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Kurzfassung

In dieser Doktorarbeit werden Methoden entwickelt, um astrophysikalische Prozesse zu
studieren, welche Dynamik mit und ohne Kollisionen beinhaltet. Die Hauptanwendung,
für die diese Methoden entwickelt wurden, ist das Studium von dynamischen Effekten,
die bei Galaxien-Verschmelzungen mit super-massiven Schwarzen Löchern in den Zen-
tren der jeweiligen Galaxien entstehen. Dies ist eine schwierige Problemstellung um
mit N-body Methoden zu untersuchen, denn es enthält sowohl kollisionsfreie Dynamik
als auch Dynamik mit Kollisionen. Ebenso müssen ein enormer Bereich in Raum und
Zeit aufgelöst werden, um die wahren physikalischen Effekte zu sehen wenn man nicht
numerischen Artefakten wie Relaxation in N-body Simulationen erliegen will.

In einer allgemeinen Einleitung 1 werden zuerst die physikalischen Grundlagen von
selbst-gravitierenden Systemen diskutiert und eine kleine Übersicht über die heutzutage
verwendeten numerischen Methoden gegeben.

In Kapitel 2 wird eine simple Methode (Multi-Massen-Technik) präsentiert, um Mod-
elle von Halo-Profilen mit verschiedenen Massen und Auflösung zu generieren. Mit
dieser Methode wird die Computer Laufzeit in Simulationen gegenüber Modellen mit
nur einer fixen Auflösung drastisch reduziert. Dies erlaubt bei einer gegebenen Com-
puter Laufzeit viel kleinere Skalen zu untersuchen. Als Anwendung bestätigen wir die
Aussage von Dehnen [31], dass in Verschmelzungen von dunkle Materie Halos immer das
steilste zentrale Profil eines Vorgängers erhalten bleibt. Für diese Anwendung werden
hoch auflösende N-body Simulationen benötigt, wobei wir jeden in der Verschmelzung
beteiligten Vorgänger mit ungefähr 5× 107 Teilchen auflösen.

Als eine bedeutende neue Entwicklung wird in Kapitel 3 ein Zeit-Schritt Kriterium für
N-body Simulationen präsentiert, das auf der wahren dynamischen Zeit eines Teilchens
basiert. Dieses Kriterium erlaubt der jeweiligen Bahn eines Teilchens in allen Umgebun-
gen korrekt zu folgen, da das Kriterium eine bessere Anpassungsfähigkeit als vorherige
Kriterien hat. Zusätzlich wird eine kleinere Anzahl von Berechungen der Kraft in Re-
gionen mit einer kleineren Dichte benötigt und die Methode hängt nicht direkt von
artifiziellen Parametern wie zum Beispiel der Softening-Länge ab. Daher kann diese
Methode mehrere Grössenordnungen schneller sein als konventionellen Methoden, welche
zum Beispiel eine Kombination von Beschleunigung und Softening-Länge als Kriterium
benutzen. Das neue Kriterium ist daher ideal um schwierige Probleme zu lösen, wie zum
Beispiel die Dynamik in Zentren von dunklen Materie Halos zu studieren. Ebenso wird
eine Exzentrizitätskorrektur für ein Leapfrog Integrationsschema hergeleitet, welches er-
laubt Zweikörperinteraktionen mit Exzentrizität e → 1 mit grosser Präzision zu ver-
folgen. Diese Neuentwicklung erlaubt es, einen grossen Bereich von Problemen zu
studieren, welche Kollisionen enthalten als auch kollisionsfrei sind. Es werden Tests
dieses neuen Schemas in N-body Simulationen von Zweikörperproblemen mit Exzen-
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Kurzfassung

trizität e → 1 (elliptisch und hyperbolisch), Gleichgewichts-Halo-Profilen und von kos-
mologischen Strukturbildungs-Simulationen präsentiert.

In Kapitel 4 werden die ersten Anwendungen dieser Neuentwicklungen präsentiert. In
der ersten Anwendung wurde die Multi-Massen-Technik dazu verwendet in einer kosmol-
ogischen Simulation das Dichteprofil eines Galaxienhaufens bis runter zu einem Promille
des virial Radius zu bestimmen. Das innere Profile des Galaxienhaufens wird gut durch
ein Potenzgesetz der Form ρ(r) ∝ r−γ beschrieben wobei γ = 1.2. Eine weitere An-
wendung der Multi-Massen-Technik war der Test einer potentiellen Erklärung für die
Position von fünf Globular Clusters bei der ungefähren Distanz von 1 kpc vom Zentrum
der Zwerggalaxie Fornax. In einer Kosmologie mit dunkler Materie und dunkler Energie
als Hauptbestandteile würden diese Globular Clusters innerhalb von ein paar Milliarden
Jahren von der heutigen Position ins Zentrum sinken. Eine mögliche Lösung hierfür
wäre, dass das dunkle Materie Halo der Fornax Zwerggalaxie einen Kern mit konstanter
Dichte hat, denn in einem Kern konstanter Dichte wird die Zeit, die für ein Sinken zum
Zentrum benötigt wird, viel länger als die Hubble-Zeit und die Globular Clusters bleiben
beim Kernradius stehen. Um diese Hypothese zu testen waren hoch auflösende Modelle
von dunkle Materie Halos nötig.

Zum Schluss wird eine Zusammenfassung präsentiert und ein Ausblick auf weitere
Projekte in der Zukunft gegeben.
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Abstract

This thesis develops numerical methods in order to study astrophysical processes that
include collisionless and collisional dynamics. As a major application that involves such
processes, the dynamical effects of merging galaxies with super-massive black holes in
their centres were in mind when these methods were developed. This is a very difficult
problem to simulate with N-body methods since it demands a combination of collisionless
and collisional dynamics. It also involves an enormous spatial and temporal range in
order to observe the real physical effects and not suffer from numerical artefacts like
relaxation in the N-body simulations.

In a general introduction 1, we first discuss the basic physics of self-gravitating systems
and present a short overview of some of the numerical methods used in the field of
computational astrophysics today.

We then present in chapter 2 a simple way to model halo profiles with a multi-mass
technique. This technique reduces the computer run time that would be needed by
a single-mass model resolving the same scales by several factors and therefore allows
to resolve smaller scales in N-body simulations for a given computer run time. As an
application, we test and confirm the prediction by Dehnen [31], that in mergers of dark
matter haloes always the cusp of the steepest progenitor of the merger is preserved. This
application required high resolution N-body simulations where we model each merger
progenitor with an effective number of particles of approximately 5× 107 particles.

As a major new development, we present in chapter 3 a new time-stepping criterion
for N-body simulations that is based on the true dynamical time of a particle. This
allows us to follow the orbits of particles correctly in all environments since it has better
adaptivity than previous time-stepping criteria used in N-body simulations. Further-
more, it requires far fewer force evaluations in low density regions of the simulation and
has no dependence on artificial parameters such as, for example, the softening length.
This can be orders of magnitude faster than conventional ad-hoc methods that employ
combinations of acceleration and softening and is ideally suited for hard problems, such
as obtaining the correct dynamics in the very central regions of dark matter haloes.
We also derive an eccentricity correction for a general leapfrog integration scheme that
can follow gravitational scattering events for orbits with eccentricity e → 1 with high
precision. These new approaches allow us to study a range of problems in collisionless
and collisional dynamics from few-body problems to cosmological structure formation.
We present tests of the time-stepping scheme in N-body simulations of 2-body orbits
with eccentricity e → 1 (elliptic and hyperbolic), equilibrium haloes and a hierarchical
cosmological structure formation run.

In chapter 4, we present the first applications of these new developments that already
led to new insights and physical results. In one application, the multi-mass technique
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Abstract

was used in a cosmological structure formation run in order to resolve the resulting
density profile of a high resolution cluster down to one per mill of the virial radius. The
inner density profile of this cluster halo is well fit by a power law ρ(r) ∝ r−γ down to the
smallest resolved scale with γ = 1.2. This means that the dark matter profiles still obey
a power law scaling down to one per mill of the virial radius. Another application of the
multi-mass models was to test a potential explanation of the presence of the five globular
clusters at approximately 1 kpc distance from the centre of the Fornax dwarf spheroidal
galaxy. In a cuspy cold dark matter halo as predicted from large scale structure formation
simulations in a lambda cold dark matter (ΛCDM) cosmology, the globulars would sink
to the centre from their current positions within a few Gyr, presenting a puzzle as to
why they survive at their present positions. A possible solution to this timing problem
is to adopt a cored dark matter halo for the Fornax dwarf spheroidal. In a cored dark
matter halo, the sinking time becomes many Hubble times and the globular clusters
effectively stall at the dark matter core radius. In order to perform these simulations
and test this hypothesis, high resolution multi-mass models were needed to obtain the
required spatial resolution.

Finally, we summarise and give a perspective on future projects in chapter 5.

xii



Chapter 1

General introduction

1.1 Overwiew

In astrophysics, a variety of self-gravitating systems exist. Such systems range from
the Keplerian 2-body system, the stability of the solar system, core collapse in globular
clusters, galaxy mergers up to the formation process of large scale structure in the
universe. Computational methods like N-body simulations are a powerful tool to study
such self-gravitating systems. The ultimate goal would be to study the evolution of the
universe from early initial conditions after the big bang until the present with all the
relevant physics involved but the available computer resources have so far allowed only
the study of certain aspects of the full picture.

Hence, two communities emerged out of this. The first concentrated on small as-
trophysical systems like star clusters where time-scales are short and the dynamics of
the system is mainly collisional. In contrast, the long-term and large scale structure
formation, that is governed by the dynamical evolution of collisionless dark matter par-
ticles, is the working field of the other community. Both communities developed their
own methods and specific techniques in order to treat the individual numerical problems
optimally.

But many systems in astrophysics can not be fully described by only one regime. For
example, the dynamics of super-massive black holes in the centre of a galaxy-galaxy
merger remnant is dominated by collisional dynamics whereas the large scale shape of
the resulting structure is a result of the collisionless dynamics of the dark matter. With
the ever increasing computer resources, a combination of these two regimes becomes
feasible. This thesis project had therefore the aim to develop the numerical techniques
in order to perform N-body simulations that include collisionless as well as collisional
dynamics.

This chapter gives the reader an introduction to the basic physics of self-gravitating
systems and a short overview of some of the numerical methods used in the field of com-
putational astrophysics today. A more detailed motivation for combining the collisionless
and collisional regime is given towards the end of the introduction.

1



Chapter 1 General introduction

1.2 Self-gravitating systems

1.2.1 Long range nature of gravity

The nature of the gravity force makes a self-gravitating system behave completely differ-
ent than for example a neutral gas. Generally, the electromagnetic forces between two
gas molecules are small since the gas is neutral on large scales. As a consequence the
molecules move at nearly constant speed for long periods until they collide with another
molecule where they feel a strong acceleration due to the close interaction. Thus, only
forces on short length scales that arise from collisions are important and we can neglect
long range forces since the gas is neutral and the two different electromagnetic charges
compensate on these scales.

In contrast, gravity is always attractive since there is only one charge in gravity; there
is only positive mass as far as we know. Let’s consider a homogeneous system with
density ρ. The force from a cone segment on a particle at its apex with mass dmC at
distance r with thickness dr and solid angle dΩ around the particle is given by

dmC = ρr2drdΩ . (1.1)

Therefore, the contribution from this cone segment to the total force on that particle
results in

dF = G
m dmC

r2
= GmρdrdΩ . (1.2)

For a homogeneous system, the force per unit length dF/dr from that cone segment
is therefore independent of radius and force contributions arising from all scales are
important. Of course, if the system is perfectly spherical around the particle and ho-
mogeneous, no net force will act on the particle. But inhomogeneities on all scales can
result in a net force on any particle.

1.2.2 Equations of motion

Let’s assume a self-gravitating system is described by a smooth distribution of mass
given by the density ρ(x ′, t) and our goal is to calculate the acceleration on a particle
at a position x . By Newton’s inverse-square law, we can express the total acceleration
by integrating over the whole volume and obtain

a(x , t) = G

∫
x ′ − x

|x ′ − x |3ρ(x ′, t)d3x ′ . (1.3)

Here, G is Newton’s constant of gravity. We can define a scalar function Φ(x , t) by

Φ(x , t) ≡ −G

∫
ρ(x ′, t)
|x ′ − x |d

3x ′ . (1.4)

This function Φ(x , t) is called the gravitational potential and with

∇
(

1

|x ′ − x |
)

=
x ′ − x

|x ′ − x |3 , (1.5)

2



1.2 Self-gravitating systems

we find
a(x , t) = −∇Φ(x , t) . (1.6)

Here, the gradient operator ∇ is always meant with respect to x .
With

∇
(

x ′ − x

|x ′ − x |3
)

= ∇2

(
1

|x ′ − x |
)

= −4πδ(x ′ − x ) , (1.7)

where δ(x ′ − x ) is the Dirac delta-function we can now write

∇a(x , t) = G

∫
(−4πδ(x ′ − x )) ρ(x ′, t)d3x ′ = −4πGρ(x , t) . (1.8)

By substituting from equation (1.6), we get the Poisson equation

∇2Φ(x , t) = 4πGρ(x , t) . (1.9)

The equations of motion are now given by

ẋ (x , t) = v(x , t) (1.10)

ẍ (x , t) = v̇(x , t) = a(x , t) = −∇Φ(x , t) (1.11)

∇2Φ(x , t) = 4πGρ(x , t) . (1.12)

In order to calculate the trajectory x (t) of the particle, this system of coupled second-
order differential equations in space and time has to be solved. Generally, this can only
be solved with numerical methods for an arbitrary configuration ρ(x , t).

1.2.3 Collisionless versus collisional

Of course, real astrophysical systems are not perfectly smooth but they consist of discrete
particles like stars, black holes or dark matter particles that mutually interact via gravity.
The relaxation is a measure for the effect that a particle is not moving in a smooth
potential but through a potential that is generated by the discrete configuration of the
individual particles in the system. Since each individual particle is slightly perturbed
by the mutual interactions with all the other particles, its velocity will deviate from the
value it would have in a smooth potential due to the discreteness of the system.

As a measure for the speed of this relaxation process, we define the relaxation time
Trelax by the time where the change of the velocity is of order of the velocity itself, which
results in

Trelax =
N

8 ln Λ
Tcross , (1.13)

where Tcross is the crossing time needed for the particle to cross the system and

ln Λ ≡ ln

(
bmax

bmin

)
(1.14)

is called the Coulomb logarithm and bmax respectively bmin are the minimum respectively
maximum impact parameters of the particle under consideration. Trelax is the time-scale
where the system looses its memory of its initial state.

3



Chapter 1 General introduction

For galaxies with N ≈ 1011 stars and an age of approximately 10 Gyr (which corre-
sponds to a few hundred crossing times), the relaxation time-scale for the whole system
is much longer than the age of the universe and close encounters are entirely unimpor-
tant. Also for dark matter haloes relaxation is completely negligible. If dark matter
consists of neutralinos then their expected mass is of order of a few hundred GeV/c2

[44] which corresponds to a total number of N ≈ O(1067) particles within a Milky Way
size dark matter halo (1 GeV/c2 = 8.963× 10−58 M¯1).

On the other hand, for globular clusters with N ≈ 105 stars and a crossing time
of Tcross ≈ 105 yr, the relaxation process can be important over the cluster lifetime of
approximately 10 Gyr. This is especially true in the centre of the globular cluster where
the local relaxation time-scale is much smaller and can lead to core collapse.

In summary, self-gravitating systems with a relaxation time-scale much longer than
the time interval of interest (which is at maximum the age of the universe) can be called
collisionless. Systems with a (local) relaxation time of the order of the time interval of
interest are called collisional, i.e. close particle encounters play an important role.2 Also
if the smoothness of the potential breaks down and local fluctuations, arising from a few
particles like e.g. super-massive black holes, dominate the dynamics, the interactions
have to be treated in the collisional regime.

1.2.4 Distribution function and Boltzmann equations

We can generalize the description of a self-gravitating system by introducing the distri-
bution function or phase-space density f(x , v , t) where f(x , v , t)d3xd3v is the mass in
the phase-space volume d3xd3v at the phase-space point (x , v) at time t.

If we know the configuration at a time t0, either by ρ(x , t0) and the velocity field or
by f(x , v , t0), the equations of motion allow us to calculate the state of the system at
any later time. Hence, we’re interested in the flow of the points in phase-space. We
can generalise the coordinates in phase-space by introducing a new coordinate vector
w ≡ (x , v) ≡ (w1, . . . , w6) and describe the velocity of this flow in phase-space by
ẇ = (ẋ , v̇) = (v ,−∇Φ(x , t)).

In a collisionless system, this flow is mass conserving and therefore obeys a continuity
equation

∂f(w , t)

∂t
+

6∑
i=1

∂ (f(w , t) ẇi)

∂wi

= 0 . (1.15)

By using Hamilton’s equations

ẋi =
∂H(x , v , t)

∂vi

(1.16)

v̇i = −∂H(x , v , t)

∂xi

= −∂Φ(x , t)

∂xi

(1.17)

1M¯ stands for the mass of the Sun and is a standard mass unit in astrophysics. M¯ = 1.989×1030 kg.
2Collisional does not mean real physical collisions; one should always think of close encounters here.
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1.3 Numerical methods

where the appropriate Hamiltonian3

H(x , v , t) ≡ 1

2
|v |2 + Φ(x , t) (1.18)

describes the energy per unit mass, we can write

6∑
i=1

∂ẇi

∂wi

=
3∑

i=1

(
∂ẋi

∂xi

+
∂v̇i

∂vi

)
=

3∑
i=1

(
∂

∂xi

(
∂H

∂vi

)
− ∂

∂vi

(
∂H

∂xi

))
= 0 . (1.19)

Therefore, the continuity equation simplifies to

∂f(w , t)

∂t
+

6∑
i=1

ẇi
∂f(w , t)

∂wi

=
df(w , t)

dt
= 0 . (1.20)

The above equation (1.20) is called the collisionless Boltzmann equation and it describes
the evolution of an incompressible fluid in phase-space that is evolved under a Hamilto-
nian flow. The collisionless Boltzmann equation is a special case of Liouville’s theorem
under the assumption that the number of particles is large N À 1 and we can neglect
two-particle and higher order correlations. For further details and an explicit derivation
see also Binney and Tremaine [15, chapter 8].

If collisions between particles are important in the astrophysical system under study,
then the phase-space density around a particle will change and we have to modify the
collisionless Boltzmann equation (1.20) by

df(w , t)

dt
=

∂f(w , t)

∂t
+

6∑
i=1

ẇi
∂f(w , t)

∂wi

= Γ (f(w , t)) , (1.21)

where Γ (f(w , t)) is a collision term that describes the rate of change of f(w , t) due to
particle encounters. Equation (1.21) is called the Boltzmann equation.

1.3 Numerical methods

1.3.1 Monte-Carlo methods

A very efficient method in order to solve the Boltzmann equations (1.20) and (1.21)
(depending on whether the system is collisional or collisionless) together with the Poisson
equation (1.9) are Monte-Carlo methods where one represents the astrophysical system
under study with N bodies. Monte-Carlo methods can be loosely described as statistical
simulation methods, where statistical simulation is defined in quite general terms to be

3This form of the Hamiltonian is only correct in the collisionless regime since it neglects possible inter-
actions between particles. The correct interactions can only be described in the full 6N dimensional
phase-space by the N -particle distribution function where the full Hamiltonian correctly describes
the mutual interactions between the particles. For more details see also Binney and Tremaine [15,
chapter 8]
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Chapter 1 General introduction

any method that utilizes sequences of random numbers to perform a simulation. The
method is named after the capital of the principality Monaco that is famous for being
a centre for gambling and had its origin from research during the Manhattan project
(development of the atomic bomb) of the second world war where such methods were
used for a direct simulation of the probabilistic problems concerned with random neutron
diffusion in fissile material.

The basic idea of Monte-Carlo methods can be illustrated by the following procedure
that allows to calculate π in a Monte-Carlo fashion. Imagine a square with area AS = d2

and inscribed a circle with area AC =
(

d
2

)2
π = π

4
AS. Now place N points randomly

and independent within that square. By counting the number NC which fall within the
circle, we can express π as

π = 4
AC

AS

= 4
NC

N
(1.22)

since the probability that a point point lies in a certain area is proportional to that area.
Since the points are generated randomly and independent, this process follows Poisson
statistics and the fractional error is of order 1/

√
N . The big advantage in Monte-Carlo

method is that the error does not depend on the number of dimensions of the problem
but only on the number of points N . Therefore this method can outperform other
methods in multi-dimensional problems.

In astrophysical systems, the real numbers of particles are up to the order of O(1067)
particles for example for dark matter haloes (see also section 1.2.3). This enormous
number is clearly not possible to simulate with any computer in the near future. One
therefore samples the astrophysical system that is described by a distribution function
f(x , v , t) with N bodies, where N is much less than the number of constituents in the
real system, that have mass mi, position x i and velocity v i (i = 1 . . . N). In principle, the
continuous distribution function f(x , v) is replaced with a discretised version fd(x , v)
which consists of a set of Dirac delta-functions

f(x , v) → fd(x , v) =
N∑

i=1

miδ(x i − x )δ(v i − v) . (1.23)

Initial conditions are set-up by treating the distribution function at a fixed time t0
as a probability distribution, i.e. one selects coordinates (x , v) with a probability pro-
portional to f(x , v) = f(x , v , t0). The real astrophysical system is now represented
in a Monte-Carlo fashion by N bodies and this method is therefore also called N-body
technique.

Generally, by sampling the real astrophysical system with N bodies, the discretised
variables give us an estimate (or expectation value) of the real, continuous variables.
For example the discretised potential Φd(x ) gives us an estimate of the real, continuous
potential Φ(x ) and therefrom also an estimate of the acceleration ad(x ). The fractional
error between the real variables and the estimated variables is of order 1/

√
N .

We get from the Poisson equation (1.9) or directly from equation (1.4)

Φd(x ) = −G

N∑
i=1

mi

|x i − x | (1.24)
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1.3 Numerical methods

and the equations of motion in the N-body realisation have to be solved with the dis-
cretised potential which is in this way calculated from the Poisson equation (1.9) by a
Monte-Carlo sampling. The form of the potential (1.24) has the drawback that singulari-
ties appear at the positions x i of the particles due to the discreteness of the system. This
leads to large scatter in the estimate of the gravitational potential (or equivalently the
acceleration) [89]. This can be cured by softening the potential and a detailed discussion
of this technique is given in section 1.3.4.

1.3.2 Dynamical evolution and symplectic integrators

If the N-body system is evolved by the Hamiltonian phase-flow defined by equations
(1.16) and (1.17), then this mapping preserves the structure of phase-space, i.e. it
preserves the Poincaré invariants, hence phase-space volume and the orientation of the
volume described by the distribution function in phase-space. A map that preserves the
structure of phase-space is called a symplectic4 or canonical map. This can be seen in
the sense that starting with an N-body realisation at time t0 of f(x , v , t0) and evolving
the N-body system under a symplectic map, then at any later time t > t0, the N-body
system is a realisation of f(x , v , t) at that time t.

Hence, it is desirable to have a numerical time integration scheme that also has this
preservation property. Such a scheme is called a symplectic integrator. It is the exact
solution to a discrete Hamiltonian N-body system that is close to the continuous system
that is described by f(x , v , t). For example, if the Hamiltonian is time-independent such
a symplectic integrator would preserve the energy of the discrete system. This approx-
imate energy of the N-body system oscillates about the true energy of the continuous
system without any numerical dissipation. The difference between the discrete, approx-
imate Hamiltonian and the continuous one can be seen as a small perturbation given by
the truncation error of the integrator, where this error term is also a Hamiltonian. See
also appendix A for more details.

A commonly used symplectic integration scheme is the leapfrog integrator. It works
as follows: during a time-step ∆T , first the velocities are updated (kick mode) with
a time step of ∆T/2 then the new positions are calculated (drift mode) using the new
velocities with a time-step of ∆T and finally the velocities are updated to the final values
at ∆T with again a half-step of ∆T/2 but with the acceleration calculated from the new
positions. This scheme can be written as

v(t + ∆T/2) = v(t) + ∆T/2 a(t) (1.25)

x (t + ∆T ) = x (t) + ∆T v(t + ∆T/2) (1.26)

v(t + ∆T ) = v(t + ∆T/2) + ∆T/2 a(t + ∆T ) (1.27)

and is called the kick-drift-kick mode. The leapfrog scheme can also be formulated in
the drift-kick-drift mode, where one drifts fist for a half-step, then updates the velocities

4The term symplectic was first used by the mathematician Hermann Weyl in his book The classical
Groups [164]. Symplectic is the Greek adjective corresponding to the Latin word complex and also
means twining or plaiting together.
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Chapter 1 General introduction

by a full step and then drifts again for a half-step. The leapfrog scheme is symplectic
for fixed time-steps ∆T . For further details see also Yoshida [171].

Figure 1.1 shows a comparison of a symplectic and a non-symplectic integrator from
Quinn et al. [128]. The figure shows the radial separation r and the radial velocity vr

of an eccentricity e = 0.5 Kepler 2-body orbit calculated by a second order leapfrog
scheme and a fourth order Runge-Kutta integrator. In both integrations, 24 fix time-
steps per orbit were taken and in total 16 orbits were calculated. The solid line is
the exact solution, the filled squares show the points of the leapfrog integrator and the
crosses are from the Runge-Kutta integrator. The leapfrog integrator oscillates about
the true solution and it remains always on a one dimensional surface which indicates
that it is indeed conserving an energy-like quantity. That the orbit is constrained to
a one dimensional surface shows that there exists an isolating integral of motion. The
orbit calculated with the Runge-Kutta scheme becomes more circular and the integrator
performs very bad given that this scheme is a fourth order integration using four times
as many force evaluation as the leapfrog scheme.

The symplectic leapfrog scheme is therefore an ideal choice to integrate discrete Hamil-
tonian N-body systems since it can also be formulated in comoving coordinates as a sym-
plectic integrator for cosmological structure formation simulations [128] and is relatively
easy to implement in computer programs.

1.3.3 Choice of time-steps

The leapfrog scheme described above is only symplectic for fixed time-steps, i.e. only
if all the particles have the same time-step in the N-body simulation. But in order to
follow the dynamics correctly in dense regions, this would mean that for all particles very
small time-steps should be set. This is computationally very expensive and is therefore
not efficient for high resolution simulations.

A solution for this problem is to use variable time-steps for each particle. But by using
adaptive individual time-steps for each particle according to some selection criterion, the
symplectic behaviour is lost [128, 140].

Adaptive methods show significant speed-ups over fixed-step integrations for the price
of accuracy. By choosing the time-step criterion carefully and controlling the errors, we
can pass over to an approximate symplectic behaviour of the integration scheme so that
it is stable enough for time-scales that are not many orders of magnitudes longer than
the dynamical time of the system. For a detailed discussion of time-stepping schemes
and criteria see chapter 3.

1.3.4 Acceleration calculation

Softened accelerations

The form of the discrete gravitational potential of equation (1.24) has the drawback that
it is singular close to individual particles which leads to large scatter of the estimated
variables like potential or acceleration. This can also lead to numerical problems during
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1.3 Numerical methods

Figure 1.1: A comparison of a symplectic and a non-symplectic integrator. The figure
shows the radius r and the radial velocity vr of a eccentricity e = 0.5
Kepler orbit calculated by a second order leapfrog scheme and a fourth
order Runge-Kutta integrator. In both integrations, 24 fix time-steps per
orbit were taken and in total 16 orbits were calculated. The solid line is the
exact solution, the filled squares show the points of the leapfrog integrator
and the crosses are from the Runge-Kutta integrator. Figure taken from
Quinn et al. [128]
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Chapter 1 General introduction

the integration. A technique to avoid these problems is the implementation of a softening
parameter ε like

Φ̂d(x ) = −G

N∑
i=1

mi√
|x i − x |2 + ε2

. (1.28)

This type of softening is called the Plummer softening and the singularities at the par-
ticle positions x i are cancelled. For collisionless systems it also has the advantage that
this smoothing of the potential supresses small-scale fluctuations arising from close par-
ticle encounters due to the discreteness of the N-body realisation. Since in collisionless
systems such small scale fluctuations are unphysical, it is therefore important to use a
softened potential. In collisional systems, of course, one chooses the softening length ε
as small as possible or even zero and tries to cure the singularities with other numerical
techniques such as regularisation [1, 2].

Another problem with the simple Plummer softening is that it affects the potential
on all scales. Hence, it is much more useful to use a compact softening. We can write a
more general form for the softened potential as

Φ̂d(x ) = −G

N∑
i=1

mi

ε
φ

( |x i − x |
ε

)
. (1.29)

This form separates the two aspects of the softening method: a) the softening kernel
φ(r) which determines the functional form of the modified gravity and b) the softening
length ε. The Plummer softening corresponds to

φ(r) =
1√

r2 + 1
. (1.30)

The corresponding softened quantities for the acceleration âd(x ) and density ρ̂d(x )
are given by

âd(x ) = G

N∑
i=1

mi

ε2
φ′

( |x i − x |
ε

)
x i − x

|x i − x | (1.31)

ρ̂d(x ) =
N∑

i=1

mi

ε3
η

( |x i − x |
ε

)
, (1.32)

where

η(r) = − 1

4πr2

∂

∂r

(
r2∂φ(r)

∂r

)
(1.33)

is the kernel density and ′ denotes derivative with respect to r. The kernel density for
the Plummer softening would be

η(r) =
3

4π

1

(r2 + 1)5/2
. (1.34)
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There are many possible choices for the functional form of the softening kernel φ(r).
If the kernel density has compact support, then the gravity is not modified on distances
larger than r0 from the particle, i.e. η(r) = 0 for r ≥ r0 and the accelerations are
perfectly Newtonian for distances larger than r0 from the particle. Kernel densities that
have negative values near their outer edge correct for the underestimation of the acceler-
ation near the origin and are therefore called compensating kernels. Hence, compact and
compensating kernels are the best choice one can make in order to soften the potential
and accelerations.

Following Dehnen [30], figure 1.2 shows different compact and compensating kernels
K0 −K3 compared with the Plummer scheme and the true Newtonian case. The func-
tional form of the kernel Kn is given by

Kn =
(2n + 5)!

(n + 1)! (n + 2)! 22n+6 π

(
5− (2n + 7)r2

)
(1− r2)n Θ(1− r2) (1.35)

where Θ is the Heaviside step function. Plotted are the potential (top panel), acceleration
(middle panel; called force in the figure since here force denotes the force per mass) and
the density (bottom panel). The functions were scaled so that the maximum force
equals unity. The figure nicely illustrates the negative densities near the outer edge
of the kernels. The compact kernels join smoothly the Newtonian curves at the edge
whereas the Plummer scheme also modifies the gravity on larger scales. For a detailed
discussion about the optimal softening scheme see also Dehnen [30] from which figure
1.2 originates.

Direct method

A straightforward method to calculate the acceleration at position x would be the direct
summation over all N particles in the N-body realisation

ad(x ) = G

N∑
i=1

mi
x i − x

|x i − x |3 . (1.36)

In order to calculate the accelerations on all the N particles one needs exactly

N−1∑
i=1

i =
1

2
N(N − 1) (1.37)

times to evaluate an acceleration. Hence, this method is of order O(N2) and the number
of particles one can use to represent the astrophysical system is limited by the immense
costs in evaluating forces in this approach. Normally only collisional systems that also
have a small number of particles like globular clusters or star clusters are simulated
with this technique. By designing special hardware that allows the calculation of the
acceleration directly on the computer chip, the direct approach can be made practical
for moderately large N (O(N) ≈ 106 − 107). This computer chip architecture is called
GRAPE which stands for GRAvity piPE and the operations needed for the calculation
of the acceleration are directly hard-wired on the chip [96].
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Chapter 1 General introduction

Figure 1.2: Different compact and compensating kernels K0−K3 are plotted and com-
pared with the Plummer scheme and the true Newtonian case. Plotted are
the potential (top panel), acceleration (middle panel; called force in the
figure since here force denotes the force per mass) and the density (bottom
panel). For further details see main text. Figure taken from Dehnen [30].
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Figure 1.3: Geometrical configuration for multipole expansion.

Hierarchical methods

By expanding the discrete gravitational potential around a point c and only accounting
the contribution to the potential of particles in a volume V around the point c, we can
write a multipole expansion in cartesian coordinates

Φd(x ) = −G
∑
i∈V

mi

|x − c|
∞∑

n=0

( |x i − c|
|x − c|

)n

Pn(cos(κi)) (1.38)

where Pn(cos(κi)) are Legendre polynomials. We have assumed that |x i − c| < |x − c|
and the angles κi are defined by

cos(κi) =
(x i − c) · (x − c)

|x i − c||x − c| . (1.39)

Figure 1.3 shows the geometrical configuration.

For n = 0 we have P0(cos(κi)) = 1 and the leading term in this series is given by

Φ0
d(x ) = −G

1

|x − c|
∑
i∈V

mi

︸ ︷︷ ︸
m0

d

, (1.40)

where m0
d is called the monopole moment (or simply the total mass in the volume V ).
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For n = 1 we have P1(cos(κi)) = cos(κi) and this term is given by

Φ1
d(x ) = −G

∑
i∈V

mi

|x − c|
|x i − c|
|x − c| cos(κi)

= −G
(x − c)

|x − c|3
∑
i∈V

mi(x i − c)

︸ ︷︷ ︸
m1

d

(1.41)

where m1
d is called the dipole moment. We see that the higher order terms decay

rapidly with respect to the dominant monopole term. Higher order multipoles are called
quadrupole (n = 2), octupole (n = 3), hexadecapole (n = 4) etc.

By dividing up the space in different regions, we can approximate the contribution
from a distant region V around c to the potential at a point x by using a multipole
expansion and use only the leading terms in the expansion (1.38). By the superposition
principle, we can calculate the total potential at point x by summing up over all regions.
The error by truncating the multipole expansion at some order can be controlled by the
following criterion

max
i∈V

(|x i − c|) < |x − c|θ (1.42)

where θ is called the opening angle. The geometrical interpretation is that the size of
the region V (which we can measure by selecting maxi∈V (|x i− c|)) is not allowed to be
larger than the distance |x − c| to that region times the opening angle θ; on the sky
at position x , the region is not allowed to appear larger than the size controlled by the
opening angle θ.

A common method to divide up the simulation space into different regions is to create
a tree-structure by recursively subdividing the whole simulation space into smaller and
smaller subregions called cells. The standard method developed by Barnes and Hut [8]
starts with a cubic cell with side length L that contains the whole simulation space.
This cell is called the root cell. If a cell contains more than one particle it is subdivided
into eight sub-cells of side length L/2. This procedure is applied recursively until each
cell only contains one particle. This tree-structure is therefore called an oct-tree. Now,
the simulation space is partitioned into cells of different sizes each containing only one
particle and these cells are the leaves of the tree (sometimes also called buckets). The
average size of a leaf cell that contains only one particle is of the order of the interparticle
distance h ∝ N−1/3 and and the typical number of subdivisions required to reach such
a leaf cell from the root cell (that is the height of the tree) is of order O(log2 N−1/3) =
O(log N) and the time needed to construct the tree is of order O(N log N).

If one wants to calculate the acceleration of a particle at position x in the simulation
the following tree-walk procedure is applied. If a cell satisfies the condition (1.42) where
c is the centre-of-mass of the cell under consideration, the interaction via multipole
expansion with this cell is accepted. If the cell fails the above criterion (1.42), then
its eight sub-cells are checked if they fulfill equation (1.42). This procedure is repeated
recursively with all sub-cells. So, by starting at the root cell of the tree which contains the
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Figure 1.4: Quad-tree: the two dimensional version of the oct-tree in three dimensions.
Each leaf cell contains only one particle. Left: the spatial configuration of
the splittings. Right: Data structure represented as tree. Figure taken
from Demmel [32].

whole simulation space one walks down the tree until one accepts a refined enough cell for
the interaction with the particle at x . If a leaf cell fails to fulfill the opening criterion,
then its contribution to the acceleration is calculated directly as described in section
1.3.4. As a result, the acceleration for a particle consists of a far-field part calculated from
the multipoles and a near-field part calculated directly by particle-particle interactions.
By following this procedure, the number of interactions for calculating the acceleration
for a particle is of order O(log N) for large N and the total cost scales like O(N log N).

Figure 1.4 shows the two dimensional version of the oct-tree. Each leaf cell contains
only one particle. The left panel shows the partitioning of space down to the leaves of
the tree. On the right, the tree data structure is shown.

There exist many possible tree-structures like e.g. k-D tree [11] or binary tree [144]
which mainly differ in the partitioning procedure. With tree-codes it is nowadays possible
to simulate of the order O(1010) particles as was done in the Millennium Simulation
Project that simulated the evolution of the matter distribution in a cubic region of the
universe of two billion light-years on a side from redshift z = 127 to the present [99, 143].

1.3.5 PKDGRAV

Throughout this thesis the state-of-the-art gravity code PKDGRAV was used. PKD-
GRAV stands for Parallel K-D tree GRAVity code and was developed by Joachim Stadel
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[144] and Thomas Quinn. The code uses a binary tree5 for the partitioning of space and
a fourth order multipole expansion (i.e. terms up to the hexadecapole (n ≤ 4) in ex-
pansion (1.38) are included) in order to calculate the accelerations from distant mass
in the simulations. Nearby contributions from leaf cells that fail to fulfill the opening
criterion are calculated directly. Potentials and accelerations are softened for distances
smaller than two softening lengths from a particle with the compact and compensating
softening kernel K1 described in section 1.3.4. The code is fully parallelised and the
time integration is done by a symplectic second order kick-drift-kick leapfrog scheme as
described in section 1.3.2.

1.4 Unifying both regimes

It is becoming apparent that many problems involve both high accuracy orbit calcula-
tions to follow collisional scattering events and the need to simulate many particles in
the collisionless mean field limit.

For example, observations show that many galaxies contain a super-massive black hole
in their centre with masses correlated to the total bulge mass or dark matter halo mass
[47, 58]. The nearest known super-massive black hole is located at the centre of our
own galaxy, the Milky Way. Figure 1.5 shows astrometric positions and orbital fits for
seven stars around the central super-massive black hole in the centre of the Milky Way.
The proper-motion measurements have uncertainties that are comparable to or smaller
than the size of the points, and are plotted in the reference frame in which the central
super-massive black hole is at rest. On the plane of the sky, three of these stars show
orbital motion in the clockwise direction (S0-1, S0-2, and S0-16), and four of these stars
have counterclockwise motion (S0-4, S0-5, S0-19, and S0-20). Overlaid are the best-
fitting simultaneous orbital solutions, which assume that all the stars are orbiting the
same central point mass. Most of these stars are on orbits with very high eccentricity
e → 1. The dynamics of these stars constrain the mass of the super-massive black hole
to 3.7(±0.2)× 106 M¯ [42, 59, 60, 135].

Super-massive black holes are fascinating objects in our universe that can be used to
test general relativity and structure formation in the universe [159]. They can also play
an important role in influencing the local environment through dynamical processes as
well as regulating galaxy formation through feedback processes [101, 102, 103, 104, 106,
138, 172]. Super-massive black holes also provide a natural explanation for the energy
output of quasars, but how these black holes grow in a relatively short time scale in order
to explain the quasar activity at high redshift (4 < z < 6) is still unclear [73, 160, 162].
At high redshifts it is thought that galaxy formation proceeds through a succession of
merger events. If the proto-galaxies host black holes at their centres then they may also
merge hierarchically to form a super-massive black hole. Gas accretion onto the central
object may also play an important role in accelerating its growth [160, 161].

5PKDGRAV originally used a balanced k-D tree. However, for gravity calculations the balanced k-D
tree can behave pathologically in certain cases and it was replaced by a spatial binary tree structure
[144].
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Figure 1.5: Astrometric positions and orbital fits for seven stars around the central
super-massive black hole in the centre of our own galaxy, the Milky Way.
For further details see main text. Figure taken from Ghez et al. [60].
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Hence, understanding the combined formation, dynamics and evolution of these black
holes, the dark matter haloes and the stellar systems that they are embedded within,
requires a unification of the two N-body regimes discussed above.

This means the interaction between collisionless particles like dark matter and stars
is still treated in the mean field limit and the short range forces are softened in order
not to suffer from artificial gravitational scattering. In regions where the potential is
dominated by e.g. a super-massive black hole, it is important to follow the 2-body orbits
around the black holes correctly.

We can define the gravitational influence radius of a single super-massive black hole
as the distance within which the potential is dominated by the super-massive black
hole, rather than by the smooth background potential created by all the other particles
[102, 103]. A standard definition for the radius of influence rinfl of a single super-massive
black hole is the solution to

r =
GMSMBH

σ2(r)
, (1.43)

where σ(r) is the one dimensional velocity dispersion of the surrounding system and
MSMBH is the mass of the super-massive black hole. This equation can often only be
solved numerically. Hence, an alternative definition of the radius of influence is frequently
used where rinfl is given by the radius that encloses two times the super-massive black
hole mass,

M(rinfl) = 2MSMBH , (1.44)

where M(r) is the cumulative mass of the surrounding system assuming spherical sym-
metry. If the density profile of the surrounding structure is that of a singular isothermal
sphere given by [15]

ρ(r) =
σ2

2πGr2
, (1.45)

where the velocity dispersion is constant and independent of radius, the two definitions
in equations (1.43) and (1.44) are equivalent. If we calculate the radius of influence for
the dark matter in a Milky Way size halo we get of the order of a few dozen pc6 and for
the central stellar bulge in the Milky Way a few pc.

This is a very difficult dynamical problem with spatial scales ranging from pc to Mpc
(as a typical separation of two galaxies) and time-scales ranging from a few yr for an
orbit around the super-massive black hole to a few Gyr which is the time-scale needed
for the merger of the two galaxies.

1.5 Content of this thesis

The main goal of this doctorate thesis was the development of the N-body tools that
can follow the evolution of dark matter haloes on Mpc scales, which host central super-
massive black holes that can modify structure and dynamics on pc scales. This problem

6pc stands for parsec and is a widely used length unit in astrophysics. 1 pc = 3.086× 1016 m.

18



1.5 Content of this thesis

not only includes a wide spatial range of six orders of magnitudes but also a huge
temporal range of approximately nine orders of magnitude.

Chapter 2

In order to resolve pc scales in a dark matter halo, of order O(1010) particles would be
needed. This is clearly not feasible with today’s supercomputers and one has to make
certain approximations. Here, we present a newly developed multi-mass technique for
building dark matter haloes for N-body simulations. With this technique we only resolve
the very central part of a dark matter structure with the effectively needed resolution
and use lower resolution in low density regions of the simulations, i.e. the outskirts of
the haloes. This technique pushes the resolution scale to much smaller scales for given
computational costs.

Chapter 3

In order to follow the dynamics correctly, the development of a physically motivated
time-stepping scheme was needed. Previous time-stepping schemes based on the accel-
eration of the particles and which are commonly used in N-body simulations were not
able to follow the very active dynamics in the centres of galaxies and in certain cases
even delivered unphysical time-steps. Additionally, the acceleration based scheme is not
suitable for high resolution simulations since it has a bad scaling with the number of
particles used in the N-body realisation. We developed a scheme based on the true
dynamical time of a particle and implemented this within the tree-code PKDGRAV.
This scheme always sets a physically motivated time-step for a particle in the N-body
simulation. It also shows the optimal scaling with the number of particles used in the
N-body simulations. The detailed ideas and implementation scheme is presented in this
chapter.

Chapter 4

Here, we present applications of the new developments that were already carried out so
far. In the first application, the the multi-mass technique was used in a cosmological
structure formation run in order to resolve the resulting density profile of a high res-
olution cluster down to one per mill of the virial radius. This resolution corresponds
to one billion particles within the virial radius and is the N-body simulation with the
highest resolution so far performed. The second application used multi-mass models
in order to test a potential explanation of the presence of the five globular clusters at
approximately 1 kpc distance form the centre of the Fornax dwarf spheroidal galaxy. For
this purpose, cuspy and cored dark matter haloes with an effective resolution of order
of O(108) particles were used.
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Chapter 1 General introduction

Chapter 5

A summary and a perspective on future projects and applications are then presented in
chapter 5.
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Chapter 2

Multi-mass halo models

2.1 Introduction and motivation

Resolution is a key issue in N-body simulations. In state-of-the-art N-body simulations
today, structures can be fully resolved down to the scale of a fraction of a per cent of the
virial radius. But there are many problems, where higher resolution in central regions
of structures is needed.

For example, the question if the central dark matter density profile of haloes that
form in cosmological N-body simulations is cuspy or cored needs at least a resolution
of approximately 10−3 rvir to be answered. Another example are flat/cored central halo
profiles: in order to resolve structures with cored central profiles, a lot of particles are
needed since in flat profiles the resolution scaling with the number of particles is the
slowest (see below for more details about the scaling of resolution with the number of
particles). One further problem that was especially in mind when developing the multi-
mass technique, was the dynamics of super-massive black hole binaries in the centre
of remnants of galaxy mergers. There, the relevant scales are of order of a few pc
≈ 10−6 − 10−5 rvir for Milky Way size dark matter haloes.

We illustrate the resolution problem in more detail with a commonly used family of
spherically symmetric density profiles used for haloes in N-body simulations: the so
called αβγ-models family [29, 71, 176]. An αβγ-model density profile is given by

ρ(r) =
ρ0

(
r
rs

)γ (
1 +

(
r
rs

)α)(β−γ
α )

, r ≤ rvir , (2.1)

where γ determines the inner and β the outer slope of the density profile whereas α
controls the transition between the inner and outer region. The normalisation is given
by ρ0 and rs is the scale radius defined by rs ≡ rvir/c (c is called concentration). The
two most famous models that belong to this family are the Moore [110] profile with
(α, β, γ) = (1.5, 3.0, 1.5) and NFW [116] profile with (α, β, γ) = (1.0, 3.0, 1.0).

The resolution scale mainly depends on the number of particles Nvir that samples the
structure chosen by the simulator. We can define the mean particle separation as a
function of radius in such a structure by

h(r) ≡ 3

√
m

ρ(r)
, (2.2)
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Chapter 2 Multi-mass halo models

Figure 2.1: Mean particle separation function for a dark matter halo with central slope
γ = 1.0 (left) respectivley γ = 1.5 (right). We used values of Nvir =
(106, 108, 1010) = (solid, dotted, dashed) to evaluate the function. The
crossing with the diagonal line corresponds to h(r) = r, i.e. the crossing
radius is rimp.

where m is the mass per particle. For single-mass models, the mass per particle is simply
given by m = Mvir/Nvir and we get for the asymptotic scaling in the central part of the
structure h(r) ∝ rγ/3.

In figure 2.1 we plot the mean particle separation for a dark matter halo with central
slope γ = 1.0 (left) respectivley γ = 1.5 (right) with Mvir = 1012 M¯/h = 1.429 ×
1012 M¯ (h = 0.7)1. The concentrations were chosen so that the radius where the
maximum circular velocity is reached are equal, i.e. c1.0 = 10 and c1.5 = 5.779 [173].
We used the following values for the number of particles within the virial volume Nvir =
(106, 108, 1010) = (solid, dotted, dashed) to evaluate the function given by equation (2.2).
The innermost particle in a model sampled with Nvir particles is approximately located
where we have h(r) = r (r is the distance from the geometrical centre). This sets the
smallest scale in the physical problem and we call this radius rimp, i.e. h(rimp) = rimp.
But of course one particle is not enough to resolve that scale. If we say we need at least
of the order of ≈ 100 particles in the innermost bin so that the bin is well resolved, then
each h(r) function gets a shift of factor 3

√
100 ≈ 4.6 upwards in figure 2.12. Generally,

the scaling of rimp is given by

rimp ∝ 3−γ
√

m ∝ 3−γ

√
1

Nvir

. (2.3)

1h denotes the Hubble constant H in units of 100 km s−1 Mpc−1. H = 100 h km s−1 Mpc−1

2Apart from a geometrical factor that is of the order of unity for the two profiles with γ = 1.0
respectively γ = 1.5, this corresponds to the radius that includes 100 times the mass of one particle.

22



2.2 Method

in the region where the slope of the profile is close to −γ in the αβγ-profiles (the
inner region). Equation (2.3) illustrates the resolution gain by increasing the number of
particles Nvir and its dependence on the central density profile slope γ.

By inspecting figure 2.1, we see that we need more than approximately of order O(1010)
particles in the centre in order to resolve scales of 10−6 − 10−5 rvir which correspond to
approximately 1 pc in physical units in this model. It is worth remarking, that with the
same number of particles Nvir much smaller scales are resolved in the steeper profile with
γ = 1.5 than in the γ = 1.0 profile although the concentration was lower. Generally,
the steeper the central profile, the more the particles are concentrated. Nonetheless,
this enormous amount of particles per dark matter halo is hardly doable today - even
with large supercomputers like zBox23, a large 125 nodes cluster with in total 500 64
bit cpus on quad-boards. But since we only need this high resolution at the very centre
of the dark matter halo, our solution to this problem is the usage of haloes with shells
of different resolution, i.e. we use light particles with a small mean particle separation
in the centre and heavy particles in the outer parts of the halo.

2.2 Method

The technique for generating multi-mass equilibrium haloes is based on the method
presented in Kazantzidis et al. [80]. We give here a short review of the procedure.

We can choose the density profile from the αβγ-models family given by equation (2.1)
for r ≤ rvir with concentration c, profile slopes α, β and γ, virial mass Mvir, and number
of particles Nvir as input parameters. This determines the normalisation ρ0 and the
scale radius rs for a chosen cosmology. Beyond the virial radius, an exponential cut-off
is applied. For further details see Kazantzidis et al. [80] and Zemp [173]. The particle
positions are initialised from the cumulative mass function M(r). With the particle’s
positions, the acceptance-rejection technique [87] is used to determine its velocity from
the distribution function and the velocity structure is chosen to be isotropic. This
procedure leads to perfectly stable equilibrium models as was shown in Kazantzidis
et al. [80]. These models do not show the flattening in the central part of the halo
during evolution as it is obtained in the case of the assumption of a local Maxwellian
velocity distribution.

In the multi-mass case, one has the choice to introduce different spherical shells with
different particle masses, i.e. the central shell is populated by light particles and the
outer shell is populated by heavy particles. Initially, the different species are strictly
separated but with time the different species mix and form stable sub-profiles while
leaving the total mass profile unchanged.

Of course this technique introduces some further numerical artefacts as e.g. heating
of the light particles by the heavy particles or mass segregation of the heavy outer
particles. The dynamical friction force that a particle of mass M experiences in a sea of

3www.zbox2.org
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Chapter 2 Multi-mass halo models

light particles with mass m ¿ M is [15, 21]

Fdf ∝ M2 (2.4)

and the time-scale for this particle to reach the centre of the structure is

Tdf ∝ M−1 . (2.5)

Hence, by choosing moderate mass ratios we can reduce the effect of mass segregation.
By scaling the softening lengths of the heavy particles as a function of their mass, also
artificial 2-body scattering can be reduced. For further details about the scaling of the
softening, see section 2.3.

An additional dynamical effect that restricts the resolution is the relaxation of the
system [16, 35, 125]. We define the local relaxation time as (see also equation (1.13))

Trelax(r) ≡ N(r)

8 ln Λ
Tdyn(r) , (2.6)

where

Tdyn(r) ≡ 2π

√
r3

GM(r)
(2.7)

is the dynamical or orbital time at radius r and

ln Λ =
rhalf

ε
(2.8)

is the Coulomb logarithm where rhalf is the half mass radius of the system and ε is the
softening of the particles. This specific choice for the Coulomb logarithm was motivated
by studies of Diemand et al. [35]. Here, M(r) is the cumulative mass function and
N(r) ≡ M(r)/m denotes the number of particles within r. An alternative definition can
be obtained by replacing ln Λ by ln N(r) but both versions of the local relaxation time
give similar estimates. Expression (2.6) for the local relaxation time with ln Λ = ln N(r)
is in spherically symmetric structures equivalent to the empirical expression found by
Power et al. [125].

The local dynamical time allows us to define down to what radius rres the system
is well resolved. Below that scale the structure may suffer from relaxation, particles
are scattered out and therefore undesired flattening of the profile can happen. If the
simulation time is TS, we can solve

TS = Trelax(r) (2.9)

for the radius which we call rres(TS) and express it as a function of simulation time TS.
This is rather a conservative definition of the resolution scale. On scales smaller than
this radius, the dynamics can be affected by physical relaxation which is in most cases
only due to the lack of resolution. This is not a numerical effect since a real astrophysical
system with the same number of particles like in the simulation would behave similarly.
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The problem is that in the near future we can not simulate of the order of O(1070) dark
matter particles like the real astrophysical system would have. Therefore, this effect due
to under-resolving the system with not enough particles will always be a limitation to
N-body simulations.

In principle, the only known dynamically stable system in the universe is the Keplerian
2-body system.4 Dynamical effects like relaxation or evaporation will sooner or later lead
to the disruption of any system. It is therefore always a question within what time-scale
the system is stable. The time-scale of interest is normally of order of the age of the
universe and for most cases the astrophysical systems can be regarded as perfectly stable
within that time-scale. This is different in N-body simulations. Here, one just tries
to generate models that show the desired stability behaviour during the time-scale of
interest with the least amount of particles needed. It is therefore clear that the artificial
N-body models show these disruption effects much sooner since they are not modeled
with the true number of particles like the real astrophysical system one wants to study.

In section 2.3, we show that by a careful choice of parameters like mass ratio between
the different species and softening length, these effects on global characteristics like the
radial density profile are small. The multi-mass technique is therefore an efficient method
to perform high resolution N-body simulations.

2.3 Tests

2.3.1 Two-shell models

We performed a series of runs in order to show how the multi-mass model works and
to illustrate the limits of this method. In this series we chose four different profiles
from the αβγ-family described by equation (2.1). We chose for the different haloes a
virial mass of Mvir = 1012 M¯/h = 1.429 × 1012 M¯ (h = 0.7) which corresponds
to a virial radius of rvir ≈ 289 kpc and a virial density ρvir = 1.408 × 104 M¯ kpc−3

(spherical overdensity ≈ 100 ρcrit in a standard ΛCDM-cosmology [45]). The following
density profile parameters were the same for all models: outer profile β = 3, transition
coefficient α = 1 and concentration c = rvir/rs = 20 (rs is the scale radius). We varied
the inner profile form γ = 0.0 . . . 1.5 and chose for the shell radius the scale radius, i.e.
rshell = rs. We resolved the density profile within rshell always with 300000 particles and
changed the number of particles in the outer shell for the other runs so that the mass
ratio had the following values 1× 100, 3× 100, 1× 101, 3× 101, 1× 102, 3× 102, 1× 103.
The choice of softening for the light particles εlight and the total number of particles Nvir

in the case of equal mass particles in the inner and outer shell as well as the estimated
resolution scale after 10 Gyr, rres(10 Gyr), are given in table 2.1. The softening lengths
of the heavy particles were scaled like rimp (equation 2.3), i.e.

εheavy = εlight
3−γ

√
mheavy

mlight

= εlight
3−γ
√

RM (2.10)

4This is only true in the Newtonian regime. In General Relativity, not even a 2-body orbit is dynam-
ically stable and the orbit decays due to the emission of gravitational radiation [5, 41, 74].
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Figure 2.2: Multi-mass stability tests for mass profiles with different inner slope γ =
0.0 . . . 1.5. Each run was evolved for 10 Gyr. The top panels for each
slope γ show the total density profile and the sub-profiles [(light,heavy) =
(dotted,dashed)] for the different mass ratio runs normalised to the virial
density ρvir = 1.408 × 104 M¯ kpc−3. The lower panel shows the relative
change of the total profile with radius (ρ−ρIC)/ρIC normalised to the profile
of the initial conditions ρIC.
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γ 0.0 0.5 1.0 1.5
εlight 0.9 kpc 0.45 kpc 0.3 kpc 0.15 kpc

≈ 3.1× 10−3 rvir ≈ 1.6× 10−3 rvir ≈ 1.0× 10−3 rvir ≈ 5.2× 10−4 rvir

Nvir 7.215× 106 4.880× 106 3.250× 106 2.112× 106

rres(10 Gyr) ≈ 1.42 kpc ≈ 1.35 kpc ≈ 1.25 kpc ≈ 1.15 kpc
≈ 4.9× 10−3 rvir ≈ 4.7× 10−3 rvir ≈ 4.3× 10−3 rvir ≈ 4.0× 10−3 rvir

Table 2.1: Summary of parameters for the different models. The rows are softening of
the light particles, εlight, total number of particles in the equal mass case,
Nvir, and estimated resolution radius after 10 Gyr, rres(10 Gyr).

where RM is the mass ratio of the heavy to the light particles. Each of these 28 models
was evolved in isolation for 10 Gyr in order to test the stability of the structures with
PKDGRAV (see section 1.3.5). In order to follow the dynamics in the centre correctly,
we used the dynamical time-stepping scheme developed by Zemp et al. [174] (see chapter
3).

In figure 2.2, we present the density profiles of these runs after 10 Gyr. For moderate
mass ratios RM up to 10-30 (or even RM ≈ 100 for steep central profiles) the effects on
the total density profile are small and the profile remains stable down to the level of a few
εlight. Such deviations are anyway expected since the forces in PKDGRAV are softened
if two particles have separations of order of their softening length. By comparing the
equal mass cases for the two steepest central profiles, we see that the flattening effect
due to relaxation sets in at a factor 2-3 times smaller radius than the estimated value
rres(10 Gyr), confirming that it is rather a conservative estimate.

The same behaviour is also seen in the anisotropy profiles. In figure 2.3, we plot the
velocity anisotropy parameter defined by

β(r) ≡ 1

2

σtan(r)

σrad(r)
, (2.11)

where σtan(r) is the tangential velocity dispersion and σrad(r) is the radial velocity dis-
persion in a spherical coordinate system as a function of radius r. For isotropic systems
we obtain β(r) = 1.5 We see again that for moderate mass ratios up to approximately
30 the velocity anisotropy profile stays isotropic.

Figure 2.2 also illustrates that the different species form stable sub-profiles. The shell
radius was chosen in a zone where the local density profile is steep so that the transition
region is small and in the inner or outer region the light respectively heavy particles
dominate. Only for very high mass ratios, the total density profile is strongly perturbed
by heating effects of the heavy particles and the heavy particles sink to the centre due
to the better efficiency of dynamical friction. But for moderate mass ratios, these effects
are small and expected only for much longer time-scales.

5This definition deviates from the standard definition normally used e.g. in Binney and Tremaine [15].
Normally, βstd = 1 − β but since we plot the relative change with respect to the isotropic initial
conditions (which would be βstd = 0) we used this alternative definition.
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Figure 2.3: Multi-mass stability tests for mass profiles with different inner slope γ =
0.0 . . . 1.5. Each run was evolved for 10 Gyr. The top panels for each slope
γ show the anisotropy profile for the different mass ratio runs. The lower
panel shows the relative change of the total profile with radius (β−βIC)/βIC

normalised to the profile of the initial conditions βIC.
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Figure 2.4: The computer run time T needed for the 10 Gyr stability run described in
the text is plotted as a function of mass ratio RM for the different central
profiles γ. T0 is the computer run time needed for the equal mass run. A
substantial fraction of time is gained in all cases. Most of the time gain is
already obtained for small mass ratios.

29



Chapter 2 Multi-mass halo models

The main advantage of these multi-mass models is the speed up gain. In figure 2.4,
we plot the computer run time T needed for the 10 Gyr stability test run described
above as a function of mass ratio RM. We normalise with the time T0 needed by the
equal mass run. Figure 2.4 illustrates that we gain a substantial fraction of computer
run time in all cases. Most of the gain is already obtained for small mass ratios RM.
For example, the run with inner slope γ = 0.0 and mass ratio RM = 10 is approximately
four times faster that the same run without multi-mass refinement and does not show
any perturbation effect of the multi-mass technique on the density profile. Therefore,
the usage of too high mass ratios is not recommended since most of the computational
work in the simulation comes form the central part and too high mass ratios only lead
to larger perturbations of the models.

The steeper the central profile, the less is the computer run time gain. This is due to
the fact that most of the work in the N-body simulation for steep profiles is concentrated
in the centre. In the centre, the particles are on very small time-steps compared to
the less dense, outer regions of a dark matter halo in an N-body simulation and as a
consequence a lot of expensive force calculations are needed. It is especially dramatic if
one does the dynamics correct by using a dynamical time-stepping criterion rather than
the ad-hoc criterion based on the acceleration which can even lead to completely wrong
and unphysical time-steps in high resolution N-body simulations. See also chapter 3 for
more details about this. That is simply the price one has to pay for correct physics!
Using a hierarchy of trees where one freezes part of the simulation during the N-body run
could be a promising solution in order to perform high resolution N-body simulations in
the future and is under development.

2.3.2 Three-shell models

This method also works for three shells with different mass resolutions. In figure 2.5,
we present a profile with central slope γ = 1.0 that has the same general specifications
like virial mass, virial radius, virial density, concentration as the models described in
section 2.3. The shell radii were set at rshell,1 = 2 kpc respectively rshell,2 = 10 kpc. We
put in each shell 3 × 106 particles resulting in mass ratios of mmedium/mlight ≈ 13.53
mheavy/mlight ≈ 245.9 and mheavy/mmedium ≈ 18.17. This configuration corresponds to
an effective resolution in the centre of N eff

vir = 7.8 × 108 particles. The softening of the
lightest species was εlight = 0.05 kpc ≈ 1.7× 10−4 rvir. The softening length of the other
particles was scaled according to relation (2.10).

Fiugre 2.5 illustrates that the total profile of the three-shell model is stable over 10
Gyr down to approximately 3×10−4 rvir. The total profile fluctuates only a few per cent
over 3.5 orders of magnitude in space. This was only possible by using the multi-mass
technique where we used in total approximately only 107 particles in order to generate
a model that has an effective central resolution of N eff

vir = 7.8× 108 particles.
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Figure 2.5: The total profile of the three-shell model is stable over 10 Gyr down to
approximately 3× 10−4 rvir. Fluctuations in the total profile are on a few
per cent level.
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γ 0.0 1.0
εlight 0.48 kpc 0.3 kpc

≈ 1.7× 10−3 rvir ≈ 1.0× 10−3 rvir

N eff
vir 4.812× 107 5.232× 107

rres(10 Gyr) ≈ 0.77 kpc ≈ 0.40 kpc
≈ 2.6× 10−3 rvir ≈ 1.4× 10−3 rvir

Table 2.2: Summary of parameters for the two initial conditions used for the merg-
ers. The rows are softening of the light particles, εlight, effective number of
particles in the haloes, N eff

vir, and estimated resolution radius after 10 Gyr,
rres(10 Gyr).

2.4 Preservation of cusp slope

Dehnen [31] showed that in a merger of self-gravitating cusps with different central slopes
the merger remnant has always the slope of the steepest progenitor. In other words the
steepest cusp slope should be preserved.

Collisionless mergers of dark matter haloes were already studied in earlier work [e.g.
4, 16, 114] but none of these studies had the resolution of the simulations presented here.
We do not find any discrepancies between this work and the earlier studies and see this
therefore more as a confirmation that the multi-mass technique works in the extreme
dynamics of a dark matter halo merger event.

We initially set-up two dark matter halo models with different central slope. Both
profiles were from the αβγ-model family (see equation (2.1)) and had a virial mass of
Mvir = 1012 M¯/h = 1.429 × 1012 M¯ (h = 0.7) which corresponds to a virial radius of
rvir ≈ 289 kpc, a virial density ρvir = 1.408×104 M¯ kpc−3 and a concentration of c = 20.
That are the same general specifications as the models described in section 2.3. The
outer slope was fixed to β = 3, the transition coefficient was set to α = 1 in both cases.
One profile had an inner slope of γ = 0.0 and a shell radius of rshell = rs = 14.47 kpc.
The other profile had a central slope of γ = 1.0 and a shell radius of rshell = 5 kpc. In
both cases, a mass ratio of RM = 20 between heavy and light particles was chosen. For
softening and effective number of particles see also Table 2.2. The softening lengths of
the heavy particles were scaled according to relation (see also equation 2.10)

εheavy = εlight
3−γ

√
mheavy

mlight

= εlight
3−γ
√

RM . (2.12)

The resolution is clearly limited by the centrally flat (γ = 0.0) model since here much
more particles are needed to resolve a given scale compared to steeper profiles. To resolve
the same scale with the steep profile much less particles would be needed, but since we
would not like to have too high mass ratios between any species of particles involved in
the merger we adjusted the number of particles in the profile with γ = 1.0 so that its
particles had similar masses as the particles in the γ = 0.0 model.

We evolved both haloes in isolation for 10 Gyr in order to test the stability again. In
total three mergers were performed: a cusp-cusp, a core-core and a cusp-core merger
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Figure 2.6: Equal profile mergers, left: γ = 0.0 and right: γ = 1.0. The profiles are
stable over 10 Gyr and the central profile is conserved in both cases.

where cusp means γ = 1.0 and core is equivalent to the γ = 0.0 model described above.
The following merger set-up was used. We placed the two haloes 600 kpc ≈ 2 rvir apart
and the the two haloes had an initial relative radial velocity of vrad ≈ 150 km s−1 and
a relative tangential velocity of vtan ≈ 50 km s−1. Assuming the two haloes were point
masses, this set-up correspond to an eccentricity e ≈ 0.95 of the orbit consistent with
values in cosmological N-body simulations [81]. With this set-up the merger time needed
by the two haloes to merge completely was approximately 7 Gyr. We let all three runs
evolve to 10 Gyr so that the merger remnant had time to relax.

Figure 2.6 shows the stability of both models and the equal profile mergers after 10
Gyr. Down to a few softening length of the light particles no significant deviations can
be seen in the stability tests. The merger remnant has the same profile as the two
progenitors except that the local density more or less doubles. We normalise the plots
by the values rvir and ρvir of the progenitor haloes. The deviations in the outer part of
the profiles are due to a slightly triaxial shape of the halo there. The remnant just did
not have enough time to fully relax in this region.

In figure 2.7, we present the profile of the cusp-core merger after 10 Gyr. The central
slope of the steepest progenitor is perfectly preserved and the cored progenitor only
contributes significantly in the outer region of the total density profile.

We can therefore confirm the earlier findings that core-core mergers lead to a cored
merger remnant while cups-cusp mergers lead to a cuspy merger remnant with high
resolution multi-mass N-body simulations. In cusp-core merges the merger remnant has
a final profile corresponding to the steepest progenitor which is in excellent agreement
with the prediction by Dehnen [31].
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Figure 2.7: Cusp-core merger after 10 Gyr. The central cusp is preserved. Plotted are
also the sub-profiles of each particle species in the simulation and the indi-
vidual profiles of the two progenitors with central slope γ = 0.0 respectively
γ = 1.0.
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2.5 Conclusions

The multi-mass technique for modelling haloes is a simple method in order to perform
high-resolution N-body simulations. The following rules of thumb should lead to well
behaving structures:

• The mass ratios between particles of neighbouring shells should not be too high.
We recommend from RM ≈ 20− 30 for flat profiles up to maximum RM ≈ 100 for
steep profiles.

• The softening length should scale according to the mass of the particle, i.e. high
mass particles should have bigger softening than low mass particles in order to
prevent heavy scattering.

• The shell radii should be set at places where the local density profile is steep so
that the transition region where different species contribute equally is as small as
possible.

• The density profiles are only stable down to the radius rres which depends on the
time TS the simulator wants to simulate. Below that scale, relaxation will lead to
flattening of the density profile. For a given computer run time TS, this implies a
minimum effective number of particles.

The multi-mass technique can lead to a significant gain in computer run time for a
given resolution scale and is therefore ideally suited for many applications in N-body
simulations.
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Chapter 3

An optimum time-stepping scheme for
N-body simulations1

3.1 Introduction

Achieving spatial adaptivity in the evaluation of forces in N-body simulations is a well
studied problem with many effective approaches based on the use of tree structures and
multipole expansions or nested grids and FFT techniques. Such adaptivity in space also
comes with a desire to achieve adaptivity in the time integration of these simulations
since a large dynamic range in density implies a large dynamic range in time-scales for
self gravitating systems (T ∼ 1/

√
Gρ ). Two very different problems present themselves

when trying to achieve this. First, there are no practical (explicit), general purpose
(applicable to a wide range of astrophysical problems), adaptive integration techniques
known for the N-body problem which are symplectic. By this we mean that the numer-
ical integration is an exact Hamiltonian phase flow very close to the phase flow of the
continuous system under study. This is a very desirable property for following systems
for longer than a single dynamical time. Such exact preservation of the geometrical
properties of the dynamical system is possible for fixed time-step schemes. For general
N-body simulations with adaptive time-stepping we have to resort to approximate sym-
plectic behaviour or preservation of time symmetry (a property which is known to lead
to very good integration methods). The second problem is that of continuously deter-
mining the appropriate time-step for each particle in the simulation so that the error
in the integration remains within tolerance while performing the fewest possible force
evaluations and minimising the computational overhead. Resolving this second problem
is the main focus of this chapter and can be considered independently from methods
symmetrizing the time-stepping scheme such as presented in in work by Stadel [144] and
Makino et al. [97].

There are several known time-step criteria based on different properties of the sim-
ulation (e.g. local density ρ(r), potential Φ(r), softening ε, acceleration a, jerk ȧ or
even the velocity v of the particle) that are used in state-of-the-art numerical codes
[1, 125, 128, 141, 144]. Some of them have a physical motivation, others are just a
clever combination of physical properties in order to obtain a criterion which has the
physical unit of time. All are an attempt to find an inexpensive way of determining an

1This chapter is a slightly modified version of Zemp et al. [174].
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appropriate time-step for each particle in the simulation. For cosmological simulations,
the ad-hoc time-step criterion based on the acceleration and the gravitational soften-
ing of the particle (T ∼

√
ε/a ) has proven very successful, despite the fact that it is

not directly related to the dynamical time in these simulations. One reason why this
time-step criterion is thought to work well is that it results in a very tight time-step
distribution with very infrequent changes in the time-step of a particle in block time-
stepping schemes (power of 2 step sizes; see also section 3.2.2). This hides the evils
due to the first problem since the behaviour is more like that of a fixed time-stepping
scheme than for other criteria. The price however is that more time-steps are taken in
lower density regions of the simulation than would seem to be necessary. Furthermore,
while still adequate for the type of simulations that have been performed up to now,
which adapt the softening and mass of particles in the highest density regions and thus
reduce the time-step somewhat artificially in those regions, this time-stepping scheme is
no longer effective in simulations covering a much larger dynamic range.

In state-of-the-art computer simulations, structures can be resolved by Nvir ≈ O(107)
which results in a resolution scale of rres ≈ O(10−3 rvir). By comparing the dynamical
scales at rvir and rres, we get Tdyn(rvir)/Tdyn(rres) ≈ O(103) or even larger for future high
resolution simulations. This large dynamical range in time-scales demands an acutely
adaptive criteria so that the dense, dynamical active regions are resolved correctly while
the simulations remain fast.

However, in a general simulation, such as those used for cosmological structure forma-
tion, it is not straightforward to determine the dynamical time of a given particle. This
depends on the dominant structure responsible for the orbit of a particle which needs
to be quickly determined at each time-step as the particle is advanced. In this chapter
we develop a new fast method of determining each particle’s true dynamical time us-
ing information directly computed in the force evaluation stage of the simulation. This
is quite different from using the local dynamical time which fails dramatically under
many circumstances, e.g. consider using the local density near the earth to estimate its
time-step!

3.2 Dynamical time-stepping

3.2.1 General idea and description

In order to advance a particle in a numerical simulation, we have to choose a particular
time-step for each individual particle. Let us consider a particle on a circular orbit in
a system with spherical symmetric density profile ρ(r). The dynamical time Tdyn(r) (or
orbital time) of this particle at radius r under spherical symmetry is given by

Tdyn(r) ≡ 2π
1√

Gρenc(r)
, (3.1)

where

ρenc(r) ≡ M(r)

r3
(3.2)
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is the enclosed density within the radius r and M(r) is the total mass within radius r.
The natural choice for a time-step of a particle would therefore be ∆T ∝ Tdyn were we
not faced with the difficulty of determining the enclosed density.

For a particle in a given landscape of cosmic structure, the enclosed density should
be set, roughly speaking, by the structure that the particle is orbiting about. Within
collisionless cosmological simulations this could be some super-cluster scale structure, or
an individual dark matter halo, or some substructure within a dark matter halo. Ideally,
we would scan the whole sky of the particle and determine the structure that gives the
dominant contribution to its acceleration. From this dominating structure, we could
determine the enclosed density and hence find the dynamical time of the particle.

Here we have to distinguish two different regimes. First, we have the mean field
regime, i.e. particles move in a (slowly) varying potential that is determined by the
total mass distribution. The individual particles are only weakly influenced by their
direct neighbours and their motions are dictated by the sum of more distant particles.
This is ensured by appropriately softening the short range force thereby placing an
upper limit on the contribution from an individual particle. In this regime we want the
enclosed density to be set by the globally dominating structure. The second regime is
the gravitational scattering regime where we would like to follow large angle scattering
due to gravitational interactions, i.e. orbits with eccentricity e → 1. Here it is important
to get the contributions from the closest neighbours which dictate the orbital evolution
when they are very close and when there is little or no force softening. This means that
the enclosed density is often set by some locally dominating particle.

The determination of the enclosed density is quite easy for some simple configurations
like the 2-body problem or a particle orbiting an analytically given spherical symmetric
structure. However, the generalisation to any given configuration in an N-body simula-
tion is not so straightforward and we present a simple way in which this can be achieved
within a tree based gravity code. The specific implementation within other code-types
may look somewhat different but the general scheme and spirit of the method stays the
same.

3.2.2 Implementation within a tree-code

We use the tree-code PKDGRAV written by Stadel [144, see also section 1.3.5] which
allows for an adaptive time-stepping mechanism where each particle can be on a different
time-step. The time-steps of the particles are quantized in fractions of powers of two
of a basic time-step T0 (block time-stepping). Therefore, particles on rung n have an
individual time-step of

∆T =
T0

2n
, (3.3)

where T0 is the basic time-step of the simulation and can be chosen by the simulator.
As stated previously, our time-stepping criterion is given by,

∆TD =
T0

2n
≤ ηD

1√
Gρenc(r)

, (3.4)
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where ηD is a free parameter. Therefore, we need to calculate the enclosed density ρenc

for each particle from information that is available in a tree-code in order to determine
its rung.

In hierarchical tree-codes, at every time-step two interaction lists are generated for
each particle: a list of multipoles and a list of particles that interact with the given
particle. The tree structure in such codes is a hierarchical representation of the mass in
the simulation with each subvolume, or cell, being a node in this tree. As we proceed from
the root to the leaves of this data structure we get an ever finer mass representation of
the simulation. The forces from more distant cells are calculated by using the multipole
expansion of the gravitational potential. This expansion makes it clear that a finer mass
representation, or smaller cell, is required for nearby regions than for more distant ones
if we want uniform relative errors for each multipole contribution to the force. In its
simplest form this is realised by a tree-walk algorithm which, for a given cell, decides
whether the use of a multipole expansion for this cell satisfies a given error tolerance.
If not, this cell is opened and its two or more children are considered in the same way.
The opening radius of a cell which sets an error tolerance is defined by

ropen =
2√
3

rmax

θ
, (3.5)

where θ is the opening angle and rmax is the distance from the centre of mass of the
cell to the most distant corner of the cell. The numbers are only geometric factors so
that in the case of a cubic cell with homogeneous density 2/

√
3 rmax corresponds to the

side length of the cube. A cell may only be accepted as a multipole interaction if the
particle for which we are calculating the force is further from the centre of mass of the
cell than this radius. If a leaf cell (called buckets) needs to be opened, then we calculate
the interactions with each of its particles directly (no multipole expansion is used in this
case).

At the end of this procedure each particle in the simulation has two interaction lists:
1) a cell list which can be thought of as the long range contributions to gravity and
2) a particle list which accounts for the short range gravitational interactions. The
acceleration and the potential energy of each particle are calculated from these two
interaction lists. The opening angle varies the ratio of directly calculated forces to those
calculated via multipole expansions. It therefore controls force errors and also determines
the primary cost of a simulation. For the calculation of the dynamical time of a particle,
we generate an additional list of cells containing only the buckets opened by the above
procedure which provides a reduced representation of the particle list. The cell list and
this additional list, which we call the particle-bucket list, form a complete tiling of the
entire simulation volume except for the local bucket of the particle itself, which is not
included.

Mean field regime algorithm

We only need to calculate the time-step of a particle when we evaluate the force acting
on it. The dynamical time of a particle is then determined according to the following
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scheme:

1. Pick out the 0.5 percentile highest values of ρenc from both the cell and particle-
bucket interaction lists. We regard this subset of cells as the centres of dominant
contributions to the acceleration of the particle, otherwise called maxima. Once
we have added the contributions of the mass surrounding each of these centres we
can make a final determination of which is the dominating region and hence set
the correct dynamical time-step. The enclosed density for a cell is defined by,

ρenc =
MC

|rPC|3 , (3.6)

where MC is the total mass of the cell and rPC the vector from the location of the
particle to the centre of mass of the cell.

2. For each of these centres, add up all the ρenc values from the other cells in the list
that satisfy both of the following criteria:

|rPC| ≤ 2 |rPCmax| (3.7)

0.75 ≤ rPCmax · rPC

|rPCmax||rPC| , (3.8)

where rPC is the vector from the location of the particle to the centre of mass of
the cell and rPCmax is the vector from the particle to one of the maxima. That
means, we add up all the ρenc values of cells that lie within a spherical viewing
cone of opening angle 2α = 2 arccos(0.75) ≈ 83◦ around a maximum cell (Cmax)
with the particle (P) being the apex extending to 2 |rPCmax|.2 See also figure 3.1
for the geometric configuration. If the particle would orbit a perfectly spherically
symmetric halo at radius r then the dynamical relevant mass would lie in the
sphere of radius r centred at the geometric centre of the halo. Therefore, the angle
α is chosen so that the volume of the sphere

VS =
4π

3
r3 (3.9)

equals the volume of the spherical cone

VC =
2π

3
(2r)3[1− cos(α)] (3.10)

resulting in
VS

VC

=
1

4[1− cos(α)]
= 1 . (3.11)

This is reached for cos(α) = 0.75.

2Adding up the ρenc values shows less scattering in the determined time-steps than adding up first the
masses of the cells and then dividing by the total volume. It also correctly accounts for softened
contributions to the force from the region close to P since the ρenc contributions are reduced there.
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Figure 3.1: Viewing cone for the allowed region of cells to be accepted by the time-step
criterion. Cmax is the location of the maximum cell. We accept all cells
that are within the cone of opening angle 2α ≈ 83◦ with the particle (P)
being the apex extending to 2 |rPCmax|.
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3. We now have a summed ρenc of mass contributions about each maximum. Only
the largest of these, ρenc,MF, is used in determining the dynamical time-step of the
particle.

4. Add the local density ρlocal to the enclosed density ρenc,MF of the particle. We do
this in order to account for possible contributions from the local bucket of the
particle.

As prefactor we use a value of ηD = 0.03. This choice is motivated by studies of Stadel
[144] and is further discussed in section 3.3.5.

Error terms in leapfrog schemes

In computer simulations, the system is not evolved by the true Hamiltonian but by the
approximate Hamiltonian

HA = H0 + ∆T 2H2 + ∆T 4H4 + O(∆T 6) . (3.12)

In PKDGRAV, particles are evolved by using a kick-drift-kick leapfrog scheme. This
means

H0 = HD + HK = H (3.13)

H2 =
1

12
{{HK, HD} , HD} − 1

24
{{HD, HK} , HK} (3.14)

where we have split the true Hamiltonian H into a drift (HD) and kick (HK) part. A
detailed derivation and an expression for H4 is given in appendix A. Therefore, the
dominant error term is the second order term E2 = ∆T 2H2.

For a 2-body problem, the Hamiltonian is given by

H =
p2

r

2µ
+

p2
ϕ

2µr2

︸ ︷︷ ︸
HD

−A

r︸︷︷︸
HK

(3.15)

where

µ ≡ M1M2

M1 + M2

(3.16)

is the reduced mass and A = GM1M2 and where M1 and M2 denote the masses of
the two particles. The problem is described by the two coordinates r and ϕ and their
conjugate momenta

pr = µṙ (3.17)

pϕ = µr2ϕ̇ = L (3.18)

Since the coordinate ϕ is cyclic, its conjugate momentum is an integral of motion, i.e.,
the angular momentum,

L2 = µaA(1− e2), (3.19)
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is conserved. Here a = A
−2E

, i.e. |a| is the semimajor axis of the ellipse (e < 1) or
hyperbola (e > 1) and E is the total energy of the orbit. By using a symmetrised
time-step,

∆T = ηD

√
r3

G (M1 + M2)
= ηD

√
r3µ

A
, (3.20)

we can calculate the higher order error term E2 of the approximate Hamiltonian for a
2-body problem and evaluate it at pericentrer of the particle’s orbit,

Eperi
2 = ∆T 2H2 =

1

24

(1 + 2e) η2
DA

(1− e) a
. (3.21)

We see that the error depends on eccentricity e of the orbit. This allows us to correct
for the second order error and control the error at pericentre.

Gravitational scattering regime algorithm

The value of ρenc is determined in exactly the same way as described in section 3.2.2.
However, in order to account for gravitational scattering events we need to consider the
close particle interactions in our determination of the dynamical time in more detail.
The procedure here is the following: we go through the particle interaction list and pick
out the highest value of

ρenc,GS = C(e)
MP + MI

|rPP|3 , (3.22)

where MP is the mass of the particle, MI is the mass of the particle in the interaction
list, rPP is the particle-particle distance and

C(e) ≡ 1 + 2e

|1− e| (3.23)

is the additional factor that corrects for eccentricity of the orbit. The symmetrisation in
ρenc,GS is to cover cases where unequal mass particles are involved in the interaction. In
such cases the heavier particle would be on a much larger time-step than the interacting
partner, resulting in momentum conservation problems and unphysical behaviour when
the mass ratio is large. The eccentricity of two interacting particles is given by

e ≡
√

1 +
2EL2

µA2
. (3.24)

We then compare the two values of ρenc,MF and ρenc,GS. The larger of these two is used
when we want to follow gravitational scattering effects.

3.3 Time-stepping criterion tests and behaviour

3.3.1 General properties

In order to see how the dynamical time-step criterion works, we present the time-step
distribution in four dark matter haloes, of the αβγ-models family given by equation (2.1)
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with γ = 1.5, 1.0, 0.5 & 0.0 where γ is the inner slope of the density profile ρ(r) ∝ r−γ.
The outer slope is always β = −3. All haloes have a virial mass of Mvir = 1012 h−1M¯ =
1.429 × 1012 M¯ (h = 0.7) and are represented by Nvir ≈ 7.5× 106 particles within the
virial radius. This virial mass corresponds to a virial radius of rvir ≈ 289 kpc. We fix the
concentration of the profile with central slope γ = 1.0 to c1.0 = 10 and the concentrations
of the other profiles were chosen so that the maximum circular velocity is reached at the
same radius in all haloes. The softening of the particles was ε = 0.1 kpc ≈ 3.5×10−4 rvir

in all haloes.
We compare our new time-step criterion based on the dynamical time with the stan-

dard criterion commonly used in N-body simulations. The standard criterion for select-
ing time-steps in N-body simulations is based on the acceleration of the particle. The
rung, n, and time-step taken, ∆TS, for the standard criterion is given by,

∆TS =
T0

2n
≤ ηS

√
ε

|a(r)| , (3.25)

where ε is the softening and a the acceleration of the particle. By default, a value
ηS = 0.2 is generally used. In spherically symmetric systems, we can calculate the
radius req where the dynamical and standard criteria give the same time-step

∆T 2
D(req) = ∆T 2

S (req) (3.26)

η2
D

r3
eq

GM(req)
= η2

S

ε r2
eq

GM(req)
(3.27)

which results in

req =
η2

S

η2
D

ε , (3.28)

independent of the form of the density profile.
In figure 3.2 we plot the time-step criterion distribution of the particles for all haloes

as a function of distance from the centre of the halo. Between solid and long dashed lines
the values for the dynamical time-step criterion (blue) and following the short dashed
line the standard time-step criterion values (red). For a better overview, we only plot
0.1 per cent of the particles randomly selected from the total number of particles in each
halo.

As we can see in figure 3.2, the standard criterion follows closely the theoretical curve
(short dashed) with |a(r)| calculated numerically. The dynamical time-step criterion
also follows closely a band between ηD = 0.02...0.03 (long dashed and solid lines) for the

theoretical curve with ρenc = M(r)
r3 . The radius of equal time-steps with the parameters

above results in req = 4.444 kpc ≈ 1.5× 10−2 rvir.
On the right side of each plot in figure 3.2, we also plot the time-step distribution in

three bins at ri = rvir, 10−1 rvir, 10−2 rvir of width 0.002 in logarithmic scale. For the
dynamical time-stepping scheme, most of the particles lie in the band between the two
curves. Of course, we expect a spread in our criterion since our add-up scheme does not
recognize perfectly the geometry of the surrounding structure. We note however that

45



Chapter 3 An optimum time-stepping scheme

Figure 3.2: We plot the time-step criterion distribution for four profiles with central
slope ranging from γ = 0.0 ... 1.5. The results for the dynamical and
standard time-stepping criteria are shown. Time-steps are in units of the
dynamical time at the virial radius Tdyn(rvir) ≈ 12 Gyr. For further details
see main text.
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the add-up scheme is generally more conservative for the choice of time-step at a given
radius than the analytical value. In the two flat cases (γ = 0.0 and γ = 0.5), the bin
at 10−2 rvir is close to the resolution limit of the halo and the distribution is therefore
quite noisy and relatively broad. Most of the effect due to this broader distribution at
small radii is absorbed by the block time-step scheme’s way of discretizing the actual
time-step taken (see also equation 3.4); the time-step value provided by the criterion is
just an upper limit.

With a rather conservative choice of ηD = 0.03, we sample the orbit of a particle on
a circular (tangential) orbit with at least 2π/ηD ≈ 200 steps. The second curve (short
dashed) used a value of ηD = 0.02 which corresponds to 2π/ηD ≈ 300 steps per circular
orbit.

The situation is a bit more complicated for particles on perfect radial orbits. For
a homogeneous sphere, the particle will oscillate through the centre of the sphere and
describe therefore a harmonic oscillator with period T =

√
3π/(Gρ) where ρ is the

homogeneous density of the sphere.3 If we take this value with ρenc = ρ we get for a
complete radial orbit between

√
3π/0.03 ≈ 100 and

√
3π/0.02 ≈ 150 steps per oscilla-

tion. Since our time-step criterion is very adaptive with radius, the dynamical time will
decrease in a steep density profile when the particle approaches the centre, so that the
effective number of steps is even higher.

The main disadvantage of the standard time-step criterion (3.25) is the bad adaptivity
with radius, i.e. the particles are distributed over relatively few rungs. Especially in
the profile with γ = 1.0, the particles inside about ten per cent of the virial radius are
all on the same time-step. For flatter central profiles with γ < 1 where ρ(r) ∝ r−γ, the
time-steps even increase inside the radius where the acceleration has its maximum, in
clear contradiction to the behaviour of the dynamical time! With the asymptotic scaling
of the cumulative mass function under spherical symmetry in the central region

M(r) ≡ 4π

∫ r

0

ρ(r)r2dr ∝ r3−γ (γ < 3) , (3.29)

we can calculate the asymptotic radial behaviour in the central region of the standard
time-stepping criterion

∆TS ∝
√

1

|a(r)| ∝
√

r2

M(r)
∝ r

γ−1
2 (γ < 3) , (3.30)

where γ is the inner slope of the density profile, i.e. ρ(r) ∝ r−γ. In contrast, the
dynamical time-stepping scheme has the following dependence

∆TD ∝
√

r3

M(r)
∝ r

γ
2 (γ < 3) . (3.31)

3Note that Binney and Tremaine [15] defines the dynamical time as the time needed by the particle
to reach the centre which means Tdyn ≡ 1

4T =
√

3π/(16Gρ).
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The standard criterion can only obtain the correct choice of time-step in the central
regions by shifting the above relation, either by choosing a small softening for these
particles, or by reducing ηS. This automatically leads to an immense computational
expense due to the overly conservative time-steps in the outer parts of the halo or
even wrong physical behaviour due to the choice of too small softening for the physical
problem (e.g. undesired scattering of particles). The radial scaling of the standard
criterion makes it ill suited to the study of the centre of galaxies and in other situations
where a very large dynamic range in density needs to be evolved correctly. The dynamical
time-stepping technique we present is a much more universal approach to choosing time-
steps in self-gravitating systems, since the basic parameters of the method, such as the
angle for adding up mass contributions, once determined, are kept fixed for different
simulations.

3.3.2 Elliptic 2-body orbits

In order to quantify the performance of our adaptive dynamical time-stepping criterion
in the scattering regime, we performed a series of simulations studying the behaviour of
high eccentricity 2-body Kepler orbits. After choosing the masses M1 and M2 of the two
bodies, all other quantities are fixed, i.e. the orbital time of the Kepler orbit is given by,

TK ≡
√

a3(2π)2µ

GM1M2

= 2π

√
a3

G(M1 + M2)
(3.32)

and the initial total energy is calculated by,

E0 ≡ −GM1M2

2a
. (3.33)

We chose a unit system where Newton’s gravitational constant G ≡ 1 and we fix the
orbit in the same way, i.e. the semi-major axis is always a ≡ 1. The softening ε of
the two particles was set to 0.1 dperi in all cases where dperi ≡ a(1 − e) is the periapsis
distance of the Kepler orbit. PKDGRAV treats the forces completely Newtonian if the
two particles have a distance larger than 2ε which is therefore always the case in these
test runs. Initially, the particles were set in a coordinate system where the centre of
mass is at rest at the origin and the two particles were at apoapsis configuration along
the x-axis. A short summary of the parameters can be found in table 3.2.

We let each run evolve for 1000 TK (TK was also the basic or longest time-step in the
block time-stepping scheme, T0), measured the total energy E1000 after the end of the
run and calculated the relative energy shift (E1000 − E0)/|E0|. These values are also
listed in table 3.2. From table 3.2, we see that even for a high eccentricity (e = 0.999)
orbit we still have relative energy conservation on the level of ≈ 10−6 per orbit. The
general behaviour can also be seen in figure 3.3 where we plot the orbit from 0 to TK

and the orbit from 999 TK to 1000 TK for each of the different runs i) - l). The two
orbits lie nearly on top of each other except for the e = 0.99 case, where the energy gain
in the integration was the largest, we can see a small deviation. When we compare the
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Figure 3.3: Top left: run i), top right: run j), bottom left: run k), bottom right: run l)
from table 3.2. We plot the orbit from 0 to TK (orbit 1) and the orbit from
999 TK to 1000 TK (orbit 1000) for each run. All runs used the dynamical
time-stepping scheme with eccentricity correction. We deliberately did not
plot the scaling of the two axes constrained in order to make the small
deviations visible.
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Figure 3.4: Top left: run b), top right: run m), bottom left: run n), bottom right:
run o) from table 3.2. Run b) shows the dynamical time-stepping case
with eccentricity correction. The orbit is perfectly followed. In run m), we
can nicely see the energy gain visually due to the lack of the eccentricity
correction in the time-step criterion. Run n) where we tried to resolve a
e = 0.9 orbit analogue to run b) with the standard time-step criterion. In
run o), we see a run where we used a smaller value of ηS = 0.029 so that
the standard criterion initially makes an equal number of steps per orbit
as the dynamical time-stepping scheme in run b). For further details see
main text.
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Figure 3.5: Run p) where we tried to resolve an e = 0.9, high mass ratio orbit with
the standard time-stepping criterion. The heavy particle gets an immense
kick and the total energy becomes positive. Thus, the heavy particle drags
the light particle with it and the whole system drifts apart. The standard
criterion therefore fails completely to follow the orbit correctly.

runs with different mass ratios, we see that the relative energy conservation is nearly the
same, i.e. the relative energy conservation depends only on the geometry of the orbit.

In order to illustrate the robustness of our method we have performed some further
tests. In run m), we switched off the eccentricity correction in the symmetrised dynam-
ical time-stepping (3.22), i.e. C(e) = 1. We see that the energy gain over 1000 TK is
≈ 240 times larger than in the corresponding run b) with eccentricity correction. This
can also be seen visually in figure 3.4. Due to the energy gain, the orbits of both particles
become wider.

In run n) we tried to resolve the orbit with the standard time-stepping criterion given
by equation (3.25). This criterion depends on the softening length ε of the particle and
is therefore certainly not ideal in the gravitational scattering regime. We’ve chosen the
same value as in run b) where we had ε = 0.1 dperi = 0.01. From figure 3.4 we see
immediately when comparing run n) and b) that the standard criterion can not capture
the dynamics of the orbit. The orbits of the two particles become more circular and we
get a rotation of the whole system. If we had chosen a somewhat larger softening, so
that it is still smaller than half the periapsis distance, it would even look worse since
the standard time-stepping scheme directly depends on the softening length ε while the
dynamical time-stepping scheme would still perform equally well since it has no such
dependence.

Of course, the dynamical time-stepping criterion with eccentricity correction uses a
lot more steps per orbit than the standard criterion with ηS = 0.2. Therefore we tried
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Figure 3.6: The most extreme case, run I), with mass ratio of 106 and eccentricity e =
1.001. The dynamical time-stepping scheme with eccentricity correction
is used. There is no significant evolution over 1000 repeated pericentre
passages.

in run o) a run with an equal number of steps per orbit as run b). This is reached for
a value η = 0.029. The energy conservation is still not as good as in the case of the
dynamical time-stepping with eccentricity correction b) and there is a small amount of
precession of the periapsis.

The whole situation becomes even worse when we try to resolve 2-body orbits with
unequal mass particles. Since the standard time-stepping is not symmetric due to the
asymmetry in acceleration, it is not able to resolve a high mass ratio 2-body orbit
correctly and fails completely. This is shown in figure 3.5. Although the light particle
makes N = 3197 steps in the first orbit (here N in run p) denotes only the number of
steps of the light particle in table 3.2), the heavy particle takes a much larger first step
than the light particle. Of course when then the light particle approaches, the heavy
particle gets an immense kick, the total energy becomes positive and the whole system
drifts apart.

3.3.3 Hyperbolic 2-body orbits

In a similar way, we also tested the new dynamical time-stepping scheme for hyperbolic
orbits. Initial conditions were set up such that the line connecting the two particles
encloses an angle of π

6
with the semi-major axis (symmetry axis) of the hyperbola. The

time for the particle to reach the periapsis of the orbit is given by

TH =

∫ π

π
6

µ r2(φ)

L
dφ (3.34)
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3.3 Time-stepping criterion tests and behaviour

Figure 3.7: Left: run J), right: run K) from table 3.3. In run J) we see the energy gain if
the orbit is not followed correctly by not using the eccentricity correction in
the dynamical time-stepping scheme. On the right, we see run K) where we
used the standard time-stepping scheme. The heavy particle is wandering
around in a much larger area than allowed, as can be seen by comparing
the scales of the two inset plots.

where r(φ) describes the angle dependent relative separation of the two bodies. The
initial conditions used the same unit system as the elliptic orbit tests and we again set
the softening to 0.1 dperi where dperi ≡ a(e− 1) for hyperbolic orbits. A summary of the
different runs can be found in table 3.3.

In order to get an integrated effect, we mirrored the velocities of the particles after
2 TH and let the runs evolve in total for 2000 TH in order to get 1000 pericentre passages.

In figure 3.6, we plot the most extreme case, run I), with mass ratio of 106 and
eccentricity e = 1.001. Over 1000 pericentre passages, there is no visible evolution of
the orbit and the relative energy change is of order O(10−5) per orbit. For the other
cases with lower eccentricities and mass ratios, the new dynamical time-stepping scheme
works optimally and we do not show the other orbits here.

We tried again to resolve high mass ratio orbits without eccentricity correction (run
J) and the standard time-stepping scheme (run K). The results can be seen in figure
3.7. If we do not correct for the eccentricity (as in run J), the particles gain energy
and the orbits become wider. In run K) we see the behaviour of the standard time-
stepping scheme. Due to the large mass ratio, the acceleration of the light particle is
quite large and therefore it follows a qualitatively correct orbit due to the small time-
steps. This is similar to the case p) of the elliptic 2-body orbits where the light particle
describes an elliptical orbit about the massive particle, even though this massive particle
gets a spurious kick. Once again, the massive particle has a completely incorrect oribit
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wandering around in a very large area due to the spurious kicks (compare the scales of
the inset plots in runs J and K). The lack of momentum conservation in such cases results
in this contrasting behaviour of the two different mass particles. The symmetrization
of the time-step criterion restores momentum conservation between the two particles
involved in the gravitational scattering event.

3.3.4 Cosmological structure formation

We also tested the performance of the dynamical time-stepping scheme in a cosmological
structure formation run. For this purpose, we used a fiducial simulation of the Virgo
cluster [61] in a cosmological framework with ΩM = 1, no cosmological constant i.e.
ΩΛ = 0 and H0 = 50 km s−1 Mpc−1. The simulation cube had a box length of L =
100 Mpc and the total mass in the cube was Mtot = 6.937 × 1016 M¯. The cluster
was resolved using the standard refinement technique [77, 78] so that the particle mass
in the highest resolution region was 8.604 × 108 M¯ and the softening length of the
lightest particles was ε = 5 kpc. The total number of particles was 1.314 × 106. The
simulation started at redshift z = 69 and we evolved the cluster to redshift z = 0 with
three different time-stepping schemes: one dynamical and one standard time-stepping
run and, for comparison, a fixed time-step scheme with 300000 time-steps from z = 69 to
z = 0 (this corresponds to 20000 time-steps down to redshift z = 5 in the above described
cosmology). With this choice, the fixed time-step length corresponds approximately to
the smallest time-step chosen by the dynamical criterion during the whole run. Only
for a few particles, the dynamical scheme did choose smaller steps than this fixed time-
stepping run.

The virial radius of the resulting cluster was in all cases rvir ≈ 2 Mpc (overdensity ≈
200) and had a final mass of MCluster ≈ 4.3× 1014 M¯. In figure 3.8, we plot on the top
panel the radial density profile for the three runs at redshift z = 0. Here ρD(r) is the
radial density of the run with the dynamical time-stepping scheme, ρS(r) the density
profile of the run with the standard time-stepping scheme and ρF(r) the profile of the
fixed time-step run. In the lower panel, the relative difference (ρ(r) − ρF(r))/ρF(r) is
also plotted. The softening of the highest resolution particles correspond to ε = 5 kpc ≈
2.5 × 10−3 rvir. As we can see in figure 3.8, the same radial density profile is obtained
for the final cluster in this cosmological simulation.

We also compared the substructure mass function at redshifts z = 0 and z = 5 for the
three runs. For that, we used the group finding software skid4 with a linking length of
20 kpc = 4 ε and a density and number cut so that only structures that are virialised and
which are represented by at least 100 particles are accepted. In figure 3.9, we plot the
mass function n(M) (number of substructures of mass M) as a function of substructure
mass M for output at redshifts z = 5 and z = 0. There is no substantial difference
between the mass functions for the different time-stepping schemes.

For these low resolution runs we do not expect to see a significant difference between
the three runs since the scale at which the standard scheme begins to take an insufficient

4www-hpcc.astro.washington.edu/tools/skid.html
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3.3 Time-stepping criterion tests and behaviour

Figure 3.8: Density profiles of the three runs of the Virgo cluster with the different
time-stepping schemes at final redshift z = 0: ρD(r) is the radial density of
the run with the dynamical time-stepping scheme, ρS(r) the density profile
of the run with the standard time-stepping scheme and ρF(r) the profile
of the fixed time-step run. The profiles are normalised with respect to the
critical density ρcrit. On the top panel, the absolute values and on the lower
panel the relative differences (ρ(r)− ρF(r))/ρF(r) are plotted.
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Figure 3.9: Substructure mass function of the Virgo cluster run at redshift z = 5 (left)
and z = 0 (right). There is no substantial difference between the runs with
different time-stepping schemes visible.

number of time-steps corresponds approximately to the resolution scale of this simula-
tion. This is just a confirmation that the dynamical time-stepping scheme also works
for the extreme dynamics of a cosmological structure formation run.

3.3.5 Dependence on parameters

Softening length ε

The standard time-step criterion (3.25) depends directly on the artificial simulation
parameter softening length ε. There is however no physical basis for this definition.
Furthermore, the functional form of the acceleration in centrally flat (γ < 1) haloes is
problematic and can lead to nonsensical time-steps if the resolution is high enough (see
figure 3.2). Even a simple 2-body problem is not treated properly by the standard time-
stepping scheme, since the time-steps depend on acceleration which is not symmetric
and again there is the meaningless dependence on the softening of the particles.

The dynamical time-stepping scheme only depends indirectly on the softening length.
If two particles are close enough such that their forces are softened, we also use the
softened values for the ρenc. In this way the scheme also determines an appropriate
dynamical time-step when the Green’s function deviates from the Newtonian 1/r. Fur-
thermore, the new dynamical time-stepping scheme may be used without modification
in simulations where the softening is set to zero, i.e., where the interactions are never
softened.
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Force opening angle θ

The opening angle θ determines the weighting of directly calculated forces to force con-
tributions coming from the multipole expansion. This parameter mainly determines the
accuracy of the force. By including the terms in the particle-bucket list, the dynamical
scheme does not show a significant dependence on the choice of the force opening angle
θ.

Cone viewing angle α

We normalised the viewing angle α so that the volume of the sphere and the cone in
figure 3.1 are equal. We also tried larger values of cos(α) > 0.75 (i.e. smaller angles)
but the resulting time-step distribution did not follow the theoretical curves as well as
for the case of cos(α) = 0.75 (especially close to the centre).

Number of maxima

Ideally, one would scan the particle’s whole sky for the gravitationally dominating struc-
ture. But this would be computationally very expensive. With our choice of the 0.5
percentile largest ρenc cells in each of the cell and particle-bucket lists we find a good
compromise between getting the correct dominating structure (i.e. low scattering of the
enclosed density values) and computational speed. Having to consider multiple maxima
is the main factor which makes the dynamical time-stepping scheme more expensive than
the simple schemes used to-date. However, if we loosen the strict geometrical definition
of the viewing cone, then faster schemes which rely on the hierarchical tree structure
when scanning the sky for maxima and their surrounding mass become realisable. Such
algorithmic improvements are being investigated and will be discussed in future work.

Prefactor ηD

Stadel [144] performed stability tests for a leapfrog scheme in the drift-kick-drift mode.
The result was that 2-body orbits became unstable for choices of ηD ≥ 0.1. For these
tests, the choice of time-steps was also based on the dynamical time of the 2-body
problem.

We performed similar tests with the kick-drift-kick leapfrog scheme and found that
e = 0.9 orbits become unstable in the mean field regime (i.e. without eccentricity
correction) for choices of ηD too large. Of course by choosing a smaller value of ηD, one
always gets better precision but the computational costs become larger. With the choice
of ηD = 0.03 we found a compromise between stability and computational costs.

3.3.6 Efficiency

In order to quantify the efficiency of the dynamical time-stepping criterion in comparison
with the standard criterion, we can compare the number of force evaluations for a given
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problem. In a spherically symmetric halo, the number of particles in a shell at radius r
with thickness dr is given by

dNP =
4πρ(r)r2dr

Mvir/Nvir

. (3.35)

The number of time-steps per time interval τ for each of these dNP particles at radius r
is given by

ND =
τ

ηD

√
Gρenc(r) =

τ

ηD

√
GM(r)

r3
(3.36)

in the dynamical case. In the case of the standard time-stepping scheme, this is instead
given by

NS =
τ

ηS

√
|a(r)|

ε
=

τ

ηS

√
GM(r)

ε r2
. (3.37)

We do not account for the actual block time-stepping scheme used in PKDGRAV for
this numerical estimation.

The number of force evaluations in that infinitesimal thin shell is now simply given
by

dFS = dNP NS (3.38)

respectively
dFD = dNP ND . (3.39)

The ratio

RE ≡ dFS

dFD

=
ηD

ηS

√
r

ε
, (3.40)

shows that above req defined by equation (3.28), i.e. the radius where both time-stepping
criteria give the same value, the number of force evaluations at a given radius is always
a factor RE ∝

√
r larger.

In figure 3.10, we plot the number of force evaluations per Gyr per radius dFD/dr and
dFS/dr for a dark matter halo with central profile γ = 1.0 used also in figure 3.2 with
Nvir = 7.5× 106. The figure shows the asymptotic behaviour of the curves in the central
region given by

dFD

dr
∝ r2− 3

2
γ γ=1∝ r

1
2 (3.41)

respectively
dFS

dr
∝ r

5
2
− 3

2
γ γ=1∝ r1. (3.42)

In the inner region, i.e at distances smaller than req from the centre, more force evalua-
tions are done in the dynamical time-stepping scheme, as expected. Here the standard
scheme does not give small enough time-steps to follow the dynamics. Since in most
cases of low resolution simulations req (due to a clever choice of softening or ηS) is around
the resolution scale, the error is typically small. High resolution simulations can however
become very slow if one wants to resolve the central region correctly with the standard
time-stepping scheme.
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Figure 3.10: Number of force evaluations N per Gyr per radius for the dynamical
scheme dFD/dr respectively dFS/dr for the standard scheme for a dark
matter halo with central profile γ = 1.0. For infinitesimal thin shells
at radii larger than req, the standard time-stepping scheme has always
a factor RE (given by equation (3.40)) more force evaluations per Gyr.
The inner slope is γ = 1 and we have therefore the following asymptotic
behaviour in the centre: dFD/dr ∝ r

1
2 and dFS/dr ∝ r1.
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Nvir 7.5× 106 7.5× 108 7.5× 1010

FD 7.612× 108 7.612× 1010 7.612× 1012

FS 2.336× 109 7.388× 1011 2.336× 1014

FS

FD
3.069 9.705 30.69

Table 3.1: Number of force evaluations per Gyr for an halo with γ = 1.0 and different
resolutions Nvir.

In order to illustrate the efficiency gain, we calculate the number of force evaluations
per Gyr for three different haloes with central slope γ = 1.0 that have the same profile
and specifications as the one used in figure 3.2 and 3.10. We only changed the number
of particles: they are Nvir = 7.5× 106, 7.5× 108 and 7.5× 1010 particles within the virial
radius. For the first halo we chose a softening length of ε1 = 100 pc ≈ 3.5 × 10−4 rvir

and we scaled the softening of the other haloes according to the scaling of rimp given by
the solution of

rimp = h(rimp) , (3.43)

where h(r) is the mean particle separation defined by

h(r) ≡ 3

√
Mvir/Nvir

ρ(r)
. (3.44)

Seee also section 2.1 for further details. In other words, rimp is the distance of the
innermost particle to the geometrical centre of the halo and scales as

rimp ∝ 3−γ

√
1

Nvir

γ=1∝
√

1

Nvir

(3.45)

resulting in ε2 = 10 pc and ε3 = 1 pc for the other softenings.
The number of force evaluations per Gyr (τ = 1 Gyr) is given by

FD =

∫ rvir

rimp

dFD respectively FS =

∫ rvir

rimp

dFS , (3.46)

and the numerical results can be found in table 3.1. We see that FD scales as FD ∝ Nvir

whereas FS scales approximately as FS ∝ N1.25
vir in the case of a halo profile with γ = 1.0.

This specific scaling of FS is due to the scaling of the softening length ε ∝ rimp resulting
in the general scaling of

FS ∝ N
1+ 1

2(3−γ)

vir . (3.47)

For a different scaling of the softening, one gets of course a different scaling of FS,
e.g. ε ∝ N

−1/3
vir results in FS ∝ N

7/6
vir independent of γ. This again shows the strong

dependence of the standard scheme on the softening length ε and that the the dynamical
time-stepping scheme is much more efficient than the standard scheme for high resolution
simulations.

60



3.4 Conclusions

3.4 Conclusions

We have developed a physically motivated time-stepping scheme that is based on the true
dynamical time of the particle. We also derive an eccentricity correction for a general
leapfrog integration scheme. The combination of these schemes allows us to follow quite
general dynamical systems that may contain a mixture of collisionless and collisional
interacting components. Compared to the standard time-stepping scheme used in many
N-body codes it has the following advantages:

• It does not depend directly on ad-hoc parameters such as the softening length ε.

• It gives physically correct time-steps in dark matter haloes with arbitrary central
cusp slopes.

• It is faster in high resolution simulations.

• It allows orbits with eccentricity e → 1 to be followed correctly.

• It allows us to follow complex dynamical systems where scattering events may be
important.

The main conclusion is that one should use a time-step criterion that is based on the
dynamical time. This scheme shows the optimum scaling with the number of particles
and always gives a physically motivated time-step.
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Chapter 4

Applications

The development of the multi-mass technique and especially the time-stepping scheme
were very time consuming. The author of this thesis was therefore involved in the first
application projects that used these new developments as a co-author. In Diemand et al.
[38], the the multi-mass technique was used in a cosmological structure formation run
in order to resolve the resulting density profile of a high resolution cluster down to one
per mill of the virial radius. Goerdt et al. [64] used multi-mass models in order to test
a potential explanation of the presence of the five globular clusters at approximately 1
kpc distance form the centre of the Fornax dwarf spheroidal galaxy. In this chapter we
present a summary of these projects.

4.1 Cusps in cold dark matter haloes1

4.1.1 Introduction

Recently a great deal of effort has gone into high resolution simulations which have
revealed density profiles of cold dark matter haloes down to scales well below one per cent
of the virial radius [34, 54, 117, 129, 149]. But the form of the profile below approximately
0.5 per cent of the virial radius remained unclear and there was no clear evidence for
a cusp in the centre, i.e. no significant inner region with a constant logarithmic slope.
Galaxy cluster haloes would be the ideal systems to resolve cusps numerically because
of their low concentration. In a galaxy or dwarf halo the inner power law is much harder
to resolve because it lies at a smaller radius relative to the size of the system.

The existence of a core or a cusp in the centre of cold dark matter haloes has impor-
tant observational consequences and is the crucial point in many tests of the cold dark
matter theory. Comparisons of dark matter simulations to rotation curves of low sur-
face brightness galaxies seem to favour constant density cores for most observed systems
[28, 48, 107, 134, 139, 148, 157]. But these comparisons still depend to some extent on
extrapolations of the simulated profiles toward the centre: Stoehr [145] extrapolate to
a constant density core and claim that the discrepancy to low surface brightness galaxy
rotation curves is much smaller than previously believed.

The strength of the γ-ray signal from dark matter annihilation depends on the square
of the dark matter density and the calculated flux values spread over several orders of

1Original publication: MNRAS, 364, 665 (2005) [38]
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magnitude, depending on how one extrapolates the density profiles from the known,
resolved regions down into the centres of the galactic halo and its subhaloes [12, 18, 126,
146]. Small, very abundant, Earth to Solar mass subhaloes could be very luminous in
γ-rays if they are cuspy [37].

The highest resolutions in cosmological simulations are reached with the widely used
refinement procedure [13]: first one runs a simulation at uniform, low resolution and
selects haloes for re-simulation. Then one generates a new set of initial conditions
using the same large scale fluctuations at higher resolution and additional small scale
fluctuations in the selected region. With this technique Navarro et al. [116] were able to
resolve many haloes with a few ten thousand particles and to infer their average density
profile which asymptotes to an ρ(r) ∝ r−1 cusp. Other authors used fitting functions
with steeper (ρ(r) ∝ r−1.5) cusps [52, 62, 110, 112]. Small mass cold dark matter haloes
have higher concentrations due to their earlier collapse [116] but the slopes of the inner
density profiles are independent of halo mass [27, 113]. Open, standard and lambda cold
dark matter (ΛCDM) cosmologies, i.e. models with (ΩM,ΩΛ) = (0.3, 0.0), (1.0, 0.0) and
(0.3, 0.7) yield equal inner profiles [53, 54]. There is some indication that models with
less small scale power like warm dark matter lead to shallower inner profiles [26, 129].
Different equations of state of the dark energy component lead to different collapse times
and halo concentrations but it is not clear yet if it also affects slopes well inside of the
scale radius [86, 92]. Most current simulations do not resolve a large enough radial range
to determine both the concentration and the inner slope; at the current resolution these
parameters show some degeneracy [84].

Recently a large sample of ΛCDM haloes resolved with a million and more particles was
simulated [57, 117, 129, 142, 149] and the best resolved systems contain up to 25 million
particles [34, 54]. But even these very large, computationally expensive simulations
resolved no inner region with a constant logarithmic slope.

Navarro et al. [117], Stoehr [145], Stoehr et al. [146] introduced cored profiles which
seem to fit the simulation data better than the cuspy profiles proposed earlier by Navarro
et al. [116] and Moore et al. [112]. This better fit was interpreted as indication against
cuspy inner profiles. However these cored profiles have one additional parameter and
therefore it is not surprising that they fit the data better. Diemand et al. [34] showed that
an αβγ-profile (see equation (2.1)) with the inner slope as additional free parameter fits
the highest resolution profiles just as well as cored profiles. Some theoretical arguments
seem to favour cusps [14, 67] but make only vague predictions about the inner slopes. A
recent model combines simulation results and analytical arguments to predict an inner
slope of -1.27 [6]. At the moment higher resolution simulations seem to be the only way
to decide the core versus cusp controversy.

We present simulations of one of the galaxy clusters from Diemand et al. [34] with
two orders of magnitude better mass resolution. Our results give strong support to
cuspy inner profiles. This increase in resolution was made possible with only a moderate
increase in computational cost by using the multi-mass refinement technique (see section
2).
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4.1 Cusps in cold dark matter haloes

Name D5 D12 DM25 DM50
N eff

vir 1.0× 106 1.4× 107 1.3× 108 1.0× 109

Multi-mass refinement no no yes yes
zStart 52.4 43.3 52.4 59.3
zEnd 0 0 0.8 4.4

Table 4.1: Summary of cluster models. The rows are effective number of particles
within virial radius N eff

vir, application of multi-mass refinement, start redshift
zStart and end redshift zEnd.

4.1.2 Numerical methods

Often in cosmological N-body simulations one uses high resolution particles only where
one halo forms and heavier particles in the surroundings to account for the external tidal
forces. One usually tries to define a large enough high resolution region to minimize or
avoid mixing of different mass particles within the region of interest. Here we apply the
multi-mass technique to increase the resolution in the centre of one cluster halo in a
cosmological N-body simulation.

The refinement procedure is usually applied to entire virialised systems, i.e. one
marks all particles inside the virial radius of the selected halo and traces them back
to the initial conditions. Then one refines the region that encloses the positions of the
marked particles. Usually the region is further increased to prevent any mixing of low
resolution particles into the virial radius of the final system. But with this procedure
only between one fourth to one third of all the high resolution particles end up in the
cluster.

If one is only interested in the inner regions of a halo it is possible to use the multi-
mass technique: instead of refining the whole virialised system we only refine the region
where the inner particles come from. This allows to reduce the size of the high resolution
region considerable, because most of particles that end up near the centre of the system
start in a very small region, compared to the region which one finds by tracing back
all the particles inside the virial radius. Using this technique it is possible to reduce
the computational cost of a cold dark matter cluster simulation by at least one order of
magnitude at equal force and mass resolution in the inner region.

Here, we applied the multi-mass refinement to the cluster D from Diemand et al. [34].
This cluster is well relaxed and isolated at z = 0 and has an average density profile
and inner slope close to the mean value. First we marked all particles within one per
cent of the virial radius in the final halo and traced them back to the initial conditions.
Then we added all particles within one comoving Mpc of a marked particle to the set of
marked particles, and finally we added all particles which lie on intersections of any two
already marked particles on the unperturbed initial grid positions. After these two steps
there was a region with a fairly regular triaxial boundary which contained only marked
particles. The number of marked particles grew by almost a factor of eight during these
additions, but it was still more than a factor of two smaller than the number of particles
in the final cluster and a factor of ten smaller than the original high resolution volume
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used in Diemand et al. [34].
With an effective mass resolution corresponding to 1.3 × 108 and 1.0 × 109 particles

inside the virial radius of a cluster, the models DM25 and DM50 are the highest resolu-
tion ΛCDM simulation performed so far. Due to the large number of particles and the
corresponding high force and time resolution these runs took a large amount of run time.
Fortunately the inner profiles of cold dark matter clusters are already in place around
redshift z = 1 and evolve little between z = 4 and z = 0 [54, 129, 149]. Therefore one
does not have to run the simulations to z = 0 to gain insight into the inner density
profile. We stop DM50 at z = 4.4, DM25 at z = 0.8 and use the medium resolution
runs D5 and D12 (for which the multi-mass technique was not applied) to quantify the
low redshift evolution of the density profile of the same cluster. The D5 model has a
resolution of 1.0 × 106 particles and the D12 version was resolved with 1.4 × 107 equal
mass particles.

All the runs were evolved with PKDGRAV (see section 1.3.5) from redshift zStart to
zEnd given in the summary of the models in table 4.1.

4.1.3 Results

Run DM25 had an effective resolution corresponding to 127 million particles within the
virial radius and a softening length of 0.48 × 10−3 rvir. At this up to now unmatched
resolution the inner slope is roughly constant from the resolved radius (see figure 4.1)
out to about one per cent of the virial radius of the final cluster. Run D12 resolved the
same cluster with 14 million particles and showed no convergence to a constant inner
slope. This indicates that there is a cusp in the centres of cold dark matter clusters
and it becomes apparent only at this very high numerical resolution. The non-constant
slopes just near the convergence scale are probably due to the first signs of numerical
flattening that set in at this scale. At higher densities below the resolved scales one
cannot make any robust predictions yet, but if one has to extrapolate into this region
figure 4.1 motivates the choice of a cusp ρ(r) ∝ r−γ with γ ' 1.2.

Mass accretion histories show that the inner part of cold dark matter haloes is assem-
bled in an early phase of fast accretion [156, 163, 175] and recent high resolution simula-
tions revealed that the inner density profile does not evolve at low redshift [54, 129, 149].
Figure 4.1 confirms that the inner density profile of runs D12 does not change from
z = 0.8 to z = 0.

Therefore in run DM50 we focused our computational effort even more on the early
evolution of the inner profile. We refined the inner region of the most massive progenitor
identified in run DM25 at z = 4.4. Since the refinement region needed is much smaller
than the one of DM25 and we only ran the simulation to z = 4.4, it is feasible to go to a
much better mass and force resolution. The high resolution particles in run DM50 were
a billion times lighter than the final cluster.

Figure 4.2 shows that the density profile of run DM50 at z = 4.4 is cuspy down to
the resolved radius (one per mill of the final virial radius). As in run DM25 the slopes
begin to shallow just at the converged scale due to numerical flattening. The profile of
DM50 at z = 4.4 supports the finding from run DM25 that the inner profile follows a
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steep power law ρ ∝ r−1.2. At the higher resolution of run DM50 we find substantially
higher physical densities in the cluster centre at z = 4.4 compared to lower resolution
runs like DM25. This suggests that a run like DM50 evolved to low redshift would also
yield substantially higher central densities as currently resolved in the centres of runs
like D12 and DM25.

Now we went one step further and used the information from all the D-series runs to
try to estimate the density profile one would obtain if one simulates this cluster with a
billion particle all the way to present time, a run which would be possible but extremely
expensive with today’s computational resources. From figure 4.3 one finds that the
density profile of run DM25 near its resolution scale shifts upward by a constant factor
of 1.4 from z = 4.4 to z = 0.8. The density around 0.01 rvir(z = 0) is constant form
z = 0.8 to z = 0, see run D5 in figure 4.3. The inner density profile slopes are constant
even longer, i.e. from z = 4.4 to z = 0, see figures 4.1 and 4.2. Therefore we estimated
the z = 0 profile of run DM50 by rescaling the z = 4.4 profile of DM50 by a factor
1.4 and using the z = 0 profile of run D12 outside of 0.005 rvir(z = 0) (see figure 4.3).
The extrapolated z = 0 profile of run DM50 should be regarded as a best guess for the
density profile of an average cold dark matter cluster resolved with a billion particles.
A (multi-mass) simulation with this (effective) resolution evolved to redshift zero would
be needed to check the accuracy of the estimate performed here.

We fitted one cuspy and two recently proposed cored functions to the density profile
of the tentative z = 0 extrapolation from run DM50. From the arguments above we
expected the cuspy function to work better in the inner part but we tried to fit also the
cored profiles for comparison.

As cuspy density profile, we used a general αβγ-profile given by equation (2.1). If
one takes α, β and γ as free parameter one encounters strong degeneracies, i.e. very
different combinations of parameter values can fit a typical density profile equally well
[84]. Therefore we fixed the outer slope β = 3 and the turnover parameter α = 1. We
fitted the three parameters γ, rs and ρ0 to the data.

Navarro et al. [117] proposed a different fitting function which curves smoothly over
to a constant density at small radii:

ln(ρN(r)/ρ0) = (−2/αN) [(r/rs)
αN − 1] (4.1)

αN determines how fast this profile turns away from a power law in the inner part.
Navarro et al. [117] found that αN is independent of halo mass and αN = 0.172± 0.032
for all their simulations, including galaxy and dwarf haloes.

Another profile that also curves away from power law behaviour in the inner part was
proposed by Stoehr et al. [146]:

ρSWTS(r) =
v2

max

4πG
10−2aSWTS[log( r

rmax
)]

2 1

r2

[
1− 4aSWTS log

(
r

rmax

)]
(4.2)

where vmax is the peak value of the circular velocity, rmax is the radius of the peak and
aSWTS determines how fast the profile turns away from an power law near the centre.
Stoehr et al. [146] found that cluster profiles are well fitted with this formula using aSWTS

values between 0.093 and 0.15.
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Figure 4.4 shows the slope of the extrapolated DM50 profile at z = 0 in comparison
with the slopes of the best fits. It is evident that in the inner part the cuspy profile with
γ = 1.2 describes the real density profile better.

4.2 Does the Fornax dwarf spheroidal have a central
cusp or core?2

4.2.1 Introduction

The Fornax dwarf spheroidal is a dark matter dominated satellite orbiting the Milky
Way. It has five globular clusters that are at a projected distance from the centre of
1.60, 1.05, 0.43, 0.24 and 1.43 kpc [93] as well as further substructure at a projected
distance of 0.67 kpc [25]. These star clusters move within a dense background of dark
matter and should therefore be affected by dynamical friction, causing them to lose
energy and spiral to the centre of the galaxy. We will show later that, if Fornax has
a cosmologically consistent density distribution of dark matter, the orbital decay time-
scale of these objects from their current positions is approximately 5 Gyr. This is much
shorter than the age of the host galaxy, presenting us with the puzzle of why these five
globulars have not merged together at the centre forming a single nucleus [152, 153].

Several groups have studied the origin of nuclei in galaxies: e.g. Lotz et al. [91] carried
out Monte-Carlo simulations, which show that some, but not all, of the nuclei of dwarf
elliptical galaxies could indeed have formed through coalescence of their globular clusters.
Additionally they observed several dwarf elliptical galaxies and found out that within
the inner few scale lengths, their sample appeared to be depleted of bright clusters. Oh
and Lin [118] used numerical simulations to show that in dwarf galaxies with relatively
weak external tidal perturbations, dynamical friction can lead to significant orbital decay
of globular clusters and the formation of compact nuclei within a Hubble time-scale.

Oh et al. [119] gave two possible models for the observed spatial distribution of Fornax
globulars. One possibility they proposed is that the dark matter consists of massive black
holes which transfer energy to the globulars, preventing them from sinking to the centre
of the galaxy. Another possibility they investigated was to postulate a strong tidal
interaction between the Milky Way and Fornax which also could inject energy into their
orbits and the central core of the dwarf spheroidals. This latter idea is probably ruled
out due to the proper motion observations of Fornax [39] which suggest it is already at
closest approach on an extended orbit which never takes it close to the Milky Way.

Here we investigate another possibility for the lack of a nucleus in Fornax, namely that
the central dark matter distribution has a very shallow cusp or core which dramatically
increases the dynamical friction sinking time-scale [70]. This would be inconsistent with
dark haloes that form within the cold dark matter cosmology which have cusps steeper
than γ = −1 (ρ(r) ∝ r−γ) on all mass scales from 10−6 M¯ − 1015 M¯ [37, 40].

Controversial evidence for cored mass distributions in dwarf spiral galaxies has been

2Original publication: MNRAS, 368, 1073 (2006) [64]
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debated for over a decade [107]. The inner structure of spheroidal galaxies is harder
to determine, however Kleyna et al. [82] claimed that the second peak in the stellar
number density in the nearby Ursa Minor dwarf spheroidal, is incompatible with cusped
cold dark matter haloes. With their observations they show that this substructure has
a cold kinematical signature and that its radial velocity with respect to its host galaxy
is very small. Such a cold configuration could only survive intact if the stars orbited
within a cored mass distribution where the orbital frequencies are all identical (harmonic
potential) and phase mixing does not occur.

The stellar kinematical data for Fornax suggest that it is dark matter dominated
with a mass to light ratio of order 20 within its optical extent. Due to the uncertainty
on the orbital anisotropy, the mass distribution can only be weakly constrained - the
data is consistent with either cusped or cored density distributions [90]. However the
normalisation (or mass within the central 1 kpc) is better constrained. In the inner
∼ 1 kpc of a cored halo the mean density is approximately six times lower than in a
cusped halo. Furthermore the velocity distribution function of the background particles
is hotter than a cusped halo. These facts conspire to significantly increase the dynamical
friction time-scale in a cored mass distribution.

We constructed cored and cuspy dark matter potentials and calculated orbital decay
and sinking times using high resolution numerical simulations together with analytic
calculations [21]. The haloes were consistent with the kinematical data for Fornax. We
followed circular and eccentric orbits of single and multiple globular clusters. Although
many dynamical friction studies have been carried out before [19, 72, 165], we are not
aware of any studies within constant density cores at the resolution used in this study,
although a recent study explored the effects of sinking objects on various cusp structures
[105].

4.2.2 Numerical methods

We carried out a series of self consistent simulations to examine the orbital behaviour of
massive particles moving within a dark matter or stellar background. All the runs were
evolved with PKDGRAV (see section 1.3.5). For our simulations we used αβγ-models
described by equation (2.1) with α = 0.5 − 1.5, β = 3.0 and γ = 0.5 − 1.5, or cored
haloes with α = 0.5− 1.5, β = 3.0 and γ = 0.0.

In the former case we have ρ0 = 0.0058 M¯ pc−3 and rs = 2.4 kpc. This cuspy halo
has a virial mass of 2.0 × 109 M¯. The concentration parameter is c = 15 but our
results would not change with a lower concentration, since in either case we are within
the asymptotic cusp part of the density profile. We used the multi-mass technique: 105

particles for the innermost sphere with 100 pc radius, 105 particles for the shell between
100 and 500 pc and 105 particles for the rest of the halo. The softening lengths of the
particles in these shells are 1, 10 and 100 pc respectively. The results were found not to
be sensitive to these values. The particle masses are 58 M¯, 569 M¯ and 3.2 ×104 M¯.
These models are stable in isolation but allow us to achieve very high resolution at the
halo centre where we wish to follow the dynamical friction.

For a small cored halo we have ρ0 = 0.10 M¯ pc−3 and rs = 0.91 kpc (n.b. the radius
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at which the slope of the density profile is shallower than -0.1 is approximately 200 pc
which defines the constant density region in this model). This halo has a virial mass of
2.0 × 109 M¯ and the concentration parameter is c = 40. Again, we use a three shell
model that has 105 particles for the innermost sphere with 300 pc radius, 105 particles
for the shell between 0.3 and 1.1 kpc and 3× 105 particles for the rest of the halo. The
softening lengths of the particles in these shells are 3, 30 and 300 pc respectively. The
particle masses are 89 M¯, 1640 M¯ and 7572 M¯. For a big cored dark matter halo
we have basically the same parameters as for the halo with the small core, except for
the scale length rs = 2.2 kpc (here the constant density region is approximately 1 kpc),
the virial mass Mvir = 3.0× 1010 M¯ and the particle masses, which are in this case 106
M¯, 3625 M¯ and 1.2× 105 M¯.

4.2.3 Results

Single globular clusters

From the Chandrasekhar dynamical friction formula [15, 21], we can derive an expression
for the radial sinking velocity of the globular cluster with mass MGC at radius r

dr

dt
= −4π ln Λ(r)ρ(r)G2MGCr

v2
c (r)d[rvc(r)]/dr

[
erf

(
vc(r)√
2σ(r)

)
− 2vc(r)√

2πσ(r)
exp

(
− v2

c (r)

2σ2(r)

)]
(4.3)

where G is Newtons constant of gravity, vc(r) is the local circular velocity, σ(r) is the
local velocity dispersion, ρ(r) is the local density and ln Λ(r) = bmaxσ

2(r)/GMGC is the
Coulomb logarithm.

In figure 4.5, we plot the numerical fits from equation (4.3) for different haloes and
initial radii for the orbital decay of a single globular cluster where bmax was used as a
free fitting parameter. The globular clusters are modelled as single particles of mass
MGC = 2 × 105 M¯ with a softening of 10 pc. We do not expect our conclusions to
change if we used a particle model for each globular since they are stable against tidal
disruption within Fornax. We start the globulars outside the core, mostly on circular
orbits and let them orbit, expecting them to spiral in to the centre of their respective
host haloes due to dynamical friction. For the cuspy halo the analytic calculation agrees
very well with the numerical simulation. Haloes with a core give a poorer agreement.
After an initial sinking rate that agrees well with the analytic expectation, the globulars
sink faster as they approach twice the core radius, and then stop sinking at the core
radius. The stalling results are apparent in both of the cored halo simulations (small core
and big core). We note, however, that it is not trivially due to the fact that the globular
is of comparable mass to that enclosed by its orbit; the radius at which M(r) = MGC

is approximately three times smaller than the core radius (see figure 4.7). We conclude
that the presence of a central density core leads to a stopping of the infall of the clusters
at approximately the core radius.
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Figure 4.5: Radial distance of a single globular cluster from the centre of its host halo as
a function of time. We start the calculations with the globular at different
initial radii for clarity. Solid curves are the numerical fits, dashed curves
are from the N-body simulations.
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Multiple globular clusters

We re-ran these simulations using five globulars to study the effect of having multiple
sinking objects. Perhaps interactions between the globulars themselves may prevent
them from sinking to the central cusp and merging. We distribute the globulars ran-
domly, what position and plane of the orbit concerns, with distances to the centre
between 0.2 and 1.2 kpc. The clusters are again placed on circular orbits around the
centre of their host halo.

Interestingly, the clusters do not prevent one another from falling to the centre, but
instead create an interesting prediction. Figure 4.6 shows the infall as a function of time
for the five globulars in the cuspy dark matter halo. Notice that all of the clusters fall
to the centre within 5 Gyr. However, clusters which start out at very similar radii arrive
approximately 1 Gyr apart. At any given time, even for very similar initial conditions,
the clusters occupy a range of radii.

By contrast, for the case with a central dark matter core (see figure 4.7), although the
globulars still arrive at different times due to interactions, they stall at the core radius;
they do not sink to the centre even within 18 Gyr. Thus, if Fornax does have a central
constant density core we should expect the clusters to stall at some minimum radius.
No globular cluster could possibly get any closer to the centre of the halo than the core
radius. The lower limit of the core size is constrained by the smallest observed projected
cluster distances to be 0.24 kpc.
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Figure 4.6: Radial distance of the five globular clusters from the centre of their host
halo as function of time, as they orbit within a cuspy halo. The arrow
indicates the radius at which MGC = M(r).
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Figure 4.7: Radial distance of the five globular clusters from the centre of their host
halo as function of time, as they orbit within a cored halo. The upper arrow
indicates the size of the core and the lower arrow indicates the radius at
which MGC = M(r).
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Chapter 5

Summary and perspective

Summary

Resolving the fast dynamics in the centres of galaxies requires reconsidering the time-
stepping method that is used to integrate the equations of motion. The standard time-
stepping criterion used by most of the numerical codes so far is based on the acceleration
of a particle. Unfortunately, with this method, one is only able to resolve regions of dark
matter haloes down to approximately one per cent of the virial radius. Below that scale,
the standard criterion fails completely to follow the dynamics of the simulations with
the standard parametes normally used. It even gives an incorrect, in fact unphysical
selection of time-steps in regions where the local density profile is flat, e.g. time-steps
stay constant or even increase for particles closer to the centre due to the functional
form of the acceleration with radius. This can only be adjusted by choosing a small
prefactor ηS but as a consequence, the simulations become very slow.

The new time-step criterion determines the true dynamical time of each particle and
sets this as the time-step. In the case of hard gravitational scattering events, an ec-
centricity correction for the integration method is used in order to follow the orbits
precisely. With this method, we are able to resolve the dynamics at the centres of dense
self-gravitating systems. By choosing an appropriate softening length for the particles,
we can even resolve high eccentricity orbits during gravitational scattering events allow-
ing the method to handle collisionless as well as collisional dynamics simultaneously.

In addition to correctly treating the physics the new method results in a substan-
tial speed-up compared to traditional approaches since the dynamical time-step crite-
rion is much more adaptive with radius, preventing particles from being integrated on
overly conservative small time-steps. Also, the method does not directly depend on
non-physical parameters like the softening length.

In order to resolve parsec scales in dark matter haloes, one would need billions of
particles for a single halo model, a requirement that is still prohibitive with existing
computational resources. The developed of a multi-mass technique for generating high
resolution dark matter haloes allows to resolve the scales where the dynamics of, e.g.,
a super-massive black hole binary becomes dominant and interacts significantly with
its surroundings. Such studies were so far only possible for restricted cases and low
resolution.

The multi-mass technique was already used in several applications that needed high
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spatial resolution. In a test case for the multi-mass technique, we confirm earlier findings
and predictions that core-core mergers lead to a cored merger remnant while cups-
cusp mergers lead to a cuspy merger remnant with high resolution multi-mass N-body
simulations. In cusp-core merges, the merger remnant has a final profile corresponding
to the steepest progenitor. In a cosmological structure formation simulation, the multi-
mass technique was used to resolve the dark matter halo of a galaxy cluster down to
one per mill of the virial radius which corresponds to an effective resolution of one
billion particles. We found that the central profile still follows a power law with slope of
approximately γ = −1.2, where ρ(r) ∝ r−γ. A further application tested a model that
can explain the presence of the five globular clusters at approximately 1 kpc distance
form the centre of the Fornax dwarf spheroidal galaxy.

Perspective

These new techniques enable the exploration of an unknown area of N-body simulations.
Therefore, the main goals for the future are to apply these techniques in the primary
application it was designed for: in mergers of galaxies with super-massive black holes
and study the dynamical effects involved in this process.

Once the black hole binary is formed through the merger of the galaxies it may also
have an influence on the density profile of the surrounding dark matter halo. The black
hole binary may transfer energy to the surrounding particles in the high-density central
region through the slingshot-effect, which leads to a shallower central density profile of
the dark matter. The question of the central density is very important, since one of the
observational consequences of this is an observable flux of gamma-rays from the inner
few parsecs of the halo due to self-annihilation of dark matter [63]. The flux is very
sensitive to the central dark matter density. Establishing the stability of the central
dark matter cusp to dynamical perturbations is therefore of paramount importance to
planning and interpreting the data that will be soon provided by major facilities, such
as the 17 m MAGIC1 telescope, which are designed to measure such a signal. There
were previous studies of this problem [101, 104], which were limited in resolution. We
intend to address this issue by performing simulations in a self-consistent way, with the
needed resolution that includes the large-scale dynamics from the dark matter halo and
the small-scale collisional physics in the centre of the galaxies.

Yu and Tremaine [172] postulated that a possible mechanism for the origin of hyper-
velocity stars (i.e. stars moving with incredible high velocity such that they possibly
will escape the galaxy) is the gravitational scattering by massive binaries (black hole or
stars or a combination of the two) in the centre of galaxies. Studying the characteristics
of these hyper-velocity stars is important to predict the expected parameter space for
future observational programs that would allow detecting these fast stars systematically.
We plan to study this in a self-consistent way and examine the dependence of the orbits
of the ejected stars on the triaxiality of the halo.

1magic.mppmu.mpg.de
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In the hierarchical paradigm, successive mergers between spheroids that host black
holes may lead to the accelerated formation of super-massive black holes at the centres of
galaxies [75, 94]. This process has interesting and potentially observable consequences,
including a large population of black holes orbiting within and through the galaxy that
ejected them through 3-body encounters. Using high resolution N-body simulations of
structure formation in a cold dark matter universe, we can test two distinct scenarios
for the formation of super-massive black holes: (i) A final central black hole may form
due to the hierarchical merger of thousands of small dark matter haloes. Through some
process, each of the progenitor haloes may contain a small black hole. As the mergers
take place the black holes spiral inwards in the cuspy dark matter potentials, eventually
merging together through energy loss from gravitational radiation. (ii) Black holes form
in a population of globular clusters that form within the rare dark matter mini-haloes at
a redshift z = 10− 20. These undergo a rapid merging process to create a single central
super-massive black hole. In such a calculation it is important to be able to closely
follow the dynamical interactions between the black holes, which is why it is important
to employ the new time-stepping algorithm and study these interactions within a self-
consistently modelled cosmological context. Our aim is to investigate whether it is
possible to form a single central super-massive black hole, and to study the spatial and
kinematical distribution of ejected black holes.

A possible drawback might be the enormous amount of computer run time that is
needed for such simulations. Possible solutions like introducing hierarchies of trees where
some parts of the simulations are frozen while only particles in very-active regions of the
simulation are evolved or loosening the strict geometrical definition of the dynamical
time are already under development.

But for future high resolution N-body simulations, the only efficient time-stepping
scheme has to be based on the true dynamical time since it shows the optimum scaling
with the number of particles used and always gives a physically correct time-step.
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Appendix A

Hamiltonian formalism

For a physical system that is described by the state z = (q ,p), where q is the coordinate
and p the conjugate momentum vector, and this system is evolved under a Hamiltonian
H, we can write the formal time evolution (Hamilton equations) as [15, 132, 171]

dz

dt
= ż = {z , H} (A.1)

where {, } denote the Poisson brackets defined by

{g, h} ≡
f∑
i

(
∂g

∂qi

∂h

∂pi

− ∂g

∂pi

∂h

∂qi

)
. (A.2)

We can define the operator Ĥ by

Ĥz ≡ {z , H} (A.3)

and write down a formal solution to the time evolution

z (t) = etĤz 0 . (A.4)

In computer simulations, the system is evolved by using a specific scheme in order to
update positions and velocities. In PKDGRAV, the following leapfrog scheme is used:
during a time-step ∆T , first the velocities are updated (kick mode) with a time step of
∆T/2 then the new positions are calculated (drift mode) using the new velocities with
a time-step of ∆T and finally the velocities are updated to the final values at ∆T with
again a half-step of ∆T/2 but with the acceleration calculated from the new positions.
This scheme can be written as

v(t + ∆T/2) = v(t) + ∆T/2 a(t) (A.5)

x (t + ∆T ) = x (t) + ∆T v(t + ∆T/2) (A.6)

v(t + ∆T ) = v(t + ∆T/2) + ∆T/2 a(t + ∆T ) (A.7)

and is therefore called the kick-drift-kick mode. We can write it in the operator formalism
as

z (∆T ) = e
∆T
2

ĤKe∆TĤDe
∆T
2

ĤKz 0 (A.8)
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where we have split the true Hamiltonian into a drift and a kick part

Ĥ = ĤD + ĤK . (A.9)

By using the Baker-Campbell-Hausdorff series, where we can calculate the higher order
terms by an elegant method developed by Reinsch [130], we can write the approximate
operator ĤA under which the system is evolved

z (∆T ) = e
∆T
2

ĤKe∆TĤDe
∆T
2

ĤKz 0 = e∆TĤAz 0 (A.10)

by

ĤA = Ĥ0 + ∆T 2Ĥ2 + ∆T 4Ĥ4 + O(∆T 6) (A.11)

where

Ĥ0 = ĤD + ĤK = Ĥ (A.12)

Ĥ2 =
1

12

[[
ĤK, ĤD

]
, ĤD

]
− 1

24

[[
ĤD, ĤK

]
, ĤK

]
(A.13)

Ĥ4 =
7

5760

[[[[
ĤD, ĤK

]
, ĤK

]
, ĤK

]
, ĤK

]
(A.14)

7

1440

[[[[
ĤD, ĤK

]
, ĤD

]
, ĤK

]
, ĤK

]

− 1

360

[[[
ĤD, ĤK

]
, ĤK

]
,
[
ĤD, ĤK

]]

− 1

180

[[[[
ĤK, ĤD

]
, ĤK

]
, ĤD

]
, ĤD

]

− 1

360

[[[
ĤK, ĤD

]
, ĤD

]
,
[
ĤK, ĤD

]]

− 1

720

[[[[
ĤK, ĤD

]
, ĤD

]
, ĤD

]
, ĤD

]
.

Here, [, ] denote the commutator brackets defined by

[A,B] = AB −BA (A.15)

for non-commutative operators A and B. By using the definitions of the operators and
the Jacobi identity for Poisson brackets

{{A,B}, C}+ {{B, C}, A}+ {{C, A}, B} = 0 , (A.16)

we can calculate the approximate Hamiltonian

HA = H0 + ∆T 2H2 + ∆T 4H4 + O(∆T 6) (A.17)
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where

H0 = HD + HK = H (A.18)

H2 =
1

12
{{HK, HD} , HD} − 1

24
{{HD, HK} , HK} (A.19)

H4 =
7

5760
{{{{HD, HK} , HK} , HK} , HK} (A.20)

7

1440
{{{{HD, HK} , HD} , HK} , HK}

− 1

360
{{{HD, HK} , HK} , {HD, HK}}

− 1

180
{{{{HK, HD} , HK} , HD} , HD}

− 1

360
{{{HK, HD} , HD} , {HK, HD}}

− 1

720
{{{{HK, HD} , HD} , HD} , HD} .

Note that the replacement of the commutator brackets by the Poisson brackets is not
trivial. The term H4 is not used in our method. However, since H4 is not explicitly
given in the recent literature we present it here for completeness.
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Appendix B

Further projects

This chapter is a short summary of further projects in which the author of this thesis
was involved as a co-author. These projects are not related to the main developments
of the thesis.

B.1 A universal velocity distribution of relaxed
collisionless structures1

B.1.1 Introduction

The last few years have shown remarkable progress in the understanding of pure dark
matter structures. This has been provided initially by numerical simulations which have
observed general trends in the behaviour of the radial density profile of equilibrated
dark matter structures from cosmological simulations, which roughly follow an NFW
profile [110, 112, 116, see also equation (2.1)] with central density profile slope γ =
1.0. General trends in the radial dependence of the velocity anisotropy has also been
suggested [20, 24]. More recently have more complex relations been identified, which
even hold for systems which do not follow the most simple radial behaviour in density.
These relations are first that the phase-space density, ρ/σ3, is a power-law in radius
[150], and second that there is a linear relationship between the density slope and the
anisotropy [67].

All of these are integrated quantities, and still very little is known about the underlying
velocity distribution function of real collisionless systems. We initiated such a study by
performing a set of different simulations of purely collisionless systems.

B.1.2 Numerical methods and results

The first controlled simulation were head-on collision between two equal spherical NFW
structures. We created three different initial conditions. The first model had an isotropic
velocity structure. For the other two models we kept the kinetic energy of a particle
from the isotropic model fix but rotated the velocity vector so that it pointed to the
centre (radial initial conditions) or were tangential (tangential initial conditions). For

1Original publication: JCAP, 1, 14 (2006) [69]
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the construction of the initial structures, we used the method as described in Kazantzidis
et al. [80]. We created an initial NFW structure containing one million particles. The
parameters were chosen corresponding to a total mass of 1012 M¯ (concentration of
c = 10), and half of the particles were within 160 kpc.

We placed two such structures with equal velocity structure very far apart with 2000
kpc between the centres, which is well beyond the virial radius. Using a softening of 0.2
kpc, we let these two structures collide head-on with an initial relative velocity of 100
km s−1 towards each. After several crossings the resulting blob relaxed into a prolate
structure. We run all simulations until there was no further time variation in the radial
dependence of the anisotropy and density. We checked that there is no (local) rotation.
We run this simulation for 150 Gyr, which meant that a very large part of the resulting
structure is fully equilibrated.

We now took the resulting structure (now containing two million particles, in a prolate
shape) and collided two copies together, again with their centres separated by 2000 kpc,
and with initial relative velocity of 100 km s−1. We used softening of 1 kpc. The resulting
structure is even more prolate when observed in density contours, and we evolved this
for another 150 Gyr. All simulations were carried out using PKDGRAV (see section
1.3.5).

In order to analyse the resulting structure we divided it into bins in potential energy,
linearly distributed from the softening length to beyond the region which is fully equi-
librated. For the analysis and figures presented here, we always only included a region
outside three times the softening. We centred the structure on the centre of potential
(using potential as weight-function instead of mass as done for centre of mass). Most
other analyses are centring on either the centre of mass, or on the most bound particle,
but the difference is very small. We calculated the local density for each particle from
its nearest 32 neighbours, and we averaged the density for all the particles in the poten-
tial bin. Similarly, each particle had a radius from the centre of potential, and we can
averaged this over all the particles in the potential bin. The resulting density profile,
〈ρ〉 as a function of 〈r〉, was very similar to an NFW profile.

For each bin we can also defined the radial derivative of the density (the density slope)

α ≡ d ln〈ρ〉
d ln〈r〉 , (B.1)

and we can extracted the radial velocity distribution function for each potential bin. We
present the radial velocity distribution function for bins with α ≈ −2.6,−2 and −1.1 in
figure B.1. The red (open) stars are from a bin in the region with shallow density slope
(α ≈ −1.1), the green (open) squares are from an intermediate bin (slope close to −2),
and the blue (filled) triangles are from a bin in the outer region (slope close to −2.6).
There seems to be a clear trend, namely that the velocity distribution function from bins
in the inner region have longer high energy tails than velocity distribution functions from
bins in the outer region. The high energy tail of the radial velocity distribution function
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Figure B.1: The radial velocity distribution function for three potential bins in the
simulation of repeated head-on collisions between NFW structures with
very different initial conditions: isotropic (left), radial (middle) and tan-
gential (right) velocity distributions. The potential bins are chosen near
density slope of α ≈ −1.1 (open red stars), α ≈ −2 (open green squares)
and α ≈ −2.6 (filled blue triangles). The thin (solid) lines are of the
shape given by equation (B.2), using q’s of 0.75, 0.81 and 1.08 (isotropic);
q = 0.79, 0.91 and 1.05 (radial) and q = 0.75, 0.89 and 1.045 (tangential).

is well approximated by the shape given by

fr(v) =

(
1− (1− q)

(
v

κrad σrad

)2
) q

1−q

, (B.2)

where q and κrad are free parameters. This is of the Tsallis form [154] and depends on
the entropic index q. For q = 1, equation B.2 reduces to the Gaussian shape f(v) ∝
exp(−(v/v0)

2). This functional form is chosen partly for simplicity (and because it
includes the classical exponential) and partly because some simple structures are know
to have velocity distribution functions of exactly this form [68, 124]. In particular
do we see that the resulting velocity distribution functions do not have the shape of
Gaussians with a cut-off at the escape velocity. It is clear from figure B.1 above, that
the simple shape of equation (B.2) provides a reasonable fit to the tails of the radial
velocity distribution functions.

The two-dimensional generalisation of the form (B.2) is given by

ft(v) = v

(
1− (1− q)

(
v

κtan σtan

)2
) q

1−q

. (B.3)

The tangential velocity distributions ft(v) can be fitted by two such shapes: one in the
small velocity region, and another in the high velocity region. It was argued in Hansen
and Moore [67] that the tangential velocity distribution functions could have the shape
of equation (B.3) with q = 5/3, and the small velocity region is very well fit with exactly
this shape for all the bins in potential.
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Figure B.2: The tangential velocity distribution functions from all the simulations de-
scribed. The black (solid) line has two parts (separated at vtan = 1.6 σtan),
each fitted with the shape given in equation (B.3), where the low energy
part uses q = 5/3, and the outer region (high energy part) has a free q.
Left: using a potential bin near the density slope of α = −1.1, and the
black (solid) line uses q = 0.9 in the high energy part. Middle: α = −2,
q = 0.86. Right: α = −2.6, q = 0.76.

We pick the position vtan = 1.6 σtan as the transition velocity for all figures, and fit
the high energy region with the shape of equation (B.3), but with q as a free parameter.
The combined fit is shown as black (solid) lines in figure B.2.

But not only the velocity distribution functions from the resulting remnants of these
controlled head-on collisions can be described by the functional form given by (B.2)
respectively (B.3). We also examined haloes from cosmological structure formation runs
or remnants of radial infall simulations and their velocity distribution functions have the
same shape as already described.

Hence, we have identified a universality of the velocity distribution function of equi-
librated structures of collisionless, self-gravitating systems through a set of numerical
experiments. The radial and tangential velocity distribution functions are universal in
the sense that they depend only on the dispersion (radial or tangential) and the local
slope of the density. There is a general trend, namely that a steeper density slope implies
small q. The actual shape of the velocity distribution functions is not understood yet.
These numerical results may hopefully inspire further theoretical understanding of the
velocity distribution function of collisionless particles.
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B.2 Globular clusters, satellite galaxies and stellar
haloes from early dark matter peaks2

B.2.1 Introduction

The Milky Way is a typical bright spiral galaxy. Its disk of stars and gas is surrounded
by an extended halo of old stars, globular star clusters and a few dark matter dominated
old satellite galaxies. For the past 30 years two competing scenarios for the origin of
galaxies and their stellar components have driven much observational and theoretical
research. Eggen et al. [43] proposed a monolithic collapse of the Galaxy whilst Searle
and Zinn [136] advocated accretion of numerous proto-galactic fragments.

Enormous progress has been made in understanding the structure and origin of the
Milky Way, as well as defining a standard cosmological model for structure formation
that provides us with a framework within which to understand our origins [51, 122].
Hierarchical growth of galaxies is a key expectation within a universe whose mass is
dominated by a dark and nearly cold particle, yet evidence for an evolving hierarchy
of merging events can be hard to find, since much of this activity took place over ten
billion years ago. The origin of the luminous Galaxy depends on the complex assembly
of its approximately 1012 M¯ dark matter halo that extends beyond 200 kpc, and on
how stars form within the first dark matter structures massive enough to cool gas to
high densities [166].

The Galactic halo contains about 100 old metal poor globular clusters (i.e. Forbes
et al. [50]) each containing up to 106 stars. Their spatial distribution falls off as r−3.5 at
large radii and half the globulars lie within 5 kpc from the centre of the Galaxy [147].
There is no evidence for dark matter within the globular clusters today [108, 123]. The
old stellar halo population has a similar spatial distribution and a total luminosity of
108−109 L¯3 [76, 95]. The stellar populations, ages and metallicities of these components
are very similar [51].

Also orbiting the Galaxy are several tiny spheroidal satellite galaxies, each containing
an old population of stars, some showing evidence for more recent star-formation indi-
cating that they can hold on to gas for a Hubble time [55, 65]. Half of the dwarf satellites
lie within 85 kpc, have luminosities in the range 106 − 108 L¯ and are surrounded by
dark matter haloes at least 50-200 times as massive as their baryonic components [98].
Cold dark matter models have had a notoriously hard time at reconciling the observed
low number of satellites with the predicted steep mass function of dark matter haloes
[79, 83, 111].

We wish to explore the hypothesis that cold dark matter dominates structure forma-
tion, the haloes of galaxies and clusters are assembled via the hierarchical merging and
accretion of smaller progenitors [88]. This process violently causes structures to come
to a new equilibrium by redistributing energy among the collisionless mass components.
Early stars formed in these progenitors behave as a collisionless system just like the dark

2Original publication: MNRAS, 368, 563 (2006) [115]
3L¯ stands for the luminosity (radiated enregy per unit time) of the Sun. L¯ = 3.826× 1026 J s−1.
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matter particles in their host haloes, and they undergo the same dynamical processes
during subsequent mergers and the buildup of larger systems like massive galaxies or
clusters.

In a recent study, Diemand et al. [36] used cosmological N-body simulations to explore
the distribution and kinematics in present-day cold dark matter haloes of dark matter
particles that originally belonged to rare peaks in the matter density field. These proper-
ties are particularly relevant for the baryonic tracers of early cold dark matter structures,
for example the old stellar halo which may have originated from the early disruption of
numerous dwarf proto-galaxies [17], the old halo globular clusters and also giant ellipti-
cals [56].

Since rare, early haloes are strongly biased towards overdense regions [137], i.e. to-
wards the centres of larger scale fluctuations that have not collapsed yet, we might expect
that the contribution at z = 0 from the earliest branches of the merger tree is much
more centrally concentrated than the overall halo. Indeed, a non-linear peaks biasing
has been discussed by previous authors [109, 110, 167]. Diemand et al. [36] showed
that the present-day distribution and kinematics of material depends primarily on the
rareness of the peaks of the primordial density fluctuation field that the selected matter
originally belonged to, i.e. when selecting rare density peaks above νσ(M, z) (where
σ(M, z) is the linear theory rms density fluctuations smoothed with a top-hat filter of
mass M at redshift z), their properties today depend on ν and not on the specific values
of selection redshift z and minimal mass M .

B.2.2 The first stellar systems

We propose that ordinary Population II stars and globular clusters first appeared in
significant numbers at redshift z > 12, as the gas within protogalactic haloes with virial
temperatures above 104 K (corresponding to masses comparable to those of present-day
dwarf spheroidals) cooled rapidly due to atomic processes and fragmented.

It is this second generation of subgalactic stellar systems, aided perhaps by an earlier
generation of metal-free (Population III) stars and by their remnant black holes, which
generated enough ultraviolet radiation to reheat and reionize most of the hydrogen in
the Universe by a redshift z = 12, thus preventing further accretion of gas into the
shallow potential wells that collapsed later. The impact of a high redshift ultraviolet
radiation background on structure formation has been invoked by several authors [7, 10,
17, 66, 109, 155] to explain the flattening of the faint end of the luminosity function
and the missing satellites problem within our Local Group. Here we use high resolution
numerical simulations that follow the full non-linear hierarchical growth of galaxy mass
haloes to explore the consequences and predictions of this scenario.

Dark matter structures will collapse at different times, depending on their mass, but
also on the underlying larger scale fluctuations. At any epoch, the distribution of masses
of collapsed haloes is a steep power law towards low masses with n(m) ∝ m−2. To make
quantitative predictions we calculate the non-linear evolution of the matter distribution
within a large region of a ΛCDM universe. The entire well resolved region is about 10
comoving Mpc across and contains 61 million dark matter particles of mass 5.85×105 M¯
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Figure B.3: The high redshift and present day mass distribution in a region that forms
a single galaxy in a hierarchical cold dark matter universe.
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and force resolution of 0.27 kpc. This region is embedded within a larger 90 Mpc cube
that is simulated at lower resolution such that the large scale tidal field is represented.
Figure B.3 shows the high-redshift and present-day mass distribution of a single galaxy
mass halo taken from this large volume. The upper panel shows the density distribution
at a redshift z = 12 from a region that will form a single galaxy at z = 0 (lower
panel). The rare peaks collapsing at high redshift that have had sufficient time to cool
gas and form stars, can be identified, followed and traced to the present day. Because
small fluctuations are embedded within a globally larger perturbation, the small rarer
peaks that collapse first are closer to the centre of the final potential and they preserve
their locality in the present day galaxy. The strong correlation between initial and
final position results in a system where the oldest and rarest peaks are spatially more
concentrated than less rare peaks. The present day spatial clustering of the material
that was in collapsed structures at a higher redshift only depends on the rarity of these
peaks [36].

Our simulation contains several well resolved galactic mass haloes which we use to
trace the evolution of progenitor haloes that collapse at different epochs. The first metal
free Population III stars form within minihaloes already collapsed by z > 25, where gas
can cool via roto-vibrational levels of H2 and contract. Their evolution is rapid and local
metal enrichment occurs from stellar evolution. Metal-poor Population II stars form in
large numbers in haloes above MH ≈ 108 [(1+z)/10]−3/2 M¯ (virial temperature 104 K),
where gas can cool efficiently and fragment via excitation of hydrogen Lyα. At z > 12,
these correspond to > 2.5 σ peaks of the initial Gaussian overdensity field: most of this
material ends up within the inner few kpc of the Galaxy. Within the approximately 1
Mpc turn-around region, a few hundred such protogalaxies are assembling their stellar
systems [85]. Typically 95% of these first structures merge together within a time-scale
of a few Gyr, creating the inner Galactic dark matter halo and its associated old stellar
population.

With an efficiency of turning baryons into stars and globular clusters of the order
f∗ = 10% we successfully reproduce the total luminosity of the old halo population and
the old dwarf spheroidal satellites. The fraction of baryons in dark matter haloes above
the atomic cooling mass at redshift z = 12 exceeds fc = 1%. A normal stellar population
with a Salpeter-type initial mass function emits about 4000 hydrogen-ionizing photons
per stellar baryon. A star formation efficiency of 10% therefore implies the emission of
4000×f∗×fc ∼ a few Lyman-continuum photons per baryon in the Universe. This may
be enough to photoionize and drive to a higher adiabat vast portions of the intergalactic
medium, thereby quenching gas accretion and star formation in nearby low-mass haloes.

B.2.3 Connection to globular clusters and halo stars

The globular clusters that were once within the merging proto-galaxies are so dense that
they survive intact and will orbit freely within the Galaxy. The surviving proto-galaxies
may be the precursors of the old satellite galaxies, some of which host old globular
clusters such as Fornax, whose morphology and stellar populations are determined by
ongoing gravitational and hydrodynamical interactions with the Milky Way [100].
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Figure B.4: The radial distribution of old stellar systems compared with rare peaks
within a z = 0 ΛCDM galaxy. The thick blue curve is the total mass
distribution today. The labeled green curves show the present day dis-
tribution of material that collapsed into 1, 2, 2.5, 3 and 3.5σ peaks at a
redshift z = 12. The circles show the observed spatial distribution of
the Milky Way’s old metal poor globular cluster system. The dashed line
indicates a power law ρ(r) ∝ r−3.5 which represents the old halo stellar
population. The squares show the radial distribution of surviving 2.5σ
peaks which are slightly more extended than the overall NFW-like mass
distribution, in good agreement with the observed spatial distribution of
the Milky Way’s satellites.
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Recent studies have attempted to address the origin of the spatial distribution of
globular clusters [120, 121]. Most compelling for this model and one of the key results
in this paper, is that we naturally reproduce the spatial clustering of each of these old
components of the galaxy. The radial distribution of material that formed from > 2.5σ
peaks at z > 12 now falls off as ρ(r) ∝ r−3.5 within the Galactic halo - just as the
observed old halo stars and metal poor globular clusters (see figure B.4). Cosmological
hydrodynamical simulations are also begining to attain the resolution to resolve the
formation of the old stellar haloes of galaxies [3]. Because of the steep fall off with
radius, we note that we do not expect to find any isolated globular clusters beyond the
virial radius of a galaxy.

These first collapsing structures infall radially along filaments and end up significantly
more flattened than the mean mass distribution. They also have colder velocity distribu-
tions and their orbits are isotropic in the inner halo and increasingly radially anisotropic
in the outer part. Material from these rare peaks has βstd = 1 − 1

2
(σ2

tan/σ
2
rad) ≈ 0.45

at our position in the Milky Way, in remarkable agreement with the recently measured
anisotropy and velocity dispersion of halo stars [9, 22, 151]. Diemand et al. [36] show
that the radial distribution of rarer peaks is even more highly biased - thus the oldest
population III stars and their remnant black holes are found mainly within the inner
kpc of the Galaxy, falling off with radius steeper than r−4.

The observational evidence for tidal stellar streams from globular clusters suggests
that they are not embedded within extended dark matter structures today [108]. This
does not preclude the possibility that the globular clusters formed deep within the cen-
tral region of 108 M¯ dark matter haloes which have since merged together. (Massive
substructure within the inner ∼ 0.2 rvir of galactic mass haloes is tidally disrupted [61].)
This is what we expect within our model which would leave the observed globulars freely
orbiting without any trace of the original dark matter component. However, it is pos-
sible that the most distance halo globulars may still reside within their original dark
matter halo. If the globular cluster is located at the centre of the cold dark matter cusp,
then observations of their stellar kinematics may reveal rising dispersion profiles. If the
globular cluster is orbiting within a cold dark matter mini-halo then we would expect
to see symmetric tidal streams orbiting within the potential of the cold dark matter
substructure halo rather than being stripped by the Galaxy.

B.2.4 Connection to satellite galaxies and the missing satellites
problem

The remaining ∼ 5% of the proto-galaxies form sufficiently far away from the mayhem
that they fall into the assembling galaxy late (z ≈ 1− 2, about one Gyr after the forma-
tion of the inner Galaxy at z ≈ 5). This leaves time to enhance their α/Fe element ratios
from Type II supernovae [127, 169, 170]. Recent studies including chemical modeling of
this process support this scenario [49, 131].

The proto-galaxies highlighted with boxes in Figure B.3 are those few systems that
survive until the present epoch - they all form on the outskirts of the collapsing region,
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ending up tracing the total mass distribution as is also observed within the Milky Way’s
and M31’s satellite systems. Each of our four high resolution galaxies contains about ten
of these surviving proto-galaxies which have a radial distribution that is slightly shallower
than that of the total mass distribution (see figure B.4) but more concentrated than the
distribution of all surviving (or z = 0 mass selected) subhaloes. This is consistent with
the spatial distribution of surviving satellites in the Milky Way and in other nearby
galaxies in the 2dF [133, 158] and DEEP2 samples [23] and with galaxy groups like
NGC5044 [46].

The total number of dark matter substructures in the Local Group is over an order of
magnitude larger than the observations. Reionisation and photo-evaporation must play
a crucial role in suppressing star formation in less rare peaks, thus keeping most of the
low mass haloes that collapse later devoid of baryons. The surviving population of rare
peaks had slightly higher masses just before accretion, tidal stripping inside the Galaxy
halo then reduced their masses and they match the observations at z = 0.

Likewise to the radial distribution, the kinematics of the surviving visible satellite
galaxies resembles closely the one of the dark matter while the same properties for all the
surviving subhaloes differ. In the inner part our model satellite galaxies are hotter than
the dark matter background, especially in the tangential component. This is consistent
with the observed radial velocities of Milky Way satellites. For the inner satellites also
the tangential motions are know (with large uncertainties however) [98, 168] and just as
in our simple model they are larger than the typical tangential velocities of dark matter
particles in the inner halo.

The total (mostly dark) surviving subhalo population is more extended and hotter
than the dark matter while the distribution of orbits is similar [33]. Subhaloes tend
to avoid the inner halo and those who lie near the centre at z = 0 move faster (both
in the tangential and radial directions) than the dark matter particles, i.e. these inner
subhaloes have large orbital energies and spend most of their time further away from
the centre (see also Diemand et al. [33]).
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