis of QUINAP 12
1.1.3.2 Analogues of QUINAP 14
1.1.4 PINAP 15
1.1.4.1 Synthesis of PINAP 16
1.1.4.2 Applications of PINAP 18
1.2 Results 20
1.2.1 Synthesis of PINAP Analogues 20
1.2.2 Modifications of the Phosphine 21
1.2.3 Modifications of the Amine 22
1.2.4 Modifications of the Naphthol 24
1.2.5 Combination of the Best 29
1.2.6 Scope of the Conjugate Addition Reaction Employing PINAP 31
1.2.7 Determination of the Rotation Barrier of Ligand 48a 39
1.2.8 Is a Defined Axial Chirality Necessary? 43
1.2.9 Other Modifications 45
1.2.10 Observation of a Strong Nonlinear Effect 49
1.2.10.1 Models and Principles 50
1.2.10.2 NLE Studies Employing Ligand 48 a in the Conjugate Addition Reaction 52
1.2.11 Phosphination Reaction of Aryl Mesylates 57
1.3 Conclusion 59
Chapter 2 61
Addition of Alkynes to Carbonyls and Iminiums 61
2.1 Introduction 61
2.1.1 Enantioselective Addition of Metal Acetylides to Carbonyls and Iminiums 64
2.1.1.1 Lithium Alkynylides 64
2.1.1.2 Boryl Alkynylides 65
2.1.1.3 Zinc Alkynylides 66
2.1.1.4 Copper Alkynylides. 73
2.1.1.5 Indium Alkynylides 77
2.2 Results 77
2.2.1 Enantioselective Addition of Acetylene to Aldehydes 77
2.2.2 Addition of Acetylene to Aldehydes Employing Alkali Metals 79
2.3 Conclusion 82
Chapter 3 83
The Enantioselective Synthesis of 3-Butane-1,2-diol by Pd-Catalyzed Rearrangement 83
3.1 Introduction 83
3.1.1 Preparation of 3-Butene-1,2-diol by Enzymatic Resolution 83
3.1.2 Preparation of 3-Butene-1,2-diol by Synthesis from Chiral Pool 85
3.1.2.1 From D-Mannitol 85
3.1.2.2 From L-Ascorbic Acid 86
3.1.2.3 From L-Tartaric Acid 87
3.1.3 Preparation of 3-Butene-1,2-diol by Hydrolytic Kinetic Resolution 88
3.1.4 Preparation of 3-Butene-1,2-diol by Palladium-Catalyzed Dynamic Kinetic. 88
Resolution 88
3.2 Results 90
3.2.1 Background to Our Own Approach 90
3.2.2 Intermolecular Approach. 91
3.2.3 Intramolecular Approach. 92
3.2.3.1 Enantioselective, Intramolecular Approach 93
3.2.3.2 Screening of Different Pd Sources - Discovery of a Diastereoselective Rearrangement 97
3.3 Conclusion 100
4 Conclusion 101
5 Experimental Part 102
5.1 Crystallographic Data 174
Curriculum Vitae 179

Abstract

\section*{Chapter 1}

In order to improve the rate and enantioselectivity of the Cu-catalyzed conjugate addition of alkynes to Meldrum's acid derived acceptors, a number of modified PINAP ligands were prepared. Variation of the phosphine did not result in any improvements, while the modifications at the amine moiety led to improved enantioselectivities albeit in lower isolated yields. Surprisingly, the incorporation of a methoxy group at the 7-position of the naphthalene led to an increase in reaction rate (Scheme I). The combination of these two substituents resulted in an efficient catalyst for the conjugate addition leading to the desired products in up to 94% yield and 95\% ee.

Scheme I

During the final step in the preparation of the N-PINAP ligands a mixture of diastereomers is formed (ratio 1.5:1). Employing this mixture as catalyst for the conjugate addition reaction afforded the corresponding product in 80% yield and 94% ee (Scheme II). This surprising result is indicative of a positive nonlinear effect. In a practical sense, this phenomenon can potentially obviate the need for the separation of the two diastereomers.

Scheme II

ratio 1.5 : 1

Chapter 2

Improved reaction conditions for the Zn -mediated enantioselective addition of acetylene to aldehydes to decrease the reaction times have been developed. This was achieved by saturation of the solvent with acetylene at $-78{ }^{\circ} \mathrm{C}$ followed by elevated reaction temperatures (Equation I). Even at these temperatures, there is no erosion in enantioselectivity ($88-98 \%$).

Equation I

A racemic version of this process was also developed, employing one equivalent potassium-tert-butoxide as a base. Addition of acetylene to cyclohexanecarboxaldehyde employing potassium-tert-butoxide in toluene at $50{ }^{\circ} \mathrm{C}$ furnished 67% of the corresponding propargyl alcohol.

Chapter 3

3-Butene-1,2-diol (I) is a versatile, polyfunctional chiral synthon that can be manipulated into more complex structure in a highly stereo- and chemoselective manner. The utility of diol I has been demonstrated in the synthesis of a wide range natural and unnatural products with interesting biological properties. 3-Butene-1,2-diol can be obtained in enantiomerically enriched form via enzymatic resolution, multi-step synthesis starting from D-mannitol, L-ascorbic acid and tartaric acid or by hydrolytic kinetic- and dynamic kinetic resolution of 2-vinyloxirane.

Our approach to the diol I began with the cyclic seven-member sulfite II, a known compound which can be obtained in one step from inexpensive starting materials. Palladium catalyzed ring-contraction to the 5 -member sulfite III proceeded in full conversion. Sulfite III was directly converted to 3-butene-1,2-diol I in an unoptimized yield of 45\% (Scheme III).

Scheme III

To obtain 3-butene-1,2-diol in enantiomeric enriched form, several ligands were employed in the ring contraction. Among all the ligands screened, phosphinooxazoline IV gave the highest enantiomeric excess (13%).

Zusammenfassung

Kapitel 1

Zahlreiche Modifikationen des N-PINAP Liganden wurden mit dem Ziel synthetisiert, ihre Selektivität sowie Reaktivität in der enantioselektiven, konjugierten Addition von terminalen Alkinen an von Meldrumsäure abgeleitete Akzeptoren zu verbessern. Dabei brachten Variationen des Phosphins keine Verbesserungen, währenddessen Modifikationen des Amins höhere Selektivitäten lieferte, wenn auch in niedrigeren Ausbeuten. Zu unserer Ueberraschung resultierte die Einfügung einer Methoxygruppe in der 7-Position des Naphthalens zu einer markanten Steigerung der Reaktionsgeschwindigkeit (Schema I). Dadurch wurde es möglich, für bestimmte Substrate die Menge an Ligand auf $10 \mathrm{~mol} \% \mathrm{zu}$ senken bei gleich bleibenden hohen Ausbeuten von bis zu 94% und Enantioselektivitäten von 95%. Die konjugierte Addition war dabei für aliphatische sowie aromatische Akzeptoren erfolgreich.

Schema I

In der Synthese des Liganden werden die beiden Diastereomere nach der abschliessenden Phosphinierung in einem Verhältnis von 1.5:1 erhalten. Werden die Liganden in diesem Verhältnis in der konjugierten Addition eingesetzt, wird das Produkt immer noch in 80% Ausbeute und mit einer Enantioselektivität von 94% erhalten (Schema II). Dieses überraschende Resultat kann mit einem positiven nichtlinearen Effekt erklärt werden. Daher kann für bestimmte Substrate die Trennung der Diastereomeren für die konjugierte Addition entfallen.

Schema II

$1.5: 1$

Kapitel 2

Die Reaktionszeit in der enantioselektiven Addition von Acetylen an Aldehyde konnte von 7-14 Tagen auf 11-22 Stunden verringert werden. Dies gelang durch Sättigen des Lösungsmittels mit Acetylen bei $-74^{\circ} \mathrm{C}$ anstelle von $-40^{\circ} \mathrm{C}$ sowie erhöhten Reaktionstemperaturen (Gleichung I). Dabei blieb die Enantioselektivität auch bei erhöhten Temperaturen hoch.

Gleichung I

Eine nicht enantioselective Version dieser Reaktion unter Verwendung von Kaliumtertbutoxid als Base wurde ebenfalls entwickelt. Unter diesen Bedingungen lieferte die Addition von Acetylen an Cyclohexanal das Produkt in einer Ausbeute von 67\%.

Kapitel 3

3-Buten-1,2-diol (I) ist ein vielseitig einsetzbarer, polyfunktionaler chiraler Baustein der stereo- und chemoselektiv verändert werden kann. Die Nützlichkeit des Diols I wurde durch die Synthese einer Vielzahl chiraler Verbindungen sowie durch zahlreiche Synthesen von Naturstoffen demonstriert. Das Diol I kann in seiner enantiomerenreinen Form durch enzymatische Racematspaltung, durch mehrstufige Synthesen ausgehend von D-Mannitol, LAscorbatsäure und Weinsäure oder durch hydrolytische kinetische oder dynamische kinetische Racematspaltung erhalten werden.

Unser Ansatz zur Synthese des diols I ging vom bekannten 7-Ring Sulfit II aus, das in einem Schritt ausgehend von 1,4-Butendiol erhalten werden kann. Die Pd-katalysierte Ringkontraktion vom 7-Ring Sulfit zum 5-Ring Sulfit erfolgte mit vollständigem Umsatz. Da das 5-Ring Sulfit III nicht stabil war, wurde es ohne Reinigung in 45\% Ausbeute zum 3-Buten-1,2diol umgesetzt (Schema III).

Schema III

Um 3-Buten-1,2-diol in enantiomeren angereicherter Form zu erhalten, wurden zahlreiche Liganden in der Umlagerung eingesetzt. Unter all den getesteten Liganden ergab das Phosphinoxazolin IV mit 13\% die höchste Enantioselektivität.

List of Abbreviations and Acronyms

A	Ångstrøm	FC	flash chromatography
${ }^{\circ} \mathrm{C}$	degree celsius		on silica gel
Ac	acetyl	g	gram
AcOEt	ethyl acetate	GC	gas chromatography
Anal.	elemental analysis	h	hour
Ar	aryl	HPLC	high pressure liquid
Bn	benzyl		chromatography
$b p$	boiling point	HIRES	high resolution
Bu	butyl	Hz	Herz
c -	cyclo	IR	infra-red
cat.	Catalyst	i	iso
conc.	concentrated	J	coupling constant in Hz
conv.	Conversion	K	degree Kelvin
Cy	cyclohexyl	LDA	lithium diisopropylamide
d	doublet	MALDI	matrix-assisted laser
δ	chemical shift in ppm		desorbtion ionization
DABCO	1,4-diazabicyclo[2.2.2]octane	Ms	methanesulfonyl
DCE	1,2-dichloroethane	NMR	nuclear magnetic resonance
DMAP	4-(N, N-dimethylamino)pyridine	kJ	kilojoule
DMF	N, N-dimethylformamide	m	multiplet
DMSO	dimethylsulfoxide	m-	meta
Dppe	diphenylphosphinoethane	M	molar
Diglyme	2-methoxyethylether	mbar	millibar
EDDA	ethylenediamoniumdiacetate	Me	methyl
dr	diastereomeric ratio	mg	milligram
ee	enantiomeric excess	MHz	Megaherz
equiv	equivalent	min	minute
EI	electron impact ionization	ml	milliliter
ESI	electron-spray ionization	mmol	millimol

Et	Ethyl	mp	melting point
MS	mass spectrometry	Ts	tosyl, p-toluenesulfonyl
Ms	methanesulfonyl	UV	ultra-violet
nd	not determined	w	weak
μ	micro	Tol	tolyl
v	vibration frequency in cm^{-1}	t_{R}	resolution time
p -	para		
p.	page		
Ph	phenyl		
ppm	part per million		
Pr	propyl		
q	quartet		
quant.	quantitative		
recryst.	recrystallized		
rt	room temperature		
sat.	saturated		
soln.	solution		
t	time		
t	triplet		
t	tert		
T	temperature		
TBS	tert-butyldimethylsilyl		
TBDPS	tert-butyldiphenylsilyl		
TES	triethylsilyl		
TBDPS	tert-buthyldiphenylsilyl		
Tf	trifluoromethanesulfonyl		
TFA	trifluoro acetic acid		
THF	tetrahydrofuran		
TLC	thin layer chromatography		
TMS	trimethylsily		

Chapter 1

Modifications of the PINAP Ligand for Optimum Performance in the Cu-Catalyzed Conjugate Addition of Alkynes to Meldrum's Acid Derived Acceptors

1.1 Introduction

One of the most useful methods for C - C bond formation is the conjugate addition reaction of carbon nucleophiles. ${ }^{1}$ This introduction deals with the conjugate addition reactions of alkynyl nucleophiles. In contrary to other carbon nucleophiles only a few examples of conjugate additions of alkynes are known. ${ }^{2}$ First racemic additions ar presented employing different metals, followed by enantioselective variants. The presentation of the synthesis of QUINAP and PINAP, two chiral P, N-ligands completes this introduction.

1.1.1 Conjugate Additions Employing Metal Alkynylides

Conjugate addition of carbon nucleophiles to a, β-unsaturated electrophiles is an essential carbon-carbon bond forming process in synthetic organic chemistry. Organocuprates are the most commonly used nucleophiles for this transformation to ensure high regioselectivity. The use of $\mathrm{Cu}(\mathrm{I})$ reagents has been thwarted by the inertness of $\mathrm{Cu}(\mathrm{I})$-alkynylides towards conjugate addition reactions. ${ }^{2}$ Moreover, alkynes are used as dummy ligands in mixed organocuprates, ensuring that only one equivalent of the more precious ligand is needed or increasing the solubility of the cuprate to achieve high conversions (Equation 1). ${ }^{3}$

[^0]
Equation 1

1.1.1.1 Conjugate Addition of Lithium and Grignard Alkynylides

Normally, the hard lithium alkynylides add in a 1,2 -fashion to a, β-unsaturated carbonyls. But when the carbonyl is complexed to a very bulky Lewis acid, the carbonyl is blocked and 1,4 addition can be achieved (Scheme 1). ${ }^{4}$ Yamamoto employed the bulky aluminiumtris(2,6 diphenoxide) and achieved 1,4 -addition to cyclic and noncyclic a, β-unsaturated carbonyls in good yields.

Scheme 1

In a Meldrum's acid derived acceptor two π-acceptors activate the olefin and therefore it is more reactive towards 1,4 -addition. These acceptors can be obtained in one step by the Knoevenagel condensation of an aldehyde and Meldrum's acid (Scheme 2). ${ }^{5}$ Conjugate addition

[^1]of lithium phenylalkynylide to acceptor 3 furnished the racemic product 4 in good yield. ${ }^{6}$ Decarboxylation to the carboxylic acid furnished the tumor necrosis factor (TNF) inhibitor 5. TNF, a cytokine, is produced by activated white cells, vascular endothelium, fibroblasts and many other cells and mediates numerous pro-inflammatory processes. Most important diseases are rheumatoid arthritis, bronchial asthma and Crohn's disease. ${ }^{6}$ From compound 7 over 200 derivatives were made for pharmacological studies. One of them is compound 6, which is obtained from the acid 5 after Curtius rearrangement. Separation of the enantiomers for these compounds was either carried out by preparative chiral HPLC or by crystallisation.

Scheme 2

Reaction of trimethylsilylethynyl magnesium bromide to the very similar acceptor $\mathbf{8}$ furnished the conjugate addition product in 100% yield (Scheme 3). ${ }^{7}$ Subsequent saponification and decarboxylation, followed by removal of the TMS-group provided acid 10. Modified Curtius

[^2]rearrangement followed by deprotection with HCl in ether/EtOAc provided compound 11, which shows activity against the dopamine β-hydroxylase.
Scheme 3

dopamine β-hydroxylase inhibitor

1.1.1.2 Conjugate Addition of Aluminium Alkynylides

In 1971, Hooz reported the first conjugate addition of aluminium alkynes. ${ }^{8}$ Aluminium alkynylides are prepared from corresponding lithium alkynylides using diethyl aluminiumchloride. However, under these conditions these alkynylides react only with a, β unsaturated ketones that can adopt an s-cis conformation (Scheme 4). This problem can be overcome by using either a γ-hydroxyl directing group on the acceptor or by addition of TBSOTf to the reaction. ${ }^{9,10}$

Scheme 4

[^3]
1.1.1.3 Conjugate Addition of Boron Alkynylides

In 1972 the first example of a conjugate addition of trialkynylboron reagents was reported by Pappo. ${ }^{11}$ However, synthetically useful methods, employing one equivalent of alkyne, have been discovered more recently. Brown used a preformed $B-1$-alkynyl-9-BBN reagent and Suzuki employed 1-alkynyl-diisopropoxyboranes for the addition to a, β-unsaturated ketones (Equation 2). ${ }^{12,13}$ These reagents also only react with a, β-unsaturated ketones that can adopt s-cis conformation. A cyclic transition state has been proposed for the alkyne transfer process.

Equation 2

Proposed Transition State

1.1.1.4 Conjugate Addition of Copper Alkynylides

Copper in the oxidation states 0,1 or 2 can be used to form copper alkynylides. Oxidation of copper (0) in the presence of phenylacetylene forms the copper acetylide. On the other hand, oxygen has to be excluded when $\mathrm{Cu}(\mathrm{I})$ is used as precursor to avoid Glaser coupling. ${ }^{14}$ This can be overcome by reducing $\mathrm{Cu}(\mathrm{II})$ in situ to $\mathrm{Cu}(\mathrm{I})$ by a reductant. Copper alkynylides are insoluble solids, likely due to their tendency to form aggregates. This seems reasonable, because Cu binds both end- and side-on to acetylenes (Figure 1). ${ }^{15}$ These oligomeric structures can be broken by adding diamines or phosphines to a suspension of the aggregate.

[^4]Figure 1 Suggested structures of polymeric alkynylides

As previously mentioned, copper alkynylides are in general not reactive toward a, β-unsaturated carbonyl compounds. However, when the electrophile is activated with TMSCl, copper acetylides can undergo conjugate addition (Scheme 5). ${ }^{16}$

Scheme 5

More recently, Gabbutt described the addition of lithium dialkynylcuprates to activated chromones (Scheme 6). ${ }^{17}$ The dialkynylcuprates are easily generated by the addition of 2 equivalent of lithiumalkyne to CuI. The in situ generated cuprates react smoothly with substituted chromones to give the product in good yields.

[^5]
Scheme 6

The Carreira group has disclosed a more practical protocol for the conjugate addition of copper alkynylides. ${ }^{18}$ The reaction employed in situ generated copper alkynylides and Meldrum 's acid derived acceptors as electrophiles. To avoid the handling of sensitive $\mathrm{Cu}(\mathrm{I})$ salts, $\mathrm{Cu}(\mathrm{I})$ is generated from more stable $\mathrm{Cu}(\mathrm{II})$ and reduced in situ in the presence of sodium ascorbate. ${ }^{19}$ Using a $10: 1$ mixture of $\mathrm{H}_{2} \mathrm{O}: t-\mathrm{BuOH}, 0.2$ equivalent $\mathrm{Cu}(\mathrm{OAc})_{2}$ and 0.4 equivalent of sodium ascorbate aromatic alkynes undergo conjugate addition in good yields (Equation 3). The reaction is catalytic in copper and no preformed alkynylides are used, which further increase the synthetic utility of the process.

Equation 3

1.1.1.5 Conjugate Addition of Zinc Alkynylides

Activation of electrophiles with a silating reagent is also possible for the conjugate addition of zinc alkynylides. Kim reported conjugate addition of zinc alkynylides to various a, β unsaturated ketones. ${ }^{20}$ Zink alkynylides are prepared from the corresponding lithium alkynylides. In the presence of TBSOTf zinc alkynylides add to enones to give the TBS enol ethers as mixtures of E and Z isomers (Scheme 7).

[^6]
Scheme 7

Zinc alkynylides are more conveniently prepared using the method developed by the Carreira group (Section 2.1.1.3). ${ }^{21}$ This method was used for addition to aldehydes and imines; however, the same protocol can also be employed in the conjugate addition (Scheme 8). Again, Meldrum`s acid derived acceptors are suitable for this process. In this reaction, Zn salt must be used stoichiometrically.

Scheme 8

To make this reaction enantioselective, N-methylephedrine was employed as a chiral ligand, however the result was not encouraging. Alternatively, a diastereoselective conjugate addition has been achieved employing N-metylephedrine as a chiral auxiliary. The chiral acceptors were prepared in four steps furnishing predominantly the (Z)-alkylidene products (Scheme 9).

[^7]
Scheme 9

Gratifyingly, the additions could be conducted in a catalytic manner using only $20 \mathrm{~mol} \%$ of $\mathrm{Zn}(\mathrm{OTf})_{2}$. Furthermore, cleavage of the auxiliary provides useful chiral building blocks for organic synthesis (Scheme 10).

Scheme 10

1.1.1.6 Conjugate Addition of Alkynes Involving Pd-, Rh- and Ru- Catalysis

There are very few reports describing catalytic conjugate alkyne addition. Besides the two cases discussed above (Equation 3, Scheme 10), these are examples which involve $\mathrm{Pd}(\mathrm{II})-, \mathrm{Rh}(\mathrm{I})-$ and $\mathrm{Ru}(\mathrm{II})$-catalysis. ${ }^{22,23,24,25}$ Although these reactions can employ a wide range of alkynes the additions occur only with β-unsubstituted vinyl ketones or acrylates (Scheme 11).

[^8]
Scheme 11

1.1.2 Enantioselective Conjugate Additions of Alkynes

Chong reported that preformed alkynyl boronates derived from 3,3'-diphenyl-BINOL participate in conjugate addition to aryl-enones. ${ }^{26}$ Recently, an improved procedure has been developed using a catalytic amount of 3,3'-diiodo-BINOL (Equation 4). ${ }^{27}$

Equation 4

Another catalytic enantioselective conjugate addition of alkynylides has been developed by Corey. ${ }^{28}$ The addition of an aluminium alkynylide is catalyzed by a chiral bisoxazoline-Ni

[^9]complex, and the reaction with cyclohexanone proceeds in good yields. The report describes only one example and the substrate scope is yet to be explored. Furthermore the enantiomeric excess of the product was not consistent, varying from $82-88 \%$ ee (Equation 5).

Equation 5

86\% yield
82-88\% ee

1.1.3 QUINAP

To date, a large number of chiral P, N-ligands, having both nitrogen and phosphorus functional moieties, has been prepared and their applications in asymmetric reactions have been investigated. ${ }^{29}$ The success in metal-catalysed asymmetric reactions of these mixed donor ligands may be due to the fact that they are a class of hemilabile ligands possessing a combination of hard and soft donor atoms. Therefore, the different features associated with each donor atom provide a unique reactivity to their metal complexes. ${ }^{30}$

One successful example of such a P,N-ligand is QUINAP (12, 1-(2-diphenylphosphino-1naphthyl)isoquinoline). Its synthesis was reported in 1993 by Brown. ${ }^{31}$ Since then it has been used as a ligand in Rh-catalyzed asymmetric hydroboration, Ag-catalyzed asymmetric [3+2] cycloaddition of azomethine ylides and electron deficient alkenes to give pyrrolidines, Pdcatalyzed allylic substitution, Ru-catalyzed Diels-Alder reaction, Rh-catalyzed diboration/oxidation and Cu-catalyzed addition of alkynes to enamines. ${ }^{32,33,34,35,36}$ QUINAP is commercially available but rather expensive. ${ }^{37}$ Racemic QUINAP can be obtained in seven steps starting from 1-chloroquinoline (13) and 2- methoxynaphthalene (14). However, resolution of QUINAP was only achieved by the use of a chiral palladium complex.

1.1.3.1 Synthesis of QUINAP

Although 1-chloroquinoline (13) is commercially available, it is rather expensive ($1 \mathrm{~g} / 53$ CHF, Aldrich). However, it can be synthesized in two steps from isoquinoline in 92% yield. ${ }^{38}$

[^10]Subsequent Suzuki-coupling with boronic acid 15, in a two step sequence from 2 methoxynaphthalene (14) affords the biaryl 16 in 75% yield (Scheme 12). ${ }^{39}$

Scheme 12

Demethylation of the methylarylether $\mathbf{1 6}$ with BBr_{3} and triflation of the resulted naphthol with triflic anhydride furnishes compound 17 in 67% over 2 steps. Phosphination of the triflate gives racemic QUINAP in 68% yield (Scheme 13).

Scheme 13

Resolution was achieved with the chiral palladium complex 18a. One enantiomer of QUINAP preferentially forms a cationic complex $\mathbf{1 8 b}$ with the palladium. After the isolation of the diasteromerically pure complex, (S)-QUINAP can be obtained by decomplexation with dppe. While enantioenriched (R)-QUINAP can be obtained from the mother liquor (Scheme 14). This resolution is rather costly because the chiral palladium complex is expensive.

39 Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R; Hulmes, D. I.;. Blacker, A. J Org. Process Res. Dev. 2003, 7, 379.

Scheme 14

1.1.3.2 Analogues of QUINAP

To improve enantioselectivities in QUINAP-catalyzed processes, the structure of QUINAP has been modified. Apart from modifications of the phosphine moiety by Brown modifications of the backbone were also investigated. ${ }^{40}$ Replacement of the isoquinoline by phenanthroline led to PHENAP. ${ }^{41}$ Different substituents in the 2 -position of quinazoline were reported by Guiry and a pyridine analogue was reported by Chan. ${ }^{42,43}$ These ligands are synthesized via a Suzuki-coupling to install the biaryl moiety. The enantiomers were separated by the chiral palladium amine complex. Some modifications of the biaryl core lead to configurationally unstable ligands, as can be seen in Figure 2.

[^11]Figure 2
Separable and configurationally stable at room temperature

PYPHOS

Separable but not configurationally stable at room temperature

1.1.4 PINAP

In a screening of ligands for the copper catalyzed alkyne addition to the Meldrum's acceptors (Equation 3), QUINAP showed the highest enantioselectivity (42% ee) ${ }^{44}$ Instead of modifying the structure of QUINAP, which can lead to resolution problems and configurationally unstable compounds, a new ligand class has been developed, which resembles the skeleton of QUINAP. The key feature of this new ligand, which was named PINAP, is the incorporation of a second stereogenic center. Because of the stereogenic center, the diastereomeric ligands can be separated by chromatography or crystallization, and the expensive resolution using the palladium complex can be avoided.

[^12]
1.1.4.1 Synthesis of PINAP

The synthesis of PINAP starts from preparation of 1,4-dichlorophthalazine (20). It can be prepared on a 100 g scale from inexpensive phthalhydrazide (19) and $\mathrm{PCl}_{5} .{ }^{45}$ Friedel-Craft's Coupling with 2-naphtol using AlCl_{3} furnished the monochlorophthalazine 21 in 86% yield (Scheme 15). ${ }^{46}$

Scheme 15

At this stage the modular synthesis allowed either the use of a chiral alcohol or amine to introduce the second stereogenic center. ${ }^{47}$ Addition of naphthol 21 to a mixture of NaH and (R) phenylethanol led to the diastereomeric aryl ether 22. These diastereomers could easily be separated by crystallization, however it was found that these naphthols undergo epimerization in the subsequent phosphination reaction at $100^{\circ} \mathrm{C}$. Therefore, the mixture of the naphthols was converted to the corresponding triflate $\mathbf{2 3}$ (Scheme 16).

Scheme 16

[^13]The Ni-catalyzed phosphination affords a 1:1 mixture of the diastereomers of $\mathbf{2 4}$, which are termed O-PINAP (Equation 6). The separation of the two diastereomers is possible either by chromatography on silica gel or by crystallization. The configurationally stability of O-PINAP has been investigated by heating one diastereomer in p-xylene at different temperatures. For O PINAP, the rotation barrier is calculated to be $27.6 \mathrm{kcal} / \mathrm{mol}$, which corresponds to the half life $\mathrm{t}_{1 / 2}$ at $65^{\circ} \mathrm{C}$ of greater than 25 days.

Equation 6

O-PINAP

For the synthesis of the analogous ligand incorporating a chiral amine, naphthol 21 was first converted to the corresponding triflate (Scheme 17). Heating the triflate 25 in 5 equivalents (R) α-phenethylamine at $120^{\circ} \mathrm{C}$ afforded compound $\mathbf{2 6}$ in 93% yield.

Scheme 17

21

93\%

25

26

In the final phosphination the ratio of diastereomers could be tuned by the reaction temperature (Equation 7). Separation of the two diastereomers was possible either by chromatography on silica gel or by crystallization. These ligands were termed N-PINAP. Unambiguous stereochemical assignment was achieved by X-ray crystallography for both OPINAP and N-PINAP.

Equation 7

The synthesis of PINAP ligands is shorter than the synthesis of QUINAP. Furthermore, the additional stereogenic center in PINAP makes it possible to separate the two diastereomers by chromatography or crystallization, whereas in the resolution of QUINAP a chiral palladium complex needs to be employed.

1.1.4.2 Applications of PINAP

To demonstrate the utility of these new classes of ligands, they were tested in reactions that were known to give good enantioselectivities employing QUINAP as ligand. ${ }^{47}$ In the Rhcatalyzed hydroboration of styrene derivatives O-PINAP gave similar results as QUINAP, except that the enantiomeric excess using 24a was higher for para-substiteted styrenes. The axial chirality of the ligand determined the absolute configuration of the product; the second chiral center had little influence. Thus, compound 24a furnished the product in 73% yield and 92% ee, whereas its diastereomer 24b gave 88% yield and 89% ee (Equation 8).

Equation 8

In the Ag-catalyzed azomethine cycloaddition ligand 24a also furnished comparable results to QUINAP. At $-40^{\circ} \mathrm{C}$ using $3 \mathrm{~mol} \%$ of both AgOAc and O-PINAP 24a, pyrrolidines were formed in 95% ee and 94% yield (Equation 9). Again, the diastereomer 24b gave a similar result, namely 94% ee with the opposite absolute configuration.

Equation 9

In the addition of copper alkynylides to imines (Equation 10), N-PINAP performed superior to QUINAP. The propargylic amines were formed in $90-99 \% \mathrm{ee}$, in $74-88 \%$ yields. The two diastereomers give similar enantioselectivity.

Equation 10

27a
88\% yield 90% ee (R)

27b
82% yield
95% ee (S)

(S)-12
60% yield
84% ee (R)

Interestingly, in this reaction the diastereomer bearing the (R, M) configuration gives consistently higher ee`s than the (R, P)-configured N-PINAP. This result contrasts to the two reactions discussed above, where the (R, P) configuration gave the higher enantiomeric excesses. However, the axial chirality of the ligand always dictates the stereochemical outcome of the
reaction; the stereogenic center has only little effect. In general the performance of the PINAP ligands is similar to QUINAP.

1.2 Results

1.2.1 Synthesis of PINAP Analogues

As mentioned before, Knöpfel in the Carreira group developed the PINAP ligand class while studying the conjugate addition of copper alkynylides to Meldrum's acid derived acceptors. Initial results were promising; N-PINAP gave ee`s of 69% (1st diastereomer) and 37% (2nd diastereomer) whereas O-PINAP gave similar results as QUINAP, 44% (1st diastereomer) and 32% (2nd diastereomer) for the O-PINAP diastereomers compared with 42% for QUINAP (Equation 11). ${ }^{48}$

Equation 11

To further improve the enantiomeric excess the reaction was performed at $0^{\circ} \mathrm{C}$. Stirring the heterogeneous reaction mixture was difficult; therefore the amount of phenylacetylene was increased from 2 to 10 equivalents. Additionally, a copper/ligand ratio of $1: 1$ proved to be optimal. Thus, $20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was dissolved in a minimal amount of water and then reduced in situ by $\mathrm{Na}-(+)$-ascorbate, treated with ligand $\mathbf{2 7 a}$ and $10 \mathrm{~mol} \%$ of phenylacetylene and cooled to $0{ }^{\circ} \mathrm{C}^{49}$ To this suspension the acceptor $\mathbf{2 8}$ was added and the reaction was stirred for 18 h, furnishing the corresponding adduct 29 in 58% conversion and 80% ee (Equation 12).

[^14]
Equation 12

With the aim to further increase the enantioselectivity in the conjugate addition the reaction was cooled to temperatures below $0{ }^{\circ} \mathrm{C}$. Performing the reaction at $-5^{\circ} \mathrm{C}$ resulted in the formation of a suspension and no conversion to product could be obtained any more. Since water is essential for this reaction to generate the reactive copper (I) species the reaction could not be run below $0{ }^{\circ} \mathrm{C}$. Addition of cosolvents let always to a diminished yield. Therefore we decided to attempt modification of the ligand structure for further improvement in the enantiomeric excess of the conjugate addition reaction.

1.2.2 Modifications of the Phosphine

In the synthesis of the PINAP ligands, phosphination is the last step. Therefore modifications on the phosphine are accessible in a short way. Ichikawa in the Carreira group prepared some N-PINAP ligands bearing different phosphines and tested them in the conjugate addition reaction using the standard conditions (Scheme 18).

Scheme 18

The p-tolyl substituted phosphine showed a slight increase in enantiomeric excess of the addition, but also a diminished yield. Other electron-withdrawing or electron-donating substituents on the phenyl showed no advantage over diphenylphosphine. Therefore we focused on modifications to other sections of the PINAP skeleton.

1.2.3 Modifications of the Amine

As mentioned before (Section 1.1.4.2), the two diastereomers of PINAP provided similar selectivity in the Rh-catalyzed hydroboration of styrene derivatives, the Ag-catalyzed azomethine cycloaddition and the Cu-catalyzed addition of alkynes to imines. In all cases, the sense of asymmetric induction was determined by the chirality of the biaryl. We were surprised; therefore, to find that in the Cu-catalyzed addition of phenylacetylene to acceptor $\mathbf{2 8}$, the diastereomers displayed different selectivities (Equation 11). We reasoned that the chiral amino group plays an important role in determining the enantioselectivity. If that was true, then variation of the amine could lead to enhanced enantioselectivity. Ichikawa in the Carreira group synthesized some different amines by double addition of Grignard reagents to the inexpensive phenylglycine methyl ester hydrochloride (Scheme 19).

Scheme 19

25

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{Me}: & 14 \% \text { yield } \\
\mathrm{R}=\mathrm{Et}: & 32 \% \text { yield } \\
\mathrm{R}=\mathrm{Pr}: & 22 \% \text { yield } \\
\mathrm{R}=\mathrm{Bn}: & 34 \% \text { yield }
\end{array}
$$

Amination of compound $\mathbf{2 5}$ at $120^{\circ} \mathrm{C}$ in a neat reaction gave the products in $35-84 \%$ yield. ${ }^{50}$ Subsequent Ni-catalyzed phosphination furnished the desired ligands in unoptimized 14$34 \%$ yield. Separation of the diastereomers by flash chromatography was possible for all ligands. To test the ligands the standard conditions outlined in Scheme 20 were applied.

Scheme 20 Performance of N-Modified PINAP Ligands in the Conjugate Addition (Equation 12)

30a
54% yield
86% ee

31a
40\% yield
94\% ee

32a
32% yield
91% ee

33a
66\% yield
89\% ee

Indeed, the sterically more demanding ligands $\mathbf{3 0 - 3 3}$, with sterically more demanding amino groups than in 26, proved to provide better enantioselectivities than 26. Diethyl derivative

[^15]31a proved to be optimal for stereoinduction, furnishing adduct 29 in 94% ee, although the yield dropped to 40%. Bulkier amines such as compounds 32a and 33a showed a slightly decreased selectivity compared to 30a. Also, the less bulky dimethyl derivative 30a (86% ee) was less selective. Having identified a ligand (31a) which furnished the desired product in high enantiomeric excess, we next turned our attention to the improvement of the reaction rate.

1.2.4 Modifications of the Naphthol

Having identified a chiral framework capable of inducing high enantiomeric excess, we next decided to modify the backbone of the ligand. With this in mind, we coupled various substituted naphthols to dichlorophthalazine (20, Scheme 21). Addition of 1 equivalent of a substituted naphthalene-2-ol to a solution of 1 equivalent AlCl_{3} and 1 equivalent dichlorophthalazine 20 in 1,2-dichloroethane at $80^{\circ} \mathrm{C}$ afforded the coupling product. We found that electron deficient β-naphthols underwent O -acylation instead of C -acylation. Only 7 -methoxynaphthalen-2-ol (34) underwent the desired C-acylation, because it can activate the naphthol towards C-acylation as a π donor (see structure 35). ${ }^{51}$

Scheme 21

C-acylation

35

[^16]Friedel-Crafts acylation of 7-methoxynaphthalen-2-ol furnished product 36 in 80% yield. Reaction of naphthol $\mathbf{3 6}$ with triflic anhydride furnished the corresponding aryl triflate $\mathbf{3 7}$ in 88% yield. Subsequent amination with 5 equivalents of 3 -((R)-aminophenyl-methyl)pentan-3-ol at $130^{\circ} \mathrm{C}$ led to compound 38 in 81% yield (Scheme 22).

Scheme 22

Finally, Ni-catalyzed phosphination provided ligand 39 in 60% yield. The two diastereomers of the ligand were then separated by column chromatography. Employing diastereomer 39a in the standard test reaction, ie. $20 \mathrm{~mol} \%$ copper and ligand with 10 equivalents of phenylacetylene in water at $0^{\circ} \mathrm{C}$, conjugate addition product 29 was isolated in 94% yield and 70% ee (Equation 13). This was by far the highest yield obtained so far, although the enantiomeric excess was a bit lower than that for ligand 27a. Because the presence of the methoxy substituent had such a dramatic effect we wanted to explore the effect of other substituents at the same position.

Equation 13

39a

Unfortunately, subjection of ligand 39 to BBr_{3} with the interest of removing the methyl group to access the free naphthol led to decomposition of the ligand. Therefore, we started a new approach to the introduction of different functional groups (Scheme 23).

Scheme 23

Finding a protecting group for 2,7-dihydroxynaphthalene that is stable to the Friedel-Crafts acylation conditions proved difficult. As seen before, the presence of an electron-withdrawing protecting group such as mesylate led to O-acylation. Silyl ether and benzyl protecting groups were cleaved during acylation. Therefore, we decided to perform acylation with 2,7dihydroxynaphthalene first and then differentiate the two naphthol groups.

Coupling of 7-hydroxynaphthalene-2-ol with dichlorophthalazine in the presence of 1 equivalent of AlCl_{3} in 1,2-dichloroethane at $80^{\circ} \mathrm{C}$ furnished the desired product 40 in 52% yield (Scheme 24). Attempted protection with 0.90 equivalent TBDPSCl was not regioselective,
furnishing a mixture of products which could be separated by column chromatography. Attempted protection with MsCl provided an inseparable mixture.

Scheme 24

Treating naphthol $\mathbf{4 1}$ with 1.1 equivalent of triflic anhydride in the presence of 3 equivalent of pyridine compound $\mathbf{4 2}$ could be isolated in 78% yield. Subsequent deprotection and mesylation furnished compound $\mathbf{4 4}$ in 82% yield over two steps. Amination with 5 equivalents of $3-\left((R)\right.$-aminophenyl-methyl)pentan-3-ol at $80^{\circ} \mathrm{C}$ led to precursor $\mathbf{4 5}$ in 64% yield. Ni-catalyzed phosphination furnished ligands 46a and 46b, which could be separated, in 56% combined yield.

Subjecting ligand 46a to the standard test reaction the conjugate addition product was obtained in 74% yield and 70% enantiomeric excess (Scheme 25).

In comparing the results obtained using ligands 27a, 39a and 46a, no obvious trends are apparent (Scheme 25). The original ligand 27a furnished the product in higher enantiomeric excess (80% ee) than the 7 -methoxy (70% ee) and 7 -methanesulfonate (70% ee) substituted ones. Since the same selectivity is observed employing the ligands with electron withdrawing substituents (compound 46a) and electron donating substituents (compound 39a), electronic factors should not play an important role. Although the substitution is distant from the chiral pocket it is still possible that steric repulsions can play a role in the transition state. Furthermore the difference in enantioselectivity is not so big, ie. 80% ee compared to 70% ee.

As already mentioned, the reaction is heterogeneous. However, the solubility of the ligand in phenylacetylene may still influence the outcome of the reaction. Therefore, the yields obtained in the conjugate addition reactions could be related to the solubility of the ligands employed. The additional polar substituent makes the ligands 39a and 46a more soluble in phenylacetylene than 27a and thus the obtained yield is higher.

Scheme 25

yield 94\% 70\% ee

39a

yield 74\%
70% ee
46a

yield 58\%
80\% ee
27a

1.2.5 Combination of the Best

To get good yield and high enantioselectivity, we next decided to synthesize a ligand that featured the best qualities of previously successful ligands $\mathbf{3 1}$ and $\mathbf{3 9}$. Namely the high reactivity provided by ligand $\mathbf{3 9}$ and the high enantioselectivity provided by ligand $\mathbf{3 1}$. Heating compound 37 with 5 equivalents of $3-\left((R)\right.$-aminophenyl-methyl)pentan-3-ol at $120^{\circ} \mathrm{C}$ for 18 h furnished product 47 in 70% yield (Scheme 26). From here, Ni-catalyzed phosphination produced the two diastereomers 48 a and $\mathbf{4 8 b}$ in a ratio of $1.5: 1$ which was determined by integration of the methoxy signals ($\delta 3.30 \mathrm{ppm}$ for 48a, respectively $\delta 3.50 \mathrm{ppm}$ for $\mathbf{4 8 b}$ in CHCl_{3}) in the $1 \mathrm{H}-\mathrm{NMR}$. The two diastereomers were separated by column chromatography or crystallization. The absolute configuration was determined by an X-ray of compound 48a (Figure 3).

Scheme 26

Figure 3 X-ray structure of 48 a

48a

Testing the diastereomer 48a under standard conditions (Scheme 25) the corresponding product was isolated in 94% yield with an enantiomeric excess of 95%. Upon lowering the catalyst loading to 10%, we were pleased to find that the reactivity was still high, yielding 94% product with 95% ee (Scheme 27).

To ensure efficient stirring of the heterogeneous reaction mixture 10 equivalents phenylacetylene had to be used at a 0.25 mmol scale. It is likely that water just serves as the medium in which the reactive copper (I) species is generated and that the conjugate addition takes place in the organic layer, namely phenylacetylene. When the reaction was scaled up to 1.25 mmol and a catalyst loading of only $5 \mathrm{~mol} \%$ was used the reaction could be performed employing only one equivalent of phenylacetylene, without a change in selectivity or yield (Equation 14).

Equation 14

In comparison, the use of ligand 31a, which differs from ligand 48a only in the absence of a 7 -methoxy group, furnished the product in only 40% yield at a loading of $20 \mathrm{~mol} \%$ (Scheme 27). Even more striking was the outcome of the conjugate addition when diastereomer 48b was employed. In this reaction, the product was obtained in only 15% ee and 61% yield, with the same sense of enantiomeric induction. This means that in this case, the axial chirality no longer determines the absolute configuration of the product. Although the modification, ie. the additional methoxy group, is located in the naphthol part, the chirality of the amine becomes dominate over the axial chirality. Therefore it is likely that the additional 7-methoxy group is responsible for a major change in the active transition state in the conjugate addition reaction.

Scheme 27

1.2.6 Scope of the Conjugate Addition Reaction Employing PINAP

The scope of the conjugate addition was examined next. Conjugate addition of phenylacetylene to γ-branched aliphatic acceptors could be conducted with $10 \mathrm{~mol} \%$ catalyst (entries 1-3, Table 1). Performing the reaction with 10 equivalents phenylacetylene at $0{ }^{\circ} \mathrm{C}$ furnished good yields (79-94\%) and excellent enantiomeric excesses (94-97\%). Substrates
without γ-branching required the use of $20 \mathrm{~mol} \%$ catalyst and provided the product in $83-85 \%$ yield and $82 \%-90 \%$ ee. Aromatic substituted acceptors required $20 \mathrm{~mol} \%$ catalyst loading as well and furnished the corresponding adducts in $64-87 \%$ yield and $83-90 \%$ ee (entries 6 and 7). It is important to note that all the products are crystalline solids and therefore an increase in enantiomeric excess is possible by crystallization (entry 7).

Table 1

[^17]As already mentioned the two diastereomers 48a and 48b can be separated either by chromatography on silica gel or by crystallization. Employing either the amorphous or the crystalline ligand in the conjugate addition of phenylacetylene to aliphatic acceptors, consistent enantioselectivities and yields were always obtained. This was not the case when aromatic acceptors were employed. In this, lower ee`s were obtained when diastereomer 48a was purified
by crystallization from toluene/hexane. Dissolving this crystalline ligand and passing it through a plug of silica gel afforded an amorphous solid that gave consistent results.

For the three compounds $\mathbf{4 9}, \mathbf{2 9}^{52}$ and $\mathbf{5 3}^{52}$ the absolute configuration was determined. Compound $\mathbf{5 5}$ was obtained in 92% yield by heating the conjugate addition product $\mathbf{4 9}$ with 2.0 equivalents of 4-bromoaniline in DMF (Equation 15). Recrystallization from hexane/toluene afforded crystals suitable for X-ray (Figure 4). The crystal structure proved the absolute configuration to be S. ${ }^{53}$

Equation 15

Figure 4 Crystal structure of compound 55

Compound 29 was decarboxylated in DMF/ $\mathrm{H}_{2} \mathrm{O}$ at $100{ }^{\circ} \mathrm{C}$ to the corresponding acid $\mathbf{5 6}$ and subsequently reduced with H_{2} and $10 \mathrm{~mol} \% \mathrm{PtO}_{2}$ in EtOAc at room temperature to afford acid $\mathbf{5 7}$ in 60% yield over two steps (Equation 16). The optical rotation of compound $57\left([\alpha]_{\mathrm{D}}{ }^{30}=-6.6\right.$ $\left.\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right)\right)$ was compared to the value reported in the literature $\left([\alpha]_{\mathrm{D}}{ }^{30}=7.5(\mathrm{c}=1.15\right.$, CHCl_{3}) for $\left.(R)-57\right) .{ }^{54}$ Therefore the absolute configuration was established to be S.

[^18]
Equation 16

Reduction of the alkyne in adduct $\mathbf{5 3}$ to the alkane with H_{2} and $10 \mathrm{~mol} \%$ palladium on charcoal followed by transesterification with MeOH gave malonate $\mathbf{5 8}$ in 41% yield over two steps (Equation 17). CrO_{3} mediated benzylic oxidation furnished the known compound $\mathbf{5 9}$ in 19% yield. The optical rotation of compound $\mathbf{5 9}\left([\alpha]_{D}{ }^{27}=+14.5\left(\mathrm{c}=0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$ was compared to the value $\left([\alpha]_{\mathrm{D}}{ }^{24}=+27.8\left(\mathrm{c}=0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$ for $\left.(S)-59\right)$ reported in the literature. ${ }^{55}$ Therefore the absolute configuration was established to be S.

Equation 17

As mentioned above, the ee of the conjugate addition products were determined after conversion to the corresponding anilide. In fact, this chiral anilide can be a useful building block for natural product synthesis. In an optimized procedure compound 29 was heated in DMF at $100{ }^{\circ} \mathrm{C}$ with 2 equivalents of aniline for 2 h to furnish anilide $\mathbf{6 0}$ in 85% yield and 95% ee

[^19](Scheme 28). Similarly, the corresponding acid could be made, first hydrolysis of the acetal in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} 20: 1$ at $70^{\circ} \mathrm{C}$ furnished the dicarboxylic acid. Subsequent decarboxylation in DMSO at $100{ }^{\circ} \mathrm{C}$ provided acid $\mathbf{6 1}$ in 86% yield over two steps and 93% ee. ${ }^{56}$ Heating compound 29 in DMF/ $\mathrm{H}_{2} \mathrm{O} 10: 1$ produced the corresponding acid 61 in good yields, but the enantiomeric excess ranged from $85-94 \%$.

Scheme 28

As another example of derivatization of product 29, Fujimori in the Carreira group decarboxylated compound $\mathbf{2 9}$ to the ester $\mathbf{6 2}$ by heating it in DMF in the presence of an alcohol (Scheme 29). Subsequent oxidative cleavage with $5 \mathrm{~mol} \% \mathrm{RuCl}_{3}$ and oxone, followed by NaOCl furnished acid 63 in 81% yield over two steps. This product could be a useful building block, since the acid and ester allow numerous further elaborations like reduction, transesterification or condensation to amides.

Scheme 29

[^20]Finally, the reaction conditions for the conjugate addition to the acceptor $\mathbf{3}$ described in Section 1.1.1.1 were optimized. As mentioned there, over 200 derivatives of this compound were prepared and tested for activity as TNF inhibitors. ${ }^{6}$ Alkylation of commercially available phenol 64 with cyclopentyl bromide in DMF furnished aldehyde 1 in 33% yield (Scheme 30). ${ }^{57}$ Condensation of aldehyde $\mathbf{1}$ with Meldrum's acid (2) afforded $\mathbf{3}$ which could be purified by crystallization. At $0^{\circ} \mathrm{C}$, the conjugate addition of phenylacetylene to $\mathbf{3}$ did not proceed, however upon warming to room temperature the product $\mathbf{4}$ could be isolated in 43% yield and 74% ee after 61 h . The low conversion and extended reaction time was not surprising on the basis of our previous studies which indicated a marked decrease in reactivity of electron-rich acceptors.

Scheme 30

We believed that modification of the electronic properties of acceptor $\mathbf{3}$ could lead to improved reaction rate. Therefore we decided to use a protected version, replacing the cyclopropyl moiety with an electron withdrawing group. Previously in the group, it was shown that mesylates function as effective protecting groups for phenols and we reasoned that it might

[^21]electronically improve our acceptor. ${ }^{58,59,60}$ Furthermore, this convergent approach would provide access to an advanced intermediate which would serve for subsequent diversification. ${ }^{6}$

Scheme 31

Knoevenagel condensation followed by mesylation of the phenol furnished acceptor $\mathbf{6 5}$ in 68% yield over two steps (Scheme 31). To test the reactivity of this new acceptor we first performed the addition without ligand. However, no conversion to the desired product was observed. In the conjugate addition of phenylacetylene to γ-branched aliphatic acceptors no background reaction could be detected at $0{ }^{\circ} \mathrm{C}$. This suggests that the reaction is ligand accelerated and therefore we attempted the enantioselective addition anyway. Thus, in the presence of $20 \mathrm{~mol} \% \mathrm{Cu}$-PINAP complex in 10 equivalent phenylacetylene at $23{ }^{\circ} \mathrm{C}, 75 \%$ conversion to the desired product 66 was observed after 22 h (Scheme 32). An unexpected byproduct 67 was observed in the conjugate addition at room temperature which resulted from cyclization, expulsion of acetone and decarboxylation. Our efforts to curtail this process by carrying out the conjugate addition at $0{ }^{\circ} \mathrm{C}$ resulted in less than 10% conversion. In addition, attempts to purify the mixture of 66 and 67 using SiO_{2} chromatography resulted in decomposition.

[^22]However, crystallization of the crude from $\mathrm{CHCl}_{3} /$ hexane afforded $\mathbf{6 6}$ in 61% yield and 89% ee. Since the reaction was performed at $23^{\circ} \mathrm{C}$ the ee was unexpectedly high, however chiral HPLC analysis of the crude mixture verified that the optical purity of the product was not enriched in the crystallization process.

Scheme 32

Decarboxylation and mesylate deprotection had to be carried out in two steps since a onepot protocol where compound $\mathbf{6 6}$ was stirred in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ with 5 equivalents of NaOH at $50^{\circ} \mathrm{C}$ afforded several products. Decarboxylation ($\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$) also resulted in the formation of several compounds. However, decarboxylation in DMF/ $\mathrm{H}_{2} \mathrm{O}$ with $10 \mathrm{~mol} \% \mathrm{NaOH}$ and subsequent deprotection afforded compound 68 in 79\% (2 steps).

The carboxylic acid and the phenol in compound $\mathbf{6 8}$ provide possible sites for further elaboration for the preparation of a structurally diverse library of derivatives. Over 200 derivatives of this compound are known and some of them are pharmacologically active as TNF inhibitors or GRP receptor antagonists (Figure 5). To obtain these active compounds the racemates had to be resolved by several crystallizations or by preparative chiral HPLC. To the
best of our knowledge, the enantioselective conjugate addition presented herein represents the only way to access these compounds in an enantiomerically enriched form.

Figure 5

1.2.7 Determination of the Rotation Barrier of Ligand 48a

Biaryl structures analogous to QUINAP are known to undergo racemization at room temperature (Figure 2). Therefore we decided to determine the exact rotation barrier of compound 48a. Thus, degassed p-xylene (5 ml) was placed in a two necked flask equipped with a reflux condenser. The flask was placed into a thermostat (Huber Polystat cc3) and heated. The temperatures $\left(107.0^{\circ} \mathrm{C}, 116.5 \mathrm{C}^{\circ}, 124.5^{\circ} \mathrm{C}\right.$ and $135.5^{\circ} \mathrm{C}$) were measured inside the flask by a digital thermometer (accuracy $+/-0.1^{\circ} \mathrm{C}$). When the temperature was constant, $20 \mathrm{mg}(0.030$ mmol) 48a were added. After the indicated time aliquots (0.2 ml) were taken by syringe. The samples were concentrated at reduced pressure and dried in vacuo. The ratio of the diastereomers was determined by ${ }^{1} \mathrm{H}$-NMR comparing the singlets of the methoxy group (1st diastereomer δ 3.30 ppm , 2nd diastereomer $\delta 3.50 \mathrm{ppm}$ in CHCl_{3}, Figure 6). The rate constants for rotation, which correspond to the slopes in, were determined at $107.0,116.5,124.5$ and $135.5{ }^{\circ} \mathrm{C}$ by plotting $\ln \left(\mathrm{de}_{0} /\right.$ de $)$ against the time (Figure 7). ${ }^{61}$

[^23]Figure 6

$107.0{ }^{\circ} \mathrm{C}(380.2 \mathrm{~K})$			
$\mathrm{t}(\mathrm{min})$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	$\mathrm{de}^{\mathrm{a})}$
0	100	0	100
60	95.0	5.0	90.0
124	92.4	7.6	84.8
183	89.3	10.7	78.6
245	85.9	14.1	71.8
303	84.0	16.0	68.0
362	81.6	18.4	63.2
425	79.2	20.8	58.4

$\mathrm{k}_{\text {epi }}\left(107.0^{\circ} \mathrm{C}\right)=2.14 \cdot 10^{-5} \mathrm{~s}^{-1}$
$\mathrm{k}_{\text {epi }}\left(116.5^{\circ} \mathrm{C}\right)=5.11 \cdot 10^{-5} \mathrm{~s}^{-1}$

$124.5^{\circ} \mathrm{C}(397.7 \mathrm{~K})$			
$\mathrm{t}(\mathrm{min})$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	$\mathrm{de}^{\mathrm{a})}$
0	100	0	100
30	91.0	9.0	82.0
60	83.9	16.1	67.8
120	74.0	26.0	48.0
180	67.0	33.0	34.0
240	63.1	36.9	26.2
300	60.0	40.0	20.0
360	58.2	41.8	16.4

$135.5^{\circ} \mathrm{C}(408.7 \mathrm{~K})$

$\mathrm{t}(\mathrm{min})$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	$\left.\mathrm{de}^{\mathrm{a}}\right)$
0	100	0	100
15	90.1	9.9	80.2
30	81.0	19.0	62.0
60	68.8	31.2	37.6
90	63.0	37.0	26.0
120	59.0	41.0	18.0
150	57.1	42.9	14.2

$\mathrm{k}_{\mathrm{epi}}\left(124.5^{\circ} \mathrm{C}\right)=9.71 \cdot 10^{-5} \mathrm{~s}^{-1}$
$\mathrm{k}_{\text {epi }}\left(135.5^{\circ} \mathrm{C}\right)=2.45 \cdot 10^{-4} \mathrm{~s}^{-1}$

[^24]Figure 7 Plot of $\ln (d e d d e)$ against the time at different temperatures for compound $\mathbf{4 8} \boldsymbol{a}^{a}$

${ }^{a}$ in p-xylene

The rate constants of rotation, which correspond to the slopes in Figure 7, were determined at $107.0,116.5,124.5$ and $135.5^{\circ} \mathrm{C}$ by plotting $\ln \left(\mathrm{de}_{0} / \mathrm{de}\right.$) against the time (Figure 7). The slopes in Figure 7 correspond to the rate of axial epimerization $\left(\mathrm{k}_{\mathrm{epi}}\right)$. The half-life of epimerization $\left(\mathrm{t}_{1 / 2}\right)$ can be calculated with the equation:

$$
\mathrm{t}_{1 / 2}(\mathrm{~s})=(\ln 2) /\left(\mathrm{k}_{\mathrm{epi}}\right)
$$

Table 2 Rate constants of epimerization of compound 48 a at different temperatures

temperature $^{\mathrm{a})}$	$\mathrm{k}_{\text {epi }}$	$\mathrm{t}_{1 / 2}$
107.0	$2.14 \cdot 10^{-5} \mathrm{~s}^{-1}$	9.0 h
116.5	$5.11 \cdot 10^{-5} \mathrm{~s}^{-1}$	3.8 h
124.5	$9.71 \cdot 10^{-5} \mathrm{~s}^{-1}$	2.0 h
135.5	$2.45 \cdot 10^{-4} \mathrm{~s}^{-1}$	0.8 h

a) in p-xylene

Figure 8 Determination of the energy of activation E_{a} for the epimerization of 48 a

The energy of activation $\left(\mathrm{E}_{\mathrm{a}}\right)$ for rotation about the biaryl bond in 48a can be derived from an Arrhenius plot of $\ln \mathrm{k}_{\text {epi }}$ vs. $1 / \mathrm{T}$. The slope m in Figure 8 corresponds to $-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$. ${ }^{62}$ Therefore E_{A} $=-m * R$ furnishes the value for the energy of activation. For ligand 48a, a value of $26.3 \mathrm{kcal} / \mathrm{mol}$ in p-xylene was found, which is very close to the value of O-PINAP (Figure 9). The calculated half life $\mathrm{t}_{1 / 2}$ of $\mathbf{4 8 a}$ at $65^{\circ} \mathrm{C}$ is more than 25 days. Thus, no epimerization occurs under the reaction conditions fur Cu -catalyzed conjugate addition.

[^25]Figure 9

1.2.8 Is a Defined Axial Chirality Necessary ?

Since the axial chirality of ligand 48b clearly does not determine the stereochemical outcome of the reaction when it was used in the conjugate addition reaction, we wondered if a ligand without defined axial chirality could also provide high stereoselectivity. When there is free rotation around the biaryl bond of the ligand no diastereomers would exist at room temperature. Only after the addition of copper, the bidentate ligand would form two diastereomers (Figure 10).

Figure 10

68

If one diastereomer would be more stable than the other, it would be possible that only one gets formed after the addition of copper. Therefore its employment in the conjugate addition reaction could result in high ee of the product with the benefit that no separation of diastereomers had to be carried out in the case of ligand preparation. To test this hypothesis Waltman in the Carreira group synthesized ligand 68.

Scheme 33

Friedel-Crafts acylation proceeded in only 28% yield of the desired product because acylation ortho to the methoxy group was predominant. Reaction of phenol 69 with triflic anhydride in the presence of pyridine furnished compound 70 in 66% yield (Scheme 33). Heating compound 70 in 5 equivalents of 3-((R)-aminophenyl-methyl)pentan-3-ol at $120^{\circ} \mathrm{C}$ for 16 h furnished product 71 in 68% yield. Ni-catalyzed phosphination of triflate $\mathbf{7 1}$ proceeded in 56% yield. Because there is free rotation around the biaryl bond at room temperature, compound 68 does not exist as a mixture of diastereomers; therefore only one compound was observed in the ${ }^{1}$ H-NMR. Employing $10 \mathrm{~mol} \%$ ligand $\mathbf{6 8}$ in the standard reaction the product was obtained in 20% yield as a racemate (Scheme 34). Since the background, ie. non-ligated, reaction is almost negligible under the conditions outlined in Scheme 34, ligand 68 has an accelerating effect on the conjugate addition reaction but in a non selective way. Therefore, the nature of the interaction between ligand 68 and the copper atom must be different than that of the original ligand 48a and copper.

Scheme 34

1.2.9 Other Modifications

The last part of the PINAP framework to be modified was the phthalazine core. Again, since this modification is distant from the chiral pocket, we anticipated that this change would have larger effect on the rate of the conjugate addition than of the enantioselectivity. Thus, Ogawa in the Carreira group synthesized ligand 77a. Dichlorophthalazine 74 was synthesized in 93% yield by reacting anhydride $\mathbf{7 2}$ with hydrazine, followed by chlorination with POCl_{3}. Friedel-Crafts acylation and subsequent reaction with triflic anhydride in the presence of pyridine furnished compound $\mathbf{7 5}$ in 71% yield over two steps. Amination with 5 equivalents 3-$\left((R)\right.$-aminophenyl-methyl)pentan-3-ol at $120{ }^{\circ} \mathrm{C}$ proceeded in 27% yield. Ni-catalyzed phosphination furnished the two diastereomers 77 (Scheme 35).

Scheme 35

Employment of $10 \mathrm{~mol} \%$ of the phthalazine-modified ligand 77a in the standard conjugate addition reaction provided the product in only 10% yield and 63% ee (Scheme 36). The decrease in reactivity from 94% to only 10% yield due simply to the addition of two methyl groups to the phthalazine core is remarkable. A possible explanation is that ligand 77a is less soluble than ligand 48a. When ligand 77a was stirred in 100 equivalents phenylacetylene, which corresponds to the ratio in the conjugate addition reaction, a suspension was obtained, whereas in the case of ligand 48a a solution was obtained.

Scheme 36

Another potential explanation for the behavior of the diastereomers of ligand $\mathbf{4 8}$ is that the phosphine does not bind to the metal. Instead, the alcohol and phthalazine moieties act as the donors. To test this we oxidized the phosphine, thus makes it unable to bind to copper (Equation 18). Treating diastereomer 48 a with $\mathrm{H}_{2} \mathrm{O}_{2}$ furnished the phosphine oxide 78a in 83% yield.

Equation 18

However, the fact that, racemic product is obtained in the conjugate addition with phosphine oxide 78a as ligand suggests that the phosphine is crucial for selectivity in the reaction (Equation 19). Although the axial chirality does not always seem to determine the sense of chiral induction in the conjugate addition, the ligand does not serve only as an aminoalcohol.

Equation 19

We chose to protect the free hydroxyl group of ligand 48a with TES to determine whether the hydroxyl group plays a role in selectivity, perhaps via coordination to copper. If this coordination does occur, protection of the alcohol with a bulky silyl ether would prevent this additional coordination. Thus treating ligand 48a with TESCl furnished protected ligand 79a in 20% yield (Equation 20). However, most of the unreacted ligand 48a could be recovered.

Equation 20

Indeed the selectivity decreased when silyl protected ligand 79a was used in the conjugate addition (Equation 21). This suggests that the free hydroxy group may play a role in the determination of the enantioselectivity. More remarkable was the decrease in activity. The TES protected ligand 79a furnished the product in the conjugate addition reaction in only 23% yield, comparing to 94% yield of the ligand 48a. It is possible that the additional bulk of the protecting
group blocks' the chiral pocket and hinders substrate binding and therefore a diminished conversion is obtained.

Equation 21

1.2.10 Observation of a Strong Nonlinear Effect

In 1986 Kagan discovered that in a metal catalyzed process involving the use of a chiral ligand the ee value of the ligand can deviate from the ee value of the product, a phenomena known as the nonlinear effect (NLE). ${ }^{63}$ Nonlinear effects reflect the fact that molecular interactions can complicate the reaction mechanisms of asymmetric synthesis. A positive non linear effect can be used to generate products with high ee`s from enantiomerically impure, chiral auxiliaries or ligands which can be more economical to prepare (Figure 11). Furthermore, NLEs can also act as a probe to obtain information on the sometimes subtle mechanisms by which enantioselectivity is generated during catalysis. ${ }^{64}$

[^26]Figure 11 (taken from reference ${ }^{64}$)
$(+)$-nonlinear effect
(asymmetric amplification)

1.2.10.1 Models and Principles

The model that explains most nonlinear effects is the so called reservoir effect. This postulates that several different metal-ligand complexes exist in equilibrium in solution, and that not all of them are active in the catalytic cycle. ${ }^{64}$ Therefore an impurity, namely the other enantiomer of the ligand, may be stored in the reservoir as a non reactive complex. For instance, it is reasonable that the heterodimer and the homodimer of a metal/ligand complex have different thermodynamic stabilities, since the heterodimer has a diastereomeric relationship to the homodimer. If the heterodimer is thermodynamically more stable than the homodimer a positive nonlinear effect is observed. The heterodimer takes up the less abundant enantiomer of ligand leaving the excess of the more abundant ligand to afford catalysis (Figure 12).

Figure 12 Modell for the reservoir effect

In 1995 Noyori reported the only nonlinear effect in catalysis with a diastereomeric mixture of ligands so far observed. ${ }^{65}$ During extensive studies in the amino-alcohol promoted enantioselective addition of dialky zincs to aldehydes, the two diastereomers $\mathbf{8 0}$ and $\mathbf{8 1}$ of dimethylaminoisoborneol were mixed to study the nonlinear effects (Equation 22).

Equation 22

Catalysis using diastereomer $\mathbf{8 0}$ gave the product in 98% ee, whereas the use of diastereomer 81 furnished the alcohol in 94% ee in the opposite configuration. A strong positive nonlinear effect was observed. Even at a ratio of $55: 45$ ($10 \% \mathrm{de}$) of $\mathbf{8 0}$ to $\mathbf{8 1}$, the product had an enantiomeric excess of 91%. Not only was the ee of the product different employing the two diastereomers, also the reaction rates differed. The complex of ligand $\mathbf{8 1}$ is 2.6 times more reactive than its diastereomer $\mathbf{8 0}$. The lowest reactivity was observed when the diastereomers were mixed in equimolar amounts. This suggests that most of the ligand-Zn complex formed a

[^27]non reactive heterodimer. Further evidence for this scenario was obtained by reacting dimethylzinc and the aminoalcohols $\mathbf{8 0}$ and $\mathbf{8 1}$ (2:1:1 mole ratio) in toluene to afford selectively the crystalline mixed dimer. Therefore, Noyori suggested that the reservoir effect is operative in this case.

1.2.10.2 NLE Studies Employing Ligand 48a in the Conjugate Addition Reaction

To gain more information about the active complex in solution we tested the conjugate addition reaction for the presence of a nonlinear effect. Ligand 48a was either mixed with its diastereomer 48b or with its enantiomer (ent-48a, synthesis see page 55) (Scheme 37).

Scheme 37

Figure 13 Nonlinear Effect in the Conjugate Addition (Scheme 37) with Diastereomers ${ }^{\text {a }}$

Figure 14 Nonlinear Effect in the Conjugate Addition (Scheme 37) with Enantiomers ${ }^{\text {a) }}$

In both cases a strong nonlinear effect was observed. ${ }^{66}$ In general, as ee or de of the ligands used approached 0%, the conversion diminished. This observation could be explained by invocing the reservoir effect, ie. the formation of thermodynamically stable heterodimers. Thus, when the two ligands are employed in equal ratios almost all of the ligand is bond in an inactive heterodimer, which explains the diminished conversion. This is in agreement with the model proposed by Noyori for diastereomeric ligands. Similar to our observation, Knochel reports a strong positive nonlinear effect in the copper/QUINAP catalyzed three-component coupling of alkynes, amines and aldehydes to propargylamines. ${ }^{117}$ In that case, a lower reaction rate and product yield was also observed with the use of a ligand with low ee`s. This was also attributed to inactive heterodimers.

Applying the unpurified mixture of 48, conjugate addition proceeds in 80% yield and 93% ee (Table 3). The nonlinear effect observed with diastereomer 48 is such that separation of the 1.5:1 mixture of diastereomers obtained in the synthesis of 48 in unnecessary.

This ratio of diastereomers was also employed for other substrates (Table 3). In all cases, a strong nonlinear effect was observed, although not as strong as for i - Pr acceptor. Very interestingly, for the aromatic acceptors the diastereomer 48b furnished the R configuration whereas for the aliphatic acceptors the product had S configuration. Therefore, depending on the substrate either the axial chirality or the additional chiral center determines the absolute configuration of the product (Table 3).

[^28]
Table 3

		 10 equiv $10 \mathrm{~mol} \%$ 10 mol $20 \mathrm{~mol} \%$ $\mathrm{H}_{2} \mathrm{O}$	 $\mathrm{PhC} \equiv \mathrm{CH}$ (OAc$)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ gandmixture (+)-ascorbate ${ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$	 PPh_{2}	
entry	acceptor (R)		100\% de (48a)	$\mathbf{2 0 \% ~ d e ~}$	-100\% de (48b)
1	$i-\mathrm{Pr}$	yield ee ${ }^{\text {b }}$	$\begin{gathered} 94 \\ 95(S) \end{gathered}$	$\begin{gathered} 80 \\ 94(S) \end{gathered}$	$\begin{gathered} \hline 65 \\ 15(S) \end{gathered}$
2	$\mathrm{C}_{6} \mathrm{H}_{11}$	yield $e e^{b}$	$\begin{gathered} 81 \\ 94(S) \end{gathered}$	$\begin{gathered} 80 \\ 84(S) \end{gathered}$	44 $24(S)$
3	m-tol	yield e^{b}	87 $90(S)$	$\begin{gathered} 24 \\ 63(S) \end{gathered}$	$\begin{gathered} 44 \\ -6(R) \end{gathered}$
4	o-methoxy-m- methanesulfonate phenyl (acceptor 65)	yield $e e^{b}$	60 $89(S)$	$\begin{gathered} 15 \\ 59(S) \end{gathered}$	$\begin{gathered} 18 \\ -33(R) \end{gathered}$

[^29]We next sought to rule out the chirality of sodium ascorbate as a factor in the enantioselectivity in the conjugate addition. Because only a single enantiomer of ascorbic acid is commercially available, ent-48a was synthesized. This was synthesized in the same way as ligand 48, with the amine derived from (S)-phenylglycinemethyl ester, the enantiomer of the ester used before (Scheme 26).

It was found that in the conjugate addition, the two enantiomers provided essentially equal enantioselectivities (94 and 95%, Scheme 38), suggesting that the chirality of ascorbate plays no role in the selectivity.

Scheme 38

1.2.11 Phosphination Reaction of Aryl Mesylates

Structurally diverse PINAP analogues can be prepared by the Ni-catalyzed phosphination of aryl triflates. Although this reaction is general to various substrates, the phosphination of mesylates would offer more cost effective synthesis of PINAP analogs. ${ }^{67}$ Moreover, there are no reports of phosphination of mesylates. Therefore we decided to investigate the scope and utility of mesylate phosphination in the context of PINAP preparation.

Aryl sulfonates have been used as substrates in Pd-catalyzed cross coupling reactions. ${ }^{68,69}$ A Ni catalyzed Suzuki coupling of arylmesylates was also reported in 2004 by Percec (Equation 23). ${ }^{70}$ Thus aryl sulfonates participate in transition metal catalyzed coupling reactions.

Equation 23

The aryl sulfonates were prepared from the corresponding naphthols using mesyl chloride. The mesylations proceeded smoothly employing NEt_{3} as a base instead of pyridine, which had to be used in the triflations, to give the products in $73-88 \%$ yield (Scheme 39).

[^30]Scheme 39

22 R=H
$87 \mathrm{R}=\mathrm{OMe}$
$\begin{array}{ll}88 R=H & 86 \% \\ 89 R=O M e & 88 \%\end{array}$

With the mesylates in hand we turned our attention to the phosphination reaction. The reaction conditions are $10 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ (dppe), 2 equivalent HPPh_{2} and 4 equivalents of DABCO in DMF at $120{ }^{\circ} \mathrm{C}$ for 14 h . Under these conditions, the phosphines were obtained in $23-61 \%$ yield (Scheme 40). Unfortunately, the yields are lower than the phosphination of corresponding triflates. However, we have successfully demonstrated the first phosphination reaction of
arylmesylates. These yields are not optimized and further improvement could be achieved by careful optimization of reaction conditions such as solvent, temperature and/or other catalysts.

Scheme 40

mixture of diastereomers
61% yield (3.0 mmol scale 38% yield (2.2 mmol scale)
$24 \mathrm{R}=\mathrm{H}$
23% yield (0.6 mmol scale)

1.3 Conclusion

The herein presented modifications of N-PINAP dramatically improved the yield and enantioselectivity in the conjugate addition of phenylacetylene to Meldrum`s acid derived acceptors. With a ligand loading of only \(10 \mathrm{~mol} \%\) the corresponding conjugate addition products could be isolated in up to \(94 \%\) yield and \(97 \%\) ee performing the reaction at \(0^{\circ} \mathrm{C}\) in 10 equivalents of phenylacetylene. One of the conjugate addition products was further elaborated to an intermediate of which over 200 derivatives are known that act as TNF inhibitors or GRP receptor antagonists. These compounds could only be synthesized as a racemate and had to be resolved by several crystallizations or by preparative chiral HPLC. During the final step in the preparation of the PINAP ligands a mixture of diastereomers is formed. Employing this mixture (\(20 \% \mathrm{de}\)) in the conjugate addition reaction of phenylacetylene to the acceptor derived from the condensation of Meldrum`s acid and iso-butyraldehyde afforded the corresponding product in 80% yield and 94% ee. This surprising result can be explained by a strong positive nonlinear effect. Therefore, separation of the two diastereomers becomes unnecessary for certain substrates in the conjugate addition reaction. Finally, the first phosphination of arylmesylates is reported in the context of PINAP preparation.

Chapter 2

Addition of Alkynes to Carbonyls and Iminiums

2.1 Introduction

Terminal acetylenes are exceptionally acidic compared to other hydrocarbons and therefore they can be easily functionalized. The reason for the enhanced acidity is the high percentage of s character associated with the terminal carbon atom (Figure 15). ${ }^{71}$

Figure $15 p K_{a}$-Values of tert-butanol, acetone and C_{2} hydrocarbons. ${ }^{72}$

$\mathrm{pK}_{\mathrm{a}} \sim 26$
$\mathrm{pK}_{\mathrm{a}} \sim 29$

Usual bases for the deprotonation of terminal alkynes are Grignard reagents, ${ }^{73}$ lithium amides ${ }^{74}$ and organolithiums ${ }^{75}$. However, in 1900 Favorsky and Skosarevsky ${ }^{76}$ discovered that ethyne can be deprotonated in the presence of KOH and added to ketones (Equation 24). Low temperature $\left(5^{\circ} \mathrm{C}\right)$ and a large excess of acetylene prevented the formation of the 1,4-diol and ensured that the acetylene reacts only once.

[^31]
Equation 24

The synthesis of Vitamin A was reported by BASF incorporating the addition of acetylene to ketones without any base, albeit at high pressure. ${ }^{77}$ The addition of acetylene is used three times in the synthesis on large scale processes (Scheme 41). ${ }^{78}$

Scheme 41 Synthesis of Vitamin A

Babler developed a procedure for the addition of terminal alkynes to ketones in DMSO employing potassium tert-butoxide as a base (Equation 25). ${ }^{79}$ In water tert-butanol has a pK_{a} of

[^32]17 , but in DMSO the pK_{a} is $30-32$. The increase in pKa is due to the poor ability of DMSO to stabilize anions when its charge is localized on a single atom. Since the product is a tertiary alcohol as well the potassium tert-butoxide can be used in catalytic quantities.

Equation 25

In a similar report by Knochel $10-30 \mathrm{mmol} \%$ of CsOH was employed as a base in a THF/DMSO mixture to promote the addition of terminal alkynes to ketones and aldehydes (Equation 26). ${ }^{80}$

Equation 26

Instead of deprotonation of a terminal alkyne Corey demonstrated that cesium salts are effective for the conversion of trimethylsilyl acetylene to the corresponding cesium acetylides. ${ }^{81}$ Addition of these to aldehydes proceeded in good yields (Equation 27).

Equation 27

Despite the practical aspects of the deprotonation of terminal alkynes with alkali metal hydroxides and alkali metal alkoxides, none of the reported methods are enantioselective. Although a few processes have been described involving the use of organo-cesium reagents in asymmetric synthesis there is not as much known for these as is for other metal alkynylides

[^33]concerning their interaction with chiral ligands. ${ }^{82}$ Therefore, the next section deals with metal alkynylides that give rice to enantiomeric enriched products.

2.1.1 Enantioselective Addition of Metal Acetylides to Carbonyls and Iminiums

2.1.1.1 Lithium Alkynylides

The first asymmetric addition of metal alkynylides to aldehydes was achieved by Mukaiyama using lithium acetylides and a chiral aminoalcohol as a ligand. ${ }^{83}$ Good enantioselectivities ($54-92 \%$ ee) were only achieved employing bulky trialkylsilylacetylenes and low reaction temperatures (Equation 28).

Equation 28

 $R_{3}=\mathrm{Me}, \mathrm{Et}$, Ph etc.

A well known example of the addition of lithium alkynylides to ketones is the report of Merck in their synthesis of Efavirenz (Scheme 42). ${ }^{84}$ The key step in the synthesis of this HIV reverse transcripase inhibitor is the highly enantioselective (up to 98% ee) addition of lithium cyclopropyl acetylide to an N-protected trifluoromethyl ketoanilide. Careful mechanistic studies showed that the preformed ligand lithium alkynylide complex is not a monomer, but a dimer. ${ }^{85}$ Subsequently zinc acetylides derived from transmetallation of the corresponding Grignard alkyne, were successfully employed in this transformation. ${ }^{86}$

[^34]Scheme 42 Efavirenz Synthesis by Merck Using a Chiral Lithium-Cyclopropyl Acetylide Complex

2.1.1.2 Boryl Alkynylides

The use of boryl acetylides in enantioselective aldehyde addition reactions was reported by Corey. ${ }^{87}$ The boron acetylides were prepared from the corresponding stannyl acetylenes (Equation 29). Using a chiral oxazaborolidene the desired propargylic alcohols were isolated in good yields $(70-86 \%)$ and enantioselectivities $(85-96 \%) .{ }^{88}$ In the proposed transition state model the complex activates both acetylide and aldehyde, a concept that is known as dual activation.

[^35]
Equation 29

2.1.1.3 Zinc Alkynylides

Zinc alkynylides are widely used in asymmetric synthesis. ${ }^{89}$ In the first report by Soai the dialkynyl zinc was prepared by reacting two equivalents of alkyne with one equivalent of dialkylzinc. ${ }^{90}$ Treatment of an aldehyde with dialkynyl zinc in the of presence (+) N,Ndibutylnorephedrine as ligand furnished the corresponding propargylic alcohols in 99% yield and in up to 43% ee (Equation 30).

Equation 30

In the synthesis of the insecticide $\mathbf{9 1}$ an alternative zinc precursor was used (Scheme 43). Lithium phenylacetylide was transmetallated to ZnBr_{2} and treated with the lithium alkoxide salt of (-)-N-methylephedrine and added to an aldehyde. ${ }^{91}$ The propargyl alcohol was formed in 80% yield and 88% ee.

[^36]
Scheme 43

When the ratio of mixed alkyne to dialkylzinc is 1 to 1.2 , mixed organozinc compounds are obtained (Scheme 44). ${ }^{92}$ The addition of such species to aldehydes was examined in the presence of ligand 92.

Scheme 44

In contrast to the dialkynyl zinc compounds higher enantioselectivities were obtained. The authors rationalized the outcome of this reaction by the presence of an unfavorable steric interaction in the reaction of the dialkylzinc (Figure 16). In contrast, the mixed diorganozinc reagent places the alkyl group towards the pyridine affording the product with increased enantioselectivity.

[^37]Figure 16

These mixed organozinc compounds $\mathrm{R}^{1} \mathrm{ZnR}^{2}\left(\mathrm{R}^{1}=\right.$ alkyl, $\mathrm{R}^{2}=$ alkynyl) have also been used successfully with other ligands in the addition to aldehydes, showing in general higher enantioselectivities than the dialkynylzinc compounds. ${ }^{93}$ An interesting report by Chan combined the use of a $\mathrm{Ti}(\mathrm{IV})$-BINOL complex, acting as a Lewis acid to activate the aldehyde, and N tosylnorephedrine in the addition of a mixed alkyl alkynyl zinc reagent to aldehydes (Scheme 45). ${ }^{94}$ The reported yields ($78-85 \%$) and enantiomeric excesses ($92-99 \%$) were impressive. Unfortunately only aromatic aldehydes afforded the desired propargylic alcohols.

Scheme 45

Although the chiral ligands can usually be used in substoichiometric quantities, those which have been reported thus far for enantioselective additions are not catalytic in metal. Moreover, the formation of the zinc alkynylides has to be performed in a separate step (Figure 17). This is

[^38]due to the highly basic and/or nucleophilic character of the strong bases or the dialkylzinc that have to be used to form the zinc alkynylide.

Figure 17

A milder method was developed in the Carreira group (Figure 17). ${ }^{21}$ Activation of the terminal alkyne by π-coordination with $\mathrm{Zn}(\mathrm{OTf})_{2}$ allowed the use of a mild base, namely triethylamine, to deprotonate the alkyne in the presence of aldehydes and ketones.

To gain more insight into this new process in situ IR-studies were carried out (Figure 5). ${ }^{95}$ Using a ReactIR the alkyne C-H stretch was monitored during the addition of amine and $\mathrm{Zn}(\mathrm{OTf})_{2}$. When triethylamine was added to the terminal alkyne the absorbance of the terminal C-H stretch decreased slightly, but deprotonation was not detected. After the addition of $\mathrm{Zn}(\mathrm{OTf})_{2}$ the C - H stretch immediately disappeared. In contrast, when the zinc alkynylide was treated with triflic acid the terminal C-H stretch reappeared immediately. These zinc alkynylides were demonstrated to react with nitrones, aldehydes, ketones and N-acylimminium ions, affording racemic products (Scheme 46). ${ }^{96,97}$

[^39]Figure 5 ReactIR spectra of the C - H stretch resonance signal of phenylacetylene in $\mathrm{CH}_{3} \mathrm{CN}$. At $10 \min (\triangle) E t_{3} N$ was added and subsequently at $20 \mathrm{~min}(*) \mathrm{Zn}(\mathrm{OTf})_{2}$. In the presence of both components the IR band corresponding to the terminal C - H completely disappears within 4 minutes. ${ }^{95}$

Scheme 46

For aldehydes the addition of cheap N-methylephedrine turns this process into an enantioselective one (Equation 31), furnishing the corresponding propargyl alcohols at ambient temperature in good yields and up to 99% ee. The addition works best for α-branched aldehydes, while unbranched or aromatic aldehydes also react, albeit with diminished yield.

Equation 31

A wide range of alkynes can be employed, including acetylene (Equation 32). ${ }^{98}$ The utility of this new and mild method for the in situ generated zinc alkynylides has been demonstrated in numerous applications in natural product syntheses, namely epothilone A and B , leucascandrolide A, murisolin, oximidine II, (+)-gigantecin, epoxomicin, brefeldin C, and strongylodiols A and B. ${ }^{99,100,101,102,103,104,105,106}$

Ethyne is available as a solution in acetone and is used in industrial scale processes. Its use would be optimal because subsequent derivatization of the terminal alkyne (alkylation, acylation, or Sonogashira coupling) would provide access to a broad range of optically active, secondary propargylic alcohols. ${ }^{107}$

[^40]
Equation 32

The disadvantage of using acetylene as a nucleophile is that it has the potential to react twice. To prevent this, ethyne is usually used in a large excess and removed after the reaction upon evaporation. Unfortunately, prolonged reaction times are necessary when ethyne is used. Normally the reaction is complete in a few hours for terminal alkynes; however, for ethyne the reaction times range from 7 to 14 days. As an alternative to ethyne, 2-methyl-3-butyn-2-ol was used (Equation 33). The acetone protecting group can be removed by potassium carbonate and 18 -crown-6 in refluxing toluene after the addition. The corresponding terminal alkyne can be use in a subsequent addition to aldehydes to give unsymmetrical 1,4-alkynyldiols.

Equation 33

In 2001, Carreira reported a catalytic version of the addition of zinc alkynes to aldehydes. ${ }^{108}$ This was the first truly catalytic process (Equation 34) reported. Simply be heating the reaction to $60{ }^{\circ} \mathrm{C}$ in toluene catalytic turnover was achieved. Notably the enantiomeric excesses remain high. Using a different aminoalcohol, the catalytic enantioselective addition takes also place with non-enolizable, activated ketones (Equation 35). ${ }^{109}$

[^41]
Equation 34

Equation 35

2.1.1.4 Copper Alkynylides

The majority of applications of Cu -acetylides are for the formation of $\mathrm{C}-\mathrm{C}$ bonds. The Glaser coupling was already reported in 1869 and an improved procedure employing pyridine was disclosed later by Eglinton. ${ }^{110}$ Subsequently the formation of unsymmetrical diynes was achieved by Cadiot and Chodkiewicz by coupling a haloalkyne with a copper alkyne. ${ }^{111}$ Further investigations by Castro and Stephens resulted in the coupling of copper alkynes with aryliodides. ${ }^{112}$ Along the same lines Sonogashira achieved the same coupling using catalytic amounts of palladium together with copper. ${ }^{113}$

[^42]
Scheme 47

Apart from these coupling reactions copper alkynylides also participate in [3+2] cycloadditions with 1,3-dipoles. 1,2,3-triazoles are formed in the reaction with alkyl azides (Huisgen reaction) whereas nitrones undergo a rearrangement after cycloaddition to form β lactams (Kinugasa reaction). ${ }^{114,115}$

Due to their stability and aggregation (see section 1.1.1.4), Cu-acetylides are unreactive compared to other organocooper species. In fact, alkynes are often used as dummy ligands (ie. placeholders) in higher order cuprates. Consequently, few reactions utilizing Cu-acetylides as nucleophiles have been reported. Brannock reported the CuCl catalyzed addition to iminium ions derived from enamines. ${ }^{116}$ Using QUINAP as a ligand for copper, Knochel expanded this reaction to afford enantiomerically enriched products. ${ }^{117}$ In addition a three component version where the iminium is generated from an aldehyde and an amine in situ has been reported recently (Equation

[^43]36). The reaction is catalytic in copper as well as in ligand and good yields and high enantiomeric excess was achieved. A drawback is that only dibenzylamine can be used. In this case, deprotection to the free amine is only possible by reducing the alkyne as well. Recently, 2phenallyl was reported as a protecting group of the amine that could be cleaved without the reduction of the alkyne. ${ }^{118}$

Equation 36

A dimeric Cu/QUINAP complex was suggested as the catalytically active species since a strong positive nonlinear effect was observed in the enantioselective addition (Scheme 48). This is also in agreement with the dimeric crystal structure reported of $[\operatorname{CuBr}\{(R) \text {-quinap }\}]_{2}$.

In a very similar process starting with aromatic imines $L i$ employed a PYBOX ligand and achieved good yields and enantioselectivities. ${ }^{119}$ Although for both procedures the reaction is slow, taking several days for completion.

[^44]Scheme 48 Proposed mechanism for the Cu catalyzed three-component reaction

Very recently, Schreiber reported the Cu/QUINAP catalyzed enantioselective addition to isolated alkylisoquinoliniums and alkyl-3,4-dihydroisoquinoliniums (Equation 37). ${ }^{120}$ The reaction proceeds in high yield and high enantiomeric excess with a variety of substrates in solution and is also amenable to solid-phase synthesis.

Equation 37

[^45]A fast but racemic process was developed by Arndtsen ${ }^{121}$ using acyliminiums. Gouge reported the racemic addition of terminal alkynes to aldehydes employing $\mathrm{CuOH} .{ }^{122}$

2.1.1.5 Indium Alkynylides

A second, truly catalytic enantioselective addition of alkynes to aldehydes was reported by Shibasaki employing InBr_{3} (Equation 38). ${ }^{123} \mathrm{~A}$ broad range of alkynes and aromatic as well as aliphatic aldehydes are suitable for the addition. The InBr_{3} is believed to play a dual role, meaning that it activates the alkyne towards deprotonation by π-complexation and acts also as Lewis acid to activate the aldehyde.

Equation 38

2.2 Results

2.2.1 Enantioselective Addition of Acetylene to Aldehydes

Sasaki in the Carreira group investigated the Zn -catalyzed addition of acetylene to aldehydes, employing a procedure in which a Zn -acetylide is directly generated from a terminal alkyne in situ, under mild conditions. ${ }^{95,96,97}$ In preliminary experiments, a solution of toluene was saturated with acetylene at $0{ }^{\circ} \mathrm{C}$ by bubbling for $10-15 \mathrm{~min}$. This solution was subsequently treated with $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{EtN}(i-\mathrm{Pr})_{2}$, and $(+)-$ or $(-)-N$-methylephedrine, followed by an aldehyde. Under these conditions, adducts were isolated as a $1: 1$ mixture of the desired alk-1-yn-3-ols and 1,4-diols, the products of double addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ to 2 equiv. of aldehyde. By increasing the concentration of dissolved $\mathrm{C}_{2} \mathrm{H}_{2}$, minimization of the yield of 1,4 -diol products was achieved. ${ }^{98}$ In this regard, a mixture of aldehyde, $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{EtN}(\mathrm{i}-\mathrm{Pr})_{2}$, and $(+)$ - or $(-)$ - N -methylephedrine in toluene was cooled to $-40^{\circ} \mathrm{C}$ and bubbled with $\mathrm{C}_{2} \mathrm{H}_{2}$ for 20 min , and then the reaction vessel was

[^46]sealed and allowed to warm to $23^{\circ} \mathrm{C}$ (Equation 39). This procedure furnished the propargylic alcohols in up to 98% ee. Since the propargylic alcohols are volatile, they were protected as their 3,5-dinitrobenzoates before isolation.

Equation 39

The ee was high for both aliphatic and α, β-unsaturated aldehydes. However, the yield was only good for α-branched aliphatic aldehydes; ranging in yield from 70-92\%. For aromatic, conjugated aromatic and α-unbranched aldehydes the yields ranged from 28-35\%. Another drawback is the typically long reaction time. For aliphatic aldehydes, the reactions required 7 days, while for aromatic and conjugated aromatic aldehydes, the reactions reached not more than 35\% conversion after 14 days. As mentioned before, the reaction times of addition when terminal, substituted alkynes were employed were much shorter. This difference could result from the formation of unreactive aggregates of the sterically unhindered metallated species.

Because the reaction times of 7 to 14 days make this addition unattractive, we sought to increase the rates of this reaction. First, we turned our attention to the purity of the acetylene. Therefore, acetylene gas was passed through a cooling trap at $-78^{\circ} \mathrm{C}$, then through concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally through a trap filled with KOH pellets. To enlarge the concentration of acetylene, the gas was bubbled through the solution at $-78^{\circ} \mathrm{C}$ instead of $-40^{\circ} \mathrm{C}$. Thus, in a typical protocol, $0.55 \mathrm{mmol} \operatorname{EtN}(\mathrm{i}-\mathrm{Pr})_{2}$ and 0.50 mmol aldehyde were added to a solution of 0.50 mmol $\mathrm{Zn}(\mathrm{OTf})_{2}$ and $0.55 \mathrm{mmol}(+)-\mathrm{N}$-methylephedrine in 4.0 ml toluene. After stirring for 2 h at $23{ }^{\circ} \mathrm{C}$, the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ was bubbled through the solution for 10 min . The pressure tube was closed and the reaction was stirred at either $23^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$.

Employing this improved procedure, we were able to isolate α-branched as well as α unbranched aldehydes in yields from $66-88 \%$ in up to 98% ee (Table 4). Importantly, the reaction times could be shortened from 7 days to $11 / 20 \mathrm{~h}$. Increasing the reaction temperature from $23{ }^{\circ} \mathrm{C}$
to $50^{\circ} \mathrm{C}$ led only to a small diminution in the enantiomeric excess of the product from 93% ee to $89-91 \%$ ee. For aromatic or conjugated aromatic aldehydes this procedure could not be in practice applied, because the aldehydes decomposed at $50^{\circ} \mathrm{C}$; therefore the yields were never higher than 40%.

Table 4

	$\mathrm{H}=\mathrm{H}$			$\begin{aligned} & \mathrm{X}=\mathrm{H} \\ & -\mathrm{X}=4 \cdot \mathrm{ni} \end{aligned}$	
aldehyde (R)	product	time	temperature	yield ${ }^{\text {a) }}$	ee ${ }^{\text {c) }}$
$i-\mathrm{Pr}$		16 h	$23{ }^{\circ} \mathrm{C}$	88\%	95\% ${ }^{\text {d) }}$
t-Bu		$\begin{aligned} & 35 \mathrm{~h} \\ & 19 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 23^{\circ} \mathrm{C} \\ & 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 70 \% \\ & 86 \% \end{aligned}$	$\begin{aligned} & 93 \% \\ & 89 \% \end{aligned}$
$c-\mathrm{C}_{6} \mathrm{H}_{11}$		$\begin{aligned} & 35 \mathrm{~h} \\ & 11 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 23^{\circ} \mathrm{C} \\ & 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 66 \% \\ & 75 \% \end{aligned}$	$\begin{aligned} & 93 \% \\ & 91 \% \end{aligned}$
$\mathrm{Me}_{3} \mathrm{CCH}_{2}$		18 h	$50^{\circ} \mathrm{C}$	68\%	98\%
$\mathrm{Me}_{2} \mathrm{CHCH}_{2}$		20 h	$50^{\circ} \mathrm{C}$	71\%	94\%
TIPSOCH 2		20 h	$50^{\circ} \mathrm{C}$	70\% ${ }^{\text {b }}$	$88 \%{ }^{\text {d }}$

[^47]
2.2.2 Addition of Acetylene to Aldehydes Employing Alkali Metals

Based on the work of Babler and Knochel we wondered if it would be possible to substitute $\mathrm{Zn}(\mathrm{OTf})_{2}$ in the addition of acetylene to aldehydes with cheaper metal sources, namely alkali
metals. ${ }^{79,80}$ They presented the addition of terminal alkynes to ketones employing catalytic amounts of $\mathrm{KO}^{t} \mathrm{Bu}$, and CsOH . In these cases DMSO, THF, or a mixture of both were used as solvents. We wondered if the addition of acetylene to aldehydes would also be possible with a similar procedure. Following the example of Babler we chose to investigate the use of alkali metal-tert-butoxides because they are cheap and easy to handle. ${ }^{124}$ We chose to study the reactions in toluene as solvent because it is removed easier than DMSO and worked well in the procedure employing $\mathrm{Zn}(\mathrm{OTf})_{2}$. Thus, a solution of cyclohexylcarboxaldehyde in toluene was treated with one equivalent of alkalimetal tert-butoxide and the indicated amount of (+)-NME. The solution was cooled to $-78^{\circ} \mathrm{C}$, saturated with acetylene and sealed (Table 5).

Table 5

alkoxide (\mathbf{X}) 1 equivalent	(+)-NME	time	temperature	yield $^{\text {a })}$
K		18 h	$50^{\circ} \mathrm{C}$	45%
K	1.1 equivalent	14 h	$50^{\circ} \mathrm{C}$	67%
Na		14 h	$23^{\circ} \mathrm{C}$	66%
Na	1.1 equivalent	14 h	$23^{\circ} \mathrm{C}$	54%
Li		14 h	$50^{\circ} \mathrm{C}$	0%
Li	1.1 equivalent	14 h	$50^{\circ} \mathrm{C}$	0%

${ }^{\text {a) }}$ The products were isolated as their corresponding 4-nitrobenzoates

For potassium tert-butoxide the reaction had to be heated to $50{ }^{\circ} \mathrm{C}$, or no addition took place. Interestingly, the product yield was higher when NME was added although analysis by chiral HPLC showed that the propargyl alcohol was obtained in racemic form. Employing sodium tert-butoxide, the reaction could be conducted at $23{ }^{\circ} \mathrm{C}$, yielding 66% of propargylic alcohol. This time the addition of (+)-NME had a negative effect in reactivity, yielding only 54\% product. Analysis by chiral HPLC showed again no stereoinduction. Lithium tert-butoxide could not effect the reaction - only starting material was isolated. It is known that monolithium

[^48]acetylide disproportionates readily above $-25^{\circ} \mathrm{C}$ into the more stable dilithium carbide and acetylene (Figure 18). ${ }^{125}$

Figure 18 Disproportionation of Monolitium Acetylide into Dilithium Carbide and Acetylene

This disproportionation can be prevented by complexation of a diamine to the monolithium acetylide. ${ }^{126}$ With this in mind, we added (-) sparteine to the reaction mixture with the additional hope that it would induce enantioselectivity. Therefore, cyclohexylcarboxaldehyde in the indicated solvent was treated with 1.3 equivalent lithium tert-butoxide and 1.4 equivalent (-) sparteine (Equation 40). The solution was cooled to $-78^{\circ} \mathrm{C}$, saturated with acetylene and sealed. In toluene and THF the reaction had to be heated to $50^{\circ} \mathrm{C}$ in order to get addition whereas in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the addition took place at $23{ }^{\circ} \mathrm{C}$. The corresponding propargylic alcohols were isolated in $62-74 \%$ yield. The reaction in toluene provided the highest ee: 13%.

Equation 40

a) The products were isolated as their corresponding 4-nitrobenzoates
${ }^{\text {b) }}$ The ee was determined by chiral HPLC

[^49]
2.3 Conclusion

By saturation of toluene with acetylene at $-78^{\circ} \mathrm{C}$ and reaction temperatures of $50^{\circ} \mathrm{C}$ the reaction time in the Zn -mediated enantioselective addition of acetylene to aldehydes could be decreased from 7-14 days to 11-22 h. Employing potassium-tert-butoxide instead of the combination of $\mathrm{Zn}(\mathrm{OTf})_{2}$ and NEt_{3} in toluene as a base furnished the corresponding propargylic alcohol as well. However, a catalytic or highly enantioselective reaction is not yet achieved employing alkali metal-tert-butoxides as bases.

Chapter 3

The Enantioselective Synthesis of 3-Butane-1,2-diol by Pd-Catalyzed Rearrangement

3.1 Introduction

3-Butene-1,2-diol ($\mathbf{1 0 0}$) is a versatile polyfunctional chiral synthon that can be manipulated in a highly stereo- and chemoselective manner. The utility of diol $\mathbf{1 0 0}$ has been demonstrated in the synthesis of a wide range of chiral building blocks ${ }^{127,128,129}$ as well as its application in total syntheses. These include a HIV protease inhibitor intermediate, ${ }^{130}$ oscillatoxin A, ${ }^{131}(-)$ bulgecinine, ${ }^{132}$ D-allosamine, ${ }^{133}(-)$-bestatin, ${ }^{134}$ cyclosporine, ${ }^{135}(-)$-tulipalin $\mathrm{B},{ }^{136}(+/-)-$ blastmycinone, ${ }^{137}$ and statine. ${ }^{138}$ This introduction presents some approaches to the synthesis of enantiomerically enriched 3-butene-1,2-diol (100).

3.1.1 Preparation of 3-Butene-1,2-diol by Enzymatic Resolution

Racemic 3-butene-1,2-diol (100) is commercially available or can be obtained by isomerisation of the cheaper cis-2-butene-1,4-diol (101). ${ }^{127}$ Treatment of diol $\mathbf{1 0 1}$ with $0.13 \mathrm{~mol} \%$ HgSO_{4} under acidic conditions furnishes racemic 3-butene-1,2-diol (100) in 62% yield (Equation 41).

[^50]
Equation 41

Enzymatic resolution by lipase PS^{139} or by glycerol kinase ${ }^{140}$ of the diol in the former or the primary monoprotected alcohol in the later ${ }^{141,142,143,127,135}$ furnishes the enantiomerically enriched monoprotected tosylate. A practical procedure that provides the diol $\mathbf{1 0 0}$ on over $50-\mathrm{g}$ scale is shown below (Scheme 49). ${ }^{141}$

Scheme 49

The monoprotected tosylate was used because it is a crystalline solid, and therefore an upgrade in enantiomeric excess is possible by crystallization. The attempted direct deprotection of the tosylate led to the formation of an intermediate epoxide. Unfortunately, the attack of hydroxide on the epoxide was not regioselective, leading to a total erosion of enantiomeric excess.

[^51]The formation of the epoxide could be avoided by the use of potassium bicarbonate, which furnished the carbonate $\mathbf{1 0 2}$. A possible mechanism involves the reaction of the secondary alcohol with in situ generated carbon dioxide followed by displacement of the tosylate with the thus generated carbonate anion. The cleavage of the carbonate with 50% aqueous potassium hydroxide afforded the diol $\mathbf{1 0 0}$ with retention of enantiomeric purity. The other enantiomer of diol $\mathbf{1 0 0}$ was obtained after deacylation and recrystallization.

3.1.2 Preparation of 3-Butene-1,2-diol by Synthesis from Chiral Pool

Early preparations of enantiomerically enriched diol $\mathbf{1 0 0}$ involved multi-step syntheses beginning with chiral pool materials such as D-mannitol, ${ }^{144,145}$ L-ascorbic acid, ${ }^{146,147,148,149}$ or tartaric acid. ${ }^{128,150}$ Some of them allow only the synthesis of one enantiomer of 3-butene-1,2-diol.

3.1.2.1 From D-Mannitol

In 1938, the oxidative cleavage of $1,2,5,6$-diacetone D-mannitol to the corresponding aldehydes was reported. ${ }^{144}$ From there Wittig reaction of the aldehyde with methyl triphenylphosphonium ylide, followed by deprotection afforded the (S)-diol 100 (Scheme 50). ${ }^{151}$ A drawback of this method is that only a single isomer, namely D-mannitol, is readily available. L-Mannitol has to be prepared from L-mannose.

[^52]86

Scheme 50

3.1.2.2 From L-Ascorbic Acid

Two approaches to chiral diol $\mathbf{1 0 0}$ have used L-ascorbic acid as a starting material (Scheme 51). The first started with hydrogenation of L-ascorbic acid, followed by regioselective protection of one pair of the two diols. ${ }^{149}$ Diol cleavage furnished the aldehyde. The second method began with protection of the saturated diol function of ascorbic acid. ${ }^{146}$ Then, in a one-pot procedure the olefin was reduced with NaBH_{4} and the lactone was cleaved with NaOH . After neutralization, cleavage with lead tetraacetate produced the aldehyde. Wittig olefination and acetonide deprotection, as before, gave (R)-diol 100. Since the diastereomer of L-ascorbic acid, namely Disoascorbic acid, is also commercially available, both enantiomers of alcohol $\mathbf{1 0 0}$ can be obtained.

Scheme 51

3.1.2.3 From L-Tartaric Acid

A third procedure starts from the diethyl ester of L-tartaric acid ${ }^{128}$ (Scheme 52). Diol protection followed by reduction and monoprotection of the resulting diol gave the monobenzyl ether. Iodination of the free alcohol and elimination gave (R)-1-benzyloxy-3-buten-2-ol in quantitive yield. Deprotection to the diol $\mathbf{1 0 0}$ was possible, but the yield was low. This method seems to be not as practical as the two discussed above; however tartaric acid is available as both L- and D-enantiomers.

Scheme 52

3.1.3 Preparation of 3-Butene-1,2-diol by Hydrolytic Kinetic Resolution

A more recent preparative method developed by Jacobsen ${ }^{152}$ is the hydrolytic kinetic resolution of racemic 3,4-epoxy-1-butene (103) (Scheme 53). The racemic epoxide $\mathbf{1 0 3}$ is produced by the Eastman process ${ }^{153}$-the Ag catalyzed aerobic epoxidation of butadiene. Although it is commercially available, it is not cheap or easily transported and handled because it tends to polymerize.

Scheme 53

By varying the equivalents of water, the reaction can be tuned to give either good yield and moderate ee or lower yield and high ee. Both enantiomers of diol $\mathbf{1 0 0}$ can be obtained by this method because the ligand is available in both enantiomeric forms.

3.1.4 Preparation of 3-Butene-1,2-diol by Palladium-Catalyzed Dynamic Kinetic

Resolution

Another approach is a palladium-catalyzed dynamic kinetic resolution presented by Trost. ${ }^{154}$ Starting from racemic epoxide $\mathbf{1 0 3}$, either the enantioenriched diol $\mathbf{1 0 0}$ or its corresponding carbonate could be obtained by palladium catalyzed allylic alkylation (Scheme 54). Trost's initial procedure used $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as the nucleophile and $\mathrm{Et}_{3} \mathrm{~B}$ to provide the diol $\mathbf{1 0 0}$ in

[^53]yields of 70% and 86% ee. In an optimized procedure applicable to a 100 g -scale, the use of the alkylboron was avoided and NaHCO_{3} was used as nucleophile (Scheme 55). ${ }^{155}$ A catalyst loading of as low as $0.0275 \mathrm{~mol} \%$ perhaps makes this the most practical synthesis of diol 100, although the enantiomeric excess is not high (85%). A drawback is, as already mentioned above, that the starting material is not easy accessible in large quantities. Again, because the ligand is available in both enantiomeric forms, both enantiomers of diol $\mathbf{1 0 0}$ can be obtained by this method.

Scheme 54

$(S, S)-108$
Scheme 55

[^54]
3.2 Results

3.2.1 Background to Our Own Approach

Because diol $\mathbf{1 0 0}$ has been used in numerous natural products syntheses as a valuable building block its availability is highly desirable. Among the many routes to enantioenriched diol $\mathbf{1 0 0}$ described above none furnishes the desired diol $\mathbf{1 0 0}$ in over 50% yield with more than 90% ee in less than two steps. Therefore we started a project that would allow preparing diol $\mathbf{1 0 0}$ in good yields and high enantiomeric excess from easy and unexpensive starting materials. Similar to the work of Trost, our approach is based on a palladium catalyzed asymmetric allylic alkylation. Allylic monoacetates and monocarbonates are used extensively in palladiumcatalyzed allylation of nucleophiles. ${ }^{156,157}$ There are few reports on palladium-catalyzed reaction of bifunctional allylic diacetates and dicarbonates with nucleophiles featuring their bifunctionality (Scheme 56). ${ }^{158,159}$ The bisacetates and biscarbonates starting materials are prepared in one step from achiral and unexpensive compounds (Scheme 57). Today's methods employing this double alkylation use dinucleophiles which are not easily cleaved to the corresponding diols, diamines and aminoalcohols. ${ }^{160,161}$

Terminal attack of the nucleophile leading to unbranched products is often a problem in palladium catalyzed allylic alkylations. ${ }^{156}$ This is not a problem here since the formation of a sixmember ring is favored over an eight-member one. Therefore, only the product resulting from six-member ring formation is obtained. Two chiral ligands were employed in this reaction. Using BINAP the yields and enantiomeric excesses were low to moderate. ${ }^{158}$ Employing MeOBIPHEP higher yields were obtained but the enantiomeric excesses remained moderate.

[^55]Scheme 56

Scheme 57

Our attempt to obtain 3-butene-1,2-diol (100) began with the same strategy, except we reasoned that the bisnucleophile should be easily cleaved after the addition. This would allow us to prepare the desired diol $\mathbf{1 0 0}$ in three steps from unexpensive and easy available starting materials.

3.2.2 Intermolecular Approach

Starting from easily prepared bisacetates 104 and biscarbonates 105 (Scheme 57) our plan was to use commercially available bisnucleophiles, namely oxalic acid or its disodium salt and glyoxylic acid sodium salt monohydrate (Scheme 58). To a solution of $\mathrm{Pd}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ and PPh_{3} in THF under an argon atmosphere was added the biscarbonate $\mathbf{1 0 5}$ and oxalic acid. The solution was stirred at $40^{\circ} \mathrm{C}$ for 24 h , but only starting material and rearranged compound could be isolated (Scheme 59). When the disodium salt of oxalic acid was added as nucleophile a
suspension was obtained, suggesting that the salt is not soluble in THF. Changing the solvent to acetonitrile or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the same result. Glyoxylic acid sodium salt monohydrate was soluble in THF, but no reaction took place. To increase the probability of nucleophilic attack we next turned our attention to an intramolecular version of the reaction.

Scheme 58

105

solvents used: THF, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 59

or

 solvents used: THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$

yield $10-20 \%$

3.2.3 Intramolecular Approach

Because the attempts with external bisnucleophiles that would be easy to cleave after the addition were not successful, we turned our attention to an intramolecular approach. The cyclic seven-member sulfite $\mathbf{1 0 6}$ is a known compound that can be obtained from unexpensive starting materials in one step. ${ }^{162}$ Therefore, cis-2-butene-1,4-diol (101) was treated with thionylchloride and benzotriazole in dichloromethane to give cyclic sulfite $\mathbf{1 0 6}$ in 71% yield on a 10 g -scale.

[^56]To a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(1.5 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(14 \mathrm{mmol})$ in THF under an argon atmosphere was added the sulfite 106. After stirring for 150 min . at $23{ }^{\circ} \mathrm{C}$ the solution was filtered over a short SiO_{2}-plug and concentrated (Scheme 60). Crude ${ }^{1} \mathrm{H}$-NMR showed full conversion to the rearranged 5 -member cyclic sulfite 107 . Purification of the 5 -member cyclic sulfite $\mathbf{1 0 7}$ by flash chromatography on SiO_{2} led to decomposition. Therefore, we decided to deprotect it and isolate the diol $\mathbf{1 0 0}$ instead (Scheme 60). Treatment of sulfite $\mathbf{1 0 7}$ with NaOH in a $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}$ mixture and stirring at $23^{\circ} \mathrm{C}$ for 2 h afforded the desired diol 100 . The reaction looked clean by TLC but isolation of the diol $\mathbf{1 0 0}$ proved to be difficult. This is mainly due to the extraction of the polar diol $\mathbf{1 0 0}$ from the water phase. Acidification of the water phase to pH 2 with HCl followed by the addition of NaCl until saturation and subsequent extraction with EtOAc (10 times) furnished 45% yield over 2 steps. This isolation procedure could likely be optimized to get a better yield, as the reaction looked very clean.

Scheme 60

3.2.3.1 Enantioselective, Intramolecular Approach

After the discovery of the rearrangement to afford the desired diol $\mathbf{1 0 0}$ we turned our attention to the identification of an enantioselective process. Special ligands have been developed for palladium catalyzed allylic alkylations, because the crucial bond-forming process, the nucleophilic addition to the allyl system, is taking place outside the coordination sphere of conventional ligands. One concept is to increase the bite angle and, as a consequence, create a chiral cavity in which the allyl system is embedded. In this case trans-1,2-diaminocyclohexanone
is used as a chiral scaffold to induce a specific chiral arrangement of the four P-phenyl groups. ${ }^{156}$ Another concept to control the selectivity is based on electronic effects. In contrast to allyl complexes with C_{2}-symmetric ligands, complexation of the metal by P, N-ligands should result in electronic discrimination of the two allylic termini due to the different trans influence of phosphorus and nitrogen (Figure 19). ${ }^{157}$ Otherwise chiral bidentate phosphines, bidentate nitrogen ligands and monodentate phosphines are also used, albeit their scope is more limited.

Figure 19 Ligands developed for asymmetric allylic alkylation

chiral cavity

electronic discrimination due to trans effect

For the ligand screen a ratio of $\operatorname{Pd}(0)$ to ligand of $2: 3$ was used to make sure that there is no background reaction that would lead to racemic product (Scheme 61). Determination of the ee for the diol $\mathbf{1 0 0}$ by GC was only possible qualitatively, since no complete separation of the two peaks was achieved. For ease of HPLC separation the diol was monoprotected with 4-nitrobenzoylchloride. Now complete separation of the two peaks by chiral HPLC was achieved and furnished exact ee values for alcohol 100.

We first tried a series of commercially available diphosphines. Therefore, a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(1.5 \mathrm{~mol} \%)$ and ligand ($4.5 \mathrm{~mol} \%$) in THF under an argon atmosphere was treated with sulfite $\mathbf{1 0 6}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 14 h the conversion was measured. If no conversion could be obtained the experiment was repeated at $60^{\circ} \mathrm{C}$. Employing diphosphines diol $\mathbf{1 0 0}$ was obtained in 0 to 31% yield, albeit as a racemate (Scheme 62). Using ligand 108, which, as described above, forms a chiral cavity, furnished the diol in 2% yield and 5% ee. The phosphinooxazoline ligands $\mathbf{1 0 9}$ and $\mathbf{1 1 0}$ gave the highest enantiomeric excess (13%) in 5 to 6% yield. Since, apart from triphenylphosphine, all ligands gave low conversion we also tried the
monodentate phosphoramidite ligand 111 in order to get better conversion. The diol $\mathbf{1 0 0}$ was obtained in 5% yield as a racemate.

Scheme 61

Scheme 62

yield: 31% ee: $0 \% 23^{\circ} \mathrm{C}$ yield: 20% ee:0\% $60^{\circ} \mathrm{C}$

yield: 10% ee:0\% $23^{\circ} \mathrm{C}$ yield: 8% ee:0\% $60^{\circ} \mathrm{C}$

yield: 8% ee:0\% $23^{\circ} \mathrm{C}$
yield: 27% ee:0\% $23^{\circ} \mathrm{C}$

no conversion $60^{\circ} \mathrm{C}$

no conversion $60^{\circ} \mathrm{C}$

108
yield: 2% ee:5\% $60^{\circ} \mathrm{C}$
yield: 25% ee:0\% $40^{\circ} \mathrm{C}$

yield: 6% ee:13\% $60^{\circ} \mathrm{C}$

110

no conversion
$60^{\circ} \mathrm{C}$

yield: 5% ee:0\% $60^{\circ} \mathrm{C}$

12 no conversion $60^{\circ} \mathrm{C}$

To make sure that the low enantiomeric excess was not due to racemization during the deprotection of 5 -member cyclic sulfite $\mathbf{1 0 7}$ to the diol $\mathbf{1 0 0}$, the enantiopure diol $\mathbf{1 0 0}$ was synthesized using D-mannitol as a starting material (Scheme 50). Treatment of the enantiopure diol $\mathbf{1 0 0}$ with SOCl_{2} and benzotriazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished the cyclic sulfite $\mathbf{1 0 7}$ in 95% yield (Scheme 63). Deprotection using exactly the same conditions as in the ligand screen, namely 3 equiv. of NaOH in a water/EtOAc mixture at $23^{\circ} \mathrm{C}$ for 2 h furnished the enantiopure diol $\mathbf{1 0 0}$. The enantiomeric excess was determined by chiral GC; both diols, the starting material and the
one after the protection/deprotection sequence showed an ee over 99%. This establishes that no racemisation occurs in the deprotection step from the cyclic sulfite $\mathbf{1 0 7}$ to the diol $\mathbf{1 0 0}$.

Interestingly, when enantiopure sulfite $\mathbf{1 0 7}$ was treated with palladium and triphenylphosphine in THF at $23^{\circ} \mathrm{C}$ for 3 h and subsequently deprotected to the diol $\mathbf{1 0 0}$ using the same conditions as before, complete racemisation occurred. Since we established that there is no racemisation during the deprotection, this suggests that the allyl-palladium complex was formed. Alternation of palladium between enantiofaces of the allylic fragment can then occur and, therefore, the enantiomeric purity is lost.

Scheme 63

3.2.3.2 Screening of Different Pd Sources - Discovery of a Diastereoselective Rearrangement

To evaluate the effect of the palladium source in the outcome of the rearrangement we next employed $\mathrm{Pd}(0)$ and $\mathrm{Pd}(\mathrm{II})$ sources (Table 6). Full conversion was achieved using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ with 9.3 equiv. of PPh_{3}. When the ratio of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ to PPh_{3} was 1 to 4 , the conversion was only 29%. Non conversion was obtained when $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ was used without additional PPh_{3}. Employing Pd(II) sources the highest conversion obtained was 40% using $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$. $\mathrm{Pd}(\mathrm{OAc})_{2}$ under identical conditions gave 20% yield. On the other hand the allyl-Pd(II)Cl-dimer ($1.5 \mathrm{~mol} \%$) and $\mathrm{PdCl}_{2}\left(5 \mathrm{~mol} \%\right.$) gave no product. When PPh_{3} was added to $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ diminished yields were obtained, namely 33% for a ratio of 2 to $1,10 \%$ for 1 to 1 and no conversion at all for a ratio of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ to PPh_{3} equal 1 to 2 . One could
speculate that the $\mathrm{Pd}(\mathrm{II})$ was reduced to $\mathrm{Pd}(0)$ by the oxidation of PPh_{3} to OPPh_{3}. As already mentioned, $\mathrm{Pd}(0)$ does not catalyze the reaction without the addition of PPh_{3}.

Table 6

106107

entry	Pd source	(mol\%)	$\mathrm{PPh}_{3}(\mathrm{~mol} \%)$	conversion (\%)
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	5.0	-	100
2	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}$	1.5	14	100
3	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}$	1.5	6	29
4	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}$	3.0	-	-
5	$\mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{10}$	1.5	-	-
6	PdCl_{2}	5.0	-	-
7	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	5.0	-	$40^{\text {a }}$
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	5.0	-	$20^{\text {a) }}$
9	$\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$	5.0	-	-
10	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	5.0	2.5	$33^{\text {a) }}$
11	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	5.0	5.0	$10^{\text {a) }}$
12	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	5.0	10.0	-

${ }^{\text {a) }}$ only a single set of diastereomers could be obtained in the ${ }^{1} \mathrm{H}$-NMR

Interestingly, in the reactions with $\mathrm{Pd}(\mathrm{II})$ sources only a single set of enantiomers was detected in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$. This was not the case when $\operatorname{Pd}(0)$ sources were used, there both sets of enantiomers were obtained in the ${ }^{1} \mathrm{H}$-NMR. The $\mathbf{7}$-membered sulfite $\mathbf{1 0 6}$ is a meso-compound. On the other hand, the 5 -membered sulfite 107, obtained after ring contraction, contains two stereocenters (Scheme 64). Therefore four stereoisomers of the five-member cyclic sulfite $\mathbf{1 0 7}$ do exist (Scheme 64).

For $\operatorname{Pd}(0)$, as mentioned above, the palladium can switch between enantiofaces of the allylic fragment. This alternation should be fast since the chiral information in the experiment described above was completely lost. Thus, rotation of the sulfite around the S-O bond occurs before nucleophilic attack. Both diastereomers can adopt a stable half-chair conformation where the vinyl is in a pseudo-equatorial position. Therefore there is no preference of one over the other diastereomer and thus all four stereoisomers are obtained in the $\mathrm{Pd}(0)$ catalyzed rearrangement.

Scheme 64 Suggested mechanism for $\operatorname{Pd}(0)$

For Pd (II) we propose a different mechanism (Scheme 65). After activation of the olefin by $\mathrm{Pd}(\mathrm{II})$ coordination a nucleophile can attack the olefin. The only nucleophile around is the oxygen of the sulfite. When the seven-member sulfite $\mathbf{1 0 6}$ adopts a boat-conformation, either the lone pair of the sulfur or the oxygen can be aligned to reach the olefin. If the oxygen is positioned on top of the olefin, nucleophilic attack on the olefin can occur. Since the seven-member sulfite 106 is a meso-compound, there is no preferential for one of the two carbons of the olefin to be attacked. In this process a bicyclic species is produced, containing a five- and a six-member ring. When the five-member ring gets opened, starting material is obtained. Opening of the sixmember ring leads to the five-member sulfite $\mathbf{1 0 7}$ as a pair of enantiomers.

Scheme 65 Suggested mechanism for $\operatorname{Pd}(\mathrm{II})$

3.3 Conclusion

The intermolecular approach to obtain 3-butene-1,2-diol (100) from easily prepared diacetates or dicarbonates furnished only rearranged product. This suggests that bisnucleophiles that could easily be cleaved after the addition are not nucleophilic enough.

In the intramolecular approach we identified the seven-member cyclic sulfite $\mathbf{1 0 6}$ as a substrate that underwent the desired rearrangement. It is obtained from inexpensive cis-butane-1,4-diol in one step in 71% yield. The racemic rearrangement was quantitative, employing a $\mathrm{Pd}(0)$ source with at least 4 equiv. of PPh_{3}. Deprotection of the rearranged product furnished the desired 3-butene-1,2-diol (100). Among the ligands tested so far (S)-2-(2-(diphenyl-phosphine)phenyl)-4-phenyl-4,5-dihydrooxazole (109) gave the best result, furnishing the product in 13% ee.

An interesting result was obtained when $\mathrm{Pd}(\mathrm{II})$ sources were employed in the reaction. Only one set of enantiomers were obtained, suggesting that two different mechanisms are operating, depending on the oxidation state of palladium.

4 Conclusion

The modifications of N-PINAP presented in Part 1 dramatically improved the yield and enantioselectivity in the conjugate addition of phenylacetylene to Meldrum`s acid derived acceptors. With a ligand loading of only $10 \mathrm{~mol} \%$ the corresponding conjugate addition products could be isolated in up to 94% yield and 97% ee performing the reaction at $0^{\circ} \mathrm{C}$ in 10 equiv of phenylacetylene. The synthetic utility of this method has been demonstrated in the asymmetric synthesis of a key intermediate of TNF inhibitors and GRP receptor antagonists. A strong positive nonlinear effect was observed for the PINAP catalyzed conjugate addition. Employing a mixture of diastereomeric PINAP ligands (20% de) in the reaction the corresponding products were obtained in up to 80% yield and 94% ee. To determine the origin of this effect needs further experiments. Although the PINAP ligand can be obtained in diastereomerically pure form by chromatography, because of the strong positive nonlinear effect, high enantioselectivities can be obtained for certain substrates without the separation of the two diastereomers. The modular synthesis of PINAP allows preparation of various analogs. It would be possible to prepare and screen various PINAP ligands in a certain reaction for optimal performance. Therefore this new class of ligands should find wide applications in total synthesis as well as methodology in the future.

In Part 2 enantioselective addition of acetylene to aldehydes was studied. Under the optimized conditions, the reaction time of the Zn -mediated enantioselective addition of acetylene to aldehydes was significantly decreased compared to the previously described conditions (from 7-14 days to 11-22 h). This improvement further enhanced the synthetic effectiveness of the process.

Finally, in Part 3 a Pd-catalyzed rearrangement of cyclic sulfate was investigated. An easily available and stable seven-member cyclic sulfite underwent a Pd-catalyzed rearrangement to 3-Butane-1,2-diol, a valuable building block in natural product synthesis. Efforts were made to develop the enantioselective variant of the process, and various ligands on palladium were screened. Among the ligands tested, (S)-2-(2-(diphenyl-phosphine)phenyl)-4-phenyl-4,5dihydrooxazole gave the best result, furnishing the product in 13% ee. The future work in this project involves examination of different types of ligands to improve the enantioselectivity.

5 Experimental Part

All non-aqueous reactions were carried out using oven-dried glassware under a positive pressure of argon unless otherwise noted. THF, acetonitrile, toluene, $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purified by distillation and dried by passage over activated alumina under an argon atmosphere ($\mathrm{H}_{2} \mathrm{O}$ content $<30 \mathrm{ppm}$, Karl-Fischer titration). ${ }^{163}$ Triethylamine, Hünigs base and pyridine were distilled from KOH. N-Buthyl lithium was titrated with s - $\mathrm{BuOH} /$ phenanthroline. ${ }^{164}$ Except as indicated otherwise, reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using Merck Silica Gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained using ceric ammonium molybdate or potassium permanganate stain. Chromatografic purification of products was performed on E. Merck Silica Gel 60 (230-400 mesh) using a forced flow of eluant at 0.4 bar pressure. ${ }^{165}$ Concentration under reduced pressure was performed by rotary evaporation at $40{ }^{\circ} \mathrm{C}$ at the appropriate pressure. Purified compounds were further dried under high vacuum (0.5-0.05 mbar). Yields refer to purified and spectroscopically pure compounds. Kugelrohr distillations were performed with a Büchi Glass Oven B-580. Melting points were measured on a Büchi 510 apparatus. All melting points were measured in open capillaries and are uncorrected. Optical rotaitions were measured on a Jasco DIP-1000 polarimeter operating at the sodium D line with a 100 mm path length cell. NMR spectra were recorde on a Varian Mercury 300 spectrometer operating at 300 MHz and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ acquisitions, respectively, or on a Bruker DRX 500 spectrometer operating at 500 MHz and 125 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ acquisitions, respectively. Chemical shifts are reported in ppm with the solvent resonance as the internal standard. The data is being reported as $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{dt}=$ double triplett, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal, coupling constant(s) in Hz , integration). Infrared spectra were recorded on a Perkin Elmer Spectrum RX-I FT-IR spectrophotometer as thin films unless stated otherwise and are reported as cm^{-1} ($\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong).Gas chromatographic measurements were performed on a Varian 3300 gas chromatographer or a HP 6890 Series gas chromatographer using a Supelco fused silica column β-Dex 120 (length: 30 m , diameter: 0.25 cm , film thickness $0.25 \mu \mathrm{~m}$), hydrogen as carrier gas and a FID detector. Mass spectrometric measurements were performed by the mass spectrometry service of the LOC at the ETHZ on a Finnigan TSQ 7000 ESI spectrometer for low resolution measurements and on an IONSPEC Ultima ESI-FT-ICR spectrometer at 4.7 Tesla, on an Ion Spec Ultima HR FT-ICR MS MALDI-FT-ICR MS using the DHB-tl (2,5-Dihydroxy-benzoic acid-two layers) method at 4.7 Tesla or on a EI-HIRES Micromass Autospel-ULTIMA spectrometer at 70 eV for high resolution measurements. Elemental analysis was performed by the Mikroelementaranalytisches

[^57]Laboratorium der ETHZ. Enantiomeric excesses were determined by chiral HPLC analysis with Merck-Hitachi D-7000 system. Solvent mixtures, conditions, retention times and columns used are given in parentheses.

Trifluoromethanesulfonic acid 1-[4-((R)-2-ethyl-2-hydroxy-1-phenylbutylamino)

phthalazin-1-yl]-naphthalen-2-yl ester (112).
To 600 mg (1.37 mmol) of trifluoromethanesulfonic acid 1-(4-chlorophthalazin-1-yl)-naphthalen-$2-\mathrm{yl}(\mathbf{2 5})$ ester was added 1.06 g (5.49 mmol$)$ of $3-((R)$-aminophenyl-methyl)pentan-3-ol. The suspension was stirred for 24 h at $120{ }^{\circ} \mathrm{C}$. FC (toluene/EtOAc 10:0 \rightarrow 5:1) followed by crystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded $451 \mathrm{mg}(55 \%)$ of the title compound as a white powder as a mixture of diastereomers.
mp: $117-119{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84-1.00(\mathrm{~m}, 12 \mathrm{H}), 1.18-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.71-$ $1.95(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.33(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=8.4,1 \mathrm{H}), 5.73(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.54-6.73(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.36 (m, 10 H$), 7.43(\mathrm{~d}, J=3.4,1 \mathrm{H}), 7.51-7.65(\mathrm{~m}, 9 \mathrm{H}), 7.75-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.97-8.11(\mathrm{~m}$, $6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.6,7.8,8.4,8.5,28.1,28.2,29.1,29.1,59.1,59.7,78.0,78.1$, $118.1,118.3,118.4\left(\mathrm{q}, J_{C F}=318\right), 118.7\left(\mathrm{q}, J_{C F}=318\right), 119.9,119.9,121.1,121.2,126.2,126.9$, $127.0,127.5,127.6,127.7,127.8,127.8,128.2,128.2,128.4,128.5,128.6,128.6,129.0,129.3$, $131.7,131.7,131.8,131.9,133.0,133.0,133.9,134.0,140.6,140.9,145.8,145.9,146.5,146.7$, 153.3, 153.4.

FTIR (thin film, cm^{-1}): 3395 (w), 3052 (w), 2964 (w), 1508 (s), 1420 (s), 1544 (w), 1213 (s), 1138 (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$596.1825, found 596.1828.

$1^{\text {st }}$ diastereomer

$2^{\text {nd }}$ diastereomer
(R, M)-[4-(2-Diphenylphosphanyl-naphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\} pentan-3-ol ($1^{\text {st }}$ diasteomer, 31a) and (R, P)-[4-(2-Diphenylphosphanyl-naphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol ($2^{\text {nd }}$ diasteomer, 31b).

A solution of $37 \mathrm{mg}(0.07 \mathrm{mmol}) \mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$ in 2.5 ml of DMF at $23^{\circ} \mathrm{C}$ was treated with 0.244 $\mathrm{ml}(1.40 \mathrm{mmol})$ of diphenylphosphine. The resulting dark red solution was stirred at $120^{\circ} \mathrm{C}$ for 30 min , treated with, a solution of $417 \mathrm{mg}(0.70 \mathrm{mmol})$ of trifluoromethanesulfonic acid 1-[4-((R)-2-ethyl-2-hydroxy-1-phenyl-butylamino) phthalazin-1-yl]naphthalen-2-yl ester (112) and 449 mg (2.8 mmol) of DABCO in 2.5 ml of DMF via syringe. The resulting green solution was stirred at $120^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 70^{\circ} \mathrm{C}$ bath temperature). The residue was purified by FC (toluene \rightarrow toluene/EtOAc 5:1) to give 364 $\mathrm{mg}(82 \%)$ of the title compounds as an off white solid as a mixture of diastereomers.
Separation of the diastereomers was performed by FC (toluene \rightarrow toluene/EtOAc 5:1)
(R, P)-[4-(2-Diphenylphosphanyl-naphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\} pentan-3ol ($1^{\text {st }}$ diastereomer, 31a)
mp: $162-164^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 7}}=134.9\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=7.5,3 \mathrm{H}), 0.93(\mathrm{t}, J=7.6,3 \mathrm{H}), 1.18-1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.35-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{bs}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=8.4,1 \mathrm{H}), 5.57(\mathrm{~d}, J=8.4,1 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.10-7.45(\mathrm{~m}, 17 \mathrm{H}), 7.60-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,8.5,28.2,29.1,59.2,78.1,118.1,120.9,126.8,126.9,127.2$, $127.6,128.3,128.5,128.5,128.5,128.6,128.7,128.7,128.7,129.1,129.2,130.4,131.2,131.4$, $133.5,133.5,133.7,133.8,133.9,134.0,136.3,136.5,137.5,137.6,138.2,138.3,141.1,142.1$, 142.4, 152.6, 152.7, 152.9.
${ }^{31} \mathbf{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-12.58$.
FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3365 (s), 3052 (m), 2965 (m), 2879 (m), 1576 (w), 1505 (s$), 1478$ (m), 1435 (m), 1392 (m), 1138 (w), 912 (s$), 728$ (s$).$

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 632.2825$, found 632.2814 .
Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 79.85 ; \mathrm{H}, 6.06$. Found: C, 80.06; H, 6.02.
(R, M)-[4-(2-Diphenylphosphanyl-naphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3ol ($2^{\text {nd }}$ diastereomer, 31b)
$\mathbf{m p}: \geq 200^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{26}=-68.3\left(\mathrm{c}=0.665, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, J=7.4,3 \mathrm{H}), 0.98(\mathrm{t}, J=7.5,3 \mathrm{H}), 1.23-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.39-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.95(\mathrm{~m}, 3 \mathrm{H}), 5.68(\mathrm{bs}, 1 \mathrm{H}), 6.52(\mathrm{bs}, 1 \mathrm{H}), 6.99-7.48(\mathrm{~m}, 17 \mathrm{H}), 7.49-7.57$ $(\mathrm{m}, 1 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,8.5,28.2,29.2,59.5,78.2,118.2,121.0,126.9,127.0,127.2$, 127.7, 128.4, 128.5, 128.6, 128.6, 128.7, 129.1, 129.1, 130.4, 131.3, 131.4, 133.6, 133.6, 133.8, $134.0,134.0,134.0,136.7,136.8,137.4,137.5,137.9,138.0,140.9,141.9,142.2,152.7,153.0$.
${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-11.74$.
FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3354 (m), 3052 (m), 2954 (m), 2868 (w), 1581 (w), 1505 (s$), 1435$ (m), 1392 (m), 911 (s , 739 (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 632.2825$, found 632.2830 .

1-(4-Chlorophthalazin-1-yl)-7-methoxynaphthalen-2-ol (36).

In a oven dried 11 flask under N_{2} were mixed 11.4 g (57.3 mmol) of 1,4-dichlorophthalazine ($\mathbf{2 0}$) with 10.0 g (57.5 mmol) of 7-methoxynaphthalen-2-ol (34). This mixture was suspended in 450 ml of 1,2 -dichloroethane. After stirring for $10 \mathrm{~min}, 7.64 \mathrm{~g}(57.4 \mathrm{mmol})$ of AlCl_{3} was added in one portion. The resulting suspension was stirred for 20 h at $80^{\circ} \mathrm{C}$. After cooling to room temperature the black suspension was poured on 500 ml ice-water and stirred for 1 h . The two phases were separated. The aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude solid was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ for 1 h . Filtration afforded $15.2 \mathrm{~g}(80 \%)$ of the pure product as a grey solid. $\mathbf{m p}:>210^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (300 MHz , DMSO) $\delta 3.50(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.01(\mathrm{dd}, J=2.4, J=8.7,1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.96-8.02$ $(\mathrm{m}, 1 \mathrm{H}), 8.13-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4,1 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, DMSO) $\delta 55.6,103.6,113.9,115.5,116.2,123.9,125.6,126.1,127.4,129.1$, $130.5,131.5,134.9,135.0,135.5,154.7,154.8,158.8,159.2$.
FTIR (thin film, cm^{-1}): 3017 (w), 1625 (m), 1513 (s), 1462 (w), 1342 (m), 1290 (m), 1221 (s), 772 (s).

MS (HiResESI, pos.) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 337.0738$, found 337.0733.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$: C, 67.76; H, 3.89. Found: C, 67.58; H, 4.13.

Trifluoromethanesulfonic acid 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-yl ester (37).

A suspension of 5.5 g (16 mmol) of 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-ol (36) and $4.2 \mathrm{ml}(54 \mathrm{mmol})$ of pyridine in 500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was treated dropwise over 40 min with $3.2 \mathrm{ml}(19 \mathrm{mmol})$ of triflic anhydride and stirred at $0^{\circ} \mathrm{C}$ for 1 h . The resulting solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. The organic phase was separated and the aq. phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through a plug of SiO_{2}. The filtrate was concentrated under reduced pressure. Trituration with pentane afforded $6.3 \mathrm{~g}(88 \%)$ of the title compound as a grey powder.
mp: $140{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.54(\mathrm{~s}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=1.5,9.0,1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $8.4,1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.81-7.90(\mathrm{~m}, 2 \mathrm{H}), 8.00-8.06(\mathrm{~m}, 2 \mathrm{H}), 8.43(\mathrm{~d}, J=8.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.3,104.3,116.7,117.9\left(\mathrm{q}, J_{C F}=315\right), 123.6,125.5,125.8$, 126.2, 127.9, 128.2, 129.9, 131.9, 133.8, 134.0, 134.3, 145.8, 155.2, 155.5, 159.3.

FTIR (thin film, cm^{-1}): 3072 (w), 3008 (w), 2941 (w), 2835 (w), 1625 (s), 1508 (s), 1468 (s), 1422 (s), 1378 (s), 1344 (m), 1290 (s$), 1229$ (s$), 1139$ (s$), 989$ (s$), 870$ (s$).$
MS (HiResESI, pos.) calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{SCl}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 469.0231$, found 469.0232 .
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}$ SCl: C, 51.24; H, 2.58. Found: C, 51.47; H, 2.73.

7-methoxy-1-(4-((R)-1-phenylethylamino)phtalazin-1-yl)naphthyltrifluoromethane sulfonates (38).

To 2.2 g (4.7 mmol) of trifluoromethanesulfonic acid 1-(4-chlorophthalazin-1-yl)-7-
methoxynaphthalen-2-yl ester (37)was added $3.3 \mathrm{~g}(27 \mathrm{mmol}) D-(+)$-Methylbenzylamine. After stirring for 8 h at $130^{\circ} \mathrm{C}$ the reaction mixture was purified by FC (toluene/EtOAc 5:1 to 3:1) to afford $2.1 \mathrm{~g}(81 \%)$ of the title compound as an off white solid.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.77(\mathrm{~d}, J=6.9,3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}), 5.65-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.91(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.17-7.44$ $(\mathrm{m}, 12 \mathrm{H}), 7.51-7.64(\mathrm{~m}, 6 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=3.9,1 \mathrm{H}), 7.87(\mathrm{~d}, J=3.9,1 \mathrm{H}), 7.92-$ 7.99 (m,4H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,22.0,50.7,50.8,55.2,55.3,76.6,105.1,105.2,116.9,117.1$, $117.8,117.8,119.7,119.9,120.6,125.8,125.9,126.2,126.5,126.7,127.3,127.4,128.1,128.6$, 128.6, 129.8, 129.8, 130.9, 130.9, 131.4, 135.2, 144.1, 144.3, 146.3, 146.4, 146.8, 152.6, 152.7, 159.0.

FTIR (thin film, cm^{-1}): 3338 (m), 3062 (w), 3026 (w), 2970 (w), 2930 (w), 1625 (s), 1508 (s), 1418 (s), 1227 (s), 1137 (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$554.1356, found: 554.1346.

(R, P)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(1-phenylethyl)phthalazin-1amine (39a) and (R, M)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(-1-phenyl ethyl)phthalazin-1-amine (39b).
A solution of $220 \mathrm{mg}(0.42 \mathrm{mmol}) \mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$ in 12 ml of DMF at $23^{\circ} \mathrm{C}$ was treated with 1.5 ml $(1.4 \mathrm{mmol})$ of diphenylphosphine. The resulting dark red solution was stirred at $120^{\circ} \mathrm{C}$ for 30 min , treated with, a solution of $2.3 \mathrm{~g}(4.2 \mathrm{mmol})$ of 7-methoxy-1-(4-($(R)-1-$ phenylethylamino)phtalazin-1-yl)naphthyltrifluoromethane sulfonate (38) and $1.9 \mathrm{~g}(17 \mathrm{mmol})$ of DABCO in 13 ml of DMF via syringe. The resulting green solution was stirred at $120^{\circ} \mathrm{C}$ for 17 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 70^{\circ} \mathrm{C}$ bath temperature). The residue was purified by FC (toluene \rightarrow toluene/EtOAc 5:1) to give 1.5 g (60%) of the title compounds as an off white solid as a mixture of diastereomers.
Separation of the diastereomers was performed by FC (toluene \rightarrow toluene/EtOAc 5:1)
(R, P)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(1-phenylethyl)phthalazin-1amine ($1^{\text {st }}$ diastereomer, 39a)
mp: $194-195^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{27}=-171.8\left(\mathrm{c}=0.50, \mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~d}, J=5.2,3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.84$ (quint, $J=$ $5.6,1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.13-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (ddd, $J=6.4, J=5.6, J=0.8,1 \mathrm{H}), 7.54-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{ddd}, J=6.4, J=5.6, J=0.8,1 \mathrm{H})$, $7.77(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.81(\mathrm{~d}, J=6.8,1 \mathrm{H}), 7.84(\mathrm{~d}, J=6.4,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.2,50.5,55.1,58.5,105.4,105.4,117.7,119.3,120.4,126.6$, 127.0, 128.0, 128.1, 128.2, 128.2, 128.2, 128.4, 128.5, 129.1, 129.2, 129.4, 130.8, 133.1, 133.3, 133.7 , 133.9, 137.3, 137.4, 140.5, 144.6, 152.2, 152.5, 152.6, 157.9, 157.9.
${ }^{31} \mathbf{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-12.45$.
FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3335 (m), 3051 (m), 2966 (m), 1620 (s$), 1576$ (w), 1504 (s$), 1223$ (s$), 1435$ (m), 1027 (m).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{OP}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 590.2356$, found 590.2348 .
(R, M)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(-1-phenylethyl)phthalazin-1amine ($2^{\text {nd }}$ diastereomer, 39b)
mp: $193-197^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 6}}=65.3\left(\mathrm{c}=0.50, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.76(\mathrm{~d}, J=6.8,3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 5.32-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=$ $6.1,1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.05-7.32(\mathrm{~m}, 17 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.69-$ $7.74(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 22.8,51.1,55.5,105.8,105.8,118.2,119.4,121.0,126.9,127.0$, $127.6,128.3,128.4,128.4,128.5,128.6,128.7,128.7,128.8,129.0,129.5,130.0,131.4,131.5$, $133.8,133.9,134.0,134.1,134.7,134.8,137.3,137.4,137.5,137.6,138.1,138.2,140.4,140.7$, 145.0, 152.8, 153.1, 153.1, 158.6.
${ }^{31} \mathbf{P} \mathbf{N M R}\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-11.86$.
FTIR (KBr, cm^{-1}): 3306 (m), 3050 (m), 2926 (m), 1618 (s$) 1579$ (s$), 1556$ (s$), 1504$ (s$), 1223$ (s$)$, 1026 (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{39} \mathrm{HN}_{3} \mathrm{O}_{3} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 590.2356$, found 590.2345.

Trifluoromethanesulfonic acid 1-[4-((R)-2-ethyl-2-hydroxy-1-phenylbutylamino)phthalazin-1-yl]-7-methoxynaphthalen-2-yl ester (47).
To $5.0 \mathrm{~g}(11 \mathrm{mmol})$ of trifluoromethanesulfonic acid 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-yl ester (37) was added 10 g (52 mmol) of 3-((R)-aminophenyl-methyl)pentan-3-ol. The suspension was stirred for 18 h at $120^{\circ} \mathrm{C}$. After cooling to $25^{\circ} \mathrm{C} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the suspension was filtered. The filtrate was concentrated under reduced pressure. FC (toluene/EtOAc 10:1 \rightarrow 5:1) afforded the title compound as a brown solid which was triturated with hexane/ $\mathrm{Et}_{2} \mathrm{O}$ to give 4.8 g (70%) of the title compound as a mixture of diastereomers.
mp: $175-177^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88-1.02(\mathrm{~m}, 12 \mathrm{H}), 1.21-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.72-$ $1.97(\mathrm{~m}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 5.71(\mathrm{~d}, J=8.7,1 \mathrm{H}), 5.87(\mathrm{~d}, J=8.8,1 \mathrm{H}), 6.52-6.58(\mathrm{~m}$, $3 \mathrm{H}), 6.74(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.14-7.42(\mathrm{~m}, 12 \mathrm{H}), 7.54-7.64(\mathrm{~m}, 6 \mathrm{H}), 7.76-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.93-8.00$ ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.5,7.6,8.2,8.3,27.7,27.7,28.9,28.9,55.2,55.2,58.6,59.4$, $77.8,78.2,105.0,105.2,117.8\left(\mathrm{q}, J_{C F}=319\right), 117.0,117.1,117.8,118.0,118.2\left(\mathrm{q}, J_{C F}=318\right)$, 119.7, 119.9, 120.5, 125.4, 125.9, 126.1, 126.2, 127.3, 127.3, 128.0, 128.1, 128.2, 128.5, 128.9, $129.7,129.7,130.7,130.8,131.4,131.4,131.4,135.1,135.2,140.0,140.4,146.1,146.2,146.3$, $152.8,152.9,158.9,159.0$.
FTIR (thin film, cm^{-1}): 2996 (w), 1625 (w), 1579 (w), 1544 (w), 1508 (s), 1420 (m), 1219 (s), 1139 (m), 772 (s).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$626.1931, found 626.1918.
Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S}$: C, 61.43 ; H, 4.83. Found: C, $61.53 ; \mathrm{H}, 4.74$.

(R, M)-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol (48a, $1^{\text {st }}$ diasteomer) and (R, P)-[4-(2-Diphenyl phosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol (48b, $\mathbf{2}^{\text {nd }}$ diasteomer).
A solution of $0.61 \mathrm{~g}(1.2 \mathrm{mmol}) \mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$ in 30 ml of DMF at $23^{\circ} \mathrm{C}$ was treated with 4.0 ml $(23 \mathrm{mmol})$ of diphenylphosphine. The resulting dark red solution was stirred at $120^{\circ} \mathrm{C}$ for 30 min , treated with, a solution of $7.3 \mathrm{~g}(12 \mathrm{mmol})$ of trifluoromethanesulfonic acid 1-[4-((R)-2-ethyl-2-hydroxy-1-phenyl-butylamino)phthalazin-1-yl]-7-methoxynaphthalen-2-yl ester (47) and 5.2 g (46 mmol) of DABCO in 65 ml of DMF via syringe, the flask was washed with 5 ml of DMF. The resulting green solution was stirred at $120^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 70^{\circ} \mathrm{C}$ bath temperature). The residue was purified by FC (toluene \rightarrow toluene/EtOAc 4:1) to give $5.2 \mathrm{~g}(65 \%)$ of the title compounds as an off white solid as a 1.7:1 ($1^{\text {st }}$ diasteomer : $2^{\text {nd }}$ diasteomer) mixture of diastereomers.
Separation of the diastereomers was performed by FC (toluene \rightarrow toluene/EtOAc 4:1).We observed that the use of amorphous ligand, obtained after FC from toluene/EtOAc gave consistent results. However, if the ligand is crystallized from toluene/hexane, irreproducible results were obtained, which we believe are due to crystal packing effects. If crystalline ligand is passed through a short plug of SiO_{2} and concentrated form toluene/EtOAc, reproducible results are obtained again.
($1^{\text {st }}$ diastereomer, 48a)
mp: $180-181^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{28}=151.7\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=5.9,3 \mathrm{H}), 0.97(\mathrm{t}, J=6.0,3 \mathrm{H}), 1.21-1.26(\mathrm{~m}, 1 \mathrm{H})$, $1.39-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 5.63(\mathrm{~d}, J=6.8,1 \mathrm{H}), 6.31(\mathrm{~d}, J=1.8,1 \mathrm{H})$.
$6.54(\mathrm{~d}, J=6.7,1 \mathrm{H}), 7.08-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.46(\operatorname{app~t}, J=5.8,1 \mathrm{H}), 7.58(\mathrm{~d}, J=5.7,2 \mathrm{H}), 7.71$ (app t, $J=6.2,1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.2,11.2,2 \mathrm{H}), 8.00(\mathrm{~d}, J=6.6,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,8.61,28.1,29.2,55.4,59.4,78.1,105.4,105.4,118.3,119.7$, $120.9,126.8,127.5,128.2,128.4,128.5,128.6,128.6,128.6,128.7,128.7,129.2,129.5,129.8$, $131.2,131.4,133.7,133.8,133.9,134.0,134.7,134.7,137.0,137.1,137.6,137.7,138.2,138.3$, $140.5,140.8,141.1,152.6,152.7,153.0,158.5$.
${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-12.22$.
FTIR (KBr, cm^{-1}): 3337 (s$), 3048$ (m), 2963 (m), 2936 (m), 2878 (m), 1619 (s$), 1579$ (s$), 1552$ (s), 1504 (s$), 1405$ (s$), 1370$ (s$), 1225$ (s$), 1141$ (m), 1028 (s$), 838$ (s$) 696$ (s$).$

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$662.2931, found 662.2919 .
Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}:$ C, $78.04 ; \mathrm{H}, 6.09$. Found: C, $78.11 ; \mathrm{H}, 6.02$.
Crystallization of 48a from a mixture of toluene/hexane afforded crystals (colorless plate) suitable for X-ray diffraction analysis. The axial stereochemistry was assigned to be P.
(2 $2^{\text {nd }}$ diastereomer, 48b)
mp: $143-145{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{29}=-41.5\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=1.9,1 \mathrm{H}), 6.99-7.42(\mathrm{~m}$, 19 H), 7.62-7.67 (m, 3H), 7.80-7.82 (m, 2H), $8.08(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,8.5,28.1,29.0,55.4,59.5,78.0,105.6,119.4,126.8,127.6$, 127.7 , 128.1, 128.2, 128.3, 128.3, 128.4, 128.4, 128.5, 128.5, 128.6, 128.6, 128.7, 129.2, 129.4, $129.9,130.0,131.2,131.3,131.4,133.8,133.8,133.9,134.0,134.7,134.7,137.4,137.4,137.5$, $137.8,137.9,140.8,152.5,152.9,158.5$.
${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-11.13$.
FTIR (KBr, cm^{-1}): 3389 (m), 3053 (m), 2961 (s , 2877 (m), 1619 (s$), 1579$ (m), 1504 (s$), 1432$ (s$), 1262$ (m), 1224 (s$), 1092$ (m), 1028 (m), 838 (s$), 695$ (s$)$.

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$662.1931, found 662.1940.

Determination of the rotation barrier of 48a

The rate constant of epimerization was determined at different temperatures:
Degassed p-xylene (5 ml) was placed in a two necked flask equipped with a reflux condenser. The flask was placed into a thermostat (Huber Polystat cc3) and heated to the indicated temperature. The temperature inside the flask was measured by a digital thermometer. When the temperature was constant, $20 \mathrm{mg}(0.030 \mathrm{mmol})$ 48a were added. After the indicated time aliquots $(0.2 \mathrm{ml})$ were taken by syringe. The samples were concentrated at reduced pressure and dried in vacuo. The ratio of the diastereomers was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ comparing the singlets of the methoxy group (1st diastereomer 3.30 ppm , 2nd diastereomer 3.50 ppm).

The rate constant at each temperature was determined by linear regression of plot of $\ln \left(\mathrm{de}_{0} / \mathrm{de}\right)$ vs. t

$107.0^{\circ} \mathrm{C}(380.2 \mathrm{~K})$					$116.5{ }^{\circ} \mathrm{C}(389.7 \mathrm{~K})$			
$\mathrm{t}(\min)$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	de	$\mathrm{t}(\mathrm{min})$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	de	
0	100	0	100	0	100	0	100	
60	95.0	5.0	90.0	50	91.2	8.8	82.4	
124	92.4	7.6	84.8	100	86.4	13.6	72.8	
183	89.3	10.7	78.6	161	80.1	19.9	60.2	
245	85.9	14.1	71.8	210	76.9	23.1	53.8	
303	84.0	16.0	68.0	270	74.2	25.8	48.4	
362	81.6	18.4	63.2	342	70.1	29.9	40.2	
425	79.2	20.8	58.4	395	67.8	32.2	35.6	

$$
\mathrm{k}\left(107.0^{\circ} \mathrm{C}\right)=2.14 \cdot 10^{-5} \mathrm{~s}^{-1}
$$

$\mathrm{k}\left(116.5^{\circ} \mathrm{C}\right)=5.11 \cdot 10^{-5} \mathrm{~s}^{-1}$

$124.5^{\circ} \mathrm{C}(397.7 \mathrm{~K})$			
$\mathrm{t}(\min)$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	de
0	100	0	100
30	91.0	9.0	82.0
60	83.9	16.1	67.8
120	74.0	26.0	48.0
180	67.0	33.0	34.0
240	63.1	36.9	26.2
300	60.0	40.0	20.0
360	58.2	41.8	16.4
$\mathrm{k}\left(124.5^{\circ} \mathrm{C}\right)=9.71 \cdot 10^{-5} \mathrm{~s}^{-1}$			

$135.5^{\circ} \mathrm{C}(408.7 \mathrm{~K})$			
$\mathrm{t}(\mathrm{min})$	$\mathbf{4 8 a}$	$\mathbf{4 8 b}$	de
0	100	0	100
15	90.1	9.9	80.2
30	81.0	19.0	62.0
60	68.8	31.2	37.6
90	63.0	37.0	26.0
120	59.0	41.0	18.0
150	57.1	42.9	14.2
$\mathrm{k}\left(135.5^{\circ} \mathrm{C}\right)=2.45 \cdot 10^{-4} \mathrm{~s}^{-1}$			

An Arrhenius plot (ln k vs. 1/T) of the rate constants (Figure 8) was calculated. The slope of this graph corresponds to $-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$, therefore $\mathrm{E}_{\mathrm{a}}=\Delta \mathrm{G}^{\ddagger}$ was determined to be $26.3 \mathrm{kcal} / \mathrm{mol}$.

(S,P)-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenyl-methyl\}pentan-3-ol (ent-48a, $1^{\text {st }}$ diasteomer).
Prepared like 48a, from 3-((S)-amino-phenyl-methyl)-pentan-3-ol.
mp: $180-181^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25}=-160.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=5.9,3 \mathrm{H}), 0.97(\mathrm{t}, J=6.0,3 \mathrm{H}), 1.21-1.26(\mathrm{~m}, 1 \mathrm{H})$, $1.39-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 5.63(\mathrm{~d}, J=6.8,1 \mathrm{H}), 6.31(\mathrm{~d}, J=1.8,1 \mathrm{H})$. $6.54(\mathrm{~d}, J=6.7,1 \mathrm{H}), 7.08-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.46(\operatorname{app~t}, J=5.8,1 \mathrm{H}), 7.58(\mathrm{~d}, J=5.7,2 \mathrm{H}), 7.71$ (app $\mathrm{t}, J=6.2,1 \mathrm{H}), 7.79(\mathrm{dd}, J=11.2,7.2,2 \mathrm{H}), 8.00(\mathrm{~d}, J=6.6,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,8.61,28.1,29.2,55.4,59.4,78.1,105.4,105.4,118.3,119.7$, $120.9,126.8,127.5,128.2,128.4,128.5,128.6,128.6,128.6,128.7,128.7,129.2,129.5,129.8$, $131.2,131.4,133.7,133.8,133.9,134.0,134.7,134.7,137.0,137.1,137.6,137.7,138.2,138.3$, $140.5,140.8,141.1,152.6,152.7,153.0,158.5$.
FTIR (KBr, cm^{-1}): 3337 (s$), 3048$ (m), 2963 (m), 2936 (m), 2878 (m), 1619 (s$), 1579$ (s$), 1552$ (s), 1504 (s$), 1405$ (s$), 1370$ (s$), 1225$ (s$), 1141$ (m), 1028 (s$), 838$ (s$) 696$ (s$).$

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 662.2931$, found 662.2919 .
Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 78.04 ; \mathrm{H}, 6.09$. Found: C, $77.78 ; \mathrm{H}, 6.12$.

1-(4-Chlorophthalazin-1-yl)-7-hydroxynaphthalen-2-ol (40).

In a oven dried 100 ml flask under N_{2} were mixed $840 \mathrm{mg}(4.20 \mathrm{mmol})$ of $1,4-$ dichlorophthalazine ($\mathbf{2 0}$) with $668 \mathrm{mg}(4.20 \mathrm{mmol})$ added in on of 2,7-Dihydroxynaphthalene. This mixture was suspended in 30.0 ml of 1,2-dichloroethane. After stirring for $10 \mathrm{~min}, 559 \mathrm{mg}$ $(4.20 \mathrm{mmol})$ of AlCl_{3} was e portion. The resulting suspension was stirred for 17 h at $80^{\circ} \mathrm{C}$. After cooling to room temperature the black suspension was poured on 30.0 ml ice-water and stirred for 1 h . The suspension was filtered and the solid was washed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. FC (toluene/acetone $4: 1$) afforded $700 \mathrm{mg}(52 \%)$ of the title compound as a yellow solid. $\mathbf{m p}:>200^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 6.04(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.91(\mathrm{dd}, J=2.1, J=8.7,1 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=9.0,1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.97(\mathrm{app} \mathrm{t}, J=7.8$, $1 \mathrm{H}), 8.13$ (app t, $J=7.2,1 \mathrm{H}), 8.39$ (d, $J=7.8,1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 106.5,113.5,115.5,116.3,124.0,125.6,126.5,127.8,129.6$, 130.4, 131.7, 134.6, 134.8, 136.3, 154.3, 154.9, 157.2, 159.6.

FTIR (thin film, cm^{-1}): 3057 (w), 1702 (s), 1622 (s), 1365 (s), 1221 (s).
MS (HiResESI, pos.) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 323.0582$, found 323.0589.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$: C, 66.99; H, 3.44. Found: C, 66.78; H, 3.50.

7-(tert-Butyl-diphenyl-silanyloxy)-1-(4-chloro-phthalazin-1-yl)-naphthalen-2-ol (41).

To 2.70 g (8.39 mmol) 1-(4-Chlorophthalazin-1-yl)-7-hydroxynaphthalen-2-ol (40) in 25 ml DMF was added $830 \mathrm{mg}(12.2 \mathrm{mmol})$ Imidazole and $2.00 \mathrm{ml}(7.75 \mathrm{mmol})$ TBDPSCl. After stirring for 16 h at $23{ }^{\circ} \mathrm{C}$ the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. Addition of $E t_{2} \mathrm{O}$ and phase separation. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure. FC (hexane/EtOAc $2: 1)$ afforded $1.38 \mathrm{~g}(29 \%)$ of the title compound as a yellow solid.
mp: $141^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~s}, 9 \mathrm{H}), 6.01(\mathrm{~d}, J=2.1,1 \mathrm{H}), 6.96(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.03-7.13$ $(\mathrm{m}, 3 \mathrm{H}), 7.19-7.42(\mathrm{~m}, 10 \mathrm{H}), 7.60(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.74-7.80(\mathrm{~m}, 1 \mathrm{H}), 8.24$ (d, $J=8.4,1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2,26.3,111.5,112.6,117.0,119.1,124.2,125.0,127.5,127.5$, $127.5,128.0,129.6,129.8,131.4,132.4,132.9,133.3,134.1,134.9,135.2,154.1,154.5,154.6$.
FTIR (thin film, cm^{-1}): 3070 (w), 2931 (w), 2857 (w), 1621 (m), 1510 (s), 1341 (m), 1222 (s), 896 (m).

MS (ESI, pos.) calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiCl}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 561.2$, found 561.2.
Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiCl}: \mathrm{C}, 72.77$; H, 5.21. Found: C, $72.50 ; \mathrm{H}, 5.27$.

Trifluoro-methanesulfonic acid 7-(tert-butyl-diphenyl-silanyloxy)-1-(4-chloro-phthalazin-1-yl)-naphthalen-2-yl ester (42).

To $4.06 \mathrm{~g} \quad(7.24 \mathrm{mmol}) \quad$ 7-(tert-Butyl-diphenyl-silanyloxy)-1-(4-chloro-phthalazin-1-yl)-naphthalen-2-ol (41) in $170 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $1.70 \mathrm{ml}(21.0 \mathrm{mmol})$ pyridine. The suspension was cooled to $0^{\circ} \mathrm{C}$ and $1.30 \mathrm{ml}(7.69 \mathrm{mmol})$ triflic anhydride was added by syringe over a period of 10 min . The solution was stirred for 10 min . at this temperature and then quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The two phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure. Traces of pyridine were removed under high vacuum to afford $3.90 \mathrm{~g}(78 \%)$ of the title compound as a colorless solid.
mp: 182-183 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~s}, 9 \mathrm{H}), 6.20(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.1-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.41(\mathrm{~m}$, $8 \mathrm{H}), 7.48(\mathrm{dt}, J=0.9, J=7.2,1 \mathrm{H}), 7.83-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=9.3,1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.8,1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4,26.5,112.7,117.0,118.0\left(\mathrm{q}, J_{C F}=319\right) 123.4,123.8,125.1$, $125.5,126.1,127.5,127.6,127.8,127.9,129.7,129.9,130.1,131.6,131.7,133.2,133.4,134.1$, $134.8,135.0,145.6,154.6,155.0,155.5$.

FTIR (thin film, cm^{-1}): 3074 (w), 2967 (w), 2933 (w), 2862 (w), 1622 (m), 1503 (m), 1446 (m), 1418 (s), 1233 (s), 1201 (s), 1140 (s), 839 (s).

MS (ESI, pos.) calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{SSi}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 715.1$, found 715.1.
Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{SSiCl}$: C, $60.64 ; \mathrm{H}, 4.07$. Found: C, $60.59 ; \mathrm{H}, 4.11$.

Trifluoro-methanesulfonic acid 1-(4-chloro-phthalazin-1-yl)-7-hydroxy-naphthalen-2-yl ester (43).

To $3.81 \mathrm{~g}(5.50 \mathrm{mmol})$ trifluoro-methanesulfonic acid 7-(tert-butyl-diphenyl-silanyloxy)-1-(4-chloro-phthalazin-1-yl)-naphthalen-2-yl ester (42) in 100 ml THF was added $5.78 \mathrm{ml}(5.78 \mathrm{mmol}$, 1 M in THF) TBAF at $-78^{\circ} \mathrm{C}$ dropwise over 10 min . The solution turned orange and stirring was continued for 10 min . The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The two phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure. FC (hexane/EtOAc 2:1 to $1: 1$) afforded $2.18 \mathrm{~g}(87 \%)$ of the title compound as a colorless solid. mp: $180-182{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.35(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.99(\mathrm{dd}, J=2.4, J=6.6,1 \mathrm{H}) 7.36(\mathrm{~d}, J=$ $9.01 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.1,1 \mathrm{H}) 7.93-7.99(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{~d}$, $J=8.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.3,115.5,116.0,118\left(\mathrm{q}, J_{C F}=315\right), 120.2,120.7,121.3,125.7$, 125.7, 127.1, 127.2, 128.6, 129.8, 132.5, 134.4, 134.7, 134.9, 145.5, 155.6, 156.3, 157.9.

FTIR (thin film, cm^{-1}): 3071 (w), 1625 (m), 1454 (m), 1421 (s), 1396 (s), 1203 (s), 1130 (s$), 996$ (s).

MS (ESI, pos.) calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$455.0, found: 455.1.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}$: C, 50.18; H, 2.22. Found: C, 49.97; H, 2.22.

Trifluoro-methanesulfonic acid 1-(4-chloro-phthalazin-1-yl)-7-methanesulfonyloxy-naphthalen-2-yl ester (44).
To 2.10 g (4.62 mmol) trifluoro-methanesulfonic acid 1-(4-chloro-phthalazin-1-yl)-7-hydroxy-naphthalen-2-yl ester (43) in 20 ml THF was added $0.766 \mathrm{ml}(5.54 \mathrm{mmol}) \mathrm{NEt}_{3}$. After cooling to $0^{\circ} \mathrm{C} 0.377 \mathrm{ml}(4.85 \mathrm{mmol}) \mathrm{MsCl}$ was added. The solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 30 min at $23{ }^{\circ} \mathrm{C}$. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The two phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure to give $2.30 \mathrm{~g}(94 \%)$ of the title compound as a colorless solid.
mp: 190-192 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.05(\mathrm{~s}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4,1 \mathrm{H}) 7.58(\mathrm{dd}$, $J=2.1, J=9.0,1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.85-7.90(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0$, $1 \mathrm{H}), 8.47$ (d, $J=8.4,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 37.8,115.9,117.9,118.1\left(\mathrm{q}, J_{C F}=318\right.$), 120.1, 122.8, 125.2, 125.7, 125.9, 127.0, 128.1, 130.8, 130.9, 132.1, 132.3, 133.5, 133.6, 134.0, 134.2, 146.0, 148.5, 154.3, 155.9.

FTIR (thin film, cm^{-1}): 3088 (w), 2939 (w), 1668 (w), 1509 (w), 1422 (s), 1372 (s), 1289 (s), 1220 (s), 1196 (s), 1131 (s).

MS (ESI, pos.) calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$555.0, found: 555.0.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 45.08; H, 2.27. Found: C, 55.33; H, 2.35.

(R) Trifluoro-methanesulfonic acid 7-methanesulfonyloxy-1-[4-(1-phenyl-ethylamino)-phthalazin-1-yl]-naphthalen-2-yl ester (45).

To $2.22 \mathrm{~g}(4.17 \mathrm{mmol})$ trifluoro-methanesulfonic acid 1-(4-chloro-phthalazin-1-yl)-7-methanesulfonyloxy-naphthalen-2-yl ester (44) was added 2.52 g (20.8 mmol) (R)-1phenylethylamine. The solution was stirred for 8 h at $80^{\circ} \mathrm{C}$, then cooled to $23^{\circ} \mathrm{C}$. The resulting viscous mixture was purified by FC (toluene/ EtOAc) to yield $1.76 \mathrm{~g}(68 \%)$ of the title compound as a 1:1 mixture of diastereomers as a light brown solid.
mp: 118-119 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.76(\mathrm{~d}, J=6.9,3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}$, $3 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{q}, J=6.9,2 \mathrm{H}), 7.23-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 6 \mathrm{H})$, $7.60-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=5.1,1 \mathrm{H}), 7.95(\mathrm{~d}, J=5.1,1 \mathrm{H}), 8.00(\mathrm{~d}, J=3.6$, 1 H), $8.04(\mathrm{~d}, J=3.6,1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H} 9,8.11(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.0,22.1,37.4,37.6,50.8,50.9,116.0,116.1,117.8,118.4$, $118.6,120.2,120.3,120.4,120.9,122.4,122.5,125.8,126.5,126.7,126.8,127.3,127.6,128.6$, $128.7,130.7,130.7,131.2,131.2,131.3,131.7,131.8,134.3,143.9,144.2,145.8,145.8,146.5$, 148.4, 148.5, 152.8, 152.9.

FTIR (thin film, cm^{-1}): 3335 (w), 2975 (w), 1625 (w), 1506 (s), 1416 (s), 1361 (s), 1208 (s), 1134 (s).
MS (ESI, pos.) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$618.1, found: 618.1.
Anal. Calcd for: $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}$. C, 54.45; H, 3.59. Found: C, 54.52; H, 3.71.

(R, P)-7-(diphenylphosphino)-8-(-4-(-1-phenylethylamino)phthalazin-1-yl)naphthalen-2ylmethanesulfonate (46a) and (R, M)-7-(diphenylphosphino)-8-(-4-(-1-phenylethylamino) phthalazine-1-yl)naphthalen-2-yl methanesulfonate (46b).
A solution of $148 \mathrm{mg}(0.28 \mathrm{mmol}) \mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$ in 14 ml of DMF at $23^{\circ} \mathrm{C}$ was treated with 0.620 $\mathrm{ml}(3.51 \mathrm{mmol})$ of diphenylphosphine. The resulting dark red solution was stirred at $120^{\circ} \mathrm{C}$ for 30 min , treated with a solution of $1.70 \mathrm{~g}(2.75 \mathrm{mmol})$ of (R) Trifluoro-methanesulfonic acid 7 -methanesulfonyloxy-1-[4-(1-phenyl-ethylamino)-phthalazin-1-yl]-naphthalen-2-yl ester (45) and $1.20 \mathrm{~g}(11.0 \mathrm{mmol})$ of DABCO in 14 ml of DMF via syringe. The resulting green solution was stirred at $100^{\circ} \mathrm{C}$ for 14 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 70^{\circ} \mathrm{C}$ bath temperature). The residue was purified by FC (toluene \rightarrow toluene/EtOAc $2: 1$) to give 1.00 $\mathrm{mg}(56 \%)$ of the title compounds as an yellow solid as a mixture of diastereomers. Separation of the diastereomers was performed by FC (toluene \rightarrow toluene/EtOAc 5:1)
(R, P)-7-(diphenylphosphino)-8-(-4-(-1-phenylethylamino)phthalazin-1-yl)naphthalen-2ylmethanesulfonate (${ }^{\text {st }}$ diastereomer, 46a) mp: 134-136 ${ }^{\circ} \mathrm{C}$. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{27}=-102.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~d}, J=6.8,3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 5.59(\mathrm{~d}, J=6.2,1 \mathrm{H}), 5.73(\mathrm{q}, J$ $=6.8,1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.12-7.49(\mathrm{~m}, 19 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H})$, $7.74(\mathrm{t}, J=7.1,1 \mathrm{H}), 7.92-7.99(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.2,37.4,51.1,118.6,118.7,121.0,122.5,126.6,126.8,127.5$, 128.3, 128.3, 128.7, 128.8, 128.8, 128.8, 128.9, 129.0, 129.0, 130.7, 131.3, 131.6, 131.6, 132.7, $133.6,133.8,133.9,134.0,134.2,134.8,135.0,137.2,137.3,137.5,137.6,138.3,138.4,141.9$, 142.2, 145.3, 148.1, 152.2, 152.2, 152.9.

FTIR (thin film, cm^{-1}): 3338 (w), 3040 (w), 2970 (w), 1549 (w), 1507 (s), 1434 (m), 1365 (s), 1219 (s), 1190 (s , 956 (m).

MS (HiResESI, pos.) calcd for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PS}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 654.1975$, found: 654.1964.
(R, M)-7-(diphenylphosphino)-8-(-4-(-1-phenylethylamino)phthalazine-1-yl)naphthalen-2-yl methanesulfonate ($2^{\text {nd }}$ diastereomer, 46b)
mp: 136-138 ${ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{26}=50.1\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.76(\mathrm{~d}, J=6.8,3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{t}, J=6.2$, $1 \mathrm{H}), 7.02-7.34(\mathrm{~m}, 15 \mathrm{H}), 7.38-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.73(\mathrm{t}, J=5.1,1 \mathrm{H}), 7.90-8.00$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.8,37.5,51.2,118.2,118.7,118.7,121.1,122.3,126.6,126.9$, $127.2,127.6,128.3,128.3,128.6,128.7,128.7,128.7,128.8,128.9,128.9,129.0,129.4,130.8$, $131.2,131.5,131.6,132.7,133.8,133.9,134.0,134.0,134.1,136.9,137.1,137.4,137.5,138.7$, 138.9, 144.9, 148.0, 152.1, 152.1, 152.9.

FTIR (thin film, cm^{-1}): 3323 (w), 3020 (w), 2960 (w), 1549 (w), 1506 (s), 1429 (m), 1366 (s), 1219 (s), 1190 (s$), 1150$ (s$), 960$ (m).
MS (HiResESI, pos.) calcd for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PS}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$654.1975, found: 654.1964.

2-(4-chlorophthalazin-1-yl)-5-methoxyphenol (69).

To $3.14 \mathrm{~g}(18.3 \mathrm{mmol})$ of 1,4 -dichlorophthalazine ($\mathbf{2 0}$) was added 25 ml dichloroethane and 2.26 $\mathrm{g}(18.3 \mathrm{mmol})$ of 3-methoxyphenol. After stirring for $10 \mathrm{~min}, 2.44 \mathrm{~g}(18.3 \mathrm{mmol})$ of AlCl_{3} was added in one portion. The resulting suspension was stirred for 12 h at $75^{\circ} \mathrm{C}$. After cooling to room temperature water was added and a precipitate formed. The precipitate (O-Alkylation
product) was filter off and the two phases were separated. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give $1.49 \mathrm{~g}(28 \%)$ of the title compound as a grey solid.
mp: $>200^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}, \mathrm{DMSO}) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.58-6.63(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $7.5,1 \mathrm{H}), 8.02-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.31(\mathrm{~d}, J=8.1,1 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO) $\delta 55.1,101.2,105.2,114.9,124.3,124.7,127.4,127.6,131.9$, 133.6, 133.8, 153.2, 156.1, 159.0, 161.4.

FTIR (thin film, cm^{-1}): 3058 (m), 2940 (m), 1612 (s), 1518 (w), 1362 (w), 1293 (s), 1214 (s), 1165 (w).

MS (HiRes EI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{H}^{+}\right)$285.0426, found 285.0425.

2-(4-chlorophthalazin-1-yl)-5-methoxyphenyl trifluoromethanesulfonate (70).

A suspension of 1.03 g (3.60 mmol) 2-(4-chlorophthalazin-1-yl)-5-methoxyphenol (69) and $0.960 \mathrm{ml}(11.9 \mathrm{mmol})$ of pyridine in 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was treated dropwise over 40 min with $0.670 \mathrm{ml}(4.00 \mathrm{mmol})$ of triflic anhydride and stirred at $0^{\circ} \mathrm{C}$ for 1 h . The resulting orange solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. The organic phase was separated and the aq. phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in EtOH and passed through a plug of SiO_{2}. The filtrate was concentrated under reduced pressure. Crystallization from hexane afforded 0.998 g (66%) of the title compound as a white solid. Recrystallization from acetone afforded a crystal of which an X-ray was obtained.
mp: $138-140^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.95(\mathrm{~s}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.13(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.59(\mathrm{~d}, J$ $=8.4,1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.94(\mathrm{ddd}, J=1.2, J=7.2, J=7.2,1 \mathrm{H}), 8.03(\mathrm{ddd}, J=1.2, J=$ $7.2, J=7.2,1 \mathrm{H}), 8.40(\mathrm{~d}, J=7.8,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 56.1,108.3,114.1,115.9,120.9,125.4,125.9,126.3,127.6$, 133.1, 133.4, 133.5, 147.6, 155.0, 155.8, 161.7.

FTIR (thin film, cm^{-1}): 3078 (w), 2950 (w), 2842 (w), 1620 (s), 1515 (m), 1423 (s), 1292 (s), 1219 (s), 1141 (s$), 1080$ (m).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 419.0075$, found 419.0069.

2-(4-((R)-2-ethyl-2-hydroxy-1-phenylbuthylamino)phthalazin-1-yl)-5-methoxy phenyltrifluoromethanesulfonate (71).
To 1.15 g (2.70 mmol) of 2-(4-chlorophthalazin-1-yl)-5-methoxyphenyl trifluoromethane sulfonate (70) was added $2.66 \mathrm{~g}(13.5 \mathrm{mmol})$ of $3-((R)$-aminophenyl-methyl)pentan-3-ol. The suspension was stirred for 16 h at $120^{\circ} \mathrm{C}$. FC (toluene/EtOAc 4:1) afforded $1.07 \mathrm{~g}(68 \%)$ of the title compound as a white powder.
mp: $78-80^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85-0.97(\mathrm{~m}, 6 \mathrm{H}), 1.21-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 5.76(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.7,1 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.71(\mathrm{~m}, 6 \mathrm{H}), 7.89-7.92(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3) $\delta 7.7,8.4,27.7,28.9,55.9,58.7,107.9,113.8,117.8,120.4,126.0$, 126.7, 127.1, 127.2, 128.1, 128.4, 128.6, 131.0, 131.2, 133.2, 140.0, 147.4, 147.9, 152.3, 160.7. FTIR (thin film, cm^{-1}): 3401 (w), 2968 (w), 1620 (w), 1509 (s), 1421 (s), 1219 (s), 1139 (m). MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$576.1775, found 576.1784.

3-((R)-(4-(2-(diphenylphosphino)-4-methoxyphenyl)phthalazin-1-ylamino)(phenyl) methyl)pentan-3-ol (68).

A solution of $68.0 \mathrm{mg}(0.128 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$ in 4.0 ml of DMF at $23^{\circ} \mathrm{C}$ was treated with 0.970 ml (2.70 mmol) of diphenylphosphine. The resulting solution was stirred at $100^{\circ} \mathrm{C}$ for 30 min . Then a solution of $738 \mathrm{mg}(1.28 \mathrm{mmol})$ of 2-(4-((R)-2-ethyl-2-hydroxy-1phenylbuthylamino) phthalazin-1-yl) -5-methoxy phenyltrifluoromethan sulfonate (71) and 575 $\mathrm{mg}(5.12 \mathrm{mmol})$ of DABCO in 4.0 ml of DMF was added via syringe, the flask was washed with 0.50 ml of DMF. The resulting solution was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 60^{\circ} \mathrm{C}$ bath temperature). The residue was purified by $\mathrm{FC}\left(\mathrm{SiO}_{2} ;\right.$ toluene \rightarrow toluene/EtOAc 4:1) and then $\mathrm{FC}\left(\mathrm{SiO}_{2} ; 1 \% \%\right.$ iso-Propanol in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $78.4 \mathrm{mg}(10 \%)$ of the title compound as an off white solid.
mp: $68-70^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{23}=16.0\left(\mathrm{c}=0.520, \mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.2,3 \mathrm{H}), 0.96(\mathrm{t}, J=7.5,3 \mathrm{H}), 1.20-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=4.2, J=5.4,1 \mathrm{H}), 6.94(\mathrm{dd}, J=$ $2.7, J=8.4,1 \mathrm{H}), 7.09-7.79(\mathrm{~m}, 20 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.8,8.5,27.8,28.9,55.2,58.6,78.0,113.3,117.7,119.2,120.0$, $126.8,127.1,127.9,128.0,128.1,128.3,128.7,130.2,130.3,131.1,131.9,131.9,133.7,133.8$, 133.9, 134.1, 136.6, 136.8, 140.4, 140.6, 140.8, 151.9, 159.1.

FTIR (thin film, cm^{-1}): 3401 (w), 2966 (w), 1664 (m), 1508 (s), 1419 (m), 1220 (s), 1140 (m).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$612.2780, found 612.2763.

5,6-dimethylisobenzofuran-1,3-dione (72).

2,3-Dimethyl-1,3-butadiene 14.7 mL (130 mmol) was added to the suspension of maleic anhydride $9.8 \mathrm{~g}(100 \mathrm{mmol})$ in benzene 220 mL . The mixture was heated for 1 h at $80^{\circ} \mathrm{C}$. The solvent and excess volatile were removed under vacuum. The white solid obtained by DielsAlder reaction was washed with hexane and dried under vacuum at room temperature. Sulfur 9.7 g (297 mmol) was mixed with the white solid and heated $200 \sim 205^{\circ} \mathrm{C}$ for 2.5 h . The product was obtained quantitatively $(17.6 \mathrm{~g}, 100 \mathrm{mmol})$ after crystallization from toluene.
All spectroscopic data was in agreement with the data reported in the literature. ${ }^{166}$

2,3-dihydro-6,7-dimethylphthalazine-1,4-dione (73).

Hydrazine hydrate $8.9 \mathrm{~mL}(184.6 \mathrm{mmol})$ was added to $6.0 \mathrm{~g}(34.1 \mathrm{mmol}) 5,6-$ dimethylisobenzofuran-1,3-dione (72) in acetic acid (170 mL). The mixture was stirred for 5 h at $120^{\circ} \mathrm{C}$. The solution was cooled and the solid was collected and washed with water. The yellow-brown powder was dried under vacuum and 2,3-dihydro-6,7-dimethylphthalazine-1,4dione was obtained quantitatively ($6.5 \mathrm{~g}, 34.1 \mathrm{mmol}$).
All spectroscopic data was in agreement with the data reported in the literature. ${ }^{167}$

[^58]

1,4-dichloro-6,7-dimethylphthalazine (74). ${ }^{168}$

Dry pyridine $5.6 \mathrm{~mL}(70.0 \mathrm{mmol})$ was added slowly to the suspension of $8.3 \mathrm{~g}(43.6 \mathrm{mmol}) 2,3-$ dihydro-6,7-dimethylphthalazine-1,4-dione (73) in $8.2 \mathrm{~mL}(88.0 \mathrm{mmol}) \mathrm{POCl}_{3}$. The mixture was heated for 2.5 h at $100^{\circ} \mathrm{C}$. The yellow solution obtained was allowed to be cooled to room temperature. Then volatiles were removed by evaporation. The dark brown solid was washed with diethylether 120 mL . Then the solid was transformed into ice water 120 mL with ethylacetate 120 mL . The precipitate was filtered and washed with water. The compound was dried under vacuum. The product $9.2 \mathrm{~g}(40.5 \mathrm{mmol})$ was obtained in 93% yield.
$\mathbf{m p}:>250^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.57(\mathrm{~s}, 6 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,125.3,145.6,154.1$.
FTIR (KBr thin film, cm^{-1}): 3163 (w), 1692 (s), 1541 (s), 972 (s), 679 (s).
MS (HiResESI, pos.) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{Cl}_{2}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$227.0143, found 227.0119.

[^59]

1-(1-chloro-6,7-dimethylphthalazin-4-yl)-7-methoxynaphthalen-2-yl

 trifluoromethanesulfonate (75).In a oven dried 200 mL flask under N_{2} were mixed 1.80 g (7.9 mmol) of 1,4-dichloro-6,7dimethylphthalazine (74) with $1.38 \mathrm{~g}(7.9 \mathrm{mmol})$ of 7-methoxynaphthalen-2-ol (34). This mixture was suspended in 100 ml of 1,2 -dichloroethane. After stirring for $10 \mathrm{~min}, 1.10 \mathrm{~g}(7.9 \mathrm{mmol})$ of AlCl_{3} was added in one portion. The resulting suspension was stirred for 20 h at $80^{\circ} \mathrm{C}$. After cooling to room temperature the black suspension was poured on 100 mL ice-water and stirred for 1 h . The two phases were separated. The aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude solid was further dried under vacuum then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. Then, 0.64 $\mathrm{ml}(7.9 \mathrm{mmol})$ of pyridine was added to the solution and the mixture was stirred at $0^{\circ} \mathrm{C}$. Finally, $1.3 \mathrm{~mL}(7.9 \mathrm{mmol})$ of triflic anhydride was added and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The resulting solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated and the aq. phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was purified with FC (Hexane/EtOAc $=$ $5: 1)$ to afford the title compound as a white powder in 71% yield ($2.8 \mathrm{~g}, 5.6 \mathrm{mmol}$) in 2 steps. mp: $234{ }^{\circ} \mathrm{C}$ (decomposition).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.50(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.01(\mathrm{dd}, J=2.4, J=8.7,1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.96-8.02$ $(\mathrm{m}, 1 \mathrm{H}), 8.13-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,20.7,56.8,107.8,109.8,113.4,118.9\left(\mathrm{q}, J_{C F}=315\right), 121.9$, $126.2,130.2,134.4,135.5,136.4,136.5,139.9,144.8,150.0,151.5,156.3,163.0,166.0,172.2$.
FTIR (KBr thin film, cm^{-1}): 3142 (w), 1625 (m), 1513 (s), 1462 (w), 1341 (m), 778 (s). MS (HiResESI, pos.) calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClF}_{s} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$497.0550, found 497.0537.

Trifluoromethanesulfonic acid 1-[4-((R)-2-ethyl-2-hydroxy-1-phenylbutylamino)-6,7-dimethylphthalazin-1-yl]-7-methoxynaphthalen-2-yl ester (76).
To $2.8 \mathrm{~g}(5.6 \mathrm{mmol})$ of trifluoromethanesulfonic acid 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-yl ester (75) was added $2.9 \mathrm{~g}(22.1 \mathrm{mmol})$ of $3-((R)$-aminophenyl-methyl)pentan-3-ol. The suspension was stirred for 15 h at $120^{\circ} \mathrm{C}$. After cooling to $25^{\circ} \mathrm{C}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the suspension was filtered. The filtrate was concentrated under reduced pressure. FC (Hexane/EtOAc $=5: 1$) afforded the title compound as a brown solid which was triturated with hexane/ $\mathrm{Et}_{2} \mathrm{O}$ to give $985.0 \mathrm{mg}(27 \%)$ of the title compound as a single diastereomers.
mp: $243{ }^{\circ} \mathrm{C}$ (decomposition).
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{3 5}}=+89.7$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 0.81(\mathrm{appt}, J=7.5,6 \mathrm{H}), 1.15-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.37(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{br}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=$ $9.3,1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.54(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.5,1 \mathrm{H})$, $8.09(\mathrm{~d}, J=9.3,1 \mathrm{H}) .8 .23(\mathrm{~d}, J=9.3,1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, DMSO-d $_{6}$) $\delta 7.8,8.2,19.2,20.3,28.1,29.0,55.5,59.4,78.0,118.3\left(\mathrm{q}, J_{C F}=\right.$ $315), 119.7,120.9,126.8,127.5,128.4,128.7,129.2,129.5,129.8,131.2,131.4,133.7,133.8$, $134.0,134.7,137.0,137.6,138.3,140.5,140.8,141.0,152.6,153.0,158.6$.
${ }^{19}$ F NMR $\delta-74.19$.
FTIR (KBr thin film, cm^{-1}): 3369 (w), 1625 (s), 1508 (s), 1419 (s), 1139 (s), 987 (s), 874 (s), 701 (w), 592 (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 654.2250$, found 654.2257.

(R, M)-[6,7-Dimethyl-4-(2-diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol (78a).

A solution of $53 \mathrm{mg}(0.10 \mathrm{mmol}) \mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$ in 2.7 mL of dried DMF at $23^{\circ} \mathrm{C}$ was treated with $0.35 \mathrm{~mL}(2.0 \mathrm{mmol})$ of diphenylphosphine. The resulting dark red solution was stirred at $120^{\circ} \mathrm{C}$ for 30 min , treated with, a solution of $670 \mathrm{mg}(1.0 \mathrm{mmol})$ of trifluoromethanesulfonic acid 1-[4-((R)-2-ethyl-2-hydroxy-1-phenylbutylamino)-6,7-dimethylphthalazin-1-yll-7-methoxynaphthalen -2 -yl ester (76) and $448.7 \mathrm{mg}(4.0 \mathrm{mmol})$ of DABCO in 2.0 mL of DMF via syringe, the flask was washed with 0.7 mL of DMF. The resulting green solution was stirred at $120^{\circ} \mathrm{C}$ for 18 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 70^{\circ} \mathrm{C}$ bath temperature). The residue was purified by FC (toluene only) to remove nickel catalyst. The diastereomers were separated with $\mathrm{FC}($ toluene/EtOAc $=10 / 1)$ give $270 \mathrm{mg}(39 \%)$ of 1st diastereomer.
($1^{\text {st }}$ diastereomer, 78a)
$\mathbf{m p}:>250^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{35}=+172.2$
${ }^{1} \mathbf{H}$ NMR (300 MHz, DMSO-d d_{6}) $\delta 0.81(\mathrm{t}, J=5.9,3 \mathrm{H}), 0.83(\mathrm{t}, J=6.0,3 \mathrm{H}), 1.15-1.23(\mathrm{~m}, 1 \mathrm{H})$, $1.32-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 4.67$ $(\mathrm{s}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=9.0,1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}) .6 .85(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 14 \mathrm{H}), 7.51(\mathrm{~d}, J=5.6,1 \mathrm{H})$, $7.61(\mathrm{~d}, J=5.7,1 \mathrm{H}), 7.71(\mathrm{~d}, J=6.2,1 \mathrm{H}), 8.08(\mathrm{dd}, J=7.2,11.2,1 \mathrm{H}), 8.23(\mathrm{~d}, J=5.7,1 \mathrm{H})$, $8.36(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}) $887.8,8.2,19.2,20.3,28.1,29.0,54.7,59.4,76.3,118.3,119.7$, 120.9, 126.8, 127.5, 128.2, 128.4, 128.5, 128.6, 128.6, 128.6, 128.7, 128.7, 129.2, 129.5, 129.8, $131.2,131.4,133.0,133.8,133.9,134.0,134.7,136,6,137.1,137.6,137.7,138.2,138.3,140.5$, $140.8,141.4,152.6,152.7,153.0,158.5$.
${ }^{31} \mathbf{P}$ NMR $\left(\right.$ DMSO- $\left._{6}\right) \delta-13.75$.

FTIR (KBr thin film cm ${ }^{-1}$): 3392 (w), 2936 (m), $1620(\mathrm{~s}), 1505$ (s), 1223 (s), $839(\mathrm{~s}), 743(\mathrm{~s}), 698$ (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 690.3249$, found 690.3250 .

(R,P)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(2-ethyl-1-phenyl-2-((triethylsilyl)methyl)butyl)phthalazin-1-amine (79a).
To $130 \quad \mathrm{mg} \quad(0.200 \mathrm{mmol}) \quad(R, P)$-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol (48a) in 2.0 ml DMF was added 16.0 mg (0.240 mmol) Imidazole and $0.220 \mathrm{ml}(0.220 \mathrm{mmol})$ triethylsilylchloride. After stirring for 7 h at $23{ }^{\circ} \mathrm{C}$ the solution was concentrated under reduced pressure. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; toluene/EtOAc 5:1) afforded $31.0 \mathrm{mg}(20 \%)$ of the title compound as an oil.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 9}}=134.8\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.73-1.11(\mathrm{~m}, 21 \mathrm{H}), 1.35-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.89-2.37(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}$, $3 \mathrm{H}), 5.74(\mathrm{~d}, J=8.7,1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.43(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.07-7.29(\mathrm{~m}, 15 \mathrm{H}), 7.40(\mathrm{t}$, $J=7.2,1 \mathrm{H}), 7.61(\mathrm{~d}, J=6.9,2 \mathrm{H}), 7.67-7.84(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4,7.7,8.8,9.70,27.0,29.8,30.7,31.3,31.5,36.6,55.1,59.0$, $82.5,104.8,117.8,119.5,119.9,126.6,127.4,127.6,127.9,128.1,128.1,128.2,129.0,129.1$, $129.3,130.6,132.4,132.6,133.1,133.4,133.6,133.9,134.4,134.5,136.3,136.4,137.1,137.3$, $137.6,137.8,139.9,140.3,140.9,151.7,152.0,157.7,162.4$.
${ }^{31} \mathbf{P} \mathbf{N M R}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-12.2$.
FTIR (thin film, cm^{-1}): 2956 (w), 2871 (w), 1621 (w), 1506 (m), 1220.
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{49} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PSi}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 776.3796$, found 776.3806

3-((R)-(4-((M)-2-(diphenylphosphoryl)-7-methoxynaphthalen-1-yl)phthalazin-1-

 ylamino)(phenyl)methyl)pentan-3-ol (78a).To $\quad 50.0 \mathrm{mg} \quad(0.0760 \mathrm{mmol}) \quad(R, P)$-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylaminolphenylmethyl\}pentan-3-ol (48a) in $2 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1.00 ml $\mathrm{H}_{2} \mathrm{O}_{2}$. Stirring at $23{ }^{\circ} \mathrm{C}$ for 10 min . The reaction was quenched with a saturated solution of $\mathrm{NaS}_{2} \mathrm{O}_{3} \mathrm{H}$ aqu. and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After phase separation, the aqu. phase extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /iso-PrOH 20:1) afforded 43.0 mg (83%) of the title compound as a white solid.
mp: $178-180^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{27}=298.9\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=7.5,3 \mathrm{H}), 1.06(\mathrm{t}, J=7.6,3 \mathrm{H}), 1.25-1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.85-2.04(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 5.58(\mathrm{~d}, J=8.7,1 \mathrm{H}), 6.02(\mathrm{~d}, J=2.1,1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.7,1 \mathrm{H})$, $6.72-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.52(\mathrm{~m}, 14 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $9.0,1 \mathrm{H}), 7.87-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{dd}, J=2.1, J=9.0,1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.7, J=11.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,8.7,28.1,28.6,54.8,59.4,105.5,117.3,120.2,120.5,126.3$, $126.4,126.5,126.8,126.8,126.9,127.8,127.9,128.1,128.3,128.6,128.8,129.4,129.9,130.3$, $130.6,130.7,131.3,131.5,132.0,132.1,132.5,132.6,133.5,134.3,134.5,136.8,137.0,140.4$, 150.8, 154.7, 158.0.
${ }^{31} \mathbf{P} \mathbf{N M R}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.5$.
FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3369 (m), 2966 (m), 1621 (w), 1506 (s$), 1437$ (m), 1220 (s$)$.
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$678.2880, found 678.2868 .

1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-yl methanesulfonate (82).

To a suspension of 3.30 g (9.80 mmol) 1-(4-Chlorophthalazin-1-yl)-7-methoxynaphthal en-2-ol (40) in $11.0 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $2.00 \mathrm{ml}\left(14.7 \mathrm{mmol}^{(1)} \mathrm{NEt}_{3}\right.$. After cooling to $0{ }^{\circ} \mathrm{C} 0.950 \mathrm{ml}$ $(12.3 \mathrm{mmol}) \mathrm{MsCl}$ was added over a period of 10 min . Then the reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 20 min . and then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Filtration over short SiO_{2} plug (EtOAc) and concentration afforded 2.95 g (73%) of the title compound as an off white solid.
mp: $174-176{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.20(\mathrm{dd}, J=2.4$, $J=9.3,1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.83(\mathrm{dt}, J=1.2, J=8.1,1 \mathrm{H}), 7.89(\mathrm{~d}, J$ $=9.3,1 \mathrm{H}), 8.01-8.07(\mathrm{~m}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.4,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.1,55.4,104.0,118.4,119.3,122.4,125.5,125.9,126.6,127.5$, $128.5,129.9,131.5,133.9,134.0,134.3,146.5,155.7,156.6,159.0$.

FTIR (thin film, cm^{-1}): 3005 (w), 2924 (w), 2832 (w), 1624 (m), 1506 (m), 1462 (m), 1355 (s), 1290 (s), 1232 (s$), 1168$ (s$), 1140$ (s), 1068 (m).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}^{+}\right) 414.0436$, found 414.0433.

7-methoxy-1-(4-((R)-1-phenylethylamino)phthalazin-1-yl)naphthalene-2-yl methane sulfonate (83).

To 2.90 g (6.9 mmol) 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-yl methane sulfonate ($\mathbf{8 2}$) was added $4.40 \mathrm{ml}(34.5 \mathrm{mmol})(R)-(+)$-alpha-methybenzylamine and the suspension was stirred for 12 h at $120{ }^{\circ} \mathrm{C}$. The suspension was flashed directly (SiO_{2}; hexane/EtOAc 5:1 to 1:1) to give product together with demesylated product. Since it was not possible to separate the mixture it was dissolved in $10 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with $0.461 \mathrm{ml}\left(3.39 \mathrm{mmol}^{2}\right) \mathrm{NEt}_{3}$. After cooling to $0{ }^{\circ} \mathrm{C} 0.220 \mathrm{ml}$ (2.83 mmol) MsCl was added over 10 min . After stirring for another 10 min., the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 2:1 to $\left.1: 1\right)$ afforded $1.53 \mathrm{~g}(44 \%)$ of the title compound as a $2: 1$ mixture of diastereomers as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.74(\mathrm{~d}, J=6.3,6 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.59$ $(\mathrm{s}, 3 \mathrm{H}), 5.65-5.87(\mathrm{~m}, 4 \mathrm{H}), 6.56(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.13-7.38(\mathrm{~m}, 12 \mathrm{H}), 7.47-$ 7.65 (m, 8H), 7.70-7.77 (m, 2H), 7.82-7.98 (m, 4H).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.2,22.7,37.9,38.0,50.8,51.1,55.1,55.3,104.9,104.9,118.0$, 118.6, 119.1, 119.1, 121.1, 124.7, 124.8, 126.1, 126.4, 126.6, 127.0, 127.2, 127.5, 127.7, 127.8, $128.4,128.6,129.8,129.8,130.5,130.6,131.7,135.0,144.4,144.7,146.8,146.9,148.1,153.0$, 158.8.

FTIR (thin film, cm^{-1}): 3027 (w), 2933 (w), 1624 (m), 1580 (m), 1505 (s$), 1359$ (s$), 1227$ (s), 1210 (s), 1163 (s), 1137 (s$), 1070$ (m).
MS (HiResMALDI, pos.) calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 500.1639$, found 500.1630.

1-(4-(R)-2-ethyl -2-hydroxy-1-phenylbuthylamino)phthalazin-1-yl)-7-methoxynaphthalen-2yl methanesulfonate (84).
To 2.24 g (5.40 mmol) 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-yl methanesulfonate (82) was added $5.00 \mathrm{~g}(26 \mathrm{mmol})$ of 3-((R)-aminophenyl-methyl)pentan-3-ol. The suspension was stirred for 24 h at $120^{\circ} \mathrm{C}$. FC (toluene/EtOAc $10: 0 \rightarrow 5: 1$) afforded $1.73 \mathrm{~g}(56 \%)$ of the title compound as a white powder as a mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87-1.08(\mathrm{~m}, 10 \mathrm{H}), 1.23-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.81-1.99(\mathrm{~m}, 5 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 5.58(\mathrm{~d}, J=8.1,1 \mathrm{H}), 5.78(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.44(\mathrm{~d}, J$ $=2.1,1 \mathrm{H}), 6.56-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.10-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.58-$ 7.64 (m, 5H), 7.79-7.84 (m, 4H), 7.93 (d, $J=8.7,2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.7,2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.7,8.5,27.8,28.9,29.0,37.5,37.9,55.2,55.3,58.8,59.7,104.4$, $104.6,117.9,118.1,118.7,119.0,119.2,119.3,120.4,124.5,126.3,126.5,127.2,127.4,127.6$, $128.0,128.1,128.5,128.7,129.0,129.5,129.6,130.2,130.4,131.6,131.7,134.7,135.0,140.1$, $146.5,146.6,147.8,152.8,158.5$.

FTIR (thin film, cm^{-1}): 2965 (w), 2926 (w), 1626 (w), 1508 (m), 1368 (m), 1220 (s), 1165 (w),772 (s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 572.2214$, found 572.2205.

7-methoxy-1-(4-((R)-1-phenylethoxy)phthalazin-1-yl)naphthalen-2-ol (22).

To a suspension of 797 mg (33.2 mmol) NaH in 80 ml THF at $23^{\circ} \mathrm{C}$ was added cautiously over 10 min a solution of $2.03(16.6 \mathrm{mmol})(R)$-phenylethanol in 2 ml THF . The mixture was stirred for 15 min , then 5.07 g (15.1 mmol) 1-(4-chlorophthalazin-1-yl)-7-methoxynaphthalen-2-ol (36) were added portion wise. The resulting red suspension was stirred for 20 h at $23^{\circ} \mathrm{C}$, and then the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and poured into brine. The organic phase was separated and the water phase was extracted two more times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by FC (hexane/EtOAc $4: 1$ to $1: 1$) to give 5.54 g (83%) of the title compound as a $1: 1$ mixture of diastereomers, as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.90(\mathrm{~d}, J=6.6,3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}$, $3 \mathrm{H}), 6.39(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.1,1 \mathrm{H}), 6.76-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.52$ $(\mathrm{m}, 10 \mathrm{H}), 7.61-7.90(\mathrm{~m}, 12 \mathrm{H}), 8.43(\mathrm{~d}, J=8.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.1,22.9,55.0,55.1,74.8,104.0,104.3,113.6,113.8,115.2$, 115.3, 116.8, 116.9, 120.7, 120.7, 123.2, 124.0, 126.2, 126.3, 127.1, 127.8, 128.5, 128.5, 128.8, $128.9,129.6,129.7,130.8,130.8,131.9,132.2,134.4,142.2,142.2,154.2,154.4,157.9,157.9$, 159.4.

FTIR (thin film, cm^{-1}): 3059 (s$), 1623$ (s$), 1587$ (m), 1542 (m), 1513 (s$), 1493$ (m), 1462 (m), 1434 (m), 1404 (s), 1343 (s$), 1225$ (s$), 1074$ (s$), 1057$ (s$).$

MS (HiResESI, pos.) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$423.1703, found 423.1710.

7-methoxy-1-(4-((R)-1phenylethoxy)phthalazin-1-yl)naphthalene-2-yl methanesulfonate (89).
A solution of $1.08 \mathrm{~g}(2.56 \mathrm{mmol})$ of (1:1 mixture) 7-methoxy-1-(4-($(R)-1-$ phenylethoxy)phthalazin-1-yl)naphthalen-2-ol (22) in $0.531 \mathrm{ml}(3.84 \mathrm{mmol})$ of triethylamine and 5 ml of dichloromethane at $0^{\circ} \mathrm{C}$ was treated drop wise with $0.248 \mathrm{ml}(3.20 \mathrm{mmol})$ of MsCl . Then the reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 15 min . and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Filtration over short SiO_{2} plug (EtOAc) and concentration afforded $1.13 \mathrm{~g}(88 \%)$ of the title compound as an off white solid as a mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.90(\mathrm{t}, J=6.3,6 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.60$ $(\mathrm{s}, 3 \mathrm{H}), 6.40(\mathrm{~d}, J=2.7,1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.7,1 \mathrm{H}), 6.73(\mathrm{q} ., J=6.6,1 \mathrm{H}), 6.82(\mathrm{q} ., J=6.6,1 \mathrm{H})$, 7.14-7.42 (m, 10H), 7.54-7.72 (m, 8H), 7.83-8.01 (m, 6H), 8.46 (t, $J=6.9,2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.8,23.0,37.7,38.0,55.2,55.3,74.9,75.0,104.2,104.5,118.5$, $119.0,119.2,119.9,120.0,123.2,123.3,123.8,125.6,125.7,126.2,126.3,127.5,127.6,127.7$, $128.4,128.4,129.0,129.7,129.7,130.7,130.8,132.3,132.3,132.6,134.5,134.7,142.2,142.4$, 146.4, 146.6, 152.0152.1, 158.7, 159.5, 159.6.

FTIR (thin film, cm^{-1}): 3028 (w), 2932 (w), 1623 (w), 1580 (w), 1509 (w), 1493 (w), 1396 (m), 1359 (s), 1209 (m), 1165 (s).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$501.1479, found 501.1470.

1-(4-chlorophthalazin-1-yl)naphthalene-2-yl methanesulfonate (85).

To a suspension of 3.00 g (9.80 mmol) 1-(4-Chlorophthalazin-1-yl) naphthalen-2-ol (21) in 15.0 $\mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ was added $2.00 \mathrm{ml}(14.7 \mathrm{mmol}) \mathrm{NEt}_{3}$. After cooling to $0{ }^{\circ} \mathrm{C} 0.950 \mathrm{ml}(12.3 \mathrm{mmol})$ MsCl was added over a period of 10 min . Then the reaction was stirred at $23^{\circ} \mathrm{C}$ for 15 min . and then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Filtration over short SiO_{2} plug (EtOAc) and concentration afforded $3.18 \mathrm{~g}(84 \%)$ of the title compound as an off white solid.
mp: $67-69^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.93(\mathrm{~s}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dt}, J=$ $1.2, J=8.1,1 \mathrm{H}), 7.78-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.89-8.05(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=9.3,1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $838.2,121.0,123.8,125.4,125.8,126.6,126.7,127.8,128.3,128.6$, 131.7, 131.8, 132.7, 133.8, 133.9, 145.7, 155.7, 156.4.

FTIR (thin film, cm^{-1}): 3028 (w), 2933 (w), 1581 (w), 1510 (m), 1493 (m), 1361 (s), 1288 (s), 1208 (s), 1167 (s), 1072 (w).

MS (HiResMALDI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$385.0408, found 385.0402.

1-(4-((R)-1-phenylethylamino)phthalazin-1-yl)naphthalene-2-yl methanesulfonate (86).

To 3.00 g (7.80 mmol) 1-(4-chlorophthalazin-1-yl)naphthalene-2-yl methanesulfonate ($\mathbf{8 5}$)was added $5.00 \mathrm{ml}(39.0 \mathrm{mmol})(R)-(+)$-alpha-methybenzylamine and the suspension was stirred for 12 h at $120^{\circ} \mathrm{C}$. The suspension was flashed directly $\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc $2: 1$ to $\left.1: 1\right)$ to afforded $2.18 \mathrm{~g}(59 \%)$ of the title compound as a mixture of diastereomers as a yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.76(\mathrm{~d}, J=6.3,6 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 5.58-5.86(\mathrm{~m}, 4 \mathrm{H})$, 7.18-8.07 (m, 30H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.0,22.7,37.9,38.1,50.7,51.1,117.8,117.8,120.4,121.2,121.3$, $125.7,125.8,126.2,126.2,126.3,126.4,126.5,126.6,127.1,127.3,127.3,127.4,127.5,127.6$, $128.0,128.2,128.5,128.7,130.7,130.8,131.5,131.6,131.7,131.7,132.0,133.4,133.5,143.9$, 144.2, 145.9, 146.0, 147.9, 152.6, 152.7.

FTIR (thin film, cm^{-1}): 3027 (w), 2931 (w), 1615 (w), 1579 (m), 1555 (m), 1505 (s), 1359 (s), 1209 (m), 1166 (s), 1134 (s), 956 (s), 940 (s).
MS (HiResMALDI, pos.) calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) 470.1533$, found 470.1526.

1-(4-((R)-1-phenylethoxy)phthalazin-1-yl)naphthalene-2-yl methanesulfonate (88).

A solution of 1.50 g (3.83 mmol) of ($1: 1 \mathrm{mixture}$ of diastereomers) (R)-1-[4-(1-phenylethoxy)-phthalazin-1-yl]-naphthalen-2-ol (22) in $0.794 \mathrm{ml}(5.74 \mathrm{mmol})$ of triethylamine and 5 ml of dichloromethane at $0{ }^{\circ} \mathrm{C}$ was treated drop wise with $0.370 \mathrm{ml}(4.78 \mathrm{mmol})$ of MsCl . Then the reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 15 min . and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Filtration over short SiO_{2} plug (EtOAc) and concentration afforded $1.55 \mathrm{~g}(86 \%)$ of the title compound as an off white solid as a mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.90(\mathrm{t}, J=6.0,6 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{q} ., J=6.6$, $1 \mathrm{H}), 6.84(\mathrm{q}, J=6.6,1 \mathrm{H}), 7.22-8.11(\mathrm{~m}, 26 \mathrm{H}), 8.46(\mathrm{t}, J=7.5,2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.5,22.7,37.7,37.9,74.7,75.0,119.9,119.9,121.1,121.6,123.1$, $123.3,125.0,125.6,125.8,125.9,126.2,126.3,126.5,127.4,127.6,127.8,128.1,128.3,128.5$, $129.1,129.2,131.0,131.1,131.9,132.2,132.3,132.5,132.6,133.1,133.2,142.2,142.3,145.9$, 151.9, 159.7, 159.8.

FTIR (thin film, cm^{-1}): 3029 (w), 2932 (w), 1580 (w), 1510 (w), 1493 (w), 1360 (m), 1325 (s), 1209 (m), 1166 (s), 1120(m), 956 (s).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$471.1373, found 471.1367.

General procedure for the phosphination reaction employing arylmesylates (GP 1):

A solution of $32.0 \mathrm{mg}(0.060 \mathrm{mmol}) \mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$ in 2.0 ml of dried DMF at $23{ }^{\circ} \mathrm{C}$ was treated with $0.21 \mathrm{ml}(1.2 \mathrm{mmol})$ of diphenylphosphine. The resulting dark red solution was stirred at $120^{\circ} \mathrm{C}$ for 30 min , and then treated with a solution of 0.60 mmol arylmesylate and 269 mg (2.4 mmol) of DABCO in 2.0 ml of DMF via syringe, the flask was washed with 0.7 ml of DMF. The
resulting solution was stirred at $120^{\circ} \mathrm{C}$ for 14 h . The mixture was concentrated under reduced pressure ($20 \mathrm{mbar}, 70^{\circ} \mathrm{C}$ bath temperature). The residue was purified by FC (toluene only) to remove nickel catalyst.

(R, P)-1-(-2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-4-(-1-phenylethoxy)
phthalazine (90a) and (R,M)-1-(-2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-4-(-1phenylethoxy)phthalazine (90b).
Prepared according to GP1 employing 253 mg (0.60 mmol) 7-methoxy-1-(4-((R)-1phenylethoxy)phthalazin-1-yl)naphthalene-2-yl methanesulfonate as arylmesylate (89).

Purification by FC (toluene/EtOAc $=10 / 1$) afforded $82 \mathrm{mg}(23 \%)$ of the title compound as oil.
The two diastereomers were separated by $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; toluene /EtOAc 20:1 \rightarrow toluene/EtOAc 10:1). The relative axial chirality was not established. However, the 1st diastereomer showed to have a negative rotation (-102.3) in the optical rotation measurement, similar to the 1st diastereomer of O-PINAP (-324.0).
(R, P)-1-(-2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-4-(-1-phenylethoxy) phthalazine (1st Diastereomer, 90a)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{30}=-102.3\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{~d}, J=6.0,3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~d}, J=2.1,1 \mathrm{H}), 6.83$ (quart., $J=6.6,1 \mathrm{H}$), 7.11-7.37 (m, 13H), $7.47(\mathrm{t}, J=8.7,2 \mathrm{H}), 7.63(\mathrm{t}, J=7.2,2 \mathrm{H}), 7.75-7.84(\mathrm{~m}$, $4 \mathrm{H}), 8.37$ (d, $J=8.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.8,55.0,74.4,104.8,104.8,119.4,119.8,123.0,125.9,126.4$, $127.5,127.8,128.0,128.1,128.2,128.3,128.4,128.6,129.0,129.3,129.3,131.4,131.6,133.0$, 133.2, 133.6, 133.9, 134.0, 142.7, 157.9, 159.0.
${ }^{31} \mathbf{P} \mathbf{N M R}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-12.5$.
FTIR (thin film, cm^{-1}): 3053 (w), 2978 (w), 2932 (w), 1620 (s$), 1503$ (m), 1433 (m), 1422 (m), 1398 (s$), 1301$ (m), 1225 (s$), 1066$ (m), 1028 (m).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$591.2196, found 591.2187.
(R, M)-1-(-2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-4-(-1-phenylethoxy)phthalazine (2nd Diastereomer, 90b)
$[\alpha]_{\mathrm{D}}{ }^{29}=16.9\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{~d}, J=6.6,3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=2.7,1 \mathrm{H}), 6.82$ (quart., $J=6.6,1 \mathrm{H}), 7.05-7.51(\mathrm{~m}, 17 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.84(\mathrm{~m}, 3 \mathrm{H}), 8.35(\mathrm{~d}, J=8.1$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.6,55.2,74.4,105.2119 .1,119.7,123.0,125.9,126.4,127.6$, 127.7, 128.0, 128.1, 128.2, 128.3, 128.4, 128.6, 129.0, 129.4, 129.6, 131.3, 131.6, 133.3, 133.5, $133.8,134.0,134.1,136.6,136.8,137.0,137.0,137.3,138.9,139.3,142.5,156.1,156.2,157.9$, 159.0.

FTIR (thin film, cm^{-1}): 3060 (w), 2976 (w), 2931 (w), 1620 (s , 1504 (m), 1422 (m), 1398 (s), 1302 (m), 1225 (s), 1066 (m), 1028 (m).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$591.2196, found 591.2187.

(R, P)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(1-phenylethyl)phthalazin-1amine (39a) and (R, M)-4-(2-(diphenylphosphino)-7-methoxynaphthalen-1-yl)-N-(-1-phenyl ethyl)phthalazin-1-amine (39b).

Prepared according to GP 1 employing 300 mg (0.60 mmol) 7-methoxy-1-(4-((R)-1-phenylethylamino)phthalazin-1-yl)naphthalene-2-yl methane sulfonate (83).

Purification by FC (toluene/EtOAc $=10 / 1)$ afforded $135 \mathrm{mg}(38 \%)$ of the title compound as oil.

All spectroscopic data was in agreement with the data reported earlier (page 109).

(R, M)-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenyl methyl\}pentan-3-ol (48a, $1^{\text {st }}$ diasteomer) and (R, P)-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol (48b, $2^{\text {nd }}$ diasteomer).

Prepared according to GP 1 employing 249 mg (0.60 mmol) 1-(4-(R)-2-ethyl -2-hydroxy-1-phenylbuthylamino)phthalazin-1-yl)-7-methoxynaphthalen-2-yl methanesulfonate (84).

Purification by FC (toluene/EtOAc $=10 / 1$) afforded $95 \mathrm{mg}(24 \%)$ of the title compound as a white solid.

All spectroscopic data was in agreement with the data reported earlier (page 112).

(R, P)-[4-(2-Diphenylphosphanylnaphthalen-1-yl)phthalazin-1-yl]-(1-phenylethyl)amine (27a) and (R,M)-[4-(2-Diphenylphosphanylnaphthalen-1-yl)phthalazin-1-yl]-(1-phenylethyl) amine (27b).

Prepared according to GP 1 employing 282 mg (0.60 mmol$)$ 1-(4-((R)-1-phenylethylamino)phthalazin-1-yl)naphthalene-2-yl methanesulfonate (86).

Purification by FC (toluene/EtOAc $=10 / 1$) afforded $205 \mathrm{mg}(61 \%)$ of the title compound as a white solid.

All spectroscopic data was in agreement with the data reported in the literature. ${ }^{47}$

(R,P)-1-(2-Diphenylphosphanylnaphthalen-1-yl)-4-(1-phenylethoxy)phthalazine (24a) and (R,M)-1-(2-Diphenylphosphanylnaphthalen-1-yl)-4-(1-phenylethoxy)phthalazine (24b).

Prepared according to GP 1 employing 283 mg (0.60 mmol$)$ 1-(4-((R)-1-phenylethoxy)phthalazin-1-yl)naphthalene-2-yl methanesulfonate (88).

Purification by $\mathrm{FC}($ toluene $/ \mathrm{EtOAc}=10 / 1)$ afforded $134 \mathrm{mg}(40 \%)$ of the title compound as a white solid.

All spectroscopic data was in agreement with the data reported in the literature. ${ }^{47}$

(R)-(+)-5-(1-Isopropyl-3-phenyl-prop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (29).
In a test tube equipped with a stirring bar, a solution of $5.0 \mathrm{mg}(0.025 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.2 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $10 \mathrm{mg}(0.050 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $16.5 \mathrm{mg}(0.025 \mathrm{mmol})$ of $\mathbf{4 8 a}$ and 0.275 ml (2.5 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0{ }^{\circ} \mathrm{C}$, stirred for 5 min and treated with 50 mg (0.25 mmol) of 2,2-dimethyl-5-(2-methylpropylidene)-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 14 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:1) to yield $71 \mathrm{mg}(94 \%)$ of the pure product as a white solid.
mp: $111-113^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=7.93\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.
ee: determined after conversion into the corresponding anilide: 95% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}$ (minor): $25.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 27.5 min . detector: 254 nm).
The other spectroscopic data was in agreement with the data reported in the literature. ${ }^{53}$

The reaction on 1.25 mmol scale (Equation 14) was run exactly like described above with the following amounts: $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(12.5 \mathrm{mg}, 0.063 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$, sodium (L)-ascorbate ($25 \mathrm{mg}, 0.126 \mathrm{mmol}$), 48a ($42 \mathrm{mg}, 0.063 \mathrm{mmol}$), phenylacetylene ($0.138 \mathrm{ml}, 1.26 \mathrm{mmol}$) and 28 ($250 \mathrm{mg}, 1.26 \mathrm{mmol}$) to give 29 ($354 \mathrm{mg}, 93 \%$).
ee: determined after conversion into the corresponding anilide: 94% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}$ (minor): 25.4 min , t_{R} (major): 27.5 min . detector: 254 nm).
The other spectroscopic data was in agreement with the data reported in the literature. ${ }^{53}$

Absolute stereochemistry determination:
Determined by conversion into (S)-3-isopropyl-5-phenylpentanoic acid: a) $\mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, 100{ }^{\circ} \mathrm{C}$ b) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{EtOAc}$; and comparison with the reported optical rotation.

(S)-(-)-5-(1-Isopropyl-3-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (29).

The product was obtained exactly like $\mathbf{2 8}$ using ent-48a as ligand in 85% yield.
mp: $110-112{ }^{\circ} \mathrm{C}$.
$[\alpha]_{D}{ }^{27}=-11.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.
ee: determined after conversion into the corresponding anilide: 94\% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: $i-\mathrm{PrOH}$ 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (major): $25.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor): 27.5 min . detector: 254 nm).

The other spectroscopic data was in agreement with the data reported in the literature. ${ }^{53}$

(R)-(+)-5-(1-Cyclohexyl-3-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (49).

In a test tube equipped with a stirring bar, a solution of $5.0 \mathrm{mg}(0.025 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.2 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $10 \mathrm{mg}(0.050 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $16.5 \mathrm{mg}(0.025 \mathrm{mmol})$ of 48 a and 0.275 ml (2.5 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0{ }^{\circ} \mathrm{C}$, stirred for 5 min and treated with $59 \mathrm{mg}(0.25 \mathrm{mmol})$ of 5 -(cyclohexylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 13 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:1) to yield $69 \mathrm{mg}(81 \%)$ of the pure product as a white solid.
mp: $136-138^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{31}=8.93\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.81(\mathrm{~m}, 10 \mathrm{H}), 2.11-2.24(\mathrm{~m} .1 \mathrm{H}), 2.32$ $(\mathrm{d}, J=12.6,1 \mathrm{H}), 3.34(\mathrm{dd}, J=2.7,10.2,1 \mathrm{H}), 3.78(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.39$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.0,26.0,26.2,28.0,28.6,30.8,32.4,38.9,39.4,46.8,84.3,87.7$, 105.2, 122.8, 128.0, 128.0, 131.6, 163.6, 165.5.

FTIR (thin film, cm^{-1}):3063 (w), 3000 (w), 2932 (m), 2848 (m), 1790 (m), 1750 (s), 1394 (m), 1384 (m), 1314 (m), 1207 (m), 1059 (m).

MS (ESI, pos.) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{4}{ }^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 363.16$ found 363.45.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 74.09; H, 7.11. Found: C, 73.85; H, 7.13.
ee: determined after conversion into the corresponding anilide: 94% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}$ (major): $25.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor): 30.4 min . detector: 254 nm).

Absolute stereochemistry determination:

(S)-N-(4-bromophenyl)-3-cyclohexyl-5-phenylpent-4-ynamide (55).

$69.0 \mathrm{mg}(0.203 \mathrm{mmol})(R)-(+)-5-(1-C y c l o h e x y l-3-p h e n y l p r o p-2-y n y l)-2,2-d i m e t h y l-1,3-d i o x a n e-~$ 4,6-dione (49) was dissolved in 1.0 ml DMF. Addition of 100 mg (0.581 mmol) 4-bromoaniline and stirring at $100^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with a 1 M HCl aqu. and diluted with $\mathrm{Et}_{2} \mathrm{O}$. After phase separation, the aqu. phase extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 3:1) afforded 45.0 mg (54%) of the title compound as a white solid of which a crystal structure could be obtained (colourless needles obtained after crystallization from hexane/toluene).
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{24}=-83.81\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.89(\mathrm{~m}, 5 \mathrm{H}), 2.58(\mathrm{~d}, J$ $=7.2,2 \mathrm{H}), 2.98-3.04(\mathrm{q}, J=6.1,1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{brs}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.2,26.3,29.3,29.8,31.4,35.7,41.1,41.6,84.4,90.5,116.7$, $121.4,123.0,128.0,128.2,131.5,131.8,136.8,169.7$.
FTIR (thin film, cm^{-1}): 3280 (w), 2928 (m), 2849 (m), 1648 (s$), 1591$ (m), 1527 (s$), 1489$ (s$)$, 1439 (m), 1396 (s$), 1260(\mathrm{~m}), 1072$ (m), 1012 (m).

MS (HiResEI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrNO}^{+}\left(\mathrm{M}^{+}\right)$409.1036, found 409.1033.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrNO}: \mathrm{C}, 67.32$; H, 5.89. Found: C, 67.21 ; H, 5.99.

(R)-(+)-5-(1-Cyclopropyl-3-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (50).

In a test tube equipped with a stirring bar, a solution of $5.0 \mathrm{mg}(0.025 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.2 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $10 \mathrm{mg}(0.050 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $16.5 \mathrm{mg}(0.025 \mathrm{mmol})$ of $\mathbf{4 8 a}$ and 0.275 ml (2.5 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0{ }^{\circ} \mathrm{C}$, stirred for 5 min and treated with $49 \mathrm{mg}(0.25 \mathrm{mmol})$ of 5 -(cyclopropylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 51 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$) to yield $59 \mathrm{mg}(79 \%)$ of the pure product as a white solid.
mp: $96-97^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}=105.4\left(\mathrm{c}=0.505, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.30-0.37(\mathrm{~m}, 1 \mathrm{H}), 0.51-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.79(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}), 2.98(\mathrm{dd}, J=2.6,9.5,1 \mathrm{H}), 3.76(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 3 \mathrm{H})$, 7.37-7.42 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.9,6.3,14.7,27.8,28.5,37.7,50.7,83.4,86.9,105.2,122.7$, 128.0, 131.7, 163.6, 164.5.

FTIR (thin film, cm^{-1}): 3003 (w), 2881 (w), 1785 (m), 1749 (s , 1490 (w), 1334 (m), 1298 (s), 1204 (m), 1005 (m), 758 (m), 693 (m).
MS (ESI, neg.) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right) 297.1$ found 297.2.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 72.47; H, 6.08. Found: C, 72.34; H, 6.11.
ee: determined after conversion into the corresponding anilide: 97%, (Daicel Chiralpak AD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: $i-\mathrm{PrOH} 90: 10$, flow: $0.8 \mathrm{ml} / \mathrm{min}$. t_{R} (minor): $14.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 16.5 min. detector: 254 nm).

(R)-(+)-5-(1-Isobutyl-3-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (51).

In a test tube equipped with a stirring bar, a solution of $10 \mathrm{mg}(0.050 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.2 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $33.1 \mathrm{mg}(0.050 \mathrm{mmol})$ of 48 a and 0.275 ml (2.5 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0{ }^{\circ} \mathrm{C}$, stirred for 5 min and treated with 53 mg (0.25 mmol) of 2,2-dimethyl-5-(3-methylbutylidene)-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 5:1) to yield $67 \mathrm{mg}(85 \%)$ of the pure product as a white solid.
mp: $100-102{ }^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{27}=18.1\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~d}, J=2.5,3 \mathrm{H}), 1.01(\mathrm{~d}, J=2.5,3 \mathrm{H}), 1.35-1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.78(\mathrm{~s}, 6 \mathrm{H}), 1.87-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=2.7,1 \mathrm{H}), 3.72-3.79(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.30 (m, 3H), 7.35-7.42 (m, 2H).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.6,23.3,26.4,27.7,28.6,30.4,41.4,50.3,83.5,88.0,105.2$, 122.9, 128.0, 128.1, 131.7, 163.5, 164.3.

FTIR (thin film, cm^{-1}): 2956 (m), 1791 (m), 1750 (s), 1384 (m), 1306 (s$), 1206(\mathrm{~m}), 1060(\mathrm{~m})$, 1006 (m), 884 (w), 756 (m).

MS (ESI, neg.) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right) 313.15$ found 313.3.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 72.59; H, 7.05. Found: C, 72.52; H, 7.11.
ee: determined after conversion into the corresponding anilide: 90% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min}$. t_{R} (minor): $25.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 26.8 min . detector: 254 nm).

(R)-(+)-5-(1-Ethyl-3-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (52).

In a test tube equipped with a stirring bar, a solution of $10 \mathrm{mg}(0.050 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.2 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $33.1 \mathrm{mg}(0.050 \mathrm{mmol}$) of $\mathbf{4 8 a}$ and 0.275 ml (2.5 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0{ }^{\circ} \mathrm{C}$, stirred for 5 min and treated with 46 mg (0.25 mmol) of 2,2-dimethyl-5-propylidene-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:1 $\left.\rightarrow 2: 1\right)$ to yield $59 \mathrm{mg}(83 \%)$ of the pure product as a white solid.
mp: $105-110^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=20.5\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)$.
ee: determined after conversion into the corresponding anilide: 82%, (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (major): $27.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor): 33.5 min . detector: 254 nm).

The other spectroscopic data was in agreement with the data reported in the literature.

(S)-(+)-5-(3-Phenyl-1-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (53).

In a test tube equipped with a stirring bar, a solution of $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.4 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $40 \mathrm{mg}(0.20 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $66.2 \mathrm{mg}(0.10 \mathrm{mmol}$) of 48 a and 0.55 ml
(5.0 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0^{\circ} \mathrm{C}$, stirred for 5 min and treated with $116 \mathrm{mg}(0.50 \mathrm{mmol})$ of 5 -benzylidene-2,2-dimethyl-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0^{\circ} \mathrm{C}$ for 66 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:1 \rightarrow 1:1) to yield $110 \mathrm{mg}(64 \%)$ of the pure product as a white solid.
mp: $153-156^{\circ} \mathrm{C}$ (decomp.).
$[\alpha]_{\mathrm{D}}{ }^{27}=59.5\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right)$.
ee: determined after conversion into the corresponding anilide: 83%, (Daicel Chiracel OD-H column 250 x 4.6 mm , hexane: $i-\operatorname{PrOH} 87: 13$, flow: $0.7 \mathrm{ml} / \mathrm{min}$. t_{R} (minor): $21.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 24.4 min. detector: 254 nm).

The other spectroscopic data was in agreement with the data reported in the literature. ${ }^{53}$

Absolute stereochemistry determination:
Determined by conversion into (S)-methyl-3,5-diphenyl-2-methoxycarbonyl-5-oxopentane: a) H_{2}, $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, \mathrm{b}) \mathrm{cat} . \mathrm{HCl}, \mathrm{MeOH}$, reflux, c) $\mathrm{CrO}_{3}, \mathrm{AcOH}$, rt; and comparison of the optical rotation with the reported value.

(S)-(+)-5-(3-Phenyl-1-m-tolylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (54).

In a test tube equipped with a stirring bar, a solution of $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.4 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $40 \mathrm{mg}(0.20 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $66.2 \mathrm{mg}(0.10 \mathrm{mmol})$ of 48 a and 0.55 ml $(5.0 \mathrm{mmol})$ of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$, cooled to $0^{\circ} \mathrm{C}$, stirred for 5 min and treated with 123 mg (0.50 mmol) of 2,2-dimethyl-5-(3-methylbenzylidene)-1,3-dioxane-4,6-dione. The reaction mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$
for 66 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:1 \rightarrow $1: 1)$ to yield $151 \mathrm{mg}(87 \%)$ of the pure product as a white solid.
mp: $136-137^{\circ} \mathrm{C}$ (decomp.).
$[\alpha]_{\mathrm{D}}{ }^{27}=61.3\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~d}, J=2.6,1 \mathrm{H}), 5.12$ $(\mathrm{d}, J=2.6,1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5$, 2H), 7.46-7.51 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,27.9,28.4,37.1,52.9,85.4,86.3,105.2,122.7,125.6,128.1$. 128.2, 128.3 128.5. 129.1, 131.7, 136.9, 138.1, 162.9, 163.7.

FTIR (thin film, cm^{-1}): 3003 (w), 1786 (m), 1749 (s), 1607 (w), 1490 (m), 1296 (s), 1205 (m), 1006 (m), 758 (m), 692 (m).

MS (ESI, neg.) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{4}^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right) 347.1$ found 347.2.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$: C, 75.84; H, 5.79. Found: C, 75.66; H, 5.93.
ee: determined after conversion into the corresponding anilide: 90%, (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: $i-\operatorname{PrOH} 87: 13$, flow: $0.7 \mathrm{ml} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}$ (minor): $19.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 21.7 min . detector: 254 nm).

123 mg of adduct was recrystallized from warm $\left(40^{\circ} \mathrm{C}\right) \mathrm{EtOAc}$ to give 85 mg white crystals (69% mass recovery), the ee was 98% (determined as described above).
$[\alpha]_{\mathrm{D}}{ }^{30}=67.9\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right)$.
mp: $136-137^{\circ} \mathrm{C}$ (decomp.).

3-(cyclopentyloxy)-4-methoxybenzaldehyde (1).

To 5.00 g (33.0 mmol) 3-hydroxy-4-methoxybenzaldehyde (64) in 50 ml DMF was added 6.90 g $(50.0 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ and $3.50 \mathrm{ml}(33.0 \mathrm{mmol})$ cyclopentylbromide. The reaction was heated to
$50{ }^{\circ} \mathrm{C}$ and stirred for 14 h , and quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the water phase was extracted twice with pentane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give $2.40 \mathrm{~g}(33 \%)$ of the title compound as an oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.59-2.03(\mathrm{~m}, 8 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.81-4.86(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ 8.1, 1H), 7.38-7.43 (m, 2H), $9.10(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.0,32.6,56.0,80.3,110.6,111.9,126.2,129.9,148.1,155.3$.
FTIR (thin film, cm^{-1}): 2960 (w), 1687 (s), 1585 (s$), 1509$ (s$), 1434$ (m), 1265 (s$), 1239$ (m), 1160 (w), 1132 (m), 1021(w).
MS (HiRes EI, pos.) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+}\left(\mathrm{M}^{+}\right)$220.1094, found 220.1095 .
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 70.89; H, 7.32. Found: C, 70.67; H, 7.25.

5-(3-(cyclopentyloxy)-4-methoxybenzylidene)-2,2dimethyl-1,3-dioxane-4,6-dione (3).

To 1.56 g (10.9 mmol) Meldrum's acid (2) and 2.40 g (10.9 mmol) 3-(cyclopentyloxy)-4methoxybenzaldehyde (1) in $20 \mathrm{ml} \mathrm{CHCl}_{3}$ was added $25.0 \mathrm{mg}(1.40 \mathrm{mmol})$ EDDA. After stirring for 14 h at $23^{\circ} \mathrm{C}$ the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was recrystallized from EtOAc / hexane to give 340 $\mathrm{mg}(9.00 \%)$ of the title compound as yellow crystals.
mp: $119-120^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.56-2.13(\mathrm{~m}, 15 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.82-4.88(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.4,1 \mathrm{H}), 7.60(\mathrm{dd}, J=2.1, J=8.4,1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.1,1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1,27.4,32.7,56.1,56.1,80.5,104.0,110.1,110.7,118.3,124.9$, 132.3, 147.4, 155.6, 158.5, 160.6, 164.2.

FTIR (thin film, cm^{-1}): 3130 (w), 3054 (w), 2940 (w), 2868 (w), 1747 (w), 1715 (s), 1538 (s), 1519 (s), 1461 (m), 1421 (s , 1393 (s$), 1264$ (s$), 1219$ (s$), 1133$ (s$), 1050$ (s$).$

MS (ESI, pos.) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{6}{ }^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 396.1$, found 368.9.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 65.88; H, 6.40. Found: C, $65.67 ; \mathrm{H}, 6.55$.

(S)-5-(1-(3-(cyclopentyloxy)-4-methoxyphenyl)-3-phenylprop-2-ynyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (4).

In a vial equipped with a stirring bar, a solution of $10.0 \mathrm{mg}(0.050 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.2 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $20 \mathrm{mg}(0.100 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $34.0 \mathrm{mg}(0.050 \mathrm{mmol}$) of $\mathbf{4 8 a}$ and 0.275 ml (2.50 mmol) of phenylacetylene were added, the resulting mixture was stirred 10 min at $23{ }^{\circ} \mathrm{C}$ and treated with 87 mg (0.250 mmol) of 5-(3-(cyclopentyloxy)-4-methoxybenzylidene)-2,2dimethyl-1,3-dioxane-4,6-dione (3). The reaction mixture was stirred vigorously at $23{ }^{\circ} \mathrm{C}$ for 70 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected directly to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc $4: 1$ to $2: 1$) to yield $48 \mathrm{mg}(43 \%)$ of the pure product as a yellow oil.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{27}=34.11\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.56-2.00(\mathrm{~m}, 14 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~d}, J=3.0,1 \mathrm{H}), 4.77-4.83$ (m, 1H), $5.08(\mathrm{~d}, J=3.0,1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.07(\mathrm{dd}, J=2.4, J=8.4,1 \mathrm{H}), 7.19(\mathrm{~d}, J=$ 2.1, 1H), 7.29-7.33 (m, 3H), 7.45-7.49 (m, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.3,28.0,28.5,32.9,32.9,37.0,53.0,56.1,80.4,85.1,87.0$, $105.3,111.5,115.6,120.7,122.8,128.2,128.2,129.1,131.7,147.3,149.4,163.5,163.5$.

FTIR (thin film, cm^{-1}): 2991 (w), 2952 (w), 1784 (m), 1750 (s), 1514 (m), 1365 (s), 1294 (m), 1259 (m), 1220 (s), 1137 (w), 773(s).

MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$471.1784, found 471.1771.
ee: determined after conversion into the corresponding anilide: 74% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$ and Daicel Chiracel OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 87:13, flow: $0.7 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}$ (minor): $36.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 44.0 min . detector: 254 nm).

5-(3-hydroxy-4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (113).

To $2.00 \mathrm{~g}(14.0 \mathrm{mmol})$ Meldrum's acid (2) and 2.13 g (14.0 mmol) 3-(hydroxy)-4methoxybenzaldehyde (64) in 20 ml CHCl 3 was added 25.0 mg (1.40 mmol) EDDA. After stirring for 14 h at $23^{\circ} \mathrm{C}$ the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was recrystallized from $\mathrm{CHCl}_{3} /$ hexane to give 3.61 $\mathrm{g}(93 \%)$ of the title compound as of white crystals.
mp: $132-134{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.77(\mathrm{~s}, 6 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.70$ $(\mathrm{dd}, J=1.5, J=8.4,1 \mathrm{H}), 7.90(\mathrm{~d}, J=1.8,1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.6,56.2,104.2,110.2,111.5,119.5,125.3,130.1,145.2,151.7$, 157.9, 160.1, 163.8.

FTIR (thin film, cm^{-1}): 3263 (w), 2989 (w), 1738 (w), 1694 (s), 1544 (s), 1408 (m), 1265 (s), 1190 (s), 1174 (s), 1126 (s), 1011 (s$).$

MS (ESI, neg.) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{6}^{-}\left(\mathrm{M}-\mathrm{H}^{-}\right)$277.1, found 277.1.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$: C, 60.43; H, 5.07. Found: C, $60.15 ; \mathrm{H}, 5.03$.

5-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)-2-methoxyphenylmethane sulfonate (65).

To 6.10 g (22.0 mmol) of 5-(3-hydroxy-4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6dione (113) in $30 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $4.60 \mathrm{ml}(33.0 \mathrm{mmol}) \mathrm{NEt}_{3}$ and the orange solution was cooled to $0^{\circ} \mathrm{C}$. Then 2.10 ml (27.4 mmol) MsCl was added by syringe over 15 min . After stirring for 10 min ., the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and the water phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}(8 \mathrm{ml})$. After standing for 14 h the product precipitated $(4.50 \mathrm{~g})$. The mother liquor was concentrated. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 3:1) afforded additional 1.20 g (total yield 73%) of the title compound as a yellow solid. mp: $148-150{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.79(\mathrm{~s}, 6 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=8.7,1 \mathrm{H}), 8.07$ (dd, $J=2.1, J=8.7,1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.1,1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.7,38.7,56.6,104.5,112.5,112.7,124.8,129.4,136.4,137.9$, 156.1, 156.4, 160.0, 163.2.

FTIR (thin film, cm^{-1}): 3024 (w), 1716 (s), 1591 (s$), 1510$ (m), 1372 (s$), 1284$ (s), 1268 (s), 1204 (s), 1178 (s$), 1110$ (s$), 1007$ (s$), 992$ (s$)$.

MS (ESI, pos.) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 379.0$, found 379.0.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 50.56 ; \mathrm{H}, 4.53$. Found: C, 50.27 ; H, 4.59.

(S)-(+)-5-(1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-phenylprop-2-ynyl)-2methoxyphenylmethanesulfonate (66).
In a 5 ml flask equipped with a big stirring bar, a solution of $20.0 \mathrm{mg}(0.100 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 0.4 ml of $\mathrm{H}_{2} \mathrm{O}$ was treated with $40 \mathrm{mg}(0.200 \mathrm{mmol})$ of sodium (L)-ascorbate, stirred until the mixture turned bright orange (3 min). Subsequently, $68.0 \mathrm{mg}(0.100 \mathrm{mmol})$ of 48a and $0.550 \mathrm{ml}(5.00 \mathrm{mmol})$ of phenylacetylene were added, the resulting mixture was stirred 10 min at $23^{\circ} \mathrm{C}$ and treated with $178 \mathrm{mg}(0.500 \mathrm{mmol})$ of $\mathbf{6 5}$. The reaction mixture was stirred vigorously at $23{ }^{\circ} \mathrm{C}$ for 22 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and subjected to a plug of SiO_{2}. Crude NMR showed 80% product, 15% byproduct ($\mathbf{6 7}$) and 5% decomposition of starting material. Crystallization from CHCl_{3} / hexane afforded $140 \mathrm{mg}(61 \%)$ of the title compound as yellow crystals.
$\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 1:1) resulted in a diminished yield, since the title compound is not stable on the column.
mp: decomposition at $135^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{26}=42.47\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~d}, J=$ $3.0,1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.7,1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (d, $J=2.7,1 \mathrm{H}), 7.61$ (dd, $J=2.1, J=8.7,1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.7,28.5,35.9,38.3,52.8,56.2,85.6,85.8,105.4,112.7,122.4$, $124.7,128.2,128.5,128.9,130.0,131.8,137.8,151.0,162.9,163.4$.
FTIR (thin film, cm^{-1}): 3009 (w), 2939 (w), 1785 (m), 1749 (s), 1512 (s), 1365 (s), 1294 (s), 1176 (s), 1110 (s), 1017 (m).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 481.0928$, found 481.0919.
ee: Both the flashed and crystallized compound were decarboxylated in a mixture of DMF:Aniline $=10: 1,\left(100^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ to the corresponding anilide: 89% (for both, Daicel Chiralpak

OD-H column $150 \times 4.6 \mathrm{~mm}$, hexane: $i-\operatorname{PrOH} 75: 25$, flow $0.5 \mathrm{ml} / \mathrm{min} . \mathrm{t}_{\mathrm{R}}$ (minor): $17.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major): 19.5 min . detector: 254 nm)

(S, Z)-5-(2-benzylidene-5-oxo-tetrahydrofuran-3-yl)-2-methoxyphenyl methanesulfonate (67)
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25}=40.66\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.76(\mathrm{dd}, J=8.1, J=15.9,1 \mathrm{H}), 3.01(\mathrm{dd}, J=6.9, J=15.9,1 \mathrm{H})$, $3.19(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.94(\mathrm{~m}, 4 \mathrm{H}), 5.92(\mathrm{~d}, J=4.2,1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.16(\mathrm{dd}, J=2.1, J=$ $8.7,1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.38-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $836.4,37.0,38.6,56.2,103.5,113.4,123.5,124.7,126.4,128.5$, 129.3, 131.9, 134.4, 138.4, 150.6, 151.0, 167.1.

FTIR (thin film, cm^{-1}): 3034 (w), 2934 (w), 1767 (s), 1512 (s$), 1365$ (s$), 1275$ (m), 1220 (s$)$, 1178 (s), 1108 (s), 1021 (m).
MS (HiResMALDI, pos.) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$397.0716, found 397.0711.

(S)-3-(4-methoxy-3-(methylsulfonyloxy)phenyl)-5-phenylpent-4-ynoic acid (114).

To $40.0 \mathrm{mg}(0.0870 \mathrm{mmol})$ (S)-(+)-5-(1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-phenylprop-2-ynyl)-2-methoxyphenylmethanesulfonate (66) in 1 ml DMF was added 0.40 mg NaOH in 0.100
$\mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution was heated in a vial for 1 h at $100^{\circ} \mathrm{C}$. After cooling to RT, the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with 1 M HCl solution. After phase separation, the aqu. phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. After evaporation of the DMF in HV 30.4 mg (93%) of the pure title compound was isolated as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 2}}=12.22\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.82(\mathrm{dd}, J=6.9, J=15.9,1 \mathrm{H}), 2.96(\mathrm{dd}, J=7.8, J=15.9,1 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ 7.44 ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.57,38.4,43.0,56.2,84.0,89.0,113.0,122.8,123.7,127.1$, 128.1, 128.2, 131.6, 133.3, 138.1, 150.5, 175.7.

FTIR (thin film, cm^{-1}): 3029 (w), 2931 (w), 2842 (w), 1712 (s), 1511 (s), 1365 (s), 1268 (m), 1220 (s), 1177 (s), 1109 (s$), 772$ (s).
MS (HiResMALDI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{6} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$397.0716, found 397.0724.

(S)-3-(3-hydroxy-4-methoxyphenyl)-5-phenylpent-4-ynoic acid (68).

To 75.0 mg (0.200 mmol) (S)-3-(4-methoxy-3-(methylsulfonyloxy)phenyl)-5-phenylpent-4-ynoic acid (114)in 1.0 ml MeOH was added $42.0 \mathrm{mg}(1.05 \mathrm{mmol}) \mathrm{NaOH}$ and $0.20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The solution was stirred at $50^{\circ} \mathrm{C}$ for 18 h . After cooling to $23^{\circ} \mathrm{C}$ the reaction was quenched with 1 M HCl and diluted with $\mathrm{Et}_{2} \mathrm{O}$. After phase separation, the aqu. phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to affored 50.0 mg (85%) of the title compound as beige oil.
$\left[\boldsymbol{\alpha}_{\mathrm{D}}{ }^{\mathbf{2 8}}=9.93\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.83(\mathrm{dd}, J=6.9, J=15.6,1 \mathrm{H}), 2.94(\mathrm{dd}, J=8.4, J=15.6,1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{t}, J=7.2,1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4,1 \mathrm{H}), 6.93(\mathrm{dd}, J=2.4, J=8.4,1 \mathrm{H}), 7.06(\mathrm{~d}, J$ $=2.1,1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.0,43.2,56.1,83.6,89.7,110.7,113.6,118.9,123.1,127.9$, 128.1, 131.6, 133.4, 145.6, 145.7, 176.7.

FTIR (thin film, cm^{-1}): 2962 (w), 1701 (s), 1509 (s$), 1270$ (m), 1219 (s), 1129 (w).
MS (HiResEI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}{ }^{+}\left(\mathrm{M}^{+}\right)$296.1044, found 296.1046.

Phenethyl 3-isopropyl-5-phenylpent-4-ynoate (62).

In a 25 mL round bottom flask was placed $0.83 \mathrm{~g}(2.76 \mathrm{mmol})$ of $\mathbf{2 9}$ and DMF (10 mL). To the solution was added phenethyl alcohol ($1.00 \mathrm{~mL}, 8.37 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to rt , diluted with water (10 mL) and poured into pentane (50 mL). The phases were separated, and the organic layer was washed with brine (20 mL). The solution was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was chromatographed (Hexane/EtOAc, $9 / 1, \mathrm{SiO}_{2}$) to give 843 mg (95%) of the title compound as pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~d}, J=6.5,3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 2.55$ $(\mathrm{m}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.9,2 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=7.0,2 \mathrm{H}), 7.21-7.39(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.99,21.11,31.19,35.03,35.60,38.04,64.90,83.05,89.61$, 123.47, 126.28, 127.43, 127.91, 128.22, 128.61, 131.37, 137.50, 171.42.

FTIR (neat) 2961 (m), 1736 (s$), 1598$ (w), 1490 (m), 1454 (m), 1256 (m), 1163 (m).
HRMS (EI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 320.1771$, found 320.1771.

2-Isopropyl-4-ox0-4-phenethoxybutanoic acid (63).

In a 50 mL round bottom flask were placed $62(160 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{MeCN}(10 \mathrm{~mL})$ and water (6 mL). To the solution were added Oxone ($1.54 \mathrm{~g}, 2.50 \mathrm{mmol}, 5.0$ equiv) and NaHCO_{3} (525 mg , $6.25 \mathrm{mmol}, 12.5$ equiv). The reaction mixture was stirred for 5 min . To the reaction mixture was added $\mathrm{RuCl}_{3}-3 \mathrm{H}_{2} \mathrm{O}(6.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv). The reaction mixture was stirred for 2 h . To the reaction mixture was added aqueous 1 N NaOCl solution ($2.0 \mathrm{~mL}, 2 \mathrm{mmol}, 4$ equiv). The reaction mixture was stirred for 15 h . The reaction mixture was acidified using $1 \mathrm{~N} \mathrm{HCl}(8 \mathrm{~mL})$ and extracted with EtOAc (30 mL). The layers were separated and the organic phase was washed with 10% aqueous $\mathrm{NaHSO}_{3}(10 \mathrm{~mL} \times 2)$ and with brine $(10 \mathrm{~mL})$. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was chromatographed (Hexane/EtOAc, $1 / 1, \mathrm{SiO}_{2}$) to give the title compound and small amount of benzoic acid. The residual benzoic acid was removed by sublimation (ABT $100^{\circ} \mathrm{C}, 2 \mathrm{mbar}$) for 2 h affording 107 mg (81%) of the title compound as clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8,3 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.38-$ $2.83(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=7.1,2 \mathrm{H}), 4.31(\mathrm{t}, J=7.1,2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 5$ $\mathrm{H}), 11.8$ ($\mathrm{s}, 1 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.36,20.05,29.87,32.48,34.98,47.13,65.17,126.37,128.30$, 128.70, 137.45, 172.06, 180.41.

FTIR (neat) 3684 (w), 3620 (w), 3020 (s), 2968 (m), 1732 (s), 1709 (s), 1604 (w), 1498 (w), 1467 (w), 1455 (w), 1424 (w), 1393 (w), 1374 (w), 1345 (w), 1218 (s), 1173 (m), 1047 (w), 1012 (w).

General procedure for the addition of acetylene to aliphatic aldehydes (GP2).

$182 \mathrm{mg}(0.500 \mathrm{mmol}) \mathrm{Zn}(\mathrm{OTf})_{2}$ and $98.0 \mathrm{mg}(0.550 \mathrm{mmol})(+)$ or $(-)-N$-methylephedrine were placed in a pressure tube under an argon atmosphere. Then 4.0 ml toluene, $0.096 \mathrm{ml}(0.550$ mmol) Hünigs base and 0.500 mmol aldehyde was added. After stirring for 2 h at $23^{\circ} \mathrm{C}$, The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and acetylene (see below) was bubbled through the solution for 10 min. The solution was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for the indicated amount of time and temperature. At $23{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqu. and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Concentration at reduced pressure (see below) and $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 9:1) afforded the propargylic alcohol.
-For volatile compounds the alcohol was directly protected as 4-Nitrobenzoate:
Concentration at 500 mbar and $40{ }^{\circ} \mathrm{C}$, then addition of 280 mg (1.50 mmol) 4Nitrobenzoylchloride and $0.200 \mathrm{ml}\left(1.44 \mathrm{mmol}^{2} \mathrm{NEt}_{3}\right.$ and a trace of DMAP. After stirring for 1 h at $23{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqu. and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration at reduced pressure and $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 9:1) afforded the pure protected propargylic alcohol.

Acetylene gas was purified as follows: first it was passed through a cooling trap at $-78^{\circ} \mathrm{C}$, then through a concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally through a trap filled with KOH pellets.

(R)-4-methylpent-1-yn-3-yl-4-nitrobenzoate (94).

Prepared according to GP 2 using 36 mg (0.50 mmol) isobutyraldehyde and (+)-NME. Stirring at $23^{\circ} \mathrm{C}$ for 16 h . Protection as nitrobenzoate and purification by FC furnished $110 \mathrm{mg}(88 \%)$ of the title compound as oil.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 8}}=-1.9\left(\mathrm{c}=0.195, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12(\mathrm{t}, J=9.0,1 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=2.1,1 \mathrm{H})$, $5.47(\mathrm{dd}, J=2.1, J=9.0,1 \mathrm{H}), 8.26-8.32(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,18.2,32.5,70.3,74.9,79.2,123.5,130.8,135.2,150.5$, 163.5.

FTIR (KBr, cm^{-1}): 3293 (w), 2923 (s), 1729 (m), $1530(\mathrm{~m}), 1264$ (m), 1220 (s$), 1100(\mathrm{~m})$.
MS (ESI, pos.) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}{ }^{+}\left(\mathrm{M}^{+}\right) 247.08$, found 247.0
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 63.15; H, 5.30. Found: C, 63.00; H, 5.36.
ee: 95% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: $i-\mathrm{PrOH} 98: 2$, flow: $1.0 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}$ (minor): $17.11 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (mayor): 19.08 min . detector: 254 nm).

(S)-5,5-dimethylhex-1-yn-3-yl-4-nitrobenzoate (97).

Prepared according to GP 2 using $0.063 \mathrm{ml}(0.50 \mathrm{mmol})$ 3-methylbutanal and (-)-NME. Stirring at $50^{\circ} \mathrm{C}$ for 20 h . Protection as nitrobenzoate and purification by FC furnished $93 \mathrm{mg}(68 \%)$ of the title compound as a white solid.
mp: $56-57^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{30}=-31.8\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.92(\mathrm{dd}, J=5.4, J=14.4,1 \mathrm{H}), 2.02(\mathrm{dd}, J=5.4, J=$ $14.4,1 \mathrm{H}), 2.53(\mathrm{~d}, J=2.1,1 \mathrm{H}), 5.66-5.71(\mathrm{~m}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=9.3,2 \mathrm{H}), 8.30(\mathrm{~d}, J=9.3,2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 29.9,30.4,48.3,63.4,74.2,81.8,123.5,130.8,135.1,150.5$, 163.5.

FTIR (KBr, cm^{-1}): 3293 (w), 2959 (m), 1728 (s$), 1529$ (s), 1343 (m), 1278 (s$), 1101$ (s).
MS (EI, pos.) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$276.1, found 276.1.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 65.44; H, 6.22. Found: C, $65.28 ; \mathrm{H}, 6.25$.
ee: 95% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 99.5:0.5, flow: 0.5 $\mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (minor): $31.55 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (mayor): 35.19 min . detector: 254 nm).

(R)-1-cyclohexylprop-2-ynyl-4-nitrobenzoate (96).

Prepared according to GP 2 using $0.063 \mathrm{ml}(0.50 \mathrm{mmol})$ cyclohexylcarboxaldehyde and (-)-NME. Stirring at $50^{\circ} \mathrm{C}$ for 11 h . Protection as nitrobenzoate and purification by FC furnished 107 mg (75%) of the title compound as a white solid.
mp: $86-87^{\circ} \mathrm{C}$.
$[\alpha]_{D}{ }^{29}=-26.5\left(\mathrm{c}=0.28, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.98(\mathrm{~m}, 6 \mathrm{H}), 2.52(\mathrm{~d}, J=2.1,1 \mathrm{H}), 5.45-$ $5.46(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.31(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.7,25.8,26.2,28.2,28.6,41.8,69.6,75.0,79.5,123.5,130.8$, 135.2, 150.5, 163.5.

FTIR (KBr, cm^{-1}): 3294 (w), 2930 (m), 2856 (m), 1728 (m), 1529 (m), 1265 (m), 1220 (s$), 1100$ (m).

MS (EI, pos.) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}{ }^{+}\left(\mathrm{M}^{+}\right)$287.12, found 287.2
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 66.89; H, 5.96. Found: C, 66.94; H, 6.22.
ee: 91% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: $i-\operatorname{PrOH} 92: 8$, flow: $0.5 \mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (mayor): $21.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor): 25.6 min . detector: 254 nm).

(S)-4,4-dimethylpent-1-yn-3-yl-4-nitrobenzoate (95).

Prepared according to GP 2 using $0.054 \mathrm{ml}(0.50 \mathrm{mmol})$ pivaldehyde and (-)-NME. Stirring at $50{ }^{\circ} \mathrm{C}$ for 19 h . Protection as nitrobenzoate and purification by FC furnished $113 \mathrm{mg}(86 \%)$ of the title compound as a white solid.
mp: $72-73{ }^{\circ} \mathrm{C}$.
$[\alpha]_{D}{ }^{28}=-35.3\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(\mathrm{~s}, 9 \mathrm{H}), 2.49(\mathrm{~d}, J=2.1,1 \mathrm{H}), 5.34(\mathrm{~d}, J=2.1,1 \mathrm{H}), 8.23(\mathrm{~d}, J$ $=9.0,2 \mathrm{H}), 8.31(\mathrm{~d}, J=9.0,2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.7,35.4,73.2,74.9,79.2,123.5,130.8,135.2,150.5,163.5$.
FTIR (KBr, cm^{-1}): 3294 (w), 2972 (m), 17 (m), 1530 (m), 1267 (m), 1220 (s$), 1101$ (m).
MS (EI, pos.) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$262.1, found 246.1.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 64.36; H, 5.79. Found: C, 64.41; H, 5.86.
ee: 89% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: $i-\operatorname{PrOH} 92: 8$, flow: $1.0 \mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (minor): $15.58 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (mayor): 18.88 min . detector: 254 nm).

(S)-5-methylhex-1-yn-3-yl-4-nitrobenzoate (98).

Prepared according to GP 2 using $0.063 \mathrm{ml}(0.50 \mathrm{mmol})$ 3-methylbutanal and (-)-NME. Stirring at $50^{\circ} \mathrm{C}$ for 20 h . Protection as nitrobenzoate and purification by FC furnished $93 \mathrm{mg}(71 \%)$ of the title compound as oil.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{30}=-3.1\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~d}, J=6.0,6 \mathrm{H}), 1.79-1.95(\mathrm{~m}, 3 \mathrm{H}), 2.53(\mathrm{~d}, J=1.8,1 \mathrm{H})$, $5.66(\mathrm{dt}, J=2.1, J=6.9,1 \mathrm{H}), 8.22-8.32(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 22.5,22.6,24.9,43.4,64.3,74.4,80.7,123.5,130.8,135.1$, 150.5, 163.5 .

FTIR (KBr, cm^{-1}): 3293 (w), 2959 (m), 2925 (m), 1729 (m), 1529 (m), 1270 (m), 1220 (s$), 1100$ (m).

MS (EI, pos.) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$262.1, found 262.1
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 64.36; H, 5.79. Found: C, 64.28; H, 5.89.
ee: 95% (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: i-PrOH 99.5:0.5, flow: 0.5 $\mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (mayor): $32.84 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor): 35.76 min . detector: 254 nm).

(S)-1-(triisopropylsilyloxy)but-3-yn-2-ol (99).

Prepared according to GP 2 using $107 \mathrm{mg}(0.50 \mathrm{mmol})$ 2-(triisopropylsilyloxy)acetaldehyde and (+)-NME. Stirring at $50{ }^{\circ} \mathrm{C}$ for 20 h . Purification by FC furnished $86 \mathrm{mg}(70 \%)$ of the title compound as oil.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{27}=10.4\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01-1.25(\mathrm{~m}, 21 \mathrm{H}), 2.53(\mathrm{~d}, J=2.1,1 \mathrm{H}), 4.06-4.08(\mathrm{~m}, 2 \mathrm{H})$, 5.75-5.79 (m, 1H), 8.23-8.32 (m, 4H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0,18.0,65.2,66.3,75.2,78.2,123.5,130.8,135.1,150.5$, 163.6.

FTIR (KBr, cm ${ }^{-1}$): 3307 (w), 2924 (s), 2867 (m), 1735 (m), 1531 (m), 1268 (m), 1220 (s), 1100 (m).

MS (ESI, pos.) calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SiNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 430.21$, found 430.1
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}$: C, 61.88; H, 8.16. Found: C, 61.94; H, 8.22.
ee: 91% (Daicel Chiracel AD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: i - $\mathrm{PrOH} 99.5: 0.5$, flow: 0.5 $\mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}$ (mayor): $15.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor): 18.5 min . detector: 254 nm).

1-cyclohexylprop-2-ynyl-4-nitrobenzoate (96, racemic version).

To $66 \mathrm{mg}(0.55 \mathrm{mmol})$ potassium-tert-butoxide with or without $98.0 \mathrm{mg}(0.550 \mathrm{mmol})(+)-\mathrm{N}-$ methylephedrine a pressure tube under an argon atmosphere was added 4 ml toluene and 0.063 $\mathrm{ml}(0.50 \mathrm{mmol})$ cyclohexylcarboxaldehyde. The solution was cooled to $-78^{\circ} \mathrm{C}$ and acetylene was bubbled through the solution for 10 min . The solution was heated to $50^{\circ} \mathrm{C}$ and stirred for 18 h or 14 h . At $23{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqu. and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Concentration at 500 mbar and $40{ }^{\circ} \mathrm{C}$, then addition of $280 \mathrm{mg}(1.50 \mathrm{mmol}) 4-$ Nitrobenzoylchloride and $0.200 \mathrm{ml}\left(1.44 \mathrm{mmol}^{2} \mathrm{NEt}_{3}\right.$ and a trace of DMAP. After stirring for 1 h at $23{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqu. and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration at reduced pressure and $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 9:1) afforded $31 \mathrm{mg}(45 \%$, reaction without (+)-NME) or $46 \mathrm{mg}(67 \%$, reaction with $(+)-\mathrm{NME})$ of the title compound as a white solid.

All spectroscopic data was in agreement with the data reported earlier (page 168).

(Z)-but-2-ene-1,4-diyl diacetates (104).

(Z)-but-2-ene-1,4-diol was distilled before used (bp. $17 \mathrm{mbar}, 136{ }^{\circ} \mathrm{C}$). To a solution of 30.0 g (378 mmol) (Z)-but-2-ene-1,4-diol in $500 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $100 \mathrm{ml}\left(900 \mathrm{mmol}^{2}\right.$) NEt_{3} and $1.00 \mathrm{~g}(8.0 \mathrm{mmol})$ DMAP. After the solution was cooled to $0{ }^{\circ} \mathrm{C}, 90.0 \mathrm{ml}(900 \mathrm{mmol}) \mathrm{Ac}_{2} \mathrm{O}$ was added. The reaction was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and additional $20.0 \mathrm{ml}\left(142 \mathrm{mmol}^{\circ} \mathrm{NEt}_{3}\right.$ was added. After stirring for 14 h , the reaction was quenched with 1 M HCl and diluted with EtOAc.

After phase separation the aqueous phase was extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound as a colorless liquid.
All spectroscopic data was in agreement with the data reported in the literature. ${ }^{169}$

(Z)-but-2-ene-1,4-diyl dimethyl dicarbonates (105).

(Z)-but-2-ene-1,4-diol was distilled before used (bp. $17 \mathrm{mbar}, 136{ }^{\circ} \mathrm{C}$). To a solution of 3.00 g (38.0 mmol) (Z)-but-2-ene-1,4-diol in20 ml THF was added $9.2 \mathrm{ml}(114 \mathrm{mmol})$ pyridine. After the solution was cooled to $0^{\circ} \mathrm{C}, 7.0 \mathrm{ml}(91.0 \mathrm{mmol})$ chloroformic acid methyl ester in 40 ml THF was added. The reaction was allowed to warm to $23^{\circ} \mathrm{C}$. After stirring for 20 h , the reaction was quenched with 1 M HCl and diluted with EtOAc. After phase separation the aqueous phase was extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound as a colorless liquid.
All spectroscopic data was in agreement with the data reported in the literature. ${ }^{170}$

General procedure for the attempted allylic alkylation employing oxalic acid, disodium salt of oxalic acid or glyoxylic acid sodium salt monohydrate as nucleophils:
To $20.0 \mathrm{mg}(0.019 \mathrm{mmol}) \mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}$ and $24.0 \mathrm{mg}(0.39 \mathrm{mmol}) \mathrm{PPh}_{3}$ in 1 ml solvent (THF, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added 0.79 mmol (Z)-but-2-ene-1,4-diyl diacetates or (Z)-but-2-ene-1,4diyl dimethyl dicarbonates under an argon atmosphere. After stirring for 18 h at $23{ }^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$ the crude reaction mixture was filtered over a SiO_{2} plug and concentrated. Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed no product.

[^60]

3-oxo-2,4,3-dioxathepin (106).

To a solution of $1.00 \mathrm{~g}(11.3 \mathrm{mmol})(\mathrm{Z})$-2-butene-1,4-diol in $180 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2.23 g $(18.5 \mathrm{mmol})$ benzotriazole and $1.37 \mathrm{ml}(18.5 \mathrm{mmol}) \mathrm{SOCl}_{2}$. The solution was stirred for 30 min . and then filtered and concentrated. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 4:1) afforded $1.08 \mathrm{~g}(71 \%)$ of the title compound as a colorless liquid. For bigger scale reactions the product was distilled $\left(95^{\circ} \mathrm{C}\right.$, 12 Torr).
All spectroscopic data was in agreement with the data reported in the literature. ${ }^{171}$

4-vinyl(1,3,3)dioxathiolane-2-oxide (107).

To $100 \mathrm{mg}(1.1 \mathrm{mmol})(S)$-3-butene-1,2-diol (100) in $15 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 133 mg (1.1 $\mathrm{mmol})$ benzotriazole and $0.081 \mathrm{ml}(1.1 \mathrm{mmol}) \mathrm{SOCl}_{2}$. The solution was stirred for 1 h and then filtered over celite and concentrated to afford $80 \mathrm{mg}(0.60 \mathrm{mmol})$ of the title compound as oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.02(\mathrm{dd}, J=6.9, J=8.4,1 \mathrm{H}), 4.38(\mathrm{t}, J=9.0,1 \mathrm{H}), 4.55(\mathrm{dd}, J=$ $6.3, J=8.7,1 \mathrm{H}), 4.75(\mathrm{dd}, J=6.3, J=8.4,1 \mathrm{H}), 5.36-5.49, \mathrm{~m}, 4 \mathrm{H}), 5.76-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.93-6.05$ (m, 1H).
${ }^{13}$ C NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 69.6,71.5,80.6,84.5,121.6,122.3,131.0,132.3$.

[^61]

3-butene-1,2-diol (100).

To 24 mg (0.011 mmol) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ and $55 \mathrm{mg}(55 \mathrm{mmol}) \mathrm{PPh}_{3}$ in 2 ml THF was added $200 \mathrm{mg}(1.50 \mathrm{mmol}) 3$-oxo-2,4,3-dioxathepin (106) in 2 ml THF. Stirring for 150 min . at $23{ }^{\circ} \mathrm{C}$. Filtration over a short plug of SiO_{2} and concentration. Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed full conversion. Then the crude was dissolved in 2 ml EtOAc followed by the addition of 88 mg (2.2 mmol) NaOH in $0.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The resulting suspension was stirred for 2 h at $23^{\circ} \mathrm{C}$. Addition of 1 M HCl till pH 1 and extraction with EtOAc (6 times). The combined organic layers were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound as oil. All spectroscopic data was in agreement with the data reported in the literature. ${ }^{127}$

General procedure for 3-butene-1,2-diol employing a ligand

$12 \mathrm{mg}(0.011 \mathrm{mmol}) \mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ and 0.033 mmol ligand were placed in a schlenk flask under an argon atmosphere. Addition of 1 ml THF and stirring at $23^{\circ} \mathrm{C}$ for 1 h . Then 100 mg (0.75 mmol) 3-oxo-2,4,3-dioxathepin (106) in 1 ml THF was added. Stirring at either $23^{\circ} \mathrm{C}$ or, if no conversion could be obtained by TLC, at $70^{\circ} \mathrm{C}$ for the indicated amount of time. Filtration over a short plug of SiO_{2} and concentration. The conversion was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Then the crude was dissolved in 2 ml EtOAc followed by the addition of $88 \mathrm{mg}(2.2 \mathrm{mmol}) \mathrm{NaOH}$ in 0.5 $\mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The resulting suspension was stirred for 2 h at $23^{\circ} \mathrm{C}$. Addition of 1 M HCl till pH 1 and extraction with EtOAc (6 times). The combined organic layers were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure to afforded the title compound as oil. All spectroscopic data was in agreement with the data reported in the literature. ${ }^{127}$ For measurement of the ee by chiral HPLC the diol was monoprotected with 4nitrobenzoylchloride (1.1eq.) and 4-DMAP (1.1eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude was directly subjected to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 2:1) to afford the monoprotected alcohol.
Determination of ee: (Daicel Chiracel OD-H column $250 \times 4.6 \mathrm{~mm}$, hexane: i - $\mathrm{PrOH} 90: 10$, flow: $0.7 \mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}} 16.11 \mathrm{~min}$, and 19.7 min . detector: 254 nm).

Procedure for a $\mathbf{P d}(I I)$ source

$(0.038 \mathrm{mmol}) \mathrm{Pd}(\mathrm{II})$ were placed in a schlenk flask under an argon atmosphere. Addition of 1 ml THF and stirring at $23{ }^{\circ} \mathrm{C}$ for 2 h . Then $100 \mathrm{mg}(0.75 \mathrm{mmol})$ 3-oxo-2,4,3-dioxathepin (106) in 1 ml THF was added. Stirring at $60{ }^{\circ} \mathrm{C}$ for 14 h . Filtration over a short plug of SiO_{2} and concentration. The conversion was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Then the crude was dissolved in 2 ml EtOAc followed by the addition of $88 \mathrm{mg}(2.2 \mathrm{mmol}) \mathrm{NaOH}$ in $0.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The resulting suspension was stirred for 2 h at $23^{\circ} \mathrm{C}$. Addition of 1 M HCl till pH 1 and extraction with EtOAc (6 times). The combined organic layers were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure to afforded the title compound as oil.
${ }^{1} \mathrm{H}$ NMR for crude 4 -vinyl($1,3,3$)dioxathiolane-2-oxide ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.40(\mathrm{q}, J=9.0$, $1 \mathrm{H}), 4.55(\mathrm{dd}, J=6.6, J=9.0,1 \mathrm{H}), 4.85-4.93(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.93-6.04(\mathrm{~m}, 1 \mathrm{H})$.
All spectroscopic data was in agreement with the data reported in the literature. ${ }^{127}$

5.1 Crystallographic Data

(R, P)-[4-(2-Diphenylphosphanyl-7-methoxynaphthalen-1-yl)phthalazin-1-ylamino]phenylmethyl\}pentan-3-ol (48a).

Comment

The study of the titled structure was undertaken to establish its three dimensional structure. Geometries are tabulated below. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft \& MacScience, Japan).

Experimental

Crystal data

```
C}\mp@subsup{\textrm{C}}{207}{}\mp@subsup{\textrm{H}}{200}{}\mp@subsup{\textrm{N}}{12}{}\mp@subsup{\textrm{O}}{8}{}\mp@subsup{\textrm{P}}{4}{
    C207 H200 N}\mp@subsup{\textrm{N}}{12}{}\mp@subsup{\textrm{O}}{8}{}\mp@subsup{\textrm{P}}{4}{
    M
    Monoclinic P2 
    a=16.74110 (10)\AA
    b}=28.5619(3)
    c=19.5010(2)\AA
    \alpha=90.00
    \beta=111.9746 (5)}\mp@subsup{}{}{\circ
    \gamma=90.00
    V = 8647.12(14) \AA \
    Z=2
D
    Density measured by: not measured
    fine-focus sealed tube
    Mo K\alpha radiation }\lambda=0.7107
    Cell parameters from 14681 refl.
    0=0.998-25.028 *
    \mu=0.107 mm
    T=150 K
    plate
    0.26 x 0.14 x 0.06 mm
    Colourless
    Crystal source: Carreira laboratory
Data collection
KappaCCD CCD diffractometer
    Absorption correction: none
    27441 measured reflections
    27420 independent reflections
    23271 observed reflections
Criterion: >2sigma(I)
    0max =25.02 }\mp@subsup{}{}{\circ
h = -19 ->19
k=-33->32
l=-23 }->2
```


Refinement

Refinement on F^{2}
Full-matrix least squares refinement with fixed elements per cyclematrix least squares refinement
$\mathrm{R}($ all $)=0.0880$
$\mathrm{R}(\mathrm{gt})=0.0718$
$w R($ ref $)=0.2003$
$w R(g t)=0.1850$
$\mathrm{S}(\mathrm{ref})=1.406$

27420 reflections
1925 parameters
1 restraints
H positions constr
Calculated weights $1 /\left[\sigma^{2}\left(\mathrm{I}_{0}\right)+\left(\mathrm{I}_{0}+\mathrm{I}_{\mathrm{c}}\right)^{2} / 900\right]$
$\Delta / \sigma_{\text {max }}=0.030$
$\Delta \rho_{\max }=0.822 \mathrm{e}^{3}$
$\Delta \rho_{\text {min }}=-0.421 \mathrm{e}^{3}$
Extinction correction: none
Atomic scattering factors from International Tables Vol C Tables 4.2.6.8 and 6.1.1.4
Flack parameter $=-0.01(8)$
Flack H D (1983), Acta Cryst. A39, 876-881
Data collection: KappaCCD
Cell refinement: HKL Scalepack (Otwinowski \& Minor 1997)
Data reduction: Denzo and Scalepak (Otwinowski \& Minor, 1997)
Program(s) used to solve structure: SIR97(Cascarano al.,Acta Cryst.,1996,A52,C-79)
Program(s) used to refine structure: SHELXL-97 (Sheldrick, 1997)
CCDC 268030 contains the supplementary crystallographic data, which can be obtained online free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21 EZ, U.K.; Fax (+44) 1223-336-033; or deposit@cccd.cam.ac.uk).

(S)-N-(4-bromophenyl)-3-cyclohexyl-5-phenylpent-4-ynamide (55).

Comment

The study of the titled structure was undertaken to establish its three dimensional structure. Geometries are tabulated below. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft \& MacScience, Japan).

```
Experimental
Crystal data
C}\mp@subsup{\textrm{C}}{23}{}\mp@subsup{\textrm{H}}{24}{}\textrm{BrNO
    C}\mp@subsup{\textrm{C}}{23}{}\mp@subsup{\textrm{H}}{24}{}\textrm{BrNO
    M
    Triclinic
    P1
    a=4.8551 (2)\AA
    b}=13.3330(5)
    c=15.6798(8)\AA
    \alpha=97.241 (2)
    \beta=96.070 (2)}\mp@subsup{}{}{\circ
    \gamma=95.031 (2)}\mp@subsup{}{}{\circ
    V = 996.00(8)\AA ^
Z=2
D
Density measured by: not measured
fine-focus sealed tube
    Mo K\alpha radiation }\lambda=0.7107
Cell parameters from 3457 refl.
0=2.910-25.350}\mp@subsup{}{}{\circ
\mu=2.075 mm-1
T=150 K
needle
0.32 x 0.04 x 0.03 mm
Colourless
Crystal source: Carreira group
```


Data collection

```
KappaCCD CCD diffractometer
Absorption correction: none
6738 measured reflections
6738 independent reflections
5390 observed reflections
Criterion: \(>2 \operatorname{sigma}(\mathrm{I})\)
\(\theta_{\text {max }}=25.33^{\circ}\)
\(\mathrm{h}=-5 \rightarrow 5\)
\(\mathrm{k}=-15 \rightarrow 15\)
\(1=-18 \rightarrow 18\)
```


Refinement

Refinement on F^{2}
fullmatrix least squares refinement
$\mathrm{R}(\mathrm{all})=0.1272$
$R(g t)=0.1008$
$\mathrm{wR}(\mathrm{ref})=0.2713$
$\mathrm{wR}(\mathrm{gt})=0.2500$
$\mathrm{S}(\mathrm{ref})=1.743$
6738 reflections
418 parameters
3 restraints
H -atom parameters not refined
Calculated weights $1 /\left[\sigma^{2}\left(\mathrm{I}_{\mathrm{o}}\right)+\left(\mathrm{I}_{0}+\mathrm{I}_{\mathrm{c}}\right)^{2} / 900\right]$
$\Delta / \sigma_{\max }=0.014$
$\Delta \rho_{\text {max }}=3.163 \mathrm{e}^{\AA^{3}}$
$\Delta \rho_{\min }=-0.824 \mathrm{e} \AA^{3}$
Extinction correction: none
Atomic scattering factors from International Tables Vol C Tables 4.2.6.8 and 6.1.1.4
Flack parameter $=0.04(2)$
Flack H D (1983), Acta Cryst. A39, 876-881
Data collection: KappaCCD
Cell refinement: HKL Scalepack (Otwinowski \& Minor 1997)
Data reduction: Denzo and Scalepak (Otwinowski \& Minor, 1997)
Program(s) used to solve structure: SIR97(Cascarano al.,Acta Cryst.,1996,A52,C-79)
Program(s) used to refine structure: SHELXL-97 (Sheldrick, 1997)
CCDC 268029 contains the supplementary crystallographic data, which can be obtained online free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21 EZ, U.K.; Fax (+44) 1223-336-033; or deposit@cccd.cam.ac.uk).

Curriculum Vitae

Born July 10, 1976 in Schaffhausen to Renato and Annemarie Zarotti

1983-1989	Primary School in Hallau, Schaffhausen
1989-1991	"Sekundarschule" in Hallau, Schaffhausen
1991-1996	High School in Schaffhausen, Schaffhausen
1996-2001	Studies at the ETH Zürich (Eidg. Dipl. Natw.): "Chemisch-biologische Studienrichtung mit Vertiefung in Chemie."
1999	Undergraduate internship in the group of Prof. Dr. A. Vasella
2000	Diploma thesis in the group of Prof. Dr. E. M. Carreira, under the supervision of T. Ritter at the ETH Zürich: "Studies Directed Towards the Total Synthesis of Resiniferatoxin"
2001-2006	Ph.D. thesis under the supervision of Prof. Dr. E. M. Carreira at the ETH Zürich: "Investigations of Ligands for Cu-Catalyzed Conjugate Addition Reactions"

- Supervision of a "SiROP"-student
- Teaching assistant for organic-chemistry laboratory courses as well as assistant for chemistry exercises.

Zürich, April 2006
Pablo Zarotti

$05 / 84 / 4515: 17$ eins
$\times: 16$ scens, $4.0 \mathrm{~cm}-1$

05/64/15 15:31 zwe
$\mathrm{X}: 16$ scans, $4.0 \mathrm{~cm}-1$

05/02/14 16:02 pabloligand 4--
X: 15 scans, $4.0 \mathrm{~cm}^{-1}$

05/03/23 15:19 pablo
$\mathrm{x}: 16$ scans, $4.0 \mathrm{~cm}-1$, flat

x : 16 scane, $4.0 \mathrm{~cm}-1$

$05 / 02 / 14$ t5:09 pabloligand4---
$X: 16$ scans, 4.0 . 8 m -1 flat

$05 / 03 / 2114: 59$ pablo
$\mathrm{x}: 16$ scans, $4.0 \mathrm{~cm}-1$, flat

05/08/08 12:52 pablems 1
$\mathrm{X}: 16$ scans, $4.0 \mathrm{~cm}^{-1}$

$05 / 08,0813: 00$ pablons 2
$X: 16$ scans, $4.0 \mathrm{em}-1$

05/12/16 13:06 andrew ${ }^{2}$
$x_{:} 16$ scans, $4.0 \mathrm{~cm}^{-1}$ flat

06/01/17 16:50 cs-367

$05 / 10 / 31$ 13:41 pablopoxide
$x: 16$ scans, $4.0 \mathrm{~m}-1$, flat

05/12/08 $16: 37$ mesgoodlig
$\mathrm{x}: 16$ scans, $4.0 \mathrm{~cm}^{-1}$

$05 / 03 / 15$ 16:17 ezarot
$\mathrm{X}: 16$ scans, $4.0 \mathrm{sm}-1$

${ }^{130}$ coseave

05/03/1E 12:37 ezarot
X: 16 scans, $4.0 \mathrm{~cm}-1$

05/12/35 12:53 pablorr9.11.c
त: 16 scans, $4.0 \mathrm{~cm}-1$

$06 / 11 / 2416: 21 \mathrm{jc}-215$
$\mathrm{x}: 16$ scans, $4.0 \mathrm{~cm}-1$, flat

OMe \qquad
Stanoaro in mbsheave
File motan

$x_{i} 16$ scans, $4.0 \mathrm{Cm} \mathrm{m}^{-1}$

X: 16 scans, $4.0 \mathrm{Ocm}-1$, flat

06/01/42 13:57 sf-ii-125
$x: 16$ scans, $4.0 \mathrm{~cm}-1$

03/07/10 14:04 PABLO 157
: 16 scans, $4.0 \mathrm{~cm}-1$

03/07/10 13:52 PABLO 171
$\mathrm{x}: 16$ scans, $4.0 \mathrm{cm-1}$

03/07/10 13:48 PAELO 174
$x: 16$ scans, $4,0 \mathrm{~cm}-1$

TIPSO $\overbrace{\mathrm{H}}^{\stackrel{\mathrm{OH}}{\mathrm{H}}}$

O3/07/10 14: 10 PAELD 12.1
$x: 16$ scans, $4.0 \mathrm{cm-1}$
$x: 16$ scans, $4.0 \mathrm{~cm}-1$

[^0]: ${ }^{1}$ Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis, Pergamon: Oxford, 1992
 ${ }^{2}$ Reviews: (a) Kanai, M.; Shibasaki, M. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 569-592. (b) Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. In Modern Organocopper Chemistry, Krause, N., Ed.; Wiley-VCH: Weinheim, 2002, pp 224-258. (c) Sibi, M. P.; Manyem, S. Tetrahedron, 2000, 56, 8033.
 ${ }^{3}$ Wipf, P.; Smitrovich, J. H.; Moon, C. W. J. Org. Chem. 1992, 57, 3178.

[^1]: ${ }^{4}$ Maruoka, K.; Shimada, I.; Imoto, H.; Yamamoto, H. Synlett, 1994, 7, 519.
 ${ }^{5}$ Tietze, L. F.; Eicher, T. Reaktionen und Synhesen im organisch-chemischen Praktikum. Thieme: Stuttgart; 1981

[^2]: ${ }^{6}$ (a) Xiang, J. N.; Karpinski, J. M.; Christensen, S. B., IV. Int. Appl. PCT, WO 0009116, 2000. (b) Xiang, J. N.; Osifo, I. K.; Karpinski, J. M.; Christensen, S. B., IV. Int. Appl. PCT, WO 0009115,2000 . (c) Christensen, S. B., IV; Karpinski, J. M.; Frazee, J. S. Int. Appl. PCT, WO 9703945, 1997.
 ${ }^{7}$ Kruse, L. I.; Kaiser, W. E. D.; Chambers, P. A.; Goodhart, P. J.; Ezekiel, M.; Ohlstein. J. Med. Chem. 1988, 31, 704.

[^3]: ${ }^{8}$ Hooz, J.; Layton, R. B. J. Am. Chem. Soc. 1971, 93, 7320.
 ${ }^{9}$ Pappo, R.; Collins, P. W. Tetrahedron Lett. 1972, 13, 2627.
 ${ }^{10}$ Sunggak, K.; Park, J. H. Synlett 1995, 163.

[^4]: ${ }^{11}$ Pappo, R.; Collins, P.W. Tetrahedron Lett. 1972, 13, 2627.
 ${ }^{12}$ Sinclair, J. A.; Molander, G. A.; Brown, H. C. J. Am. Chem. Soc. 1977, 99, 954.
 ${ }^{13}$ Takada, E.; Hara, S.; Suzuki, A. Heteroatom Chemistry, 1992, 3, 483.
 ${ }^{14}$ Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422.
 ${ }^{15}$ Blake, D.; Calvin, G.; Coates, G. E. Proc. Chem. Soc. 1959, 396.

[^5]: ${ }^{16} \mathrm{TMSCl}$ is known to greatly accelerate the conjugate addition of dialkylorganocuprates to enones and enals, see: (a) Chuit, C.; Foulon, J. P.; Normant, J. F. Tetrahedron 1980, 36, 2305. (b) Chuit, C.; Foulon, J. P.; Normant, J. F. Tetrahedron 1981, 37, 1385. (c) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015. (d) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6019. (e) Matsuzawa, S.; Horiguchi, Y.; Nakamura, E.; Kuwajima, I. Tetrahedron 1989, 45, 349. (f) Johnson, C. R.; Marren, T. J. Tetrahedron Lett. 1987, 28, 27. (g) Bergdahl, M.; Eriksson, M.; Nilsson, M.; Olsson, T. J. Org. Chem. 1993, 58, 7238. (h) Eriksson, M.; Iliefski, T.; Nilsson, M.; Olsson, T. J. Org. Chem. 1997, 62, 182.(i) Kim, S.; Park, J. H.; Jon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 783.
 ${ }^{17}$ Daia, D. E.; Gabbutt, C., D.; Heron, B. M.; Hepworth, J. D.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron Lett. 2003, 44, 1461.

[^6]: ${ }^{18}$ Knöpfel, T. F.; Carreira, E. M. J. Am. Chem. Soc. 2003, 125, 6054.
 ${ }^{19}$ Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
 ${ }^{20} \mathrm{Kim}, \mathrm{S}$.; Lee, J. M. Tetrahedron Lett. 1990, 31, 7627.

[^7]: ${ }^{21}$ Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999, 121, 11245.

[^8]: ${ }^{22}$ Chen, L.; Li, C.- J. Chem. Commun. 2004, 20, 2362.
 ${ }^{23}$ (a) Kovalev, I. P.; Nikishin, G. I. Tetrahedron Lett. 1990, 31, 7063. (b) Lerum, R. V.; Chisholm, J. D. Tetrahedron Lett. 2004, 45, 6591.
 ${ }^{24}$ Chang, S.; Na, Y.; Choi, E.; Kim, S. Org. Lett. 2001, 3, 2089.
 ${ }^{25}$ Nishimura, T.; Washitake, Y.; Nishiguchi, Y.; Maeda, Y.; Uemura, S. Chem. Commun. 2004, 11, 1312.

[^9]: ${ }^{26}$ Chong, J. M.; Shen, L.; Taylor, N. J. J. Am. Chem. Soc. 2000, 122, 1822.
 ${ }^{27}$ Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005, 127, 3244.
 ${ }^{28}$ Kwak, Y. S.; Corey, E. J. Org. Lett. 2004, 6, 3385

[^10]: ${ }^{29}$ (a) Fache, F.; Schulz, E.; Tammasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159. (b) Tonks, L.; Williams, J. M. J. Contemp. Org. Synth. 1997, 4, 353. (c) Togni, A.; Veneziani, L. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 497 ${ }^{30}$ (a) Espinet, P.; Soulantica, K. Coord. Chem. Rev. 1999, 193-195, 499. (b) Molina, P:; Arques, A.; Garcia, A.; Ramriez de Arellano, M. C. Eur. J. Inorg. Chem. 1988, 1359. (c) P. J. Guiry, C. P. Saunders, Adv. Synth. Cat. 2004, 346, 497. (d) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. (e) For a review about P,N-ligands with a pyridine as N-donor see: Chelucci, G.; Orru, G.; Pinna, G. A.; Tetrahedron 2003, 59, 9471.
 ${ }^{31}$ Alock, N. W.; Brown, J. M.;. Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4, 743.
 ${ }^{32}$ Doucet, H.; Fernandez, E.; Layzell, T. P.; Brown, J. M. Chem. Eur. J. 1999, 5, 1320.
 ${ }^{33}$ Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.
 ${ }_{35}^{34}$ Brown, J. M.; Hulmes, D. I.; Guiry, P. J. Tetrahedron 1994, 50, 4493.
 ${ }^{35}$ Faller, J. W.; Grimmond, B. J. Organometallics 2001, 20, 2454.
 ${ }^{36}$ Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702.
 ${ }^{37} 100 \mathrm{mg}(S)$-or (R)-QUINAP cost 306 CHF (Acros).
 ${ }^{38}$ Copéret, C.; Adolfsson, H.; Khuong, T-A. V.; Yudin, A. K.; Sharpless, K. B. J. Org. Chem. 1998, 63, 1740.

[^11]: ${ }^{40}$ Doucet, H.; Brown, J. M. Tetrahedron: Asymmetry 1997, 8, 3775.
 ${ }^{41}$ Valk, J. M.; Claridge, T. D. W.; Brown, J. M.; Hibbs, D.; Hursthouse, M. B. Tetrahedron: Asymmetry 1995, 6, 2597.
 ${ }^{42}$ Connolly, D.J.; Lacey, P. M.; McCarthy, M.; Saunders, C. P.; Carroll, A.-M.; Goddard, R.; Guiry, P. J. J. Org. Chem. 2004, 69, 6572.
 ${ }^{43}$ Kwong, F. Y.; Yang, Q.; Mak, T. C. W.; Chan, A. S. C.; Chan, K. S. J. Org. Chem. 2002, 67, 2769.

[^12]: ${ }^{44}$ Work of T. Knöpfel in the Carreira group

[^13]: ${ }^{45}$ Amberg, W.; Bennani, Y. L.; Chadha, R. K.; Crispino, G. A.; Davis, W. D.; Hartung, J.; Jeong, K. S.; Ogino, Y.; Shibata, T.; Sharpless, B. K. J. Org. Chem. 1993, $58,844$.
 ${ }^{46}$ M. Pal, V. R. Batchu, K. Parasuraman, K. Yeleswarapu, J. Org. Chem. 2003, 68, 6806.
 ${ }^{47}$ Knöpfel, T. F.; Aschwanden, O.; Ichikawa, T.; Carreira, E.M. Angew. Cem. Int. Ed. 2004, 43, 5971.

[^14]: ${ }^{48}$ The enantiomeric excess was always determined by chiral HPLC of the corresponding anilide after decarboxylation in DMF/aniline at $100^{\circ} \mathrm{C}$.
 ${ }^{49}$ Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.

[^15]: ${ }^{50}$ The coupling with 2-((R)-amino(phenyl)methyl)-1,3-diphenylpropan-2-ol $(\mathrm{R}=\mathrm{Bn})$ was performed at $160{ }^{\circ} \mathrm{C}$ in diglyme.

[^16]: ${ }^{51}$ Davis, H. M. L.; Gilliatt, V.; Kuhn, L. A.; Saikali, E.; Ren, P.; Hammond, P, S.; Sexton, T.; Childers, S, R. J. Med. Chem. 2001, 44, 1509.

[^17]: ${ }^{2}$ Reactions were run on 0.25 mmol scale, except for entries 6 and 7 which were run at 0.50 mmol scale. ${ }^{\text {b) }}$ The enantioselectivity was determined by chiral HPLC analysis, after conversion of the product into the corresponding anilides by heating in aniline /DMF. ${ }^{\text {c) }}$ After one recrystallization from EtOAc.

[^18]: ${ }^{52}$ Work of T. Knöpfel
 ${ }_{54}^{53}$ Knöpfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682.
 ${ }^{54}$ Nelson, S. G.; Wan, Z.; Stan, M. A. J. Org. Chem. 2002, 67, 4680

[^19]: ${ }^{55}$ Hiroaki, S.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194

[^20]: ${ }^{56}$ The enantiomeric excess was determined after conversion to the corresponding methyl ester with diazomethane.

[^21]: ${ }^{57}$ Unoptimized yield

[^22]: ${ }^{58}$ Ritter, T.; Stanek, K.; Larossa, I.; Carreira, E. M. Org. Lett. 2004, 6, 1513.
 ${ }^{59}$ Ritter, T.; Kvaerno, L.; Werder, M.; Hauser, H.; Carreira, E. M. Organic and Biomolecular Chemistry 2005, 19, 3514.
 ${ }^{60}$ Kvaerno, L.; Werder, M.; Hauser, H.; Carreira, E. M. Journal of Medicinal Chemistry 2005, 19, 6035.

[^23]: ${ }^{61}$ The rate law can be derived from: $\mathrm{v}=\mathrm{k}_{\text {epi }}[\mathbf{4 8 a}]-\mathrm{k}_{\text {epi }}[\mathbf{4 8 b}]$, which gives: $\ln \left(\mathrm{de}_{0} / \mathrm{de}\right)=\mathrm{k}_{\text {epi }} \mathrm{t}$. The following assumption was made: the rate constants are the same for $\mathbf{4 8 a}$ and $\mathbf{4 8 b}$.

[^24]: ${ }^{2}$ The de was determined by ${ }^{1} \mathrm{H}$-NMR comparing the singlets of the methoxy group:
 (1st diastereomer $\delta 3.30 \mathrm{ppm}$, 2nd diastereomer $\delta 3.50 \mathrm{ppm}$ in CHCl_{3}).

[^25]: ${ }^{62} \mathrm{R}=8.3145 \mathrm{~J} / \mathrm{molK}$

[^26]: ${ }^{63}$ Puchot, C.; Samuel, O.; Dunach,, E.; Zhao, S.; Agami, C.;Kagan, H. B.; J. Am. Chem. Soc. 1986, 108, 2353.
 ${ }^{64}$ Girart, C.; Kagan, H. B. Angew. Chem. Int. Ed. 1998, 37, 2922.

[^27]: ${ }^{65}$ Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 4832.

[^28]: ${ }^{66} \mathrm{~A}$ Bolzmann fit was used for the graph. Software: Origin

[^29]: ${ }^{\text {a) }}$ Reactions were run using 10 equiv phenylacetylene with a ratio of $\mathbf{4 8} / \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} /$ ascorbate $=1: 1: 2$ at $0{ }^{\circ} \mathrm{C}$ on 0.25 mmol scale, except for entry 4 which was run at $23^{\circ} \mathrm{C}{ }^{\text {b) }}$ The enantioselectivity was determined by chiral HPLC analysis, after conversion of the products into the corresponding anilides by heating in aniline/DMF

[^30]: ${ }^{67} 50 \mathrm{~g}$ Triflicanhydride cost 145 CHF.
 ${ }^{68}$ Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 3910.
 ${ }^{69}$ Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818.
 ${ }^{70}$ Percec, V.; Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org. Chem. 2004, 69, 3447.

[^31]: ${ }^{71}$ Simandi, L. I. In The Chemistry of Functional Groups, Supplement C, pt 1: Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1983, pp 529-534.
 ${ }^{72}$ (a) Streitwieser, A.; Brauman, J. I.; Hammons, J. H.; Pudjaatm.Ah J. Am. Chem. Soc. 1965, 87, 384. (b) Dessy, R. E.; Kitching, W.; Psarras, T.; Salinger, R.; Chen, A.; Chivers, T. J. Am. Chem. Soc. 1966, 88, 460. (c) Streitwieser, A; Scannon, P. J.; Niemeyer, H. M. J. Am. Chem. Soc. 1972, 94, 7936 (d) Streitwieser, A.; Boerth, D. W. J. Am. Chem. Soc. 1978, 100, 755. (e) Bartmess, J. E.; Scott, J. A.; McIver, R. T. J. Am. Chem. Soc. 1979, 101, 6046.
 ${ }^{73}$ Wakefield, B. J. Organomagnesium Methods in Organic Synthesis, Academic Press: London, 1995, pp 46-48.
 ${ }^{74}$ Brandsma, L. Preparative Acetylene Chemistry, 2nd ed., Elsevier: Amsterdam, 1988.
 ${ }^{75}$ Wakefield, B. J. Organolithium Methods, Academic Press: London, 1988, Ch. 3, p 32.
 ${ }^{76}$ (a) Favorsky, A. E.; Skosarevsky, M. Russ. J. Phys. Chem. Soc. 1900, 32, 652. (b) Favorsky, A. E.; Skosarevsky, M. Bull. Soc. Chim. Fr. 1901, 26, 284.

[^32]: ${ }_{78}^{77}$ Reif, W.; Grassner, H. Chem. Ing. Tech. 1973, 45, 646.
 ${ }^{78}$ In 1997 BASF produced 600 t Vitamin A in a year.

[^33]: ${ }^{79}$ Babler, J. H.; Liptak, V. P.; Phan, N. J. Org. Chem. 1996, 61, 416.
 ${ }^{80}$ Tzalis, D.; Knochel, P. Angew. Chem. Int. Ed. 1999, 38, 1463.
 ${ }^{81}$ Busch-Petersen, J.; Bo, Y. X.; Corey, E. J. Tetrahedron Lett. 1999, 40, 2065.

[^34]: ${ }^{82}$ (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997; I19, 12414. (b) Denmark, S. E.; Ober, M. H. Org. Lett. 2003, 5, 1357. (c) Denmark, S. E.; Ober, M. H. Adv. Syn. Catal. 2004, 346, 1703.
 ${ }^{83}$ Mukaiyama, T.; Suzuki, K.; Soai, K.; Sato, T. Chem. Lett. 1979, 447. Mukaiyama, T.; Suzuki, K. Chem. Lett. 1980, 255.
 ${ }^{84}$ Pierce, M. E.; Parsons, R. L.; Radesca, L. A.; Lo, Y. S.; Silverman, S.; Moore, J. R.; Islam, Q.; Choudhury, A.; Fortunak, J. M. D.; Nguyen, D.; Luo, C.; Morgan, S. J.; Davis, W. P.; Confalone, P. N.; Chen, C. Y.; Tillyer, R. D.; Frey, L.; Tan, L. S.; Xu, F.; Zhao, D. ; Thompson, A. S.; Corley, E. G.; Grabowski, E. J. J.; Reamer, R.; Reider, P. J. J. Org. Chem. 1998, 63, 8536.
 ${ }^{85}$ (a) Xu, F.; Reamer, R. A.; Tillyer, R.; Cummins, J. M.; Grabowski, E. J. J.; Reider, P. J.; Collum, D. B.; Huffman, J. C. J. Am. Chem. Soc. 2000, 122, 11212. (b) Parsons, R. L.; Fortunak, J. M.; Dorow, R. L.; Harris, G. D.; Kauffman,

[^35]: G. S.; Nugent, W. A.; Winemiller, M. D.; Briggs, T. F.; Xiang, B. S.; Collum, D. B. J. Am. Chem. Soc. 2001, 123, 9135.
 ${ }^{86}$ (a) Li, Z.; Upadhyay, V.; DeCamp, A. E.; DiMichele, L.; Reider, P. J. Synthesis 1999, 1453. (b) Jiang, B.; Feng, Y. Tetrahedron Lett. 2002, 43, 2975.
 ${ }^{87}$ Corey, E. J.; Cimprich, K. A. J. Am. Chem. Soc. 1994, 116, 3151.
 ${ }^{88}$ (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, I09, 5551. (b) Mathre, D. J.; Thompson, A. S.; Douglas, A. W.; Hoogsteen, K.; Carroll, J. D.; Corley, E. G.; Grabowski, E. J. J. J. Org. Chem. 1993, 58, 2880. (c) Corey, E. J.; Guzman Perez, A.; Lazerwith, S. E. J. Am. Chem. Soc. 1997, 119, 11769. (d) Singh, V. K. Synthesis 1992, 605. (e) Deloux, L.; Srebnik, M. Chem. Rev. 1993, 93, 763. (f) Corey, E. J.; Helal, C. J. Angew Chem. Int. Ed. 1998, 37, 1986.

[^36]: ${ }^{89}$ Reviews: (a) Aschwanden, P.; Carreira, E. M. In Acetylene Chemistry, Diederich, F.; Stang, P.J.; Tykwinski, R. R., Eds.; WILEY-VCH: Weinheim, 2005; pp 101-138. (b) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2004, 4095. (c) Pu, L. Tetrahedron 2003, 59, 9876.
 ${ }^{90}$ Niwa, S.; Soai, K. J. Chem. Soc. Perkin Trans. 1 1990, 937.
 ${ }^{91}$ Tombo, G. M. R.; Didier, E.; Loubinoux, B. Synlett 1990, 547.

[^37]: ${ }^{92}$ Ishizaki, M.; Hoshino, O. Tertrahedron Asym. 1994, 5, 1901.

[^38]: ${ }^{93}$ (a) Ishizaki, M. Hoshino, O. Tetrahedron: Asymmetry 1994, 5, 1901. (b) Lu, G.; Li, X.; Zhou, Z.; Chan, W. L.; Chan, A. S. Tetrahedron: Asymmetry 2001, 12, 2147. (c) Xu, M.-H.; Pu, Li Org. Lett. 2002, 4, 4555. (d) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855. (e) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4, 4143. (f) Lu, G.; Li, X.; Chen, G.; Chan, W. L.; Chan, A. S. C. Tetrahedron: Asymmetry 2003, 14, 449.
 ${ }^{94} \mathrm{Li}, \mathrm{X} . ;$ Lu, G.; Kwok, W. H.; Chan, A. S. C. J Am. Chem. Soc. 2002, 124, 12636.

[^39]: ${ }^{95}$ Fässler, R.; Tomooka, C. S.; Frantz, D. E.; Carreira, E. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5843.
 ${ }^{96}$ Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373.
 ${ }^{97}$ Fischer, C.; Carreira, E. M. Org. Lett. 2004, 6, 1497.

[^40]: ${ }^{98}$ Sasaki, H.; Boyall, D.; Carreira, E. M. Helv. Chim. Acta 2001, 84, 964.
 ${ }^{99}$ (a) Bode, J. W.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 3611. (b) Bode, J. W.; Carreira, E. M. J. Org. Chem. 2001, 66, 6410.
 ${ }^{100}$ (a) Fettes, A.; Carreira, E. M. Angew. Chem. Int. Ed. 2002, 41, 4098. (b) Fettes, A.; Carreira, E. M. J. Org. Chem. 2003, 68, 9274.
 ${ }^{101}$ Maezaki, N.; Tominaga, H.; Kojima, N.; Yanai, M.; Urabe, D.; Tanaka, T. Chem. Commun. 2004, 406.
 ${ }^{102}$ Molander, G. A.; Dehmel, F. J. Am. Chem. Soc. 2004, 126, 10313.
 ${ }^{103}$ Crimmins, M. T.; She, J. J. Am. Chem. Soc. 2004, 126, 12790.
 ${ }^{104}$ Katukojvala, S.; Barlett, K. N.; Lotesta, S. D.; Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348.
 ${ }^{105}$ Archambaud, S.; Aphecetche-Julienne, K.; Guingant, A. Synlett 2005, 139.
 ${ }^{106}$ Reber, S.; Knöpfel, T. F.; Carreira, E. M. Tetrahedron 2003, 59, 6813.
 ${ }^{107}$ The Chemistry of Triple Bonded Functional Groups; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1983; Parts 1 and 2.

[^41]: ${ }^{108}$ Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687.
 ${ }^{109}$ Jiang, B; Chen, Z.; Tang, X. Org. Lett. 2002, 4, 3451.

[^42]: ${ }^{110}$ Eglinton, G.; Galbraith, A. R. Chem. Ind. 1956, 737.
 ${ }^{111}$ (a) Chodkiewicz, W. Ann. Chim. 1957, 2, 819. (b) Cadiot, P.; Chodkiewicz, W. In Chemistry of Acetylenes (Eds.: Viehe, H. G.) Decker, New York, 1969, pp. 597-647. (c) Sevin, A.; Chodkiewicz, W.; Cadiot, P. Bull. Soc. Chim. Fr. 1974, 913.
 ${ }^{112}$ (a) Castro, C. E.; Stephens, R. D. J. Org. Chem. 1963, 28, 2163. (b) Castro, C. E; Stephens, R. D. J. Org. Chem. 1963, 28, 3313.
 ${ }^{113}$ (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (b) Sonogashira, K. J.Organomet. Chem. 2002, 653, 46.

[^43]: ${ }^{114}$ Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry Padwa A., Ed.; Wiley, New York, 1984; pp. 1-176.
 ${ }^{115}$ Kinugasa, M.; Hashimoto, S. J. Chem. Soc., Chem. Commun. 1972, 466.
 ${ }^{116}$ Brannock, K.; Burpitt, R. D.; Thweatt, J. G. J.Org. Chem. 1963, $28,1462$.
 ${ }^{117}$ (a) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 2607. (b) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Chem. Eur. J. 2003, 9, 2797. (c) Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2003, 42, 5763.

[^44]: ${ }^{118}$ Gommermann, N.; Knochel, P. Chem. Comm. 2005, 4175.
 ${ }^{119}$ Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2002, 124, 5638.

[^45]: ${ }^{120}$ Taylor, A. M.; Schreiber, S. L. Org. Lett. 2006, 8, 143.

[^46]: ${ }^{121}$ Black, D. A.; Arndtsen, B. A. Org. Lett. 2004, 6, 1107.
 ${ }_{123}^{122}$ Gouge, M. Ann. Chim. (Paris) 1951, 648.
 ${ }^{123}$ Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13760.

[^47]: ${ }^{\text {a) }}$ The products were isolated as their corresponding 4-nitrobenzoates. ${ }^{\text {b) }}$ The propargylic alcohol was isolated
 ${ }^{\text {c) }}$ The ee was determined by chiral HPLC. ${ }^{\text {d) }}(+)$-NME was used.

[^48]: ${ }^{124} \mathrm{KOC}_{4} \mathrm{H}_{9}(1 \mathrm{~kg} 192 \mathrm{CHF}$, abcr $), \mathrm{NaOC}_{4} \mathrm{H}_{9}\left(1 \mathrm{~kg} 200 \mathrm{CHF}\right.$, lancester), $\mathrm{LiOC}_{4} \mathrm{H}_{9}$ (100 g 285 CHF , abcr).

[^49]: ${ }^{125}$ (a)Moissan, H. Compt. Rend. 1998, 126, 302 . (b) Corbellini, M.; Turner, L. Chem. Ind. (Milan) 1960, 42, 251; Chem. Abstr. 1960, 54, 19250.
 ${ }^{126}$ Beumel, O. F.; Harris, R. F. J. Org. Chem. 1963, 28, 2775.

[^50]: ${ }_{128}^{127}$ Rama Rao, A. V.; Bose, D. S:; Gurjar, M. K.; Ravindranathan, T. Tetrahedron 1989, 45, 7031.
 ${ }^{128}$ Rama Rao, A. V.; Rajarathnam Reddy, E.; Joshi, B.V.; Yadav, J, S. Tetrahedron Lett. 1987, $28,6497$.
 ${ }^{129}$ Kozikowski, A.P.; Ghosh, A. K.; J. Am. Chem. Soc. 1982, 104, 5789.
 ${ }^{130}$ Gujar, M. K.; Devi, N.R. Tetrahedron: Asymmetry 1994, 5, 755.
 ${ }^{131}$ Walkup, R. D.; Cunningham, R. T: Tetrahedron Lett. 1987, $28,4019$.
 ${ }^{132}$ Maeda, M.; Okazaki, F.; Murayama, M.; a, Y.; Aoyagi, Y.; Ohta, A. Chem. Pharm. Bull. 1997, 45, 962.
 ${ }^{133}$ Jäger, V.; Schröter, D. Synthesis, 1990, 556.
 ${ }_{134}^{134}$ Bergmeier, S. T.; Stanchina, D. M. J. Org. Chem. 1999, 64, 2852.
 ${ }^{135}$ Rama Rao, A. V.; Gurjar, M. K.; Bose, D. S.; Devi, R. R. J. Org. Chem. 1991, 56, 1320.
 ${ }^{136}$ Ohgiya, T.; Nishiyama, S. Heterocycles, 2004, 63, 2349.
 ${ }_{137}^{137}$ Kozikowski, A.P.; Ghosh, A. K.; J. Org. Chem. 1984, 49, 2762.
 ${ }^{138}$ Kang, S. H.; Ryu, D. H. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2959.

[^51]: ${ }^{139}$ Suzuki, T.; Kasai, N.; Minamiura, N. Tetrahedron: Asymmetry 1994, 5, 239.
 ${ }^{140}$ Chenault, H. K.; Chafin, L. F.; Liehr, S. J. Org. Chem. 1998, 63, 4039.
 ${ }^{141}$ Boaz, N. W.; Falling, S.N.; Moore, M. K. Synlett, 2005, 10, 1615.
 ${ }^{142}$ Boaz, N. W.; Zimmermann, R. L. Tetrahedron: Asymmetry 1994, 5, 153.
 ${ }^{143}$ Ziegler, T.; Bien, F.; Jurisch, C. Tetrahedron: Asymmetry 1998, 9, 765.

[^52]: ${ }^{144}$ Baer, E.; Fischer, H. O. J. Biol. Chem. 1939, 128, 463.
 ${ }^{145}$ Crawford, R. J.; Lutener, S. B.; Cockcroft, R. D. Can J. Chem. 1976, 54, 3364.
 ${ }^{146}$ Jung, M. E.; Shaw, T. J. J. Am. Chem. Soc. 1980, 102, 6304.
 ${ }_{147}^{147}$ Marco, J. L.; Rodriguez, B. Tetrahedron Lett. 1988, 29, 1997.
 ${ }^{148}$ Takano, S.; Numata, H.; Ogasawara, K. Heterocycles, 1982, 19, 327.
 ${ }^{149}$ Hubschwerlen, C. Synthesis, 1986, 962.
 ${ }_{151}^{150}$ Howes, D. A.; Brookes, M. H.; Coates, D.; Golding, B. T.; Hudson, A. T. J. Chem. Res., Synop. 1983, 9.
 ${ }^{151}$ Kim, G.; Jeon, S. Y. Bull. Korean Chem. Soc. 2001,22,1156.

[^53]: ${ }^{152}$ Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E.N. Science, 1997, 277, 936.
 ${ }^{153}$ Monnier, J. R. In $3^{r d}$ World Congress on Oxidation Catalysis, 1997; Grasseli, R. K.; Oyama, S. T.; Gaffney, A. M.; Lyons, J. E., Eds.;Elsevier; New York, 1997; pp 135-149.
 ${ }^{154}$ Trost, B. M.; McEachern, E. J. J. Am. Chem. Soc. 1999, 121, 8649.

[^54]: ${ }^{155}$ Cheesman, N.; Fox, M.; Jackson, M.; Lennon, I. C.; Meek, G. Proc. Natl. Acad. Sci. USA, 2004, 101, 5396.

[^55]: ${ }^{156}$ Trost, B. M.; Van Vranken: D. Lv. Chem. Rev.1996, 96, 395.
 ${ }^{157}$ Pfaltz, A.; Lautens, M. Comprehensive Asymmetric Catalysis I-III, 1999, 2, 833.
 ${ }^{158}$ Massacret, M.; Lakhmiri, R:; Lhoste, P:; Nguefack, C;;Abdelouahab, F. B. B.; Fadel, R.; Sinou, D; Tetrahedron: Asymetry, 2000, 11, 3561.
 ${ }^{159}$ Massacret, M.; Lhoste, P.; R.; Sinou, D: Eur. J. Org. Chem. 1999, 129.
 ${ }^{160}$ Uozumi, Y.; Tanahashi, A.; Hayashi, T. J. Org. Chem. 1993, 58, 6826.
 ${ }^{161}$ Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55, 3388.

[^56]: ${ }^{162}$ Chaudhari, S. S.; Akamanchi, K. G. Synlett, 1999, 11, 1763.

[^57]: ${ }^{163}$ Pangborn, A. B.; Girardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F, J. Organometallics 1996, 15, 1518.
 ${ }^{164}$ Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165.
 ${ }^{165}$ Still, W. C.; Kahn, M.; Mitra, A."Rapid chromatographic technique for preparative separations with moderate resolution." J. Org. Chem. 1978, 43, 2923.

[^58]: ${ }^{166}$ Blanc, P. Y. Helv. Chim. Acta. 1961, 44, 1.
 ${ }^{167}$ Groud, K. J.; Hacker, N. P.; McOmie, J. F. W.; Perry, D. H. J. C. S. Perkin 1. 1979, 1834.

[^59]: ${ }^{168}$ Gandolfi, C. A.; Beggiolin, G.; Menta, E.; Palumbu, M.; Siss, C.; Spinell, S.; Johnson, F. J. Med. Chem. 1995, 38, 526.

[^60]: ${ }^{169}$ Otaka, A.; Yukimasa, A.; Watanabe, J.; Sasaki, Y.; Oishi, S.; Tamamura, H.; Fujii, N. Chem. Commun. (Cambridge) 2003, 15, 1834.
 ${ }^{170}$ Riesz, E.; Pollak, E.; Ziffer, R. Monatsh. Chem. 1931, 58, 147.

[^61]: ${ }^{171}$ Chaudari, S. S.; Akamanchi, K. G. Synlett, 1999, 11, 1763.

