Doctoral Thesis

Synthesis, PGSE diffusion and multidimensional NMR studies on transition metal organometallic species applications in coordination chemistry and homogeneous catalysis

Author(s):
Nama, Devendra Babu

Publication Date:
2007

Permanent Link:
https://doi.org/10.3929/ethz-a-005421415

Rights / License:
In Copyright - Non-Commercial Use Permitted
Synthesis, PGSE Diffusion and Multidimensional NMR Studies on Transition Metal Organometallic Species: Applications in Coordination Chemistry and Homogeneous Catalysis

A Dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

For the degree of
Doctor of Sciences

Presented by

Devendra Babu Nama
M.Sc., Bangalore University, India
Born October 05th 1977
Citizen of India

Accepted on the recommendation of
Prof. Dr. P. S. Pregosin, Examiner
Prof. Dr. W. H. Koppenol, Co-examiner

Zurich, 2007
Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Professor Paul S. Pregosin, for guiding and supporting me throughout my PhD time with his fruitful discussions, patience and knowledge.

I am also grateful to Dr. Heinz Rügger, for sharing with me his wealth of knowledge in NMR and Chemistry.

Professor Dr. Willem H. Koppenol for having accepted to be my co-examiner.

Professors Mike Whittlessey, Alberto Albinati, Paul J Dyson, L F Veiros, M J Calhorda and their coworkers for their worthwhile and interesting collaborations.

A special thanks to Pietro Butti and Professor Frank Breher for X-ray structure determination.

I would like to thank my Indian professors Prof. N. M. Nange Gowda, Prof. K. V. Ramanathan and Prof. N. Suryaprakash for their encouragement and kind help.

I thank all my present and former lab colleagues: Anil, Nacho, Daniele, Rene, Serena, Helen, Stefan, Alexey, Aitor and Nicole (PSP secretary) for their kind help and for maintaining a lively working atmosphere.

To all my Indian friends, specifically, Ravi, Sai, Jagan, Shiva, Vishwa, Trishool, Srinivas, Shravan, and all InSaz memebrs who made my stay so enjoyable.

To all members of the Institute of Inorganic Chemistry at ETH who made a comfortable and pleasant working atmosphere.

Finally, and most importantly, I wish to thank my family and friends, particularly my parents Rajamma and Janardhana Chetty. They raised me, supported me, taught me, and loved me. To them I dedicate this thesis.
Publications

195Pt, 1H and 31P PGSE diffusion studies on platinum complexes.
Nama, D; Kumar, P. G. A; Pregosin, P S. Magnetic Resonance in Chemistry (2005), 43(3), 246-250.

1H, 19F-HOESY and PGSE diffusion studies on ionic liquids: The effect of co-solvent on structure.
Nama, D; Kumar, P. G. A; Pregosin, P S.; Geldbach, T J.; Dyson, P J. Inorganica Chimica Acta (2006), 359(6), 1907-1911.

Cationic Tris N-Heterocyclic Carbene Rhodium Carbonyl Complexes: Molecular Structures and Solution NMR Studies.
Burling, S; Douglas, S; Mahon, M F.; Nama, D; Pregosin, P S.; Whittlesey, M K. Organometallics (2006), 25(10), 2642-2648.

Diffusion and Overhauser NMR studies on dicationic palladium complexes of BINAP.
Nama, D; Schott, D; Pregosin, P S.; Veiros, L. F.; Calhorda, M. J. Organometallics (2006), 25(19), 4596-4604.

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving C-C Bond Formation from Alcohols.

Synthesis, X-ray, and NMR Studies on Palladium BINAP Complexes Containing Oxazolidinone and Acetylacetone Anions.

Synthesis and Reactivity of Ru(PPh$_3$)$_3$(CO)HF and the N-Heterocyclic Carbene Derivatives Ru(NHC)(PPh$_3$)$_3$(CO)HF
Reade, S P.; Nama, D; Mohan, M F.; Pregosin, P S; Whittlesey, M K. Organometallics (2007), 26, 3484.

Nama, D; Butti, P; Pregosin, P S. (2007), Submitted.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINAP</td>
<td>2,2'-bis(diphenylphosphino)-1,1'-binaphthyl</td>
</tr>
<tr>
<td>BF$_4^-$</td>
<td>tetrafluoroborate</td>
</tr>
<tr>
<td>BINPHAT</td>
<td>bis(tetrachlorobenzenediolato)mono([1,1'])binaphthalenyl-2,2'-diolato)-phosphate(V)</td>
</tr>
<tr>
<td>BArF$^-$ or BArF$^{-}$</td>
<td>tetrakis(3,5-bis(trifluoromethyl)phenyl)borate</td>
</tr>
<tr>
<td>CF$_3$SO$_3^-$</td>
<td>trifluoromethanesulfonate</td>
</tr>
<tr>
<td>Chiraphos</td>
<td>butane-2,3-diylbis(diphenylphosphine)</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation Spectroscopy</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyclohexane</td>
</tr>
<tr>
<td>DOSY</td>
<td>Diffusion-ordered spectroscopy</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional theory</td>
</tr>
<tr>
<td>DNMR</td>
<td>Dynamic Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Coherence</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear Multiple Quantum Coherence</td>
</tr>
<tr>
<td>HOESY</td>
<td>Heteronuclear Overhauser Spectroscopy</td>
</tr>
<tr>
<td>ICy</td>
<td>1,3-bis(cyclohexyl)imidazol-2-ylidene</td>
</tr>
<tr>
<td>IMes</td>
<td>1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene</td>
</tr>
<tr>
<td>I'Bu</td>
<td>1,3-bis(tert-butyl)imidazol-2-ylidene</td>
</tr>
<tr>
<td>lEt$_2$Me$_2$</td>
<td>1,3-bis(ethyl)-4,5-dimethylimidazol-2-ylidene</td>
</tr>
<tr>
<td>lPr$_2$Me$_2$</td>
<td>1,3-bis-isopropyl-4,5-dimethylimidazol-2-ylidene</td>
</tr>
<tr>
<td>i-Pr</td>
<td>iso-propyl</td>
</tr>
<tr>
<td>LED</td>
<td>Longitudinal eddy-current delay</td>
</tr>
<tr>
<td>NHC</td>
<td>N-heterocyclic carbene</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Spectroscopy</td>
</tr>
<tr>
<td>NPA</td>
<td>Natural Population Analysis</td>
</tr>
<tr>
<td>ORTEP</td>
<td>Oak Ridge Thermal Ellipsoid Plot</td>
</tr>
<tr>
<td>Oxazolidinone</td>
<td>(E)-3-but-2-enoyloxazolidin-2-one</td>
</tr>
<tr>
<td>PF$_6^-$</td>
<td>hexafluorophosphate(V)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PGSE</td>
<td>Pulsed Gradient Spin Echo</td>
</tr>
<tr>
<td>picoline</td>
<td>methylpyridine</td>
</tr>
<tr>
<td>ROESY</td>
<td>Rotational Overhauser Spectroscopy</td>
</tr>
<tr>
<td>TRISPHAT</td>
<td>tris(tetrachlorobenzenediolato)phosphate(V)</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TMVS</td>
<td>trimethyl vinylsilane</td>
</tr>
</tbody>
</table>
Contents

Summary

1 Introduction

1.1 General Introduction to NMR Spectroscopy 1

1.2 NMR in Organometallic Chemistry 2

1.2.1 Multidimensional NMR 3

1.2.1.1 Homo and Hetero Nuclear Correlations 5

1.2.1.2 NOE and HOESY Spectroscopy 7

1.3 PGSE Diffusion NMR 11

1.3.1 Concepts of Diffusion 12

1.3.2 PGSE Diffusion NMR and Experimental Methods 14

1.3.2.1 Spin-Echo Method 14

1.3.2.2 Stimulated Echo Method 15

1.3.2.3 Derived Sequences 16

1.3.3 Applications of Diffusion NMR 18

1.3.3.1 Molecular Volume 19

1.3.3.2 Hydrogen Bonding 21

1.3.3.3 Host-Guest Interactions 22

1.3.3.4 Ion Pairing 23

1.3.4 Homogeneous Catalysis 26

1.4 Concluding Remarks 31

1.5 Bibliography 32
2 Diffusion Measurements on Organometallic Complexes

Overview

2.1 Synthesis and Diffusion Studies on Pd(II)-BINAP Complexes

- **2.1.1** Pd(II)-BINAP Aqua Complexes
- **2.1.2** Pd(II)-BINAP Bridged Hydroxy Complexes
- **2.1.3** Pd(II)-BINAP Bridged Anilide Complexes
- **2.1.4** Pd(II)-BINAP-Mono Cationic Complexes
- **2.1.5** Pd(II)-BINAP-Cyclometallated Complexes

2.2 Diffusion Studies on Rh(I) N-Heterocyclic Carbene Complexes

2.3 Diffusion Studies of Pt(II) Complexes

- **2.3.1** ^{195}Pt Nuclei as Diffusion Probe

2.4 Concluding Remarks

2.5 Experimental Part

2.6 Bibliography

3 N-Heterocyclic Carbene Complexes- Exchange and Dynamics

Overview

3.1 Introduction

- **3.1.1** N-Heterocyclic Carbene Complexes
- **3.1.2** C-H Activation in Carbene Complexes

3.2 C-H Activation and Phosphine Exchange in Ru(II) Hydrido NHC Complexes

3.2.1 Ru(II) Isopropyl-substituted Carbene \((\text{I}^{\text{Pr}_2\text{Me}_2})\) Complexes 163

3.2.2 Ru(II) (IMes) Complexes 167

3.3 Dynamics 173

3.3.1 Restricted Rotation in Ru(II) Carbene Complexes 174

3.3.2 Restricted Rotation in Mono Cationic Rh(I) Carbene Complexes 177

3.4 N-Heterocyclic Carbene Hydride Fluoride Complexes 181

3.5 Concluding Remarks 188

3.6 Experimental part 189

3.7 Bibliography 192

Appendices 197
Summary

The applications of Pulsed Gradient Spin Echo (PGSE) diffusion, exchange and multidimensional NMR techniques to the study of organometallic complexes relevant to coordination and homogeneous catalysis are described in this thesis.

Chapter 1 describes the basic principles of NMR spectroscopy, and specifically, PGSE NMR and its applications to organometallic/coordination chemistry.

Chapter 2 focuses on diffusion studies on a modest number of mono and dicationic Pd(II) complexes and neutral Pt(II) complexes, plus 195Pt as a diffusion probe for PGSE diffusion measurements. Thus, studies are related to molecular volumes, solvent and/or anion effects on ion pairing, hydrogen bonding and aggregation effects.

A series of mono-cationic palladium BINAP complexes, $[\text{Pd}(\text{rac-BINAP})(\text{an acetylacetonate anion})][X]$, ($X = a, \text{CF}_3\text{SO}_3^-, b, \text{BF}_4^-$), have been synthesized and characterized. These salts are believed to be intermediates in catalytic hydroamination or Michael reaction.

Chapter 3 deals with structure, exchange and dynamics (restricted rotation) of Ru(II) and Rh(I) N-heterocyclic carbene complexes.
The phosphine (PPh₃) exchange and dissociation have been studied via variable temperature and 2D NMR methods. Restricted rotation of the bulky carbene ligand in Ru(II) and Rh(I) carbene complexes is discussed based on line shape and exchange NMR studies.
Zusammenfassung

Diese Dissertation beschreibt die Anwendung von Pulsed Gradient Spin Echo (PGSE) Diffusionen, Austausch und multidimensionalen NMR Methoden zur Untersuchung von organometallischen Komplexen in Bezug auf die Koordination und die Anwendung in homogener Katalyse.

Kapitel 1 beschreibt die Grundprinzipien der NMR-Spektroskopie, speziell die PGSE NMR-Methode und ihre Anwendung in der Koordinations-Chemie.

Es wurde eine Serie von mono-kationischen Palladium-BINAP-Komplexen, $[\text{Pd(rac-BINAP)(Acetylacetonat-Anion)[X]}$, $(X = \text{a, CF}_3\text{SO}_3, \text{b, BF}_4)$, synthetisiert und charakterisiert. Man glaubt dass diese Salze Intermediate in katalysierten Hydroaminierungen und Michale Reaktionen sind.
Kapitel 3 handelt von Strukturen, Austausch und dynamischen Prozessen (eingeschränkte Rotationen) von Ru(II) und Rh(I) N-heterocyclischen Carben-Komplexen.

Chapter 1

NMR Spectroscopy
1.1 General Introduction to NMR Spectroscopy

Since the first observations of the phenomenon in bulk materials\(^1, 2\), NMR has played a key and rapidly expanding role in chemistry, biochemistry, polymer chemistry and materials research. NMR has become one of the most important techniques for determining organic structure despite its extreme insensitivity (it is the least sensitive of the spectroscopic techniques). Its strengths come from the wealth of chemical shift and spin-spin coupling contained in NMR spectra and the ability to relate these to specific molecular structure and motional features. Given that researchers have had to work with smaller quantities of increasingly complex molecular structures, it appeared that NMR would not keep pace with the requirements of science. However, major developments in methodology, software and hardware have always become available just as it appeared that the chemical and biological challenges were going to exceed the limits of NMR's capabilities.

Continuous developments in the applications of high field superconducting magnet technology have provided further sensitivity gains as well as improvements in the ability to disperse and resolve the spectral detail necessary to analyze complex NMR data. Developments in the electronics industry have also provided reliable, low-noise components that have resulted in sensitivity gains; and have provided fast computers that enhance the ability to work with both large data sets, and to provide software-based image processing methods. The recent availability of commercial cryogenically cooled probes and electronic components is already having a significant impact on the ability to study small quantities of material and promises to greatly expand the utility of NMR methods that have been previously considered too difficult to be broadly applicable\(^3\). Microprobes also play a key role in improving the
sensitivity of NMR when the applications involve limited sample quantity[4]. Over the past 40 years, these cumulative contributions have resulted in an overall improvement in detection limit of four orders of magnitude.

1.2 NMR in Organometallic Chemistry

NMR (Nuclear Magnetic Resonance) has become the preeminent technique for determining the structure of organic compounds. It is one of the fastest ways to screen reactions and, at the same time, provides insights into molecular structure and solution dynamics. At a more sophisticated level, the analysis of subtle 2- and 3-D measurements resulted in the solution of hundreds of complicated organic and biological structures.

Historically, inorganic co-ordination chemists still rely heavily on X-ray crystallography. This community tends to shy away from ‘sporting methods’ and some extent, this tradition has been carried forward into organometallic chemistry. Homogeneous catalysis, and particularly enantioselective catalysis, combines fundamental aspects of inorganic transition-metal chemistry with the mature elegance of organic carbon architecture[5, 6]. The former discipline provides the template for bringing the correct pieces together, via complexation, and the latter, the necessary chiral frame work, frequently via a bidentate ligand auxiliary. Subtle steric effects[7], arising from the interaction of the chiral pocket with the coordinated substrate, together with electronic effects[8], induced by different donor atoms, can determine whether a given auxiliary will be successful for any one substrate.

In both principle and practice, NMR spectroscopy offers unique opportunities for monitoring solution structures in chiral organometallics, and specifically, in the recognition of the subtle
interplay between auxiliary and substrate[9]. However since the proton spectra of mixtures of diastereomers containing for example, complexed bis phosphine BINAP \([2,2\,'-\text{bis(diphenylphosphino)}-1,1\,'-\text{binaphthyl}]\), are often not readily amenable to interpretation, it is useful to have a plan of attack: (1) Assign the \(^1\text{H}\) resonances by correlating these to other spins, for example, \(^{31}\text{P}, \, ^{13}\text{C}, \, \text{metals (such as} \, ^{195}\text{Pt or} \, ^{103}\text{Rh or} \, ^{183}\text{W})\), or other protons. (2) Determine the solution 3-D structure, using \(^1\text{H}\) NOE spectroscopy. (3) determine if and which exchange process occur (phase sensitive NOESY or ROESY data). In addition to (1)-(3) there are always the usual empirical coupling constant and chemical shift correlations which function as supplementary aids.

The following sections describe these methods and several simple applications related, primarily, to structural problems of chiral complexes.

\subsection{1.2.1 Multidimensional NMR}

In the late 1960's chemists were predicting that NMR would soon reach its limits and that its utility would diminish with time. However, about that time, the concept of two dimensional (2D) NMR was introduced, and later demonstrated[10, 11]. In 2D FT-NMR, the experiments are generally composed of four periods: preparation, evolution, mixing and detection; as illustrated in Fig. 1.1.
The preparation can be a simple relaxation delay, as is used in a simple one-pulse 1D experiment, or it can be a more complicated series of events that moves coherence between atoms and selectively destroys NMR coherence components that would produce undesired signals in the final spectrum. During the variable evolution period (\(t_1\)) one or more NMR interactions are allowed to occur. This interaction can be chemical shift precession of a second nucleus (not detected during \(t_2\)), J-coupling, or any of a number of other possible interactions. The mixing period provides coherence transfer from the nuclei whose signals are modulated during \(t_1\) to those detected during \(t_2\). Thus the signals of those nuclei detected during \(t_2\) are modulated by the NMR interactions that occurred during \(t_1\). Many separate FID’s (typically 100–1000) are collected (Fig. 1.2a), each with a different value of \(t_1\). These FID’s are individually Fourier transformed to produce a series of 1D NMR spectra (Fig. 1.2b), which can be similar to normal 1D NMR of the detected nuclei, i.e. peaks (in this example at frequencies \(a\) and \(b\)) in \(f_2\) are seen corresponding to those normally observed in the spectrum of the nucleus detected in the \(f_2\) dimension. However, the intensities of these peaks are modulated as a function of the length of \(t_1\) and the NMR interactions that occurred during that period. Fig. 1.2c represents plots of the \(a\) and \(b\) signal intensities as a function of \(t_1\). A second FT is performed with respect to the \(t_1\) dimension to provide the final 2D-NMR spectrum (Fig. 1.2d).

The NMR parameters plotted along the \(f_2\) axis are those of the detected nucleus. For example, if \(^{13}\text{C}\) is detected, then the \(^{13}\text{C}\) chemical shifts are plotted; if \(^1\text{H}\) is detected, then the \(^1\text{H}\) chemical shifts are plotted.
shifts and coupling constants are plotted along f_2. The NMR parameter plotted along the f_1 axis is determined by the preparation period and the interaction in effect during t_1. For example, if the preparation period places coherence on ^{13}C and ^{13}C chemical shift is active during t_1, then the ^{13}C chemical shift would be plotted along the f_1 axis. Correlations between these frequencies would be observed based on the method of coherence transfer between nuclei during the mixing period.

1.2.1.1 Homo and Hetero Nuclear Correlations

The simplest 2D-NMR experiment is named COSY (Correlation Spectroscopy)111 and contains a t_1 period flanked by two 90 degree pulses (Fig. 1.3). The second 90 degree pulse serves as a mixing period, exchanging coherence between different proton spins. The resulting spectrum contains the shifts and J-couplings along both the f_1 and f_2 axis. The spectrum contains peaks along a diagonal, corresponding to the resonances in the normal 1D spectrum, and off diagonal cross-peaks connecting these frequencies if the nuclei are J-coupled to each other.

\textbf{Fig. 1.2.} Diagram illustrating the sequence used to produce a 2D-NMR spectrum;

\textbf{Fig. 1.3.} Representative pulse sequences for acquiring COSY.
The $^1\text{H},^1\text{H}$ COSY spectrum for the complex $[\text{Pd(\mu-OH)(p-tol-BINAP)}]_2[\text{OTf}]_2$, below (Fig. 1.4) helps to assign the phenyl groups in the BINAP system.

Fig. 1.4. Section of the $^1\text{H},^1\text{H}$ COSY spectrum of $[\text{Pd(\mu-OH)(p-tol-BINAP)}]_2[\text{OTf}]_2$ at 203 K (CD$_2$Cl$_2$, 500 MHz).

A second commonly used sequence is the 2D-HMQC (Heteronuclear Multiple Quantum Coherence) experiment\cite{12}(Fig. 1.5). The spectrum from this sequence contains ^1H chemical shift data along the f_2 axis and the chemical shift of some other nucleus (usually ^{13}C or ^{15}N) along the f_1 axis. Coherence is transferred between the heteronucleus and the protons using one-bond H-X couplings. Resonances are observed at the intersection of the chemical shifts of directly bound H and X nuclei. When the NMR observable isotope of the X nucleus has low natural abundance (e.g. ^{13}C, 1.1%), the pulse sequence eliminates the signals of ^1H atoms not bound to the NMR-active X isotope (e.g. $^1\text{H}_{^{12}\text{C}}$ which accounts for 99% of the ^1H NMR signal). Fig. 1.6 shows the $^{15}\text{N},^1\text{H}$ HMQC spectrum of W carbene complex. The separation of the signals corresponds to $^1J(^{15}\text{N},^1\text{H})$.

Chapter 1
6
Fig. 1.5. Representative pulse sequences for acquiring HMQC.

Fig. 1.6. Section of 15N, 1H HMQC spectra showing one bond coupling ($^1J_{nn} = 103$ Hz) for W carbene complex (CD$_2$Cl$_2$, 50.7 MHz, 298 K).

1.2.1.2 NOE and HOESY Spectroscopy

The nuclear Overhauser effect (NOE) represents the manifestation of cross-relaxation between two nuclear spins which are close to each other in space$^{[13]}$. The NOE has become increasingly important for the characterization of the spatial relationship between nuclei. Today, NOE measurements represent an essential part of the "routine NMR spectroscopy" used for the assignment, structure elucidation and conformational analysis of complex molecules. It is also one of the most important experimental methods for the structural analysis of biological macromolecules$^{[13]}$.

The basic sequence for a 2D NOESY experiment is shown in Fig. 1.7. The pulse sequence involves a 90 degree pulse followed by a delay, which is incremented to provide the second dimension, a second 90 pulse followed by a mixing time, τ_m, and a final 90 degree pulse followed by collection of the free induction decay. The mixing time is a delay which allows the NOE to build up due to relaxation effects. Cross-peaks are observed in the 2D spectra.
where a significant NOE is induced between nearby nuclei. The spectrum from this sequence contains 1H chemical shift along both the f_2 and f_1 axis.

Since the observation of an NOE depends on the spatial relationship of two nuclei it is a tool for studying intermolecular interactions141. When the two spins are of the same species, i.e. $\gamma_i = \gamma_s$, then the steady state homo nuclear NOE, η_{max}, is:

$$\eta_{\text{max}} = \frac{5 + \omega^2 \tau_c^2 - 4 \omega^4 \tau_c^4}{10 + 23 \omega^2 \tau_c^2 + 4 \omega^4 \tau_c^4}$$

Where ω is frequency, τ_c is correlation time.

In a routine NOESY spectrum, the phase of the NOE cross-peaks are usually opposite to those of the diagonal15, 16. However, when chemical change takes place, the exchange cross-peaks appear with the same phase as diagonal, thus providing an often unexpected bonus.

For example, reaction of ligand 1 with the aquo-complex, [Pd(H$_2$O)$_2$(BINAP)]$_2$(CF$_3$SO$_3$)$_2$, 2, in dichloromethane solution, affords a mixture which, via integration, contains ca 16\% of 3. Both the 1H and 31P{$_1$H} spectra at room temperature gave broad resonances suggesting dynamic behaviour. From a phase sensitive 1H,1H NOESY spectrum at 203 K, one finds exchange cross peaks arising from the free oxazolidinone, 1 and the chelated ligand in complex 3 (see Fig. 1.8).
As a second example, we consider the Rh-carbene complex $4[PF_6]$. At low temperature the three different Cy-methine proton sites are assigned as A-C and the three NCH=CHN protons as a-c, as indicated in the structure, Fig. 1.9, above. A section of the ROESY spectra for $4[PF_6]$ is shown above and reveals that, even at 203 K, there is slow exchange between sites A and B due to restricted rotation around the Rh-C bonds.
HOESY Spectroscopy

The heteronuclear version of NOESY (often called HOESY) was developed by Rinaldi[17] as well as by Yu and Levy[18, 19]. In these experiments, using the pulse sequence shown in Fig. 1.10, relaxation between the heteronuclei is detected directly.

\textbf{Fig. 1.10}. Pulse sequence for the 2D HOESY experiment. Narrow and wide filled bars correspond to 90 and 180 hard pulses, respectively. X refers to any heteronucleus.

\textbf{Fig. 1.11}. HOESY spectra for 5 in THF-d\textsubscript{8}, showing selective contacts to the methyl groups of carbene (400 MHz, 298 K).

In the example of Fig. 1.11, the 1H, 19F HOESY spectra for the [Rh(IPr$_2$Me$_2$)$_3$(CO)](PF$_6$) carbene salt, 5, in THF-d$_8$ solvent is shown. The PF$_6$ anion reveals selective contacts to the olefin methyl groups but not the i-pr methyl groups of the carbene ligand.

Chapter 1
10
1.3 PGSE Diffusion NMR

1.3.1 Concepts of Diffusion

Self-diffusion concerns the random translational motion of molecules driven by their internal kinetic energy\(^{[20]}\). Translational diffusion and rotational diffusion can be distinguished from each other\(^{[20]}\).

The diffusion is related to molecular size, as becomes apparent from the Stokes-Einstein equation

\[
D = \frac{k_B T}{f}
\]

(1)

Where \(D\) is the diffusion coefficient, \(k_B\) is the Boltzmann constant, \(T\) is the temperature, and \(f\) is the friction coefficient. If the solute is considered to be a spherical particle with an effective hydrodynamic radius (i.e., Stokes radius) \(r_s\) in a solution of viscosity \(\eta\), then the friction coefficient is given by

\[
f = 6\pi\eta r_s
\]

(2)

Gierer and Wirtz\(^{[21]}\) derived an expression for the friction coefficient of a solute in a solvent considering the solvent molecules as spheres with radius \(r_{\text{solvent}}\) (and not as a continuous medium as in Eq. (2)):

\[
f = \frac{6\pi r_s}{3r_{\text{solvent}} + \frac{1}{2r_s} + \frac{r_{\text{solvent}}}{r_s}}
\]

(3)

A semiempirical improvement of Eq. (3) has been reported\(^{[22]}\):

\[
f = \frac{6\pi r_s}{1 + 0.695 \left(\frac{r_{\text{solvent}}}{r_s}\right)^{2.34}}
\]

(4)

In eqs. (3) and (4) \(r_s\) represents the radius of the solute.
Translational diffusion is the most fundamental form of transport and is a prerequisite for chemical reactions, since the reacting species have first to collide\cite{20}.

1.3.2 PGSE Diffusion and Experimental Methods

The determination of molecular size in solution remains a subject of considerable interest to the coordination chemistry community, in particular with respect to the formation of polynuclear complexes, ion pairs and otherwise aggregated species. Apart from classical methods such as mass spectrometry\cite{23} and those based on colligative properties\cite{24} - boiling point elevation, freezing point depression, vapor and osmotic pressure - the Pulsed Field Gradient Spin-Echo (PGSE) methodology\cite{25,26} has recently resurged as a promising technique. PGSE measurements make use of the translational properties, that is, diffusion, of molecules and ions in solution and thus are directly responsive to molecular size and shape. Since one can measure several components of a mixture simultaneously\cite{27,28} PGSE methods are particularly valuable where the material in question is not readily isolable and/or the mixture is of especial interest, as for equilibria mixtures.

PGSE methods were introduced in 1965 by Stejskal and Tanner\cite{29} and, since then, have been widely used. In the 1970's, this approach was used to determine diffusion coefficients of organic molecules\cite{26}. In the following decade, variants of this technique have been applied to problems in polymer chemistry\cite{30}. Recently, diffusion data on dendrimers\cite{31} and peptides\cite{32} as well as on molecules in various environments, for example, in porous silica\cite{33}, and zeolites\cite{34}, have been obtained. Recent applications of PGSE methods in coordination and/or organometallic chemistry have emerged\cite{35,36}.

\textit{Chapter 1}

12
Measuring Diffusion by NMR

Diffusion can be investigated either by analysis of relaxation data37,38 or by pulsed field gradient (PFG) NMR measurements. While relaxation measurements are sensitive to motions occurring in the pico to nano second time scale, in PFG experiments motion on the millisecond to seconds time scale is measured.

Analysis of relaxation data yields the rotational correlation time, τ_r, of the molecule which can be related to the solvent viscosity, η. The viscosity in turn can be used for the calculation of the translational diffusion coefficient (D) by using the Debye equation (Eq. (5)) and the Stokes–Einstein equation (Eq. (6)).

\[
\tau_r = \frac{4\pi \eta r_H^3}{(3k_B T)} \quad (5)
\]

\[
D = \frac{k_B T}{6\pi \eta r_H} \quad (6)
\]

r_H = hydrodynamic radius (Which includes both solvent (hydro) and shape (dynamic) effects.

However, far-reaching assumptions are necessary when performing this analysis, and Stokes radius r_S needs to be known. For this reason only PFG NMR methods are considered.

Using the PFG method, the diffusion coefficient (D) is measured by evaluating the attenuation of a spin-echo signal39. The attenuation is achieved by the dephasing of nuclear spins due to the combination of the translational motion and the imposition of gradient pulses. In contrast to the previously mentioned relaxation methods, no assumptions concerning the relaxation mechanism(s) are necessary.

The basic element of an NMR diffusion measurement consists of a spin-echo sequence40, in combination with the application of static
or pulsed field gradients\cite{29, 41}. Several common sequences are shown in Fig. 1.12,

![Fig. 1.12. Pulse sequences commonly used for PGSE measurements. Sequences with (a) Spin-Echo, (b) Stimulated Echo, (c) Stimulated Echo and longitudinal eddy-current delay (LED), and (d) Stimulated Echo with bipolar pulsed field gradients and LED. Narrow and wide black rectangles represent $\pi/2$ and π radio frequency pulses, respectively. Narrow and broader open rectangles represent field gradient pulses of duration $\delta/2$ and δ, respectively, and strength G.](image)

1.3.2.1 Spin-Echo Method or Stejskal-Tanner Experiment

The Stejskal-Tanner experiment\cite{29}, Fig. 1.12a, is the simplest sequence for measuring diffusion. The transverse magnetization is generated by the initial $\pi/2$ pulse which, in the absence of the static or pulsed field gradients, dephases due to chemical shift, hetero- and homonuclear coupling evolution, and spin-spin (T_2) relaxation. After application of an intermediate π pulse, the magnetization refocuses, generating an echo. At this point the sampling (signal intensity measurement) of the echo decay starts. Fourier transformation of these data results in a conventional NMR spectrum, in which the signal amplitudes are weighted by their individual T_2's and the signal phases of the multiplets due to homonuclear coupling are distorted. Both effects are present in the
diffusion experiment; however, due to the fixed timing, these are kept constant within the experiment. The application of the first pulsed linear field gradient results in an additional (strong) dephasing of the magnetization with a phase angle proportional to the length (δ) and the amplitude (G) of the gradient. Because the strength of the gradient varies linearly along, e.g., the z-axis, only spins contained within a narrow slice of the sample acquire the same phase angle. In other words, the spins (and therefore the molecules in which they reside) are phase encoded in one-dimensional space. The second gradient pulse, which must be exactly equal to the first, reverses the respective phases and the echo forms in the usual way. If, however, spins move out of their slice into neighboring slices via Brownian motion, the phase they acquire in the refocusing gradient will not be the one they experienced in the preparation step. This leads to incomplete refocusing, as in the T₂ dephasing, and thus to an attenuation of the echo amplitude. As smaller molecules move faster, they translate during the time interval Δ into slices further apart from the original, thus giving rise to smaller echo intensities for a given product of length and strength of the gradient.

1.3.2.2 Stimulated Echo Method

The second experiment, shown in Fig. 1.12b[41], works quite the same way with the difference that the phase angles which encode the position of the spins are stored along the z-axis in the rotating frame of reference by the action of the second π/2 pulse. Transverse magnetization and the respective phases are restored by the third π/2 pulse. This method is advantageous in that during time Δ, T₁ as opposed to T₂ is the effective relaxation path. Since T₁ is often longer than T₂ a better signal/noise ratio is obtained.
Furthermore, phase distortion in multiplets due to homonuclear coupling is attenuated.

1.3.2.3 Derived Sequences

The accurate determination of diffusion coefficients for large, slow moving species requires strong gradient amplitudes. The resulting eddy-current fields can cause severe errors in the spatial phase encoding. The sequences shown in Fig. 1.12c\cite{42} and 1.12d\cite{43} contain, in addition, the so-called longitudinal eddy-current delay (LED) element, i.e., magnetization is again stored along the z-axis during the decay time of the eddy-currents. Disturbance of the field-frequency lock system can be minimized by the use of bipolar field gradient pulses, Fig. 1.12d.

Technically, all of above experiments are performed by repeating the sequence while systematically changing either the time allowed for diffusion (\(\Delta\)), the length (\(\delta\)) or the strength (G).

The diffusion coefficient \(D\) is obtained from the slope of the regression line by plotting \(\ln(I/I_0)\) (\(I/I_0 = \) observed spin echo intensity/intensity without gradients) vs. either \(\Delta-\delta/3\), \(\delta^2 (\Delta-\delta/3)\) or \(G^2\), depending on the parameter varied in the course of the experiment, respectively.

\[
\ln\left(\frac{I}{I_0}\right) = - (\gamma \delta)^2 G^2 (\Delta - \frac{\delta}{3}) D
\]

\(G\) = gradient strength, \(\Delta\) = delay between the midpoints of the gradients, \(D\) = diffusion coefficient, \(\delta\) = gradient length

The diffusion constant \(D\) can be related to the hydrodynamic radii of the molecules via the Stokes-Einstein equation (6).
General Considerations

For a routine PGSE measurement, there are no major instrumental or sample requirements, apart from gradients. Indeed, the PGSE methodology presents several advantages. It is relatively fast for 1H and 19F (normally about 1–2 h, but longer for other nuclei such as 31P), non-invasive, and requires modest quantities of the compound (usually 1–2 mM solutions). It is possible to work with the signal intensities from a spin–spin multiplet structure, but sharp lines are usually preferred. Several components of a mixture can be measured simultaneously (as long as they afford resolvable NMR signals), which makes the technique especially valuable for materials which are either not readily isolable, or for solutions containing a mixture of materials, for example, diastereomeric compounds[44], or perhaps several species in equilibrium[45].

Although variable temperature 1- and 2-D NMR studies are now routine, there is an additional problem with variable temperature diffusion measurements. Convection currents are caused by small temperature gradients within the sample, which are difficult to eliminate. For a given sample with a particular set of properties

\[\ln \left(\frac{I}{I_0} \right) \text{ vs. } G^2 \] (arbitrary units), the square of the gradient amplitude for the neutral platinum complex Pt(Cl)(H$_2$O)(PMe$_3$)(p-Me-C$_6$H$_4$) at 228 K in toluene-d_6 solution in a 5 mm NMR tube. The 1H PGSE diffusion data stem from the p-tolyl methyl group[46]. The lack of linearity arises due to convection.
(viscosity, thermal diffusivity, thermal expansion coefficient) convection appears if the temperature gradient within the solution exceeds a certain value[47]. The general diffusion curve for a sample showing convection is illustrated in Fig. 1.13.

A sensitive test for the onset of convection involves a comparison of D-values measured with different diffusion delays, d, as convection shows up as Δ-dependent (apparent) diffusion coefficient[46]. One solution to the convection problem involves the use of a coaxial insert inside a normal 5 mm NMR tube[46]. The inner and outer tubes are separated by a pyrex spacer suitable for variable temperature experiments. A space of ca. 2 mm is left between both tubes at the bottom.

1.3.3 Applications of Diffusion NMR

Diffusion coefficients and the structural properties of a molecule are connected by the dependence of the diffusion coefficients on molecular size and shape, it is not surprising that the determination of molecular diffusion coefficients by pulsed gradient spin-echo (PGSE) NMR experiments has become a valuable methodology for studies of molecular interaction in solution. In recent years, with the availability of gradient technology, the use of PGSE NMR experiments for determination of translational diffusion in studies related to molecular size, aggregation and binding has become a field of increasing interest.

The following sections describe selected applications of PGSE NMR studies in organometallic chemistry.
1.3.3.1 Molecular Volume

The use of PGSE experiments, which can measure the diffusion coefficients of molecules and thus provide information on molecular size (r_H) from the Stokes–Einstein equation. As the molecules become larger, they move (diffuse) slower. The more phenyl groups one has in the molecule, the slower will be the observed translation. In Fig. 1.14, PGSE results (from left to right) for H$_2$O, CHCl$_3$, and four arsine complexes of Pd(II) in CDC$_3$: PdCl$_2$L$_2$ (L = AsMe$_x$Ph$_{3-x}$, x = 3, 2, 1, 0), are reported. One can see that the smaller AsMe$_3$ complex moves faster than the analogous, and all four of these are slower than H$_2$O and solvent, which move relatively quickly. This is also made clearer in Fig. 1.15 which gives results for three different ferrocene phosphine dendrimers. It is clearly observable that as the size of the ferrocene phosphine dendrimer increases, the r_H value increases.

Fig. 1.14. Plot of ln (I/I$_0$) vs. the square of the gradient amplitude. The slopes of the lines are related to the diffusion coefficients, D. The six lines stem from H$_2$O, CHCl$_3$, and the four Pd-arsine complexes PdCl$_2$L$_2$ (L = AsMe$_x$Ph$_{3-x}$, x = 3, 2, 1, 0, increasing molecular volume from left to right). The absolute value of the slope decreases with increasing molecular volume.
Fig. 1.15. Phosphine Dendrimers

\[R = \begin{array}{c}
\text{HN} - \\
\text{-Q HN -} \\
\text{R} = 8.4 \\
\text{HN} - \\
\text{-Q HN -} \\
\text{R} = 13.4 \\
\text{HN} - \\
\text{-Q HN -} \\
\text{R} = 20.6
\end{array} \]
Another interesting area concerns H-bonding in metal complexes. There are a number of ways in which the D-value for a small molecule (or small anion) can be influenced by the presence of another species: (a) hydrogen bonding (b) host/guest encapsulation and (c) ion pairing. As an example of H-bonding, 19F-PGSE diffusion data for both triflate moieties of the cationic compound 6 suggesting that both triflates are moving at the same rate$^{[48]}$. Although one could imagine tight ion-pairing as an explanation for the observed identical diffusion coefficients, the reported solid-state structure of 6 suggests an H-bond from the P(OH)Ph$_2$ fragment to the anionic (not to the complexed) triflate. Consequently, the anionic triflate (which might also be involved in ion-pairing) is most likely associated with the cation via the OH group.

Interestingly, for complex 7, a similar situation exists, that is from the 19F diffusion data the triflate diffuses at the same rate as the
large dication. Again based on the X-ray data, H-bonding to be important. Another H-bonding situation exists for the complex 8\[^{49}\] of the Ph\(_2\)POBF\(_2\)OH bidentate ligand. \(^1\)H- and \(^{19}\)F- PGSE measurements reveal the same diffusion coefficients for both the complex and H-bonded BF\(_4\).

1.3.3.3 Host-Guest Interactions

The diffusion coefficient should be a powerful tool for detecting and probing encapsulation\[^{50}\], since the encapsulated guests are generally much smaller molecular species than the host itself and, therefore, should have a much higher diffusion coefficient in its free state. Moreover, the encapsulated molecules (guest), which are in slow exchange with the bulk, should have the same diffusion coefficient as the host itself since the host and the encapsulated molecules (guest) diffuse as a single molecular entity\[^{50}\]. The host guest interaction studies using diffusion-based argument was used to probe benzene encapsulation in the tetraureacalix arene dimer 9.

Fig. 1.16 shows part of the \(^1\)H NMR spectrum of dimer 9 prepared in a 80:20 mixture of C\(_6\)H\(_6\) and C\(_6\)D\(_6\). The signal at about \(\delta\) 4.4 was suspected to be that of the encapsulated benzene. Fig. 1.16b shows the decay of this signal, the signal of "free" benzene (at \(\delta\) 7.15), and one representative signal of the dimer (at \(\delta\) 1.95) as a function of the diffusion gradient strength G. This figure demonstrates that the signal at \(\delta\) 4.4 has a much lower diffusion coefficient than that of the free benzene, and that the extracted diffusion coefficient for this signal (0.34\(\pm\)0.01 \(\times\) 10\(^{-5}\) cm\(^2\)s\(^{-1}\)) was exactly the same as the one determined for the dimer\[^{50}\] and
illustrates that, as expected, the encapsulated benzene and the dimer diffuse as a single molecular entity.

Fig. 1.16. a) Section of the 1H NMR spectrum (500 MHz) of 9 in an 80/20 (v/v) solution of benzene and C$_6$D$_6$. b) 1H NMR spectra (500 MHz) of the same sample (recorded with a Stejskal-Tanner diffusion experiment). The figure shows the decay of the signal intensity as a function of G. For clarity, only the signal of 9 at $\delta = 1.95$ ppm and the signals attributed to the "free" and encapsulated benzene at $\delta = 7.15$ and 4.4 ppm, respectively, are shown.$^{[50]}$
1.3.3.4 Ion Pairing

PGSE diffusion studies have shown the potential for recognizing ion pairing\(^{48, 51, 52}\). Recent use of PGSE methods shadows conductivity measurements although it is an accepted method of measuring how ions interact\(^{48, 53}\). The individual D-values obtained from PGSE diffusion for the ions (usually \(^1\)H of cation, \(^{19}\)F of anion) of a given salt can provide a translational properties of the cation and anion, thereby affording insight into whether these species move independently or as a single unit\(^{54}\). If the two ions are large enough - and tightly ion-paired - the resulting increase in the molecular volume will be reflected in the observed D values. Cation/anion interactions can therefore be explored in a more direct fashion. In selected cases, with the help of \(^1\)H-\(^{19}\)F-HOESY data, one can also recognize where the two charged species interact\(^{55-57}\).

PGSE studies revealed marked solvent and concentration effects on D values in selected transition salts\(^{48, 53}\). As expected, there are solvents in which the cation/anion interaction is minimal (e.g., methanol) and others (e.g., dichloromethane or Chloroform) in which there is a significant amount of ion pairing\(^{48, 55, 58, 59}\).

\[
\begin{align*}
\text{R} &= \text{t-butyl} \\
X &= \text{BF}_4, \text{PF}_6, \text{OTf}, \text{B}(\text{C}_6\text{H}_5)_4, \text{BARF}
\end{align*}
\]
The solvent dependence of the 1H and 19F D-values for the Ir(I) salt, 10 having different anions (BF$_4^-$, PF$_6^-$, OTf, B(C$_6$F$_5$)$_4^-$ and BArF$_4^-$) in methanol, chloroform, dichloromethane, and 1,2-dichloroethane are described below. In methanol, the strongest solvating and most polar of the three solvents, the observed D values for the cation, with all five anions are found to be the same within the experimental error, indicating independent movement of the cation in this solvent. In chloroform solution, the anions and cations of 10 are moving at about the same rate, based on their respective D-values, suggesting strong ion pairing.

However, in dichloromethane solution, the diffusion data suggest mixed picture for the five anions. The results for the cation (10) of the BF$_4^-$, PF$_6^-$ and OTf salts reveal radii and molecular volumes which are essentially identical to those calculated in methanol. Clearly, these anions seem unimportant for the translation of the cation in this solvent, giving the impression of little or no ion-pairing. However, relative to the methanol data, the BF$_4^-$, PF$_6^-$, and OTf anions have larger radii. Possibly, there may be a small amount of ion-pairing. On the other hand, the larger boron-based anions B(C$_6$H$_5$)$_4^-$ and BArF$_4^-$ increases modestly for both cation and anion, relative to the methanol data, indicating some -but not complete ion-pairing. In 1,2-dichloroethane D and r$_H$ values shows similar results to those reported for dichloromethane.

This type of solvent dependence of the ion pairing is not limited to salts of transition metals. The D and r$_H$ values for diasteromers formed between two organic cations, dimethoxyquinacridinium (11) and 5,5',7,7'-tetrahydro-6,6'-spirobi[dibenzo[c,e]azepin]-6-ium (12) with relatively large chiral tris(tetrachlorobenzenediolato)phosphate(V) (TRISPHAT) and bis(tetrachlorobenzenediolato)mono([1,1']binaphthalenyl-2,2'
diolato)-phosphate(V) BINPHAT anions[60], \textit{13} and \textit{14}, respectively (see Scheme 1.1). In chloroform solution, strong ion pairing is favored. For the BINPHAT salt, (12)(14), the \textit{1}H, \textit{19}F and \textit{31}P PGSE diffusion studies reveal the first example of the dependence of a diffusion value on diastereomeric structure.

\textbf{Scheme 1.1.}

\begin{center}
\begin{tabular}{ccc}
\text{cation 11} & \text{cation 12} & \text{TRISPHAT anion, 13} & \text{BINPHAT anion, 14} \\
\end{tabular}
\end{center}

Clearly, the ability to measure the diffusion rates for the cation and anion, separately, that is, multinuclear PGSE studies, represents a powerful tool, and readily affords a qualitative view of the ion pairing.

\subsection*{1.3.4 Homogeneous Catalysis}

It is well known from the literature[61-63] that several processes, mediated by charged organometallic complexes, are strongly dependent on the nature of the counterion. The source of these effects is often completely unknown and may be related to coordination and/or ion pairing effects, amongst other explanations. The possibility of directly observing the anion-cation interactions in solution could lead to a better understanding of the role of the anion in the catalytic processes.

In terms of the catalyst activity, as a function of the counterion, it has been found that the weaker the coordinating power of the anion, the higher the reactivity for a given cation[64, 65].

\begin{center}
\text{Chapter 1}
\end{center}

26
As an example, the anion dependence was first reported661 by Evans in 1995 for C_2-symmetric cationic copper(II) Lewis acids used in catalysed enantioselective Diels-Alder reaction shown in Scheme 1.2.

Scheme 1.2

![Scheme 1.2](image)

Cu(t-Bu-box)

Evans investigated the enantioselective Diels-Alder reaction of imide-derived dienophiles with dienes catalyzed by (t-Bu-box)Cu(X)$_2$ reported in Scheme 1.3, obtaining results for the reaction rate that was about 20 times faster for SbF$_6^{-}$ than OTf 671 (Fig. 1.17). In addition, the cationic Cu(II) complexes with SbF$_6^{-}$ afforded higher levels of asymmetric induction than the analogous triflate complex. Interestingly, the endo/exo ratio was found to be dependent on the counterion. The lower the coordinating tendency of the counterion, the less diastereoselective the Diels-Alder reaction.

Scheme 1.3

![Scheme 1.3](image)

Fig. 1.17. Conversion of reaction reported in Scheme 1.3 catalyzed by complexes (t-Bu-box)Cu(X)$_2$ at -78 °C as a function of time. The endo ee was >98% in all case.671
In the case of R-box ligand-containing copper(II) catalysts, it seems certain that the reaction proceeds with the formation of the slightly distorted square-planar adduct reported in Scheme 1.4 with a twopoint catalyst-dienophile binding. Characterization of such an intermediate in solution through NMR experiments was prevented by the d⁹ paramagnetic Cu center. Spectroscopic investigations demonstrated that an unsymmetric square-pyramidal geometry exists in solution for a catalyst bearing C₂-symmetric bis(sulfoximines) ligand and the dienophile where one triflate anion occupies the fifth coordination site[68]. In the solid state several X-ray structures of [(t-Bu-box)CuL₂](X)₂ complexes (L = H₂O, halogen or L₂ = substrate or substrate-like compounds) were determined[69, 70] that support a distorted square-planar intermediate for reactions catalyzed by these complexes. As far as the bis(aquo) complexes [(t-Bu-box)Cu(H₂O)₂](X)₂ (X⁻ = OTf⁻ or SbF₆⁻) are concerned[69, 70], in the case of the triflate counterion a distorted square-pyramidal geometry with one triflate counterion weakly bonded to the metal center in the apical position was found. In contrast, for the hexafluoroantimonate complex none of the counterions appeared to be coordinated to the metal center, which assumes a distorted square-planar geometry. Theoretical calculations for the catalyst-substrate two-point complex (Scheme 1.4) suggest a distorted square-planar geometry for the cations analogous to that found in the solid state[67, 71, 72].

Scheme 1.4

![Scheme 1.4](image)
Two factors seem to be responsible for the counterion effect on the catalyst activity. First, the entering substrates must first displace the counterion from the two equatorial coordination sites. Second, the fifth coordination site on copper(II) is required for catalyst turnover through the associative displacement of the bound neutral oxygen ligands by additional dienophile. Both factors are facilitated by the least coordinating anions, and this explains the correlation between the catalytic activity and the "non-coordinating" tendency of the counterions. The understanding of the counterion effect on the diastereoselectivity and on the asymmetric induction is less trivial and is still a matter of debate. The moderately lower enantioselectivity observed in some cases with OTf instead of SbF₆⁻ might be due to intervention of a competing cycloaddition by a less highly organized one-point catalyst dienophile complex. The possibility that the catalyst geometry could be affected by changing the counterion must also be taken into account.

Even in more recent and efficient, N-heterocyclic carbene complexes, the counterion plays a crucial role in deciding the coordination mode of an N-heterocyclic carbene to the metal center. Crabtree and Faller recently showed that besides the normal C-2 coordination mode, N-heterocyclic carbene ligands can bind to the metal center in an "abnormal" C-5 coordination mode (Scheme 1.5).[73, 74]

Scheme 1.5

![Scheme 1.5](image-url)
For example, the metalation reaction reported in Scheme 1.5 afforded a 45:55 ratio of C-2- and C-5- bound carbenes when X' = BF₄⁻ and R = Me. QM/MM ONIOM calculations on the cationic anion-free models indicated that the abnormal carbene was 42.3 kJ/mol higher in energy than the normal one. When the anion (BF₄⁻) was included in the calculations, the difference in energy between the normal and abnormal carbenes was reduced to 6.7 kJ/mol. In addition, the choice of the anion was found to bias the experimental kinetic product of the reaction to give either normal or abnormal binding. The former was by far the major product with strongly coordinating anions (as Br⁻), while with weakly coordinating anions (as SbF₆⁻), the latter was formed. Theoretical calculations and H-H HOESY NMR experiments indicate that ion pairing occurs at the H-5 and CH₂ protons in the normal carbene and at the H-2 and CH₂ protons in the abnormal carbene. The acidity of the CH-2 moiety of imidazolium salts and, in general, of a CH moiety between two nitrogen atoms is well known and may give rise to selective ion pairing. The reason for the ion-pairing effect on the normal/abnormal product ratio is not yet understood, but it seems to be connected with the influence of the anion on the relative energies of the transition state vs the ground state of the ion pair.

Conclusion: It would appear that diffusion data provide a unique, relatively rapid way of recognizing and evaluating the general problem of ion pairing. Further, the use of PGSE methods, together with Overhauser data (be they from HOESY or NOESY spectra), to qualitatively investigate problems involving ion-paring and hydrogen bonding. The observed anion effect in selected homogeneously catalyzed reactions represents a nice example of this type of application.
1.4 Concluding Remarks

Diffusion and multidimensional NMR methods, in particular NOE-measurements provide an enormous amount of experimental information about chemical structure. By making use of these NMR methods, the following chapter describes the effect of solvent or anion on the ion pairing and cation/anion interactions in catalytically relevant transition organometallic complexes.
1.5 Bibliography

Introduction

Introduction
Chapter 2

PGSE Diffusion NMR
2. Diffusion Measurements on Organometallic Complexes

Overview:

In this chapter, the sections (2.1.1 to 2.1.3) describe the synthesis, solution structure and PGSE NMR diffusion studies of Pd complexes (1-3). These salts are known to be catalytically useful in hydroamination[1, 2] (or) ene type reactions[3], amongst others.

The solvent (e.g., CHCl₃, THF, CD₂Cl₂) dependent ion pairing, salt aggregation, and hydrogen bonding are studied using the diffusion constants (D values) obtained from the PGSE measurements. The effect of the different anions (CF₃SO₃⁻, BF₄⁻) and how they interact with different bridged ligands are briefly elaborated and explained in these sections.

Section 2.1.4 describes the synthesis and structural studies of a modest number of mono cationic Pd(BINAP) complexes (12-16), which are believed to be intermediates in catalytic hydroamination or the Michael reaction. The acetylacetonate and Oxazolidinone ((E)-3-but-2-enoyloxazolidin-2-one) Pd complexes have been prepared as they are (partially) models for complexes containing a pendant olefin (see 12-14) which can be attacked by a nucleophile.
The amount of ion pairing in different solvents (e.g., chloroform or CD$_2$Cl$_2$) was estimated using PGSE diffusion constants. The position of the anion with respect to the cation was investigated in connection with steric effects in catalysis using HOESY measurements. The complete NMR description is presented in this section.

Section 2.1.5 introduces the synthesis and X-ray and NMR structural studies of a imine and chiral amine cyclometallated Pd(II) complexes (20-27). These salts are useful in a variety of literature applications e.g., for chiral recognition4 or in asymmetric synthesis5.

Diffusion Studies

37
The amount of ion pairing and how the nature of a chiral pocket (e.g., (R)- or (S)- BINAP or Chiraphos) changes the cation/anion interaction was examined using both PGSE diffusion and multidimensional NMR experiments.

Section 2.2, introduces a series of Rhodium cationic N-heterocyclic carbene complexes (35 and 36) (in collaboration with Prof. Whittlesey). These carbene complexes have been used as catalysts in a number of organic transformations[6, 7].

The extent of ion pairing and its dependence on the nature of the anion were investigated using PGSE diffusion data and HOESY measurements.

Finally section 2.3, offers a discussion on the known Pt(II) complexes (38-42). These neutral platinum complexes have been used as model complexes to determine how molecular volumes affect the PGSE diffusion constants (D) and hydrodynamic radii (r_H). Further, it is shown that, the metal nucleus ^{195}\text{Pt} can also be used as a diffusion probe (section 2.3.1) to monitor ion paring or aggregation in special cases.
The chapter ends with a set of conclusions, with respect to showing how the ion pairing varies with solvent or anion in these catalytically important transition organometallic complexes. The D value, together with HOESY data offers a unique view on the subject of ion pairing.
2.1 Synthesis and Diffusion Studies on Pd(II)-BINAP complexes.

Introduction

Mono and/or dicationic complexes of palladium are widely thought to be involved in a number of catalytic reactions including allylic alkylation\[^{[8-10]}\], aldol condensations\[^{[11]}\], ene-type Michael additions\[^{[3]}\] and hydroamination\[^{[1, 2, 12]}\], amongst others. Sodeoka and co-workers\[^{[1]}\], and later Hii and co-workers\[^{[13-15]}\], have made extensive use of palladium BINAP and p-tolyl-BINAP dicationic aquo-complexes, \([\text{Pd(H}_2\text{O)}_2(\text{BINAP})]^{2+}\) 1, as catalyst precursors in the enantioselective hydroamination reaction, indicated in eq. 2.1.

\[
\begin{align*}
\text{R}_2\text{C} &= \text{R}^1 + \text{R}^3\text{N}\text{R}^4 \xrightarrow{\text{Pd-Cat}} \text{R}^3\text{N}\text{R}^4
\end{align*}
\]

(2.1)

For the enantioselective Michael reaction using 1,3-diketones as substrates, Sodeoka has generated the mono-cationic palladium t-butyl substituted enolate, A, shown\[^{[1]}\], and found this salt to be a fairly stable and important intermediate.

\[
\begin{align*}
\text{A} & \quad \text{B} \\
\text{Pd} & \quad \text{Pd} \uparrow \\
\text{t-Bu} & \quad \text{BINAP}
\end{align*}
\]

This type of chiral palladium complex is also relevant in the area of catalytic enantioselective fluorination. Li and Hii\[^{[13]}\], in their studies
on Pd(BINAP) catalysed hydroamination reactions, using unsaturated oxazolidinones as reagents, consider the dicationic chelating intermediate, B, shown above, as potentially relevant. Jorgensen and co-workers\[16, 17\] have proposed a related oxazolidinone complex of nickel.

Occasionally, it has been found to be more convenient to use the hydroxo-bridged dicationic palladium salts, [Pd(μ-OH)(BINAP)]$_2^{2+}$, 2. Sometimes the BF$_4^-$ salts are used as precursors, and on other occasions, the triflate, CF$_3$SO$_3^-$, analogs. Important differences, in terms of yields and enantioselectivity, between these anions, have been observed\[15, 18\].

It is now fairly normal to use a number of different anions in cationic palladium chemistry. Occasionally, there are reports suggesting that the anion may play a specific role\[19-24\], e.g., in determining the nature of the product and/or the reaction kinetics\[19\]. Generally speaking, the anion may affect the solubility of the catalyst, accelerate or decelerate reactions and occasionally improve reaction selectivity. Presumably the anion is not always “innocent” and may (a) block or actually take up a coordination position (b) affect the cation via ion pairing, or (c) induce aggregation, i.e., significantly change the cation structure.

In the following sections I discuss a series of Pd BINAP (and p-tolyl-BINAP) complexes (1-4), mono cationic Pd BINAP complexes (12-17) containing oxazolidinone and acetylacetonate anions and cyclometallated mono cationic Pd BINAP complexes (20-26) (and, lesser extent to Chiraphos (27). Finally, using both PGSE and HOESY NMR studies to reveal that how the anions interact.

Diffusion Studies

41
Synthesis of Complexes (1-4)

The Pd-BINAP aqua and hydroxo complexes were synthesized, as indicated in Scheme 2.1, by preparing the dichloride complex, PdCl₂(BINAP or p-tolyl-BINAP), and subsequently treating these neutral compounds with the appropriate silver salts to give the bis-aquo-derivatives. The dicationic aquo-complexes, 1, can be converted to the bridging hydroxo-salts, 2, by reaction with molecular sieves. The mono-anilide bridged species, 3, which are interesting in connection with hydroamination catalysis were prepared by addition of an aniline to the bridged hydroxo-complex. The PF₆⁻ anion is readily hydrolyzed in the presence of the cation to afford the unexpected dicationic salt [Pd(μ-O₂PF₂)(BINAP)]₂(PF₆)₂, 4.

Scheme 2.1: Synthesis of the Palladium Complexes

Tha analogous p-tolyl-BINAP salts are indicated in the text by a "prime", e.g., 2a'.
2.1.1 Pd(II)-BINAP Aqua Complexes

The aquo-complexes, 1, reveal a singlet in their 31P spectra and broad proton resonances at ca δ 3.0 (for the CF$_3$SO$_3^-$) and ca δ 4.1 (for the BF$_4^-$) for the two coordinated water molecules.

Diffusion studies. Table 2.1 show PGSE diffusion data for the salts 1. For the BINAP-cations of the di-aquo-salts, 1, (and the single Biphemp example), in dichloromethane solution, the corresponding r_H values (calculated from Stokes-Einstein eq, discussed in section 1.3.2.3) fall in the range 6.2 Å - 6.9 Å (see Table 2.1). These radii are in good agreement with those estimated from Chem3D calculations (shown in the Table 2.1, in parenthesis). The corresponding radii for the CF$_3$SO$_3^-$ anion, ca 5.8 - 5.9 Å, are much too large for the isolated anion; nevertheless, the anion and cation are not moving at an identical rate. The BF$_4^-$ anion also shows a similar, r_H value$ ^{[25]}$. The r_H values for both the CF$_3$SO$_3^-$ and BF$_4^-$ anions most likely result from a mixture of ion pairing and H-bonding of the anions to the complexed water molecules.

![Chemical Structures](image)

1a, X=OTf; 1b, X=PF$_6^-$; 1c, X=BF$_4^-$ (BINAP)

In THF solution the values for the cationic radii for 1a and 1c are larger and both 7.1 Å, whereas those for the anion are 6.3 Å and 6.8 Å, respectively. Ion pairing is usually more pronounced in THF than in dichloromethane$ ^{[25]}$; however, the larger solvent THF
Table 2.1. Diffusion constants, D, and hydrodynamic radii, r_H, for the Pd aquo-complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CD$_2$Cl$_2$</th>
<th>THF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>r_H</td>
</tr>
<tr>
<td>1a, OTf</td>
<td>8.22</td>
<td>6.5(6.4)</td>
</tr>
<tr>
<td></td>
<td>9.26</td>
<td>5.8</td>
</tr>
<tr>
<td>1a', OTf</td>
<td>7.79</td>
<td>6.9(7.0)</td>
</tr>
<tr>
<td>1b, PF$_6$</td>
<td>6.99</td>
<td>6.9</td>
</tr>
<tr>
<td>1c, BF$_4$</td>
<td>8.33</td>
<td>6.4</td>
</tr>
<tr>
<td>1d, OTf</td>
<td>8.78</td>
<td>6.1</td>
</tr>
</tbody>
</table>

a 400 MHz, 2mM; D values, 10^{-10} m2 s$^{-1}$; r_H values, Å. Numbers in parenthesis are calculated from Chem3D. η (CD$_2$Cl$_2$) = 0.410 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 300 K, η (THF) = 0.456 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 300 K.

will also contribute to the increase in the cation r_H, relative to dichloromethane solutions. In any case, for 1a, the percentage increase for cation and anion on going from dichloromethane to THF is ca 9% (7.1/6.5 = 1.09; 6.3/5.8 = 1.08). Taken together, these data for the three salts in THF solution provide a consistent picture for a mononuclear dication strongly, but not completely, associated with the anions.

1H, 19F HOESY spectra for the CF$_3$SO$_3^-$ salt, 1a, in the two solvents are shown in sections b and c of Fig. 2.1. The broad resonance for the two bound water molecules is clearly visible. In both solvents the strongest contacts from the fluorine of the anion arise from the equatorial P-phenyl aromatic protons. The rather weak contact from the CF$_3$SO$_3^-$ fluorine to the water is somewhat surprising. Interestingly, in the solid-state structure for [Pd(H$_2$O)$_2$(dppe)](CF_3SO_3)$_2$[26] in which the CF$_3$SO$_3^-$ is clearly hydrogen bonded to a complexed water ligand, the F-H distance is ca 5.9 Å. Consequently, despite the absence of a strong Overhauser effect, we conclude that the anion is relatively strongly H-bonded (and therefore one finds relatively large r_H values) but situated
quite close to one specific P-phenyl group, perhaps as indicated in fragment C, thereby explaining the observed relaxation pathway.

C, fragment showing the proximity of the F-atoms to the equatorial P-phenyl.

Fig. 2.1. HOESY spectra for (a) 1c in CD$_2$Cl$_2$, (b) 1a in CD$_2$Cl$_2$, and (c) 1a in THF, all showing selective contacts to the equatorial P-phenyl ring protons. In (a) there is a strong contact to the bound water molecules.

The analogous HOESY spectrum for the BF$_4^-$ salt (Fig. 2.1a) reveals a strong contact to the water molecules, and a medium strength contact to the equatorial P-phenyl aromatic protons. Even though the residence time of the BF$_4^-$ anion is not 100%, based on the diffusion data, H-bonding via one of the F atoms (instead of the oxygen in the CF$_3$SO$_3^-$ anion) brings the anion close enough to the water protons so that this relaxation pathway dominates. In both salts, one finds a selective contact to the equatorial P-phenyl aromatic protons. We conclude that there is not a great deal of
difference between the CF$_3$SO$_3^-$ and BF$_4^-$ anions in these salts, but this would not be obvious from the Overhauser spectroscopy alone.

2.1.2 Pd(II)-BINAP Bridged Hydroxy Complexes

The characterization of the dinuclear cations, 2, was assisted by the recognition of the characteristic proton resonance for the μ-OH group at δ ca. -2.9 $^{[12]}$. Interestingly, all of the BINAP complexes reveal a rather broad aromatic proton resonance between δ 6 and 7. Earlier NMR studies$^{[27-29]}$ have suggested that this signal is associated with restricted rotation of the P-axial phenyl (or p-tolyl) groups.

![Diagram](image)

$2 \times (a) \text{OTf}, (b) \text{PF}_6, (c) \text{BF}_4$

The axial P_A-aryl group (defined in fragment D) experiences a strong steric interaction with the naphthyl moiety associated with P_B (see E). In the solid-state these aromatic moieties are usually "stacked"$^{[27, 29, 30]}$. To confirm the source of the broad line, low
temperature 1H NMR spectra for the bridging hydroxide dinuclear p-tolyl salt, 2a' were measured, and these are shown in Fig. 2.2. The choice of the p-tolyl analogs considerably simplifies the 1H spectra and thus helps with the assignments for the conventional BINAP analogues. The broad signal at ca. 6.8 ppm disappears as the temperature is lowered and eventually splits into two nonequivalent ortho-protons, δ 8.00 and δ 6.72. At the same time two further new meta resonances appear, δ 7.21 and δ 6.25. At 213K, the rotation about the P-C(ipso)axial bond is slow and the new broad resonance at δ ca. 7.3 corresponds to the equivalent ortho-protons of the equatorial P(p-tolyl) group. The integration and the various multiplicities are now in agreement with the proposed restricted rotation.

![Graphical representation of the molecule][1]

Fig. 2.2. Variable temperature 1H NMR study for 2a'. There is slow rotation around the P-C(ipso)$_{axial}$ bond at ca. 213K (CD$_2$Cl$_2$, 500 MHz).

The 31P,1H correlation for 2a', at 213K is given in the lower section of Fig. 2.3 and reveals four sets of cross-peaks: two from the nonequivalent P-axial aryl ortho protons, one from the equivalent P-equatorial aryl ortho-protons and one set at δ 7.33 for the naphthyl group.

Diffusion Studies

47
proton in ortho position to the P-atom. The upper trace in Fig. 2.3 shows the same correlation at ambient temperature. The broad resonance at δ ca 6.8 is visible; however only the strong cross-peaks from equivalent P-equatorial aryl ortho-protons and those from the ortho naphthyl proton are observed. Fig. 2.4 shows a slice of the 1H,1H NOESY for 2a'. The proton from the bridged hydroxide, δ ca -2.9, shows a strong cross-peak only with the equivalent P-equatorial aryl ortho-protons, at δ 7.3 (thereby helping to identify these protons), plus a very strong exchange cross-peak with ca. 1 equivalent of water, ca δ 1.7. Table 2.2 shows the detailed 1H assignments for this p-tolyl salt, 2a'.

Crystals of the dinuclear μ-OH salt, 2a, suitable for diffraction studies were obtained, and a view of this dication is given in Fig. 2.5. The structure of the analogous p-tolyl salt has been reported by Sodeoka[2]. The various metric parameters are rather standard.
The four-membered Pd-O-Pd-O ring takes on a distorted butterfly shape, that is, the ring is not flat. The dihedral angle between the two tetrahedrally distorted square planar Pd coordination planes is 18.6(1)°.

Table 2.2. 1H NMR data for complex 2a' (CD$_2$Cl$_2$, 500 MHz, 213K)

<table>
<thead>
<tr>
<th>Position</th>
<th>δ 1H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7.34</td>
</tr>
<tr>
<td>4</td>
<td>7.71</td>
</tr>
<tr>
<td>5</td>
<td>6.49</td>
</tr>
<tr>
<td>6</td>
<td>7.11</td>
</tr>
<tr>
<td>7</td>
<td>7.48</td>
</tr>
<tr>
<td>8</td>
<td>7.67</td>
</tr>
<tr>
<td>12</td>
<td>6.72</td>
</tr>
<tr>
<td>13</td>
<td>6.25</td>
</tr>
<tr>
<td>12'</td>
<td>8.00</td>
</tr>
<tr>
<td>13'</td>
<td>7.20</td>
</tr>
<tr>
<td>15</td>
<td>2.11</td>
</tr>
<tr>
<td>17</td>
<td>7.26</td>
</tr>
<tr>
<td>18</td>
<td>6.90</td>
</tr>
<tr>
<td>20</td>
<td>2.03</td>
</tr>
<tr>
<td>OH</td>
<td>-2.76</td>
</tr>
</tbody>
</table>

Fig. 2.5. An ORTEP view of the cation of [Pd(μ-OH)(BINAP)]$_2$ (OTf)$_2$ 2a with thermal ellipsoids drawn at the 50% probability level.

Diffusion Studies: For the bridging hydroxide salts, 2a-2c, in dichloromethane solution, the smaller D-values and thus larger r_H values, relative to 1a-1c (see Table 2.3). The ratio of D-values (e.g., 8.22/6.63 = 1.24) is in excellent agreement with ca. double the volume of 2a relative to 1a$^{[31]}$. The r_H values of ca 8.0 - 8.4 Å are in good agreement with estimations based on X-ray data. The
few p-tolyl-BINAP salts, 2a' and 2c' are, as expected, slightly larger due to the added methyl groups. The \(r_H \) values for the three anions, CF\(_3\)SO\(_3^{-}\), PF\(_6^{-}\) and BF\(_4^{-}\), are rather similar, and, relative to the \(r_H \) values for the cations, modest in size. The \(r_H \) value for the CF\(_3\)SO\(_3^{-}\) is now much smaller than in 1a. The cation/anion ratio for 2a is ca 1.42 whereas this ratio for 1a is 1.12. Assuming that the anions will prefer to avoid the (formally) negatively charged OH group, attribute these modest anion \(r_H \) values to 45-55% ion pairing, that is what one normally finds in dichloromethane solution for a number of different transition metal salts\(^{25}\). For 2a in THF solution the \(r_H \) values suggest a much larger percentage of ion pairing. There seems to be no important differentiation between these anions in these salts.

Table 2.3. Diffusion constants, D, and hydrodynamic radii, \(r_H \), for the bridged hydroxy-palladium complexes, 2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CD(_2)Cl(_2)</th>
<th>THF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{1}H) Cation (H) BINAP</td>
<td>6.63</td>
<td>6.34</td>
</tr>
<tr>
<td>Anion ((^{19}F))</td>
<td>9.40</td>
<td>9.43</td>
</tr>
<tr>
<td>(^{1}H) Cation (H) p-tol-BINAP</td>
<td>6.34</td>
<td>6.67</td>
</tr>
<tr>
<td>Anion ((^{19}F))</td>
<td>9.40</td>
<td>9.93</td>
</tr>
<tr>
<td>(^{1}H) Cation (H) BINAP</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td>Anion ((^{19}F))</td>
<td>9.43</td>
<td>9.76</td>
</tr>
<tr>
<td>(^{1}H) Cation (H) p-tol-BINAP</td>
<td>6.39</td>
<td>6.39</td>
</tr>
<tr>
<td>Anion ((^{19}F))</td>
<td>9.66</td>
<td>9.86</td>
</tr>
</tbody>
</table>

\(^{1}H, ^{19}F \) HOESY spectra for the p-tol BINAP CF\(_3\)SO\(_3^{-}\) and BF\(_4^{-}\) salts 2a' and 2c' are shown in Fig. 2.6. The strongest contacts stem from the aromatic region and these five to six cross-peaks can be assigned to protons from both the pseudoaxial and pseudo-equatorial P-aryl groups. Indeed, there are also weak cross-peaks...
Both p-tolyl methyl groups. As expected there is little or no contact to the low-frequency OH proton.

In collaboration with Prof. L.F. Veiros, DFT calculations were performed in order to assist in the interpretation of the HOESY results. The geometries of the two mononuclear complexes, the model cation $[\text{Pd}((\text{H}_2\text{O}))_2(\text{Ph}_2\text{CH}_2\text{CH}_2\text{Ph}_2)]^{2+}$, and $[\text{Pd}((\text{H}_2\text{O}))_2(\text{BINAP})]^{2+}$ (1), plus one dinuclear species, $[\text{Pd}(\mu-\text{OH})(\text{BINAP})]^{2+}$ (2), were fully optimized. The optimized structure of 2 is represented in Fig. 2.7. In all cases, the coordination environment around each metal atom is square planar, as expected for Pd(II) complexes. The calculated Pd–P distances (2.29 and 2.30 Å for dppe, and 2.31–2.34 Å for BINAP) are close to the experimental values, as are those for Pd–O(H$_2$O) (2.22–2.25 Å) and Pd–O(OH) (2.09–2.10 Å) separations. Interestingly, the structure optimized for the dinuclear complex 2 confirms the proposed stacking interaction shown in E.

The charge distribution on the optimized complexes was evaluated by means of a Natural Population Analysis (NPA)
and the atomic charges calculated for the metal and the coordinating atoms were for (a) the dppe complex; O: -0.94/-0.95;

\[\text{Fig. 2.7. Optimized geometry (B3LYP) for } [\text{Pd}(\mu-\text{OH})(\text{BINAP})]_2^{2+}. \text{ The Pd, P and O atoms are highlighted. (Gas phase analysis)} \]

(b) 8; Pd: +0.37; P: +1.30; O: -0.95 and (c) 9: Pd: +0.46/+0.47; P: +1.21 to +1.23; O: -1.00. In all three cases, the P-atoms carry the largest amount of positive charge (1.0 - 1.2) and the palladium atoms possess considerably less positive charge, (0.4-0.5). Although these results should not be taken as quantitative, they indicate that the anions are expected to seek out the P-atoms, preferentially. The calculations performed do not account for the H-bonding associated with anions in the aquo-complexes\[^{37, 38}\], but the NPA charges obtained allow a rationale for the results obtained from the dinuclear dications, 1-4.

Given the DFT calculations, one can suggest that the anions approach the positive phosphorus and metal centers in such a way as to see both rings, perhaps as suggested by fragment F.

\[\text{F fragment of the dinuclear complex} \]
2.1.3 Pd(II)-BINAP Bridged Anilide Complexes

The NMR characterization for the bridging hydroxy-anilide dinuclear palladium complexes, 3, was not trivial. Fig. 2.8 (down) shows a typical 31P NMR spectrum along with a simulation for this ABCD spin system.

$$\text{Ph}_2\text{N}^+\text{Pd}^+\text{Ph}_2\text{P}^\text{31P}\text{Ph}_2\text{H}^\text{31P}\text{Ph}_2\text{P}^\text{31P}\text{Ph}_2\text{N}^+\text{Pd}^+\text{Ph}_2\text{P}$$

$$\text{3, } Y = (\text{a) CI, (b) Me, (c) Ome)}$$

It is clear that the two 31P-spins in trans positions to the μ-OH group are chemically different than the two 31P-spins in trans positions to the μ-NH(p-RC$_6$H$_4$) moiety. The non-equivalence within for example, the two 31P-spins in trans positions to the μ-OH group, arises due to the position of the bridging anilide ring with respect to the two axial (or equatorial) rings of the two PPh$_2$ groups. The solid-state structure for 3b, shown in Fig. 2.9, confirms that the
anilide ring is proximate to one of these two axial rings, but remote from the second ring, thereby making all four 31P spins chemically non-equivalent (see G).

In the solid-state structure of the di-cation, $[\text{Pd}_2(\mu-OH)(\mu-\{\text{NH}(p-Tol)\})(\text{BINAP})_2](\text{CF}_3\text{SO}_3)_2$, 3b, the local coordination geometry about each Pd atom is distorted square planar. The four-membered ring made up by the two Pd atoms and the bridging N and O atoms is not planar; however, the four Pd-P bond lengths, Pd1–P1 223.5(2) pm, Pd1–P2 226.2(1) pm, Pd2–P3, 222.9(1) pm and Pd2–P4 226.9(1) pm, are not very different and relatively standard. Further, the Pd1–O1, 204.9(4) pm, and Pd1–N1, 211.9(4) pm bond lengths are as expected. The two P–Pd–P angles, P1–Pd1–P2 92.32(5)°, and P3–Pd2–P4 90.56(5)° are typical of Pd–BINAP complexes.

Fig. 2.9. Structure of the di-cation $[\text{Pd}_2(\mu-OH)(\mu-\{\text{NH}(p-Tol)\})(\text{BINAP})_2]$ of 3b. Thermal ellipsoids are drawn at 30% probability; OTf anions and solvent molecules have been omitted for clarity; For the BINAP-P phenyl moieties only the ipso-carbon atom is shown.

The bridging OH protons appear at slightly lower frequency, ca δ -3.7 to -4.0. Since the NH proton of the anilide does not exchange very rapidly, this signal could be used to detect the nitrogen-15
chemical shift, in 3c, via an HMQC spectrum (see Fig. 2.10). The 15N chemical shift difference between the uncomplexed aniline and the coordinated [ArNH]$^-$ is 25.1 ppm.

Fig. 2.10. 15N, 1H HMQC spectra for 3c in CD$_2$Cl$_2$ (500 MHz, 213 K, δ^{15}N = 52.5 for the ligand $\text{p-MeO-C}_6\text{H}_4\text{NH}_2$).

Diffusion Studies: Diffusion data for the CF$_3$SO$_3^-$ anions of the bridging anilide salts, 3a-3c, in both dichloromethane and THF, are given in Table 2.4. In dichloromethane solution, the D and r_H values are in good agreement with what one would expect based on the X-ray data for 3b. The slight increase in size, relative to for example, 2a, is likely related to the added anilide fragment. The r_H values for the CF$_3$SO$_3^-$, ca 5.6-5.7 Å, are similar to those found for 2a. Changing the solvent to THF again results in an increase in the size of the cation due to the change in the ion pairing.

Table 2.4. Diffusion constantsa, D, and hydrodynamic radii, r_H, for the palladium bridged anilide and PO$_2$F$_2$ complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CD$_2$Cl$_2$</th>
<th>THF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>r_H</td>
</tr>
<tr>
<td>3a</td>
<td>Cation(1H) BINAP</td>
<td>6.46</td>
</tr>
<tr>
<td></td>
<td>(Cl) Anion(19F)</td>
<td>9.49</td>
</tr>
<tr>
<td>3b</td>
<td>Cation(1H) BINAP</td>
<td>6.51</td>
</tr>
<tr>
<td></td>
<td>(Me) Anion(19F)</td>
<td>9.56</td>
</tr>
<tr>
<td>3c</td>
<td>Cation(1H) BINAP</td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td>(OMe) Anion(19F)</td>
<td>9.32</td>
</tr>
<tr>
<td>4</td>
<td>Cation(1H) BINAP</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td>Anion(19F)</td>
<td>9.81</td>
</tr>
</tbody>
</table>

a 400 MHz, 2mM; D values, $10^{-10} \text{ m}^2 \text{ s}^{-1}$; r_H values, Å. $\eta(\text{CH}_2\text{Cl}_2) = 0.410 \times 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1}$ at 300 K, $\eta(\text{THF}) = 0.456 \times 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1}$ at 300 K. b From the X-ray data.
The 1H,19F HOESY spectra for 3c (Fig. 2.11) in both solvents reveal five to six strong contacts in the aromatic region; however due to the low symmetry of this complex, there is a great deal of overlap and these aromatic protons cannot be readily assigned.

Dinuclear complex 4, is recognized via the observed multiplicities for the PF$_2$ moiety in the 31P and 19F spectra. This type of species has been reported on several occasions[43-46] and it is useful to note that it does not readily form in tetrahydrofuran (THF), but rather preferentially in dichloromethane solution. Presumably, occasional weak palladium complexation (and/or H-bonding) of the PF$_6$ ion will occur in dichloromethane solution, thereby facilitating the hydrolysis, whereas in THF, a solvent which is much stronger ligand relative to dichloromethane, this process is suppressed.
Diffusion studies. Table 2.4 also shows diffusion data for the dinuclear salt [Pd(μ-O₂PF₂)(BINAP)]₂(PF₆)₂, 4, and the D and rH values are consistent with the related dinuclear species reported in Tables 2.3 and 2.4.

Yellow crystals of the complex [Pd(μ-O₂PF₂)(BINAP)]₂(PF₆)₂, 4, were obtained from dichloromethane / diethyl ether solution at 4° c. Surprisingly, an X-ray diffraction study reveals the product to be neutral [Pd(O₂PF₂)₂(BINAP)], 5 and not to be the more common bridged structure 4. It is believed that the formation of 5 is due to partial hydrolysis of the PF₆⁻ anion. The solid state structure of the complex 5, shown below in Fig. 2.12.

![Fig. 2.12. Structure of the neutral [Pd(O₂PF₂)₂(BINAP)], 5.](image)

Diffusion Studies
57
2.1.4 Pd (II)-BINAP-Mono Cationic Complexes

Synthesis of Complexes (12-17):
The mono-cationic Pd(II) BINAP complexes, 12 to 16, are prepared by reacting complex 2a-b with the unsaturated N-imides 6, 7 and 8, or the 1,3-diketones 9 and 10 (see Scheme 2.2). The crotonyl oxazolidinone [(E)-3-but-2-enoyloxazolidin-2-one], 11, coordinates to the Pd(BINAP) fragment via chelation of the two oxygen atoms to form a new complex 17 (see Eq. 2.2).

Scheme 2.2
Al | CH₂Cl₂

The reaction of 2a-b (anion = a, CF₃SO₃⁻, b, BF₄⁻) with ligands (6-8) produces one equivalent of water via the deprotonation of the weakly acidic NH proton and the generation of Pd(II) salts 12-14. The new products are readily identified via NMR spectroscopy.

The ³¹P spectra reveals non-equivalent phosphorus nuclei e.g., for the CF₃SO₃⁻ complex, ¹³a, δ 35.5, and δ 35.1 with

\[^{3}J(PP) = 33.5 \text{ Hz} \]

In the \(^{1}H\) NMR spectrum, one finds new resonances for the methyl and olefinic protons. Specifically, the CH₃, is found at δ 1.6, and the two olefinic resonances, CH₂CH=CH, as a tightly coupled spin system at δ 5.7-5.9. The corresponding ligand positions for 7 are δ 2.0, for the methyl signal, and δ 7.1-7.2 for the CH₂CH=CH moiety. We believe that several of these low frequency chemical shifts in ¹³a arise from a mixture of anisotropic (P-phenyl on the BINAP proximate to the olefin) and chelation effects.

Continuing, in the \(^{13}C\{^{1}H\}\) NMR spectrum of ¹³a, the two olefinic carbons, C2 and C3, are found at δ 145.9 (CH₂CH=CH), and δ 129.6 (CH₃CH=CH). These values do not correspond to a coordinated olefin as the coordination chemical shifts, Δδ (= δ for ¹³a - δ for 7), are only -0.7 ppm and 4.9 ppm, respectively. It is useful to note that the deprotonation and complexation of 7 results in a small low
frequency (-0.7 ppm) change in the β-olefinic carbon chemical shift. This is not what one expects if this position is to be more electrophilic and thus more readily attacked by an amine nucleophile. A 2D 13C,1H long-range correlation reveals the two amide carbonyl carbons at δ 172.8 and δ 173.2. These chemical shift values are consistent with chelation of the anion of 7 to the metal through the oxygen atoms. Similar 31P{1H}, 1H and 13C{1H} NMR data were found in complexes 12 and 14.

In a similar fashion, addition of ligands 9 or 10 to a dichloromethane solution of the bridged complexes 2a-b (anion = a, CF$_3$SO$_3^-$, b, BF$_4^-$) results in the abstraction of the weakly acidic CH proton and the generation of Pd(II) enolate complexes 15 and 16, respectively. For complex 16a, in dichloromethane solution at room temperature, the 31P{1H} NMR spectrum shows an AX doublet, 2J(PP) = 38 Hz, with the resonances appearing at δ 30.3 and δ 34.8. In the 1H NMR spectrum the absence of doublet multiplicity associated with the central methyl group is consistent with the deprotonated and complexed ligand. Further, the OCH$_2$ moiety now appears as two diastereotopic CH$_2$ protons, δ 2.65 and δ 2.90, shifted to low frequency due to the proximate P-phenyl aromatic ring. In the 13C{1H} NMR spectrum, the central carbon, between the two carbonyl carbons, appears at δ 90.5, $\Delta \delta$, 29 ppm, and is no longer attached to a proton. The 2D 13C,1H long-range correlation reveals the two carbonyl carbons (COMe, COOC$_2$H$_5$) at δ 184.2 and δ 169.8, respectively. This same 13C correlation allows one to assign the two, singlet, 1H methyl groups of 16a in that the signal at δ 1.70 reveals cross-peaks to both 13C carbonyl resonances, via the two different 3J(13C,1H) pathways.
NMR characterization of dicationic complex, 17. The addition of ligand 11 to the precursor complex \([\text{Pd}(\mu-\text{OH})(\text{BINAP})_2](\text{CF}_3\text{SO}_3)_2, 2a\) in dichloromethane does not yield complex 17. However, reaction of ligand 11 with the aquo-complex, \([\text{Pd(H}_2\text{O})_2(\text{BINAP})_2](\text{CF}_3\text{SO}_3)_2, 1a\), in dichloromethane solution, affords a mixture which, via a low temperature measurement, can be shown to contain ca 16% of 17 plus unreacted starting material (see Fig. 2.13).

Both the \(^1\text{H}\) and \(^{31}\text{P}\{^1\text{H}\}\) spectra at room temperature gave broad resonances suggesting dynamic behaviour. The \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum, which revealed a single broad peak at ca. \(\delta 36.2\) at room temperature, sharpens on cooling to 213 K into a sharp singlet along with an AX spin system containing signals at ca. \(\delta 35.5\) and ca. \(\delta 37.5, 2J(PP) = 9.5\) Hz.

Fig. 2.13. The variable temperature \(^{31}\text{P}\) (left) and \(^1\text{H}\) (right) NMR spectra showing complex 17. The AX spin system in \(^{31}\text{P}\{^1\text{H}\}\) spectra is visible (CD$_2$Cl$_2$, 20 mM, 500 MHz).

Cooling of the solution to 203 K changes and resolves the broad \(^1\text{H}\) NMR spectrum for this solution and reveals new proton resonances.
for the minor component, 17 (see Fig. 2.13) and these chemical shift data are given in Table 2.5. It is observed that one of the olefinic resonances of 17 overlaps a water signal. The conventional 13C{1H} NMR spectrum and the 2D 13C,1H long-range correlation both reveal the two CH olefin carbons, C2 and C3, at δ 157.3 and δ 119.5, respectively (Table 2.5). These values, once again, are not consistent with olefin complexation. The C2 and C3 coordination chemical shifts, $\Delta\delta$ ($= \delta$ for 17 - δ for 11), are + 9.1 ppm and -1.6 ppm, respectively, that is, complexation of 11 results in a very significant high frequency (+ 9.1 ppm) change in the β-olefinic carbon chemical shift. These 13C values are not consistent with direct olefin coordination but the relatively large change for the β-olefinic carbon is what one expects if this carbon atom is to become more electrophilic through complexation and thus more readily attacked by a nucleophile. This is in contrast to what one finds for the 13C data for 13, noted above.

Table 2.5. 1H and 13C chemical shift data* for complex 17 and oxazolidinone, 11.

<table>
<thead>
<tr>
<th>Position</th>
<th>δ (1H)</th>
<th>δ (13C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.95</td>
<td>19.5</td>
</tr>
<tr>
<td>2</td>
<td>7.1-7.2</td>
<td>148.2</td>
</tr>
<tr>
<td>3</td>
<td>7.1-7.2</td>
<td>121.1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>165.8</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>154.7</td>
</tr>
<tr>
<td>6</td>
<td>4.01</td>
<td>63.0</td>
</tr>
<tr>
<td>7</td>
<td>4.40</td>
<td>43.5</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.56</td>
<td>19.0</td>
</tr>
<tr>
<td>2</td>
<td>5.01</td>
<td>157.3</td>
</tr>
<tr>
<td>3</td>
<td>5.86</td>
<td>119.5</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>165.4</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>158.8</td>
</tr>
<tr>
<td>6</td>
<td>4.50</td>
<td>66.2</td>
</tr>
<tr>
<td>7</td>
<td>4.28</td>
<td>45.7</td>
</tr>
</tbody>
</table>

* δ 31P = 37.4, δ = 35.6, $^2J^{(31P,31P)} = 9.5$ Hz. 400 MHz, 203K CD$_2$Cl$_2$.

Chapter 2
62
From a phase sensitive $^1\text{H},^1\text{H}$ NOESY spectrum at 203 K, one finds exchange cross peaks arising from the free oxazolidinone, 11 and the chelated ligand in complex 17 (see Fig. 2.14).

![Fig. 2.14. Section of $^1\text{H},^1\text{H}$ NOESY spectra of complex 17, showing exchange between free ligand 11 and chelated ligand in complex 17 (CD$_2$Cl$_2$ 500 MHz, 203 K).]

The ease with which model salt 17 exchanges the complexed chelating ligand is clearly important for the mechanism of a catalytic reaction involving this type of substrate, since the addition product, once formed, must dissociate from the palladium to make room for the new substrate. While 17 represents only a minor component, it is obviously stable enough to be characterized, and is clearly relevant to the palladium catalysed hydroamination chemistry noted in the introduction.

X-ray data. The solid-state structures of two separate forms of the BF$_4^-$ complex, 15b and 15b•CH$_2$Cl$_2$ were determined by X-ray diffraction methods. Initially it was thought that two different materials had re-crystallized; however as can been from (Fig. 2.15a), one form of the salt 15b can be thought of as a tight ion pair whereas the second form (Fig. 2.15b) contains a dichloromethane solvent molecule, packed in approximately a fifth coordination position together with a relatively remote BF$_4^-$ anion. Together these structures represent an unprecedented example of a salt where both the structures of the solvent stabilized cation and the tight ion-paired salt can be characterized. This is, admittedly, a
fortunate coincidence, in that the solution diffusion studies reveal only an average D-value for the two ions; nevertheless, these solid-state data help us to envision structural aspects of these two extreme forms.

![Fig. 2.15. (a) Views of the ion-paired (15b) and (b) the solvent separated (15b.CH₂Cl₂) salts.](image)

The two-palladium cations are not very different and a view of them are shown in Fig. 2.16. The local coordination geometry about the Pd-atoms is distorted square planar and the metric values for the two cations do not differ significantly (see Table 2.6). The various Pd-donor atoms separations are normal[39] as are the local coordination angles about the palladium atoms. However, we note that, to accommodate the square planar structure, the acetyl acetonate angles, O(1)-C(2L)-C(3L) = 126.1(4)°, and O(2)-C(4L)-C(3L) = 127.1(4)°, in both cations, are larger than the 120° values expected for sp² hybridization. As expected, the chiral pocket for the coordinated BINAP ligand reveals pseudo-axial and pseudo-equatorial P-phenyl groups[47-50].

There are two further modest structural differences between these two compounds: (1) The dihedral angle between the complexed
Fig. 2.16. An ORTEP view of the (left) cation of 15b and (right) 15b.CH₂Cl₂.

The coordinated acac is bent away from the closely positioned BF₄⁻ anion. (2) The Pd-P distances are slightly longer (>5σ) for the CH₂Cl₂ solvated salt than for the tight ion pair.

These do not represent major structural changes; however, they do indicate that the cation is responding to the two different environments.

Table 2.6. Bond lengths (Å) and bond angles (°) for complex 15b.

<table>
<thead>
<tr>
<th>Bond</th>
<th>15b.CH₂Cl₂</th>
<th>15b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-O(2)</td>
<td>2.026(3)</td>
<td>2.025(3)</td>
</tr>
<tr>
<td>Pd-P(1)</td>
<td>2.259(1)</td>
<td>2.264(1)</td>
</tr>
<tr>
<td>P(1)-C(111)</td>
<td>1.811(4)</td>
<td>1.825(4)</td>
</tr>
<tr>
<td>P(1)-C(6)</td>
<td>1.838(4)</td>
<td>1.818(3)</td>
</tr>
<tr>
<td>P(2)-C(6')</td>
<td>1.825(4)</td>
<td>1.822(4)</td>
</tr>
<tr>
<td>O(1)-C(2L)</td>
<td>1.292(5)</td>
<td>1.281(5)</td>
</tr>
<tr>
<td>O(2)-Pd-O(1)</td>
<td>89.0(1)</td>
<td>89.23(9)</td>
</tr>
<tr>
<td>O(1)-Pd-P(1)</td>
<td>174.2(1)</td>
<td>177.3(1)</td>
</tr>
<tr>
<td>O(1)-Pd-P(2)</td>
<td>90.42(9)</td>
<td>91.57(3)</td>
</tr>
<tr>
<td>B-F (av.)</td>
<td>1.4(3)</td>
<td>107(1)</td>
</tr>
</tbody>
</table>

Diffusion Studies
65
Diffusion studies. PGSE diffusion data for the Pd(BINAP) CF₃SO₃⁻ and BF₄⁻ salts, 12-16 in dichloromethane solution are given in Table 2.7. The r_H values for cations fall in the range of 6.2 Å - 7.2 Å (Table 2.7) and are in reasonable agreement with our earlier data on Pd BINAP complexes[51]. For 15b, the r_H value of 6.2 Å is in excellent agreement with the r_{x-ray} value of 6.3 Å found for the ion paired structure, and only slightly smaller than the r_{x-ray} value of 6.5 Å found for the dichloromethane solvated species. The corresponding radii for the CF₃SO₃⁻ anion, 4.0 Å - 4.5 Å, are somewhat larger than the values estimated for the solvated anion in methanol solution (ca 3 Å [50, 52]). Clearly, the anion and cation are not moving at an identical rate. The BF₄⁻ anion shows r_H values in the range 3.8 Å - 3.9 Å (Table 2.7), which are also bit larger than for the isolated anion in methanol solution[50, 52]. As in previous studies we assign these results to partial ion pairing in dichloromethane solution.

In THF solution the r_H values for the cations of the CF₃SO₃⁻ salts, 12a to 16a, are larger and fall in the range of 7.0 Å - 7.8 Å (Table 2.8), whereas those for the anion now span the range are 5.0 Å - 5.3 Å. As expected, these increased radii in THF solution indicates
Table 2.7. Diffusion constants and radii for complexes 12 to 16 in CD$_2$Cl$_2$.

<table>
<thead>
<tr>
<th>comp</th>
<th>Cation1H</th>
<th>Anion19F</th>
<th>Cation1H</th>
<th>Anion19F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>r_H (r_H)</td>
<td>D</td>
<td>r_H (r_H)</td>
</tr>
<tr>
<td>12</td>
<td>6.11</td>
<td>6.5 (7.1)</td>
<td>13.13</td>
<td>4.0 (5.0)</td>
</tr>
<tr>
<td>13</td>
<td>6.02</td>
<td>6.6 (7.1)</td>
<td>11.86</td>
<td>4.5 (5.2)</td>
</tr>
<tr>
<td>14</td>
<td>7.35</td>
<td>7.2 (7.7)</td>
<td>13.39</td>
<td>4.0 (4.9)</td>
</tr>
<tr>
<td>15</td>
<td>8.27</td>
<td>6.4 (7.0)</td>
<td>12.40</td>
<td>4.3 (5.1)</td>
</tr>
<tr>
<td>16</td>
<td>8.11</td>
<td>6.5 (7.1)</td>
<td>11.70</td>
<td>4.5 (5.3)</td>
</tr>
</tbody>
</table>

400 MHz, 2mM; D values, 10^{-10} m2 s$^{-1}$; r_H values, Å; "c" corrected r_H values are in brackets. Estimated radii for the solvents $r_{vdw} = 2.49$ (CD$_2$Cl$_2$), η(CD$_2$Cl$_2$) = 0.414 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 299 K.

that the ion pairing is more pronounced in THF than dichloromethane solution. In any case, the r_H values for the cations and anions in THF solution suggest that these mono cations are more strongly, but not completely, associated with the anions.

Table 2.8. Diffusion constants and radii for 12a-16a in THF-d$_8$, CDCI$_3$ and, for 15, in CD$_3$CN.

<table>
<thead>
<tr>
<th>comp</th>
<th>Cation1H</th>
<th>Anion19F</th>
<th>Cation1H</th>
<th>Anion19F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>r_H (r_H)</td>
<td>D</td>
<td>r_H (r_H)</td>
</tr>
<tr>
<td>12</td>
<td>6.43</td>
<td>7.4 (7.9)</td>
<td>9.25</td>
<td>5.1 (6.0)</td>
</tr>
<tr>
<td>13</td>
<td>6.28</td>
<td>7.6 (8.1)</td>
<td>9.30</td>
<td>5.1 (6.0)</td>
</tr>
<tr>
<td>14</td>
<td>6.06</td>
<td>7.8 (8.4)</td>
<td>8.93</td>
<td>5.3 (6.1)</td>
</tr>
<tr>
<td>15</td>
<td>6.78</td>
<td>7.0 (7.6)</td>
<td>9.24</td>
<td>5.1 (6.0)</td>
</tr>
<tr>
<td>16</td>
<td>6.55</td>
<td>7.3 (7.8)</td>
<td>9.43</td>
<td>5.0 (5.9)</td>
</tr>
</tbody>
</table>

400 MHz, 2mM; D values, 10^{-10} m2 s$^{-1}$; r_H values, Å; "c" corrected r_H values, are in brackets. Estimated radii for the solvents $r_{vdw} = 2.68$ (THF), $r_{vdw} = 2.60$ (CDCI$_3$), η(CHCl$_3$) = 0.534 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 299 K, η(THF) = 0.461 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 299 K, η(CH$_3$CN) = 0.345 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 299 K.

Continuing with the CF$_3$SO$_3$ salts, using CDCI$_3$ as solvent, the r_H values for cations are even larger and fall in the range of 7.2 Å -
7.8 Å. The corresponding radii for the CF₃SO₃⁻ anion, ca. 6.3 Å - 6.9 Å (Table 2.8), are now ca 2 Å larger than in dichloromethane. These cation and anion rₐ values suggest that the change of solvent from dichloromethane to THF and then to CDC1₃ has resulted in an increasingly tight ion pair. To contrast the CDC₁₃, data we have measured the diffusion for complex 15a in CD₃CN, a much more polar solvent. As expected, the rₐ value for CF₃SO₃⁻ anion, at 2.7 Å, approaches the value of the solvated anion.

![Graph](image)

Fig. 2.17. Graph of diffusion constant (D) of CF₃SO₃ anion vs. dielectric constant (ε) of solvent in complex 15a.

A plot of the D-value for the CF₃SO₃⁻ anion verses with dielectric constant of the solvent at room temperature (CHCl₃ (4.8) < THF (7.6) < CH₂Cl₂ (8.9) < CH₃CN (37.5)) is not linear. However, the graph (see Fig. 2.17) clearly shows that the diffusion constant of the anion increases (faster motions, less ion pairing) with an increase in dielectric constant of the solvent.

¹H,¹⁹F-HOESY NMR experiments. To further explore the ion paring, and to place the cation in three dimensional space, relative to the anion, ¹H,¹⁹F-HOESY spectra for 12a-16a in chloroform solution were measured and these are shown in Fig. 2.18.
Fig. 2.18. 1H, 19F-HOESY spectra for the complexes (left to right) 12a to 16a (CF$_3$SO$_3^-$ anion) in CDCl$_3$, all showing selective contacts primarily to the P-phenyl ring protons and not to the chelated anionic ligand. In complex 15, one finds a weak contact (shown by arrow) to the methyl group (six protons). The empty circles indicate the absence of an NOE cross-peak (400 MHz, 298 K).

In all of these spectra the strongest cross-peaks arise due to the fluorine spins of the CF$_3$SO$_3^-$ anion interacting with P-phenyl (probably ortho) aromatic protons of the complexed BINAP. There are almost no contacts to either the chelating N-imide or the acetylacetonate. (There is a weak contact to the strongest methyl signal in 15). The P-phenyl ortho aromatic protons of the complexed BINAP can be partially assigned via a 31P,1H COSY correlation.

Consequently, it is believed that the anion is (a) approaching the positive metal and phosphorus centers via a pathway which brings it closest to the P-phenyl groups, and (b) avoiding the region of the negatively charged chelating ligands. The cartoon below offers two possible pathways of approach. It is not necessary that the anion (indicated as ball) approach from a "vertical" position (dotted arrow) as this is not sterically favoured.
Conclusions: The various cations do not all behave identically towards the anions in this study. The PF$_6^-$ anion is readily hydrolyzed by the cation of 1, whereas the anions CF$_3$SO$_3^-$ and BF$_4^-$ hydrogen-bond to the water ligands and are relatively stable. There is not much H-bonding of the anions in the dinuclear µ-OH salts 2, and the anion selects an approach path towards the P atoms that brings it between the two P-aryl moieties. The bridged dinuclear salts, 3, form readily from 2 by addition of an aniline, and reveal diffusion characteristics which are similar to 2. Where measurable, the solvent THF promotes more ion pairing than does dichloromethane.

The Pd(BINAP) dication, 17, postulated by Hii and co-workers, in connection with the enantioselective Pd-catalysed hydroamination reaction, clearly exists in solution and can be characterized at low temperature. It is not the major component of the mixture; however, its dynamic nature is consistent with the ease with which a possible product could be eliminated from the palladium moiety to allow the next substrate molecule to complex.

The mono cationic Pd-complexes, 12-16, might be generated in a catalytic solution containing a labile Pd(II)(BINAP) moiety, a diketone such as 9 and a base. These conditions are fulfilled in a number of literature reports. However, their relative stability, and
the 13C data for the olefinic carbons, suggest that these may not be important in the palladium catalyzed reactions, in agreement with a suggestion by Sodeoka\cite{1}. However, a related Ru-enolate has recently been suggested as an active intermediate in an asymmetric Michael addition reaction\cite{54}.

As expected, the ion pairing in 12-16 is strongly solvent dependent; but, even in chloroform solution, where one finds the largest amount of ion pairing, there is no reason to believe that the ion pair would hinder attack of e.g., of a nucleophile on the double bond of the complexed enolate, since the counter-anion prefers to remain remote from the coordinated chelated anion.

Together, the structures of the two forms of the acetyl acetonate BF$_4^-$ complex, 15b, provide a rare structural picture of a tight ion pair vs a solvent separated analog. Moving the anion closer to the metal affects the cation structure.

2.1.5 Pd (II)-BINAP-Cyclometallated Complexes

N,C-cyclopalladated compounds of various types are known for more than thirty years\cite{55-58}, can be modified to P,C-analogs\cite{59, 60}, and have been used in a variety of applications, e.g., as valuable intermediates in synthetic organic reactions, for chiral recognition\cite{49}, as a template\cite{61} or in asymmetric synthesis\cite{5}.

Despite the interest in these complexes, little is known concerning (a) electronic effects arising from Schiff base ligands on the ion paring (b) the nature and the position of the anion in cyclometallated Pd complexes having bidentate phosphine ligand.

Diffusion Studies
71
Synthesis:

The new cyclometallated Pd complexes (20-27) were prepared by reaction of the appropriate bidentate phosphine with the known cyclometallated chloro-bridged Pd(II) species (18 a-f and 19), in the presence of AgX as indicated in Scheme 2.3.

Results and discussion

The 31P NMR spectra for the new salts showed AX spin systems with two very different phosphorus chemical shifts, e.g., for 24a, P1, δ 40.8, and P2, δ 13.3 ($^2J_{PP} = 47.8$ Hz). The lower frequency resonance, P2, can be assigned to the P-atom trans to the sigma bound carbon donor. The 1H spectra for the Schiff's base complexes showed the imine proton at relatively high frequency, e.g., for 24a, H7, δ 8.05, whereas the diastereomeric N,N-dimethylamino-salts revealed three well resolved methyl signals in addition to the aliphatic methine CH-absorption.

Scheme 2.3

<table>
<thead>
<tr>
<th>Step</th>
<th>(A)</th>
<th>(B)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 a</td>
<td>Me</td>
<td>H</td>
<td>OTf</td>
</tr>
<tr>
<td>18 b</td>
<td>Cl</td>
<td>H</td>
<td>BArF</td>
</tr>
<tr>
<td>18 c</td>
<td>NO₂</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>18 d</td>
<td>OMe</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>18 e</td>
<td>H</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td>18 f</td>
<td>H</td>
<td>NO₂</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Me</td>
<td>H</td>
<td>OTf</td>
</tr>
<tr>
<td>20</td>
<td>Cl</td>
<td>H</td>
<td>BArF</td>
</tr>
<tr>
<td>21</td>
<td>NO₂</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>OMe</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>H</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>H</td>
<td>NO₂</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>H</td>
<td>Me</td>
<td></td>
</tr>
</tbody>
</table>
As expected, the 13C chemical shifts for the imine complexes, 20-27, show that the Pd-bound carbon atom appears at relatively high frequency\cite{62,64} and senses the presence of the A substituent, in that this resonance is shifted markedly to high frequency\cite{64,65} with $A = \text{NO}_2$ and to lower frequency with $A = \text{MeO}$ (see Table 2.9). Interestingly, $^2J(P,C)$ is not markedly affected by the A or B groups.

Table 2.9. 13C NMR data for bound C-atom, C1 in the complexes 20a to 27a.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>δ (13C)</th>
<th>$^2J_{CP_{trans}}$</th>
<th>$^2J_{CP_{cis}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>26a</td>
<td>Cl</td>
<td>H</td>
<td>166.0</td>
<td>124.0</td>
<td>5.7</td>
</tr>
<tr>
<td>27a</td>
<td>H</td>
<td>Me</td>
<td>168.3</td>
<td>125.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>NO$_2$</td>
<td>169.2</td>
<td>125.2</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>H</td>
<td>164.8</td>
<td>122.0</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>H</td>
<td>166.0</td>
<td>124.0</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>NO$_2$</td>
<td>H</td>
<td>177.2</td>
<td>123.3</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>OMe</td>
<td>H</td>
<td>158.6</td>
<td>126.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Diffusion Studies

73
Solid-state structures: Table 2.10 gives selected bond lengths (Å) and bond angles (°) for the Pd(rac-BINAP) CF₃SO₃⁻ salts of the imine derivatives, 20a and 22a, as well as for the Pd(R-cyclometallated amine)((R)-BINAP) diastereomer, 26b and the R, rac combination, 26c. The first descriptor refers to the amine (and is always R) and the second to the phospine. Figures 2.19-2.22 show ORTEP views of these salts. The X-ray data for a fifth salt, 27a, afforded a clear result for the cation, see Fig. 2.23; however, a suitable solution for the disorder in the anion could not be found.

All four cations reveal local distorted square planar geometry about the palladium atom. Within each cation, the two Pd-P separations are quite different. The Pd-P distance trans to the carbon, is seen to be ca 0.10-0.15 Å, longer than that found for the Pd-P distance trans to the nitrogen atom. We note that for 26b, the Pd-P separation of ca 2.42 Å lies at the upper end of the range for that type of bond. Moreover, this value is significantly larger than the analogous distance found in 22a, ca 2.36 Å suggesting a stronger trans influence for the aliphatic carbon donor. The Pd-N and Pd-C bond lengths are consistent with the literature\(^66\). As expected, the N-Pd-C angle from the five-membered ring is relatively small, ca 79-80°, whereas the P-Pd-P angles are all slightly larger than 90°. This latter angle is typical for the BINAP chelate\(^67,68\). The Figures 2.21 to 2.23 show views of several of the five membered N,C-chelate rings. As expected, this ring is not planar, and this subject will be extended in the solution discussion.

We note further that the coordinated BINAP ligands demonstrate the usual\(^47,67-69\) pseudo-axial and pseudo-equatorial P-phenyl rings and that both rings for the Schiff’s base do not lie in the same plane. Figs. 2.19-2.22 suggest that the CF₃SO₃⁻ anion is localized near the nitrogen chelate and we shall address this point via the HOESY results that follow.
Table 2.10 Bond lengths (Å) and bond angles (°) for complexes 20a, 22a, 26b and 26c.

<table>
<thead>
<tr>
<th></th>
<th>20a</th>
<th>22a</th>
<th>26b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-C(1)</td>
<td>2.065(4)</td>
<td>2.069(2)</td>
<td>2.026(3)</td>
</tr>
<tr>
<td>Pd(1)-N(1)</td>
<td>2.124(3)</td>
<td>2.134(2)</td>
<td>2.192(2)</td>
</tr>
<tr>
<td>Pd(1)-P(1)</td>
<td>2.260(10)</td>
<td>2.2670(6)</td>
<td>2.2616(6)</td>
</tr>
<tr>
<td>Pd(1)-P(2)</td>
<td>2.387(10)</td>
<td>2.3643(6)</td>
<td>2.4182(7)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-N(1)</td>
<td>80.11(14)</td>
<td>80.39(9)</td>
<td>78.74(10)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-P(1)</td>
<td>92.16(11)</td>
<td>92.96(7)</td>
<td>90.39(8)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(1)</td>
<td>166.94(9)</td>
<td>167.86(6)</td>
<td>162.77(7)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-P(2)</td>
<td>160.27(11)</td>
<td>166.13(7)</td>
<td>171.30(9)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(2)</td>
<td>98.50(9)</td>
<td>96.97(6)</td>
<td>101.46(7)</td>
</tr>
<tr>
<td>P(1)-Pd(1)-P(2)</td>
<td>92.31(3)</td>
<td>91.86(2)</td>
<td>91.31(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>26c (R,S)</th>
<th>26c (R,R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-C(1)</td>
<td>2.043(4)</td>
<td>2.035(4)</td>
</tr>
<tr>
<td>Pd(1)-N(1)</td>
<td>2.181(4)</td>
<td>2.187(3)</td>
</tr>
<tr>
<td>Pd(1)-P(2)</td>
<td>2.2653(11)</td>
<td>2.2531(11)</td>
</tr>
<tr>
<td>Pd(1)-P(1)</td>
<td>2.4100(11)</td>
<td>2.3968(10)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-N(1)</td>
<td>79.38(16)</td>
<td>C(55)-Pd(2)-N(2)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-P(2)</td>
<td>92.82(13)</td>
<td>C(55)-Pd(2)-P(4)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(2)</td>
<td>164.42(12)</td>
<td>N(2)-Pd(2)-P(4)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-P(1)</td>
<td>170.72(11)</td>
<td>C(55)-Pd(2)-P(3)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(1)</td>
<td>97.97(10)</td>
<td>N(2)-Pd(2)-P(3)</td>
</tr>
<tr>
<td>P(2)-Pd(1)-P(1)</td>
<td>91.75(4)</td>
<td>P(4)-Pd(2)-P(3)</td>
</tr>
</tbody>
</table>
Fig. 2.19 An ORTEP view of the cation of 20a with thermal ellipsoids drawn at the 30% probability level (solvent molecules are not shown for clarity).

Fig. 2.20 An ORTEP view of the cation of 22a with thermal ellipsoids drawn at the 30% probability level (solvent molecules are not shown for clarity).

Fig. 2.21 (left) An ORTEP view of the cation of 26b with thermal ellipsoids drawn at the 30% probability level and (right) a section showing the five-membered cyclometallated ring.
Fig. 2.22 (top) ORTEP views of the cations of 26c with thermal ellipsoids drawn at the 30% probability level and (bottom) sections showing the five-membered cyclometallated rings for the two cations (the anions are not shown for clarity).

Fig. 2.23 An ORTEP view of the cation of 27a with thermal ellipsoids drawn at the 30% probability level and section showing the five-membered cyclometallated ring.

Diffusion Studies
77
Overhauser spectroscopy:

Cyclometallated Imine salts. Fig 2.24 shows 1H, 19F-HOESY results in CDCl$_3$ solution for the model Pd(rac-BINAP)(MeO-Schiff’s base) salts, 23a-23c, which contain the CF$_3$SO$_3^-$, BArF$_4^-$ and PF$_6^-$ as anions, respectively. For all three salts there are numerous 1H, 19F contacts, and indeed, these three differ, but not dramatically. The strongest contacts stem from a number of PPh$_2$ BINAP protons, as previously described (section 2.1.1). Continuing, the relatively small PF$_6^-$ anion (right trace) “sees” the MeO-group, the Schiff’s base ring protons (see Table 2.9 for numbering), H5, H9, H10 and the imine proton, H7. There is no contact to the aromatic methyl group. This suggests that this anion is trying to position itself close to the partial positive charges on the imine N, Pd and P-atoms. For the slightly larger CF$_3$SO$_3^-$, anion (left trace) we find contacts to the MeO-group, the Schiff’s base ring protons, H2, H3, H5, H9, H10 and the imine proton, H7, plus a number of interactions with the PPh$_2$ BINAP protons. As before, there is no contact to the aromatic methyl group; however as the triflate is a little larger and the F-atoms somewhat remote from the O-atoms bearing the negative charge, we now have contacts to H2 and H3 (see arrow in the figure). These results are consistent with the same type of approach as for the PF$_6^-$ anion. For the even larger BArF$_4^-$, anion (center trace) we find contacts to the MeO-group, the para methyl group, the Schiff’s base ring protons, H2, H3, H5, H9, H10 and the usual PPh$_2$ BINAP protons; however, the contact to the imine proton, H7, is absent. The larger BArF$_4^-$ anion, with its meta CF$_3$ groups, stretches far enough to approach the para methyl group, but is now a little further away from the imine proton, H7. We conclude that, in solution, for 20 and 25, the anions prefer to be localized close to the partially positive coordinated imine, Pd and P- moieties. These observations do not reflect directly on the amount of ion pairing.
(see the diffusion discussion below), but rather that these anions can approach the cation in a similar way.

Fig. 2.24. 1H, 19F HOESY spectra for the complexes 23a (left) 23b (middle) and 23c (right) in CDCl$_3$. The spectra show selective strong contacts primarily to the P-phenyl ring protons as well as contacts to the cyclometallated ligand. In complex 23b, one finds a contact to the para methyl group and not to the imine (H7) proton (400 MHz, 298 K).

Cyclometallated amine salts.

For the chiral amine salts 26a,b and 27a,b, the interpretation of the 1H,19F-HOESY results rests on the assignment of the three methyl resonances. The correct assignment of the two N-methyl groups, CH$_3^\prime$ (somewhat closer to the aliphatic methyl) and CH$_3$ (proximate to the methine CH) is crucial, since we expect that the anion may approach the cation via the amine moiety, in analogy to the results described above. The assignment of the aliphatic methyl signal is trivial as it is spin-spin coupled to the adjacent methine CH.
and appears as a sharp doublet. The differentiation between NCH$_3'$ and NCH$_3$ was not straightforward and was made primarily using 1H, 1H Overhauser measurements, together with 31P spin coupling data. The two N-methyl groups reveal very different and characteristic line shapes. 31P,1H correlations (see Fig. 2.25) reveal that the broad "triplet" shape associated with an N-methyl group stems from long-range 31P spin-spin coupling to two P-atoms, and this was interesting. The difference in the line shape stems from the dependence of 4J(P,H) on the relative position of the NMe and NMe' groups. When one of these lies roughly in the P-Pd-P plane, both 31P spins couple sufficiently to be visible in the 1H spectrum. However, since the change from e.g., R-BINAP to S-BINAP, changes the amine ring conformation, and consequently the relative positions of these two NMe groups (as detailed in the text), in one diastereomer, the NMe shows the triplet and in the other, the NMe' signal. Fig. 2.26 shows NOE results for the (R,S) and (R,R) BINAP diastereomers, 26a and 26b. The selectivity shown from these NOE data (note the absences indicated by the circles) suggest that the conformation of the five-membered metallocycle ring changes with the chirality of the BINAP. For the R,S diastereomer, the N-atom is

Fig. 2.25 Sections of 31P, 1H COSY spectra for complex 26a (CD$_2$Cl$_2$, 500 MHz, 298 K) and 27b (CDCl$_3$, 300 MHz, 298 K) each showing two 31P contacts to the methyl 8 CH$_3'$ and 8 CH$_3$, respectively, thereby explaining the observed triplet multiplicity.
Fig. 2.26 Sections of the 1H, 1H NOESY spectra for complex 26a (CD$_2$Cl$_2$, 500 MHz) and 26b (CDCl$_3$, 400 MHz), showing selective NOE contacts in both cases. Blank circles indicate no contact and suggest a specific conformation.

28 structural fragment (left) plus cartoon (right, the bold line in the cartoon represents the plane defined by the Pd and the three carbon atoms)

placed slightly above the plane defined by the Pd and the three carbon atoms, see cartoon in 28. This places the C-Me group in a pseudo trans position relative to the NCH$_3$ (and thus one finds no NOE between these two groups), but proximate to NCH$_3'$ and the arrow in the cartoon indicates this NOE contact. For the R,R diastereomer, the N-atom is placed slightly below the plane defined by the Pd and the three carbon atoms, see cartoon in 29. This places the C-Me group roughly equidistant from both the NCH$_3$ and the NCH$_3'$ moieties with the result that two fairly strong interactions (see arrows) are observed. In line with this proposal are the selective NOE's from the methine CH proton: one each to the
NCH₃ and the NCH₃' groups in 28 and only one to the NCH₃ in 29. Exactly these two specific ring conformations are found in the solid-state structures and we show these in Figs. 2.21-2.23. It is interesting that both amine ring conformations are found for the two diastereomers of the racemic BINAP of 26c (see Fig. 2.22). Moreover, the solid-state data show—if one defines a plane made up of the metal, the two C-atoms of the metallated ring, C1 and C6, and the methane CH, C7,—that in one diastereomer the N1-atom lies 0.75 Å below this plane, whereas in the second diastereomer, the N2-atom lies 0.87 Å above this plane.

Continuing, the changes in ring conformation are accompanied by selective anisotropic effects from the P-phenyl array on the chemical shifts of the three methyl groups (see Fig. 2.26): e.g., for the R,R diastereomer two of these are found at lower frequency. Possibly, this change in amine ring conformation, as a function of the shape of the chiral pocket, relieves unfavourable steric interactions between the PPh₂ groups from P2 (trans to the C-donor) and the two proximate N-methyl groups.

The shapes and relative positions of the chiral arrays containing the four P-phenyl groups of complexed (S) and (R)-BINAP, are shown in 30 and 31, respectively, and these have been defined both by NMR and X-ray measurements a number of times[42, 51, 67, 69, 70].

Chapter 2
82
Fig. 2.27 gives the 1H, 19F-HOESY results in CDCl$_3$ solution for the BINAP salts 26a-c. The strongest contacts arise from the protons of the P-phenyl groups, however, there is a great deal of selectivity. The contacts for R,R-26b are not so numerous and ca twice as strong as for R,S-26a. The most important contacts for R,R-26b are shown in the structural fragment, 32, below.

There are six fairly strong interactions (bolder arrows) stemming from the methine CH and five aromatic protons of the BINAP and four weaker contacts (thinner arrows) from the cyclometallated ring. The analysis of these NOE data leads to a fairly clear preference for the anion on the same side of the coordination plane where one finds the phenyl ring P_2(axial) and the amine ring methine CH proton. The anion is not complexed but hovers over the most open position available that permits it to approach the positive
Fig. 2.27. 1H, 19F HOESY spectra for the complexes 26a (left) 26b (middle) and 26c (right, with rac BINAP) in CDCl$_3$, all showing selective strong contacts primarily to the BINAP P-phenyl ring protons (400MHz, 298K). The stars and crosses in the spectrum of 26c indicate the signals from the individual diastereomers.

centers. In the R,S diastereomer (we do not show a cartoon as the contacts are too numerous-and unfortunately not always unambiguous), the data suggest that the anion now prefers the opposite side of the coordination plane. In this connection there are two points worthy of mention (a) the contact to the methine CH-bond is now very weak (and easily missed) and (b) there is a strong contact to the ortho protons of P$_2$(axial), which now is positioned on the other face of the coordination plane due to the change in chirality (see 30 relative to 31). We conclude that the change in the shape of the chiral pocket affects not only the cyclometallated ring conformation, but also moves the anion from one side of the metal complex to the other. For the R,rac BINAP mixture (far right trace), only the cross peaks from the CF$_3$SO$_3^-$ anion to those of the R,R diastereomer CH and the Me protons are readily observed. This is partly because the strong signals from 26b mask the weaker ones from 26a. In any case, the measurement of the racemic mixture, alone, would not have afforded a clear picture of how the triflate anion interacts with the two diastereomeric cations.
For the Chiraphos diastereomeric pair, 27a,b, the 1H,1H NOE's (see Fig. 2.28) indicate that, for these salts as well, the nature of the five-membered metallocycle ring changes with the chirality of the Chiraphos ligand salt, 27a, $R,2S,3S$, shows the conformation 28, however, for salt 27b, $R,2R,3R$, the situation is somewhat different, but in line with the literature[71, 72]. For 27b, in contrast to 26b, one finds a somewhat more flexible five-membered ring conformation based on the observed NOE's. This is interesting and suggests that each enantiomer of BINAP can induce a more decisive conformational change, whereas this is not completely true for both forms of the Chiraphos.

![Fig. 2.28 Sections of 1H, 1H NOESY for complex (left) 27a (CDCl$_3$, 400 MHz) and (right) 27b (CDCl$_3$, 300 MHz), showing selective NOE contacts in both cases. Blank circles indicate no contact and suggest a specific conformation.](image)

The 1H,19F-HOESY (Fig.2.29) results for the Chiraphos salts 27a,b, are simple relative to the BINAP analogues and these are summarized in the fragments 33 and 34. In the R,S,S salt, one finds three major contacts: one to an ortho P-phenyl set and one each to the NCH$_3$' and NCH$_3$ groups (There is a very weak contact to the Chirapos methyl groups. The chiral array does not show marked
axial or equatorial P-phenyl groups). In the R,R,R salt, one finds four major contacts: one to an ortho P-phenyl set on the other side

![Diagram showing molecular structures and contacts](image)

33 (left) and 34 (right). The anion approaches as indicated by the arrows

Fig. 2.29 1H, 19F HOESY spectra for complexes 27a (left) and 27b (right) in CDCl$_3$, both showing selective strong contacts primarily to the Chiraphos ortho P-phenyl ring protons (400 MHz, 298 K).

of the coordination plane, and one each to the three methyl groups suggesting that the anion has, once again, moved from one side of the complex to the other. The strongest contacts come from a P-phenyl ring from the PPh$_2$ trans to the carbon donor. The interpretation of the 1H spectra is much simpler, relative to the BINAP salts, due to the absence of the naphthyl protons. In no case do we find a contact to the amine methine CH-proton.
Diffusion data. Tables 2.11 and 2.12 give PGSE diffusion data (D-values) for the cations and anions of the complexes 20-25 and 26, 27, respectively, in CD$_2$Cl$_2$ and CDCl$_3$ solutions.

Table 2.11. Diffusion constants a and radii b for complexes 20 to 25 in CD$_2$Cl$_2$.

<table>
<thead>
<tr>
<th>Comp</th>
<th>CF$_3$SO$_3$(a)</th>
<th>BARF(b)</th>
<th>PF$_6$(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cation(1H)</td>
<td>Anion(19F)</td>
<td>Cation(1H)</td>
</tr>
<tr>
<td></td>
<td>r_H</td>
<td>r_{Xray}</td>
<td>r_H</td>
</tr>
<tr>
<td></td>
<td>(nm)</td>
<td>(nm)</td>
<td>(nm)</td>
</tr>
<tr>
<td>20</td>
<td>7.83</td>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>(7.2)</td>
<td>(5.0)</td>
<td>(7.2)</td>
</tr>
<tr>
<td>21</td>
<td>7.74</td>
<td>6.8</td>
<td>12.72</td>
</tr>
<tr>
<td></td>
<td>(7.3)</td>
<td>(5.2)</td>
<td>(7.3)</td>
</tr>
<tr>
<td>22</td>
<td>7.73</td>
<td>6.8</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>(7.3)</td>
<td>(5.2)</td>
<td>(7.3)</td>
</tr>
<tr>
<td>23</td>
<td>7.69</td>
<td>6.9</td>
<td>12.84</td>
</tr>
<tr>
<td></td>
<td>(7.3)</td>
<td>(5.2)</td>
<td>(7.3)</td>
</tr>
<tr>
<td>24</td>
<td>7.94</td>
<td>6.7</td>
<td>12.98</td>
</tr>
<tr>
<td></td>
<td>(7.4)</td>
<td>(5.3)</td>
<td>(7.4)</td>
</tr>
<tr>
<td>25</td>
<td>7.75</td>
<td>6.8</td>
<td>12.30</td>
</tr>
<tr>
<td></td>
<td>(7.2)</td>
<td>(5.0)</td>
<td>(7.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comp</th>
<th>CDCl$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cation(1H)</td>
</tr>
<tr>
<td></td>
<td>r_H</td>
</tr>
<tr>
<td></td>
<td>(nm)</td>
</tr>
<tr>
<td>22</td>
<td>5.49</td>
</tr>
<tr>
<td></td>
<td>(8.0)</td>
</tr>
<tr>
<td>23</td>
<td>5.62</td>
</tr>
<tr>
<td></td>
<td>(8.9)</td>
</tr>
</tbody>
</table>

a 400 MHz, 2mM; D values, 10$^{-10}$ m2 s$^{-1}$; b r_H values, Å; c corrected r_H values are in the bracket. $r_{vdw} = 2.49$ (CD$_2$Cl$_2$), $r_{vdw} = 2.60$ (CDCl$_3$), η(CH$_2$Cl$_2$) = 0.414 x 10$^{-2}$ kg m$^{-1}$ s$^{-1}$, η(CHCl$_3$) = 0.534 x 10$^{-3}$ kg m$^{-1}$ s$^{-1}$ at 299 K.

the experimental error (this assumes (a) the absence of other interactions, e.g., hydrogen bonding or anion encapsulation etc which would result in restricted translation of the anion, and (b) that the two ions are markedly different in size). In all cases there is much more ion pairing in CDCl$_3$ solution. Further, for 20-25, in CD$_2$Cl$_2$ solution, the ion pairing seems to be more or less independent of the substituents A and B. For 26 and 27, we do not find a dependence of the D-values on the sense of the chirality.
Table 2.12: Diffusion constants a and radiib for complex 26 and 27 in CD$_2$Cl$_2$ and in CDC$_3$.

<table>
<thead>
<tr>
<th>Comp Configuration</th>
<th>Cation(1H)</th>
<th>Anion(19F)</th>
<th>Cation(1H)</th>
<th>Anion(19F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD$_2$Cl$_2$</td>
<td></td>
<td>CD$_2$Cl$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D (rH) (rH)</td>
<td>rH (rx)</td>
<td>D (rH) (rH)</td>
<td>rH (rx)</td>
</tr>
<tr>
<td>26 a (R, S)</td>
<td>8.24 6.4</td>
<td>13.04 4.1</td>
<td>5.86 7.0</td>
<td>6.27 6.5</td>
</tr>
<tr>
<td>26 b (R, R)</td>
<td>8.16 6.5</td>
<td>6.9 12.58 4.2</td>
<td>5.97 6.9</td>
<td>6.17 6.6</td>
</tr>
<tr>
<td>26 c (R, rac)</td>
<td>8.11 6.5</td>
<td>13.04 4.1</td>
<td>5.97 6.9</td>
<td>6.24 6.6</td>
</tr>
<tr>
<td></td>
<td>(7.0)</td>
<td>(5.1)</td>
<td>(7.4)</td>
<td>(7.2)</td>
</tr>
<tr>
<td>27 a (R, 2S,3S)</td>
<td>8.86 6.0</td>
<td>12.70 4.2</td>
<td>6.30 6.5</td>
<td>6.68 6.1</td>
</tr>
<tr>
<td>27 b (R,2R,3R)</td>
<td>8.86 6.0</td>
<td>12.65 4.2</td>
<td>6.30 6.5</td>
<td>6.53 6.2</td>
</tr>
</tbody>
</table>

a 400 MHz, 2mM; D values, 10^{-10} m2 s$^{-1}$; b rH values, Å; c The first configuration refers to the asymmetric carbon in cyclometalated ring and the second configuration refers to the binaphthyl ring; "c" corrected rH values are in the bracket. rvdw= 2.49 (CD$_2$Cl$_2$), rvdw= 2.60 (CDC$_3$), η(CH$_2$Cl$_2$) = 0.414 x 10^{-3} kg m$^{-1}$ s$^{-1}$, η(CHCl$_3$) = 0.534 x 10^{-3} kg m$^{-1}$ s$^{-1}$ at 299 K.

The calculated hydrodynamic radii, rH, are in good agreement with the rX-ray values estimated from the solid-state measurements. From Table 2.11, one finds that the D-values for the CF$_3$SO$_3^-$ and PF$_6^-$ anions are similar, and from Table 2.12, as expected, it is clear that the complexes 26 are somewhat larger than those from 27. Assuming an rH value of ca 5.9 Å for the solvated BArF$^-\text{anion}\!^{[73]}$, then the ca 6.5 Å rH value for the BArF$^-\text{anion in 20-25}$ in CD$_2$Cl$_2$ solution, given in Table 2.11, is suggestive of ca 10% ion pairing, i.e., very modest but not zero, ion pairing for this anion. This estimation, when taken with the NOE data, serves as a reminder that the observation of strong HOESY contacts does not imply strong ion pairing, but rather that the anion can approach the cation.

Conclusions. We find that the chiral organometallic amine chelate recognizes the change in the sense of the chirality, both for the
BINAP and the Chiraphos auxiliaries, and responds by a conformational adjustment. Associated with this, is a change in the approach of the CF$_3$SO$_3^-$ anion towards the positively charged centers. The conformational change of the amine ring was easily detected via intra-molecular proton-proton NOE data; however defining the interplay between the anion and cation required a detailed understanding of the various fairly complex 1H NMR spectra and involved the interpretation of both strong and modest 1H,19F Overhauser contacts.

We believe that these observations will eventually prove helpful in understanding how chiral auxiliaries affect structural changes and thus influence the outcome of enantioselective reactions. It is now well documented that a prochiral substrate, e.g., an olefin capable of forming a chelate ring, may complex either the re or si face and that the chiral pocket assists in this selection process. However, it is not obvious that the chiral pocket might be able to induce a change in the conformation of such a chelate ring. Further, from this and earlier studies, it is now becoming clear that non-coordinating anions (a) can be selective in their approach to a metal center and (b) do not all demonstrate the same degree of ion pairing-and this is especially true for the commonly used BArF$^-$ anion.
2.2 Diffusion Studies on Rh(I) N-Heterocyclic Carbene Complexes

There are increasing indications of counter-ion effects on the kinetics of various homogeneously catalysed reactions119, 24, 74. Changing the structure of a given cationic complex might well modify how the anion interacts. To probe this possibility we have measured diffusion constants for three Rh(I) carbene complexes and show these data for $35\,[PF_6]$, $36\,[PF_6]$ and $35\,[BArF]$ in CH$_2$Cl$_2$ solution in Table 2.13. Diffusion constants from the individual ions of a salt are now recognized to reflect the degree of ion pairing52, 75. As expected, based on the X-ray data76, the PF$_6^-$ anions reveal very much larger diffusion constants (D-values) than the corresponding cation, so that for both $35\,[PF_6]$ and $36\,[PF_6]$ in CH$_2$Cl$_2$, there is not a substantial amount of ion pairing. Strong ion pairing would result in D-values for the PF$_6^-$ anion which are close to-or equal to-that for the larger cation. The hydrodynamic radii, r_H, for the cations, calculated from the Stokes-Einstein equation, are slightly smaller than the radii calculated using the volume data from the crystallographic data.

The BArF$^-$ salt diffusion data are interesting in that they represent a fairly rare example of measured identical D-values for the two ions.
of a salt in the absence of strong ion pairing. By coincidence, the two ions in \textbf{35}[\text{BARF}^-] are of similar size and thus afford about the same \(r_H\) values. A typical \(r_H\) value for \text{BARF}^- in a polar solvent would be ca 6 Å21, 77, 78 and the cation itself has an \(r_H\) value of 6.1 Å. Allowing for perhaps 5-10\% ion pairing readily explains the 6.4 Å \(r_H\) values.

\textbf{Table 2.13.} PGSE diffusion dataa for the Rh-NHC salts \textbf{35}[PF\textsubscript{6}], \textbf{35}[\text{BARF}] and \textbf{36}[PF\textsubscript{6}].

<table>
<thead>
<tr>
<th>Compound</th>
<th>D</th>
<th>(r_H)</th>
<th>(r_{x,y}) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{35}[PF\textsubscript{6}]</td>
<td>Cation</td>
<td>8.67</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>Anion</td>
<td>14.02</td>
<td>3.8</td>
</tr>
<tr>
<td>\textbf{35}[\text{BARF}]</td>
<td>Cation</td>
<td>8.30</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Anion</td>
<td>8.32</td>
<td>6.4</td>
</tr>
<tr>
<td>\textbf{36}[PF\textsubscript{6}]</td>
<td>Cation</td>
<td>9.33</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Anion</td>
<td>14.70</td>
<td>3.6</td>
</tr>
</tbody>
</table>

a Conditions: 400 MHz, 2mM in CH\textsubscript{2}Cl\textsubscript{2}; D values, 10-10 m2 s-1; \(r_H\) values, Å; \(\eta (\text{CH}_2\text{Cl}_2) = 0.414 \times 10^{-3} \text{ kg s}^{-1} \text{ m}^{-1}\) at 299K.

\textbf{Fig. 2.30.} Sections of the 1H, 19F HOESY results for (left) \textbf{35}[PF\textsubscript{6}] and (right) \textbf{35}[\text{BARF}]. In the PF\textsubscript{6}- salt, there are only modest contacts to the NCH=CHN protons, whereas for the \text{BARF}^- salt, the selective contacts are now to CH\textsubscript{2} protons of the Cy-groups (ambient temperature, CD\textsubscript{2}Cl\textsubscript{2}, 400 MHz).

Fig. 2.30 shows 1H,19F HOESY results for \textbf{35}[PF\textsubscript{6}] and \textbf{35}[\text{BARF}]. The PF\textsubscript{6}- anion, when it approaches the cation, does so via the NCH=CHN protons and avoids the Cy-groups. The \text{BARF}^- anion, which is considerably larger than the PF\textsubscript{6}-, cannot easily take the
same pathway and thus reveals only modest contact to the methylene protons of the Cy-substituents. For these two salts the size of the anion determines the proximity to the metal centre.

Conclusions: Pulsed-gradient spin-echo (PGSE) NMR measurements show that there is only a relatively small amount of ion pairing for both 35, 36 PF$_6^-$ and 35 BARF$^-$ salts in dichloromethane solution. 1H, 19F HOESY data help to place the anions relative to the cations.

2.3 Diffusion Studies of Pt(II) Complexes

Pulsed gradient spin-echo (PGSE) NMR diffusion methods are now currently widely used$^{[79-83]}$. In many cases the applications are restricted to the use of 1H PGSE (or DOSY)$^{[25]}$ data in order to estimate the molecular volumes of species generated in situ; however, it has recently been shown that a multinuclear approach, including the use of either 19F$^{[50, 52]}$, 31P$^{[84]}$, 35Cl$^{[84]}$, or 7Li$^{[25, 85-88]}$, provides an alternative methodology to recognizing and characterizing how ions, and, specifically, chiral organic$^{[89]}$ or chiral transition metal ions$^{[90]}$, interact with solvent and their corresponding anions.

To interpret properly the D-and r_H values obtained from PGSE diffusion, it is frequently necessary to have an appropriate model compound since solvation or ion pairing can be rather specific for a given class of material. It would be better to have D-and r_H values for a set of models with varying-but similar-environments; however, this is rare$^{[91]}$.

The following section explains how a variety of ligands within the coordination sphere of Pt(II) can affect the D-and r_H values, plus it is also describe the use of a new spin, 195Pt, as a diffusion probe.
Results and Discussions:

Table 2.14 shows the diffusion constants, D, and the hydrodynamic radii, rH for the trans- platinum phosphine complexes, trans-PtX(Aryl)(L)2, 38-40, in dichloromethane solution.

Table 2.14. 1H, 31P and 19F Diffusion Constants and rH Values (Å) in CD2Cl2.

<table>
<thead>
<tr>
<th>Com</th>
<th>X</th>
<th>Aryl Y</th>
<th>D(1H)</th>
<th>rH</th>
<th>D(31P)</th>
<th>rH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2mM</td>
<td></td>
<td>10mM</td>
<td></td>
</tr>
<tr>
<td>38a</td>
<td>Br</td>
<td>C6H5</td>
<td>12.01</td>
<td>4.5</td>
<td>11.86</td>
<td>4.5</td>
</tr>
<tr>
<td>38b</td>
<td>Br</td>
<td>C6H4(m-CF3)</td>
<td>11.70</td>
<td>4.6</td>
<td>11.58</td>
<td>4.6</td>
</tr>
<tr>
<td>38c</td>
<td>Br</td>
<td>C6H4(p-CF3)</td>
<td>11.41</td>
<td>4.7</td>
<td>11.62</td>
<td>4.6</td>
</tr>
<tr>
<td>38d</td>
<td>Br</td>
<td>C6H4(m-Br)</td>
<td>11.45</td>
<td>4.7</td>
<td>11.71</td>
<td>4.5</td>
</tr>
<tr>
<td>38e</td>
<td>Br</td>
<td>C6H4(p-Br)</td>
<td>11.34</td>
<td>4.7</td>
<td>11.53</td>
<td>4.6</td>
</tr>
<tr>
<td>38f</td>
<td>Br</td>
<td>C6H4(m-0CH3)</td>
<td>11.39</td>
<td>4.7</td>
<td>11.56</td>
<td>4.6</td>
</tr>
<tr>
<td>38g</td>
<td>Br</td>
<td>C6H4(p-0CH3)</td>
<td>11.29</td>
<td>4.7</td>
<td>11.37</td>
<td>4.7</td>
</tr>
<tr>
<td>38h</td>
<td>Br</td>
<td>C6H4(p-NMe2)</td>
<td>11.15</td>
<td>4.8</td>
<td>11.16</td>
<td>4.7</td>
</tr>
<tr>
<td>39</td>
<td>Cl</td>
<td>C6H5</td>
<td>11.99</td>
<td>4.5</td>
<td>12.01</td>
<td>4.4</td>
</tr>
</tbody>
</table>

The Table 2.14 includes both 1H and 31P data and we note that there are still almost no D-values determined using 31P as a probe. The 31P data were obtained on 10mM solutions due to the poorer sensitivity of this nucleus, however the 1H data in Table 2.14 are for both the 2 mM and 10 mM solutions.

From these data several points are worth mentioning: (a) The change from Br', 38a, to Cl', 39, has little effect on the D-value. (b) Introduction of a substituent in either the meta or para position of the aryl ligand, has only a modest effect on the D-value. This is
likely to be associated with the only slightly extended size of the aryl ligand. With two trans-PR₃ ligands, the complex is somewhat spherical in shape and the cis aryl ligand may not contribute much to the overall volume. (c) Changing from L = PEt₃ to L = PPh₃ (from 39 to 40) results in a marked decrease in D and a corresponding increase in r_H. Obviously the six P-phenyl groups are larger than the ethyl groups and offer much more resistance to translation than does the smaller two carbon fragment. (d) For the neutral complexes PtX(Aryl)(PEt₃)₂, the change from 2 mM to 10 mM results in only a small change (ca 1-2%) in the D-values. (e) The 31P D-values do not quite agree with those D-values from the proton measurements. These latter are usually slightly smaller.

The X-ray structure of trans-PtClPh(PPh₃)₂ has been reported[92] and affords an r_H value of 6.0 Å; our r_H value of 5.8 Å is therefore reasonable.

Table 2.15 gives diffusion data from the proton measurements for the neutral acyl complexes, Pt(C₇H₄O₂)(L₁)(L₂), 41a-41m, in dichloromethane solution.

The bis PPh₃ complex, 41a, is of comparable molecular weight to the bis PPh₃ complex, 40 (r_H = 5.8 Å); however, for 41a, the r_H value (6.0 Å) is larger. The structures of the complexes 41a-c, with cis phosphine ligands, are presumably less spherical than 40 and seem to translate somewhat slower than 40. Within 41, the phenyl phosphine complexes afford the smallest D-values and thus the largest r_H values.

Extension from a P-phenyl substituent, 41a (r_H = 6.0 Å), to a P(p-tolyl) substituent (r_H = 6.6 Å), 41b, substantially increases the corresponding hydrodynamic radius. Complex 41b has added six
Table 2.15. 1H Diffusion Constants* and r_H Values (Å)

<table>
<thead>
<tr>
<th>Comp</th>
<th>L^1</th>
<th>L^2</th>
<th>$D(^1H)$</th>
<th>r_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>41a</td>
<td>PPh$_3$</td>
<td>PPh$_3$</td>
<td>8.86</td>
<td>6.0</td>
</tr>
<tr>
<td>41b</td>
<td>P(p-Tol)$_3$</td>
<td>P(p-Tol)$_3$</td>
<td>8.18</td>
<td>6.6</td>
</tr>
<tr>
<td>41c</td>
<td>PPh$_3$Bz</td>
<td>PPh$_3$Bz</td>
<td>7.94</td>
<td>6.8</td>
</tr>
<tr>
<td>41d</td>
<td>AsPh$_3$</td>
<td>AsPh$_3$</td>
<td>9.30</td>
<td>5.8</td>
</tr>
<tr>
<td>41e</td>
<td>AsPh$_2$Me</td>
<td>AsPh$_2$Me</td>
<td>9.98</td>
<td>5.4</td>
</tr>
<tr>
<td>41f</td>
<td>AsPh$_2$Me</td>
<td>PPh$_2$Bz</td>
<td>9.28</td>
<td>5.8</td>
</tr>
<tr>
<td>41g</td>
<td>P[OCH(CH$_3$)$_2$]$_3$</td>
<td>P[OCH(CH$_3$)$_2$]$_3$</td>
<td>10.35</td>
<td>5.2</td>
</tr>
<tr>
<td>41h</td>
<td>NH$_2$(CH$_2$)$_5$CH$_3$</td>
<td>DMSO</td>
<td>11.79</td>
<td>4.5</td>
</tr>
<tr>
<td>41i</td>
<td>15NH$_2$(CH$_2$)$_5$CH$_3$</td>
<td>DMSO</td>
<td>11.95</td>
<td>4.5</td>
</tr>
<tr>
<td>41j</td>
<td>2-picoline</td>
<td>DMSO</td>
<td>12.18</td>
<td>4.4</td>
</tr>
<tr>
<td>41k</td>
<td>3-picoline</td>
<td>DMSO</td>
<td>12.24</td>
<td>4.4</td>
</tr>
<tr>
<td>41l</td>
<td>4-picoline</td>
<td>DMSO</td>
<td>11.94</td>
<td>4.5</td>
</tr>
<tr>
<td>41m</td>
<td>3-picoline</td>
<td>3-picoline</td>
<td>11.52</td>
<td>4.7</td>
</tr>
</tbody>
</table>

*In CD$_2$Cl$_2$, $x 10^{-10}$ m2s$^{-1}$; $^b J(^15N,^1H) = 72$ Hz.

methyl groups to the para positions, thus significantly extending the radius of the molecule. This, in contrast to what we have observed for the trans-PET$_3$ compounds, 38, where we only add one additional substituent to the aryl group.

Substitution of PPh$_3$, 41a, by PPh$_2$Bz, 41c, also substantially increases the hydrodynamic radius ($r_H = 6.8$ Å). Presumably the benzyl groups sweep out a larger volume than the phenyl group. The nitrogen ligand/DMSO combinations afford fairly small complexes and the position of the picoline methyl group seems to be of minor importance. The P(O-iPr)$_3$ phosphite ligand has a cone angle$^{[3]}$ of ca 130°, smaller than that of PPh$_3$, ca 145°, and thus it is not surprising that complex 41g, appears to be smaller than the tri-phenyl phosphine analogue, 41a. Somewhat unexpected is the observation that replacement of PPh$_3$, 41a, by AsPh$_3$, 41d, affords a smaller hydrodynamic radius.
The related 1,2-bis-diphenylphosphinoethane chelate complex, 42, with its smaller P-Pt-P bite angle of ca 85° \[^{[93]}\] affords a hydrodynamic radius, 5.8 Å, which is, indeed, slightly smaller than that found for the PPh\(_3\) complex, 41a.

The value of \(J(\text{195Pt,15N}) \), for the n-hexyl amine complex, 41i, was measured via a nitrogen, proton correlation, using the hexyl amine NH\(_2\) resonances. A section of this spectrum is shown in Fig. 2.31. This type of measurement is well known\[^{[94, 95]}\], especially in the chemistry of cis-platinum and related complexes. The relatively small value of 88 Hz is related to the strong trans influence of the acyl ligand\[^{[96]}\]. Typical values of \(J(\text{195Pt,15N}) \) in cis-platinum derivatives are of the order of 300 Hz\[^{[97]}\].

Fig. 2.31. Section of the \(\text{15N,1H} \) correlation spectrum for the enriched n-hexyl amine complex, 41i, obtained using the NH\(_2\) amino-protons. The \(\text{15N,1H} \) one bond coupling constant is found to be 72 Hz and \(J(\text{195Pt,15N}) \) to be 88 Hz. The \(\text{195Pt} \) satellites are not resolved in the proton spectrum although they are seen as broad resonances in the nitrogen spectrum.
2.3.1 ^{195}Pt Nuclei as Diffusion Probe

Table 2.16 gives the first PGSE diffusion data obtained using ^{195}Pt ($I = 1/2$, 33.7% abundance). The concentrations used are fairly high due to the modest sensitivity and short relaxation characteristics of this nucleus. The hexachloroplatinate dianion was chosen because it is commercially available, robust, possesses relatively slow substitution kinetics and has a routine octahedral structure. Diffusion data for both Na$_2$PtCl$_6$, 43 ($D = 7.13(6)$) and H$_2$PtCl$_6$, 44 ($D = 7.00(6)$) were obtained and, in D$_2$O, these two complexes afford similar but not quite identical D-values. The corresponding hydrodynamic radii (from Stokes-Einstein equation described in chapter 1.3.2.3), r_H, 3.4 Å and 3.5 Å, respectively, are reasonable (i.e., separated solvated ions) assuming a literature Pt-Cl bond length of ca 2.3 - 2.4 Å and allowing for a solvation shell of ca 1 Å.

On the other hand, the diffusion measurements in CD$_3$OD ($D = 6.93$ and 7.73 for 43 and 44, respectively) reveal a different picture (see Fig. 2.32). The calculated hydrodynamic radii, r_H, 6.0 Å and 5.4 Å, for 43 and 44, respectively, are relatively large and suggest some form of aggregation in this solvent. This may be the result of ion pairing and, possibly hydrogen bonding combined with aggregation due to the relatively high concentration employed. We also note that the ^{195}Pt chemical shift of Na$_2$PtCl$_6$ in methanol is found at higher frequency, ca 90 ppm, relative to that observed in aqueous solution. It is pertinent that Koch and co-workers have recently suggested extensive ion pairing for solutions of Na$_2$PtCl$_6$ in methanol, and our findings are certainly consistent with this proposal. In any case, it is clear that the ^{195}Pt PGSE method allows us to readily distinguish between the separated ions in water and some different aggregation state in methanol. Unfortunately it was not possible to obtain, PGSE data for Na$_2$PtCl$_4$ water. This may be
due to the exchange between Na₂PtCl₄ and the aquo-complex, Na[Pt(H₂O)Cl₃].

Table 2.16. ¹⁹⁵Pt Diffusion Coefficients, Radius (Å)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conc</th>
<th>Solvent</th>
<th>D¹⁹⁵Pt (Å)</th>
<th>rH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂PtCl₄·6H₂O</td>
<td>0.18</td>
<td>D₂O</td>
<td>7.13</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>CD₃OD</td>
<td>6.93</td>
<td>6.0</td>
</tr>
<tr>
<td>H₂PtCl₆·6H₂O</td>
<td>0.19</td>
<td>D₂O</td>
<td>7.00</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>CD₃OD</td>
<td>7.73</td>
<td>5.4</td>
</tr>
</tbody>
</table>

* D(× 10⁻¹⁰ m²s⁻¹)

Fig. 2.32. Diffusion data for H₂PtCl₆·6H₂O in water (blue) and methanol (red)
[a] not corrected for viscosity differences and [b] corrected for viscosity differences.

CONCLUSIONS: Diffusion data from complexes 38-42 indicate that the molecular weight is not the only important factor in determining the D and rH values. Two large cis ligands may well result in an rH value which is significantly different than that observed in an analogous trans geometry. The concentration dependence for the neutral complexes trans-PtX(Aryl)(PEt₃)₂, is modest. However, for salts of metals this dependence can be larger.¹⁹⁵Pt PGSE measurements are possible and may well prove useful for specific problems. However, our inability to obtain data for Na₂PtCl₄ in water, together with the current concentrations required, suggest that the methodology may be limited.

Chapter 2
98
2.4 Concluding Remarks

This chapter describes the synthesis, structural characterization and diffusion measurements for a modest number of catalytically relevant mono and dicationic Pd(II) BINAP complexes. Additionally, diffusion studies for a series of neutral Platinum and two cationic Rhodium carbene complexes are presented. Using these diffusion data (D values) and NOE measurements leads to the following conclusions,

1. Solvent dependent ion pairing is observed and it follows the sequence, \(\text{CHCl}_3 > \text{THF} > \text{CH}_2\text{Cl}_2 > \text{CH}_3\text{CN} \).
2. Anion dependent ion pairing follows the sequence \(\text{CF}_3\text{SO}_3^- > \text{BF}_4^- > \text{PF}_6^- > \text{BAR}_4^\text{F}^- \).
3. Anion relative position: The anions approach the positively charged centers, avoiding the region of the negatively charged ligands (supported by DFT calculations). Where hydrogen bonding is involved, the anion is in close vicinity to the cation.
4. The anion senses the change of the chirality.
5. In the cyclometallated amine complexes the chirality induces a conformational change of the amine ring.

Thus, we believe this combined diffusion/HOESY approach to ion pairing and the localization of the counterions relative to cationic organometallic fragment to be extremely promising.
2.5 Experimental section

General Comments. All air sensitive manipulations were carried out under a nitrogen atmosphere. All solvents were dried over an appropriate drying agent, and then distilled under nitrogen. Deuterated solvents were dried by distillation over molecular sieves, and stored under nitrogen. The ligands rac-BINAP (Strem), (R)-BINAP, (S)-BINAP (Alfa Aesar), p-tolyl-BINAP (Merck), (R)-(+)N,N-dimethyl 1-phenylethylamine (Aldrich), (2R,3R)-Chiraphos, (2S,3S)-Chiraphos (Acros), 1,3 diketones 3-methyl-2,4-dione, 9, Ethyl 2-methylacetoacetate, 10, (E)-3-but-2-enoyloxazolidin-2-one, 11, (Acros organics) and the silver salts (Aldrich) were purchased from commercial sources and used as received. The dichloro-metal complexes PdCl₂L₂, L₂ = rac-BINAP, the chloro-bridged metal complexes (PdClL)₂, L = Cyclometallated ligands (Schiffs base), (R) and (S) N,N-dimethyl 1-phenylethylamine (18a-f and 19) and the α, β-unsaturated N-imides (6, 7 and 8) are synthesized according to known literature procedure\(^{101-103}\). The palladium complexes 1b, 2b, 26 and 27 were synthesized following literature procedure\(^{2, 4, 71}\). Both Na₂PtCl₆·6H₂O, 43 and H₂PtCl₆·6H₂O, 44 were obtained from Acros and Alpha Aesar respectively. Complex 41i was prepared enriched in \(^{15}\)N (>90% \(^{15}\)N). The Pt complexes 38-42 are all known and were prepared\(^{96, 104, 105}\) in this laboratory earlier. \(^1\)H, \(^13\)C, \(^31\)P, \(^19\)F, and \(^{15}\)N and 2D NMR spectra were recorded with Bruker DPX-250, 300, 400, 500 and 700 MHz spectrometers at room temperature unless otherwise noted. Elemental analysis and mass spectra were performed at ETH Zürich.

Diffusion measurements. All of the PGSE measurements were carried out using the stimulated echo pulse sequence and performed on a Bruker Avance spectrometer, 300 or 400 MHz,
equipped with a microprocessor-controlled gradient unit and a
multinuclear inverse probe with an actively shielded Z-gradient coil.
The shape of the gradient pulse was rectangular, and its length was
of 1.75 ms. The gradient strength was incremented in 4 % steps
from 4 % to 60 %, so that 12-15 points could be used for
regression analysis. The time between midpoints of the gradients
was 167.75 ms and gradient recovery time was set 100 µs for all
experiments. All the diffusion 1H spectra were acquired using 16K
points, 16 or 32 transients, a 5 s relaxation delay and a 1.5 s
acquisition time. All the 19F spectra were acquired using 16K points,
16 or 8 transients, a relaxation delay of 5 times T_1 (approximately
15 - 20 s), and a 4 s acquisition time. Both the 1H and 19F diffusion
experiments were processed using Bruker software with an
exponential multiplication (EM) window function and a line
broadening of 1.0 HZ. The measurements were carried out without
spinning at a set temperature of 299 K or 300 K within the NMR
probe. The diffusion values were measured on 2 mM in CD$_2$Cl$_2$,
CDC$_3$ and d$_8$-THF solutions. Cation diffusion rates were measured
using the 1H signal from the aromatic protons of BINAP and/or from
methyl protons of chelated ligand. Anion diffusion was obtained
from the 19F resonances. The error in the D values is thought to be
± 0.06. The slope of the lines, m, were obtained by plotting the
decrease in the natural logarithm of the signal intensity vs G^2 (see
section 1.3.2.3).

The diffusion coefficients reported were determined using the
diffusion coefficient of HDO in D$_2$O as a reference ($D_{\text{HDO}} = 1.9 \times 10^{-9}$
$m^2 \text{ s}^{-1}$), which afforded a slope of 2.005 x 10^{-4}. The data obtained
were used to calculate the D values of the samples, according to
All the reported D values are derived from lines that have correlation coefficient of > 0.99. The D-values can be related to the hydrodynamic radii of the molecules via the Stokes-Einstein equation (Eq. (6), see section 1.3.2) and this allows for a viscosity correction. The solvent viscosities used for the calculation of \(r_H \) were 0.414, 0.534 and 0.461 at 299K for CD\(_2\)Cl\(_2\), CDCl\(_3\) and d\(_8\) THF respectively.

NOE Measurements. The \(^1\)H,\(^1\)H NOESY NMR experiments were acquired by the standard three-pulse sequence (noesyp) using a 600 ms or 1 s relaxation delay and 600 ms of mixing time on a Bruker spectrometer at a set temperature of 298 K with phase cycling by the TPPI method. Typically, 16 transients (DS 16) were acquired into 2 K data points for each of the 512 values of \(t_1 \). A QSINE weighting function was used in each dimension prior to Fourier transformation into a 2K X 1K data matrix. The \(^1\)H,\(^19\)F HOESY NMR experiments were acquired using the standard four-pulse sequence (invhoesy) with either a 600 or 800 ms mixing time. The doubly tuned TXI probe head of the 400 MHz spectrometer was set at 298 K. Typically, 16 transients (DS 4) were acquired into 2 K data points for each of the 512 or 1 K values of \(t_1 \). A QSINE and EM (F1 and F2 dimension respectively) weighting function was used in each dimension prior to Fourier transformation into a 2K X 1K data matrix. The delay between increments was set to 1s or 2s.
[Pd(H₂O)₂(rac-BINAP)](PF₆)₂ (1b)

To a solution of PdCl₂(rac-BINAP) (100 mg, 0.125 mmol) in dry acetone (50 ml) were added water (0.045 ml, 20 eq) and AgPF₆ (70 mg, 2.5 mmol, 2.2 eq) at 25 °C. The reaction mixture was then stirred at 25 °C for 3 h. The precipitate of AgCl was filtered over Celite and the solvent was concentrated under vacuum. The crude product was obtained as a yellow solid. 1b. (Yield: 192 mg, 0.182 mol, 97%).

¹H NMR (THF-d₈, 400 MHz, 25 °C): δ 2.65 (br s, 4H), 6.6-8.3 (m, 32H); ³¹P{¹H}-NMR (THF-d₈, 161 MHz, 25 °C): δ 34.3 (s), -144 (sept, Jₚₚ = 712 Hz); ¹⁹F NMR (THF-d₈, 282 MHz, 25 °C): δ -74 (d, Jₚₚ = 712 Hz).

(ESI-MS; m/z) Pd(BINAP): 727; BINAP-PPh₂: 437; Pd(BINAP)(H₂O)₂: 763.

[Pd(μ-OH)(rac-BINAP)]₂(PF₆)₂ (2b)

To a solution of 1b (97 mg, 0.092 mmol) in dry acetone (15 ml) was added dried 4-Å molecular sieves (1-2 mm, 1 g). The reaction mixture was stirred at 25°C for 3 h. After filtration over Celite, the acetone was concentrated under vacuum. The crude product was obtained as an orange solid. 2b. (Yield: 19 mg, 0.01 mol 23 %)

Diffusion Studies

103
\[\text{[Pd}_2(\mu\cdot\text{OH})(\mu\cdot\text{NH(p-ClC}_6\text{H}_4)})(\text{rac-BINAP)}_2]\text{(CF}_3\text{SO}_3)_2 \] (3a)

To a solution of 2a (100 mg, 0.056 mmol) in THF (10 ml) was added p-chloroaniline (57 mg, 0.445 mmol). The reaction mixture was stirred at 25 °C for 3 h, during which time a clear red solution was obtained. The THF was then concentrated under vacuum. The crude solid was washed with pentane and then dried under vacuum. The product, 3a, was obtained as an orange solid. (Yield: 101 mg, 0.053 mmol, 95 %) The product was recrystallized from a THF-pentane solution.

\[\text{^1H NMR (298K, d}_8\text{-THF): -3.74 (dd, } ^3J_{\text{HP}} = 2.7 \text{ Hz, } ^3J_{\text{HP}} = 2.7 \text{ Hz, OH), 6.48-7.96 (m, 69 H); } \text{^19F-NMR (298K, d}_8\text{-THF): -78 (s, CF}_3); \text{ ^31P-NMR (298K, d}_8\text{-THF): 25.0 (dd, } ^2J_{\text{PP}} = 23.2 \text{ Hz, } ^4J_{\text{PP}} = 5.8 \text{ Hz), 25.5 (d, } ^2J_{\text{PP}} = 24.1 \text{ Hz), 26.3 (d, } ^2J_{\text{PP}} = 23.1 \text{ Hz), 27.7 (dd, } ^2J_{\text{PP}} = 24.2 \text{ Hz, } ^4J_{\text{PP}} = 5.8 \text{ Hz); } \text{^15N-NMR (213K, CD}_2\text{Cl}_2) 30.0 (\text{NH}_2\text{C}_6\text{H}_4\text{Cl}) 55.1 (\mu\cdot\text{NH}_2\text{C}_6\text{H}_4\text{Cl}) \]

(ESI-MS) M*: 1750; M* - OTf*: 1600; Pd (BINAP)(Aniline): 856; Pd(BINAP)(OH): 744; BINAP - PPh2: 437.

Chapter 2

104
To a solution of 2a (100 mg, 0.056 mmol) in THF (15 ml) was added p-Methylaniline (51.2 mg, 0.479 mmol). The reaction mixture was stirred at 25 °C for 3 h, during which time a clear red solution was obtained in THF. The THF was then concentrated under vacuum. The crude solid was washed with ether and then dried under vacuum. The product, 3b, was obtained as a red solid. Yield: 49 mg, 0.026 mmol, 47 %. Red needles were obtained from recrystallisation from a THF-ether solution.

1H-NMR (298K, d$_8$-THF): -3.86 (dd, 3J$_{HP} = 2.9$ Hz, 3J$_{HP} = 2.9$ Hz, OH), 6.41-7.96 (m, 69 H); 19F-NMR (298K, d$_8$-THF): -78 (s, CF$_3$); 31P-NMR (298K, d$_8$-THF): 24.6 (dd, 4J$_{PP} = 23.5$ Hz, 4J$_{PP} = 5.8$ Hz), 25.1 (d, 2J$_{PP} = 26.3$ Hz), 26.5 (d, 2J$_{PP} = 23.6$ Hz), 27.7 (dd, 2J$_{PP} = 26.1$ Hz, 4J$_{PP} = 5.8$ Hz).

To a solution of 2a (100 mg, 0.056 mmol) in THF (10 ml) was added p-Methoxyaniline (60 mg, 0.488 mmol). The reaction mixture was stirred at 25 °C for 3 h, during which time a dark red suspension was obtained in THF. The THF was then concentrated under vacuum. The crude solid was washed with ether and then dried under vacuum. The product, 3c, was obtained as a dark red solid. Yield: 103 mg, 0.054 mmol, 97 %

1H-NMR (298K, d₈-THF): -3.97 (dd, 3J_Hp = 2.7 Hz, 3J_Hp = 2.7 Hz, OH), 6.43-8.04 (m, 6H); **19F-NMR (298 K, d₈-THF)**: -78 (s, CF₃); **31P-NMR (298K, d₈-THF)**: 24.3 (dd, 2J_PP = 25.4 Hz, 4J_PP = 5.7 Hz), 25.1 (d, 2J_PP = 27.6 Hz), 26.4 (d, 2J_PP = 25.7 Hz), 27.6 (dd, 2J_PP = 27.2 Hz, 4J_PP = 5.7 Hz); **15N-NMR (213K, CD₂Cl₂)** 28.6 (NH₂C₆H₄Cl), 52.5 (μ-NHC₆H₄Cl)

[Pd(μ-O₂PF₂)(rac-BINAP)]₂(PF₆)₂ (4)

To 1 equiv of [PdCl₂(rac-BINAP)] (46.5 mg, 800.01 g mol⁻¹, 58.1 x 10⁻³ mol) were added 2 equiv
of the AgPF$_6$ (30.8 6mg, 252.86 g mol$^{-1}$) in wet acetone. The reaction mixture was stirred at 25 °C for 3 h. After this time, the yellow solution was evaporated under reduced pressure and dried under vacuum to afford the product, 4, as a yellow powder. (Yield: 48 mg, 0.025 mol, 84%).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): 6.7-7.8 (m, 64H); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 33.3 (s), -15.5 (t, $^3J_{PF} = 962$ Hz), -144.1 (sept, $^3J_{PF} = 707$ Hz); 19F NMR (CD$_2$Cl$_2$, 282 MHz, 25 °C): δ -73 (d, $^3J_{PF} = 707$ Hz), -83 (d, $^3J_{PF} = 962$ Hz).

(ESI-MS) M^+ 930, [Pd(μ-O$_2$PF$_2$)(BINAP)]$_2$

CHN % {found (calculated)} C {54.09 (54.20)} H {3.34(3.31)}

$^{[Pd(rac-BINAP)(C_{11}H_{10}NO_2)](CF_3SO_3)}$ (12a)

To 1 equiv of [Pd(μ-OH)(rac-BINAP)]$_2$[CF$_3$SO$_3$]$_2$ (99.5 mg, 1790.36 g mol$^{-1}$, 55.6 x 10$^{-3}$ mol) were added 2 equiv of the C$_{11}$H$_{11}$NO$_2$ (21 mg, 189 g mol$^{-1}$, 111.1 x 10$^{-3}$ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford [C$_{55}$H$_{52}$P$_2$O$_3$NF$_3$PdS] 12a. (Yield: 100 mg, 0.094 mol 84%).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 1.65 (d, 3H, H1, $J = 6.5$ Hz), 5.7-6.0 (m, 2H, H2/3), 6.7-7.9 (m, 37H); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 33.5 (d, AB spin, $J = 32$ Hz); 19F NMR (CD$_2$Cl$_2$, Diffusion Studies

107
282 MHz, 25 °C): δ -78.8 (s); 13C{1H}-NMR (CD2Cl2, 100 MHz, 25 °C): δ 18.2 (s, C1), 128.1 (s, C8), 128.8 (s, C9), 129.6 (s, C3), 130.1 (s, C7), 135.4 (s, C6), 146.5 (s, C2), 173.3 (d, C5, JCN = 3 Hz), 174.1 (d, C4, JCN = 3 Hz), 120-180 (BINAP).

(ESI-MS) M+ 916.2, M-C11H10NO2]+ 729.0

CHN%{found(calculated)}[Pd(rac-BINAP)(C11H10NO2)][CF3SO3].H2O C {62.07 (61.95)}H {4.10 (4.03)} N {1.29 (1.29)}

[Pd(rac-BINAP)(C11H10NO2)](BF4) (12b)

To 1 equiv of [Pd(μ-OH)(rac-BINAP)]2[BF4]2 (33.1 mg, 1665.84 g mol⁻¹, 19.8 x 10⁻³ mol) were added 2.1 equiv of the C11H11NO2 (6.7 mg, 189 g mol⁻¹, 35.4 x 10⁻³ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford [C55H42BF4NO2P2Pd] 12b. (Yield: 31 mg, 87 %).

1H NMR (CD2Cl2, 400 MHz, 25 °C): δ 1.65 (d, 3H, H1, J = 6.8 Hz), 5.7-6.0 (m, 2H, H2/3), 6.7-7.9 (m, 37H); 31P{1H}-NMR (CD2Cl2, 161 MHz, 25 °C): δ 33.5 (d, AB spin, J = 32 Hz); 19F NMR (CD2Cl2, 282 MHz, 25 °C): δ -153.9 (s); 13C{1H}-NMR (CD2Cl2, 100 MHz, 25 °C): δ 18.0 (s, C1), 128.1 (s, C8), 128.9 (s, C9), 129.6 (s, C3), 130.1 (s, C7), 135.4 (s, C6), 146.5 (s, C2), 173.3 (d, C5, JCN = 3 Hz), 174.0 (d, C4, JCN = 3 Hz), 120-180 (BINAP).
To 1 equiv of [Pd(μ-OH)(rac-BINAP)]_2[CF_3SO_3]_2 (2.8 mg, 1790.36 g mol^{-1}, 23.9 x 10^{-3} mol) were added 2 equiv of the C_{12}H_{13}N_3 (10.6 mg, 219.2 g mol^{-1}, 48.3 x 10^{-3} mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford 13a. (Yield: 45 mg, 0.0410 mol, 85%).

^{1}H NMR (CD_2Cl_2, 400 MHz, 25 °C): δ 1.63 (d, 3H, H1 J = 6.0 Hz), 3.8 (s, 3H, H10), 5.7-5.9 (m, 2H, H2/3), 6.6-7.9 (m, 36H); ^31P{^1}H-NMR (CD_2Cl_2, 161 MHz, 25 °C): δ 33.5 (d, AB spin, ^2J_{PP} = 33 Hz); ^19F NMR (CD_2Cl_2, 282 MHz, 25 °C): δ -78.8 (s). ^13C{^1}H-NMR (CD_2Cl_2, 100 MHz, 25 °C): δ 18.2 (s, C1), 55.6 (s, C10), 113.4 (s, C8), 127.9 (s, C6), 129.6 (s, C3), 132.5 (s, C7), 135.4 (s, C6), 145.9 (s, C2), 164.7 (s, C9), 172.8 (d, C5), 173.2 (d, C4, ^1J_{CH} = 3 Hz), 120-180 (BINAP).
To 1 equiv of $[\text{Pd(\mu-OH)(rac-BINAP)}]_2[\text{BF}_4]$ (51 mg, 1665.84 g mol$^{-1}$, 30.6 x 10$^{-3}$ mol) were added 2 equiv of the $\text{C}_{12}\text{H}_{13}\text{NO}_3$ (13.4 mg, 219.2 g mol$^{-1}$, 61.1 x 10$^{-3}$ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford 13b. (Yield: 55 mg, 0.0410 mol, 87 %).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 1.63 (d, 3H, H1 J = 6.8 Hz), 3.8 (s, 3H, H10), 5.7-5.9 (m, 2H, H2/3), 6.6-7.9 (m, 36H); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 33.5 (d, AB spin, 2J$_{PP}$ = 33 Hz); 19F NMR (CD$_2$Cl$_2$, 282 MHz, 25 °C): δ -153.9 (s); 13C{1H}-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 17.9 (s, C1), 55.8(s, C10), 113.4 (s, C8), 127.9 (s, C6), 129.6 (s, C3), 132.5(s, C7), 135.4 (s, C6), 145.8 (s, C2), 164.2 (s, C9), 172.8 (d, C5), 173.2 (d, C4, 1J$_{CN}$ = 3 Hz), 120-180 (BINAP).

(ESI-MS) M$^+$ 946.3
[Pd(rac-BINAP)(C_{14}H_{16}NO_{2})](CF_{3}SO_{3}) (14a)

To 1 equiv of [Pd(\mu-OH)(rac-BINAP)]_{2}[CF_{3}SO_{3}]_{2} (35 mg, 1790.36 g mol\(^{-1}\), 19.5 \times 10^{-3} mol) were added 3 equiv of the C_{14}H_{17}NO_{2} (13.6 mg, 231.13 g mol\(^{-1}\), 58.8 \times 10^{-3} mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford 14a. (Yield: 58 mg, 89 %).

\(^{1}H\) NMR (CD_{2}Cl_{2}, 400 MHz, 25 °C): \(\delta\) 0.81 (t, 6H, J = 5.2 Hz, H\textsubscript{1,3}), 1.53 (m, 1H, H2), 1.9 (m, 2H, H4), 5.3-6.0 (m, 2H, H5/6), 6.7-7.8 (m, 37H); \(^{31}P\{^{1}H\}-\text{NMR}\) (CD_{2}Cl_{2}, 161 MHz, 25 °C): \(\delta\) 33.6 (d, \(^{2}J_{PP} = 33\) Hz), 34.7 (d, \(^{2}J_{PP} = 33\) Hz); \(^{19}F\) NMR (CD_{2}Cl_{2}, 282 MHz, 25 °C): \(\delta\) -79.1 (s); \(^{13}C\{^{1}H\}-\text{NMR}\) (CD_{2}Cl_{2}, 100 MHz, 25 °C): \(\delta\) 22.4 (s, C3), 22.6 (s, C1), 28.0 (s, C4), 41.9 (s, C2), 173.3 (s, C8), 174.0 (s, C7) 120-180 (BINAP).

(ESI-MS) \(M^{+}\) 860, M-C_{14}H_{16}NO_{2}\]^{+} 729.0

[Pd(rac-BINAP)(C_{14}H_{16}NO_{2})][BF_{4}] (14b)

To 1 equiv of [Pd(\mu-OH)(rac-BINAP)]_{2}[BF_{4}]_{2} (52.3 mg, 1665.84 g mol\(^{-1}\), 31.4 \times 10^{-3} mol) were added 3 equiv of the C_{14}H_{17}NO_{2} (21.8 mg 231.13 g mol\(^{-1}\), 94.3 \times 10^{-3} mol) in dichloromethane. The
reaction mixture was stirred at 25 °C for 3h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford 14b. (Yield: 54 mg, 82 %).

\[^1\text{H} \text{NMR}\ (\text{CD}_2\text{Cl}_2, \ 400 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ 0.81 \ (t, \ 6\text{H}, \ H 1/3, \ J = 5.2 \text{ Hz}), \ 1.53 \ (m, \ 1\text{H}, \ H2), \ 1.9 \ (m, \ 2\text{H}, \ H4), \ 5.3-6.0 \ (m, \ 2\text{H}, \ H 5/6), \ 6.7-7.8 \ (m, \ 37\text{H}); \ ^{31}\text{P}\{^1\text{H}\}\text{-NMR}\ (\text{CD}_2\text{Cl}_2, \ 161 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ 33.6 \ (d, \ \text{AB spin}, \ ^{2}J_{pp} = 32 \text{ Hz}); \ ^{19}\text{F} \text{NMR}\ (\text{CD}_2\text{Cl}_2, \ 282 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ -154.0 \ (s); \ ^{13}\text{C}\{^1\text{H}\}\text{-NMR}\ (\text{CD}_2\text{Cl}_2, \ 100 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ 22.4 \ (s, \ C3), \ 22.6 \ (s, \ C1), \ 28.0 \ (s, \ C4), \ 41.9 \ (s, \ C2), \ 173.3 \ (s, \ C8), \ 174.0 \ (s, \ C7) \ 120-180 \ (\text{BINAP}).

(ESI-MS) M^+ \ 871.2, \ M-\text{C}_{14}\text{H}_{16}\text{NO}_2]^+ \ 729.0

\[^1\text{H} \text{NMR}\ (\text{CD}_2\text{Cl}_2, \ 400 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ 1.58 \ (s, \ 6\text{H}, \ Hl,6), \ 1.8 \ (s, \ 3\text{H}, \ H4), \ 6.7-7.8 \ (m, \ 32\text{H}); \ ^{31}\text{P}\{^1\text{H}\}\text{-NMR}\ (\text{CD}_2\text{Cl}_2, \ 161 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ 31.9 \ (s); \ ^{19}\text{F} \text{NMR}\ (\text{CD}_2\text{Cl}_2, \ 282 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ -78.8 \ (s); \ ^{13}\text{C}\{^1\text{H}\}\text{-NMR}\ (\text{CD}_2\text{Cl}_2, \ 100 \text{ MHz}, \ 25 ^\circ\text{C}): \ \delta \ 16.0 \ (s, \ C4), \ 26.9 \ (t, \ C1/C6, \ J_{cp} = 5\text{Hz}), \ 104.3 \ (s, \ C3), \ 185.5 \ (s, \ C2/C5), \ 120-180 \ (\text{BINAP}).

Chapter 2

112
(ESI-MS) M⁺ 841.1, M-C₆H₉O₂]⁺ 729.0.

CHN % {found (calculated)} [Pd(rac-BINAP)(C₆H₉O₂)][CF₃SO₃].H₂O
C 61.73 (60.86) H 4.27 (4.23)

[Pd(rac-BINAP)(C₆H₉O₂)](BF₄) (15b)

To 1 equiv of [Pd(μ-OH)(rac-BINAP)]₂[BF₄]₂ (54.8 mg, 1665.84 g mol⁻¹, 27.9 x 10⁻³ mol) were added 2 equivalents of the C₆H₉O₂ (7.7 µl, 144.14 g mol⁻¹, 0.981 g cm⁻³) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was reduced under vacuum. The resulting residue was washed with diethyl ether to afford 15b. (Yield: 50 mg, 0.053 mol, 96 %).

¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): δ 1.57 (s, 6H, H 1/6), 1.82 (s, 3H, H4), 6.7-7.8 (m, 32H); ³¹P{¹H}-NMR (CD₂Cl₂, 161 MHz, 25 °C): δ 31.9 (s); ¹⁹F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ -154 (s); ¹³C{¹H}-NMR (CD₂Cl₂, 100 MHz, 25 °C): δ 15.9 (s, C4), 26.6 (t, C1/C6, JCP = 5 Hz), 104.3 (s, C3), 185.3 (s, C2/C5), 120-180 (BINAP).

MS (ESI; m/z) M⁺ 840.9, M-C₆H₉O₂]⁺ 729.0

CHN % {found (calculated)} [Pd(rac-BINAP)(C₆H₉O₂)][BF₄] C 63.92 (64.57) H 4.60 (4.55)

Diffusion Studies
113
[Pd(rac-BINAP)(C₇H₁₃O₃)](CF₃SO₃) (16a)

To 1 equiv of [Pd(μ-OH)(rac-BINAP)]₂[CF₃SO₃]₂ (40.7 mg, 1790.36 g mol⁻¹, 24.4 x 10⁻³ mol) were added 2 equiv of the C₇H₁₂O₃ (7.0 μl, 144.17 g mol⁻¹, 1.019 g cm⁻³) in dichloromethane. The reaction mixture was stirred at 25 °C for 3h. The resulting yellow solution was reduced in vacuo. The resulting residue was washed with Et₂O to afford 16a. (Yield: 42 mg, 0.045 mol, 89 %).

¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): δ 0.75 (t, 3H, H7, J = 7.1 Hz), 1.47 (s, 3H, H1), 1.7 (s, 3H, H4), 2.7-2.9 (m, 2H, H6), 6.7-7.8 (m, 32H); ³¹P{¹H}-NMR (CD₂Cl₂, 161 MHz, 25 °C): δ 30.4 ppm (d, 2J_pp = 38 Hz), 34.7 (d, 2J_pp = 38 Hz); ¹⁹F NMR (CD₂Cl₂, 282 MHz, 25 °C): δ -154 (s); ¹³C{¹H}-NMR (CD₂Cl₂, 100 MHz, 25 °C): δ 13.0 (s, C4), 14.3 (s, C7), 25.8 (s, C1), 60.9 (s, C6), 90.5 (s, C3), 169.8 (s, C2), 184.2 (s, C5), 120-180 ppm (BINAP).

MS (ESI; m/z) M⁺ 871.2, M-C₇H₁₃O₃⁺ 729.0

CHN % {found (calculated)} [Pd(rac-BINAP)(C₇H₁₃O₃)][CF₃SO₃].H₂O C {60.10 (60.02)} H {4.49 (4.46)}

[Pd(rac-BINAP)(C₇H₁₃O₃)][BF₄] (16b)

To 1 equiv of [Pd(μ-OH)(rac-BINAP)]₂[BF₄]₂ (67.0 mg, 1665.84 g mol⁻¹, 40.2 x 10⁻³ mol) were added 2 equiv of the C₇H₁₂O₃ (11.4 μl, 144.17 g
mol\(^{-1}\), 1.019 g cm\(^{-3}\)) in dichloromethane. The reaction mixture was stirred at 25 °C for 3h. The resulting yellow solution was reduced in vacuo. The resulting residue was washed with Et\(_2\)O to afford 16b. (Yield: 47 mg, 0.045 mol, 86 %).

\(^1\)H NMR (CD\(_2\)Cl\(_2\), 400 MHz, 25 °C): \(\delta\) 0.75 (t, 3H, H7, \(J = 7.1\) Hz), 1.47 (s, 3H, H1), 1.7 (s, 3H, H4), 2.7-2.9 (m, 2H, H6), 6.7-7.8 (m, 32H); \(^3\)P\(^{\{1\}H\}\)-NMR (CD\(_2\)Cl\(_2\), 161 MHz, 25 °C): \(\delta\) 30.4 (d, \(^2\)J\(_{PP}\) = 38 Hz), 34.7 (d, \(^2\)J\(_{PP}\) = 38 Hz); \(^1\)F NMR (CD\(_2\)Cl\(_2\), 282 MHz, 25 °C): \(\delta\) -154 (s); \(^13\)C\(^{\{1\}H\}\)-NMR (CD\(_2\)Cl\(_2\), 100 MHz, 25 °C): \(\delta\) 13.0 (s, C4), 14.3 (s, C7), 25.8 (s, C1), 60.9 (s, C6), 90.5 (s, C3), 169.9 (s, C2), 184.0 (s, C5), 120-180 (BINAP)

MS (ESI; m/z) M\(^+\) 871.2, M-C\(_7\)H\(_{11}\)O\(_3\)\(^+\) 729.0

\([\text{Pd}(\text{rac-BINAP})(\text{C}_{15}\text{H}_{14}\text{N})](\text{CF}_3\text{SO}_3)\) (20a)

\[\text{CF}_3\text{SO}_3\] To 1 equiv of [Pd(\(\mu-\Cl)\text{(C}_{15}\text{H}_{14}\text{N})]\(_2\) (33.4 mg, 700.3 g mol\(^{-1}\), 47.7 x 10\(^{-3}\) mol) were added 2 equiv of the rac-BINAP (59.4 mg, 622.67 g mol\(^{-1}\), 95.4 x 10\(^{-3}\) mol) and 2 equiv of AgOTf (24.5 mg, 256.94 g mol\(^{-1}\), 95.4 x 10\(^{-3}\) mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C\(_{60}\)H\(_{46}\)F\(_3\)NO\(_3\)\(_2\)P\(_2\)PdS] 20a. (Yield: 90 mg, 0.083 mol 87 %).

\(^1\)H NMR (CD\(_2\)Cl\(_2\), 400 MHz, 25 °C): \(\delta\) 1.62 (s, 3H), 2.07 (s, 3H), 6.15-7.78 (m, Aromatic), 8.06 (dd, 1H, \(^4\)J\(_{HP-tras}\) = 6.4 Hz, \(^4\)J\(_{HP-cis}\) =

Diffusion Studies

115
13P-1H-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 13.5 (d, AB spin, 2J$_{PP} = 47$ Hz), δ 41.1 (d, AB spin, 2J$_{PP} = 47$ Hz); 19F NMR (CD$_2$Cl$_2$, 376.5 MHz, 25 °C): δ -79.3 (s); 13C-1H-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 20.6 (s, CH$_3$), δ 20.8 (s, Me), δ 115.4-178.0 (Aromatic), 180.0 (t, =CH, 1J$_{CP} = 4.2$ Hz).

MS (MALDI-TOF; m/z) M$^+$ 938.2

CHN % {found (calculated)} [Pd(rac-BINAP)(C$_{15}$H$_{14}$N)][CF$_3$SO$_3$]H$_2$O

C {65.16 (65.25)} H {4.35 (4.38)} N {1.27 (1.27)}

$^{[\text{Pd(rac-BINAP)}(\text{C}_{15}\text{H}_{14}\text{N})]}(\text{BARF})$ (20b)

To 1 equiv of [Pd(μ-Cl)(C$_{15}$H$_{14}$N)]$_2$
(21.5 mg, 700.3 g mol$^{-1}$, 30.7 x 10$^{-3}$ mol) were added 2 equiv of the rac-BINAP (38.2 mg, 622.67 g mol$^{-1}$, 61.4 x 10$^{-3}$ mol) and 2 equiv of NaBARF$^\text{5}$ (54.4 mg, 886.21 g mol$^{-1}$, 61.4 x 10$^{-3}$ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C$_{91}$H$_{58}$BF$_{24}$NP$_2$Pd] 20b (Yield: 104 mg, 0.0578 mol, 94 %).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 2.06 (s, 3H), 2.17 (s, 3H), 6.15-8.30 (m, Aromatic), 8.05 (d, 1H, 4J$_{H-\text{trans}}$ = 6.9 Hz); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 13.4 (d, AB spin, 2J$_{PP} = 48$ Hz), δ 41.1 (d, AB spin, 2J$_{PP} = 48$ Hz); 8F NMR (CD$_2$Cl$_2$, 376.5 MHz, 25 °C): δ -63.3 (s); 13C{1H}-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 20.5 (s,
CH$_3$, δ 20.8 (s, Me), δ 115.4-178.0 (Aromatic), 179.9 (t, 1J$_{CP}$ = 3.5 Hz).

MS (MALDI-TOF; m/z) M$^+$ 938.2

CHN % (found (calculated)) [Pd(rac-BINAP)(C$_{15}$H$_{14}$N)][BAR$_{F}$] C {60.98 (60.70)} H {3.43 (3.25)} N {0.79 (0.78)}

[Pd (rac-BINAP)(C$_{14}$H$_{11}$ClN)](CF$_3$SO$_3$) (21a)

To 1 equiv of [Pd(μ-Cl)(C$_{14}$H$_{11}$ClN)$_2$ (28.3 mg, 741.14 g mol$^{-1}$, 38.2 x 10$^{-3}$ mol) were added 2 equiv of the rac-BINAP (47.5 mg, 622.67 g mol$^{-1}$, 76.4 x 10$^{-3}$ mol) and 2 equiv of AgOTf (19.6 mg, 256.94 g mol$^{-1}$, 76.4 x 10$^{-3}$ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C$_{59}$H$_{43}$ClF$_3$N$_3$P$_2$PdS] 21a. (Yield: 80 mg, 0.072 mol 94%).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): 2.07 (s, 3H), 6.15-7.78 (m, Aromatic), 8.08 (dd, 1H, 4J$_{HP-trans}$ = 6.4 Hz, 4J$_{HP-cis}$ = 1.0 Hz); 31P(1H)-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 13.7 (d, AB spin, 2J$_{PP}$ = 47 Hz), δ 40.6 (d, AB spin, 2J$_{PP}$ = 47 Hz); 19F NMR (CD$_2$Cl$_2$, 376.5 MHz, 25 °C): δ -79.3 (s); 13C(1H)-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 20.8 (s, CH$_3$), δ 115.4-178.0 (Aromatic), 178.3 (t, $=CH$, 1J$_{CP}$ = 4.1 Hz).

MS (MALDI-TOF; m/z) M$^+$ 958.2

Diffusion Studies

117
To 1 equiv of [Pd(μ-Cl)(C$_{14}$H$_{11}$ClIN)$_2$] (19.6 mg, 741.14 g mol$^{-1}$, 30.7 x 10$^{-3}$ mol) were added 2 equiv of the rac-BINAP (32.9 mg, 622.67 g mol$^{-1}$, 53.0 x 10$^{-3}$ mol) and 2 equiv of NaBArF (46.8 mg, 886.21 g mol$^{-1}$, 53.0 x 10$^{-3}$ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C$_{90}$H$_{85}$BCIF$_{24}$NP$_2$Pd] 21b (Yield: 91 mg, 0.0499 mol, 94 %).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 2.07 (s, 3H), 6.15-8.30 (m, Aromatic), 8.06 (d, 1H, 4J$_{HP}$trans = 6.0 Hz); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 13.7 (d, AB spin, 2J$_{PP}$ = 47 Hz), δ 40.8 (d, AB spin, 2J$_{PP}$ = 47 Hz); δ 19F NMR (CD$_2$Cl$_2$, 376.5 MHz, 25 °C): δ -63.3 (s); 13C{1H}-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 20.8 (s, CH$_3$), δ 115.4-178.0 (Aromatic), 178.8 (t, =CH 1J$_{CP}$ = 4.0 Hz).

MS (MALDI-TOF; m/z) M$^+$ 958.2

CHN % {found (calculated)} [Pd(rac-BINAP)(C$_{14}$H$_{11}$ClIN)][BArF] C {59.38 (59.36)} H {3.25 (3.04)} N {0.82 (0.77)}
[Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})](CF_{3}SO_{3}) (22a)

To 1 equiv of [Pd(μ-Cl)(C_{14}H_{11}N_{2}O_{2})]_2 (29.3 mg, 762.24 g mol⁻¹, 38.4 x 10⁻³ mol) were added 2 equiv of the rac-BINAP (47.9 mg, 622.67 g mol⁻¹, 76.9 x 10⁻³ mol) and 2 equiv of AgOTf (19.8 mg, 256.94 g mol⁻¹, 76.9 x 10⁻³ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C_{59}H_{43}F_{3}N_{2}O_{5}P_{2}PdS] 22a. (Yield: 79 mg, 0.071 mol 92 %).

¹H NMR (CD₂Cl₂, 400 MHz, 25 °C): 2.09 (s, 3H), 6.15-8.30 (m, Aromatic), 8.26 (dd, 4J_{HP-tras} = 6.4 Hz); ³¹P{¹H}-NMR (CD₂Cl₂, 161 MHz, 25 °C): δ 14.1 (d, AB spin, ²J_{PP} = 47 Hz), δ 40.1 (d, AB spin, ²J_{PP} = 47 Hz); ¹⁹F NMR (CD₂Cl₂, 376.5 MHz, 25 °C): δ -79.3 (s); ¹³C{¹H}-NMR (CD₂Cl₂, 100 MHz, 25 °C): δ 20.9 (s, CH₃), δ 115.4-178.0 (Aromatic), 178.6 (t, =CH, ¹J_{CP} = 3.7 Hz).

MS (MALDI-TOF; m/z) M⁺ 969.1

CHN % {found (calculated)} [Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][CF_{3}SO_{3}]
C {62.89 (63.42)} H {4.12 (3.88)} N {2.51 (2.51)}
[Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][BArF] (22b)

To 1 equiv of [Pd(μ-
Cl)(C_{14}H_{11}N_{2}O_{2})]_2 (22.0 mg, 762.24 g mol\(^{-1}\), 28.9 \times 10^{-3} \text{ mol}) were added 2 equiv of the rac-
BINAP (35.9 mg, 622.67 g mol\(^{-1}\), 57.7 \times 10^{-3} \text{ mol}) and 2 equiv of
NaBArF (51.2 mg, 886.21 g mol\(^{-1}\), 57.7 \times 10^{-3} \text{ mol}) in dichloromethane. The reaction mixture was
stirred at 25 °C for 3 h. The resulting yellow solution was separated
from the solid and reduced under vacuum. [C_{90}H_{55}BF_{24}N_{2}O_{2}P_{2}Pd]
22b (Yield: 100 mg, 0.0546 mol, 94 %).

\(^1\text{H} \text{ NMR (CD}_2\text{Cl}_2, 400 \text{ MHz, 25 °C):} \delta \ 2.08 \ (s, \ 3\text{H}), \ 6.15-8.30 \ (m, \ \text{Aromatic}), \ 8.23 \ (d, \ 1\text{H}, ^4\text{J}_{\text{HP-trans}} = 6.8 \text{ Hz}, ^4\text{J}_{\text{HP-cis}} = 1.2 \text{ Hz}); \ ^{31}\text{P}^{\{^1\text{H}\}}-\text{NMR (CD}_2\text{Cl}_2, 161 \text{ MHz, 25 °C):} \delta \ 14.1 \ (d, \ \text{AB spin,} \ ^2\text{J}_{\text{pp}} = 47 \text{ Hz}), \delta \ 40.1 \ (d, \ \text{AB spin,} \ ^2\text{J}_{\text{pp}} = 47 \text{ Hz}); \delta \ ^{19}\text{F} \text{ NMR (CD}_2\text{Cl}_2, 282 \text{ MHz, 25 °C):} \delta \ -63.3 \ (s); \ ^{13}\text{C}^{\{^1\text{H}\}}-\text{NMR (CD}_2\text{Cl}_2, 100 \text{ MHz, 25 °C):} \delta \ 20.8 \ (s, \ \text{CH}_3), \delta \ 115.4-178.0 \ (\text{Aromatic}), \ 178.4 \ (t, \ =\text{CH} \ ^1\text{J}_{\text{cp}} = 3.9 \text{ Hz}).

\text{MS (MALDI-TOF; m/z) M}^+ \ 969.2

\text{CHN % \{found (calculated)} [Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][BArF]} \text{ C} \{58.92 \ (59.02)} \text{ H} \{3.31 \ (3.03)} \text{ N} \{1.57 \ (1.53)}
[Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][PF_6] (22c)

To 1 equiv of [Pd(μ-Cl)(C_{14}H_{11}N_{2}O_{2})]_2 (19.6 mg, 732.36 g mol⁻¹, 25.7 x 10⁻³ mol) were added 2 equiv of the rac-BINAP (32.0 mg, 622.67 g mol⁻¹, 51.4 x 10⁻³ mol) and 2 equiv of NH_4PF_6 (8.4 mg, 163 g mol⁻¹, 51.4 x 10⁻³ mol) in acetone. The reaction mixture was stirred at 25 °C for 2 h. Water was then added and the mixture stirred for a further 1 h. The resulting precipitate was filtered off and dried under vacuum. [C_{58}H_{43}F_{6}N_{2}O_{2}P_{3}Pd] 22c (Yield: 51 mg, 0.0458 mol, 89%).

^1H NMR (CDCl₃, 400 MHz, 25 °C): δ 2.1 (s, 3H), 6.30-8.25 (m, Aromatic), 8.25 (d, 1H, ^4J_{HP-tras} = 6.8 Hz); ^31P{^1H}-NMR (CDCl₃, 161 MHz, 25 °C): δ 14.1 (d, AB spin, ^2J_{PP} = 46 Hz), δ 40.1 (d, AB spin, ^2J_{PP} = 46 Hz), δ -143.2 (sep, ^1J_{PP} = 713 Hz); ^19F NMR (CDCl₃, 376.5 MHz, 25 °C): δ -73.8 (d, ^3J_{FP} = 713 Hz); ^13C{^1H}-NMR (CDCl₃, 100 MHz, 25 °C): δ 20.8 (s, CH₃), δ 115.4-178.0 (Aromatic), 178.5 (t, =CH, ^1J_{CP} = 3.9 Hz).

MS (MALDI-TOF; m/z) M⁺ 969.1

CHN % {found (calculated)} [Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][PF_6] C {62.28 (62.57)} H {3.97 (3.89)} N {2.48 (2.52)}
[Pd(rac-BINAP)(C_{15}H_{14}NO)](CF_{3}SO_{3})(23a).

To 1 equiv of [Pd(\mu-Cl)(C_{15}H_{14}NO)]_{2} (17.4 mg, 732.3 g mol\(^{-1}\), 24.0 x 10\(^{-3}\) mol) were added 2 equiv of the rac-BINAP (29.6 mg, 622.67 g mol\(^{-1}\), 48.0 x 10\(^{-3}\) mol) and 2 equiv of AgOTf (12.3 mg, 256.94 g mol\(^{-1}\), 48.0 x 10\(^{-3}\) mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C_{6}H_{4}F_{3}NO_{4}P_{2}Pd] 23a. (Yield: 54 mg, 0.049 mol 98 %).

\(^{1}\)H NMR (CDCl\(_{3}\), 400 MHz, 25 °C): \(\delta\) 2.03 (s, 3H), 3.71 (s, 3H), 6.15-7.78 (m, Aromatic), 8.07 (d, 1H, \(^4\)J\(_{HP-tras}\) = 6.4 Hz); \(^{31}\)P\(^{1}\)H\)-NMR (CDCl\(_{3}\), 161 MHz, 25 °C): \(\delta\) 13.6 (d, AB spin, \(^3\)J\(_{PP}\) = 47 Hz), \(\delta\) 41.2 (d, AB spin, \(^3\)J\(_{PP}\) = 47 Hz), \(\delta\) -142.9 (sep, \(^1\)J\(_{PF}\) = 713 Hz); \(^{19}\)F NMR (CDCl\(_{3}\), 376.5 MHz, 25 °C): \(\delta\) -73.8 (d, \(^{1}\)J\(_{FP}\) = 713 Hz); \(^{13}\)C\(^{1}\)H\)-NMR (CDCl\(_{3}\), 100 MHz, 25 °C): \(\delta\) 21.4 (s, CH\(_3\)), \(\delta\) 55.8(s, OMe), \(\delta\) 115.4-178.0 (Aromatic), 180.0 (t, =CH, \(^{1}\)J\(_{CP}\) = 4.1 Hz).

MS (MALDI-TOF; m/z) M\(^{+}\) 954.2

[Page 122]

[Pd(rac-BINAP)(C_{15}H_{14}NO)](BAr\(^{\text{F}}\)) (23b)

To 1 equiv of [Pd(\mu-Cl)(C_{15}H_{14}NO)]_{2} (21.7 mg, 732.36 g mol\(^{-1}\), 29.6 x 10\(^{-3}\) mol) were added 2 equiv of the rac-BINAP (36.9 mg, 622.67 g mol\(^{-1}\), 59.3 x 10\(^{-3}\) mol) and 2 equiv of
NaBARf (52.5 mg, 886.21 g mol⁻¹, 59.3 x 10⁻³ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C₉₁H₅₈BF₂₄NOP₂Pd] 23b (Yield: 100 mg, 0.055 mol, 92 %).

¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 2.03 (s, 3H), 3.70 (s, 3H) 6.15-7.78 (m, Aromatic), 7.95 (d, 1H, ⁴J₆₇₈⁻₆₄ = 6.4 Hz); ³¹P{¹H}-NMR (CDCl₃, 161 MHz, 25 °C): δ 13.4 (d, AB spin, ⁴J₉₈ = 47 Hz), δ 41.2 (d, AB spin, ⁴J₉₈ = 47 Hz); δ ¹⁹F NMR (CDCl₃, 376.5 MHz, 25 °C): δ -62.4 (s); ¹³C{¹H}-NMR (CDCl₃, 100 MHz, 25 °C): δ 21.4 (s, CH₃), δ 55.8(s, OMe), δ 115.4-178.0 (Aromatic), 180.0 (t, ¹J₁₇ = 4.0 Hz).

MS (MALDI-TOF; m/z) M⁺ 954.2

CHN % {found (calculated)} [Pd(rac-BINAP)(C₁₅H₁₄NO)][BARf] C {60.17 (60.29)} H {3.22 (3.38)} N {0.77 (0.78)}

[Pd(rac-BINAP)(C₁₅H₁₄NO)](PF₆) (23c)

To 1 equiv of [Pd(μ-Cl)(C₁₅H₁₄NO)]₂ (18.3 mg, 732.36 g mol⁻¹, 25.0 x 10⁻³ mol) were added 2 equiv of the rac-BINAP (31.1 mg, 622.67 g mol⁻¹, 50.0 x 10⁻³ mol) and 2 equiv of NH₄PF₆ (8.15 mg, 163 g mol⁻¹, 50.0 x 10⁻³ mol) in acetone. The reaction mixture was stirred at 25 °C for 2 h. Water was then added and the mixture stirred for a further 1h. The
resulting precipitate was filtered off and dried under vacuum.
[C_{59}H_{46}F_{6}NOP_{3}Pd] 23c (Yield: 44 mg, 0.044 mol, 80 %).

\[^1\text{H NMR (CDCl}_3, 400 MHz, 25 ^\circ\text{C}): \delta 2.03 (s, 3H), 3.71 (s, 3H), 6.15-7.78 (m, Aromatic), 8.07 (d, 1H, \text{ } ^4J_{HH-\text{trans}} = 6.4 \text{ Hz}); \]
\[^{31}\text{P}[^1\text{H}]-\text{NMR (CDCl}_3, 161 MHz, 25 ^\circ\text{C}): \delta 13.6 (d, AB spin, \text{ } ^2J_{PP} = 47 \text{ Hz}), \delta 41.2 (d, AB spin, \text{ } ^2J_{PP} = 47 \text{ Hz}), \delta -142.9 (\text{sep, } ^1J_{PF} = 713 \text{ Hz}); \]
\[^{19}\text{F NMR (CDCl}_3, 376.5 MHz, 25 ^\circ\text{C}): \delta -73.8 (d, J_{FP} = 713 \text{ Hz}); \]
\[^{13}\text{C}[^1\text{H}]-\text{NMR (CDCl}_3, 100 MHz, 25 ^\circ\text{C}): \delta 21.4 (s, CH_3), \delta 55.8 (s, OMe), \delta 115.4-178.0 (\text{Aromatic}), 180.0 (t, =CH, \text{ } ^1J_{CP} = 4.1 \text{ Hz}). \]

MS (MALDI-TOF; m/z) M^+ 954.2

CHN % \{\text{found (calculated)}\} [Pd(rac-BINAP)(C_{15}H_{14}NO)][PF_6] C \{64.52 (64.67)\} H \{4.22 (4.39)\} N \{1.28 (1.29)\}

\[[\text{Pd(rac-BINAP)}(\text{C}_{15}\text{H}_{14}\text{N})](\text{CF}_3\text{SO}_3) \text{(24a)} \]

To 1 equiv of [Pd(\text{μ-Cl})(\text{C}_{15}\text{H}_{14}\text{N})]_2
(20.1 mg, 700.3 g mol\(^{-1}\), 28.7 \times 10^{-3} mol) were added 2 equiv of the
\text{rac-BINAP (35.7 mg, 622.67 g mol\(^{-1}\), 57.4 \times 10^{-3} mol) and 2 equiv of
AgOTf (14.7 mg, 256.94 g mol\(^{-1}\),
57.4 \times 10^{-3} mol) in
dichloromethane. The reaction mixture was stirred at 25 ^\circ\text{C} for 3 h.
The resulting yellow solution was separated from the solid and reduced under vacuum. [C_{60}H_{46}F_{3}NO_{3}P_{2}Pd] 24a. (Yield: 112 mg, 0.103 mol 90 %).
XH NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 1.69 (s, 3H), 2.07 (s, 3H), 6.15-7.78 (m, Aromatic), 8.05 (dd, 1H, 4J$_{HP-\text{trans}}$ = 6.9 Hz, 4J$_{HP-\text{cis}}$ = 1.0 Hz); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 13.3 (d, AB spin, 2J$_{PP}$ = 48 Hz), δ 40.8 (d, AB spin, 2J$_{PP}$ = 48 Hz); 19F NMR (CD$_2$Cl$_2$, 376.5 MHz, 25 °C): δ -79.3 (s); 13C{1H}-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 20.8 (s, CH$_3$), δ 21.8 (s, Me), δ 115.4-178.0 (Aromatic), 180.0 (t, =CH, 1J$_{CP}$ = 4.6 Hz).

MS (MALDI-TOF; m/z) M$^+$ 938.2

$[\text{Pd(rac-BINAP)(CisH$_{14}$N)}](\text{BARF})$ (24b)

\[
\text{To 1 equiv of } [\text{Pd(\mu-Cl)(CisH$_{14}$N)}]_2 \\
(22.3 \text{ mg}, 700.3 \text{ g mol}^{-1}, 31.8 \times 10^{-3} \text{ mol}) \text{ were added 2 equiv of the rac-BINAP (39.7 mg, 622.67 g mol}^{-1}, 63.7 \times 10^{-3} \text{ mol) and 2 equiv of NaBARF} \\
(56.4 \text{ mg}, 886.21 \text{ g mol}^{-1}, 63.7 \times 10^{-3} \text{ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum.} \\
[C_{91}H_{58}BF_{24}NP_{2}Pd] \text{ 24b (Yield: 101 mg, 0.0561 mol, 88 %).}
\]

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 2.06 (s, 3H), 2.38 (s, 3H), 6.15-8.30 (m, Aromatic), 8.02 (d, 1H, 4J$_{HP-\text{trans}}$ = 6.9 Hz); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 13.3 (d, AB spin, 2J$_{PP}$ = 48 Hz), δ 40.8 (d, AB spin, 2J$_{PP}$ = 48 Hz); 19F NMR (CD$_2$Cl$_2$, 376.5 MHz, 25 °C): δ -63.3 (s); 13C{1H}-NMR (CD$_2$Cl$_2$, 75 MHz, 25 °C): δ 20.3 (s, CH$_3$), δ 21.3 (s, Me), δ 115.4-178.0 (Aromatic), 179.1 (t, =CH, 1J$_{CP}$ = 4.1 Hz).

Diffusion Studies

125
To 1 equiv of \([\mu-Cl](C_{14}H_{11}N_2O_2)_2\) (29.0 mg, 762.24 g mol\(^{-1}\), 38.0 \times 10^{-3} \text{ mol}) were added 2 equiv of the rac-BINAP (47.4 mg, 622.67 g mol\(^{-1}\), 76.0 \times 10^{-3} \text{ mol}) and 2 equiv of AgOTf (19.6 mg, 256.94 g mol\(^{-1}\), 76.0 \times 10^{-3} \text{ mol}) in dichloromethane. The reaction mixture was stirred at 25 \(^\circ\text{C}\) for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. \([C_{59}H_{43}F_3N_2O_5P_2\text{PdS}]\ 25\text{a} \) (Yield: 80 mg, 0.071 mol 94%).

\(^1\text{H}\) NMR (CD\(_2\)Cl\(_2\), 400 MHz, 25 \(^\circ\text{C}\)): 2.09 (s, 3H), 6.15-8.30 (m, Aromatic), 8.29 (d, 1H, \(^4\text{J}_{HP-\text{trans}} = 6.8 \text{ Hz}\)); \(^{31}\text{P}\{\text{^1}\text{H}}\)-NMR (CD\(_2\)Cl\(_2\), 161 MHz, 25 \(^\circ\text{C}\)): \(\delta\) 14.3 (d, AB spin, \(^2\text{J}_{PP} = 47 \text{ Hz}\)), \(\delta\) 39.9 (d, AB spin, \(^2\text{J}_{PP} = 47 \text{ Hz}\)); \(^{19}\text{F}\) NMR (CD\(_2\)Cl\(_2\), 376.5 MHz, 25 \(^\circ\text{C}\)): \(\delta\) -79.3 (s); \(^{13}\text{C}\{\text{^1}\text{H}}\)-NMR (CD\(_2\)Cl\(_2\), 100 MHz, 25 \(^\circ\text{C}\)): \(\delta\) 20.9 (s, CH\(_3\)), \(\delta\) 115.4-178.0 (Aromatic), 178.8 (t, =CH, \(^1\text{J}_{CP} = 3.8 \text{ Hz}\)).
[Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][BArF]^+ (25b)

To 1 equiv of [Pd(μ-Cl)(C_{14}H_{11}N_{2}O_{2})]_2 (21.5 mg, 762.24 g mol^{-1}, 28.2 x 10^{-3} mol) were added 2 equiv of the rac-BINAP (35.1 mg, 622.67 g mol^{-1}, 56.4 x 10^{-3} mol) and 2 equiv of NaBArF (50.0 mg, 886.21 g mol^{-1}, 56.4 x 10^{-3} mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced under vacuum. [C_{90}H_{55}BF_{24}N_{2}O_{2}P_{2}Pd] 25b (Yield: 92 mg, 0.0502 mol, 89 %).

1H NMR (CD$_2$Cl$_2$, 400 MHz, 25 °C): δ 2.09 (s, 3H), 6.15-8.30 (m, Aromatic), 8.23 (d, 1H, 4J$_{HP-trans}$ = 6.8 Hz); 31P{1H}-NMR (CD$_2$Cl$_2$, 161 MHz, 25 °C): δ 14.3 (d, AB spin, 2J$_{pp}$ = 46 Hz), δ 39.9 (d, AB spin, 2J$_{pp}$ = 46 Hz); 19F NMR (CD$_2$Cl$_2$, 282 MHz, 25 °C): δ -63.3 (s); 13C{1H}-NMR (CD$_2$Cl$_2$, 100 MHz, 25 °C): δ 20.8 (s, CH$_3$), δ 115.4-178.0 (Aromatic), 178.2 (t, =CH, 1J$_{CP}$ = 3.8 Hz).

MS (MALDI-TOF; m/z) M$^+$ 969.1

CHN % {found (calculated)} [Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})][BArF] C {59.29 (59.02)} H {3.08 (3.03)} N {1.60 (1.53)}
[Pd(S-BINAP)((R)-C_{10}H_{14}N)][CF_{3}SO_{3}] (26a)

\[
\begin{array}{c}
\text{[Pd(S-BINAP)((R)-C_{10}H_{14}N)][CF_{3}SO_{3}] (26a)}
\end{array}
\]

To 1 equiv of [Pd(μ-Cl)(C_{10}H_{14}N)]$_2$ (30.3 mg, 600.35 g mol$^{-1}$, 50.5 x 10$^{-3}$ mol) were added 2 equiv of the (S)-BINAP (62.8 mg, 622.67 g mol$^{-1}$, 110.9 x 10$^{-3}$ mol) and 2 equiv of AgOTf (25.9 mg, 256.94 g mol$^{-1}$, 110.9 x 10$^{-3}$ mol) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced in vacuo. [C$_{55}$H$_{46}$F$_3$N$_3$P$_2$PdS] 26a (Yield: 102 mg, 98 %).

1H NMR (CD$_2$Cl$_2$, 500 MHz, 25 °C): 1.92 (d, 3H, 4J$_{PH}$ = 2.1 Hz, NMe), 2.12 (br t, 3H, 4J$_{PH}$ = 3.5 Hz, NMe'), 2.28 (d, 2H, 3J$_{HH}$ = 6.3 Hz, Me), 3.49 (m, 1H), 6.15-8.50 (m, Aromatic); 31P{$_1$H}-NMR (CD$_2$Cl$_2$, 283 MHz, 25 °C): δ 11.1 (d, AB spin, 2J$_{PP}$ = 43 Hz), δ 38.2 (d, AB spin, 2J$_{PP}$ = 43 Hz); 19F NMR (CD$_2$Cl$_2$, 282.4 MHz, 25 °C): δ -78.8 (s), 13C{$_1$H}-NMR (CD$_2$Cl$_2$, 125.8 MHz, 25 °C): δ 9.0 (s, CH$_3$), δ 25.9 (s, CH$_3$), δ 40.3 (s, NCH$_3$), δ 46.7 (s, NCH$_3$), δ 49.5 (s, NCH$_3$), δ 51.5 (s, NCH$_3$), δ 74.4 (m, CH), δ 79.8 (m, CH), δ 115.4-180.0 (Aromatic).

MS (MALDI; m/z) M$^+$ 876.2

[Pd(R-BINAP)((R)-C_{10}H_{14}N)][CF_{3}SO_{3}] (26b).

\[
\begin{array}{c}
\text{[Pd(R-BINAP)((R)-C_{10}H_{14}N)][CF_{3}SO_{3}] (26b)}
\end{array}
\]

To 1 equiv of [Pd(μ-Cl)(C_{10}H_{14}N)]$_2$ (30.0 mg, 600.35 g mol$^{-1}$, 49.9 x 10$^{-3}$ mol) were added 2 equiv of the (R)-BINAP (62.2 mg, 622.67 g mol$^{-1}$, 99.9 x 10$^{-3}$ mol) and 2 equiv of AgOTf (25.7
mg, 256.94 g mol\(^{-1}\), 99.9 \times 10^{-3} \text{ mol}) in dichloromethane. The reaction mixture was stirred at 25 °C for 3 h. The resulting yellow solution was separated from the solid and reduced \textit{in vacuo}. [C\(_{55}\)H\(_{46}\)F\(_3\)NO\(_3\)P\(_2\)PdS] \(26b\) (Yield: 100 mg, 97 %).

\(^1\)H NMR (CDCl\(_3\), 400 MHz, 25 °C): 1.33 (d, 2H, \(^3\)J\(_{HH}\) = 6.3 Hz, Me), 1.51 (d, 3H, \(^4\)J\(_{PH}\) = 2.1 Hz, NMe'), 2.54 (br t, 3H, \(^4\)J\(_{PH}\) = 3.5 Hz, NMe), 5.46 (m, 1H), 6.15-8.50 (m, Aromatic); \(^{31}\)P{\(^1\)H}-NMR (CDCl\(_3\), 161.9 MHz, 25 °C): \(\delta\) 11.1 (d, AB spin, \(^2\)J\(_{PP}\) = 43 Hz), \(\delta\) 38.2 (d, AB spin, \(^2\)J\(_{PP}\) = 43 Hz); \(^{19}\)F NMR (CD\(_2\)Cl\(_2\), 282.4 MHz, 25 °C): \(\delta\) -78.8 (s); \(^{13}\)C{\(^1\)H}-NMR (CD\(_2\)Cl\(_2\), 125.8 MHz, 25 °C): \(\delta\) 9.0 (s, CH$_3$), \(\delta\) 40.3 (s, NCH$_3$), \(\delta\) 49.5 (s, NCH$_3$), \(\delta\) 74.4 (m, CH), \(\delta\) 115.4-180.0 (Aromatic).

MS (MALDI; m/z) M* 876.2

\([\text{Pd(rac-BINAP)}(\text{(R)}-\text{C}_{10}\text{H}_{14}\text{N})][\text{CF}_3\text{SO}_3]\) (26c).

\[^1\]H NMR (CD$_2$Cl$_2$, 700 MHz, 25 °C): 1.35 (d, 2H, \(^3\)J\(_{HH}\) = 6.3 Hz), 1.53 (d, 3H, \(^4\)J\(_{PH}\) = 2.1 Hz), 1.92 (d, 3H, \(^4\)J\(_{PH}\) = 2.1 Hz), 2.12 (br t, 3H,
$^{4}J_{PH} = 3.5$ Hz), 2.28 (d, $2H$, $^{3}J_{HH} = 6.3$ Hz), 2.51 (br t, $3H$, $^{4}J_{PH} = 3.5$ Hz), 3.49 (m, $1H$), 5.19 (m, $1H$), $6.15 - 8.50$ (m, Aromatic); ^{31}P-1H-NMR (CD$_2$Cl$_2$, 283 MHz, 25 °C): δ 10.5 (d, AB spin, $^{2}J_{PP} = 44.2$ Hz), δ 11.1 (d, AB spin, $^{2}J_{PP} = 43$ Hz), δ 37.2 (d, AB spin, $^{2}J_{PP} = 44.2$ Hz), δ 38.2 (d, AB spin, $^{2}J_{PP} = 43$ Hz); ^{19}F NMR (CD$_2$Cl$_2$, 282.4 MHz, 25 °C): δ -78.8 (s); ^{13}C-1H-NMR (CD$_2$Cl$_2$, 175 MHz, 25 °C): δ 25.9 (s, CH$_3$), δ 46.7 (s, NCH$_3$), δ 51.5 (s, NCH$_3$), δ 79.8 (m, CH), δ 115.4-180.0 (Aromatic). MS (MALDI; m/z) M$^+$ 876.2

$[^{1}H]$NMR (CDCl$_3$, 400 MHz, 25 °C): 1.05 (dd, $3H$, $^{3}J_{HH} = 6.4$ Hz), 1.07 (d, $3H$, $^{3}J_{HH} = 6.4$ Hz), 1.69 (d, $3H$, $^{3}J_{HH} = 6.4$ Hz, 7Me), 2.22 (m, $1H$), 2.28 (d, $3H$, $^{4}J_{PH} = 1.2$ Hz, NMe), 2.31 (m, $1H$) 2.50 (t, $3H$, $^{4}J_{PH} = 3.6$ Hz, NMe') 3.55 (m, $1H$) 6.50 - 8.20 (m, Aromatic); ^{31}P-1H-NMR (CDCl$_3$, 161.9 MHz, 25 °C): δ 45.2 (d, AB spin, $^{2}J_{PP} = 40$ Hz), δ 63.3 (d, AB spin, $^{2}J_{PP} = 40$ Hz); ^{19}F NMR (CDCl$_3$, 376.5 MHz, 25 °C): δ -78.4 (s); ^{13}C-1H-NMR (CDCl$_3$, 100 MHz, 25 °C): δ 13.9 (dd, CH$_3$, $^{2}J_{CP} = 17.1$ Hz, $^{3}J_{CP} = 6.1$ Hz), δ 15.4 (dd, CH$_3$, $^{2}J_{CP} = 18.6$ Hz, $^{3}J_{CP} = 5.5$ Hz), δ 26.6 (s, CH$_3$), δ 38.4 (dd,
CH, $^{1}J_{CP} = 26.8$ Hz, $^{2}J_{CP} = 13.4$ Hz), δ 39.9 (dd, CH, $^{1}J_{CP} = 33.3$ Hz, $^{2}J_{CP} = 22$ Hz), δ 50.4 (d, NCH$_{3}$, $^{3}J_{CP} = 5.2$ Hz), δ 51.7 (d, NCH$_{3}$, $^{3}J_{CP} = 2.4$ Hz), δ 78.8 (br t, CH), δ 115.4-180.0 (Aromatic).

MS (MALDI; m/z) M$^{+}$ 680.2

$[\text{Pd}(2R,3R)$-Chiraphos]$((R)$-C$_{10}$H$_{14}$N)]$[\text{CF}_{3}\text{SO}_{3}]$ (27b).

1H NMR (CDCl$_{3}$, 300 MHz, 25 °C): 1.04 (dd, 3H, $^{3}J_{HH} = 6.8$ Hz, $^{3}J_{PH} = 2.9$ Hz), 1.08 (d, 3H, $^{3}J_{HH} = 6.7$ Hz), 1.41 (d, 3H, $^{3}J_{HH} = 6.7$ Hz, 7Me), 2.09 (d, 3H, $^{4}J_{PH} = 1.6$ Hz, NMe$'$), 2.22 (m, 1H), 2.35 (m, 1H), 2.78 (t, 3H, $^{4}J_{PH} = 2.5$ Hz, NMe), 4.31 (m, 1H), 6.50 - 8.20 (m, Aromatic); 31P{1H}}$^{-}$NMR (CDCl$_{3}$, 121.5 MHz, 25 °C): δ 43.3 (d, AB spin, $^{2}J_{PP} = 40.5$ Hz), δ 62.5 (d, AB spin, $^{2}J_{PP} = 40.5$ Hz); 19F NMR (CDCl$_{3}$, 376.5 MHz, 25 °C): δ -78.5 (s); 13C{1H}}$^{-}$NMR (CDCl$_{3}$, 100 MHz, 25 °C): δ 14.1 (dd, CH$_{3}$, $^{2}J_{CP} = 16.2$ Hz, $^{3}J_{CP} = 6.0$ Hz), δ 15.4 (dd, CH$_{3}$, $^{2}J_{CP} = 17.8$ Hz, $^{3}J_{CP} = 5.2$ Hz), δ 16.6 (s, CH$_{3}$), δ 38.6 (dd, CH, $^{1}J_{CP} = 26.5$ Hz, $^{2}J_{CP} = 12.7$ Hz), δ 40.8 (dd, CH, $^{1}J_{CP} = 33.1$ Hz, $^{2}J_{CP} = 21.5$ Hz), δ 45.7 (s, NCH$_{3}$), δ 52.1 (s, NCH$_{3}$), δ 75.4 (t, CH, $^{3}J_{CP} = 3.2$ Hz), δ 115.4-180.0 (Aromatic).

MS (MALDI; m/z) M$^{+}$ 680.3

Diffusion Studies
Crystallography:

\[\text{[Pd(\mu-OH)(rac-BINAP)]\text{CF}_3\text{SO}_3}_2 \text{(2a)} \]

Organometallics, 2007

Table E1. Crystal data and structure refinement for 2a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(\text{C}{90}\text{H}{68}\text{F}{6}\text{O}{8}\text{P}{4}\text{Pd}{2}\text{S}_{2})</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1800.24</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, (\text{P}2_{1}/\text{c})</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 20.0621(5)) Å</td>
</tr>
<tr>
<td></td>
<td>(\alpha = 90) deg.</td>
</tr>
<tr>
<td></td>
<td>(b = 18.7386(4)) Å</td>
</tr>
<tr>
<td></td>
<td>(\beta = 96.572(1)) deg.</td>
</tr>
<tr>
<td></td>
<td>(c = 23.2203(5)) Å</td>
</tr>
<tr>
<td></td>
<td>(\gamma = 90) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>8672.0(3) Å</td>
</tr>
<tr>
<td>(Z,) Calculated density</td>
<td>4, 1.379 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.604 mm(^{-1})</td>
</tr>
<tr>
<td>(F(000))</td>
<td>3656</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.49 to 26.09 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>(-24 <= h <= 24, -23 <= k <= 23,)</td>
</tr>
</tbody>
</table>
Reflections collected / unique
Completeness to theta = 26.09
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

Table E1.1. Few Bond lengths [Å] and Bond angles [°] for Bridged Aniline complex 2a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-OH1</td>
<td>2.060(3)</td>
</tr>
<tr>
<td>Pd(1)-P(21)</td>
<td>2.2252(12)</td>
</tr>
<tr>
<td>Pd(1)-Pd(2)</td>
<td>3.1378(5)</td>
</tr>
<tr>
<td>Pd(2)-OH2</td>
<td>2.076(3)</td>
</tr>
<tr>
<td>Pd(2)-P(12)</td>
<td>2.2322(12)</td>
</tr>
<tr>
<td>OH1-Pd(1)-P(21)</td>
<td>93.34(10)</td>
</tr>
<tr>
<td>OH1-Pd(1)-P(11)</td>
<td>170.78(14)</td>
</tr>
<tr>
<td>P(21)-Pd(1)-P(11)</td>
<td>92.49(5)</td>
</tr>
<tr>
<td>OH2-Pd(1)-Pd(2)</td>
<td>40.92(9)</td>
</tr>
<tr>
<td>P(11)-Pd(1)-Pd(2)</td>
<td>135.70(3)</td>
</tr>
<tr>
<td>OH1-Pd(2)-P(22)</td>
<td>94.96(10)</td>
</tr>
<tr>
<td>OH1-Pd(2)-P(12)</td>
<td>171.07(11)</td>
</tr>
<tr>
<td>P(22)-Pd(2)-P(12)</td>
<td>93.51(5)</td>
</tr>
<tr>
<td>OH2-Pd(2)-Pd(1)</td>
<td>41.02(9)</td>
</tr>
<tr>
<td>P(12)-Pd(2)-Pd(1)</td>
<td>130.82(3)</td>
</tr>
<tr>
<td>Pd(2)-OH2-Pd(1)</td>
<td>98.05(14)</td>
</tr>
</tbody>
</table>

Diffusion Studies
133
Table E2. Crystal data and structure refinement for Bridged Aniline complex 3b.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{105}H_{86}F_{6}N_{9}O_{9}P_{4}Pd_{2}S_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2023.57</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>71.073 pm</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>4.7947(6) nm, 2</td>
</tr>
<tr>
<td>Volume, Z</td>
<td></td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.402 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.055 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2072</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.53 x 0.33 x 0.18 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>0.68 to 26.37</td>
</tr>
</tbody>
</table>
Limiting indices
-15 < h < 15, -16 < k < 16, -37 < l < 37

Reflections collected / unique 43118 /19526 (R(int) = 0.0395)
Completeness to theta = 26.37 99.5 %
Max. and min. Transmission 0.9067 and 0.7574
Refinement method Full-matrix Least-Squares on F²
Data / Restraints / Parameters 19526 / 32 / 1106
Goodness-of-Fit on F² 1.058
Final R -indices [I>2Gs(I)] R1 = 0.0761, wR2 = 0.2149
R-indices (all data) R1 = 0.0992, wR2 = 0.2328
Largest Maximum and Minimum 3330 and -859 e.nm⁻³

Table E2.1. Few Bond lengths [pm] and Bond angles [°] for Bridged Aniline complex 3b.

Pd1–P1 223.5(2), Pd1–P2 226.2(1), Pd1–O1 204.9(4), Pd1–N1 211.9(4), Pd1–Pd2 311.45(5), Pd2–P3 222.9(1), Pd2–P4 226.9(1), Pd2–O1 205.9(4), Pd2–N1 211.1(4), N1–C1 142.8(8), Pd1–N1–Pd2 94.8(2), N1–Pd1–O1 79.3(2), N1–Pd2–O1 79.3(2), Pd1–O1–Pd2 98.6(2), N1–Pd1–P1 96.9(1), N1–Pd1–P2 169.4(1), O1–Pd1–P2 91.8(1), O1–Pd1–P1 174.9(1), N1–Pd2–P3 102.2(1), N1–Pd2–P4 166.7(1), O1–Pd2–P4 87.5(1), O1–Pd2–P3 169.9(1), P1–Pd1–P2 92.32(5), P3–Pd2–P4 90.56(5); φ₁ = 6.5°, φ₂ = 10.3°; θ = 156.0°; φ₁,₂ is the intersection of the planes described by 1) P1, Pd1, P2 and O1, Pd1, N1 and 2) P3, Pd2, P4 and O1, Pd2, N1. θ is the intersection of the two L₄-coodination spheres around Pd1 and Pd2.

Diffusion Studies
135
Table E3. Crystal data and structure refinement for 15b.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{50}H_{44}BF_{4}O_{2}P_{2}Pd</td>
</tr>
<tr>
<td>Formula weight</td>
<td>928.98</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71069 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Orthorombic, Pna_{2} (33)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 19.879(5) Å, alpha = 90.000(5) deg.</td>
</tr>
<tr>
<td></td>
<td>b = 16.824(5) Å, beta = 90.000(5) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 12.510(5) Å, gamma = 90.000(5) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>4184(2) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>4, 1.475 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.579 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1896</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.03 to 21.39 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-20<=h<=20,</td>
</tr>
<tr>
<td></td>
<td>-17<=k<=17,</td>
</tr>
<tr>
<td></td>
<td>-12<=l<=12</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>27830 / 4721</td>
</tr>
</tbody>
</table>

[R(int) = 0.0575]
Completeness to theta = 21.39
99.7 %
Refinement method
Full-matrix
least-squares on F^2
Data / restraints / parameters
4721 / 1 / 516
Goodness-of-fit on F^2
1.006
Final R indices [I>2sigma(I)]
R1 = 0.0379,
wR2 = 0.0958
R indices (all data)
R1 = 0.0461,
wR2 = 0.1023
Absolute structure parameter
-0.04(4)
Largest diff. peak and hole
0.755 and -0.507 e.A$^{-3}$

Table E3.1. Few Bond lengths [Å] and Bond angles [°] for 15b.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-O(2)</td>
<td>2.012(5)</td>
<td>Pd-O(1)</td>
<td>2.024(5)</td>
</tr>
<tr>
<td>Pd-P(1)</td>
<td>2.2480(19)</td>
<td>Pd-P(2)</td>
<td>2.251(2)</td>
</tr>
<tr>
<td>O(2)-Pd-O(1)</td>
<td>88.5(2)</td>
<td>O(2)-Pd-P(1)</td>
<td>88.60(16)</td>
</tr>
<tr>
<td>O(1)-Pd-P(1)</td>
<td>177.08(15)</td>
<td>O(2)-Pd-P(2)</td>
<td>171.47(16)</td>
</tr>
<tr>
<td>O(1)-Pd-P(2)</td>
<td>90.66(15)</td>
<td>P(1)-Pd-P(2)</td>
<td>92.21(7)</td>
</tr>
</tbody>
</table>

$[\text{Pd}(\text{rac-BINAP})(\text{C}_6\text{H}_9\text{O}_2)](\text{BF}_4) (15b.\text{CH}_2\text{Cl}_2)$

Organometallics, 2007

Diffusion Studies
137
Table E4. Crystal data and structure refinement for 15b.CH₂Cl₂.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₅₁H₄₃BCl₂F₄O₂P₂Pd</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1013.90</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71069 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P-1 (2)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.560(5) Å, alpha = 8.198(5) deg., b = 11.609(5) Å, beta = 75.174(5) deg., c = 18.806(5) Å, gamma = 73.210(5) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>2312.4(15) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>2, 2.671 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.048 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1900</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.13 to 25.99 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-14< h <=14, -14< k <=14, -22< l <=23</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>20752 / 9002 [R(int) = 0.0376]</td>
</tr>
<tr>
<td>Completeness to theta = 25.99</td>
<td>99.3 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>9002 / 0 / 545</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.912</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R₁ = 0.0621, wR² = 0.1801</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0773, wR² = 0.1988</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.725 and -1.409 e.A⁻³</td>
</tr>
</tbody>
</table>
Table E4.1. Few Bond lengths [Å] and Bond angles [°] for 15b.CH2Cl2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-O(2)</td>
<td>2.026(3)</td>
<td>Pd-O(1)</td>
<td>2.031(4)</td>
</tr>
<tr>
<td>Pd-P(1)</td>
<td>2.2592(15)</td>
<td>Pd-P(2)</td>
<td>2.2649(13)</td>
</tr>
<tr>
<td>O(2)-Pd-O(1)</td>
<td>89.15(15)</td>
<td>O(2)-Pd-P(1)</td>
<td>89.14(11)</td>
</tr>
<tr>
<td>O(1)-Pd-P(1)</td>
<td>174.34(13)</td>
<td>O(2)-Pd-P(2)</td>
<td>177.38(12)</td>
</tr>
<tr>
<td>O(1)-Pd-P(2)</td>
<td>90.35(11)</td>
<td>P(1)-Pd-P(2)</td>
<td>91.60(4)</td>
</tr>
</tbody>
</table>

[Pd(rac-BINAP)(C15H14N)](CF3SO3) (20a)

Organometallics, 2007

Table E5. Crystal data and structure refinement for 20a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C63H50C15F3NO3P2PdS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1303.69</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11.3820(11) Å</td>
</tr>
<tr>
<td>alpha</td>
<td>71.786(2) deg.</td>
</tr>
<tr>
<td>b</td>
<td>15.5502(14) Å</td>
</tr>
<tr>
<td>beta</td>
<td>84.497(2) deg.</td>
</tr>
<tr>
<td>c</td>
<td>17.1910(16) Å</td>
</tr>
</tbody>
</table>

Diffusion Studies
139
Volume: 2841.0(5) Å³
Z, Calculated density: 2, 1.524 Mg/m³
Absorption coefficient: 0.713 mm⁻¹
F(000): 1326
Crystal size: 0.49 x 0.27 x 0.19 mm

Data collection:
- Siemens SMART PLATFORM with CCD Detector
- Graphite monochromator
- Detector distance: 50 mm
- Method; exposure time/frame: omega-scans; t = sec
- Solution by direct methods
- Refinement method: full matrix least-squares on F²

Theta range for data collection: 1.57 to 26.02 deg.
Limiting indices: -14<=h<=14, -19<=k<=19, -21<=l<=21
Reflections collected / unique: 25009 / 11160 [R(int) = 0.0246]
Completeness to theta = 26.02: 99.6 %
Absorption correction: Empirical
Max. and min. transmission: 0.8764 and 0.7209
Refinement method: Full-matrix least-squares on F²
Data / restraints / parameters: 11160 / 0 / 712
Goodness-of-fit on F²: 1.034
Final R indices [I>2sigma(I)]: R1 = 0.0572, wR2 = 0.1462
R indices (all data): R1 = 0.0639, wR2 = 0.1538
Largest diff. peak and hole: 2.956 and -2.584 eÅ⁻³
Table E5.1. Few Bond lengths [Å] and Bond angles [°] for 20a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(l)-C(l)</td>
<td>2.065(4)</td>
</tr>
<tr>
<td>Pd(l)-P(l)</td>
<td>2.2601(10)</td>
</tr>
<tr>
<td>C(l)-Pd(l)-N(l)</td>
<td>80.11(14)</td>
</tr>
<tr>
<td>N(l)-Pd(l)-P(l)</td>
<td>166.94(9)</td>
</tr>
<tr>
<td>N(l)-Pd(l)-P(2)</td>
<td>98.50(9)</td>
</tr>
</tbody>
</table>

[\text{Pd(rac-BINAP)(C_{14}H_{11}N_{2}O_{2})}(CF_{3}SO_{3}) (22a)]

Organometallics, 2007

Table E6. Crystal data and structure refinement for 22a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{62}H_{49}C_{6}F_{3}N_{2}O_{3}P_{2}PdS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1372.13</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 13.2269(5) Å</td>
</tr>
<tr>
<td></td>
<td>alpha = 75.4480(10) deg.</td>
</tr>
<tr>
<td></td>
<td>b = 14.3139(6) Å</td>
</tr>
<tr>
<td></td>
<td>beta = 82.3430(10) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 16.4955(7) Å</td>
</tr>
</tbody>
</table>
Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Data collection
Detector distance
Method; exposure time/frame
Solution by
Refinement method
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta = 28.36
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^2
Final R indices [I > 2\sigma(I)]
R indices (all data)
Largest diff. peak and hole

gamma = 85.9830(10) deg.
2993.7(2) Å^2
2, 1.522 Mg/m^3
0.727 mm\(^{-1}\)
1392
0.54 x 0.28 x 0.27 mm
Siemens SMART PLATFORM
with CCD Detector
Graphite monochromator
50 mm
omega-scans; t = 3 sec
direct methods
full matrix least-squares on F^2,
SHELXTL
1.47 to 28.36 deg.
-17 <= h <= 17, -19 <= k <= 19, -22 <= l <= 22
55615 / 14874
[R(int) = 0.0361]
99.5 %
Empirical
0.8279 and 0.6949
Full-matrix least-squares on F^2
14874 / 0 / 739
1.040
R1 = 0.0465, wR2 = 0.1241
R1 = 0.0540, wR2 = 0.1306
1.785 and -1.123 eÅ^-3
Table E6.1. Few Bond lengths [Å] and Bond angles [°] for 22a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-C(1)</td>
<td>2.069(2)</td>
<td>Pd(1)-N(1)</td>
<td>2.134(2)</td>
</tr>
<tr>
<td>Pd(1)-P(2)</td>
<td>2.2670(6)</td>
<td>Pd(1)-P(1)</td>
<td>2.3643(6)</td>
</tr>
<tr>
<td>C(1)-Pd(1)N(1)</td>
<td>80.39(9)</td>
<td>C(1)-Pd(1)-P(2)</td>
<td>92.96(7)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(2)</td>
<td>167.86(6)</td>
<td>C(1)-Pd(1)-P(1)</td>
<td>166.13(7)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(1)</td>
<td>96.97(6)</td>
<td>P(2)-Pd(1)-P(1)</td>
<td>91.86(2)</td>
</tr>
</tbody>
</table>

$[\text{Pd}((R-\text{BINAP})((R)-\text{C}_{10}\text{H}_{14}\text{N})])\text{[CF}_3\text{SO}_3]\text{]} \ (26b)$

Organometallics, 2007

Table E7. Crystal data and structure refinement for 26b.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${57}$H${47}$Cl$_6$F$_3$NO$_3$P$_2$PdS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1264.06</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Orthorhombic, P 21 21 21</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.8308(10) Å</td>
</tr>
<tr>
<td></td>
<td>alpha = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>b = 12.8673(10) Å</td>
</tr>
<tr>
<td></td>
<td>beta = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>c = 36.642(3) Å</td>
</tr>
<tr>
<td></td>
<td>gamma = 90 deg.</td>
</tr>
</tbody>
</table>

Diffusion Studies
143
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>$5578.0(8) \text{A}^3$</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>$4, 1.505 \text{Mg/m}^3$</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.770mm^{-1}</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>2564</td>
</tr>
<tr>
<td>Crystal size</td>
<td>$0.51 \times 0.48 \times 0.28 \text{mm}$</td>
</tr>
<tr>
<td>Data collection</td>
<td>Siemens SMART PLATFORM with CCD Detector</td>
</tr>
<tr>
<td>Detector distance</td>
<td>70 mm</td>
</tr>
<tr>
<td>Method; exposure time/frame</td>
<td>omega-scans; $t = 2 \text{ sec}$</td>
</tr>
<tr>
<td>Solution by</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>full matrix least-squares on F^2, SHELXTL</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.68 to 28.33 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>$-15 \leq h \leq 15$, $-17 \leq k \leq 17$, $-48 \leq l \leq 48$</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>$58341 / 13866$</td>
</tr>
<tr>
<td>[R(int)] = 0.0345</td>
<td></td>
</tr>
<tr>
<td>Completeness to theta = 28.33</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8133 and 0.6948</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>$13866 / 0 / 687$</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.078</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>$R_1 = 0.0371$, $wR_2 = 0.0918$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0394$, $wR_2 = 0.0930$</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.007(16)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.882 and -0.598 e.A^{-3}</td>
</tr>
</tbody>
</table>

Chapter 2
144
Table E7.1. Few Bond lengths [Å] and Bond angles [°] for 26b.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-C(1)</td>
<td>2.026(3)</td>
<td>Pd(1)-N(1)</td>
<td>2.192(2)</td>
</tr>
<tr>
<td>Pd(1)-P(2)</td>
<td>2.2616(6)</td>
<td>Pd(1)-P(3)</td>
<td>2.4182(7)</td>
</tr>
<tr>
<td>C(1)-Pd(1)-N(1)</td>
<td>78.74(10)</td>
<td>C(1)-Pd(1)-P(2)</td>
<td>90.39(8)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(2)</td>
<td>162.77(7)</td>
<td>N(1)-Pd(1)-P(3)</td>
<td>171.30(9)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(3)</td>
<td>101.46(7)</td>
<td>P(2)-Pd(1)-P(3)</td>
<td>91.31(2)</td>
</tr>
</tbody>
</table>

\[\text{Pd}^{(\text{rac-BINAP})}((R)-\text{C}_{10}\text{H}_{18}\text{N})][\text{CF}_3\text{SO}_3] \text{ (26c).}

Organometallics, 2007

Table E8. Crystal data and structure refinement for 26c.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>\text{C}{110}\text{H}{82}\text{F}_6\text{N}_2\text{O}_6\text{P}_4\text{Pd}_2\text{S}_2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2052.66</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P 21</td>
</tr>
</tbody>
</table>
| Unit cell dimensions | a = 17.6911(10) Å,
<p>| | alpha = 90 deg., |
| | b = 11.5190(6) Å, |
| | beta = 90.8320(10) deg., |
| | C = 23.0571(13) Å |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>4698.2(4) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>2, 1.451 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.566 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2104</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.51 x 0.46 x 0.40 mm</td>
</tr>
<tr>
<td>Data collection</td>
<td>Siemens SMART PLATFORM with CCD Detector</td>
</tr>
<tr>
<td></td>
<td>Graphite monochromator</td>
</tr>
<tr>
<td>Detector distance</td>
<td>50 mm</td>
</tr>
<tr>
<td>Method; exposure time/frame</td>
<td>omega-scans; t = sec</td>
</tr>
<tr>
<td>Solution by</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>full matrix least-squares on F², SHELXTL</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>0.88 to 28.33 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-23 ≤ h ≤ 23, -15 ≤ k ≤ 15, -30 ≤ l ≤ 29</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>49277 / 23207</td>
</tr>
<tr>
<td></td>
<td>[R(int) = 0.0342]</td>
</tr>
<tr>
<td>Completeness to theta = 28.33</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8066 and 0.7605</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>23207 / 1 / 1189</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.042</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0515, wR2 = 0.1193</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0587, wR2 = 0.1241</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.018(17)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.598 and -0.821 e Å⁻³</td>
</tr>
</tbody>
</table>

Chapter 2
146
Table E8.1. Few Bond lengths [Å] and Bond angles [°] for 26c

<table>
<thead>
<tr>
<th>Bond</th>
<th>Pd(1)</th>
<th>C(1)</th>
<th>Pd(2)</th>
<th>C(55)</th>
<th>Pd(1)</th>
<th>N(1)</th>
<th>Pd(2)</th>
<th>N(2)</th>
<th>Pd(1)</th>
<th>P(2)</th>
<th>Pd(2)</th>
<th>P(4)</th>
<th>Pd(1)</th>
<th>P(1)</th>
<th>Pd(2)</th>
<th>P(3)</th>
<th>Pd(2)</th>
<th>P(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.042(4)</td>
<td></td>
<td>2.035(4)</td>
<td></td>
<td>2.182(4)</td>
<td></td>
<td>2.187(3)</td>
<td></td>
<td>2.2658(10)</td>
<td></td>
<td>2.2531(10)</td>
<td></td>
<td>2.4102(10)</td>
<td></td>
<td>2.3968(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-Pd(1)-N(1)</td>
<td></td>
<td>79.33(16)</td>
<td></td>
</tr>
<tr>
<td>C(1)-Pd(1)-P(2)</td>
<td></td>
<td>92.84(12)</td>
<td></td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(2)</td>
<td></td>
<td>164.47(11)</td>
<td></td>
</tr>
<tr>
<td>C(1)-Pd(1)-P(1)</td>
<td></td>
<td>170.73(11)</td>
<td></td>
</tr>
<tr>
<td>N(1)-Pd(1)-P(1)</td>
<td></td>
<td>97.97(10)</td>
<td></td>
</tr>
<tr>
<td>P(2)-Pd(1)-P(1)</td>
<td></td>
<td>91.76(4)</td>
<td></td>
</tr>
</tbody>
</table>

Diffusion Studies
147
2.6 Bibliography

149

Diffusion Studies

Chapter 2

150

Diffusion Studies

151

Chapter 3

NHC-Exchange and Dynamics
3. **N-Heterocyclic Carbene Complexes- Exchange and Dynamics.**

Overview:

In this chapter, the sections 3.2 and 3.3 describe the structure and, inter- and intra- molecular dynamics of Ru (3a, 4 and 5) and Rh N-heterocyclic carbene complexes (6 and 7). These complexes are known to be catalytically useful in tandem reactions involving C-C bond formation from alcohols\(^1\).

The exchange experiments carried out prove that PPh\(_3\) can dissociate. The resulting new products have been characterized by 1D and 2D NMR spectroscopy.

Section 3.4 describes the structure and reactivity of Ru N-heterocyclic HF complexes (8 and 9).
Both homo and hetero nuclear NMR measurements on these N-heterocyclic HF complexes prove that, isomerization and disproportionation reactions are occurring in solution.

Finally, the chapter ends with a set of conclusions, with respect to showing how variable temperature and NMR techniques helped to analyze the structure, molecular dynamics in solution.
3.1 Introduction

There are relatively few homogeneous transition metal catalysts where both steric and electronic effects can be finely controlled by small changes of ligand structure within the series. Phosphines have been the most widely used in this connection, aided by the availability of the Tolman map of electronic and steric effects. N-heterocyclic carbenes (NHCs), derived from the replacement of the proton at C-2 in an imidazolium salt by a metal, have been known for many years, but interest was dormant until Arduengo's, isolation of the free imidazol-2-ylidene carbene in 1991. The first catalytic applications of NHC complexes, described by Hermann in 1995, together with the recognition that NHCs are excellent stabilizing ligands for a variety of homogeneous catalysts, prompted many research groups to prepare a large number of NHC-based catalysts for a wide variety of reactions.

3.1.1 N-Heterocyclic Carbene Complexes

N-heterocyclic carbenes (NHCs) based on imidazolium ions and related heterocycles have emerged as an alternative to phosphines in the design of new organometallic catalysts for homogeneous catalytic reactions. Spectroscopic studies suggested NHCs were principally sigma-donors and only poor pi-acceptors, like alkyl phosphines, so an analogy between the two classes of ligands developed.

Further it has been shown that the two ligand classes are distinct in electronic properties, NHCs being stronger donors than even the most basic phosphines. The fan-shaped steric profile of NHCs is also different from the cone shape of PR₃ (see Fig. 3.1) but this has yet to be fully exploited. Based on the accepted analogy
between NHCs and trialkylphosphines many metal complexes have been synthesized and targeted as a catalyst for various catalytic reactions.

The attractivity of N-heterocyclic carbenes as ligands for transition metal catalysis is a result of the following features.

(a) Electronic Character

N-Heterocyclic carbenes are thought to be very electron rich, neutral \(\sigma\)-donor ligands. The degree of \(\pi\)-acceptor character of N-heterocyclic carbenes is still disputed and unclear. Experimental and theoretical results range from no \(\pi\)-back-bonding at all, to up to 30\% of the complexes overall orbital interaction energies being a result of \(\pi\)-back-bonding. Clear-cut conclusions are hampered by the dependency on the metal, the co-ligands relative to the metal\(^{14-17}\).

The electron-donating property can be semi-quantified by a comparison of the stretching frequencies of the CO ligands of the complexes \(\text{LRh(CO)}_2\text{Cl}\)\(^{18}\), \(\text{LIr(CO)}_2\text{Cl}\)\(^{18}\) or \(\text{LNi(CO)}_3\)\(^{19}\) with \(L = \text{NHC or PR}_3\). From these studies it is clear that NHCs are slightly better \(\sigma\)-donor ligands than even the most basic trialkyl phosphines (Table 3.1).

Table 3.1. IR values for the carbonyl stretching frequencies in \(\text{LNi(CO)}_3\) measured in \(\text{CH}_2\text{Cl}_2^{17,19}\)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>(\nu_{\text{CO}}(A_1) [\text{cm}^{-1}])</th>
<th>(\nu_{\text{CO}}(E) [\text{cm}^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMes</td>
<td>2050.7</td>
<td>1969.8</td>
</tr>
<tr>
<td>SIMes</td>
<td>2051.5</td>
<td>1970.6</td>
</tr>
<tr>
<td>IPr</td>
<td>2051.5</td>
<td>1970.0</td>
</tr>
<tr>
<td>SIPr</td>
<td>2052.2</td>
<td>1971.3</td>
</tr>
<tr>
<td>ICy</td>
<td>2049.6</td>
<td>1964.6</td>
</tr>
<tr>
<td>PPh(_3)</td>
<td>2068.9</td>
<td>1990</td>
</tr>
<tr>
<td>PCy(_3)</td>
<td>2056.4</td>
<td>1973</td>
</tr>
<tr>
<td>P(_3)Bu(_3)</td>
<td>2056.1</td>
<td>1971</td>
</tr>
</tbody>
</table>

Chapter 3
156
From these IR data, it is evident that NHCs have very similar levels of electron-donating ability, whereas phosphines span a much wider electronic range on going from alkyl to aryl phosphines. Clearly for NHCs, only substituents on the periphery of the ligand are exchanged, whereas for phosphines the different substituents are directly attached to the donor atom itself. Furthermore, as a consequence of their strong electron-donor property, NHCs are considered to be higher ligand field as well as higher trans effect ligands than phosphines\cite{20}.

(b) Complex Stability

N-Heterocyclic carbenes form stable bonds with the majority of transition metals\cite{17, 21, 22}. Whereas for saturated and unsaturated NHCs of comparable steric demand, very similar bond dissociation energies have been observed, phosphines generally form much weaker bonds (Table 3.2)\cite{17}. As a result, the equilibrium constant for the carbene metal complex is larger than for the analogous phosphines (Scheme 3.1). This minimizes the amount of free NHC in solution and thus increases the life time of the complex as well as its robustness against heat, air and moisture. It has to be kept in mind that NHCs, while they can be isolated and stored, are still very sensitive and reactive towards many electrophilic compounds.

The resulting extraordinary stability of NHC-metal complexes has been utilized in many applications. However, an increasing number of publications report that the metal-carbene bond is not inert\cite{23, 24}. For example, the migratory insertion of an NHC into a ruthenium-carbon double bond\cite{25}, the reductive elimination of alkylimidazolium salts from NHC alkyl complexes\cite{26} or the ligand substitution of NHC ligands by phosphines\cite{27, 28} have all been described. In addition, the formation of palladium black is frequently
observed in applications of palladium NHC complexes, also pointing at decomposition pathways.

Scheme 3.1

\[
\begin{align*}
\text{R}^n \text{C}=\text{N}^n \text{R} & \quad \text{ML}_n \quad \text{PR}_3 \\
\text{ML}_n & \quad \text{R}^n \text{C}=\text{N}^n \text{R} \\
\text{PR}_3 & \quad \text{ML}_n \\
\end{align*}
\]

(Robust) \quad (Sensitive)

Table 3.2. Steric demand and bond strength of some important ligands\[^{17,29}\]

<table>
<thead>
<tr>
<th>Ligand</th>
<th>BDE [Kcal/mol] (theoretical) for L in \text{Ni(CO)}_3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMes</td>
<td>41.1</td>
</tr>
<tr>
<td>SIMes</td>
<td>40.2</td>
</tr>
<tr>
<td>IAd</td>
<td>20.4</td>
</tr>
<tr>
<td>tBu</td>
<td>24.0</td>
</tr>
<tr>
<td>PPh₃</td>
<td>26.7</td>
</tr>
</tbody>
</table>

(c) Steric Effects

Despite the fact that NHCs have often been used as phosphine mimics, their shape is very different (Fig. 3.1). For phosphine complexes, the substituents R on the phosphrous point away from the metal, resulting in the formation of a cone. The steric demand of these ligands can easily be described using Tolman's ingenious cone angle descriptors\[^{21}\]. The topology of NHCs is different from this and it is more complicated to define parameters measuring the steric demand of these ligands. The R substituents on the nitrogen atoms have a strong impact on the ligand's shape. NHCs have been described as fence- or fan-like\[^{30}\], the substituents pointing toward
the metal, thereby "wrapping" it to some extent and forming a pocket (Fig. 3.1). In addition, the NHC ligands are anisotropic and a rotation around the metal-carbene bond can substantially change the steric and electronic interactions.

![Fig. 3.1. Shape of phosphines and NHC](image)

3.1.2 C-H Activation in Carbene Complexes

Over the past 30 years or so, a number of carbon-hydrogen bond activation reactions catalysed by transition metals have appeared in the literature\[^{31},\,^{32}\]. This work took on greater significance in 1982, when Bergman reported a reaction in which a "simple" oxidative addition of cyclohexane to a photochemically generated reactive Ir\(^1\) fragment had occurred\[^{33}\]. Since then, many other transition metal complexes that can activate alkane C-H bonds by a variety of mechanisms to give products with metal-carbon bonds have been discovered. In examining the reactions of homogeneous metal complexes with hydrocarbons, the various examples can be classified according to four general types of reaction. These types are shown in Fig. 3.2. Reaction 3.2a represents the most common type, in which a metal with a vacant coordination site undergoes oxidative addition (formation of two new bonds, using 2e\(^{-}\) from the metal + 2e\(^{-}\) from the C-H bond) to the metal center. Reaction 3.2b shows a homolytic or radical process that is quite rare, but nonetheless has been observed. Reaction 3.2c represents the use of an electrophilic metal center to break the C-H bond, and there is debate as to whether this

NHC-Dynamics
159
mechanism is concerted or actually proceeds via an oxidative addition pathway. Finally, reaction 3.2d shows the reversible addition of a C–H bond to a M=X bond where X can be either a heteroatom containing ligand or an alkylidene.

(a) \[M + R-H \rightarrow M^R_H \]
(b) \[2M + R-H \rightarrow M-R + M-H \]
(c) \[M-X + R-H \rightarrow M-R + X-H \]
(d) \[M=X + R-H \rightarrow M^R_{XH} \]

Fig. 3.2. Mechanisms for C–H activation by transition metal complexes.

It is now apparent that N-heterocyclic carbenes are not necessarily innocent, inert ligands that simply help to stabilize reactive and potentially catalytically useful metal complexes\[26, 34, 35\]. In a number of cases with late transition metals, NHCs have been found to undergo facile intermolecular C-H bond activation reactions\[36-38\] and, in some cases C-C bond activation\[24\] under more forcing conditions. The selective activation and functionalization of CH bonds has attracted increased attention in recent years\[39\]. The facility of this reaction using carbene complex can be explained by the increased electron density on the metal as a result of the strongly electron donating carbene and the fact that
C-H and C-C bonds are forced into close contact with the metal because of the steric bulk of the NHC.

As an example, Lappert et al have reported that activation of an aromatic CH bonds at an N-heterocyclic carbene, forming an orthometalated Ir(III) complex.[40] Hermann[41] has reported the C-H bond cleavage of 1,3-bis(cyclohexyl)imidazole-2-ylidene (ICY) by [\((\eta^5-C_5Me_5)IrCl_2\)]\textsubscript{2} (the direct activation product was not observed, since rapid β-hydrogen elimination afforded a 1-(2-cyclohexyl)-3-cyclohexylimidazol-2-ylidene ligand in the ultimate product), while Nolan and co-workers have very recently described double C-H activation of 1,3-bis(tert-butyl)imidazole-2-ylidene (tBu) at rhodium.[42] Whittlesey[43, 44] and co-workers have shown C-H activation of the carbene in [Ru(IMes)(PPh\textsubscript{3})\textsubscript{2}(CO)H\textsubscript{2}] at room temperature in the presence of hydrogen acceptor (vinyltrimethylsilane). Later the same group have shown an unexpected intramolecular C-H bond activation of an alkyl NHC IE\textsubscript{T}e\textsubscript{2}Me\textsubscript{2} (1,3-bis(ethyl)-4,5-dimethylimidazol-2-ylidene) in Ru(IET\textsubscript{2}Me\textsubscript{2})(PPh\textsubscript{3})\textsubscript{2}(CO)H\textsubscript{2}, which generates a stable and fully characterized product resulting from NCH\textsubscript{2}CH\textsubscript{2}H activation.

The N-heterocyclic carbene complexes reported in the following sections have been donated by Professor Michael K. Whittlesey group for which author is indebted; the NMR studies have been carried out by the author.
3.2 C-H Activation and Phosphine Exchange in Ru(II) Hydrido NHC Complexes.

Ruthenium complexes have played a pivotal role in the elevation of N-heterocyclic carbene (NHC) ligands to the ubiquitous position that they now occupy in organometallic chemistry, most spectacularly in their applications in metathesis reactions\cite{45,46}. Several groups\cite{38,47-49} have been involved in the synthesis and development of these molecules as catalysts, and it is now recognized that these are relatively bulky directing ligands, in that, apart from the steric aspects, the carbene-ligand possesses a substantial trans effect. Moreover, N-heterocyclic carbenes (NHCs) are not necessarily innocent, inert ligands. Recently, Crudden and co-workers\cite{50} have shown that \(\text{Rh(IMes)(PPh}_3)_2\text{Cl} \) (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) not only undergoes slower intermolecular phosphine exchange than the parent phosphine species \(\text{Rh(PPh}_3)_3\text{Cl} \), but surprisingly, dissociates IMes irreversibly in chlorinated solvents in the presence of excess phosphine\cite{50}.

Results and Discussion

In several earlier studies, Whittlesey and co-workers have shown that complexes such as 1, are capable of affording new cyclometallated Ru-derivatives, 2, via an intra-molecular C,H activation reaction (see Scheme 3.2). The studies, which follow, report on several new derivatives of 1 and 2, and suggest, as a consequence of a number of NMR measurements, that this reaction proceeds, in part, via a combination of dissociation and isomerization reactions.
3.2.1 Ru(II) isopropyl-substituted Carbene 1Pr$_2$Me$_2$ (1,3-bis-isopropyl-4,5-dimethyimidazol-2-ylidene) Complexes

The new Ru carbene complexes can be readily identified via multinuclear NMR measurements, for example, 31P, 1H hydride and 13C carbene resonances. Throughout this discussion use will be made on the empiricism that $^2J(P,H)$ trans is usually much larger (often one order of magnitude) than $^2J(P,H)$ cis.

Phosphine Exchange experiments. The 1H, 13C and 31P NMR characteristics of complex 3a clearly reveal the two non-equivalent hydride ligands, the expected high frequency position of the 13C carbene and CO resonances and the two equivalent 31P spins, respectively.
As it is often the case that six-co-ordinate complexes can dissociate a bulky neutral ligand (ex: PPh$_3$). We have added one equivalent of P(p-Tol)$_3$ to a solution of 3a in THF solution and allowed these to react at 40°C for 30' (Without warming we do not observe exchange, see Fig. 3.3, lower trace). After cooling to RT, the 31P spectrum of the resulting solution is shown as the middle trace of Fig. 3.3. Clearly several new complexes, 3b-3d, are formed. One of these, 3c, shows a typical AB spin system, 2J(P,P) = 255 Hz, consistent with a structure containing non-equivalent trans phosphine donors. Whereas complex 3b and 3d, shows two doublets and singlet respectively. All four complexes 3a-3d have non equivalent hydride ligands. If this solution is allowed to stand for 20h, component 3c is shown to increase in intensity (Fig. 3.3).

Fig. 3.3. 31P{H} spectrum of (I) complex 3a at RT. (II) Complex 3a and 1eq.P(p-tol)$_3$ warming for 30 min at 40°C and measured at RT. (III) Complex 3a and 1eq.P(p-tol)$_3$ after 20 hours at RT. THF solution.

Based on the 31P (and 1H) data we suggest in Scheme 3.3 that the solution now contains the following complexes. Obviously, there is facile exchange between PPh$_3$ and P(p-Tol)$_3$.

Chapter 3
164
Scheme 3.3

Given the observed dynamics for complex 3, it was interesting to study Complex 4. A THF solution of the new cyclometallated cis-complex 4, was then treated with one equivalent of P(p-Tol)3. It was not thought to be necessary to warm this THF solution as, in contrast to 3a, both the carbene and hydride ligands are thought to possess relatively large trans effects, i.e., ligand dissociation should be facile. Fig. 3.4 gives the 31P spectra of the pure material and the solution which results, whereas Fig. 3.5 shows the hydride section of the 31P,1H-correlation for the same solution. The four isomeric complexes observed (see Scheme 3.4) possess non-equivalent cis phosphine ligands (based on the
observed $^2J(P,P)$ values). Fig. 3.5 proves that each of the eight ^{31}P
proportions in the upper trace of Fig. 3.4 correlates to a 1H hydride
resonance (one of which is trans to a P-donor). For each isomer one
expects four 1H hydride absorptions ($^2J_{PH}$ trans and $^2J_{PH}$ cis) and one
observes 16 hydride signals from the four isomers. With a modest
amount of effort all four of these isomers can be properly assigned.
Obviously, there is phosphine exchange both trans to the carbene and
trans to one of the two hydrides.

![Chemical structure diagram](image1)

Fig. 3.4. ^{31}P {1H} spectrum in THF solution showing four isomers formed after
adding one equivalent of $P(p$-tol)$_3$ to complex 4.

![Chemical structure diagram](image2)

Fig. 3.5. Section of the PH COSY of Complex 4 in the presence of 1eq of $P(p$-
tol)$_3$ showing four different isomers.
3.2.2 Ru(II) IMes Carbene Complex

(1,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene)

A similar exchange reaction with P(p-Tol)_3 was carried out starting from the cis-complex 5, which contains the well-known larger carbene ligand, IMes.

Fig. 3.6 shows the analogous 31P spectra of the pure material and the solution which results upon addition of the tolyl phosphine, whereas Fig. 3.7 shows the hydride section of the 31P,1H-correlation. The structures assigned to the isomers are given in Scheme 3.5 and once again the exchange chemistry results in the P(p-Tol)_3 ligands taking up positions both trans to the carbene and trans to a hydride.
Fig. 3.6. $^{31}\text{P}{{}^{1}\text{H}}$ spectrum in THF solution showing the four different isomers after adding one equivalent of P(p-tol)$_3$ to complex 5.

Scheme 3.5

Addition of one equivalent of PBU$_3$ (a stronger donor) to the cis-
bis phosphine complex 5, immediately affords only three of the possible four analogous isomers, a-c, in almost, but not quite, equal proportions shown in Fig. 3.8 (middle row). The fourth isomer, d, is observed only after approximately 24 hours. Clearly, the exchange proceeds smoothly for a different type of donor as well.

![Figure 3.8](image)

Fig. 3.8. 31P(1H) spectrum of (I) complex 5 in THF at RT. (II) Complex 5 and 1eq. PBu$_3$ measured at RT. (III) Complex 5 and 1eq. PBu$_3$ after 24 hours at RT.

Given that a presumed dissociative exchange is active, it was interesting to consider the reaction arising from a THF solution of trans complex 3a, in the presence of the olefin Me$_3$Si-CH=CH$_2$, the reagent used by Whittlesey in his previous study to promote hydride insertion and subsequent cyclometallation chemistry. Fig. 3.9 shows a set of 31P spectra and Scheme 3.6 the presumed reaction sequence. The lower trace corresponds to the starting material. The center trace shows the products from addition of one equivalent of silane after 3h, and the upper trace the result of addition of an additional 10 equivalents of the silane, after the 3h period, followed by immediate measurement. The new cis mono hydride cyclometallated complex, 4a, is now readily recognized via its 1H spectrum (not shown); however, more interesting is the detection of 3b, the cis isomer of the starting material, indicated in the
middle trace. This cis-isomer, whose concentration decreases as the reaction progresses, is relevant as we know from the studies described above, that it will readily exchange a tertiary phosphine ligand, without warming, thus opening a coordination position. These results prompt us to consider the mechanism given in Scheme 3.6 for the cyclometallation of 3a.

![Scheme 3.6](image)

Fig. 3.9. (I) $^{31}\text{P}^{1}\text{H}$ spectrum of complex 3a in THF solution. (II) Complex 3a and one equivalent of trimethyl vinylsilane (TMVS) after 3 hours. (III) complex 3a and 10 additional equivalents of TMVS.

The loss of phosphine allows for the silane olefin complexation. Insertion and reductive elimination afford the ethylsilane in the THF solution. This product, EtSiMe$_3$, was identified via a $^{29}\text{Si}^{1}\text{H}$ correlation, see Fig. 3.10. The new presumed Ru(0) species which results in an oxidative addition reaction then readily adds the proximate iso-propyl C$_2$H bond to afford the two isomeric cyclometallated products shown. At the moment we cannot be certain that the phosphine loss occurs only from one position within the coordination sphere.
Scheme 3.6

Fig. 3.10. 29Si-1H HMOC showing the three cross peaks for the product ethyltrimethylsilane in the presence of excess trimethyl vinylsilane (TMVS) in a mixture of complex 3a + 11 equivalent of TMVS.
Conclusions: The phosphine exchange experiments carried out on Ru(II) hydrido NHC complexes 3, 5 and cyclometallated cis-complex 4 to results in a mixture containing starting material and the three new products. The structures of the new products were identified by NMR to show that phosphine exchange occurs both trans to the carbene and trans to the hydride.
3.3 Dynamics

Diversified dynamic processes occur in molecules of different heteroorganic compounds (HOC) and, in particular, organometallic compounds (OMC), due to structural changes in the mutual arrangement of various groups in HOC molecules (rotation, small-amplitude oscillation, inversion, etc.). Generally, these processes are degenerate and occur rather rapidly. Occasionally these are suitable for study by dynamic NMR spectroscopy. Studies of dynamics by NMR have often been carried out using detailed calculations of the line shapes that vary with temperature; nevertheless, magnetization transfer and newer two-dimensional (2D) methods can often provide more comprehensive information.

Examination of DNMR spectra allows the determination of rates and subsequently the elucidation of mechanisms. This approach was first applied to intramolecular rearrangements of organometallics 40 years ago in a series of measurements on "stereochemically non-rigid organometallic compounds." The compounds were designated as fluxional in situations where equivalent structures of these non-rigid compounds interconverted via a series of bond angle changes, rotations of ligands, or bond-breaking and bond-making reactions.

Transition metal complexes with N-heterocyclic carbenes have proven to be very efficient catalysts. The efficiency of NHCs is attributed to both their strong sigma donor properties and sterically demanding structure. These very large ligands, in the presence of further bulky donors such as PPh3, may well no longer freely rotate around the M-C(carbene) bond. Using classical temperature
dependent and 2-D NMR exchange techniques, aspects of the dynamics (restricted rotation features) of few carbene complexes are discussed in the following sections.

3.3.1 Restricted Rotation in Ru(II) Carbene Complexes

1H NMR studies reveal that the two iso-propyl groups of the trans isomer 3a are non-equivalent in THF solution at ambient temperature. This suggests that the plane defined by the three atoms, N-C(carbene)-N, does not eclipse the P-Ru-P axis, but rather lies rotated at some angle away from the two phosphine ligands, thus placing the two iso-propyl groups in different local environments. Sections of the phase sensitive 2-D NOESY exchange spectrum for this complex are shown in Fig. 3.11, and reveal that the two alkyl groups exchange with one another. i.e., there is rotation around the Ru-C(carbene) bond, but it is not rapid.

![Fig. 3.11. Sections of 1H, 1H NOESY for 3a in THF solution. The left section shows the exchange from the isopropyl methyl resonances (top right) and the right section shows the exchange between two methine signals.](image)

In contrast to 3a, the ambient temperature 1H spectrum for 5 shows only two poorly resolved methyl signals (see Fig. 3.12). A series of variable temperature spectra eventually afford a 1H
spectrum at 233K that contains six non-equivalent methyl resonances. This result is consistent with restricted rotation around both the Ru-C(carbene) and N-C(mesityl) bonds as indicated by the arrows in the structure beside. One of the two p-mesityl methyl groups is found at relatively low frequency, ca 1.2 ppm, and we assign this to a methyl group which is close to one or more of the phenyl groups of a PPh₃ ligand (i.e., local anisotropic effects).

A line shape analysis using the data from Fig. 3.12 gives the following kinetic data: \(\Delta H^* = 52.3 \text{ kJ/mol} \), \(\Delta S^* = -3.6 \text{ J/K} \cdot \text{mol} \) and \(\Delta G^* = 51.2 \text{ kJ/mol} \). Most likely, the difference in size between the IMes and iso-propyl carbene ligands is responsible for the differing dynamics associated with the restricted rotation.

Fig. 3.12 \(^1\text{H} \) NMR spectra (methyl region) of complex 5 at different temperatures. (p-mesityl methyl groups are indicated as stars).
It is observed that, between 240K and 255K, the CH$_3$-signals at ca 2.5 ppm, ca 1.8 ppm and ca 1.2 ppm all appear to broaden at the same rate, even though these represent rather different methyl signals. Consequently, it is tempting to think that there is a single mechanism contributing to these exchange processes. One possibility involves loss of phosphine, e.g., trans to the hydride ligand, followed by rapid rotation around both of the Ru-C(carbene) and N-C(mesityl) bonds due to the release of the steric pressure due to the PPh$_3$ ligand.

Again, in contrast to the observations for 3a, the ambient temperature 1H NOESY for 5 in the hydride region indicates exchange between the hydride ligands (see Fig. 3.13). This exchange might well be coupled to the phosphine loss in that perhaps the five-coordinate complex favors a rapid equilibrium between the di-hydride and the η^2 dihydrogen form. In any case, the IMes complex 5 seems to have rather different NMR characteristics than either of the cis isomers of 3 and 4.

Fig. 3.13. Hydride region of 1H, 1H NOESY showing exchange between Ha and Hb
3.3.2 Restricted Rotation in Mono Cationic Rh(I) Carbene Complexes.

A variety of carbene complexes in a square planar (rather than an octahedral) environment are well known. The room temperature 1H NMR spectrum of the Rh - carbene complex $6[PF_6]$ reveals a number of broad signals in the aliphatic region for the Cy-substituents and two signals, in the ratio 2:1, for the NCH=CHN protons. Further, one of the two observable methine resonances of the Cy groups, at ca. 4.5 ppm, is extremely broad suggesting some form of fluxional behaviour. A set of variable temperature 1H spectra for $6[PF_6]$ was measured and these are shown in Fig. 3.14.

![Fig. 3.14. 1H NMR spectra (500 MHz) of [Rh(I\text{Cy})_3(CO)][PF_6], (6[PF_6]) in CD_2Cl_2 as a function of temperature.](image-url)
At 203 K, all of the signals are relatively sharp and reveal three non-equivalent signals, in the ratio 1:1:1, for both the Cy-methine groups and the NCH=CHN backbone protons. A line shape analysis\cite{62} of the data from Fig. 3.14 affords an energy of activation of 35 (±1) kJ/mol for the two trans positioned Rh-C\textsubscript{NHC} bonds.

A similar set of NMR spectra were recorded for salt 7[PF\textsubscript{6}] (Fig. 3.15), and, at 203 K, gave three non-equivalent signals for the 1Pr-methine resonances as well as three signals for the NCMe=CMeN protons. The relative integrals within each group are again 1:1:1. For 7[PF\textsubscript{6}], at 203 K one finds six non-equivalent i-Pr methyl signals due to the three different sets of diastereotopic CH\textsubscript{3} protons. Analysis of the various line shapes afforded an energy of activation of 40 (±1) kJ/mol for the two mutually trans NHC ligands. The variable temperature study for 6[BAR\textsubscript{F}] salt (see Fig. 3.16) resulted in an activation energy of 38 (±1) kJ/mol. We do not observe any significant difference between the NMR spectra for 6[PF\textsubscript{6}] and 6[BAR\textsubscript{F}] in the regions of the carbene resonances and we attribute the differences in the calculated energies to the experimental error\cite{62}.

The observed temperature dependences in the salts 6[PF\textsubscript{6}] and 7[PF\textsubscript{6}] are a consequence of restricted rotation associated with the three Rh-C(carbene) bonds.

At low temperature the three different sites are assigned as A-C for the Cy-methine protons and a-c for the three NCH=CHN protons, as indicated in the structure beside. The two trans carbene ligands are not exactly perpendicular to
the C-Rh-C plane defined by the OC-Rh-C(trans-carbene) fragment, with the result that the two N-substituents on the carbene reside in two different environments, i.e. one closer to the CO, the other proximate to the trans carbene ligand. Sections of the ROESY spectra\[^{[63]}\] for 6[PF$_6$] and 7[PF$_6$] are shown in Fig. 3.17 and reveal that, even at 203 K, there is slow exchange, e.g. in 6[PF$_6$] between sites A and B.

Fig. 3.15. 1H NMR spectra (500 MHz) of [Rh(\text{IPr$_2$Me$_2$})$_3$(CO)][PF$_6$], 7[PF$_6$], in CD$_2$Cl$_2$ as a function of temperature.

Fig. 3.16. 1H NMR spectra (500 MHz) of [Rh(ICY)$_3$(CO)][BArF$_5$], (6[BArF$_5$]) in CD$_2$Cl$_2$ as a function of temperature.

NHC-Dynamics
179
We believe that the sites c and c' are also in exchange and that the entire process is concerted, i.e. all three carbene rings are rotating together. However, rotation of the imidazole ring in the NHC trans to the CO ligand moves the N-substituents into equivalent NMR environments, so that this exchange is not immediately recognized. However, a hint with respect to the rotation of this third ligand comes from the observed exchange between the diastereotopic \(^1\)Pr methyl groups within the ring trans to the CO of 7[Pf₆]. These two methyl resonances, indicated as "x" and "y", are well resolved (δ 0.52 and 1.33) and are also in slow exchange at 203 K based on the ROESY data. We believe that this exchange process develops from the rotation indicated in cartoon below.
3.4. N-Heterocyclic Carbene HF Complexes

Fluoride complexes of the platinum group metals form a largely neglected class of compounds, which have long been considered as being too unstable and/or too reactive to be of any value. This is primarily because of the supposed incompatibility of the soft late metal center with the small, hard, electronegative fluoride ligand. However, the development over the last 5-10 years of more widely applicable synthetic routes allowing fluoride to be introduced into the coordination sphere of a metal (e.g. AgF metathesis, C-F bond activation, development of mild HF sources such as Et₃N·3HF, oxidative addition of XeF₂) has made M-F complexes more common. As a consequence, a better understanding of the fundamental bonding interactions that can help to stabilise M-F complexes has also developed, such that there is now a range of synthetic as well as catalytic applications.

In the majority of M-F complexes, one or more tertiary phosphines are present as ancillary ligands, although not always in an innocent capacity. One could ask the question, how stability and reactivity might be affected upon replacing PR₃ by an N-heterocyclic carbene (NHC), especially as NHCs are known to be significantly better donor ligands. For example, while reductive elimination of imidazolium chloride from NHC-M-Cl complexes is well established, loss of imidazolium fluoride has not been investigated. This is to be expected given that only three fully characterized late M-F complexes carrying NHC ligands have been reported, one by Whittlesey et al. (Ru) and two by Radius and co-workers (Ni).
Given the interest in both Ru-carbene complexes and the still fairly scarce number of Ru-F complexes, an NMR study on the carbene fluoro-complexes 8 and 9 was undertaken.

The 1H NMR spectrum of complex 8 reveals the expected hydride signal as a triplet centered at δ -5.08 (in C$_6$D$_6$) plus four non-equivalent carbene methyl resonances. Two of these are found at relative high frequency (δ 3.34, δ 3.14) and are assigned to the N-Me absorptions. The appearance of four methyl signals is again indicative of restricted rotation about the Ru-C(carbene) bond. The N-C(carbene)-N plane is not parallel to the P-Ru-P axis and consequently, one of the two N-methyl resonances is closer to the F-atom (see above). As a consequence of this structure, the 2-D 1H,19F HOESY (Fig. 3.18) spectrum affords a selective NOE contact from the fluoride ligand to this methyl group and, therefore, since each N-methyl resonance shows a selective NOESY cross-peak to its proximate C-methyl partner, all four of the methyl signals can be assigned. Interestingly, one finds a selective,
through-space spin-spin interaction from the 19F spin to the proximate methyl group and this is confirmed via a selective 1H-19F decoupling experiment (see Fig. 3.19). There are no exchange peaks in the phase sensitive proton 2-D NOESY map so that there is a significant barrier to the rotation. The 31P spectrum shows equivalent P-atoms at δ 44.75 and the 19F resonance is observed at δ -353.30.

![Fig. 3.18. 1H-19F HOESY spectrum of complex 8 showing selective NOE contact to the methyl group and ortho protons of the triphenyl phosphine (C$_6$D$_6$, 400 MHz, 298 K).](image)

![Fig. 3.19. Section of the 1H (lower trace) and 1H-19F} (upper trace) NMR spectra of complex 8 (d$_8$-THF, 200 MHz, 298 K).](image)

These results are somewhat in contrast to what one finds in solution for the i-Pr analog 9 (see Scheme 3.7). Initially, the NMR spectra are consistent with 9. The hydride appears as a doublet of triplets, δ -5.94, 2J(P,H) = 25.6 Hz and J(H,F) = 4.8 Hz. The 31P spectrum shows equivalent P-atoms at δ 40.50 with 2J(P,F) = 28 Hz.
The ^{19}F resonance is observed at δ -355.6 as a poorly resolved multiplet. The two N-i-Pr (and C-Me) groups are non-equivalent and, again, the 2-D $^1\text{H},^{19}\text{F}$ HOESY spectrum shows a selective contact to one of the two i-Pr methine protons, δ 6.29 (see Fig. 3.20), thereby facilitating the assignment of all of the aliphatic protons.

Fig. 3.20. $^1\text{H},^{19}\text{F}$ HOESY spectrum of complex 9 showing selective NOE contact to one of the two isopropyl methine protons and the ortho protons of the triphenyl phosphine (C$_6$D$_6$, 400 MHz, 298 K).
However, the triplet hydride resonance slowly diminishes in intensity and three new groups of resonances appear in the hydride region (see Fig. 3.21) that can be assigned to structures 10-12. After several hours, the relative intensities of these four Ru-species are ca 1:1:3:4 for 9-12, respectively, i.e., 9 and 10 are now the minor components. Phase sensitive 2-D NOESY spectroscopy reveals that these complexes are not in equilibrium on the NMR time scale (see Fig. 3.22).

![Figure 3.21](image1.png)

Fig. 3.21. 1H spectrum of complex 9 after several hours showing the relative intensities of four Ru-species (9, 10, 11 and 12) are approximately 1:1:3:4 ratios. (d_6-THF, 700 MHz, 298 K).

![Figure 3.22](image2.png)

Fig. 3.22. Section of Hydride region of the NOESY spectrum for 9 at ambient temperature revealing no exchange between the species 10, 11 and 12 (C_6D_6, 400 NMR).

Complex 10, which gives broad NMR resonances at ambient temperature, can be shown (via low temperature measurements, in d_6-THF, see Fig. 3.23) to be the cis bis-phosphine isomer of 9. In addition to the non-equivalent 31P signals, δ 40.39 and δ 19.50 and
a broad 19F signal at δ -320.0, one finds that the hydride resonance for 10 now appears as a doublet of doublets with the expected relative large $^2J(P,H)$ trans coupling of 131 Hz.

The major components, complexes 11 and 12, arise due to a disproportionation reaction. The new tris-phosphine complex, 11, reveals a hydride signal, δ -5.65 composed of two triplets separated by the expected relatively large $^2J(P,H)$ trans coupling of 112 Hz. There is a further small splitting of ca 3.5 Hz from the 19F atom in benzene solution, but this is no longer visible in THF solution. One finds the expected A$_2$X 31P spectrum, and a quartet 19F signal at δ -385.1, $^2J(P,F) = 23$ Hz.

The bis-carbene complex, 12, reveals a sharp doublet of doublets for its hydride resonance at δ - 7.57. The two bond interactions, 28 Hz and 7 Hz, are assigned to $^2J(P,H)$ and $^2J(F,H)$, respectively. Further, one finds a sharp doublet at 44.6 ppm in the 31P{1H} NMR spectrum, $^2J(P,F) = 41.4$ Hz and a broad 19F signal at δ - 344. The two carbene ligands are non-equivalent and a 13C{1H}-1H HMBC correlation from the hydride resonance at -7.57, shows three correlations: one each to the two carbene carbons, δ 184 and δ 192, and one to the ruthenium carbonyl carbon, at δ 204 (see
Fig. 3.24). These cross-peaks stem from two-bond proton-carbon interactions and it was not obvious that these would be large enough to be analytically useful.

Fig. 3.24. Section of the 13C, 1H HMBC spectrum for 12 at ambient temperature showing correlations to one each of to the two carbene carbons and one to the carbonyl carbon. (d$_6$-THF, 700 MHz).

The obvious difference in stability between 8 and 9 is undoubtedly related to the sterically bulky i-Pr groups in 9 and suggestions that conclusions with respect to the catalytic properties of 9 will require a consideration of possible disproportionation products.

Conclusions: The NMR measurements on N-heterocyclic carbene HF complexes (8 and 9) concern themselves with the structure and reactivity. The relatively large carbene ligands induce interesting isomerization and disproportionation reactions.
3.5 Concluding Remarks

This chapter describes a modest number of N-Heterocyclic carbene complexes which have been characterized by 1D and 2D NMR spectroscopy. Variable-temperature 1H NMR and/or NOE studies reveal that there is restricted rotation about the M-C$_{NHC}$ bond in several of these complexes. Line shape analysis from the NMR studies afford activation barriers for selected carbene complexes (5, 6 and 7). In specific complexes (3a, 4 and 5) the phosphine exchange, monitored via NMR spectroscopy, proves that the coordination positions both trans to carbene and trans to hydride are quite labile. In complexes 8 and 9 the relatively large carbene ligands induce interesting isomerization and disproportionation reactions.
3.6 Experimental Part

1H, 31P, 13C and 19F NMR spectra were recorded with Bruker DPX-200, 300, 400, 500 and 700 MHz spectrometers at room temperature unless otherwise noted. The T$_1$ values were measured using standard inversion recovery pulse sequence: [For complex 4b, THF, Hydride signal, 895 ms, Aromatic, 1.48 s], [For complex 3a, THF, Hydride signal, 845 ms, Aromatic, 1.34 s], [For complex 8, C$_6$D$_6$, Hydride signal, 550 ms, N-Methyl, 890 ms, Aromatic, 1.4s]. [For complex 9, C$_6$D$_6$, Hydride signal, 552 ms, Methyl, 690 ms, Aromatic, 1.1 s]. The 1H, 13C-HMBC was acquired using a 0.6 s relaxation delay and coupling constant of 135 Hz (d2 = 3.7 ms). The 1H,1H NOESY spectra were acquired using a 0.6 s relaxation delay and 600ms of mixing time. 1H,1H ROESY was performed using standard Bruker pulse sequence keeping a mixing time of 250 ms at a set temperature of 203 K within the NMR probe. 19F,1H-ROESY NMR experiments were acquired using the standard four-pulse sequence and carried out using a doubly tuned TXI probe. A mixing time of 800 ms was used and 16 or 32 scans were taken for each of the 1024 t$_1$ increments recorded. The delay between increments was set to 2 s.

The rate constants derived from variable-temperature data are extracted by fitting the calculated line shape to the experiment. This was done by manual iteration and visual comparison. The iterative program, MEXICO (version 3) was used. Line shape analysis over the temperature range 298 K to 203 K gave a set of rate constants, and resulting plot of ln(k) vs. 1/T revealed the activation parameter E$_a$ from the Arrhenius equation (a)

\[
\ln(k) = -\frac{E_a}{RT} + \ln A \quad \text{(a)}
\]
Where, E_A, Energy of activation and A, the pre-exponential or frequency factor.

$$\ln(k) = -\frac{E_a}{RT} + \ln A$$

Fig. E1. Rate constants for the internal exchange of the p-mesityl methyl of IMes ligand in $\text{Ru(IMEs)}_{2} \text{(PPh}_3\text{)}_{2}\text{(CO)}\text{(H)}_2$ (5) as a function of temperature and graph showing $\ln(k)$ vs. $1/T$ for the same.

$$\text{Slope } = m = -\frac{E_a}{R} = -6547$$

$E_a = 54.4 \text{ kJ mol}^{-1}$

Fig. E2. Rate constants for the Methine protons of ICy ligand in $\text{[Rh(ICY)$_3$CO]} \text{ PF}_6$ (6) as a function of temperature and graph showing $\ln(k)$ vs. $1/T$ for the same.

$$\text{Slope } = m = -\frac{E_a}{R} = -4255.8$$

$E_a = 35.4 \text{ kJ mol}^{-1}$
<table>
<thead>
<tr>
<th>T (K)</th>
<th>k(s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>10</td>
</tr>
<tr>
<td>223</td>
<td>23</td>
</tr>
<tr>
<td>233</td>
<td>54</td>
</tr>
<tr>
<td>243</td>
<td>118</td>
</tr>
<tr>
<td>253</td>
<td>255</td>
</tr>
<tr>
<td>263</td>
<td>560</td>
</tr>
<tr>
<td>273</td>
<td>1100</td>
</tr>
<tr>
<td>285</td>
<td>2100</td>
</tr>
<tr>
<td>298</td>
<td>4150</td>
</tr>
</tbody>
</table>

Fig. E3. Rate constants for the Methine protons of ICy ligand in [Rh(ICy)₃CO]BArF (6) as a function of temperature and graph showing ln(k) vs. 1/T for the same.

\[\ln(k) = -\frac{E_\text{a}}{RT} + \ln A \]

Slope = \(m = -\frac{E_\text{a}}{R} = -4584.3 \)

\(E_\text{a} = 38.1 \text{ kJ mol}^{-1} \)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>k(s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>10.5</td>
</tr>
<tr>
<td>233</td>
<td>16.5</td>
</tr>
<tr>
<td>238</td>
<td>23.5</td>
</tr>
<tr>
<td>243</td>
<td>36</td>
</tr>
<tr>
<td>248</td>
<td>53</td>
</tr>
<tr>
<td>253</td>
<td>79</td>
</tr>
<tr>
<td>258</td>
<td>122</td>
</tr>
<tr>
<td>263</td>
<td>168</td>
</tr>
<tr>
<td>268</td>
<td>235</td>
</tr>
<tr>
<td>273</td>
<td>337</td>
</tr>
<tr>
<td>278</td>
<td>453</td>
</tr>
<tr>
<td>283</td>
<td>655</td>
</tr>
<tr>
<td>288</td>
<td>846</td>
</tr>
<tr>
<td>298</td>
<td>1423</td>
</tr>
</tbody>
</table>

Fig. E4. Rate constants for the Methyl protons of IPr₂Me₂ ligand in [Rh(IPr₂Me₂)₃CO]PF₆ (7) as a function of temperature and graph showing ln(k) vs. 1/T for the same.

\[\ln(k) = -\frac{E_\text{a}}{RT} + \ln A \]

Slope = \(m = -\frac{E_\text{a}}{R} = -4836.8 \)

\(E_\text{a} = 40.2 \text{ kJ mol}^{-1} \)

NHC-Dynamics
191
3.7 Bibliography

NHC-Dynamics

193

NHC-Dynamics
195

Introduction

The use of ionic liquids as alternative solvent, especially in biphasic catalysis, continues to attract interest in the chemical community\(^1\)\(^{-4}\). Many catalysts are efficiently immobilised in these liquids, allowing for facile catalyst recycling\(^5\),\(^6\). Addition of co-solvents may, however, be required for a number of purposes: (i) to help dissolve a catalyst (ii) to decrease the viscosity (iii) to induce phase separation between the ionic liquid and the substrates/products and (iv) facilitate catalyst activation\(^7\). While many physical properties of ionic liquids including e.g. gas solubility, viscosity, and temperature effects have been studied in recent years\(^8\),\(^9\), a detailed understanding of how ionic liquids behave in the presence of a co-solvent is still lacking. From ESI-MS studies it is known, that dilute ionic liquids can form oligomeric cation-anion aggregates with their size depending on the concentration of the solution\(^10\),\(^11\). However, in concentration regimes usually encountered in synthesis, aggregation states and cation-anion interactions in ionic liquid solutions remain unknown.

Ion effects and ion-pairing are now well established in homogeneous catalysis\(^12\). An influence of the nature of the ionic liquid anion on the catalytic activity is also known, although in this case such effects can often be attributed to either the presence of halide impurities or decomposition (e.g., hydrolysis of PF\(_6^-\)).

We have chosen to study the diffusion and HOESY characteristics of the BF\(_4^-\) and N(OTf)\(_2\) (and to a lesser extent PF\(_6^-\)) anions as 1-butyl-3-methylimidazolium salts, [C\(_4\)C\(_4\)im][BF\(_4\)], [C\(_4\)C\(_4\)im][PF\(_6\)], and [C\(_4\)C\(_4\)im][N(OTf)\(_2\)].
Diffusion and HOESY NMR techniques are becoming increasingly used to study inter-ionic interactions in a variety of main-group and transition metal salts\cite{13-19}. Recently, Wang\cite{15} and Watanabe and co-workers\cite{16} have used this approach to study the temperature dependencies of the self-diffusion coefficient, viscosity and ionic conductivity for several ionic liquids. We present here NMR data, which support marked effects of the co-solvent on the structure of the ionic liquid.

Results and Discussion

Fig. 1 shows a 1H,19F-HOESY spectra for the neat ionic liquid [C$_4$C$_1$im]BF$_4$, (A) as well as six additional spectra for the various dilutions in methanol, (B-D) and dichloromethane, (E-G). In pure [C$_4$C$_1$im]BF$_4$, there are strong contacts from the BF$_4^-$ to all of the cation protons, and thus there is no selectivity. The anion "sees" all of the various protons more or less equally. 1H, 1H NOESY experiments reveal contacts from the N=CH-N proton, δ 8.4, to the two non-equivalent olefinic protons, δ 7.28 and 7.33, as well as NOE contacts between the two side-chains. These NOE results are in keeping with inter-rather than intra-molecular contacts, i.e., an individual cation is surrounded by more than one anion. Similar results are found for [C$_4$C$_1$im][N(OTf)$_2$], see Fig. 2. On dilution in methanol (B-D), Fig. 1 shows (a) the 1H, 19F-HOESY selectivity increases and (b) all of the 1H,19F cross-peak intensities decrease. These observations are consistent with strong solvation by methanol and thus reduced anion-cation contacts.

$$\begin{align*}
\text{[H}_3\text{C} & \text{N}^+\text{N-CH}_3 \text{]} X^- \\
x = \text{BF}_4, \text{PF}_6, (\text{CF}_3\text{SO})_2\text{N}
\end{align*}$$
Sections (E)-(G), in Figure 1, show the effects of dilution with CD₂Cl₂. At an ionic liquid/solvent volume ratio of 1:5 (spectrum F) the cross peaks to all of the protons are clearly visible. Even at the maximum dilution, 1:59 (spectrum G), almost all of the cross-peaks are still visible. These results are consistent with strong ion pairing. A similar HOESY result, i.e., contacts from the anion to all of the protons of the cation, was also found for [C₄C₁im][N(OTf)₂] (ionic liquid/CD₂Cl₂ volume ratio of 1:5, entry 13).

Figure 1. Series of ¹H, ¹⁹F- HOESY spectra under differing conditions: (A) Neat ionic liquid (IL) [C₄C₁im]BF₄ (B) 0.55 ml IL + 0.05 ml CD₃OD (C) 0.1 ml IL + 0.5 ml CD₃OD (D) 0.01 ml IL + 0.59 ml CD₃OD (E) 0.55 ml IL + 0.05 ml CD₂Cl₂ (F) 0.1 ml IL + 0.5 ml CD₂Cl₂ (G) 0.01 ml IL + 0.59 ml CD₂Cl₂
Figure 2. Section of the 1H-1H NOESY (800 ms mixing time) spectrum of the neat ionic liquid (IL) [C$_4$C$_4$im] [N(OTf)$_2$] showing NOE contacts from the N=CH-N proton to (a) the non-equivalent olefinic protons (labeled as 3 and 4) and (b) to the two side chains that is N-CH$_3$ (labeled as 6) and N-CH$_2$-CH$_2$-CH$_2$-CH$_3$ (labeled as 7-10) suggesting inter-molecular contacts.

It has been suggested that in the solid-state, that anion-cation hydrogen bonding forces are involved$^{20, 21}$. However, in the neat ionic liquid and in dichloromethane solution the HOESY contacts to the N=CH-N proton (the site suggested for the H-bonding) are approximately equivalent to those arising from the two olefinic, N-methyl and N-methylene protons (see (A) and (F)). Consequently, we discount selective hydrogen bonding as being the only major contributor, under these conditions, and conclude that ionic interactions are primarily responsible for the observed HOESY effects. Accordingly, in dichloromethane solution we tentatively assign a structural motif, A, to [C$_4$C$_4$im]BF$_4$ in which the BF$_4^-$ anion straddles the imidazolium plane. We cannot exclude a structure in which the anion "floats" around the cation, but remains quite close.
We note that, in deuterated methanol, the intensity of the imine proton (δ 8.4) slowly decreases due to slow exchange with the CD$_3$OD proton from the co-solvent and such exchange is well established$^{[22]}$.

Scheme 1 and table 1 shows 1H chemical shift data and the self-diffusion coefficient values, D, for the cations (via 1H) and anions (via 19F) in the neat ionic liquids, [C$_4$C$_1$im]BF$_4$, [C$_4$C$_1$im]PF$_6$, and [C$_4$C$_1$im][N(OTf)$_2$] as well as the diffusion data arising (primarily) from dilution of [C$_4$C$_1$im]BF$_4$ in either CD$_3$OD or CD$_2$Cl$_2$. The measured D-values for the neat ionic liquid [C$_4$C$_1$im]BF$_4$, 0.158 and 0.146, for the cation and anion, respectively, are similar and relatively small. The diffusion constants for the neat [C$_4$C$_1$im][N(OTf)$_2$] salt, 0.282 and 0.216, for the cation and anion, respectively, are again, relatively small, but somewhat different. We suggest that these small D-values arise from the relatively large measured viscosities of these ionic liquids$^{[23]}$.

Scheme 1 (Proton chemical shifts, in ppm for the neat IL as BF$_4$ salt)

![Scheme 1](image-url)
Table 1. PGSE Data for the ionic liquids.

<table>
<thead>
<tr>
<th>Salt</th>
<th>D</th>
<th>r_H</th>
<th>η (cp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $X = BF_4^-$ neat</td>
<td>Cation 0.158</td>
<td>1.34</td>
<td>104.0</td>
</tr>
<tr>
<td></td>
<td>Anion 0.146</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>2. (0.55ml) CD$_3$OD</td>
<td>Cation 1.108</td>
<td>0.32 (0.48)</td>
<td>62.3</td>
</tr>
<tr>
<td></td>
<td>(0.05ml) Anion 1.340</td>
<td>0.26 (0.39)</td>
<td></td>
</tr>
<tr>
<td>3. (0.1ml) CD$_3$OD</td>
<td>Cation 7.441</td>
<td>3.4 (5.0)</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(0.5ml) Anion 8.550</td>
<td>2.9 (4.4)</td>
<td></td>
</tr>
<tr>
<td>4. (0.01ml) CD$_3$OD</td>
<td>Cation 11.379</td>
<td>3.0 (4.4)</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>(0.59ml) Anion 13.189</td>
<td>2.6 (3.8)</td>
<td></td>
</tr>
<tr>
<td>5. (0.55ml) CD$_2$Cl$_2$</td>
<td>Cation 0.698</td>
<td>0.43 (0.7)</td>
<td>72.8</td>
</tr>
<tr>
<td></td>
<td>(0.05ml) Anion 0.770</td>
<td>0.39 (0.6)</td>
<td></td>
</tr>
<tr>
<td>6. (0.1ml) CD$_2$Cl$_2$</td>
<td>Cation 5.814</td>
<td>4.0 (6.0)</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(0.5ml) Anion 5.965</td>
<td>3.9 (5.9)</td>
<td></td>
</tr>
<tr>
<td>7. (0.01ml) CD$_2$Cl$_2$</td>
<td>Cation 8.957</td>
<td>4.6 (6.9)</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>(0.59ml) Anion 9.042</td>
<td>4.6 (6.9)</td>
<td></td>
</tr>
<tr>
<td>8. $X = PF_6^-$ neat</td>
<td>Cation 0.071</td>
<td>0.95</td>
<td>326.0</td>
</tr>
<tr>
<td></td>
<td>Anion 0.054</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>9. (0.1ml) CD$_3$OD</td>
<td>Cation 7.535</td>
<td>3.2 (4.9)</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>(0.5ml) Anion 8.105</td>
<td>3.0 (4.5)</td>
<td></td>
</tr>
<tr>
<td>10. $X = (CF_3SO)2N$ neat</td>
<td>Cation 0.282</td>
<td>1.3</td>
<td>58.8</td>
</tr>
<tr>
<td></td>
<td>Anion 0.216</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>11. (0.55ml) CD$_2$Cl$_2$</td>
<td>Cation 0.472</td>
<td>1.6 (2.4)</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>(0.05ml) Anion 0.381</td>
<td>1.9 (2.9)</td>
<td></td>
</tr>
<tr>
<td>12. (0.55ml)c CD$_2$Cl$_2$ + CH$_2$Cl$_2$</td>
<td>Cation 0.638</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.05ml) (0.05ml) Anion 0.493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. (0.1ml) CD$_2$Cl$_2$</td>
<td>Cation 6.07</td>
<td>3.1 (4.6)</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>(0.5ml) Anion 6.23</td>
<td>3.0 (4.5)</td>
<td></td>
</tr>
<tr>
<td>14. (0.55ml) CD$_3$OD</td>
<td>Cation 0.392</td>
<td>1.7 (2.6)</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td>(0.05ml) Anion 0.304</td>
<td>2.3 (3.4)</td>
<td></td>
</tr>
</tbody>
</table>

b The r_H value in parenthesis was calculated using a factor of 4 (not 6) in the Stokes-Einstein relation. c CH$_2$Cl$_2$ D value = 3.02; one observes a HOESY contact to the CH$_2$Cl$_2$. d D values (x 10$^{-10}$ m2s$^{-1}$)

It is known from the PGSE literature\cite{18, 24-28} that methanol successfully solvates the ions of many salts, and that for BF_4^-, a typical hydrodynamic radius (as calculated from the Stokes-Einstein
equation) would be ca 2.6 Å. Addition of methanol as a co-solvent, results in a marked increase in the D-values (partially due to decreasing viscosity), until, at a ca 1:5 volume ratio the D (and hydrodynamic radius, \(r_H \))-values of the cation, and anion, correspond to a more or less completely solvated salt\[18, 19, 27, 29, 30\]. Further dilution seems to have only a minimal effect on the sizes of the solvated ionic fragments.

For \([C_4C_{1}im]BF_4\) and \([C_4C_{1}im][N(OTf)_2]\) the addition of dichloromethane as solvent results in a modified picture. At a 1:5 volume ratio the D (and, \(r_H \))-values of the cation, and anion are almost identical and this situation corresponds to strong ion pairing, in keeping with the data from the Overhauser spectroscopy, noted above. Obviously, the two solvents, methanol and dichloromethane, affect the ionic liquid differently.

We note that entries 1, 2, 5, 8, 10 and 11 afford unrealistic \(r_H \) values. We believe that traces of impurities, due to sample handling and preparation, (mostly water) acquired before the NMR experiments, but after the viscosity measurements, affect the viscosity of the mixtures, and thus the calculated \(r_H \) values\[31\].

Summarizing, the HOESY results reveal that, contrary to results from X-ray crystallography\[20, 21\], the anion does not occupy a specific position in this salt. Moreover, in dichloromethane, where the PGSE data show almost complete ion pairing, there are strong, non-selective NOE contacts between the cation and anion. This eliminates hydrogen bonding as the primary source of the interaction between the cation and anion, as this would lead to selectivity in the HOESY contacts. These NMR data provide a new

Appendices
203
picture of both the structure of this salt and the function of the co-
solvent.

Two additional important implications may be derived from this study. First, the absence of selective contacts might find its expression in the often unexpectedly low melting points of ionic liquids. If on the one hand (diffuse) charge attraction is the dominant factor, but on the other hand, anions and cations cannot form a close packed structure due to their different size and shape, the crystallization energy will remain relatively low. Second, biphasic catalysis often suffers from slower reaction rates due to mass transfer limitations. As shown above, one needs only a relatively small amount of co-solvent to dramatically reduce potential aggregation within the ionic liquid. This might find its expression in significantly higher reaction rates.
Bibliography

Appendices

205

[27] E. Martinez-Viviente, H. Ruegger, P. S. Pregosin and J. Lopez-Serrano,

4007-4014.

Appendices

206
Curriculum Vitae

Devendra Babu Nama

I was born in Chintaparthy, Andhra Pradesh (India) on 05th of October 1977. I had my primary, secondary and pre university education during the period 1983-1995.

06/95 - 06/98 B.Sc degree in Physics, Chemistry and Maths
 P.E.S College, Bangalore University, India.
07/98 – 06/00 M.Sc degree in Inorganic Chemistry
 Central College, Bangalore University, India.
07/00 – 08/01 Analytical Chemist
 Shiva Analytical (INDIA) Ltd, Bangalore, India
09/01 – 10/02 NMR Project Assistant
 S.I.F department, IISc, Bangalore, India
11/02 – 03/04 Science Associate
 Aurigene Discovery Technologies Ltd,
 Bangalore, India
04/04 – 04/07 Ph.D thesis at the ETH Zurich, Switzerland under
 the supervision of Professor Paul S. Pregosin on
 "Synthesis, PGSE Diffusion and Multidimensional NMR
 Studies on Transition Metal Organometallic Species:
 Applications in Coordination Chemistry and Homogeneous
 Catalysis."