
Diss. ETH No. 17156

Selective attention in silicon:
from the design of an analog VLSI synapse to the

implementation of a multi–chip system

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

(ETH ZURICH)

for the degree of
Doctor of Sciences

presented by
CHIARA BARTOLOZZI

Dipl.–Eng. Università di Genova
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Abstract

The basic elements of the cortical neural substrate and of current silicon technology obey
similar physical principles; the implementation of systems based on each of these two ”tech-
nologies” also faces similar constraints. The foundation of neuromorphic engineering is to
recognize and exploit such similarities, and map the properties of neural computation on
to silicon to implement new types of computing devices. This approach leads to the under-
standing of some of the principles that shape neural computation, and to the implementation
of efficient devices which can interact with the real world in real time. The neuromor-
phic strategy has particular relevance for applications where biological systems outperform
classical digital computers, such as the task of perception, where the system must process
noisy and ambiguous stimuli to produce appropriate behavioral responses. The efficient
and compact devices developed through this approach are especially suited for integration
into autonomous artificial systems; an example is the design of ”smart” sensors for robotic
platforms. Progresses in this area could eventually lead to the realization of new prosthetic
devices, that, interfacing and processing information in a way similar to biological nervous
systems, could be naturally interfaced to biological nervous systems.

The work presented in this thesis ranges from ”morphing” properties of synaptic trans-
mission on to silicon, to the realization of a Selective–Attention Chip (SAC), integrated
in a multi–chip system which implements a model of visual selective attention, capable of
operating in the real world, in real time.

The silicon synapse described in this thesis produces realistic postsynaptic currents in
response to presynaptic spikes; it offers the possibility of emulating the functionality of
NMDA and conductance–based synapses in the same framework; most importantly, it is
compatible with circuits that model plasticity on short and long time scales, ranging from
fast adaptation, to spike–based learning, to homeostatic plasticity. Each of the properties
emulated by the proposed synapse circuit has a specific role in neural computation, and
therefore enriches the vocabulary of computational primitives that now can be included and
studied in neuromorphic systems.

The chip developed in this thesis makes extensive use of this synaptic circuit, and se-
quentially selects the most salient regions of the input stimuli. The selection process, known
as selective attention, is the strategy used by natural perceptive systems to cope with the
enormous amount of information received, in face of their limited processing capabilities.
Artificial sensory systems can also benefit from such a strategy.

Analogous to its biological counterpart, the selection mechanism implemented by the
SAC emulates a typical emergent computational property of recurrent neural networks,
that arises from cooperation and competition between computational units, which extracts
information from the relative activity of each unit. The SAC functionality is founded on
the dynamical interaction of the various components of the selective attention process, for
which the synapse circuit developed in this work is a crucial element.

The multi–chip system proposed in this thesis comprises the SAC and a neuromorphic
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transient imager, mounted on an controllable platform. The imager responds to local vari-
ations of the input luminance over time. In such a visual system, the attentional selection
is based on the temporal variation of the stimulus contrast. The activity of the SAC is used
to orient the imager toward the selected stimulus. Such a system expresses an elaborate
behavior, with a mixture of tracking of selected targets and attentional shifts. The results
obtained demonstrate the usefulness and potential application of neuromorphic sensors and
post–processing devices such as the SAC to artificial perceptive systems, in the context of
robotic systems.

The physical realization of the perceptive system proposed in this thesis is also rel-
evant in the context of selective attention research. Specifically it can be used as a tool
for validating hypotheses arising from experimental observations of biological systems and
computational models.



Prefazione

Gli elementi costitutivi del substrato neurale e dell’attuale tecnologia in silicio obbediscono
a principi fisici analoghi; anche la realizzazione concreta di sistemi basati su entrambe
le “tecnologie” deve far fronte a limitazioni e problematiche simili. Il fondamento della
ricerca in ingegneria “neuromorfa” si basa sul riconoscere e sfruttare tali similitudini, per
trasportare su silicio le proprietà della computazione neurale e realizzare nuovi tipi di dis-
positivi computazionali. Questo approccio consente di rivelare alcuni dei principi che hanno
contribuito a modellare la computazione neurale e di costruire dispositivi efficienti, capaci
di interagire con il mondo reale, in tempo reale.

La strategia neuromorfa ha particolare rilevanza nelle applicazioni in cui i sistemi bi-
ologici risultano più efficienti dei “classici” computer basati sulla computazione digitale,
come per esempio in compiti che coinvolgono la percezione, ossia in applicazioni in cui
i sistemi devono processare stimoli ambigui e rumorosi e produrre comportamenti appro-
priati. Uno sbocco naturale di questo approccio è lo sviluppo di dispositivi elettronici com-
patti ed efficienti, adatti ad essere incorporati in sistemi artificiali autonomi, come per esem-
pio sensori “intelligenti” per piattaforme robotiche. Il progredire di questa linea di ricerca
porterà infine alla creazione di nuovi tipi di protesi che, interagendo con il mondo reale in
modo simile ai sistemi nervosi biologici, potranno interfacciarsi con essi in modo naturale.

Il lavoro presentato in questa tesi parte dalla trasposizione su silicio delle proprietà della
trasmissione sinaptica per arrivare alla costruzione del “Selective–Attention” Chip (SAC),
integrato in un sistema multi–chip che realizza un modello visivo di attenzione selettiva,
capace di interagire con il mondo reale, in tempo reale.

Il circuito sinaptico presentato riproduce le correnti caratteristiche che attraversano la
membrana di un neurone post–sinaptico all’occorrenza di uno o più potenziali d’azione
pre–sinaptici. Tale circuito può essere corredato di circuiti addizionali, che ne estendono la
funzionalità, emulando le caratteristiche delle sinapsi NMDA e la dipendenza delle correnti
post–sinaptiche dal potenziale di membrana. Fondamentale è poi la possibilità di includere
nel modello circuiti che attuano la dinamica del peso sinaptico a breve e a lungo termine,
spaziando dall’adattamento, all’apprendimento, fino alla plasticità omeostatica.

Ciascuna delle proprietà emulate dal nuovo circuito sinaptico proposto ha un suo ruolo
specifico nella computazione neurale, e quindi arricchisce il vocabolario delle primitive
computazionali che possono essere incluse e studiate nei sistemi neuromorfi.

Il chip sviluppato in questa tesi include il circuito sinaptico, che ne è un elemento essen-
ziale, e seleziona in modo sequenziale le regioni più salienti dello stimolo in ingresso. Tale
funzione, nota come “Attenzione Selettiva”, costituisce la strategia utilizzata dai sistemi
percettivi biologici, per gestire l’enorme quantità di dati sensoriali, rispetto ai limiti della
capacità di computazione parallela. Da questo tipo di strategia possono trarre vantaggio
anche i sistemi percettivi artificiali.

Il processo di selezione realizzato dal SAC si basa sulla cooperazione e competizione
tra unità computazionali, che estraggono l’informazione dalla relazione tra l’attività di ogni
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unità, modellando una proprietà emergente delle reti neurali con connettività ricorrente. Per
la funzionalità del SAC è cruciale l’interazione dinamica dei vari elementi, in cui il circuito
sinaptico sviluppato in questo contesto è un elemento chiave.

Il sistema finale proposto in questa tesi comprende il SAC ed una retina neuromorfa,
montata su un attuatore, che risponde alle variazioni locali di intensità luminosa nel tempo.
In tale sistema visivo, la selezione attentiva è determinata dalla variazione temporale del
contrasto degli stimoli visivi. L’attività del SAC viene poi usata per orientare la retina verso
lo stimolo selezionato. Questo sistema genera un comportamento complesso, con un al-
ternarsi dinamico di tracking di stimoli selezionati e selezione di nuovi stimoli.

I risultati ottenuti dimostrano l’utilità e le potenzialità dell’uso di sistemi percettivi
basati su sensori neuromorfi e chip come il SAC, nel contesto della realizzazione di sistemi
robotici che richiedono l’interazione con il mondo reale, in tempo reale.

La realizzazione fisica di un sistema percettivo come quello proposto in questa tesi ha
rilevanza anche nel contesto della ricerca sull’attenzione selettiva; in particolare può essere
usato come strumento per validare ipotesi che nascono sia da esperimenti su sistemi attentivi
biologici, sia da modelli computazionali.



Contents

Abstract ii

Prefazione iv

1 Introduction and overview 2
1.1 The neuromorphic quest . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Selective Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Analog VLSI synapse circuits 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Biological synapses . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Computational models of biological synapses . . . . . . . . . . . . 14
2.1.3 Neuromorphic synapse emulation . . . . . . . . . . . . . . . . . . 16

2.2 State–of–the–art and Diff–Pair Integrator synapse . . . . . . . . . . . . . . 17
2.2.1 Pulsed current–source synapse . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Reset–and–discharge synapse . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Linear charge–and–discharge synapse . . . . . . . . . . . . . . . . 18
2.2.4 Current–mirror–integrator synapse . . . . . . . . . . . . . . . . . . 19
2.2.5 Log–domain integrator synapse . . . . . . . . . . . . . . . . . . . 20
2.2.6 Diff–pair integrator synapse . . . . . . . . . . . . . . . . . . . . . 22

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 DPI response properties . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 NMDA functionality . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Conductance–based functionality . . . . . . . . . . . . . . . . . . 31

2.4 Synaptic plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Short–term depression . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Synaptic homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Applications to biomedical signal processing . . . . . . . . . . . . . . . . 39
2.5.1 Low–pass filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Silicon Winner–Take–All circuits 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 State–of–the–art WTA silicon implementations . . . . . . . . . . . . . . . 47
3.3 Current–mode WTA circuit description . . . . . . . . . . . . . . . . . . . 50
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 The selective attention chip (SAC) 54



Contents vi

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 Relation to previous work . . . . . . . . . . . . . . . . . . . . . . 54

4.2 The chip’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 The Address–Event Representation . . . . . . . . . . . . . . . . . 57
4.2.2 The input excitatory synapse . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 The WTA circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4 The output Integrate & Fire neuron . . . . . . . . . . . . . . . . . 62
4.2.5 The inhibitory synapse . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 SAC functional characterization . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Mismatch evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Input synapse characterization . . . . . . . . . . . . . . . . . . . . 69
4.3.3 Hysteresis characterization . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4 Lateral Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.5 Short–term depression . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.6 Inhibition Of Return . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 A multi–chip selective attention system 84
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 State–of–the–art implementations of saliency–map models . . . . . 84
5.2 SAC response to synthetic saliency maps . . . . . . . . . . . . . . . . . . . 85

5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Two–chip system response properties . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Covert attention with Short–Term Depression . . . . . . . . . . . . 90
5.3.3 Covert Attention with stimuli of different grey levels . . . . . . . . 91
5.3.4 Overt Attention with stimuli of different grey levels . . . . . . . . . 94
5.3.5 Covert and overt attention with moving stimuli . . . . . . . . . . . 98

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.1 IOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Attentional tracking . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Relevance of the two–chip system implementation . . . . . . . . . 104

6 Discussion 105
6.1 Relevance of the work described in this thesis . . . . . . . . . . . . . . . . 105

6.1.1 The silicon synapse . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.2 The selective attention chip . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendices

A Linear–Threshold Units Winner–Take–All simulations 109
A.1 Recurrent WTA Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 WTA performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.2.1 Suppression of less effective stimuli . . . . . . . . . . . . . . . . . 111
A.2.2 Hysteretic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.2.3 Gain modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Contents vii

B WTA circuit static and dynamic response properties 117
B.1 Static response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.2 Dynamic response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.3 Diffusor network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C Integrating multiple AER and chip–control analysis tools 124
C.1 hardware components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.2 software components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Abbreviations and Symbols 132

Curriculum Vitae 133

Bibliography 135



List of Figures

1.1 Blue Gene/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bottom–up model of selective attention . . . . . . . . . . . . . . . . . . . 10

2.1 Synaptic transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Pulsed current–source synaptic circuit and reset–and–discharge synapse . . 17
2.3 Linear charge–and–discharge synapse and current mirror integrator synapse 19
2.4 Log–domain integrator synapse . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Diff–pair integrator synapse . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 DPI layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 DPI schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 The response of the DPI to an input voltage pulse for different values of

time constant and weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 The response of the DPI to an input voltage pulse for different values of

time constant and gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10 The response of the DPI to spike trains for different values of time constant

and weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11 NMDA–type synapse response properties . . . . . . . . . . . . . . . . . . 30
2.12 Conductance–based synapse response properties . . . . . . . . . . . . . . . 32
2.13 Short–term depression in the DPI synapse . . . . . . . . . . . . . . . . . . 35
2.14 Activity–dependent scaling of synaptic weights (adapted from Turrigiano

et al. (1998)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.15 Independent scaling of DPI EPSC amplitude by adjusting either the gain or

the weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.16 Block diagram of the homeostatic control algorithm . . . . . . . . . . . . . 38
2.17 Homeostatic response to a chronic shift in the neuron’s firing rate . . . . . . 39
2.18 Homeostatic control with high frequency fluctuations and chronic change

in neuron’s firing rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.19 Current–mode log–domain DPI integrator . . . . . . . . . . . . . . . . . . 40
2.20 Classical log–domain first order linear filter . . . . . . . . . . . . . . . . . 41
2.21 The simulated DPI circuit transfer function . . . . . . . . . . . . . . . . . 42
2.22 Simulated Total Harmonic Distortion (THD) of DPI circuit . . . . . . . . . 43
2.23 Simulated DPI power dissipation . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Two cells classical current–mode WTA circuit . . . . . . . . . . . . . . . . 50
3.2 Current–mode hysteretic WTA circuit with diode–source degeneration, lo-

cal excitation and inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 SAC layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 SAC pixel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Schematic diagram of the AER communication scheme . . . . . . . . . . . 58



List of Figures ix

4.4 Time diagrams of P2P and SCX protocols . . . . . . . . . . . . . . . . . . 60
4.5 Latch pad diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Circuit diagram of the excitatory synapse implemented on the SAC . . . . . 62
4.7 Circuit diagram of the I&F neuron implemented on the SAC . . . . . . . . 63
4.8 Circuit diagram of the inhibitory synapse implementing the IOR mechanism 66
4.9 Experimental setup for the functional characterization of the SAC . . . . . 68
4.10 Evaluation of mismatch on the SAC array . . . . . . . . . . . . . . . . . . 69
4.11 Measured response of SAC input excitatory synapse to spike trains for dif-

ferent bias settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12 Input current to the WTA cell for different time constant and weight bias

settings, when stimulating the synapse with spike trains at different fre-
quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.13 Hysteresis measured by observing the input node of the WTA for different
values of the hysteretic current . . . . . . . . . . . . . . . . . . . . . . . . 72

4.14 Hysteresis measured by observing the input node of the WTA, traces of two
pixels superimposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.15 Hysteresis measured by observing the output activity of the I&F neuron,
input and Center of Mass of the array . . . . . . . . . . . . . . . . . . . . 73

4.16 Lateral diffusion of input current in the WTA array . . . . . . . . . . . . . 75
4.17 Functional role of lateral excitation, competitive advantage of regions of

activity over single pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.18 Functional role of lateral excitation, reduction of the effects of mismatch . . 76
4.19 Short–term depression, effect on the weight and on the output current of the

synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.20 Short–term depression, effect on the weight variation and steady state out-

put current, for different input frequencies . . . . . . . . . . . . . . . . . . 78
4.21 Short–term depression, variation of synapse output current for variations of

input frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.22 Short–term depression, functional effect on the competition (raw data) . . . 80
4.23 Short–term depression, functional effect on the competition (summary of

all of the experiments) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.24 Inhibition of return, duration of activity and suppression periods of one

pixel, for different self–inhibition parameters configurations . . . . . . . . 82
4.25 Inhibition of return with hysteresis, duration of activity and suppression

periods of one pixel, for different self–inhibition parameters configuration . 82
4.26 Inhibition of return, traces of internal monitored variables . . . . . . . . . . 83

5.1 SaliencyToolbox, input image and output saliency map . . . . . . . . . . . 86
5.2 Focus of attention scan path generated by the SaliencyToolbox . . . . . . . 87
5.3 Focus of attention scan path generated by the SAC from the SaliencyTool-

box generated saliency map, for “slow” IOR configuration . . . . . . . . . 87
5.4 Focus of attention scan path generated by the SAC from the SaliencyTool-

box generated saliency map, for “fast” IOR configuration . . . . . . . . . . 88
5.5 Selective attention multi–chip system picture . . . . . . . . . . . . . . . . 89
5.6 Covert attention with STD, raster plots of retina and SAC superimposed . . 90
5.7 Covert attention with STD, raster plots of retina and SAC superimposed . . 91
5.8 Covert attention with STD, raster plots of retina and SAC superimposed . . 92
5.9 Static stimulus for the covert and overt attention experiments . . . . . . . . 93



List of Figures x

5.10 Covert attention scan path when the retina is stimulated with a static stimu-
lus, for “slow” IOR configuration . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Covert attention scan path when the retina is stimulated with a static stimu-
lus, for “fast” IOR configuration . . . . . . . . . . . . . . . . . . . . . . . 96

5.12 Overt attention scan path when the retina is stimulated with a static stimulus 97
5.13 Covert attention with natural moving stimuli (hands) . . . . . . . . . . . . 99
5.14 Overt attention with natural moving stimuli (smileys) . . . . . . . . . . . . 100
5.15 Overt attention with natural moving stimuli (walking person) . . . . . . . . 101

A.1 Ring of neurons, schematics of the recurrent connectivity . . . . . . . . . . 110
A.2 Sharpening effect of the recurrent connectivity on the neurons activity . . . 111
A.3 Suppression effect of the recurrent connectivity on the activity of neurons

receiving weaker input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.4 Suppression, parametric curves, for different settings of inhibition . . . . . 112
A.5 Hysteresis, steady state response of each neuron . . . . . . . . . . . . . . . 113
A.6 Hysteresis, evaluation for a given set of synaptic weights . . . . . . . . . . 113
A.7 Hysteresis, evaluation for a given set of synaptic weights . . . . . . . . . . 114
A.8 Hysteresis, evaluation for a given set of synaptic weights . . . . . . . . . . 114
A.9 Hysteresis, evaluation for increasing the number of excitatory neurons in

the ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.10 Gain modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.1 Two cells WTA circuit and corresponding small signal model . . . . . . . . 117
B.2 Two cells WTA circuit and corresponding small signal model, with explicit

capacitors added to model the dynamic response of the WTA . . . . . . . . 121
B.3 Two cells WTA circuit and corresponding small signal model . . . . . . . . 122

C.1 Schematic diagram of the hardware and software components of the setup
for an AER multi–chip system . . . . . . . . . . . . . . . . . . . . . . . . 125

C.2 Multi–chip AER communication framework . . . . . . . . . . . . . . . . . 125



List of Tables

2.1 DPI pulse response fit parameters . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Dimensions of DPI elements in the layout . . . . . . . . . . . . . . . . . . 42
2.3 DPI circuit specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 WTA circuits summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Description of the SAC bias parameters . . . . . . . . . . . . . . . . . . . 67



Chapter 1

Introduction and overview

1.1 The neuromorphic quest

Any brain, from the human brain to the smallest insect’s brain (Srinivasan et al., 1996),
outperforms computers on tasks involving interaction with the real world, where ambiguous
inputs have to be interpreted to initiate actions. Guyonneau et al. (2006) have shown that
human subjects can judge if an animal is present in a natural scene picture and make an
eye movement toward the animal in less than 250ms; this task is performed as quickly
when the images are rotated, showing a striking example of the degree of rotation, size, and
point of view invariance of the human visual system. This simple task for humans cannot
be achieved by computer vision, which is still struggling with problems such as object–
background segregation and rotation invariance, among others.

In terms of energy consumption, Sarpeshkar (1998) estimates the efficiency of brain
computation as about 3·1014 operations per joule. Conversely, a modern microprocessor
performs at about 6.25·106 operations per joule1. The supercomputer BlueGene/L, designed
by IBM (Gara et al., 2005) and awarded as top supercomputer in 20062, can reach a theo-
retical peak of 367·1015 floating point operations per second with a power consumption of
about 106W — this corresponds to a performance of 109 operations per joule, still several
orders of magnitude lower than the brain efficiency. BlueGene’s performance is achieved
by parallelizing 131072 processors; — Fig. 1.1 gives an idea of the dimensions of this
computing system, which needs rooms and special cooling devices.

Indeed a computer comprising very fast and precise elements fails in solving tasks that
appear to be trivial for even the smallest brain, which is built with slow, imprecise and
inhomogeneous elements.

The reasons for this discrepancy are not yet fully understood. One of the quests of
neuromorphic engineering is understanding these reasons, and implementing more efficient
devices by exploiting the strategies developed by the brain and the physics of a silicon
substrate.

The most obvious difference between computers and brains is that the first is based on
Boolean logic, and computes using an alphabet that comprises only “0” and “1”, largely
in a serial fashion. Conversely, brain computation is highly parallel and is performed by
neurons and synapses, whose primitives are based on analog variables.

Mead (1990), the father of neuromorphic engineering, attributed the reasons of the out–
performance of the brain over digital computers to the use of elementary physical phenom-

1These data refer to 1998, they are mentioned here to give a rough idea of the scale of the difference. In the past years
technology has improved, but has not yet reached the scale of integration, range of power consumption or the capabilities
of brains to analyze and react to real world stimuli.

2http://www.top500.org/
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Figure 1.1: Blue Gene/L is housed at the Terascale Simulation Facility (TSF) at Lawrence Liver-
more National Laboratory: Two supercomputers occupy an entire floor of the 23,504m2 building
(Blue Gene/L machine floor space is 232m2), a second floor is devoted to the housing of cooling
devices: “A total of 28 air–handling units blow cool air up to the second level, each at a rate of
80,000 cubic feet per minute”. Adapted from http://www.llnl.gov/asc/asc index.html

ena as computational primitives; VLSI technology — provided that it is used in the weak
inversion, or subthreshold, domain — shares the same primitives of neural computation,
that are not exploited by digital technology.

In both CMOS transistor physics and in nervous tissue, the state variables are analog
signals. In the nervous system, such variables are represented by ion concentrations that
translate into electro–chemical potentials. In transistors, the charges are carried by elec-
trons and holes. Both electronics and the nervous system base their functionality on the
existence of energy barriers. In biology, the barrier is constituted by selectively permeable
cell membrane. In electronics, it is built by the difference in the band gap between silicon
and silicon dioxide. Accumulation of charge carriers in thermal equilibrium across an en-
ergy barrier results in a Boltzmann distribution of their energies (Mead, 1990; Grattarola
and Massobrio, 1998), that in turns results in an exponential dependence of the current
across the barrier on the voltage difference applied.

In both electronics and neural tissue, information is stored by accumulation of charge,
and computation is naturally performed with currents, which can be added in space (Kirch-
hoff current law) and integrated in time by capacitances; non linearities such as saturation
and thresholding are intrinsic in both media.

Biological systems and VLSI share not only the same computational primitives, but
also similar constraints. Both have a finite power supply and need to optimize energy con-
sumption. In VLSI it is critical when building portable devices to increase battery life and
reduce the need for cooling; the same is true for living creatures, which need to perform with
limited resources and consequently developed energy–efficient designs and computational
codes (Laughlin and Sejnowski, 2003).

Equally important is the need for space optimization, for both costs relative to the use
of a physical medium and “portability”. A critical issue influencing the integration level
of both systems is wiring. The brain has optimized wiring (Laughlin and Sejnowski, 2003;
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Mead, 1990) by exploiting local computation, and the co–localization of state variables with
computational structures. This strategy is effective both for saving space and for decreasing
power consumption. In digital computers, where the state variables are stored in different
physical locations from the site of computation, the majority of energy is spent in charging
the wires transferring information, not in the gates of the computing transistors. A factor of
100 in efficiency over classical digital computing can be gained by implementing the same
strategy as the neural substrate (Mead, 1990), in which computation and memory storage
are co–localized.

Another factor constraining the development of computation in systems interacting with
the real world is the dynamic range of input signals, whose amplitude can vary up to 10
orders of magnitude. The elegant solutions to this problem — gain control, adaptation and
relative rather than absolute computation — are present at all levels of brain computation,
from the photoreceptors in the retina to the neurons in cortex (Ohzawa et al., 1985; Kandel
et al., 2000). Successful replications of these properties have been implemented in VLSI,
the most brilliant being the adaptive photoreceptor designed by Delbrück and Mead (1995).
This led to the implementation of a silicon retina (Lichtsteiner et al., 2006a) working in a
wide range of luminance conditions, from moon–light to full sun.

Probably the most striking common constraint that both biology and analog subthresh-
old silicon face is the intrinsic inhomogeneity and low precision of their fundamental con-
stituents. Douglas et al. (1995) attribute the main difference between digital and neural
computation, and hence the reason for superiority of the latter in real world interaction, to
the fundamental difference in strategy for obtaining precision in computation. Digital com-
puting relies on more homogeneous components and deals with signal restoration at the
lowest level, by fully restoring each bit at every step of the computation. In neural com-
puting the analog values cannot be attracted to the closest “permitted” value, rather they
are restored in a collective fashion by recurrent connectivity, which relates the signals to
the context of the activity of many surrounding computational units. Precision is obtained
at the collective, rather than individual level. Connectivity between units is the foundation
for cooperation and competition between related signals, and the same mechanisms that re-
store the signals may lead to the extraction of useful information from noisy and ambiguous
signals (Douglas et al., 1994).

Biology copes with intrinsic inhomogeneities of its substrate, failures of its components
or changes in the environment, by dynamically changing the properties of single compu-
tational units (Turrigiano, 1999). This property makes neural computation robust and fault
tolerant, and naturally leads to systems that learn and adapt to their environment (Mead,
1990).

The computational benefit of this approach is clear when comparing the overall robust-
ness of digital computers against that of brains. A system with high enforced precision,
both at the component level and at each stage of computation, is less robust and less tol-
erant to component degradation or failure than an inhomogeneous system with intrinsic
low precision. The first approach separates computation from signal restoration, with very
high resource cost; it is effective for high precision numeric computation, but the failure of
one component causes the failure of the whole system (Sarpeshkar, 1998); additionally it
is ineffective in solving ill–posed problems, where relevant information must be extracted
from noisy and ambiguous signals. In such a case the global information, taken in its con-
text, is meaningful, but the information associated to single bits of the signal, if processed
unrelated to the context, is unreliable (Douglas et al., 1995).

In the neural approach, state variables, computation, and signal restoration are melded
together, being intrinsic to the physical medium that is performing the computation (Dou-



1.1. The neuromorphic quest 5

glas et al., 1994).

Another constraint that characterizes both neural and analog implementations, and has led
to the implementation of a successful and efficient strategy, is the problem of communica-
tion. While the neurally inspired analog computation considered here is based on principles
that make it robust against noise and inhomogeneities (Douglas et al., 1995), analog commu-
nication is prone to noise degradation and mismatch effects (Douglas et al., 1994; Murray
et al., 1991). Digital communication, on the other hand, is robust and less sensitive to noise.
The strategy adopted by real neurons is to use a hybrid approach, exploiting analog com-
putation and digital communication (Murray et al., 1991): in the dendrites and the soma,
computation is performed on analog signals derived from the continuous transformation of
“digital” all–or–none pulses into analog currents by the synapses; The “result” of compu-
tation is then transformed back to pulses in the axon hillock, and transmitted along axons
to the synapses which transfer information to other neurons. In neuromorphic chips we
use the same strategy: instead of transmitting the analog state of the neurons, we transmit
the spiking activity of each neuron as a sequence of asynchronous digital events. Analog
information is self–encoded in the timing of the digital events (Lazzaro et al., 1993).

The neuromorphic approach takes into account and exploits the differences between
wet–ware and analog silicon. Some of them regard limitations of the silicon medium in
comparison with the neural substrate, such as the lack of a full tridimensional space for
wiring, or the limited fan–in and fan–out of silicon circuits (Maher et al., 1989) compared
with the vast dendritic and axonal arborization of cortical cells, which can transmit signals
to up to 105 synaptic connections (Laughlin and Sejnowski, 2003).

Neural “technology” also has limitations against silicon implementations, like the lack
of low resistance wiring, and speed. Some of the advantages of silicon can be used to
work around its limitations, for example the high speed of transmission can be exploited
for multiplexing signals on the limited number of connections that can be designed on
a silicon wafer. Neuromorphic analog chips are characterized by high parallelism, many
computational units, and high connectivity; when connecting neurons between different
chips, a strict limiting factor is the number of output pads (a typical chip package has 120
pins). This limit prevents the implementation of direct connections between the neurons,
and requires a time multiplexing strategy (Maher et al., 1989): all neurons share the same
bus to transmit their pulses, together with the (implicit) timing information. The identity,
or address, of the neuron that produces the event is transmitted on the bus, from here the
name “Address–Event–Representation” (AER) of the communication protocol commonly
used in neuromorphic systems (Lazzaro et al., 1993).

Real neurons typically respond to novelties in the stimulus: various types of adaptation
enhance time variations, and local interactions enhance spatial discontinuities (e.g. edges)
in topological maps (Kiper and Carandini, 2003; Hubel and Wiesel, 1962). Activity in neu-
ral systems is event–driven: it is triggered only when and where there is a change in the
stimulus, resulting in sparse signals in both time and space. This type of computation is ef-
ficient and produces communication which is intrinsically energy efficient (Lazzaro et al.,
1993; Boahen, 2000). The natural approach of neuromorphic hardware is to exploit the same
strategy of neural systems, implementing an asynchronous event–driven protocol: instead
of scanning the whole neuronal array and synchronously transmitting information about the
whole array, including both active and inactive states, the neuron itself sends its own spikes
to the external bus when they are produced; the bus is occupied only when it is needed,
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and its use varies linearly with the number of active neurons — usually less than the whole
array. Bus occupancy is therefore optimized in terms of energy efficiency (Lazzaro et al.,
1993).

By being aware of the similarities and differences between the two systems, silicon emula-
tion can maintain its relevance in the study of brain computation.

The study of neural computation in the context of its physical primitives and constraints
could in principle be simulated on general purpose digital computers, which have the ad-
vantage of high flexibility and programmability over the silicon implementation. However
there are two main limitations to this approach.

From the computational point of view, a simulation of a system interacting with the
real world requires the explicit mathematical description of any process, comprising model,
environment, noise, and also time, that have to be explicitly encoded (Douglas et al., 1995).

From the simulation point of view, neural models comprise many non–linear interac-
tions and couplings; The inclusion of learning and spike–based neural models increases the
time scale range, resulting in stiff differential equations that are slow to solve. Additionally,
the intrinsically serial architectures behind digital simulations scales the simulation time
with the number of elements and couplings in the network.

Silicon emulations, on the contrary, operate in real–time, independent of the number of
elements or couplings in the networks. They are effective when employed for computation-
ally intensive problems with highly non–linear dynamics that repeat over time, where the
speed of processing can in principle outperform software simulations.

This approach therefore leads to the design of devices and systems that are more effi-
cient than digital computers in tasks requiring interaction with the real world in real–time.

We can subdivide neuromorphic engineering research into three main levels. The first
level deals with the modeling of the constitutive elements of neural systems, such as neu-
rons (Mahowald and Douglas, 1991; Indiveri, 2003b), synapses (Chicca et al., 2003b; Bar-
tolozzi and Indiveri, 2007), photoreceptors (Delbrück and Mead, 1995), etc.

There is a trade–off between the details incorporated in such circuits, and the area they
occupy on the silicon wafer. We can take as example the design of silicon neurons. One
approach, adopted by Mahowald and Douglas (1991) and Rasche et al. (1997), is to realize
a biophysically realistic implementation of neurons: it consists in exploiting the channel
conductance of transistors to model accurately the passive and active ionic conductances of
neuronal membranes, and use such circuits to implement an approximation of the Hodgkin
and Huxley (1952) model. Mahowald and Douglas (1991)’s silicon neuron faithfully re-
produces the behavior of real neurons and allows the characteristics of the circuit to be
tuned to model different types of neurons. It models in detail action potential generation
thanks to sub–circuits modeling voltage–dependent sodium conductance activation and in-
activation, and delayed potassium conductance activation. Additional circuits can be used
to model conductances dependent on intracellular calcium concentration, proportional to
the neuron’s recent spiking activity, and to implement the mechanism of spike–frequency
adaptation. This approach has the major drawback of requiring large silicon area and many
voltage biases to tune the behavior of the neuron, and is not suitable for the implementa-
tion of dense arrays of neurons on single chips. A different approach (Mead, 1989; Boa-
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hen, 1997; van Schaik, 2001; Indiveri, 2003b) consists in phenomenologically modeling
the characteristics of real neurons. This approach achieves a good approximation of the
neuron’s properties, including adaptation, while maintaining compactness and low–power
consumption, required for the implementation of dense neural arrays.

The second level of neuromorphic engineering research focuses on the implementa-
tion of networks comprising the above mentioned elementary units, and the study of their
computational performance (Chicca, 2006; Indiveri, 2002; Hahnloser et al., 2000).

At both levels the focus of research is the study of the mechanisms that render the
systems adaptive to the environment, explicitly studying learning, connectivity, and relative
computation (Indiveri et al., 2006; Boahen, 2005).

Advances in this field lead naturally to the third level of neuromorphic engineering
research: the realization of systems with specific practical applications. Specifically, up
to now, applications have been oriented toward perceptive modules such as retinae and
cochleas, since they represent the front–end interface for transforming signals from the
real–world into appropriate signals for connecting to computational devices for further pro-
cessing. Their biological counterparts have been thoroughly studied for the same reason,
and their functionality has reached a deep enough level of understanding for engineers to
transpose such knowledge onto silicon. These devices are currently developed with the
goal of implementing a feasible alternative to classical digital devices, especially for the
realization of autonomous implantable prostheses. In this regard, they have the benefit of
producing signals that are intrinsically linked to the real biological signals, and therefore
can be better interfaced to healthy wet–ware.

Recently, Sarpeshkar (2006) implemented a silicon cochlea that can substitute conven-
tional cochlear prostheses. His processor consumes such a small amount of power that it
can be used for about 30 years before a surgical operation is required to change the battery.
Preliminary tests on a deaf woman revealed that the processor conveyed a good signal to
the auditory nerve, allowing good speech recognition in the higher cortical areas.

Lichtsteiner et al. (2006a) designed a silicon transient imager, which is used in various
fields, from research in fruit flies for monitoring their wing beats, to the practical application
of monitoring high–way cars for traffic control.

Zaghloul and Boahen (2006) designed a silicon retina, that, together with photo–
transduction functionality, reproduces the computation performed by the cells in the retinal
layers. Its output corresponds to the output of ganglion cells and could be conveyed directly
to the optic nerve, realizing an implantable retinal prosthesis with high computational power
and very low power consumption.

In this context I developed an additional device, the Selective–Attention Chip (SAC),
that goes beyond the modeling of front–end signal processing. The chip I describe in this
thesis comprises the constitutive elements of neural systems, such as neurons and synapses,
organized to perform a type of cooperative/competitive computation. It implements a post–
processing stage on sensory data received from neuromorphic sensory devices, via the AER
communication system. Specifically, the SAC is capable of sequentially selecting the most
active regions of its input. When a map of saliency is supplied as input to the SAC, the chip
scans the sensory data in order of diminishing saliency, implementing a selective attention
mechanism.

In the remaining of the introduction I describe the rationale for implementing selective
attention in artificial perceptive systems, by describing its role in biological systems and
reviewing the basic concepts and point of views about this topic. Eventually I describe the
model that I chose to implement on the SAC.
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1.2 Selective Attention

Selective attention is one of the most powerful strategies used by biological systems, from
which robotics and in general all artificial computation can take advantage. In a biologi-
cal sensory system, selective attention acts as a dynamic filter that selects the most salient
regions of the input, sequentially allocating computational resources, for analyzing the tar-
get’s details. This serial strategy limits the computational demand with respect to full paral-
lel processing. When attention is deployed to a certain region or feature of the input space,
the corresponding cortical representation is enhanced. Neuroimaging studies (see Pessoa
et al. (2003) for a review) and extracellular recordings in monkey visual cortex (area MT and
V4) show enhancement of the representation of the attended feature or location (Martinez-
Trujillo and Treue, 2004; Reynolds et al., 2000; McAdams and Maunsell, 2000; Reynolds
and Chelazzi, 2004). Psychophysical studies (Lee et al., 1999) have shown that detection
thresholds and the speed of behavioral responses are enhanced by attention; their observa-
tions are consistent with a model where the effect of attention is to activate competition
among visual filters, improving the capacity of the cortex to select and process relevant
information from cluttered background and noisy data (Itti et al., 2001).

Part of the research in the context of attention has been devoted to discovering the
mechanisms for the selection of the attentioned target. One influential work in this field
is the Feature Integration Theory of Attention, proposed by Treisman and Gelade (1980).
They studied attention in the context of visual search distinguished two categories of stim-
uli: those that “pop–out”, i.e. are immediately spotted by the observer no matter the number
of distracters in the search display, and those stimuli for which an explicit search through
the display items is required and for which the search time depends on the number of dis-
tracters. From these observations the authors distinguished two modes of attention, one
pre–attentive, exogenous, driven by the stimulus characteristics, one attentive, endogenous,
voluntarily driven by the subject on the grounds of the ongoing task. Evidence suggests
that there is not a clear cut between such bottom–up and top–down attentional modes in vi-
sual search, rather there is a continuum of search difficulties where the two modes interact;
specifically, stimulus driven selection depends on the difference between target and dis-
tracters, and on the similarity of the distracters (Itti and Koch, 2000; Wolfe and Horowitz,
2004). These observations confirm again that computation in the brain is not absolute, rather
it depends on relative context. It is difficult to disentangle the bottom–up and top–down con-
tributions to attentional selection, since these two pathways interact to eventually determine
the “saliency” of stimulus, which depends on both its physical and semantic characteristics
and on their relevance to the current task of the subject.

There is evidence that in some areas of the brain involved in higher order visual pro-
cessing and guidance of eye movements, activity is related to the saliency of the stimuli
and to attentional selection. In the frontal eye field (FEF)(Thompson et al., 2005b,a) and
lateral–intraparietal (LIP) area (Colby and Goldberg, 1999; Iapata et al., 2006) of the mon-
key, there are topographical maps that encode for stimulus saliency; their activity results
from the integration of stimulus driven selection (bottom–up) and task related modulation
(top–down).

Several computational models of selective attention are based on the concept of such a
“saliency map” (Koch and Ullman, 1985; Itti and Koch, 2000; Findlay and Walker, 1999;
Wolfe, 1994) — a topographic map where activity encodes for the salience of the cor-
responding location in the input stimulus, irrespective of the feature that determined the
saliency. A scan of the saliency map in order of decreasing salience determines the shifts
of the focus of attention, and in the case of ocular movements determines the end point
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of saccades used to foveate the selected target, allowing more detailed processing of the
stimulus.

Some models deny the existence or need for an explicit saliency map, salience being
an emerging property of the activity of many neuronal populations (Jagadeesh et al., 2001).
The most influential model is the “Biased Competition Model” (Luck et al., 1997; Reynolds
et al., 1999; Kastner and Ungerleider, 2000; Deco and Lee, 2002). The foundation of this
work lies on the concept of competition of the sensory stimuli for computational resources.
An interaction between the bottom–up competition and top–down modulation of the com-
petition leads to the emergence of the attended stimulus, and consequently the enhancement
of its cortical representation.

The debate on these models is still going on, inspiring new and hopefully more conclu-
sive experiments. Both points of view are worth exploring with software simulations and
hardware emulations. From the operative point of view, models based on the saliency map
allow the existence of an unique, unambiguous read out, the maximum of the saliency map,
which can be easily used for the control of actuators. The focus of these models is on the
stimulus driven computation that generates the saliency map, and on the mechanisms for
creating the attentional scan path from the map itself.

Saliency–map based models
The saliency map model proposed by Itti and Koch (2001) which implements stimulus
driven visual selective attention, accounts for many psychophysical and neurophysiological
observations and has features that could be used in practical applications. Fig. 1.2 shows
schematically the components of the system: various independent channels extract informa-
tion from the input stimulus concerning color, orientation, motion, intensity, etc, in a center
surround fashion and at various spatial scales. This implementation is strongly related to
the competitive mechanisms postulated in visual cortex, and again relates computation to
the context of the information rather than to its absolute value. The result is a topological
feature map for each channel, encoding the relative strength of the corresponding feature in
each point of the visual field. The combination of feature maps gives rise to the final saliency
map, where the activity of each point encodes the saliency of the corresponding region in
the visual field, independently of the feature or feature combination that contributed to its
saliency. The most salient locations correspond to the regions where activity from many
different feature maps coincide, or locations where activity from a preferentially weighted
map occurs. A Winner–Take–All (WTA) competition selects the most salient location in
the saliency map, guiding the center of the attentional spot–light. A self–inhibitory mech-
anism deselects the current winner to allow the selection of the second most salient region
of the visual field. The iteration of this selection–inhibition cycle induces scanning of the
visual field in order of decreasing saliency, namely the scan–path of selective attention. The
number of regions included in the scan–path depends on the duration of the inhibition that
prevents reselection of the most salient stimuli, a phenomenon observed in psychophysical
experiments (Posner, 1980) on visual search and named inhibition of return (IOR).

Itti and Koch (2001) proposed a model and its software implementation, comprising
the front–end data acquisition, hierarchical computation of the saliency map, and the map
scanning mechanism.

The comparison between psychophysics experiments and model predictions correlate
well (Parkhurst and Niebur, 2004), even though for static images the correlations between
the saliency predicted by the model and the attentional scan–path of human observers are
not conclusive about the role of bottom–up effects on attentional guidance (Einhäuser and
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Figure 1.2: Bottom–up model of selective attention, adapted from Itti and Koch (2001). The in-
put image is processed via different parallel independent channels, that generate topological feature
maps; the combination of these feature maps creates the saliency map, that encodes for the local con-
spicuity of each pixel of the input image, independently of the features that generated its salience;
a WTA competition selects the most salient pixel of the image, a IOR mechanism deselects the
current winner, creating the attentional scan–path.

König, 2003). New studies (Itti, 2005a; Carmi and Itti, 2006) show a causal relationship
between bottom–up features and attentional shifts, especially when the predictive feature is
motion.

The Selective–Attention Chip (SAC) described in this thesis can be used to implement
selective attention systems of the type proposed by Itti and Koch (2000) in hardware. It is
designed to receive a saliency map as input and generate the attentional scan path as output,
by implementing WTA and IOR mechanisms. In particular, the SAC was designed to be
selective to changes of the input stimuli, which are strong predictors of attentional selec-
tion (Itti, 2005a; Carmi and Itti, 2006). Additionally the IOR mechanism can be disabled
and additional instances of the same chip can be used to implement the pre–processing
competitive stages for the creation of feature maps.

The SAC is therefore a useful tool for investigating different models for the bottom–up
attentive system, as well as being a useful building block for the design of artificial systems
that can interact with the real world in real time.

As to demonstrate its potential use in practical selective attention systems, I used the
SAC and a silicon transient imager (Lichtsteiner and Delbrück, 2005) to build a two–chip
visual selective attention system, and observed its response properties both with and with-
out sensor movements. The rationale for studying the system behavior in both conditions
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arises from the observation of psychophysics experiments performed for the study of visual
attention. In general they can be divided into two broad categories based on whether or not
eye movements for orienting towards the attentional target are allowed.

In one case, the subject is asked to maintain the eyes focused on a fixation point,
covertly deploying attention. In these types of experiments the presence of attention is in-
ferred from the enhancement of processing of visual stimuli, by reduction of reaction time
or decrease in detection or discrimination thresholds (Lee et al., 1999).

In the other case, the subject performs ballistic eye movements, the saccades, to bring
the location selected as attentional target to the fovea, where the resolution of the retina is
maximal. In such a case, attention is overtly deployed.

Evidence that covert attention is deployed at the location of the end–point of the sac-
cadic movement, before the movement is performed (Hoffman and Subramaniam, 1995),
supports the use of eye movements as indicators for attentional selection in free vi-
sion (Findlay, 2005). The link between covert and overt attention is also supported by
recordings in the Frontal Eye Fields of the monkey (Bichot and Schall, 2005): visually
driven neurons in this area respond to the saliency of stimuli, integrating visual attributes
and goal–driven modulation; these neurons predict the target location of saccades, while
another set of movement–related neurons predict if and when a saccade will be executed,
overtly pushing attention to the targets selected by the visually–driven neurons.

In this thesis I describe the experiments carried out with the two–chip selective atten-
tion system, where I used both covert and overt approaches to study the focus of attention
scan–path properties, and to verify the system’s functionality when it is required to perform
actions in response to real world stimulation.

1.3 Thesis Outline

The work presented in this thesis includes all of the three levels in which I divided neu-
romorphic hardware design research, ranging from the design of a silicon synapse to the
realization of a multi–chip system system implementing a model of selective attention.

In Chap. 2 I describe a novel synaptic circuit, designed to support the elaborate dy-
namic mechanisms observed in selective attention systems. This silicon synapse reproduces
the currents originated by presynaptic action potentials across the postsynaptic membrane.
The time course of such currents can be modeled with exponentials (Destexhe et al., 1998),
reproduced on silicon by exploiting the voltage–current exponential transfer function of
subthreshold CMOS. Additional dynamic circuits, extending the functionality of the pro-
posed synapse, enrich the synaptic primitives of neuromorphic systems, allowing for the
exploration of their computational role.

The proposed circuit is compatible with existing circuits which implement learning,
short–term adaptation, and global synaptic scaling for implementing homeostatic plastic-
ity (Turrigiano et al., 1998). The last property adapts the computational substrate to changes
of the environment on very long time scales and is a biomimetic strategy for reducing in-
homogeneities between neurons, becoming one of such adaptive mechanisms postulated by
Mead for obtaining robust and precise computation in face of inhomogeneous and noisy
constitutive elements.

In Chap. 3 I describe the circuit implementation of a classical functionality observed
in neural networks required to model selective attention: the Winner–Take–All (WTA) cir-
cuit. WTA is an emergent computational property of recurrently connected neurons, which
enhances the activity of neurons receiving the strongest input and suppresses the activity of
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neurons receiving weaker input signals. It is one of the competitive–cooperative computa-
tional strategies capable of extracting information from noisy and ambiguous data (Douglas
et al., 1995, 1999; Chicca, 2006).

In Chap. 4 I describe the Selective–Attention Chip (SAC), which comprises synapses,
neurons, and the WTA circuit. The SAC extends the study of neuromorphic implementation
of perceptive systems to a further stage of the processing hierarchy, going beyond data
acquisition and the processing performed by silicon retinae and cochleae developed up to
now (Sarpeshkar, 2006; Zaghloul and Boahen, 2006; Lichtsteiner et al., 2006b; Chan et al.,
2006).

The SAC is the evolution of previously proposed selective attention chips (Indiveri,
2001b); besides incremental improvements to the circuits and the introduction of new
synaptic circuits, the chip I developed includes adaptive properties in the synapses and in
the neurons — Short–Term Depression (Rasche and Hahnloser, 2001) and spike frequency
adaptation (Indiveri, 2003b) respectively — that I show to play a crucial role in making the
chip sensitive to variations of the input stimuli, and in reducing the amount of information
sent to the output bus.

Motivated by the need for building useful devices for practical applications, in Chap. 5
I describe possible uses of the SAC, in particular by building a multi–chip system with the
SAC connected to a silicon retina mounted on an actuator. I use this multi–chip system
to validate the use of the SAC as a tool for testing different models of selective attention,
and for studying the effects of the newly included adaptive properties and of the different
parameters of the networks.

Finally, in Chap. 6 I discuss the relevance of the work described in this thesis in the
context of neuromorphic engineering research, and in the context of the implementation of
selective attention systems.



Chapter 2

Analog VLSI synapse circuits

2.1 Introduction

Synapses are highly specialized structures which, by means of complex chemical reactions,
allow neurons to transmit signals to other neurons. When an action potential generated
by a neuron reaches a presynaptic terminal, a cascade of events leads to the release of
neurotransmitters that give rise to a flow of ionic currents into or out of the postsynaptic
neuron’s membrane. These excitatory or inhibitory postsynaptic currents (EPSCs or IPSCs
respectively) have temporal dynamics with a characteristic time course that can last several
hundred milliseconds (Koch, 1999b).

In computational models of neural systems the temporal dynamics of synaptic currents
have often been neglected. In models that represent information with mean firing rates,
synaptic transmission is typically modeled as an instantaneous multiplier operator (Hertz
et al., 1991). Similarly in pulse–based neural models, where the precise timing of spikes
and the dynamics of the neuron’s transfer function play an important role, synaptic currents
are often reduced to simple instantaneous charge impulses. In VLSI implementations of
neural systems, silicon synapses have also often been reduced to either simple multiplier
circuits (Borgstrom et al., 1990; Satyanarayana et al., 1992), or constant current sources
activated only for the duration of the presynaptic input pulse (Mead, 1989; Fusi et al., 2000;
Chicca et al., 2003a).

In the context of pulse–based neural networks, modeling the detailed dynamics of post-
synaptic currents can be a crucial step for learning neural codes and encoding spatio–
temporal patterns of spikes. Leaky integrate–and–fire (I&F) neurons can distinguish be-
tween different temporal input spike patterns only if the synapses stimulated by the input
spike patterns exhibit dynamics with time constants comparable to the time constant of the
neuron’s membrane potential (Gütig and Sompolinsky, 2006).

Modeling the temporal dynamics of each synapse in a network of I&F neurons can be
very onerous in terms of CPU usage for software simulations, and in terms of silicon real–
estate for dedicated VLSI implementations. A compromise between highly detailed models
of synaptic dynamics and no dynamics at all, is to use computationally efficient models
that account for the basic properties of synaptic transmission. A very efficient model that
reproduces the macroscopic properties of synaptic transmission and accounts for the linear
summation property of postsynaptic currents is the one based on pure exponentials proposed
by Destexhe et al. (1998). In this chapter I describe a new VLSI synaptic circuit, the diff–
pair integrator (DPI), that implements the model proposed in Destexhe et al. (1998) as a
log–domain linear temporal filter, and that supports a wide range of synaptic properties
ranging from short–term depression to conductance–based EPSC generation.
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2.1.1 Biological synapses
Synapses are the connections between neurons, implementing information transfer from
the presynaptic to the postsynaptic neuron. They can be divided into two main categories,
electric and chemical; I focus on the second type, as they are basic building blocks of com-
putational and circuital neural models. Fig. 2.1 schematically illustrates the chain of events
that take place during synaptic transmission: a presynaptic neuron produces action poten-
tials that are related to its state; these stereotyped all–or–none events travel along the axon
reaching synaptic boutons, specialized structures of the axon that connect to the dendritic
arbor of the postsynaptic neurons. The action potential causes a depolarization of the bouton
membrane and the influx of calcium into the terminal, which in turns causes the release of
vesicles into the space between the presynaptic bouton and the postsynaptic membrane, the
synaptic cleft. Each vesicle contains a quantum of neurotransmitters, which bind to special-
ized receptors of the postsynaptic neuron. The receptors can be ionic channels that open at
the binding of the neurotransmitter (ionotropic channels), or can cause opening of channels
via an intracellular second messenger (metabotropic). Channels are transmembrane proteins
that change their conformation to allow the flow of specific ions through the postsynaptic
membrane. Their opening modifies the membrane conductance gion of their particular ion,
causing a current flux Iion = gion(Vmem−Eion), proportional to the difference between the
membrane voltage and the reversal potential of the ion, determined by the different ionic
concentration across the membrane. The variation in conductance has a typical time course
that depends on the dynamics of the neurotransmitter binding and un–binding from the re-
ceptor, and results in the typical shape of the postsynaptic currents. In the next paragraph I
show how these currents have time courses that can be modeled using exponentials. These
currents in turn modify, either depolarizing (EPSCs, excitatory postsynaptic currents), or
hyperpolarizing (IPSCs, inhibitory postsynaptic currents), the postsynaptic membrane po-
tential. Examples of receptors that cause EPSCs are the ligand–gated ionotropic AMPA
channels, which let Na+ and K+ ions flow into and out of the postsynaptic neuron respec-
tively, when they bind glutamate released by the presynaptic terminal. GABAα receptors
instead generate inhibitory chlorid influx into the postsynaptic neuron. Other channels need
the simultaneous presence of the neurotransmitter and sufficient depolarization of the post-
synaptic membrane to open and change the membrane conductance to their ion, this is the
case of the ligand– and voltage–gated NMDA receptors. The net contribution of many of
the synaptic currents from the whole dendritic arbor can cause sufficient depolarization of
the postsynaptic membrane to reach the axon–hillock, where an action potential can be gen-
erated. All of the events involved in synaptic transmission, from the release of vesicles to
the ion flux, are generated by molecular processes with many different contributions and
possible modulations, which renders synaptic transmission not just a simple connection,
but a site of information processing and computation. In the following parts of this chapter
I describe the various circuits developed in the past 20 years that precede the one I propose,
and present additional circuits that enrich the behavior of silicon synaptic transmission.

2.1.2 Computational models of biological synapses
In biological synapses, neurotransmitter release from a single release site is probabilistic.
In the design of silicon synapses it is commonly assumed that an ensemble of release sites
has a mean behavior that is deterministic.

The time evolution of EPSCs recorded from biological synapses are typically fitted by
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Figure 2.1: Schematic illustration of the events involved in the synaptic transmission. Adapted from
Kandel et al. (2000).

α–functions1 (Rall, 1967; Koch, 1999a). However Destexhe et al. (1998) show that post-
synaptic current dynamics can be faithfully modeled by pure exponentials, in a framework
where synaptic reactions are described with kinetic equations.

Such equations describe the kinematics of binding and un–binding of neurotransmitters
on postsynaptic receptors that cause the corresponding proteic channels to open and let ionic
currents flow through the postsynaptic neuron’s membrane. For a large class of synapses,
named ligand–gated, opening of channels depends only on the binding of the neurotrans-
mitters that directly cause the current influx. In this case the activation and inactivation of
membrane channels is well described by the reaction

R +N
α

�
β
NR∗,

where α and β are the voltage independent forward and backward rate constants, N is
the neurotransmitter concentration and R are the postsynaptic receptors. Assuming that the
change in neurotransmitter concentration [N ] in the cleft occurs in a brief pulse, and defin-
ing r as the fraction of receptors in the activated state, the kinetic model can be translated
to the first–order differential equation

dr

dt
= α · [N ](1− r)− βr.

The current flowing into the neuron is then: Isyn = g ·r (V − Esyn). Solving the differential
equation leads to the expression of r for the two conditions during (eq. (2.1)) and after
(eq. (2.2)) the pulse of neurotransmitter concentration [N ] as

r =

(
r0 −

α · [N ]

α · [N ] + β

)
e−(α·[N ]+β)(t−t0) +

α · [N ]

α · [N ] + β
, (2.1)

1g(t) = αTe−αT , where α = τm
tpeak

and T = t
τm

; τm is the membrane time constant
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r = r0e
−β(t−t0). (2.2)

In Sec 2.2.6 I propose a neuromorphic synapse circuit (the DPI) and demonstrate that its
analytical solution circuit leads to the same exact time dependence of the postsynaptic cur-
rents, both for the charging and the discharging phase.

2.1.3 Neuromorphic synapse emulation
Synaptic circuits translate presynaptic voltage pulses into postsynaptic currents injected in
the membrane of their target neuron, with a gain typically referred to as the synaptic weight.
The function of translating “fast” presynaptic pulses into long–lasting postsynaptic currents,
with elaborate temporal dynamics, can be efficiently mapped onto silicon using subthresh-
old (or weak–inversion) analog VLSI (aVLSI) circuits (Liu et al., 2002). In typical VLSI
neural network architectures, the currents generated by multiple synapses are integrated by
one single postsynaptic neuron circuit. The neuron circuit carries out a weighted sum of
the input signals, produces postsynaptic potentials and eventually generates output spikes,
which are typically transmitted to synaptic circuits in further processing stages. A very
common neuron model used in VLSI spike–based neural networks is the point–neuron.
With this model the spatial position of the synaptic circuits connected to the neuron is not
relevant and the currents produced by the synapses are summed linearly into the single
neuron’s membrane capacitance node. Alternatively, synaptic circuits (including the one
presented in this thesis) can be integrated in multi–compartmental models of neurons, and
the neuron’s dendrite, comprising the spatial arrangement of VLSI synapses connected to
the neuron, implements the spatial summation of synaptic currents (Northmore and Elias,
1998; Arthur and Boahen, 2004).

Irrespective of the neuron model used, one of the main requirements for synaptic cir-
cuits in large VLSI neural networks is compactness: the less silicon area is used, the more
synapses can be integrated on the chip. On the other hand, implementing synaptic integrator
circuits with linear response properties and time constants of the order of tens of millisec-
onds can require substantial silicon area. Therefore designing VLSI synaptic circuits that
are compact and linear, and that model relevant functional properties of biological synapses,
is a challenging task still being actively pursued. Several subthreshold synaptic circuit de-
signs have been proposed in the past (Mead, 1989; Lazzaro, 1994; Boahen, 1998; Fusi
et al., 2000; Chicca et al., 2003b; Shi and Horiuchi, 2004a; Gordon et al., 2004; Hynna
and Boahen, 2006) covering a range of trade–offs between functionality and complexity
of temporal dynamics versus circuit and layout size. Some of the proposed circuits require
floating–gate devices (Gordon et al., 2004) or restrict the input or output signals to a very
limited dynamic range (Hynna and Boahen, 2006) to reproduce in great detail the physics
of biological synaptic channels.

As discussed in Sec. 2.1.2, phenomenological models reproducing the time course of
real EPSCs work as well, showing a wide range of properties such as temporal summation
of synaptic currents; at the same time their hardware implementation is more feasible. The
design of the diff–pair integrator (DPI) synapse proposed in this thesis is inspired by a series
of functionally equivalent circuits proposed in the literature that implement kinetic models
of synaptic transmission; these circuits collectively share many of the advantages of the
DPI, but individually lack one or more of the features of our design.

In the next section I present an overview of previously proposed synaptic circuits, and
describe the DPI synapse pointing out the advantages that the DPI offers over each of them.
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Figure 2.2: (a) Pulsed current–source synaptic circuit. (b) Reset–and–discharge synapse.

2.2 State–of–the–art and Diff–Pair Integrator synapse

2.2.1 Pulsed current–source synapse
The pulsed current–source synapse, originally proposed by Mead (1989) in the late 80s, was
one of the first synaptic circuits implemented using transistors operated in the subthreshold
domain. The circuit schematics are shown in Fig. 2.2(a): it consists of a voltage controlled
current–source activated by an active–low input spike. In VLSI pulsed–neural networks,
input spikes are typically brief digital voltage pulses that last at most a few micro–seconds.
The output of this circuit is a pulsed current Isyn that lasts as long as the input spike. As-
suming that the output p–FET Mw is saturated (i.e. that its Vds is greater than 4UT ), the
current Isyn can be expressed as

Isyn = I0e
− κ
UT

(Vw−Vdd)
, (2.3)

where Vdd is the power supply voltage, I0 the leakage current, κ is the subthreshold slope
factor, and UT is the thermal voltage (Liu et al., 2002).

This circuit is extremely compact, but does not integrate input spikes into continuous
output currents. Whenever a presynaptic spike reaches Mpre, the postsynaptic membrane
potential undergoes a step increase proportional to Isyn. As integration only happens at the
level of the postsynaptic I&F neuron, input spike trains with same mean rates but with
different spike timing distributions cannot be distinguished. However, given its simplicity
and compactness, this circuit has been used in a wide variety of VLSI implementations of
pulse–based neural networks that use mean firing rates as the neural code (Murray, 1998;
Fusi et al., 2000; Chicca et al., 2003a).

2.2.2 Reset–and–discharge synapse
In the early 90s, Lazzaro (1994) proposed a synaptic circuit where the duration of the out-
put EPSC, Isyn(t), could be extended with respect to the input voltage pulse by means of
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a tunable exponential decay (see also (Shi and Horiuchi, 2004b) for a recent application
example). This circuit, shown in Fig. 2.2(b), comprises three p–FET transistors and one
capacitor; the p–FET Mpre is used as a digital switch which is turned on by the synapse’s
input spikes; the p–FET Mτ is operated in subthreshold and is used as a constant current-
source to linearly charge the capacitor Csyn; the output p–FET Msyn is used to generate an
EPSC that is exponentially dependent on the Vsyn node (assuming subthreshold operation
and saturation), the equation for which is given by

Isyn(t) = I0e
− κ
UT

(Vsyn(t)−Vdd)
. (2.4)

At the onset of each presynaptic pulse the node Vsyn is (re)set to the bias Vw. When the
input pulse ends, the p–FET Mpre is switched off and the node Vsyn is driven linearly back
to Vdd, at a rate set by Iτ/Csyn. For subthreshold values of (Vdd − Vw), the EPSC generated
by an input spike is therefore given by

Isyn = Iw0e
− t
τ , (2.5)

where Iw0 = I0e
− κ
UT

(Vw−Vdd), and τ = κIτ
UTCsyn

.
In general, given a generic spike sequence on n spikes

ρ(t) =
n∑
i

δ(t− ti), (2.6)

the response of the “reset–and–discharge” synapse can be formally expressed as

Isyn(t) = Iw0e
− t
τ ·
∫ t

0

δ(ξ − tn)e
ξ
τ dξ = Iw0e

− (t−tn)
τ . (2.7)

Although this synaptic circuit produces an EPSC which lasts longer than the duration
of its input pulses, and which decays exponentially with time, its response depends only on
the last (nth) input spike. This non–linear property of the circuit fails to reproduce the linear
summation property of postsynaptic currents often desired in synaptic models, and makes
the theoretical analysis of networks of neurons interconnected with this synapse intractable.

2.2.3 Linear charge–and–discharge synapse
Fig. 2.3(a) shows a modification of the reset–and–discharge synapse that has been of-
ten used by the neuromorphic engineering community, and that was recently presented
in (Arthur and Boahen, 2004). Here the presynaptic pulse, applied to the input n-FET Mpre,
is active high. Assuming that all transistors are saturated and operate in subthreshold, the
circuit behavior is the following: During an input pulse, the node Vsyn(t) decreases linearly
at a rate set by the net current Iw−Iτ and the synapse EPSC Isyn(t) increases exponentially
(charge phase). In between spikes, the Vsyn(t) node is re–charged toward Vdd at a rate set by
Iτ and Isyn(t) decreases exponentially with time (discharge phase). The circuit equations
that describe this behavior are

Isyn(t) =

I
−
syne

+
(t−t−i )

τc (charge phase)

I+
syne
− (t−t+i )

τd (discharge phase),
(2.8)
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Figure 2.3: (a) Linear charge–and–discharge synapse. (b) Current mirror integrator synapse.

where t−i is the time at which the ith input spike arrives, t+i the time at which it ends, I−syn
the initial condition at t−i , I+

syn the initial condition at t+i , τc = UTCsyn
κ(Iw−Iτ )

is the charge phase

time constant and τd = UTCsyn
κIτ

the discharge phase time constant.
Assuming that each spike lasts a fixed brief period, ∆t, and considering two successive

spikes arriving at times t−i and t−i+1, the equation for Isyn is given by

Isyn(t−i+1) = Isyn(t−i )e
∆t
(

1
τc

+ 1
τd

)
e
− (t−i+1−t

−
i )

τd . (2.9)

From this recursive equation one can derive the response of the linear charge–and–
discharge synapse to a generic spike sequence ρ(t) of n spikes as

Isyn(t) = I0e
n∆t

(
1
τc

+ 1
τd

)
e
− t
τd , (2.10)

assuming the initial condition Vsyn(0) = Vdd.
The EPSC dynamics depend on the total number of spikes n received at time t, and on

the circuit’s time constants τc and τd. By denoting the input spike train frequency at time t
as f = (n/t), eq. (2.10) can be re–written as

Isyn(t) = I0e
− τc−f∆t(τc+τd)

τcτd
t
. (2.11)

The major drawback of this circuit, aside from not being a linear integrator, is that if
the argument of the exponential in eq. (2.11) is positive (i.e. if f > 1

∆t
Iτ
Iw

) the output current
increases exponentially with time and the circuit’s response saturates: Vsyn(t) decreases all
the way toGnd, and Isyn(t) increases to its maximum value. This can be a problem because,
in these conditions, the circuit’s steady state response does not encode the input frequency.

2.2.4 Current–mirror–integrator synapse
In his PhD dissertation, Boahen (1997) proposed a synaptic circuit which differs from the
linear charge–and–discharge circuit by a single node connection (see Fig. 2.3), but which
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has a dramatically different behavior. The two transistors Mτ −Msyn of Fig. 2.3(b) imple-
ment a p–type current mirror, and form a current mirror integrator (CMI) together with the
capacitor Csyn. The CMI synapse implements a non–linear pulse integrator circuit which
produces a mean output current Isyn which increases with input firing rates, and which has a
saturating non–linearity with a maximum amplitude which depends on the circuit’s synaptic
weight bias Vw and on its time–constant2 bias Vτ .

The CMI response properties have been derived analytically by Hynna and Boahen
(2001) for steady state conditions. An explicit solution of the CMI response to a generic
spike train, that does not require the steady state assumption, was also derived by Chicca
(2006). According to the analysis presented in (Chicca, 2006), the CMI response to a spike
arriving at t−i and ending at t+i is given by

Isyn(t) =


αIw

1+

(
αIw

I−syn
−1

)
e
− (t−t−i )

τc

(charge phase)

Iw

Iw

I+syn
+

(t−t+i )
τd

(discharge phase),
(2.12)

where t−i , t+i , I−syn, and I+
syn are the same as defined in eq. (2.8), α = e

(Vτ−Vdd)

UT , τc = CsynUT
κIw

,
and τd = ατc.

During the charge phase the EPSC increases over time as a sigmoidal function, while
during the discharge phase it decreases with a 1/t profile. The discharge of the EPSC is
therefore extremely fast compared to the typical exponential decay profiles of other synap-
tic circuits. The parameter α (set by the Vτ bias voltage) can be used to slow down the EPSC
response profile. However, this parameter affects both the length of the EPSC discharge pro-
file and the maximum amplitude of the EPSC charge phase: longer response times (larger
values of τd) produce higher EPSC values.

Despite these problems, and even though the CMI cannot be used to linearly sum post-
synaptic currents, this circuit was very popular and has been extensively used by the neu-
romorphic engineering community in the past (Boahen, 1998; Horiuchi and Hynna, 2001;
Indiveri, 2000a; Liu et al., 2001).

2.2.5 Log–domain integrator synapse
More recently Merolla and Boahen (2004) proposed another variant of the linear charge–
and–discharge synapse that implements a true linear integrator circuit. This circuit (shown
in Fig. 2.4) exploits the logarithmic relationship between subthreshold MOSFET gate–to–
source voltages and their channel currents, and is therefore called a log–domain filter. The
output current Isyn of this circuit has the same exponential dependence on its gate voltage
Vsyn, as all other synapses presented (see eq. (2.4)). Therefore its derivative with respect to
time is

d

dt
Isyn = −Isyn

κ

UT

d

dt
Vsyn. (2.13)

During an input spike (charge phase), the dynamics of the Vsyn are governed by the
equation Csyn d

dt
Vsyn = −(Iw − Iτ ). Combining this first order differential equation with

2The CMI does not implement a linear integrator filter, therefore the term “time–constant” is improperly used. I use it
in this context to denote a parameter which controls the temporal extension of the CMI’s impulse response.
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Figure 2.4: Log–domain integrator synapse.

eq. (2.13), I obtain

τ
d

dt
Isyn + Isyn = Isyn

Iw
Iτ
, (2.14)

where τ = CsynUT
κIτ

. The beauty of this circuit lies in the fact that the term Iw is inversely
proportional to Isyn itself:

Iw = I0e
−κ(Vw−Vsyn)

UT = I0e
−κ(Vw−Vdd)

UT e
κ(Vsyn−Vdd)

UT = Iw0
I0

Isyn
, (2.15)

where I0 is the leakage current and Iw0 is the current flowing through Mw in the initial
condition, when Vsyn = Vdd. Substituting this expression for Iw into eq. (2.14), the right
term of the differential equation loses the dependence on Isyn and becomes the constant
factor I0Iw0

Iτ
.

Therefore the log–domain integrator transfer function takes the form of a canonical first
order low–pass filter equation, and its response to a spike arriving at t−i and ending at t+i is

Isyn(t) =


I0Iw0

Iτ

(
1− e−

(t−t−i )

τ

)
+ I−syne

− (t−t−i )

τ (charge phase)

I+
syne
− (t−t+i )

τ (discharge phase),

(2.16)

This is the only synaptic circuit of the ones described up to now that has linear filtering
properties. The same silicon synapse can be shared to sum the contributions of spikes po-
tentially arriving from different sources in a linear way. This could save significant amounts
of silicon real–estate in neural architectures where the synapses do not implement learning
or local adaptation mechanisms, and could therefore solve many of the problems that have
hindered the development of large–scale VLSI multi–neuron chips up to now. However, this
particular circuit has two drawbacks. One problem is that the VLSI layout of the schematic
shown in Fig. 2.4 requires more area than the layout of other synaptic circuits, because the
Mw p–FET has to live in an “isolated well” structure (Liu et al., 2002). The second, and
more serious problem, is that the spike lengths used in pulse–based neural network systems,
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Figure 2.5: Diff–pair integrator synapse.

which typically last less than a few micro–seconds, are too short to inject enough charge
into the membrane capacitor of the postsynaptic neuron to produce any effect. The max-
imum amount of charge possible is ∆Q = I0Iw0

Iτ
∆t, and Iw0 cannot be increased beyond

subthreshold current limits (of the order of nano–amperes), or else the log–domain proper-
ties of the filter break–down (note that also Iτ is fixed, to set the desired time constant τ ). A
possible solution is to increase the short (off–chip) input pulse lengths with on–chip pulse
extenders (e.g. with CMI circuits). But this solution requires additional circuitry at each
input synapse, and makes the layout of the overall circuit even larger (Merolla and Boahen,
2004).

2.2.6 Diff–pair integrator synapse
The DPI circuit that I designed solves the problems of the log–domain integrator synapse
while maintaining its linear filtering properties, thus preserving the possibility of multi-
plexing in time spikes arriving from different sources. The schematic diagram of the DPI
synapse is shown in Fig. 2.5. This circuit comprises four n–FETs, two p–FETs, and a ca-
pacitor. The n–FETs form a differential pair whose branch current, Iin, represents the input
to the synapse during the charge phase. Assuming subthreshold operation and saturation
regime, and that the subthreshold slope factors of PMOS, kp, and NMOS, kn, are equal, the
diff–pair branch current, Iin, can be expressed as

Iin = Iw
e
κVsyn
UT

e
κVsyn
UT + e

κVthr
UT

. (2.17)
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Multiplying the numerator and denominator of eq. (2.17) by e−
κVdd
UT , one can express Iin as

Iin =
Iw

1 +
(
Isyn
Igain

) , (2.18)

where the term Igain = I0e
−κ(Vthr−Vdd)

UT represents a virtual p–type subthreshold current that
is not tied to any p–FET in the circuit.

As for the log–domain integrator, one can combine the Csyn capacitor equation
Csyn

d
dt
Vsyn = −(Iin − Iτ ) with eq. (2.13), and write

τ
d

dt
Isyn = −Isyn

(
1− Iin

Iτ

)
, (2.19)

where (as usual) τ = CUT
κIτ

. Replacing Iin from eq. (2.18) into eq. (2.19) I obtain

τ
d

dt
Isyn + Isyn =

Iw
Iτ

Isyn

1 +
(
Isyn
Igain

) . (2.20)

This is a first order non–linear differential equation; however the steady–state condition
can be solved in closed form, and its solution is

Isyn =
Igain
Iτ

(Iw − Iτ ). (2.21)

If Iw � Iτ , the output current, Isyn, will eventually rise to values such that Isyn � Igain,
when the circuit is stimulated with a step input signal. If Isyn

Igain
� 1 the Isyn dependence in

the second term of eq. (2.20) cancels out, and the non–linear differential equation simplifies
to the canonical first order low–pass filter equation

τ
d

dt
Isyn + Isyn =

IwIgain
Iτ

(2.22)

In this case, the response of the DPI synapse to a spike arriving at t−i and ending at t+i
is

Isyn(t) =


IgainIw
Iτ

(
1− e−

(t−t−i )

τ

)
+ I−syne

− (t−t−i )

τ (charge phase)

I+
syne
− (t−t+i )

τ (discharge phase),

(2.23)

I can now compare the circuit’s response to the synaptic computational model described
in Sec. 2.1.2. For the discharge case both equations (2.2) and (2.23) (discharge phase) show
the same exponential time dependence of the EPSC, with a fixed time constant that is in-
dependent of the postsynaptic membrane potential (β = 1/τ ). During the spike (or release
of neurotransmitters), equations (2.1) and (2.23) (charge phase) hold. In this case Iin is a
brief current pulse, reflecting the assumption made by Destexhe and colleagues of a brief
pulse of neurotransmitter concentration [N ] (Destexhe et al., 1998). The general form of
both equations is identical, with a difference in the exponents. This difference reflects the
fact that the binding of neurotransmitters, α · [N ], depends on the fraction of receptors that
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are closed, while Iin does not. However the decrease of Iin with Vsyn can be seen as a sim-
ilar mechanism, acting on the multiplicative gain factor rather than on the exponent of the
exponential. The smooth saturation effect of the differential pair on Iin reflects the upper
bound on the release of neurotransmitters from a pool of release sites, which is present in
biological synapses.

The solution of the DPI synapse is almost identical to that of the log–domain integrator
synapse described in eq. (2.16). The only difference is that the term I0 of eq. (2.16) is
replaced by Igain. This scaling factor can be used to amplify the charge phase response
amplitude, therefore solving the problem of generating sufficiently large charge packets
sourced into the neuron’s integrating capacitor for input spikes of very brief duration, while
keeping all currents in the subthreshold regime, and without requiring additional pulse–
extender circuits. In addition, the layout of the DPI synapse does not require isolated well
structures, and so can be implemented in a very compact way.

Response to arbitrary spike trains

Silicon synapses are typically stimulated with trains of pulses (spikes) of very brief dura-
tion, separated by longer inter–spike intervals (ISIs). The response to such a stimulus can
be written as the convolution of the impulse response of the DPI, h(t), with the square
function, s(t), and a train of impulses, ρ(t), where

s(t) , u(t− t0)− u(t− t0 −∆t),

with u(t) defined as the step function, and where

ρ(t) =
∑
ti

δ(t− ti).

The response of the synapse, denoted as g(t), to the train of spikes is then

g(t) = ρ(t) ∗ s(t) ∗ h(t) = ρ(t) ∗ Isyn(t),

where Isyn(t) is the response of the DPI to the square function, derived in eq. (2.23).
Since the system is linear, the effect of the response to each spike is independent of the

response to the other spikes, and the mean response in one second corresponds to the area
of the function Isyn(t) summed as many times as the mean number of spikes in one second,
i.e. the mean frequency.

The mean level of the output current of the DPI in response to a train of spikes of mean
frequency, f̄ , is then

< Isyn >= f̄

∫ +∞

−∞
Isyn(t)dt. (2.24)

Substituting Isyn(t) with the expression derived in eq. (2.23), and for the initial conditions
t0 = 0 and Isyn(t0) = 0, the integral can be explicitly solved by

< Isyn >= f̄

[∫ ∆t

0

IwIgain
Iτ

(1− e−
t
τ )dt+

∫ ∞
∆t

Isyn(∆t)e−
t−∆t
τ dt

]
. (2.25)

From eq. (2.23), the initial condition for the decay of the current after the spike can be
derived as Isyn(∆t) =

IwIgain
Iτ

(1 − e−
∆t
τ ). The solution of eq. (2.25) leads to the explicit
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expression of the mean response of the DPI to a train of spikes, and is linear with the mean
input frequency given by

< Isyn >=
IwIgain
Iτ

∆tf̄ . (2.26)

This property is fundamental for using the DPI to sum the activity of many different input
neurons, a strategy exploited for saving silicon area when using non plastic synapses (Shi
and Horiuchi, 2004a). Additionally it is crucial in applications where the output has to be
linear with the input, as for the SAC implementation (see Sec. 4.2.2). The experiments
performed in Sec. 4.2.2 show also that the DPI is more suitable for generating the input
currents of the SAC than the CMI used in previous versions, since it generates smoother
fluctuations of the current around the mean value determined by the input frequency.

For very high frequencies, the ISI becomes negligible with respect to the spike width
∆t, f̄ = 1

∆t+ISI
→ 1

∆t
and the response saturates to IwIgain

Iτ
.

As for the log–domain integrator synapse described in Sec. 2.2.5, the DPI synapse im-
plements a low–pass filter with a linear transfer function (under the realistic assump-
tion that Iw � Iτ ). Although it is less compact than the synaptic circuits described
in Sec. 2.2.1, 2.2.2, 2.2.3 and 2.2.4, it is the only one that can reproduce the exponen-
tial dynamics observed in excitatory and inhibitory postsynaptic currents of biological
synapses (Destexhe et al., 1998), without requiring additional input pulse–extender circuits.
Moreover, the DPI synapse I propose has independent control of the time constant, synaptic
weight and synaptic scaling parameters. The extra degree of freedom obtained with the Vthr
parameter can be used to globally scale the efficacies of the DPI circuits that share the same
Vthr bias. This feature could in turn be employed to implement global homeostatic plastic-
ity mechanisms complementary to local spike–based plasticity ones acting on the synaptic
weight, Vw, node (see Sec. 2.4).

An alternative approach to those described in this section for hardware synapse emula-
tion is based on the use of floating–gate transistors, where the floating voltage of the gate
is used either to store the synaptic weight or to produce long time constants. The floating–
gate approach becomes relevant when local storage and modification of the synaptic weight
are required. I did not consider this approach for the design of the silicon synapse, as the
selective attention project does not focus on plasticity. Nevertheless the DPI synapse is
compatible with floating–gate technology for the implementation of learning algorithms.

In the next section I present experimental results from a VLSI chip comprising an array
of DPI synapses connected to low–power leaky integrate and fire neurons (Indiveri et al.,
2006), which validate s the analytical derivations presented here.

2.3 Experimental results

A prototype chip fabricated in standard AMS 0.35µm CMOS technology comprises the
DPI circuit and additional test structures to augment the synapse’s functionality. Fig. 2.6
shows a picture of the synaptic circuit layout. The full layout occupies an area of 1360µm2;
it can therefore be used to implement networks of spiking neurons with a very large num-
ber of synapses on a small chip area. For example, in a recent chip Mitra et al. (2006)
implemented a network comprising 8192 DPI synapses and 32 neurons (256 synapses per
neuron) using an area of only 12mm2. The silicon area occupied by the synaptic circuit can
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1µm

Figure 2.6: Layout of the fabricated DPI synapse and additional circuits that augment the synapse’s
functionality. The elements names and the STD, NMDA, and G blocks correspond to the schematic
diagram of Fig. 2.7.
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Figure 2.7: Schematic diagram of the DPI connected to additional circuits that augment the
synapse’s functionality. The names of the functional blocks correspond to the ones used in the lay-
out of Fig. 2.6: The STD block comprises the circuit modeling short–term depression of the synaptic
weight, the NMDA block comprises the transistors modeling NMDA voltage–gated channels, and
the G block includes transistors that render the synapse conductance–based.

vary significantly, as it depends on the layout design. More conservative solutions use large
transistors to obtain lower mismatch, but require more area. More aggressive solutions re-
quire less area, but multiple instances of the same layout cell produce currents with larger
deviations.

Fig. 2.7 shows the schematic diagram of the full synaptic circuit implemented on the
chip: the analysis of the previous section shows how the DPI response models the EPSC
generated by biological excitatory synapses of AMPA type receptors (Destexhe et al.,
1998); additional circuits can be attached to the DPI synapse to extend the model with addi-
tional features typical of biological synapses, and to implement various types of plasticity.
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For example by adding two extra transistors, voltage–gated channels can be implemented
to model NMDA receptor behavior. Similarly, by using two more transistors the synaptic
model can become conductance–based (Kandel et al., 2000). Inhibitory (GABAa) type re-
ceptors can be easily emulated by using the complementary version of the DPI circuit of
Fig. 2.5, with a p–type diff–pair and n–type output transistor, as shown in Fig. 4.8.

The DPI circuit is also compatible with previously proposed circuits for implement-
ing synaptic plasticity, both on short time scales with models of short–term depression
(STD) (Rasche and Hahnloser, 2001; Boegerhausen et al., 2003), and on longer time
scales with spike–based learning mechanisms, such as spike–timing–dependent–plasticity
(STDP) (Indiveri et al., 2006). Finally, the DPI’s extra degree of freedom for modifying
the overall gain of the synapse either with Vthr or with Vw allows the implementation of
synaptic homeostatic mechanisms (Bartolozzi and Indiveri, 2006), such as global activity
dependent synaptic scaling (Turrigiano et al., 1998).

In the next paragraphs I first characterize the response of the DPI while disabling all the
additional circuits, to validate the theoretical analysis of Sec. 2.2.6 by measuring the output
current of the circuit when stimulated with variable voltage pulses, and with trains of pulses
at different frequencies. I then describe the behavior of the additional circuits, characterized
by measuring the membrane potential, Vmem, of a low power leaky integrate–and–fire (I&F)
neuron (Indiveri et al., 2006) which receives as input the synaptic EPSC.

2.3.1 DPI response properties
The DPI step response was measured for different synaptic weight, Vw, gain, Vthr, and
time constant, Vτ . The synapse was stimulated with voltage pulses of varying duration,
generated by a function generator. The currents measured from the DPI were transformed
to voltages by means of an external current to voltage converter circuit. For each bias setting
I repeated the same stimulation ten times and computed the mean and standard deviation of
the response.

Fig. 2.8 shows the response of the synapse to an input pulse for different synaptic
weight, Vw, bias values. The rise and decay parts of the data were fitted with the charge
phase and discharge phase parts of eq. (2.23), for t−i = 0, and I−syn = 0, i.e.

Isyn(t) =

α
(

1− e−
t
τ

)
(charge phase)

αe−
t
τ (discharge phase).

(2.27)

The small differences in the estimated time constants for the charge and discharge phases
are most likely due to leakage currents and parasitic capacitance effects, not considered in
the analytical derivations. These results however show that the DPI time constant does not
depend on Vw, and can be independently tuned with Vτ . In particular, the time constants of
the responses shown in Fig. 2.8(a) and 2.8(b) are compatible with the typical time evolution
of biological NMDA and AMPA type receptors, respectively.

I also measured the DPI circuit’s response to an input pulse for different synaptic gain,
Vthr, bias values. Fig. 2.9(a) shows the circuit’s response with a small Iτ current, as a func-
tion of different Vthr gain settings. The background shaded lines represent the measured
data, while the solid, dashed and dot–dashed curves represent fits with eq. (2.27). Table 2.1
shows the fitting parameters, τ and α. The time constant estimated from the fits does not
change with Vthr and is of the order of seconds. Fig. 2.9(b) shows the DPI response to input
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Figure 2.8: The response of the DPI to an input voltage pulse for two different values of Vτ and
three different values of Vw. The response is fitted with eq. (2.23), and the fitting functions (dotted,
and dashed lines) are superimposed to the measured data (shaded lines). (a) Slow time constant
setting (Vτ = 3.1V): the time constants estimated by the fit are τ = 219.3ms for the charge phase,
and τ = 326.3ms for the discharge phase. (b) Fast time constant setting (Vτ = 2.94V): the time
constants estimated by the fit are τ = 2.9ms, and τ = 4.1ms.
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Figure 2.9: The response of the DPI to an input voltage pulse for two different values of Vτ and
three different values of Vthr. The response is fitted with the eq. (2.23), and the fitting functions
(dotted, and dashed lines) are superimposed to the measured data (shaded lines). In (a) Iτ is set to
be very small (the p–FET used to generate Iτ has a Vgs = 150mV), and the circuit time constant
is about one second. In (b) Iτ is set to be relatively large (Vgs = 570mV) in order to obtain a time
constant of the order of µs (note the different time scale on the abscissa axis).

current pulses for larger values of Iτ , which produce time constants of the order of micro–
seconds (note the different scale on the abscissa axis). These results are in accordance with
both theoretical derivation and simulation results: decreasing Vthr increases the DPI gain
exponentially, while the DPI time constant, set by adjusting the current Iτ , does not change
with Vthr.

I also verified the derivation of the response of the DPI to spike trains in Sec. 2.2.6, by
measuring the mean EPSC of the circuit in response to spike trains of increasing frequen-
cies. Fig. 2.10 shows the i − f curve for typical biological spiking frequencies, ranging
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Vτ = 2.77V Vτ = 3.15V
Charge Discharge Charge Discharge

Vthr = 2.8V α(nA) 244.3934 248.6625 255.8926 271.1021
τ (s) 30.0051µ 50.3472µ 1.0273 1.5578

Vthr = 2.82V α(nA) 154.2117 155.7493 163.0349 170.1276
τ (s) 31.4717µ 48.3105µ 0.9863 1.5178

Vthr = 2.84V α(nA) 94.5382 94.3242 100.9033 103.1715
τ (s) 32.8574µ 48.6947µ 1.0234 1.4874

Table 2.1: Fitting parameters of curves in Fig. 2.9. τ is the time constant and α the maximum of
the curves, representing both the steady state of the exponential charge and the initial value of the
exponential discharge.
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Figure 2.10: The response of the DPI to regular spike trains, for different synaptic weight biases
Vw, and for the same two time constants of Fig. 2.8, (a) Vτ = 3.1V, (b) Vτ=2.94V. The output mean
current is approximately linear with the synaptic input frequency and its gain can be set with the
synaptic weight bias Vw.

from 10Hz to 200Hz, for the two different values of the time constant bias Vτ used in the
preceding experiments. The mean output current is approximately linear over a wide range
of input frequencies (extending well beyond the ones shown in the plot). Fig. 2.10(a) shows
that for long time constants the synapse response deviates from linearity due to the satura-
tion effects described in Sec. 2.2.6. Fig. 2.10(b) shows a deviation from linearity for low
input frequencies, when the time constant of the synapse is small; in such a case the synap-
tic weight is set to a high value, and the transistor Mw of Fig. 2.5 probably does not operate
in the subthreshold regime any more, changing the regime of the DPI; nevertheless for high
values of the input frequency the overall behavior is close to linearity.

2.3.2 NMDA functionality
The DPI reproduces the phenomenology of the current flow through ionic ligand–gated
membrane channels, which open and let ions flow across the postsynaptic membrane as
soon as they sense neurotransmitters released by the presynaptic boutons (e.g. AMPA chan-
nels). Another important class of ligand–gated synaptic channels, namely the NMDA re-
ceptors, are also voltage–gated; these channels open to let the ions flow only if the mem-
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Figure 2.11: NMDA–type synapse response properties. (a) Membrane potential of an I&F neuron
connected to the synapse and stimulated by a constant injection current. The NMDA threshold
voltage is set to Vnmda = 400mV (dashed line in (a)). The small jumps in Vmem represent the
excitatory postsynaptic potentials (EPSPs) produced by the synaptic input, when Vmem > Vnmda,
in response to the presynaptic input spikes. (b) EPSP amplitude versus the membrane potential, for
increasing values of the NMDA threshold Vnmda, and for a fixed value of Vw.

brane voltage is depolarized above a given threshold while in the presence of its neuro-
transmitter (glutamate). This voltage–gating behavior has been implemented by exploiting
the thresholding property of the differential pair circuit (Mahowald and Douglas, 1991;
Rasche and Douglas, 1999; Arthur and Boahen, 2004), as shown in Fig. 2.7: if the node
Vmem is lower than the externally set bias, Vnmda, the output current, Isyn, flows through
the transistor Mnmda in the left branch of the diff–pair, and has no effect on the postsynap-
tic depolarization. On the other hand, if Vmem is higher than Vnmda, the current flows also
into the membrane potential node, depolarizing the I&F neuron, and thus implementing the
voltage–gating typical of NMDA receptors.

Fig. 2.11 shows the results measured from the test circuit on the prototype chip; I stim-
ulate the synapse with presynaptic spikes, while injecting constant current into the post-
synaptic neuron’s membrane. The amplitude of the synaptic EPSC depends on the differ-
ence between the membrane potential and the NMDA threshold, Vnmda. As expected, when
Vmem is smaller than Vnmda the synaptic current is null and the membrane potential in-
creases solely due to the constant injection current. As Vmem increases above Vnmda, the
contribution of the synaptic current injected with each presynaptic spike becomes visible.
The time–constant of the DPI circuit when used in this mode can easily be extended to
hundreds of milliseconds (values typical of NMDA–type receptor dynamics) by increasing
the Vτ bias voltage of Fig. 2.7. This permits the faithful reproduction of both the voltage–
gated and temporal dynamic properties of real NMDA receptors. It is important to be able
to implement these properties in VLSI devices because there is evidence that they play an
important role in detecting coincidence between the presynaptic activity and postsynaptic
depolarization for inducing long–term potentiation (LTP) (Morris et al., 1990). Further-
more the long time constant of the EPSC decay, easily tunable in the DPI implementation,
is crucial for the function of the stabilizing role of the NMDA’s receptor, which has been
hypothesized by computational studies in the context of working memory (Wang, 1999) to
be useful for stabilizing persistent activity of recurrent VLSI networks of spiking neurons.
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2.3.3 Conductance–based functionality
So far, the total current flowing through the postsynaptic membrane channels has been
shown to be independent of the postsynaptic membrane potential. However, in real synapses
the current is proportional to the difference between the postsynaptic membrane voltage and
the synaptic ion reversal potential Eion, as given by

Isyn = gsyn(Vmem − Eion). (2.28)

Exploiting once more the properties of the differential pair circuit I can model this
dependence with just two more transistors (see G block of Fig. 2.7), and obtain a behavior
that, to a first order approximation, is equivalent to that described by eq. (2.28). Formally,
the conductance–based synapse output is

Isyn′′ = Isyn′
1

1 + e
κ
UT

(Vmem−Vgthr)
, (2.29)

so by considering the first order term of the Taylor expansion, when Vmem ∼= Vgthr I obtain

Isyn′′ =
Isyn′

2
+ gsyn(Vmem − Vgthr), (2.30)

where the conductance term gsyn = Isyn′
κ

4UT
.

Fig. 2.12 shows the EPSPs measured from the I&F neuron connected to the
conductance–based synapse, for different values of Vgthr. These experimental results show
that the synapse can reproduce the behavior of conductance–based synapses. This behavior
is especially relevant in inhibitory synapses, where the dependence expressed in eq. (2.28)
results in shunting inhibition. Computational and biological studies have attributed different
roles to shunting inhibition, such as logical AND–NOT (Koch et al., 1983), or normaliza-
tion (Carandini et al., 1997) functions. Evidence for these and other hypotheses continue to
be the subject of investigation (Anderson et al., 2000; Chance et al., 2002). The implemen-
tation of shunting inhibition in large arrays of VLSI synapses and spiking neurons provides
an additional means for exploring the computational role of this possible computational
primitive.

2.4 Synaptic plasticity

In the previous sections I showed that the DPI circuit can model biologically realistic synap-
tic current dynamics. The main synaptic feature exploited in neural networks, though, is
plasticity: the ability of changing the synaptic efficacy to learn and adapt to the environment.
In neural networks with large arrays of synapses and neurons usually (Indiveri et al., 2006;
Mitra et al., 2006; Arthur and Boahen, 2004; Shi and Horiuchi, 2004b) all the synapses
belonging to one population share the same bias that sets their initial weight3. In addition
each synapse can be connected to a local circuit for the short and/or long term modification
of its weight. The DPI supports all of the short–term and long–term plasticity mechanisms
for inducing short–term depression (STD), long–term potentiation (LTP), and long–term
depression (LTD) in the synaptic weight that have been proposed in the literature. Specifi-
cally, the possibility of biasing Mw with subthreshold voltages in the order of hundreds of
millivolts makes the DPI compatible with many of the spike–timing dependent plasticity

3The initial weight Vw can be set by an external voltage reference or by on–chip bias generators
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Figure 2.12: Conductance–based synapse response properties: (a) Membrane potential of the I&F
neuron stimulated by the synapse, for different values of the synaptic reversal potential Vgthr.(b)
EPSP amplitude as a function of Vmem for different values of Vgthr.

circuits previously proposed (Indiveri et al., 2006; Mitra et al., 2006; Arthur and Boahen,
2006; Bofill et al., 2002). The possibility of exploiting an extra degree of freedom for mod-
ifying the weight of the synapse allows the implementation of synaptic homeostatic mech-
anisms (Bartolozzi and Indiveri, 2006). In the following sections I describe the behavior of
the synapse when connected to a short–term depressing circuit, then I analyze a possible
implementation of the homeostatic plasticity.

2.4.1 Short–term depression
Short–term depression (STD) is a mechanism that modifies synaptic efficacy on a time scale
of the order of hundreds of milliseconds to seconds. It is induced by the recent history of the
presynaptic firing rate. Computational models have been proposed in the past to account for
the experimental observations of modification of the synaptic efficacy and to investigate the
computational role of such phenomenon (Abbott et al., 1997; Tsodyks and Markram, 1997;
Chance et al., 1998; Chance and Abbott, 2001). The most evident property of STD is the
enhanced response to transients and the adaptation to sustained stimulations; in contrast to
postsynaptic forms of adaptations, STD is specific to a single presynaptic input: each neuron
receives multiple afferent synapses, each one with its typical range of input frequencies, and
each presynaptic terminal locally adapts its own efficacy, implementing a form of local gain
control.

It has been shown that above a limit frequency, flim4, the steady state synaptic effi-
cacy is inversely proportional to the input firing rate (Tsodyks and Markram, 1997; Abbott
et al., 1997). This implies that for input frequencies above flim the amplitude of EPSPs is
inversely proportional to the input firing rate. Under the approximation that synapses add
linearly, the average membrane depolarization is proportional to the product of the EPSP
amplitude and the input firing rate, therefore for high frequencies it loses its dependence
on the input firing rate (Abbott et al., 1997). This loss of sensitivity to sustained activity is
complementary to the increase in sensitivity to variations of the firing rate: the amplitude

4The limit frequency flim is determined by the release probability of the synapse. In rat’s cortical neurons flim has
been estimated to be in an interval between ∼10Hz-25Hz (Tsodyks and Markram, 1997)
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of the first EPSPs after a variation, ∆f , of the input is proportional to the inverse of the
initial input frequency, f , before depression further modifies synaptic efficacy; the transient
response of the average membrane depolarization is proportional to the product of the EPSP
amplitude and the input firing rate, ∆f , resulting in a percentage variation of the input sig-
nal proportional to ∆f

f
. When a neuron receives input from two different synapses, one with

low input firing rates, the other with high input rates, each one of the two synapses adapts
differently, rendering the postsynaptic neuron sensitive to small variations in the input fre-
quency for the synapse with low input range, and insensitive to the same absolute variation
for the synapse with high input frequencies, reducing the responsiveness to random fluctu-
ations of the input. This mechanism is also a form of logarithmic compression of the input
for neurons that typically integrate the activity of thousands of synapses, each firing over a
range of about 1-100Hz, keeping their firing rate within the same range (Abbott and Regehr,
2004). Consequences of synaptic depression are the removal of correlations in a single in-
put train, to implement more efficient information coding (Abbott and Regehr, 2004), and
detection of synchronous change of uncorrelated Poisson spike trains (Abbott et al., 1997).
Chance et al. (1998) formalized a model of synaptic short–term dynamics, including fast
and slow forms of depression. Slow forms of depression account for contrast adaptation in
V1 neurons, while the fast form of depression accounts for rapid transient response, de-
crease of the response to periodic activity and non–linear temporal summation; their model
produces a phase advance in the neuronal response which they propose as a candidate for
the implementation of direction selectivity in V1 cells.

The DPI synapse is easily extended with the short–term depression circuit proposed
by Rasche and Hahnloser (2001), where the synaptic weight decreases with increasing
number of input spikes and recovers during periods of presynaptic inactivity. Quantitative
considerations and comparisons to short–term depression computational models have been
presented in Rasche and Hahnloser (2001) and Boegerhausen et al. (2003). Here I present
a synthesis of the comparison of the circuit model with the computational model of Chance
et al. (1998) presented in Boegerhausen et al. (2003).

Computational model

The synaptic efficacy is expressed by the term gD, where g is the maximum non–depressed
efficacy, and Dε[0, 1] is the depression value. After a presynaptic pulse, at time tsp, D is
updated in a multiplicative way by a constant depressing factor d, that is

D(t+sp) = dD(t−sp). (2.31)

Then it recovers with a time constant τd, that is

τd
dD

dt
= (1−D). (2.32)

At steady state, after presynaptic stimulation at rate f , the average depression is

〈D〉 =
1

1 + (1− d)τdf
. (2.33)

The dependence of D on the inverse of the input firing rate is reflected to the steady state
amplitude of the EPSPs, and on the average postsynaptic depolarization.
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STD circuit

Boegerhausen et al. (2003) derived similar equations for the circuit in the STD block of
Fig. 2.7. The current through the adaptive Tobi element (Delbrück, 1994), implemented by
the diode transistor Mw0 with bulk connected to the source terminal, is given by

Iw0 = I0pe
k(Vw0−Vw)

UT

(
1− e−

(Vw0−Vw)
UT

)
. (2.34)

During the recovery phase transistors Mpre′ and Mstd do not conduct, and the voltage Vw
relaxes back to its initial (un–depressed) value Vw0, via the capacitor: Iw0 = Cstd

dVw
dt

.

The current Irf , I0pe
k(Vw0−Vw)

UT , and its differential dVw = −UT
k

dIrf
Irf

, substituted in
eq. (2.4.1), lead to

CstdUT
kI0p

d

(
I0p

Irf

)
=

(
1−

(
I0p

Irf

) 1
k

)
dt. (2.35)

That becomes
τp
dD

dt
= 1−D

1
k , (2.36)

where τp = CstdUT
kI0p

, and D = I0p
Irf

= e
− k(Vw0−Vw)

UT . The depression is null, i.e. D = 1, when
the synaptic weight Vw = Vw0. The update rule for D results from a variation ∆Vw caused
by the current through the transistor Mstd, which turns on during a presynaptic pulse. The
exponential dependence of D on Vw results in a multiplicative update rule for D, as in the
model

D(t+sp) = dD(t−sp), (2.37)

where d depends on the bias voltage Vstd.
From the update and recovery rules one can derive the steady state value for depression;

if k = 1 the circuit model is a faithful implementation of the computational model. However
k is a process parameter that depends on the operating conditions of the MOS transistors;
typical values range between 0.6 and 0.8. The non–linear eq. (2.4.1) can be simplified for
D � 1, when the synapse is fully depressed; in such a case the equation becomes linear
and

〈D〉 =
1

τd(1− d)f
. (2.38)

In the DPI the amplitude of the EPSC is proportional to Iw (see eq. (2.23)), which in turn
is proportional to D. Therefore the steady state EPSP amplitude is inversely proportional to
f .

Fig. 2.13 shows the EPSPs of the I&F neuron connected to the synapse, having acti-
vated the STD block of Fig. 2.7, for two different settings of the leak current on the I&F
circuit. These results confirm the compatibility between the DPI and the STD circuits, and
show qualitatively the effect of short–term depression. More quantitative experiments on
the effect of STD are described in Sec. 4.3.5.

2.4.2 Synaptic homeostasis
The type of synaptic plasticity described in the previous paragraph locally modifies the
synaptic weight of single synapses on a relatively short time scale. Other forms of plasticity
act on longer time scales, and render neurons capable of learning patterns, associations, and
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Figure 2.13: Short–term depression. Membrane potential of the leaky I&F neuron, when the short–
term depressing synapse is stimulated with a regular spike train at 50Hz. The different traces of the
membrane potential correspond to different values of the leakage current of the neuron. Note how
(from the second spike on) the EPSP amplitude decreases with each input spike.

relations present in the external world. In this section I describe an additional type of synap-
tic plasticity that acts on even longer time scales, and is not synapse specific but collectively
modulates populations of synapses. This type of plasticity mechanism is commonly referred
to as homeostatic plasticity. It maintains the activity of neurons within a functional range, it
stabilizes the activity of many interconnected neurons, and it reduces the effects of system
inhomogeneities.

Physical implementations of systems comprising many similar elements operating in
parallel, such as the brain or VLSI neural networks, have to cope with the intrinsic inho-
mogeneities present among different instantiations of the same elements. Specifically in
VLSI, variations across the silicon wafer and small differences in doping concentration cre-
ate differences between different instances of the same circuit. Similarly, in populations of
real neurons, the different morphologies of each cell and their different distributions of ion
channels and receptors lead to variations in their functional properties.

Despite their differences, real neurons constitute a homogeneous computational sub-
strate, maintaining their overall level of activity within functional boundaries. Neurons
show stable activity in the face of continuous turnover of their constituents, while retain-
ing their ability to learn and adapt to new stimuli and changes in the environment. More
importantly, real neurons can maintain stable activity also when they are part of complex
highly interconnected networks. These stability and homogeneity properties are the result
of various forms of homeostatic mechanisms that have been revealed in neurophysiology
(Rutherford et al., 1998; Turrigiano, 1999; Desai et al., 2002; Burrone and Murthy, 2003).
The specific mechanism I address here is referred to as activity–dependent scaling of synap-
tic weights: Turrigiano et al. (1998) showed how the level of activity in a neural population
could be restored to its homeostatic value after inducing a chronic change, thanks to an
“automatic gain control mechanism” that modifies the overall drive of the synapses in the
network. Fig. 2.14 shows the effect of chronic increase or decrease of neuronal activity on
the mean amplitude of EPSCs: the unveiled process acts by globally scaling the weights of
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Figure 2.14: Activity–dependent scaling of synaptic weights: Mean EPSCs measured when the
activity of a culture of neurons is chronically changed. Left: Tetrodoxine (TTX) causes decrease
of spiking activity, and consequent increase in the amplitude of the EPSCs; Bicuculline has the
opposite effect on spiking activity, that causes the decrease of the synaptic drive to the neurons.
Right: Scaled EPSCs perfectly superimpose, demonstrating that only the amplitude, and not the
dynamics, of the EPSCs is affected. Adapted from Turrigiano et al. (1998)

the entire distribution of inputs synapsing onto a single postsynaptic neuron, in response
to chronic alteration of its output firing activity. The multiplicative nature of this mecha-
nism preserves the relative differences between synaptic weights typically induced by local
spike–based learning mechanisms. This type of homeostatic plasticity has been shown to
exist both in neuronal cultures and in vivo during development (Desai et al., 2002); it regu-
lates both the activity of single neurons and of entire networks (Rutherford et al., 1998). In
the latter case it acts differentially on excitatory–to–excitatory synapses and on excitatory–
to–inhibitory synapses, achieving stability by balancing the level of excitation and inhibi-
tion in the network.

The specific design of the DPI synapse allows the application of homeostatic control to
VLSI implementations of neural networks, in order to compensate for inhomogeneities due
to device mismatch and slow changes in the physical properties of the circuits arising due
to temperature drift. In addition, in large multi–chip VLSI implementations of neural sys-
tems (Serrano-Gotarredona et al., 2005), instabilities could also arise also due to dramatic
changes in the statistics of the input signals, induced for example by the incorporation of
new input devices, by failures in existing sensory input devices, or by abrupt changes in the
testing environment. In these situations the implementation of silicon homeostatic mecha-
nisms could lead to improvements in overall system performance and stability.

For example in large aVLSI networks of spiking neurons (Indiveri et al., 2006), synaptic
scaling can act on all afferent synapses of each neuron to maintain their activities within a
functional range: this will naturally compensate for inhomogeneities across neurons caused
by device mismatch. At the network level, homeostasis counteracts the effect of temperature
drifts that can change the spiking activity of the neurons; at the system level it acts as an
automatic gain control which responds to dramatic changes in input activity levels, i.e. when
a chip is interfaced to a new sensory input device.

As demonstrated in Sec. 2.2.6, and shown in Fig. 2.15, the total synaptic efficacy of
the DPI can be scaled by independently varying either Iw or Igain. These two independent
degrees of freedom can be exploited for learning the synaptic weight Vw with “fast” spike–
based learning rules, while adapting the bias Vthr to implement homeostatic synaptic scaling
on much slower time scales.

To test the feasibility of the homeostatic scaling with the DPI, I implemented home-
ostasis as a software control system, in loop with a chip comprising a VLSI implementation
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(a) (b)

Figure 2.15: Independent scaling of EPSC amplitude by adjusting either Vthr or Vw. The plots
show the time course of mean and standard deviation (over 10 repetitions of the same experiment)
of the current Isyn, in response to a single input voltage pulse. In both plots the lower EPSC traces
share the same set of Vthr and Vw, in (a) the higher EPSC is obtained by increasing Vw while in (b)
by decreasing Vthr, with respect to the initial bias set. Superimposed to the experimental data are
plotted theoretical fits of the decay from eq. (2.23). The time constant of all plots is the same and
equal to 5ms.

of the synapse. In the following paragraph I describe the algorithm and show experimen-
tal data from the mixed–mode software/hardware neural system. The results obtained are
favorable for the design of a hardware implementation of the algorithm.

Experimental setup and homeostatic control algorithm

This experiment involves the use of the DPI together with the I&F adaptive neuron, as
previous experiments, but on a different chip and setup5.

A Linux desktop was used to monitor the spiking activity of the I&F neuron in real–
time, and to send sequences of spikes to the synapse (Oster et al., 2005; Dante et al., 2005).
The desktop was also used to control a current source which injects a current In into the
input capacitance of the I&F neuron, and to control a voltage source which sets the value
of the DPI’s Vthr bias voltage (see Fig. 2.5).

The neuron was stimulated using both current injection (sourced into the neuron’s ca-
pacitance) and spike trains (sent to the DPI). The current In models the average input current
that the neuron would receive from its full dendritic tree, and is used to induce a base activ-
ity level. The sequences of spikes represent the input to a single synapse, and could be used
to drive a spike–based learning circuit such as the ones proposed by Indiveri et al. (2006)
and Mitra et al. (2006).

To characterize the synaptic homeostasis model I fixed the statistics of the synapse
input spike trains and varied the input current to the neuron, In. The homeostatic control
algorithm adapted the DPI’s Vthr bias to maintain the output firing rate of the neuron within
a desired (functional) range. Formally, the control strategy adopted is that of a PI–controller:
the algorithm determines how to change Vthr both by measuring the error between the firing

5The experiment described in this paragraph was performed on a different chip than the others presented in the thesis,
implemented on standard 0.5µm technology and fabricated through the MOSIS consortium. The chip power supply is
Vdd = 5V, instead of 3.3V
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Figure 2.16: Block diagram of the homeostatic PI control algorithm, in the Laplace domain. In(s),
the disturbance input, and Isyn(s), the system’s controlled variable, are the current inputs to the I&F
neuron. The feedback block integrates the neuron’s output frequency Fi(s) over time, the resulting
low–pass filtered frequency F (s) is then compared to the target frequency Ft(s), generating the
error E(s) that drives the PI-controller block. It sets the controlled signal Isyn to a value that brings
the neuron’s output firing rate back to the reference value Ft(s).

rate of the neuron and its target firing rate, and by computing the integral of the error over
time. The block diagram of this classic control system is shown in Fig. 2.16.

The system of differential equations that implements this control strategy is

τH ḟ(t) = −f(t) + fi

fi = α(In(t) + Isyn(t))

e(t) = (ft − f(t))

Isyn(t) = kpe(t) + ki

∫ t

0

e(ξ)dξ

, (2.39)

where τH is the time constant of the homeostatic process, fi is the measured instantaneous
firing rate of the neuron, α is the transfer function gain of the neuron, when operating in
its linear region (Indiveri, 2003b), f is the integrated neuron firing rate, and ft is a desired
target firing rate.

This control algorithm determines the value of Isyn required to keep the output firing
rate close to a defined target rate; the updated value of Isyn depends proportionally on the the
error of the firing rate, e(t), and on its integral over time, with the proportionality constants
kp and ki respectively. To set Isyn to the new desired value, I use eq. (2.26) and modify Igain
(via Vthr) accordingly.

This software algorithm can be directly mapped on silicon: another instance of the DPI
circuit could be used to implement the integration of the output firing rate over time, a
differential pair can be used to realize the proportional control, and a follower integrator
circuit can be used to implement the integral control.

Experimental Results

To demonstrate the properties of the homeostatic control setup I replicated the experiment
described by Turrigiano et al. (1998), where they chronically shifted the activity of a pop-
ulation of neurons to induce synaptic scaling behavior. Specifically, I initially combined
current injection and synaptic stimulation such that the neuron fired at a desired rate of ap-
proximately 98Hz. Subsequently I produced a step change in the I&F neuron’s firing rate
by changing the injection current In, and let the control algorithm scale the total synaptic
efficacy. As shown in Fig. 2.17, the homeostatic control adapted the neuron’s firing rate
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Figure 2.17: Homeostatic response to a step–wise DC shift in the neuron’s instantaneous firing rate.
The thick black line shows the output of the neuron for a step in the input current level when the
homeostatic control is not enabled. The other curves show how the firing rate goes back to the initial
activity level for different time constant of the homeostatic control.

back to its target value with a time constant τH . In the experiment shown in Fig.2.17, the
control algorithm adapted the Vthr bias from a value of 4.5V to one of 4.58V. This produced
a decrease of Igain, which in turn scaled the amplitude of EPSCs proportionally, reproduc-
ing the behavior observed in (Turrigiano et al., 1998). The homeostatic control algorithm
is symmetrical: decreasing the current injection level results in a decrease of activity that
recovers to the initial value with the same time constant as the previous experiment. In this
case the change in activity has been achieved by decreasing Vthr, thereby increasing the
amplitude of EPSCs with respect to their control values.

Ideally, the (slow) homeostatic stabilizing mechanism should not interfere with the
(fast) spike–based learning mechanisms. To show that the homeostatic control algorithm
corrects only chronic DC and low frequency shifts of activity, allowing the information
associated with fast fluctuations of the input signal pass through, I superimposed high–
frequency fluctuations on In and repeated the chronic (step) change experiment. Fig. 2.18
shows the results of this experiment. As shown, the DC offset is removed while the high
frequency fluctuations are transmitted by the I&F neuron. The amplification of the high–
frequency components is due to the choice of the ki, and kp parameters in the control algo-
rithm.

2.5 Applications to biomedical signal processing

In the previous section of this chapter I described how it is possible to apply principles
observed from biology to solve technological issues. In this case the mechanism of homeo-
static plasticity was implemented by applying a solution from classical control theory.

In this section I demonstrate that the design of circuits like the DPI, carried out in the
context of neuromorphic analog VLSI research with the aim of realizing a faithful VLSI
models of biological synapses, can lead to the design of novel circuits (in this case a log–
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Figure 2.18: Homeostatic control adding high frequency fluctuations to the injection current. I
replicate the same experiment of Fig. 2.17, adding random noise, for the time constant τH = 1000s;
the black line shows the output of the neuron for a step in the input current level when the homeo-
static control is not enabled. The blue curve shows how the DC offset in the firing rate is corrected,
without affecting high frequency fluctuations in firing rate.
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Figure 2.19: Current–mode log–domain DPI integrator.

domain low–pass filter) suitable also for other more traditional engineering application do-
mains such as biomedical signal processing.

When the input to the DPI circuit is the current Iin(t), as shown in Fig. 2.19, the DPI
behaves as a linear integrator with the same properties of classical log–domain first order
low pass filters (Frey, 2000), but with the additional advantage of providing tunable gain
independent from the (tunable) time constant, a compact layout, better matching properties
and lower power consumption.

As already mentioned, current–mode circuits have been shown to have a wide variety
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Figure 2.20: Classical log–domain first order linear filter. The arrows show the Vgs loop used for
the translinear principle application.

of useful features, including the capability of operating with large bandwidth at low supply
voltages (Ramirez-Angulo et al., 1992). Current–mode CMOS circuits operated in the sub-
threshold, or weak–inversion, regime can be used to implement log–domain filters (Frey,
2000). The log–domain paradigm has the advantage of producing linear building blocks
by dealing with non linearities at the component level and, as any other companding tech-
nique (Seevinck, 1990), it improves the circuit’s dynamic range (Frey, 1993).

In the next sections I describe the DPI properties, when analyzed from the point of view
of low–pass filtering, and compare it to a classical example of a low–pass filter proposed
by Frey (2000). I report the results of SPICE simulations characterizing the circuit transfer
function and parameters evaluating the filtering performance, such as the Total Harmonic
Distortion and power dissipation.

2.5.1 Low–pass filtering
In Sec. 2.2.6 the theoretical circuit analysis lead to the derivation of the circuit transfer
function (eq. (2.22)); a first–order non–linear differential equation.

If the DC component of the input signal, Iin, is much greater than Iτ , then Iout � Igain.
Under this condition, the second term of eq. (2.22) reduces to Iin

Igain
Iτ

and I obtain a linear
first order differential equation characteristic of linear filters, but with tunable gain Igain

Iτ
. In

the Laplace domain the DPI transfer function is therefore:

Iout
Iin

=
Igain
Iτ
· 1

1 + τs
(2.40)

Fig. 2.9 shows the independent control of the time constant and gain of the circuit, and the
fits of the curves confirm the linearity of the system.

For comparison, Fig. 2.20 shows the classical log–domain integrator proposed by Frey
(2000), with equivalent functionality. This circuit’s linear transfer function can be easily
derived by applying the translinear principle on the Vgs loop highlighted by the arrows in
Fig. 2.20: given the exponential relationship between the subthreshold currents of the p–
FETs and their Vgs voltages, I can write: Iin · Iτ = Iout · Id. Similar to the DPI analysis,
differentiating Iout with respect to Vc and combining the result with the capacitor equation
C d
dt
Vc = −(Id − Iτ ), I derive the standard first order differential equation

τ
d

dt
Iout + Iout = Iin. (2.41)

As this circuit requires p–FETs with isolated wells it occupies more silicon area than the
DPI.
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Table 2.2: Dimensions of elements used in simulations and in the circuit implementation. The
MOSFET entries show their W/L values expressed in µm/µ), while the (MOSCAP) capacitor area
yields a capacitance of 770fF.

Min 6.3/3 Mg 1/3
Md 1/3 Mτ 1.7/2.2
Mout 13.5/2.2 C 170µm2
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Figure 2.21: The simulated DPI circuit transfer function, for a DC input current value of 10nA; (a)
plots with values of Iτ ranging from 0.3nA to 1.5nA; (b) plots with values of Vg ranging from 2.6V
to 2.85V.

SPICE simulations of the DPI circuit were performed6 using 0.35µ m AMS process
parameters, with both 3.3V and 1.2V power supply settings. The transistor dimensions and
capacitance value used for the simulations match those in the layout of Fig. 2.6 and are
listed in Tab. 2.2.

Fig. 2.21 shows the AC simulation results, characterizing the properties of the DPI in
the frequency domain as a function of its time–constant and gain. Fig. 2.21(a) shows the
simulation results for different values of the DPI time constant, obtained by changing the
current bias Iτ . Even with relatively small capacitor values (see Tab. 2.2), the DPI integrator
can produce time constants of values as long as hundreds of milliseconds, providing a very
low cut–off frequency low–pass filter. The gain of the DPI transfer function decreases in
a geometric fashion when the cut–off frequency increases linearly, because Iτ appears in
the denominator of the transfer function (see eq. (2.40)). Fig. 2.21(b) shows the simulation
results for different values of the bias voltage Vthr, which is modulated to change the gain
of the DPI. The simulations confirm the theoretical analysis: different settings of Vthr affect
the circuit’s gain, while leaving the cut–off frequency unchanged. Analogous results have
been obtained when measuring the step response of the DPI circuit from the fabricated
prototype chip (see Sec. 2.3.1).

To test the linearity condition derived in Section 2.2.6, the DPI circuit was stimulated
with input currents with a DC component Iin greater than Iτ , and different values of AC
component iin. In the simulations Vthr = Vdd− 0.4V, Iτ = 1pA, Iin = 10pA, and the fre-
quency of the AC input signal was matched to the filter cut–off frequency of 6Hz. Fig. 2.22

6The simulations were kindly performed by S. Mitra and G. Indiveri
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Figure 2.22: Simulated Total Harmonic Distortion (THD) of DPI circuit, for two values of the
supply voltage Vdd.

Table 2.3: DPI circuit specifications.
Area (without pads and guard rings) 464.750µm2

Power dissipation @ Iτ = 1pA, Vdd = 1.2V 0.7nW
Supply voltage 1.2V-3.3V
fc tuning range from 1Hz - 50KHz
THD @ iin/Iin = 0.1 -60dB
THD @ iin/Iin = 0.8 -41.4dB

shows the circuit’s Total Harmonic Distortion (THD) as a function of iin/Iin, for two dif-
ferent values of supply voltage.

The values used in the simulations above are typical in neuromorphic and biomedical
applications (Indiveri et al., 2006; Sol’is-Bustos et al., 2000). In these conditions (and with
Vdd = 1.2V) the circuit dissipates less than 1nW. Fig.2.23 reports the power dissipation of
the DPI as a function of desired cut–off frequency. In this experiment Vthr = Vdd−0.4V, the
iin/Iin ratio was fixed to 0.5 (for a THD of approximately 0.6%), Iin was set to 10Iτ , and
Iτ was varied between 1pA and 50nA. The cut–off frequency was computed for each value
of Iτ , stimulating the DPI with the same frequency and measuring the average power dissi-
pation. As shown, the power consumption is proportional to the desired cut–off frequency
(i.e. to Iτ ), and for frequencies lower than 100Hz it is extremely efficient.

2.6 Conclusions

In this chapter I described the Diff–Pair Integrator, a new neuromorphic circuit that mod-
els one of the basic elements of neural wet–ware: the synapse. The postsynaptic currents
produced by the DPI evolve exponentially with time and are a good approximation of real
synaptic conductances, as demonstrated by the computational model proposed by Destexhe
et al. (1998).
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Figure 2.23: Simulated power dissipation for increasing values of cutoff–frequency (set by Iτ )

I compared the DPI with previous silicon synaptic emulations, highlighting the im-
provements introduced by the new design. At the circuit level the DPI is very compact and
allows a better control over the synaptic parameters. The exponential characteristic of the
circuit leads to a linear summation of the effects of input spikes over a wide range of input
frequencies, being especially relevant for the implementation of dense arrays of synaptic
matrices, where each DPI can be used to spatially sum the activity of many presynaptic
neurons.

At the modeling and computational level the DPI offers many opportunities, of which
I underlined the relevance and role in synaptic computation. For example, the possibility
of easily tuning the time constant of the synaptic currents to a very slow decay has an
important implication in maintaining persistent activity in recurrent networks at low firing
rates, a mechanism correlated with the existence of working memory (Wang, 1999).

With the addition of a few extra transistors, the synaptic model can be extended to
include voltage–gating typical of NMDA receptors and conductance–based current flow.
The former is important as a coincidence detector of pre and postsynaptic activity, the latter
is crucial for the design of inhibitory synapses and shunting inhibition.

I demonstrated that the DPI circuit is compatible with existing circuits for short and
long–term modification of synaptic efficacy. The proposed synapse gives the possibility of
implementing those mechanisms of adaptation and learning, such as short–term depression
and spike timing dependent plasticity, that are the foundations of real neuronal computation,
allowing the system to interact with its environment.

The mentioned extra degree of freedom for the synaptic weight is especially relevant
for the implementation of an additional type of plasticity rarely modeled in silicon systems:
synaptic homeostasis. It is an adaptive mechanism that globally scales synaptic weights
over a very long time scale, to keep neuronal activity within functional boundaries. As a
result it equalizes the output range of neurons, reducing their mismatch and adapting to
chronic changes in the environment and stimulus range.

In summary, I presented a new synaptic circuit with additional modules that introduce
extra functionalities to the basic model. I underlined the computational relevance of the
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additional features and the importance of their inclusion in future chip design.
The proposed silicon synapse with all of its extensions enriches the vocabulary of neu-

romorphic VLSI computational primitives, with particular attention to different forms of
adaptation. It gives the possibility of implementing within a single framework, on dense
arrays of synaptic matrices, many aspects of synaptic computation that are likely to intro-
duce crucial functionality into silicon emulations, moving a step ahead in the neuromorphic
quest for the understanding and implementation of computational principles and strategies
of the neural substrate.

In the last section of this chapter I analyzed the circuit from a classical engineering
point of view, showing that it is a first order low pass filter with good performance in terms
of power consumption for very low cut–off frequencies. I suggest that it can be of interest in
the biomedical field, showing how neuromorphic research can lead to the design of efficient
circuits that can be utilized in current technology.

The following chapters will illustrate the relevance of the DPI synapse to neurally–
plausible computational principles, by describing its use in the implementation of a selective
attention model.



Chapter 3

Silicon Winner–Take–All circuits

3.1 Introduction

In this chapter I describe the circuit that forms the computational core of the Selective
Attention Chip, a bi–dimensional current–mode hysteretic Winner–Takes–All (WTA). It
selects the pixel receiving the highest input current, while suppressing all the others.

In cortex there are circuits of neurons with recurrent connectivity that exhibit WTA
properties (among others) (Douglas et al., 1994). WTA circuits are basic building blocks of
artificial neural networks; Maass (2000) showed that soft WTA1 networks can approximate
any continuous function, and k–WTA2 networks applied to the weighted sum of the in-
put variables can compute any boolean function. Moreover, given the same implementation
cost, WTA networks are more powerful than multi–layer perceptrons for computation; for
example, the perceptron needs n2 gates to perform WTA computation of n input variables,
while WTA circuits need only n gates (Lazzaro et al., 1989). Hahnloser et al. (2000) have
shown that soft WTA circuits perform simultaneously both digital selection and analog am-
plification. They show that for a given set of inputs the response of the circuit converges to
a solution that selects the region of highest input activity, while its amplitude is graded and
depends on the input strength and on the overall input activity level, exhibiting analogue
properties such as gain modulation. This functionality can implement attentive modulation
effects on visual responses (Lee et al., 1999): when a region of interest is selected, the neu-
rons respond to the sensory characteristics of the input, and their activity is modulated by
attention. The WTA circuit proposed by Hahnloser et al. (2000) also shows coexistence of
analogue response and multi–stability: when one of many stimuli is selected by attention at
the expenses of the others, the response to the stimulus is graded by the sensory character-
istics of the selected stimulus, as it was presented alone (see Reynolds and Chelazzi (2004)
for a review). When such a network is stimulated by two spatially separated stimuli it is
capable of selecting one, while averaging between two proximal stimuli. In this latter case
the circuit interprets the two close stimuli as a corrupted version of a single stimulus, and
restores its output towards this interpretation. Chicca (2006) demonstrates that a recurrent
circuit similar to the one proposed by Hahnloser et al. (2000), but implemented using spik-
ing units, shows the same soft WTA computation, hysteresis, and sharpening of the input;
properties typical of cortical computation (Douglas et al., 1999). I carried out software sim-
ulations of the network as proposed in (Chicca, 2006; Hahnloser et al., 2000), implemented
with non–spiking Linear–Threshold Units (LTU). The results, described in Appendix A,

1soft WTA networks outputs analog numbers, whose values depend on the rank of the corresponding input.
2k–WTA networks compute a function that assigns the value 1 to the output corresponding to the k strongest inputs,

and 0 to all others.
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show that the network is capable of reproducing the behavior observed in the mentioned
works; additionally those experiments assess the robustness of the WTA circuit and of its
computational characteristics, by exploring its behavior when under changes in the relative
strength of recurrent connectivity.

3.2 State–of–the–art WTA silicon implementations

The cooperative/competitive type of computation performed by recurrent WTA networks
has inspired extensive research in the field of artificial neural networks. This approach
represents a good alternative to classical engineering strategies, in solving tasks that re-
quire processing large amounts of fuzzy, noisy, real world data, such as pattern recog-
nition and classification (Choi and Sheu, 1993). In particular, hardware implementations
of WTA networks have been extensively applied to image compression (Choi and Sheu,
1993; Demosthenous et al., 1998) and pattern recognition problems, for example the de-
sign of Hamming networks (Robinson et al., 1992); it is especially useful for applications
involving speech (Mead et al., 1991) and image processing (Mahowald, 1994; Häfliger and
Bergh, 2002), and it is the circuit of choice for implementing systems for selective attention
and tracking (Indiveri, 2003a; Morris et al., 1996; Horiuchi and Koch, 1999; Brajovic and
Kanade, 1998). The WTA circuit is used where the hardware system must take a decision.
For example in (Mead et al., 1991) it is used to determine if the auditory signal from the
left and right ears are correlated or anti–correlated, by comparing the strength of the corre-
lation and anti–correlation signal for each pixel. In (Mahowald, 1994) it is used to suppress
the response to false correspondences in binocular vision, realizing an elegant solution to
the problem of stereo–correspondence in binocular depth perception. The decision power of
the WTA circuit has another important field of application in competitive learning networks,
where only the unit winning the competition can modify its synaptic weight (Perfetti, 1990;
Choi and Sheu, 1993).

For the above mentioned applications, and in particular for the modeling of selective
attention and tracking, not all of the properties of the network proposed in (Hahnloser et al.,
2000) are necessary; a hard WTA with one single output is sufficient for such tasks, since
the unique output can be directly used to signal where attention is deployed.

One of the first analog VLSI circuits implementing the hard WTA function was proposed by
Lazzaro et al. (1989); since then several different circuits and modification of the original
circuit have been proposed, each optimizing different characteristics. The main constraints
imposed by the hardware realization of arrays that can process a large number of inputs are
compactness, power consumption, resolution, and speed; Table 3.1 summarizes the most
popular WTA circuits, emphasizing these characteristics.

The proposed circuits can be divided into current–mode and voltage–mode circuits, and
between asynchronous and clocked circuits.

Current–mode circuits have been shown to have a wide variety of useful features, in-
cluding compactness, low power consumption, and wide dynamic range at low supply volt-
ages (Ramirez-Angulo et al., 1992).

The choice of asynchronous circuits stems from our wish to model biological systems,
which are intrinsically asynchronous and event driven, with computation performed contin-
uously in time. This approach is compliant with other neuromorphic devices, such as the
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silicon retina (Lichtsteiner et al., 2006b) or cochlea (van Schaik and Liu, 2005), which can
be naturally interfaced with the WTA–based chip described in this thesis via a common
asynchronous protocol (Deiss et al., 1998; Chicca et al., 2006b) (see Sec. 4.2.1). Besides
these motivations, the additional circuitry related to clocked systems increases power con-
sumption.

Table 3.1 reports the main characteristics of some of the most popular asynchronous
WTA circuits. The circuits listed are based on current–mode design, with the exception of
the one proposed by Choi and Sheu (1993), which exploits voltage–mode design to reduce
the impact of mismatch. In all other circuits listed, the input signal is a vector of currents;
the output can be either voltage or current. In all of them the output is a binary encoding of
the result of the competition: the value corresponding to the winner is high and all others
are low. In some cases, a second output encodes the analog value of the winning input: in
(Lazzaro et al., 1989; Indiveri, 2001a) the output current is either zero, or equal to a bias
current when the corresponding cell wins, and the output voltage of the winning cell is pro-
portional to the logarithm of the maximum input current; in (Demosthenous et al., 1998;
Serrano-Gotarredona and Linares-Barranco, 1998) the output voltage is binary and the out-
put current is proportional to the input current of the winner. The size (silicon area) of each
circuit is not directly comparable, since the circuits are fabricated with different technolo-
gies; the number of transistors per cell gives a rough estimate of the relative size among dif-
ferent circuits, although this number cannot account for differences due to varying transistor
size, a critical element in analog circuit design. Günay and Sánchez-Sinencio (1997) made
a comparison among some of the circuits listed in Table 3.1 by fabricating them in the same
technology: the circuit proposed in (Lazzaro et al., 1989) is the smallest, the one in (Choi
and Sheu, 1993) is almost twice as big, and the one in (Serrano-Gotarredona and Linares-
Barranco, 1998) is more than five times the first one, but twice as fast and precise. All the
proposed circuits are fully parallel systems: the N input currents go to as many instances of
the WTA circuit which usually compete via a single common node, implementing the global
inhibition mechanism. This structure has O(N) complexity: size, connectivity, and power
consumption scale linearly with the number of inputs N. An exception to this scheme are
the tree structures (Demosthenous et al., 1998; Wawryn and Strzeszewski, 2001), where the
competition is performed by a hierarchy of 2–input WTA cells; in this case the system has
O(N) complexity, but size, power consumption and processing time grow proportionally
with the logarithm of the number of inputs N.

One big concern in classical engineering applications is precision. The performance of
circuits similar to (Lazzaro et al., 1989) in terms of resolution decreases with the number
of inputs due to mismatch among transistors; increasing transistor size, the use of feed-
back (Indiveri, 2001a), special design techniques such as cascoding (Serrano-Gotarredona
and Linares-Barranco, 1998), or the operation of the circuits in the strong inversion regime
limit the effect of mismatch, at the expenses of silicon area required and/or higher power
consumption. In general, processing time is faster when the input currents are high and the
separation between the maximum input and the others is higher (Indiveri, 2001a; Fish et al.,
2005; Demosthenous et al., 1998; Serrano-Gotarredona and Linares-Barranco, 1998).

The circuit proposed by Lazzaro et al. (1989), together with the modifications intro-
duced by Starzyk and Fang (1993) and Indiveri (2001a), optimizes silicon area usage and
power consumption. It is ideal for tasks that do not require high resolution or high speed,
such as sensory perception tasks like the modeling of selective attention described in this
work.

In the next section I describe the circuit implemented on the SAC, beginning from the
original circuit proposed by Lazzaro et al. (1989) and describing the modifications intro-
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Figure 3.1: Classical current–mode WTA circuit: schematic diagram of a two node network.

duced to improve its performance, to arrive to the complete circuit implemented on the
chip.

3.3 Current–mode WTA circuit description

The schematic diagram of a two node original “WTA” circuit as proposed in Lazzaro et al.
(1989) is shown in Fig. 3.1. Two current conveyors receive two input currents Iin,i and Iin,k
and compete for the bias current Iwta via the common node Vc. The bias current is generated
by the NMOS transistor Mwta, operated in the weak inversion regime and in saturation. A
complete analytical description of the two node WTA circuit is provided in Appendix B.
Here I describe the circuit’s behavior qualitatively.

If the two input currents are equal, the bias current is split equally between the two
branches and the two output currents and voltages are equal. When one of the two input
currents, e.g. Iin,i, increases with respect to the other, the two current conveyors begin to
compete for the bias current, and the node receiving the highest input suppresses the other.
Initially the current of the losing branch decreases linearly, due to the Early effect on the
transistor Min,k, then, for increasing difference between the two input currents, the input
transistor of the losing pixel, Min,k, is brought out of its saturation region and is shut off. In
this case the output voltage of the losing pixel goes to Gnd, the output transistor Mout,k is
turned off, and the entire bias current flows through the winning branch.

The output of the WTA can be read either from the current signal as a binary variable
which is high for the winner and low for all other nodes, or from the voltage output which
also conveys the information about the magnitude of the winning input current. An analysis
of the time response of the circuit is derived in Appendix B, together with a static analysis.
There the stability condition for the network is derived as

Iwta > 4Iin
Cin
Cc

, (3.1)

where Iwta is the bias current, Iin is the maximum input current, and Cin and Cc are the
parasitic capacitors on the input and the common node respectively.

In the SAC I designed an explicit capacitance Cin at each pixel (Cwta in Fig. 3.2), in
order to satisfy the stability condition. In this case the system exhibits first order dynamics:
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Figure 3.2: Current–mode hysteretic WTA circuit with diode–source degeneration, local excitation
and inhibition.

the time constant of the winning cell is then τw = Cink
UT Iin

, and of the losing cells is τl = CinVe
Iin

,
where UT

k
≈40mV and Ve is the Early voltage. Both time constants depend on the order of

magnitude of the input currents. The resolution and speed of this network can be augmented
by reducing the Early effect on theMin transistors, as well as by diode–source degeneration
of the input transistors (Lazzaro et al., 1989).

A schematic diagram of the enhanced network implemented on the SAC is shown in
Fig. 3.2. The core circuit is shown in the “WTA” block. It comprises the current conveyor
formed by transistors Min and Mout, and the bias transistor Mwta. The block formed by the
PMOS current mirror and transistor Mhyst, named “HYST”, implements positive feedback
and confers the hysteretic property to the competition. The second output of the current mir-
ror (“LIM”) is used as read–out of the competition. The other three transistors Mnet, Minh,
and Mexc, implement diode–source degeneration, a diffusive network which sets global or
local competition and a diffusive network which implements lateral excitation among neigh-
boring cells, respectively. The gate voltage Vnet of the diode connected transistor Mnet is
logarithmically proportional to the net input current of the corresponding WTA node, as
given by Vnet = UT

k
ln Inet

I0
. Inet represents the sum of all currents converging on the input

node, and is given by Inet = Iin + Ihyst − Iloc−exc, where Iin is the total input current, Ihyst
is the positive feedback current from the hysteretic module, and Iloc−exc is the amount of
current going to the neighboring WTA nodes through the lateral transistors Mexc.

The positive feedback “HYST” block of Fig. 3.2 was introduced to further increase the
resolution of the circuit and improve its speed (Starzyk and Fang, 1993). This way as soon
as one cell begins to suppress the others and its output current increases, its input current
also increases and the dynamics of the selection speeds up. The feedback current in the
input node of the winning cell stabilizes the selection, and implements a form of hysteresis:
a new cell can win the competition only if its input current exceeds the input current of the
winner plus the positive feedback current Ihyst.

The transistor Mhyst of Fig. 3.2 was introduced to allow better control of the positive
feedback current by decoupling it from the WTA bias current. A similar approach was
proposed in Morris et al. (1996): instead of using the output current of the WTA coming
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from the transistor Mout,i, they included a new NMOS transistor (Mout′,i) with the gate
connected to Vout,i and the source connected to another NMOS (Mhyst), acting as current
source;Mout′,i turns on only when the WTA cell wins the competition. Its output current, set
by the current source, is then mirrored to the input node to implement hysteretic feedback,
and sent to the output circuitry. This approach needs two more transistors to independently
control the hysteretic feedback and the output current, but has the advantage of producing
a current independent of the voltage Vout,i. With the method I have implemented, the hys-
teretic current is independent on the output voltage only when Mhyst is saturated. If the
input current is too high, Vout,i increases and the transistor Mhyst leaves saturation, turn-
ing off the positive feedback. This behavior has been verified experimentally in Sec. 4.3.2
and 4.3.5.

DeWeerth and Morris (1995) proposed to distribute the hysteretic current to neighbor-
ing cells via a diffusor network. This modification gives a competitive advantage to the
pixels close to the winner and allows the network to select and track moving stimuli. In
Fig. 3.2 the transistors Mexc implement a diffusor network applied to the input node of the
WTA, diffusing both the hysteretic current and the total input current to the cell (Indiveri,
2001a). Besides being useful for tracking, the diffusion of the input current implements
spatial smoothing, giving a competitive advantage to regions of activity, which in vision
typically correspond to objects, compared with single pixels, and reducing the effect of
mismatch between pixels. Indiveri (2001a) shows that the amount of current diffused to the
i− th cell, Iin,i, depends exponentially on the bias applied to the gate of the NMOS diffu-
sors Vexc, and decreases with the increasing level of the input current Iin,k of the stimulated
WTA cell3:

Iin,i = Iin,k

(
I0e

kVexc
UT

Iin,k

)|i−k|
. (3.2)

The property of this particular diffusor network is that the spatial constant of lateral spread
decreases with increasing input current levels, maintaining local lateral cooperation and
avoiding smoothing over too a large region. In Sec. 4.3.4 I show experimental data demon-
strating the effect on the competition of the lateral cooperation implemented through the
diffusor network. Another diffusor network of the same type is applied to the common
node of the “WTA” block (Indiveri, 2001a), as shown in Fig. 3.2. When it is enabled it lim-
its the global WTA computation to a local region (Lazzaro et al., 1989): the winning cell
inhibits only its neighbors, allowing multiple local winners in the array.

3.4 Conclusions

This chapter concerns the silicon implementation of interactions between basic elements
that realize specific computations such as WTA competition.

I first introduced the computational relevance of a WTA network as an emergent prop-
erty of recurrent networks, which processes information on the basis of context and is ca-
pable of extracting relevant information from noisy, ambiguous data. I then presented a
compact and elegant circuit for the implementation of such a complex and crucial function.
The current–mode WTA circuit is relevant in silicon implementations of cortical compu-
tation since it is very compact, is scalable, and operates at low power. Its most striking
property is the simple connectivity among units, which allows the realization of dense bi–
dimensional arrays with many units on a single chip. This approach with distributed inhibi-

3A full derivation of this equation is shown in Appendix B
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tion is a compromise with respect to implementations with excitatory neurons and a single
inhibitory unit (or population); such implementations (Hahnloser et al., 2000; Chicca et al.,
2006a) have a richer behavior but are difficult to scale, especially in two dimensions, given
the complex and area–consuming routing of signals from the excitatory to the inhibitory
neurons and back.

I described the current–mode WTA circuit, reviewing the main contributions to its im-
plementation by numerous authors, and presented the final version with the modifications
I introduced for its implementation in the SAC. The WTA circuit I designed augments the
computational capabilities of the core circuit first proposed by Lazzaro et al. (1989), by
introducing diode–source degeneration, tunable hysteresis, lateral excitatory coupling, and
local inhibition. My main contribution is in the introduction of the transistors Mhyst and
Mlim, which allow better control over the hysteretic and output current respectively, over
previously proposed solutions.

In the next chapters I characterize the SAC chip and show the role of the WTA circuit,
as part of a more complex system with a specific function.



Chapter 4

The selective attention chip (SAC)

4.1 Introduction

The Selective Attention Chip (SAC) represents the “device” level of the neuromorphic
quest, comprising the basic elements described in the previous chapters, to implement a
specific functionality. It was designed to build in hardware selective attention architectures
of the type proposed by Itti and Koch (2001). Specifically it receives a saliency map as
input, and implements WTA competition and inhibition of return (IOR) to reproduce the
scan–path of attention.

The SAC is interfaced to the external world via the AER communication protocol. It is
designed to receive input spike trains that encode the saliency of the corresponding input
stimulus in their mean frequency; it transmits the result of the computation by sending
events to the external bus, the address of which corresponds to the pixel selected as the
attentional target. The AER infrastructure confers great flexibility for the use of the SAC:
its input can be generated via software simulation of computational models that extract the
saliency map from images; alternatively, the SAC can process the activity of other AER
neuromorphic chips. The SAC output can be further processed by AER chips such that it
can be part of hierarchical multi–chip systems that model biological vision.

4.1.1 Relation to previous work
Previously proposed VLSI implementations of selective attention (Brajovic and Kanade,
1998; Horiuchi et al., 1997; Horiuchi and Koch, 1999; Indiveri, 1999; Indiveri et al., 2001,
2002) include photoreceptors and local but rudimentary saliency map computation circuits
together with WTA and IOR, to implement single chip selective attention systems. The phi-
losophy behind the SAC project was to separate the sensor and saliency map computation
from the scan–path computation (Indiveri, 2000b), producing a more flexible tool for the
exploration of different saliency map models. With this approach, based on the extensive
use of AER communication, the SAC can process signals arising from multiple sensory
modalities (e.g. visual and auditory). Additionally, the chip is designed with externally tun-
able parameters, that allow the IOR mechanism to be disabled and configure the local WTA
competition. This flexibility and the use of the AER protocol allows the implementation
of hierarchical systems, where for example multiple instances of the SAC could be used
to implement center–surround inhibition and the normalization required for feature map
generation in the Itti and Koch (2001) model.

The SAC is the evolution of preceding designs proposed in (Indiveri, 2000a,b). It con-
sists of a 32×32 array of computation units and additional features and modifications to the
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basic circuits.
The new features I introduced are short–term depression (STD) in the input synapses

(Sec. 2.4.1) and spike frequency adaptation in the output neurons. STD adapts the weight of
a synapse with an increasing number of input spikes. Its function is to decrease sensitivity
to constant stimuli, while enhancing their changes in time (Sec. 4.3.5). Spike frequency
adaptation decreases the spiking activity of the I&F neuron for an increasing number of
spikes emitted, therefore it reduces the number of events sent to the external bus (Sec. 4.2.4).

The input synapses of the SAC which convert their input spike trains into currents for
the input of the corresponding WTA circuit, and the inhibitory synapse used to implement
the IOR mechanism, are implemented with the new DPI circuit (Sec. 2.2.6). The DPI gen-
erates smoother currents compared with previously proposed circuits, such as the CMI (see
Sec. 2.2.4 and Sec. 2.2.6), which consequently renders the WTA circuit less sensitive to the
timing of individual input spikes.

I added circuits to give better control over the feedback hysteretic current and the output
current of the WTA pixel (Sec. 4.2.3). Finally I developed circuits for interfacing the internal
computational core of the chip to the output: I introduced new AER circuits for decoding,
arbitration, and handshake, and I designed a decoder circuit (“Select” of Fig. 4.1) together
with source follower circuits for reading an internal voltage that allows monitoring of the
state of any pixel of the array (Sec. 4.2.1).

The SAC presented in this work is the third prototype generation: A first prototype was
fabricated still using the CMI as input synapse, but with new interfacing circuits for the
AER communication protocol. This implementation unveiled the inadequacy of the CMI
synapse: the winner of the WTA competition depended mainly on the timing of each in-
dividual input spike, rather than on their mean frequency. A second prototype was imple-
mented with the reset and discharge synapse described in Sec. 2.2.2; this synapse integrates
input spikes linearly until it saturates to the maximum output current, independent of the
input frequency. For this reason the use of this prototype was impractical. The third and
final implementation uses the DPI for the input synapses. The results, described in the next
sections, demonstrate that this SAC prototype can be reliably used for modeling the mech-
anism of attentional scan–path generation.

In the following sections of this chapter I describe the SAC architecture and schematics,
then characterize its functionality. In Chap. 5 I show the behavior of a multi–chip system
which uses the SAC in the context of selective attention modeling.

4.2 The chip’s architecture

The SAC was fabricated in standard AMS 0.35µm CMOS technology, via the Europractice
IC service (http://www.europractice.imec.be/europractice/europractice.html).

Fig. 4.1 shows the layout of the SAC. The core of the chip comprises an array of 32×32
pixels, each one is 90×45µm2, and the whole chip with external interfacing circuits and
pads occupies an area of 10mm2.

The SAC has been designed to be one of the processing stages of a multi–chip AER
system, receiving as input the activity of a neuromorphic sensor, e.g. a silicon retina and/or
silicon cochlea, and producing an output which can be sent to an actuator, or to higher pro-
cessing stages implemented by other neuromorphic devices. This has been possible thanks
to the communication system adopted, the Address–Event Representation (AER), which
since its first formulation became a standard communication protocol used by neuromor-
phic chips. As mentioned in the introduction, a successful approach in the design of neu-
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Figure 4.1: Layout of the SAC: the outer ring comprises all the pads connecting the internal wires
to the pins of the package, accessible from outside; The internal “Core” comprises the 32×32 pixels
performing the computation; the surrounding circuitry, “Decoder X, Y”, “Arbiter X, Y”, performs
the connection to the external AER bus. “Select X, Y” is an additional decoder used to route the
Vnet node (see Fig. 3.2) of the addressed pixel to an output pad, for testing purposes.

romorphic system is to rely on both analog computation and digital communication. The
analog computation is performed in the core array of the SAC through the interaction of
excitatory and inhibitory synapses, neurons, and the WTA network. The digital commu-
nication is accomplished by the transmission of address events, based on the AER. The
“Decoder” and “Arbiter” blocks in Fig. 4.1 interface the analog core with the external AER
bus. The “Select” block comprises an additional decoder for selecting a chosen pixel and
monitoring an internal variable (Vnet of Fig. 3.2) that conveys information about the state
of the pixel.

Additionally the analog circuits have tunable parameters that, set via external voltage
references, can change the properties of the core computation.

Fig. 4.2 shows the block diagram of a SAC pixel; each pixel in the array comprises an
input excitatory synapse which translates its input spikes into the current Iexc. A current–
mode hysteretic WTA competitive cell compares the input currents of each pixel; the win-
ning cell sources a constant current to the corresponding output leaky Integrate and Fire
(I&F) neuron (Indiveri, 2003b). The identity of the spiking neuron signals which pixel is
winning the competition for saliency, and therefore the pixel that had received the highest
spiking input frequency. The output spikes of the I&F neuron are also sent to a feedback
inhibitory synapse, which subtracts current (Iinh) from the input node of the WTA cell; the
net input current to the winner pixel decreases, and a new pixel is eventually selected. This
self–inhibition mechanism is known as Inhibition of Return (IOR) and allows the network
to sequentially select the most salient regions of input images, producing the attentional
scan path (Itti and Koch, 2001).

In the following paragraph I describe the blocks listed above, their functionality and
their significance within the context of the computation performed by the SAC. In the sec-
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Figure 4.2: Block diagram of the SAC pixel: input AER spikes are converted into the current Iexc,
the WTA cells compare these currents, only the cell winning the competition sources an output
current into the membrane of the corresponding read–out I&F neuron. The address of the active
neuron, sent to the AER bus, signals the pixel selected for attentional deployment. The spikes of the
neuron are also integrated by the local inhibitory synapse, that subtracts the Iinh current from the
WTA input, thus implementing IOR.

ond part of this chapter I describe the experiments performed to characterize the chip, es-
pecially as a function of its most significant parameters that can be tuned to modify the
network behavior.

4.2.1 The Address–Event Representation
Fig. 4.3 shows an outline of the AER communication strategy (Lazzaro et al., 1993). The
AER communication protocol is event–driven: each event is a digital pulse, with stereo-
typed height and width. For each event the address of the corresponding neuron is sent to
the bus, and information is encoded in the temporal pattern of the events. Time is self–
encoded, and does not need to be explicitly transmitted; when an AER bus is used to con-
nect two neuromorphic chips with the same communication latency, the sequence and the
implicit relative timing structure of the events are sufficient. Only when the communica-
tion happens between a neuromorphic chip and a different device (e.g. a computer) with
an intrinsically different information encoding scheme, the device can append a time stamp
to the address of each event. The temporal accuracy of the system is determined by the
minimum communication cycle duration, which is typically much faster than the refractory
period of a single neuron.

A detailed analysis of the possible approaches in communication for neuromorphic chip
and their implementation issues is presented in Boahen (2000). Specifically, in the SAC an
arbitrated and pipelined version of the protocol is used: coincident events are arbitrated to
gain access to the external bus.



4.2. The chip’s architecture 58

1   2 3  2    3    12 

Inputs

Encode Decode

Address Event Bus

Source
Chip

Outputs

Destination
Chip

Action Potential

Address-Event
representation of
action potential

2
1

3
2
1

3

Figure 4.3: Schematic diagram of the AER communication scheme: the first neuron that emits a
spike writes its address on the bus, the address is decoded by the receiver and sent to the target
synapse.

AER protocols

There are several different standards for AER protocols; here I describe the two protocols
used in the SAC: the point–to–point (P2P) and the silicon–cortex (SCX).

The P2P protocol is used for the communication from one chip, the sender, to another
chip, the receiver, via a dedicated bus. AER0.02 (AER) is the AER P2P standard protocol
first proposed and formalized, extending the concepts in Lazzaro et al. (1993). The SCX
protocol (Douglas et al., 1994; Deiss et al., 1998) is a multi–sender, multi–receiver exten-
sion of the AER0.02, which allows communication between many chips sharing the same
physical bus. Fig. 4.4 shows the time diagrams of both protocols.

The SAC is a transciever, i.e. it receives and sends spikes; the protocol adopted for
the input side is P2P AER0.02. For the output side it uses the SCX protocol. It uses a
parallel bus for transmitting the 10 address bits (5 for the 32 rows and 5 for the 32 columns)
along with request and acknowledge lines, required to handshake with the communication
devices. In the next paragraphs I describe in detail the time flow of the signals involved in
the two protocols, as shown in Fig. 4.4; for the P2P I include the internal signaling of the
receiver side, and for the SCX the sender side, as they are implemented on the SAC.

• P2P protocol: In the P2P protocol two chips communicate via a dedicated bus. When
the sender is ready to send an event, it first writes the address on the bus data lines
then sends a request “Sender Req” signal to the receiver. The receiver confirms that it
received the event with an acknowledge “Receiver Ack”, then the sender can remove
the request and start a new arbitration sequence. Inside the receiver chip, the address
on the bus is decoded, and the arrival of the “Sender Req” signal triggers an inter-
nal request, “Synapse Req”. At the transition of the “Synapse Req” the transmission
of a digital pulse to the synapse corresponding to the decoded address is enabled.
When the pulse reaches the synapse circuit, an internal acknowledge, “∼Synapse
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Ack”, is triggered. “Synapse Req” and “Receiver Ack” are reset to inactive state, as
is “∼Synapse Ack”. Only when the receiver removes its acknowledge can the sender
send a new address with a new request, and only when the internal synapse acknowl-
edge is inactive can the new event be routed to the corresponding synapse. If the
“∼Synapse Ack” reset is too slow compared with the generation of a new request
from the sender, communication is delayed. This effect is observed in a longer du-
ration of the successive “Sender Req” (red transition). The red circle indicates an
erroneous address change during the synaptic stimulation; it does not affect the com-
putation, thanks to latch circuits that fix the data lines during synaptic stimulation.

• SCX protocol: The SCX protocol is used when a bus is shared; the sender writes on
the bus only when it receives an acknowledge signal indicating that the bus is free,
otherwise the data lines are set in high impedance, and other senders can drive them.
When the sender is ready to send an event, it generates a request signal “∼Sender
Req”. If the receiver activates the “∼Receiver Ack”, the sender writes the address
of the spiking neuron to the bus data lines. When the internal routing of the spike is
completed, the receiver resets the “∼Receiver Ack” and the sender releases the bus,
setting the drivers in “High–Impedance” state, such that any other device sharing the
bus can start its communication cycle and drive the address lines. Arbitration occurs
inside the sender chip, to determine which event can gain access to the bus. When
a neuron spikes, it sets “∼Neur Req X” low, and arbitration between the rows takes
place. When the arbitration completes, a “∼Neur Ack X” signal sets “∼Neur Req Y”
low. The arbitration between columns generates the output request sent to the receiver
“∼Sender Req”, the same signal latches the address bits of the selected neuron on the
output pads. The “∼Receiver Ack” enables the pads to drive the bus data lines, and
is sent to the arbitration circuits, which in turn generate the “∼Neur Ack Y” signal,
resetting the neuron. The“Neur Req” signals are then set back to inactive state. The
reset of “∼Receiver Ack” disables the output data lines and resets the internal “Neur
Ack” signals, then a new cycle can start.

In the next paragraphs I describe the digital circuits connecting the analog core of the
SAC with the external AER bus, highlighting the modifications introduced with respect to
the circuits previously used in our institute.

SAC AER input

The input of the SAC is designed to receive P2P based data. Its input circuitry decodes the
address events, sends the spike to the corresponding synapse, and acknowledges the sender.
The decoding is performed by the “Decoders” of Fig. 4.1, the handshaking is implemented
by a “C–element” (Shams et al., 1998). This asynchronous circuit waits for the internal
acknowledge “Synapse Ack” from the synapse (see Fig. 4.4(a)) before acknowledging the
sender. When the internal dynamics of the spike routing is slow with respect to the event
generation from the sender, communication is delayed and the sender waits before sending
a new event. The internal acknowledge node is connected to all of the 32×32 synapses by
a wired–OR circuit. To reduce the capacitive load of this node, and speed–up the internal
dynamics of the spike routing, I implemented a wired–OR between the acknowledge line of
each row. Fig. 4.4(a) shows the time diagram of the P2P protocol, together with the internal
handshake of the chip. The specific implementation on the SAC is based on a temporal
assumption: namely that the data lines are ready and stable before the request arrives, for
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Figure 4.4: Time diagrams of P2P and SCX protocols, together with the internal signals that coor-
dinate the activity of each neuron and synapse with the external communication. P2P is used at the
input stage of the SAC, SCX at the output. (a) P2P protocol (active high): the bus is dedicated, the
sender first writes the data on the bus, then sends a request (data ready) to the receiver. The commu-
nication cycle is concluded when the receiver acknowledges (data red) the sender. The address lines
are latched during the internal routing to the input synapses, such that a fluctuation of the data does
not affect the transmission of the event. The red circle shows an erroneous address change during
the synaptic stimulation. (b) SCX protocol (active low): the bus is shared, each sender writes on the
data lines only when the bus is free. Otherwise the bus is in high impedance state. The symbol “∼”
before the name of a signal indicates that its active state corresponds to a logical 0.

the data to be decoded before they are latched by the internal request. This assumption is
fulfilled by the sender timing specification.

SAC AER output

The AER output circuits of the chip arbitrate the events coming from the neuronal array and
handle the communication with the external AER bus. Fig. 4.4(b) depicts the time diagram
of the signals involved in the communication protocol, showing both signals exchanged
with the external bus, and internal ones from and to the neurons. Spikes generated by the
neurons are reset by the internal “Neur Ack” signals from both the X and Y arbiter, con-
firming that the spike was arbitrated, sent to the bus, and processed by the receiver. The
arbiters handle spike collisions, and encode the address bits that are sent to the external bus.
The arbiter implemented on the SAC is a non–greedy arbiter (Boahen, 2004).

Once the events are arbitrated, the selected neuron’s address is encoded and sent to the
output pads. The data, however, can only be written on the external bus when the “Receiver
Ack” signal is active.

I designed a newer version of the output pads (PAD LATCH shown in Fig. 4.5) for the
accomplishment of this specification: the “∼Sender Req” generated by the arbiter is used
as triggering signal for latching the encoded address bits, then the “∼Receiver Ack” signal
enables a tri–state buffer to drive the bus lines; when the acknowledge signal is removed by
the receiver, the tri–state sets its output in High–Impedance state, and the bus can be driven
by an other device.
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Figure 4.5: PAD LATCH: diagram of the output pads implemented on the SAC chip. The address
bit (Addri) is latched by a flip–flop when the request signal is generated from the arbiter (sender-
REQ); the data is ready at the input of a tri–state buffer, enabled by the acknowledge signal from
the receiver (receiverACK). The tri–state leaves the bus lines in High–Impedance state, free to be
driven by another device.

4.2.2 The input excitatory synapse
The input spikes decoded from the AER bus are routed to the excitatory input synapse
of the corresponding pixel in the array. The synapse circuit implemented in the SAC is a
simplified version of the synaptic circuit presented in Chap. 2. It comprises the core DPI
circuit and the short–term depression circuit, with the exclusion of the “NMDA” and “G”
functionality, as shown in Fig. 4.6. This synapse translates digital input pulses into output
currents with an exponential time course, modeling the behavior of biological synapses, as
described in Chap. 2. In the specific application of the SAC, the synapse has to generate
a current proportional to its input activity, representing the salience of the correspondent
region of the stimulus. I exploit the property of the synapse expressed by eq. (2.26): the
mean output current of the DPI in response to a train of spikes with constant frequency is
linearly proportional to the input frequency, therefore the input current to each WTA cell
is proportional to the saliency of the correspondent region of the stimulus. Besides the use
of the DPI circuit, the implementation of short–term depression is the major innovation
introduced in this version of the SAC with respect to previous prototypes (see Sec. 2.4.1
and 4.3.5).

4.2.3 The WTA circuit
The computational core of the SAC is the hysteretic WTA circuit described in Sec. 3.3.
Each WTA pixel receives its input current from the correspondent excitatory input synapse.
It selects the pixel receiving the highest input current, while suppressing all the others.

The particular circuit implemented is shown in Fig. 3.2. It allows a dual read–out: the
output voltage logarithmically encodes the input value of the maximum current; the output
current is a binary value: when high it signals that the cell is winning the competition, when
low it signals that the cell is not winning.

For the scope of a selective attention implementation, the information conveyed by the
current, which identifies the position of the winner, is sufficient. This current can be read–
out by a second output transistor in the current mirror, implementing positive feedback, and
a limiting transistor in the “LIM” block of Fig. 3.2, with the function of decoupling the
output current from the biasing current of the WTA.

To monitor the state of each WTA pixel it is also possible to read the output voltage
Vnet from the gate of the diode–connected transistor Mnet of Fig. 3.2. In the SAC, each Vnet
is connected to a source follower; a decoder (“Select” in Fig. 4.1) enables a single WTA
pixel to access an output pad, which can then be used to monitor the activity of the chosen
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Figure 4.6: Circuit diagram of the excitatory synapse implemented on the SAC. It comprises the
DPI circuit and the STD circuit described in Chap. 2

WTA cell.

4.2.4 The output Integrate & Fire neuron
The output current of each WTA cell is transformed into a train of pulses by a read–out
Integrate and Fire (I&F) neuron. We use a neuron to convert the output current into a train
of pulses in order to exploit the AER communication system at the output of the chip. It is
a convenient and robust method for multiplexing the activity of large networks on a single
bus, and is necessary for including the SAC in multi–chip systems, where for example we
can stack multiple instances of the SAC to build hierarchical models of selective attention
(see Sec. 4.2.1). In this scheme the address of the active neuron encodes the result of com-
petition and, in the case of visual selective attention, the position in the visual field at which
to deploy attention.

The I&F neuron circuit adopted for the SAC is a phenomenological model of a spiking
neuron; the rationale for this choice is described in the introduction. The circuit imple-
mented on the SAC, namely the low–power leaky adaptive I&F neuron model, has been
proposed and fully characterized by Indiveri (2003b). It is the result of the evolution of
previous I&F circuits, starting from the “Axon–Hillock” circuit, proposed by Mead (1989);
the modifications introduced since that first implementation are crucial for improving its
compactness and power consumption, and include additional features typical of biological
neurons, such as spike frequency adaptation.

Circuit description

The I&F circuit implemented on the SAC (Indiveri, 2003b) merges the design principles
of previously proposed circuits (Mead, 1989; Schultz and Jabri, 1995; Boahen, 1997; van
Schaik, 2001; Rasche, 2005), satisfying the conflicting needs for compactness and low
power with flexibility and richness of behavior. Fig. 4.7 shows the diagram of the circuit; it
can be divided into six blocks, plus the membrane capacitor. The “AER” block implements
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Figure 4.7: Integrate–and–fire circuit diagram: The input current (from the WTA cell) is integrated
by the membrane capacitor Cmem. When the membrane potential rises above a threshold set by the
tunable bias Vsf , the source follower in the “SPK” block gets activated and drives the first inverter,
connected to the positive feedback (“Na”); it injects a positive current onto the membrane further
increasing Vmem and speeding up the spike generation. The second inverter in the “SPK” block
generates the fast digital spike sent to the arbitration circuits that manages the neurons’ access to the
external bus. The “K” block mimics the resetting and hyperpolarizing function of the late potassium
channels; it is activated when communication with the AER bus is completed and subtracts current
from the input node, resetting the membrane potential to its resting value; the tunable dynamics set
by the starved inverter, via the voltage Vrf and the capacitor Crf set the refractory period of the
neuron, i.e. the time interval after the spike emission during which the neuron is not responsive to
any input current. The transistors of the block “ADAP” integrate the spiking activity of the neuron
on a voltage variable representing the internal calcium concentration of the neuron; after a period
of prolonged activity a current is subtracted from the neuron’s input node, decreasing its spiking
activity. The transistor “LK” implements a constant leak from the membrane. The block “AER”
handles the connectivity with the x and y arbitration circuits; in particular the neuron cannot be
reset unless the acknowledge (Ackx, Acky) signals return in response to the requests (Reqx, Reqy)
sent to the arbitration.

the connection with the arbitration circuits (see Sec. 4.2.1). The “LK” block implements
the constant current leak from the neuron’s membrane, “SPK” detects when the membrane
voltage crosses the (tunable) spiking threshold and produces the output digital spike, “Na”
implements the positive feedback of the spike generation, injecting a positive current into
the membrane, and macroscopically reproducing the irreversible activation of voltage sen-
sitive sodium channels. The sodium current is active only during the spike and is inactive
otherwise. The current generated by the “K” block resets the membrane voltage to its rest-
ing level when the communication cycle with the external bus has finished, and sets the
refractory period duration. The “ADAP” block implements the spike frequency adaptation
mechanism.

When a constant input current, Iin, is injected into the membrane capacitor the mem-



4.2. The chip’s architecture 64

brane potential linearly increases, and the source follower in the block “SPK” driven by
Vmem generates the signal V1 = κ(Vmem− Vsf ); Vsf sets the neuron’s threshold voltage. As
Vmem increases and V1 approaches the threshold voltage of the transistor Minv, V2 starts to
decrease and the current through the current mirror of the “Na” block starts to increase. As
a result the current INa further increases Vmem and V1, implementing a positive feedback
mechanism that has the effect of making the inverters switch very rapidly, dramatically
reducing power consumption. When the output voltage of the first inverter in the block
“SPK”, V2, is sufficiently low to drive the second inverter, the digital spike is generated and
the communication cycle with the AER arbiter starts. When the spike is sent to the output
bus and the acknowledge signals arrive both from the X and Y arbiters, the starved inverter
in the “K” block turns on and starts discharging the membrane capacitor Cmem. The tun-
able bias Vrf sets the slew rate of the inverter and therefore the rise of Vk, controlling the
re–polarizing current Ik. This current drives Vmem to ground and keeps it clamped there for
a period dependent on Vrf . Different values of Vrf set different durations of the refractory
period, which in turn sets the maximum possible firing rate of the neuron.

During spike emission the “ADAP” block is also active; the PMOS current mirror
sources a maximum current, as set by the tunable voltage Vadap, charging the capacitor CCa;
the voltage VCa increases with every spike, and during the Inter–Spike Interval (ISI) it leaks
to ground through the transistor MlkCa. This voltage represents the intracellular calcium
(Ca2+) concentration, related to the spiking activity of the neuron. As VCa increases, a neg-
ative current Iadap exponentially proportional to VCa is subtracted from the input, reducing
the spiking frequency of the neuron.

The adaptation mechanism used in the SAC reduces the activity of the neurons. In
the SAC application, a constant output firing rate at steady state is not informative. The
adaptation mechanism helps to decrease the number of events produced by each single
neuron, reducing the traffic on the AER bus, hence reducing bandwidth use and power
consumption.

Besides being used for monitoring the activity of the neurons to follow the movement of
the focus of attention, the output spikes of each neuron are integrated by the corresponding
local inhibitory synapse, which subtracts the current Iinh from the input of the WTA node,
implementing a self–inhibition mechanism that allows the WTA network to deselect the
current winner and select a new one.

4.2.5 The inhibitory synapse
The inhibitory synapse provides a mechanism for deselection of the winning neuron, in
favor of stimulus exploration. Hardware systems based on the concept of selective atten-
tion and WTA competition that lack such deselection mechanism have been specifically
designed for tracking a selected target (Brajovic and Kanade, 1998; Fish et al., 2004). In
such implementations, once a target is selected, the system is designed to lock on the target,
disregarding distracters and even new salient stimuli.

Horiuchi et al. (1997) proposed a system implementing attentional tracking, based on
a different strategy: the authors use the direction of motion of the selected target for imple-
menting a form of smooth pursuit; furthermore, they give a competitive advantage to the
selected target and its neighbors by using the hysteretic mechanism described in Sec. 3.3.
This system is very robust for tracking: for high values of the hysteretic current the system
does not select any stimulus other than the selected target. For lower values of the positive
feedback current, other stimuli with strong salience are able to win the competition and
cause shifts of attention.
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In the SAC I implemented both hysteresis, which favors tracking, and a self inhibitory
mechanism, which favors shifts of attention. The dynamic interplay of these two mecha-
nisms creates a complex behavior, mimicking the rich mixture of attentional tracking and
shifts of natural scan paths. Similar systems have been proposed in the context of aVLSI im-
plementation of visual selective attention (Indiveri, 2001b; Horiuchi and Niebur, 1999). In
the next paragraph I briefly review the inhibitory mechanism implemented in such systems,
and describe the one implemented on the SAC.

Circuit description

VLSI devices that include WTA competition and distributed hysteresis, together with an
inhibitory mechanism, have been proposed in Horiuchi and Niebur (1999); Morris et al.
(1996). In both cases the winning cell activates a local inhibitory circuit that subtracts cur-
rent from the input node of the corresponding WTA cell. This allows the network to select
the second strongest input; when the second winner is also self–inhibited the WTA starts
the competition again; depending on the time decay of the inhibitory current the first win-
ner can be selected again, or can continue to be inhibited, allowing the network to choose
the third most salient stimulus. The inputs are scanned in order of saliency as long as the
inhibition of the first winner is active.

Both architectures proposed by Morris et al. (1996); Horiuchi and Niebur (1999) imple-
ment self–inhibition by integrating the analog output voltage of the WTA over time using a
low–pass filter circuit. In the SAC, the WTA output is transformed into spiking activity of
the I&F neuron; this allows us to use the DPI synapse circuit as a temporal integrator and
obtain a more flexible and tunable inhibition mechanism. The inhibitory version of the DPI
synapse integrates the spikes of the winning I&F neuron and generates an inhibitory current
Iinh which is subtracted from the input current Iexc (see Fig. 4.2). Fig. 4.8 shows the circuit
diagram of the inhibitory synapse. The time course of build up and decay of inhibition can
be tuned by changing the synaptic weights Vwinh and Vthrinh, the synaptic time constant
Vτinh, and by modulating the firing activity of the I&F neuron.

A long decay of inhibition prevents the system from choosing previously selected tar-
gets; such a behavior has been observed in psychophysics experiments and is referred to as
Inhibition–of–Return (IOR) (Posner, 1980).

The scan path of the network depends on the IOR settings, on the relative magnitudes of
the input currents, and on the hysteretic current. The number of selected neurons in the scan
path increases with the duration of the inhibition decay; the higher the hysteretic current,
the longer the duration of the active period of each neuron.

The SAC implementation of the IOR mechanism is similar to the software implemen-
tation in the Itti and Koch (2000) model. In both cases a negative input is added to the
saliency map as soon as one pixel is selected as the attentional target. In the software model
this input is a difference of gaussians (DOG), with a negative peak centered at the winning
pixel and positive flanks at a given distance. This implementation of IOR accounts for the
observed bias for making short saccades close to the current fixation point (Parkhurst et al.,
2002). In the SAC implementation, the resistive network at the input of the hysteretic WTA
described in Sec. 3.3 implements a lateral diffusion of the inhibitory current, with a nega-
tive peak at the center which decays exponentially with distance. Given the passive nature
of this resistive network, there are no positive flanks in this model.
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Figure 4.8: Circuit diagram of the inhibitory synapse implementing the IOR mechanism. The cir-
cuit is the complementary version of the DPI circuit (see Fig. 4.6); it integrates the spikes coming
from the I&F circuit, generating the Iinh current which is subtracted from the input node of the
corresponding WTA cell.

4.3 SAC functional characterization

In this section, I describe the results of experiments performed on the SAC to characterize
the different circuits and their role in scan–path computation. I payed particular attention
to the effect of the bias voltages that influence the overall behavior by modifying the com-
petition, the lateral cooperation and the dynamics of the scan–path. Tab. 4.1 lists the biases
of the pixel’s circuits, and their main role. Many of them interact in a non–linear way and
produce a rich variety of behaviors.

For each experiment all biases were set to reasonable values, then one or more biases
were swept while monitoring the behavior of the system. With each experiment I explored
the parametric space and determined the optional values of the biases for the application,
then I used these values for subsequent experiments.

Methods

The experimental setup used to characterize the SAC comprises many different hardware
and software elements: the SAC, a PCI–AER board, an oscilloscope, digital to analog con-
verter (DAC) boards and a Linux desktop, as shown in Fig. 4.9 (see Appendix C for a
description of the full multi–chip system setup). The DAC boards were used to automati-
cally explore the parametric space of the chip bias voltages, and were controlled via Matlab
commands from the Linux workstation.

The PCI–AER board interfaced the SAC to the Linux workstation; it was used to send
spike trains to the SAC and to monitor its spiking activity.

Via the oscilloscope I monitored internal voltages that convey information about the
status of the chip; in particular pixel number (0,31) of the array is used as test pixel: its
voltages Vsyn, Vw, Vmem and Vinh (see Figs. 4.6, 4.7, and 4.8 respectively) are connected
to pads and can be monitored to characterize the behavior of the different circuits. The
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Excitatory Synapse Circuit
Vw0 synaptic weight (initial value)
Vwstd short term depression strength, sets the dynamics and the minimum

value of the depressed weight
Vthr synaptic weight (non depressing)
Vτ synaptic time constant

WTA Circuit
Vwta WTA bias current
Vinh lateral inhibitory connections, controls the spatial constant of diffusion
Vexc lateral excitatory connections, controls the spatial constant of diffusion
Vhyst maximum value of the hysteretic feedback current
Vlim maximum value of the current injected into the I&F circuit

I&F Circuit
Vlk constant current leak
Vsf spiking threshold
Vrf refractory period, saturation frequency
Vadap spike frequency adaptation weight
VlkCa spike frequency adaptation calcium leak

Inhibitory Synapse Circuit
Vwinh synaptic weight
Vτinh synaptic time constant
Vthrinh synaptic weight

Table 4.1: Description of the SAC circuit biases (excluding the biases of the external circuitry for
AER and testing structures) with short description of their main role. In the next sections I explore
the parametric space created by these variables, to characterize their functional role.

“Select” circuitry described in Sec. 4.2 can be used to monitor the voltage Vnet of any pixel
in the array (see Fig. 3.2).

The measurements made to characterize individual circuits, such as the excitatory
synapse, the STD and the IOR synapse were performed on the test pixel (0,31). The ex-
periment characterizing the effect of biases on the competition are always performed by
stimulating pixels (10,10) and (15,10), named pixel 1 and pixel 2 respectively in the fol-
lowing sections. With this approach one can observe the relative changes introduced by
different parameters on the same system, without introducing effects due to mismatch. The
two pixels were chosen randomly to represent the typical activity of the network.

4.3.1 Mismatch evaluation
A first step in the characterization of the chip involves the evaluation of the effect of intrinsic
inhomogeneities of the silicon implementation, known as mismatch. Mismatch is intrinsic
in VLSI chips and arises mainly from defects in silicon doping; there are design techniques
that help reduce the mismatch effect (Liu et al., 2002), such as increasing the size of crit-
ical transistors and designing all transistors in the same orientation these techniques were
applied during the design of the SAC; in particular the MOSFETs Mw, Mτ of Fig. 4.6,
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Figure 4.9: Experimental setup for the functional characterization of the SAC: the SAC activity is
monitored via the oscilloscope and the PCI–AER board that is also used to generate the input to
the SAC. DAC boards are used to set the chip’s parameters and a Linux desktop coordinates the
different parts of the system.

Mwinh, Mτinh of Fig. 4.8, and Mwta of Fig. 3.2 have a large gate area. I tested the effect
of mismatch on the input of the WTA circuit, and on the output frequency of each neuron,
by stimulating each pixel separately with a constant input mean1 frequency of 100Hz, and
recording the data under four different conditions: without competition, with competition,
with competition and hysteresis, and finally adding a limitation on the current injected into
the I&F neuron. In each condition the effect of mismatch was measured for different values
of Vwta, the bias of the WTA network. For each pixel I acquired the oscilloscope trace of
Vnet for 200ms and the output frequency for 2s and computed its mean over time, then I
calculated the mean (m) and standard deviation (σ) of this value over the pixels array. The
measure reported in the following text for evaluating the relative effect of mismatch on the
array is the coefficient of variation, CoV = σ

m
· 100.

As the WTA circuit decouples the input from the output currents, the mismatch between
currents at the input node does not contribute to the mismatch on the output currents. The
variation among the input currents of the WTA pixels depends on mismatch in the excitatory
synapse circuits, and on the differences in the current mirrors that source the hysteretic
current. The coefficient of variation of the input currents of the WTA pixels varies in a
range between 0.61% and 0.7%, depending on the circuit settings. The mismatch effect on
the input synapses results in a competitive advantage of some pixels over others.

The main potential source of mismatch that has an effect on the output of the SAC arises
from the biasing transistors Mwta in each pixel (see Fig. 3.2). Fig. 4.10 shows the CoV on
the output frequency of each pixel for the case in which the WTA competition is disabled
(Vinh = Gnd in Fig. 3.2). In such a case, all Mwta transistors are decoupled and each output
neuron is affected by mismatch. If the WTA competition is fully enabled (Vinh = Vdd) all
Mwta transistors operate in parallel, and the current sourced into the I&F neuron by the
winning WTA cell is the same everywhere.

Mismatch can also arise from the current mirror and from the limiting transistor Mlim

1The standard deviation of the frequency, measured by monitoring the PCI–AER board sequencer output, is extremely
small (σfin = 4e−13). This variability is negligible with respect to the mismatch effects observed on the chip.
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Figure 4.10: Evaluation of mismatch on the output of the I&F neuron circuits. The plot shows the
coefficient of variation of the output frequency over the whole array for different settings of the
competition as listed in the legend. The mismatch over the output frequency decreases when all the
biasing transistors are in parallel (when the competition is enabled), and when the input current to
the neurons is limited.

(see Fig. 3.2) that source the input current into the membrane capacitor Cmem of the I&F
circuit (see Fig. 4.7), and from the I&F circuit itself.

Any mismatch on the output I&F neuron frequency is relevant, since it influences the
settling time of self–inhibition. Eventually, mismatch between inhibitory synapses causes
variation in the dynamics of the IOR.

4.3.2 Input synapse characterization
In this section the DPI synapse is characterized in the framework of its use in the SAC,
as the input block to the current–mode WTA circuit. In these experiments I set the biases
Vwta = 200mV, Vinh = Vdd, and Vlim = 2.85V, and explored the effect of different bias set-
ting for the input synapse. As WTA competition is instantaneous and continuous in time, I
looked for synaptic parameters that rendered the WTA input currents as smooth as possible,
minimizing the peaks corresponding to each input spike. If the currents have large peaks,
the result of the competition depends on the relative timing of the input spikes, indepen-
dent of their input frequency, and the network oscillates. Fig. 4.11 shows some examples of
time traces of the node Vnet, which gives a measure of the input current to the WTA cell,
for different values of the synapse time constant and weight. A long time constant allows
the integration of the input spikes at the synaptic level (i.e. on the capacitor Csyn), render-
ing the output current smoother. Fig. 4.12 shows the mean Inet versus the input frequency,
when the synapse is stimulated with spike trains of constant frequency. The mean current
is estimated from the transfer function of the diode–connected transistor Mnet of Fig. 3.2:

Inet = I0e
kVnet
UT , with the realistic assumption of transistor operated in subthreshold and sat-

urated (Liu et al., 2002). The shaded areas in the figure show the standard deviation of the
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Figure 4.11: Input excitatory synapse: traces in time of the voltage Vnet, and their mean, when
stimulating the input synapse with a spike train of constant frequency at 100Hz, for three different
bias settings. The traces correspond to the highlighted points of Fig. 4.12.

Figure 4.12: Input current to the WTA cell for different time constant and weight settings: mean and
standard deviation (shaded areas) of the input current of the WTA cell versus the input frequency,
when stimulated with trains at constant frequency. For long time constants the input current is
proportional to the input frequency for a range comprising very low input frequencies, and the slope
is sufficiently steep to discriminate the inputs. In addition, increasing the time constant decreases
the standard deviation of the current, leading to smaller oscillations around the mean value when
the input spike arrives. The highlighted points correspond to the traces of Fig. 4.11.
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current2: for long time constants (i.e. Vτ close to the supply voltage, Vdd) the output current
is smoother and the mean current is directly proportional to the input frequency for a wide
range of input frequencies.

Another issue that needs to be taken into account when choosing the bias settings for
the synapse is the magnitude of the current Inet it generates: four currents converge in the
input node of the WTA cell: the excitatory synapse current; the inhibitory synapse current;
the positive feedback current from the WTA; and the current from the lateral transistors, be-
longing to the resistive grid. All these input currents sum linearly, obeying to the Kirchhoff
current law. If the total current sourced into the WTA circuit is too high, the node voltage
increases. The drain of the Mhyst transistor of Fig. 3.2 is also connected to this node; if it
increases above (Vdd − 4UT ), the transistor goes out of saturation (Liu et al., 2002) and its
current sharply drops, reducing the positive feedback effect. Therefore I choose a sensible
bias setting for the input synapse, corresponding to small amplitudes of the synaptic exci-
tatory current: Vw0 = 620mV, Vthr = 3.1V, and Vτ = 3.1V (corresponding to the light gray
curves of Fig. 4.12).

4.3.3 Hysteresis characterization
With the experiments described in this section, I characterized the effect of the positive
feedback current on competition between two pixels of the array, quantifying the effect of
the bias, Vhyst, that controls the magnitude of the hysteretic current.

Pixel vs Pixel

To uncover the effect of the hysteretic current, pixel 1 was stimulated with a regular train of
spikes at a constant frequency of 100Hz, and pixel 2 with input frequencies increasing from
10Hz to 200Hz, and back, with steps of 10Hz. Without hysteretic current (Vhyst = Vdd),
the WTA should switch from pixel 1 to pixel 2, when pixel 2 receives an input frequency
slightly higher than 100Hz. The WTA should then switch back to pixel 1 when the input
frequency of pixel 2 decreases back to a value slightly lower than 100Hz. When the hys-
teretic current is enabled, the winning pixel receives an extra current in the input node. This
is equivalent to having an input spike train to the winner of frequency at (100 + ∆f)Hz,
where ∆f depends on the bias Vhyst. In such a case, pixel 2 can win the competition only if
its input frequency increases above (100 + ∆f)Hz. As pixel 2 is selected by the WTA, the
hysteretic current is removed from pixel 1 and is injected in the input of pixel 2. For pixel 2
to be deselected, its input frequency has to decrease below (100−∆f)Hz. Fig. 4.13 shows
the voltage of the WTA input node Vnet recorded from the two stimulated pixels in these
conditions. Its value depends exponentially on the input frequency and on the hysteretic
current. Pixel 1 receives a train at constant frequency, therefore the contribution of the input
synapse is constant throughout the experiment; when it is selected by the WTA, a constant
value that depends on Vhyst is added to the trace. In the trace of pixel 2 one can observe
the superposition of the synaptic response to the raising input frequency with the hysteretic
current, when the pixel wins the competition for saliency. The different traces correspond
to different values of Vhyst; as expected, when Vhyst = Vdd (and the hysteretic current is
off) the curves for increasing and for decreasing the input frequency are equal, while for
smaller values of Vhyst the hysteretic effect becomes evident. Fig. 4.14 shows the Vnet traces

2The standard deviation of the mean over time of the current is calculated with the standard procedure for error
propagation: if the derived measure is f(x, y, ...), where x, y, ... are the direct measures, its standard deviation is σ =
∂f
∂x
σx + ∂f

∂y
σy + ...
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Figure 4.13: Hysteresis measured by observing the input node of the WTA: Vnet mean value (over
time) of pixel 1 (a) and pixel 2 (b), versus the input frequency of pixel 2. Pixel 1 is stimulated with
a spike train of constant frequency at 100Hz, pixel 2 with a spike train that every 4s increases with a
10Hz step. (a) Pixel 1 receives always the same mean input current and its input node results constant
for increasing the input frequency of the other pixel. When the hysteretic current is turned on, the
input node of the pixel receives an extra current while winning; this current increases exponentially
for decreasing the gate voltage of the transistor Mhyst, as shown by the different level of Vnet
(during the winning phase) obtained for decreasing values of Vhyst. The different level of Vnet
when the pixel is loosing depends on a leakage current in the feedback branch, that increases with
the bias Vhyst. The hysteretic effect given by the activation of the feedback current is revealed in the
different path obtained for increasing and decreasing the input frequency of the second pixel. (b) In
the input node of pixel 2 there is the superposition of the hysteretic current with the response of the
synapse to different frequencies.

of the two pixels superimposed, with and without hysteretic feedback. The plots show that
the inputs to the WTA pixels cross for an input frequency of pixel 2 different from 100Hz,
determined by the mismatch in the input synapses. In the baseline condition (Fig. 4.14(a)),
the crossover frequency is the same for increasing and decreasing the input frequency of
pixel 2. When hysteretic feedback is enabled (Fig. 4.14(b)), the crossover frequency moves
towards higher values for increasing the input frequency of pixel 2, and towards lower val-
ues for decreasing it. The effect observed in the input node by measuring Vnet is reflected
in the overall behavior of the network. Fig. 4.15 shows the hysteretic curve of the output
activity of the array, when the input frequency of pixel 2 increases linearly from 10Hz to
200Hz and back with a resolution of 1Hz, as shown in Fig. 4.15(a).

The hysteretic curves of Fig. 4.15(b) are obtained by plotting the center of mass (CoM )
of the network activity versus the input frequency of pixel 2, where CoM is defined as

CoM =

∑
i θifi∑
i fi

, (4.1)

where θi is the address of the ith pixel and fi is its output frequency. When the input fre-
quency of pixel 2 is low, pixel 1 wins the competition and the center of mass of the network
corresponds to pixel 1; as the input to pixel 2 increases, the input currents to the two pixels
start being comparable. Depending on the resolution of the WTA network, both pixels are
selected as winners for a given range of frequencies, and the center of mass is in between
the two; when the input frequency to pixel 2 increases enough above the input frequency to
pixel 1, the network selects pixel 2 as winner, and the center of mass shifts to pixel 2. When
the hysteretic current is disabled (Vhyst = Vdd), the transition frequency of the WTA, de-
fined as the input frequency at which the WTA changes from one winning pixel to another,
depends on the mismatch between the input currents generated by the excitatory synapses
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Figure 4.14: Hysteresis measured by observing the input node of the WTA: mean voltage of the
input node of the WTA for the two stimulated pixels, versus the input frequency of pixel 2. (a)
Baseline activity, when the feedback current is off: the input currents of the two pixels do not cross
exactly when the input frequencies are equal, but when the input frequency of pixel 2 is about
120Hz, because of the mismatch between the input synapses. This results in a shift of the transition
point of the WTA circuit around 125Hz, as shown in Fig. 4.15. (b) Vhyst = 2.88V: for low values of
the input frequency of pixel 2, the input current to pixel 1 is higher than in the baseline, therefore the
cross point of the two currents shifts towards higher input frequencies. When the network changes
winner, the hysteretic current is removed from the previously winning pixel and is sourced into the
current winner. For the same principle the crossing point for decreasing the input frequency shifts
towards lower frequencies.
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Figure 4.15: Hysteresis measured by observing the output activity of the I&F neuron: (a) Instanta-
neous input frequency of the spike train sent to pixel 1, and to pixel 2.The last point has an error due
to the discretization of the spike train for the evaluation of the instantaneous firing rate. (b) Center
of mass of the chip’s activity versus the input frequency of pixel 2 for different amplitudes of the
hysteretic current. The values of the bias Vhyst are the same used in the previous experiment. When
the feedback current is disabled (Vhyst = Vdd) the network should change winner at 100Hz, where
the two input frequencies cross, in these measures the network switches around 125Hz, because of
the mismatch between the two input synapses, as shown in Fig. 4.14. The resolution of the WTA
circuit is about 15Hz: within this range it cannot resolve between the two inputs, and both pixels
are active. The activation of the feedback current increases the resolution of the network up to 1Hz,
and produces the hysteretic phenomenon: when the hysteretic current is strongest (Vhyst = 2.88V),
pixel 2 wins when its input frequency increases of ∆f '50Hz above the transition frequency, then
in the way back, it looses when its input frequency decreases of the same ∆f below the transition
frequency. The value of ∆f depends on the hysteretic current.
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of the two pixels. In this experiment the transition point is around 125Hz, and is the same
for increasing and decreasing values of the input frequency of pixel 2. When the hysteretic
current is enabled, the transition frequency shifts toward higher values for increasing val-
ues of input frequency, and toward lower frequencies for decreasing values of the input
frequency. The width of the hysteretic curve increases with increasing hysteretic current
amplitude. Another phenomenon uncovered by this experiment is the increase of the WTA
resolution: when the hysteretic current is active, the transition between one winner and the
other is sharper than in the baseline, as there is typically only one point in the center of
mass of the activity that corresponds to the activation of both pixels.

4.3.4 Lateral Excitation
Here I characterize the effect of the lateral facilitating connections between neighboring
pixels of the WTA, implemented by means of a diffusive grid shown in Fig. 3.2, and de-
scribed in Sec. 4.2.3.

With the first experiment I characterize the extent of the lateral diffusion of the current
with different values of the bias Vexc, then I examine the functional role of lateral facilita-
tion, showing that a region of activity has a competitive advantage over a single pixel. The
last experiment of this section shows that spatial smoothing of the input currents helps in
reducing the effect of mismatch in the input synapses.

Lateral diffusion of the input current

To measure the spatial extent of the input current for different values of the parameter Vexc,
I stimulated the central pixel (15,15), and measured the voltage Vnet of the surrounding
pixels. Fig. 4.16 shows the difference between the mean of Vnet, obtained for a fixed value
of Vexc, and its baseline, obtained when the lateral excitation is disabled (Vexc = Gnd).
Fig. 4.16(a) shows the data of all recorded pixels, for Vexc = 200mV. The first neighbors
of the stimulated pixel are brighter, then the amount of current received by more distant
pixels decreases sharply. Fig. 4.16(b) shows mean and standard deviation of the same data,
recorded from the pixels belonging to the same row and column as the central pixel (15,15),
for a subset of values of Vexc. The value of the central pixel is negative, since the lateral
spread of its input current decreases the net current to the pixel itself. For high values of
lateral excitation the current spreads equally to the limit of the array, and the input loses any
information about the location of the stimulated pixel.

Pixel vs Blob

Here I show the functional role of lateral facilitation in the WTA competition. Similar to
the experiment described in Sec. 4.3.3, pixel 1 is stimulated with a constant frequency,
while pixels belonging to an area of 3×3 centered around pixel 2, from now on referred
to as blob, are stimulated with spike trains with frequencies ranging from 10Hz to 200Hz
with steps of 1Hz and back. Fig. 4.17 shows the center of mass of the activity of the chip
shifting between the single pixel and the blob for different values of the bias Vexc, and
without the hysteretic current. When the lateral excitation is enabled, the pixels belonging
to the same blob cooperate and the transition frequency of the WTA selection shifts toward
lower values, until the blob wins even when stimulated with a lower frequency than the
pixel. Thanks to the lateral facilitation a contiguous region of activity (e.g. arising due to an
object) has a competitive advantage over a single pixel of activity.
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Figure 4.16: Lateral excitation. Spatial impulse response of the WTA resistive grid (see Fig. 3.2).
Pixel (15,15) is stimulated with a constant spike train at 100Hz, and Vnet of each pixel is recorded.
The difference between the response for Vexc > 0 and the response for Vexc = Gnd is plotted. The
negative peak in correspondence of pixel (15,15) shows that part of the input current of the pixel
diffused to the neighboring pixels. (a) Example of the spatial response for Vexc = 200mV, (b) Cross
section with mean and standard deviation of the data recorded from the pixels belonging to the same
row and column as the central pixel (15,15), for different values of the bias Vexc.
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Figure 4.17: Functional role of lateral excitation: center of mass of the activity of the array, when
stimulating a single pixel with a constant frequency and a blob with a frequency that increases and
then decreases linearly, for different values of the bias Vexc. The activity of all of the pixels belong-
ing to the blob is added together, and represented as a single pixel. When the lateral facilitation is
enabled, the network transition frequency moves toward lower values. The hysteretic current (for
Vhyst = 2.9V, not shown) has effect only for very small values of lateral excitation, since also the
hysteretic current diffuses to the neighbors and becomes negligible.
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Figure 4.18: Hysteresis and Lateral Excitation with blobs: center of mass of the chip activity, where
“blob 1” and “blob 2” correspond respectively to the region of activity around pixel 1 and pixel 2. (a)
The center of the hysteretic curves is shifted toward 100Hz, corresponding to a reduced mismatch
on the input currents of the WTA circuit. For high values of the hysteretic current the asymmetry
of the hysteretic curve is due to the mismatch on the feedback branch. (b) Baseline activity without
hysteresis, when either single pixels or blobs are stimulated, for a direct comparison: The transition
frequency of the WTA is shifted about 15Hz.

Blob vs Blob

This last experiment was performed to unveil an additional role of lateral facilitation, spa-
tial smoothing, which reduces the effect of mismatch between pixels. As pointed out in
Fig. 4.15, the transition frequency of the network does not correspond exactly to the input
frequency of pixel 1 (100Hz), but is shifted toward a higher frequency because of mismatch
between the input currents generated by the two synapses (see also Fig. 4.14). A way to
reduce this effect is by using lateral excitation to smooth the input in space. Fig. 4.18 shows
the same experiment as in Fig. 4.15, stimulating the two blobs centered around pixel 1
and 2. The transition frequency of the WTA selection shifts toward the input frequency of
pixel 1 (100Hz), showing a reduction of the effect of mismatch between the input currents
to the WTA pixels. Fig. 4.18(b) shows the baseline behavior when the hysteretic current
is disabled: when stimulating two blobs, the network selects the new winner when it is
stimulated at a frequency closer to 100Hz than when stimulating only two single pixels.
Fig. 4.18(a) shows the hysteretic curves obtained in this experiment; for the same value of
Vhyst the width of the hysteretic curve is smaller, since the hysteretic current spreads also
to the neighbors: The slight asymmetry in the hysteretic curves with respect to the baseline
transition is probably due to mismatch between the hysteretic currents.

4.3.5 Short–term depression
Here I characterize the effect of short–term depression (STD) of the synaptic weight, im-
plemented on the input excitatory synapses. The STD mechanism, described in detail in
Sec. 2.4.1, adapts the weight of a synapse with an increasing number of input spikes. In
terms of bottom–up attention, the saliency of stimuli whose attributes never change is de-
creased, and stimuli with one or more varying attributes become more salient, implementing
a form of visual adaptation (McDermott et al., 2006). In the first experiment I measured the
effect of the short–term depression circuit on the weight of the synapse (Vw in Fig. 4.6),
and on the output current of the input synapse in the test pixel (0,31). The second experi-
ment quantified the effect of STD on the competition between two pixels, when the input
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Figure 4.19: Short–term depression: plot of the synaptic weight Vw (a), and of the synapse output
current Inet (b), when the synapse is stimulated with two different input frequencies. The initial
synaptic weight is set to Vw0 = 620mV, the strength of the depression is Vwstd = 240mV, and the
hysteretic current is turned off. The measured initial value of the synaptic weight is about 645mV,
the discrepancy with respect to the value externally set is most likely due to offsets on the read–out
buffers. At the onset of the stimulation (t = 5s), there is an initial positive peak, due to parasitic ef-
fects in the STD circuit. Subsequently the weight decreases toward a steady state value that depends
on the input frequency.

frequency of the loser undergoes a step change.

Single Pixel

To characterize the effect of the short–term depression circuit on the variables directly in-
volved, I measured the steady state value of the synaptic weight and of the synapse output
current Inet, when stimulating the synapse of the test pixel (0,31) for different values of
the STD strength Vwstd, and of the input frequency fin. For each run of the experiment
the synapse was reset by turning off the short–term depression circuit and waiting for the
weight to recover, then the new value of Vwstd was set and the synapse stimulated with a
constant frequency. Fig. 4.19(a) and 4.19(b) show examples of the Vw and Inet traces re-
spectively, for a fixed set of biases and for two different input frequencies, corresponding to
the highlighted dots in Fig. 4.20(a) and 4.20(b). Fig. 4.20 summarizes the results obtained
by sweeping Vwstd and fin, for two different values of the initial synaptic weight Vw0, both
with and without the hysteretic current. As expected, the steady state value of the weight
is independent of the hysteretic current and of the initial synaptic weight; it decreases for
increasing input frequencies, and for increasing values of the bias Vwstd. The result of the
synaptic weight depression is the decrease of the output current; I evaluated this current
by measuring the total input current Inet to the corresponding WTA node, when the lateral
connections and the inhibitory feedback were turned off. This measure reflects the synaptic
contribution and the hysteretic current. Fig. 4.20(b) shows the output current of the synapse
when the initial weight is set to Vw0 = 620mV; for increasing frequencies of the input train
the steady state amplitude of the current decreases. The effect increases for stronger synap-
tic depression, set by the bias Vwstd. Following the same protocol, I quantified the effect of
a step change in the input frequency on the output current: first the synapse was stimulated
with a fixed frequency, then, after the synaptic weight reached the steady state, the input fre-
quency was increased; the experiment was repeated for 5 increasing values of the frequency
step, starting from two different frequencies, for two different values of Vw0, and for dif-
ferent values of the bias Vwstd. Fig. 4.21 shows the change in the output current versus the



4.3. SAC functional characterization 78

20 40 60 80 100 120 140
−200

−150

−100

−50

0
∆ 

V
w

 (
m

V
)

Freq (Hz)

(a)

20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I ne
t (

nA
)

Freq (Hz)

(b)

Figure 4.20: Short–term depression, weight variation (a) and steady state value of the synaptic
current (b) as function of the input frequency. Each curve corresponds to a different value of the
bias Vwstd: the black trace corresponds to Vwstd = 0mV, the brightest trace to Vwstd = 400mV,
the intermediate curves to values ranging from Vwstd = 180mV to 320mV with 20mV increments.
The markers distinguish the initial value of the synaptic weight: O for Vw0 = 620mV, � for Vw0 =
680mV. The dashed lines correspond to the experiments with the hysteretic current: (a) as expected
the hysteretic current has no effect on the synaptic weight, but only on the output current; (b) when
the input current is small the hysteretic current sums linearly and the Inet curves are translated of
about 300nA. (a) The weight variation depends on both the input frequency, and the bias Vwstd, but
not on the initial synaptic weight Vw0. (b) The steady state of the current depends linearly on the
input frequency and the slope is determined by the steady state value of the synaptic weight.

amplitude of the frequency step. As expected from the analytical derivation in Sec. 2.4.1,
the synapse responds to changes with a variation of its mean output current proportional to
the amplitude of the input change.

Pixel vs Pixel

With this experiment I characterize the effect that STD has on the competition between
two stimuli. Pixel 1 initially received a spike train at a constant frequency of 100Hz and
pixel 2 received a train at a lower frequency (50Hz); after 60s the input frequency to pixel 2
increased step–wise for different amplitudes of the step, ranging from ∆F = 5Hz to ∆F =
75Hz. Fig. 4.22 shows the raster plots of the two pixels (pixel 1 in blue), for different values
of the final input frequency to pixel 2, in four representative cases.

In Fig. 4.22(a) the pixel receiving the highest absolute frequency wins, until there is
a step change in the input frequency of pixel 2. In this case pixel 2 wins transiently, even
if its absolute frequency is still lower than the frequency of pixel 1; when the absolute
frequency of pixel 2 is above the absolute frequency of pixel 1, pixel 2 wins, but as its
weight depresses, the output currents of the two pixels become comparable, and both pixels
win.

In Fig. 4.22(b) the Vwstd bias is stronger. The steady state of the synaptic weight is lower
for pixel 1 than for pixel 2, because the first receives a higher input frequency: pixel 2 starts
to win even before the input frequency step. This behavior is even more pronounced when
Vwstd is increased further (see Fig. 4.22(c)). Here the weight of pixel 1 depresses after just
a few seconds and pixel 2 wins; when the frequency of pixel 2 increases above 95Hz, the
weight of pixel 2 depresses to a value comparable to the weight of pixel 1, and both the
pixels win. For higher values of the absolute input frequency of pixel 2 the value of the
synaptic weight decreases further, and pixel 1 wins the competition. Fig. 4.22(d) shows the
response of the WTA for a moderate value of depression (Vwstd = 220mV), and with the
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Figure 4.21: Short–term depression, dependence of the current output on the variation of the input
frequency. The synapse of pixel (0,31) is stimulated with frequency steps of increasing amplitude,
the correspondent step in the output current ∆Inet is plotted versus the amplitude of the frequency
steps ∆Freq. The solid lines correspond to the initial weight Vw0 = 620mV, the dashed lines to
Vw0 = 680mV; the brightness of the curves increases with the bias Vwstd, the darker corresponds to
Vwstd = 0mV, the brighter to Vwstd = 400mV, and the intermediate values range from 200mV to
280mV with increments of 40mV. The markers M and O correspond to different initial values of the
input frequency, respectively 50Hz and 70 Hz. The curves with different markers superimpose in all
the conditions, confirming that the current variation depends on the value of the frequency step.

hysteretic current enabled. In this case, pixel 2 wins only when the step sets its absolute
input above the winner’s frequency. Hysteresis clearly separates the selection behavior in
two regions: either pixel 1 wins always; or pixel 2 wins after the frequency step, and the
network stabilizes again. Fig. 4.23(a) and 4.23(b) show the center of mass of the network
activity versus the duration of the activity of pixel 2 , for increasing depression strength
(Vwstd ranging from 200 to 300mV, with 10mV increments), and for each ∆F , with for
initial stimulation frequencies of pixel 2 of 50Hz and 70Hz. The points at zero duration
and centered around pixel 1 show that pixel 2 was never selected; the points in the left
half of the space correspond to the case of Fig. 4.22(a), where pixel 2 wins after the input
frequency step, and the duration is related to the amplitude of the step. There are clusters
around 60s; in this case pixel 2 is active after the frequency change until the end of the
experiment, however the center of mass of the network indicates that both pixels 1 and
2 are active, and the network does not select a winner. The last group corresponds to the
experiments of Fig. 4.22(b) and 4.22(c), when pixel 2 starts to win before the step, because
the weight of pixel 1 is depressed to a very low value. The comparison between the data
corresponding to the two experiments with different initial input frequencies confirms that
the output current of the depressing synapse, and therefore the result of the competition,
depends on the amplitude of the step change, ∆F , not on the final absolute value of the
input frequency.

4.3.6 Inhibition Of Return
In this section I characterize the dynamics of the inhibition of return (IOR) mechanism. The
IOR mechanism is implemented with local inhibitory synapses (see Sec. 4.2.5, Fig. 4.8); the
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Figure 4.22: Short–term depression, response of the SAC when two pixels are stimulated at differ-
ent constant frequencies and the input to the losing pixel undergoes a step change ∆F of increasing
amplitudes. Each figure shows raster plots of the activity of the stimulated pixels for different val-
ues of the final absolute frequency of pixel 2, obtained for ∆F ranging from ∆F = 5Hz to ∆F =
75Hz. Pixel 1, plotted in blue, is always stimulated at 100Hz, pixel 2, plotted in different colors, is
stimulated first at 50Hz, then after 60s its frequency increases step–wise to 50Hz+∆F . The plots
in (a), (b), and (c) are obtained for initial synaptic weight Vw0 = 620mV, and without hysteretic
current, for three different values of the depression strength: (a) Vwstd = 200mV, pixel 2 wins when
the frequency step is sufficient high, and is active only during the transition, before being depressed
in turn. (b) Vwstd = 240mV, and (c) Vwstd = 290mV, pixel 1 depresses after few seconds and pixel
2 wins even before the frequency step; pixel 1 wins again when also pixel 2 is depressed. In (d) the
hysteretic current is turned on, and the WTA switches only for high ∆F (Vwstd = 240mV).

winning pixel activates the output I&F neuron, whose spikes are integrated by the inhibitory
synapse. This subtracts current from the input node of the WTA cell, until its net input cur-
rent is lower than the input currents of the other pixels in the array. Another pixel can then
be selected by the WTA network. The efficacy and time constant of the inhibitory synapse,
set by Vwinh, Vthrinh, and Vτinh respectively, control the dynamics of self–inhibition. They
determine how many spikes are required for the WTA to deselect the current winner and
select another pixel, and also set the time constant of the inhibitory current.

Single Pixel

The dynamics of IOR can be characterized by measuring the duration of the activation
of the I&F neuron and the duration of its suppression. The instrumented pixel (0,31) was
stimulated with a spike train of constant frequency of 100Hz, and the IOR dynamics were
evaluated for different values of Vwinh and Vτinh. The duration of activation and suppression
of the I&F neuron are plotted in Fig. 4.24, and in Fig. 4.25 where the hysteretic current is
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Figure 4.23: Short–term depression, center of mass of the array versus the duration of the activity
of pixel 2. Pixel 1 is stimulated with a spike train at 100Hz, Pixel 2 is first stimulated at 50Hz (a), or
70Hz (b), and after 60s its frequency increases of ∆F . Each color–marker combination correspond
to one experiment with a given bias setting, for different values of ∆F . Points in the left half space
of the plots corresponds to transient activity of pixel 2 (see Fig. 4.22(a)), that wins for a duration
proportional to ∆F . Points in the right half space correspond to the behavior shown in Fig. 4.22(b)
and 4.22(c). The region at the center of the plots is a transition. The highlighted dots correspond to
the raster plots in Fig. 4.22.

enabled (Vhyst = 2.85V). Fig. 4.26 shows the time course of the internal variables monitored
from the instrumented pixel during the experiments.

The lower trace of the plots in Fig. 4.26 shows the membrane potential Vmem of the
output I&F neuron (see Fig. 4.7). Depending on the bias settings of the inhibitory synapse,
one or more spikes are sufficient to inhibit the current winner.

The upper trace corresponds to the input node voltage of the WTA Vnet (see Fig. 3.2),
and shows the decrease of the input current to the current winner due to the inhibitory
current.

The middle trace shows the gate voltage of the output transistor of the inhibitory
synapse (Mior in Fig. 4.8). A linear decrease of this voltage results in an exponentially
decaying current subtracted from the input node of the corresponding WTA cell; depending
on the time constant and on the weight of the synapse, the output inhibitory current pulse
will last from a few milliseconds up to two seconds.

4.4 Conclusions

In this chapter I characterized the properties of the circuits used in the SAC with control
experiments, and studied their behavior as a function of the main tunable parameters.

I showed how the output current of the input excitatory synapse is linear with stimulus
saliency. Specifically, I determined the synaptic parameters that render the synapse output
current suitable for the current–mode WTA.

As for any physical system, including biological ones, the SAC shows intrinsic inho-
mogeneities in its constituent elements, resulting in reduced precision and variation in the
dynamics of self–inhibition. In Sec. 4.3.4 I demonstrated the use of lateral excitation in the
hysteretic WTA circuit for the reduction of mismatch; this experiment is especially relevant
to confirm once again the importance of cooperative computation to reduce the effects of
low precision in physical systems.

In Sec. 4.3.3 I characterized the effect of hysteresis in increasing the resolution and
stability of the WTA, as predicted by the circuit analysis in Sec. 3.3.
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Figure 4.24: Inhibition of return: Quantification of the effect of the inhibitory synapse parameters,
the weight Vwinh and the time constant Vτinh, monitoring the spiking activity of the instrumented
pixel, stimulated with a spike train of constant frequency at 100Hz. (b) Mean duration of the spiking
activity, and (a) the mean duration of the silent period, versus Vτinh; each curve corresponds to a
different value of the synaptic weight. Increasing Vτinh decreases the synaptic time constant, and
the duration of inhibition, while the duration of activation of the neuron increases; increasing Vwinh
increases the weight of the synapse and the duration of inhibition, on the contrary the duration of
neuronal activation decreases, as expected from the synaptic circuit transfer function. The markers
∗, ♦, and� correspond to the traces in time shown respectively in Fig. 4.26(a), 4.26(b), and 4.26(c).
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Figure 4.25: Inhibition of return with hysteresis, same experiment of Fig. 4.24, for (Vhyst = 2.85V).
The duration of the suppression period (a) is unaffected, the duration of the activation period (b)
increases, given the additional positive current fed into the input node of the WTA. The markers
correspond to the bias settings of the correspondent markers in Fig. 4.24

In Sec. 4.3.5, I showed the relevance of the newly introduced short–term depression
circuit in the input synapses. STD makes the chip sensitive to the sudden appearance of a
stimulus, and to changing stimuli.

Finally in Sec. 4.3.6 I characterized the dynamics of the IOR mechanism.
The experiments described in this chapter show the functional effects of various parts

of the chip, both in the context of circuit stability and performance , and in the context of
attentional selection, for controlled inputs. They are relevant for isolating the contributions
of the different parts of the system, which typically interact in a highly non–linear fashion.
This approach mimics the early psychophysics strategy of studying the visual system with
visual search arrays and artificial stimuli, unveiling the basic principles and characteristics
of the system in a controlled environment. Validation of the SAC as a tool for attentional
selection, when all its parts are interacting and dealing with complex situations, requires an
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Figure 4.26: Inhibition of return: typical traces of the internal variables Vnet (top trace), Vmem
(bottom trace), and Vior (black middle trace), recorded from the instrumented pixel, for three com-
binations of Vwinh and Vτinh. The input current from the excitatory synapse causes the increase of
the current in the input node of the WTA cell (Vnet), that wins the competition for saliency; the I&F
fires action potentials (Vmem). The inhibitory synapse integrates the spikes: Vior increases and a
current is subtracted from the input node (Vnet), causing the deselection of the pixel as winner; the
neuron stops firing. The cycle starts again as soon as the inhibitory synapse turns off. (a) Vwinh =
2.42V, Vτinh = 10mV, (b) Vwinh = 2.58V, Vτinh = 30mV,(c) Vwinh = 2.44V, Vτinh = 80mV.

additional experiment, incorporating natural stimuli and observation of the overall behavior
when the SAC interacts in real–time with the real world, as described in Chap. 5.



Chapter 5

A multi–chip selective attention system

5.1 Introduction

In the previous chapters I described the circuits implemented on the SAC and characterized
their functional behavior. In this chapter I describe the behavior of the SAC when it is part
of a saliency–map based selective attention multi–chip system, comprising a neuromorphic
vision sensor and an actuator that orients the sensor towards the salient stimuli selected by
the SAC.

The Focus of attention (FOA) scan paths produced by the SAC are strongly depen-
dent on its input saliency map. To characterize the scan paths produced by the SAC in a
controlled way, I generated synthetic saliency maps in software (see Sec. 5.2). I then im-
plemented a two–chip system for selective attention, by connecting the SAC directly to an
AER silicon transient imager (Lichtsteiner et al., 2004), which produces a proto–saliency
map based on the information of local luminance changes in time (see Sec. 5.3). I used this
system to evaluate the scan paths generated with real stimuli, and the behavior of the system
when it interacts with the real world.

Following is a review of the state–of–the–art for both software and hardware imple-
mentations of saliency map based models of selective attention.

5.1.1 State–of–the–art implementations of saliency–map models
The Itti and Koch (2000) saliency–map based model of selective attention described in
Sec. 1.2 has been implemented in software by (Itti et al., 1998). The iLab Neuromorphic
Vision C++ Toolkit (iNVT), released by Itti’s group at the University of Southern Califor-
nia, implements all stages of the model from front–end data acquisition and feature map
computation to the saliency map scanning that produces the final FOA scan path. The
iNVT software implementation was used to validate the Itti and Koch (2000) model in
different applications (Itti and Koch, 2000), and with comparison to human psychophysics
(Itti, 2005a,b). An alternative implementation of the algorithm has been developed by Dirk
Walther (Koch and Walther, 2006) at Caltech, who released it as the Matlab SaliencyTool-
box. The Toolbox comprises the core functionality of the Itti and Koch (2000) saliency–map
model but has the advantage of being independent of the platform used. Nevertheless, the
number of feature channels supported for computation of the saliency map is limited com-
pared with the iNVT implementation. Due to its slower performance, it is recommended
only for computing saliency maps of static images.

Software implementations are important and useful for characterizing possible com-
putational models, and for validating the simulated theories. They can also be used for
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applications that require off–line image processing, such as data compression (Itti, 2004).
In real world applications such as robotic vision, video surveillance, etc., where the

main requirements are real time processing and low power consumption, software simula-
tions on desktops are inadequate so dedicated approaches have been proposed.

Itti’s group at iLab developed a real–time implementation of the bottom–up saliency
model on a 16–CPU Beowulf cluster (Itti, 2002), that runs the iNVT software; with opti-
mized dedicated libraries it can achieve 205Mbps transfer rates, that leads to a speed of 30
frames per second (for 320×240 image size). This approach guarantees high performance
and the flexibility typical of software simulations, allowing the implementation of the full
saliency map model, extended with object recognition, or any other type of algorithm for
vision. The disadvantage of this approach are size and power requirements.

Park et al. (2003) implemented a saliency map based model for selective attention using
a CCD camera connected to an IBM PC and mounted on a DC motor. The images acquired
with the camera are transferred to the PC, which selects the next location to be attended; a
control algorithm implemented on a DSP (digital signal processor) drives the DC motor for
the camera foveation.

A hybrid approach, based on a dedicated hardware platform but still using software
modules, has been adopted by Ouerhani et al. (2002): data from a digital CMOS imager are
processed by a cluster of 4 Single Instruction Parallel Data (SIMD) machines, the ProtoEye.
Each SIMD has highly parallel and low power hardware. The operations of this architec-
ture are controlled by a 4MHz general purpose microcontroller. A simplified version of the
saliency map model was implemented on this system, adapting the algorithm to the hard-
ware. The system can process 14 frames per second, at a resolution of 64×64 pixels; it has
lower speed and resolution than the Beowulf implementation, but requires less power and
is still suitable for many applications.

Another approach is to implement the model on dedicated analog VLSI hardware, that
directly maps the required algorithm on silicon. On one hand this approach has less flexi-
bility, since the hardware cannot be fully reprogrammed to implement different algorithms,
even though parameter tuning can change the operating conditions of the networks. On the
other hand it has the great advantage of real–time and low power operation. Within the neu-
romorphic engineering approach, as underlined also in Chap. 4, there are two main streams:
one strategy is to implement, on a single chip, the sensors and post–processing that imple-
ments a simplified selective attention model using a very small set of features, such as local
stimulus intensity (Brajovic and Kanade, 1998; Morris et al., 1996) or temporal derivative
of contrast (Horiuchi et al., 1997; Indiveri, 1999), to compute the saliency map. The second
approach, adopted in this work, is to separate the sensory acquisition and processing stages,
realizing multi–chip hierarchical systems that have the advantage of higher flexibility (In-
diveri, 2000a). The SAC can be used to implement the last decision stage of the saliency
map based model, by hard WTA competition and an IOR mechanism, needed to produce
the FOA scan path. However it can also be tuned to operate as a local WTA, without IOR, to
implement the required local competition and normalization in the feature map component
of the saliency map model. Multiple instances of the SAC tuned for different features can
be used to build a hierarchical selective attention multi–chip system.

5.2 SAC response to synthetic saliency maps

In this section I evaluate the behavior of the SAC when stimulated with saliency maps
generated in software with the algorithm proposed by Itti and Koch (2000), and compare
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Figure 5.1: SaliencyToolbox: (a) Input image used for the following experiments (part of the image
database of the SaliencyToolbox). (b) Saliency map relative to the input image, obtained from the
SaliencyToolbox, with the default parameters.

the properties of SAC–generated scan paths to the scan paths obtained by the software
implementation. Specifically, I show the effects of different IOR configuration settings on
both the scan paths generated by the software algorithm and by the SAC. The following
experiments exploit the SAC as a tool to explore the parametric space of the implemented
model in real time.

5.2.1 Methods
I used the Matlab SaliencyToolbox for generating the saliency map from input images.
Specifically the saliency maps were computed from color, intensity and orientation (at
0,45,90,135 degrees) feature maps, weighted equally and summed to generate the saliency
map.

The saliency maps created with the SaliencyToolbox were transformed into an appropri-
ate input for the SAC: for each pixel, a constant spike train was produced whose frequency
was proportional to the saliency value of the pixel itself. To have an input range within the
linearity region of the input synapses, I mapped the saliency values to an interval between
0Hz and 200Hz. As in the experiments of Chap. 2 and 4, spike trains were generated with
the Matlab SpikeToolbox and sent to the SAC via the PCI–AER board, which was also used
for monitoring the output activity of the chip (e.g. see Fig. 5.6).

5.2.2 Results
The benchmark image I used is shown in Fig. 5.1(a) (and is also used as a standard bench-
mark in the SaliencyToolbox). Fig. 5.1(b) shows the corresponding saliency map computed
by the SaliencyToolbox with its default parameters. The toolbox also generates the focus
of attention scan path. The default settings of the toolbox create an inhibition region for
the IOR with the shape of the object selected. For a more direct comparison with the SAC,
which lacks any top–down information regarding the concept of objects, I changed the in-
hibition region to be a disc centered around the FOA. Fig. 5.2 shows the resulting scan
path for two different dimensions of the inhibition region: if the size is small (Fig. 5.2(a)),
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Figure 5.2: Focus of attention scan path generated by the SaliencyToolbox: The yellow circles are
centered around each fixation point belonging to the FOA scan path, the red lines connect con-
secutive fixations. The radius of the yellow circles shows the size of the inhibition area. (a) When
the inhibition area is small, many points belonging to the same object are selected, and some less
salient objects are discarded. (b) A larger inhibition area prevents the network from selecting points
belonging to the highest saliency region, allowing the selection of stimuli with lower saliency.
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Figure 5.3: Focus of attention scan path generated by the SAC: (a) FOA scan path superimposed
on the saliency map. The black dots show the fixation points, the grey lines connect consecutive
fixations. (b) Histogram of the visited points in the saliency map, the chip selects more often regions
with higher saliency, qualitatively reproducing the scan path observed in Fig. 5.2(b).

the algorithm chooses many points belonging to the same few objects with high saliency
and avoids less salient targets. If the size is bigger (Fig. 5.2(b)) less salient locations are
visited. A similar behavior is also observed in the scan path generated by the SAC, when
stimulated with the same saliency map: Fig. 5.3(a) and 5.4(a) show the focus of attention
scan path generated by the SAC superimposed on the saliency map for two different sets of
parameters, which differ in the time constant of inhibition. In the SAC, the space constant
of the lateral excitation also contributes to the lateral spread of the inhibitory current, but
the inhibition region decays exponentially within few pixels and depends on the amplitude
of the current itself, as shown in Sec. 3.3 and 4.3.4; therefore it is not possible to set ar-
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Figure 5.4: Focus of attention scan path generated by the SAC: the IOR time constant is faster, and
the SAC selects a smaller set of pixels, qualitatively reproducing the behavior of the SaliencyTool-
box for small inhibition regions, shown in Fig. 5.2(a).

bitrary sizes for the inhibition region. The number of different pixels selected in the scan
path, including lower saliency regions, increases if the time constant of IOR is longer: the
inhibitory current forces the input to the inhibited pixel to a low value, the network does not
select previous winners for a long time, and less salient pixels can be selected. The SAC
with global competition, lateral excitation, hysteresis, and IOR, qualitatively reproduces the
scan paths generated by the SaliencyToolbox, but selecting regions of higher saliency more
often.

The experiments performed here show that we can use the SAC as a tool for implement-
ing the final decision stage of the saliency map model, and use it to explore the parametric
space, in real time.

5.3 Two–chip system response properties

In this section I describe the behavior of the AER–based multi–chip system for modeling
selective attention I have developed.

The system for the first time combines a neuromorphic sensor chip, a post–processing
chip that performs a non–trivial computation over the sensory data, and an actuator driven
by the result of the sensory data post–processing.

The AER sensor, a silicon transient imager, referred to as the silicon retina in the fol-
lowing, produces a proto–saliency map based on the local changes in contrast.

The silicon retina was designed by Lichtsteiner and Delbrück (2005) at the Institute of
Neuroinformatics. It generates asynchronous events corresponding to temporal changes in
the logarithm of local image intensity. As d

dt
log I = dI/dt

I
, where I is the pixel illumination,

the retina output encodes temporal changes in contrast rather than absolute illumination dif-
ferences; this property allows the retina to adapt to the global illumination level, responding
to 20% contrast over a dynamic range spanning over 5 decades. Each pixel of the retina re-
sponds to both positive and negative variations in contrast, transmitted as ON and OFF
events respectively. In the specific implementation of the two–chip system proposed in this
thesis, ON/OFF information is discarded and the events sent to the SAC indicate a variation
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Figure 5.5: Selective attention multi–chip system: the AER silicon retina (pink ellipse) is mounted
on a Pan–Tilt Unit (white ellipse), it is connected to the SAC (yellow ellipse) via the PCI–AER
board (light blue ellipse), that connects both chips to a Linux desktop. In front of the retina, over a
white background, there are a flickering LED (red circle) and an oscillating nut (red dashed arrow),
used as stimuli for the experiment described in Sec. 5.3.2.

of contrast, irrespective of its polarity.
The address events of the retina are sent directly to the SAC to determine where the

focus of attention has to be deployed. The actuator, a Pan–Tilt Unit (PTU), orients the
silicon retina towards the FOA location selected by the SAC.

5.3.1 Methods
Fig. 5.5 shows a picture of the experimental setup; it comprises the silicon retina mounted
on a Pan–Tilt Unit, the SAC, and the PCI–AER board connected to a Linux PC. The real-
ization of such a complex system was allowed by custom software and hardware infrastruc-
tures, developed by different groups for AER–based neuromorphic chips. In Appendix C I
describe in detail how I merged the parts developed within different frameworks, and show
all of the components of the multi–chips system (see Fig. C.1). In this experiment, activity
of the AER chips was recorded for off–line analysis and used on–line to control the PTU.
The retina has an array of 64×64 pixels; the spikes produced by the retina were routed to
the SAC via the PCI–AER mapper functionality: a look–up table implemented a 4:1 map-
ping of the retina addresses onto the 32×32 addresses of the SAC. The next location of the
focus of attention was determined by a software algorithm, based on the spiking activity of
the SAC, acquired via the PCI–AER monitoring functionality. The resulting coordinates of
the FOA were transformed into a motor command, and sent to the Pan–Tilt Unit connected
to the PC via a serial port, to shift the central pixels of the retina to the coordinates of the
new focus of attention.

In the first experiments the FOA scan path was recorded while maintaining the retina
fixed at its initial fixation point, reproducing what in psychophysics experiments is known
as covert attention (see also Sec. 1.2).

In the last set of experiments the focus of attention was used to foveate the retina,
reproducing overt attentional scan paths (Findlay, 2005).
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Figure 5.6: The raster plots show the activity of the SAC (black dots) superimposed to the activity
of the retina (grey dots). The three lines with addresses ranging from about 1200 to 1500 corre-
spond to the LED evoked activity, the addresses belonging to the higher band of events (ranging
approximatively from 2800 to 3500) correspond to the nut swing. (a) The activity is plotted for 50
seconds, showing the LED turning off and then on again. (b) Zoom over three seconds after the
LED turning on. These data correspond to the baseline experiment, where competition, as well as
lateral excitation, hysteresis, and IOR, are turned off; the chip maps the input synaptic activity to
the I&F neurons, that respond independently from the strength of the synaptic input.

5.3.2 Covert attention with Short–Term Depression
Covert attention is the term used in psychophysics experiments to indicate that the subject
performs the task while maintaining his/her eyes fixed, typically looking at a central fixation
point. In this section I describe covert attention experiments, where I measured the focus of
attention (FOA) scan path generated by the SAC, while maintaining the retina focused on a
fixed location.

As described in Sec. 4.3.5, STD in the input excitatory synapses renders the array sen-
sitive to moving and changing stimuli, which are strong psychophysical attractors of atten-
tion (Itti, 2005a). This mechanism might appear to be redundant when the input to the SAC
is provided from the transient silicon retina chip activity. Nevertheless, in many practical
situations there are stimuli that produce activity at a constant frequency, therefore eliciting
a strong activity in the transient retina chip (for example flickering lights); however such
stimuli are stationary because their frequency does not change in time, therefore they should
not be selected as strong attractors of attention.

One approach to overcome this problem is to remove activity corresponding to the sta-
tionary stimuli by using a band pass filter (Delbrück, 2006) tuned to their frequency. Short–
Term Depression filters out inputs at high constant frequency. Using the STD properties of
its input synapses, the SAC can be used to select the activity elicited by transient stimuli,
whilst suppressing the activity of the stationary ones.

I reproduced a situation with one stationary stimulus and one transient stimulus, with
the setup shown in Fig. 5.5: the LED flickering at a constant rate is used as a stationary
stimulus, and the oscillating nut represents the “transient” stimulus.

The LED is driven by a function generator, at a frequency of 200Hz. During the ex-
periment the LED is transiently turned off and, after a 10s pause, turned on again. Fig. 5.6
shows the raster plots of the retina (in grey) superimposed on the SAC activity (in black),
for the baseline condition (i.e. without competition, lateral excitation, hysteresis, IOR, nor
STD). Each active pixel of the retina elicits spiking activity in the corresponding I&F out-
put neuron. Fig. 5.7 shows the SAC response with WTA competition, hysteresis, lateral
excitation, and STD active, but without IOR (Vinh = 3.3V, Vwta = 200mV, Vhyst = 2.9V,
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Figure 5.7: Raster plots of retina and SAC activity; the plots use the same convention as in Fig. 5.6.
The response of the SAC is obtained for the chip operating with all its features turned on, except
for IOR. The network selects only one pixel, and does not follow the moving stimulus; the LED is
transiently more salient than the current winner, until the STD dims it.

Vexc = 200mV, Vwstd = 280mV). The SAC selects one pixel stimulated by the nut trajec-
tory; the corresponding input frequency is not high enough to elicit a significant depression
of the synapse weight, and hysteresis contributes to maintain the selection stable. When the
LED is turned on (at t = 30s) the winner switches transiently, for as long as the weight
of its input synapse is not suppressed by the STD. When STD decreases the weight of the
pixels stimulated by the LED, the first selected winner is chosen again. Without the IOR
mechanism, the SAC does not disengage from the selected pixel, unless a stronger input is
applied. This configuration (with no IOR) is useful to evidence the transient effect of the
appearance of a strong stationary stimulus.

Fig. 5.8 shows the SAC response with the IOR mechanism also active (Vτinh = 80mV,
Vthrinh = 200mV, Vwinh = 2.4V). The three plots correspond to three STD conditions:
absent (Vwstd = 0V), medium (Vwstd = 280mV), and strong (Vwstd = 350mV). Without
STD, the WTA switches between the LED and the nut; when STD is too strong, the synaptic
weight of pixels stimulated at high frequency is depressed, and pixels stimulated at low
frequency win the competition. When an intermediate value of STD is applied, the LED is
selected only for a short transient and the SAC follows the nut movement.

The behavior of the system in this experiment shows the high level effect of the imple-
mentation of a low–level feature such as STD: stationary inputs do not attract attention, but
their transient activation is capable of capturing attention for a short period; therefore the
system is still sensitive to the appearance of (potentially) behaviorally important stimuli.

The superposition of retina and SAC activity shows a short latency of the SAC response,
due to the dynamics of the interaction between IOR and hysteresis: when one pixel is se-
lected, hysteresis keeps it active until the IOR inhibits the pixel and the WTA selects a new
winner; in the meantime the stimulus has moved away, and the SAC follows it with a short
latency. The latency could be corrected by modeling predictive attentional saccades (Itti,
2005a). For example, one could add to the address of the current winner an offset based on
the mean speed of the nut.

5.3.3 Covert Attention with stimuli of different grey levels
With these experiments I show a typical covert scan path generated in response to simple
static images. Fig. 5.9 shows the two stimuli used. The images consisted of three circles
over a white background: in the “baseline” condition all of the circles were colored in
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Figure 5.8: Raster plots of retina and SAC activity. The right column corresponds to time zoom
of the left column, few swings of the nut can be observed in the top activity band. The plots are
obtained with the same experiment settings of Fig. 5.7, with the addition of IOR and for three
values of STD: (a) no STD (Vwstd = 0V), (b) medium STD (Vwstd = 280mV), (c) strong STD
(Vwstd = 350mV).
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(a) (b)

Figure 5.9: Stimulus for the covert and overt attention experiments. (a) Baseline: three black circles
(grey level gl = 1); (b) Contrast: each circle has a different grey level, gl =0.3, gl = 0.5, and gl =1,
corresponding to different levels of contrast over the white background (gl = 0).

black, in the “grey level” condition each one had a different grey level (black, grey, and
light grey). Static images cannot elicit any activity in the retina, since by design it responds
to temporal changes of contrast. Biology solved the issue of being sensitive to variations by
continuously moving the retina with micro–saccades (Martinez-Conde et al., 2004, 2006).
The same solution can be applied to the silicon system: the Pan–Tilt Unit is used to perform
small displacements of the retina position in the x and y directions around the fixation point.
The retina senses contrast variations at the edge of the circles.

I observed the FOA scan path generated by the SAC for two different settings of IOR:
Fig. 5.10 shows the results for “slow” IOR, when the inhibition builds up with many spikes
from the I&F neuron and the suppression time is long, thanks to a low synaptic weight and
a slow time constant (Vwinh = 2.58V, Vthrinh = 200mV, Vτinh = 40mV); Fig. 5.11 shows
the results for “fast” IOR, when the inhibition builds up with a single spike of the I&F
neuron (thanks to a strong synaptic weight), and recovers slowly, thanks both to a slow time
constant and a strong weight (Vwinh = 2V, Vthrinh = 200mV, Vτinh = 80mV).

The measure used to quantify the FOA scan path was the number of times each pixel
was selected, normalized by the total number of shifts (“Activity(%)” in the plots).

As expected, in the “baseline” condition, shown in Fig. 5.10(a) and 5.11(a), all of the
three circles were selected a similar number of times; the difference in the percentage be-
tween each circle depends mainly on the mismatch, both in the retina spike trains, and
between the SAC pixels. In the “grey level” condition, shown in Fig. 5.10(b) and 5.11(b),
the activity was proportional to the grey level of the circles: the black circle is selected more
often than the grey circle, which in turn is selected more often than the light grey circle.

The two different IOR settings generate different scan path dynamics.
Fig. 5.10(c) and 5.10(d) show that for “slow” IOR the activity of each selected pixel is

stable for few tens of milliseconds before being suppressed, resulting in about 20shifts/s of
the FOA; similarly to the saliency map experiment of Sec. 5.2, only a single pixel corre-
sponding to each circle is selected. The 3D plot of the scan path in Fig. 5.10(f) shows that
the less active pixel is selected only after many FOA shifts.

Fig. 5.11(c) and 5.11(d) show that when the inhibitory synapse weight increases, each
pixel is inhibited after a single spike of the corresponding I&F neuron; the inhibitory current
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generated by the synapse, and subtracted from the WTA circuit input, has a high amplitude
and slow decay. The effect on the WTA pixel is that the inhibitory current is active for a
long time. With respect to the “slow” IOR settings, with the “fast” IOR settings, the relative
duration of the inhibition of each pixel increases with respect to the duration of the pixel
activity. More pixels are selected in the FOA scan path, similarly to the saliency map case
of Fig. 5.4; the number of FOA shifts almost doubles, and in particular also the light grey
stimulus is selected within the first few FOA shifts.

In conclusion, this set of experiments shows that the SAC is able to select salient stim-
uli, and that its output corresponds to the relative saliency of the different selected stimuli.
For different configurations of the IOR settings the basic behavior does not change, but
the dynamics of the scan path and the spiking activity of the winning pixels change. For
“fast” IOR one or two spikes are emitted per winner, and the FOA shifts many times per
second; for “slow” IOR each winning pixel emits spikes for a relatively long time window,
but at the expenses of a decrease in the ratio between activity and suppression duration, that
limits the number of pixels in the scan path. The differences in the spiking output of the
SAC is important for the design of algorithms that read–out the SAC activity, as shown in
Sec. 5.3.4.

5.3.4 Overt Attention with stimuli of different grey levels
The same stimulus of Fig. 5.9 was used for evaluating the performance of the system in the
context of overt attention. In overt attention the FOA location guides the ocular movements,
that orient the fovea of the retina towards the selected region of the input stimuli. In the two–
chip system with the SAC and the silicon retina, the pixel selected by the SAC is used as
target for the saccadic movement.

To model overt attention I developed a software algorithm, that acquires the activity of
the SAC and translates it into commands for driving the Pan–Tilt Unit (PTU) to orient the
retina accordingly.

As for the covert attention model, the silicon retina is moved performing micro–
saccades around the current fixation point. Meanwhile the activity of the SAC is monitored
for a temporal window of ∆t = 50ms. The pixel that produced the maximum number of
spikes during such acquisition window is chosen as the target for the next saccade; if there
are more pixels who have the same maximum activity, the target is chosen randomly among
them. The address of the selected pixel is translated in relative coordinates for the PTU
and the motor command is sent to the PTU via the serial port. During the saccadic move-
ment of the retina, the mapping from the retina to the SAC is temporarily disabled; this
prevents all of the activity of the retina to be routed to the SAC during the saccadic retina
movements, and corresponds to the implementation of a strong form of saccadic suppres-
sion (Ross et al., 2001). After the PTU movement, the PCI–AER mapping is re–enabled,
the micro–saccades of the retina start again, and a new target for the next saccade can be
selected.

Also this experiment was run with the “slow” and “fast” configurations of the IOR
mechanisms. For the “fast” IOR settings, a single spike is emitted by the winner, and the
winning pixel is inhibited for a long time. During the acquisition window many neurons are
selected as winners by the SAC, each emitting a single spike. For this reason, in only about
10% of the cases there is a single pixel with maximum activity. While in about 90% of the
cases there are multiple pixels whose activity corresponds to the maximum activity. For
the “slow” IOR configuration, the winner elicits a burst of spikes (see Fig. 5.12). In such a
case, during the acquisition window, the SAC selects very few pixels and in about 98% of
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Figure 5.10: Covert attention scan path when the retina is stimulated with three circles. The left
column plots correspond to the baseline case (all of the three circles black), the right column plots
correspond to the three circles with different grey scale level. The top row shows the times each neu-
ron address along the X axis of the SAC has been selected. The three circles can be distinguished
on the basis of the addresses along the X axis, the grey level of each circle is reflected in the color
of the bar relative to the corresponding neurons. The number over each bar shows the total number
of times each of the three circles is selected. The middle row shows the raster plots, superimposing
the retina (in grey) and the SAC (in black) activity; the activity corresponding to the three circles
can be distinguished in the three bands of spikes, the lower corresponding to the middle circle in the
histogram; the number on each plot shows mean duration of each pixel and its standard deviation.
The lower row shows the pixels (black circles) selected over time (Z axis) for 1.5s. These experi-
ments were performed with global competition, lateral excitation, and hysteresis enabled (Vinh =
3.3V, Vexc = 220mV, Vhyst = 2.9V); the inhibitory synapse weight and time constant are small
(Vwinh = 2.58V, Vτinh = 40mV). In the “baseline” condition, all of the three circles are selected,
the difference in the total number of times each pixel is selected depends on mismatch. When the
three stimuli have different grey level, the activity of the retina pixels corresponding to the light
grey decreases. The black circle is selected more often than the grey circle, which in turn is selected
more often than the light grey circle. The plot of (f) shows that the pixels corresponding to the light
grey circle are not selected for the first 1.5s of the experiment.
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Figure 5.11: Covert attention scan path when the retina is stimulated with three circles. Same ex-
periment as in Fig. 5.10, for a different configuration of the IOR dynamics: strong weight (Vwinh =
2V) and faster time constant (Vτinh = 80mV). The effect is the same observed in Sec. 5.2: the
number of different pixels selected has increased. The main difference with respect to the “slow”
IOR settings of Fig. 5.10 is that the pixels corresponding to the light grey circle are selected within
the first few FOA shifts (f), while in Fig. 5.10(f) they were selected only after more than 1.5s.
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Figure 5.12: Overt attention scan path when the retina is stimulated with three circles. The stim-
uli for left and right columns are shown in Fig. 5.9(a) and Fig. 5.9(b) respectively. The top row
shows the histogram of the pixel selection, as explained in Fig. 5.10. The bottom row shows the
corresponding raster plots, in retino–centric coordinates. The fovea of the retina corresponds to the
address 2080. During the saccade, the retina is moved such that after the saccade the selected pixel,
highlighted by a red circle, is centered at the address corresponding to the fovea (red arrow). The
selected pixel is not always the first pixel to burst, depending on the delays of the spike acquisition,
and on the relative duration of the acquisition window (∆t = 50ms) and of the bursts. The experi-
mental settings correspond to those of Fig. 5.10, with inhibitory time constant set to Vτinh = 20mV,
to increase the burst duration.

the cases a single pixel with maximum activity can be selected from the activity monitored
during the acquisition window.

The raster plots and the scan path generated with the “fast” and “slow” IOR settings are
qualitatively similar because the random selection of the saccade target in the “fast” IOR
configuration does not significantly change the statistics of the selection.

Fig. 5.12 shows the histograms and raster plots for overt attention with the “slow”
IOR settings. As for the covert attention model experiments of Sec. 5.3.3, in the “baseline”
condition the three circles are selected, and the difference in the number of time each pixel
was selected can be attributed to the mismatch effects in both the retina and SAC pixels.
Also in this case, in the “grey level” condition, the black circle is selected more often than
the grey and light grey circles respectively. Fig. 5.12(c) and 5.12(d) show the raster plots
of the SAC and retina activity in retinal coordinates; the three circles of the input image
correspond to the three bands of activity. During the saccadic movements the position of
the circles on the retina array changes, and the pixels that correspond to the trajectory of
the circles on the retina array produce spikes, as can bee seen from the vertical stripes of
activity. During the saccade the SAC does not receive any input from the retina, therefore it
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does not produce any output. Immediately after the saccade landing, the retina jitters on its
support, and the pixels corresponding to the new location of the circles on the retina array
emit spikes, then the jitter stops and the retina does not produce any spike. After the saccadic
suppression interval, the mapping to the SAC and the micro–saccades are re–enabled, and
the target for the next saccade is selected.

The dynamics of the overt FOA scan path generated by the two–chip system depend
on the interaction of the hardware and software components, and on the relative timing and
delays of each operation.

The average delay from the generation of an event in the retina to the first spike gen-
erated by the SAC is about 10ms. This measure gives a rough estimate of the delay in the
communication between the chips, and of the SAC processing time, including the synaptic
integration, the WTA selection, and the I&F time to first spike.

Additional delays are introduced in the software component of the system. One source
of delay is the time interval between the beginning of the micro–saccades and the beginning
of the acquisition of address events from the SAC. The duration of the acquisition of the
SAC address events is defined by the previously defined software acquisition window. After
acquiring the address events and computing the target for the next saccade, and translating
it into the appropriate commands for the PTU, the PTU motor commands are executed
and the PTU moves after a delay determined by the communication with the serial port.
Figures 5.12(c) and 5.12(d) show that the system performs roughly one saccade per second.

This overt attention experiment can be modified and optimized, for example by testing
different software algorithms for the target selection of the saccade. Nevertheless the imple-
mentation described here allows the retina to foveate the different stimuli, with a frequency
that depends on the input contrast.

The current implementation comprises a saccadic suppression mechanism of fixed du-
ration of 500ms, independent on the real saccade duration. This guarantees that the input to
the SAC is well separated from the events produced during the saccade.

The inherently asynchronous nature of the AER chips is not fully exploited in the cur-
rent setup. The SAC does not control directly the PTU, instead a software algorithm trans-
lates the SAC address events into an appropriate motor command for the PTU. The software
implementation involves the acquisition of the SAC address events for a fixed time frame.
This strategy can introduce potential artifacts, specifically the selected target for the sac-
cade depends on the relative timing between the spikes emitted by the SAC winner, and
the beginning and length of the acquisition window. If more than one SAC pixel is active
during the acquisition, an additional decisional stage has to be included to select an unique
target. In the current implementation a “max” operation is used, but other strategies could
be implemented, such as the selection of the first pixel that emitted a spike.

An asynchronous approach would be desirable for the read–out of the SAC activity,
in particular the addresses of the winning neuron could be used directly to drive the PTU
motors. A direct feed–back from the PTU to the PCI–AER for implementing saccadic sup-
pression would also be desirable. In this hypothesized system the “slow” IOR settings with
long bursts of activity corresponding to the winning pixels would be the best choice.

5.3.5 Covert and overt attention with moving stimuli
The final experiment was performed with freely moving stimuli in front of the retina. At
the beginning of the experiment the retina is still, and a covert FOA scan path is produced.
Subsequently the motor movements are enabled, and the PTU is used to foveate the selected
stimulus. I first tested the system with two “smileys” drawn on a white paper, then with
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Figure 5.13: Covert attention with natural moving stimuli: screen shots of the recorded activity
from the retina (black and grey pixels) and SAC (white pixels). The numbers on each screen shot
correspond approximately to the time gap from the previous screen shot. The hands are strong
attractors for the SAC selectivity, since they produce a strong circumscribed response in the retina.
The arms edges are selected less often because the activity they elicit is more distributed. The edges
of the head are selected rarely (second last screen shot).

hands in movements, and eventually with a person walking in front of the retina.
In case of the two smileys, as well as with moving hands, during the covert attention

period, the SAC output oscillates between the locations of the two objects. Fig. 5.13 shows
selected screen shots1 for covert attention with moving hands. The SAC alternates between
the two hands, while it selects only rarely the arms that are moving as well. This behavior
confirms once more that stimuli with a dense and circumscribed region of activity, as the
hands, have competitive advantage with respect to single edges, thanks to the lateral exci-
tation (see Sec. 4.3.4). Fig. 5.14 shows the saccades of the retina tracking the two smileys:
when the the paper is moved in one direction, the saccades center one of the two smileys in
the middle of the retina, following the movement of the stimuli.

The speed of stimuli for which the system works is limited by the delays introduced by
the software algorithm and by the communication between the software and the hardware
components, as described in Sec. 5.3.4, and by the fixed duration of the saccadic suppres-
sion mechanism. After the saccade, the system waits until the end of saccadic suppression
period to compute a new location for the next saccade: if the tracked stimulus moves too
fast, it can disappear from the retina’s field of view, before the system is ready to select the
new saccade target.

Fig. 5.15 shows examples of sequences of target selection, saccade movement and land-
ing, when the system is tested with a person walking in the field of view of the retina. The
SAC selects pixels belonging to the person’s contour and the system reliably follows the
subject’s trajectory.

5.4 Conclusions

In this chapter I described the functionality of the SAC, as part of a basic selective attention
system, comprising a neuromorphic sensor, the SAC as post–processing unit, and an actua-
tor. I presented experiments that show how the system can select and track salient stimuli,

1The chip’s activity is grouped into frames and displayed as a movie by a CaviarViewer software tool designed by T.
Delbrück. In the experiments shown in this section, the frame duration has been arbitrarily chosen to be 80ms.
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Figure 5.14: Overt attention with moving stimuli: the smileys are moved first to the left (a), then
upward (b), as indicated by the yellow arrows. The screen shots show the sequence of movement,
target selection, saccade (red arrow), and saccade landing. Both sequences show the foveation of
the smaller smiley (upper row), followed by the foveation of the bigger one. The deflection of the
saccade arrow in the second and third saccades is an artifact due to the Pan–Tilt Unit, that is not
optimized for matching horizontal and vertical movement durations.

both covertly and overtly. When stimulated with real world stimuli, the system can select
and follow the most salient moving objects.

5.4.1 IOR
The function of IOR in selective attention is a highly debated topic in the literature (Klein,
2000; Horowitz and Wolfe, 1998). The term was used first by Posner (1980), referring to
the increasing reaction time for the visual processing of previously attended targets. From
Posner’s influential work, IOR has been interpreted as an inhibitory tagging of attended
locations, that prevents the “reorienting” of attention towards such locations.

There is evidence for inhibitory tagging of multiple objects in visual search dis-
plays (Dodd and Pratt, 2006; Danziger et al., 1998), with IOR starting as soon as a location
is chosen for attentional selection (Dodd and Pratt, 2006). The IOR build–up is masked by
early attentional facilitation, it is revealed when attention moves away, and it decays with
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Figure 5.15: Overt attention with moving natural stimuli: two sequences of movement (yellow
arrow), target selection (red circle), saccade movement and landing (red arrow), when a person is
walking to the left (upper sequence) and to the right (lower sequence).

time. This is exactly the mechanism implemented on the SAC: as soon as one neuron wins,
self–inhibition builds up, and when the neuron stops winning, it slowly decays, lasting for
a relative long time.

This view has been challenged (see (Klein, 2000) for a review). Specifically Horowitz
and Wolfe (1998) deny the existence of such short–term memory mechanism in visual
search. Also the origins and neural mechanisms for IOR are still object of intense research
and debate (Taylor, 2006).

To build a system for deploying attention, that can robustly operate in realistic sce-
narios, with a mixture of stationary and moving objects, a mechanism for deselecting the
current attended position, or object, either voluntarily or not, is necessary.

Despite the straightforward implementation of IOR on the SAC, the experiments per-
formed in this chapter are relevant in the debate about IOR, because they demonstrate the
importance of the implementation of such a strategy in physical systems.

For covert attention in presence of static stimuli (see Sec. 5.2 and 5.3.3) IOR is neces-
sary to disengage attention from the selected stimulus. The dynamics of the IOR, in par-
ticular the ratio between the duration of the activity of each winner and the duration of its
suppression, strongly influences the attentional scan path. If the winners take a long time
to self–inhibit and are depressed for a relatively short time, only few other pixels will have
the occasion to fire before the strongest stimulus is able to compete again. Viceversa, if the
build up of inhibition is fast relative to the suppression duration, more pixels will be com-
prised in the FOA scan path. In software implementations of the saliency map model, shape
and size of the inhibitory region are sensible parameters, that influence the scan path. In
the SAC the lateral diffusion circuits diffuse also the inhibitory current generated by the in-
hibitory synapse. The result is the spread of inhibition to the neighbors of the winner. In the
SAC current implementation lateral diffusion of the inhibitory current decays exponentially
with distance, and the space constant decreases with increasing amplitude of the inhibitory
current. The experiments of this chapter and of Sec. 4.3.4 show that there is a limited range
for tuning the lateral diffusion. To be able to set an arbitrary size of the inhibition diffusion,
more elaborate diffusion networks should be implemented, at the cost of higher complexity
and size of the circuits. An alternative strategy for implementing lateral connectivity is to
exploit the linearity of the DPI synapse circuit, and use the local inhibitory DPI synapse
of each pixel to integrate the activity of the corresponding I&F neuron, and of its first and
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second order neighbors. This solution improves the flexibility of the IOR mechanism, and
requires only two additional transistors per pixel and one extra voltage bias.

The experiment described in Sec. 5.3.2 shows that the IOR is needed also when the
stimuli move, to counteract hysteresis. The hysteretic mechanism associated with lateral
excitation were introduced to favor the tracking of a selected stimulus over the selection of
distracters. When a stimulus is selected, a fraction of the hysteretic current diffuses to the
neighbors. If the stimulus moves smoothly, it stimulates the neighbors of the current winner,
that receive in addition the diffused hysteretic current. The diffused current is exponentially
smaller than the hysteretic current of the winner. Also in such a situation the system would
benefit from a more elaborate implementation of the diffusion circuits.

IOR is necessary as well for overt attention. In experiments with static stimuli as those
described in Sec. 5.3.4, it is necessary to disengage attention when the most salient stimulus
has been foveated. It is still matter of debate if IOR is a mechanism that inhibits the re–
orienting of attention to previously selected location, in order to facilitate visual search and
inspection of scenes (Klein, 2000; Horowitz and Wolfe, 1998; Dodd and Pratt, 2006). In
such a case a retinotopic saliency map would be inadequate, and a world–centered map
would be necessary (Posner and Cohen, 1984; Klein, 2000). Morgan et al. (2005) assert
that IOR is related not only to locations, but also to objects. In such a case an inhibitory tag
is attached to each attended stimulus, and IOR has to follow the movement of the inhibited
stimuli. The physical implementation of the attentional system poses practical question such
as the need for coordinate re–mapping and system reference frames (Colby and Goldberg,
1999). With the hardware system I developed one could exploit the PCI–AER mapping
functionality to map the retina activity in world–centered coordinates, or in object–centered
coordinates, and investigate different hypotheses with real world stimuli.

5.4.2 Attentional tracking
In presence of natural scenes perceptive systems perform a combination of shifts of atten-
tional selection and attentional tracking, with the scope of capturing information about the
visual environment, and inspecting the selected targets.

Previously proposed hardware systems modeling attentional selection implement also
forms of attentional tracking (Brajovic and Kanade, 1998; Fish et al., 2004; Horiuchi and
Koch, 1999). Two systems that integrate attentional selection and tracking in analog VLSI
have been proposed by Brajovic and Kanade (1998) and by Fish et al. (2004). Such chips
have two modes of operation: in the “selection” mode WTA competition is enabled in the
full pixel array of the chip, and a stimulus is selected as target. In the “tracking” mode the
WTA competition is enabled only in a small tracking window centered around the position
of the selected target, and all other stimuli measured by pixels outside such window are
ignored. The WTA competition selects the next winner among the stimuli in the tracking
window, and the window is centered on the position of the newly selected target. For imple-
menting robust tracking, the system relies on the assumption that typically only the initial
stimulus selected as a target during the “selection” mode is present in the tracking window.
This approach prevents any stimulus outside the tracking window from shifting attention
from the chosen target.

The system selects a new target only if the tracked stimulus exits the field of view of the
chip, or if an external observer switches the operating mode of the chip. Although useful
in tracking applications, this approach is not biologically plausible, since there is evidence
that attention enhances the processing at the attended location (Lee et al., 1999), and is not a
filter that blocks everything outside the region around the attended stimulus (see (Ambinder
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and Simons, 2005) for a critical review on attentional capture and inattentional blindness).
Additionally such VLSI system lacks an automatic deselection mechanism such as IOR,
that allows shifts of attention for the scanning of visual inputs.

Horiuchi and Koch (1999) and Indiveri (1999) proposed a more biologically realis-
tic approach. Instead of filtering out everything except for the target and its immediate
surrounding, the saliency of the target and its surrounding are enhanced with hysteresis
and lateral excitation. These systems were designed explicitly for implementing attentional
tracking, so they do not perform attentional shifts unless a more salient stimulus appears in
the field of view, or when the tracked stimulus disappears.

Similar to the approach described in (Horiuchi and Koch, 1999; Indiveri, 1999), the chip
proposed in this thesis comprises both attentional tracking and attentional shifts with the
inhibition of return mechanism. In these systems the two mechanisms interact dynamically;
depending on the chip’s bias parameters there is a different balance of attentional shifts and
tracking. With weak inhibition, strong hysteresis, and lateral excitation, the chip is optimally
tuned for “tracking” mode. Conversely with strong inhibition and weaker hysteresis, the
chip produces repetitive FOA shifts and is optimally tuned for “searching” mode.

In the implementation proposed by Horiuchi and Niebur (1999) the chip can be utilized
either in “tracking” or “searching” mode; an external module needs to be used to set the pa-
rameters for the desired operating mode. The control of IOR, hysteretic current and lateral
excitation, can be interpreted as a voluntary top–down biasing in favor of tracking when the
predefined task–dependent stimulus is selected in “search” mode. Also in this implemen-
tation the “tracking” mode ends only when the target disappears, or a more salient target
appears.

Also in the SAC implementation it is possible to use an external module, to perform
the transition between the “search” and the “tracking” mode. However, the philosophy of
this project was to implement a compact and autonomous device capable of scanning the
visual input autonomously. Specifically I implemented a system that sequentially selects all
of the salient input stimuli. To model the combination of attentional shifts and tracking of
perceptive systems, the device is able to disengage automatically from a tracked target. In
principle, depending on the parameters configuration of the SAC, the selected stimuli are
deselected with different inertia, favoring a mixture of scanning and attentional tracking.
The experiments performed in Sec. 5.3.2 show SAC attentional tracking of a moving stim-
ulus: with the resistive network described in Sec. 3.3, the space constant for lateral diffusion
of the hysteretic current is quite small, and for large values of hysteresis, that should favor
tracking, the chip locks the system on the selected pixel. In such a case IOR is necessary to
suppress the winning pixel, but tracking works only in absence of distracters. The tracking
behavior of the system developed would benefit from the implementation of more elabo-
rate circuits for lateral diffusion, or on the implementation of a smooth pursuit mechanism
(Horiuchi and Koch, 1999).

When human subjects freely inspect a visual scene with a combination of stationary
and moving stimuli, the eye movements show a mixture of saccades and smooth pursuit
movements, that follow moving targets. The relationship between smooth pursuit move-
ments and attention, and the behavioral relationship with respect to saccades are still under
debate (Horowitz et al., 2004; Khurana and Kowler, 1987). Nevertheless there is evidence
that smooth pursuit is linked to saccades (Gardner and Lisberger, 2002), in that smooth
pursuit follows the object foveated by saccadic movements, and that attention is involved
in the selection of the smooth pursuit target (Ferrera and Lisberger, 1995).
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5.4.3 Relevance of the two–chip system implementation
The two–chip visual system described in this chapter is the first realization of a full–custom
AER–based perceptive system, capable of sequentially selecting relevant regions of the
input stimuli. The SAC performs a non–trivial processing on the output activity of a neu-
romorphic silicon sensor. The system design incorporates biologically inspired computing
principles. The processing of sensory data is asynchronous and event–driven, implement-
ing both efficient computation and communication (see Sec. 1.1). The specific computation
performed by the SAC extracts relevant information via a cooperative/competitive mecha-
nism that takes into account the relative context of the input, rather than the absolute value
of each component (pixel). The implementation of an adaptive mechanisms at the synaptic
level, reproducing the short–term depression phenomenon observed in real synapses, results
in a high–level property of the system, that makes the system sensitive to transient stimuli,
while suppressing stationary stimuli.

The experiments described in this chapter demonstrate that the multi–chip system de-
veloped can perform reliable visual inspection of the environment. It is therefore a poten-
tially efficient and robust mean for the implementation of autonomous artificial perceptive
systems, for example supporting robotic navigation.

The realization of a system with an actuator that closes the sensory–motor loop by
orienting the sensor towards salient stimuli shows that the system can respond with an
appropriate action to the sensory stimuli. The experiments of Fig. 5.10 show that the SAC
output defines an univocal winner whose activity is stable for tens of milliseconds, that can
be directly used to control the actuators.

The analysis of the behavior of the system when confronted with real world stimuli
shows the effect of the dynamical interaction and the relative roles of its different compo-
nents, separately analyzed in Chap. 4. Specifically the experiments of Sec. 5.2 highlighted
the relatively weak contribution of the lateral diffusing circuits to the overall behavior,
demonstrating that the system would benefit from the implementation of a stronger form of
cooperation.

The implementation of the two–chip system has proven that the IOR mechanism is nec-
essary for the functioning of the system, and that the implementation of the smooth pursuit
mechanism could improve the tracking behavior of the system. The phenomenological em-
ulation that includes in an automatic bottom–up fashion mechanisms that can have diverse
origins is sufficient for the implementation of a compact and flexible device reproducing
some of the basic properties of attentional selection.



Chapter 6

Discussion

6.1 Relevance of the work described in this thesis

Research on neuromorphic circuit design for the emulation of biomimetic computational
functions is relevant for understanding the computational strategies used by the brain to
overcome constraints such as limited space, wiring, power and precision, imposed by the
physical realization of computation (Douglas et al., 1995). In neural systems these con-
straints led to the evolution of robust computation based on conceptually different principles
from those of classical digital computation, far more efficient in solving ill–posed problems
and extracting reliable information from noisy and ambiguous data (Mead, 1990; Douglas
et al., 1994).

The goal of neuromorphic engineering is the development of new technology for im-
plementing computational principles based on the same principles as the neural substrate.
Neuromorphic engineering is an heterogeneous field,with research areas covering a wide
range of aspects, from modeling specific properties of neurons and synapses, to studying
the computational properties of networks of interconnected neurons, to the development of
compact VLSI sensory devices for commercial and biomedical applications (Lichtsteiner
et al., 2006a; Sarpeshkar, 2006; Boahen, 2005).

This thesis touches on the different aspects of the neuromorphic approach. It begins
with the description of a new circuit for modeling synaptic currents and emulating specific
properties of synaptic transmission. It then describes a WTA circuit that reproduces com-
petitive and cooperative aspects of computation emerging from the recurrent interaction
between neurons (Douglas et al., 1995, 1999).

These elements are combined in the realization of a device that implements selective
attention: a complex high–level function.

The work described in this thesis merges basic research, such as the design of models of
synaptic transmission, with applied research, through the effort of implementing a custom
multi–chip system operating in real time with a well defined function, which can be applied
to practical problems, for example robotic navigation or visual scene inspection.

The path required to implement, test and build a neuromorphic multi–chip system com-
prises the study and design of the hybrid analog/digital neuromorphic circuits, as well as
the development of communication and control infrastructure to interact with the chip and
connect the various modules together. An important aspect of my work was to integrate
all components of the infrastructure, merging at various levels of abstraction the software
and the hardware needed for the system setup, which were developed throughout the years
within different frameworks.
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6.1.1 The silicon synapse
The new silicon synapse circuit developed in this work is extremely relevant for neuro-
morphic research in general. The circuit reproduces a good approximation of the currents
generated by presynaptic action potentials on the postsynaptic neuron’s membrane. This
faithful hardware model of current dynamics increases the similarities between silicon and
biological synaptic transmission. The exponential time course of the postsynaptic currents
implements synaptic summation, an essential property of synaptic transmission, observed in
real neurons and included in computational models (Destexhe et al., 1998). The additional
circuits proposed in Chap. 2 extend the basic synaptic functionality by including the phe-
nomenological implementation of additional synaptic properties, such as NMDA voltage–
gating and conductance–based behaviors. Such circuits enrich the ensemble of computa-
tional primitives that can be emulated on silicon, in a unified framework that can comprise
all of them in a single compact circuit. When included in large recurrent neural networks,
it is possible to study the computational effect of such primitives in real time. An important
primitive introduced with the DPI design is synaptic homeostatic plasticity (Turrigiano,
1999). It is one of those adaptive mechanisms, observed in real neural populations, that
can be used to reduce the intrinsic inhomogeneities of the computational substrate (Mead,
1990) and is now implementable on silicon. Implementation of homeostasis in neuromor-
phic chips will improve the stability, robustness, and mismatch tolerance of networks in the
face of tuning of circuits parameters. It will render chips automatically adaptive to chronic
changes in their environment, from variations due to temperature or power supply fluctua-
tions, to the change of input range caused by failure or inclusion of new input devices.

6.1.2 The selective attention chip
The majority of devices designed in the framework of neuromorphic engineering until re-
cently focused on the sensory interfaces of brains. My interest was in the emulation of
neural systems that process such signals; specifically I focused on selective attention, a
well known strategy exploited in visual perception for overcoming the problem of limited
parallel processing capabilities (Itti et al., 2001). Selective attention guides the selection of
important regions of the input stimuli for sequential allocation of computational resources.
It is an essential function for perceptive systems, and its implementation in artificial systems
is crucial for perceptual tasks.

The experiments described in this thesis show that the SAC can be reliably used for
the implementation of multi–chip selective attention systems. Specifically, the hardware
device I developed has a dual relevance: it can be used as a tool for basic research, and as
component of artificial systems used in practical applications.

The relevance of the hardware implementation is in providing a tool for exploring dif-
ferent hypotheses about the mechanisms involved in stimulus dependent attentional selec-
tion, including some simple forms of top-down influence, in real time, and using real world
stimuli.

The SAC can perform computationally intensive operations, with complex dynamics,
in real–time. It has been designed in such a way as to allow the use of multiple instances of
the same chip in hierarchical multi–chip systems. The various instances of the SAC could
implement the functionality of the software modules that implement spatial and feature
competition in the Itti et al. (2001) model.

The flexibility of the system derives from the use of the AER communication protocol.
The AER infrastructure I assembled (see Appendix C), allows the full automation of some
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experimental procedures, making extensive parametric analysis possible (e.g. see Chap. 4).
The constraints and limitations imposed by the physical realization of the selective at-

tention system can guide the design of feasible and plausible strategies for the functional
implementation of the perceptual attentional selection observed by experimentalists. In this
context, the experiments with the SAC embedded in a minimal selective attention model
with real dynamic stimuli (Chap. 5) demonstrated the necessity of a mechanism such as
IOR in a purely bottom–up system. I showed how this form of deselection of the attended
object can be useful for visual search. Other experiments confirmed the essential role of
lateral excitatory connectivity, or cooperative computation, in decreasing the effects of in-
homogeneities in the computational substrate, improving the system’s overall performance.
Yet another form of recurrent connectivity, self–excitation, was shown to improve the dis-
criminability of stimuli. These properties are responsible for the system’s “high–level”
functionality. Examples of high–level operators include short–term memory, provided by
the self–excitation, and the competitive advantage given to regions, rather than to isolated
pixels, provided by lateral excitation. This is a practical example of how the mechanisms
adopted for coping with limitations in the physical substrate at the same time lead to the
extraction of meaningful information from the input signals, which is the essence of neural
computation (Douglas et al., 1995).

Some of the characteristic behaviors observed in psychophysics experiments such as
IOR, or a bias towards short saccades, have been attributed either to top–down effects or to
the mechanical properties of the eye movement “plant”; such topics are still a matter of de-
bate and research. One of the scopes of the work described in this thesis was the realization
of a device that can be used in practical applications; a phenomenological implementation
that includes in an automatic bottom–up fashion some of the mentioned mechanisms is
necessary and sufficient. A striking example is the recent quantification of the contribution
of bottom–up saliency for guiding unconstrained overt attention. The study reported by
Carmi and Itti (2006) shows causality between bottom–up saliency and saccade selection,
especially when motion contrast is included in the computation of the saliency map. The
inclusion of short–term depression in the input synapses of the SAC makes it intrinsically
selective to variations of the input, therefore to motion and to transient stimuli. Regarding
the contribution of other visual features, for example contrast or orientation, to the com-
putation of the saliency map, especially for still images, the debate is still open wether
there is causation or simple correlation, and to what degree, between such features and at-
tentional selection (see (Einhäuser et al., 2006) for a review). For the purpose of building
autonomous devices like the SAC, it is meaningful to causally include in the computa-
tion of the saliency map features that are correlated with attentional selection, because it
is probable that such features are linked to the selection of behaviorally relevant objects. It
is also reasonable to suppose that during evolution, correlations between stimulus features
and stimulus behavioral relevance became more and more implicit in the system, becoming
part of stimulus–driven visual selection; e.g. color might be relevant when picking a fruit
among green leaves (Carmi and Itti, 2006).

Another point worthy of discussion which emerged from studies of the bottom–up con-
tribution to attention is the finding that the selection of stimuli with high computed salience
is above chance, but the probability decreases for the selection of the maximum of the
saliency map (Itti, 2005a). This observation questions the role of the WTA competition as
a computational mechanism for the selection of attentional targets from the saliency map.
The scenario proposed by (Itti, 2005a) is that the saliency map is a sparse representation
of the input, indicating the most salient stimuli, then a top–down or random mechanism
selects an attentional target from among them. However, the SAC implementation of atten-
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tional selection via WTA competition is still useful for stimulus selection in the absence of
top–down influences on an autonomous device; as observed above, the peaks of the saliency
map are related to relevant stimuli, and sequentially selecting them in order of decreasing
saliency is an effective strategy for the exploration of the environment.

The design of chips such as the SAC leads to the realization of compact, low–power,
portable devices that can be used in practical applications. Silicon sensors such as retinae
and cochleae are nowadays well characterized, and begin to be robust enough for use outside
of the laboratory. Regarding potential commercial applications, a promising direction for
these devices is their use in prosthetic systems.

The SAC goes a step beyond this approach: it implements a crucial post–processing
phase for sensory signals, using the same technology. Its AER based design makes it suit-
able for receiving signals from multiple AER silicon sensory devices. In Chap. 5 I demon-
strated that when connected to a silicon retina the SAC can orient the retina towards salient
and moving stimuli. With the evolution of a compact stand–alone AER infrastructure, this
selective attention system could be easily mounted on a robot.

6.2 Outlook

I believe it is important to pursue research in the field of silicon emulation of neural compu-
tation by modeling properties of the basic components of the neural substrate, and by study-
ing the effect of such properties on computation at the network and system level. It is also
important to begin applying the resulting technology to the development of compact devices
for practical applications in the real world. Applications where low power consumption and
real time interaction with the real world are essential requirements can benefit from the use
of neuromorphic devices; potential applications are in autonomous robotics and navigation,
but also brain–machine interfaces, prostheses and implantable devices, and medical image
processing. From this perspective, two main projects could carry on the work described in
this thesis. An important first step would be the study and implementation of circuits of the
control loop for synaptic homeostasis. This adaptive mechanism is crucial for making VLSI
devices more robust to the intrinsic mismatch of their computational units. In the context of
implementation of selective attention, apart from further improving the engineering aspects
of the hardware implementation, a possible development would be the design of different
sensors for input to the SAC. Recent psychophysics experiments suggest that motion is a
strong predictor for the deployment of attention; the re–design of the optic–flow sensor
proposed by Stocker and Douglas (1998) in context of AER would make it suitable for
generating a motion–based saliency map for the SAC.

In conclusion, the work presented in this thesis is relevant for the advance of neuromor-
phic research at different levels. The proposed synapse circuit proposed is a step forward
in silicon emulation of computational primitives typical of the neural substrate. For the
purpose of building a device that can be included in artificial perceptive systems, the SAC
implementation with all its limitations is nevertheless useful and significant. It represents a
first step in the evolution of devices that can be used for practical applications.



Appendix A

Linear–Threshold Units Winner–Take–All
simulations

This appendix lists the results of software simulations of a simple recurrent network show-
ing Winner–Take–All computation.

A.1 Recurrent WTA Networks

Many studies address the issue on how neurons are connected in the brain. The main part
of these researches focuses on visual cortex, trying to figure out what kind of circuits are
involved in visual perception (Anderson et al., 1998).

The purely feed–forward structure, with high parallelism, proposed by Hubel and
Wiesel (1977), accounts for the structure of simple and complex cells receptive fields, thus
it accounts for cells selectivity to different features of visual stimuli. However, studies on
neuroanatomy pointed out that most of cortical connections are made locally and that neo-
cortical neurons avoid long connections (Douglas et al., 1996; Martin, 2002). Furthermore
in the feed–forward model the degree of cells orientation tuning is highly dependent on the
contrast of the input and is very susceptible to noise (Douglas et al., 1999).

An additional computation is required to explain the highly reliable response of cortical
neurons.

The hypothesis exploited by our research is that the parallel, feed–forward, flux of
information is analyzed by mean of recurrent circuits that amplify the most effective input
and suppress the weakest (WTA networks). This helps to sharpen the selectivity also for
low contrast stimuli and high levels of background noise.

Many different configurations for recurrent connectivity have been proposed (Ben-
Yishai et al., 1995; Salinas and Abbott, 1996; Hahnloser et al., 2000).

Ben-Yishai et al. (1995) developed a model in which orientation tuning is generated
primarily by recurrent rather than feed–forward connections. The model connects Linear–
Threshold Unit (LTU) neurons and uses a cosine function for synaptic weights; all cells
send and receive inputs from a global inhibitory neuron. Recurrent amplification enhances
orientation selectivity of the cells. The contrast level of the input modulates the amplitude
of the response, but doesn’t affect the tuning.

Salinas and Abbott (1996) use LTUs to model direction selectivity in posterior pari-
etal neurons. In this case the synaptic weight function is a DOG (difference of gaussian),
that includes both excitatory and inhibitory interactions. The cell direction tuning is not
affected by an added constant input, that in this model encodes for head direction: it will
only modulate the output amplitude.
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Figure A.1: Ring of neurons: excitatory connections are represented in black, inhibitory connec-
tions are in red.

Hahnloser et al. (2000) realized a cortex–inspired silicon circuit consisting of fifteen ex-
citatory LTUs connected to a global inhibitor and linked by nearest–neighbor and second–
nearest neighbor connections. Such network shows digital selection of the strongest stimu-
lus (WTA competition) and graded analog response. The set of active neurons is determined
by the connectivity pattern and by the input; the amplitude of the response depends on the
background activity level, implementing gain modulation. A property of such network is
multi–stability: when two isolated inputs are similar either one can be selected, but once
the selection has been made it remains stable, even in face of small fluctuations of the
inputs.

In this Appendix I show the results for simulating a ’simple’ WTA, obtained reduc-
ing lateral connections to the nearest–neighbors and using one global inhibitory cell. The
simulations are performed with Matlab, using LTU as model neurons.

A.2 WTA performances

The network is composed by a ring of excitatory neurons that project their output to a
global inhibitory neuron, that in turn will inhibit the ring (Fig. A.1); wei is the strength
of excitatory connections versus the inhibitory neuron, wie is the strength of inhibitory
connections versus the excitatory neurons and we is the strength of input synapses. The
excitatory neurons have first–neighbor lateral connections, wel.

Each excitatory neuron receives an input current xj from outside, the corresponding
output frequency is ye,j (eq. (A.1)a). The inhibitory unit receives inputs only from the ring,
its output is yi (eq. (A.1)b). We model the dynamic of the neural response with a first order
approximation (Dayan and Abbott, 2001), using different time constants for excitatory and
inhibitory units. {

dye,j
dt

= −ye,j
τe

+ 1
τe
f(xjwe,j − wie,j)

dyi
dt

= −yi
τi

+ 1
τi
f(
∑

j wei,jye,j)
(A.1)

LTU output is equal to the input if it is positive, or above a given threshold, zero otherwise
(eq. (A.2))

f(x) = max(0, x) (A.2)

The network was characterized for varying inputs and strength of lateral excitatory and
inhibitory connections.
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Figure A.2: Sharpening: plot obtained for wie = 0.45, wei = 0.45 and wel = 0.5. The active
neurons are less than the stimulated, because the ones receiving the weakest input are suppressed.

A.2.1 Suppression of less effective stimuli
The main feature of WTA network is to sharpen the selectivity of cells, suppressing their
weakest inputs (Fig. A.2). This property accounts also for the ability on detecting a ”target”
feature among multiple ”distractors”, or noise.

Depending on the weights, this network can act as a strong WTA, that suppresses the
response of all the neurons except the one receiving the strongest stimulus, or as a soft
WTA, that allows more than one neuron to be active at the same time.

Suppression was measured as the difference between the maximum output frequency,
νmax, and the mean activity of all the “non–winner” neurons, νmean,non−winner, normalized
respect to the mean activity of the network, νmean:

Suppression
.
=
νmax − νmean,non−winner

νmean
(A.3)

The first results (Fig. A.3) refer to the case without lateral coupling: parametric curves
respect to wei, measured as functions of wie, are equal to parametric curves respect to wie,
measured as function of wei. This points out that the the effect of the two synaptic strength
is symmetrical.

These plots show three different regions: if wei > 2 and wie > 2 the curves reach the
maximal suppression, if wei < 0.6 and wie < 0.6 they do not, and for intermediate values
(wei > 0.8 and wie > 0.8) they change slope.

For this reason three regions of network behavior can be distinguished: High coupling
(high inhibition), low coupling (small inhibition) and intermediate region.

I measured the effect of lateral coupling in these three distinct regions, fixing the value
of inhibition (Fig. A.3). Lateral coupling enhances the response of active neurons and of
their neighbors, increasing the activity of excitatory units, this leads to a stronger activa-
tion of the inhibitory circuitry. These two effects compete, in the high coupling regime
suppression decrease for increasing wel, this means that excitation becomes stronger than
inhibition. On the contrary, in the low coupling regime suppression increase for increasing
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Figure A.3: Suppression, parametric curves, in absence of lateral excitation: the measure is obtained
computing the difference between the maximum output frequency and the mean activity of all the
“non–winner” neurons, normalized respect to the mean activity of the network. As (a) and (b) are
identical, the suppression is equally dependent on wei and on wie.
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Figure A.4: Suppression, parametric curves, for varying inhibition: few curves are drawn for high
coupling, low coupling and intermediate values of inhibition. As inhibition weakens, the value of
lateral excitation that cause instability of the response decreases, as underlined by the shorter curves.

wel, therefore inhibition becomes stronger than excitation.

A.2.2 Hysteretic behavior
Multi–stability property of the simulated WTA can be uncovered by hysteretic behavior.
When two inputs are similar either of them can be selected, but once one of them is chosen
the network remains stable even in face of small fluctuation of the input. In other terms, if
a stimulus is winning the competition for saliency it has a competitive advantage over the
other stimuli. When a new stimulus with intensity equal to the winning one is presented, it
will not win, unless it becomes stronger than the first stimulus by a set amount (Fig. A.5).

As described in the main text (see Chap. 3 and 4), hysteresis is an important feature of
the selective attention chip.

From the circuit point of view, it stabilizes the network and increases its resolution; for
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Figure A.5: Hysteresis: plot obtained for wie = 0.45, wei = 0.45 and wel = 0.87. (a) The third
gaussian input has to become higher than the first one to change the center of mass of the network;
(b) to switch again to the first winner the third input has to become lower than the first one.
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Figure A.6: Hysteresis, high coupling: Center of mass for a fixed lateral excitation wel = 0.99
and high inhibition, wei = 2.7, wie = 2.7. Even varying the lateral coupling strength no hysteretic
behavior is shown.

the implementation of attentional mechanism, it can account for ’tracking’ a pattern even
while its attributes are changing, because when a salient pattern changes in one or more of
its attributes, some competitive advantage is passed on to the changed pattern.

I measured hysteresis in two regions (high and low coupling) and for intermediate val-
ues of inhibition.

To measure hysteresis I calculated how the center of mass of the network’s activity
changes with the input, for different values of the parameters. The input is composed of
three equidistant gaussian bumps, each centered on a different neuron, one of them changes
its amplitude from below to above the normalized one, and back.

In the high coupling regime (i.e. high inhibition,wei > 2,wie > 2) the network does not
show hysteresis (Fig. A.6). In the low coupling regime the hysteretic behavior depends on
the lateral coupling wel. If lateral coupling is small (i.e. wel < 0.8) no hysteresis is shown,
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Figure A.7: Hysteresis, low coupling (wei = 0.45, wie = 0.45): (a) measure of the amplitude of
hysteretic cycle, for low values of lateral excitation no hysteresis is shown, then it increases and, for
really high wel, the flat curve represents an ”infinite” hysteresis, where the network doesn’t switch
to a second winner; (b) center of mass for some fixed lateral excitations.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

w
el

H
ys

te
re

si
s

(a)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

F
re

qu
en

cy
 (

H
z)

neuron #2
neuron #1

(b)

Figure A.8: Hysteresis, intermediate values of inhibition (wei = 1.05, wie = 1.05): (a) measure of
the amplitude of hysteretic cycle, varying lateral excitation; (b) temporal response of the winning
and the second strongest neuron, for wel = 1.8; increasing lateral excitation the response oscillates
before reaching the steady state.

as lateral coupling increases hysteresis appears and spreads with increasing wel. As shown
in figure (Fig. A.7), for low lateral excitations the response of neurons is independent on the
previous state of the net, then there is a region where the winning neuron has an advantage
on the others and with even stronger wel the net will not switch to an other winner. For
intermediate values of inhibition the hysteresis depends again on the lateral excitation, but
with a different slope (Fig. A.8(a)). In this case we noticed that convergence time for the
steady state response increases, because for the first few milliseconds the output frequency
oscillates (Fig. A.8(b)). With the same value of lateral excitation, hysteresis increases as
inhibition decreases.

The results presented refer to a network composed of 31 excitatory neurons; I have also
measured how the hysteretic cycle varies depending on the number of neurons in the ring.

As long as the ring widens the hysteresis spreads (Fig. A.9): adding neurons has the
same effect as increasing the strength of synaptic weights wei and wie, this is because the
input is scaled with the number of neurons and more cells are stimulated; the effect is
that the inhibitory neuron receives a stronger input and in turns it sends back a stronger



A.2. WTA performances 115

40 60 80 100 120 140 160 180
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Neurons

H
ys

te
re

si
s

Figure A.9: Hysteresis, for increasing the number of excitatory neurons in the ring: the amplitude
of hysteresis increases, but the effect is weak and affected by approximation errors.

inhibition to the ring. Anyway the result on hysteresis is weaker than, for example, the one
obtained by increasing lateral excitation.

A.2.3 Gain modulation
Recurrent networks with many–to–many connectivity (section A.1) show an effect known
as gain modulation: adding a constant level to the input scales up the output curve, without
modifying the tuning.

The simulated network shows is a similar effect (Fig. A.10(a)), but without a constant
multiplicative factor (Fig. A.10(b)).
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Figure A.10: Multiplicative effect for low coupling (wei = 0.45, wie = 0.45) and low lateral
excitation (wel = 0.9): (a) we add constant levels of current to the input, the network does not
change its tuning, but the output scales up; (b) ratio between the output curve corresponding to
“level 2” and the one corresponding to “level 0”; (c) the response of the most active neuron is
plotted versus the constant level added to the input, resulting in a linear relationship



Appendix B

WTA circuit static and dynamic response
properties

This appendix derives the static and dynamic response for the original WTA circuit pro-
posed by Lazzaro et al. (1989) (Fig. 3.1 in the main text), and the equations for the diffusor
network used in the chip for lateral connectivity, both excitatory, via transistors Mexc, and
inhibitory, via transistors Minh of Fig. 3.2.

B.1 Static response

Fig. B.1 shows the two cells WTA circuit and the corresponding small–signal model, de-
scribing the effect of small variations iin,i of the input current Iin,i on the circuit voltages
Vout,i, Vout,k, Vc, denoted by the small–signal voltages vout,i, vout,k, vc, at a particular oper-
ating point [Iin,i, Iin,k, Iout,i, Iout,k]. The small–signal model of MOS transistors comprises
a linear resistor r, in parallel with a linear dependent current source with conductance g:
gin,i =

kIin,i
UT

gout,i =
kIout,i
UT

rin,i = Ve
Iin,i

rout,i = Ve
Iout,i

gin,k =
kIin,k
UT

gout,k =
kIout,k
UT

rin,k = Ve
Iin,k

rout,k = Ve
Iout,k

where Ve is the Early voltage of the transistors, k is the subthreshold slope factor, a charac-
teristic parameter of MOS transistors ranging from 0.6 to 0.8, and UT is the thermal volt-
age. Applying Kirchhoff’s current law to the subcircuits of Fig. B.1, and the (reasonable)
approximation Ve + UT

k
∼= Ve, the circuit is described by a linear system of equations:

Min,i

vout,k

gin,kvc rin,k

vout,i

iin,igin,ivc rin,i

vc
gout,i(vout,i-vc) rout,i rout,k gout,k(vout,k-vc)

Min,k

Mout,i Mout,k

Min,i 

 Mout,i

 Iin,i

 Vout,i

Min,k 

 Mout,k

 Iin,k

 Vout,k

 Vc

 Iwta

Figure B.1: Two cells WTA circuit and corresponding small signal model.
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vout,i
iin,i

=
1

Iin,i

(
k

UT
+ Ve

Iout,k
Iwta

)
(B.1)

vout,k
iin,i

= Ve
1

Iin,i

(
Iout,i
Iwta

)
(B.2)

The first equation describes the winning cell i, the second describes the loosing cell k. The
small–signal quantities in the equations can be expressed as differentials of the large–signal
variables:

dVout,i
dIin,i

=
1

Iin,i

(
k

UT
+ Ve

Iout,k
Iwta

)
(B.3)

dVout,k
dIin,i

= Ve
1

Iin,i

(
Iout,i
Iwta

)
(B.4)

The output currents are described by the subthreshold transfer function of NMOS transistor
in saturation region, describing transistors Mout,i and Mout,k respectively:

Iout,i = I0e
kVout,i−Vc

UT (B.5)

Iout,k = I0e
kVout,k−Vc

UT (B.6)

Applying again Kirchhoff’s current law to the common node the biasing current Iwta can be
expressed as the sum of the two output currents: Iwta = Iout,i+ Iout,k. Substituting eq. (B.1)
into this equation leads to:

Iwta = I0e
kVout,i−Vc

UT + I0e
kVout,k−Vc

UT (B.7)

Dividing eq. (B.1) by eq. (B.7):

Iout,i
Iwta

=
1

1 + e
kVout,k−Vout,i

UT

(B.8)

Iout,k
Iwta

=
1

1 + e
kVout,i−Vout,k

UT

(B.9)

(B.10)

Substituting this equations in eq. (B.1):

dVout,i
dIin,i

=
1

Iin,i

(
UT
k

+ Ve
1

1 + e
kVout,i−Vout,k

UT

)
(B.11)

dVout,k
dIin,i

= Ve
1

Iin,i

(
1

1 + e
kVout,k−Vout,i

UT

)
(B.12)

The behavior of the WTA circuit is described by a set of differential equations involving
only Vout,i, Vout,k, and Iin,i. The voltages are expressed only in the subexpressions derived
from eq. (B.1), that are Fermi functions of the difference kVout,k − Vout,i, and kVout,i −
Vout,k, respectively. For kVout,i − Vout,k � UT subexpression (B.12) is approximately zero,
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while subexpression (B.12) is approximately one; viceversa for kVout,k − Vout,i � UT
subexpression (B.12) is approximately one, while subexpression (B.12) is approximately
zero. In the crossover region it is reasonable to assume that the output voltages are changing
with the same slope relative to the input current Iin,i; this assumption can be expressed with
the approximations kVout,i−Vout,k ∼= 2(kVout,i−Vm), and kVout,k−Vout,i ∼= 2(kVout,k−Vm),
where from the qualitative analysis in the main text Vm = Vout,i = Vout,k, when the input
currents are equal. The simplified differential equations system becomes:

dVout,i
dIin,i

=
1

Iin,i

(
k

UT
+ Ve

1

1 + e
2(kVout,i−Vm)

UT

)
(B.13)

dVout,k
dIin,i

= Ve
1

Iin,i

(
1

1 + e
2(kVout,k−Vm)

UT

)
(B.14)

Straightforward integration of this equations, with the approximation Ve + UT
k
≈ Ve, leads

to the closed–form approximation of the circuit response:

ln

(
Iin,i
Im

)
=

Vout,i − Vm
Ve

+
1

2
ln

(
1 +

UT
kVe

e
2
kVout,i−Vm

UT

)
(B.15)

ln

(
Iin,i
Im

)
=

Vm − Vout,k
Ve

+
1

2

UT
kVe

(
1− e2

kVout,k−Vm
UT

)
(B.16)

These equations can be evaluated in three region of interest to derive an explicit approxi-
mation of the circuit response:

• Vout,i ∼= Vout,k ∼= Vm, i.e. when Iin,i → Im, then the closed-form solution can be
linearized, yielding to the simpler relations:

Vout,i =
Ve
2

(
Iin,i
Im
− 1

)
+ Vm (B.17)

Vout,k =
Ve
2

(
1− Iin,i

Im

)
+ Vm (B.18)

both outputs are a linear function of the input current, with a slope of ± Ve
2Im

. As
described in the intuitive explanation of the circuit behavior in the main text, when
the input currents are similar, the output voltages start moving linearly, decreasing
(and increasing) the current in transistor Min,k (Min,i) thanks to the Early effect.

• Vout,i � Vm, Vout,k � Vm, i.e. when Iin,i = Im + δ; in such a case eq. (B.1) can be
simplified:

Vout,i =
UT
k

ln
Im + δ

Im
+
UT
2k

ln
kVe
UT

+ Vm (B.19)

Vout,k =
UT
2k

+ Vm − Ve ln
Im + δ

Im
(B.20)

Eq. (B.1) holds with the approximation UT
kVe
e

2(kVout,i−Vm)

UT � 1, that rearranged in
Vout,i − Vm�k � UT

2k
ln kVe

UT
. That is, if k = 1, Vout,i − Vm must be greater than
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150mV, in typical fabrication processes. This error stems from the main approxima-
tion kVout,i− Vout,k ∼= 2(kVout,i− Vm), valid only if kVout,i− Vout,k ≤ UT

k
. Therefore

the equation derived in the main text better predicts circuits winning behavior. The
circuit’s behavior is then approximated by the following equations:

Vout,i =
UT
k2

ln
Im + δ

I0

+
UT
k

ln
Iwta
I0

(B.21)

Vout,k =
UT
2k

+ Vm −
Ve
Im
δ (B.22)

• Vout,i � Vm, Vout,k � Vm, i.e. Iin,i < Im. Following the same procedure as above,
the behavior of the circuit is:

Vout,i = Vm −
Ve
Im
δ (B.23)

ln

(
Iin,i
Im

)
=

Vm − Vout,k
Ve

− 1

2

UT
kVe

e
2
kVout,k−Vm

UT → −∞ (B.24)

The losing responses of Vout,i and Vout,k are identical, as expected from the symmetry
of the circuit; the winning response forces Iin,i → 0, as above the problem stems from
the approximation kVout,i−Vout,k ∼= 2(kVout,i−Vm), the equation derived in the main
text better predicts the winning response:

Vout,i = Vm −
Ve
Im
δ (B.25)

Vout,k =
UT
k2

ln
Im + δ

I0

+
UT
k

ln
Iwta
I0

(B.26)

In summary, the output voltage corresponding to the highest input current encodes loga-
rithmically the corresponding input current, the voltage corresponding to the losing cells
decreases with the separation between the input currents, with a slope set by the mean
level of the input currents and the Early voltage. Increasing the Early voltage, with longer
transistors, increases the resolution of the circuit, by narrowing its losing response.

B.2 Dynamic response

The dynamic behavior of the circuit can be modeled adding capacitors to the small–signal
model of the previous section. Fig. B.2 shows the extended model, where the definition
of resistors and conductances correspond to those listed in Sec. B.1, the capacitors added
correspond to parasitic capacitances intrinsic to the circuit.

The solution of the resulting linear system is a function of the unknown large signals Iout,i
and Iout,k. However for the input conditions Iin,i = Im + δ, Iin,k = Im, it is reasonable to
approximate Iout,i ≈ Iwta, and Iout,k ≈ 0, even for relatively small values of δ, given the
exponential dependence of these currents on the output voltages Vout,i and Vout,k. With these
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Figure B.2: Two cells WTA circuit and corresponding small signal model, with explicit capacitors
added to model the dynamic response of the WTA.

approximations the ratio between the small-signal output voltages and the small-signal in-
put current are:

vout,i
iin,i

=
UT
kIin,i

CwtaUT
kIwta

s+ 1(
s
a+b

+ 1
) (

s
a−b + 1

) (B.27)

vout,k
iin,i

= − Ve
Iin,i

1(
CinVe
Iin,k

s+ 1
) (

s
a+b

+ 1
) (

s
a−b + 1

) (B.28)

where

a =
Iin,i

2CinVe
+

kIwta
2CcUT

(B.29)

b =

√(
Iin,i

2CinVe

)2

+

(
kIwta

2CcUT

)2

− k2IwtaIin,i
CinCwtaU2

T

(B.30)

The system is stable if b has real poles, i.e. if Iwta > 4Iin,i
Cin
Cwta

. In such a case the system
exhibits first order behavior and the first-order time constants for Vout,i and Vout,k are re-
spectively τw = CinUT

kIm
and τl = CinVe

Im
. The time constants depend on the Early voltage and

on the mean level of the input currents. In the SAC chip an explicit capacitor is connected
to the input node, to relax the stability condition derived with the dynamic analysis of the
circuit.

B.3 Diffusor network

In his work Lazzaro et al. (1989) suggested a modification of the original WTA circuit that
allows localized competition, it was implemented by substituting the direct connections be-
tween the current conveyors, with non–linear resistors. Unfortunately in CMOS technology
it is not easily possible to implement big resistors; if only considering the diffusion of cur-
rents, diffusor networks can be implemented, replacing resistors with transistors with fixed
gate voltage. Such networks are extensively used in silicon retinas (Choi et al., 2004; Liu
and Boahen, 1996), since they produce center–surround spatial response. DeWeerth and
Morris (1995) included a diffusor network to distribute hysteresis, Indiveri (2001a) used a
diffusor network for implementing local competition, as suggested in (Lazzaro et al., 1989),
and one to implement local excitation. He formally derived the diffusion equations for the
local excitatory network that I report in this Appendix.
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Figure B.3: Two cells WTA circuit and corresponding small signal model.

Fig. B.3 shows the simplified WTA network, without hysteresis, local competition, and
source–degeneration, where an input current Iin > 0 is applied only to the first WTA node.
In the subthreshold region of operation the current flowing though a single transistor can be
divided into forward and reverse component, in the diffusors Id,i = If,i − Ir,i, where

If,i = I0e
kVexc
UT
−Vi+1

UT (B.31)

Ir,i = I0e
kVexc
UT
− Vi
UT (B.32)

From these equations follows If,i = Ir,i+1. Kirchhoff’s current law applied at each node i
yields to:

Iin,i = (If,i−1 − Ir,i−1)− (If,i − Ir,i) (B.33)

merging these equations leads to the expression of the input current to the i − th node in
terms of reverse current in neighboring nodes i− 1 and i+ 1:

Iin,i = 2Ir,i − Ir,i−1 − Ir,i+1 (B.34)

The subthreshold transfer function of the transistor Min,i gives another formulation for the
input current:

Iin,i = I0e
kVc
UT

(
1− e−

Vout,i
UT

)
(B.35)

expressing Vout,i in terms of Ir,i using eq. (B.3)

Iin,i = I0e
kVc
UT − ek

(
Vc
UT
−Vexc

UT

)
Ir,i (B.36)

from which follows
Ir,i = λI0e

kVc
UT − λIin,i (B.37)

where λ = e
−k
(
Vc
UT
−Vexc

UT

)
. Substituting eq. (B.3) into eq. (B.3), yields to the discrete ap-

proximation of a Laplacian:

Iin,i = λ (Iin,i−1 − 2Iin,i + Iin,i+1) (B.38)

then:
Iin,i =

λ

1 + 2λ
Iin,i−1 +

λ

1 + 2λ
Iin,i+1 (B.39)
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using this equation recursively:

Iin,i =
λ

1 + 2λ
Iin,i−1 +

λ2

(1 + 2λ)2
(Iin,i + Iin,i+2) (B.40)

if λ� 1 this equation reduces to

Iin,i ≈ λIin,i−1 (B.41)

The current flowing to ground through the input transistor of the n − th WTA node can
be estimated by recursively applying eq. (B.3) until reaching the node 0, where the input
current is applied:

Iin,n ≈ λnIin,0 (B.42)

if λ� 1, Iin,0 ≈ Iin, the externally applied current, therefore:

Iin,n = Iine
−nk

(
Vc
UT
−Vexc

UT

)
(B.43)

λ is the diffusor’s space constant, it is exponentially dependent on Vexc − Vc; Vexc is an
externally tunable bias, and Vc depends logarithmically on the input current Iin. In the
simplified circuit of Fig. B.3

Iin,0 = I0e
kVc
UT ≈ Iin (B.44)

From eq. (B.3) λ can be expressed in terms of Vexc and Iin, and eq. (B.3) reduces to:

Iin,n = Iin

(
I0e

kVexc
UT

Iin

)n

(B.45)

.



Appendix C

Integrating multiple AER and chip–control
analysis tools

This appendix describes the setup used for the experiments in the main text. Figure C.1
shows the components of the system highlighting the division into hardware and software
components used in the text. This appendix is meant to be a guide for setting up a similar
system. The code included comprises the routines to merge and interconnect the different
software modules developed for each part of the system.

C.1 hardware components

The hardware setup comprises the AER chips, the retina and the SAC described in the main
text (see Sec. 5.3 and 4).

Retina

The silicon retina outputs its AER events using the SCX protocol. The addressing speci-
fication are defined by the “Caviar” standard; specifically the version used by the 64×64
version used in this work requires 6 bits for the X address, from b1 to b6, and 6 bits, from
b8 to b13 for the Y address, plus one bit (b0) coding for the ON/OFF polarity of the event.
Bits b14 and b15 are used to code for the chip identity (or AER channel). If the right bit is
the least significant one the 16 bits of AER address are organized as follows:

AER1 | AER0 | y5 y4 y3 y2 y1 y0 | ignored | x5 x4 x3 x2 x1 x0 | (ON/OFF)
The chip’s biases are controlled manually with potentiometers mounted on the chip’s testing
board.

SAC

The SAC receives AER events with P2P protocol, while using SCX for the output events.
The 32×32 pixels space addressing requires 5 bits for the X and 5 bits for the Y address,
consecutively mapped on the 16 AER address bits:

AER1 | AER0 | ignored (b13/b10) | y4 y3 y2 y1 y0 | x4 x3 x2 x1 x0

The same addressing specification is used for both input and output events.

Computer interfacing components

A Linux desktop is interfaced to the two chips.
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Figure C.1: Schematic diagram of the hardware and software components of the setup for an AER
multi–chip system comprising a silicon retina and a post–processing chip such as the SAC. The
system comprises the two chips, the interfacing devices to the host computer, and the software
modules for the control of each device. The PCI–AER board serves for interfacing of any AER chip
to the computer, and for the interconnection of chips. The libraries control the board access and
settings, the server structure handles the interfacing to the board via the libraries, and allows the
independent and parallel use of each board function. It is embedded in Matlab, and uses .mex files
to handle the C–based libraries. The SpikeToolbox is used to generate, acquire, plot and analyze
any spike train. The DAC boards set the specified voltage value on the chip; Matlab functions
are available to access the drivers and a Chip Database allows the definition of the biases of each
setup. The PTU orients the retina, it is controlled from Matlab, via serial port commands. The
GPIB card interfaces the computer with the instruments, specifically, the function generator and the
oscilloscope. Matlab functions and routines are available for the GPIB card functions.

Figure C.2: Multi–chip AER communication framework based on the PCI–AER board. Colored
arrows indicate the information flow for the different operating modes of the board. (adapted
from (Dante et al., 2005))

A PCI–AER board (Dante and Del Giudice, 2001; Dante et al., 2005), developed in
Rome at the “Istituto Superiore di Sanitá”, connects the two chips to the computer, and
routes the retina activity to the input of the SAC. Fig. C.2 shows the board and its function-
ality; it can handle multiple–chip AER–based systems, performing three main functions:
monitoring, sequencing, and mapping. The monitor writes on a FIFO the events over the
AER bus, adding a time–stamp (1µ s resolution) to each monitored address. The FIFO is
then accessed via software and allows the visualization and analysis of the chips activity.
The sequencer generates spike traffic on the AER bus, reading event lists generated by soft-
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ware, emulating the activity of a chip connected to the PCI–AER board. The mapper maps
incoming AER addresses to outgoing AER addresses via a look–up table. This function
allows to implement any type of connectivity between different chips, and within the same
chip. Examples of systems exploiting the functionality of the PCI–AER board are described
in (Chicca et al., 2006b; Indiveri, 2005; Oster and Liu, 2005).

The parametric space of the SAC voltage biases can be explored thanks to a bank of
Digital–to–Analog Converters (DAC), controlled via an USB interface, substituting the tra-
ditional potentiometers.

Some testing signals from the SAC can be connected to oscilloscope probes and the
signal traces acquired via a GPIB card.

The system comprises also a Pan-Tilt Unit (PTU), controlled via a serial port, used to
orient the center of the retina towards the target chosen by the SAC.

Finally a function generator, connected to the computer via the GPIB card, or an LCD
screen can be used to generate stimuli for the retina.

C.2 software components

The possibility of connecting the chips to a computer via the AER system and the other
interfaces listed in the previous section allows more extensive and automatized testing of
our chips. A common effort of the hardware group in the Institute of Neuroinformatics has
lead to the development of many software tools for the interfacing of the different elements
comprised in the systems. As the systems increase in complexity and variety, a particular
effort has been deployed to the design of general tools with wide applicability. My major
role in this effort, besides β–testing for debugging, was to merge the different parts in a
coherent frame, in particular I wrote some routines to link the different AER systems.

AER Software

The PCI–AER board is supported by softwares developed within the Institute of Neuroin-
formatics (INI); besides the driver and library functions created and maintained by A. What-
ley (and E. Chicca), M. Oster (within the CAVIAR EU project framework) has developed a
client–server architecture on top of the library to enable the use of the board on–line from
within Matlab, including real–time data display (Oster et al., 2005).

On top of these utilities D.R. Muir (INI) has developed a Matlab toolbox, the Spike-
Toolbox, for the off–line generation and manipulation of spike trains to be sent to, or read
from, the PCI–AER. I have merged both softwares for my experiments, to exploit the on–
line visualization and continuous stimulation allowed by the client–server structure, with
the sophisticated and rich spike handling offered by the SpikeToolbox; I also contributed to
the SpikeToolbox adding few functions for analyzing bi–dimensional spike trains, and for
the analysis of the scan–path.

Another tool for the visualization of the AER activity is the CaviarViewer, designed by
T. Delbrück. It was originally designed to display the retina activity acquired via an USB–
AER monitoring device; via an utility function saveaerdat.m it can also load Matlab data
appropriately translated in the Caviar addressing format and structured in a two columns
matrix with time–stamps and addresses. An example of function translating spike trains
from the SpikeToolbox to the CaviarViewer .dat file format is STAddrAERCaviarConvert-
SacRet64.m shown below, where all of the retina events are saved as OFF events and all of
the SAC events are saved as ON events, on the same addressing space. The CaviarViewer
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will display the retina activity (in grey) and the SAC activity (in white) superimposed.
function s t T r a i n = STAddrAERCaviarConvertSacRet64 ( s tSp ikeL is tRe t , s tSp ikeL is tSac , stasRet , stasSac )

% STAddrAERCaviarConvertSacRet64 − FUNCTION conver ts addresses o f r e t i n a
% 64x64 and SAC 32x32 to Caviar standard address s p e c i f i c a t i o n . The r e t i n a
% addresses are mapped to o f f events . The SAC addresses are mapped to on
% events , and t r a n s l a t e d to 64x64 mapping
%
% Usage : [ s t T r a i n ] =
% STAddrAERCaviarConvertSacRet64 ( s tSp ikeL is tRe t , s tSp ikeL is tSac , stasRet , stasSac )
% s tSp i keL i s tRe t : two columns mat r i x w i th [ t ime stamp a d d r r e t i n a ]
% stSp ikeL is tSac : two columns mat r i x w i th [ t ime stamp addr sac ]
% stasRet : addressing s p e c i f i c a t i o n o f r e t i n a
% stasSac : addressing s p e c i f i c a t i o n o f Sac

% Author : Chiara B a r t o l o z z i <ch iara@in i . phys . ethz . ch>
% Created : 8 th Novemebr , 2006

% −− Retina 64x64 −− %
[ xAddr yAddr ] = STAddrLogica lExt ract ( s tSp i keL i s tRe t ( : , 2 ) , stasRet ) ;
xAddr = b i t s h i f t ( xAddr , 1 ) ; % f i r s t addr o f r e t i n a i s ignored ( on / o f f )
xAddr = b i t o r ( xAddr , 1 ) ; % set a l l the events o f r e t i n a wi th l sb a t ’ 1 ’ => o f f events
yAddr = b i t s h i f t ( yAddr , 8 ) ; % y addr s t a r t s from b i t 8
physAddrRet = b i t o r ( xAddr , yAddr ) ;
% −− SAC −− %
[ xAddr yAddr ] = STAddrLogica lExt ract ( s tSp ikeL is tSac ( : , 2 ) , stasSac ) ;
xAddr = b i t s h i f t ( xAddr , 2 ) ; % transform i n t o 64x64 , d i s rega rd ing the 2

% lsb of addr and the 1 s t l sb on / o f f
yAddr = b i t s h i f t ( yAddr , 9 ) ; % same as above
physAddrSac = b i t o r ( xAddr , yAddr ) ;
% −− create 2 column mat r i x w i th [ t ime stamp addr ] −− %
s tT ra inRet = [ s tSp i keL i s tRe t ( : , 1 ) physAddrRet ] ;
s tTra inSac = [ s tSp ikeL is tSac ( : , 1 ) physAddrSac ] ;
% −− merge Ret ina and SAC t r a i n s −− %
s t T r a i n = v e r t c a t ( s tTra inRet , s tTra inSac ) ;
s t T r a i n = sor t rows ( s tT ra in , 1 ) ;

end
% −− end of STAddrAERCaviarConvertSacRet64 −− %

DAC interfacing software and Chip Database

Oster (2005) wrote a software that encapsulates in Matlab environment the functions to
control the voltage value of each bias on the chip. The tool comprises a set of files for
the specifications of the chip biases in terms of their name and function, their connections
on the chip pins, and their connection to the DAC channels, these files are handled in a
SubVersion (SVN) based chip database.

Putting everything together

A description on how to install the PCI–AER drivers, the DAC board driver, and the Chip
Database can be found in the www.ini.uzh.ch FAQ: “How to start using DAC & PCI–AER”.
The SVN repositories needed are:
DAC board and Chip Database:

https://svn.ini.uzh.ch/repos/avlsi/CAVIAR/common/duckboard/DriverMatlab
https://svn.ini.uzh.ch/repos/avlsi/CAVIAR/common/duckboard/DriverLinux
https://svn.ini.uzh.ch/repos/avlsi/CAVIAR/common/duckboard/Documentation
https://svn.ini.uzh.ch/repos/avlsi/CAVIAR/common/ChipDatabase
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Server Structure:
https://svn.ini.uzh.ch/repos/avlsi/CAVIAR/wp5/PCIAERg0/matlab

SpikeToolbox:
https://svn.ini.uzh.ch/repos/avlsi/common/SpikeToolbox

The script ChipInitMap.m comprises all of the initializations required by the PCI–AER, the
SpikeToolbox, the server structure, and the DAC boards chip database, together with some
examples of data visualization.
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% −− CHIP INITIALIZATION FOR SAC AND RETINA −− %
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% author : Chiara
clear a l l
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% −− SPIKE TOOLBOX I n i t i a l i s i n g the AER parameters −− %
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
s tOpt ions = STOptions ;
% −− addressing s p e c i f i c a t i o n o f monitored PCIAER channels −− %
% ch0 −> moni tor SAC
s tOpt ions . MonitorChannelsAddressing{1} = STAddrSpecSynapse2DNeuron (0 ,5 ,5 ,0 ,31 ,31 ,0 ,0 ,0 ,0 ) ;
stasSAC = stOpt ions . MonitorChannelsAddressing {1} ;
% ch1 −> moni tor r e t i n a
s tOpt ions . MonitorChannelsAddressing{2} = STAddrSpecRetina64 ;
s tasRet ina = STAddrSpecSynapse2DNeuron (0 ,6 ,6 ,0 ,63 ,63 ) ;
% ch2 −> not used
s tOpt ions . MonitorChannelsAddressing{3} = [ ] ;
% ch3 −> not used
s tOpt ions . MonitorChannelsAddressing{4} = [ ] ;
% −− addressing s p e c i f i c a t i o n o f output PCIAER addresses ( to the SAC) −− %
s tOpt ions . s t a sD e fa u l tO u tp u t S pe c i f i c a t i o n = STAddrSpecSynapse2DNeuron (0 ,5 ,5 ,0 ,31 ,31 ) ;
% −− Apply the new opt ions c o n f i g u r a t i o n
STOptions ( s tOpt ions ) ;
STDescribe ( s tOpt ions ) ;
STOptionsSave ;
% −− end of SpikeToolbox i n i t i a l i z a t i o n −− %

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% −− Server s t r u c t u r e c o n f i g u r a t i o n −− %
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% −− mount PCIAER board −− %
% −− run only a f t e r reboot −− %
sudo / sb in / modprobe pc iaer
% −− Server s t r u c t u r e s t a r t −− %
% −− run only a t the beginning o f the exper imenta l session −− %
s t r = pwd ;
cd / l o c a l / d0 / ch ia ra / pc iaer / matlab /
! . / aerservers s t a r t
cmd = spr in t f ( ’ cd %s ’ , s t r )
eval (cmd)
% −− Server s t r u c t u r e stop −− %
% −− run only a t the end of exper imenta l session −− %
% s t r = pwd ;
% cd / l o c a l / d0 / ch ia ra / pc iaer / matlab /
% ! . / aerservers stop % or ” r e s t a r t ”
% cmd = s p r i n t f ( ’ cd %s ’ , s t r )
% eval (cmd)
% −− unmount PCIAER board −− %
% sudo / sb in / modprobe −r pc iaer
% −− PCIAER board con f i g v ia servers s t r u c t u r e −− %
% −− mul t i−ch ip system −> b i t 15 and b i t 14 are used f o r channel
% in fo rma t i on
PciaerMapSetDemuxConfig ; % (2+14)
% −− i npu t o f SAC uses P2P pro toco l
PciaerMapSetProtocolP2P ;
% −− MONITOR mask
% SAC −> ch0
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% Retina −> ch1
MonSel = bin2dec ( ’ 0011 ’ ) ;
PciaerMonSetChannelSel ( MonSel ) ;
% −− MAPPER mask
% f i r s t i t i s d isab led
MapSel = bin2dec ( ’ 0000 ’ ) ;
PciaerMapSetChannelSel ( MapSel ) ;
PciaerMapClearAllMappings ;
% mapping fou r to one r e t i n a −> SAC
c h r e t = bin2dec ( ’ 0100000000000000 ’ ) ;% channel where the r e t i n a i s at tached ( ch1 )
ch sac = bin2dec ( ’ 1000000000000000 ’ ) ;% channel where the i npu t to SAC chip goes ( ch2 )
% address mapping 4 to 1
x = 0 :63 ;
y = 0 :63 ;
[ rx ry ] = meshgrid ( x , y ) ;
addrRet = STAddrPhysicalConstruct ( s tasRet ina , rx , ry ) ;
[ sx sy ] = meshgrid ( f loor ( x . / 2 ) , f loor ( y . / 2 ) ) ;
addrSAC = STAddrPhysicalConstruct ( stasSAC , sx , sy ) ;
% on events
set1 to1 ( n2addr ( addrRet ( : ) , ’ r e t i na64 ’ , ’ on ’ )+ ch re t , addrSAC ( : ) + ch sac ) ;
% o f f events
set1 to1 ( n2addr ( addrRet ( : ) , ’ r e t i na64 ’ , ’ o f f ’ )+ ch re t , addrSAC ( : ) + ch sac ) ;
% −− w r i t e look−up tab le and enable the mapping
PciaerMapSetOutputConfig1toMany ;
MapSel = bin2dec ( ’ 0010 ’ ) ;
PciaerMapSetChannelSel ( MapSel ) ;
% −− when no mapping i s used
% PciaerMapSetOutputConfigPassThru ;
% −− f u nc t i o ns to v i s u a l i z e the chips a c t i v i t y on− l i n e dur ing the
% experiment
% PciaerMonWatch ( ’ Mode ’ , ’ SpikeCount ’ , ’ Addresses ’ , n2addr (0 :4095 , ’ re t ina64 ’ , ’ on ’ ) + ch re t , ’ Dims ’ , 2 )
% PciaerMonWatch ( ’ Mode ’ , ’ SpikeCount ’ , ’ Addresses ’ , 0 : 1023 , ’ Dims ’ , 3 )
% −− f u nc t i o ns f o r data sequencing using s t T r a i n generated wi th the
% SpikeToolbox
STStimServer ( s t T r a i n ) ;
% −− f u nc t i o ns f o r data a c q u i s i t i o n
PciaerMonRecordEventsStart ;
% wai t f o r some time , the a c q u i s i t i o n runs i n background whi le
% matlab can do other f u n c t i o n s
% then stop a c q u i s i t i o n and load data i n SpikeToolbox
% format , ch0 i s f o r SAC, ch1 i s f o r r e t i n a as s p e c i f i e d above
[ stMonSac stMonRet ] = STMonServAcquire ;

% otherwise , to record a c t i v i t y f o r tDu ra t i on
[ stMonSac , stMonRet ] = STMonServer ( tDu ra t i on ) ;

% −− end Servers and PCIAER board c o n f i g u r a t i o n −− %

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% −− DAC AMDA board c o n f i g u r a t i o n −− %
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
% −− load saved bias s e t t i n g s ( vValues )
load . . / . . / ExpDef / WtaBiases
% −− get ch ip setup d e f i n i t i o n from chip database
getSetup ( ’ sac ch ia ra ’ ) ;
% −− get names of biases from DAC
cNames = getBiasNames ;
% −− set a l l the biases to the loaded values
se tA l lB iases (cNames , vValues ) ;

% −− end DAC c o n f i g u r a t i o n −− %

Pan–Tilt Unit interfacing software

The Pan–Tilt Unit is used to orient the retina. Three functions, Fixation.m, Shake.m, and
SaccadeTo.m, are used to center the retina at fixation point (0, 0), implement the micro–
saccades around the current position, and saccade to a location, specified by the corre-
sponding SAC address respectively.
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function F i x a t i o n
% moves the p a n t i l t u n i t to the f i x a t i o n po in t (0 ,0 )

% cu r ren t angular p o s i t i o n
global PhiX ;
global PhiY ;

i f isempty ( PhiX )
disp ( ’ i n i t i a l i z i n g ( x , y )= (0 ,0 ) ’ ) ;
PhiX =0;
PhiY =0;
disp ( ’ i n i t i a l i z i n g pan− t i l t u n i t ’ ) ;
ptsend ( ’ s ’ )

end
ptsend ( ’ ps2000 ts2000 a ’ )
cmdstr ing = spr in t f ( ’ pp%d tp%d a ’ , 0 , 0 ) ;
ptsend ( cmdstr ing )
% renew cu r ren t p o s i t i o n
PhiX = 0;
PhiY = 0;

function Shake
% −− micro sacceds : shakes the pan− t i l t u n i t a t the cu r ren t p o s i t i o n

global PhiX ;
global PhiY ;
i f isempty ( PhiX )

disp ( ’ i n i t i a l i z i n g ( x , y )= (0 ,0 ) ’ ) ;
PhiX =0;
PhiY =0;
disp ( ’ i n i t i a l i z i n g pan− t i l t u n i t ’ ) ;
ptsend ( ’ i ’ ) ;
ptsend ( ’ i pa1000 pu6000 ta1000 tu6000 ds ’ ) ;

end
% −− set speed f o r shaking
ptsend ( ’ ps50 ts170 a ’ ) ;
cmdstr ing = spr in t f ( ’m%d,%d,%d,%d ’ , PhiX−1,PhiX+1 ,PhiY−1,PhiY +1) ;
ptsend ( cmdstr ing ) ;

function dura t i on = SaccadeTo ( AddrX , AddrY , chmaskflag )
% −− moves the p a n t i l t u n i t to the given po in t (SAC address ) −− %
% to work c o r r e c t l y , i t needs the cu r ren t p o s i t i o n !
i f nargin < 3

chmaskflag = 1;
end

o f f s e t = 1 . 5 ;
vb = 57;
a = 1000;
% −− Saccadic Suppression , d i sab le any mapping −− %
PciaerMapSetChannelSel ( 0 ) ;
% −− stop PTU from micro−saccading −− %
pts top ;

% −− conver t AddrX , AddrY i n ” angular steps ” f o r the PTU −− %
% r e f e r to center o f the 2D ar ray :
Center = 32 /2 ;
AddrX = Center − AddrX ; %
AddrY = AddrY − Center ; %
dToLens =100; % dis tance i n p i x e l s from the r e t i n a to the lens
% angular p o s i t i o n from ” r e s t i n g ” PhiX = 0 , PhiY = 0
AngleX = atand ( AddrX / dToLens ) ;
AngleY = atand ( AddrY / dToLens ) ;
% conver t angle i n degrees to PTU u n i t s ( steps )
AngleX = AngleX / 185.1428 ∗ 3600;
AngleY = AngleY / 185.1428 ∗ 3600;
% round f o r PTU
AngleX = round ( AngleX ) ;
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AngleY = round ( AngleY ) ;
% cur ren t angular p o s i t i o n
global PhiX ;
global PhiY ;

i f isempty ( PhiX )
F i x a t i o n ;
disp ( ’ i n i t i a l i z i n g ( x , y )= (0 ,0 ) ’ ) ;
PhiX =0;
PhiY =0;
disp ( ’ i n i t i a l i z i n g pan− t i l t u n i t ’ ) ;
ptsend ( ’ s ’ ) ;

end
ptsend ( ’ ps2000 ts2000 a ’ )
% AngleX and Y: angular d is tance respect to cu r ren t p o s i t i o n
% c a l c u l a t e absolu te p o s i t i o n s
newPhiX = ( AngleX + PhiX ) ;
newPhiY = ( AngleY + PhiY ) ;
cmdstr ing = spr in t f ( ’ pp%d tp%d a ’ , newPhiX , newPhiY ) ;
i f ( newPhiX == 0) && ( newPhiY == 0)

cmdstr ing = spr in t f ( ’ pp%d tp%d a ’ , PhiX , PhiY ) ;
return ;

end
% −− send motion command to PTU v ia s e r i a l po r t −− %
ptsend ( cmdstr ing )
% −− f i x e d du ra t i on o f saccade ( crude approximat ion ) −− %
pause ( . 5 )
% −− re−enable mapping , end of saccadic suppression −− %
PciaerMapSetChannelSel ( 2 ) ;
% −− renew cu r ren t p o s i t i o n
PhiX = newPhiX ;
PhiY = newPhiY ;

Chip stimulation and data acquisition from oscilloscope

The retina can be stimulated with any visual stimulus. In my experiments I have used also
some synthetic stimuli created via software.

In Sec. 5.3.2 a function generator is used to light up a LED at a given frequency, and in
Sec. 2 it is used to stimulate the DPI with voltage steps. The function generator is controlled
from Matlab via a GPIB card. The code for the instrument control via the GPIB card can
be found in /projects/avlsi/sw/linux-gpib/.

Also the oscilloscope is connected via the GPIB card, that can be used both to acquire
data and set the operation mode of the oscilloscope. These functionalities are extensively
used in chapter 2 and 4.

Another mean for the stimulation of the retina is the LCD screen; the Matlab PsychTool-
box, developed for psychophysics experiments, allows the design of any type of stimuli. The
caveat for using this type of stimulation is that the frame based stimulation is not optimal
for the retina, and can create artifacts. It can be useful for particular types of experiments as
for example those requiring the rapid flashing of a stimulus (Chicca et al., 2006a). The Psy-
chToolbox can be downloaded at http://psychtoolbox.org/wikka.php?wakka=HomePage.

The SaliencyToolbox was used to create saliency maps from static images. It can be
downloaded at http://www.saliencytoolbox.net/index.html.



Abbreviations and Symbols

AER Address Event Representation
CAV IAR Convolution AER Vision Architecture for Real Time
CMI Current Mirror Integrator
CMOS Complementary Metal–Oxide–Semiconductor
DAC Digital–to–Analog Converter
DPI Diff–Pair Integrator
EPSC Excitatory Post Synaptic Current
EPSP Excitatory Post Synaptic Potential
FOA Focus of attention
Gnd Ground
GPIB General Purpose Interfacing Board
I&F Integrate–and–Fire
IOR Inhibition–of–Return
IPSC Inhibitory Post Synaptic Current
IPSP Inhibitory Post Synaptic Potential
ISI Inter Spike Interval
LTU Linear Threshold Unit
MOSFET Metal–Oxide–Semiconductor Field Effect Transistor (nFET , pFET ,

NMOS,PMOS abbreviations for n and p type transistors)
NMDA N-methyl D-aspartate receptor
PC Personal Computer
PCB Printed Circuit Board
PCI Peripheral Component Interconnect, a local bus standard developed by

Intel Corporation
P2P Point–to–Point AER protocol
PTU Pan–Tilt Unit
SAC Selective Attention Chip
SCX Silicon Cortex AER protocol
STD Short–Term Depression
STDP Spike–Timing Dependent Plasticity
V LSI Very Large Scale Integration
Vdd Power supply
WTA Winner–Take–All
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M. E. Robinson, H. Yoneda, and E. Sńchez-Sinencio. A modular CMOS design of
a Hamming network. IEEE Transactions on neural networks, 3(2):444–456, May
1992.

J. Ross, M.C. Morrone, M.E. Goldberg, and D.C. Burr. Changes in visual per-
ception at the time of saccades. Trends in Neurosciences, 24(2):113–121, Febru-
ary 2001. URL http://www.sciencedirect.com/science/article/
B6T0V-4599DYM-R/2/a0da41f508c58f73c9a17cef33381cfd.

L.C. Rutherford, S.B. Nelson, and G.G. turrigano. Bdnf has opposite effects on the
quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron,
21:521–530, September 1998.

E. Salinas and L.F. Abbott. A model of multiplicative neural responses in parietal
cortex. Proc. Natl. Acad. Sci., 93:11956–11961, October 1996.

R Sarpeshkar. Brain power – borrowing from biology makes for low power comput-
ing – bionic ear. IEEE Spectrum, 43(5):24–29, May 2006.

R. Sarpeshkar. Analog versus digital: Extrapolating from electronics to neurobiol-
ogy. Neural Computation, 10(7):1601–1638, October 1998.

S Satyanarayana, Y.P. Tsividis, and H.P. Graf. A reconfigurable VLSI neural net-
work. IEEE Jour. Solid-State Circuits, 27(1):67–81, Jan 1992.

S. R. Schultz and M. A. Jabri. Analogue VLSI ’integrate-and-fire’ neuron with fre-
quency adaptation. Electronic Letters, 31(16):1357–1358, Aug 1995.

E. Seevinck. Companding current-mode integrator: A new circuit principle for
continuous-time monlithic filters. Electronics Letters, 26(24):2046–2047, Novem-
ber 1990.

R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
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