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FOREWORD

In the last few years the interest in designing timber structures has steadily increased. The 
reason for this being an increased focus in society on sustainability and environmental aspects 
but also due to the positive effects on the inner climate in accommodation buildings and the 
increased architectural possibilities. Furthermore, timber is technically and economically 
competitive compared with steel and concrete as a building material for a broad range of 
normal building structures such as e.g. accommodation buildings.  

So far the basis for design of timber structures has by far and large not achieved the same 
level of refinement and detail as the basis for the design of steel and concrete structures for 
several reasons. First of all the variability of the material properties is much higher than for 
other building materials; the raw timber material is not engineered but the result of natural 
processes. The material properties cannot be designed as for other materials but must be 
ensured by quality control schemes. Secondly the material properties, and therefore the 
reliability, depend on the whole load and moisture history of the structure. These two effects 
interact in a complicated manner for the timber materials used in timber structures, structural 
timber, glued laminated timber, panel-products together with the joints between them. 

The result of this being that the design of timber structures to a large degree is based on 
experience, subjective engineering judgement and in many cases excessive conservative 
assumptions. However, despite an in general conservative attitude the present basis for design 
of timber structures does not consistently account for the uncertainties influencing the 
structural performance. As a consequence hereof the presently applied basis for the design of 
timber structures may lead to designs which in terms of reliability are not comparable to 
equivalent structures made of steel and concrete. 

The main contribution of the present thesis by PhD J. Köhler addresses the problem complex 
outlined in the above and can be summarized as to establish a probabilistic model framework 
(or probabilistic model code) for the design of timber structures. In this process special 
emphasis is directed on the aspects of consistent modelling of the performance of timber 
components subjected to different types of loading and environmental exposures.  

In the thesis a rather rigorous phenomenological and hierarchical modelling of uncertainties 
associated with the characteristic of timber materials in dependency of scale, applied models 
and available information is developed.  On this basis specific models are developed and/or 
further extended with the aim to represent the performance of timber components and joints in 
consistency with experimental data and engineering understanding. The introduced models 
are rigorously analysed and simplified to the extent reasonable and relevant with due 
consideration to their practical applicability.

The probabilistic model code developed within the present thesis has by now already been 
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adopted by the Joint Committee on Structural Safety. In this way the thesis has been ensured a 
significant impact in a pre-normative context and thereby contributes to the future increased 
rational, efficient and sustainable use of timber as a building material 

Zürich, May 2007              Prof. Dr. M. H. Faber 
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SUMMARY 

During the last decades structural reliability methods have been further developed, refined and 
adapted and are now at a stage where they are being applied in practical engineering problems 
as a decision support tool in connection with design and assessment of structures. For 
materials such as concrete and steel, the application of modern structural reliability methods 
has led to an increasingly more consistent evaluation of the safety or reliability. Whereas 
some efforts in this direction have been undertaken also for timber, the developments, 
however, have been less impressive. One of the main reasons for this is that the variability of 
the timber material properties is much higher than for other building materials. Furthermore, 
the timber material properties depend on the entire load and moisture history of the structure.

It is important that a consistent basis for design of timber structures is established and 
documented in such a way that it may be accepted for implementation by the timber 
engineering and research community.  The development of a consistent basis of design of 
timber structures is the focal point of this thesis. 

The proposed basis of design is structured into several levels of sophistication. The basic level 
reflects the recent practice for reliability based code calibration. The bending strength and 
stiffness and the density of timber are referred to as reference material properties and are 
introduced as simple random variables. The basic limit state functions for components and 
connections are given. Furthermore, proposals are made regarding the different characteristics 
of timber on this simple level. Functional relationships for other material properties (based on 
the reference material properties) are given and probability distribution functions for the other 
material properties are proposed. Starting from this level, several possible refinements are 
proposed. New information might be introduced, and it is shown how different types of new 
information can be integrated by using a Bayesian updating scheme. Refinements in regard to 
the modelling of damage as a consequence of time load duration are proposed. For the 
bending strength, a hierarchical spatial variability model is proposed and a method is 
presented for linking the properties of a cross section (which is considered as the reference 
starting point for the modelling of spatial variability) with the properties of a test specimen. 

The main outcomes of this thesis are related to necessary pre-codification modelling aspects 
concerning the reliability of timber components in regard to strength and stiffness properties. 
An achievement of this thesis is that the work performed is fully compatible with the general 
probabilistic framework for establishing design basis developed by the Joint Committee on 
Structural Safety (JCSS). 
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ZUSAMMENFASSUNG 

Die Methoden zur Beurteilung der Bauwerkszuverlässigkeit wurden in den letzten 
Jahrzehnten weiterentwickelt, verbessert und angepasst, so dass sie heute im praktischen 
Ingenieurwesen ihre Anwendung finden; zum Beispiel als Entscheidungshilfe bei dem 
Entwurf und dem Unterhalt von Bauwerken. Für Bauwerke aus Stahl und Beton führte die 
Anwendung dieser Methoden zu einer konsistenteren Beurteilung der Sicherheit und der 
Zuverlässigkeit. Obschon für Bauwerke aus Holz einige Anstrengungen unternommen 
wurden, diese Methoden zur Anwendung zu bringen, sind die erreichten Entwicklungen im 
Vergleich zu anderen Baumaterialien weniger fortgeschritten. Einer der Hauptgründe für 
diesen Unterschied ist die hohe Komplexität des Baumaterials Holz; um das volle Potential 
des Baumaterials Holz auszuschöpfen ist ein hohes Mass an Fachkenntnis erforderlich. 

Es ist wichtig, dass eine konsistente Basis für die Bemessung von Holzkonstruktionen 
entwickelt wird, die breite Anwendung auf dem Gebiet des Ingenieurholzbaus findet. Die 
Entwicklung einer solchen Bemessungsbasis steht im Focus dieser Dissertation. 

Die hier vorgeschlagene Bemessungsbasis ist in mehrere Modellierungsstufen aufgeteilt. Die 
Grundstufe repräsentiert die allgemein gängige Praxis bei der Kalibrierung von Bemessungs-
richtlinien. Die Biegefestigkeit, das Elastizitätsmodul in Biegung und die Holzdichte sind als 
Referenzmaterialeigenschaften definiert und werden als Zufallsvariablen eingeführt. Einige 
grundlegende Grenzzustandsfunktionen für Komponenten und Verbindungen sind angegeben. 
Des Weiteren werden Vorschläge zur Modellierung der speziellen Holzmaterialeigenschaften 
gemacht. Andere Holzmaterialeigenschaften werden basierend auf den Referenzmaterial-
eigenschaften ermittelt und ebenfalls als Zufallsvariablen eingeführt. Ausgehend von dieser 
Grundstufe werden mehrere Modellerweiterungen vorgeschlagen. Es wird aufgezeigt, wie 
verschiedenartige neue Information dazu benutzt werden kann, die Parameter der 
vorgeschlagenen Modelle anzupassen. Modellverbesserungen in Bezug auf die 
Berücksichtigung der Schadensakkumulierung infolge von Langzeitbeanspruchung werden 
vorgeschlagen. Ein hierarchisches Model, welches die räumliche Variabilität der 
Biegefestigkeit berücksichtigt, wird entwickelt. Dieses Modell dient als Grundlage für eine 
Methode, die die Biegefestigkeit eines Querschnitts mit der Biegefestigkeit eines 
Probekörpers in Beziehung setzt. 

Die vorgestellte Bemessungsbasis soll den Ausgangspunkt für die Weiterentwicklung von 
Bemessungsrichtlinien wie den Eurocode 5 und die SIA 265 bilden und den effizienten 
Gebrauch von Holz als Baumaterial ermöglichen. Die Ergebnisse dieser Arbeit sind 
kompatibel mit dem allgemeinen wahrscheinlichkeitsbasierten Rahmenwerk für die 
Entwicklung von Bemessungsrichtlinien, dem Probabilistischen Model Code, der vom Joint 
Committee on Structural Safety (JCSS) entwickelt und herausgegeben wurde. 
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1 INTRODUCTION

Timber is an efficient building material, not only in regard to its mechanical properties but 
also because it is a highly sustainable material considering all phases of the life cycle of 
timber structures; production, use and decommissioning. Timber is a widely available natural 
resource throughout Europe; with proper management, there is a potential for a continuous 
and sustainable supply of raw timber material in the future. Due to the low energy use and the 
low level of pollution associated with the manufacturing of timber structures, the 
environmental impact of timber structures is much smaller than for structures built using other 
building materials. In addition timber, is a rather advantageous building material due to its 
material properties. Timber is a light material and, compared to its weight, the strength is 
high; the strength/weight ratio is even higher than for steel. 

However, timber is still not utilized to its full potential in the building and construction sector 
considering its beneficial properties. Many building owners, but also architects and structural 
engineers, do not consider timber as a competitive building material compared to concrete, 
steel or masonry. Attributes such as high performance in regard to reliability, serviceability 
and durability are generally not associated with timber as a building material. One of the main 
reasons for this is that timber is a highly complex material; it actually requires a significant 
amount of expertise to fully appreciate the potential of timber as a structural building material. 
In addition to this there are still a number of issues which need to be further researched before 
timber materials can achieve the same recognition as a high quality building material such as 
e.g. steel and concrete. 

In daily practice the engineering codes and regulations form the premises for the use of timber 
as a structural material. It is therefore of utmost importance that the codes and regulations are 
based on the most relevant and exact information available in regard to the reliability of 
timber structures. Traditionally, codes and regulations have been based to a very large degree 
on experience. This statement is true not just for timber structures, but also for concrete and 
steel structures. However, whereas the codes and regulations for the design of concrete and 
steel have undergone a remarkable modernisation through the last 2-3 decades, the codes and 
regulations for the design of timber structures are still falling significantly behind. The 
principle for the development of the scientific basis for codes and regulations for the design 
and assessment of structures is illustrated in Figure 1-1. 

Whereas the various steps in the process of developing a scheme for design and assessment 
are illustrated to the left in the figure, the scientific constituents required in the process are 
illustrated in the right part of the figure. For identified design and assessment situations, 
models for describing the performance of structures are derived. The models take basis in 
physical hypotheses and experimental evidence. In general these models are associated with 
uncertainties and an important task within the modelling process is to take into account these 
uncertainties in a consistent manner. A set of probabilistic models, which reflects the current 
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best engineering practice, may be specified in so-called (probabilistic) model codes, which 
build the basis for all further simplified design codes. 

Risk Screening
(Assessment of Failures and Malfunctions)

Identification of Design and 
Assessment Situations Exposures

(Loads and Enviroment)

Component
aspects

System
aspects

Model Building 
& Verification

Quantified Models
& Uncertainty

Codes

Basis of
Design

Detailed Quantification of Design and 
Assessment Strategies

Evidence from
Experiments

Physical
Hypothesis

Figure 1-1 Schematic representation of the framework required for establishing the basis for 
codes and regulations for design and assessment of structures.  

Presently the existing codes and regulations for the design of timber structures are not fully 
based on a framework as illustrated in Figure 1-1, but rather on a framework taking basis in 
general physical understanding combined with experience achieved through hundreds of years 
of use of timber as a structural material. In order to achieve the goal of optimizing the 
potential benefit of timber as a building material, it is thus necessary to establish a firm 
scientific basis for codes and regulations according to the process indicated in Figure 1-1.  

1.1 SCOPE OF WORK AND LIMITATIONS 

The main objective of the thesis is the development of a basis of design for timber structures. 
It is considered that timber is a material with special properties in regard to its high variability 
and its sensitivity to loading mode, load duration and changes in the surrounding climate. The 
schematic layout given in the right part of Figure 1-1 is used as a working thesis, focus is 
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placed on modelling aspects of timber components exposed to different load types and 
environmental conditions. This includes: 

a discussion of existing modelling approaches for the various aspects of timber 
components, 

a discussion of modelling alternatives, 

the selection of the most promising models, 

the calibration of parameters, 

the presentation of selected models and parameters in a consistent format, 

example calculations. 

An important issue for the design of timber structures is the behaviour of structural systems 
made of a number of different components. These aspects are not considered explicitly within 
this thesis. However, the discussion on spatial variability of timber material properties and the 
respective modelling proposal delivers the basis for further research of the system behaviour 
of timber structures. 

1.2 OUTLINE AND THESIS OVERVIEW 

A thesis overview is given in Figure 1-2. In chapters 2 and 3 a brief introduction into the 
fields of structural reliability and timber engineering is given. Existing knowledge is reviewed 
and summarized. Focus is placed on the issues which are considered as a relevant basis for the 
subsequent chapters. Chapters 4 and 5 are the development parts of this thesis. In chapter 4 
the focus is placed on the probabilistic modelling of timber material properties; in chapter 5 
the modelling of timber connections with dowel type fasteners is discussed. These two 
chapters build the basis for the development of a proposal of a probabilistic model code for 
timber structures that is presented in chapter 6. In chapter 7 some further examples are given 
regarding e.g. the assessment of experimental data, Bayesian updating, etc. The thesis is 
concluded with chapter 8, where the main content is summarized and a discussion of proposed 
further research is given. 
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Figure 1-2 Schematic overview of the thesis. 
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2 ASPECTS OF STRUCTURAL RELIABILITY 

Typical problems in structural engineering such as design, assessment, inspection and 
maintenance planning are decision problems subject to a combination of inherent, modelling 
and statistical uncertainties. The structural reliability theory is concerned with the rational 
treatment of these uncertainties. In the subsequent chapter some basic aspects of structural 
reliability are introduced, whereas the content of the chapter is based on standard structural 
reliability literature, as Madsen et al. (1986), Melchers (1999) and Faber (2003). The 
interested reader is also referred to these publications for more detailed and complete 
information. 

2.1 THE LIMIT STATE PRINCIPLE 

The performance of an engineering structure depends on the type and magnitude of the 
applied load and the structural strength and stiffness. Whether the performance is considered 
satisfactory depends on the requirements which must be satisfied. Among others these include 
reliability of the structure against collapse, limitation of damages or of deflections, or other 
criteria. In general any state, that may be associated with consequences in terms of costs, loss 
of lives and impact to the environment are of interest. In the following it is not differentiated 
between these different types of states but for simplicity refer to all these as being failure 
events.

It is convenient to describe failure events in terms of functional relations, which if they are 
fulfilled, define that the failure event F  will occur: 

0gF x (2.1)

where g x is termed a limit state function. The components of the vector x  are the 
realisations of the so-called basic random variables X  representing all relevant uncertainties 
influencing the problem at hand. The failure event F  is defined as the set of realisations of the 
limit state function g x , which are zero or negative.

Some typical limit states are given in Table 2-1. 
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Table 2-1 Typical limit states for structures. 

Limit State Type Description Examples 

Ultimate  Collapse of the structure or part of it 
Rupture, plastic mechanism, instability, 
progressive collapse, fatigue, deterioration, 
fire.

Damage (often included in above) 
Excessive permanent cracking, permanent 
irreversible deformation. 

Serviceability Disruption of normal use Excessive deflection, vibration, local damage. 

Due to the associated consequences, failure events linked with the most serious limit states 
such as collapse and major damage should be relatively rare events. The study of structural 
reliability is concerned with the assessment of the probability of failure events for engineered 
structures at any stage during its service life.

The probability of occurrence of a failure event is a measure of the chance of its occurrence. 
This chance may be quantified by observing the long term frequency of the event for 
generally similar structures or components, or may be simply a subjective estimate of its 
numerical value. Engineering structures are mostly exclusive in regard to the structural 
assembly and their exposure to loads and environment which in general precludes the 
assignment of relative frequencies of events within many similar structures. However, a more 
generic description can be given for structural components and material. Thus in practice a 
combination of subjective estimates and frequency observations about structural components 
and structural assemblies is utilized to assess the probability of limit state violation of a 
structure.

The probability of failure fp  may be determined by the following integral: 

0

0f
g

p P g f dX
x

X x x (2.2)

where g X  is the limit state function, X  is a vector of basic random variables and .fX  is 
the joint probability function of the variables X .

In general the basic variables X  are functions of time. E.g. the loads which are applied to a 
structure are varying in time and are of uncertain magnitude at any point in time; 
consequently the situation is similar for the corresponding load effects s . The resistance of a 
structure or component r  is also a function of time; commonly a structure is subject to some 
(random) deterioration process and the resistance is decreasing with time. The situation is 
illustrated in Figure 2-1. Both, the load effect and the resistance can be represented as random 
processes and probability density functions for given times ,a bt t t  can be formulated.  
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Figure 2-1 Schematic time-dependent reliability problem. 

A situation as illustrated in Figure 2-1 is referred to as the time-dependent reliability problem. 
Failure occurs when the process 0g tx  for some time, t , during the considered time 
interval, 0;T . tx  is a realisation of the random process tX .The probability of failure 

fp  in the interval 0;T  may be determined as: 

1 0,  0;fp T P g t t TX (2.3)

The evaluation of Equation (2.3) is in general difficult, and approximations are used in 
practical applications. Often an upper bound of the probability of failure in the time interval 
0;T  is used: 

0

,
T

fp T t dt (2.4)

where the out-crossing rate ,t  is determined by a suitable application of Rice’s formula, 
see e.g. Madsen et al. (1986). 

In many situations it is convenient (and sufficient) to assume that the basic variables X  are 
not depending on the time t . Then Equation (2.2) can be used for the determination of the 
probability of failure. 
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2.2 BASIC PRINCIPLES OF RELIABILITY ASSESSMENT 

The aim of structural reliability assessment is to quantify the reliability of structures under the 
consideration of all uncertainties associated with the formulation of the failure criteria. The 
formal framework for the calculation of the failure probability is given in Equation (2.2), 
whereas the term reliability is defined as the complement of the failure probability 1 fp .
A failure criterion is expressed through the limit state function g X .

2.2.1 UNCERTAINTIES IN RELIABILITY ASSESSMENT 

The limit state function g X  is formulated by means of models based on physical 
understanding and empirical data. Due to idealizations, inherent physical uncertainties and 
inadequate or insufficient data, the models themselves and the parameters entering the models 
such as material properties and load characteristics are uncertain. Consequently, uncertainties 
are grouped into: 

Inherent Uncertainties, 

Model Uncertainties, 

Statistical Uncertainties. 

Inherent uncertainty refers to the randomness of a phenomenon. This randomness is a result 
from a combination of uncontrollable fluctuations of many different factors. An example is a 
strength property of a structural timber element, which is a product of several quality control 
procedures during its production, but also growing conditions, sawing pattern and many other 
factors in the production line of the timber structural element. Another example for the 
randomness is the realization of loads on structures due to e.g. snow or wind events. The 
described type of uncertainty is also referred to as physical uncertainty. 

Model uncertainty is associated with the crudeness and incompleteness of mathematical 
models which describe a phenomenon.  

The statistical uncertainties are associated with the statistical evaluation of test results or 
observations. They may result from limited numbers of tests or observations which cause 
uncertainty in the estimation of statistical parameters. 

2.2.2 BASIC VARIABLES AND THEIR QUANTIFICATION 

In structural reliability assessment the set of basic variables of a problem in general is 
constituted of both random and deterministic variables for the geometry, material properties 
and load characteristics. In this section only very general remarks are made in regard to the 
different physical characteristics of the different types of random basic variables. In general, 
the quantification of the basic random variables can be divided into three parts: 
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Definition of the considered populations.  

Selection of a suitable types or families of probability distribution for the basic variable. 

Estimation of suitable distribution parameters from available data and any prior 
knowledge.

2.2.2.1 Population
The basic random variables should always be related to a meaningful and consistent set of 
populations. The description and modelling of these random variables should correspond to 
this set. A reliability analysis based on these random variables is only valid for the considered 
set of populations. The basis for the definition of a population is in most cases the physical 
background of the quantity. Factors which define a population are the nature and the origin of 
the random quantity (e.g. strength, load or geometry), the spatial characteristics (e.g. size of 
structural component, geographical origin of the considered material, regional wind speed 
characteristics) and temporal conditions (e.g. duration of exposure). The choice of 
specifications which define a population may depend on the objective of the analysis, the 
amount and nature of the available data and the amount of resources which can be afforded. A 
population with a unique set of specifications is referred to as elementary population; a 
population in which specification parameters vary is referred to as a composite population. 
The set of measurements associated with a certain population is referred to as an elementary 
or composite sample respectively. A sampling procedure may be representative or artificial. 
Representative samples or representative realisations of random variables are obtained 
through random sampling. Artificial means that no direct relation exist between the statistical 
properties of the sample and the statistical properties of the population. An artificial sample is 
e.g. when only weak specimen are selected for testing by engineering judgment or proof 
loading. Artificial samples are also termed censored samples. 

Observations on a representative sample may be undertaken according to a standardised test 
procedure. Hereby the test standard specifies partly the population; e.g. if a sample of timber 
specimen is tested in bending and all spatial and temporary conditions are specified. Then, the 
statistical properties of the sample are assumed to be the same as the statistical properties of 
the population. 

The statistical properties of the sample are described by a suitable probability distribution 
function. The physical characteristic of the random variable determines the possible type of 
distribution function. 

2.2.2.2 Selecting a Suitable Probabilistic Model 

Resistance Variables 

The resistance of a structure is governed by so-called resistance variables. Dimensions, 
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geometrical imperfections and material properties are resistance variables. Resistance 
variables can be modelled as random properties by random variables. Assuming that the 
random properties belong to an elementary population, standard probability distribution 
models can be utilised to represent the random variables. The following distribution models 
are generally used to model resistance variables:  

Normal Distribution: This is one of the most important probability distribution. It can be 
shown that a sum of many independent random properties gets normal distributed. This 
property is also known as the central limit theorem; see e.g. Benjamin and Cornell (1970). 
The normal distribution gives finite probability for negative values. For that reason the 
logarithm of the normal distribution is often preferred for modelling resistance variables. 

Lognormal Distribution: The lognormal distribution arises naturally as a limiting distribution 
when the random resistance is a product of a number of independent random quantities. The 
lognormal distribution is frequently used to model resistance variables because it is 
precluding negative values. 

Weibull Distribution: For strength related material properties the Weibull distribution is used 
quite frequently. It is based on the assumption that a structural body is composed of nearly an 
infinite number of elements. The strength of the elements is independent and identically 
distributed and the strength of the material body is assumed to be equivalent to the strength of 
the weakest element. The theory behind the Weibull distribution is described in more detail in 
section 4.2.4.2. 

The distribution function for the Normal, Lognormal and the Weibull distribution is given in 
Annex A, Table A1. 

Other distributions: A number of other distributions are sometimes used to model resistance 
variables; e.g. the beta-, rectangular-, t- or gamma distribution. For information about these 
models it is referred to standard literature, e.g. Benjamin and Cornell (1970). 

Caution is necessary if the considered sample is not homogeneous, i.e. if the source of the 
considered specimens is not the same. When data from one or more sources is analysed as a 
single sample, the shape of the distribution function is likely depending equally on relative 
number taken from each source than on the actual, but unknown, distribution function of 
every single source. 

Load Variables 

Loads are generally understood as forces acting on a structure which arise from external 
influences, e.g. self weight, snow load, wind force, etc. Imposed deformations as dimensional 
changes arising from temperature or humidity changes are also considered as loads. In a 
structural analysis, so-called load effects are considered directly. They are commonly a 
combination of different variables, as e.g. roof shape, snow load, wind exposition, 
dimensions, etc., which make the effect of the snow load on the structure. This effect is 
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measured in the same dimension as the resistance (e.g. stress) and can be directly compared. 

Load effects can be classified as follows in: 

permanent or variable (variability in magnitude with time), 

fixed or free (variability in position with time), 

static or dynamic (the nature of the induced structural response). 

It should be noted that similar loads can be considered as different load effects according to 
the classification made above. (E.g. a traffic load on a bridge can be seen as the effect of the 
static weight of the heaviest truck or as the magnitude and number of load cycles caused by 
passing vehicles, etc.).  

Permanent Loads: Permanent loads on structures can be seen as a sum of dead load of many 
different components of the structure and other parts. Therefore, the random character of 
permanent loads is well represented by a normal distribution. Furthermore, it can be shown 
that the coefficient of variation of the weight of the sum of many (independent) components is 
decreasing with the number of components considered. 

Variable Loads: Most loads on structures are varying in time. Examples are wind loads, snow 
loads or traffic loads. Time varying loads can be modelled with random processes. Different 
types of random processes are illustrated in Figure 2-2. Very often structural analysis is 
simplified to be time invariant. Then only the distribution of the maximum realisations of a 
process in a specified time interval is of interest. Extreme value distributions can be utilised to 
model these extreme realisations. Several extreme value distributions are well described in the 
literature, e.g. Benjamin and Cornell (1970). 

S t

t

S t

t

S t

t

Figure 2-2 Different types of random load processes. 

Load combinations 
An important issue when considering load modelling is the representation of the extremes of 
combinations of different load effects – the load combination problem. Different individually 
acting loads may be modelled as the sum of the load effect processes iX t  and the 
maximum maxX T  is calculated by: 

max 1 2max ... nT
X T X t X t X t (2.5)
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A general solution to Equation (2.5) is hardly attainable but solutions exist for special cases of 
continuous load processes and different types of non-continuous processes, see e.g. Thoft-
Christensen and Baker (1982) or Melchers (1999). Some approximate solutions to Equation 
(2.5) exist and the most widely used approaches, the Turkstra Load Combination Rule and the 
Ferry Borges – Castanheta Load Combination Rule are briefly introduced next. 

The Turkstra Load Combination Rule 
When n  loads are combined it seems to be clear that the event of all individual loads attain 
the maximum at the same point in time is highly unlikely; even if the number of different 
loads n  considered is high. However, it can be formulated as an upper bound for the 
maximum of n  combined loads: 

max 1 2max max ... max nT T T
X T X t X t X t (2.6)

This formulation is considered as too conservative and alternatively it is proposed in Turkstra 
(1970) to evaluate the maximum load for the individual loads for the given reference period 
and combining them in accordance with the scheme shown in Equation (2.7). 

1 1 2 3

2 1 2 3

1 2 3

max ( ) ( ) ( ) ... ( )

( ) max ( ) ( ) ... ( )

( ) ( ) ( ) ... max ( )

nT

nT

n nT

Z X t X t X t X t

Z X t X t X t X t

Z X t X t X t X t

(2.7)

and approximating the maximum combined load )(max TX  by

iimax Zmax)T(X (2.8)

( )iX t  is an arbitrary point in time value of ( )iX t  and in general taken into account as the 
mean value, provided that the process is stationary. 

This approximation is called Turkstra’s rule and is commonly used as a basis for codified load 
combination rules. 

The Ferry Borges – Castanheta Load Combination Rule 
A more sophisticated approximation to the load combination problem is based on the load 
model is suggested in Ferry Borges and Castanheta (1971). A highly simplified representation 
of the real load processes is utilized which facilitates a solution of the load combination 
problem as defined by Equation (2.5) by use of modern reliability methods such as FORM 
outlined in section 2.3.1.   
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Figure 2-3 Illustration of the Ferry Borges – Castanheta Load Process. 

For each process iX t  it is assumed that the load changes after equal so-called elementary 
intervals of time i . Further it is assumed that the load is constant within each elementary 
time interval. This is illustrated in Figure 2-3 where the reference period T  has been divided 
into in  intervals of equal length ii nT / . The integer in  is called the repetition number for 
the thi  load. The loads in the elementary time intervals are assumed to be identically 
distributed and mutually independent random variables with a point in time probability 
distribution function 

iX iF x . The in  pulses of the process may be understood as a vector of 
mutually independent random variables. 

When combinations of load processes 1X t , 2X t , …, nX t  are considered it is assumed 
that the loads are stochastically independent with repetition numbers in , where: 

1 2 ... ...i rn n n n (2.9)

and

1i in n      for 2,3,...,i j (2.10)

where  is the set of positive natural numbers. E.g., in Figure 2-3 3j  and 1 2n , 2 6n
and 3 12n .

The distribution function of the maximum value of a period with m  repetitions is calculated 
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as:

max i i
T

m

X i X iF x F x (2.11)

According to Ferry Borges – Castanheta different combinations of individual load processes i
have to be taken into account, whereas the number of repetitions is varying and depending on 
the number of elementary time intervals in . The following combination rules are for the case 
of 3 different load sequences ( 3j ):

Table 2-2 Load combination rules for 3 different load sequences ( 3j ).

No. of repetitions m
Combination No. 

Load 1 Load 2 Load 3 

1 1n 2 1n n 3 2n n

2 1 2n 3 2n n

3 1n 1 3 1n n

4 1 1 3n

I.e. for the load distributions 
1 2 3

, ,X X XF x F x F x  of the loads 1, 2, 3 in Figure 2-3, the 
following combinations have to be considered: 

1:
1 2 3

22 3

1 X X XZ F x F x F x

2:
1 2 3

21 6

2 X X XZ F x F x F x

3:
1 2 3

62 1

3 X X XZ F x F x F x

4:
1 2 3

121 1

4 X X XZ F x F x F x

The governing maximum load is max max ii
X T Z .

2.2.2.3 Estimation of Distribution Parameters 
An important task within the framework of reliability analysis and assessment is the 
quantification of model parameters based on observations of the quantity to be modelled. In 
general the observations are performed through measurements of the quantity in the context of 
a specified test configuration or through continuous observations of the state of nature. The 
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output of these measurements is a set of numerical data, the so-called sample values. It is 
assumed that the sample values are realisations of the random variable X . The statistical 
properties of X  can be assessed considering the sample values. Several methods can be found 
in the literature, e.g. a good overview of the methods is given in Benjamin and Cornell 
(1970). The most important methods are outlined in Annex A. 

2.3 METHODS OF STRUCTURAL RELIABILITY 

Several methods can be found in the literature to calculate the probability failure by solving 
the integral in Equation (2.2). An overview and a discussion of different approaches is 
presented in e.g. Ditlevsen and Madsen (1996), Melchers (1999) and Faber (2003). The most 
straightforward method is that of Monte Carlo simulation, while probably the more efficient 
are the so called approximate methods based on the calculation of the reliability index 
(FORM and SORM). There are also methods to increase the efficiency of the Monte Carlo 
simulation like Importance Sampling or Adaptive Sampling. In this section only the main 
ideas of FORM (First Order Reliability Method) and the Monte Carlo Simulation are briefly 
outlined. For further information also about the other methods it is referred to standard 
literature, e.g. Melchers (1999). 

2.3.1 FIRST ORDER RELIABILITY METHOD (FORM) 

2.3.1.1 Linear Limit State Functions and Normal Distributed Variables 
At first a simple case where the limit state function g x  is a linear function of the basic 
variables X  is considered. Then the limit state function can be written as: 

0
1

n

i i
i

g a a xx (2.12)

If the basic random variables are normally distributed the so-called safety margin M  is 
defined as: 

0
1

n

i i
i

M a a X (2.13)

and is normal distributed with mean value M  and standard deviation M  as: 

0
1

i

n

M i X
i

a a (2.14)

and
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2 2
0

1 1 1,
i i j

n n n

M i X ij i j X X
i i j j ì

a a a a (2.15)

where ij  are the correlation coefficients between the variables iX  and jX . Defining the 
failure event as in Equation (2.1), the probability of failure can be defined as: 

0 0fp P g P MX (2.16)

which in this case reduces to the evaluation of the standard normal distribution function, as:  

fp (2.17)

Where  is the so-called reliability index (due to Cornell (1969) and Basler (1961)) given as: 

M

M
(2.18)

If the two dimensional case of two independent normal distributed random variables is 
considered the reliability index  has a geometrical interpretation as illustrated in Figure 2-4. 

0g x 1x

2x

0g u

1u

2u
x-space u - space

Uf u u

fX x

Figure 2-4 Illustration of the two-dimensional case of a linear limit state function and 
standardized normally distributed variables 1 2,U U . (adapted from Faber (2003)). 

In Figure 2-4 the limit state function g x  is transformed into the limit state function g u
by normalisation of the independent normal distributed random variables X  into standardized 
normally distributed random variables U  as: 

i

i

i X
i

X

X
U (2.19)

such that the random variables iU  have zero means and unit standard deviations. 

The reliability index  has the geometrical interpretation as the smallest distance from the 
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line (or in general the hyper-plane) forming the boundary between the safe domain and the 
failure domain, i.e. the line (or hyper-plane) described by 0g u  (Hasofer and Lind 
(1974)). The point of the smallest distance is referred to as the design point *u .

2.3.1.2 Non-linear Limit State Functions 
When the limit state function g x  is non-linear in the basic random variables X , the failure 
probability can only be approximated. In Hasofer and Lind (1974) it is suggested to perform a 
linearization in the design point of the failure surface represented in the normalized space.  

The approach is illustrated in the two dimensional space in Figure 2-5. 

0g u

1u

2u
u - space

Uf u u

0g u·
u*

Figure 2-5 Illustration of the linearization proposed in Hasofer and Lind (1974) in the standard 
normal space. 

In Figure 2-5 the failure surface 0g u  is linearised in the design point *u  by the line 
0g u . The vector  is the out ward directed normal vector to the failure surface in the 

design point. 

As the limit state function is in general non-linear, the design point is not known in advance 
and has to be found iteratively, e.g. by solving the following optimisation problem:  

2

0 1
min

n

ig i
u

u u
(2.20)

This problem can be solved in several different ways. Provided that the limit state function is 
differentiable the following simple iteration scheme can be followed: 

1
2

2

1

  ,  1, 2,...,i
i

n

j i

g
u i n

g
u

(2.21)
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1 2, ,..., 0ng (2.22)

First the design point is guessed with *u  and inserted into Equation (2.21) whereby a 
new vector  to the failure surface is achieved. Then this -vector is inserted into Equation 
(2.22) from which a new -value is evaluated. The iteration scheme converges normally after 
a view, say 6-10, iterations and provides the design point *u  as well as the reliability index 
and the outward normal vector to the failure surface in the design point . The components of 
the vector  may be interpreted as sensitivity factors giving the relative importance of the 
individual random variables for the reliability index. 

For the general case, i.e. where the basic random variables X  may be not normal distributed 
and correlated, the above requirements in regard to non-correlation and normality can be met 
by proper transformations of the correlated non-normal variables into uncorrelated normal 
ones. It is referred to Hohenbichler and Rackwitz (1981) and Der Kiureghian and Liu (1986), 
or Ditlevsen and Madsen (1996) where a detailed overview upon these transformation 
methods is given. 

2.3.2 MONTE CARLO SIMULATION METHODS 

A very simple approach to estimate probability of failure e.g. according to the general 
expression in Equation (2.2) is the Monte Carlo Simulation Method. Assuming that the basic 
random variables are represented through a set of independent random variables X , then 
outcomes of the limit state function g X  can be processed by sampling the basic random 
variables at random virtually according to their distribution functions. The outcomes might be 
in the failure domain ( 0g x ) or in the safe domain ( 0g x ) and after an infinite 
number of ‘tests’ the failure probability is: 

0 lim f
f n

n
p P g

n
x (2.23)

where n  is the total number of trials and fn  is the number of outcomes where 0g x .
Virtual random sampling or simulation is often consuming considerable computation time; 
therefore the number of simulations is limited to a certain extent. With a limited number of 
simulations the failure probability can only be estimated and the uncertainty of these 
estimations is of interest. It can be shown that the uncertainty associated with the estimate is 
proportional to 1 fn .

Since in structural reliability analysis the failure probability of interest is small, i.e. in the 
order of 610  the number of simulated failures fn  is scarce. To estimate the failure probability 
of  610  with proper accuracy, e.g. a coefficient of variation of the estimate of 10%, the 
number of simulations should be 810 . 
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2.4 DESIGN FORMATS IN STRUCTURAL ENGINEERING 

In probabilistic assessments any uncertainties about a variable are taken into account 
explicitly. This is not the case for more traditional ways of measuring safety, such as the 
“factor of safety” and “partial safety factor” formats, which build the framework for presently 
used design formats in structural engineering. Within these formats safety is expressed as a 
deterministic measure since load and resistance are introduced as fixed values, whereas the 
estimate of the load is considered as sufficiently high and the estimate of the resistance as 
sufficiently low to guarantee an appropriate safety level. 

2.4.1 ALLOWABLE STRESS FORMAT – THE SAFETY FACTOR 

A customary method to define structural safety is through the factor of safety, usually 
associated with elastic stress analysis and which requires that: 

i g pis s (2.24)

where i gs  is the thi  applied stress component calculated at the generic point g  in the 
structure, and *

pis  is the allowable stress for the thi  stress component. The allowable stresses 

pis  are in general defined in structural design codes and they are derived from material 
strengths as the ultimate moment, tension or compression stress, expressed in stress terms uis
but reduced by a factor r :

pi ui rs s (2.25)

where r  is referred to as the factor of safety. The factor r  may be selected on the basis of 
experimental observations, prior experience, economic and possibly political considerations. 
Usually, its selection is the responsibility of a code committee.  

According to Equation (2.24) failure of a structure is assumed when the calculated thi  elastic 
stress i gs  component reaches the local permissible stress component pis . Whether failure 
actually does occur depends completely on how accurate i gs  represents the actual stress 
in the real structure and how well pis  represents the actual material strength.  

By combining Equations (2.24) and (2.25) the condition of limit state violation can be written 
as:

      or       1ui g ui g
i g i g

rr

s s
s s (2.26)

When the inequality sign is replaced by an equality sign, Equations (2.26) are limit state 
functions. By appropriate integration these Equations can also be expressed by stress 
resultants:
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, ,      or       1i g i g
q i g q i g

rr

r r
s s (2.27)

where ir  is the thi  resistance at location g  and ,q is  is the thi  stress resultant in general made 
up of the effects of one or more applied loads iq .

The design formats where Equation (2.26) is utilized as a basis are referred to as ‘Allowable 
Stress Design’ (ASD) formats.  

2.4.2 LOAD AND RESISTANCE FACTOR DESIGN FORMAT – PARTIAL SAFETY 
FACTORS  

A format which is derived from the allowable stress format but allows for a more 
differentiated treatment of loads and resistances is the so called load and resistance factor 
design (LRFD) format. The limit state can be expressed at the level of stress resultants (i.e. 
member design level) as: 

, ,  ...d k
G G k Q Q k

M

z r s s (2.28)

where kr  is a characteristic member resistance, M  is the partial factor on kr  and ,G ks , ,Q ks
are the characteristic dead and live load effects respectively with associated partial factors G ,

Q  and dz  is the design variable. Characteristic values are generally given in the design codes 
and correspond to fractile values of the underlying distributions of the variables. 

2.5 RELIABILITY BASED CODE CALIBRATION 

In the daily practice the engineering codes and regulations form the premises for the design of 
safe and cost efficient structures. Code regulations in North America, Australia and Europe 
are based on the limit states design (LSD) approach which is implemented via load and 
resistance factor design (LRFD) formats, e.g. CIRIA (1977), CEB (1976), Eurocodes (2001), 
AHSTO (1994) and OHBDC (1983). The LRFD format is outlined in Section 2.4.2. 
Originally, LRFD methods where adapted as so called “soft conversions” of allowable stress 
design (ASD), the design method which was prevalently used in code regulations before 
LRFD was introduced and which is commonly based to a major part on experience, tradition 
and judgment. Engineering traditions might be considered as the accumulation of knowledge 
and experience collected over a long period of time; i.e. the in that way developed rules and 
regulations imply an inherent level of safety. However, for the design of new types of 
structures with new materials or subject to new environment and loading conditions, existing 
design rules have to be adapted by means of careful extrapolation. Thereby it is assumed that 
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the safety and cost efficiency is still satisfactory.  

In the last 3 to 4 decades the development of structural reliability methods has provided a 
more rational basis for the design of structures. These methods provide a consistent basis for 
the comparison between the reliability of well tested structural design and the reliability of 
new types of structures. The determination of consistent design formats, i.e. the allocation of 
characteristic values and partial safety factors, which provide consistent safety levels for 
different types of structures based on structural reliability methods together with the choice of 
desired target reliability, is commonly understood as reliability based code calibration. 
Reliability based code calibration has been formulated by several researchers, see e.g. 
Ravindra and Galambos (1978), Ellingwood et al. (1982) and Rosenblueth and Esteva (1972) 
and has been already implemented in several codes, see e.g. OHBDC (1983), NBCC (1980), 
and more recent the Eurocodes (2001). An overview about reliability based code calibration 
can be found in Faber and Sørensen (2003). 

2.5.1 SIMPLE CODE CALIBRATION WITH GIVEN TARGET RELIABILITY 

The central task within the framework of reliability based code calibration is to evaluate 
partial safety factors for already existing design concepts, which are formulated e.g. by means 
of a Load and Resistance Factor Design format (LRFD). Within structural codes, 
characteristic values, partial safety factor and load combination factors are utilized to achieve 
target reliability for a variety of load combinations. The characteristic values are in general 
determined by the code; e.g. 98%- or 50%-fractile values of the underlying probability 
distribution function for loads and 5%-fractile values for resistance variables. The partial 
safety and load combination factors can be calibrated so that a uniform level of reliability is 
obtained for all load combinations.

As an example the calibration of partial safety factors for a set of limit states is considered. 
The load is assumed to be a linear combination of a permanent load with the load effect  GS
and a variable load with the load effect QS  . The material property e.g. the yield strength is 
given by R  and the design variable e.g. the cross-sectional area is ,d iz . ,S i  is a factor taking 
into account the ratio of the effect due to the characteristic permanent load to the effect due to 
the characteristic variable and permanent loads. Therefore, all possible load situations 
comprising the two loads can be described by different ,S i  factors as e.g. ,S i  0, 0.1, 0.2, 
…, 1.0. 

For a given set of partial safety factors the reliability index is evaluated as follows. Firstly, the 
design variable ,d iz  is determined in accordance with Equation (2.28) as: 

, , , , ,  1  M
d i S i G G k S i Q Q k

k

z s s
r (2.29)

Secondly, the design variable iz  is inserted into the corresponding limit state function g X :
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, , , 1i d i S i G S i Qg z R S SX (2.30)

with , ,
T

G QR S SX  is the vector of the basic random variables. The failure probability is 
calculated using Equations (2.30) and (2.2) together with e.g. FORM or SORM as a solution 
scheme (see Section 2.3).  

The optimal set of partial safety factors is determined by the optimization formulation: 

2

,, ,
min , , , ,

M G Q
target i S i i M G Q

i
z    with e.g. 1,2,3,...,10i ; , 10S i

i
(2.31)

target is the target reliability. 

2.5.2 TARGET RELIABILITIES 

In general, the requirements to the safety of a structure are expressed in terms of the accepted 
minimum reliability index or the accepted maximum failure probability. In a rational analysis 
the target reliability is considered as a control parameter subject to optimisation, Faber and 
Sørensen (2003). 

The objective function may include in a general form cost benefit considerations in the sense 
of how much has to be invested (by e.g. increasing partial safety factors) to attain the intended 
benefit (e.g. the reliability of a structural system). As a consequence of this cost benefit 
formulation the target reliability is not common for different types of structures; it depends on 
the relative cost of a safety measure (e.g. increasing the cross section of a component) and the 
expected consequences in the case of failure of the structure.

In Table 2-3 target failure probabilities and corresponding target reliability indexes are given 
for ultimate limit states based on the recommendations of JCSS (2001). Note that the values 
given correspond to a year reference period and the stochastic models recommended in JCSS 
(2001).

Table 2-3  Tentative target reliability indices  (and associated target failure probabilities) related 
to a one-year reference period and ultimate limit states (JCSS (2001)). 

Relative cost of 
safety measure 

Minor  consequences of 
failure

Moderate consequences of 
failure

Large consequences of 
failure

High =3.1 ( fp 10-3) =3.3 ( fp 5 10-4) =3.7 ( fp 10-4)

Normal =3.7 ( fp 10-4) =4.2 ( fp 10-5) =4.4 ( fp 5 10-5)

Low =4.2 ( fp 10-5) =4.4 ( fp 10-5) =4.7 ( fp 10-6)
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The value for the most common design situation is indicated with grey shading in Table 2-3. 
Guidelines for the classifications in this table can be found in the probabilistic model code, 
JCSS (2001). 
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3 TIMBER AS A STRUCTURAL MATERIAL 

It is the intention of this chapter to give an overview of timber as a structural material. This 
includes the description of wood as a fibre composite material on a micro scale1 and the 
specification of irregularities like knots and fissures on a meso scale2. Furthermore it is 
described how timber material is usually used in construction and the relevant material 
properties are identified and defined.

In order to gain a better understanding of the reason for the special behaviour of wood and 
timber material it is helpful to start thinking about where the wood and the timber are 
‘produced’; in the stem of a tree. 

3.1 THE TREE 

Action

BiologicalMechanical

Leaves

Photo-
synthesis

Wind
Resistance

Branch

TransportSupport

Stem

Root

Uptake of Minerals
and Water

Anchoring

TransportSupport

Figure 3-1 The tree. 

A tree can be seen as a structure that faces an ongoing optimisation process over millenniums. 

                                                
1 In this context micro scale specifies a spatial reference most conveniently measured in m .
2 In this context meso scale specifies a spatial reference most conveniently measured in cm .
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Its function is to expose leafs to sunlight and due to the competitive situation with other plants 
leafs have to be lifted up far above the ground. As illustrated in Figure 3-1 every part of the 
tree has different mechanical and biological functions. The uptake of water and minerals in 
the roots, the transport of these nutritional agents, the sap, through the stem and the branches 
and the photosynthesis in the leafs exposed to the sunlight describes briefly the biological 
function of the different parts. Mechanically the leafs have to resist the direct exposure to 
wind, rain and snow whereas the branches and the stem have to support the crown and 
transfer the corresponding load effects to the roots where the tree is anchored into the ground. 
As evident from Figure 3-1, the design of the tree must necessarily be a compromise. Even 
though it is a good photoreceptor, a large crown is heavy and more susceptible to wind loads; 
consequently many supporting members (stem and branches) are required and the stem must 
be more resistant to bending. Furthermore, the load has to be transferred through a large and 
efficient root system. A large crown also looses much water by transpiration. The water 
evaporated must be replaced by sufficient quantities of fresh supplies transported to the shoots 
by an equivalent root system. The available space for the root system is limited, since the 
ground has to be shared with other plants. 

All these counteracting requirements result in an ideal compromise tree characterised by the 
largest possible crown but the smallest number of supporting members, all of which are of 
sufficient strength, but not so large as to add weight and increase energy consumption. Over 
millenniums this optimal design set up has been achieved, moreover trees have developed the 
ability to react continuously on every specific boundary condition; i.e. during growth, trees 
are able to optimise their shape and their mechanical properties. Regarding this aspect, the so-
called secondary growth in the thickness direction of the tree components is of high 
importance. The thickness of branches and stems is determining the strength and the stiffness; 
the supporting qualities of the tree. Secondary growth takes place just below the outer surface 
of the stem or branch in the cambium, where phloem and finally bark are produced outwards, 
and wood is grown inwards, Niemz (2004). The inwardly grown wood is an annual tree ring 
consisting mostly of more porous early wood, and denser and stronger late wood1. Aiming at 
an even stress distribution in the supporting part of the tree the mechanical performance is 
continuously reassessed and more and stronger material is accumulated by secondary growth 
on the locations where the stresses are the highest. Simultaneously, the primary growth is 
aspiring to a tree design which is balanced between light exposure and affordable moment 
forces in the supporting parts. A more complete description of a tree as a highly optimised 
structure can be found e.g. in Mattheck (1998). 

Coming back to the issue of interest – to describe and understand the composition of wood 
and structural timber, the briefly described self-optimisation property of trees should be kept 
in mind. On every scale it can be recognised that wood is a material with highly optimised 
properties as long as the original purpose is aimed at – the mechanical support and the 

                                                
1 The terms ‘early wood’ and ‘late wood’ are further explained in section 3.2.2.1. 
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transportation of sap in a tree. However, the material properties become sub-optimal when 
wood material is reused for human purpose, e.g. as timber for building structures. 

3.2 WOOD

3.2.1 CELLS AND FIBRES – THE ULTRASTRUCTURE OF WOOD 

Wood is a natural, organic cellular solid. Wood cells are also called tacheids which are long (2 
– 5 mm) and slender (0.01 – 0.05 mm) and which have tapered or flattened ends. The 
mechanical design of wood cells is found to be common among many wood species.  

Inner Layer (S3)

Middle Layer (S2)

Outer Layer (S1) } Secondary Wall

Primary Wall

Middle Lamella

Figure 3-2 The composition of a wood cell and its bonding in a lignin matrix (middle lamella). 

The basic skeletal substance of the wood cell wall is cellulose. Cellulose is made up of sugar 
molecules that fit together in a regular manner with their long-chain direction parallel to each 
other. The cellulose molecules form bundles called micro fibrils. As illustrated in Figure 3-2 
the cell wall consists of 2 main layers; the primary wall in which the micro fibrils are arranged 
in a random, irregular network and a secondary wall which normally determines the static 
behaviour of the wood cell. The secondary wall itself consists of three fairly distinct layers. 
The outermost so-called S1 layer is very thin (around 0.1 m) and exhibits an average micro 
fibril angle of about 60° relative to the longitudinal axis of the cell. The main part of the 
secondary wall is the S2 layer, which is typically several micro meters thick. The micro fibrils 
are oriented in a very small angle to the fibre axis. Within the S3 layer the micro fibrils are 
arranged with a gentle slope but not in a strict order, Hoffmeyer (1995). 

From an engineering point of view, the cell wall structure is a very effective construction. The 
predominant S2 layer with the mainly axially oriented micro fibrils takes up tension forces. In 
compression the long and slender micro fibrils of the S2 layer are prevented from buckling by 
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the outer and inner S1 and S3 layer. 

The wood cells are orientated and glued together by a matrix of lignin, the middle lamella 
(Figure 3-2), forming the characteristic wood tissue (see also Figure 3-3) whose mechanical 
properties are tuned to fulfil the special supporting functions of the stem and branches. Along 
the fibre orientation the strength and stiffness properties for compression and tension are high 
compared to the strength and stiffness perpendicular to the fibre orientation.  

3.2.2 GROWTH RINGS AND VESSELS – THE MICROSTRUCTURE OF WOOD 

Wood is obtained from two main categories of trees known in colloquial terms as hardwoods 
(deciduous trees) and softwoods (coniferous trees or conifers). The observable difference 
between these two categories is that in general deciduous trees have leafs and covered seeds 
and coniferous trees evergreen needles and uncovered seeds. But there are also differences in 
the microstructure of the wood, namely the specific assembly, function and production 
strategy of wood cells. 

Coniferous wood consists of 90% - 95% tracheids, which are prearranged in radial arrays, and 
their longitudinal direction is oriented along the axis of the stem of the tree.  In evolving from 
early wood to latewood the cell walls become thicker, while the cell diameters become 
smaller. This difference in growth may result in a ratio between latewood density and early 
wood density as high as 3:1. The storage and transportation of sap takes place within 
parenchyma cells which in conifers are mostly arranged in radial rays. In Figure 3-3a and 
Figure 3-3b, two microscopic exposures of a southern pine specimen are shown. The different 
proportions of the early- and late wood tracheids can be observed. The parenchyma cells can 
be seen in Figure 3-3b. The interchange of sap between the cells is facilitated by small 
openings in the fibre wall, the so-called pits.

0.3 mm 0.3 mm 0.3 mm 0.3 mma b c d

Figure 3-3 The microstructure of coniferous wood – southern pine (a and b) and deciduous wood 
– white ash (c and d). (Pictures adapted from Niemz (2004)) 

The anatomy of deciduous wood is more varied and complicated than that of coniferous 
wood, but most of the structural characteristics are similar. The difference between early 
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wood and late wood is minor and the tracheids have mainly strengthening function. The 
transport of sap is assured through special vessels in between the tracheids; see Figure 3-3c 
and Figure 3-3d. Deciduous wood fibres have thicker cell walls and smaller Lumina than 
those of fibres from coniferous wood (compare Figure 3-3b, coniferous with Figure 3-3d, 
deciduous), Kollmann et al. (1968). 

3.2.2.1 Variations of the Properties of Wood on a Micro Scale 

Growth Rings 

Within a very small volume in the stem of a tree the properties of the wood are varying 
systematically. The different properties of wood cells build in spring and early summer (early 
wood) and the cells produced from summer to fall (late wood) are well pronounced for many 
wood species grown in a temperate climate. Conifers tend to produce high density late wood 
rows of a relatively constant thickness and the variation of the thickness of the entire annual 
rings is governed by low density bands of early wood. In Figure 3-4 late and early wood can 
be distinguished as dark and bright coloured ring pattern. For some deciduous wood species, 
the so-called ring-porous species such as oak and ash, there is a high concentration of open 
vessels in the early wood which forms also the typical annual ring pattern (compare Figure 
3-3). The width of these rings is relatively constant and the variation of growth ring width is 
mainly caused by the variation in the thickness of the high density rings of latewood 
tracheids. This can not be observed for so-called diffuse porous deciduous wood as poplar and 
beech, Hoffmeyer (1995). 

Sapwood and Heartwood 

The young outer part of a tree stem conducts the upward flow of sap from the root to the 
crown. This part of the stem is known appropriately as sapwood. As the cells grow old, they 
stop functioning physiologically; this inner part of the stem is known as heartwood. In most 
species heartwood is darker in colour due to the incrustation with organic extractives 
(compare with Figure 3-4). These chemicals provide heartwood with a better resistance to 
decay and wood boring insects. Heartwood formation normally results in a significant 
reduction in moisture content; in conifers the pits in the wood cell wall constrict, in deciduous 
wood the vessels become plugged. This results in a marked reduction of permeability, 
Kollmann et al. (1968). 

Juvenile Wood 

The wood of the first 5 to 20 growth rings (depending on species) of any stem cross section is 
called juvenile wood and exhibits properties different from those of the outer part of the stem 
(mature wood). This is particularly significant for coniferous wood. In juvenile wood, the 
wood cells are relatively short and thin walled with a remarkable slope of the micro fibrils or 
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the S2 layer of the secondary wall. Therefore, juvenile wood typically exhibits lower strength 
and stiffness particularly in tension. The longitudinal shrinkage is much greater than in non-
juvenile wood. Often heartwood holds all the juvenile wood, which possesses inferior quality 
with respect to the mechanical properties. The boundary between juvenile and mature wood is 
gradual and not visible, Thörnquist (1990). 

anual growth ring pattern

juvenile wood

heart wood

bark and cambium

sap wood

pith

Figure 3-4  Cross section of a stem of a tree, Douglas-fir, annual growth ring pattern, juvenile 
wood, heart wood, bark and cambium. 

3.2.3 KNOTS AND GRAIN DEVIATIONS – THE MESO STRUCTURE OF WOOD 

As seen in the preceding section wood is a material optimised to fulfil its biological and 
mechanical function in the supporting parts of a tree. Wood as a mechanical body is highly 
anisotropic mainly due to the elongated shapes of the wood cells and the oriented structure of 
the cell walls; i.e. the strength and stiffness along the grain direction is much larger than 
perpendicular to the grain direction. In a living tree this property is used in such a way that the 
fibre direction is following the direction of the main stresses in the supporting components; 
mainly along the axis of the stem and the branches. However, where branches are connected 
to the stem or where specific load circumstances cause torsion forces in the supporting 
components the fibre direction deviates from the direction of the axis of the components. 

Knots

Knots are parts of branches that are embedded and anchored in the main stem of a tree. The 
lateral branch is connected to the pith of the main stem. As the perimeter of the stem 
increases, successive growth rings form continuously over the stem and branches and a cone 
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of branch wood (the inter-grown knots) develops within the stem. The result is a notch-free 
transition from stem to branch with minor stress concentrations where the fibre direction is 
following the predominant main stress direction in the ‘joint’. Sometimes the branch may die 
or brake off. The succeeding growth rings added to the main stem simply encircle the dead 
limb stub and the dead part of the stub becomes a so-called encased or entrapped knot. 
Softwoods are characterised by having a dominant stem from which clusters of lateral 
branches occur at regular intervals, Isaksson (1999). 

Grain Deviations 

Some specific but permanent loading conditions on a tree are inducing cell orientation 
forming a helix around the stem axis (spiral grain). This is the case when torsion forces 
mainly in one direction due to e.g. asymmetric wind loading, are present in the stem.  

Reaction Wood 

A tree reacts on systematic external forces on the supporting components by forming so-called 
reaction wood. Conifers develop compression wood in areas with subdominant high 
compression, whereas deciduous species develop tension wood in regions where tension 
forces are prevailing. Compression wood has the appearance of wider growth rings and a 
higher late wood proportion than normal coniferous wood. Furthermore, the structural 
arrangement of the wood cell walls is different for compression wood, i.e. the micro fibrils of 
the S2 layer are arranged with a 45° slope which results in excessive longitudinal shrinkage 
property, similar to juvenile wood. The compression strength and stiffness of compression 
wood is higher than of normal wood whereas the tension strength and stiffness is 
approximately the same, i.e. the 45° angle of the S2 layer and their increased thickness are 
effects compensating each other. For deciduous species tension wood differ from normal 
wood for a number of biochemical, anatomical and mechanical characteristics. Mechanically, 
the frequency of vessels and their porosity is significantly lower in tension wood, whereas 
fibre and vessel lengths are significantly longer, Jourez et al (2001). However, in a number of 
tree species such as poplar the most striking differences are found in the fibres of tension 
wood. In these fibres, named G-fibres, one layer of the secondary wall (generally the S3 
layer) is replaced by a very thick layer in which the micro fibrils are almost parallel to the axis 
of the cell which contributes, to the specific mechanical properties of tension wood, Timell 
(1969).

3.2.4 CLEAR WOOD SPECIMENS AND THEIR PROPERTIES 

The characteristics of wood are usually obtained from tests of small pieces of wood termed 
“clear” or “straight grained” because they do not contain characteristics such as knots, cross 
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grain and splits1. These test pieces have anatomical characteristics such as growth rings that 
occur in consistent patterns within each piece. Clear wood specimens are usually considered 
“homogeneous” in wood mechanics, Niemz (2004). 

Moisture Content 

The moisture content is defined as the ratio of the mass of removable water to the dry mass of 
the wood. The dry mass is obtained by oven drying. The moisture content may be expressed 
as a fraction or in percentage terms. In so-called green wood, i.e. wood of a freshly cut tree, 
the moisture content could be higher than 100%; the so-called free water in the cell lumen 
together with the water in the saturated wood cell walls have a larger mass fraction than the 
oven dry wood. At a moisture content of around 28%, the so-called fibre saturation point, the 
wood cell walls are still saturated, whereas there is no free water in the cell lumen. Below the 
fibre saturation point the cell wall is loosing water which has a mayor influence on the 
mechanical properties of the wood. Above the fibre saturation point the mechanical properties 
are nearly independent of moisture content, Hoffmeyer (1995). 

Shrinkage and Swelling 

Figure 3-5 Distortions of wood prisms cut out at different spots in the stem due to shrinkage. 
(Niemz (2004)) 

Wood is dimensionally stable when the moisture content is greater than the fibre saturation 
point. Wood changes dimension as it gains or looses moisture below that point. It shrinks 
when loosing moisture from the cell walls and swells when gaining moisture in the cell walls. 
Shrinkage and swelling are also termed movements. The magnitude of these movements is 
depending on the direction to the wood cells and is mainly governed by the substantial S2 
layer of the wood cell wall, compare Figure 3-2. The micro fibrils in the S2 layer are nearly 
parallel oriented to the longitudinal axis of the cell and the water is absorbed between the 

                                                
1 Splits are cracks along the fibre direction due to shrinkage of the wood 
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micro fibrils. This means that movements in the transverse direction are much more 
pronounced than in the longitudinal direction; the ratio is in the order of 20:1. Juvenile wood 
and compression wood exhibit micro fibril angles much larger than non juvenile wood, which 
result in much larger longitudinal movements.  

In the transverse direction a differentiation between the radial and the tangential direction to 
the growth rings can be made. The movements in the tangential direction may, for practical 
purposes, be taken as twice as radial movements. The consequence of this property can be 
observed in Figure 3-5. Wood prisms are deformed due to shrinkage in different manner, 
depending on the orientation of the annual rings in the prism; these deformations are in 
general referred to as distortions, Hoffmeyer (1995). 

Density

The wood density is the most important physical characteristic of wood. The density den  is 
defined as: 

g
den

Vol

m
v

(3.1)

where gm  is the mass in kg  and Volv  is the volume in 3m . In wood science and engineering 
the dry density ,0den  and the density ,12den  at 12% moisture content are most frequently 
used. While the density of the cell wall material is relatively constant among wood species, 
which is about 1500 3kg m  (Kollmann et al., 1968), the density of wood depends mainly on 
the ratio between cell lumen and cell wall. The density ranges from 200 3kg m  to 650 3kg m
for coniferous wood and from 300 3kg m  to 1100 3kg m  for deciduous wood.

Strength and Stiffness Properties 

The strength and stiffness properties of wood depend on which direction the fibres are 
stressed. For small clear wood specimens it is in general distinguished between properties 
parallel and perpendicular to the grain. 

Table 3-1 Strength properties and density of some structural materials (Thelandersson and Larsen 
(2004)).

Material Density Strength Strength / Density

Structural Steel 7800 400-1000 50-30
Aluminium 2700 100-300 40-110
Concrete, compression 2300 30-120 13-50
Clear coniferous wood, tension parallel to the grain 400-600 40-200 100-300
Clear coniferous wood, compression parallel to the grain 400-600 30-90 70-150
Clear coniferous wood, tension perpendicular to the grain 400-600 2-8

MPa

5-10

3 310 MPa m kg3kg m
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Due to the fact that wood in a tree is a highly optimised structural material it is no surprise 
that its performance is impressive if it is stressed as in nature. E.g. clear wood exhibits high 
strength and stiffness in tension parallel to the grain; the ratio between strength and density is 
even higher than for steel (compare Table 3-1). On the other hand, if clear wood is loaded 
perpendicular to the grain the load carrying capacity is very low, Thelandersson and Larsen 
(2004).

Moisture Content and Mechanical Properties 

The mechanical properties of wood depend on the moisture content. An increase in moisture 
leads to lower values for strength and stiffness properties. Water, when penetrating the cell 
wall, weakens the coherence of the cell wall. Moisture variations above the fibre saturation 
point of around 28% have no effect on the mechanical properties, since such variations are 
related to free water in the cell lumen. Not only the moisture content is important for the 
strength properties of wood specimen; fast changes cause moisture gradients in wood which 
induce stresses perpendicular to the grain direction. Wood is a hygroscopic material that takes 
water from the surrounding air, and the moisture content of wood tends to attain equilibrium 
with the air humidity.  

The effect of moisture on the mechanical properties of wood is given in Table 3-2. For 
moisture contents between 8% and 20% a linear relationship between moisture content and 
strength can be assumed, Hoffmeyer (1995). 

Table 3-2 Approximate change (%) of clear wood properties for a one percentage change of 
moisture content. (Hoffmeyer(1995)). 

Material Property Change [%]

Compression strength parallel to the grain 5
Compression strength perpendicular to the grain 5
Bending strength parallel to the grain 4
Tension strength perpendicular to the grain 2.5
Tension strength parallel to the grain 2
Modulus of elasticity parallel to the grain 1.5

Duration of Load 

Wood experiences a significant loss of strength over a period of time. The failure mechanism 
of wood under long term load is referred to as creep rupture. The first major investigation on 
the duration of load effect on small clear wood specimen is published in Wood (1947). On the 
basis of bending tests of duration of up to 7 years, a stress – lifetime relationship is 
established, which predicts the 10-years strength to be slightly less than 60% of the 
approximated short term strength. Similar effects are observed in the literature for loading 
modes different from bending. 
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3.3 STRUCTURAL TIMBER 

“Timber is as different from wood as concrete is different from cement.” - Borg Madsen 

Structural timber components are sawn from logs1. Apart from some exceptions they have a 
prismatic shape with a rectangular cross section. In contrast to small clear wood specimens 
timber components have structural dimensions. The maximum possible dimension of the 
timber components is determined by the size of the trees in the forest. E.g. one hundred years 
ago timber components with a length of 20 m and a rectangular cross section of about 150 x 
450 mm were commonly available. Nowadays, the forestry strategy has changed and in most 
countries timber with a cross section over 75 x 225 mm and a length more than 5 m attracts a 
cost premium due to scarcity, Steer (1995). Timber components are applied for load carrying 
functions in structures; therefore there are several provisions in the production line to obtain 
appropriate structural elements. For example it is aimed for that the longitudinal axis of the 
timber structural component coincides with the grain direction of the wood cells. Due to the 
dimension of the timber components this is mostly not strictly possible. So called growth 
irregularities as knots and grain deviations are affecting the uniform and parallel grain 
direction. It should be remembered that these ‘growth irregularities’ are just part of the 
excellent property of a tree to react on stress peaks and special load conditions constantly 
during its growth. However, for a sawn piece of timber these growth irregularities are sub-
optimal.  

3.3.1 GROWTH IRREGULARITIES IN TIMBER STRUCTURAL COMPONENTS 

3.3.1.1 Knots
Being an optimal stress reducing connection of the stem with the branches in a tree, knots in 
sawn structural timber are by far the most important defects affecting the mechanical 
properties. It can be differentiated between inter grown knots and loose knots (see Section 
3.2.3).

3.3.1.2 Cross Grain 
The phenomenon, when the mean grain direction within a large section is not coinciding with 
the longitudinal axis of the timber component is referred to as cross grain. This is quite 
common, but only recognised at a certain magnitude. The reason for cross grain might be 
technical, i.e. due to sawing configurations, or due to growth particularities, e.g. helix-growth, 
or a cone shaped stem of the tree. 

                                                
1 A log is a cut proportion of the stem of a tree, in general already prepared for transportation and further 
processing; i.e. the log is cylindrical shaped and free of branches. 



36

3.3.1.3 Distortion
As for clear wood prisms, distortion due to inhomogeneous shrinkage and swelling properties 
is also present for timber structural elements. (compare shrinkage and swelling in section 
3.2.4)

3.3.1.4 Wane 
Timber structural elements, in general, have a rectangular shaped cross section. Due to sawing 
practice it is possible that the edge of the timber log becomes visible after cutting the 
rectangular shaped elements from the conical shaped log. This is in general referred to as 
wane.

3.3.1.5 Permanent Compressive Yield 
Permanent compressive yield is a local phenomenon due to an instant compression in the stem 
of the living tree.  E.g. during a storm the compression strength can be reached on a spot 
where local buckling of the fibres occurs. This happens without further consequences for the 
tree. In a sawn timber component these spots can be very disadvantageous due to very low 
strength characteristics. Permanent compressive yield is very hard to detect by visual quality 
control, Arnold and Steiger (2005). 

3.3.2 MATERIAL PROPERTIES OF INTEREST OF TIMBER STRUCTURAL 
COMPONENTS 

Structural timber is a non-homogeneous material. It’s also known as orthotropic, whereas in 
structural timber the major irregularities in a component (knots or cross grain) weaken this 
statement. However, material properties of timber components are considered as the property 
of an entire structural component, i.e. tension parallel to the grain means tension parallel to 
the axis where a coincidence with the main fibre direction is assumed. Consequently, both, 
stresses perpendicular to the grain and parallel to the grain exist in such a component, whereas 
the latter case is the dominant.  

Timber components are mainly used in structures in form of beams, columns and bars which 
are loaded in transversal bending and parallel compression and tension correspondingly. In 
these elements the stress bearing capacity of the wood material is used to its full potential. 
The wood fibres and the stress directions are mainly orientated along the longitudinal axis of 
these elements. In structural design, timber components are also subjected to other loading 
modes, namely tension and compression perpendicular to the component axis or shear. These 
properties are comparatively weak and should be treated with care during design.

In timber engineering, material properties are defined on an element level, i.e. material 
properties are defined as the load bearing capacity of timber material specimens of defined 
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size and conditioning1 and assessed in accordance with an agreed testing procedure. E.g. the 
bending strength of timber is not an ultimate stress property of the timber material; it is rather 
the moment capacity of the test specimen, divided by the elastic section modulus. In this 
section timber material properties according to test standards are introduced. The principle 
test configurations are illustrated to show how material properties are defined at an element 
level (based on ISO 8375). Regional specifications for the test configuration of bending tests 
are given in section 7.3 according to the Australian/New Zealand Code, the US-American 
Code, the Canadian Code and the European Code.

3.3.2.1 Bending Strength, Bending Modulus of Elasticity 
The bending strength according to test standards is determined with a test configuration 
illustrated in Figure 3-6. The load q  is applied with constant rate until the collapse of the 
beam. The maximum load maxq  is observed. The projected test time to failure ft  is also 
specified in the standards. The bending strength mr  is expressed in stress, assuming 
homogeneous ideal elastic material and pure bending as: 

2

3
m

qar
h b

(3.2)
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q
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w
h

b
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Figure 3-6 Typical bending test configuration; a, b, ew, h are the specified dimensions, q and w
are the measurements. 

The bending stiffness is assessed with the same test configuration by observing the deflection 
w  and the load at two different times during the test, i.e. ,1 1,w q  and ,2 2,w q . It has to be 
assured that the two measurements are made within the proportionality limit2 of the beam. The 
bending stiffness, i.e. the bending modulus of elasticity mmoe  is calculated as: 

                                                
1 Conditioning in terms of a predefined constant temperature and relative humidity surrounding. 
2 The proportionality limit confines the elastic domain of the stress strain relation ship of a material. In the 
elastic domain stress is proportional to strain. 
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3.3.2.2 Tension Strength Parallel to the Grain, Tension Modulus of Elasticity 
The tension strength according to test standards is determined with a test configuration as 
illustrated in Figure 3-7. The load q  is applied with constant rate until failure of the specimen 
and the maximum load maxq  is recorded. The projected test time to failure ft  is also specified 
in the test standards. Assuming ideal elastic and homogenous material behaviour the tension 
strength parallel to the grain ,0tr  is calculated as: 

max
,0t
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bd

(3.4)

where the index 0  specifies the angle to the grain. 
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Figure 3-7 Typical tension test configuration; l, b, d, ew are the specified dimensions, q and w
are the measurements. 

The tension stiffness is measured with the same test configuration by recording two 
simultaneous observations of the deflection w  and the load at different times during the test. 
It has to be assured that the two measurements are made within the proportional limit of the 
specimen. The tension stiffness, i.e. the tension modulus of elasticity ,0tmoe  is calculated 
with: 
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3.3.2.3 Compression Strength Parallel to the Grain, Compression Modulus of Elasticity 
The compression strength according to test standards is determined with a test configuration 
as illustrated in Figure 3-8. The load q  is applied with constant rate until the collapse of the 
specimen and the maximum load maxq  is recorded. The projected time to failure ft  in the test 
is also specified in the standards. Assuming ideal elastic and homogenous material behaviour 
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the compression strength ,0cr  is calculated according to: 

max
,0c

qr
bd

(3.6)

The compression stiffness is measured with the same test setup by recording two 
simultaneous observations of the deflection w  and the load at different times during the test. 
It has to be assured that the two measurements are made within the proportional limit of the 
specimen. The compression stiffness, i.e. the compression modulus of elasticity ,0cmoe  is 
calculated with: 
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Figure 3-8 Typical compression test configuration; l, b, d, ew are the specified dimensions, q and 
w  are the measurements. 

3.3.2.4 Tension and Compression Strength and Stiffness Perpendicular to the Grain 
The compression and tension strength perpendicular to the grain according to test standards is 
determined with a test configuration as illustrated in Figure 3-9. The load q  is applied with 
constant rate until the collapse of the specimen and the maximum load maxq  is recorded. (For 
compression perpendicular to the grain maxq  has to be estimated with proper iteration 
techniques). The projected time to failure ft  is also specified in the standards. Assuming ideal 
elastic and homogenous material behaviour the compression or tension strength perpendicular 
to the grain ,90tr , ,90cr  is calculated according to: 
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Figure 3-9 Typical compression and tension test configuration for perpendicular to the grain; l, b, 
h, ew are the specified dimensions, q and w  are the measurements. 

The tension or compression stiffness perpendicular to the grain is measured with the same test 
configuration by recording two simultaneous observations of the deflection w  and the load at 
different times during the test. It has to be assured that the two measurements are made within 
the proportional limit of the specimen. The tension or compression stiffness perpendicular to 
the grain, i.e. the tension or compression modulus of elasticity perpendicular to the grain 

,90tmoe , ,90cmoe is calculated with: 
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3.3.2.5 Shear Strength, Shear Modulus 
For evaluating the shear strength and stiffness different test configurations exist between 
different test standards, i.e. in contrast to the other material properties the differences are not 
only in dimension. For further particularities it is referred to the standards. Shear strength is in 
general understood as the resistance of a timber specimen against a shear load on the surface 
of the specimen in direction parallel to the grain combined with a compression load 
perpendicular to the shear load. The shear modulus is in general evaluated with a 3-point 
bending arrangement. 
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3.3.2.6 Density 
A small volume is cut from the test specimen, whereas the removal shall be made over the 
entire cross section of the specimen. The volume has to be free of defects. After destructive 
tests the volume should be removed near the spot of the failure. The density is defined as the 
ratio between the mass and the volume (see also section 3.2.4). The density is highly 
dependent on the moisture content of the timber. Specifications are given in the test standards. 

3.3.2.7 Test Standards 
The test standards referred to are:   

European Standards: EN 408 and EN 384 

American Society for Testing and Materials: D 4761-88 and D 1990-91 

Australian/New Zealand Standard: AS/NZ 4063:1992  

3.4 TIMBER DESIGN 

3.4.1 DESIGN FORMAT 

The general layout of the most recent timber design codes is based on the load and resistance 
factor design (LRFD) format (see section 2.4.2), which can be written as in Equation (2.28). 
Several limit state equations are given in the codes, ultimate and serviceability, to cover the 
most typical situations in practical design. Characteristic values for the material properties are 
also given in these design codes which correspond to fractile values of the underlying 
distribution functions. As described above the material properties are defined as the properties 
of test specimen tested under specified conditions. In real structures these conditions may 
deviate in terms of the size of the elements, loading modes and duration, climate variations, 
etc. As seen before, timber material properties are rather sensitive to these deviations. In 
modern timber design codes modification factors on the strength and stiffness related material 
parameters are introduced to satisfy this circumstance. The calibration of these modification 
factors is the matter of ongoing discussions in the timber research community; some 
phenomena seem to be too complex to cope just with a multiplication of a factor, for other 
problems the experimental evidence is rather poor. These issues will be discussed in more 
detail in chapter 4. 

Another particularity of timber is how its material properties are ensured to stay within some 
predictable limits. 
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3.4.2 TIMBER GRADING 

In comparison to building materials such as steel and concrete, the properties of structural 
timber are not designed or produced by means of some recipe but may be ensured to fulfil 
given requirements only by quality control procedures – also referred to as grading. For this 
reason quality control and selection schemes are implemented in the production line, typically 
already at the sawmill where the construction timber is produced from the timber logs. 

Various schemes for grading have been developed using different principles, however, the 
basic idea behind them all is that the material properties of interest are assessed indirectly by 
means of other properties, measured non-destructively such as e.g. the density, the modulus of 
elasticity or the visual appearance of the timber see Madsen (1992), Walker et al. (1993) or 
Green and Kretschmann (1997). 

As a result of timber grading, timber is represented at the market as a graded material. The 
grades imply that the material properties lie within desirable and predictable limits. However, 
the material properties of timber grades have to be considered as random variables and the 
properties of timber grades are characterised (and communicated) through specific fractile 
values of the assumed probability distribution functions of the material properties of interest.  

3.4.3 STRENGTH CLASS SYSTEMS 

In general, structural timber is assigned to a specific strength class. Several strength class 
systems exist on an international scale, e.g. in Europe it is the EN 338 which constitutes the 
classification of timber based on the prescription of characteristic values or the mean values 
for the material properties; i.e. for every timber strength class a characteristic value or a mean 
value for every relevant material property is given. Timber that is assigned to a certain 
strength class is also referred to as a timber grade. In Table 3-3 an example for some strength 
classes according to EN 338 is given. The characteristic values for the strength properties and 
the density are defined as the 5% fractile values of the underlying distribution functions. The 
modulus of elasticity (MOE) and shear modulus are specified by mean values. For the 
qualification of a timber population to a certain grade, values for three material properties are 
mandatory; the 5% fractile value of the bending moment capacity, the 5% fractile value of the 
density and the mean value of the bending MOE. These material properties are subsequently 
also referred to as the reference material properties. It is in general assumed that the indicated 
values for other properties are representative for the specified grades. These values are based 
on empirical relationships with the reference material properties evaluated based on several 
tests on European softwoods and given in Glos (1995) as:

,0, ,0.6t k m kr r (3.10)
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0.45
,0, ,5c k m kr r (3.11)

0.8
, ,0.2v k m kr r (3.12)

,90, ,0.015c k den kr (3.13)

,90, ,0.001t k den kr (3.14)

0, ,mean m meanmoe moe (3.15)

90, 90, , 30mean mean m meanmoe moe moe (3.16)

, , 16v mean m meanmog moe (3.17)

For the nomenclature compare Table 3-3, the subscript k  indicates the characteristic value of 
the material property; the subscript mean  indicates the mean value of the material property. 
0 and 90  indicate the angle of the main stress direction to the fibre direction. 

Table 3-3 The EN 338 strength classes C24, C30, C35 and C40; characteristic values for strength 
and stiffness properties and density. Mandatory properties are indicated with  grey 
shading. 

  C24 C30 C35 C40 

MPa

Bending moment capacity ,m kr 24 30 35 40

Tension strength parallel to the grain ,0,t kr 14 18 21 24 

Tension strength perp. to the grain ,90,t kr 0.4 0.4 0.4 0.4 

Compression strength parallel to the grain ,0,c kr 21 23 25 26 

Compression strength per. to the grain ,90,c kr 5.3 5.7 6 6.3 

Shear strength ,v kr 2.5 3.0 3.4 3.8 
GPa

Bending MOE in bending ,m meanmoe 11 12 13 14

MOE - tension parallel to the grain 0,meanmoe 11 12 13 14 

MOE - tension perp. to the grain 90,meanmoe 0.37 0.4 0.43 0.47 

Shear modulus ,v meanmog 0.69 0.75 0.81 0.88 
3kg m

Density ,den k 350 380 400 420 
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4 PROBABILISTIC MODELLING OF TIMBER MATERIAL  
PROPERTIES 

4.1 INTRODUCTION

Timber is a rather complex building material. Its properties are highly variable, spatially and 
in time. In structural engineering, material properties of timber are in general understood as 
the stress and stiffness related properties of standard test specimen under given (standard) 
loading and climate conditions and the timber density. Test configurations according to ISO 
8375 are defined in section 3.3.2. 

As introduced in section 3.4.2 timber is a graded material. Due to the grading process, the 
material properties are associated with some control scheme, whereas only the so-called 
reference material properties are considered explicitly. The so-called other material properties 
are only assessed implicitly. Following the European standard EN 338 the distinction between 
reference properties and other properties is made as illustrated in Figure 4-1. The bending 
moment capacity, the bending modulus of elasticity and the timber density are referred to as 
the reference material properties.  

When modelling timber material properties in a structure, i.e. at any generic point, in time and 
in space, several issues have to be taken into account, see also chapter 3. As illustrated in 
Figure 4-2 the cornerstone of the modelling of timber material properties are the reference 
material properties under reference conditions. The material property of interest at any generic 
point may deviate in terms of type (‘other material properties’), of dimensions (‘scale’) and of 
specific loading and climate conditions (‘time (load/moisture)’). In general, these aspects are 
treated separately, i.e. research and modelling scheme proposals are focused on one dimension 
in Figure 4-2. This scheme is also followed in this chapter. In Section 4.2 focus is directed to 
the spatial variability of timber material properties, i.e. material properties are considered at 
different scales. The time dependency of timber material properties is discussed in section 4.3 
(load dependency) and section 4.4 (moisture dependency). A framework for the interrelation 
of reference material properties and other material properties is given in section 4.5. 



46

den

= bending moment capacity

= bending MOE

 density

m

m

r

moe

,0 /90

,0 /90

,0 /90

,0 /90

,0 /90

tension strength

tension MOE

compression strength

compression MOE

shear strength

shear modulus

embedding strength

t

t

c

c

v

v

h

r

moe

r

moe

r

mog

r

Reference Material
Properties

Other Material
Properties

Figure 4-1 Reference material properties and other material properties. 

reference
material 

properties
scale

oth
er m

ate
ria

l

pro
perti

es

material property at 
a generic point of a structure

graded 
timber

time
(load/moisture)

Figure 4-2 Outline of the modeling of timber material properties. 

4.2 SPATIAL VARIATIONS OF TIMBER MATERIAL PROPERTIES 

4.2.1 SCALES OF MODELLING 

Timber material properties vary locally in space. A material property in one point of a 
structure might not be the same as in another point in the structure or in a point in a different 
structure. In general, three hierarchical levels of variation may be considered: micro, local 
(meso) and global (macro). 

Timber from different origins is graded by applying different grading schemes by different 



47

producers to one common grade. Every single sub-population of the timber grade might have 
differently distributed material properties. The variability of the distribution parameters 
represents a typical global parameter variation. Parameter variations may also be due to 
statistical uncertainties. 

The variations between timber test specimens or components of one specific sub-population 
are modelled at the meso level. Information about the specific sub-population may be 
obtainable from tests with the purpose of reducing the parameter variation. The geometrical 
scale of the test specimens is in the same order as the size of a structural element and probably 
most conveniently measured in meters. 

At the micro-level the irregularities in the timber material itself are represented. These are 
basically uncontrollable as they originate from natural variability such as the random 
distribution of knots fissures and grain deviations. The geometrical scale of these irregularities 
could be measured in m  at wood cell level or in cm  if knots and weak sections are 
considered.
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Figure 4-3 Different scales of modelling of timber material properties. 
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4.2.2 MODELLING REFERENCE MATERIAL PROPERTIES UNDER REFERENCE 
CONDITIONS – MESO LEVEL VARIATIONS 

Material properties are in general defined on the scale of test specimen capacity and the 
loading history and climate conditions until failure are also specified in test standards, see 
section 3.3.2. Deriving a probabilistic model for the material properties on this level, in 
general, is a straightforward task. Material properties can be represented by random variables 

,...iX , the statistical characteristics of these variables can be described by distribution models 
which parameters are calibrated according to data taken from standard tests. In section 2.2.2 a 
general outline is given, some basic approaches and an example how this should be performed 
is given in Annex A and in Chapter 7. 

4.2.3 MACRO LEVEL VARIATIONS – TIMBER GRADING 

In practical design the situation is different in regard to the amount and quality of available 
information. Typically it is known what timber grade will be utilized in the structure. Various 
grading schemes are calibrated to identify timber grades, i.e. sub-populations of timber 
elements for which the strength class requirements (see section 3.4.3) are fulfilled. The 
statistical characteristics of the material properties of these sub-populations are strongly 
dependent on the properties of the timber supply which is used for grading and the particular 
grading procedure which is applied (Faber et al. (2004) and section 4.2.3.2). This means that 
for different sub-populations all assigned to the same timber grade, but by applying different 
grading schemes and/or using different ungraded material, the statistical properties of the 
material properties might be different, although the target fractile values are similar. These 
macro variations have to be taken into account.

A possible method to quantify macro material variations is demonstrated in Rackwitz and 
Müller (1977), where the macro variability of concrete is analysed. Concrete from a particular 
grade but from several different producers is analysed. The sample moments of each sub-
population are quantified and functional relationships between the sample moments are 
derived. A similar scheme can be realized for graded timber by taking timber from different 
regions and graded to the same grade but identified by different grading schemes. 
Alternatively the macro variability can be explicitly assessed if the applied grading scheme 
can be formalized to a probabilistic framework which takes into account all uncertainties 
involved into the grading procedure. 

Coming back to this issue with a proposal in this direction in the second half of this sub-
section, first existing grading practice is introduced and discussed. 

4.2.3.1 Existing Grading Practice 
It is in general differentiated between two different strategies of timber grading: visual 
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grading and machine grading. 

Visual Grading 

Visual grading is based on visual inspection of timber structural elements. Visible defects as 
knots, fissures and cross grain 1  are assessed and according to the appearance of timber 
structural elements in regard to these defects they are sorted to a certain grade. Some more or 
less rudimentary forms of visual strength grading have been used since timber was utilised as 
a construction material. The first formal visual grading rules, the USA ASTM Standard D245 
were published in 1927 (Madsen (1992)). Since the 1930s formalized rules for visual grading 
were introduced in the European countries (Glos (1995)). These rules are further developed 
until today, however they differ widely with respect to grading criteria, number of grades and 
grade limits. Recent efforts to harmonize these visual grading rules at least throughout Europe 
have not been successful because no single set of grading rules would cover the different 
species, timber dimensions and uses in a satisfactory manner (Glos (1995)). However, for 
Europe some general requirements for regional visual grading codes are prescribed (prEN 
14081-1); the following has to be taken into account: 

limitations for visible strength and stiffness reducing characteristics: knots, slope to the 
grain, rate of growth (annual ring width), fissures, 

limitations for geometrical characteristics: wane, distortion, 

limitations for biological characteristics: insect and fungal damage. 

It has to be considered that the visual grading of a timber structural element in the usual 
production line takes place within 2-4 seconds (Glos (1995)); the before mentioned character-
istics are not measured by some device, they are subjectively estimated and it is decided 
within seconds whether the structural element belongs to a certain grade or not. Visual 
grading has proven as an efficient tool to reduce the variability of timber material properties, 
however, the grading effect strongly depends on the person who is performing the visual 
grading. The statistical characteristics of the material properties of visual graded timber are 
therefore difficult to assess based on information about the applied visual grading rules. 

Machine Grading 

The above mentioned disadvantages of visual strength grading may be overcome by machine 
grading, where a more formal assessment of the grading process can be performed. In contrast 
to visual grading, machine grading is in general based on indicative characteristics of a timber 
structural element which can be measured non-destructively by some device. The indicative 
characteristics have to be related to the basic material properties of interest. Typical indicative 
properties are: 

                                                
1 See Section 3.3.1, Page 35. 
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Directly related to the MOE: 

- flat wise bending stiffness, 

- ultrasonic pulse measurement, 

- frequency response measurement. 

Directly related to the density: 

- measurements on weight and dimensions, 

- - ray detection. 

Directly related to visible defects: 

- microwave response, 

- optical detection and subsequent image processing. 

A good overview about the different measuring schemes can be found in Thelandersson and 
Larsen (2003). It is the result from several research projects, e.g. Johansson et al. (1992), 
Boström (1994) that measurements related to the MOE are also highly related to the bending 
strength. Several grading machines operate with a single MOE related indicator as the flat 
wise bending stiffness and deliver comparable results compared to more complex machines 
measuring several indicators (Thelandersson and Larsen (2003)). 

Several grading machine systems can be found at the market, however they operate according 
to similar principles; one or more indicative properties of the timber to be graded are 
measured by the machine and based on these measurements a population of the un-graded 
timber is subdivided into sub-populations of graded timber material. The grading acceptance 
criteria are formulated in form of boundary values for indicative properties which have to be 
matched to qualify a piece of timber to a certain grade. These boundaries are also termed 
grading machine settings. The performance, i.e. the statistical characteristics of the output of 
grading machines strongly depends on these settings, and in general very much attention is 
kept on how to control these machine settings. 

Control of Grading Machine Settings 

Grading machines can operate either machine controlled or output controlled. The output 
controlled grading system was developed in North America. Control is based on frequent 
destructive strength testing or proof loading of control samples of the machine graded timber. 
This system is relatively costly but it permits a modification of the machine settings in order 
to optimize the yield, i.e. the predictability of the properties of the graded timber material. 
This method requires large quantities of timber of similar dimension and origin, so that it can 
be assumed that the characteristics of the timber are stationary. These conditions rarely exist 
in Europe, where a variety of sizes, species and grades in small quantities are typical. For 
these conditions the machine controlled systems are developed. Machine control means that 
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the settings are derived within a substantial assessment procedure prior to the operation phase 
of the machine. The settings are optimized to a representative un-graded timber population 
which might be typical for the daily use of the grading machine. In general these assessments 
are done for entire geographical regions, e.g. assessments for the gross supply in France or 
Scandinavia suggest common settings for certain grading machines used in these countries or 
regions.

Rules for machine grading are described in building standards such as prEN 14081 in Europe, 
AS 4490, AS 3519 in Australia, ASTM D6570 in the US and NLGA SPS2 in Canada. Except 
of the US where in general exclusively the output control system is used, both, the output 
control and machine control system is used. For the output control in general the so called 
CUSUM  methods are used for the continuous control of the grading machine output. In the 
prEN 14081 an explicit description of a machine control system is given. Both methods are 
briefly described in the following. 

CUSUM – An Output Control Scheme 

The most common used schemes for continuous output control machine grading systems are 
the cumulative sum ( CUSUM ) methods. CUSUM  methods for quality control problems are 
described e.g. in Ewan and Kemp (1960) and linked to the timber grading problem in Warren 
(1978). To date CUSUM  methods are proposed by building standards as the NLGA SPS2 
(Canada) and prEN 14081 (Europe). 

The principle feature of CUSUM  techniques is that successive values of a variable, e.g. mean 
values of control samples, are compared with a predetermined target or reference value, and 
the cumulative sum of deviations from this value is plotted on a chart or recorded in 
tabulation. If the accumulation reaches or exceeds a pre-determined decision interval, this is 
taken to indicate that a change has occurred in the mean level of the variable. The decision 
interval may represent either an ordinal distance on a chart having time or sample number as 
its abscissa, or a constant for tabulation. To illustrate the main aspects of CUSUM methods a 
possible layout for output controlled machine timber grading is described, mainly following 
an example given in Leicester and Breitinger (1994). 

It is differentiated between the attribute chart and the variable chart procedure. The attribute 
chart procedure is based on measuring the number of times that a required attribute, ,att ic  is 
missing. Specifically the attribute is taken as the event e.g. a strength value is in excess of the 
value of the proof load. The variable chart procedure is based on measuring a mean value, 

,sc im  of a control sample taken frequently from the output. The usual sample size for these 
samples is 5n . The charting procedure is based on three control parameters ck , cy  and cz ,
where c cy z . The values for the control parameters depend on the size n  of the control 
sample, the coefficient of variation of the variable of interest and are different for the attribute 
and variable chart procedure. For example, if the size of the control sample is 5n  and the 
coefficient of variation ( cov ) of the property to be controlled is 25% the control parameters 



52

ck , cy  and cz  can be specified as: 

Attribute Chart (Independent from cov ): , , 1,1,6c c ck y z

Variable Chart :     , , 0.9625 ,0.475 ,0.672c c ck y z

with , the mean value of the property to be controlled. 

For the i th  sample, a sum can be computed as: 

1 ,i i att i cSUM CUSUM c k (4.1)

for an attributes chart and 

1 ,i i c sc iSUM CUSUM k m (4.2)

for a variable chart. 1iCUSUM  denotes the value of CUSUM after the previous sample is 
tested. E.g. the actual iCUSUM  for the variable chart is derived according to Table 4-1. 

When the process switches to ‘out-of-control’, in general, some check on the stress grading 
process must be performed. If no processing errors are detected, an intensive sampling is 
performed, e.g. more samples are collected. If the process does not return to ‘in-control’ the 
production is halted. This procedure is illustrated in Figure 4-4. 

Table 4-1 Rules for computing CUSUM (Leicester and Breitinger (1994)). 

Actual iCUSUM
Previous 1iCUSUM

0iSUM 0 i cSUM y i cSUM y c i cy SUM z i cSUM z

1 0iCUSUM 0 iSUM cz cz cz

10 i cCUSUM y 0 iSUM cz cz cz

1c i cy CUSUM z 0 0 0 iSUM cz

1i cCUSUM z 0 0 0 iSUM cz

1i cCUSUM y : Process is in-control 

1i cCUSUM y : Process is out-of-control 
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Figure 4-4 Principle of CUSUM control procedure. 

Discussion of the CUSUM method 

Being a common control procedure in the general field of quality control the CUSUM method 
has proven to be an operational scheme for the output control of machine grading systems. 
However, the control mechanism concentrates on mean values of variables of interest and is 
not sensitive to possible changes of the variance of the variables which are assumed to be 
known and constant. This could be seen as a reasonable assumption, but on the other hand it 
could be interpreted as a shortcoming of the method, since changes in variance may be 
present and lower fractile values are sensitive to these changes. 

Alternatively to the CUSUM  method, a Bayesian updating scheme (see Annex A) could be 
employed to integrate the gathered information more efficiently, i.e. continuously gain more 
information about the variable and its statistical properties. 

The prEN 14081 approach for machine control systems 

The new European grading code prEN 14081 prescribes an approach for the derivation of 
grading machine settings according to the machine control system. The basis of this approach 
is first introduced in Rouger (1996). The machine’s grading performance is compared with 
that of a perfect machine capable of grading each piece of timber to its optimum grade. The 
comparison is made by assigning utilities for wrongly graded timber. In the following the 
main aspects of this approach are introduced and discussed. 

1) Optimum Grade: 

Timber grades are defined by requirements which have to be fulfilled in terms of the 
statistical properties of some material properties of the graded sub-population. In Europe these 
requirements are defined through a strength class system given in EN 338 (see section 3.4.3) 
and are referred to the: 

5%-fractile value of the bending moment capacity, 

50%-fractile value of the bending stiffness, 

5%-fractile value of the timber density, 
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all properties measured in tests according to EN 408. 

The optimal set of different timber grades for a given population is defined as a set where 
every single component is assigned to its highest possible grade. To obtain this set the 
following steps are examined (following Rouger (1996)): 

For a specific geographic region a large ( 900n ) and representative sample is assessed 
in regard to measurements on the bending moment capacity ,m ir , the bending stiffness 

,m imoe , the density ,den i  and the indicative properties.

The values of the measurements are ranked in ascending order that: 

,1 ,2 ,, ,...,m m m m nr r rr  with ,1 ,2 ,...m m m nr r r ;

,1 ,2 ,, ,...,m m m m nmoe moe moemoe  with ,1 ,2 ,...m m m nmoe moe moe ;

,1 ,2 ,, ,...,den den den den n  with ,1 ,2 ,...den den den n .

Note that following this approach , , ,, ,m i m i den ir moe  do not essentially correspond to the 
same specimen. The ranked data is plotted in quantile plot (see Annex A1).

For the highest grade the sample is cut at a quantile level such, that the sub-sample above 
the cut level fulfils the requirements of this grade. If the cutting levels are at different 
quantiles for the different properties the cutting level with the greatest rank has to be 
taken as being the relevant. 

The sub-sample below the cutting level is taken to be cut again to obtain a sub-sample 
corresponding to the next timber grade below and so on (see Figure 4-5). 

The optimal grading is defined as the proportions of different grades assigned according 
to the segmentation procedure as described above. Typically the proportion of the 
highest grade is large.  A possible optimal grading could be as given in Table 4-2. 
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Figure 4-5 The principle of the segmentation method exemplified on the bending strength 
(arbitrary but typical example). 

Table 4-2 Optimal Grading (arbitrary but typical example). 

Grade Proportion 

C40 720 (72%) 

C30 130 (13%) 

C24 89 (8.9%) 

reject 61 (6.1%) 

2) The establishment of a model which relates bending strength with the indicating properties 
of the machine. Beside linear regression models also more complex models can be used. 

3) The determination of a set of machine settings which results in timber grades by using the 
model derived in 2. 

4) The entire population is (virtually) graded according to these settings, into the so-called 
assigned grades. 

5) The assigned grades are compared with the optimal grades in a so-called size matrix. A 
possible size matrix could be given as in Table 4-3. 
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Table 4-3 A possible size matrix for the grade combination C40-C30-C24-reject (arbitrary but 
typical example). 

Assigned Grades 
Optimum Grade 

C40 C30 C24 reject 

C40 254 412 51 3 

C30 11 28 87 4 

C24 1 20 45 23 

eject 0 3 48 10 

6) The determination of an elementary cost matrix. 

According to Rouger (1997) it is considered as unprofitable if timber is assigned to a grade 
greater than its optimal grade (upgrading) or if timber is assigned to a grade less than its 
optimal grade (downgrading). Both up- and downgrading is assumed to be associated with 
costs derived according to the scheme described next. 

a) Upgrading: 

The mean value of the optimum grade ,X opt  is calculated based on its characteristic value, 
i.e. the 5%-fractile value 0.05,optx  and assuming that the property is lognormal distributed with 
a coefficient of variation ( cov ) of 30%: 

2
, 0.05,exp ln 0.5cov 1.65covX opt optx (4.3)

Similar, the mean value of the assigned grade ,X ass  is estimated. 

By assuming a target reliability index of 3.0target , an applicable stress to the timber of the 
assigned grade asss  is calculated as: 

, , covass X ass target X asss (4.4)

asss  is then applied to the timber sub-population corresponding to the optimum grade and a 
reliability index  is calculated as: 

,

, cov
X opt ass

X opt

s
(4.5)

A cost of upgrading is then defined as the difference between this reliability index and the 
target reliability index: 

targetCost upgrading (4.6)
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b) Downgrading: 

The cost of downgrading is assigned to be related to the over dimensioning of bending 
elements in deflection (it is considered that deflection is the most common design criteria): 

,
3

,

1m opt

m ass

moe
Cost downgrading

moe
(4.7)

where ,m optmoe  and ,m assmoe  are the MOE’s of the optimum and the assigned grade. 

Based on the above calculations a so-called cost matrix can be derived. A possible cost matrix 
is illustrated in Table 4-4. 

Table 4-4 A possible elementary Cost Matrix (upgrading, dark grey; downgrading, light grey), 
(arbitrary but typical example). 

Assigned Grades 
Optimum Grade 

C40 C30 C24 eject 

C40 0 0.053 0.084 0.326 

C30 0.111 0 0.029 0.26 

C24 0.222 0.083 0 0.224 

eject 0.778 0.5 0.333 0 

7) The determination of the global Cost Matrix. 

Each value ijglobal  in the global cost matrix is obtained by multiplying the corresponding 
number in each cell of the size matrix ijsize  by the corresponding value of the elementary cost 
matrix ijelementary  and then by dividing with the total number of pieces in the assigned 
grade, as: 

ij ij
ij

ij
i

elementary size
global

size (4.8)

A possible global cost matrix is given in Table 4-5. 
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Table 4-5 A possible global Cost Matrix (arbitrary but typical example). 

Assigned Grades Optimum 

Grade C40 C30 C24 eject 

C40 0 0.047162 0.018545 0.02445 

C30 0.00459 0 0.010922 0.026 

C24 0.000835 0.003585 0 0.1288 

eject 0 0.00324 0.069195 0 

8) Assessment of the global cost matrix. 

The grading machine settings are considered as appropriate when all global upgrading costs 
are lower than 0.02. In Table 4-5 this requirement is violated. 

Discussion on the prEN 14081 approach 

The principles of the procedure for the derivation of grading machine settings according to 
prEN 14081 part II are briefly summarized above. In the opinion of the author the procedure 
exhibits several shortcomings in both, the practical and the theoretical point of view: 

Practically, it is considered as a disadvantage that the procedure does not allow for a 
probabilistic assessment of the material properties based on the derived grading settings. I.e. 
the gathered information cannot be directly used for the estimation of distribution parameters 
of the graded timber. 

From the theoretical viewpoint several inadequacies can be identified, which, in the opinion 
of the author, are too serve to be considered as simplifications or assumptions. The general set 
up of the method, the assignment of so-called optimum grades by the segmentation technique 
(compare Figure 4-5) and taking these segments as a reference is debatable. Furthermore, it 
seems incorrect to assign Lognormal distributions with a coefficient of variation ( cov ) of 
30% to these segments and perform a reliability calculation (see Equations (4.3) and (4.5)). 
By inspecting the right part of Figure 4-5 it is clear that the segments are not log-normally 
distributed and the coefficient of variation is not 30%. In addition, the assumption is not 
consistent, i.e. for some of the optimum grades the assumption is less inadequate than for 
others. Another feature which appears inappropriate is the assumption that the cost for 
upgrading is proportional to the reliability index. Possible cost, however, would better be 
related to the probability of failure. 

Even more features of the method could be questioned; however, the discussion is not 
continued here.

Quite recently the prEN 14081 reached its approval phase. A future task for the research 
community is to reflect upon the proposed method for the derivation of grading machine 
settings. Real costs are involved in the structural timber production line and one major issue 
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of competitiveness of structural timber is the consistent representation of the uncertainties 
according to the timber material properties. It is expected that new more efficient methods 
will come up soon. 

An example for an alternative procedure is presented in the following. Referring to Faber et 
al. (2004) and Köhler and Faber (2003) a procedure for the probabilistic modelling of graded 
timber material properties is derived. In section 4.2.3.2 the procedure is introduced with the 
example of one relevant (or grade determining) material property. In section 4.2.3.4 the 
method is followed further and a framework for the optimal assignment of grading machine 
settings is presented. 

4.2.3.2 Probabilistic Modelling of Grading Schemes 
In structural reliability applications it is necessary to be able to assess the probability 
distribution function of the relevant material properties. Assuming that a sufficiently large 
number of experiments have been performed regarding the relevant material property X  of 
the ungraded timber, it is in principle a straightforward task to select a probability density 
function and to estimate the parameters of this correspondingly. The resulting density function 
might be considered as a prior density function Xf x , i.e. the probability density function, 
which might be assumed if no grading schemes are invoked. However, when a grading 
scheme has been applied the prior density function is no longer representative for the graded 
timber specimens. In order to assess the representative probability density function use may 
be made of Bayes’s rule, see e.g. Benjamin and Cornell (1970), yielding the posterior 
probability density function Xf x , i.e. the probability density function, which can be 
assumed for the material properties, categorised into a particular grade by application of the 
grading acceptance criteria CA :

1
X C X Cf x P X x A f x P A X x

c
(4.9)

where Cc P A .

The grading acceptance criteria CA  is the rule applied for the categorisation of timber into 
different grades and also refered to as the grading machine settings. The grading acceptance 
criteria CA  may be formulated in terms of the values of the indicators. Typically the criteria 
have the following appearance: 

C L UA b I b (4.10)

where Lb  and Ub  are lower and upper bounds for the indicator for a particular grade. 

It is seen from Equation (4.9) that it is necessary to estimate the likelihood of the 
implementation of the grading acceptance criteria, i.e. CP A X x  as a function of the 
specific value of the material property X . This likelihood may be assessed if test results are 
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available from timber specimens tested both, in regard to the indirect characteristic, e.g. the 
flatwise bending stiffness, and the relevant material property, e.g. the edgewise bending 
strength. Assuming that such test results are available a regression analysis can be performed 
based on which the statistical characteristics of the indicator, e.g. the flatwise bending 
stiffness can be assessed for a given value of the relevant material property. The prior 
probability distribution function for the un-graded timber material properties together with the 
likelihood of implementing a given selection criteria for a given sample thus forms the basis 
for assessing the posterior probability distribution function using Bayes’s rule. 

The regression analysis takes basis in n  simultaneous observations of the relevant material 
property 1 2, ,..., T

nx x xx  and the indicator 1 2, ,..., T
n . Assuming that at least locally a 

linear relationship between x  and  exist the regression may be performed on the basis of: 

0 1a a x (4.11) 

where 0a  and 1a  are the regression coefficients and where  is an error term. Assuming that 
the error term  is normal distributed with zero mean and unknown standard deviation  the 
maximum likelihood method, see e.g. Lindley (1965) may be used to estimate the mean 
values and covariance matrix for the parameters 0a , 1a , .

The likelihood is then given as: 

2

0 1
0 1

1

1 1, , exp
22

n
i i

i

a a xL a a (4.12)

The parameters are estimated by the solution p  to the optimisation problem: 

max L
p

p (4.13)

where 0 1, , Ta ap .

Having performed the regression analysis, it is possible to assess the acceptance probability 
i.e. CP A X x by:

0 1 0 1C L U L UP A X x P b a a X b X x P b a a x b (4.14)

which is straightforward to assess recognising that the indicator I  is normal distributed. 

For structural reliability applications the probability distribution function for the relevant 
material characteristic is often more directly useful than the probability density function. 
Considering the probabilistic modelling of the relevant material characteristics corresponding
to the different grades it may, e.g. in the context of First Order and Second Order Reliability 
(FORM/SORM) analysis be more appropriate to consider the probability distribution function 
given in Equation (4.15) instead of the probability density function from Equation (4.9): 
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C
C

C C

P X x P A X x
P X x A

P X x P A X x P X x P A X x
(4.15)

However, the probability distribution defined by Equation (4.15) is also not always 
straightforward to work with because it involves the calculation of the terms CP A X x
and CP A X x  which in general are difficult to express analytically. 

If the only aim is to assess the probability distribution function FORM/SORM (Madsen et al. 
(1986)) as well as Monte Carlo based simulation techniques (Melchers (1987)) may, however, 
also be directly applied by use of the following formulation: 

C
C

C

P X x A
P X x A

P A (4.16)

Example

As an example the case where the grading of the timber material is performed using the 
Computermatic grading machine is presented. A data set from Johansson (1992) is considered 
concerning the bending strength of 239 timber specimens of European spruce. 

infeed speed

 l = 914 mm 

flatwise

F

F = constant force
deflection measurement
=> stiffness indication

Figure 4-6 Principles of the Computermatic Grading Machine. 

The Computermatic grading machine is a widely used grading machine which considers the 
flatwise bending stiffness as an indicator of the bending strength. As illustrated in Figure 4-6, 
the stiffness characteristic is obtained through a measurement of the deflection under a fixed 
load applied at the centre of a span of 914 mm. The bending strength is obtained in four-point 
bending tests according to the European standard EN 408, compare section 7.3.1. Further 
information regarding the Computermatic grading machine can be found in the literature, e.g. 
Computermatic user manual (2000). The entire population of the 239 timber specimen is 
assumed to be un-graded. The probability distribution function of the bending strength, i.e. the 
prior probability distribution function, is assumed to be 2-parameter Weibull min distributed. 
The 2-parameter Weibull min distribution function is given in Annex A. It is observed e.g. in 
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Glos (1978) that the 2-parameter Weibull distribution gives too conservative estimates for the 
lower tail region of the distribution. The parameters of the Weibull distribution are therefore 
also estimated with explicit consideration of the lower tail region of the data. 

In Figure 4-7 the probability distribution function representing all data is compared to the 
probability distribution function estimated by using the censored maximum likelihood 
estimation according to section 7.1 with a threshold value corresponding to the lower 30 % 
quantile. For the purpose of comparison the sample probability distribution function using all 
observations is also illustrated. 

In Figure 4-7 it is seen that a significant refinement of the representation of the strength data 
in the lower tail domain can be achieved, by using the distribution model fitted to the lower 
data set domain. 

In Johansson (1992) not only the bending strength of the 239 specimens but also the 
Computermatic based indicator of the bending strength for each specimen has been observed 
and recorded prior to the bending strength tests. By regression analysis of simultaneously 
measured bending strengths and the observed Computermatic based indicators the regression 
coefficients are estimated according to Equations (4.11)-(4.13). Using the Method of the 
Maximum Likelihood both the parameters of the prior probability distribution functions and 
the regression parameters are estimated as normal distributed random variables with mean 
values, standard deviations and correlations as given in Table 4-6. Ignoring the statistical 
uncertainty associated with the estimated parameters, which for the present case is 
insignificant, the acceptance probability may thus be assessed directly from Equation (4.14). 

Bending Strength [MPa]

Pr
o

b
ab

ili
ty

Sample PDF
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Figure 4-7 2-parameter Weibull min probability distribution functions with parameters estimated 
using all data and data below 30%, compared with the sample probability distribution 
function (Sample PDF). 
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Table 4-6  Mean values, standard deviations and correlations of the parameters of the prior 
probability distribution function (w, k see also the definition in Annex A) together with 
the estimated regression parameters. 

Prior Distribution Parameters (bending 
mod. of rupture) 

Regression Parameters (Computermatic)  

Weibull parameters as 
normal distributed 
random variables 

correlation
as normal distributed random 

variables 
correlation

w [MPa] k [MPa] 0a
[Comp] 

1a [Comp/

MPa] [Comp] 

 = 48.0  = 4.32 All
data = 0.76 = 0.21 

,w k = 0.33 

 = 43.9  = 6.44 Data
lower 
30% = 0.02 = 0.49 

,w k  = -0.06 

 = 4673 

= 291 

 = 98.6 

= 6.45 

 = 1073 

= 40.08 

0 1,a a  = -0.02 

1, a = 0 

0, a = 0 
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Figure 4-8 Acceptance probability of different indicators. 

In Figure 4-8 the acceptance probability (Equation (4.14) for three different types of 
indicators is illustrated. The Computermatic based indicator is compared with the case when 
the timber density and edgewise modulus of elasticity are used as an indicator. The grading 
acceptance criterion for each probability curve is chosen such that the mean value of the 
expected bending strength is the same in all three cases. It is not surprising that the ‘better’ the 
linear regression is between the indicator and the relevant material property, the steeper is also 
the corresponding acceptance probability curve. The steepness of the acceptance probability 
curves thus forms a basis for comparison of the efficiency of different grading methods. 

Assuming that the timber specimens are categorised in three grades of same volume according 



64

to the observed Computermatic indicators, i.e. 1) 4000 – 8100 MPa, 2) 8100 – 9650 MPa and 
3) 9650 – 15000 MPa, the probability density function for the graded timber can be obtained 
directly from Equation (4.9). 

In Figure 4-9 the prior probability density function of the bending strength for the un-graded 
timber (2-parameter Weibull min distributed with mean value 43.7 MPa and standard 
deviation 11.4 MPa) is shown together with the probability density functions for the three 
timber grades in accordance with the abovementioned grading acceptance criteria. Note that 
the grading is performed using the prior probability density function with parameters 
estimated based on all data. 
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Figure 4-9 Illustration of the probability density functions for the bending strength for un-graded 
and graded timber specimens.  

In Figure 4-10 the probability distribution functions for the different grades are shown in 
comparison with the sample probability distribution functions (sample PDF’s) established 
from the experimental data fulfilling the respective grading acceptance criteria. 
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Figure 4-10 Probability distribution functions for the bending strength for the three different 
 grades together with the corresponding sample probability distribution functions. 

In Figure 4-10 the lower tail domain of the probability distribution functions are shown in 
larger scale together with the lower 5% fractile values. 
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Figure 4-11 Lower tail domain of the graded probability distribution functions. Estimates of the 
lower 5% fractiles (characteristic values) are shown. 

Note, that especially the representation of the data by the probability distribution function for 
grade 1 is not satisfactory. For the weaker timber, e.g., grade 1 and grade 2, special emphasis 
on the lower tail domain in the representation of the prior probability distribution function is 
thus required. Figure 4-12 and Figure 4-13 shows the three probability distribution functions 
compared with the sample probability distribution functions. For identifying the probability 
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density function of grade 1 and 2, now, the prior probability density function is fitted with 
special emphasis on the lower tail domain using the censored maximum likelihood method 
according to section 7.1. The data which fulfils the grade 3 acceptance criteria are mostly 
taken from the middle and upper part of the prior distribution. For that part the prior 
probability distribution function modelled under consideration of all data can be used. The 
sample cumulative probability distribution functions corresponding to the graded observations 
are also shown in Figure 4-12. 
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Figure 4-12 Probability distribution functions for the bending strength for the three grades. The 
prior probability distribution function for grade 1 and 2 is fitted to the lower tail. 
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Figure 4-13 Lower tail domain of the probability distribution functions for the bending strength for 
the three grades. Estimates of the lower 5% characteristic values are shown. 
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In Figure 4-13 the lower tail domain is shown in larger scale. It is seen by comparison 
between the theoretically derived probability distribution functions and the sample probability 
distribution functions (corresponding to the experimental observations in the considered 
intervals) that a rather satisfactorily agreement in the lower tail domain is achieved. 

In Table 4-7 the lower 5 % fractile values are given for the different grades with and without 
estimating the parameters of the prior probability distribution function in the lower tail 
domain using the censored maximum likelihood method compared with the 5% fractile values 
resulting directly from the data.  

From Figure 4-13 it is seen that a great benefit may be obtained by estimating the prior 
probability distribution with special consideration of the tail domain before the probability 
distributions of the graded specimens are evaluated. 

Whether a prior fitted with special emphasis to the goodness of fit in the lower tail domain 
has to be preferred or not, depends on the domain for which the posterior is of special interest. 
It is thus difficult to provide any generally applicable rules for this selection. However, in 
most normal cases the selection would follow naturally from the available data on the 
simultaneous observations of an indicator and the bending strength together with previous 
experience to judge which approach is appropriate. 

Table 4-7 Lower 5% fractile values for the graded timber specimens. 

 char. value [MPa] char. value [MPa] char. value [MPa]

acceptance interval 
mRf fitted to lower tail 

mRf fitted to all sample values 

4000 - 8100 23.4 18.2 25.0 
8100 - 9650 30.5 28.8 30.5 

9650 - 15000 - 37.71 36.3 

All data (ungraded) 24.1 28.4 

4.2.3.3 Probabilistic Model Format for Timber Materials in consideration of grading 
As a prerequisite to the consistent probabilistic design of timber structures and 
correspondingly, the calibration of e.g. load and resistance factor design formats, it is 
necessary to establish a standardised format for the representation of the relevant timber 
material properties. Such a format must contain both a description of the prior probability 
distribution of the relevant timber material properties as well as a description of the quality of 
the different quality control and selection for grading procedures.

In Table 4-8 a possible format for probabilistic models of relevant timber material properties 
of interest is suggested. First the distinction of different prior timber populations is proposed 
e.g. in respect to the geographical origin of the timber, the species, the dimension of the 
considered timber elements and other possible characterising properties. Representative prior 
probability distribution models of the relevant material property may be specified in terms of 
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probability distribution functions, their parameters and the uncertainties associated with their 
parameters. Furthermore the different schemes for quality control and grading may be 
represented in terms of their linear regressions and associated uncertainties. 

To establish a probabilistic description of timber material properties in a code format such as 
e.g. the Probabilistic Model Code by the Joint Committee on Structural Safety, the parameters 
and their uncertainties should be represented in the same way. The procedure described in this 
chapter is a proposal in this direction and should be taken as a basis for further discussions. 

Table 4-8 Suggested Format for Probabilistic Models for relevant Material Properties of Timber 
Materials.
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Regression Parameters             
(for a given grading method)

The statistical properties of the graded timber materials depend as discussed previously also 
on the grading acceptance criteria (grading machine settings) implemented for the different 
grades. It is hardly possible to prescribe how these should be selected as this should be a 
matter of economical optimisation for the individual saw mills. The selection of a quality 
control and grading scheme must be made on the basis of cost benefit considerations. These 
aspects are considered in the next section. 

4.2.3.4 Assessment of the Optimal Grading Procedure 
Based on the proposed statistical modelling of timber properties as a function of the type and 
efficiency of the grading procedures, a cost optimisation scheme may be formulated for the 
identification of the optimal grading procedure. Therefore, the cost of the control and the 
benefit of fulfilling the requirements set for the material characteristics belonging to different 
grades have to be given. 
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The benefit TB  of a set of timber grades identified by the grading procedure GP  may be 
written as: 

( ( ), , ) T
T X C GradeB f x A GP V C (4.17)

where V  is a vector of volumes of particular grades, which can be identified depending on 
the prior probability distribution of the relevant material property, the set of grading 
acceptance criteria and the grading procedure. GradeC  is a vector of the (monetary) benefit of 
the timber grades per unit volume. If the prior probability distribution of the relevant material 
property, the grading procedure, the set of timber grades and their monetary benefits are 
known, the optimal set of grading acceptance criteria CA  may be found by solving the 
following optimisation problem: 

subject to:  , 

max  ( ( ), , )
c

req Grade

T X CA
B f x A GP

N C
(4.18)

subject to normative requirements which have to be fulfilled by the grades, reqN , and the cost 
vector GradeC . Involving the investment, maintenance over lifetime costs, costs for personnel, 
etc. of a particular grading procedure by the function )(GPCG  the optimal grading procedure 
may be identified by solving the following optimisation problem: 

subject to:  , 

max max  ( ( ), , ) ( )
c

req Grade

T X C GGP A
B f x A GP C GP

N C

(4.19)

Example - continuation 

Considering the data and the inference from the example in section 4.2.3.2, it can now be 
demonstrated how an optimal set of grading acceptance criteria for the considered grading 
procedure of the Computermatic grading machine can be found by applying Equation (4.18). 
The intention is to set up three different grading acceptance criteria to select three different 
timber grades. The grades have to fulfil the requirements for the strength classes according to 
EN 338 in terms of the 5% fractile value of the bending strength and the mean of bending 
modulus of elasticity and the 5% fractile value of the density. The prior population is assumed 
to be checked according to visual defects of the timber as warp, insect damage etc. Five 
different grades according to EN 338 are selected to be possible grades and a reject domain is 
defined for timber, which not has to fulfil any requirements. They are shown together with 
example values for the monetary benefit and the material requirements in Table 4-9, therefore 
the vector gradeC  (units: monetary unit per volume) becomes:  

T
grade )2.01.8,1.6,1.4,1.0,0.5,(C .

To identify three different grades, three different grading acceptance criteria have to be 
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defined:

1 2 3,1 ,2 ,2 ,3 ,3 ,3; ;C L L C L L C L UA b I b A b I b A b I b (4.20)

Table 4-9 Monetary benefit (example values) and requirements for grades according to EN 338. 

 ‘reject’ C16 C24 C30 C35 C40 

Monetary Benefit 0.5 1.0 1.4 1.6 1.8 2.0 

Bending strength, 5%-frac [MPa] - >16 >24 >30 >35 >40 

Modulus of elasticity, mean value 
[MPa] 

- >8000 >11000 >12000 >13000 >14000 

Density, mean value [kg/m3] - >310 >350 >380 >400 >420 

In addition to the posterior distributions of the ultimate bending strength for these three 
grading acceptance criteria 

i
m m C

P R r A , the posterior distributions of the bending 
modulus of elasticity 

i
m m C

P MOE moe A  and of the density 
i

den den C
P A  have to be 

assessed, according to the prior distribution parameters and the regression parameters given in 
Table 4-6, Table 4-10 and Table 4-11. These posterior distributions are representing timber 
sub-populations with the property 

iCAI  and can be checked in regard to the requirements in 
Table 4-9. 

The three grading acceptance criteria are defined through the values of ,1 ,2 ,3, ,L L Lb b b  and ,3Ub
in Equation (4.20). The value ,3Ub  is fixed to an upper threshold value, namely 

,3 16000 MPaUb . The optimal values of ,1 ,2,L Lb b  and ,3Lb  are then found by solving 
Equation (4.18) using the simplex algorithm, see e.g. Nelder and Mead (1965), for which 
differentiability of the objective function and constraints is not required. The applied 
algorithm does not allow for the definition of the constraints explicitly. Therefore the 
constraints have been included directly into the formulation of the objective 
function ( ( ), , )T X CB f x A GP  in line with the requirements given in EN 338. Due to the discrete 
character of the objective function the simplex algorithm is applied in conjunction with a 
random search to facilitate the identification of the optimal solution over the set of discrete 
optimisation variables. In this search it has been found that 100 simulations provided stable 
results.
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Table 4-10 Mean values, standard deviations and correlations of the parameters of the prior 
probability distribution function together with the estimated parameters for the 
regression between bending modulus of elasticity and the Computermatic indicator. 

Prior Distribution Parameters (bending 
modulus of elasticity) 

Regression Parameters (Computermatic)  

Log-normal parameters as 
normal distributed random 

variables 
correlation as normal distributed random variables correlation 

 [MPa]  [MPa] 0a [Comp] 1a [Comp

/MPa]
[Comp] 

 = 12749.1  = 0.1949 

= 160.7 = 0.0089 

, = 0 
 = 2892 

= 332.1 

 = 0.469 

= 0.025 

 = 961.7 

= 35.91 

0 1,a a  = -0.03 

1, a = 0 

0, a = 0 

Table 4-11 Mean values, standard deviations and correlations of the parameters of the prior 
probability distribution function together with the estimated parameters for the 
regression between density and the Computermatic indicator. 

Prior Distribution Parameters (density) Regression Parameters (Computermatic)  

Normal parameters as 
normal distributed random 

variables 
Correlation as normal distributed random variables correlation 

[kg/m3]  [kg/m3] 0a [Comp] 0a [Comp/ 

kg/m3]
[Comp] 

 = 406.3  = 35.47 

= 2.295 = 1.622 

, = 0 
 = 1063.6 

= 997.24 

 = 19.51 

= 2.44 

 = 1341.0 

= 50.1 

(a0, a1) = -0.02 

( , a1) = 0 

( , a0) = 0 

Table 4-12 Optimal set of timber grades, limiting properties are shaded and framed. 

I [MPa] iV

bending mod. 
of rupture 5%-
fractile value 

[MPa] 

bend. mod. of 
elasticity mean 

value [MPa] 

density 5%-
fractile value 

[kg/m3] 

Grade 

EN 338 

rCA [0,5255) 0.5% reject 

1CA [5255,8094) 29.5% 26.0 11000.4 339* C24 

2CA [8094,10161) 49% 30.3 12952.34 351.6* C30 

3CA [10161,16000] 21% 40.1 15738.9 366* C40 

*)density is not taken into account as a requirement. 

Subject to the given conditions summarised in Table 4-9, the optimal set of grading 
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acceptance criteria is given in Table 4-12. From the assumed set of data the grades C24, C30 
and C40 have been identified, where for the grade C24 the mean value of the bending 
modulus of elasticity is the limiting property. For the grades C30 and C40 the bending 
strength is limiting. The relationship between the Computermatic indicator and the timber 
density is too weak to make any quantitative prediction about the density based on a 
Computermatic indication. Therefore, in this example the density is not taken into account as 
a requirement for assigning grades. 

As the Computermatic grading procedure apart from values of the flatwise bending stiffness 
(Indicator) also provides values of density, the parameters of Table 4-11 can be updated 
continuously. By doing spot test, e.g. for every 100th timber specimen, of the bending 
strength and the bending modulus of elasticity the parameters of Table 4-6 and Table 4-10 can 
also be updated continuously. 

4.2.3.5 Summary and Concluding Remarks on Grading 
A brief overview about timber grading is given, with focus on the control of grading 
machines. Grading machines can be either output controlled or machine controlled. A 
common output controlled procedure is the so-called CUSUM  method and the main features 
of this method are briefly explained and discussed. A procedure for machine control is 
introduced following the method which is prescribed in the European standard prEN 14081. It 
is noted that both control methods do not allow for a probabilistic assessment of the graded 
timber material properties based on the corresponding formalism of the control methods. 
Furthermore, several shortcomings within the machine control method according to the 
European standard prEN 14081 are outlined and discussed. 

Alternatively to the described methods, the statistical assessment of timber material properties 
has been considered with special emphasis on the modelling of the effect of different schemes 
for quality control and grading of timber. It is shown that typically applied indicators for the 
relevant material properties such as measurements of the flatwise bending stiffness, the 
measurement of densities and others may be utilised for the statistical differentiation of 
different populations of the strength characteristics. The suggested approach not only forms a 
very strong tool for the statistical quantification of the material characteristics of timber but 
furthermore provides a consistent basis for quantifying the efficiency of different quality 
control and grading procedures. The probabilistic models for the graded timber material 
properties have been formulated such that they readily may be applied in structural reliability 
analysis. 

It has been found that the assessment of the statistical characteristics of the graded timber 
should be performed on the basis of a probabilistic modelling of the un-graded timber where 
special emphasis is made on the representation of the probability distribution function in the 
lower tail domain. 

It is of utmost importance that the statistical characteristics of timber material properties are 
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assessed and treated in consistency with the implemented quality control and grading 
procedures. Only then a consistent basis may be established for the quantification of the 
reliability of timber structures - the basis for codification of design and assessment. The 
suggested probabilistic modelling seems to provide the required framework for establishing 
such a basis by means of quantifying the efficiency of the different quality control and 
grading procedures. It is envisaged that different quality control grading procedures may be 
described by means of their regression characteristics and acceptance probability curves 
corresponding to different grading criteria. A format for the standardisation of the 
probabilistic modelling of timber materials subject to different quality control and grading 
procedures is suggested. It is important that the appropriateness of such a format is discussed 
and that a consensus is achieved in this respect in the near future. 

In section 4.2.3.4 it has been demonstrated how an optimal (in terms of monetary benefit) set 
of timber grades can be identified through the solution of an optimisation problem. The 
objective function of the optimisation problem is defined based on the findings of section 
4.2.3.2. The identified timber grades can be described by means of the probabilistic 
characteristics of the relevant material properties as e.g. the bending strength, the bending 
modulus of elasticity and the density of the timber. The simplex algorithm for the optimisation 
of non-differentiable objective functions in conjunction with a simulation procedure has been 
applied for the identification of the optimal grading procedure. The constraints to the 
optimisation problem, in terms of the requirements for timber grades according to EN 338 
have been incorporated directly into the objective function.  

An example has been presented illustrating the suggested approach to cost optimal timber 
grading. The assignment of monetary benefit to the different grades of timber has, however, 
been based on judgement rather than true values. In practice the benefit associated with timber 
of a particular grade would depend on a number of factors such as the size of the individual 
timber specimen, the total amount of available timber for a given grading, the production 
capacity of a given sawmill, the available grading machines and not least the market price for 
the different timber grades. The implementation of the proposed approach in practice would 
have to incorporate these and other factors more accurately into the formulation of the benefit 
function. Further studies in close collaboration with the timber industry should be undertaken 
and discussed to clarify these aspects and to set up a rational basis for their assessment. 
However, according to the preferences of a sawmill owner the proposed approach facilitates 
the identification and the calibration of a grading procedure and thus an increase in the overall 
production benefit. 

4.2.4 WITHIN MEMBER VARIATIONS – MICRO SCALE VARIATIONS 

For modelling the variations of strength related timber material properties within a 
component, the variability on a micro scale has to be taken into account. In general, 
assumptions about the micro system behaviour of the material are providing guidelines for the 



74

development of stochastic material models. Two classical probabilistic strength models can be 
found in the literature: the ideal brittle material model and the ideal plastic material model. 

4.2.4.1 Classical Probabilistic Strength Models 

Ideal Brittle Material 

An ideal brittle material is defined as a material that fails if a single particle fails, see e.g. 
Bolotin (1969). The strength of the material is thus governed by the strength of the ‘weakest’ 
particle; therefore the model for ideal brittle materials is also called the weakest link theory 
proposed by Weibull (1939). If the strength X  of the individual particles are assumed to be 
mutually independent and identically distributed with distribution function ( )XF x , the 
distribution function of the strength R  of a body with Volnv  identical loaded particles1 is: 

1 1 1 exp ln 1Volnv
R X vol XF x F x nv F x (4.21)

The behaviour of ln 1 XF x for small arguments can be represented as: 

0 0ln 1 ;    k
XF x c x x x x (4.22)

where 0x  is the smallest possible value of x , c  and k  are positive constants. Equation (4.21) 
now can be written as: 

01 exp k
R volF x cnv x x (4.23)

Considering an isotropic solid under a homogeneous stress distribution and by introducing a 
reference volume ,0Volv , e.g. the volume of standard test specimen substituting by 

,01 k
Volcn v w  in (4.23) gives: 

0

,0

1 exp
k

Vol
R

Vol

v x xF x
v w

(4.24)

which is the expression of a 3-parameter Weibull distribution. w  is called the shape parameter 
and k  the scale parameter. The expected value E R  and the variance Var R  of R  can be 
given as: 

1

0
,0

11
k

Vol

Vol

vE R x w
k v

(4.25)

                                                
1 n  particles of finite volume Volv .
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(4.26)

where .  is the gamma distribution. 

The expected value function decreases with the considered volume Volv  and for 0 0x  the 
coefficient of variation is independent of Volv . The size effect is observed for many brittle 
materials such as hardened steel, concrete and stiff clay. The coefficient of variation and the 
correlation of the strength of the reference volumes  ,0Volv  determine the importance of the 
volume effect. 

Assuming unique failure probability for two material bodies with different volumes ,1Volv  and 

,2Volv  gives the following expression: 

,1 ,21 0 2 0
1 ,1 2 ,2

,0 ,0

, 1 exp 1 exp ,
k k

Vol Vol
R Vol R Vol

Vol Vol

v vx x x xF x v F x v
v w v w

(4.27)

which results in: 

0

1 1

02 0 1 2 1

1 0 2 1 2

k k
xx x V x V

x x V x V
(4.28)

Equation (4.28) can directly be used to compare the load bearing capacity of different 
volumes for loading modes resulting in constant stress fields and brittle failure modes. 

If an inhomogeneous stress distribution can be considered by introducing the stress 

1 2 3, ,s  as a product of a reference stress s , (e.g. the maximum stress in the body) and a 
dimension free function 1 2 3, ,h , the probability distribution function of the strength r  of 
the body can be written as: 

1 2 3 0

1 2 3 0

, ,
,0

, ,11 exp
k

R Volxh x
Vol

xh x
F x dv

v w
(4.29)

Equation (4.29) is utilised in Johnson (1953) to compare the mean strength of beams with 
various support and loading conditions and standard deviation of reference strength. A 
graphical representation of the result of these calculations is presented in Figure 4-14. The 
ordinate in the figure is the mean strength of the beam normalised to the strength of a beam 
loaded by a constant bending moment. It is seen that the mean strength of beams exposed to 
other load configurations is larger and also depending on the coefficient of variation of the 
material strength. 
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Figure 4-14 Comparison of mean strength of rectangular beams with various loading conditions 
and standard deviation of reference volume strength, from Johnson (1953). 

Ideal Plastic Material 

In an ideal plastic material a particle yields when reaching its maximum capacity (yield load), 
i.e. a particle is still capable of carrying the yield load but further load increments are 
transferred to other particles in the loaded material body. The maximum load is reached when 
yielding takes place in all particles in a cross section. The strength R  of an ideal plastic 
material is thus equal to the sum of the strength iR  of the yielded particles. The cross section 
strength is: 

i
i

R R (4.30)

When the number of particles is large and the dependency between the particle strength is 
sufficiently low, the distribution of R  converges to a normal distribution due to the central 
limit theorem. 

The sum can be approximated by the integral: 

*
1 2,

are
u area

R s da (4.31)

where *
1 2,us  is the yield stress at 1 2, .

4.2.4.2 Timber Material as an ideal brittle material 
Over the last 40 years, the ideal brittle material model has been widely applied to study the 
tension, bending, bending shear and compression strength variability of various wood 
products including sawn and glued laminated timber. However, whenever the theory is 
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utilised to explain some observed phenomena, inconsistencies to the theory have been 
noticed. In Bohannan (1966) one of the first studies is published, showing that size effects and 
load configuration effects on the bending strength could be explained by the weakest link 
theory for brittle materials. Clear wood specimens of different size and loading configurations 
are analysed. It is shown that increasing length or depth causes a decrease in bending strength 
but the bending strength is independent of the width of the specimen. Inductively, it is 
concluded that bending members do not exhibit a perfectly brittle material behaviour upon 
which the weakest link theory is based. In Madsen and Stinson (1982), the width effect on the 
bending strength of structural timber is studied. Their results suggest that bending strength 
increases as the member width increase, which is contrary to the concept of a weakest link 
fracture process. It is suggested in Madsen and Buchanan (1986) that this inconsistency could 
result from visual grading rules which limit knot sizes on the wide and narrow faces of the 
member. These rules tend to limit the maximum size of knots for a fixed member depth 
independent of member width. In the same study it is suggested to consider size effects on the 
strength of timber separately depending on every single dimension of the member. According 
to Equation (4.32)  it is distinguished between length, width and depth effect: 

1 1 1

,2 1 1 1 1 1 1

,1 2 2 2 2 2 2

l b d
l b d

m m mk k k
m

m

r l b d l b d
r l b d l b d

(4.32)

where l  is the length, b  is the width and d  is the depth of the specimen; mr  is the bending 
strength property of the specimen. 

A similar distinction is made in a study of the size effect on the tension strength, Madsen 
(1992). In that comprehensive research project, specimen of different sizes, grades and 
species are analysed. Equation (4.32) is utilised to quantify m -values for two different fractile 
values of the underlying probability distribution functions of the tension strength. The 
following values are suggested, Madsen (1992): 

Length effect:  50%-Fractile  0, 20lm

   10%-Fractile  0,15lm

Width1 effect:  50%-Fractile  0,15bm

   10%-Fractile  0,10bm

For tension perpendicular to the grain a nearly perfect agreement with the weakest link theory 
can be observed. In Barrett (1974) the work of several authors is reviewed and summarised. 
Data from clear wood specimens, structural timber and glued laminated timber is brought in 

1 For tension specimen the width refers to the wide face of the cross section. 
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one context. 

Furthermore, in Barrett et al. (1975) and subsequently in Colling (1986) the perfectly brittle 
material model is successfully applied to model tension perpendicular to the grain failure 
modes in curved and pitched tapered beams and connections. These studies confirm that the 
Weibull model has wide application in modelling of wood fracture especially for tension 
perpendicular to the grain. In Foschi and Barrett (1975) and in Colling (1986) it is confirmed 
that shear strength of beams varies with member size and the effects are quantified by using 
the ideal brittle material model.  

In Madsen (1992) it is shown that the bending strength of sawn timber of constant thickness 
varies with member length and loading condition in a manner consistent with the ideal brittle 
material model (Equation (4.28) and (4.29)). Further, tension and compression tests with 
different lengths are analysed. The length dependencies are quantified with the shape 
parameter k  (compare Equation (4.28)); for tension and bending similar values are derived, 

5tension bendingk k , and for compression 10compressionk  is established. In Barrett and Fewell 
(1990) Canadian, US and European species data is analysed and length effect factors for 
bending and tension are derived by also using the ideal brittle material model. Similar values 
for bending and tension are found; 5.9tension bendingk k . An important result of these studies 
is the observation that length effects in tension and bending are very similar; i.e. inductively it 
could be concluded that the bending and tension strength of structural timber is both governed 
by the ultimate tension strength. On the other hand in Rouger and Fewell (1994) it is found 
that 60-90% of the bending specimens considered in this study showed ductile failure mode 
governed by the compression side. 

In Larsen (1986) and Colling (1986) a formulation based on Equation (4.29) is utilised to 
investigate the stress distribution effect on the shear strength and the tension perpendicular 
strength of curved and tapered beams. 

There is an ongoing list of further literature and many applications of the ideal brittle material 
model for timber can be found. However, the results of these investigations are delivering 
partly contrary results. Contrary in regard to the value of quantified parameters as e.g. the 
scale parameter k , but also in regard to the observed phenomena. This can be explained by 
the variability of the timber material at a macro scale, i.e. different species and grades exhibit 
different size effects (Rouger and Fewell (1994)); but also by the fact that the assumptions 
underlying the theory of brittle fracture are not strictly fulfilled when considering timber. 
Timber is referred to as an orthotropic material; strength and stiffness properties are 
depending on the stress direction in a timber solid. Therefore the theory can only be used for 
individual loading modes for which the stress direction can be assumed to be constant, i.e. 
timber components loaded to tension perpendicular or parallel to the grain, shear along the 
grain or pure bending of beam shaped timber specimen. The latter loading mode includes 
tension and compression and has to be considered with caution because the failure mode in 
compression is not brittle. The material irregularities are in the scale of m  if the fibre 
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configuration is considered or in the scale of dm  when considering major defects as knots 
and grain deviations1. The latter ones are almost in the same scale as structural components, 
which is in conflict of the assumption of ‘a big number of defects, identical distributed and 
independent’ – the material is not statistically homogeneous.

In summary it can be concluded that the ideal brittle material model can be used in some cases 
as an empirical model basis which describes the major phenomenon, but where the 
parameters, i.e. scale and shape parameters do not have any physical meaning; but can be 
derived by fitting to experimental data. Especially for tension perpendicular to the grain the 
physical deviations to the initial theory seem to be small. 

4.2.4.3 Weak section models for special load cases for timber structural elements 
A typical timber structural element is of beam shape which means that its longitudinal 
extension is much larger than its transversal extensions and the main fibre direction is 
orientated along the longitudinal (main) axis of the element. These elements are mainly 
loaded in tension, compression and/or bending along the main axis. According to the 
inhomogeneous structure of these elements due to major defects such as knots and grain 
deviations, the direct application of the ideal brittle material model is questionable. Therefore, 
an alternative model for the variation of strength and stiffness related material properties is 
desirable. In regard to the variation of the modulus of elasticity ( MOE ) several references 
can be found in the literature, see e.g. in Corder (1965), Kass (1975), Suddarth and Woeste 
(1977) and Foschi and Barrett (1980). In Kline et al. (1986) a probabilistic approach to 
describe the lengthwise variation of bending stiffness is introduced. As illustrated in Figure 
4-15 timber beams are divided in segments of identical length and the stiffness of segment 2 
to segment 1n  is measured with a 4-point bending test. The correlation between the 

iMOE ’s of the different segments is investigated and quantified by the so-called Lag-k serial 
correlation. The Lag-k serial correlation is the correlation of an observation from segment i
and an observation from segment i k ; e.g. if 2k , Lag-k means the correlation of the 
MOE  of segments 2 and 4 or of the segments 3 and 5 etc. For realisations of the MOE X ;

1 2 3, , ,..., nx x x x  the Lag-k serial correlation k  is defined as: 

1

2

1

n k

i i k
i

k n

i
i

x x x x

x x
(4.33)

with x  being the sample mean value of X . It is found that the serial correlation decreases 
with increasing k . The lengthwise variation of X  is modelled by a second order Markov 
model as: 

1 Grain deviation is defined as in section 3.3.1.2. 



80

1 0 1 1 1i i i iX X X (4.34)

where i , 1, 2i  are regression parameters and  is the vector of random errors, the 
components are assumed to be normal distributed with mean value 0 and unknown standard 
deviation.

Similar approaches are utilised to describe the lengthwise variation of tension and bending 
strength. Obviously only every second section can be tested destructively (compare Figure 
4-15).  In Showalter et al. (1987), Lam and Varoglu (1991) and Taylor and Bender (1991) the 
tension strength is considered, in Czmoch (1991) the bending strength is considered; all 
studies find decreasing serial correlation with increasing k .

Segment 1 Segment 2 Segment n

Load

Figure 4-15  Separation in segments and test arrangement. 

As seen in Figure 4-15 the regular segmentation does not facilitate the explicit consideration 
of observable irregularities in the beams. Examples for such observable irregularities are 
knots and knot clusters. In Riberholt and Madsen (1979) it is observed that low bending 
strength and bending stiffness coincides with the presence of knots and knot clusters. In this 
study it is assumed that failure can only occur at such weak sections and due to the discrete 
distribution of knots and knot clusters an idealised model is proposed in terms of discrete 
weak sections separated by strong sections – sections of clear wood, see Figure 4-16. 
Furthermore equicorrelation of the strength of weak sections is assumed, which means that 
the correlation between the strength of weak sections is independent on their distance over the 
length of the beam. 

defect
no defect

beam

bending strength - reality

bending strength - model

Figure 4-16 Bending strength of a timber beam; implied reality and as in the proposed model 
(Riberholt, Madsen (1979)). 
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Failure of one single weak section is determining the strength of the entire component and 
consequently the component can be modelled as a series system of weak sections. The 
strength of the weak section is described by a random variable whereas the location of the 
weak sections is modelled as an arrival ‘time’ of a Poisson process. The parameters of the 
Poisson process are estimated by direct measurements of the distances of knots and knot 
clusters. The parameters of the distribution function of the weak section strength is estimated 
indirectly; through measurements of the bending stiffness as an indicator for bending strength 
or by existing bending strength tests according to EN 408. 

The proposed model for the variation of bending strength properties is investigated by 
Czmoch et al (1991). Here the length and load configuration effect of beams is studied and it 
is found that the available experimental information to verify the parameters of the proposed 
model is insufficient. This problem is considered in Isaksson (1999).

Following Isaksson (1999) the variability in bending strength within and between members 
can be modelled as: 

,ln m ij i ijr (4.35)

where,

,m ijr  is the strength of weak section j  in component i .

 is the logarithm of the mean strength of all weak sections of all components.  

i  is the realisation of the difference between the logarithm of the mean of the strength of 
the sections within a specific component i  and .  is modelled by a normal 
distributed random variable with zero mean and standard deviation equal to .

ij  is the realisation of the difference between the strength of weak section j  in 
component i  and i , i.e. the variability within one particular component in one 
particular population.  is modelled by a normal distributed random variable with 
zero mean and standard deviation equal to .

Based on experiments with Norwegian spruce, the following random variables of the model 
are quantified: 

Distance between weak sections 

It is assumed that the weak sections (and correspondingly the number of weak sections) are 
distributed spatially according to events of a Poisson process iX  along the longitudinal axis 
of the component. Following this assumption the distances between the weak sections are 
exponentially distributed. However, due to the experimental evidence it is found that the 
Gamma distribution fits better to the data. The parameters of the Gamma distribution are 
given as: 2.55,194 .
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Length of weak sections 

The length of the weak sections, i.e. the length of a knot cluster, is assumed to be constant 
with 150mm .

Bending strength of weak sections 

Based on 673 observations the random variables from Equation (4.35) are quantified with the 
parameters as given in Table 4-13 (Isaksson (1999)). 

Table 4-13 Parameters for the bending strength of weak sections according to Equation (4.35). 

[Normal]  [Normal] 

4.03038 0 0 

0.24773 0.18747 0.16194 

The model is illustrated in Figure 4-17. 

i

ln(r )ij

ln(bending strength)

longitudinal direction
of the beam

i,max

ij

rln( )

X1 X2 X3 Xj

Figure 4-17 Modelling of the longitudinal variation of bending strength of a timber beam, Isaksson 
(1999).

Bending strength between weak sections 

In Isaksson (1999) it is assumed that the strength of the strong sections is equal to the strength 
of the strongest weak section in the component. 

A similar study on the lengthwise variation of bending strength is reported in Källsner and 
Ditlevsen (1994, 1997), Ditlevsen and Källsner (2004). Out of 26 beams 197 weak sections 
are identified and tested in regard to their bending strength by cutting them out, finger joining 
them between two pieces of stronger wood and testing them in a four point bending 
arrangement. A particular feature of this study is that unintentionally a large fraction of the 
test specimen did not fail in the section of interest, i.e. failure took place in the finger joints or 
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in the stronger wood. Due to the censored data special methods are introduced to consider the 
observations properly. However, the results are in general consistent with the results presented 
in Isaksson (1999). A hierarchical model is introduced with two levels to represent the 
variation of bending strength within and between members. The Lag k  correlation is found 
to be constant, i.e. equicorrelation is assumed. The model proposed by Isaksson in Equation 
(4.35) can be interpreted as a two level hierarchical model if v  is assumed to be constant. A 
closed form analytical expression for the distribution function of the bending strength with 
any given number of weak section is presented and the derivation is summarised in the 
following. 

The ultimate strength of a timber component containing j  weak sections and loaded with a 
constant load effect is defined by: 

, ,min ,1 ,2 ,exp min , ,...,m i i i i i jr (4.36)

with i i , compare Equation (4.35). 

The probability distribution function ln( )mRF z j  of the logarithm of the ultimate bending 
strength ln( )mr z  conditional on j , the number of weak sections, becomes: 

ln( ) 1 2
1min , ,..., 1  

m

j

R j
xz xF z j P z dx (4.37)

If j  is considered as a discrete random variable with probability jp , the probability 
distribution function becomes: 

ln( ) ln( )
0

11
m m

J

R R j
j

xx zF z F z j p E dx (4.38)

with
0

J j

j
j

x z x zE p

which can be expressed by the so-called probability generating function Jy E y of the 
integer random variable J . For J  following a Poisson distribution with parameter l  the 
probability generating function is exp 1y l y  in which case Equation (4.38) 
becomes: 

ln( )
11 exp  

mR
xz xF z l dx (4.39)

where l  is the length of the considered component. Equation (4.39) is the probability 
distribution function of the logarithm of the bending strength of a component of length l .
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4.3 DURATION OF LOAD EFFECTS 

One of the distinctive characteristics of timber is that its strength is influenced by the intensity 
and the duration of the applied stresses. Although this phenomenon is similar to that of fatigue 
in metals, strength degradation in timber is observed even under static (permanent) loading. 
This effect is referred to as the duration of load (DOL) effect. Numerous experimental 
programs have focused on the investigation of the DOL effects in clear wood specimen and 
later on also in full size timber components. A variety of models have been proposed to 
describe the phenomenon. Hereby, it has been mainly focused on the duration of load effect of 
bending specimen. Some of the proposed models have a physical hypothesis of the 
phenomena as a basis; however, they all consist of variable model parameters which can be 
calibrated to observed experimental data. 

4.3.1 ASSESSMENT OF DURATION OF LOAD EXPERIMENTAL DATA 

The assessment of the DOL phenomenon by experimental data introduces a variety of 
challenging research problems. First of all by the nature of the problem, experiments involve 
long periods of time, are therefore costly and consequently rare. To reduce costs, the test 
configurations are rather simple, i.e. in general a constant (dead) load or a ramp-load is 
applied and time until failure is measured. A typical bending duration of load test 
configuration is the three- or four-point bending test as illustrated in Figure 4-18. Also 
illustrated in Figure 4-18 are the typical stress histories for short-term tests, long-term tests 
and impact load test.  

In a short-term test, the stress is applied with a constant rate Rk , which in general is kept 
constant within the entire test program. Rk  is calibrated so that the time to failure stays within 
some pre-defined limits; e.g. according to the test standard ISO 8375 failure should take place 
after st  300 seconds +/- 120 seconds. If, for example, Rk  is chosen such that in average the 
short-term bending test duration is 300 seconds and the coefficient of variation of the short-
term bending strength is 25%, the test duration for a specimen with a low bending strength, 
say a value similar to the 5%-fractile value is only 176 seconds (300 - 124 seconds); i.e. the 
time limit from ISO 8375 would be violated. 

In a long-term test the specimens are loaded with a constant stress ŝ  over a period of time and 
the time until failure ft  is measured. Therefore, the specimens have to be loaded at the 
beginning of the test. In general, this can be done by applying any specified load rate; often 
the same constant rate Rk  as in the short-test (as illustrated in Figure 4-18) is applied. Or the 
stress is applied instantly, i.e. with a very large rate which in general is not specified.  

The third type of duration of load test is the impact loading test. In this type of test the loading 
rate is greater than for shot- term tests, I Rk k  and the time to failure It  is measured.  
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Figure 4-18 Stress history used in test set up; short-term and long-term tests and impact loading 
test.

The short-term strength 0r  is in general the reference property, i.e. the focus of duration of 
load experiments is for how long a specimen can sustain a constant fraction of its short-term 
strength. The ratio 0,ˆ is r  is therefore of importance. Similarly, impact loading tests focus on 
measuring ,I ir  which is then expressed as the ratio , 0,I i ir r .

Obviously, ,I ir , ŝ  and 0,ir  cannot be measured for the same specimen and since the applied 
constant stress ŝ  respectively the impact load capacity ,I ir  are the targets, the short-term 
strength 0,ir  must be estimated indirectly. Several methods have been applied to overcome this 
problem. 

One method does not rely on the comparison of ,I ir , îs  and 0,ir   of individual specimen, but in 
the comparison of average values of ,I ir , îs  and 0,ir  at average time to failures. This method is 
applied in Wood (1949) for the analysis of data from short-term, long-term and impact load 
tests and in Hanhijärvi et al. (1998) for the analysis of data from short-term and long-term 
tests.

Another method is pair matching, which is undertaken by sampling specimens in pairs cut out 
of the tree next to each other and therefore implying similar properties. One specimen is then 
tested in a short-term test while the other is long-term loaded. The method is mainly applied 
for clear wood specimen free of knots and other irregularities, but still has to allow for 
substantial short-term strength differences between the two specimens (Hoffmeyer (1990)). 
For structural timber, the pair matching method is assessed in Norén (1986). Pairs of 
specimens are obtained by very carefully placing the saw cut not only through the pith of a 
piece of timber, but even divide the critical knots into equally sized halves. However, short-
term test on the paired specimen confirm that it is not possible to find a method for pair 
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matching timber with sufficient accuracy by applying this technique.

The predominant approach for estimating the short-term strength of duration of load test 
specimen is based on the so-called equal rank assumption. This method is e.g. applied in 
Madsen (1992). An adequate number n  of specimen is assessed in regard to a strength related 
property which has to be measured non-destructively, e.g. machine grading indication or knot 
size measures. The measurements i  are ranked in ascending order, so that 1 2 3 ... n .
The specimens are now sub-divided into two groups with similar distribution of the strength 
related properties, e.g. one group with 1 3 5 1, . ,..., n  and the other group containing 

2 4 6, , ,..., n  given that 2n IN. Now it is assumed that both groups have also similar 
bending strength distributions. One group – the short-term group – is tested in a short-term 
bending strength test, while the other group – the long-term group – is long-term loaded to a 
specific percentile of the short term strength distribution. Some of the specimens fail before 
the constant load level is reached. The specimens which survive the duration of the long-term 
test are taken to be tested in a short-term strength test. The strength measurements of the 
short-term group 0,ir are ranked in ascending order, so that 0,1 0,2 0,3 0, 2... nr r r r . The time to 
failure measurements ,f it  of the long-term group are also ranked in ascending order, so that 

,1 ,2 ,3 , 2...f f f f nt t t t  (note that in general, the first time to failure measurements already 
take place in the ramp-load phase of the long duration test). In Figure 4-19 the strength 
measurements of the specimen of both groups are plotted against their rank. The basic idea of 
the equal rank assumption is that a specimen from the long-term group of rank i  (failed at 
time ,f it ) has the same short term strength as the specimen of the short-term group with rank 
i , 0,ir . Following this assumption it is possible to express the so-called stress level isl  as the 
ratio of the applied constant stress ŝ  and the expected short-term strength 0,ir :

0,

ˆ
i

i

ssl
r (4.40)

In Figure 4-20 the stress levels for the specimen of the long-term group are estimated 
according to Equation (4.40) and plotted against the logarithm of the time to failure 

10log ft .

In Figure 4-20 the common representation of duration of load data is illustrated. Many DOL 
models are represented in form of the stress level as the function of time to failure. Typically 
the data points are arranged on a string, which is the consequence of the equal rank 
assumption. The shape of the data string does not necessarily reflect the DOL behaviour of the 
single specimens; it may only reflect the DOL behaviour of the particular distribution of the 
considered sample, i.e. specimen within the sample which have a low quality and therefore 
have a low short-term strength always sustain a high stress level and fail after relatively short 
time, specimen with high quality have to sustain a low stress level and fail after relatively 
long time (Hoffmeyer (1990)). 
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Figure 4-19 Strength measurements from short-term and from long-term tests plotted against their 
rank (the data for this figure is taken from Hoffmeyer (1990)). 
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Figure 4-20 Stress level in [%] against logarithmic time to failure in [log(hours)] (the data for this 
figure is taken from Hoffmeyer (1990)).

4.3.2 MODELLING THE DURATION OF LOAD EFFECT 

Several models for describing the duration of load effect for timber and timber materials can 
be found in the literature. Some of them have a conceptual framework from some physical 
mechanism leading to failure over time as a background; others are just empirically derived to 
represent DOL test data. The models can be divided into the following groups: 

Empirical formulations for time to failure. The parameters of simple mathematical 
formulations are fitted to DOL test results. 

Cumulative damage theories. A damage state variable without any precise physical 
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definition is introduced. Empirical parameters are fitted to test results. The models and 
their parameters are conditional on loading mode (e.g. bending, compression). 

Fracture mechanics. Relative damage is defined as the growth of cracks. Model 
parameters have direct physical meaning. 

Deformation kinetics. Rupture is completely determined by the magnitude and nature of 
deformation preceding rupture. 

Energy based models. Failure is defined as the excess of critical strain energy. 

In the following sections all the different modelling approaches are briefly reviewed and the 
most relevant references are given. 

4.3.2.1 Empirical Representation of time to failure – the Madison Curve 
The so-called Madison curve (Wood (1951)) is formulated on the basis of results from 
laboratory tests on clear wood bending specimens, i.e. specimens, with no visible defects, 
exposed to loads of constant intensity. The aim of this model is to cover the effect of relatively 
long load durations and the effect of very short load durations. Therefore, data bases from 
several resources are pooled together to obtain a model capable to cover a duration of load 
ranging from 0.015 seconds to 156 days. The Madison curve is an empirical curve describing 
the stress level sl (see Equation (4.40)) as a function of the time to failure ft . The curve is 
calibrated to three pre-selected points representing average values derived from several test 
programs: 

The short-term strength is defined as the failure load of a specimen loaded in a ramp load 
test with a corresponding average time to failure of 7.5 minutes. Correspondingly, the 
stress level is 100% at 7.5 minutes. 

From impact loading tests it is found that the average stress level sl  of specimen loaded 
in a very fast ramp-load test of the duration of 0.015 seconds is 150%. 

From long-term loading tests it is found that the average stress level sl  of specimen 
loaded in a constant load test of the duration of 156 days is 69%.

The resulting curve has the equation: 

0.046418.3 108.4 fsl t (4.41)

where sl  is the stress level and ft  is the time to failure in seconds. The Madison curve is 
often taken as a reference for the duration of load effect for clear wood but also for structural 
timber. 

In Pearson (1972) data from several investigations is reviewed, whereas it is focused solely on 
long-term data. Based on the analysis of the data an alternative formulation is found: 
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91.5 7 log  fsl t (4.42)

where ft  is the time to failure in hours. 

In Figure 4-21 Equations (4.41) and (4.42) are compared. The models differ especially for 
very long durations of loading time. The up bend of the Madison curve can not be confirmed 
by explicitly considering long-duration data. Therefore the Pearson curve should be taken as a 
reference for the long-term DOL effect in clear wood. 

20

40

60

80

100

%sl

0
-2 -1 0 1 2 3 4 5

Madison Curve
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Figure 4-21 Models for the DOL behavior of clear wood; the so-called Madison curve (Wood 
(1951), Equation (4.41)) and a model following Pearson (1972), Equation (4.42) 
represented in a stress level – log(time) diagram. (time in hours). 

4.3.2.2 Damage Accumulation Models 
A major part of the models for describing the duration of load effect for timber involve a 
damage state variable to assess damage accumulation in timber structural members subject to 
their loading histories. These models are referred to as damage accumulation models. It 
should be noted that damage in the context of the damage accumulation models does not refer 
to a quantity with a direct physical interpretation; damage is simply deducted from the time to 
failure recordings of long-term loading experiments under a given loading history. However, 
possible interpretations could range from the creation and the propagation of micro cracks in 
the material, the increase of material porosity, local fibre buckling, the destruction of 
molecular bonds, some other irrecoverable process or a combination of these. (Hoffmeyer in 
Thelandersson and Larsen (2003)).

In general, damage is expressed by a damage state variable D , where 0D  is equivalent 
with no damage and 1D  is associated with full damage or failure. Damage accumulation 
models are usually given as rate equations of damage over time Dd dt , as: 

0, ,     for    0 1D
D

d h s t r
dt

(4.43)

where .h  is a function of the applied stress s t , the short term strength 0r  and model 
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parameters ; or: 

0, , ,     for    0 1D
D D

d h s t r
dt

(4.44)

where .h  is a function of the applied stress s t , the short term strength 0r , the actual 
damage state D and model parameters .

The first damage accumulation model is proposed in Gerhards (1979), where the rate of 
damage accumulation is expressed as a function of the applied stress (equivalent to Equation 
(4.43)). Initially, the model is developed and calibrated to long-term test data on small clear 
wood specimen. In Gerhards and Link (1987) the same model is calibrated to long-term test 
on full- size timber specimen. In Barrett and Foschi (1978) a damage accumulation model is 
introduced, where the rate of damage is a function of the applied stress, the actual damage and 
a threshold value for the stress below which no damage accumulation occurs (equivalent to 
Equation (4.44)). In Foschi and Yao (1986) a model is presented, taking basis in the first two 
terms of the extension of a power series. The model is also presented as the damage rate as a 
function of the applied stress, the actual damage and a threshold value for the stress below 
which no damage accumulation occurs, i.e. is corresponding to Equation (4.44). 

4.3.2.3 Models based on Fracture Mechanics 
In contrast to the damage accumulation models, where damage is introduced as an abstract 
quantity without any direct physical background, the models based on fracture mechanics 
introduce damage as the increase of crack size in a viscoelastic solid. 

An approach based on viscoelastic fracture mechanics is introduced in Nielsen (1979) with 
the so called Damaged Viscoelastic Material (DVM) theory. The main idea behind the DVM - 
model is that structural timber may be seen as an initially damaged material, where the 
damage is represented by cracks. The time dependent behaviour of timber under load is 
modelled by a single crack under stress perpendicular to the crack plane. The crack is 
modelled as a Dugdale crack with a time dependent modulus of elasticity; see e.g. Dugdale 
(1960).

Another approach using the Dugdale crack model applied to a viscoelastic material is 
presented in Mindess (1976), where it is focused on delayed crack propagation under constant 
or increasing load: 

2
1

bcrack
stress

da b k
dt

(4.45)

where cracka  is the crack length, t  is the time, stressk  is the stress intensity factor and 1 2,b b  are 
model parameters depending on the material. Equation (4.45) can be integrated for several 
load histories. In Sharpely (1975) Equation (4.45) is utilized and the model parameters 1 2,b b
are assigned based on theoretical considerations taking basis in the so called Barenblatt 
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theory, see Barenblatt (1962). 

4.3.2.4 Models based on Chemical Kinetics 
In Caultfield (1985) and van der Put (1986) two DOL models based on chemical kinetics are 
proposed that relate fracture times to bond breaking processes in the wood. These models are 
based on physical parameters, however, the governing equations are rather complex and the 
application to structural timber with its inherent defects and high material variability may be 
difficult (Morlier et al. (1996)). 

4.3.2.5 Models based on Energy considerations 
A strain energy model to predict load duration effects in timber is proposed in Fridley et al. 
(1991) and the model is developed further in Philpot et al. (1994). A critical strain energy 
density function is established from experimental observations. Failure is defined as the 
excess of a critical strain energy density, ,u crg , which is assumed to correspond to the 
initiation of non-linear material behaviour. For instance, ,u crg  in a standard short-term test 
would correspond to the proportional limit; in a long-term test ,u crg  would correspond to the 
initiation of tertiary creep. The strain energy definition of failure is found to be invariant with 
respect to load history, environmental conditions and strength and stiffness related material 
property. Another proposal for an energy-based DOL model can be found in Bach (1973). 

4.3.3 PROBABILISTIC MODELLING OF DURATION OF LOAD EFFECTS 

The probabilistic modelling of duration of load effects is a prerequisite for reliability analysis 
and reliability based code calibration for timber structures. The analysis takes basis in the time 
dependent reliability problem as discussed in section 2.1, where Equation (2.3) specifies the 
time dependent failure criterion as:   

0R t S t (4.46)

at any time t ; i.e. normally the considered time interval is limited to a projected service 
lifetime of a structure; 0, slt T .

4.3.3.1 Modelling Scheme - Uncertainty 
In principle, the probabilistic modelling of the life time of a timber structural element follows 
a scheme as illustrated in Figure 4-22. On the load side (the left hand side in Figure 4-22), 
relevant scenarios have to be identified which might be idealized and represented by proper 
random processes. The parameters of these processes are in general estimated based on 
observations. On the resistance side (the right hand side in Figure 4-22) the procedure starts 
with the identification of relevant failure mechanisms. In section 4.3.2 it is already discussed 
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how diverse the assumptions regarding the relevant mechanisms are. However, a 
mathematical model is formulated based on these assumptions and the parameters of the 
models are calibrated to experimental data. It is an important task within the probabilistic 
modelling that all uncertainties involved are consistently taken into account. 

Identification of relevant
load scenarios

Idealisation of load scenarios
- random process

Parameter estimation
 - random processObservations - data

Identification of relevant
failure mechanism

Idealisation of failure 
mechanism - DOL model

Parameter estimation -
probabilistic DOL model

Probabilistic
Modeling

of
DOL

Effects

Observations - data

Load Resistance

Figure 4-22 Scheme for the probabilistic modeling of duration of load effects. 

The uncertainties involved in the long term resistance model are briefly discussed in the 
following: 

Failure mechanism assumptions/model formulations: The model can be formulated based 
on different assumptions about the failure mechanism. The basic assumptions and the 
possibly simplified mathematical representations are associated with uncertainties. 

Parameter estimation: the model parameters are calibrated with (limited) experimental 
data.

Extrapolation to other load scenarios: due to the limited availability of experimental data, 
also the load scenarios applied within the experiments are limited. It has to be assumed 
that models can be applied to load scenarios different to the scenarios used in the 
experiments. 

Sampling techniques such as the equal rank assumption: as discussed in section 4.3.1 the 
stress ratio 0,ˆi isl s r  is a central measure for the analysis of long-term strength data. 
Assumptions such as the equal rank assumption induce additional uncertainty to the 
problem. 
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The uncertainties discussed above can be partly quantified by proper calibration methods as 
the maximum likelihood method. However, the remaining uncertainty e.g. due to the equal 
rank assumption or due to extrapolation has to be accounted for separately.  

4.3.3.2 DOL model representations 
In general, damage accumulation models are used for the probabilistic modelling of the DOL 
effect; see e.g. Ellingwood and Rosowsky (1991), Foschi et al. (1989), Sørensen et al. (2002). 
The basic characteristic of damage accumulation models is that the performance of the 
element is described by one single damage state variable D , which is in general a function of 
the short-term strength 0R  and the applied stress history S t . Taking this into account the 
limit state function in Equation (4.46) can be simplified to: 

01 , , 0D S t R (4.47)

where  is a vector of model parameters. 

The model parameters of the damage accumulation models are mostly calibrated to data from 
standard long-term experiments, i.e. where a ramp load phase is followed by a period of 
constant load until failure and the time to failure is measured (compare section 4.3.1). For 
reliability analysis and code calibration these models are used for any realistic and relevant 
load process. This includes the assumption that the failure mechanism is solely due to creep 
rupture, i.e. failure is assumed to be a consequence of accumulated time under load. This 
means that the effect of repeated load cycles is assumed to be irrelevant, a fact which 
provokes some scepticism, especially for load processes with a high number of load 
repetitions. Furthermore, the parameters of the damage accumulation models have no direct 
physical meaning and cannot be adapted to other situations in regard to climate or loading 
mode.

The model proposed by Nielsen (2000) (see section 4.3.2.3) seems to be promising in order to 
overcome these problems. For constant loads a relatively simple representation for this model 
can be given and parameters can be calibrated by using standard long-term experiment data as 
for the damage accumulation models. However, the parameters are linked to some physical 
meaning and an algorithm for taking into account repeated load cycles exist.  

In the following, three damage theories are investigated further. The Gerhards model 
(Gerhards (1979) and Gerhards and Link (1987)) and the Foschi and Yao model (Foschi and 
Yao (1986)) are typical representatives for damage accumulation models. The Nielsen model 
(Nielsen (1979) and Madsen (1992)) with its promising properties is also discussed and 
compared with the two other models. 

Gerhards Model 

The Gerhards model has the form: 
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0

exp     for    0 1D
D D D

s td a b
dt r

(4.48)

Da  and Db  are model parameters, 0r  is the short-term capacity and s t  is the applied stress. 
The Gerhards model corresponds to the general formulation given in Equation (4.43). 

Equation (4.48) can be integrated for any stress history s t  to determine the accumulated 
damage D . The time to failure ft  is defined at 1D t .

00

exp
t

D D D

s t
t a b dt

r
(4.49)

For a constant load effect and assuming that the effect of the initial ramp loading can be 
neglected the time to failure according to the Gerhards model can be estimated as: 

0

ˆ
expf D D

st a b
r

(4.50)

where ŝ  is the constant stress level (Note that this format is equivalent to the one proposed by 
Pearson (1972), Equation (4.42)). 

The Gerhards model allows for the consideration of the characteristics of the short-term test 
configuration. As illustrated in Figure 4-18 the short-term test involves a certain time of ramp 
loading with rate Rk . The integral given in Equation (4.49) can be solved for any ramp 
loading ,R as t k t , as: 

,0

, 0

exp exp 1R a
D D D

D R a

k trt a b
b k r

(4.51)

For the case of the short-term test, where ,R a Rk k , 1D , 0 1Rk t r  the parameter Da  can 
be represented by: 

0 exp 1
ln D

D
D R

r b
a

b k
(4.52)

This means that whenever the short-term strength is linked to a certain short-term test loading 
rate Rk , Da  can be eliminated through Equation (4.52). 

Considering this elimination, Equation (4.51) can be simplified to: 
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,

0

,

exp 1
( )

exp 1

R a
D

R
D

R a D

k t
b

rkt
k b

(4.53)

The integral given in Equation (4.49) can be solved for the stress history of a long-term test as 
illustrated in Figure 4-18. A ramp loading with rate Rk  is applied until the constant stress level 
ŝ  is reached after the time Ct . Damage accumulation can be assessed through ( )D t   as: 

0

exp 1

exp 1

R
D

D
D

k tb
r

t
b

                                                 for 0 Ct t

00

ˆˆ exp 1exp

exp 1 exp 1

DD
D C

D
C D D

ss bb
rb t t r

t
t b b

          for Ct t

(4.54)

When 0ŝ r , the time to failure can be evaluated as  

0

0

ˆ ˆ
exp 1 1f D

R R D

rs st b
k k b r

(4.55)

Equation (4.55) is used for calibrating model parameters with test results. 

The residual strength rr  corresponding to the damage D  can be derived such that 

00 1D rr r   and 01 0D rr r . For Gerhards model the residual strength can be 
given as: 

0

1 1 1 exp 1r
D D

D

r b
r b (4.56)

Foschi and Yao Model 

In Foschi and Yao (1986) a power series expansion is used to express damage accumulation 
according to the general form as given in Equation (4.44), as: 

1
0 1 0 2 0 0, , , , , , , ... , , nD

D D n D
d h s t r h s t r h s t r h s t r
dt

(4.57)

As an approximation, Yao (1987) considered only the first two terms of the expansion. 
Accordingly the so called Foschi and Yao model is expressed as: 
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0 0 0

0

     for   

0                                                                         for   

D Db dD
D D D D D D

D
D

d a s t r c s t r t s t r
dt

d s t r
dt

(4.58)

The accumulated damage is also depending on the actual value of the damage state variable 

D t . , , ,D D D Da b c d  and D  are model parameters. D  defines the stress level threshold 
below which no damage is assumed to occur. The model can be rewritten as (Köhler and 
Svensson 2002):

0 0 0

0

( ) ( ) ( )       for   

0                                                                          for   

D Db d

D
D D D D D D

D
D

s td s t s ta c t
dt r r r

s td
dt r

(4.59)

Equation (4.59) has the advantage to present stress as a dimensionless ratio of the applied 
stress and the assumed short-term strength. 

By solving Equation (4.59) for the case of standard short-term tests, one will ascertain also for 
Foschi and Yaos’ model one model parameter, Da , with: 

( 1)
0

( 1)
(1 ) D

R D
D b

D

k ba
r (4.60)

where Rk  is the rate of loading applied for evaluating 0r .

The time to failure, ft , for a prior-to-testing undamaged component loaded with a ramp load, 
with the same rate of loading, Rk , as the standard test, until the constant load level, ŝ , is 
reached and held until failure occurs has the following expression (see Köhler and Svensson 
(2002)):

0 0
,0

0

0

ˆ 11 ˆ ˆln ,
ˆ

ˆ          

D

D
f Dd

R D D
D D

f D

st s R s r
k sc

r

t s R

(4.61)

with

1

0
,0( 1)

00

1 ˆˆ
,

11

D D D

D

b d b
R D D

D D Db
DD D

k b s rs
rc r

(4.62)
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where ,0D  is the degree of damage prior the studied period of constant load. 

Equation (4.61) is used when calibrating the model against test results. 

Residual strength rr  corresponding to the damage D  for the Foschi and Yao model can be 
expressed as: 

1 1

0

1 1 Dbr
D D D

r
r (4.63)

Nielsen Model 

In case of constant load intensity, a damage accumulation law can be formulated from the 
DVM-theory as: 

1

2 2

128 1
bc

c c

fld sl
dt q sl

(4.64)

where sl  is the stress level (or load intensity) defined by the ratio ˆ crs r  between applied 
stress ŝ  (load intensity) and the strength crr  measured in a very fast ramp-load test. fl  is the 
strength level defined as the ratio cr lr r  between the strength crr  (as defined above) and the 
intrinsic strength of the (hypothetical) non-cracked material lr . 0l l  is the damage, 
defined as the ratio between the actual crack length l  and the initial crack length 0l . 1
corresponds to no damage and 2sl  to full damage. c  and cb  are (creep) material 
parameters depending e.g. on loading mode and moisture history. The parameter cq  is given 
as a function of the creep exponent cb  as:

1

0.5 1 2 bc
c c cq b b (4.65)

and considers a parabolic increasing crack opening progression. 

Based on Equation (4.64) time to failure ft  under constant stress can be derived as: 

12

2
1

18 bcsl
c c

f
qt d
fl sl

(4.66)

where  is a damage state variable. Nielsen’s definition of the stress level sl thus differs 
from the usual definition, which relates applied stress to short-term strength as it is defined in 
Figure 4-18, i.e. a ramp load test with a specified average time to failure of e.g. 5 minutes 
according to ISO 8375. The creep parameters c and cb  are related to the viscoelastic 
behaviour around the crack tip. These are very local phenomena and cannot be consistently 
reflected in macro-scale creep tests. cq  is a function of the creep parameter cb . The parameter 
fl  indicates the state of initial damage of the material as it is defined by the ratio of the 
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material strength crr  and the (hypothetical) material strength without any damage lr  which 
can only be assessed theoretically. This means that, although the model parameters have some 
physical meaning, they must be obtained by calibration, as it is the case for other damage 
accumulation models. Equation (4.66) can be used for calibrating the parameters of the 
Nielsen model to data from standard long-term tests. Therefore it is assumed that the Nielsen 
stress level sl  can be replaced by the conventionally defined stress level sl . Further, it is 
supposed that the initial ramp load phase of a standard long-term experiment (Figure 4-18) 
can be neglected. 

The integral, included in Equation (4.66) can be solved for discrete realisations of the 
parameter cb ; in general values for 1 3,4,5cb  are used and the solutions can be given as 
(Bronstein and Semendjajew (1981)): 

1
3cb 3 2

2 2

3.1 log 1
3 2

c
f

x xt x x
sl fl

1
4cb 4 3 2

2 2

3.2 log 1
4 3 2

c
f

x x xt x x
sl fl

1
5cb 5 4 3 2

2 2

3.2 log 1
5 4 3 2

c
f

x x x xt x x
sl fl

(4.67)

with 2 1x sl .

The parameters fl  and c  are not independent. The model therefore includes only one free 
parameter to calibrate. 

For the Nielsen model the residual strength rr  is given by: 

1
2

0

rr
r

(4.68)

Fatigue modelling with the Nielsen model 

Theoretical investigations as well as physical evidence from test results indicate that the 
duration of load failure mechanism in timber is not entirely due to creep rupture but also due 
to accumulated fatigue damage. Frequency dependent fatigue effects in timber have been 
considered theoretically in Nielsen (2000) and experimentally e.g. in Clorius (2001). Based on 
the solution for constant load intensity the DVM-model is developed further in Nielsen (2000) 
to consider rectangular pulse loading by introducing crack closure and contact effects due to 
unloading.

The load process which can be considered by the Nielsen model is a square wave loading with 
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constant amplitude and constant frequency. The load process is determined by frequency 
Tf /1 , maximum load intensity maxsl , load ratio min maxslp sl sl  and fractional time under 

maximum load sl . The parameters are illustrated in Figure 4-23. 

T 1 TT 2T

sl

maxsl

minsl

0
0

t
sl sl

Figure 4-23 Basic load intensity variation considered: Square wave loading. 

The algorithm proposed in Nielsen (2000) is illustrated in Figure 4-24 and starts with the 
input of material and load parameters;  is a vector of fatigue parameters. The other 
parameters are defined in the foregoing. After setting the start-values, a x  which satisfies the 
Equation in step C3 is found by iteration. With the Equation in step C4 and the constant 
damage increment  the number of load cycles n  leading to that damage increment is 
calculated.  The damage is accumulated until the failure criterion formulated in the Equation 
in step L1 is fulfilled. Load conditions may only be changed when the algorithm returns to 
step C3 again, i.e. after an unknown number of load cycles. Not that this circumstance 
restricts the model to consider only harmonic load pulse processes. 

By setting n instead of  to a constant value, e.g. 1n , the load intensity can be 
changed after every load pulse and the corresponding damage increment is calculated. This 
facilitates the consideration of realizations of a random process with rectangular load pulses 
(see Köhler and Faber (2003)).

The model as it is presented in Figure 4-24 is referred to as the general Nielsen model. The 
model as it is presented in Equation (4.64) is also capable to model the duration of load effect; 
damage is then accumulated as a consequence of time under constant load. The model 
presented in Equation (4.64) is referred to as the simple Nielsen model. 
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ACCUMULATION:
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Figure 4-24 Algorithm for predicting the time till failure. 

4.3.3.3 Calibrating Models to experiment observations 
Long-term experiments are illustrated in Figure 4-18. The experiments indicate a time to 
failure ft  after a certain stress history, where a period of constant stress ŝ  follows a period of 
loading with the rate Rk .
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For the considered DOL models an expression for the time to failure considering the 
experiment stress history can be derived. These expressions can be written in the general form 
as:

f f Rt t sl, ,k (4.69)

The estimation of the model parameters is performed considering n  simultaneous 
observations of the time to failure ,1 ,2 ,, ,...,

T

f f f f nt t tt and the stress level 

1 2, ,..., T
nsl sl slsl . Assuming that (at least) locally the relationship between ft  and sl  can 

be described with the models presented above, the parameter assessment may be performed 
by introducing an error term  which takes account for the difference between observed time 
to failure ft  and modelled time to failure ,f mt :

,f f m Rt t sl, ,k (4.70)

Assuming that the error term is normally distributed with zero mean and unknown standard 
deviation, , the maximum likelihood method, see e.g. Lindley (1965), may be used for 
estimating the mean values and covariance matrix for the parameters  and .

The likelihood is then given as 

2
, , ,

1 2
1

( , , )1 1, ,..., , exp
22

n
f i f m i i R

n
i

t t sl k
L (4.71)

The parameters are estimated by the solution of the optimization problem 

max ( )L
p

p (4.72)

where 1 2, ,..., , T
np .

The parameters of the damage models are calibrated to results from long-term tests 
(Hoffmeyer (1990)):  

The considered tests are performed on structural timber in four point bending. Two different 
test climate conditions are considered: constant climate corresponding to 20% and 11% 
moisture content of the timber. From the 20% moisture content timber, 306 specimens of 
graded Norway spruce are tested. One third is tested in standard short-term test with ramp 
load until failure (EN 408). The remaining specimens are tested with constant load 
corresponding to the 5 percentile of the short term strength for one half the remaining sample 
and the 15 percentile for the other half. From the 11% moisture content timber the approach is 
similar ( 204n ) but for long term loading solely the 5th percentile of the short term strength 
is used as a load level. The matching of the short-term capacity for the long-term test is based 
on the assumption of equal rank (see section 4.3.1).
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For the Gerhards damage model and the Foschi and Yao damage model the ramp load rate Rk ,
is considered and is set to 500 MPa/hour; for the Nielsen model the initial ramp load phase is 
neglected. The threshold ratio D  in the Foschi and Yao model is set to a constant value of 
0.5. For the Nielsen damage model the parameters cb  and fl  are held constant with values 0.2 
and 0.25, respectively. 

Table 4-14  Model parameters for the Foschi and Yao damage model, the Gerhards model and the 
Nielsen model calibrated on results form DOL tests (Hoffmeyer, 1990) by the ML-
method. The model parameters are represented as normal distributed random variables. 

Average Timber Moisture Content: 
11%

Average Timber Moisture Content: 
20% 

Model 
parameter 

Expected value 
Standard 
deviation 

Expected value Standard deviation 

:D Db B 30.03 0.92 20.16 0.610 

:D Dc C 17.05 12.30 12.06 7.29 

:D Dd D 5.69 0.45 4.37 0.31 

Fo
sc

hi
 a

nd
 Y

ao
 

:eps eps 0.30 0.03 0.37 0.02 

:D Db B 51.41 0.01 43.35 0.004 

G
er

ha
rts

 

:eps eps 0.55 0.05 0.476 0.03 

:c c 875 113 75.74 5.41 

N
ie

ls
en

:eps eps 0.51 0.04 0.38 0.02 

The correlations for the estimated parameters of the Foschi and Yao model can be given as: 

Table 4-15 Correlations for the parameters of the Foschi and Yao model. 

Average Timber Moisture Content: 
11% 

Average Timber Moisture Content: 
20% 

DB DC DD eps DB DC DD eps

DB 1 0.41 0.32 0  DB 1 0.62 0.49 0 

DC  1 0.98 0  DC  1 0.97 0 

DD   1 0  DD   1 0 

eps    1  eps    1 



103

For the Nielsen and the Gerhards model as for the Foschi and Yao model (see Table 4-15) 

eps  is not correlated with the model parameters.  

The test results corresponding to a timber moisture content of 20% are plotted together with 
the expected realizations of the calibrated models in Figure 4-25. The stress level sl  is plotted 
together with the logarithm of the time until failure in hours 10log ft . It can be observed that 
especially for the centre part, for time to failure between 1 hour and 1 year the differences 
between the models are quite minor.  
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Figure 4-25 Duration of load data (Hoffmeyer, 1990) and damage models based on the mean value 
of the estimated parameters (time in hours). 

4.3.3.4 Modelling Stress Histories 
The DOL models presented above can be used for time variant stress histories. Therefore the 
stress histories have to be separated into incremental periods of constant load. Damage is 
accumulated according to the following scheme: 

, , 1 ,D i D i D i (4.73)

where ,D i  can be calculated as: 

,D i model,i i ih sl t (4.74)

where .h  is a function of the assumed constant stress level sl . For the Gerhards model and 
the Foschi and Yao model .h  can be written as (based on Equations (4.48) and (4.59)): 
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, expGerhards i i D D ih sl a b sl (4.75)

, , 1

, 0

D Db d
F Y i i D i D D i D D i

F Y i i

h sl a sl c sl

h sl

for     0

for     0
i D

i D

sl

sl
(4.76)

The time increments it  have to be chosen small enough to map the time-variant load process 
and the non-linear effect of the Foschi and Yao model. The starting condition of the 
calculation is 0D  for an undamaged material. The failure condition is , 1D cr .

For using the general Nielsen model, i.e. modelling damage as a consequence from both, time 
under load and number of load cycles (with a scheme as illustrated in Figure 4-24), the 
random load sequence has to be transformed into a square wave shaped load process. A 
harmonic square wave shaped load process is illustrated in Figure 4-23. As shown in Köhler 
and Faber (2003) the parameters from the harmonic square wave process can be modified 
after every load cycle as illustrated in Figure 4-24, i.e. random load variations can be 
reasonably idealized. Superior stress cycles can be modelled by standard rain flow counting 
algorithm, see e.g. in Downing and Socie (1982). 

For moderately fluctuating load processes a similar damage accumulation scheme as 
presented above in Equation (4.74) can be applied by using the simple Nielsen formulation for 
the case of constant load, .h  can be written as (compare with Equation (4.64)): 

2 2

, 1
128

1 c

D i
Nielsen i i

bc c
D i

fl slh sl
q

sl
(4.77)

where the starting condition of the calculation is here 1D , failure condition is 2
,D cr sl .

As shown in Köhler and Faber (2003) for some load cases it is a reasonable simplification of 
the Nielsen model to consider only the time under load as the cause of damage accumulation 
instead of applying the model in it’s fully developed general format as illustrated in Figure 
4-24. According to the Nielsen model fatigue damage is due to fast unloading and it can be 
shown that this damage can be neglected if the unloading is slow enough (order of magnitude 
6 hours) or seldom enough (the order of magnitude is around 60 unloadings per lifetime).  

The limit state function as given for the damage accumulation models in Equation (4.47) is 
not valid for the Nielsen model. For the Nielsen model the limit state function becomes: 

, 0, , 0D cr D S t R (4.78)

where 2
,D cr SL .
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4.3.4 APPLICATIONS FOR DOL MODELS 

To gain a better understanding about the predictive behaviour of the three DOL models 
introduced above some example calculations are performed within this section. The models 
are used with the parameters as presented in Table 4-14.  

4.3.4.1 Lifetime Prediction and Damage Accumulation for Constant Load 
When comparing the DOL-model estimations of the time to failure for a constant load only 
minor differences can be found, as it can be seen in Figure 4-25 for e.g. a stress level 0.7sl .
When investigating the damage accumulation for a case with constant load, however, the 
models show very different behaviour. In Figure 4-26 the damage accumulation until failure 
for the case of constant load with load ratio 0.7sl  is shown. The ordinate of the diagram in 
Figure 4-26 is the difference between damage, D , and damage at failure, ,D cr , on the 
abscissa is time. The damage accumulation according to the Gerhards model is for this load 
case linear with time. The Nielsen model shows for the same case high non-linearity as does 
the Foschi and Yao model. The latter is, however, smoother than the first. The model 
parameters for constructing Figure 4-26 are taken from Table 4-14, with a moisture content of 
the timber equal to 20% (Köhler and Svensson (2002)).
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Figure 4-26 Damage accumulation for the case of constant load ratio of 0.7 according to the 
Gerhards model, the Foschi and Yao model and the Nielsen  model.  

4.3.4.2 Reliability based code calibration 
In timber design codes, the effect of load duration is taken into account by a strength 
modification factor modk , which depends on the type of load acting on the structure. The loads 
are classified in terms of their expected duration time and intensity. The modification factor 

modk  is calibrated by using a DOL model in a probabilistic analyses. modk  calibration has been 
carried out and reported in e.g. Foschi et al. (1989), Ellingwood et al. (1991), Svensson et al. 
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(1999), Sørensen et al. (2002) and Köhler and Faber (2003). In the following an approach for 
determining modk  is presented. 

Procedure for calibrating the duration of load modification factor modk

1) Design Format: 

The design codes specify by means of design equations that the design strength of structural 
components dr  is larger than or equal to the design load effect ds . In modern LRFD code 
format, the design values are defined in terms of characteristic values and partial safety 
factors  as (compare Equation (2.28)): 

0,k
d d k S d

M

r
r z s s (4.79)

where the index k  denotes characteristic value and dz  is the design parameter. Irrespective of 
the duration of load, the load description (right hand-side of Equation (4.79)) is based on the 
annual maximum load intensity, i.e. the description of the load effect will not change to 
account for the load duration. For materials being affected by the duration of the loading such 
as timber a modification factor, modk , is introduced on the short term capacity as: 

mod 0,k
d d

M

k r
r z (4.80)

The effect of the duration of the load is accounted for entirely by the modk  factor. The partial 
safety factor for the timber material resistance M , is thus independent of the load duration. 

2) Limit State Functions: 

Two failure modes are considered in the following: A) failure is defined as the load effect 
intensity exceeding the short-term strength and B) where failure is defined as the consequence 
of damage accumulation during long term load application. Hence, when conducting the 
reliability analyses each failure mode is associated with a specific limit state function. 

For failure mode A) i.e. the failure mode where load effect intensity, S , is exceeding the short 
term strength 0R  the short-term limit state function is given as (compare Equation (4.46)): 

0d Mg z R X SX (4.81)

where MX  is the model uncertainty and dz  is a design variable. 

For failure mode B) where failure occurs as a consequence of the accumulated damage 
exceeding the critical damage level ,D cr  the long-term limit state function is given as 
(compare Equation (4.78)): 
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, 0, , ,D cr D dg S t R zX p (4.82)

where  is the damage as a function of the model parameters 1 2, ,..., , T
np , S t  is 

the load process, and dz  is the design variable. 

3) Procedure for determining modk :

By utilizing Monte Carlo simulation for generating random variables the modification factor 

modk  is determined according to the following procedure. First the partial safety factor for the 
short-term strength ,M s  is calibrated to a target reliability index, target , using the limit state 
function given in Equation (4.81) and the design Equation (4.79) for constant S . The 
probabilistic model for the load intensity is based on the maximum load for a reference period 
of 50 years. The partial safety factor for the long-term strength ,M l  is calibrated using the 
limit state function in Equation (4.82), and the design equation given in Equation (4.79) for 
constant S . The realization of the load process S t  entering the limit state function given in 
Equation (4.82), is generated based on some specified load model. For the generated load 
process realization, the damage models calculate the accumulation of damage. After a 
sufficient number of simulations, the ratio of the number of failures fn  and the total number 
of realizations n  estimates the probability of failure f fp n n . The corresponding reliability 
index  is determined from 1

fp . The long-term partial safety factor, ,M l , is re-
calculated until the target reliability index, target , is reached. modk  is then determined as: 

,
mod

,

M s target

M l target

k (4.83)

The calculations may be based on several different load models. The short-term strength 0R  is 
modeled by a log-normally distributed random variable with expected value equal to one and 
coefficient of variation equal to 25%. Referring to the Joint Committee on Structural Safety 
(JCSS, 2001) and Faber and Sørensen (2003) a target reliability index 3.2target  for a 
reference period of 50 years is used. When not specifically specified, the model uncertainty in 
the short-term limit state function (Equation (4.81)) is assumed log-normal distributed with 
mean value equal to 1 and standard deviation equal to 0.05. 

4.3.4.3 Calibration Example – Live Load 

Live Load Model 

The live load model used in this example is equivalent to the model proposed in (CIB 1989) 
and recommended by the Joint Committee on Structural Safety (JCSS (2001)). The model 
contains two parts, sustained live load and intermittent live load. The sustained live load 
covers ordinary live load such as furniture, average utilization by persons, etc. The 
intermittent live load describes the exceptional load peaks, e.g. furniture assembly while re-
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modelling, people gathering for special occasions, etc. The live load model is based on the 
following definitions: 

The occurrences of changes in magnitude of the sustained load are modelled as a Poisson 
process. The duration of load is then exponential distributed with expected value sus . The 
magnitude of the sustained load is modelled by a Gamma distribution with expected value 

sus  and standard deviation sus :

,02 2
, ,

are
sus sus r sus sp P

are

a
a

(4.84)

where ,0area  is the reference area, area  is the considered area ( ,0are area a ), P  is the peak 
factor, 2

,sus  specifies the variation between structures, 2
,sus sp is the small scale variation 

related to the area ,0area .

The occurrences of intermittent loads are also modeled as a Poisson process. The duration 
between intermittent loads are thus exponentially distributed with expected value int . The 
magnitude of the intermittent load is modeled by a Gamma distribution with expected value 

int  and standard deviation int :

,02
int int,

are
sp P

are

a
a

(4.85)

where 2
int,sp is the small scale variation related to the area ,0area .

The duration of the intermittent load intt  is considered exponentially distributed with 
parameter int . The parameters used for the live load model are given in Table 4-16. 

Table 4-16: Parameters used for model live load in office space. 

,0area sus ,sus ,sus sp 1 sus int int,sp int int1Type of  
building 2m 2

kN
m 2

kN
m 2

kN
m year 2

kN
m 2

kN
m year days

Office 2 0.5 0.3 0.6 5.0 0.2 0.4 0.3 2.0 

In this example, a floor structure based on joists with a span of 4.5 m and a spacing of 0.6 m 
is considered. The area area  is assumed to cover the span and twice the spacing of the joists 

25 marea . The peak factor, P  is calculated for load influence on the joist for maximum 
mid-span bending moment, therefore 1.778P  (CIB 1989). 

By using Monte Carlo simulation and the load model parameters from Table 4-16 the mean 
value and the coefficient of variation of the annual maximum load ,1QS  and the 50 year 
maximum load ,50QS  can be derived. In Table 4-17 the results of the simulation are given. A 
typical realization of a 50 years live load history is shown in Figure 4-27 (Köhler and 
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Svensson (2002)).

Table 4-17: Results from simulations of live load in office space (non-parametric). 

Annual max ,1QS  50 year max ,50QS

mean
2kN m

COV

[-] 

98% quantile 
2kN m

mean
2kN m

COV

[-] 

0.96 0.78 3.10 3.05 0.29 

0
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3

0 10 20 30 40 Time [years]

Load

Figure 4-27:  A typical live load realization acting as midspan bending moment on a joist beam in 
an office space. 

Result

The three DOL models discussed in section 4.3.3.2 are utilized for comparison. The 
parameters for timber with 20% moisture content as specified in Table 4-14 are used. The 
Nielsen model is applied with its simple format as given in Equation (4.64), i.e. only time 
under load is considered. The results from the calibration of modk  factor for the case with live 
load in office space are shown in Table 4-18. The results show that the damage models give 
almost the same results (Köhler and Svensson (2002)).  

Table 4-18:  Calibrated values of modk  for the different damage models. 

Foschi and Yao Nielsen Gerhards

0.77 0.76 0.75 

4.3.4.4 Calibration Example – Snow Load 

Snow Load Model 

Snow on roofs of buildings is considered and a stochastic load model is formulated in 
accordance with the load model presented in Sørensen et al. (2002). Snow load on the ground 
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is modeled by triangularly shaped load pulses (snow packs). This is illustrated in Figure 4-28. 

1X 2X 2 2X T1 1X T

SGP

t

,1mP

,2mP

Figure 4-28:  Snowload at the ground modeled by triangular pulses. 

Based on Danish snow data over 32 years from five locations the following load process 
parameters have been estimated (see in Sørensen et al. (2002)). The occurrence of a snow 
package at times 1 2, ,...X X is modelled by a Poisson-process. The duration between snow 
packages is therefore exponential distributed with expected value 1 , where  is the 
expected number of annually snow packages. The magnitude of each snow package mP  is 
assumed to be Gumbel distributed. The duration of a snow package SPT  is assumed to be 
related to the snow package magnitude with SP T mT X P  where the factor TX  is exponential 
distributed. The load history on the ground P t  can be simulated and transformed to the roof 
load Q t  by introducing a Gumbel distributed shape factor C  with Q t CP t . The 
parameters for the stochastic models are summarized in Table 4-19. 
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Table 4-19:  Overview of the stochastic Models used in this example. 

Stochastic Variable  
Distribution 

Type 
Mean
Value 

Standard 
Deviation 

Short-term strength 0R Log-normal 1 0.2 

Snow load (50 y max) SQ Gumbel max 1 0.21 

Sh
or

t t
er

m
 L

S 

Model uncertainty MX Log-normal 1 0.05 

Duration between snow pack [y] 1 Exponential 1/1.175 - 

Max. per snow pack [kN/m2] mP Gumbel max 0.33 0.21 

Duration pack factor [d/kN/m2] TX Exponential 75 - 

Lo
ad

 m
od

el
 

Roof shape factor [-] C Gumbel max 1 0.35 

The long term simulations are performed by using the simple Nielsen model with the 
parameters given in Table 4-14, timber with 11% moisture content. 

Result

The modification factor modk  is calibrated as previously described. A value of mod 0.8k  is 
found. This result is consistent with the results presented in Sørensen et al. (2002), where the 
same snow load model but different damage accumulation models are used in the calibration 
procedure. To illustrate the effect of damage  to the strength of the timber material, the 
residual strength ratio 0rr t r  can be evaluated according to Equation (4.68). In Figure 4-29, 
one realisation of the load process and the corresponding residual strength ratio is given. 
Failure occurs when the residual strength ratio drops below the load effect as consequence of 
an extreme snow load, i.e. when 0 0rr t r s t r (Köhler (2002)). In the case illustrated in 
Figure 4-29 failure occurs after a time of approximately 32 years. The load history prior to 
failure seems not to be of significance to the damage and the residual strength respectively. A 
similar observation is made in Rosowsky and Bulleit (2002) where other damage accumu-
lation models are investigated.  
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Figure 4-29 Maximum magnitude of each snow package and the residual strength of the timber 
specimen is plotted over lifetime.  

In Figure 4-30, a snow load process is used where the standard deviation of the maximum 
load level of each snow package is lower compared to the example shown in Figure 4-29, 

0.05Pm  compared to 0.21Pm . It is seen that the residual strength drops as a 
consequence of major snow loads several times until failure occurs. The damage accumulates 
with the number of major snow events.  

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1.0

time [years]

0
 a

nd
 

rr
t

r
sl

Figure 4-30 Maximum magnitude of each snow package with lower standard deviation and the 
residual strength of the timber specimen is plotted over lifetime. 

Depending on the load level as well as the temporal characteristics of the underlying random 
load process failure may be considered as time independent. Rather than simulating complete 
load histories and incrementally accumulating damage, a time independent limit state function 
can be formulated. Only the load pulse that cause significant damage, may be considered for 
reliability analysis with the considered snow load characteristics. If the standard deviation of 
the maximum load level of a snow package is getting smaller, damage accumulates several 
times (Figure 4-30) and the time to failure has to be evaluated by simulation as described in 
this paper. The DVM-model does not include a threshold value D  (compare the Foschi and 
Yao model, Equation (4.59)) below which no damage accumulates as some other damage 
accumulation models. However, through the highly non-linear properties of the model an 
effective threshold can be observed by analyzing the results of the simulations. 
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4.3.4.5 The Nielsen Model and Fatigue - Parametric Variable Load. 
For timber structures as for structures made of any other material, in principle all types of 
loads must be anticipated. For the load types considered above, live load in buildings and 
snowload, it seems to be a reasonable assumption to regard damage solely a consequence of 
accumulated time under load. For some types of loads such as traffic load on bridges, wind 
loads on roofs and facades or the dynamic load on a rotor blade of a wind turbine it is 
intuitively understood that beside damage accumulation as a consequence of accumulated 
time under load, a significant damage contribution is due to the number of applied load cycles 
of given amplitude, i.e. due to fatigue effects. In Bonfield and Ansell (1991), the DOL-effect 
in wind turbine rotor blades is investigated considering timber as an elastic material, i.e. no 
damage caused by creep is considered. 

In the calibration examples above (sections 4.3.4.3 and 4.3.4.4) and e.g. in Sørensen et. al. 
(2003), damage accumulation laws accounting for the visco-elastic damage accumulation are 
calibrated to long term test with structural timber specimen subjected to constant intensity 
loads. In the assessment of the modk  factors for different load scenarios thus only the 
accumulated duration of load is taken into account, and fatigue effects disregarded.  

In the following, two damage accumulation models are compared. The general Nielsen model 
for which the computational algorithm is illustrated in Figure 4-24 is considered. As 
previously mentioned this model is able to predict the lifetime of timber components subject 
to random time variant loads considering both creep and fatigue effects. Also the simple 
Nielsen model given in Equation (4.64) is considered. This model which also rests on the 
DVM-theory is compared with other damage accumulation models in section 4.3.4.3, where it 
is applied specifically for the purpose of calibration of modk .

Both models are used for the estimation of the time to failure of one timber specimen with the 
short term resistance 0r . A rectangular pulse process with constant amplitude and constant 
frequency as defined in Figure 4-23 is applied. The following load parameters are used: 

0.5slp , 0.5sl , max 0.6sl , 0.001f  Hz ( T 100s). In Figure 4-31 the residual 
strength ratio 0rr r  defined as 0.5

0rr r  and the maximum and minimum load intensities, 

maxsl  and minsl  over the logarithm of time in hours are illustrated. A significant difference is 
observed in the predicted lifetimes, i.e. 14 and 60 years using the general and the simple 
model, respectively see also Figure 4-31. 

It can be shown that a timber specimen is able to survive a reference lifetime period of 50 
years applying a load as described above for max 0.606sl  for the simple model and 

max 0.548sl  for the general model.  

In the following the general model is investigated in more detail. It is first examined whether 
the general model deviates significantly from the currently applied simpler damage 
accumulation model (without consideration of fatigue effect) for different types of random 
load processes.
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A simple load process model is applied in the following, see Figure 4-32, where the 
rectangular load pulses are random in both their intensity and duration. The occurrence of 
load events at times 1 2, ,...X X  is modeled with the constant rate S , i.e. the constant number 
of load events per year. The intensity of the load at a given load event mP  is assumed to be 
Gumbel distributed. The duration of a load event LET  is assumed to be related to the load 
event intensity with LE T mT X P , where the factor TX  is assumed exponential distributed. The 
load model is illustrated in Figure 4-32. 
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Figure 4-31 Predicted lifetime in accordance with using the simple model and the general model 
respectively. 

To investigate the effect of the characteristics of the random load process on the model 
predictions, the variation of the intensity mP  and the number of load events per year S  are 
varied.
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Figure 4-32 Load model applied in the example. 

The parameters for the probabilistic models for the load, the long term strength and the short 
term strength are given in Table 4-20. 

According to the presented procedure the modification factor modk  is calibrated for the 
following cases. S  = 1, 4, 8, 16 (in 1/years) and 0.64

mP  according to Table 4-20; 
different numbers of load events per year are applied. The duration of the load events is 
decreasing by increasing number of load events per year so that the expected value of the time 
under load is the same for the considered load cases. In Figure 4-33 the results as obtained by 
the general model are illustrated and compared with the results obtained by using the simple 
model, i.e. the model in which fatigue effects are disregarded. 
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Table 4-20 Overview of the probabilistic model used in the example.  

Stochastic Variable 
Distribution 
Type 

Mean
Value 

Standard 
Deviation 

Short-term strength 0R Log-normal 1 0.2 

Load, 50 years max SQ Gumbel max ,
mPf C 0.21 

Sh
or

t t
er

m
 L

S 

Model uncertainty MX Log-normal 1 0.05 

Load events per year S Exponential C - 

Intensity of the load event 
[kN/m2] mP Gumbel max 1 

mP

Lo
ad

 m
od

el
 

Load duration factor [d/kN/m2] TX Exponential 75/C - 
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Figure 4-31 Calibrated modk  factors for different load frequencies. 

From Figure 4-31 it can be observed that the estimated values for the modification factor are 
virtually identical and independent on the choice of the damage accumulation model.  

In Figure 4-32 the calibrated modk  factors for different load cases are illustrated as a function 
of the coefficient of variation of the load intensity. The number of load events per year is 
constant with S  = 16, the expected value of the load duration factor is 4.7 d/kN/m2 according 
to Table 4-20. The effect of varying the coefficient of variation in the range between 0.64 and 
0.00001 is investigated, see Figure 4-32. 
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Figure 4-34 Calibrated modk  factors as function of the coefficient of variation of the intensity of 
load events. 

From Figure 4-34 it is seen that the smaller the coefficient of variation of the intensity of the 
load events, the larger the difference achieved by using the two different models. 

4.3.5 SUMMARY AND CONCLUDING REMARKS, DOL EFFECTS 

In section 4.3 an approach for the probabilistic modelling of the effect of load duration is 
presented. The method is exemplified for calibrating the design code short term strength 
modification factor modk for different characteristics of the applied loading process. The 
considered damage models are introduced. The Nielsen model takes basis in fracture 
mechanical considerations and facilitates the consideration both creep and fatigue effects. The 
two other models, the Gerhards model and the Foschi and Yao model take solely creep effects 
into account. The damage models are calibrated against duration of load tests using the 
maximum likelihood method. Furthermore, the damage models have been investigated and 
compared by applying several different load scenarios. 

In section 4.3.4.3 the so called simple Nielsen model is compared with the other two models 
by calibrating modk  for a live load scenario, using the three different DOL models. It is shown 
that the result is not sensitive to the particular DOL model which is used. 

In section 4.3.4.4 the modification factor modk  is also calibrated for a snow load scenario, this 
time only the simple Nielsen model is used. The result is in line with results for snow load 
calibration results found in the literature, where the Gerhards and the Foschi and Yao model is 
used. From section 4.3.4.3 and 4.3.4.4 it can be concluded, that the simple Nielsen model 
delivers similar results compared to other damage accumulation models.  

In section 4.3.4.4 it is further observed that for a typical snowload realisation the damage 
accumulation process is highly non-linear, i.e. the undamaged state is directly leading into the 
full damage (failure) state (Figure 4-29). In Figure 4-30 it is illustrated that this is not the case 
when the variation of the amplitudes of each load cycle is decreased. Then, damage 
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accumulates as a consequence of several major load events. 

In section 4.3.4.5 the general Nielsen model is compared with the simple Nielsen model. A 
significant difference in predicted lifetimes using the two different models can be observed in 
Figure 4-31. Under the given load conditions, a square wave process with constant load 
intensities, lifetime predictions obtained using the simple model are more than four times 
longer than those achieved using the general model. From this observation it can be concluded 
that, for the given harmonic square wave load process a significant fatigue effect might exist 
following the fracture mechanical modelling proposed by Nielsen (2000). This conclusion is 
also consistent with experimental evidence e.g. in Clorius (2001). 

By applying random load processes with rectangular load pulses and random intensity and 
duration no significant fatigue effect is observed between the models in the frequency range 
considered. The estimated load duration modification factors modk  are almost the same for 
both using the general and the simple models for the calibration.  

By decreasing the coefficient of variation of the intensity of the load pulses mP  to nearly 0, 
i.e. mP  is nearly deterministic, a difference of the value of modk  of 6% can be observed in the 
considered example. 

The considered frequency range between 1 and 16 load cycles per year is, however, not 
representative for load scenarios likely to induce fatigue damages. In the present example this 
limited frequency interval is due only to the numerically cumbersome and time demanding 
calculations. It still remains to investigate higher frequency loads. 

4.4 MOISTURE EFFECTS ON THE DURATION OF LOAD EFFECT 

The DOL effect is dependent on the moisture content ( mc ) of the timber, i.e. the higher the 
moisture content, the shorter the time to failure. The DOL effect is also subject to variations in 
moisture content. Such variations increase creep significantly and shorten time to creep 
rupture (see e.g. Toratti (1992)). This effect is in general referred to as the mechanosorptive 
effect. 

In line with the presented damage accumulation models for the duration of load effect, 
proposals for modelling the combined (damage) effect of moisture and duration of load exist. 
E.g. the models proposed in Fridley (1992) or in Toratti (1992) consider the moisture effect as 
an extra term in damage accumulation formulations similar to Equation (4.43). The 
parameters of these models are calibrated to rather limited data from experiments, i.e. can not 
be verified by a reasonable set of climate/load scenarios (Morlier (1994)). However, the 
combination of moisture and duration of load effects in a damage accumulation model still 
seems promising; current research projects focus into that direction (Sørensen and Svensson 
(2005), Nielsen (2005)). 

In practical design, as in the Eurocode 5, the effect of moisture on the duration of load effect 
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is considered with the modification factor modk  which is given for different climate exposures 
in design codes. Values for this factor are prescribed in a matrix for three different so-called 
service classes, i.e. different climate scenarios, and five different load classes, i.e. load 
scenarios. With a similar framework the stiffness degradation aspect is accounted for with the 
factor defk , which is also prescribed in a matrix for different service and load classes. The 
different service and load classes according to the EC 5 are given in Table 4-21. The service 
classes sc  are defined in regard to the average moisture content mc  of the timber. 

Table 4-21 Load and service classes according to the EC 5. 

sc
mc 

[%] 

Permanent 
( 10t years)

Long term 
( 0.5 10t years)

Medium term 
( 0.25 6t month) 

Short term 
( 1t week)

Instantaneous 

1 <12      

2 <20      

3 >20      

4.5 INTERRELATION OF MATERIAL PROPERTIES 

As already discussed at the beginning of this chapter, other material properties are estimated 
based on the information about the reference material properties. In Equations (3.10)-(3.17) 
relationships based on experiments on European softwoods are given. The estimates derived 
with these equations are associated with uncertainties which are not quantified in the 
literature. Furthermore, only characteristic values or mean values are estimated with these 
formulas. 

To get estimates for the probability distribution functions of other material properties the 
above equations are utilized as a basis. Based on several discussions within the COST action 
E 24 (2005) it is decided, as a simplification, to take the same interrelations as given for 
strength characteristic values also for the expected values for the strength related material 
properties. Furthermore, coefficients of variation of the other material properties and a 
correlation matrix is identified, both based on judgment and a result of several discussions 
within the COST action E24 (2005).  

The bending moment capacity and the bending modulus of elasticity are assumed to be 
lognormal distributed. The density is assumed to be normal distributed. 
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Table 4-22  Probabilistic models of other timber material properties. (quantities are tentative and 
basis for further discussion) 

Property Distribution Expected Values E X Coefficient of variation 
COV X

Tension strength 
parallel to the 

grain: 
lognormal ,0 0.6 t mE R E R ,0 1.2 t mCOV R COV R

Tension strength 
perp. to the grain: 

weibull ,90 0.015t denE R E ,90 2.5t denCOV R COV

MOE - tension 
parallel to the 

grain: 
lognormal ,0t mE MOE E MOE ,0t mCOV MOE COV MOE

MOE - tension 
perp. to the grain: 

lognormal ,90 30
m

t

E MOE
E MOE

,90t mCOV MOE COV MOE

Compression 
strength parallel to 

the grain: 
lognormal 

0,45

,0 5c mE R E R 0.8 c mCOV R COV R

Compression 
strength per. to the 

grain: 
lognormal ,90 0.008 c denE R E ,90c denCOV R COV

Shear modulus: lognormal 16
m

v
E MOGE MOE v mCOV MOG COV MOE

Shear strength: lognormal 
0.8

0.2 Ev mE R R v mCOV R COV R
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Table 4-23   Correlation coefficient matrix. The values in this table are quantified by judgment; 0.8 
 high correlation, 0.6  medium correlation, 0.4   low correlation, 0.2   very low 

correlation.

mMOE den ,0tR ,90tR ,0tMOE ,90tMOE ,0cR ,90cR vMOG vR

mr 0.8 0.6 0.8 0.4 0.6 0.6 0.8 0.6 0.4 0.4 

mMOE 0.6 0.6 0.4 0.8 0.4 0.6 0.4 0.6 0.4 

den 0.4 0.4 0.6 0.6 0.8 0.8 0.6 0.6 

,0tR 0.2 0.8 0.2 0.5 0.4 0.4 0.6 

,90tR     0.4 0.4 0.2 0.4 0.4 0.6 

,0tMOE 0.4 0.4 0.4 0.6 0.4 

,90tMOE       0.6 0.2 0.6 0.6 

,0cR 0.6 0.4 0.4 

,90cR         0.4 0.4 

vMOG 0.6 

It should be underlined that the information given in Table 4-22 and Table 4-23 is rather 
vague and associated with uncertainties. However, if no more information is available it can 
be taken as a reference. The information can be also utilized to quantify a prior distribution 
function as a basis for probability updating if more information becomes available (see Annex 
A).
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5 PROBABILISTIC MODELLING OF THE PROPERTIES OF 
TIMBER CONNECTIONS 

For timber structures, the structural performance depends to a considerable part on the 
connections between different timber structural members; connections can govern the overall 
strength, serviceability and fire resistance. Assessments of timber structures damaged after 
extreme events as storms and earthquakes often point to inadequate connections as the 
primary cause of damage (Foliente (1998)). Despite their importance timber connection 
design frameworks are not based on a consistent basis compared to the design regulations of 
timber structural components.  

Explanations for this difference in progress of design provisions for members and connections 
can be found in the relative simplicity of characterising mechanical behaviour of members, as 
compared to connections. A diversity of connections types is used in practice and these types 
have infinite variety in arrangement. This usually precludes the option of testing large 
numbers of replicas for a reliable quantification and verification of statistical and mechanical 
models.

For commonly used connections, a distinction is made between carpentry joints and 
mechanical joints that can be made from several types of fasteners. An overview of timber 
connections can be found in the literature, e.g. in Thelandersson and Larsen (2003). The 
mechanical joints are divided into two groups depending on how they transfer the forces 
between the connected members. The main group corresponds to the joints with dowel type 
fasteners. Connections with dowels, nails, screws and staples belong to this group. The second 
type includes connections with fasteners such as split-rings, shear-plates and punched metal 
plates in which the load transmission is primarily achieved by a large bearing area at the 
surface of the members. In addition to connections with mechanical fasteners, also glued 
joints should be mentioned. This technique is mainly carried out using glued-in bolts for beam 
connections or large finger joints for frame corners, (Blass et al. (1995)). 

In this chapter it is focused on connections with dowel type fasteners. On the example of 
timber to timber dowel type fasteners it is demonstrated how a probabilistic framework can be 
introduced. Therefore it is first focused on the physical modelling of this type of connections, 
while single fastener connections are at first considered. Beside a common physical model 
framework – the so called Johansen model – a model refinement considering timber splitting 
based on the work presented in Jorissen (1998) is introduced and discussed. The ingredients 
of the physical models, the material properties and their probabilistic modelling, are 
discussed. Different implementations of the considered models in present design formats are 
illustrated before it is examined how the effective number of fasteners for multiple fastener 
joints is commonly evaluated. 

A large data base of load carrying capacity data of dowel type fastener connections described 
in Jorissen (1998) is utilized to illustrate the possible model verifications implied by 
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comparing model predictions with observations from the load bearing capacity tests. In the 
same line model uncertainties are assessed based on the similar database. 

Different formats for possible probabilistic models are presented and the sensitivity of the 
model to the input parameters is assessed. The chapter is concluded with a discussion of the 
findings, the shortcomings in the presented approach and a perspective for further research is 
given.

5.1 JOINTS WITH DOWEL TYPE FASTENERS 

Joints with dowel type fasteners are the most common joints in timber structures. Dowel type 
fasteners include bolts, dowels, nails and staples (see Figure 5-1). The main characteristic of 
this type of connections is that the fasteners are mainly laterally loaded. 

a) b) c) d)

Figure 5-1 Different dowel type fasteners: a) Bolt, b) Dowel, c) Nail, d) Staple. 

Laterally loaded joints with dowel type fasteners are illustrated in Figure 5-2. The load can be 
transferred through one or more shear planes per fastener.  

By using dowel type fastener joints the load can be transferred in pure tension or 
compression, but also at an angle in e.g. truss joints. In Figure 5-3 two examples for timber to 
timber double shear fastener connections are given; a tension or compression joint (left) and a 
typical truss joint (right). Three timber components are connected, two so-called side 
members with the side member thickness sd  and one so-called middle member with thickness 

md . The fastener diameter is specified by d  and furthermore by the so-called end- and in-
between distance for the side members, 3a  and 1a , are given in the left part of Figure 5-3. 
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Figure 5-2 Laterally loaded timber to timber joints with dowel type fasteners. Dowels in double 
shear (i.e. two shear planes per dowel (left)). Dowels in single shear (middle and 
right).

The load carrying capacity of dowel type fasteners is governed by four main characteristics: 

The embedding strength of the timber. The embedding strength is the property of a 
timber solid to resist the lateral penetration of a stiff fastener. 

The bending moment capacity of the dowel. The bending moment capacity is mainly 
influenced by the dowel diameter and the yield strength of the dowel material. A plastic 
deformation capacity is necessary to provide bending moment capacity even after 
considerable deformation of the dowel. 

The pulling out resistance of the dowel. Under special circumstances the so called pulling 
out resistance of dowel type fasteners can be mobilised even in lateral loading. A large 
bending deformation of the fastener is required. This effect is also referred to as the rope 
effect. 

The resistance against splitting. This resistance is mainly governed by a fracture 
mechanical phenomena. 

Joints with dowel type fasteners usually contain more than one fastener. Modelling of the load 
bearing capacity of multiple fastener connections, however, is always based on the 
calculations made considering one fastener. This might be for traditional and practical 
reasons; since the physical behaviour of single fastener connections is rather complex, the 
behaviour is even more complicated for multiple fastener connections, not least due to the 
multitudinous configurations which could be considered. 
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Figure 5-3 Tension or compression joint (left) and a typical truss joint (right), where the load is 
transferred under the angle .

5.1.1 SINGLE FASTENER CONNECTIONS – JOHANSEN’S YIELD THEORY 

The load bearing capacity of laterally loaded single dowel type fastener connections has been 
studied for several decades. In most timber design codes the so-called Johansen’s Yield Model 
has been implemented for this type of connection. The embedding strength of timber and the 
bending capacity of the fastener are considered in this model. However, the model in its very 
first formulation (Johansen (1949)) is subject to rather strict assumptions. These are: 

The embedding behaviour of timber is idealised to be an ideal rigid-plastic type. 

All timber members of the connection have identical embedding strength properties. 

For single shear connections the involved members have the same thickness; for double 
shear connections the assembly is symmetric. 

Only the elastic bending capacity of the fastener is considered. 

In Meyer (1957) these restrictions have been released; different material properties and 
member thickness are considered and the plastic bending capacity for the dowel type fastener 
can be taken into account. However, the modelling of double shear connections is restricted to 
symmetry in regard to its geometry and material properties. Despite of this historical 
background the formulations from Equation (5.1)-(5.4) are generally referred to as the 
Johansen Equations. 

For double shear connections 4 different failure modes are differentiated; three different for 
the side members and one common for the middle member as illustrated in Figure 5-4. Note 
that for failure modes II and III two respectively four plastic hinges are developed. 
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Figure 5-4 Johansen failure modes for double shear connections. 
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The parameters used in Equations (5.1) - (5.4) are: 

sd  / md  the side/middle member thickness mm ,

d   the diameter of the fastener mm ,

,h sr  / ,h mr  the embedding strength of side/middle member MPa ,

ym   the bending moment capacity of fastener Nmm .

, ,Joh I sr , , ,Joh II sr , , ,Joh III sr  is the load bearing capacity in N  of each side member according to 
failure modes I , II  and III  (see Figure 5-4) respectively. , ,Joh Ia mr  is the load bearing capacity 
in N  of the middle member according to failure mode Ia .

In the Johansen equations forces other than the force normal to the axis of the fastener are 
neglected. The load bearing capacity per shear plane is determined for any failure mode by 
static equilibrium or from the principle of virtual work. The governing failure mode is 
determined by the minimum capacity per shear plane, as:  
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, , , , , , , ,
1min , , ,
2Joh Joh I s Joh Ia m Joh II s Joh III sr r r r r (5.5)

As the fastener is assumed to exhibit ideal rigid-plastic behaviour, it can only translate and/or 
rotate as a rigid body or segments of it can behave as rigid bodies for failure modes, where 
one or more plastic hinges form in the fastener (compare Figure 5-4). The embedding of the 
fastener into the timber interface is also assumed to behave ideal rigid-plastic. The 
specification of the bending moment capacity of the fastener and the embedding strength of 
the fastener plays an important role in the Johansen equations. 

5.1.2 SINGLE FASTENER CONNECTIONS – JORISSEN’S SPLITTING MODE 

Beside the Johansen failure mechanisms, a failure mechanism associated with timber splitting 
is possible (Jorissen (1998)). Whether connections fail in timber splitting or according to one 
of the Johansen failure modes mainly depend on the positions of the fasteners; the distances 
from the fastener to the end of the timber member and the distance in between fasteners, both 
in direction parallel to the grain. In Figure 5-3 the end distance 3a  and the in between distance 

1a are specified. In general, design regulations provide guidelines for identifying connection 
geometries providing that the Johansen mechanisms are obtained and very brittle failure 
modes as timber splitting are avoided. These guidelines are in regard to minimum end 
distance and timber thickness both in relation with dowel diameters. However, tests by 
Jorissen (1998) show that connections with very rigid dowel type fasteners fail by timber 
splitting, even if the members are loaded parallel to the grain and designed according to the 
guidelines referred to above. In Jorissen (1998) a model based on fracture mechanical 
considerations is proposed to cover the splitting failure mode. According to Jorissen (1998) 
the splitting load bearing capacity of a member can be estimated as: 

, 0,
,

, 0,
,

2
    1

 2    2

c i i
splitt i i d

c i i
splitt i i d

g MOE d h d
r d m

h

g MOE d h d
r d m

h

(5.6)

with

,c ig   the mixed mode fracture energy1 N mm ,

d   the diameter of the dowel type fastener mm ,

0,iMOE   the modulus of elasticity parallel to the grain MPa ,

1 The mixed mode fracture energy is defined in section 5.1.3.3 and specifies a mixture between fracture 
opening failure mode and fracture sliding failure mode. 
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h   the member width mm ,

id   the member thickness mm  (see Figure 5-3), 

dm   the number of rows (perpendicular to the grain), 

 ,splitt ir   the load bearing capacity N .

Note that in Equation (5.6) it is differentiated between the case of one single row of fasteners1

( 1dm ) and two parallel rows ( 2dm ).

5.1.3 RELEVANT MATERIAL PROPERTIES  

5.1.3.1 Embedding Strength 
Several definitions of embedding strength exist for timber materials and when comparing test 
results it is of importance to be aware of these definitions. A quite common definition of the 
embedding strength is the definition according to the European test standard EN 383, which 
reads: the embedding strength is “an average compressive stress at maximum load in a 
specimen of timber (…) under the action of a stiff linear fastener”. The test configuration for 
parallel and perpendicular to grain tests is given in Figure 5-5. This standard defines the 
embedment strength as the highest embedment stress within 5 mm displacement for both 
parallel and perpendicular to grain tests. The load displacement diagrams for the embedding 
strength parallel and perpendicular to the grain are illustrated in Figure 5-6. For the parallel to 
grain test the maximum load is usually reached within 2 or 3 mm displacement and the load-
displacement curves show a typical linear and full plastic branch. For tests perpendicular to 
the grain this is not the case. The load is increasing with increasing displacement and the 
measured embedding strength strongly depends on at which displacement it is defined. It 
should be underlined that in Johansen’s yield model ideal rigid-plastic behaviour is assumed 
for the embedding strength. This might be reasonable for the case parallel to the grain, but it is 
a crude approximation for the case perpendicular to the grain (compare Figure 5-6). 

In practice the embedding strength must be estimated based on indirect information, such as 
geometry or material properties which are related to the embedding strength. In most design 
codes the embedding strength is estimated based on information about the dowel diameter, the 
timber density and the force direction relative to the grain. These estimates are based on the 
analysis of experiment data. 

1 Rows of fasteners are defined in Figure 5-15. 
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Figure 5-5 Embedment test according to EN 383. (Taken from Sawata and Yasumura (2002)). 

Figure 5-6 Load-displacement behaviour parallel (left) and perpendicular (right) to grain test. 
(Taken from Sawata and Yasumura (2002)) 

The embedment strength expressions in EC 5 (EN 1995-1-1:2004) are based on a 
comprehensive study by Whale and Smith (1986b) and Ehlbeck and Werner (1992). The 
influence of the timber density and the fastener diameter is derived by regression analyses. 
The following equations build the basis for the formulation found in the EC 5. 

,0 0.082 1 0.01h denr d  for dowels, coniferous and deciduous (5.7)

0.3
,0 0.082h denr d  for nails (not pre-drilled), coniferous and deciduous (5.8)

When the embedding strength perpendicular to the grain is estimated according to EC 5 the 
following formulations are utilised: 
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,90

0.082 1 0.01
1.35 0.015

den
h

d
r

d
 for dowels, coniferous (5.9)

,90

0.082 1 0.01
0.9 0.015

den
h

d
r

d
  for dowels, deciduous (5.10)

0.3
,90 0.082h denf d    for nails, coniferous and deciduous (5.11)

with

,0hr  the embedding strength parallel to the grain [MPa], 

,90hr  the embedding strength perpendicular to the grain [MPa], 

den  the timber density [kg/m3],

d  the diameter of the fastener [mm]. 

Equations (5.7) - (5.11) specify an estimate of the embedding strength by given fastener 
diameter and density of the timber. In EC 5 the same expressions are used for the estimation 
of the 5%-fractile value. Therefore, it is assumed that a sufficiently good estimate for the 5%-
fractile value of the embedding strength can be obtained by exchanging the expected value of 
the density by the 5%-fractile value. This is only true if it can be assumed that the uncertainty 
of the derived regression models is equal to zero.  

In Leijten et al. (2004) embedding strength data is analysed. Data from research projects 
associated with the following references is used:  

Whale and Smith (1986b) and Ehlbeck and Werner (1992) (coinciding with data used for 
calibration of code formats, e.g. see the EC 5 formulations above),  

Vreeswijk (2003), Sawata and Yasamura (2002), Mischler (not published) (not yet 
considered in code drafting).

As in the EC 5 formulation it is found that the embedding strength mainly depends on the 
timber density and the diameter of the fastener. Eight cases are differentiated, namely 
coniferous and deciduous wood loaded parallel or perpendicular to the grain with pre-drilled 
(bolts and dowels) or non pre-drilled (staples and nails) fastener holes. For all cases it is found 
that the following model fits the data best: 

h hb c
h h denr a d (5.12)

where,

hr   is the embedding strength MPa ,

, ,h h ha b c  are the model parameters ,
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den   is the timber density 3kg m ,

d   is the diameter of the fastener mm ,

  is the error term MPa .

Rewriting Equation (5.12) as: 

* *ln ln ln ln    with  lnh h h den h h hr a b c d a a (5.13)

and assuming that ln  is normal distributed with zero mean and unknown standard 
deviation ln  the parameters *, ,h h ha b c  and the standard deviation ln  can be estimated 
with the maximum likelihood method, see e.g. Annex A. Therefore, the parameters and the 
standard deviation of the logarithm of the error term are normal distributed random variables. 
According to Leijten et al. (2004) the parameters of Equation (5.12) are: 

Table 5-1 Parameters for the estimation of the embedding strength based on Equation (5.12) 
according to Leijten et al. (2004). 

Coniferous Deciduous Coniferous Deciduous Coniferous Deciduous Coniferous Deciduous
n = 397 n = 120 n = 319 n = 80 n = 448 n = 285 n = 506 n = 37

-4.563 -5.533 -3.086 -7.905 -2.334 -2.441 -2.547 -2.245

0.44 0.513 0.391 0.533 0.232 0.296 0.309 0.655

1.345 1.507 1.148 1.887 1.066 1.091 1.099 1.128

0.072 0.077 0.064 0.079 0.038 0.044 0.052 0.097

-0.273 -0.181 -0.420 -0.418 -0.253 -0.253 -0.432 -0.455

0.03 0.037 0.027 0.039 0.012 0.018 0.021 0.038

0.175 0.119 0.141 0.101 0.107 0.129 0.129 0.112

0.004 0.005 0.004 0.006 0.003 0.004 0.003 0.010

-0.995 -0.994 -0.995 -0.994 -0.991 -0.986 -0.984 -0.987

0.085 0.006 0.039 0.004 0.105 -0.115 -0.126 -0.129

-0.182 -0.115 -0.138 -0.113 -0.235 -0.049 -0.055 -0.030

Nails Dowels
parallel perpendicular parallel perpendicular

*
hA

*
hA

hB

hB

hC

hC

*
h hA B

h hB C

*
h hA C

 and  are the mean values and the standard deviations of the parameters *, ,h h hA B C  and 

ln .  denotes the correlation between the parameters. With the presented information it is 
possible to express the probability distribution function of the embedding strength and to 
estimate values of the embedding strength based on this. The probability distribution function 
of the embedding strength 

hRF x  can be written as: 

*exp ln ln ln
hR h h den hF x P A B C d x (5.14)

where *, ,h h hA B C  and ln  are introduced as normal distributed random variables. 

However, it is important to note that the parameters of the model and consequently all 
estimates derived from this model are conditional on the set of data based on which the model 
is calibrated. It has to be assumed that the data set considered for deriving the model and its 
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parameters are representative. 

Based on the above listed parameters the embedding strength parallel to the grain can be 
estimated with given density and dowel diameter and disregarding the uncertainty of the 
models as follows: 
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Figure 5-7 Comparison of the embedding strength parallel to the grain predictions according to 
Leijten et al. (2004) and the EC 5. 

In Figure 5-7 Equations (5.7) and (5.8) (EC 5) and Equations (5.15) - (5.18) (Leijten et 
al.(2004)) are plotted as functions of the density den  and given diameter (nails 4d mm
and dowels 12d mm ) and compared. Except for nails coniferous, the EC 5 formulation 
gives lower estimates for the embedding strength.  

5.1.3.2 Bending Moment Capacity 
The bending moment capacity of a steel dowel type fastener is characterised through its yield 
moment. Johansen considered the elastic bending moment capacity .y elm , which can be 
derived for circular cross sections as: 
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3
, 32y el ym f d (5.19)

where yf  is the yield stress of the material of the fastener. 

The plastic bending moment capacity for a circular cross section ,y plm  is derived as: 

3
,

1
6y pl ym f d (5.20)

which requires large strains and therefore large bending rotations, of up to 45° in the 
fasteners, Blass et al. (2001). For mild steel the yield stress yf  in tension can in general be 
approximated by 0.6y uf f , where uf  is the ultimate tension stress of the steel material. Due 
to strain hardening at large bending rotations, the yield stress in bending is estimated by 

0.8y uf f . In Figure 5-8 the stress – strain relation of mild steel is illustrated. 

,u tf

, ,0.8y m u tf f

, ,0.6y t u tf f

st
re

ss

strain

Figure 5-8 Stress – strain relation for mild steel. ,y tf  yield strength in tension, ,y mf  yield 

strength in bending, ,u tf  ultimate strength in tension. 

In Europe the load carrying capacity and the deformation behaviour of connections with 
dowel type fasteners is assessed by tests according to EN 26891. Here the connection strength 
is defined as the maximum load before a deformation of 15 mm parallel to the load direction 
is observed. In Blass et al. (2001) it is shown that, considering the strength criteria of 15 mm 
relative displacement in the connection, an angle of 45° is rarely reached. Therefore the full 
plastic moment capacity cannot be mobilised. To quantify this effect an algorithm is derived 
to relate the plastification reached at 15 mm displacement for different dowel diameters and 
different joint geometries. As a result of this an alternative equation for the estimation of the 
bending yield moment of bolts and dowels in dowel type fastener connections is proposed in 
Blass et al. (2001), as: 
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2.60.3y um f d (5.21)

The parameters 0.3 and 2.6 are identified by regression analysis. Note that Equation (5.21) is 
used in the present Eurocode 5 (EN 1995-1-1:2004). 

In many tests recorded e.g. in Jorissen (1998) the load bearing capacity is reached at even 
lower displacements in the connection, when compared with the 15mm requirement in EN 
26891. This is especially the case for multiple fastener joints. Therefore it may be assumed 
that even Equation (5.21) in some cases gives too optimistic estimates of the bending yield 
capacity.  

5.1.3.3 Mixed Mode Fracture Energy 
A fundamental material property in fracture mechanics is the (fracture) energy which is 
required to open a crack in a solid material. In fracture mechanics three different fracture 
modes are differentiated; the opening mode, the sliding mode and the tearing mode, compare 
Figure 5-9.

Mode I
Opening Mode

Mode II
Sliding Mode

Mode III
Tear Mode

Figure 5-9 Three opening modes in fracture mechanics. 

Generally, in dowel type fastener timber connections timber cracks are due to a combination 
of stresses perpendicular to the grain (opening Mode I) and shear (slide Mode II). The result is 
the so called mixed mode fracture. According to Petersson (1995) and Gustafsson (1992) the 
fracture energy in mixed mode I and II can be estimated as: 

,2 ,1

,1 ,1 ,2

41 1 1 1
2

g g
c

g g g

g (5.22)

where
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and

2162 1.07       Ic den
Nmg m (a)

23.5      IIc Ic
Nmg g m (b)

(5.24)

where

Icg   is the fracture energy required for opening mode I N mm ,

IIcg   is the fracture energy required for opening mode II N mm ,

den   is the timber density 3kg m ,
,90t

v

r
r   is the ratio of tension strength perpendicular to the grain and shear strength, 

90MOE  is the MOE perpendicular to the grain MPa ,

0MOE   is the MOE parallel to the grain MPa .

Simplification of the Mixed Mode Fracture Energy Model 

In practice the input parameters of the above presented framework for deriving the mixed 
mode fracture energy may be not specified with high accuracy. E.g. in Jorissen (1998) the 
ratio of tension strength perpendicular to the grain and shear strength ,90t vr r  is assumed to be 
constant and approximated by 0.6. The ratio between the MOE perpendicular to the grain and 
the MOE parallel to the grain 90 0MOE MOE  is assumed to be equal to 1/30. Based on these 
assumptions the above presented model can be simplified; thus the mixed mode fracture 
energy cg  can be modelled as a function of the density (Equation (5.25) and Figure 5-10): 
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20.0013  -  0.1918       c den
Nmmg mm (5.25)
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Figure 5-10 The mixed mode fracture energy as a function of the density. 

5.1.4 THE BEHAVIOUR OF SINGLE FASTENER CONNECTIONS 

The load-slip behaviour of single fastener connections is illustrated schematically in Figure 
5-11. It is dependent on the slenderness of the fastener which can be expressed roughly as the 
ratio between the thickness of the middle member md  and the diameter of the fastener d . In 
Figure 5-11 rigid corresponds to a ratio 2md d , rigid/slender to 6md d  and slender to 

12md d .

3 6 9 12

3

w [mm]

 q [kN]

rigid

rigid/slender

slender

15

Figure 5-11 Influence of the slenderness of the fastener on the load-slip behavior of a timber to 
timber joint parallel to the grain, adapted from Jorissen (1998).  

The slenderness ratio is also important for the assessment of the failure mode which can be 
expected in a joint with a specific configuration. In Jorissen (1998) slenderness ratios are 
introduced which divide expected rigid behaviour, rigid/slender behaviour and slender 
behaviour for double shear connections; corresponding to the Johansen failure modes I, II and 
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III specified in Equations (5.1)-(5.4). In Figure 5-12 the dependency between slenderness - 
ratio and failure mode is illustrated. The threshold values ;1gr  and ;2gr  can be quantified as: 

;1 0.41   ;  2ys
gr m s

h

fd d d
d r

(5.26)

1.39   ;  0.82ys
gr m s

h

fd r r
d r

(5.27)

Here, sd  is the side member thickness, d  is the dowel diameter, yf  the yield strength for 
bending, hr  the embedding strength and md  the middle member thickness.  

r

;1gr gr

Mode I Mode II Mode III

Figure 5-12 Graphical representation of the dependency between slenderness - ratio and 
(Johansen) failure mode. Characteristic capacity over slenderness - ratio (fixed 
diameter).

5.1.5 DESIGN FRAMEWORK FOR SINGLE DOWEL TYPE FASTENER 
CONNECTIONS 

5.1.5.1 The Eurocode Design Format 
According to EC 5 (EN 1995-1-1:2004) the design resistance dr  is calculated as (compare 
sections 2.4.2 and 4.3.4.2): 

mod
k

d d
M

rr k z (5.28)

where:

kr  is the characteristic value for the load bearing capacity, 

dz  is the design variable, 
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M  is the partial factor for material property, 

modk  is a modification factor taking into account the effect of the duration of load and 
moisture.  

The characteristic value kr  is equivalent to the 5%-fractile value of the underlying probability 
distribution function of the load bearing capacity.  

The characteristic value of the resistance for dowel type fastener joints is derived from the 
Johansen equations (Equation (5.5)). In Equation (5.5) the index m  specifies the middle 
member and s  the side members which are assumed to have identical properties. The 
embedding strength and the fastener yield capacity are introduced as characteristic values 
(5%- fractile values). The characteristic value of the embedding strength is approximated by 
Equations (5.7) - (5.11) using the 5%- fractile value of the density; the characteristic value of 
the fastener bending moment capacity is approximated by Equation (5.21) using the 5%- 
fractile value of the tension yield strength of the fastener material. 

The composite modification factor modk  is taking into account the combined effect of load 
duration and moisture environment. modk  values are tabulated in the EC 5 for different timber 
materials and it is distinguished between three ‘service classes’ (moisture environments) and 
five ‘load duration classes’ (compare section 4.4). The values given in the EC 5 are based on 
judgement and therefore mainly reflect tradition and experience. It is interesting to note that in 
the EC 5 design format for timber connections modk  factors are directly applied on 
characteristic values of the resistance of connections (and not on a timber material property). 

The partial safety factor for structural timber M  is 1.3 and in the EC 5 it is suggested to use 
the same value for the resistance of timber connections. In the present version of the EC 5 
possible axial resistances of the fasteners are accounted for by multiplying factors on the 
equations for the failure modes II and III (Equations (5.3) and (5.4)). For these failure modes 
the fastener deformation is pronounced and the additional resistance can be explained by the 
so called rope effect, i.e. axial forces in the fastener due to transferred friction between the 
fastener shaft and the timber and on a compression force component due to possible washers. 
This effect, however,  is hard to quantify and the factors are exclusively a result of judgement. 
In the present considerations these factors are thus not taken into account.

5.1.5.2 Simplified format according to DIN 1052:2004-08 
Design formats based on the Johansen equations require the calculation of at least four 
equations for each failure mode. In design practice this is often considered as being too 
complicated and seen as a disadvantage of the Johansen equations.  

In Blass et al. (1999) an alternative and simplified design framework is presented. It focuses 
on the case of slender fasteners and therefore ductile failure behaviour. It is suggested to aim 
for Johansen failure mode III and a minimum member thickness is introduced to induce 
slender failure mechanisms. For example for double shear timber to timber connections the 
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following minimum member thicknesses for side members ,s reqd  and for middle members 

,m reqd  are proposed: 

,
,

2 2
1

f y
s req

f h s

m
d

r d
(5.29)

,
,

4
1

y
m req

h mf

m
d

f d
(5.30)

f  is the ratio between the embedding strength of the middle member ,h mr  and the embedding 
strength if the side member ,h sr .

In the simplified design rules it is proposed to use the minimum member thickness and use the 
Johansen equation for failure mode III exclusively. If the minimum member thickness cannot 
be reached it is proposed to decrease the calculated joint capacity in a linear manner by 
multiplying the ratio between the member thickness and the minimal member thickness (see 
Equation (5.32)).

The resistance sr  of one fastener assuming that the minimum member thickness (Equation 
(5.29) and (5.30)) is used is given as: 

, ,
, ,

, ,

4    y h s h m
s Joh III s

h s h m

m d r r
r r

r r
(5.31)

Here the index m  specifies the middle member and s  the side members which are assumed 
to have identical properties. 

If the member thickness is smaller, the resistance sr  is decreased as: 

, ,

, ,

  with

min ;

s req Joh III s

s m
req

s req m req

r r

d d
d d

(5.32)

As in EC 5 the material properties for estimating the load bearing capacity sr  are introduced 
as 5%-fractile values. The 5%-fractile value of the embedding strength is estimated according 
to Equations  (5.7) - (5.11) using the 5%-fractile value of the timber density; the characteristic 
value of the fastener bending moment capacity is approximated by Equation (5.21) by using 
the 5%- fractile value of the tension strength of the fastener material. 

The effect of using the simplified design format can be illustrated by considering Figure 5-13.
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r

Figure 5-13 Effect of using the simplified design format on the predicted strength of the connection. 
Characteristic capacity over member thickness and fixed diameter. 

In Figure 5-13 it can be observed that the strength predictions according to the simplified 
equations are always lower than predicted by using the complete Johansen equations.  

5.1.5.3 Refined Design Format Considering Timber Splitting 
As observed in a comprehensive test program documented in Jorissen (1998) the predictions 
of the load bearing capacity for cases when the Johansen failure mode I is governing are not 
properly reflecting the real load bearing capacity of connections with rigid fasteners. In this 
case Equation (5.6) (splitting) may be considered as more appropriate than Equations (5.1) 
and (5.2) (Johansen failure mode I).  

According to the here presented refined design format the load bearing capacity is estimated 
based on the Johansen Equations (Equations (5.1)-(5.4)) and the splitting mode capacity 
according to Jorissen (Equation (5.6)). The relevant failure mode is equivalent to the failure 
mode corresponding to the minimum value of the load bearing capacity estimated according 
to Equations (5.1)-(5.4) and (5.6):  

, , , , , , , , , ,
1min , , , , ,
2s Joh I s Joh Ia m Joh II s Joh III s splitt s splitt mr r r r r r r (5.33)

The index m  specifies the middle member and s  the side members which are assumed to 
have identical properties. 

The model predictions according to the refined design method are compared with the model 
predictions of the design framework according to EC 5 and the simplified design format 
according to DIN 1052:2004-08 presented in Section 5.1.5.2. A parameter study is carried out, 
considering different connection geometries and different material properties for timber and 
steel. (end distance: 3 5 ;8a d d ; timber thickness: ; reqd d d ; characteristic value of 
the timber density: , 300;450den k

3kg m ; characteristic value of the bending moment 
capacity of the fastener material: , 300;450y km MPa  ). Material properties are 
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introduced as 5%-fractile values of the underlying distribution functions. The result shows 
one characteristic pattern for all configurations considered (Figure 5-14): For the considered 
configurations the predictions according to Equation (5.6) never fall below the predictions 
following the simplified approach and never exceed the predictions according to Johansen I. 

d dreq

simplified

splitting

r

Figure 5-14 Predictions considering the splitting mode, compared to the simplified approach. 
Characteristic capacity over member thickness and fixed diameter. 

5.2 EFFECTIVE NUMBER OF FASTENERS 

In timber engineering practice, single dowel type fasteners are rarely used. So called multiple 
fastener connections are utilised; i.e. connections containing more than one fastener. In Figure 
5-15 a multiple fastener connection is outlined. The connection is loaded in tension. Twelve 
fasteners are arranged in two rows. 

s

  md d

h

s

a3,s a1 a1 a3,m

q q

n = 6
m = 2

d

d

d

d

Figure 5-15 Multiple fastener connection loaded parallel to the grain in tension with 6dn
fasteners in 2dm  rows. 
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A multiple fastener connection in general fails at a load level lower than the load carrying 
capacity of a single fastener connection multiplied by the number of fasteners. In most 
national design codes this reduction in load bearing capacity is taken into account by 
introducing an effective number of fasteners ,d efn  which is smaller than the real number of 
fasteners dn . In general the load bearing capacity of multiple fastener connections multipler  is 
estimated as: 

,multiple d ef sr n r (5.34)

Different formulations for ,d efn  can be found in the codes partly based on physical modelling 
and on experimental evidence. The present formulation in the EC 5 involves the in between 
distance 1a , the number of fasteners in a row dn  and the diameter of the fasteners d  and is 
based on Jorissen (1998): 

0.25
0.9 0.91 14, 0.53

13d ef d d
a an n n
d d

(5.35)

In the Canadian code (CSA O86-1:2001) the slenderness d d  of the fastener is also 
considered:

0.2 0.5
0.7 1

, 0.33d ef d
a dn n
d d

(5.36)

where d  is the thickness of the component. 

The common practice in the USA is described in the NDS (1997). The effective number of 
fasteners is based on an analytical study described in Lantos (1969). The multiple fastener 
connection is abstracted by one-dimensional elements. The elastic elongation stiffness EA  of 
these elements and the foundation modulus1 are considered for modelling the load bearing 
capacity of multiple fastener connections. The results of this study are tabulated in the US 
American code (NDS (1997)). 

In Figure 5-16 the ,d efn - dn  relationships according to the different code formats are 
illustrated. It is clear that no agreement exists on the design values for ,d efn . Although the 
design formulations in Canada or Europe are both experimentally based, for large dn  the 
difference reaches 90%.  

                                                
1 The foundation modulus specifies the gradient of the embedding stress - displacement diagram. (e.g. Figure 
5-6) 
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Figure 5-16 ,d efn  according to different design codes. 

The EC 5 design equation for ,d efn  given in Equation (5.35) is based on Jorissen (1998). The 
parameters are estimated based on a comprehensive data base of 875 test observations 
supported by the results of a numerical model for the load bearing capacity of multiple 
fastener joints. All in all two different equations are proposed in Jorissen (1998). Besides the 
equation used in the EC 5 design format the other equation is equivalent to the one used in the 
Canadian code; the equations are rewritten as in Equation (5.37) and (5.38) respectively. 

1
,

n

n

c
b

d ef n d
an a n
d

(5.37)

1
,

n n

n

c d
b

d ef n d
a dn a n
d d

(5.38)

, , ,n n n na b c d  are model parameters, 

1a   the spacing parallel to the grain mm ,

dn   the number of fasteners in a row in the grain direction, 

d   the member thickness mm .

The quantification of the parameters of Equation (5.37) and (5.38) depends on the basis of the 
load bearing capacity derivation of the single fastener joint. Two situations are differentiated: 

a) sR  is based on Johansen Equations only (Equations (5.1)-(5.4)). 

, , 1 , , 1 , , 2 , , 2

, , , , 1 , , 2

min , min ,
min

min ,2 ,2

Joh II s Joh III s Joh II s Joh III s

s

Joh Ia m Joh I s Joh I s

R R R R
R

R R R
(5.39)

See Johansen failure modes in Equations (5.1)-(5.4). Note that the Johansen failure mode I is 
assumed to be brittle, failure modes II and III are assumed to exhibit ductile behaviour. 
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Brittle
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Figure 5-17 Schematic interaction of failure modes; a) sR  is based on Johansen Equations only 
(Equations (5.1)-(5.4)). 

b) sR  is based on Johansen Equations and splitting (Equations (5.1)-(5.4) an Equation (5.6)). 

, , 1 , , 1 , , 2 , , 2

, , , , 1 , , 3

, , 1 , 2

min , min ,

min min ,2 ,2

min ,2 ,2

Joh II s Joh III s Joh II s Joh III s

s Joh Ia m Joh I s Joh I s

splitt m splitt s splitt s

R R R R

R R R R

R R R

(5.40)

In Equation (5.39) and (5.40) the index m  specifies the middle member, 1s  and 2s  the side 
members. 

Brittle
Element

Ductile
Element

Three Johansen modes 
for the two side members

Johansen mode
middle member

Splitting mode
side members

Splitting mode
middle member

R R

R R

Figure 5-18 Schematic interaction of failure modes; b) sR  is based on Johansen Equations and 
splitting (Equations (5.1)-(5.4) and Equation (5.6)). 

The following regression parameters are presented in Jorissen (1998): 
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Table 5-2 Regression parameters according to Jorissen (1998). 

 1 2 3 4 

4-parameters 

Eq.(5.38) a) 

4-parameters 

Eq. (5.38) b) 

3-parameters 

Eq. (5.37) a) 

3-parameters 

Eq. (5.37)  b) 

na 0.42 0.52 0.53 0.55 

nb 0.91 0.9 0.92 0.92 

nc 0.28 0.28 0.28 0.29 

nd 0.19 0.07 - - 

These parameters are derived by regression analysis, and therefore represent the parameters of 
the mean regression curve. In Jorissen (1998) it is found that these values are not appropriate 
for a design equation; they are rounded off and shifted in a way such that 5% of the observed 
and simulated data is larger than the predicted values. 

Table 5-3 Design parameters according to Jorissen (1998). 

 1 2 3 4 

4-parameters 

Eq.(5.38) a) 

4-parameters 

Eq. (5.38) b) 

3-parameters 

Eq. (5.37) a) 

3-parameters 

Eq. (5.37)  b) 

na 0.37 0.43 0.53 0.56 

nb 0.9 0.9 0.9 0.9 

nc 0.3 0.3 0.25 0.25 

nd 0.2 0.1 - - 

   EC 5  

To demonstrate the consequence of the parameter differences in Table 5-2 and Table 5-3 ,d efn -

dn  relationships for the case a) are illustrated in Figure 5-19. Four cases are compared; design 
parameters (Table 5-3) or regression parameters (Table 5-2) for the formulations with 3 or 4 
parameters respectively. The curves are compared with the Canadian Design Equation (5.36). 
It can be observed that the differences within the different parameter sets suggested in 
Jorissen (1998) (Table 5-2 and Table 5-3) are rather small compared with the rather large 
difference compared to the formulation in the Canadian design code.  
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Figure 5-19 ,d efn  according to different suggestions in Jorissen (1998) compared to the 
formulation in the Canadian Design Code (CSA O86.1:2001). 

5.3 PROBABILISTIC MODEL FOR THE LOAD BEARING CAPACITY 
OF DOWEL TYPE FASTENER CONNECTIONS 

In this section a model for the estimation of the load bearing capacity of dowel type fastener 
connections is derived. Therefore, at first two alternative models are presented and discussed. 
In this context when referring to a model two parts are considered separately; the physical and 
the probabilistic part. The physical part is based on proper mechanical hypothesises; i.e. here, 
the distinction of failure modes and the corresponding interaction between material and 
geometry parameters. The probabilistic part is concerned with the identification and the 
quantification of the parameters as random or deterministic variables and the quantification of 
model uncertainties. 

As mentioned above two models are proposed; 

a) A model where the physical part is closely related to the framework presented in the EC 5.  

b) A model which is based on best possible knowledge, i.e. which accounts for the splitting 
mode, a refined embedding strength model and also a more complex equation for 
assessing ,d efn .

The physical part of the models is summarised in Table 5-4: 
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Table 5-4  Two alternative models for the load bearing capacity: a) traditional (Following EC 5), b) 
refinements according to failure mode and embedding strength evaluation.  

 a) b) 

Failure 
modes 

,.,.JohR according to Equations (5.1)-(5.4). ,.,.JohR  according to Equations (5.1)-(5.4); 

,.SplittR according to Equation (5.6). 

Double shear 
capacity of 
single 
fasteners 

, , 1 , , 2, ,

, , , , 1 , , 2

min min
min

min , 2 , 2

Joh C s Joh C sC II III C II III
s

Joh Ia m Joh I s Joh I s

R R
R

R R R

, , 1 , , 2, ,

, , , , 1 , , 2

, , 1 , 2

min min

min min , 2 , 2

min , 2 ,2

Joh C s Joh C sC II III C II III

s Joh Ia m Joh I s Joh I s

splitt m splitt s splitt s

R R

R R R R

R R R

Embedding 
strength

Based on density and diameter, according to 
Equations(5.7) - (5.11); e.g. for dowels 
parallel: 

,0 0.082 1 0.01h denr d

Based on density and diameter, according to 
Equation (5.12), parameters according to 
Table 5-1: 

h hb c
h h denr a d

Yield
Capacity 

Based on the ultimate tension capacity of the 
fastener material and the diameter; 
according to Equation (5.21): 

2.60.3y um f d

Based on the ultimate tension capacity of the 
fastener material and the diameter; 
according to Equation (5.21): 

2.60.3y um f d

Mixed mode 
frac. energy 

-

Based on the density; according to Equation 
(5.25): 

20.0013  -  0.1918       c den
Nmmg mm

MOE - 
Based on density, according to Wood 
Handbook (1987): 0.91

0 48 denmoe

Main 
material 
properties 

Ultimate tension capacity of the fastener 
material: uf .

Density of the timber material: den .

Ultimate tension capacity of the fastener 
material: uf .

Density of the timber material: den .

Geometry 
Parameters modelled by deterministic 
values. 

Parameters modelled by deterministic 
values. 

Distance
Requirements 

Minimal end- and in-between distance 
according to EC 5. 1 4a d ; 3 7a d .

Minimal end- and in-between distance 
according to EC 5. 1 4a d ; 3 7a d .

Multiple 
fasteners 

Based on single fastener connections as a 
reference (Equation (5.34); 

efn according to 

Equation (5.37), parameters according to 
Table 5-3 col. 3. 

Based on single fastener connections as a 
reference (Equation (5.34); 

efn  according to 

Equation (5.38), parameters according to 
Table 5-2 col. 2. 

In the probabilistic part of the model input parameters have to be identified. The geometry 
parameters are assumed to be deterministic and the timber density den  and the ultimate 
tension strength of the fastener material uf  are introduced as random variables. As well 
important is the identification and quantification of model uncertainties.  
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5.3.1 MODEL SENSITIVITIES 

The models a) and b) (Table 5-4) are representing the load bearing capacity of single dowel 
type fasteners as a system of different failure modes. In order to assess the sensitivities of the 
different failure modes and of the input parameters a tentative reliability calculation using 
model a) is performed. According to this model, it is assumed that the Johansen failure modes 
I  and Ia  are brittle and the failure modes II  and III  are ductile. Furthermore, both side 
members are considered separately. The interaction of the different failure modes as 
illustrated in Figure 5-20 can be obtained (compare Figure 5-17). 
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Figure 5-20 Interaction of failure modes. 

The component failure events F  associated with the different failure modes are indicated in 
Figure 5-20. The index m  specifies the middle member, 1s  and 2s  the side members. System 
failure SF  is related to the following combination of component failure events: 

, , 1 , , 2 , , , , 1 , , 2 , , 1 , , 2

, , 1 , , 2 , , 1 , , 2

Joh I s Joh I s Joh Ia m Joh II s Joh II s Joh III s Joh III s

Joh II s Joh III s Joh III s Joh II s

SF F F F F F F F

F F F F
(5.41)

According to Equation (5.41) system failure occurs when one of the side members follows the 
failure mode I , the middle member follows the failure mode Ia  or the side members are 
following both a failure mode II  or III .

The governing combination of failure modes for the determination of the single fastener 
connection strength sR  can be quantified according to a set of limit state functions as e.g. 
presented here for one permanent and one variable load effect, GS  and QS :

1 , , 1

2 , , 2

3 , ,

4 , , 1 , , 2

5 , , 1 , , 2

6 , , 1 , , 2

7 , ,

2 0

2 0

2 0

0

0

0

d Joh I s M G Q

d Joh I s M G Q

d Joh Ia m M G Q

d Joh II s Joh II s M G Q

d Joh III s Joh III s M G Q

d Joh II s Joh III s M G Q

d Joh III

g z R X S S
g z R X S S
g z R X S S

g z R R X S S

g z R R X S S

g z R R X S S

g z R 1 , , 2 0s Joh II s M G QR X S S

(5.42)

with
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dz  is a design variable, 

R  is the resistance according to a Johansen failure mode,  

GS  is the permanent load, 

QS  is the variable load, 

MX  is the model uncertainty. 

The failure probability fp  can be estimated as: 

7

1

0f i
i

p P g (5.43)

The failure probability can be evaluated according to e.g. first or second order reliability 
method (FORM/SORM see e.g. Ditlevsen and Madsen (1996)). The equivalent reliability 
index E  is defined as: 

E fp (5.44)

The reliability analysis is performed by using the following input variables: 

Table 5-5 Input variables for the tentative reliability calculation. 

timber 
density 

yield 
capacity

permanent 
load 

variable load 
model 

uncertainty 
3

den kg m uF MPa GS N QS N MX

distribution Normal Lognormal Normal Gumbel Lognormal 

mean value 450 427 1000 1200 1 

st. dev. 45 17 100 480 0.1 

COV 0.1 0.04 0.1 0.4 0.1 

fractile 5% 5% 50% 98% - 

char. value 376 400 1000 2444 - 

par. safety fac. 1.3m 1.35G 1.5Q -

geometry member thickness fastener diameter fastener placing 

2m sd d 12d mm 3 47 ; 3a d a d
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The design variable dz  is derived according to the EC 5 design format, as: 

, ,G G k Q Q k
d M

k

S S
z

r
(5.45)

The load characteristic values ,G kS  and ,Q kS  and the partial safety factors M , G  and Q  are 
given in Table 5-5. The characteristic value for the resistance kr  is derived according to 
Equation (5.5) using the characteristic value for the embedding strength and the fastener 
bending moment capacity as given in Table 5-5. 

To investigate different cases, i.e. different dominant failure scenarios a parameter study upon 
24 ,160md mm mm  is carried out.  

5.3.1.1 Results
The equivalent reliability index E  (Equation (5.44)) for different values for the middle 
member thickness md  is calculated. In order to investigate the sensitivity of the results on the 
system model assumptions E -values for two alternative system model assumptions are also 
calculated; assuming that all Johansen failure modes are brittle and assuming that all Johansen 
failure modes are ductile (both in contrast to the assumptions in Table 5-4, Model a) 
brittleness for Johansen I  and Ia  and ductile behaviour for Johansen II  and III ).

6.5

6.0

5.5
5.34

6.46

6.60

6.46

6.53

24 42 56 104 160

proposed system interaction all failure modes brittle all failure modes ductile

md mm

Figure 5-21 The equivalent reliability index (Equation (5.44)) for different middle member 
thickness. The results of the proposed system are compared with the results of two 
alternative system model assumptions.  

The E -values range from 5.34 to 6.6 which is equivalent to a failure probability of 84.8 10
and 112 10  respectively. The results according to the alternative system model assumptions 
are in the same order of magnitude.  

In Figure 5-22 the component (failure mode) sensitivities ,comp j  are illustrated. ,comp j  can be 
seen as a measure of the importance of a particular failure mode. E.g. for 24md mm  the 
brittle failure modes I  and Ia  are relevant for the reliability calculation; for 56md mm
exclusively failure mode II  is relevant.  
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Ia 0.6 0.3 0.0 0.0 0.0
I 2x0.6 2x0.3 0.0 0.0 0.0
II 0.0 0.8 1.0 0.5 0.0
II/III 0.0 0.0 0.0 0.7 0.0
III 0.0 0.0 0.0 0.6 1.0

md mm

Figure 5-22 The componental (failure mode) sensitivities i  for different middle member thickness. 

In Figure 5-23 the - values, or sensitivity factors, of the basic variables are illustrated. The 
sensitivity factors are a measure for the relative importance of the uncertainty in the 
(stochastic) basic variables on the reliability index, (Madsen et al. (1986)). It can be observed 
that the uncertainty associated with the model uncertainty MX  and the variable load QS  is 
dominating the result of the reliability calculation.
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Figure 5-23 The sensitivity factors i  for the basic variables for different middle member thickness. 

5.3.1.2 Intermediate Conclusions and Discussion 
Cases with different relevant failure mode combinations are considered. For all combinations 
it can be observed that the variables model uncertainty MX  and variable load QS  are 
dominating the result of the reliability calculation. The evaluated E -values are significantly 
larger than usual target reliability indices ( 4.2target  according to the recommendations in 
JCSS (2001)). A possible reason for this could be the inappropriate quantification of the 
model uncertainty. Considering all the model assumptions integrated into the model a large 
variation of the model uncertainty can be expected. The possible sources of model uncertainty 
are briefly discussed next: 

Resistance is modelled as a consequence of the embedding strength of the timber and the 
plastic bending capacity of the fastener. Other possible effects on the resistance of dowel 
type connections are not considered. 

The embedding strength is defined as e.g. in EN 383. This standard defines the 
embedment strength as the highest embedment stress within 5 mm displacement for both 
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parallel and perpendicular to grain tests. Regression rules (associated with uncertainties) 
are evaluated based on these test data (Leijten et al. (2004), Whale and Smith (1986)). 
Further, the embedding stress strain relationship according to the Johansen equations is 
idealized with an ideal rigid-plastic model, which obviously does not reflect the real 
behaviour.  

The plastic bending capacity of the fastener is estimated by Equation (5.21), which is 
derived in Blass et al. (2001). The parameters 0.3 and 2.6 are found by applying an 
iterative procedure, estimating the activated plastic capacity for different geometrical 
configurations and for an assumed strength criterion of 15 mm relative displacement in 
the connection. In fact and as shown in Jorissen (1998) the ultimate relative displacement 
can be less than 15 mm. 

The system assumptions (Table 5-4) are idealisations and associated with uncertainties. 

The statistical modelling of the material properties, the timber density and the ultimate 
fastener capacity in tension is associated with model uncertainties. 

Because of the high importance of the model uncertainty in reliability evaluation (Figure 
5-23) and the several sources of uncertainty the model uncertainty is assessed in section 5.3.3 
based on observations from experiments published in Jorissen (1998). But first the same data 
set is utilized to assess the proposed models empirically and to discuss some possible model 
verifications.

5.3.2 MODEL VERIFICATION 

The presented models given in Table 5-4 are assessed and verified under consideration of a 
comprehensive data base, Jorissen (1998). Double shear timber to timber connections are 
loaded parallel to the grain in tension and compression. The fasteners are bolts without nuts. 
Teflon layers between the timber members are minimising the friction between the members. 
The motivation for these tests is to investigate the Johansen failure modes under additional 
consideration of a splitting mode. Undesired side effects as an axial tension force components 
in the fastener (rope effect) and friction between the timber members are minimised by having 
no nuts on the bolts and by introducing the Teflon layers respectively. 
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Table 5-6 Data base description:  

564n 1;3;5;9dn 1;2dm

12,60sd mm 24,80md mm 10.65,19.75d mm 6,9h d

1 3,12a d 2 3a d 3 5,12a d

Material: North European timber, visual graded according to the Dutch class B (NEN 5466), 
which corresponds approximately to the European strength class C 24. The sample 
characteristics for density den  are: mean value 450.3

den
m  and the standard deviation 

44.04
den

s  both in 3 /kg m  ; 2700n .

Measurements: Within the experimental program, the following quantities are measured: 

the density of each side and middle member: , 1den s , , 2den s  and ,den m ,

the load bearing capacity: r ,

the end-displacement, i.e. the relative displacement at failure: w .

Based on the models presented in Table 5-4 assessments for the load bearing capacity of the 
test specimen are performed. Therefore, the measured timber densities are used together with 
the assumed ultimate tension strength of the fastener material and the specified geometry. As 
in Jorissen (1998), the ultimate tension strength uf  of the fastener material is approximated 
by:

400 MPauf (5.46)

The model assessments are compared with the observations from the experiments.  

5.3.2.1 Single Fastener Connections 
The first comparison is made for single dowel type fastener connections. 

In the left part of Figure 5-24 model a) from Table 5-4 is utilised to assess the load bearing 
capacity r . The different failure modes according to Johansen are indicated in the Figure. 
Predictions of the load bearing capacity according to the Johansen equation for failure mode I 
(Equations (5.1) and (5.2)) are always larger than the load bearing capacity observed from the 
experiments and are therefore on the unsafe side. Mode II and III model calculations are 
smaller than the measured values. In the right part of Figure 5-24 model b) from Table 5-4 is 
utilised to calculate the load bearing capacity. Johansen failure mode I is entirely replaced by 
the splitting mode according to Jorissen (1998), i.e. for the configurations considered in this 
test programme Johansen failure mode I is never relevant. The predictions of the splitting 
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model are in good agreement with the measured values from the experiments. The Johansen 
modes II and III are also in better agreement with the measurements compared to model a). 
This might be due to the different model for the embedding strength.  
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Figure 5-24 Comparison of model assessments and observations; predictions are made based on 
model a) (left) and model b) (right) from Table 5-4, (data from Jorissen (1998)). 

For both models the results for semi rigid and slender fasteners (Johansen Modes II and III) 
are consistently lower than the experimentally assessed capacity of these connections. 
According to the Johansen model the load bearing capacity of a dowel type connection r  is 
exclusively governed by the embedding strength of the timber hr  and the plastic bending 
moment capacity of the fastener ,y plm . Other effects than friction between the timber side and 
middle members are not considered by the model. The reason for the special test 
configuration in Jorissen (1998) is to exclude these side effects as much as possible and to 
focus on the Johansen mechanisms. However, the consistent underestimation of the load 
bearing capacity by the model provokes a deeper thought in regard to what is modelled and 
what is really observed.

One reason for the deviation might be friction which occurs between bolt shaft and timber and 
this effect might increase the load bearing capacity. This effect is assumed to be proportional 
to the normal force between shaft and timber and different for the case of two plastic hinges 
(Mode II) and four hinges (Mode III) in the fastener (Figure 5-4). The model could be refined 
by introducing the two factors ,f IIk  and ,f IIIk , as: 

2 2
, , ,, , , ,

, , ,
, , , , , ,

4   4      2    1
2 2 2 2

s h s y h s h ms h s h m s h s h m
Joh II s f II

h s h m h s h m h s h m

d d r m d r rd d r r d d r r
r k

r r r r r r
(5.47)



156

, ,
, , ,

, ,

4    y h s h m
Joh III s f III

h s h m

m d r r
r k

r r
(5.48)

The factors are quantified by simple least squares technique minimising the difference 
between model calculation and observation, to , 1.19f IIk , 1.29f IIIk  for model b). 
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Figure 5-25 Comparison of model calculations (original, refined) with measurements, (data from 
Jorissen (1998)). 

In Figure 5-25 the model calculations of the refined model b) are plotted and compared with 
the measurements. Due to the assumed friction effect the dots in the middle and upper part of 
the graph are shifted to the right. 

The above results seem to be promising to capture common effects which might occur for any 
connection with dowel type fasteners. This would inherently include the assumption that the 
considered range of connections is representative for all dowel type connections, which 
obviously is not the case: Only few different diameters are considered, the bolts fit loose into 
the holes (in contrast to dowels, where the fit is tight); all tests are parallel to the grain, 
friction between the members is suppressed by the Teflon layers, etc.. The result has to be 
interpreted as an example and cannot be extrapolated to real situations. Therefore the idea of a 
design format with a factor taking into account a friction effect fk  as calibrated above is not 
followed further. 

5.3.2.2 Multiple Fastener Connections 
In Figure 5-26 model calculations following model a) and b) (Table 5-4) are compared with 
observations from tests. When comparing the two graphs a slight difference between the two 
models can be observed by visual inspection. Model b) seems to deliver more accurate 
predictions. However, the considerable differences in model formulations are not reflected in 
Figure 5-26. 



157

Model Prediction [kN]

M
ea

su
re

m
en

t [
kN

]

0

50

100

150

200

0 50 100 150 200

Model Prediction [kN]

M
ea

su
re

m
en

t [
kN

]

0

50

100

150

200

0 50 100 150 200

Figure 5-26 Comparison of model calculations and measurements for multiple dowel type 
fasteners (N = 474) for model a) (left) and b) (right), (data from Jorissen (1998)). 

5.3.2.3 Estimation of Model Parameters for the ,d efn - Equations 

In Table 5-4, the ,d efn -equations are specified according to Equations (5.37) (Model a)) and 
(5.38) (Model b)) with the corresponding parameters according to Jorissen (1998). These 
parameters are derived based on the data base used herein with support of numerical 
calculations. The same test observations as utilised by Jorissen and the calculated load bearing 
capacity according to models a) and b) are utilized to reassess the parameters of the models. 
Therefore the following regression equations based on Equations (5.37) and (5.38) can be 
formulated: 

1
,

1
,ln ln ln ln ln ln

n

n

c
b

obs d d ef s d n d s

obs
d ef n n d n

d s

ar m n r m a n r
d

r an a b n c
m r d

(5.49)

1
,

1
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n n
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c d
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obs d d ef s d n d s

obs
d ef n n d n n

d s

a dr m n r m a n r
d d

r a dn a b n c d
m r d d

(5.50)

Assuming ln  is following a normal distribution with zero mean and standard deviation 
the maximum likelihood method can be used to estimate the parameters of the model. Only 
test data with 1dn  is used for this consideration. The number of observations is then 
n 474. For the estimation of the load bearing capacity of a single fastener sr  the models 
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presented in Table 5-4 are used with the input data specified in section 5.3.2.1. 

The parameters of Equation (5.37) and (5.38) are estimated as follows (expected values): 

Table 5-7 Parameters for estimating ,d efn  according to Equations(5.37)  and (5.38) (mean values). 

 Model a) Model b) 

3-parametric 

Equation (5.37) 

4-parametric 

Equation (5.38) 

nE A 0.604 0.419 

nE B 0.991 0.957 

nE C 0.211 0.183 

nE D - 0.363 

E 0.195 0.122 

The evaluated parameters are utilised for further comparisons. The same models a) and b) as 
for Figure 5-26 is utilised with the difference that the parameters from above are used for the 

,d efn - equation. 

Model Prediction [kN]

M
ea

su
re

m
en

t [
kN

]

0

50

100

150

200

0 50 100 150 200

Model Prediction [kN]

M
ea

su
re

m
en

t [
kN

]

0

50

100

150

200

0 50 100 150 200

Figure 5-27 Comparison of model results. Reassessed parameters for Equations (5.37) and (5.38) 
and measurements for multiple dowel type fasteners (n = 474) , (data from Jorissen 
(1998)).

As illustrated in Figure 5-27 the model calculations are in good agreement with the test 
results. However, the models are mainly based on empirical considerations (the model 
parameters are calibrated to test observations) rather than on physical understanding (the strict 
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differentiation of the failure modes for single fasteners etc.). It is important to note that 
therefore the appearance of the models is mainly conditional to the tests considered for its 
verification. The physical differentiations made by modelling one single fastener and the 
involved calculation efforts are not consistent with the fact that the multiple fastener 
connection model is mainly governed by the ,d efn - equation. This fact is illustrated in the 
following. 

As a simple example one could think of a very simple model. By setting up the mathematical 
framework of the model one could consider some physical hypothesis. The model of the 
capacity could be for instance be: 

1
n n

nn

c d
eb

m d n d m h
a dr m a n d d r
d d

(5.51)

where hf  is the embedding strength evaluated according to model b). The parameters of such 
a model could be estimated similarly to the approach used in Equation (5.50) to 

; ;...; ; 0.43;0.95;0.19; 0.16;1.087;0.11n n na b e . The result is illustrated in Figure 5-28, 
left.

Alternatively, the embedding strength can be replaced by the timber density. 

1
n n

nn

c d
eb

m d n d m den
a dr m a n d d
d d

(5.52)

The parameters of this model are estimated similar to the approach used in Equation (5.50) to 
; ;...; ; 0.095;0.95;0.20; 0.07;0.92;0.11n n na b e . The result is illustrated in Figure 5-28, 

right.
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Figure 5-28  Comparison of model results according to Equation (5.51) and (5.52) with 
measurements for multiple dowel type fasteners 1dn  (n = 474), (data from Jorissen 
(1998)).

The models presented in Equation (5.51) and (5.52) do not include any steel material property, 
nor any differentiation or detailed description of failure modes. The result, however, is rather 
good. It is underlined that with Equation (5.51) and (5.52) no alternative models for multiple 
fastener connections are proposed. It is demonstrated, however, that models for multiple 
fastener connections are governed rather by the empirical ,d efn -equation than by physical 
consideration as the Johansen equations or the splitting mode. 

5.3.3 EVALUATION OF THE MODEL UNCERTAINTY 

Probabilistic models for uncertain load and resistance characteristics may in principle be 
formulated at any level of approximation within the range of a purely scientific mathematical 
description of the physical phenomena governing the problem at hand and a purely empirical 
description based on observations and tests. In engineering analysis the physical modelling is, 
however, normally performed at an intermediate level.  

The proposed models for the load bearing capacity of double shear timber to timber 
connections with single and multiple dowel type fasteners is based on a strong hypothesis of 
the physical load bearing behaviour. However, some of the input variables of these physical 
models are uncertain and have to be modelled probabilistically. E.g. the formulation for the 
effective number of fasteners efn  is found semi empirically, i.e. assuming that efn  is a 
function of the number of fasteners dn , the ratio between the fastener distance and the 
diameter 1a d  and the ratio between the member thickness  and the diameter d d , a 
multiple linear formulation of the logarithms of the assumed model parameters is obtained 
(compare Equation (5.50)). Hereby both the identification of model parameters and the 
mathematical formulation of the model constitute the model assumptions. The appropriateness 
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of these model assumptions can be quantified by comparing model predictions and 
measurements from experiments. In the JCSS Probabilistic Model Code three possible 
representations of the model uncertainty are given: 

1...M nY X f X X (5.53)

1...M nY X f X X (5.54)

,1 1 ,2 2 ,, ,...,M M M n nY f X X X X X X (5.55)

with

Y  the structural performance as a random variable, 

.f  the model function, 

MX  the model uncertainty as a random variable, 

iX  the basic random variables. 
For the model of the strength for single fastener connections the formulation in Equation 
(5.55) seems to be most appropriate since it differentiates between different model 
uncertainties for different variables within the model. For instance for the model presented in 
Table 5-4b) the mixed mode fracture energy is estimated based on the timber density, the 
embedding strength of the timber is estimated based on the timber density together with the 
diameter of the fastener, etc. These estimations are associated with uncertainties. However, 
the test configuration which is considered here does not facilitate observations of the mixed 
mode fracture energy or the embedding strength directly. The geometry of the connection and 
the timber density is measured first and thereafter the load bearing capacity of the connection 
is measured by destructive test. Based on these the model uncertainty can only be quantified 
as a factor relating the entire model with the density and the geometry as the input with the 
load bearing capacity as the output. Consequently the formulation of Equation (5.53) is 
utilised in this case and can be written as:  

, ,M s sY X f z X (5.56)

Here the model is represented as a function of a vector of random variables X  and a vector of 
deterministic parameters z .

In this case the model uncertainty can be quantified as log-normal distributed random variable 

MX  with the realisations: 
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,m
yx

f z x (5.57)

If the mean value of MX  is not equal to 1 the model is biased. 

For the three models discussed in section 5.3.2.1 the model uncertainty can be quantified. 

Table 5-8 Model uncertainties for the strength estimation of single dowel type fastener connections. 

 Model Uncertainty Mean St.dev 

1 Model a) 1.117 0.240 

2 Model b) 1.105 0.128 

3 Model b) + Friction 0.995 0.087 

Model a) tends to underestimate the load bearing capacity and is therefore biased. This holds 
also for Model b) but the standard deviation of the model uncertainty is much less than for 
Model a). Model b) + Friction is not biased and more accurate since the standard deviation of 
the model uncertainty is less. Referring to Figure 5-24 and Figure 5-25 it has to be noted that 
the model uncertainty is depending on the failure mode which is considered. For example, for 
Johansen failure mode I in Figure 5-24 the model is overestimating the obtained load bearing 
capacity, i.e. the model is biased and the mean value of the model uncertainty is less than one. 
This effect is not reflected by the overall model uncertainty which is assumed in the tentative 
reliability assessment in section 5.3.1. In particular, when considering the individual failure 
modes the model uncertainties are significantly different as seen in Table 5-9. 

Table 5-9 Model uncertainties for the strength estimation of single dowel type fastener connections.  
(failure modes are differentiated) 

  Mean St.dev 

Joh I 0.802 0.061 

Joh II 1.202 0.080 
Model a) 

Joh III 1.278 0.131 

Splitt 0.974 0.077 

Joh II 1.112 0.066 
Model b) 

Joh III 1.205 0.122 

Splitt 0.974 0.077 

Joh II 0.959 0.065 
Model b) + 

Friction
Joh III 1.045 0.095 

Equation (5.56) can now be extended to the case of multiple fastener joints. Considering the 
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multiplicative formulation in Equation (5.34), the model uncertainty for multiple fastener 
joints can be expressed as: 

, ,, ,M s s M nef nefY X f X fz X z X (5.58)

It is not possible to assess the model uncertainty associated with the ,d efn  model individually. 
It is, however, possible to quantify the model uncertainty as: 

, ,M m mY X f z X (5.59)

For the models discussed in section 5.3.2.2 the model uncertainty can be quantified as given 
in Table 5-10. 

Table 5-10 Model uncertainties for the strength estimation of multiple dowel type fastener 
connections.

Model Uncertainty Mean St.dev. 

Model a) 1.256 0.253 

Model b) 1.105 0.170 

Model a), ,d efn  according to Table 5-7.  1.019 0.201 

Model b), ,d efn  according to Table 5-7. 1.027 0.163 

Pure empirical according to Equation (5.51) 1.06 0.107 

Pure empirical according to  Equation (5.52) 1.06 0.108 

The values Table 5-10 are evaluated for all data not differentiating between different failure 
modes and different geometrical set ups.  

5.3.4 LIMIT STATE FUNCTIONS FOR A SELECTED MODEL ALTERNATIVE 

In the previous two sections the two alternative models are verified and model uncertainties 
for different representations of the model are derived. It is shown that it is possible to reduce 
model uncertainty by applying model verifications, i.e. re-calibrated model parameters and/or 
changed model representations. However, none of the proposed verifications is followed 
further here. The considered data set is small and not sufficiently representative. Furthermore, 
the same data set is used for both, the calibration of verified models and for the assessment of 
model uncertainty. Therefore, the relative low model uncertainty derived for the verified 
model should be judged with caution. 

The model presented in Table 5-4 a) is taken as a basis for a model proposal; the model which 
is mainly following the design framework which can be found in the present version of the 
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EC 5. The timber density and the steel yield capacity in tension are introduced as random 
variables. The connection is modelled as a system of the different failure modes according to 
Johansen. The interaction of the different failure modes as illustrated in Figure 5-20 can be 
obtained.

5.3.4.1 Single Dowel Type Fastener Connections 
As in Equation (5.42) the governing combination of failure modes for the determination of the 
single fastener connection strength sR  can be quantified according to a set of limit state 
functions as here for one permanent and one variable load effect, GS  and QS :
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(5.60)

with

dz  is a design variable, 

R  is the resistance according to a Johansen failure mode,  

GS  is the permanent load, 

QS  is the variable load, 

MX  is the model uncertainty. 

In Equation (5.60) the index m  specifies the middle member, 1s  and 2s  the side members. 
For the quantification of the model uncertainty MX  it is differentiated between the different 
failure modes. The model uncertainties for the failure modes are taken from Table 5-9, Model 
a).

The failure probability fp  can be estimated as in Equation (5.43) and can be evaluated 
according to e.g. first or second order reliability method (FORM/SORM see e.g. Ditlevsen 
and Madsen (1996)). The equivalent reliability index E  is defined as in Equation (5.44). 

5.3.4.2 Multiple Dowel Type Fastener Connections 
In engineering design, the load bearing capacity of multiple fastener connections is assessed 
based on the estimated load bearing capacity of a single fastener multiplied by the effective 
number of fasteners ,d efn , compare Equation (5.34). Accordingly, the proposed probabilistic 
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model for multiple fastener connections is based on the assessment of the single fastener load 
bearing capacity. The set of limit state functions, here for one permanent and one variable 
load effect, GS  and QS  is given as: 
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(5.61)

with

dz  is a design variable, 

,d efn  the effective number of fasteners, according to Equation (5.35), 

R  is the resistance according to a Johansen failure mode,  

GS  is the permanent load, 

QS  is the variable load, 

MX  is the model uncertainty. 

The model uncertainty is specified as in Table 5-10, EC a). The failure probability fp  can be 
estimated as given in Equation (5.43); the equivalent reliability index E  is defined as given 
in Equation (5.44). 

5.4 SUMMARY AND CONCLUDING REMARKS, TIMBER 
CONNECTIONS

Timber connections with dowel type fastener are addressed in this chapter. Calculation 
models for single dowel type fasteners are presented; beside the common Johansen equations 
a splitting mode according to Jorissen is introduced. The relevant material properties for 
dowel type fasteners are discussed and a new empirical equation for the estimation of the 
embedding strength is presented, which is based on a substantial embedding strength database 
consisting of data from North America, Europe and Japan. 

Different design frameworks are discussed; the framework according to EC 5, a simplified 
one according to DIN 1052:2004-08 and a refined format also considering the splitting mode 
according to Jorissen (1998) are compared. Several equations for the estimation of the 
effective number of fasteners are introduced and compared. 
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Based on these findings two alternative probabilistic model frameworks for dowel type 
fastener connections are derived. One model, the traditional model, is based on the present 
design rules found in Eurocode 5, and therefore rests on a broad consensus in the research 
community. The other model, the refined model, features more recent research findings as 
failure mode of timber splitting and an alternative formulation for the embedding strength. 
Both models are assessed by considering test data from dowel type fastener connections. 
Some possible model verifications are identified and model parameters are reassessed. The 
model uncertainty is analysed for the two different models; it is observed that the model 
uncertainty is different for different failure modes and might be reduced by using verified 
parameters. The model predictions by using the refined model are closer to observed test data 
than the predictions made by using the traditional model. 

However, the model improvements are not considered further when all the findings are 
summarised into a proposal for a probabilistic model for dowel type fasteners. The proposed 
model is based on the traditional model. The model uncertainty as evaluated under 
consideration of the test data is given.

The several promising achievements in regard to possible model refinements are not taken 
into account. The data set used in this study, although the number of observations is rather 
large, is not considered as representative for the entire domain of dowel type fasteners. In this 
context it should be mentioned that this statement also has to be considered when utilizing the 
model uncertainties quantified based on this test observations. However, the presented scheme 
for the verification of the model for the load capacity of connections with dowel type 
fasteners should be followed further under consideration of more experimental data.  
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6 PROBABILISTIC MODEL CODE - TIMBER  

In chapter 4 and 5 existing knowledge about some aspects of the modelling of timber 
structures is reviewed, discussed and extended. However, the different aspects are treated 
rather independently. In this chapter it is the aim to envelope the above discussed aspects into 
a consistent modelling framework.  

6.1 SCOPE AND LIMITATIONS OF THE PROPOSAL 

The proposal contains models and limit state formulations which are found to be most 
relevant for the probabilistic analysis and code calibration of timber structures. The content of 
this proposal should serve as a general guideline and common reference, but also as a basis 
for further discussions in the research community; discussions on how to describe the rather 
complex strength and stiffness related behaviour of timber and timber related materials 
sufficiently precise and operational for engineering purposes. 

The proposed probabilistic model code PMC for timber structures mainly concerns the 
modelling of material properties of solid structural timber and the modelling of dowel type 
fastener connections. The proposed models are predominantly based on test programs and 
investigations considering European and North American softwoods. For some other 
softwoods and especially for hardwood the underlying assumptions are less appropriate. It 
should also be noted that part of given numbers in this proposal should be considered as 
indicative values. 

6.2 MODEL FRAMEWORK 

In Figure 6-1 the general principle of the proposed modelling framework is illustrated. The 
framework takes basis in the reference material properties represented by random variables in 
the vector X . As introduced in chapter 4 the reference material properties are the bending 
moment capacity mR , the bending modulus of elasticity mMOE  and the timber density den .
Other timber material properties are represented by random variables in the vector Y . The 
material properties are seen in three different contexts. In the upper part of Figure 6-1 the 
material properties of test volumes measured under reference conditions1 are specified with 

sX  and sY . Test standards prescribe dimensions, duration and climate conditions for these 
tests. Nearly all available experimental evidence is related to tests performed according to 
these test standards, i.e. to the corresponding test volumes and conditions. In the middle part 

1 Reference test condition is defined in regard to the climate in which the volumes are conditioned prior to the 
test and in regard to the type of loading. 
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of Figure 6-1 the indicated material properties are related to reference volumes considered 
under reference conditions, 0X  and 0Y . A reference volume is defined as the volume for 
which the material properties are assumed to be constant. In the bottom part of Figure 6-1 the 
material properties under any conditions and any size of a component are represented with 
X  and Y .
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Figure 6-1  Model Framework. It is differentiated between different volumes and different 
conditions. The arrows indicate where models are proposed. 

6.2.1 BASIC PROPERTIES 

The reference properties of structural timber are: 

the bending strength ,m sr  in MPa  and the 

bending modulus of elasticity (MOE) ,m smoe  in MPa ,

both measured on short-term standard test specimens evaluated according to ISO 83751 and 
the

timber density ,den s  in 3kg m ,

measured according to ISO 31312.

The subscript s  refers to material property according to a standardised test procedure. 

For bending components it is assumed that the material properties of a cross section are 

1 symmetrical 4-point bending test, span 18h ( 3 6 h ) with 150h mm , ramp load test duration 300 120s ,
specimen conditioned at nominal climate, 20 2°C, 65 5% relative humidity. 
2 from a disc of full cross section, free of knots and resin pockets. 
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equivalent with the material properties of the reference volume; ,0mr , ,0mmoe , ,0den .

The reference material properties are sensitive to the deviations from the standard test 
conditions. The reference material properties of a cross section in situ (i.e. under any 
condition) can be estimated as: 

Bending moment capacity in situ, ,0,mr : ,0, ,0, , ,m mr Ex s t r (6.1)

Bending MOE in bending in situ, ,0,mmoe :
,0

,0, 1 , , ,
m

m

MOE
moe

Ex s t (6.2)

Density in situ, ,0den :
,0 ,den den s (6.3)

where , , ,Ex s t  is the exposure of the structure to loads, humidity and temperature, over 
time t ; .Ex is a strength modification function, in general defined for a particular set of 
exposures; .Ex  is a stiffness modification function, in general defined for a particular 
set of exposures. 

Other material properties are estimated based on the reference material properties. Referring 
to section 4.5 expressions for the expected values .E  and the coefficient of variation 

.COV  are given in Table 6-1. 

Table 6-1:  Relation reference properties – other properties (based on section 4.5). 

Property Expected Values E X  Coef. of variation COV X

Tension strength par. to the grain, ,0tr : ,0 0.6 t mE R E R ,0 1.2 t mCOV R COV R

Tension strength perp. to the grain, ,90tr : ,90 0.015t denE R E ,90 2.5t denCOV R COV

MOE - tension par. to the grain, ,0tmoe : ,0t mE MOE E MOE ,0t mCOV MOE COV MOE

MOE - tension perp. to the grain, ,90tmoe : ,90 30
m

t

E MOE
E MOE ,90t mCOV MOE COV MOE

Compression strength par. to the grain, ,0cr : 0,45

,0 5c mE R E R 0.8 c mCOV R COV R

Compression strength per. to the grain, ,90cr : ,90 0.008 c denE R E ,90c denCOV R COV

Shear modulus, vmog : 16
m

v
E MOEE MOG v mCOV MOG COV MOE

Shear strength, vr : 0.8
0.2 Ev mE R R v mCOV R COV R

The relations are derived for standard test specimen properties tested under reference 
conditions. However, it is assumed that the relations can be used at any level, i.e. for reference 
volumes and for other climate and load conditions. 
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6.2.2 TYPICAL ULTIMATE LIMIT STATES 

6.2.2.1 Components 
The ultimate limit state equation for a cross section subjected to stress in one particular 
direction is given as:

d M i
i

g z R X S (6.4)

where dz  is a design variable, e.g. cross-sectional area, R  is the resistance, e.g. tension 
strength, iS  is the sum of all possible load effects, e.g. axial stresses, MX  is the model 
uncertainty. 

The ultimate limit state equation for cross sections subjected to combined bending and tension 
stress parallel to grain is given as: 

, ,

, ,0 ,

1 11
t i m i

i i
M

d A t d M m

S S
g X

z R z R
(6.5)

where , ,,d A d Mz z  are design variables, e.g. the cross sectional area and the section modulus, 

,0 ,t mR R  are the tension strength and the bending moment capacity, , ,,t i m iS S  are the sum of 
all possible load effects, e.g. axial stresses and bending stresses and MX  is the model 
uncertainty. 

Ultimate limit state equations for cross sections subjected to other combined stresses can be 
formulated similarly. 

6.2.2.2 Connections
The proposed limit state functions for dowel type fastener connections are given in section 
5.3.4.

6.2.3 TYPICAL SERVICEABILITY LIMIT STATES 

E.g. when a deflection exceeds an allowable deflection limit: 

, ,L i m Mg t W S MOE t X (6.6)

where L  is an allowable deflection limit and , ,i mW S MOE t  is the deflection at time t ,
depending on load effects iS  and modulus of elasticity and MX  is the model uncertainty. 
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6.3 SIMPLE PROBABILISTIC MODEL 

A rather simple but operational proposal for the quantification of the input parameters is 
presented in this section. The specifications may be seen as a common reference for, e.g. code 
calibration procedures. 

6.3.1 BASIC PROPERTIES 

The distribution type and the recommended coefficient of variation ( cov ) of the basic 
material properties for European softwood are given in Table 6-2. It is assumed that the 
properties of test specimen ,m sr , ,m smoe , ,den s  are equivalent to the reference properties of 
cross sections in a structure ,0mr , ,0mmoe , ,0den .

Table 6-2:  Probabilistic models for reference properties. 

 Distribution cov

Bending strength ,m m sR R Lognormal 0.25 

Bending MOE ,m m sMOE MOE Lognormal 0.13 

Density ,den den s Normal 0.1 

The proposed distribution functions for the other material properties are indicated in Table 
6-3.

Table 6-3 Distribution functions for other material properties. 

Property Distribution Function 

Tension strength par. to the grain, ,0tR : Lognormal 

Tension strength perp. to the grain, ,90tR : 2-p Weibull 

MOE - tension par. to the grain, ,0tMOE : Lognormal 

MOE - tension perp. to the grain, ,90tMOE : Lognormal 

Compression strength par. to the grain, ,0cR : Lognormal 

Compression strength per. to the grain, ,90cR : Normal 

Shear modulus, vMOG : Lognormal 

Shear strength, vR : Lognormal 
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6.3.2 CORRELATION MATRIX 

The relations to other material properties are given in Table 6-1. Indicative values of the 
correlation coefficients are given in Table 6-4. 

Table 6-4 Correlation coefficient matrix – indicative values. 

mMOE den ,0tR ,90tR ,0tMOE ,90tMOE ,0cR ,90cR vMOG vR

mr 0.8 0.6 0.8 0.4 0.6 0.6 0.8 0.6 0.4 0.4 

mMOE 0.6 0.6 0.4 0.8 0.4 0.6 0.4 0.6 0.4 

den 0.4 0.4 0.6 0.6 0.8 0.8 0.6 0.6 

,0tR 0.2 0.8 0.2 0.5 0.4 0.4 0.6 

,90tR     0.4 0.4 0.2 0.4 0.4 0.6 

,0tMOE 0.4 0.4 0.4 0.6 0.4 

,90tMOE       0.6 0.2 0.6 0.6 

,0cR 0.6 0.4 0.4 

,90cR         0.4 0.4 

vMOG 0.6 

The values in Table 6-4 are quantified by judgment (COST E24 (2005)), such that 0.8 
high correlation, 0.6  medium correlation, 0.4  low correlation, 0.2  very low 
correlation. 

6.3.3 STRENGTH AND STIFFNESS MODIFICATION FUNCTIONS 

Values for the strength modification function .  are quantified for discrete exposures 
, , ,Ex s t  as specified in Table 6-5. The particular sets of exposures are defined as in EC 5 

(ENV 1995-1-1:2004); different load duration classes and different service classes (sc) 
depending on the expected moisture content of the timber. The values for .  are taken from 
EC 5. 



173

Table 6-5:  Strength modification function table. 

sc
Permanent 
( 10t years)

Long term 
( 0.5 10t years)

Medium term 
( 0.25 6t month) 

Short term 
( 1t week) Instantaneous 

1/2 0.6 0.70 0.80 0.9 1.1 

3 0.5 0.55 0.65 0.7 0.9 

Values for the stiffness modification function .  are quantified for discrete exposures 
, , ,Ex s t  as specified in Table 6-7. The particular sets of exposures are defined as in the 

EC 5 (ENV 1995-1-1:2004); classified as in Table 6-5. The values for .  are taken from the 
EC 5. 

Table 6-6:  Stiffness modification function table. 

sc
Permanent 
( 10t years)

Long term 
( 0.5 10t years)

Medium term 
( 0.25 6t month) 

Short term 
( 1t week) Instantaneous 

1 0.6 0.5 0.25 0.0 0.0 

2 0.8 0.5 0.25 0.0 0.0 

3 2.0 1.5 0.75 0.3 0.0 

6.3.4 MODEL UNCERTAINTIES FOR DIFFERENT ULTIMATE LIMIT STATES 

The model uncertainties cover deviations and simplifications related to the probabilistic 
modelling and the limit state equations. The reference properties are determined by 
standardized tests. Therefore, model uncertainties related to estimation of other material 
parameters (e.g. tension and compression strengths) have to be accounted for. Geometrical 
deviations from specified dimensions, durations of load and moisture effects (damage 
accumulation) also contribute to model uncertainties if not explicitly accounted for in the 
stochastic modelling. Furthermore, the idealized and simplified limit state equations introduce 
model uncertainties. In Table 6-7 indicative values for model uncertainties related to 
components and connections are shown. The model uncertainty for components depends on 
the limit state (bending or e.g. combined stress effects) and how much the actual condition 
deviates from the standard test conditions. The model uncertainty for connections is based on 
statistical analysis of test data when compared to the calculation models in the limit state 
equations in section 5.3.3. It is noted that the expected value of MX  can be considered as a 
bias on the calculation models. 
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Table 6-7:  Model uncertainties MX  for different limit states.

  mean st.dev. Distribution 

Component, e.g. Eq. (6.4) Short term 1 0.05 – 0.10 Lognormal 

Component, e.g. Eq. (6.13) Long term 1 0.10 Lognormal 

Dowel Type Connection, section 5.3.3.     

M IX 0.8 0.12 Lognormal 

M IIX 1.2 0.15 Lognormal 
Single Fastener  

(Failure Mode I, II, III)  

M IIIX 1.3 0.20 Lognormal 

 Multiple Fastener  MX 1.25 0.3 Lognormal 

6.4 POSSIBLE REFINEMENTS 

6.4.1 MODELLING OF THE SPATIAL VARIATION OF TIMBER PROPERTIES 

6.4.1.1 Bending moment capacity 
Following the model proposed by Isaksson (1999) which is described in more detail in section 
4.2.4.3, the bending moment capacity ,0mr  at a particular point j  in component i  of a 
structure/batch is given as: 

,0 ,ij expm m i ijr r (6.7)

where   is the unknown logarithm of the mean of all sections in all components, i  is the 
difference between the logarithm of the mean of the sections within a component i  and .
is normal distributed with mean value equal to zero and standard deviation , ij  is the 
difference between the strength of weak section j  in the beam i  and the value i .  is 
normal distributed with mean value equal to zero and standard deviation .  and  are 
statistically independent. 

Accordingly ,0mR  is a lognormal distributed random variable. 
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Figure 6-2  Section model for the longitudinal variation of bending strength. 

It is assumed that the bending moment capacity of a cross section is related with the bending 
moment capacity of a test specimen ,m sR  as: 

,0 ,m m sR R (6.8)

where  is a constant depending on the applied bending test standard and the characteristics 
of the timber. 

The bending moment capacity ,0mR  is assumed to be constant within one segment (compare 
Isaksson (1999)). The discrete section transition is assumed to be Poisson distributed, thus the 
section length follows an exponential distribution. 

The exponential distribution is given as: 

1 expXF x x (6.9)

For Nordic spruce the following information basis can be given (Isaksson (1999)): 

The variation of the logarithm of the bending capacity ,0ln mR  is related by 40% to the 
variable and by 60% to the variable . The expected length of a section is 1 480mm .

Table 6-8: -values for the estimation of the strength of weak sections. 

See Equation (6.8) EN US AUS 

1.05 1.03 1.02 

The different values for  given in Table 6-8 are due to the different definitions of bending 
strength of test specimen. The values are derived by simulation, see section 7.3. 

6.4.1.2 Bending Modulus of Elasticity 
The within component variation of the bending modulus of elasticity (MOE) is based on the 
within component variation model for bending moment capacity. The realizations of the MOE 
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are directly related to the realizations of the bending moment capacity following the model 
proposed for bending in the foregoing. The section MOE and the bending moment capacity 
are related as follows: 

,0 ,04000 150m mE MOE E R (6.10)

where .E  is the expected value of the corresponding property. The regression coefficients 
are determined by judgement (based on the EN 338 strength class system, European 
softwoods).

,0 ,00.7m mCOV MOE COV R (6.11)

where .COV  is the coefficient of variation of the corresponding property. 

The discrete section transition is assumed to be Poisson distributed; for European softwoods 
the parameters of the section transition model can be taken from above. 

It is noted that the empirical basis for the presented MOE model is rather scarce. However, if 
no better information is available and the within component variation of the MOE is of 
interest the proposed model is considered as a reasonable modelling basis for European 
softwoods.

6.4.2 DURATION OF LOAD EFFECT 

The mechanism leading to strength reduction of a timber member under sustained load is 
referred to as creep rupture and is modelled by so-called cumulative damage models with the 
general form (compare section 4.3.2.2): 

0 0, ,  or , , ,     for    0 1D D
D D

d dh s t r h s t r
dt dt

(6.12)

where t  is time, D  is the damage state variable which commonly ranges from 0 (no damage) 
to 1 (failure), the function .h  contains parameters  that must be determined from 
experiment observations, s t  is the applied stress and 0r  the failure stress under short term 
ramp loading. 

The following long term limit state function is utilized: 

1 M Dg X S t (6.13)

where D  is the damage state variable after the intended service life of a structure and MX  is 
the model uncertainty. 

Three different models are proposed: 
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1.) The model referred to as the Gerhards model (Gerhards (1979)).  

0

exp     for    0 1D
D D D

s td a b
dt r

(6.14)

2.) The model referred to as the Foschi and Yao model (Foschi and Yao (1986)). 

0 0 0

0

( ) ( ) ( )       for   

0                                                                for   

D Db d

D
D D D D D D

D
D

s td s t s ta c t
dt r r r

s td
dt r

(6.15)

3.) The model referred to as the Nielsen model (Nielsen 2000). 

1
12 2 2

0 0 0

( ) ( ) ( )1     for  1
Db

D
d s t s t s ta
dt r r r

(6.16)

The parameters in Equations (6.14)-(6.16) are: 

,D  is the damage state variable, 

t  is the time, 

s t  is the load effect, 

0r  is the timber initial capacity,  

, , , ,D D D D Da b c d are model parameters fitted to experimental results e.g. as in Sørensen et al. 
2005 and section 4.3.3. 

For model 3.) the limit state function given in Equation (6.13) is not valid. According to 
model 3.) a time variant limit state function can be given as: 

2
Mg t SL t X SL t (6.17)

where  is the damage state variable after the intended service life of a structure, MX  is the 
model uncertainty and 0SL t S t R  is the load level. 

6.4.3 UPDATING SCHEME FOR THE BASIC PROPERTIES 

When information has been collected about the basic material properties the new knowledge 
implicit in that information might be applied to improve any previous (prior) estimate of the 
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material property. For the type of information e.g. it can be differentiated between direct and 
indirect information; i.e. direct measurements of the material property and the measurement 
of some indicator of the property respectively. 

In the proposed framework new information in principle can be introduced at any stage of 
modelling. In the following the principle of considering new direct information e.g. in form of 
test results is presented. The utilisation of new indirect information, e.g. inform of grading 
indications, is illustrated with two different methods. 

6.4.3.1 Updating - Direct Information 
The bending strength mR  and the bending modulus of elasticity mMOE  are modelled by 
lognormal distributed random variables which can be represented through the normal 
distributed random variables * lnm mR R  and * lnm mMOE MOE . All basic properties may 
be represented with the uncertain mean value and standard deviation  as illustrated in 
Equations (6.18) - (6.20). 

*expm mR R *
mR  ~ ,R RN (6.18)

*expm mMOE MOE *
mMOE  ~ ,MOE MOEN (6.19)

den  ~ ,N (6.20)

The parameters  and  of *
mR , *

mMOE  and den  are quantified with a Normal-Inverse-
Gamma-2 distribution with the parameters , , ,m s n v  which is equivalent to the natural 
conjugate prior of a normal distribution with unknown mean and standard deviation. Given 
the parameters , , ,m s n v  the predictive distribution of *

mR , *
mMOE  and den  can be derived as: 

ˆ , , ,
1vX

x m nF x m n s v T
s nx (6.21)

where .T  is the student-t-distribution with  degrees of freedom. 

The prior predictive distribution can be quantified with parameters , , , , , ,m s n v m s n v .
See e.g. the JCSS Probabilistic Model Code, JCSS (2001) and Annex A. 

New measurements on the material properties can be used for updating the parameters given 
above. For a sample of n  observations 1 2ˆ ˆ ˆ, ,..., nx x x , the sample characteristics can be 
quantified as: 
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1 ˆim x
n

(6.22)

22 1 ˆ
1 is m x

n
(6.23)

1v n (6.24)

(note that for observations on the bending moment capacity ,m ir  and the bending MOE 

,m imoe , the natural logarithm of the observations, i.e. ,ln m ir  and ,ln m imoe  has to be used). 

The parameters corresponding to the prior information , , ,m s n v  and the sample 
characteristics , , ,m s n v  can be combined as (see e.g. Raiffa and Schlaifa (1960)) : 

n m nmm
n n

(6.25)

n n n (6.26)

2 2 2 2 2
2

v s n m vs nm n m
s

v n v n n
(6.27)

v v n v n n (6.28)

with:

0 for 0
        

1 for 0
x

x
x

(6.29)

and the posterior predictive distribution can be derived as 

ˆ , , ,
1vX

x m nF x m n s v T
s nx (6.30)

6.4.3.2 Updating - Indirect Information I 
In this section a simple model for updating the statistical parameters of the Lognormal 
distribution for e.g. the bending strength of a given timber grade when new information 
becomes available in the form of machine grading results is described following Sørenson 
(2005) and Köhler et al. (2005). 
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The Lognormal distributed strength parameter R  is assumed to have a coefficient of variation 
covR . Then RX ln  is Normal distributed with expected value X  and standard deviation 

2 2ln cov 1X R . X  is assumed to be known and X  is assumed to be Normal distributed 
with expected value 0  and standard deviation 0 .

When machine grading is based on a measured indicator , typically related to the stiffness of 
a timber test specimen, for each grading technique the following relation with the bending 
strength is assumed:  

1
0

bb r (6.31)

where 0b  and 1b  are constants and  is the error term which is assumed Lognormal 
distributed. ln  is then Normal distributed and is assumed to have zero mean value and 
standard deviation ln . The parameters 0b , 1b  and ln  can be estimated using the 
Maximum Likelihood method as described in section 4.2.3.2. 

Given n observations of the indicator 1 2, ,..., n   for n  specimens from a given timber grade, 
the mean value of these can be estimated: 

1
1

n

jj
n . The updated (predictive) distribution 

function for RX ln  is then Normal with expected value ''  and standard deviation ''' :

2 2
0 0 0

1
2 2
0

''
X

X

n b
b

n
 and 

222 2
1 02 20

2 2 2 2
0 0

''' X
X

X X

n b
n n

(6.32)

The updated distribution for the strength R  is then Lognormal with expected value 
2'' '''5.0''expR  and standard deviation '''' '' 2exp ''' 1R R .

6.4.3.3 Updating - Indirect Information II (available test data – calibration of grading rules) 
The probabilistic model for bending strength described in this section can be used for machine 
graded timber and is based on the model described in section 4.2.3.2. The probabilistic model 
can be described by the following steps: 

For a given geographic region and a given type of species (e.g. Nordic Spruce) an initial 
(prior) distribution function 

mRF x  can be established for the bending strength mR  for non-
graded timber. The recommended distribution function is Lognormal. The statistical 
parameters in the distribution function can be obtained using e.g. the Maximum Likelihood 
method. For the identification of lower grades it is recommended to fit the initial (prior) 
distribution function

mRF x  to the data in the lower end (e.g. 30% of the data with lowest 
strengths); in order to obtain good models in the lower tail of the distribution function for the 
graded timber strength. This can be done using the Maximum Likelihood method, see section 
4.2.3.2.

Machine grading is based on a measured indicator , typically related to the stiffness of a 
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timber test specimen. For each grading technique the following linear relation with the 
bending strength is assumed:  

0 1a a r (6.33)

where 0a  and 1a  are constants and  is the lack-of-fit quantity which is assumed Normal 
distributed with zero mean value and standard deviation . The parameters 0a , 1a  and 
can be estimated using the Maximum Likelihood method which also gives the statistical 
uncertainty in form of standard deviations and correlation coefficients of the parameters 0a ,

1a  and .

After grading the updated (predictive) distribution function for the bending strength in grade 
no. j  is obtained from:  

, , ,m

U
R j m L j U jF x P R x b I x b (6.34)

where ,L jb  and ,U jb  are lower and upper limits of the grading indicator   for grading no. j .

The updated distribution function ,m

U
R jF x  can then be used in reliability analyses. A detailed 

description of the method can be found in section 4.2.3.2. 

6.5 CONCLUDING REMARKS 

A proposal is presented for probabilistic modelling of timber material properties. The basic 
reference properties for timber strength parameters are described and some limit state 
equations for components and connections are formulated. The recommended probabilistic 
model for the basic properties is presented and indicative numerical values for the parameters 
are given. Refinements related to updating of the probabilistic model given new information, 
spatial variation of strength and duration of load effects are described. 

The proposal can be seen as a guideline and common reference for probability based code 
calibration of timber design codes. However, the parameters of the proposed models need to 
be quantified on a broad and representative data base. Comprehensive experimental data 
concerning the basic timber phenomena already exist, especially resulting from research 
projects in North America, Europe and Australia. One major task for developing further the 
presented model code is to collect and assess existing experimental data. The timber research 
community is asked to contribute by making available experimental data for the quantification 
of model parameters for timber predominantly used for timber design. 

The presented document does not cover all aspects of the design of timber structures. Beside 
solid timber other timber materials are utilized in timber engineering. Glued laminated timber 
is an example of an interesting timber material, frequently used in high performance load 
carrying structures. It is of utmost importance to develop consistent probabilistic models for 
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these timber materials, especially in the perspective of their potential competitiveness to other 
building materials such as steel and reinforced concrete. 

The further development of the probabilistic model code for timber should constitute an 
important future task for the timber research community. 
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7 APPLICATIONS 

7.1 ASSESSMENT OF DATA 

In Appendix A a general outline for the characterisation of the statistical properties of samples 
is given. In this section the methods are applied on a data set consisting of 175n
observations of bending moment capacity, 1 2, ,..., T

nx x xx . The data is arbitrary but 
typical. It is assumed that the considered sample is obtained by random sampling.  

7.1.1 NON-PARAMETRIC ASSESSMENT 

To gain a first overview about the data set the order statistic of the sample is considered. 
Therefore it is assumed that the sample values are realisations of a random variable X . The 
data is ordered such that 1 2 3 nx x x x . Following Equations (7.1) and (7.2) the expected 
value and the variation of the cumulative distribution of each bending strength observation 

mx , X mF x are derived as: 

1X m
mE F x

n
(7.1)

1
2 1 1X m
m mVAR F x

n n n (7.2)

X mE F x is plotted with its scatter band in Figure 7-1.

The scatter band is defined as 
0.5

X m X mE F x VAR F x .

A plot of X mE F x  is often compared with a probability distribution function XF x  for 
which the parameters  are calibrated to the same set of data. This implies that the probability 
specified in Equation (7.1) of an observation mx  is directly compared with the outcome of the 
probability distribution function X mF x . In the literature (e.g. in Foschi et al. (1989) or 
Ranta-Maunus et al. (2001)) the validity of probability distribution models to represent 
samples and underlying populations is often assessed based on visual judgements of these 
graphical representations. However, the scatter is not taken into account. 
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Figure 7-1 Plot of mE F x (thick line) and scatter band (enveloped by thin lines). 

A common non-parametric evaluation of the 5%-fractile value is based on Equation (7.3) 
which specifies the probability that one further observation of X  is not exceeding the value 
of mx , as: 

, ;1,0
1

mp n m
n

(7.3)

For the considered sample the 5%-fractile value is estimated by linear interpolation and is 
equal to 21.82 MPa. The estimate is a so-called point estimate for the fractile value, only 
reflecting one characteristic of a specific sample. 

According to Equations (7.4) and (7.5), the sample moments of the considered sample are 
evaluated as: 

1

1 ˆ
n

i
i

x x
n

(7.4)

22

1

1 ˆ
n

i
i

s x x
n

(7.5)

Accordingly the sample moments of the considered sample are equal to 40.9x  and 
14.06s , both in MPa.  
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7.1.2 SELECTION OF A DISTRIBUTION FUNCTION AND PARAMETERS 

A convenient approach to check the validity of a chosen distribution model is the use of 
probability paper. Probability paper for a given distribution model is constructed such that the 
cumulative probability density function for that distribution model will have the shape of a 
straight line when plotted on the paper. A probability paper is thus constructed by a non-linear 
transformation of the x and the y axis. The considered data set is plotted on Probability paper 
for a Normal, a Lognormal and a Weibull distribution. The transformations are indicated in 
the graph.

Normal Lognormal Weibull

1

ln
ln

ln
1

x x
F

x

F
x

ln x

1
F

x

Figure 7-2 Probability paper for Normal, Lognormal and Weibull distributions.  

Based on Figure 7-2 the lognormal distribution can be identified as most properly reflecting 
the statistical characteristics of the considered sample, especially in the lower tail regions of 
the distribution. It is well known that especially the behaviour of the probability distribution 
functions in the regions of the tails is of importance in reliability assessments. For load 
variables the upper tail is normally the most important whereas the lower tails are the 
important for resistance parameters (see e.g. Faber (2003)). 

It thus remains to model timber material properties with special emphasis on a good 
representation in the lower tail region. One approach to estimate the probability distribution in 
the lower tail domain is by means of a censored Maximum Likelihood estimation where only 
observations in the lower tail domain i.e. below a given predefined threshold value are used 
explicitly. The other observations are only utilised implicitly to the extent that it is recognised 
that they exceed the threshold. 

A general description of Maximum Likelihood method is given in Annex A on page 6. In this 
special case of a censored Maximum Likelihood estimation two different contributions to the 
likelihood are considered, i.e.: 

1

1
j

i
i

L f x (7.6)

and
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2
n j

GL P X x

with:

1G iP X x F x

(7.7)

where 1L  represents the likelihood of the j  observations with values below or equal to the 
threshold value Gx . 2L  represents the likelihood of the observations with values exceeding 
the threshold value Gx . 1 GF x  is the probability that a value exceeds the threshold 
value Gx  given the parameters of the probability distribution function . If n  is the total 
number of observations jn  is the number of observations exceeding the threshold value 

Gx .

The parameters are easily estimated by the solution of the optimisation problem: 

max 1 2L L (7.8)

The parameters  are estimated as normal distributed random variables with means and 
covariance quantifying the statistical uncertainty due to the relative small number of 
observations below the threshold. 

The parameters  of the probability distribution functions estimated on the basis of Equation 
(7.8) have been found to exhibit moderate sensitivity to the choice of the threshold value Gx
for moderately low values of Gx . The lower 30 % percentile value has been found to be a 
reasonable choice for Gx  (Faber et al. (2004)). 

For the considered bending strength observations, the maximum likelihood method is used to 
estimate the parameters of the 2-parameter Weibull, the Normal and the Lognormal 
distribution (compare Annex A). For means of comparison the parameters are calibrated to the 
entire data domain and by considering exclusively the data from the lower tail of the 
distribution. Gx  is chosen to be equal to the lower 30% percentile value. In Table 7-1 the 
distribution parameters are summarized as correlated normal distributed random variables. In 
Figure 7-3 plots of both predictive distributions are compared with the quantile plot of the 
data.
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Table 7-1 Distribution parameters calibrated to the considered bending strength data. 

  Weibull Normal Lognormal 

w k

45.76 3.09 40.91 14.02 38.61 0.342 

1.19 0.17 1.04 0.93 0.99 0.018 All data 

0.33 0.34 0 

38.66 5.29 36.29 8.56 38.77 0.345 

0.02 0.48 0.70 0.24 1.014 0.019 Lower tail 

0.19 0.22 0.01 
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Figure 7-3 Plots of the predictive distribution functions in comparison with the mE F x  plot; 

compare Figure 7-1. 

Investigating the plots for the Weibull and the Normal distribution it can be found that the 
lower tail domain of the data (quantile plot) is significantly better represented by the 
distributions which are calibrated explicitly to the lower tail. For the Lognormal distribution it 
is evident that both distributions represent the entire data domain irrespectively which 
calibration method is used. It should be noted that this observation is not typical for bending 
strength data sets. For a comparison it is referred to Ranta-Maunus et al. (2001)) where a 
considerable amount of data bases is analyzed and documented.  

7.1.3 ESTIMATION OF THE 5%- FRACTILE VALUE 

As discussed in chapter 2, 5%-fractile values are used as characteristic strength values in 
deterministic design formats. It is of importance that the estimation of these values is fully 
consistent with the probabilistic modelling of strength related material properties. In the 
following the estimation of 5%-fractile values according to existing standards is discussed. 
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7.1.3.1 Standardized methods for the estimation of the 5%-fractile value
For timber materials several standardized methods for the estimation of the characteristic  
value kx  exist. Four different standards are considered here: 

EN 384: valid for solid timber, 

EN 14358: valid for wood based products, 

ISO 13910: valid for solid timber, 

ISO 12491: valid for all building products. 

In the following these methods are briefly reviewed: 

EN 384 – stratified sampling: 

This method is based on stratified sampling, i.e. a sample is subdivided into at least 5 sub-
samples j  of size 40jn  and for each sub-sample the 5%-fractile value 05, jx  is assessed 
according to the order statistics method described in section 7.1.1. The value 05x  is estimated 
as the weighted mean value of the 5%-fractile values of the sub-samples as: 

05,

05

j j
j

j
j

n x
x

n (7.9)

The characteristic value kx  is estimated as: 

05

05,
min 1.2mink

jj

x
x x (7.10)

ISO 13910 – Weibull distribution 

The sample 5%-fractile value 05x is estimated according to the order statistics method 
described in section 7.1.1. The data is calibrated to a 2-parameter Weibull distribution under 
explicit consideration of the lower tail data. The lower tail is defined with the threshold value 

Gx  corresponding to the lower 15% of the data. The Weibull distribution is given in Annex A 
with the parameters w  and k . tailv  is introduced as a approximation of the coefficient of 
variation of the Weibull distribution as: 

0.92
tailv k (7.11)

The characteristic value is given as: 
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051 2.7 tail
k

vx x
n

(7.12)

where n  is the sample size. 

ISO 12491 – Normal distribution 

The estimation of the characteristic value kx  is based on the sample mean x  and standard 
deviation s  as: 

k sx x k s (7.13)

where sk  is a correction factor. 

Equation (7.13) corresponds to a lower bound estimate at a given double sided confidence 
interval k . Accordingly sk  is given by: 

s
kk

n
(7.14)

where n  is the sample size and k  is the k -percentile of the non-central t -distribution with 
n  degrees of freedom and the non-centrality parameter nc  given as: 

1 1nc p n (7.15)

where p  is the fractile of interest (in this case equal to 0.05) and .  is the standard normal 
distribution function. 

When the population standard deviation  is assumed to be known Equation (7.13) is 
rewritten as: 

kx x k (7.16)

where

1
1 1 kk p

n
(7.17)

EN 14358 – Lognormal distribution 

In the EN 14358 the approach of ISO 12491 is applied to a lognormal distribution. 
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7.1.3.2 Predictive 5%-fractile values 
According to modern design codes as the Eurocodes (EN 1990:2002) characteristic values for 
strength related material properties have to be introduced as predictive values of the 5%-
fractile. The general form of the predictive p %-fractile value can be given as: 

1
, , , ˆ     with     p pred X pred X predx F p f x f x f dx (7.18)

where x̂  are the sample observations,  are the parameters of the distribution function. The 
parameters  are realisations of the random vector  with the posterior joint probability 
density function ˆf x  (compare in Annex with Equation (A.32)). Equation (7.18) can be 
generally solved by reliability methods as FORM/SORM or numerical integration, however, 
analytical solutions exists, e.g. for the case where X  is normally distributed. In this case the 
predictive value of the p %-fractile ,p predx  is given as: 

, exp 1 1p pred px m t v s n (7.19)

where x  is the sample mean, s  the sample standard deviation, n  is the sample size and  is 
defined by 1n . pt  is the p %-fractile value of the t -distribution with  degrees of 
freedom. 

It should be noted that this method is fully consistent with the Bayesian updating scheme 
discussed later in this chapter. 

7.1.3.3 Example 
The described methods are used for some example calculations with the data set which is 
already used in section 7.1.1. The results are presented in Table 7-2. 

It can be seen in Table 7-2 that the estimations for the 5%-fractile values are very sensitive to 
the applied estimation method. It can be noticed that the estimations which are based on the 
assumption that the data is normal distributed are rather low (row: 3, 5, 8 (all data)). It is also 
interesting to note, that the result of stratified sampling (row 1) differs significantly from the 
non-empirical approach according to Equation (A.8) (row 11). Consistent results are obtained 
when the parameters of a distribution function are calibrated to the lower tail domain of the 
data by using the maximum likelihood method. It can be seen that the resulting predictive 
fractile values are not very sensitive to the assumed distribution (compare row 8, 9, 10 (lower 
tail)). The method according to Equation (7.19) is fully consistent to the Bayesian updating 
scheme for normal distributed random variables. The method can also be used for lognormal 
distributed random variables by transforming the data accordingly. The estimates are sensitive 
to the assumed distribution (compare row 5 and 6). 
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Table 7-2 Different 5%-fractile values for the same sample. 

row Method    

1 EN 384, Equation (7.10) stratified sampling  22.38 

2 ISO 13910, Equation (7.12) Weibull  20.86 

3 ISO 12491, Equation (7.15) Normal  16.60 

4 EN 14358, Equation (7.15) Lognormal  21.35 

5 Predictive, Equation (7.19) Normal  17.58 

6 Predictive, Equation (7.19) Lognormal  21.87 

7
Predictive,  Equation (7.18), Distribution 
and parameters as in Table 7-1: 

all
data 

lower 
tail

8  Normal 17.75 22.02 

9  Lognormal 21.95 21.90 

10  Weibull 17.43 21.90 

11 Non-parametric, Equation (A.8)   21.82 

7.2 UPDATING OF RANDOM VARIABLES 

7.2.1 NORMAL DISTRIBUTION WITH UNCERTAIN MEAN AND KNOWN 
STANDARD DEVIATION  

The probability distribution of the bending strength of a sample of timber structural elements 
has to be estimated. As prior information it is known that the sample is assigned to be graded 
to a particular timber grade but it is neither known how the timber is graded nor where the 
ungraded material is coming from. The timber grade is specified by a 5%-fractile value of the 
bending strength. It is assumed that the bending strength is following a lognormal distribution 
and that the standard deviation of a typical batch is constant. Between batches of different 
suppliers it is implied that the location, i.e. the mean value, of the distribution is varying. Thus 
the mean value is uncertain. 

The lognormal distribution is equivalent to the normal distribution, if the following 
transformation is applied: 

ln  and
ln ln ln

 for   ln  and  X X Z
X Z Z X

X X Z
Z X

z x
x x zF x F z (7.20)

Further, the coefficient of variation ( cov ) of the lognormal distribution is approximately 
equivalent to its parameter X :
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2cov exp 1  X X (7.21)

In the present example the prior information is quantified as follows: It is assumed that the 
5%-fractile value of the predictive prior distribution matches the required 5%-fractile value of 
the bending strength of 24 MPa (corresponding to the European strength class C24, compare 
Table 3-3). Further, the coefficient of variation of the predictive distribution is assumed to be 
0.3, where as 70% of the scatter is due to the constant standard deviation and 30% is due to 
the standard deviation of the uncertain mean. 

The prior information is: 

ln :x x z Z ~ ,Z ZN M ; ZM ~ ,N

0.25

3.67

0.16

Z

Based on the prior information the predictive distribution of Z is normal distributed with 
3.67P  and 2 2 0.3P

Z .

New information can be introduced, e.g. information from tests of the bending strength of a 
number of structural elements. Here the additional information is (arbitrary chosen values): 

ˆ ˆ ˆ20,30,50,70,80 ln 3.0,3.4,3.9, 4.2, 4.4

5

3.87

n

z

x z x

Considering the prior information and the additional information from the tests the predictive 
distribution of Z  is a normal distribution with the parameters: 3.8U  and 

0.33U , (compare with Equation (A.33)). 

Both distributions, i.e. before introducing new information and afterwards, are plotted in 
Figure 7-4. It is seen that by introducing new information the predictive probability 
distribution of the bending strength is shifted to the right, i.e. the expected strength values are 
higher than prior to the tests. It should be noticed that the new information is quantified by the 
mean value of the sample values and the number of observations within the sample, in this 
case 3.87z  and 5n . Implicitly, it is assumed that the standard deviation of the drawn 
sample is already known with 0.25s .

The predictive 5%-fractile value is calculated with (with  assumed to be known): 

1
0.05, exp 0.05predx (7.22)

with 1 0.05 1.64 .
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Prior to the tests with, 3.67P  and 2 2 0.3P
Z 0.05, 24 MPapredx .

Posterior to the tests with, 3.8U  and 0.33U
0.05, 24.7 MPapredx .
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Figure 7-4 Predictive probability distribution functions considering only prior information and 
considering both, prior and additional information (posterior). 

7.2.2 NORMAL DISTRIBUTION WITH UNCERTAIN MEAN AND STANDARD 
DEVIATION  

Considering the same example as above, where the probability distribution of the bending 
strength of a sample of timber structural elements has to be estimated. Again, as prior 
information it is known that the sample is assigned to be graded to a particular timber grade 
but it is neither known how the timber is graded nor where the ungraded material is coming 
from. It is assumed that both, the mean value and the standard deviation are quite sensitive to 
the grading procedure and the origin of the timber. Consequently the prior information is 
leading to vague estimates of the parameters of the distribution; i.e. the mean and the standard 
deviation are both unknown. 

The prior information is quantified inform of the parameters of the Normal-Inverse-Gamma-2 
distribution (Equation (A.35)) , , ,m s n v . For this example the parameters are quantified by 
choice, but that the resulting prior predictive distribution function is very similar to the prior 
predictive distribution function from the example above: 

ln :x x z Z ~ ,Z ZN M
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3.7

5

0.25

6

m

n

s

v

The values of m  and s  are based on (abstract) samples of equivalent sizes of n  and v
respectively. Note that for the given parameter set the ‘weight’ of the prior information is 
relatively low. 

New information can be introduced, e.g. inform of tests of the bending strength of a number 
of structural elements. The same sample as for the test sample above is used: 

ˆ ˆ ˆ20,30,50,70,80 ln 3.0,3.4,3.9, 4.2, 4.4x z x  with the sample characteristics: 

3.78

5

0.58

1 4

m z

n

s

v n

Considering the prior information and the additional information from the tests the predictive 
distribution of Z  is t-distributed (Equation (A.41)) with the parameters: 

3.75

10

0.4

11

m z

n

s

v

Both distributions, i.e. before introducing new information and afterwards, are plotted In 
Figure 7-5. 

The predictive 5%-fractile value is calculated with 

0.05, 0.05exp 1 1predx m t v s n (7.23)

where 0.05t  is the 5%-fractile value of the student-t-distribution with v  degrees of 
freedom. 

Prior to the tests with, , , , 3.71,5,0.25,6m s n v 0.05, 24 MPapredx .

Posterior to the tests with, , , , 3.75,10,0.4,11m s n v 0.05, 20 MPapredx .
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Figure 7-5 Predictive probability distribution functions considering only prior information and 
considering both, prior and additional information (posterior). 
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Figure 7-6 Comparison of the posterior predictive distribution functions derived according to 
example a) and b). 

In Figure 7-5 it is seen that in this example the picture is quite different than in example a) 
above (Figure 7-4). Here the additional information is introduced in form of the mean value of 
the observed sample values, but also in form of the standard deviation of the sample 
( 0.58s ) which is significantly larger than presumed in example a). While the additional 
sample is exactly the same and the predictive prior distribution is similar, the predictive 
posterior is completely different (compare also with Figure 7-6).
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When assuming known standard deviation, as for example a), the consistency of that 
assumption has to be proven carefully.  

7.3 COMPARISON OF DIFFERENT BENDING TEST 
SPECIFICATIONS

To model the variation of strength and stiffness related material properties between 
components the variation on a meso level has to be taken into account, see chapter 4. 
Consider a timber producer, e.g. a saw mill, with a supply of timber raw material which can 
be assumed as stationary in its properties. It is further assumed that the production and 
selection schemes are constant. A typical output of the saw mill, e.g. normal construction 
timber of a specific size, can be assumed to be equivalent to a population and samples can be 
made to assess the characteristics of such a population. Full-size test can be performed to 
assess the variability of the load bearing capacity between the sampled components directly. 
Due to the sensitivity of the load bearing capacity of components not only to its size, but also 
to climate and loading conditions, test standards are used when investigating the between 
component variability. 

Several probabilistic models where introduced to model the observed variation in strength 
and/or stiffness; e.g. the Normal distribution, the log-Normal distribution and the Weibull 
distribution. Large databases exist showing distribution parameters of specific populations of 
timber all tested according to certain test standards. These standards are in general associated 
with national guidelines or codes for testing structural timber. The most important ones are 
summarised in the following; to illustrate the differences the standards for the evaluation of 
bending strength are compared. 

7.3.1 EUROPEAN STANDARDS EN 408 AND EN 384 

The standard EN 408 specifies the laboratory methods for the determination of some physical 
and mechanical properties of structural timber. It is based on ISO 8375. A symmetrical four 
point bending configuration is used to evaluate the bending strength of components. The 
specimens have spans of 18 times the depth and the loads are introduced vertically at the third 
points; Figure 3-6. Maximum load shall be reached within 300 ± 120 secounds. 

EN 384 defines the evaluation of characteristic values for the strength, stiffness and density of 
structural timber. Reference conditions for bending tests are specified as follows. A critical 
section of each specimen has to be identified and placed in between the loads in the centre 
third of the arrangement. The tension edge shall be selected at random and the reference 
moisture content shall be consistent with a surrounding climate corresponding to a 
temperature of 20°C and 65% relative humidity. The depth of the specimen shall be equal to 
150mm. 
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7.3.2 AMERICAN SOCIETY FOR TESTING AND MATERIALS, ASTM D 4761-88 
AND D 1990-91 

The North American standard for testing the mechanical properties of timber and wood based 
material is ASTM D 4761-88. The span of bending specimens are also expressed as a multiple 
of the depth of the specimen. The span ranges from 17 times the depth to 21 times the depth. 
A four point bending configuration according to Figure 3-6 is prescribed. The time to failure 
shall be approximately 60 seconds; more than 10 and less than 600 seconds. According to 
ASTM D 1990-91, the North American standard for establishing allowable properties of 
visually graded timber, the critical zone shall be randomly located between the supports. The 
tension side shall be also selected at random. The moisture content of the timber shall be 13%. 

7.3.3 AUSTRALIAN/NEW ZEALAND STANDARD, AS/NZ 4063:1992 

This standard prescribes a random location of the test section. The test configuration is 
identical to ISO 8375, i.e. to EN 408. 

Table 7-3 An overview comparison between different bending strength test procedures. 

Origin/Code Geometry 
Climate/Moisture
Content 

Loading/Time 
tofailure 

Bias

Europe/EN 408 and 
EN 384 

4 point bending 
(Figure 3-6)  

L = 18 H 

H = 150 mm 

Conditioned at  

Temp.: 20°C 

Rel. Hum:: 65% 

Ramp load, 

Time to failure: 

300 s ± 120 s 

(By judgment) 
weakest section in 
the middle. 
Tension side 
random. 

North America/ 

ASTM D-4761-88 
and 1990-91 

4 point bending 
(Figure 3-6) 

L = 17 H – 21 H 

H = 150 mm 

Moisture Content: 
13% 

Ramp load,  

Time to failure: 

60 s ~ (10s, 600s) 

(By judgment) 
weakest section 
within supports. 
Tension side 
random. 

Australia/New 
Zealand

AS/NZ 4063:1992 

4 point bending 
(Figure 3-6) 

L = 18 H 

H = 150 mm 

Conditioned at  
Temp.: 20°C 

Rel. Hum:: 65% 

Ramp load, Time 
to failure: 

300 s ± 120 s 
-

7.3.4 EVALUATING THE EFFECT OF DIFFERENT TEST STANDARDS 

7.3.4.1 Duration of Load 
When test data from different sources are assessed it is important to be aware of the different 
bending test specifications. As seen in chapter 2 timber material properties are sensitive to the 
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duration of the applied load. In the above introduced test standards average time to failure is 
specified. In the European and the Australian standard it is 300s, in the US standard it is 60s. 
It can be expected that the influence on the measurements is significant. The so-called 
Madison curve (Equation (4.41)) can be utilised to get an estimate of the effect of these load 
duration differences. 

According to Wood (1949) the Madison curve is written as: 

0.046418.3 108.4 fsl t (7.24)

Where ft  is measured in seconds. According to the Madison curve the difference of bending 
strength measurements with a test of 60s duration are in average 6.5% larger than strength 
measurements with the test of 300s duration. 

7.3.4.2 Weak Section Placing 
The different test standards specify how to place the assumed weakest section in the bending 
test. The European standard requires placing the weakest section in the middle, high stressed 
region, according to the US standard the weakest section has to be placed within the supports 
and following the Australian standard the weakest section shall be placed randomly. The 
difference between the test standards in regard to placing the test specimen is illustrated in 
Figure 7-7. In the Figure the weakest section is indicated by a knot cluster. It can easily be 
imagined that the effect between the different specifications becomes larger when the length 
of the entire specimen increases. In practice it is in general not clear how long the specimen 
is.

Europe

United States

Australia

Figure 7-7 Illustration of the effect of different weak section placing specifications; Europe (EN 
384, weak section between load application), United States (ASTM D 1990-91, weak 
section between supports), Australia (AS 4063:1992, weak section at random). 

To illustrate the effect of the weak section placing specification the model derived in Isaksson 
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(1999) is utilized for simulations. The model is used as it is presented in the proposal for the 
probabilistic model code in chapter 6, page 174. The Monte Carlo Simulation technique (see 
e.g. Melchers (2001)) is used for the simulation of the random variables in the model. It is 
assumed that the beams have a length of 5 m. 1000 bending components are generated with a 
weak section distribution as indicated on page 174. The components are virtually tested 
according to the three different bending strength test specifications. The obtained data is 
utilized to calibrate the parameters of a lognormal distribution. The corresponding distribution 
functions are plotted together with the distribution function of the strength of the weak 
sections in Figure 7-8. The parameters of the distribution functions are given in Table 7-4. 

Table 7-4 Distribution parameters corresponding to Figure 7-8. 

Weak sections 56.28 0.247 

Europe 45.68 0.213 

United States 50.36 0.247 

Australia 51.95 0.232 
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Figure 7-8 Distribution Functions of simulated bending test specimen according to different 
national test standards. 

The distribution functions shown in Figure 7-8 illustrate the difference between the bending 
moment capacity of test specimen and the bending moment capacity of all weak sections. As 
introduced in the proposal of the probabilistic model code in chapter 6 the capacity of a weak 
section corresponds to the capacity of a reference volume. An interesting question within the 
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probabilistic modelling of timber material properties is how to relate measurements on test 
specimen ,m sr  to the properties of reference volumes ,0mr . For the given example a simple 
relation is found with the form: 

,0 ,m m sr r (7.25)

The parameter  is calibrated for different test standards by using the least squares technique. 
The results are given in Table 7-5. 

Table 7-5  -values for the estimation of the strength of weak sections. 

See Equation (6.8) EN US AUS 

1.05 1.03 1.02 

According to Equation (7.25) the parameters of the lognormal distribution can be related as: 

,0 ,

,0 ,

m m s

m m s

r r

r r

(7.26)

It should be underlined that the given example is based on the within component bending 
moment capacity variation model and the corresponding model parameters as presented in 
Isaksson (1999) and chapter 6. 
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8 CONCLUSIONS AND OUTLOOK 

8.1 CONCLUSIONS

8.1.1 RETROSPECT AND MOTIVATION 

During the last decades structural reliability methods have been further developed, refined and 
adapted and are now at a stage where they are being applied in practical engineering problems 
as an decision support tool in connection with design and assessment of structures. 
Furthermore, basic knowledge concerning the actions on structures and the material 
characteristics has improved due to increased focus, better measuring techniques and 
international research co-operation. This knowledge has now reached a level where it enables 
experts to take into account uncertainties in material properties and actions when assessing the 
load carrying capacity, serviceability and service life of structures. This is not least due to the 
fundamental works on structural reliability methods performed within the Joint Committee on 
Structural Safety (JCSS) including, among others, the basic reports on actions on structures, 
basic reports on material resistances, the guideline for reliability based assessment of 
structures and the almost complete JCSS Probabilistic Model Code. These documents provide 
general guidelines for the use of structural reliability methods in practical applications and at 
the same time constitute the basis for ensuring that such analysis are performed on a 
theoretically consistent and comparative basis.  

For materials such as concrete and steel, this has led to an increasingly more consistent 
evaluation of the safety or reliability, i.e. the probability that a structure will fulfil its function 
throughout its service life. Whereas some efforts in this direction have been undertaken also 
for timber; the developments, however, have been less impressive for several reasons: 

The variability of the material properties is much higher than for other building materials. 
This poses problems but also implies that the advantages of introducing reliability 
concepts may be greater. 

The material properties, and therefore also the probability of failure, depend on the entire 
load and moisture history of the structure. 

In the last few years the interest in designing timber structures has steadily increased. The 
reason for this being an increased focus in society on sustainability and environmental aspects 
but also due to the positive effects of timber materials on the inner climate in residential 
buildings and excellent architectural possibilities. Furthermore, timber has been found 
technically and economically competitive compared with steel and concrete as a building 
material for a broad range of building structures such as e.g. large span roof structures and 
residential buildings. 
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It is thus now urgently important that a consistent basis for design of timber structures is 
established and documented in such a way that it may be accepted for implementation by the 
timber engineering and research community. Only then can a consistent basis for the design of 
timber structures be insured for the benefit of the society in general and for the parties with 
interest in the application of the timber as a building material in particular. 

The development of a basis of design for timber structures is the main objective of this thesis. 

8.1.2 APPROACH AND SUMMARY 

The logical scheme of the development of a basis for the design of timber structures is 
constituted by successively following chapters 2 – 7. 

In chapter 2 the main issues of structural reliability are reviewed and discussed. It is focused 
on the topics which are considered as most relevant for this thesis. The limit state principle is 
introduced; uncertainties and their influence on engineering decision making are discussed. 
Basic principles of the probabilistic modelling of loads and resistances are presented. The 
most essential methods of structural reliability and different probabilistic and deterministic 
design concepts are outlined and compared. 

Chapter 3 addresses on timber as a structural material. The growth of a tree is described to 
illustrate how wood is produced. Many particularities of structural timber can be attributed to 
the growing conditions of a tree and the characteristics of the wood cell. The chapter is 
concluded with the definition of timber material properties at the so-called element level and 
the introduction of structural timber strength classes as a consequence of timber grading. 

Chapters 4 and 5 represent the development part of the thesis. In chapter 4 a scheme for the 
probabilistic modelling of the material properties of solid timber is introduced, differentiating 
between three main aspects: scale dependency of timber material properties, time dependency 
and the interrelation between different material properties (see also Figure 4-2). The spatial 
variability is discussed in more detail, differentiating between different levels of variation. 
The corresponding perceptions constitute the basis for better understanding and assessment of 
the high variability of timber material properties. The properties of timber components depend 
on the load- and climate history to which they are exposed during their service lives. Different 
models of the strength degradation under sustained load are discussed, further developed and 
applied for reliability calculations. At the end of chapter 4, functional interrelations between 
different timber material properties are presented. 

In chapter 5 the probabilistic modelling of timber connections is discussed, focusing on a 
particular type of connection: connections with parallel loaded double shear dowel type 
fasteners. Existing calculation frameworks are reviewed and discussed. A probabilistic 
calculation model is developed where the different failure modes of a connection are 
considered as a system reliability problem. A large database is used to calibrate the model 
uncertainty and to discuss possible refinements of the calculation model. The database, 
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however, was found to not be applicable for the development of an alternative calculation 
model for dowel type fastener connections.

In chapter 6 the conclusions are condensed into a proposed basis for the design of timber 
structures. After several discussions 1  it was decided to structure the proposal for the 
probabilistic model code for timber into several levels of sophistication. The basic level 
reflects the recent practice for reliability based code calibration. The bending strength and 
stiffness and the density of timber are referred to as reference material properties and are 
introduced as simple random variables. The basic limit state functions for components and 
connections are given. Furthermore, proposals are made regarding the different characteristics 
of timber on this simple level. Scale effects are disregarded and the time, load and moisture 
dependency is covered by deterministic factors for discrete time, load and moisture scenarios. 
Functional relationships for other material properties (based on the reference material 
properties) are given and probability distribution functions for the other material properties 
are proposed. Starting from this level, several possible refinements are proposed. New 
information might be introduced, and it is shown how different types of new information can 
be integrated by using a Bayesian updating scheme. Refinements in regard to the modelling of 
damage as a consequence of time load duration are proposed based on the models introduced 
in chapter 4. For the bending strength, a hierarchical spatial variability model is proposed and 
a method is presented for linking the properties of a cross section (which is considered as the 
reference starting point for the modelling of spatial variability) with the properties of a test 
specimen. However, some of the features explored in chapters 4 and 5 are not considered as 
being sufficiently verified for the implementation in an operational model code. 

Within chapter 4 and 5 several examples for the discussed models are already given. In 
chapter 7 some further applications such as the assessment of experimental data, updating 
with new information etc. are exemplified. 

8.1.3 ORIGINALITY OF WORK 

The present work has one main objective; the development and the documentation of a 
proposed basis for probability based design of timber structures. The content of the proposal 
is mainly based on already existing knowledge. However, the attempt to combine this 
knowledge into a consistent and operational format is considered as new and original. The 
main features are: 

The presentation of a very basic model as a reference for simple reliability based code 
calibration which is fully consistent with possible refinements. 

1 e.g. with participants of the COST action E 24 (with many representatives of the timber research community) 
and members of the JCSS (as experts in the field of structural reliability) 
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Interrelationships between different material properties based on expected values, 
coefficients of variation and correlations. 

The consistent treatment of material variability on different scales (micro, meso, macro). 

The illustration of how timber material properties can be updated in regard to different 
types of information. 

During the development of the proposal several interesting issues are explored. The results 
have not all been applied in the proposed model code, but they also deliver valuable 
conclusions for the further development of the understanding of timber as a structural 
material. These results are: 

The development of a consistent probabilistic framework of graded timber material; the 
grading process is explicitly considered and a format of communicating the relevant 
information is proposed. 

Based on these results it is demonstrated how cost optimal grading strategies can be 
identified.

A framework for the calibration of load duration modification factors is presented; a 
damage accumulation model based on fracture mechanical considerations is developed 
further for consideration of random load processes. It is found that the model is not 
sensitive to the number of load cycle repetitions when a random load process is 
considered.

Based on experimental data existing models for the capacity of dowel type fasteners are 
reassessed and possible developments are discussed. The model uncertainty is quantified 
based on the data. 

8.1.4 LIMITATIONS

The present work mainly concerns modelling the material properties of solid structural timber 
and the load bearing properties of connections. The proposed models are predominantly based 
on test programs and investigations considering North American and European softwoods. 
For some other softwoods, and especially for hardwood, the underlying assumptions are less 
appropriate. It should also be noted that part of the quantitative information in this thesis 
should be considered as indicative values. Timber connections are considered, however, all 
the concern is directed to one special type of connections; connections with parallel loaded 
double shear dowel type fasteners. 

System effects are not addressed explicitly within this thesis. However, the proposal for the 
modelling of spatial variability can be used for performing research in this direction. Another 
aspect which is nearly neglected is the complex interrelation of timber material and moisture. 
In this case, the physical or biological deterioration of the timber should be considered in 
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addition to its strength and stiffness behaviour.  

8.2 OUTLOOK

The main outcomes of this thesis are related to necessary pre-codification modelling aspects 
concerning the reliability of timber components in regard to strength and stiffness properties. 
An achievement of this thesis is that the work performed is fully compatible with the general 
probabilistic framework for establishing design basis developed by the Joint Committee on 
Structural Safety (JCSS). 

During the course of writing this thesis, however, it has become apparent that several 
fundamental issues require more research and development. In particular, it is found that the 
present practice in regard to strategies to quality control of timber raw material as well as 
engineered timber introduces significant uncertainties regarding the performance of timber 
structural components, and the uncertainties cannot be quantified based on the present control 
practice. It is necessary to develop further a framework for the probabilistic modelling of 
timber grading as outlined in chapter 4 and to disseminate this within code and standard 
writing bodies and timber researchers. 

An attempt to model the spatial variability of timber material properties is presented within 
the present thesis. More experimental work should be performed or reviewed to quantify the 
parameters of the presented models. The description of size effects has earned considerable 
recognition in the past research; no general consensus has been reached and future research 
should be directed in the development of a consistent framework for the description of size 
effects in structural timber elements. 

Furthermore, it has been found that model uncertainties associated with high performance 
timber structural components such as glued laminated timber beams are unsatisfactorily high. 
It is of importance to direct future research in this direction, because engineered timber 
elements are promising products that may compete with steel in large span high performance 
load bearing structures. 

More than for other building materials, the properties of timber structural components and 
systems have to be seen in direct combination with the loads and environment to which they 
are exposed to. Adverse effects in timber structures are not only related to critical load-
strength combinations, but rather to moisture induced strength and stiffness degradation of 
structural elements. The mechanism behind this is the so called mechano-sorptive creep of 
timber on the one hand, but also degradation as a consequence of physical and/or biological 
decay (insects/fungi) on the other hand. Several research activities in the field of moisture 
effects in buildings have taken place, but the individual studies did not yet converge to a 
general consensus which could form a scientific basis for proper code formats and regulations 
facilitating the engineer to cope with the problem in daily design and maintenance. Therefore, 
more work is needed in this respect. 
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A CHARACTERISATION OF RANDOM PHENOMENA 

In general two situations may be distinguished namely, the situation where a new probabilistic 
model is formulated from the very beginning; and the situation where an already existing 
probabilistic model is updated based on additional information. The formulation of 
probabilistic models is normally based on frequentistic information (i.e. data from tests) 
mostly combined with some physical considerations, experience and judgment (subjective 
information). Building a probabilistic model in general requires the following steps: 

assessment and statistical quantification (and qualification) of available data, 

selection of a distribution function, 

estimation of distribution parameters, 

model verification, 

model updating. 

A1  NON-PARAMETRIC ASSESSMENT OF AVAILABLE DATA 

To reach an overview and to get a crude idea about the statistical characteristics of a sample it 
is common to apply some descriptive procedures. In the following, the concept of Order 
Statistics and the Quantile Plot are introduced. It is also common to use the first two sample 
moments to characterise the sample. 

Quantile Plot 

A common method for quantifying the statistical properties of a test sample x  is the non-
parametric procedure. The test data is sorted (ranked) in ascending order according to its 
magnitude, as  

1 2 3 nx x x x (A.1)

where n  is the number of test specimen in the sample and the subscript is equal to the rank of 
the data value. 

The quantile of the data value of rank m  is

0.5
m

mq
n

(A.2)

An issue that may arise here is why the quantile is given by Equation (A.2) and not for 
example just by /m n . When evaluating a certain quantile the data set is split into two groups, 
an upper and a lower one. The 0.5  term in the numerator of Equation (A.2) means that the 
corresponding observation mx  is counted as being half in the one group and half in the other. 
The method is often used as a direct graphical representation of the data in a so-called 
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quantile plot. 

Order Statistics 

Let X  be a continuous random variable with unknown distribution function F x  and the 
probability density function Xf x . n  independent realisations of X are ordered such that 

1 2 3 nx x x x . The observation of rank m , mx is a realisation of the random variable mX .

mX   is determined from the observation that there are 1m  observations not larger and 
n m  not less than mX (considering an arbitrary number of samples of size n ). The 
probability density function of mX  can be expressed as (Madsen et al (1986)): 

1! 1
1 ! !m

n mm
X X X X

nf x F x F x f x
m n m (A.3)

Since the distribution model underlying X  is not known, Equation (A.3) might have no 
further proposition. But if the function XF x itself is considered as a stochastic variable, 
instead of the variable X , the mean and the variance of X mF x  can be assessed by rewriting 
Equation (A.3) as: 

1 1
m

n mm
X m m X m X m X m

n
f x dx m F x F x dF x

m
(A.4)

The expected value of X mF x  is obtained by integration over the probability mass: 

1

0

1

! !
1 !

1

mX m X m X m m

n mm
X m X m X m

E F x F x f x dx

n
m F x F x dF x

m

n n m m
m

m n

m
n

(A.5)

Accordingly the variance X mVAR F x  can be calculated as: 

22

1 1
2

1
2 1 1

X m X m X m

X m X m

VAR F x E F x E F x

E F x E F x
n

m m
n n n

(A.6)
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Equation (A.5) means that the expected value of the distribution function X mF x  evaluated 
at the observation of order m  is equal to 1m n ; i.e. independent of the type of the 
distribution function.

Quantile Predictions 

For quantile predictions the viewpoint is somehow different. Of interest is now the probability 
of exceeding the observation of order m  from a sample of n  independent observations M
times in N  future trails. Following Madsen et al. (1982) it can be shown that this probability 
is given as: 

1
1

, ; ,

N M m n m M
m M

p n m N M
n N

n

(A.7)

For example the probability that one further observation of the random variable X is not 
exceeding mx  is 

, ;1,0
1

mp n m
n

(A.8)

The probability that no of N  further observations will exceed the maximum nx  is 

, ; ,0 np n n N
N n

(A.9)

Equation (A.7) can be utilised to estimate fractile values of a random variable without any 
assumptions of the distribution model of the variable. 

A2 SELECTION OF A DISTRIBUTION FUNCTION 

A classical approach to select a proper distribution function for the representation of a random 
quantity is to postulate a hypothesis for the distribution family, then estimate the parameters 
for the selected distribution function on the basis of observations and finally perform 
statistical tests to verify the hypothesis. Statistical tests are, e.g., the 2 - goodness of fit test 
the Kolmogorov-Smirnov goodness of fit test or when comparing two hypothesises e.g. the 
likelihood ratio test. (see e.g. in Benjamin and Cornell (1971)) 

However, a quite big number of probability distribution functions exist, and it might not be 
reasonable to check all in regard to their validity. Furthermore, in most cases the amount of 
frequentistic information is limited and the statistical tests may thus lead to false conclusions. 
In many cases there are some physical considerations paired with experience which lead to 
the identification of a limited number of possible distributions. In practice the following 
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strategy is quite common: 

First consider the physical arguments why a quantity may belong to one or the other 
distribution family. 

Then check whether the statistical evidence (frequentistic information) is in gross 
contradiction with the assumed distribution.  

E.g. if the bending strength of timber is considered, the following possible distribution models 
are selected for the following reason: 

Normal distribution: additive combination of random phenomena – traditionally used for 
ductile material failure. Probability for negative realisations. 

Lognormal distribution: multiplicative combination of random phenomena. Only positive 
realisations. 

2-parametric Weibull distribution: extreme value distribution. Traditionally used for 
brittle material failure. 

The distribution functions are introduced in Table A1. 

A convenient method to check the validity of a chosen distribution model is the use of 
probability paper. Probability paper for a given distribution model is constructed such that the 
cumulative probability density function for that distribution model will have the shape of a 
straight line when plotted on the paper. A probability paper is thus constructed by a non-linear 
transformation of the x  and the y  axis. The transformations for the Normal, the Lognormal 
and the Weibull distribution are given in Table A2. 

Table A2 Axis transformation for the construction of probability paper. 

 x’-axis y’-axis 

Normal x 1 F x

Lognormal ln x 1 F x

Weibull ln x ln ln 1 F x
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Table A1 Normal, Lognormal and Weibull distribution functions. 

 Density / Distribution Function Range 
Parm. 
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Mean Standard Deviation 
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A3 ESTIMATION OF DISTRIBUTION PARAMETERS 

The Method of Moments 

Let the density function of a random variable X  be given as Xf  and x  be every possible 
realisation of X , then the m th moment of X ( )m

Xm is given as: 

( )    with 2,3,4,5...m m m
X Xm E X x f x dx m (A.10)

The m th central moment is given as: 

( ) (1)
,    with 2,3,4,5...

m mm
X c X X Xm E x m x f x dx m (A.11)

The characteristic of a random variable X  can be expressed with the moments. E.g. the mean 
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value X  and the variance 2
X  of X  can be derived, based on the first and second centralized 

moment respectively: 

(1)
X X Xm x f x dx (A.12)

22
X X Xx f x dx (A.13)

Moments have proven to be useful numerical descriptors of the characteristics of random 
variables, i.e. a random variable can be completely described through its moments. They are 
also used to characterise the statistical properties of samples. The sample mean value and the 
sample variance can be derived based on the first and second centralized moment 
respectively. Considering a sample with n  realisations of the variable X  the sample mean 
(first sample moment) and the sample variance (second sample moment) are given in 
Equation (A.14) and (A.15) correspondingly. 

1

1 ˆ
n

i
i

x x
n

(A.14)

22

1

1 ˆ
n

i
i

s x x
n

(A.15)

Note that these are sample descriptors and independent of any assumption of a possible 
distribution function of X .

Similar as the sample mean and the sample variance, sample moments of higher order, e.g. the 
sample coefficient of skewness and the sample coefficient of kurtosis can be derived from 
Equation (A.10). However, different samples drawn from the same random variable X  might 
have different sample moments. The real moments of X  are not known and they might be 
considered as random variables itself. The sample moments are just realisations of these 
random variables.  

To capture the uncertainty associated with the sample moments the following way of thinking 
might be helpful: Prior to a test nothing is known about its outcomes, it is just known that 
there will be realisations of the random variable  X , i.e. 1 2 3, , ,..., nX X X X , which is a general 
description of the sample consisting of n  observations. The sample mean and the sample 
variance can be written as 

1

1 n

i
i

X X
n

(A.16)
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22

1

1 n

i
i

S X X
n

(A.17)

With some further calculus (see, e.g. Benjamin and Cornell (1970)) the expected value and 
the variance of the sample mean and the sample variance can be expressed as 

21
X XE X m Var X

n
(A.18)

2 2 2 2
2

2 11
X X

nnE S Var S
n n

(A.19)

The expected value of the sample mean is equivalent to the mean of the underlying random 
variable X . The variation of the sample mean is given for the case where the individual 
observations can be considered to be mutually independent. This is the case, e.g. if the sample 
is obtained through random sampling. Also for random samples, the expected value of sample 
variance is given which is not equivalent to the variance of the underlying random variable. In 
other words, on the average over many different samples, 2S  will not be equal to 2

X  for 
which it has been introduced to serve as an estimator.  Therefore 2S  is called a biased 
estimator of 2

X . As the variance of the sample mean the variance of the sample variance is 
also a function of the number of observations and the variance of the underlying random 
variable X .

As shown the sample moments can be used to obtain estimates of the real moments of the 
random variable and the uncertainty associated with this estimation can be quantified. 
Obviously in practice mostly only one sample is considered, i.e. only one realisation of 
sample moments is obtained. The uncertainty of this one realisation can be addressed, by 
exchanging Xm  with x  and X  with s .

Assuming the random variable X  is following a probability distribution function XF  the 
parameters of the distribution can be estimated. However, the uncertainty associated with the 
distribution type assumption cannot be assessed by the method of moments.  

The Method of Maximum Likelihood 

The principle of the Method of Maximum Likelihood is to find a set of parameters of an 
assumed probability distribution function which most likely reflects the statistical behaviour 
of the underlying set of data (sample). The format of the method can be derived by means of 
the following considerations. Supposing that the parameters 1,...,

T
n of the distribution 

of X are known, the joint probability distribution of a (random) sample 1 2 3, , ,..., nX X X X  can 
be written as: 
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1 2 3 1 2, , ,..., 1 2 3 1 2
1

, , ,...,
n n

n

X X X X n X X X n X i
i

f f x x x x f x f x f x f xX x (A.20)

In other words Equation (A.20) can be seen as a relative measure for the belief that the sample 

1 2 3, , ,..., nX X X X  belongs to the distribution function with given parameters 1,...,
T

n .
Obviously in general the situation is contrary. A sample 1 2 3ˆ ˆ ˆ ˆ ˆ, , ,..., nx x x xx  is observed and the 
set of distribution parameters is not known. In that context Equation (A.20) can be similarly 
seen as a relative measure for the likelihood that the distribution determined by  is reflecting 
the statistical behaviour of the sample x̂ . Over the entire domain of all possible parameters 
the likelihood .L  that the parameters belong to the sample is: 

1 2
1

ˆ ˆ ˆ ˆ, ,...,
n

n X i
i

L x x x f x (A.21)

The maximum likelihood estimators can now be defined as the set of parameters  which are 
most likely representing the set of sample values, i.e. the set of parameters which maximise 
the likelihood function .L  over the entire domain of .

1 2ˆ ˆ ˆmax , ,..., nL x x x (A.22)

To illustrate the nature of the likelihood function a set of sample values x̂  is considered and 
the exponential distribution is chosen as a proper distribution function for the sample. The 
probability density function for the exponential distribution is:

expf x x (A.23)

Then by given realisations of X , i.e. 1 2ˆ ˆ ˆ ˆ, ,..., nx x xx  the joint probability density is 

1 2
1

1

ˆ ˆ ˆ ˆ ˆexp exp exp

ˆ ˆ                                      exp

n

X i n
i

n
n

i
i

f f x x x x

x L

X x

x
(A.24)

which is equivalent to the likelihood function given .

For illustration the likelihood function for a given sample is sketched in Figure A1. 



A10

L x

0.5 1.0 1.5 2.0 2.5 3.0

ar
b

it
ra

ry
 s

ca
le

Figure A1  Likelihood function on 

According to Figure A1 the likelihood function is attaining its maximum at  = 1.58, the 
parameter which is most likely representing the considered sample. As an intuitive 
interpretation, the likelihood function might also be helpful to asses the likelihood of every 
possible parameter. In Figure A1 for example 1.5 might be a more likely estimate for   than 
2.5.

In general, it might be advantageous to consider the logarithm of the likelihood function. The 
log likelihood is written as: 

11

ˆ ˆ ˆ ˆln ln ln                               
n n

X i X i
ii

L l f x f xx x (A.25)

Then the maximum may be obtained by solving a set of m  equations 

1

ˆln 0       1, 2,...,                            
n

X i
i j

f x j m (A.26)

However, the solution of the system might not always be possible in a closed form. For 
complex problems, computer-automated search functions like e.g. the simplex method 
(Nelder and Meat (1965)) can be employed to find the values  which maximise the 
likelihood function.

Properties of the Maximum Likelihood estimators 

As for the method of moments the estimators are, before the experiment, random variables 
and can be studied as such. Their properties are well known and intensively studied in the 
literature (Lindley (1965)). For large samples ( 15n ) the estimators  are approximately 
normal distributed (due the summation form in Equation (A.25)). Their means are 
asymptotically equal to the true parameter values ; which means, the estimators are 
asymptotically unbiased. The covariance matrix C  for the parameters 1 2, ,..., T

n  may 
be obtained through the inverse of the Fischer information matrix H :
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1C H (A.27)

with components given by: 

2

ij
i j

lH
=

(A.28)

E.g. the variance of i  is asymptotically equal to: 

2

2

1

i

Var
lnE (A.29)

Contrary to the method of moments the estimations of the distribution variables are studied in 
regard to their uncertainty and not the sample moments. The main properties of the maximum 
likelihood estimates are: 

For large data samples the distribution parameters  are Normal distributed. 

Maximum likelihood estimates are consistent: For large n  the estimates converge to the 
true value of the parameters of the distribution. 

Maximum likelihood estimates are unbiased: For all sample sizes the parameter of 
interest is calculated correctly. 

Maximum likelihood estimates are efficient: The estimate has the smallest variance. 

Maximum likelihood estimate is sufficient: All the information of the observations is 
utilized.

The solution of MLM is unique. 

The probability distribution for the problem at hand has to be known. 

A4 UPDATING 

When information has been collected about a quantity of interest the new knowledge implicit 
in that information might be applied to improve any previous (prior) estimate of the value of 
the property. For the type of information it can be differentiated between so-called equality 
type and inequality type information. Equality type information is corresponding to measured 
variables and inequality type information denotes the information carried with a measurement 
that some variable is greater than or less than some predefined limit. It can also be 
differentiated between direct and indirect information; i.e. direct measurements of the quantity 
of interest and the measurement of some indicator of the quantity respectively. Examples for 
the different types of information are given in Figure A2. 
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Figure A2 Examples for combinations of different types of information. 

The framework of doing updating is Baysian statistics, which uses the Bayes theorem, see e.g. 
Ang and Tang (1975). 

Updating Random Variables using Direct Information 

A random quantity is represented by the random variable X  with the probability distribution 
function XF x . The parameters 1 2, ,..., T

n  of the distribution function are not known 
with accuracy; i.e. they are product of engineering knowledge, physical understanding or 
earlier observations of the quantity. The parameters  are in general expressed as random 
variables itself specified by the so-called prior density function f . The uncertain 
parameters can be updated based on new observations of realizations of the random quantity 
X , 1 2ˆ ˆ ˆ ˆ, ,..., T

nx x xx .

The general scheme for updating of the parameters 1 2, ,..., T
n  is: 

ˆ
ˆ

ˆ

f L
f

f L d

x
x

x
(A.30)

where ˆf x  is the posterior distribution function of the parameters . The likelihood 
function ˆL x  represents the knowledge gained by the observation of x̂ . It can be 
interpreted as the likelihood of observing x̂ under the assumption that  takes its current set 
of values – it may be written as ˆp x .

The Likelihood function is proportional to the joint conditional probability of making the 
observations x̂ :

1

ˆ ˆ
n

i
i

L f xXx (A.31)

where n  is the number of observations. 
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Based on the updated distribution of the parameters ˆf x , it is possible to calculate the 
predictive distribution of the random property X , as: 

ˆU
Xf x f x f dx (A.32)

Closed form solutions for the predictive and the posterior distribution can be found for special 
types of probability distribution functions (known as natural conjugate distributions) in e.g. 
Raiffa and Schlaifer (1961). These solutions are the analytical basis for the updating of 
random variables and cover a number of distribution types which are in common use in 
structural engineering. In cases where no analytical solution is available FORM/SORM 
techniques (Madsen et al. 1986) can be used to integrate over the possible outcomes of the 
uncertain distribution parameters.  

Inference: Normal Distribution with uncertain mean and known standard deviation 

A normal distributed variable X , with the parameters , T
X XM is considered. The 

standard deviation X  is assumed to be known and the mean value XM  is considered as 
random variable. It can be shown, that the natural conjugate distribution for XM  is the normal 
distribution, i.e. XM ~ ,N  is the prior distribution. n  new observations x̂  of X are
made and the sample characteristics x  and s are quantified. 

The posterior distribution function of the mean can be given as (Ditlevsen and Madsen 
(1996)):

21 1exp
22

X
Xf (A.33)

where:

1 1

x
n n

n n

      and 2 2

X

n n

n n

     and 
2

2
Xn

The predictive distribution can then be given as: 

21 1ˆ exp
22

xf x x (A.34)

with: 

2 2
X

As seen in Equation (A.33) and (A.34) the posterior distribution and the predictive 
distribution are both normal which is a convenient property especially for repeated updating. 
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Inference: Normal Distribution with uncertain mean and standard deviation 

Considered is a normal distributed variable X , with the parameters , T
X XM . The 

mean and the standard deviation are regarded as random variables. An analytical solution for 
the updating scheme can be found by using the natural conjugate prior for the distribution of 

, which in this case is the Normal-Inverse-Gamma-2 distribution. The Normal-Inverse-
Gamma-2 distribution is defined through (compare e.g. Rackwitz (1983)): 

,

12 1
22 2 2

, , , , , ,

1 1 1 1exp exp
2 2 2 2 22 1

;    0;     , , 0     

M M

v

f h m s n v f m hn f h s v

hn m v s h v s h v s
vhn

h s v n

(A.35)

where m x  is the mean of a sample of equivalent size n  and s  is the standard deviation 
of a sample of equivalent size 1v . The uncertain variability is expressed by the precision 

21h . Equation (A.35) is the natural conjugate prior distribution function of the 
parameters ,X XM .

By observing n  sample values x̂  from X  the following statistics may be drawn: 

1 ˆim x x
n

22 1
1 is m x

n

1v n

For the posterior distribution function the parameters , , ,m s n v  in Equation (A.35) are 
exchanged the parameters , , ,m s n v given by: 

n m nmm
n n

(A.36)

n n n (A.37)

2 2 2 2 2
2

v s n m vs nm n m
s

v n v n n
(A.38)

v v n v n n (A.39)

with: 
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0 for 0
        

1 for 0
x

x
x

(A.40)

The predictive distribution is of student type and is given with: 

ˆ , , ,
1vX

x m nF x m n s v T
s nx (A.41)

where .T  is the student-t-distribution with  degrees of freedom.  

Quantification of prior information 

As described and illustrated before, Baysian statistics provides a proper framework for 
updating random variables and failure probabilities taking into account additional 
information. The basic assumption in Baysian statistics is that prior information is always 
available and can be quantified. If no information is available, the state of knowledge (or in 
this case the state of ignorance) can still be quantified by so-called non informative priors 
(Lindley (1965)). However, for engineering problems some prior information generally exist 
and the Bayesian interpretation of probability1 enables to introduce even vague subjective 
judgement as quantified prior information. According to the confidence about the subjective
judgement the prior information can be weighted. For example consider the bending strength 
of a timber supply of a sawmill which is planned to be continuously tested. It is assumed that 
the supply is stationary. It is planned to draw a sample of 20 test specimens from the output 
every first Monday of every month. From a neighbouring sawmill it is known that the mean 
and the coefficient of variation of the bending strength are around 56 MPa and 25% 
respectively.  If it is believed that the supply for the considered sawmill is very similar, this 
information can be utilized for the quantification of the prior distribution. Depending on how 
strong the belief of similarity of the outputs of the two sawmills is, the prior information can 
be weighted; i.e. the parameters n  and v  can be estimated correspondingly. 

Another possibility is the quantification of prior information based on data. Consider the 
example above, where the prior information of the bending strength of a sawmill timber 
supply has to be quantified. Distribution parameters from several neighbouring sawmills are 
available and a significant scatter within these parameters can be observed. It is assumed that 
the parameters are following the natural conjugate prior distribution and that the parameters of 
the supply of interest are members of this distribution. In case of the assumption of normal 
distributed bending strength with unknown mean and standard deviation the conjungate prior 

                                                
1 Interpretations of probability.  
Bayesian: probability of A , P A , is the degree of belief that the event A  occurs.
Frequentistic:  Probability is understood as a relative frequency; i.e. A totalP A n n totaln
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is Normal-Inverse-Gamma-2 distributed with the parameters , , ,m s n v . The parameters 
, , ,m s n v  can directly estimated based on the parameter pairs from the other supplies ix

and is  with i im x  and 21i ih s  (Rackwitz (1983)): 

ĥx
h

(A.42)

1
2ĥn h

h
(A.43)

1 2s h (A.44)

ln
2 2
v vh

h
(A.45)

with: 

1

1 ;
k

ih h
k 1

1 ln ;
k

ih h
k 1

1ˆ ;
k

i ih h m
k

2

1

1 ;
k

i ih h m
k

and

2 4 6

1 1 2 16ln ...
2 2 3 15 63
v v

v v v v

The determination of v  requires the numerical solution of Equation (A.45). However, for 
sufficiently large v  (order of magnitude 6v ) v  can be approximated with  

1
lnv h h (A.46)


