Mobilisierbarkeit von Schwermetallen in frisch geschütteten Böden

Versuche an der Lysimeteranlage Horw / LU

Diplomarbeit
Emmanuel Kuster
Januar 2007

Fakultätsvertreter:
Prof. Dr. Michael W.I. Schmidt, Geographisches Institut, Universität Zürich

Betreuung:
PD Dr. Markus Egli, Geographisches Institut, Universität Zürich
Dr. Stéphanie Roulier, Institut für terrestrische Ökologie, ETH Zürich
Inhaltsverzeichnis

I. Danksagung ..3
II. Zusammenfassung ...4
1. Einleitung ins Thema ...5
 1.1 Allgemeine Aspekte der Schadstoffbelastung im Strassenrandbereich 7
 1.2 Möglichkeit der Entwässerung über das Bankett ...8
 1.3 Schwermetallmobilität in Böden ..10
 1.3.1 Spezifische und unspezifische Adsorption ...11
 1.3.2 Unterschiede im Mobilitätsverhalten ...11
 1.3.3 Bodenchemische Einflussgrößen auf die Schwermetallmobilität12
 1.3.3.1 pH–Wert ...12
 1.3.3.2 Organischer Kohlenstoff ..15
 1.3.3.3 Tongehalt ...15
 1.3.4 Präferenzieller Fluss ..16
2. Rechtliche Aspekte zur Weiterverwendung von belasteten Böden17
 2.1 Legaldefinition ..17
 2.2 Entscheidungsregeln im Falle der Unsicherheit ...18
 2.3 Das Vorsorgeprinzip im Bodenschutz ...18
 2.4 Der Bodenschutz auf Verordnungsstufe ...19
 2.4.1 Verordnung über Belastungen des Bodens (VBBo) vom 1. Juli 1998 .. 19
 2.4.2. Technische Verordnung über Abfälle (TVA) vom 10. Dezember 1990 ...21
 2.4.3 Chemikalien–Risiko–Reduktions–Verordnung (ChemRRV)21
 vom 18. Mai 2005 ..21
 2.4.4 Verordnung vom 26. August 1998 über die Sanierung von belasteten ...21
 2.5 Konkrete Vorgehensweise bei der Umsetzung ...22
3. Forschungsgegenstand und Fragestellung ...23
4. Material und Methoden ..24
 4.1 Lysimeterbecken ..24
 4.2 Wetterdaten ..26
 4.3 Bodenprobenahme ..27
 4.3.1 Probenahmeraster ..28
 4.3.2 Korngrößenaufnahme mit der Pipettmethode30
 4.3.3 Organisch C nach Walkley&Black ..31
 4.3.4 Element–Gehalte ..31
 4.3.5 Wasserstoffionenkonzentration (pH) ...31
 4.3.6 Elektrische Leitfähigkeit ..32
 4.3.7 Titrationsexperiment ...32
 4.4 Beprobung des Sickerwassers ..32
 4.4.1 Atomabsorptionsspektrometrie (AAS) mit Flamme33
 4.4.2 Atomabsorptionsspektrometrie (AAS) mit Graphitrohr34
 4.4.3 Ionenchromatographie (IC) ..37
 4.5 Beprobung der Pflanzen ...39
5. Resultate ...40
 5.1 Klima während dem Beprobungszeitraum ...40
 5.2 Ausflusscharakteristik ...41
 5.3 Sickerwasseranalyse ...43
 5.4 Auswaschung der Ionen Chlorid, Nitrat und Sulfat ..50
I. Danksagung

Für die Betreuung der gesamten Arbeit möchte ich mich bei Dr. Stéphanie Roulier, PD Dr. Markus Egli und Prof. M.W.I. Schmidt bedanken.
Für die aufschlussreichen Diskussionen und wertvollen Ideen bedanke ich mich bei Prof. Dr. Gerhard Furrer, Prof. Dr. Rainer Schulin, PD Dr. Bernd Nowack, Dr. Brett Robinson, Dr. Erwin Hepperle, Dr. Héctor Miguel Conesa Alcaraz, Ahmad Moradi, Martin Tschan, Erika Fässler, Lu Zhao, Martin Keller und Matthias Achermann.
II. Zusammenfassung

Bei vielen umfangreichen Bauvorhaben fallen große Kubaturen an Bodenmaterial an, welche über den gesetzlich vorgegebenen Grenzwerten zur Wiederverwertung liegen. Zur Entsorgung muss Deponievolumen in Anspruch genommen werden. Schon jetzt kann von einigen Deponien nicht mehr jeder Aushub angenommen werden. Deponievolumen ist nicht unbegrenzt vorhanden, weshalb sich mit der Zeit ein Konflikt einstellen wird. Weil bei gewissen Voraussetzungen kein Schwermetallaustrag aus dem Material festzustellen ist, könnte es für bestimmte Verwendungszwecke nützlich eingesetzt werden. Dabei muss allerdings die Sicherheit der Umwelt und des Grundwassers vor Auswaschungen gewährleistet sein. In der vorliegenden Arbeit wurde mit Hilfe von zwei Lysimeterbecken (3,5 x 5 m) ein Strassenrandboden untersucht der erhöhte Schwermetallgehalte aufweist (Cadmium ~ 1,4 mg/kg; Blei ~ 465 mg/kg; Zink ~ 520 mg/kg). Der Boden war als Mittelstreifen der Autobahn A 2/6 jahrzehntelang den Emissionen des Strassenverkehrs ausgesetzt gewesen. Diese Autobahn weist ~ 60'000 Fahrzeuge pro Tag in beide Richtungen auf. Die Schwermetallbelastungen im Strassenbereich sind für Blei 2200 g · ha/y, Cadmium 60 g · ha/y, Kupfer 3500 g · ha/y und Zink 14'000 g · ha/y. Diese Werte stellen Grössenordnungen bei mittlerer Verkehrsbelastung dar. Die Schadstoffeinträge sind in erster Linie abhängig von der Verkehrsbelastung.

Die Austräge aus den Böden sind für Blei und Nickel im Sickerwasser messbar. Diese sind vermutlich vor allem an Partikel oder DOC (Dissolved organic carbon) gebunden. Die ersten Proben nach der Schüttung weisen Maximalgehalte von 11 µg/l Blei und 7,6 µg/l Nickel auf. Danach sinken die Konzentrationen und pendeln sich auf tiefem Niveau ein. In den angebauten Pflanzen wurden bis zu 90 mg/kg Blei, 0,9 mg/kg Cadmium, 12 mg/kg Nickel und 215 mg/kg Zink gemessen. Es sind in den Böden weder erhöhte Salzgehalte noch in den Sickerwasserproben erhöhte Mengen an Chlorid messbar. Salzionen, die als Tausalz eingetragen wurden, sind sehr mobil und wurden schon vorher aus dem Boden ausgewaschen. Es wurden stark erhöhte Nitratgehalte im Sickerwasser gemessen (70 – 180 mg/l). Dies wird als eine Folge der Mineralisierung der organischen Substanz im Zuge der Umlagerung des Bodens interpretiert.

1. Einleitung ins Thema

Zink ist ein essentielles Spurenelement für Mikroorganismen, Pflanzen, Tiere und Menschen. Zink–Enzyme spielen bei allen Lebewesen eine Rolle in wichtigen Stoffwechsel–Funktionen. Mangelerscheinungen, insbesondere bei Pflanzen und Men-
schen, sind deshalb ein häufiges Problem. Toxische Effekte, vor allem bei Pflanzen und Mikroorganismen, treten erst bei sehr hohen Konzentrationen auf. Toxikologisch weitaus bedenklicher sind Cadmium [Cd] und Blei [Pb], häufige Begleitstoffe von Zink [Zn].

Blei ist ein nicht essentliches Element und toxisch insbesondere für Mikroorganismen und Säugetiere. Beim Menschen wirkt Pb auf das Nervensystem, das Herz und die reproduktiven Organe. Dabei spielen vor allem die Aufnahme mit Trinkwasser aus bleihaltigen Leitungen bzw. die orale Aufnahme von Bodenpartikeln, insbesondere für Kinder, eine wichtige Rolle.

Die bedeutendste anthropogene Quelle für Pb sind die Autoabgase aus der Zeit der Verwendung von verbleitem Benzin. Weitere Quellen sind die Metallgewinnung und –verarbeitung, die Ausbringung von Klärschlamm sowie die Verwendung von Farben.

Von allen Schwermetallen ist Pb im Boden am wenigsten mobil. Die Bindung an die organische Bodensubstanz führt häufig zu einer besonders starken Akkumulation von durch die Atmosphäre eingetragenen Pb im Oberboden (Walthert et al., 1999).

1.1 Allgemeine Aspekte der Schadstoffbelastung im Strassenrandbereich

Die Schadstoffbelastung seitlich der Strassen ist stark vom Verkehrsaufkommen und von der Art und dem Zustand der Fahrbahn abhängig. Dies gilt jedoch nicht für die Schadstoffgruppe der PAK. Diese weist vielmehr einen Zusammenhang mit der Fahrbahn auf (Colenco, 2000).

1.2 Möglichkeit der Entwässerung über das Bankett

Markus Boller und sein Team von der EAWAG führten im Jahr 2005 Versuche unter realistischen Bedingungen auf einem Strassenabschnitt in der Nähe von Burgdorf durch (Boller, 2006a,b). Der Strassenabschnitt wird mit 17'000 Fahrzeugen pro Tag sehr stark befahren und bereits seit fünf Jahrzehnten über das Bankett entwässert. Ihr Ziel war es, die mit der Strassenentwässerung verbundenen Schadstoffflüsse zu charakterisieren. Dabei machten sie folgende Schlussfolgerungen:

♦ Der Aufbau des Oberbodens des Bankettes kann für den Rückhalt von PAK und Schwermetallen als geeignet bezeichnet werden. Für künftige Anlagen wird deshalb eine Mächtigkeit des A–Horizontes von > 30 cm mit einer Kationenaustauschkapazität > 100 mmol kg⁻¹ TS empfohlen.

♦ Die Belastung des Bankettes mit Schwermetallen kann bis zu einem Strassenabstand von 2 m hauptsächlich mit den Stoffeinträgen, stammend vom Strassenabfluss und vom Spritzwasser, sowie von der lokalen Deposition (< 25 m Strassenabstand) erklärt werden.

♦ Würde, wie im Fall der Schachenstrasse, Burgdorf, nur das von der Fahrbahn ablaufende Strassenwasser gefasst, könnten nur ca. 20 % der Schadstofffracht abgeleitet werden. Die Problematik der Schadstoffanreicherung im Bankett würde damit nicht grundsätzlich entschärft. In solchen Situationen wird deshalb empfohlen, auf eine Ableitung und Behandlung des Strassenwassers zu verzichten (Boller, 2006a,b).

1.3 Schwermetallmobilität in Böden

- der pH–Wert
- die organische Substanz
- der Schwermetall–Gesamtgehalt
- das Redoxpotential
- der Tongehalt
- der Gehalt an Sesquioxiden
- der Gehalt an Komplexbildnern
- partikuläre Auswaschung via präferenziellen Fluss

1.3.1 Spezifische und unspezifische Adsorption

1.3.2 Unterschiede im Mobilitätsverhalten

Das Verlagerungs- und Auswaschungsverhalten der verschiedenen Schwermetalle unterscheidet sich. Das Auswaschungsrisiko eines Schwermetalls wird durch seine Mobilität im Boden, d.h. durch das Ausmass, mit dem es in der Bodenlösung in größere Tiefen verlagert wird, bestimmt. Mehrere Faktoren beeinflussen die Mobilität eines Schwermetalls:

♦ Die chemische Bindungsform des Schwermetalls in der Bodenmatrix bzw. die Stärke, mit der es darin gebunden ist.
♦ Die Belegung von Metall-Bindungsstellen an der Oberfläche von Bodenmatrix- Bestandteilen wie organische Bodensubstanz, Tonminerale und pedogene Oxide. Freie Bindungsstellen erniedrigen die Mobilität
♦ Die chemische Zusammensetzung der Bodenlösung (Walthert et al., 1999)

1.3.3 Bodenchemische Einflussgrössen auf die Schwermetallmobilität

1.3.3.1 pH–Wert

Eine Erhöhung des pH wäre bei stark belasteten Standorten als Vorsichtsmassnahme sinnvoll. In Tabelle 1 sind die Schwermetalllösungskonzentrationen von identischen Parzellen mit Kalk und ohne Kalk verglichen. Es zeigt sich, dass durch die Kalkung die Konzentrationen in der Lösung bei allen Schwermetallen deutlich verringert wurden. Vor allem im Oberboden (0–15 cm), in dem die mittleren pH–Werte der Kalkvarianten um mehr als zwei pH–Einheiten auseinanderlagen, waren die Lösungskonzentrationen der Parzellen mit Kalk um ungefähr zwei Grössenordnungen niedriger als die der ungekalkten Parzellen (Filius, 1993). Die Kalkung ist also wirksam bei der Reduktion der löslichen Schwermetallgehalte.
Tabelle 1: Über Oberboden (0–15 cm) und Unterboden (15–45 cm) gemittelte SM–Lösungskonzentrationen auf den Parzellen mit Kalk und ohne Kalk (Filius, 1993).

<table>
<thead>
<tr>
<th>Tiefe</th>
<th>Cadmium [µg/l]</th>
<th>Zink [mg/l]</th>
<th>Blei [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne Kalk</td>
<td>mit Kalk</td>
<td>ohne Kalk</td>
</tr>
<tr>
<td>0 – 15 cm</td>
<td>275</td>
<td>4.5</td>
<td>31.7</td>
</tr>
<tr>
<td>15 – 45 cm</td>
<td>47.5</td>
<td>8.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Tabelle 2 zeigt, dass in denselben Parzellen nahezu identische Schwermetall–Frachten vorzufinden waren.

Tabelle 2: Über verschiedene Tiefen (0–15 cm, 15–45 cm, 0–45 cm) aufsummierte SM–Flächenbelastung [g/m²] der Parzellen mit und ohne Kalk (Filius, 1993).

<table>
<thead>
<tr>
<th>Tiefe</th>
<th>Cadmium [g/m²]</th>
<th>Zink [g/m²]</th>
<th>Blei [g/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne Kalk</td>
<td>mit Kalk</td>
<td>ohne Kalk</td>
</tr>
<tr>
<td>0 – 15 cm</td>
<td>0.936</td>
<td>1.013</td>
<td>108.6</td>
</tr>
<tr>
<td>15 – 45 cm</td>
<td>0.511</td>
<td>0.458</td>
<td>115.3</td>
</tr>
<tr>
<td>0 – 45 cm</td>
<td>1.447</td>
<td>1.471</td>
<td>223.9</td>
</tr>
</tbody>
</table>

Die aus diesen Erkenntnissen gefolgerten Modellrechnungen zeigen, dass die Schwermetallverlagerung durch Kalkung auch über grössere Zeiträume hinweg aufgehalten wird. In denselben Modellrechnungen wurde auch gezeigt, dass auf stark bleibelasteten Standorten auch ohne Kalkung kaum Blei verlagert wird (Filius, 1993).

Tabelle 3: Relative Bindungsstärke von Schwermetallen in Böden; Basiswerte in Abhängigkeit vom pH–Wert des Bodens (Walthert et al., 1999)

<table>
<thead>
<tr>
<th>Element</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ni</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Zn</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cd</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Relative Bindungsstärke: 1 ≈ sehr gering; 2 ≈ gering; 3 ≈ mittel; 4 ≈ stark; 5 ≈ sehr stark

Hornburg (1991) fasste die Wirkung der Bodenreaktion auf die Schwermetallgehalte aufgrund flächendeckender Untersuchungen in Schleswig–Holstein folgendermassen zusammen:

- Die Gehalte an Cadmium im Bodensättigungsextrakt liegen zwischen 0.07 und 8.6 µg/l. Die auf die Bodenlösung bezogenen Cd–Gehalte überschreiten den Trinkwasser–Grenzwert von 5 µg/l in extrem bis sehr stark versauerten Waldbodenproben und auf Flächen mit Cd–Gehalten über 3 mg/kg Boden.
- Auch bei Zink liegen im Bodensättigungsextrakt (Scheffer & Schachtischabel, 2002) der Waldbodenproben die höchsten Gehalte vor. Die Lösungskonzentrationen übersteigen hier im Mittel mit 0.29 mg Zn/l BSE (=Bodensättigungsextrakt) bis nahezu um das Dreifache den EU–Trinkwasser–Grenzwert von 0.1 mg/l und um etwa das Siebenfache die durchschnittlichen Bodenlösungsgehalte der Ackerbodenproben von 0.04 mg Zn/l. Der mittlere Zn–Gehalt aller Bodenproben entspricht mit 0.104 mg/l dem EU–Trinkwasser–Grenzwert von 0.1 mg/l. Bezogen auf Gewichtseinheiten Boden umfassen die Zn–BSE–Gehalte im Mittel 0.08 mg/kg.
- Während Blei bei pH–Werten über 4.5 in den Ackerbodenproben nicht analytisch gesichert nachzuweisen war (Gehalte < 0.001 mg/l), überschreiten die Gehalte im Bodensättigungsextrakt der Waldbodenproben mit durchschnittlich 0.07 mg/l BSE den Trinkwasser–Grenzwert von 0.04 mg/l im Mittel um knapp das Zweifache. Auf die Bodeneinwaage bezogen betragen die Pb–BSE–Gehalte im Mittel 0.064 mg/kg (Hornburg, 2001).

Bei diesen flächendeckenden Untersuchungen waren in der Bodenlösung von sauren Waldstandorten erhöhte Konzentrationen von Schwermetallen nachzuweisen. Dies ist ein weiterer Beweis für die starke pH–Abhängigkeit der Schwermetallmobilität.
1.3.3.2 Organischer Kohlenstoff

Die Affinitätsreihe für die Bindung der Schwermetalle an die organische Substanz lautet: \(\text{Pb} > \text{Cu} > \text{Cd} > \text{Zn} > \text{Mn} \) (Hornburg, 1991)

In anderen Untersuchungen wurde die relative Bindungsstärke mit Zahlen qualitativ eingeteilt. Die Einteilung ist in Tabelle 4 ersichtlich. Die entsprechenden Werte müssen zu den Basiswerten aus Tabelle 3 addiert werden.

Tabelle 4: Relative Bindungsstärke von Schwermetallen in Böden; Zuschläge zu Werten in Tabelle 3 für organische Bodensubstanz (Walthert et al., 1999)

<table>
<thead>
<tr>
<th>org. Bodensubstanz [%]</th>
<th>Ni</th>
<th>Zn</th>
<th>Cd</th>
<th>übrige</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8-15</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>>15</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1.3.3.3 Tongehalt

In der Tendenz nehmen die Korrelationskoeffizienten für die Beziehungen zwischen den Schwermetallgesamt- und den Tongehalten der Bodenproben in der Reihe: Mn > Zn > Cu > Pb > Cd ab. Diese Reihenfolge deutet darauf hin, dass vor allem Mangan und Zink mit der Tonfraktion der Böden assoziiert werden (Hornburg, 1991).

In Tabelle 5 ist die relative Bindungsstärke nach Walthert (1999) als eine andere Möglichkeit der Einteilung angegeben.

Tabelle 5: Relative Bindungsstärke von Schwermetallen in Böden; Zuschläge zu Werten in Tabelle 3 für organische Bodensubstanz (Walthert et al., 1999)

<table>
<thead>
<tr>
<th>Ton [%]</th>
<th>Cd, Ni</th>
<th>Zn, Cu</th>
<th>Cr, Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15-25</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25-45</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>>45</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1.3.4 Präferenzieller Fluss

Zusammenfassend wird von Gimmi (2004) das Phänomen des präferenziellen Flusses folgendermassen beschrieben:

- Der Wasserfluss in Feldböden ist im Allgemeinen sehr heterogen.
- So genannter präferenzieller Fluss tritt sehr oft auf, vor allem bei hohen Niederschlagsraten, in lehmigen Böden, oder bei sehr trockenen Verhältnissen in sandigen Böden.
- Präferenzieller Fluss findet vorwiegend entlang von Wurzeln, Wurmgängen und Rissen statt.
- Eine Quantifizierung typischer Verlagerungsgeschwindigkeiten oder –zeiten in Feldböden ist sehr schwierig. Messungen der Tiefenprofile von Stoffkonzentrationen lassen dies kaum zu.
- Während eines einzelnen Niederschlagsereignisses kann eine beträchtliche Menge eines zuvor ausgebrachten Tracers\(^1\) in tiefere Schichten oder in Grundwasser gelangen.
- Über eine ganze Vegetationsperiode sind die ausgewaschenen Mengen vermutlich eher gering. Falls der Abbau der Schadstoffe im Grundwasser gehemmt ist, können aber selbst derart geringe Mengen über lange Zeiträume zum Problem werden (Gimmi, 2004).

\(^1\) Tracer = gut lösliche, einfach nachweisbare Verbindung, die zur Untersuchung von Durchflussprozessen verwendet wird.
Welchen Einfluss hat das Phänomen des präferenziellen Flusses aber auf die Schwermetallmobilität? Roulier et al. (2005) beschreiben es folgendermassen:

„Die Bodenstruktur scheint eine physikalische Bodeneigenschaft zu haben, die einen relevanten Einfluss auf die Schwermetallmobilität hat. Schadstoffe, die relativ stark adsorbiert sind, können entlang von präferenziellen Fliesswegen fast so gut verlagert werden, wie schwach adsorbierte. Begünstigend für den präferenziellen Transport wirken die Anwesenheit organischer Substanz, besonders bei Verbindungen, die starke Komplexe mit löslichen organischen Verbindungen bilden (Camobreco et al., 1996; Kim & Corapcioglu, 2002). Die schnelle Verlagerung einer Verbindung durch das Porensystem reduziert die Reaktionsmöglichkeit mit Bindungsstellen im Porensystem der Böden. Die Bodenlösung, die präferenziell abfliesst, kann Schadstoffe sowohl gelöst als auch an Partikel gebunden mitführen. Die Kontaktzeit ist deshalb wichtig, da unterschiedliche Verbindungen verschiedene Grade von Reversibilität in Sorptions- und Desorptionsvorgängen haben. Durch diese erhöhte Mobilität können nicht mobile Verbindungen wie Pb so stark ausgewaschen werden wie relativ mobile chemische Verbindungen (Deiss et al., 2004). Deshalb ist es notwendig, die Mobilität von Schwermetallen sowohl unter dynamischen Bedingungen als auch im ungestörten Boden zu quantifizieren (Haws et al., 2004). Besonders in der Wurzelzone scheint dies notwendig, da Wurzeln bevorzugt durch Makroporen wachsen und dabei kontinuierliche präferenzielle Fliesswege erzeugen. Pflanzen haben auch einen grossen Einfluss auf die Bildung von gelöster organischer Substanz, die starke metallorganische Komplexe bildet (Deiss et al., 2004).“

2. Rechtliche Aspekte zur Weiterverwendung von belasteten Böden

2.1 Legaldefinition

Bodenbelastungen sind physikalische, chemische und biologische Veränderungen der natürlichen Beschaffenheit des Bodens. Als Boden gilt nur die oberste, unversiegelte Erdschicht, in der Pflanzen wachsen können (Art. 7, Abs. 4bis USG). Die chemischen Bodenbelastungen entstehen durch direkten oder indirekten Eintrag von Fremdstoffen (direkt: hauptsächlich Überdüngung, Agrochemikalien; indirekt: Luftverschmutzung, namentlich in Form von sich im Erdreich akkumulierenden Schwerme-
tallen) (Rausch et al., 2004). Im Falle der Strassenrandböden, handelt es sich um indirekte, chemische Bodenbelastungen, die als Folge von Luftverschmutzung, Pneu–, Belag– und Bremsabrieb entstehen (Rausch et al., 2004).

2.2 Entscheidungsregeln im Falle der Unsicherheit

Solange nicht zweifellos bewiesen werden kann, dass die Umlagerung und Wiederverwendung von ausgegrabenen Strassenrandböden risikofrei möglich ist, solange also eine Unsicherheit vorhanden ist, kommen im Grundsatz zwei Entscheidungsregeln zur Anwendung. Aufgrund der Anwendung des Vorsorgeprinzips sind eine materielle und eine prozessuale Entscheidungsregel zu unterscheiden:

Materiell: Verzicht auf wissenschaftliche Gewissheit
In materieller Hinsicht muss die Schädlichkeit oder Gefährlichkeit eines bestimmten Verhaltens bzw. einer bestimmten Situation nicht mit naturwissenschaftlicher Genauigkeit erwiesen sein, um rechtliche Folgen zu haben. Ebenso wenig muss die Notwendigkeit oder Wirksamkeit einer entsprechenden Massnahme strikt nachgewiesen sein. Art. 1 Abs. 2 USG verlangt eine frühzeitige Begrenzung von Einwirkungen bereits dann, wenn diese schädlich oder lästig werden „können“. Es genügt also eine einigermassen reelle, plausible, auf Erfahrungswerte gestützte Wahrscheinlichkeit. Dabei ist im Zweifelsfall auf das pessimistischere Szenario abzustellen („in dubio pro securitate“) (Rausch et al., 2004).

Prozessual: Umkehr der Beweislast
Prozessual wirkt sich dies in konkreten Einzelfällen auf die Verteilung der Beweislast aus. Sobald die Schwelle der hinreichenden Wahrscheinlichkeit überschritten ist, tritt eine Vermutung der Schädlichkeit bzw. Gefährlichkeit ein. Dementsprechend verschiebt sich die objektive Beweislast, d.h. das Risiko der Beweislosigkeit, von der Behörde, welche eine Massnahme anordnen will, auf die betroffenen Privaten, die potenziellen Verfügungsadressaten. Diese sind in einem solchen Fall faktisch gezwungen, den Nachweis der Ungefährlichkeit bzw. Unschädlichkeit zu erbringen. Eine rechtliche Beweisführungslast (subjektive Beweislast) obliegt ihnen aufgrund des Vorsorgeprinzips allerdings nicht (Rausch et al., 2004).

2.3 Das Vorsorgeprinzip im Bodenschutz

Schwergewicht der Massnahmen deshalb ganz besonders auf der Vorsorge (Rausch et al., 2004).

Um Massnahmen der Vorsorge handelt es sich zunächst bei den allgemeinen Bodenschutzmassnahmen nach Art. 33 USG, die auf das Ziel der langfristigen Erhaltung der Bodenfruchtbarkeit ausgerichtet sind. Sie kommen schon bei qualitativ noch unversehrten Böden zum Tragen, gelten aber auch bei belasteten Böden. Dementsprechend sind die Richtwerte welche die Belastung angeben, "bei deren Überschreitung die Fruchtbarkeit des Bodens nach dem Stand der Wissenschaft oder der Erfahrung langfristig nicht mehr gewährleistet ist" (Art. 35, Abs. 2 USG), reine Vorsorgewerte. Sie bezeichnen die oberste Belastung, bei der normalerweise noch von langfristig intaktem Boden gesprochen werden kann, und wollen sicherstellen, dass die Multifunktionalität des Bodens ohne Nutzungseinschränkungen erhalten bleibt. Die Überschreitung eines Richtwerts bedeutet noch nicht, dass die Bodenfruchtbarkeit aktuell beeinträchtigt oder auch nur gefährdet ist. Damit bei einer Überschreitung des Richtwerts genügend Zeit verbleibt, um mit Massnahmen nach Art. 34 Abs. 1 USG weitere Belastungen zu unterbinden, müssen die Richtwerte deutlich unter der Schädlichkeitschwelle liegen (Rausch et al., 2004). Die Frage ist, was man als schädlich bezeichnet. Rausch verwendet den Begriff in einem akuten Sinn. Wenn man aber die Langfristigkeit in Betracht zieht, dann ist auch schon die Nichtgewährleistung der Multifunktionalität schädlich. Es geht dabei um eine mögliche Schädigung des Systems.

Bei einer Überschreitung der Richtwerte kommt das dreistufige Konzept weitergehender Massnahmen gemäss Art. 34 USG zum Tragen. In einer ersten Stufe, dem so genannten Quellenstopp (Abs. 1), verschärfen die Kantone die in Art. 33 USG vorgesehenen allgemeinen Bodenschutzmassnahmen, bis ein weiterer Ansteig der Bodenbelastung verhindert wird (Art. 8, Abs. 2 VBBo). Diese weitergehenden Massnahmen der ersten Stufe sind immer noch Massnahmen im Rahmen der Vorsorge, zumal sie keine aktuell oder in naher Zukunft zu erwartende Beeinträchtigung der Bodenfruchtbarkeit voraussetzen. Das Gesetz sieht somit innerhalb des Vorsorgebereichs zwei Massnahmestufen vor. Die zweite und dritte Stufe der in Art. 34 USG vorgesehenen weitergehenden Massnahmen (Nutzungseinschränkung, Abs. 2; Sanierung, Abs 3) haben - bezogen auf das Schutzgut Boden - hingegen keinen Vorsorgecharakter mehr (Rausch et al., 2004).

2.4 Der Bodenschutz auf Verordnungsstufe

2.4.1 Verordnung über Belastungen des Bodens (VBBö) vom 1. Juli 1998

Die Verordnung arbeitet mit drei Beurteilungsmassstäben: Richtwert, Prüfwert und Sanierungswert. Der Richtwert steht im Dienste des vorsorglichen und langfristigen Schutzes des Bodens als Ökosystem; seine Überschreitung indiziert einen Bedarf nach Abklärung der Belastungsursachen und kann Massnahmen der Stufe 2 nötig machen. Der Sanierungswert repräsentiert die Belastungen, welche die Gesundheit von Menschen, Tieren oder Pflanzen gefährden. Seine Überschreitung in einem Gebiet mit raumplanerisch festgelegter gartenbaulicher, land- oder forstwirtschaftlicher Nutzung
verlangt nach Sanierungsmaßnahmen. Der Prüfwert liegt zwischen den beiden anderen Werten und weist auf eine mögliche Gesundheitsgefährdung hin, der es nachzugehen und, je nach Resultat, mit geeigneten Maßnahmen zu begegnen gilt (Rausch et al., 2004). Folglich sind vier Stufen von Maßnahmen zu unterscheiden:

1. allgemeine Maßnahmen unabhängig von der Belastung (keine Überschreitung des Richtwerts)
2. allfällige Verschärfung nach Art. 34 Abs. 1 USG (Überschreitung des Richtwerts, aber keine Überschreitung des Prüfwerts)
3. Eventuelle Nutzungseinschränkungen nach Art. 34 Abs. 1 USG (Überschreitung des Prüfwerts aber Unterschreitung des Sanierungswertes)
4. Nutzungsverbot oder Sanierung nach Art. 34 Abs. 1 USG.

Dieses Konzept des Bodenschutzes ist in Abbildung 3 dargestellt.

Abbildung 3: Das Bodenschutzkonzept der Schweiz (Buwal, 2001a)

2.4.2. Technische Verordnung über Abfälle (TVA) vom 10. Dezember 1990

Die Technische Verordnung über Abfälle (TVA) vom 10. Dezember 1990 bestimmt, dass unverschmutztes Aushubmaterial in erster Linie für Rekultivierungen verwertet werden muss. Sie verbietet zudem die Verdünnung des Schadstoffgehalts von Aushub durch Vermischen mit unbelastetem Material (Art. 9 Abs. 1 Lit. a, 10 und 16 Abs. 3 Lit. d TVA in Verbindung mit Ziff. 12 Abs. 2 Anh. 1 TVA).

2.4.3 Chemikalien–Risiko–Reduktions–Verordnung (ChemRRV) vom 18. Mai 2005

Die Verordnung vom 26. August 1998 über die Sanierung von belasteten Standorten (Altlasten–Verordnung; AltlV) bezeichnet in Artikel 2 Absatz 1 Orte, deren Belastung von Abfällen stammt und die eine beschränkte Ausdehnung haben, als belastete Standorte; ausgenommen sind jene Standorte, an die ausschliesslich unverschmutztes Material gelangt ist. Nach Art. 5 Abs. 3 trägt die kantonale Behörde die Standorte in den Kataster der belasteten Standorte ein. Innerhalb des Katasters gibt es nach Art. 5 Abs. 4 lit.a AltlV Standorte, bei denen keine schädlichen oder lästigen Einwirkungen zu erwarten sind; und nach Art. 5 Abs. 4 lit. b AltlV Standorte, bei denen untersucht werden muss, ob sie überwachungs– oder sanierungsbedürftig sind. Entsprechend Art. 30 Abs. 3 USG sieht Art. 17 AltlV zudem vor, dass bei der Sanierung von Altlasten entnommene Abfälle umweltverträglich zu entsorgen sind. Soweit es sich dabei um Bodenaushub handelt, empfiehlt die Wegleitung Bodenaushub für den Schutz des Bo-
dens und der Gewässer die entsprechenden Entsorgungsmassnahmen (Verwertung oder Ablagerung) (Buwal, 2001b). Als Sanierungsmassnahme für belastete Böden gilt gemäß Art. 16 lit. c Alt IV aber auch eine Nutzungseinschränkung nach Art. 34 Abs. 2 USG.

2.5 Konkrete Vorgehensweise bei der Umsetzung

3. Forschungsgegenstand und Fragestellung

 Untersuchungsgegenstand ist ein Strassenrandboden vom Autobahnabschnitt A2/6 in Horw, Luzern. Dieser Boden ist stark mit den Schwermetallen Blei, Zink, Nickel und Cadmium belastet. Das Mittelstreifenmaterial wurde in zwei 17.5 m² große Lysimeterbecken verfüllt. Dadurch ist eine Beprobung des Sickerwassers, das diese Böden durchfliesst, möglich. Es stellen sich drei Fragen, die in dieser Arbeit beantwortet werden:

 1. Wie homogen sind die Böden in den beiden Becken?
 2. Erfolgt eine Auswaschung von Schwermetallen in gelöster oder partikulärer Form?
 3. Erfolgt eine Aufnahme durch *Phacelia tanacetifolia*?

 Die Arbeit soll Entscheidungsgrundlagen betreffend einer Wiederverwendung von kontaminiertem Strassenrandmaterial liefern.
4. Material und Methoden

In dieser Diplomarbeit wurden die ersten Versuche an der Lysimeter–Anlage in Horw durchgeführt. Sie baut auf einer Praktikumsarbeit über die Inbetriebnahme der Anlage und einer Semesterarbeit über die Gefährdung von Strassenrandböden durch strassenverkehrsbedingte Schadstoffquellen auf (Kuster, 2005). Die Experimente haben Informationen über die effektiven Auswaschungsraten ausgewählter Schadstoffe generiert.

4.1 Lysimeterbecken

4.2 Wetterdaten

Abbildung 5: Lageplan der Wetterstation und der Lysimeteranlage\(^2\)

4.3 Bodenprobenahme

Abbildung 6: Mit dem Probennahmegerät konnte eine Probe von 5 cm Durchmesser und 30 bis 35 cm Länge entnommen werden.
4.3.1 Probenahmeraster

Tabelle 6: Der Probenahmeraster für die Homogenitätsanalyse

<table>
<thead>
<tr>
<th>Becken Nr. 1</th>
<th>Becken Nr. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achse 1, Humax 5 cm, Seitenabstand 80 cm</td>
<td>Achse 1, Humax 5 cm, Seitenabstand 80 cm</td>
</tr>
<tr>
<td>1/1 50 cm</td>
<td>2/1 22 cm</td>
</tr>
<tr>
<td>1/2 191 cm</td>
<td>2/2 97 cm</td>
</tr>
<tr>
<td>1/3 298 cm</td>
<td>2/3 392 cm</td>
</tr>
<tr>
<td>Achse 2, Humax 5 cm, Seitenabstand 145 cm</td>
<td>Achse 2, Humax 5 cm, Seitenabstand 145 cm</td>
</tr>
<tr>
<td>1/4 46 cm</td>
<td>2/4 316 cm</td>
</tr>
<tr>
<td>1/5 198 cm</td>
<td>2/5 362 cm</td>
</tr>
<tr>
<td>1/6 487 cm</td>
<td>2/6 364 cm</td>
</tr>
<tr>
<td>Achse 3, Burgerzylinder 10 cm, Seitenabstand 205 cm</td>
<td>Achse 3, Burgerzylinder 10 cm, Seitenabstand 205 cm</td>
</tr>
<tr>
<td>1/x 93 cm</td>
<td>2/x 22 cm</td>
</tr>
<tr>
<td>1/y 402 cm</td>
<td>2/y 189 cm</td>
</tr>
<tr>
<td>1/z 412 cm</td>
<td>2/z 202 cm</td>
</tr>
<tr>
<td>Achse 4, Humax 5 cm, Seitenabstand 270 cm</td>
<td>Achse 4, Humax 5 cm, Seitenabstand 270 cm</td>
</tr>
<tr>
<td>1/7 188 cm</td>
<td>2/7 149 cm</td>
</tr>
<tr>
<td>1/8 233 cm</td>
<td>2/8 151 cm</td>
</tr>
<tr>
<td>1/9 294 cm</td>
<td>2/9 379 cm</td>
</tr>
</tbody>
</table>
Das Probenmaterial welches mit dem Humax entnommen wurde, diente der Homogenitätsanalyse. Das Probenmaterial, das mit dem Burgerzyylinder entnommen worden ist, diente der Erstellung einer Saugspannungskurve.
4.3.2 Korngrössenanalyse mit der Pipettmethode

Die Trennung der verschiedenen Korngrössenfraktionen beruht darauf, dass Körner in einem sie umgebenden Medium wie Luft oder Wasser bald eine gleich bleibende Sinkgeschwindigkeit erreichen, die umso grösser ist, je grösser das betreffende Korn ist. Wenn man daher Körner verschiedener Grössen gleichzeitig ins Wasser wirft, trennen sie sich infolge ihrer verschiedenen Sinkgeschwindigkeit voneinander. Nach dem Stokes'schen Gesetz fallen kugelförmige Teilchen in einer Flüssigkeit mit der Geschwindigkeit:

\[v = \frac{(\rho - \rho^*) gd^2}{18\eta} \]

\(v \) = Fallgeschwindigkeit; \(\rho \) = Dichte der Teilchen; \(\rho^* \) = Dichte der Flüssigkeit; \(\eta \) = Viskosität der Flüssigkeit; \(d \) = Teilchendurchmesser, \(g \) = Gravitationskonstante 9.81 \(m/s^2 \)

Durch Umformen erhält man:

\[t = 0.0183 \frac{\eta}{(\rho - \rho^*)d^2} \]

Praktisch bedeutet dies, dass aus einer Suspension nach der Zeit \(t \) [s] in der Tiefe \(l \) [cm] alle Teilchen mit Durchmesser \(\geq d \) verschwunden sind (Nowack, 2006).

Tabelle 7: Parameter der Probenahme

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>Tiefe</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050 mm Schluff und Ton</td>
<td>19.0 cm</td>
<td>84 s</td>
</tr>
<tr>
<td>0.002 mm Ton</td>
<td>2.6 cm</td>
<td>2 h</td>
</tr>
</tbody>
</table>

Den Feinsand und Schluffanteil erhält man durch Differenzrechnung (Nowack, 2006).
4.3.3 Organisch C nach Walkley&Black

Mit dem Verfahren nach Walkley&Black wird der Kohlenstoff von C0 zu C4+ oxidiert und das Chrom Cr6+ des Kaliumdichromats zu Cr3+ reduziert. Das nicht verbrauchte Cr5+ wird mit dem Ammoniumeisen(II)sulfat titrimetrisch bestimmt. Mit dieser Methode werden nur etwa 70 % des effektiv vorhandenen org. C erfasst. Holzkohle kann auf diese Weise nicht bestimmt werden (Egli et al., 2006).

4.3.4 Element–Gehalte

4.3.5 Wasserstoffionenkonzentration (pH)

Die Wasserstoffionenkonzentration (kurz: pH–Wert) charakterisiert den Säuregehalt der Bodenlösung. Die Messung wurde gemäss der Arbeitsvorschrift zur anorganischen Analytik von Boden und Wasser vorgenommen (Egli et al., 2006). Gemessen wurde in 0.01 m CaCl\textsubscript{2}–Lösung. Das Boden–Lösungsverhältnis war 1: 2,5.

3 Institut für Mineralogie, Geochemie und Salzlagerstätten der technischen Universität Clausthal, http://www.immr.tu-clausthal.de/geoch/labs/XRF/RFA/Einleit.html, Zugriff am 25. April 2006
4.3.6 Elektrische Leitfähigkeit

4.3.7 Titrationsexperiment

Um die Pufferkapazität des Bodens abschätzen zu können wurde ein Titrationsexperiment durchgeführt. 5 g Boden wurde mit 20 ml 1 molarer Salzsäure angesäuert. Geschüttelt wurde von Hand und mit einem Probenschüttler. Das Ziel war die nötige Menge Säure bis zur Erreichung von pH \(\approx 4\) zu messen. Das verwendete Material waren ein Titriergerät und ein pH–Meter. Um das Säuregleichgewicht zu erreichen, wurden über den Zeitraum einer Woche WiederholungsMESSUNGEN durchgeführt. Der pH 4 konnte nur ungefähr erreicht werden. Das Experiment wurde mit dem Ziel gemacht, die Resultate der Modellierung der Bodenversauerung in Kapitel 6.3 mit Laborwerten zu vergleichen.

4.4 Beprobung des Sickerwassers

Zur Messung des Elementgehalts der Partikelfraktion und des DOC (dissolved organic carbon) wurden die Proben in der Probeflasche angesäuert und ohne Filtration direkt gemessen.

Die Beprobung erfolgte aus zwei Probennahmetanks (je einer pro Lysimeter) und mit jeweils zwei identischen Probenflaschen. Pro Datum wurden also vier Proben analysiert. Diese wurden am Ende wieder aggregiert, indem der Durchschnitt ausgerechnet wurde.

4 Wissenschaftlich Technische Werkstätten GmbH & Co. KG
4.4.1 Atomabsorptionsspektrometrie (AAS) mit Flamme

Die AAS beruht auf dem Kirchhoffschen Strahlungsgesetz, nach dem freie Atome eines Elementes, die sich im Grundzustand befinden, Lichtenergie jener Frequenz absorbieren, die sie im angeregten Zustand emittieren. Dabei ist die Frequenz der Resonanzabsorption spezifisch für das Element, während die gemessene Lichtabsorption der vorhandenen Menge der freien Atome dieses Elementes proportional ist.

Für die Elementkonzentration C gilt:

\[C = \frac{E_A}{A \times L} \]

\(E_A = \text{atomare Extinktion} \)
\(A = \text{atomarer Extinktionskoeffizient} \)
\(L = \text{Länge der absorbierenden Schicht} \)
(Egli et al., 2006)

\textit{Abbildung 8: Der Flammen–Atomabsorber (Mitte), an dem die Zinkkonzentrationen gemessen wurden. Rechts der Autosampler, links der Steuerungscomputer.}
4.4.2 Atomabsorptionsspektrometrie (AAS) mit Graphitrohr

Abbildung 9: Der Graphitrohr–Atomabsorber, an dem die Cd–, Pb–, Fe– und Ni–Konzentrationen gemessen wurden. Auf dem Teller links befindet sich der Autosampler, hinter der dunklen Scheibe rechts befinden sich die Lampen, die eine spezifische Wellenlänge ausstrahlen.

4.4.3 Ionenchromatographie (IC)

Ursprünglich sollten mit dieser Methode gelöste Chloridionen gemessen werden, um eine allfällige Auswaschung von Salz aus dem Strassenrandboden zu beobachten. Als Zusatzprodukt kamen die Messwerte von Nitrat und Sulfat heraus.

Die Chromatographie ist ein physikalisch–chemisches Verfahren zur Trennung von Substanzgemischen. Der Trenneffekt beruht auf einer wiederholten Verteilung zwischen zwei Phasen, von denen eine Phase stationär (ruhend) ist, während die zweite, mobile Phase sich in einer bestimmten Richtung bewegt.

Retentionsparameter/Verteilungskoeffizient D:
Wird ein Stoffgemisch einer chromatographischen Trennung unterworfen, so wird sich für jede Komponente ein Verteilungsgleichgewicht zwischen mobiler und stationärer Phase ausbilden. Eine Stofftrennung ist nur dann erfolgreich, wenn sich die Verteilungskoeffizienten D der einzelnen Komponenten hinreichend voneinander unterscheiden.
D ist definiert als das Verhältnis der Konzentration eines Stoffes A in der stationären Phase (Index s) und der mobilen Phase (Index m):

\[D = \frac{(A)s}{(A)m} \]
Dementsprechend werden Stoffe mit einem hohen Verteilungskoeffizienten D stärker zurückgehalten als solche mit einem kleinem D.

IC–System:
Mit Hilfe einer Hochdruckpumpe wird ein Flüssmittel (mobile Phase, in den meisten Fällen eine Karbonat/Bikarbonatlösung) durch eine Trennsäule (stationäre Phase) gepumpt. Die Trennsäulen in der Anionenchromatographie enthalten spärrische Polymerpartikel mit quartären Ammoniumgruppen (+ aufgeladen), an denen die Auftrennung der Ionen stattfindet. In der Kationenchromatographie werden Sulfonsäuregruppen (– geladen) als reaktive Gruppen für die Trennung verwendet. Diesem kontinuierlichen Fluss der mobilen Phase wird das zu trennende Probengemisch mittels eines Injektors eingespritzt und durch die Trennsäule gepumpt auf der die Auftrennung der verschiedenen Ionenspezies erfolgt.

Chromatogramm/Auswertung:
Die aufgetrennten Ionen werden durch einen Leitfähigkeitsdetektor gepumpt, in dem die Leitfähigkeit gegen die Zeitachse aufgezeichnet wird. Die Peakfläche ist der Konzentration des Ions proportional. Die Zeit, die ein Ion benötigt, um durch die Säule zu wandern, ist eine spezifische Konstante und wird zur Identifizierung des Ions verwendet (Egli et al., 2006).

Die Nitratgehalte wurden gemessen, nachdem die Proben eine Weile bei Raumtemperatur lagerten. Da wöchentlich beprobt wurde, lagerte das Probewasser während maximal einer Woche in den Tanks. Daher muss bakterielle Aktivität vorhanden gewesen sein und die Nitratwerte sind dadurch beeinflusst worden. NH₄⁺ wurde zu NO₃⁻ umgewandelt.
4.5 Beprobung der Pflanzen

5. Resultate

5.1 Klima während dem Beprobungszeitraum

Einmalig war, dass fast am gesamten Alpennordhang flächig innerhalb von 48 Stunden mehr als 100 Liter Regen pro m² (=100 mm) gefallen sind. Das führte dazu, dass an einigen ausgewählten Stationen Rekordmengen gemessen wurden. Die statistische Wiederkehrdauer für einige dieser Stationen beträgt weit mehr als 100 Jahre (MeteoSchweiz, 2005).

fielen mehr als 2500 Liter Niederschlag auf die Lysimeterflächen. Die Probenahmetanks konnten diese enorme Menge nicht fassen und überliefen. Als Folge davon ging ca. 1/5 des Probewassers verloren. Die Trockenphase im September fand ihre Entsprechung in Luzern nur bedingt. Die folgenden Monate wiesen aber auch in Luzern ein deutliches Niederschlagsdefizit auf. Auch die Kältephase Ende Jahr schlug sich in den Mittelwerten der Station Luzern nieder (siehe auch Abbildung 14).

5.2 Ausflusscharakteristik

5.3 Sickerwasseranalyse

Abbildung 16: Zinkgehalt des Sickerwassers [mg/l]. Die Bestimmungsgrenze\(^6\) liegt bei 0.05 mg Zn/l und ist durch die rote Linie dargestellt.

Zink erreicht in keiner der gemessenen Stichproben eine mit dem Flammen–AAS messbare Konzentration (siehe Abbildung 16). Da schon diese Konzentration unterhalb der im Anhang aufgeführten Grenzwerte liegt wurde auf eine Messung mit dem Graphitrohr–AAS verzichtet.

Blei weist im Boden die höchste Konzentration mit einem Gehalt von durchschnittlich 465.65 mg/kg auf. Die Messung der Standardlösungen zeigte, dass die Messungen sehr genau waren. Die Standardabweichung ist bei den Standards sehr tief. Nach 10 Proben wurde ein Reslope\(^7\) durchgeführt und nach 20 Proben eine Neukalibration.

\(^6\)Bestimmungsgrenzen nach Bruno Kägi.
\(^7\)Bei einem Reslope wird nur ein Standard und die Blanklösung (Millipore–Wasser) gemessen. Falls die Abweichung grösser als 20% von der ursprünglichen Kalibration ist, erfolgt eine Neukalibration.

Abbildung 19: Cadmiumgehalt des Sickerwassers [µg/l]. Die Nachweisbarkeitsgrenze liegt bei 0.01 und 0.05 µg Cd/l und ist durch die rote Linie gekennzeichnet. Nach der Filterung wurden die Proben angesäuert.

Abbildung 22: Schwermetallfracht des Sickerwassers.
In Tabelle 8 sind die Beziehungen unter den einzelnen Elementkonzentrationen dargestellt. Wenn man annimmt, dass \(r \geq 0.95 \) eine signifikante Korrelation darstellt\(^8\), so korrelieren die Messwerte nicht. Sieht man davon ab, so zeigt sich, dass Nickel (gelöst) und Nickel (gesamt) am Besten korrelieren mit \(r = 0.7733 \). Blei (gelöst) und Blei (gesamt) korrelieren mit \(r = 0.2610 \) sehr schlecht. Blei (gesamt) korreliert mit Nickel (gesamt) mit einem \(r = 0.6837 \). Die Korrelation mit dem Niederschlag ist gering.

Tabelle 8: \(r \)-Werte des Pearson-Korrelationskoeffizienten

<table>
<thead>
<tr>
<th></th>
<th>Ni [(\mu g/l)] (gelöst)</th>
<th>Pb [(\mu g/l)] (gelöst)</th>
<th>Cd [(\mu g/l)] (gelöst)</th>
<th>Pb [(\mu g/l)]</th>
<th>Ni [(\mu g/l)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu g) Ni/l (gelöst)</td>
<td>1</td>
<td>0.1550</td>
<td>-0.1547</td>
<td>0.5229</td>
<td>0.7733</td>
</tr>
<tr>
<td>(\mu g) Pb/l (gelöst)</td>
<td>0.1550</td>
<td>1</td>
<td>0.4280</td>
<td>0.2610</td>
<td>0.1646</td>
</tr>
<tr>
<td>(\mu g) Cd/l (gelöst)</td>
<td>0.4280</td>
<td>0.4280</td>
<td>1</td>
<td>-0.3280</td>
<td>-0.2410</td>
</tr>
<tr>
<td>(\mu g) Pb/l</td>
<td>0.5229</td>
<td>0.2610</td>
<td>-0.3280</td>
<td>1</td>
<td>0.6837</td>
</tr>
<tr>
<td>(\mu g) Ni/l</td>
<td>0.7733</td>
<td>0.1646</td>
<td>-0.2410</td>
<td>0.6837</td>
<td>1</td>
</tr>
<tr>
<td>Niederschlag [mm]</td>
<td>0.2958</td>
<td>0.1897</td>
<td>-0.2807</td>
<td>0.4565</td>
<td>0.2602</td>
</tr>
</tbody>
</table>

\(^8\) Mündliche Empfehlung von M. Tschan, 17. November 2006
5.4 Auswaschung der Ionen Chlorid, Nitrat und Sulfat

Abbildung 23: Chlorid-Konzentration des Sickerwassers [mg/l]. Als Vergleich dazu die Chlorid-Konzentration des berühmten Mineralwassers Valser.10

mäss Anhang 1 der Fremd– und Inhaltsstoffverordnung (FIV). Die Qualitätsgrenze für Trinkwasser liegt bei 25 mg/l. Gemessen wurde ebenfalls mit Ionenchromatographie.

Abbildung 24: Nitratkonzentration des Sickerwassers [mg/l]. Als Vergleich dazu die Nitrat-Konzentration des berühmten Mineralwassers Valser. Auf der Abszisse (Probenlabel) sind die Daten der Probennahmen dargestellt.

Die Konzentration an Sulfat (Abbildung 25) liegt zwischen 20 und 60 mg/l. Eigenartigerweise, hat die Auswaschung von Sulfat nach einer hohen Phase am Anfang und einer Erholung in der Mitte der Beprobung gegen den Schluss wieder zugenommen.

Abbildung 25: Sulfatkonzentration des Sickerwassers [mg/l]. Auf der Abszisse (Probenlabel) sind die Daten der Probennahmen dargestellt.

Tabelle 9: r – Werte des Pearson-Korrelationskoefizienten

<table>
<thead>
<tr>
<th></th>
<th>mg NO₃⁻</th>
<th>mg SO₄⁻</th>
<th>mg Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg NO₃⁻</td>
<td>1</td>
<td>0.6604</td>
<td>0.8271</td>
</tr>
<tr>
<td>mg SO₄⁻</td>
<td>0.6604</td>
<td>1</td>
<td>0.5204</td>
</tr>
<tr>
<td>mg Cl⁻</td>
<td>0.8271</td>
<td>0.5204</td>
<td>1</td>
</tr>
<tr>
<td>Niederschlag [mm]</td>
<td>0.4968</td>
<td>0.0237</td>
<td>0.4310</td>
</tr>
</tbody>
</table>
5.5 Homogenitätsanalyse

5.5.1 Physikalische Bodeneigenschaften

Als Sand gelten Partikel mit einem Durchmesser zwischen 2 und 0.050 mm, als Schluff 0.050–0.002 mm und als Ton Partikel mit einem Durchmesser < 0.002 mm. Die Messwerte sind in Tabelle 10 dargestellt.

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Skelettanteil [%]</th>
<th>Sand [%]</th>
<th>Schluff [%]</th>
<th>Ton [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysimeter 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>23.09</td>
<td>59.8</td>
<td>23.7</td>
<td>16.5</td>
</tr>
<tr>
<td>1/2</td>
<td>26.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/3</td>
<td>34.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/4</td>
<td>33.32</td>
<td>62.8</td>
<td>20.7</td>
<td>16.5</td>
</tr>
<tr>
<td>1/5</td>
<td>16.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/6</td>
<td>35.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/7</td>
<td>30.55</td>
<td>67.4</td>
<td>17.4</td>
<td>15.2</td>
</tr>
<tr>
<td>1/8</td>
<td>31.51</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/9</td>
<td>35.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/11</td>
<td>-</td>
<td>59.1</td>
<td>22.8</td>
<td>18.1</td>
</tr>
<tr>
<td>1/12</td>
<td>-</td>
<td>59.8</td>
<td>23.5</td>
<td>16.7</td>
</tr>
<tr>
<td>1/13</td>
<td>-</td>
<td>60.7</td>
<td>22.2</td>
<td>17.1</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>29.7±6.5</td>
<td>61.6±3.1</td>
<td>21.7±2.4</td>
<td>16.7±0.94</td>
</tr>
<tr>
<td>Lysimeter 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>31.39</td>
<td>71.0</td>
<td>16.0</td>
<td>13.0</td>
</tr>
<tr>
<td>2/2</td>
<td>29.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/3</td>
<td>32.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/4</td>
<td>23.74</td>
<td>72.8</td>
<td>15.4</td>
<td>11.8</td>
</tr>
<tr>
<td>2/5</td>
<td>22.68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/6</td>
<td>26.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/7</td>
<td>31.31</td>
<td>63.4</td>
<td>21.7</td>
<td>14.9</td>
</tr>
<tr>
<td>2/8</td>
<td>26.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/9</td>
<td>24.77</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2/11</td>
<td>-</td>
<td>65.0</td>
<td>19.9</td>
<td>15.1</td>
</tr>
<tr>
<td>2/12</td>
<td>-</td>
<td>66.6</td>
<td>18.7</td>
<td>14.7</td>
</tr>
<tr>
<td>2/13</td>
<td>-</td>
<td>61.5</td>
<td>21.5</td>
<td>17.0</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>27.6±3.65</td>
<td>66.7±4.39</td>
<td>18.9±2.69</td>
<td>14.4±1.80</td>
</tr>
</tbody>
</table>

\(Ø ± σ = \text{Durchschnitt} ± \text{Standardabweichung}\)

5.5.2 Org. C und pH

Tabelle 11: Gehalt der Bodenproben an organischem Kohlenstoff und pH–Wert (gerundet)

<table>
<thead>
<tr>
<th>Probenlabel</th>
<th>Anteil org. C [%]</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysimeter 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>1.96</td>
<td>7.5</td>
</tr>
<tr>
<td>1/2</td>
<td>2.09</td>
<td>7.5</td>
</tr>
<tr>
<td>1/2</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td>2.03</td>
<td>7.5</td>
</tr>
<tr>
<td>1/4</td>
<td>2.02</td>
<td>7.5</td>
</tr>
<tr>
<td>1/5</td>
<td>1.93</td>
<td>7.5</td>
</tr>
<tr>
<td>1/6</td>
<td>2.01</td>
<td>7.5</td>
</tr>
<tr>
<td>1/7</td>
<td>1.92</td>
<td>7.5</td>
</tr>
<tr>
<td>1/8</td>
<td>2.00</td>
<td>7.5</td>
</tr>
<tr>
<td>1/9</td>
<td>2.11</td>
<td>7.5</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>2.0 ± 0.09</td>
<td>7.5 ± 0.00</td>
</tr>
</tbody>
</table>

Lysimeter 2		
2/1	2.02	7.5
2/2	1.95	7.5
2/3	1.79	7.5
2/4	2.04	7.5
2/5	1.96	7.5
2/6	1.95	7.5
2/7	2.16	7.5
2/8	1.93	7.5
2/9	1.94	7.5
Ø ± σ	1.97±0.10	7.5±0.00

5.5.3 Elementkonzentrationen

Gemessen wurden die Gesamtgehalte mittels XRF–Analyse. Es sollen hier diejenigen Elemente dargestellt werden, die auch in den Sickerwasserproben gemessen wurden. Es handelt sich dabei um Cd, Pb, Fe, Ni und Zn. Cu wird als Zusatzinformation angegeben.

Tabelle 12: Schwermetallgehalt der Bodenproben

<table>
<thead>
<tr>
<th>Lysimeter</th>
<th>Cd [mg/kg]</th>
<th>Pb [mg/kg]</th>
<th>Fe [g/kg]</th>
<th>Ni [mg/kg]</th>
<th>Zn [mg/kg]</th>
<th>Cu [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysimeter 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>1.0</td>
<td>457.4</td>
<td>24.7</td>
<td>27.8</td>
<td>500.9</td>
<td>56.4</td>
</tr>
<tr>
<td>1/2</td>
<td>1.2</td>
<td>420.8</td>
<td>25.8</td>
<td>30.2</td>
<td>493.0</td>
<td>55.2</td>
</tr>
<tr>
<td>1/3</td>
<td>1.7</td>
<td>402.6</td>
<td>27.9</td>
<td>28.6</td>
<td>471.1</td>
<td>51.2</td>
</tr>
<tr>
<td>1/4</td>
<td>1.6</td>
<td>414.9</td>
<td>25.0</td>
<td>26.9</td>
<td>492.1</td>
<td>51.1</td>
</tr>
<tr>
<td>1/5</td>
<td>2.0</td>
<td>550.4</td>
<td>27.4</td>
<td>29.1</td>
<td>574.6</td>
<td>57.5</td>
</tr>
<tr>
<td>1/6</td>
<td>1.0</td>
<td>377.1</td>
<td>25.1</td>
<td>27.1</td>
<td>452.3</td>
<td>50.0</td>
</tr>
<tr>
<td>1/7</td>
<td>1.4</td>
<td>468.0</td>
<td>25.8</td>
<td>28.4</td>
<td>550.1</td>
<td>53.7</td>
</tr>
<tr>
<td>1/8</td>
<td>1.7</td>
<td>507.9</td>
<td>26.6</td>
<td>29.5</td>
<td>584.6</td>
<td>58.5</td>
</tr>
<tr>
<td>1/9</td>
<td>1.5</td>
<td>494.4</td>
<td>26.2</td>
<td>27.9</td>
<td>559.7</td>
<td>56.6</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>1.5±0.34</td>
<td>454.8±56.15</td>
<td>26.1±1.09</td>
<td>28.4±1.10</td>
<td>519.8±48.07</td>
<td>54.5±3.10</td>
</tr>
<tr>
<td>Lysimeter 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>1.1</td>
<td>499.3</td>
<td>26.1</td>
<td>28.0</td>
<td>568.9</td>
<td>57.4</td>
</tr>
<tr>
<td>2/2</td>
<td>1.2</td>
<td>458.1</td>
<td>26.0</td>
<td>28.2</td>
<td>545.0</td>
<td>53.8</td>
</tr>
<tr>
<td>2/3</td>
<td>1.5</td>
<td>450.5</td>
<td>25.9</td>
<td>28.2</td>
<td>517.5</td>
<td>53.8</td>
</tr>
<tr>
<td>2/4</td>
<td>1.6</td>
<td>485.1</td>
<td>26.4</td>
<td>27.4</td>
<td>548.7</td>
<td>57.2</td>
</tr>
<tr>
<td>2/5</td>
<td>1.2</td>
<td>513.9</td>
<td>26.4</td>
<td>31.5</td>
<td>582.0</td>
<td>59.6</td>
</tr>
<tr>
<td>2/6</td>
<td>1.3</td>
<td>509.5</td>
<td>25.9</td>
<td>27.7</td>
<td>563.4</td>
<td>56.7</td>
</tr>
<tr>
<td>2/7</td>
<td>1.4</td>
<td>456.0</td>
<td>25.8</td>
<td>30.8</td>
<td>529.3</td>
<td>56.9</td>
</tr>
<tr>
<td>2/8</td>
<td>1.2</td>
<td>476.8</td>
<td>25.7</td>
<td>26.2</td>
<td>541.9</td>
<td>57.9</td>
</tr>
<tr>
<td>2/9</td>
<td>< 0.3</td>
<td>439.0</td>
<td>26.2</td>
<td>27.5</td>
<td>507.2</td>
<td>50.8</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>1.2±0.37</td>
<td>476.5±27.21</td>
<td>26.0±0.25</td>
<td>28.4±1.69</td>
<td>544.9±24.32</td>
<td>56.0±2.69</td>
</tr>
</tbody>
</table>
Tabelle 13: r–Werte des Pearson Produkt–Moment Korrelationskoeffizienten

<table>
<thead>
<tr>
<th></th>
<th>Cd [mg/kg]</th>
<th>Pb [mg/kg]</th>
<th>Fe [mg/kg]</th>
<th>Ni [mg/kg]</th>
<th>Zn [mg/kg]</th>
<th>Cu [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd [mg/kg]</td>
<td>1</td>
<td>0.3296</td>
<td>0.4551</td>
<td>0.1918</td>
<td>0.2871</td>
<td>0.2869</td>
</tr>
<tr>
<td>Pb [mg/kg]</td>
<td>0.3296</td>
<td>1</td>
<td>0.3427</td>
<td>0.2520</td>
<td>0.9473</td>
<td>0.8344</td>
</tr>
<tr>
<td>Fe [mg/kg]</td>
<td>0.4551</td>
<td>0.3427</td>
<td>1</td>
<td>0.3258</td>
<td>0.3032</td>
<td>0.1588</td>
</tr>
<tr>
<td>Ni [mg/kg]</td>
<td>0.1918</td>
<td>0.2520</td>
<td>0.3258</td>
<td>1</td>
<td>0.2940</td>
<td>0.4130</td>
</tr>
<tr>
<td>Zn [mg/kg]</td>
<td>0.2871</td>
<td>0.9473</td>
<td>0.3032</td>
<td>0.2940</td>
<td>1</td>
<td>0.8127</td>
</tr>
<tr>
<td>Cu [mg/kg]</td>
<td>0.2869</td>
<td>0.8344</td>
<td>0.1588</td>
<td>0.4130</td>
<td>0.8127</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Verteilung des Cadmiums im Boden ist sehr gleichförmig. Dies zeigt sowohl die Tabelle 12 als auch die Standardabweichung. Die Konzentrationen von Cadmium, Zink und Kupfer liegen über den Richtwerten gemäß Verordnung über Belastungen des Bodens (VBBo)\(^{12}\).

Die Bleibelastung ist stark und homogen verteilt. Dies zeigt die Standardabweichung über beide Becken hinweg. Die Konzentrationen liegen über dem Prüfwert, jedoch unter dem Sanierungswert gemäss VBBo. Es müssten daher Nutzungseinschränkungen vorgenommen werden. Der Richtwert für Zink liegt bei 150 mg/kg, welcher in unserem Strassenrandboden deutlich überschritten ist.

In einem signifikanten Ausmass korrelieren Blei und Zink, Blei und Kupfer sowie Zink und Kupfer. Möglicherweise ist dies eine Folge davon, dass Zink, Blei und Kupfer gemeinsam in chemischen Verbindungen vorhanden ist. Möglich wäre auch, dass es sich um die gleichen Schadstoffquellen handelt.

Tabelle 14: Von Oetjen (2005) gemessene Konzentrationen von Blei und Zink

<table>
<thead>
<tr>
<th></th>
<th>Pb [mg/kg]</th>
<th>Zn [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haufen 1</td>
<td>710.9</td>
<td>690.4</td>
</tr>
<tr>
<td>Haufen 2</td>
<td>683.0</td>
<td>663.0</td>
</tr>
<tr>
<td>Haufen 3</td>
<td>212.7</td>
<td>319.3</td>
</tr>
<tr>
<td>Haufen 4</td>
<td>260.3</td>
<td>260.3</td>
</tr>
<tr>
<td>Mischung</td>
<td>466.5</td>
<td>466.5</td>
</tr>
<tr>
<td>Ω ± σ</td>
<td>466.7±231.05</td>
<td>479.9±194.96</td>
</tr>
</tbody>
</table>

*Haufen = Probe des Mittelstreifenmaterials

5.6 Elektrische Leitfähigkeit des Bodens

<table>
<thead>
<tr>
<th>Probenlabel</th>
<th>T = 21.5 °C [μS/cm]</th>
<th>Kationenladung [mmol/l]</th>
<th>total gelöste Feststoffe [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysimeter 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>99</td>
<td>0.0099</td>
<td>0.6336</td>
</tr>
<tr>
<td>1/2</td>
<td>102</td>
<td>0.0102</td>
<td>0.6528</td>
</tr>
<tr>
<td>1/3</td>
<td>128</td>
<td>0.0128</td>
<td>0.8192</td>
</tr>
<tr>
<td>1/4</td>
<td>100</td>
<td>0.0100</td>
<td>0.6400</td>
</tr>
<tr>
<td>1/5</td>
<td>102</td>
<td>0.0102</td>
<td>0.6528</td>
</tr>
<tr>
<td>1/6</td>
<td>119</td>
<td>0.0119</td>
<td>0.7616</td>
</tr>
<tr>
<td>1/7</td>
<td>112</td>
<td>0.0112</td>
<td>0.7168</td>
</tr>
<tr>
<td>1/8</td>
<td>99</td>
<td>0.0099</td>
<td>0.6336</td>
</tr>
<tr>
<td>1/9</td>
<td>107</td>
<td>0.0107</td>
<td>0.6848</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>107,6±10,21</td>
<td>0.0108±0.00102</td>
<td>0.69±0.07</td>
</tr>
<tr>
<td>Lysimeter 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>99</td>
<td>0.0099</td>
<td>0.6336</td>
</tr>
<tr>
<td>2/2</td>
<td>105</td>
<td>0.0105</td>
<td>0.6720</td>
</tr>
<tr>
<td>2/3</td>
<td>96</td>
<td>0.0096</td>
<td>0.6144</td>
</tr>
<tr>
<td>2/4</td>
<td>105</td>
<td>0.0105</td>
<td>0.6720</td>
</tr>
<tr>
<td>2/5</td>
<td>96</td>
<td>0.0096</td>
<td>0.6144</td>
</tr>
<tr>
<td>2/6</td>
<td>107</td>
<td>0.0107</td>
<td>0.6848</td>
</tr>
<tr>
<td>2/7</td>
<td>118</td>
<td>0.0118</td>
<td>0.7552</td>
</tr>
<tr>
<td>2/8</td>
<td>118</td>
<td>0.0118</td>
<td>0.7552</td>
</tr>
<tr>
<td>2/9</td>
<td>95</td>
<td>0.0095</td>
<td>0.6080</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>104,3±8,92</td>
<td>0.0104±0.00089</td>
<td>0.67±0.06</td>
</tr>
</tbody>
</table>
5.7 Schwermetallgehalt in den Pflanzenproben

- Cadmium: 0.4 - 0.9 mg/kg
- Blei: 6 - 90 mg/kg
- Eisen: 115 - 4314 mg/kg
- Nickel: 1.5 - 12 mg/kg
- Zink: 60 - 215 mg/kg

Tabelle 16: Schwermetallgehalte der Pflanzen über drei Zeitabschnitte

<table>
<thead>
<tr>
<th></th>
<th>Cd [mg/kg]</th>
<th>Pb [mg/kg]</th>
<th>Fe [mg/kg]</th>
<th>Ni [mg/kg]</th>
<th>Zn [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austrieb 8.6.</td>
<td>0.9</td>
<td>57.8</td>
<td>1861.0</td>
<td>7.8</td>
<td>215.3</td>
</tr>
<tr>
<td>Austrieb 8.6.</td>
<td>0.4</td>
<td>50.9</td>
<td>1811.0</td>
<td>7.3</td>
<td>95.4</td>
</tr>
<tr>
<td>Austrieb 8.6.</td>
<td>0.5</td>
<td>47.7</td>
<td>1423.0</td>
<td>9.5</td>
<td>106.5</td>
</tr>
<tr>
<td>Austrieb 8.6.</td>
<td>0.5</td>
<td>53.2</td>
<td>1988.0</td>
<td>7.1</td>
<td>151.8</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>0.6±0.22</td>
<td>52.4±4.25</td>
<td>1770.8±243.51</td>
<td>7.9±1.09</td>
<td>142.3±54.47</td>
</tr>
<tr>
<td>Wurzel 8.6.</td>
<td>0.4</td>
<td>70.0</td>
<td>2699.0</td>
<td>9.9</td>
<td>165.5</td>
</tr>
<tr>
<td>Wurzel 8.6.</td>
<td>0.7</td>
<td>90.9</td>
<td>3682.0</td>
<td>12.0</td>
<td>184.9</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>0.6±0.21</td>
<td>80.5±14.78</td>
<td>3190.5±695.09</td>
<td>11.0±1.48</td>
<td>175.2±13.72</td>
</tr>
<tr>
<td>Austrieb 27.6.</td>
<td>0.5</td>
<td>19.7</td>
<td>265.0</td>
<td>3.4</td>
<td>64.9</td>
</tr>
<tr>
<td>Austrieb 27.6.</td>
<td>0.5</td>
<td>23.0</td>
<td>538.8</td>
<td>4.5</td>
<td>106.1</td>
</tr>
<tr>
<td>Austrieb 27.6.</td>
<td>0.7</td>
<td>26.8</td>
<td>383.5</td>
<td>7.1</td>
<td>92.1</td>
</tr>
<tr>
<td>Austrieb 27.6.</td>
<td>0.5</td>
<td>20.5</td>
<td>386.2</td>
<td>3.6</td>
<td>74.6</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>0.6±0.10</td>
<td>22.5±3.19</td>
<td>393.4±112.22</td>
<td>4.7±1.70</td>
<td>84.4±18.32</td>
</tr>
<tr>
<td>Wurzel 27.6.</td>
<td>0.5</td>
<td>61.5</td>
<td>2813.0</td>
<td>6.0</td>
<td>123.4</td>
</tr>
<tr>
<td>Wurzel 27.6.</td>
<td>0.6</td>
<td>87.5</td>
<td>4314.0</td>
<td>8.3</td>
<td>152.1</td>
</tr>
<tr>
<td>Wurzel 27.6.</td>
<td>0.7</td>
<td>68.0</td>
<td>2885.0</td>
<td>6.5</td>
<td>123.6</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>0.6±0.10</td>
<td>72.3±13.53</td>
<td>3337.3±846.58</td>
<td>6.9±1.21</td>
<td>133.0±16.51</td>
</tr>
<tr>
<td>Austrieb 14.7.</td>
<td>0.9</td>
<td>15.1</td>
<td>128.7</td>
<td>2.3</td>
<td>91.4</td>
</tr>
<tr>
<td>Austrieb 14.7.</td>
<td>0.7</td>
<td>12.8</td>
<td>114.9</td>
<td>3.3</td>
<td>69.8</td>
</tr>
<tr>
<td>Austrieb 14.7.</td>
<td>0.7</td>
<td>5.8</td>
<td>188.7</td>
<td>1.5</td>
<td>85.1</td>
</tr>
<tr>
<td>Austrieb 14.7.</td>
<td>< 0.7</td>
<td>9.0</td>
<td>118.3</td>
<td>1.9</td>
<td>82.0</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>0.8±0.10</td>
<td>10.7±4.11</td>
<td>137.7±34.54</td>
<td>2.3±9.07</td>
<td>82.1±9.07</td>
</tr>
<tr>
<td>Wurzel 14.7.</td>
<td>0.5</td>
<td>21.0</td>
<td>754.4</td>
<td>2.1</td>
<td>60.0</td>
</tr>
<tr>
<td>Wurzel 14.7.</td>
<td>< 0.7</td>
<td>27.0</td>
<td>834.2</td>
<td>3.1</td>
<td>61.9</td>
</tr>
<tr>
<td>Wurzel 14.7.</td>
<td>0.6</td>
<td>28.8</td>
<td>937.2</td>
<td>2.8</td>
<td>79.9</td>
</tr>
<tr>
<td>Wurzel 14.7.</td>
<td>0.5</td>
<td>24.0</td>
<td>946.3</td>
<td>1.7</td>
<td>80.5</td>
</tr>
<tr>
<td>Ø ± σ</td>
<td>0.6±0.10</td>
<td>25.2±3.43</td>
<td>868.0±91.23</td>
<td>2.4±0.64</td>
<td>70.6±11.14</td>
</tr>
</tbody>
</table>
Tabelle 17: r-Werte des Pearson Produkt-Moment Korrelationskoeffizienten

<table>
<thead>
<tr>
<th></th>
<th>Cd [mg/kg]</th>
<th>Pb [mg/kg]</th>
<th>Fe [mg/kg]</th>
<th>Ni [mg/kg]</th>
<th>Zn [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd [mg/kg]</td>
<td>1</td>
<td>-0.1253</td>
<td>-0.1478</td>
<td>-0.1345</td>
<td>0.1794</td>
</tr>
<tr>
<td>Pb [mg/kg]</td>
<td>-0.1253</td>
<td>1</td>
<td>0.9766</td>
<td>0.8727</td>
<td>0.8035</td>
</tr>
<tr>
<td>Fe [mg/kg]</td>
<td>-0.1478</td>
<td>0.9766</td>
<td>1</td>
<td>0.7679</td>
<td>0.7395</td>
</tr>
<tr>
<td>Ni [mg/kg]</td>
<td>-0.1345</td>
<td>0.8727</td>
<td>0.7679</td>
<td>1</td>
<td>0.7824</td>
</tr>
<tr>
<td>Zn [mg/kg]</td>
<td>0.1794</td>
<td>0.8035</td>
<td>0.7395</td>
<td>0.7824</td>
<td>1</td>
</tr>
</tbody>
</table>

In Abbildung 26 ist der zeitliche Verlauf der Bleikonzentrationen dargestellt, in Abbildung 27 der zeitliche Verlauf der Nickelkonzentrationen. Beide nehmen im Verlauf der Zeit ab und bei beiden sind die Konzentrationen in den Wurzeln höher als in den Austrieben. Die Grenzwerte für Blei in Lebensmitteln betragen zwischen 0.02 mg/kg für Milch und 0.5 mg/kg für Fleisch (Anhang 1, Fremd- und Inhaltsstoffverordnung FIV). Die Grenzwerte für Cadmium liegen zwischen 0.05 mg/kg für Obst, Gemüse und Muskelfleisch und 1 mg/kg für Nierenfleisch (Anhang 1, FIV).

Abbildung 26: zeitlicher Verlauf der Bleikonzentrationen in den Pflanzen [mg/kg].
Abbildung 27: zeitlicher Verlauf der Nickelkonzentrationen in den Pflanzen [mg/kg].
6. Diskussion

6.1 Homogenität des Bodenmaterials

6.2 Belastung von Boden, Sickerwasser und Pflanzen

6.2.1 Bodenmaterial

Die Textur des Bodenmaterials besteht aus sandigem Lehm. Da der Prüfwert für Blei überschritten wird, dürfte dieses Bodenmaterial nicht wiederverwendet werden, sondern müsste deponiert werden.

Da der Boden über das ganze Profil gleich stark verschmutzt ist, stellt er in einem gewissen Sinne einen Extremfall oder ein „worst case“–Szenario dar. Im Normalfall nimmt die Verschmutzung von oben nach unten ab und vielfach befindet sich unter dem kontaminierten Oberboden noch ein Unterboden mit einer grossen Fähigkeit Schadstoffe zurückzuhalten.

Ein ähnlicher Boden wurde von Hesske et al. (1998) beschrieben. Der mit denselben Schwermetallen kontaminierte Boden in Dornach hat einen Kalkgehalt von 12%. Der pH befindet sich in einem grossflächigen Gebiet zwischen 6.1 und 8.4. Die Belastungen sind jedoch mit maximal 50 mg/kg zehnmal tiefer. „Zusammenfassend kann man sagen, dass die Schwermetalle im kontaminierten Dornacher Boden zu einem sehr grossen Anteil in gebundener Form vorliegen und daher kaum akute Risiken bestehen. Durch die relativ hohen Totalgehalte sind aber langfristige („schleichende“) ökologische und humantoxikologische Risiken möglich (zb. für Kinder durch orale Bodenaufnahme) die genauer untersucht werden müssen. In dieser Situation ohne akuter Gefährdung kann die Anwendung von sanften Sanierungsmassnahmen, die langfristig wirksam sind und auf schonende Art dem Boden die Schwermetalle entziehen, sinnvoll sein. Erfolgreiche Verfahren würden so einen verantwortungsvollen und nachhaltigen Umgang mit dem Boden ermöglichen (Hesske et al., 1998).“

Wenn man die Resultate des Horwer Bodens mit diesen Aussagen vergleicht lässt sich darauf schliessen, dass die Schwermetalle ebenfalls zum grossen Anteil in gebundener Form vorliegen. Dies hat auch das Auswaschungsverhalten gezeigt. Pb und Zn wurden nämlich vorwiegend gebunden an Partikel > 0.45 µm ausgewaschen.

In Hesske et al. (1998) werden auf Seite 18 bis 21 frühere Untersuchungen am Dornacher Boden zitiert. Folgende Eigenschaften sollen hier genannt werden:

Es zeigte sich eine deutliche Akkumulation der Schwermetallen in den obersten Bodenschichten. Im Bodenwasser konnte im zeitlichen Verlauf über ein Jahr keine Änderung der Schwermetallkonzentrationen erkannt werden.

- In einer Risikoanalyse wurden als kritische Belastungspfade gefunden: Bodenaufnahme durch Kinder, Weiden von Schafen, Nahrungsaufnahme (Gemüse, Fleisch) durch Selbstversorger.
- Bei Keimungsversuchen im Labor wurde gezeigt, dass einzig das Ersetzen des stark kontaminierten Bodens als Sanierungsmassnahme zu einem guten Keimen führte.

Die Konsequenzen für den Horwer Boden sind:
- Er sollte nicht zur Nahrungs– oder Futtermittelproduktion verwendet werden.
- Er sollte weder für Wildtiere noch für Kinder zugänglich sein.

6.2.2 Auswaschung von Schadstoffen

Trotz erhöhter SM–Mobilität fanden Williams et al. (1984) bei einer Ausbringung von insgesamt 1350 t Klärschlamm pro ha nach sechs Jahren für Cd, Zn und Pb nur eine relativ geringe Verlagerung von 5–10 cm. Auch in anderen Arbeiten wurde nach mehrjähriger Klärschlammapplikation eine ausschließliche Anreicherung der Schwermetalle im Oberboden bis maximal 10 cm unterhalb der Einarbeitungstiefe ermittelt.

13 Leichte Böden = Sandböden mit hohem Sandanteil und tiefem Ton– und Humus–Anteil

63

Da der Lysimeterboden kaum durchwurzelt war und die gröberen Bestandteile weitgehend aussortiert wurden, könnte das Phänomen des präferenziellen Flusses weniger ausgeprägt sein, als in einem gewachsenen Boden. Dagegen spricht jedoch, dass die beobachtete Auswaschung vermutlich DOC–gebunden war und die DOC–Auswaschung ein Zeichen für das Vornhandensein von präferenziellem Fluss ist. Präferenzieller Fluss ist vor allem dann ein Problem, wenn das Perkolat eine starke Ausgangsbelastung aufweist. Dies ist allerdings bei normalem Regenwasser nicht der Fall. Trotzdem wurde auf den beiden Lysimetern ein Kaliumbromid–Tracer ausgebracht, um die Durchflussprozesse besser zu verstehen.

In Kapitel 5.3 ist die Auswaschung von diversen Stoffen dargestellt. Kurz nach der Schüttung konnte im Abfluss der Lysimeter Blei und Nickel nachgewiesen werden. Diese wurden in der partikulären Fraktion gemessen. In der gelösten Fraktion konnte zu Beginn eine Auswaschung von Nickel nachgewiesen werden. Dies lässt vermuten, dass die ausgewaschenen Schwermetalle vorwiegend gebunden an Partikel und DOC mit \(\Omega > 0.45 \mu m \) ausgewaschen wurden. Die Bleifracht beträgt 43 mg und die Nickelfracht 18 mg bei einer totalen Sickerwassermenge von 5600 Litern.

Um die Gefährdung durch Schadstoffauswaschung zu bewerten lohnt sich ein Blick auf die Grenzwerte der Fremd– und Inhaltsstoffverordnung FIV:

Der Grenzwert für den Bleigehalt im Trinkwasser liegt bei 0.01 mg/l ab Wasserhahn nach 5 Minuten laufen lassen (Art. 2, Abs. 6, FIV). Er ist im Abfluss der Lysimeter leicht überschritten. Dabei handelt es sich aber keineswegs um Trinkwasser und der Effekt ist auch nicht andauernd, sondern schwächt sich rasch ab. Der Strassenrandboden der ehemaligen A2 ist vorwiegend mit Blei belastet. In Tabelle 3 ist die relative Bindungsstärke von Blei in Böden mit pH 7.5 als sehr stark aufgeführt. Aufgrund der dargelegten Erkenntnisse sollte demzufolge auch langfristig keine Bleiverlagerung zu beobachten sein.

In Wein wird ein Sulfatgehalt von bis zu 2000 mg/l toleriert (Art. 2, Abs. 6, FIV). Die maximale Auswaschung von 60 mg/l ist nicht gesundheitsgefährdend. Eine Auswaschung von 20–30 mg/l ist üblich. Diese Grössenordnung wird nicht überschritten.

Gemäss den Ausführungen in 6.3 ist nicht zu befürchten, dass durch eine schnelle Ab senkung des pH–Wertes die Schadstoffauswaschung zunimmt. Es ist zu Beginn des Experiments eine leichte Schadstoffauswaschung zu beobachten. Diese nimmt rasch ab und es ergab sich eine totale Schwermetallfracht von 61 mg.

6.2.3 Pflanzenmaterial

Phacelia tanacetifolia ist kein Hyperakkumulator von Metallen14. Wenn eine Pflanze ungefähr den hundertfachen natürlichen Gehalt eines Schwermetalls aufweist, gilt sie als Hyperakkumulator. Die Schwellenwerte betragen für Cadmium 100 mg/kg, für Nickel 1000 mg/kg und für Zink 10'000 mg/kg (Kayser, 2000).

Die in Kapitel 5.7 aufgeführten Konzentrationen der Pflanzenproben von Phacelia tanacetifolia zeigen erhöhte Schwermetallgehalte. In Untersuchungen auf Versuchsflächen in Dornach wurden bei 5 bis 20 mal tieferen Bleibelastungen Pflanzenbelastungen von 0.038 mg/kg bis 0.217 mg/kg gemessen. Die verwendete Pflanze war Löwenzahn (taraxacum officinale). Für diese eindeutig tiefere Belastung kann es verschiedene Erklärungen geben. Der Boden ist im Fall Horw stärker belastet als im Fall Dornach. Es wurde jedoch auch nicht die gleiche Analysemethode verwendet. Im Fall Horw XRF, im Fall Dornach HNO$_3$ –Auszug. Die Abweichung innerhalb der Analysemethoden beträgt etwa 10 bis 20 %. Zudem wurde nicht die gleiche Pflanze verwendet und es ist möglich, dass im Fall Dornach der Löwenzahn mit Ultraschall von Bodenpartikeln befreit wurde. Dies geschah in dieser Untersuchung willentlich nicht. Kayser (2000) mass in ebenfalls auf dem kalkhaltigen Dornacher Boden kultiviertem Indischem Senf (brassica juncea) einen Cadmiumgehalt von 1.2 ± 0.2 mg/kg.

Wenn Pflanzen mit hoher Konzentration (siehe Tabelle 16) von Schwermetallen an Nutztiere verfüttert werden, könnte das zu einer Belastung von Nahrungsmitteln mit Blei und Cadmium führen. Wenn derart belastete Standorte zur Nahrungsmittelproduktion genutzt werden, können unerwünschte Stoffe in die Nahrungsmittelkette gelangen. Das wichtigste ist, dass der untersuchte Boden nicht mehr für die Futtermittelproduktion oder als Weidefläche verwendet wird. Bisher wurde nur die Pflanze Phacelia tanacetifolia angebaut. In späteren Untersuchungen, die mit Hilfe der Horwer Lysimeter durchgeführt werden sollen, sollten auch andere Pflanzen angebaut werden. Dies könnten normale Wiesenpflanzen sein, die gewöhnlich als Bodenbedeckung dienen. Dies hätte den Vorteil eines grössstmöglichen Realitätsbezuges. Es könnten aber auch Pflanzen verwendet werden, die Schwermetalle besonders gut akkumulieren können. Dafür wären Indischer Senf (brassica juncea), Steinkraut (alysum murale), Acker–Hellerkraut (thlaspi caerulescens), Sonnenblume (helianthus annuus) oder Hybrid–Pappel (populus deltoides x Populus nigra) geeignet15.

14 Angabe per E-Mail von Dr. B. H. Robinson, 7. November 2006.
15 http://www.hoogen.de/Phyto.htm, Zugriff am 31. Oktober 2006

Es bleibt jedoch die Frage, was mit den geernteten Pflanzenresten geschehen soll. Werden sie verbrannt, so ist die Asche fachgerecht zu entsorgen. Empfehlenswert ist eine Entsorgung in einer KVA (Kehrichtverbrennungsanlage). Diese Vermutung wird von Hesske et al. (1998) bestätigt: „Haben die Pflanzen das Metall einmal aufgenommen, müssen sie so entsorgt werden, dass die Umwelt nicht weiter gefährdet wird. Unter der Leitung von Rainer Schulin wurde dazu am Institut für terrestrische Ökologie der ETH Zürich eine Studie durchgeführt. Diese hat gezeigt, dass das Erntegut dieser Pflanzen in jeder modernen KVA umweltgerecht entsorgt werden kann. Andere Möglichkeiten könnten etwa noch die Fasergewinnung, die Biogasproduktion oder eine vollständige Rückgewinnung der Schwermetalle durch Mikroorganismen sein (Hesske et al., 1998).“
6.2.4 Transferkoeffizienten

Folgende Angaben wurden zur Berechnung verwendet:

\[\text{Totale Schwermetallfracht} = \]
\[\sum \text{Element} = \bar{O} \text{ Konzentration mg/kg} \cdot 35 \text{ m}^2 \cdot 0.4 \text{ m} \cdot 1200 \text{ kg/m}^3 \]

Die Oberfläche der Lysimeter beträgt 35 m\(^2\), die Bodentiefe beträgt 40 cm und die Bodendichte beträgt 1.2 g/cm\(^3\). Die produzierte Biomasse beträgt 14 kg. Dieselben Werte wurden auch bei der Modellierung der Bodenversauerung in Kapitel 6.3 verwendet. Dies ergibt die folgenden Gesamtfrachten:

\[
\begin{align*}
\text{Cd} & \approx 22 \text{ g} \\
\text{Pb} & \approx 7800 \text{ g} \\
\text{Fe} & \approx 440\text{kg} \\
\text{Ni} & \approx 475 \text{ g} \\
\text{Zn} & \approx 9000 \text{ g}
\end{align*}
\]

Die Transferkoeffizienten wurden mittels Prozentrechnung ermittelt und sind in Tabelle 18 dargestellt.

\textit{Tabelle 18: Transfer der Schwermetalle vom Boden in Sickerwasser und Pflanzen}

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Fe</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum) Boden [g]</td>
<td>22.307</td>
<td>7822.920</td>
<td>437547</td>
<td>476.933</td>
<td>8943.480</td>
</tr>
<tr>
<td>(\sum) Pflanzen [g]</td>
<td>0.060</td>
<td>3.905</td>
<td>0.138</td>
<td>0.539</td>
<td>10.713</td>
</tr>
<tr>
<td>(K_{\text{Wasser}}) [%]</td>
<td>0.00617</td>
<td>0.05570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K_{\text{Pflanzen}}) [%]</td>
<td>2.6799</td>
<td>0.4992</td>
<td>0.3150</td>
<td>1.1301</td>
<td>1.1978</td>
</tr>
</tbody>
</table>

\textit{Tabelle 19: Transferkoeffizienten nach Kayser (2000)}

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{\text{Pflanzen}}) [%]</td>
<td>1 – 10</td>
<td>0.01 – 0.1</td>
<td>0.1 – 1.0</td>
<td>1 – 10</td>
</tr>
</tbody>
</table>
6.3 Modellierung der Bodenversauerung

a) atmosphärische Deposition
b) Interzeption
c) Gasdeposition
d) Nitrifizierung
e) Produktion von Biomasse
f) Respiration im Boden
g) Ausgasung von CO2
h) Auflösung von CaCO3
i) Versickerung der Bodenlösung

Spezifische Angaben für die Prozesse

a) In der atmosphärischen Deposition sind durchschnittlich 31 μM H+ (freie Säure) und 38 μM NH₄⁺ gelöst. Bei einem Niederschlag von 11.71 dm/yr ergibt sich somit eine Belastung von 363 mol H⁺ ha⁻¹ yr⁻¹ und 445 mol NH₄⁺ ha⁻¹ yr⁻¹.

b) Durch Interzeption werden zwischen 0 (best case) und 500 mol NH₄⁺ ha⁻¹ yr⁻¹ (worst case) eingetragen (z.B. in Form von Sulfatsalzen).

c) Die Gasdeposition ist sehr schwierig zu messen. Die Belastung durch den Eintrag von gasförmigem SO₂, HNO₃ und NH₃ kann nur grob abgeschätzt werden. Furrer (1991) nimmt an, dass dadurch im Endeffekt 200 bis 1000 mol H⁺ ha⁻¹ yr⁻¹ und 100 bis 500 mol NH₄⁺ ha⁻¹ yr⁻¹ eingetragen werden.

d) Die Nitrifizierung (NH₄⁺ + 2 O₂ = NO₃⁻ + 2 H⁺ + H₂O) verläuft vollständig und eine allfällige Denitrifizierung wird vernachlässigt.

e) Die Produktion von Biomasse (Facelia) kann stark variieren. Sie liegt zwischen 2950 und 4150 kg ha⁻¹ yr⁻¹. Vereinfacht ausgedrückt sind dies rund 2950 bis 4150 kg CH₂O ha⁻¹ yr⁻¹. Unter Berücksichtigung des Molgewichts von CH₂O ergeben sich 98 bis 138 kmol C ha⁻¹ yr⁻¹. Entsprechend der vereinfachten Stöchiometrie für das Wachstum der Biomasse:

\[
800 \text{ CO}_2 + 8 \text{ Kationen im Überschuss} = \text{ Biomasse} + 800 \text{ O}_2 + 8 \text{ H}^+ \\
\text{werden dabei 980 bis 1380 mol H}^+ \text{ ha}^{-1} \text{ yr}^{-1} \text{ im Boden freigesetzt.}
\]

f) Bei der Respiration im Boden (hauptsächlich Wurzelatmung) wird ein grosser Teil des assimilierten Kohlenstoffs in Form von CO₂ wieder freigesetzt. Bezo-

\[\text{McGill University, Quebec,} \]
\[\text{http://www.eap.mcgill.ca/agrobio/ab350-03.htm#Production%20de%20biomasse,} \text{ Zugriff am 7. Juni 2006} \]
gen auf den Pflanzenwuchs kann mit einem 40%-igen CO₂-Flow gerechnet werden: 20 bis 40 kmol CO₂ ha⁻¹ yr⁻¹.

g) Die Ausgasung von CO₂ erfolgt näherungsweise nach dem ersten Fick'schen Gesetz. Darin enthalten ist die Differenz zwischen den Partialdrücken im Boden und in der Atmosphäre, die Diffusionslänge sowie der Diffusionskoeffizient, welcher entscheidend von der Feuchtigkeit des Bodens abhängt. Im Fließgleichgewicht zwischen Respiration und Ausgasung ergibt sich im Boden häufig ein CO₂-Partialdruck, der das 10– bis 100-fache dessen in der Atmosphäre (10⁻³,5 atm) betragen kann. Für diese Berechnungen wird ein 10– bzw. 30-facher Partialdruck der Atmosphäre angenommen. Daraus resultiert in der Bodenlösung eine [H₂CO₃]-Gleichgewichtskonzentration von 10⁻⁴,0 bzw. 10⁻³,5 M.

h) Die Löslichkeit von CaCO₃ (s) wird mit dem Gleichgewicht

\[[\text{Ca}] \cdot [\text{CO}_3] = 10^{-8,1} \]

beschrieben. Um in dieser Gleichung [CO₃] durch die dominierende Spezies [HCO₃] zu ersetzen, braucht es eine kurze Herleitung mit den beiden pK-Werten der Kohlensäure:

\[[\text{CO}_3] = 10^{10,3} \cdot [\text{HCO}_3] \cdot [\text{H}]^{-1} \]

\[[\text{H}] = 10^{-6,3} \cdot [\text{H}_2\text{CO}_3] \cdot [\text{HCO}_3]^{-1}. \]

Durch Einsetzen von Gleichung (3) in (2) wird:

\[[\text{CO}_3] = 10^{-4,0} \cdot [\text{HCO}_3]^2 \cdot [\text{H}_2\text{CO}_3]^{-1}. \]

Damit ergibt sich eine neue Gleichung für die Löslichkeit von CaCO₃ als Funktion der Gleichgewichts-Konzentration von H₂CO₃ bzw. des CO₂-Partialdrucks:

\[[\text{Ca}] \cdot [\text{HCO}_3]^2 = 10^{-4,1} \cdot [\text{H}_2\text{CO}_3] = 10^{-5,6} \cdot P_{\text{CO}_2}. \]

die Löslichkeit von CaCO₃ ist so gross, dass in der Ionenbilanz die Spezies H, OH sowie CO₃ vernachlässigt werden können. Die Ionenbilanz ist somit durch die Gleichung

\[2 \cdot [\text{Ca}] = [\text{HCO}_3] \]
erfüllt. Durch Einsetzen dieser Beziehung in der Gleichung für die Löslichkeit von CaCO₃ (Gleichung 5) ergibt sich

\[4 \cdot [\text{Ca}]^3 = 10^{-4,1} \cdot [\text{H}_2\text{CO}_3] \]
or

\[3 \log[\text{Ca}] = \log[H_2\text{CO}_3] - 4.1 - \log(4) \]

Das durch den CO₂-Partialdruck und das Löslichkeitsgleichgewicht von Kalk definierte lösliche Ca wird mit [Ca]° bezeichnet:

\[\log[\text{Ca}'] = (\log[H_2\text{CO}_3] - 4.7) / 3 \]

Bei einer Verzehnfachung des CO₂-Partialdrucks resultiert somit eine Verdopplung von [Ca]°. Diese Berechnung ist nur vollständig für den Fall, dass die wässrige Lösung ausser H₂CO₃ keine Säure, d.h. keine Acidität, enthält. Acidität ist definiert durch die Gleichung:

\[[\text{Acid}] = [\text{H}] - [\text{HCO}_3] - 2 \cdot [\text{CO}_3] - [\text{OH}] \]

Dementsprechend ist H₂CO₃ keine Quelle für Acidität, wohl aber z.B. HNO₃ oder H₂SO₄. Unter Einwirkung von Acidität wird eine zusätzliche Menge von Ca in Lösung gebracht. Im Falle von [Ca] ≈ [HCO₃] wird bei Zugabe von Säu-
re auch Bicarbonat titriert. Bei einem Konzentrationsverhältnis von 2[Ca]=[HCO₃] braucht es pro aufgelöstes Ca drei Protonen:

$$\text{CaCO}_3 + \text{HCO}_3 + 3 \text{H} = \text{Ca} + 2 \text{H}_2\text{CO}_3.$$ \hspace{1cm} (11)

Abweichungen vom Faktor = 3 werden erst bei $[\text{Aci}] > 10^{-3.5}$ M relevant. Das durch die Acidität in Lösung gebrachte Ca bezeichnen wir mit $[\text{Ca}]'$:

$$[\text{Ca}]'' = \frac{[\text{Aci}]}{3}.$$ \hspace{1cm} (12)

Die beiden Konzentrationen $[\text{Ca}]'$ und $[\text{Ca}]''$ sind additiv:

$$[\text{Ca}]_{\text{tot}} = [\text{Ca}]' + [\text{Ca}]''.$$ \hspace{1cm} (13)

i) Die Versickerung der Bodenlösung resultiert aus dem Niederschlag und der Evapotranspiration, welche typischerweise 1/3 bis 2/3 des Gesamtniederschlages beträgt. Über einen Zeitraum von 5 Monaten versickerte durch die Lysimeter 52% des Niederschlags. Das jährliche Mittel des Niederschlags ist 1171 mm\(^{17}\). Dies ergibt eine Fließgeschwindigkeit ν von 6.1 dm yr\(^{-1}\). (Furrer, 1991).

Modellrechnung für vier Fälle

Da der Aciditätsflux und der CO₂-Partialdruck die sensitivsten Parameter sind, wurden die vier Szenarien folgendermassen gewählt:

Fall 1A: kleiner (2633 eq ha\(^{-1}\) yr) Aciditätsflux, kleiner (10 x) CO₂-Partialdruck
Fall 1B: großer (5633 eq ha\(^{-1}\) yr) Aciditätsflux, kleiner (10 x) CO₂-Partialdruck
Fall 2A: kleiner (2633 eq ha\(^{-1}\) yr) Aciditätsflux, großer (30 x) CO₂-Partialdruck
Fall 2B: großer (5633 eq ha\(^{-1}\) yr) Aciditätsflux, großer (30 x) CO₂-Partialdruck

Dabei ergaben sich die in Tabelle 20 dargestellten Pufferzeiten. Der Boden wird noch mindestens 718 Jahre im leicht alkalischen Bereich bleiben.

Die KAK beträgt aufgrund 2 % organisch C und 16 % Tonfraktion 960'000 val/ha. Bei gleichbleibendem Aciditätsflux ergibt das die in Tabelle 19 dargestellten zusätzlichen Pufferzeiten.

<table>
<thead>
<tr>
<th></th>
<th>Pufferzeit durch Karbonat [Jahre]</th>
<th>Zusätzliche Pufferzeit durch KAK [Jahre]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 1A</td>
<td>841</td>
<td>365</td>
</tr>
<tr>
<td>Fall 1B</td>
<td>753</td>
<td>170</td>
</tr>
<tr>
<td>Fall 2A</td>
<td>593</td>
<td>365</td>
</tr>
<tr>
<td>Fall 2B</td>
<td>548</td>
<td>170</td>
</tr>
</tbody>
</table>

\(^{17}\)Bundesamt für Meteorologie und Klimatologie, Meteo Schweiz,
Titrationsexperiment

Durch Titration mit HCl wurde eine Versauerung des Bodens bis auf pH ≈ 4 erreicht. Die dafür nötige Menge Salzsäure für 10 Gramm Boden war 15 ml 1.0 molare HCl. Dies entspricht einer Menge von 0.015 mol HCl. Für den Fall 1A wurde ein Säureeintrag von 2.9 kmol H⁺ ha⁻¹ yr⁻¹ berechnet. Der im Experiment simulierte Säureeintrag entspricht also in etwa dem natürlichen Säureeintrag von 3000 Jahren.

6.4 Der Lysimeterboden innerhalb der WertebARRIEREN DER VBBö

Die Werte der Cadmiumkonzentration betragen im Durchschnitt über die 18 Probelöcher 1.39 mg/kg bei einer Standardabweichung von 0.28. Dies entspricht einer Überschreitung des Richtwertes liegt aber noch unter dem Prüfwert. Wegen der Cadmiumbelastung ist also die Bodenfruchtbarkeit langfristig nicht mehr gewährleistet. Die Werte der Bleikonzentrationen betragen im Durchschnitt 466 mg/kg bei einer Standardabweichung von 44.22. Dies entspricht einer Überschreitung des Prüfwertes. Es könnte also eine konkrete Gefährdung von Menschen, Tieren und Pflanzen vorhanden sein. Obwohl noch kein Sanierungszwang besteht, ist eine Nutzungseinschränkung allenfalls notwendig.

Da der Boden wegen der Überschreitung des Prüfwertes für Blei als stark belastet eingestuft werden muss, wäre im Falle eines Aushubs die umweltgerechte Ablagerung Pflicht. Der Lysimeterboden weist keine länger andauernde Auswaschung von Schad-
stoffen auf. Aus Sicht der Umweltbelastung ist gegen eine Weiterverwendung nichts einzuwenden. Es sollten aber ein paar Bedingungen erfüllt sein:

- Der Boden darf nicht mit weniger belastetem Material vermischt werden.
- Der Boden sollte in der Umgebung der Entnahmestelle wieder verwendet werden.
- Für eine Strassenrandböschung ist der Boden geeignet, jedoch nicht für die Nahrungsmittelproduktion oder Nutzungen mit möglicher direkter Bodenaufnahme.
- Die Fläche sollte weder für Wildtiere noch für Kinder zugänglich sein.

6.5 Ein Strassenrandboden aus Burgdorf

6.6 Transportprozesse

Die Mobilität oder Bindung von Schadstoffen im Boden kann durch den Stofftransport und Austauschprozesse beschrieben werden. Stofftransport kann in gelöster Form, in der Gasphase, in partikulärer Form, durch Bioturbation oder Kryoturbation stattfinden. In dieser Arbeit wurden nur die gelöste und die partikuläre Form des Transports angeschaut. Die Austauschprozesse in der Bodenlösung können stattfinden durch:

- Diffusion zwischen Grob- und Feinporen
- reversibel durch Lösungsgleichgewichte
- irreversibel durch Verwitterung, Biota, abiotischen Abbau

Sowohl der reversible als auch der irreversible Austausch bestimmen die Aufenthaltsdauer von Schwermetallen im Boden (Oetjen, 2005).

6.7 Vergleich mit den Resultaten von Oetjen (2005)

Diese pumpte Regenwasser auf das Bodenmaterial. Das künstliche Regenwasser hatte eine definierte Zusammensetzung, die dem natürlichen Regenwasser nachempfunden war. Die Versuchsanordnung der Säulenlysimeter unterschied sich von denjenigen der Becken vor allem in der Größenordnung. Die Lysimeterbecken stellen allein durch ihre Größe ein der Realität näheres System dar. Die Bewässe rungsintensität war in den Säulenlysimetern viel grösser. Es wurde konstant mit 4.76 mm/h bewässert. Während 568 Stunden wurden 43.5 Liter eingetragen. Dies entspricht 2700 mm Niederschlag pro m², was wiederum der durchschnittlichen Luzerner Niederschlagsmenge von 2.5 Jahren entspricht. Wenn innerhalb von 48 Stunden mehr als 70 mm Niederschlag fallen, so spricht man von einem Starkniederschlag. Die Beregnungsintensität der Säulenlysimeter ist also viel stärker als in der Natur. Die Lysimeterbecken wurden mit Phacelia tanacetifolia bepflanzt, während die Säulenlysimeter mit einem 2 cm dicken Kunststoffflies abgedeckt wurden. Die Pflanzen hatten einen Einfluss auf die Evapotranspiration, die bei den Säulenlysimetern nicht gegeben war. Die Säulenlysimeter speicherten 7% des Wassers, während in den Beckenlysimetern 48% des gefallenen Niederschlags durch Evapotranspiration verloren ging oder gespeichert wurde. Nach Ende der Beregnung der Säulenlysimeter stellte sich eine Evaporation von 29.76 ml/d ein.

Der Schwermetallaustrag in gelöster Form war in den Säulenlysimeterversuchen zwischen 1 und 7 µg/l. Der Schwermetallaustrag in partikulärer Form lag in den Säulenversuchen zwischen 0.2 und 4 µg/l. In den Beckenversuchen war die partikuläre Auswaschung von Blei nachweisbar mit 11 µg/l am ersten Probenahmedatum. Danach sank die Konzentration auf ein konstant tieferes Niveau. Oetjen (2005) hat in den verwendeten Filterpapieren sehr hohe Schwermetallgehalte gemessen. Für Blei beispielsweise 0.11 mg/kg. Die Schwermetallgehalte im künstlichen Regen sind ebenfalls sehr hoch. Mit 0.40, 1.31, 1.64 und 9.07 mg/l Blei wurden Gehalte gemessen die allesamt den Grenzwert für Trinkwasser von 0.01 mg/l (Art. 2, Abs. 6, FIV) bei Weitem überschritten. Und zwar um das 40 bis 907 fache. Die Messungen von sogenannten Blanklösungen (50 ml Nanopure-Wasser + 60 µl Salpetersäure) haben in den im Jahr 2006 durchgeführten Experimenten Konzentrationen < 0.72 µg/l bei beträchtlichen Standardabweichungen ergeben. Woher der hohe Wert von 9.07 mg/kg Pb im entionisierten Wasser kommt ist fraglich.

Oetjen (2005) hat auch die für Filteraufschlüsse verwendete Salpetersäure auf Schwermetalle überprüft und dabei überraschenderweise einen Gehalt von 0.41 µg Pb/l gefunden. Diese Messung ist aber bei einer Nachweisbarkeitsgrenze von 10 µg/l wohl eher Hintergrundrauschen.

6.8 Die relative Bindungsstärke des Strassenrandbodens nach Walthert (1999)

Tabelle 21: Die relative Bindungsstärke von Schwermetallen im Strassenrandboden nach Walthert et al. (1999)

<table>
<thead>
<tr>
<th>Element</th>
<th>Relative Bindungsstärke des Strassenrandbodens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>5</td>
</tr>
<tr>
<td>Pb</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
</tr>
<tr>
<td>Cd</td>
<td>5</td>
</tr>
<tr>
<td>Cu</td>
<td>3</td>
</tr>
<tr>
<td>Cr</td>
<td>5</td>
</tr>
</tbody>
</table>

Relative Bindungsstärke: 1 ≈ sehr gering
2 ≈ gering
3 ≈ mittel
4 ≈ stark
5 ≈ sehr stark

Tabelle 22: pH–Werte für die beginnende Mobilisierung verschiedener Metalle in Böden (Blume, 2004)

<table>
<thead>
<tr>
<th>Element</th>
<th>pH–Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>6–5.5</td>
</tr>
<tr>
<td>Pb</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>5.5</td>
</tr>
<tr>
<td>Cd</td>
<td>6.5</td>
</tr>
<tr>
<td>Cu</td>
<td>4.5–4</td>
</tr>
<tr>
<td>Cr</td>
<td>4.5–4</td>
</tr>
</tbody>
</table>

7. Schlussfolgerungen

8. Literatur

79
- **MeteoSchweiz** (2006): Messdaten der Station 41 (Luzern), Zürich: Bundesamt für Meteorologie und Klimatologie

- **Zhao, L.** (2006): In–situ investigation of the mobilization of Cu and Zn in soil columns, Zürich: Institut für terrestrische Ökologie der ETH Zürich
Anhang

1. Einstellungen des Graphitrohratomabsorbers

Die Einstellungen des Graphitrohratomabsorbers sollen hier dargestellt werden, da deren Entwicklung viel Zeit in Anspruch nahm und unter Umständen wieder darauf zurückgegriffen werden kann. Die Einstellungen waren folgendermassen:

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methode: Ni (Zeeman)</td>
<td>Ni -</td>
</tr>
<tr>
<td>Element–Matrix:</td>
<td></td>
</tr>
<tr>
<td>Gerätetyp:</td>
<td>Zeeman</td>
</tr>
<tr>
<td>Konz.–Einheit:</td>
<td>ppb</td>
</tr>
<tr>
<td>Geräte–Messmodus:</td>
<td>Extinktion</td>
</tr>
<tr>
<td>Probenzuführung:</td>
<td>Auto/Normal</td>
</tr>
<tr>
<td>Kalibrierung:</td>
<td>Bezugskurve</td>
</tr>
<tr>
<td>Messverfahren:</td>
<td>Peakhöhe</td>
</tr>
<tr>
<td>Wiederholungen Std.:</td>
<td>2</td>
</tr>
<tr>
<td>Wiederholungen Probe:</td>
<td>2</td>
</tr>
<tr>
<td>Dehnungsfaktor:</td>
<td>1.0</td>
</tr>
<tr>
<td>Mindest–Messwert:</td>
<td>Nicht aktiv</td>
</tr>
<tr>
<td>Glättung:</td>
<td>7–Punkt</td>
</tr>
<tr>
<td>Dezimalst. Konz.:</td>
<td>4</td>
</tr>
<tr>
<td>Wellenlänge:</td>
<td>232.0 nm</td>
</tr>
<tr>
<td>Spaltbreite:</td>
<td>0.2 nm</td>
</tr>
<tr>
<td>Gain:</td>
<td>76 %</td>
</tr>
<tr>
<td>Lampenstrom:</td>
<td>10.0 mA</td>
</tr>
<tr>
<td>Lampenposition:</td>
<td>1</td>
</tr>
<tr>
<td>Untergrundkorrektur:</td>
<td>UG Aus</td>
</tr>
<tr>
<td>STANDARD 1:</td>
<td>5.0000 ppb</td>
</tr>
<tr>
<td>STANDARD 2:</td>
<td>10.0000 ppb</td>
</tr>
<tr>
<td>STANDARD 3:</td>
<td>20.0000 ppb</td>
</tr>
<tr>
<td>Reslope–Rate:</td>
<td>0</td>
</tr>
<tr>
<td>Untere Grenze Reslope:</td>
<td>75.0 %</td>
</tr>
<tr>
<td>Oberer Grenzwert Reslope:</td>
<td>125.0 %</td>
</tr>
<tr>
<td>Rekalibrierungsrate:</td>
<td>20</td>
</tr>
<tr>
<td>Kalibrieralgorithmus:</td>
<td>Neu–Rational</td>
</tr>
<tr>
<td>Untere Grenze Kal.:</td>
<td>20.0 %</td>
</tr>
<tr>
<td>Obere Grenze Kal.:</td>
<td>150.0 %</td>
</tr>
<tr>
<td>Arbeitskopfhöhe:</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>Gesamtvolumen:</td>
<td>25 µL</td>
</tr>
<tr>
<td>Probenvolumen:</td>
<td>20 µL</td>
</tr>
<tr>
<td>Reduktions–Faktor Vol.:</td>
<td>2</td>
</tr>
<tr>
<td>Konz. Stammlsg.:</td>
<td>20.0000 ppb</td>
</tr>
</tbody>
</table>
Gefäßnr. Stammlsg.: 51
Gefäßnr. Blindwert: 52
Anzahl Injektionen: 1
Trocknen bis Stufe: 1
Modifier 1 Modus: Co–Inject
Vol. Modifier 1: 5 µL
Trocknen bis Stufe: 0
Injektionsrate: 1
Pos. Modifier 1: 53
Anzahl Injektionen: 1

Aufheizzylken:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
<td>5.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>40.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>10.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>5.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
<td>2.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Ja</td>
</tr>
<tr>
<td>7</td>
<td>2400</td>
<td>0.8</td>
<td>0.3</td>
<td>Normal</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>8</td>
<td>2400</td>
<td>2.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>9</td>
<td>2400</td>
<td>2.0</td>
<td>0.3</td>
<td>Normal</td>
<td>Nein</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Zugegeben wurde ein vom Gerätehersteller empfohlener Modifier von 5 ml Palladium (1000 mg/l), 5 ml Magnesium (1000 mg/l) und 2 ml HNO₃ (65 %).
2. Die Wertebarrieren der VBBo

Tabelle 23: Richtwerte gemäß VBBo Anhang I, Ziff. 11. Der Grund weshalb ab 15% Humusgehalt nach Volumen und nicht nach Gewicht eingemessen wird, ist die tiefere Dichte von Böden mit hohem Anteil an organischer Substanz

<table>
<thead>
<tr>
<th>Schadstoffe</th>
<th>Gehalte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg TS für Böden bis 15% Humus</td>
</tr>
<tr>
<td>Totalgehalt</td>
<td>Löslicher Gehalt</td>
</tr>
<tr>
<td>Chrom [Cr]</td>
<td>50</td>
</tr>
<tr>
<td>Nickel [Ni]</td>
<td>50</td>
</tr>
<tr>
<td>Kupfer [Cu]</td>
<td>40</td>
</tr>
<tr>
<td>Zink [Zn]</td>
<td>150</td>
</tr>
<tr>
<td>Cadmium [Cd]</td>
<td>0.8</td>
</tr>
<tr>
<td>Quecksilber [Hg]</td>
<td>0.5</td>
</tr>
<tr>
<td>Blei [Pb]</td>
<td>50</td>
</tr>
<tr>
<td>Fluor [F]</td>
<td>700</td>
</tr>
</tbody>
</table>

TS = Trockensubstanz
Tabelle 24: Prüfwerte gemäss VBBo Anhang 1, Ziff. 11. Auch hier wird ab 15% Humusgehalt nach Volumen eingemessen. Neu ist jedoch, dass je nach Nutzungsart unterschieden wird welche Grenzwerte gelten

<table>
<thead>
<tr>
<th>Nutzungsarten</th>
<th>Gehalte</th>
<th>Probenahmetiefe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg TS für Böden bis 15% Humus</td>
<td>[cm]</td>
</tr>
<tr>
<td></td>
<td>mg/dm³ im Boden über 15% Humus</td>
<td></td>
</tr>
<tr>
<td>Blei [Pb]</td>
<td>Cadmium [Cd]</td>
<td>Kupfer [Cu]</td>
</tr>
<tr>
<td>T</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>Nahrungspflanzenanbau</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>Futterpflanzenanbau</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>Nutzungen mit möglicher direkter Bodenaufnahme</td>
<td>300</td>
<td>-</td>
</tr>
</tbody>
</table>

TS = Trockensubstanz
T = Totalgehalt
L = Löslicher Gehalt

Tabelle 25: Sanierungswerte gemäss VBBo Anhang 1, Ziff. 11

<table>
<thead>
<tr>
<th>Nutzungsarten</th>
<th>Gehalte</th>
<th>Probenahmetiefe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg TS für Böden bis 15% Humus</td>
<td>[cm]</td>
</tr>
<tr>
<td></td>
<td>mg/dm³ im Boden über 15% Humus</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>Landwirtschaft und Gartenbau</td>
<td>2000</td>
<td>-</td>
</tr>
<tr>
<td>Haus– und Familiengärten</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>Kinderspielplätze</td>
<td>1000</td>
<td>-</td>
</tr>
</tbody>
</table>

TS = Trockensubstanz
T = Totalgehalt / L = Löslicher Gehalt
3. Messwerte des gelösten Eisengehalts

Da Eisen definitionsgemäß zu den Schwermetallen gehört \((\rho > 4.5 \, \text{g/cm}^3)\) wurde die Eisenkonzentration der Proben gemessen. Eisen beeinträchtigt das Wachstum von Pflanzen nur in sehr hohen Konzentrationen. In sehr sauren Böden mit sehr hohen Eisengehalten reagieren die Eisenverbindungen mit Pflanzennährstoffen und verhindern so deren Aufnahme durch die Pflanzen.
