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ZUSAMMENFASSUNG 

 Bohrloch-Georadar ist mittlerweile eine geophysikalischen Methoden, welche immer 

häufiger bei der Erkundung des oberflächennahen Untergrundes angewendet wird. Eine 

typische „Crosshole“-Messanordung besteht aus zwei Antennen, wobei der Sender im einen 

Bohrloch und der Empfänger im anderen platziert wird. Die Abstrahlcharakteristik von 

solchen Antennen ist im Allgemeinen mit jener von analytischen Dipolen vergleichbar. Die 

im Sender erzeugte elektromagnetische Welle kann durch die Zentral- oder Nominalfrequenz 

charakterisiert werden und liegt üblicherweise im Bereich von ~20 und ~250 MHz. Dieser 

Frequenzbereich entspricht im zu erkundenden Untergrund in etwa Wellenlängen zwischen 

~5 und ~0.4 m. Auf Grund der komplexen Vorgänge die stattfinden, wenn eine 

elektromagnetische Welle in der Antenne erzeugt und anschliessend ins benachbarte Medium 

abgestrahlt wird, bietet es sich an, diese Effekte genau zu untersuchen, bevor man sich an die 

eigentliche Wellenfeldinversion wagt. Dementsprechend habe ich als Erstes ein Tool 

entwickelt, welches mir erlaubt, die Abstrahlcharakteristik von beliebig komplexen Bohrloch-

Antennen zu studieren. Dieses Tool verwendet eine Finite-Differenzen-Approximation der 

Maxwell-Gleichungen im Zeitbereich (Finite-Differenzen Time-Domain = FDTD), um die 

elektromagnetische Wellenausbreitung in einem beliebigen Medium zu simulieren. Die 

Approximationen werden in einem Gitter berechnet, das auf einem zylindersymmetrischen 

Koordinatensystem beruht. Dieses Koordinatensystem bietet den Vorteil, dass die 

Energieabstrahlung der Senderantenne eine korrekte 3-D-Charakteristik aufweist, dabei aber 

nur ein 2-D-Medium benötigt. Eine lokale Gitterverfeinerungstechnik erlaubt eine 

Untersuchung von sehr kleinen Antennenstrukturen, realistischen Bohrlöchern und 

Materialien mit hohen Dielektrizitätszahlen (z.B. Wasser). Numerische Experimente zur 

Untersuchung unterschiedlicher Antennen und deren Energieabstrahlungen in luft- und 

wassergefüllten Bohrlöchern haben gezeigt, dass die Abstrahlcharakteristik von Wu-King-

Antennen mit finiter Länge in etwa jener von infinitesimalen Dipole-Antennen entspricht. 

Dies ist insofern ein wichtiges Resultat, als dass die infinitesimalen Dipole oft als 

Approximationen für reale Antennen verwendet werden (z.B. bei Strahlinversionen). Werden 

dagegen Antennen in wassergefüllten Bohrlöchern zum Vergleich hinzugezogen, so habe ich 

festgestellt, dass sich die Abstrahlcharakteristik deutlich verändert. Untersuchungen mit 

realen Daten, gemessen in trockenem Gestein (Grimsel-Felslabor, Schweiz) und in 
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wassergesättigten Sedimenten (Hydrogeophyikalisches Untersuchungsgebiet, Boise, USA) 

zeigen, dass bei numerischen Simulationen mit realistischen Wu-King-Antennen und finiten 

Bohrlöchern die synthetischen Daten deutlich besser mit den beobachteten übereinstimmen, 

als wenn nur infinitesimale Dipol-Antennen verwendet werden. 

 Tomographische Inversionen von „Crosshole“-Georadardaten werden üblicherweise 

mit strahlenbasierten Verfahren berechnet. Diese Verfahren berücksichtigen jedoch nur einen 

sehr geringen Anteil vom Nutzsignal (z.B. Ersteinsatzzeiten und Maximalamplituden vom 

ersten Wellenzug), wodurch die resultierenden Geschwindigkeits- und Dämpfungs-

Tomogramme nur die relativ groben Eigenheiten des Untergrundes zeigen. Bezieht man 

allerdings einen Grossteil des Wellenfeldes oder sogar das gesamte aufgezeichnete Feld mit in 

eine entsprechende Inversion ein, so darf angenommen werden, dass die entsprechende 

Auflösung der  resultierenden Tomogramme um bis zu einer Grössenordung besser sein kann. 

Solche Auflösungen sind üblicherweise nur mit teuren und sehr lokalen 1-D-Messungen 

möglich (z.B. Bohrkernmessungen und Direct-Push-Techniken). Trotz des grossen Potentials 

von Vollwellenfeldinversionen, angewendet auf Georadardaten, gibt es nur sehr wenige 

entsprechende Veröffentlichungen. Im Gegensatz dazu sind seismische Vollwellenfeld-

inversionen weit verbreitet. Der Modellierungsteil solcher Inversionen basiert häufig auf 

FDTD-Approximationen der Wellengleichungen und berücksichtigt automatisch alle 

möglichen Wellenausbreitungsphänomene (z.B. diffraktierte und gestreute Wellen). 

 In dieser Dissertation stelle ich eine Vollwellenfeldinversion für „Crosshole“-

Georadardaten vor. Die  Inversion basiert auf der FDTD-Approximation der Maxwell-

Gleichungen in einem 2-D-Kartesischen Koordinatensystem. Diese Wahl, anstelle eines 

zylindrischen Systems, lässt sich mit der grösseren Flexibilität im Bezug auf die 

Positionierung von Sendern und Empfängern begründen. Ferner erlaubt ein kartesisches 

System das Einbinden von sehr effizienten „Generalized Perfectly Matched Layer“  (GPML) 

absorbierenden Rändern. Das Ziel meines Wellenfeldinversionsalgorithmus ist die detaillierte 

Rekonstruktion der dielektrischen Permittivität und der elektrischen Leitfähigkeit. 

Numerische Experimente unter Einbezug von relativ einfachen homogenen Modellen mit 

einzelnen Anomalien zeigen, dass meine Wellenfeldinversion in der Lage ist, auch sehr 

kleinen Anomalien zu lokalisieren und deren Form und die Grössenordnung der 

Materialparameter gut zu rekonstruieren. Verwende ich allerdings kompliziertere Modelle mit 

stochastischen Verteilungen der Mediumparametern und einzelnen deterministische 
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Anomalien, so stellt sich heraus, dass diese Anomalien in den Permittivitätstomogrammen nur 

unwesentlich besser dargestellt werden können, verglichen mit den strahlenbasierten 

Inversionsresultaten. Dagegen werden die entsprechenden Leitfähigkeitsanomalien mittels der 

Wellenfeldinversion deutlich besser aufgelöst. Neben diesen relativ einfachen numerischen 2-

D-Beispielen habe ich auch 3-D-Experimente durchgeführt. Dabei habe ich zuerst ein 

Transformationsschema hergeleitet, welches mir die 3-D-Daten zu 2-D-Daten umwandelt. Im 

Allgemeinen ist das Quellsignal, welches das Aussenden elektromagnetischer Wellen in den 

Untergrund initiiert, unbekannt und muss entsprechend ermittelt werden. Um dieses 

Quellsignal zu bestimmen, habe ich ein Tool entwickelt, das auf dem Prinzip der 

Dekonvolution aufbaut. Dieselben Felddaten, welche ich bereits für die erste Studie über die 

Abstrahlcharakteristik typischer Antennen verwendet habe, sind für die Vollwellenfeld-

inversion eingesetzt worden. Dabei stellt man fest, dass die resultierenden Tomogramme, 

verglichen mit jenen von strahlenbasierten Inversionen, deutlich mehr Details zeigen und die 

Grenzen zwischen geologischen Einheiten und einzelnen Heterogenitäten klar abbilden. Diese 

Untersuchungen mit realen Daten zeigen deutlich, dass die Vollwellenfeldinversion gute 

Resultate liefern kann, welche deutlich mehr Informationen über den untersuchten Untergrund 

enthalten. 
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ABSTRACT 

 Borehole georadar is an increasingly popular method for probing the shallow 

subsurface. A typical setup for a crosshole georadar experiment consists of an emitting 

dipole-type antenna located in a borehole and a corresponding receiver antenna located in a 

neighboring borehole. The nominal center frequencies of commonly used antennas range 

from ~20 to ~250MHz, which correspond to dominant wavelengths of ~5 to ~0.4m, in the 

subsurface. Prior to developing a full-waveform inversion algorithm it is therefore essential to 

improve our understanding of the complex electromagnetic wave propagation. To study the 

radiative properties of borehole georadar antenna systems, I developed a modeling tool based 

on finite-difference time-domain (FDTD) solutions of Maxwell’s equations in cylindrical 

coordinates. To minimize reflections from the model boundaries, efficient uniaxial perfectly 

matched layer (UPLM) absorbing boundary conditions are implemented along the top, bottom 

and right model edges and symmetrical conditions along the cylindrical axis. Using an 

accurate local refinement technique allows to account for the detailed aspects of borehole 

radar systems, slim boreholes and materials with very high permittivities (e.g., water). 

Numerical experiments were conducted to benchmark the modeling tool and to analyze 

different antenna geometries. Results of these studies reveal that radiation characteristics of 

finite length Wu-King-type antennas correspond well with typically employed dipole-type 

approximations as long as they are placed in same environments. In contrast, substantial 

differences in the radiation characteristics are found when placing antennas in water-filled 

boreholes. I further studied effects of antennas placed in air- or water-filled boreholes on two 

real data sets acquired in dry crystalline rock (Grimsel Rock Laboratory in Switzerland) and 

in water-saturated sediments (Boise Hydrogeophysical Research Site in the USA). Both 

experiments using realistic transmitter antennas provide better agreements between observed 

and modeled data than simulations based on infinitesimal dipole transmitters and receivers. 

 Tomographic inversions of crosshole georadar data have typically been based on ray 

methods, which typically consider only a very limited portion of the recorded georadar signal, 

namely the onset time of the first arriving wave trains and the peak amplitudes of the first 

cycles. The inversion of these data allows the determination of the electromagnetic velocity 

and attenuation structures of the probed regions, which then can be used to derive dielectric 
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permittivity and electrical conductivity distributions. As a consequence of using only a limited 

portion of the recorded data, these methods suffer from a number of inherent limitations. In 

particular, they can only resolve structures that are relatively large and smooth with respect to 

the dominant wavelength of the signal. By considering however waveforms of recorded 

georadar signals and correctly accounting for wave propagation effects in the inversion 

process, it can therefore be expected to improve the resolution by nearly an order-of-

magnitude. The expected sub-meter resolution is comparable to that of expensive and 

inherently 1-D borehole-based studies (e.g., geophysical logging, core sampling and direct-

push techniques). However, full-waveform inversion approaches applied to georadar data are 

almost unknown so far. In contrast, waveform inversion strategies for seismic data have been 

available for almost two decades. Many seismic waveform inversion schemes are based on 

finite-difference solutions of the wave equation. These forward modeling schemes are 

accurate, can accommodate strongly heterogeneous media and automatically include all wave 

types of the considered wave propagation regime, such as diffracted or multiply scattered 

waves. 

 In my thesis, I present a full-waveform inversion scheme for crosshole georadar data 

based on FDTD solutions of Maxwell’s equations in a 2-D Cartesian coordinate system. 

Using a Cartesian coordinate system rather than a cylindrical system offers more freedom 

with respect to placing transmitters and receivers in the model space and allows the 

implementation of highly accurate and fast generalized perfectly match layers as absorbing 

boundary conditions. My waveform inversion approach directly considers permittivity and 

conductivity distributions and has the potential to resolve not only the coarse but also the fine 

scale features of the probed subsurface. The scheme requires a stepped or cascaded inversion 

approach in which the first step consists of a permittivity inversion that mainly accounts for 

the phase information of the data, followed by a conductivity inversion, which focuses on the 

remaining amplitude information. Numerical experiments demonstrate that my 2-D inversion 

scheme is capable of adequately resolving, the locations, the shapes and the magnitudes of 

bodies with spatial extent considerably smaller than a dominant wavelength embedded in 

homogeneous background media. Similar good results are reported for band-limited Gaussian 

noise contaminated data. More realistic synthetic experiments consisting of layers and 

artificial objects (pipes and tunnels) embedded in stochastic background media suggested that 

dielectric permittivity distributions are only slightly improved compared to corresponding 
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ray-based results. Generally, the waveform inversion of the electrical conductivity clearly 

resolves more details of the artificial objects. 

 In order to invert field data, I developed a 3-D to 2-D transformation scheme that 

accurately corrects for (i) 3-D geometrical spreading, (ii) a π/4 phase shift, and (iii) a 

frequency scaling effect of 1 ω , where ω is the angular frequency. The unknown source 

wavelets are estimated with a scheme that accounts for permittivity and conductivity medium 

parameter distributions together with deconvolutions of the observed data. The same field 

data sets are used as for the initial study of the radiation characteristics of different antenna 

types. The resolution of all full-waveform tomograms is shown to be significantly higher than 

that of the relevant ray tomograms. Boundaries between distinct geological features and small 

heterogeneities are sharply imaged in the full-waveform tomograms. These studies 

demonstrate that waveform inversion is feasible and yields markedly more information about 

the probed subsurface. It thus may provide key constraints on engineering parameters, such as 

water content, salinity, porosity, clay fraction or ore grade. 
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CHAPTER 1  
 
 

INTRODUCTION 
 
 
 

Radar (radio detection and ranging), a remote sensing technique based on the 

propagation of electromagnetic waves, is commonly used for air- and ship-traffic 

management and speed controls conducted by the police. Scientifically oriented applications 

of radar are found in meteorology (e.g., Brown et al., 1971; Fujita, 1981), the earth sciences 

(e.g., Gross et al., 2004; Leckebusch, 2005), criminology (e.g., Davenport et al., 1988; Ruffell 

and McKinley, 2005) and space exploration (e.g., Porcello et al., 1974). In the following, I 

begin by reviewing historical developments of radar with a special focus on the earth sciences 

and then describe relevant aspects of the antennas and geological media, insights gained from 

numerical simulations, acquisition geometries, various data processing and analysis tools, and 

the advantages and drawbacks of using ground-penetrating radar (GPR or georadar) as an 

investigation tool. In the final part of the chapter, I outline the goals of my thesis. 

1.1. HISTORY OF RADAR 

1.1.1. GENERAL 

The radar technique was developed, forgotten, and redeveloped several times during 

the last century. The first development was made in 1904 by the German Christian 

Hülsmeyer, who constructed a device based on Hertz’s experiment (Hülsmeyer, 1904). 

Hülsmeyer's primary intention was to develop an apparatus for remotely detecting metal 

objects in the marine environment (e.g., ships and shipwrecks) in order to avoid accidents. 

The device was designed for non-military purposes. His initial radar system (Figure 1.1), 

which emitted a constant signal (i.e., non-pulsing, mono-frequency), was able to detect metal 

objects up to a distance of ~3 km. It was not possible to estimate the distance to the objects 

due to strong interference between the emitted and received signals (Hollmann, 2001; Coffey 

et al., 2005). Seven years later, Leimbach and Löwy (1911) filed a patent in Germany for the 
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first GPR system that allowed buried metallic ore bodies to be detected. Their tests were 

based on constantly emitting and receiving antennas placed in 200 m deep neighboring 

boreholes. In the same year, a US science fiction writer introduced a device in his novels (the 

actinoscope) that was able to detect and measure the distance to metallic objects using 

pulsating electromagnetic waves (Gernsbacher, 1911). 

Hülsmeyer’s original concept was 

essentially rediscovered in different countries 

during the early 1920's. The following list 

summarizes the different stages based on a 

comprehensive review by Bauer (2004): 

- 1922 (United States): H. Taylor and L. Young 

conducted communication experiments across a 

river. They noticed strong variations in the 

signals when ships crossed the communication 

link and thus concluded that it might be possible 

to detect objects using electromagnetic waves 

(Brown, 1999). 

- 1924 (Great Britain): Appleton and Barnett 

(1925a), (1925b) performed radio propagation 

experiments in which they investigated the 

reflection of electromagnetic waves from 

atmospheric layers. 

- 1926 (Germany): Hülsenbeck & Co (1926) filed 

a patent for the first pulsed radar system. All 

previous systems emitted constant energy signals 

such that large interference between the 

transmitted and reflected signals was common. 

- 1926 (United States): G. Breit and M. A. Tuve used pulsed signals to investigate the 

ionosphere (Brown, 1999). 

Figure 1.1: First ‘radar system’ developed 
by Ch. Hülsmeyer. (a) Picture of this 
apparatus from an exhibition in the 
“Deutschen Museum” in Munich and (b) 
technical layout of Hülsmeyer’s patented 
work.
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- 1928 (United States): Bently (1928) filed a patent for a device that was able to measure the 

altitude of aircrafts (today known as FM radar). 

- 1933-1934 (Germany): Based on the equivalence of the acoustic and electromagnetic wave 

equations, R. Kühnhold developed a device that was able to detect a test vessel at a distance 

of 2.1 km. 

Radar technology developed quickly during the Second World War, because countries were 

forced to stay ahead of their respective enemies. For example, one or two radar systems of the 

type patented by Bently (1928) were mounted on planes in 1943. This allowed other aircraft 

to be detected, provided a warning to pilots if they were scanned by enemy radar, and enabled 

friend and foe to be distinguished (Brown, 1999). 

1.1.2. EARLY RADAR APPLICATIONS IN THE EARTH SCIENCES 

Despite more than 30 geophysical-related patents filed between 1936 and 1971 

(Olhoeft, 2002), the GPR technique was not developed into a practical tool until the 1970-

1990 period. One of the earliest earth science applications was a survey that involved a 

capacitive method for generating electromagnetic waves (comparable to GPR; Stern, 1929; 

1930). It was used in Austria to measure the thickness of a glacier. 

During the late 1950’s, a number of planes crashed on glaciers due to 

misinterpretations of the altitude measured by the aircraft-mounted radar systems. These 

accidents led to new investigations of the subsurface and its response to radar signals. A real 

boom of GPR developments and new application areas occurred in the middle 1960’s and 

1970’s, with the electromagnetic sounding system of the Apollo 17 mission to the Moon 

being the most famous (e.g., Porcello et al., 1974). At this time, the first commercial 

equipment became available (e.g., Morey, 1972). Today, a number of different GPR systems 

with shielded and unshielded antennas and suitable for surface or borehole studies are 

available from several companies (e.g., GSSI, Malå, and Sensors and Software Inc). 

1.2. GEORADAR: A MODERN TECHNIQUE FOR SUBSURFACE PROBING 

Radar frequencies vary from 1 MHz to 110 GHz, covering most of the microwave, 

radio/TV, and amateur radio bands (blue area in Figure 1.2a). Center frequencies used in GPR 

experiments are typically in the 10 MHz to 3 GHz range. The important media parameters in 

GPR are dielectric permittivity (ε = εrε0, where εr is the dimensionless relative permittivity 
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and ε0 the permittivity of free space, 

ε0 = 8.854⋅10-12 As/Vm) and 

electrical conductivity σ (S/m). 

Representative values of εr and σ  

are given in Table 1.1. The GPR 

response is also slightly sensitive to 

magnetic permeability µ (Vs/Am), 

but for nearly all practical purposes 

µ can be set to its free-space value 

µ0 = 1.257⋅10-6 Vs/Am; µ typically 

lies between 1.26⋅10-6 and 

1.63⋅10-6 Vs/Am according to the 

magnetite and pyrrhotite content of 

the media. 

Depending on the parameters mentioned above and the center signal frequency, the 

dominant wavelengths GPR waves in the subsurface range from meters to a few centimeters. 

For a given wave velocity, the dominant wavelengths decrease and the resolution increases as 

the center frequencies increase. For high resolution it also is necessary to have broad 

bandwidths. The bandwidths of many GPR systems are designed to be approximately equal to 

the dominant frequencies (e.g., for a 100 MHz center-frequency signal, the bandwidth is 

about 50-150 MHz). As for other wave phenomena, higher frequency GPR signals are 

attenuated more rapidly than lower frequency ones (Davis and Annan, 1989). Attenuation 

increases and depth penetration decreases markedly with increases in electrical conductivity. 

Figure 1.2a lists diverse electromagnetic techniques together with associated 

frequencies and wavelengths. GPR is characterized by the highest frequencies amongst the 

geophysical methods; it provides the highest resolution (i.e., comparable only to well-logging 

methods like neutron-neutron-, sonic-, and televiewer-logs, see for example Knödel et al., 

1997; Paasche et al., 2006; Spillmann et al., 2007), but also the lowest penetration depths 

(Figure 1.2b). 

Table 1.1: Relative dielectric permittivities and electrical 
conductivities of different subsurface materials (modified after 
Knödel et al., 1997) 

Material Permittivity εr 
Conductivity σ 

[mS/m] 
air 1 0 

water 80 0.01 
sea-water 80 30000 
dry sand 3 - 5 0.01 

saturated sand 20 - 30 0.1 - 1 
silt 5 - 30 1 - 100 
clay 5 - 40 2 - 1000 

limestone 4 - 8 0.5 - 2 
shale 5 - 15 1 - 100 

granite 6 0.01 - 1 
dry salt ~6 0.001 - 0.1 

ice 3.18 0.01 
oil, asphalt 2 - 3 0.01 
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Figure 1.2: (a) Electromagnetic spectrum. HF - high-frequency (shortwave broadcast); VHF - very high-
frequency (FM and television); UHF - ultra high-frequency (television). (b) Parts of the spectrum used in 
geophysics. High frequency methods may also be used for investigating areas that appear in the low-
frequency regions of the figure [modified from Knödel et al. (1997) and Olhoeft (2002)]. 
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GPR surveying yields satisfactory results as long as the electrical conductivity of the 

subsurface is low to moderate. It is possible to estimate whether or not GPR is likely to yield 

useful results by comparing the required penetration depths with the dominant signal 

wavelengths λ. The following rule should be considered before conducting a GPR survey 

(e.g., Knödel et al., 1997): 

2
c 0f
πσ
µ λ

< , (1.1) 

where fc  is the center signal frequency. For a typical survey with fc = 100 MHz and a 

corresponding ~1 m wavelength, the conductivity should be smaller than ~25 mS/m. If the 

conductivity is equal or higher than ~50 mS/m, diffusive electromagnetic phenomena 

dominate, thus preventing efficient radar wave propagation. Such conditions are likely for 

water-saturated clay and silt, salt-water, and metallic objects. 

Applications of GPR have included (i) searching for pipes, cables and metallic/non-

metallic barrels (e.g., Grandjean et al., 2000; Hansen and Johansen, 2000), (ii) probing waste 

disposal sites for leakages (e.g., Guy et al., 2000; Porsani et al., 2004), (iii) mapping 

geological targets (e.g., sedimentary structures, fractures, fissures or voids; see for example 

Bano, 1996; Greaves et al., 1996; Gross et al., 2004), (iv) estimating glacier thicknesses and 

morphology (e.g., Arcone, 1991; Gogineni et al., 2001), (v) measuring the depth to the water-

table or degree of water contamination (e.g., Brune and Doolittle, 1990; Chen and Chow, 

2007), (vi) determining the water content of soils and buildings (e.g., Tronicke et al., 2002; 

Irving et al., 2007), and (vii) detecting cavities in pavements (e.g., Hugenschmidt et al., 1998; 

Saarenketo and Scullion, 2000). In addition to earth scientists and civil engineers (see also 

Peters et al., 1994), GPR has been used by the police to search for hidden objects (e.g., buried 

bodies; see also Hammon et al., 2000; Ruffell and McKinley, 2005), by the military to 

identify the locations of unexploded ordnance, mines and other potential hazards (e.g., 

Bruschini et al., 1998; Sun and Li, 2003), and by archeologists as well as treasure hunters to 

find historical graves and foundations of buildings or valuable metallic objects in the 

subsurface (e.g., coins, sculptures etc.; see also Sternberg and McGill, 1995; Conyers, 2004; 

Leckebusch, 2005). 

1.2.1. NUMERICAL MODELING OF GPR DATA  

Numerical modeling provides insights into the behavior of electromagnetic waves 

propagating through the subsurface. With the availability of evermore powerful computers, 
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increasingly complex modeling techniques have been developed and applied over the past 40 

years. The goal of these techniques is to solve the governing Maxwell’s equations using 

numerical methods. The oldest and probably best known approach is based on the finite-

difference methods. This approach involves the discretization of the differential operators of 

Maxwell’s equations in the time or frequency domain for 1-, 2- and 3-D models (e.g., Taflove 

and Hagness, 2000). Integral forms of Maxwell’s equations can be solved by using finite-

integral approaches (FI, see Hafner, 1999). It is relatively straightforward to code both 

approaches. They do not require (i) large and expensive mesh generation and management or 

(ii) the solution of large linear equations or potentially complicated integral equations. To 

ensure the accuracy of these approaches for modeling complex structures, it may be necessary 

to employ higher order approximations of the equations or finer grids. 

Other techniques, such as the finite-element (FE; e.g., Monk, 2003) and spectral-

element methods (SE; e.g, Hesthaven and Warburton, 2002), alleviate accuracy problems at 

the cost of more complicated formulations and (at least partially) higher computational costs 

(memory and time). Simulations of subsurface electromagnetic wave propagation may also be 

performed using the method-of-moments (MoM; e.g., Khalil and Steer, 1999) and boundary-

element methods (BE; e.g., Yashiro and Ohkawa, 1985). 

Model edges are relatively easy to handle in the method-of-moments and boundary-

element methods (e.g., Hafner, 1999), but they require special attention when using most 

other methods. If the model space was truncated without the application of special boundary 

conditions, artificial reflections from the boundaries would interfere with the signals of 

interest. To simulate an open infinite model space, the incident fields at the boundaries need 

to be efficiently absorbed. Different techniques based on changing material properties or 

analytical considerations have been developed over the past few years. Absorbing boundary 

conditions of the first category are, for example, diffusive boundaries characterized by 

increasing conductivity with increasing distance from the inner limits of the boundaries or 

Berenger’s (1994) perfectly matched layers. Examples of analytic approaches include 

Engquist and Majda’s (1977) and Mur’s (1981) absorbing boundary conditions. 

Applications of numerical simulation techniques to electromagnetic problems have 

been made in the military and biological fields as well as in medicine, electrical engineering, 

and the earth sciences. Numerical modeling of GPR has involved determining: (i) radiation 

characteristics of different types of antenna, (ii) near-field interactions between antennas and 

the subsurface, including the effects of guided phases (e.g., inside boreholes), (iii) antenna 
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coupling on rough terrain, (iv) effects of scattering, (v) optimization of antenna designs, and 

(vi) radar survey design and optimization (e.g., Goodman, 1994; Carcione, 1996; Taflove and 

Hagness, 2000; Lampe and Holliger, 2003; Irving and Knight, 2005; Ernst et al., 2006). 

1.2.2. PRACTICAL ASPECTS OF GPR DATA ACQUISITION  

GPR acquisition techniques may be grouped into four major categories: 

1. The most common configuration is the surface-to-surface surveying geometry (Figure 

1.3a), in which both antennas (shielded or unshielded) are moved across the ground in 

a common-offset-configuration (i.e., antenna spacing remains fixed). To determine the 

antenna locations, odometers, GPS's, theodolites or laser positioning systems may be 

used (e.g., Lehmann and Green, 1999; Grasmueck and Viggiano, 2007). 

2.  In single-hole GPR measurements, the transmitter and receiver antennas are moved 

along a borehole in a common-offset-configuration. The locations of the antenna pair 

in the borehole are typically obtained from distance measurements made with 

odometers. This acquisition geometry is useful for detecting steeply dipping targets 

that are difficult or impossible to image using surface-acquisition systems. If non-

directional antennas are employed, independent constraints are needed to determine 

the true locations of the reflectors (Olsson et al., 1992; Spillmann et al., 2007). 

3. Vertical radar profiling (VRP) requires one antenna in a borehole and the other on the 

surface. Measurements using this configuration supply estimates of media parameters 

and structures within 1-2 m of the borehole (Figure 1.3b). VRP data allows steeply 

dipping reflectors and the natural layering of the subsurface to be imaged (e.g., 

Spillmann et al., 2007). A major drawback of this configuration is that the large 

radiation angles (i.e., the angles between the horizontal and the radiation directions) 

when combined with the radiation characteristics of typical dipole-type borehole GPR 

antennas (see Chapter 2) may result in low signal-to-noise data. 

4. Having access to two boreholes enables crosshole GPR data to be acquired (Figure 

1.3c). Transmitting radar energy in one borehole and recording it in a neighboring 

borehole yields data that are capable of producing high-resolution images of the media 

parameters between the boreholes. This acquisition configuration can also be used to 

image dipping reflectors (e.g., Olsson et al., 1992). 
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Data recorded using all four recording geometries contain transmitted/refracted, reflected, 

diffracted, and scattered energy. 

 

1.2.3. PROCESSING AND INVERSION OF GPR DATA 

1.2.3.1. REFLECTION PROCESSING 

Reflections in GPR data can be processed using approaches similar to those developed 

for reflection seismic data (e.g., Fokkema, 2003; Gross et al., 2003; Heincke et al., 2004; 

Jung-Ho et al., 2005; Streich et al., 2007). Important steps include (i) different types of 

filtering to reduce noise and enhance the signal, (ii) corrections for topography, (iii) 

deconvolution, and (iv) migration. Despite the many similarities between elastic and 

electromagnetic waves, certain seismic data processing algorithms cannot be applied directly 

to GPR data; they need to be modified to account for the vectorial nature of radar waves and 

the antenna radiation characteristics (see Chapter 2). 

1.2.3.2. DETERMINISTIC ALGORITHMS: INVERSION OF TRANSMISSION GPR 

DATA 

It is generally difficult to extract media properties (i.e., dielectric permittivity and 

electrical conductivity) from reflection data. In contrast, such properties can be estimated 

from transmission data by inverting appropriate parts of the recorded traces (e.g., first-arrival 

traveltimes, first-cycle amplitudes or data that correspond to selected frequencies) or the 

entire data set. In some cases, in which no explicit formulation of the underlying physics is 

Figure 1.3: Different acquisition geometries: (a) Surface to surface profiling, (b) vertical radar profiling 
(VRP) and (c) crosshole radar surveying. 
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required or ad-hoc corrections are sufficient (e.g., ray-based inversion of first-arrival 

traveltimes and first-cycle amplitudes), it is possible to apply common inversion routines to 

seismic and GPR data. 

Geophysical inverse theory presupposes a physical model that relates the observed 

data with the unknown media parameters. Depending on the complexity and size of the 

inverse problem to be solved, the governing mathematical theory can be formulated using a 

variety of schemes (Tarantola and Valette, 1982; Pratt et al., 1998; Tarantola, 2005), the most 

common of which are: 

(i) Linear and non-linear least-squares approaches using direct solvers. To apply these 

approaches, it is necessary to have linear or linearized models that link the data and 

model parameters. When necessary, linearization is achieved by considering only the 

first-order terms (i.e., first derivatives) of a Taylor-series representation of the physical 

model. Typically, the mathematical formulation requires the explicit computation of 

the Jacobian (i.e., sensitivity) matrix and its inverse. 

(ii) Non-linear least-squares approaches based on descent-type solvers (e.g., conjugate 

gradient). These approaches are closely related to non-linear least-squares approaches, 

but they have the advantage of not requiring the explicit computation of the Jacobian 

matrix, thus making it possible to address very large problems, such as those required 

for full-waveform time-domain inversions. 

(iii) Full Newton algorithms. Approaches (i) and (ii) only involve first-order terms (in 

particular, the first derivatives), such that in certain circumstances the inversions may 

be slow and somewhat inaccurate. By including first- and second-order derivatives 

(i.e., the Hessian matrix), faster and more accurate Full Newton algorithms may be 

possible. An inherent drawback of full Newton algorithms is the significant extra 

mathematical complexity and the associated costly computations. 

(iv) Gauss-Newton and quasi-Newton algorithms. Simplifying the Hessian matrix results 

in the Gauss-Newton algorithm, which is similar to non-linear least-squares 

formulations. Since computations of the full Jacobian matrix are expensive, various 

approximations are employed (e.g., as in the quasi-Newton approach). 

Inversion of seismic and GPR data requires the corresponding wave equations to be 

evaluated. An overview of different inversion techniques is provided in Chapter 3. They 
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include ray-theoretical (e.g., Olsson et al., 1992), Born-iterative (e.g., Chew and Wang, 1990), 

diffraction (e.g., Cui and Chew, 2000), wave-equation traveltime (e.g., Cai et al., 1996), and 

full-waveform (e.g., Moghaddam et al., 1991; Pratt et al., 1998) tomography approaches. 

1.2.3.3. NON-DETERMINISTIC ALGORITHMS: STOCHASTIC EVALUATION OF 

GPR DATA 

Non-deterministic (i.e., stochastic or Monte Carlo) methods involve testing a large 

number of randomly or pseudo-randomly chosen models. These methods are suitable for 

solving highly non-linear problems. Tarantola (2005) provides a thorough review of these 

methods. I only mention the simulated annealing method, which has its origins in 

thermodynamics. Heating a solid until it melts and then letting it cool very slowly yields a 

perfect crystal, which is distinguished by having the lowest possible energy state. Adapted to 

geophysical problems, the goal is the same: to find the one model that represents the 

minimum state of energy. Applications of simulated annealing methods to the inversion of 

GPR data have been reported by Gibert et al. (2004), Cassiani et al. (2004) and Tronicke and 

Holliger (2005). Although stochastic methods are appropriate for strongly non-linear 

problems, their use is often limited by their high computational costs. 

1.2.4. ADVANTAGES AND PROBLEMS ASSOCIATED WITH THE GPR METHOD 

GPR has become a popular method for probing the subsurface. Acquisition of surface 

GPR data requires much less effort than that needed to generate and record surface seismic 

data, whereas the acquisition of seismic and GPR borehole and crosshole data requires 

comparable expenditures of field effort.  

The broad band of frequencies employed in GPR allow small shallow targets and large 

moderately deep features to be investigated (Figure 1.2b). The method requires contrasts in 

dielectric permittivity and/or electrical conductivity. If the conductivities are too large at any 

location or depth (Equation 1.1), the GPR waves are rapidly attenuated and, as consequence, 

do not reach the receiver. Furthermore, reflections and diffractions from conductive objects 

on the surface (e.g., wires, trees, and vehicles) may overwhelm the subsurface images, in 

particular when non-shielded or inadequately shielded antennas are employed. Unfortunately, 

shielded antennas usually produce ringy and generally weaker signals. 

Difficulties may arise in the processing and inversion of GPR data. The radiation 

characteristics of GPR transmitter and receiver antennas are strongly dependent on direction, 
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which contrasts markedly with the spherical or quasi-spherical radiation patterns generated by 

seismic sources (Figure 1.4). Correct imaging of GPR data requires the antenna radiation 

patterns to be included in the migration/inversion algorithms. 

 

1.3. GOALS OF THIS THESIS 

The main goal of my thesis is the development of a full-waveform inversion scheme 

for crosshole GPR data. Standard ray-based inversion schemes use only up to two pieces of 

information per recorded trace: the first-arrival traveltime and the maximum amplitude. The 

newly developed scheme allows the entire or significant parts of the recorded data to be 

inverted. As a consequence of including much more information in the inversion process, 

waveform tomograms contain higher resolution structural information and better constrained 

contrasts in media parameters than ray tomograms. Estimates of key petrophysical and 

Figure 1.4: (a) and (b) Radiation characteristics of dipole-type GPR antennas with axis 
oriented in y-direction. (a) x-z plane and (b) y-z plane. (c) and (d) Radiation characteristics 
of a point seismic source. (c) x-z plane and (d) y-z plane. 
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hydrogeophysical parameters can be readily derived from the tomograms. In this way, 

geophysicists and non-geophysicists can better characterize the subsurface. 

An inherent limitation of my time-domain approach is computational. It requires 

access to a cluster-type supercomputer. The choice of a time-domain approach was based on 

my experience in the field of time-domain modeling, the simplicity of the inversion 

formalism, and the straightforward nature of the data visualization. 

The first two years of my project were concerned with developing and benchmarking a 

numerical modeling algorithm that allowed the radiation characteristics of borehole GPR 

antennas to be analyzed. A local grid refinement technique enabled me to represent fine 

details of the transmitter antennas embedded in much coarser grids representing the 

geological media. The algorithm was tested on extensive synthetic and observed crosshole 

GPR data. The results of this research are contained Chapter 2 (Realistic FDTD modeling of 

borehole georadar antenna radiation: methodology and application), which has been 

published in Near Surface Geophysics. 

Originally, I planned to implement the algorithm presented in Chapter 2 in the full-

waveform inversion scheme. However, using a cylindrical coordinate system in a full-

waveform inversion scheme would only be practical in rare cases, namely because 

transmitters need to be located on the cylinder rotation axis (i.e., generally useless for the 

back-propagation part). Consequently, for the forward component of the scheme I developed 

a finite-difference time-domain algorithm in Cartesian coordinates. For the inversion 

component, I modified various algorithms originally developed for the full-waveform 

inversion of seismic data. The new scheme allows vertical-component electric-field GPR data 

to be inverted. To solve the forward problem numerous times, I wrote the code to run on 

parallel computer systems. As consequence, wave propagation generated by all borehole 

transmitters is simultaneously simulated, such that the total time required is practically the 

same as that needed to compute wave propagation due to a single transmitter on a single CPU. 

The theoretical basis and application of the full-waveform inversion scheme to increasingly 

complex 2-D synthetic data are presented in Chapter 3 (Full-waveform inversion of crosshole 

radar data based on 2-D finite-difference time-domain (FDTD) solutions of Maxwell’s 

equations), which has been published in IEEE Transactions on Geosciences and Remote 

Sensing. 
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A comprehensive test of the new scheme applied to two very different field data sets is 

the principal goal of Chapter 4 (Application of a new 2-D time-domain full-waveform 

inversion scheme to crosshole radar data). Developing a method for (i) inverting 3-D data 

using a 2-D algorithm that accounts for 3-D antenna radiation characteristics and 3-D media 

parameter variations and (ii) estimating the unknown source wavelet from the measured data 

were specific challenges of this component of my thesis. Chapter 4 has been published in 

Geophysics. The results of testing the 3-D to 2-D transformation scheme are presented in 

Appendix A. 

Chapter 5 contains a brief review of the work presented in Chapters 2 to 4 and some 

general conclusions. Finally, I outline several related topics that are worth pursuing. 



 

15 

 
 
 

CHAPTER 2  
 

REALISTIC FDTD MODELLING OF BOREHOLE GEORADAR 

ANTENNA RADIATION: METHODOLOGY AND APPLICATION 
 

Jacques R. Ernst, Klaus Holliger, Hansruedi Maurer and Alan G. Green 

 

 

 

 

 

 

 

 

 

 

 

 

Slightly modified from the published version. 

 

Published in: Near Surface Geophysics, 4, 2006, 19-30 



CHAPTER 2: PAPER 1 16 

2.1. ABSTRACT 

High-frequency electromagnetic-wave propagation phenomena associated with 

borehole georadar experiments are complex. To improve our understanding of the governing 

physical processes and radiative properties of borehole georadar antenna systems, we have 

developed a modeling tool based on a finite-difference time-domain (FDTD) solution of 

Maxwell’s equations in cylindrical coordinates. The computational domain is bounded by 

cylindrical symmetry conditions along the left edge of the model and uniaxial perfectly 

matched layer (UPML) absorbing boundary conditions along the top, bottom and right model 

edges. An accurate and efficient grid-refinement technique allows us to account for detailed 

aspects of borehole georadar antenna systems, slim boreholes and materials with very high 

dielectric permittivities, such as water. Numerical experiments reveal that the radiation 

patterns of finite-size Wu-King-type antennae and infinitesimal electric dipoles in dry 

boreholes differ only slightly from the analytic solution of an infinitesimal electric dipole in a 

homogeneous full-space. In contrast, there are substantial differences between the radiation 

patterns of antennae placed in water-filled boreholes and their analytic full-space equivalents 

without boreholes. The effects of placing the antennae in air- and water-filled boreholes are 

explored using data acquired in crystalline rock and alluvial sediments, respectively. In both 

cases, simulations based on realistic transmitter antennae located in boreholes and spatially 

corrected receiver radiation patterns provide better agreement between the observed and 

modeled data than simulations based on infinitesimal transmitter and receiver dipoles. 

2.2. INTRODUCTION 

Cross-hole georadar is an increasingly popular method for high-resolution probing of 

the shallow subsurface. A typical experimental setup consists of transmitter and receiver 

dipole-type antennae located in neighboring boreholes (Peterson, 2001). Tomographic 

inversions of cross-hole georadar traveltimes and amplitudes provide information about the 

dielectric permittivity and the electric conductivity structures, respectively (Olsson et al., 

1992). This information allows us to constrain the distributions of important environmental, 

engineering and hydrological parameters (e.g. porosity, water content, salinity, clay fraction, 

ore grade) within the probed region (Topp et al., 1980; Fullagar et al., 2000). 

The tomographic inversion of cross-hole georadar traveltimes is analogous to the well-

established seismic approach and is considered to be correspondingly robust. In contrast, ray- 

and waveform-based inversions of cross-hole georadar amplitudes require a priori knowledge 
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about the radiative properties of the borehole antennae. A common approach is to assume that 

the radiation pattern of a dipole-type borehole antenna can be represented by the far-field 

radiation pattern of an infinitesimal electric dipole in a homogeneous medium (Olsson et al., 

1992; Peterson, 2001). To test the validity of this approximation, Holliger and Bergmann 

(2002) explored the effects of boreholes and their filling media on the radiative properties of 

infinitesimal electric dipole transmitters located within the boreholes. They found that air-

filled boreholes only cause minor distortions of the radiation pattern with respect to the 

analytical full-space equivalent, whereas water-filled boreholes fundamentally alter the 

radiative behavior. Since many boreholes are water-filled, this may have important 

implications for the inversion of cross-hole georadar amplitude data. However, it is not clear 

to what extent these results can be extended to finite-length borehole georadar antennae.  

To answer this question, we have developed a versatile finite-difference time-domain 

(FDTD) solution of Maxwell’s equations in cylindrical coordinates that is capable of 

accurately simulating typical borehole georadar antenna systems under realistic operating 

conditions. We first employ the algorithm to investigate the radiation characteristics of 

resistively loaded borehole georadar antennae in air- and water-filled boreholes. It is then 

used to model high-quality cross-hole georadar waveforms recorded in (i) dry crystalline 

rocks (NAGRA’s Grimsel Rock Laboratory in Switzerland) and (ii) a water-saturated 

heterogeneous alluvial aquifer (Boise Hydrogeophysical Research Site in Idaho, USA). 

2.3. METHODOLOGY 

The inherent cylindrical geometry of boreholes and georadar antennae favors the use 

of a rotationally symmetric cylindrical-coordinate system. This reduces the computational 

cost to that of a 2D problem, while correctly accounting for the 3D geometrical spreading and 

radiation characteristics of dipole-type transmitters. The assumption of cylindrical symmetry 

does, however, imply that the model exhibits rotational symmetry, that the transmitters can 

only be located on the symmetry axis and that the borehole axis always coincides with the 

symmetry axis. For these reasons, only the transmitters can be modeled explicitly. The 

corresponding radiative properties of the receivers have to be approximated. This latter is 

achieved by either considering only the vertical component of the transmitted electric field or 

applying a spatial correction factor that represents the correct radiation characteristics 

(described briefly in the Case Studies section). 
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Transforming Maxwell’s equations from 3-D Cartesian coordinates to 2-D rotationally 

symmetric cylindrical coordinates yields two sets of equivalent coupled partial-differential 

equations known as the transverse electric (TE) mode equations: 
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and the corresponding transverse magnetic (TM) mode equations: 
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with E and H the electric and magnetic field components in radial (r), vertical (z) and 

azimuthal (ϕ) directions, ε the dielectric permittivity, σ electric conductivity and µ the 

magnetic permeability. In a typical borehole georadar setup, we are primarily interested in the 

electric field component parallel to the borehole axis and hence use the TE-mode equations. 

The equations are discretized using a staggered leap-frog finite-difference scheme that is 

second-order accurate in both time and space (Yee, 1966; Holliger and Bergmann, 2002). The 

criteria controlling numerical dispersion and stability of this O(2,2)-accurate solution are 

identical to those of corresponding FDTD schemes in 2D Cartesian coordinates (i.e., Courant 

criterion; see also Bergmann et al., 1996; Holliger and Bergmann, 2002): 
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where max min 0c ε µ=  is the maximum phase velocity in the finite-difference grid, with εmin 

being the lowest value of the dielectric permittivity and ∆t, ∆r and ∆z are discretized intervals 

corresponding to t, r and z in (2.1a) to (2.1c) and (2.2a) to (2.2c). In the following, we assume 

equal grid dimensions in radial and vertical directions (i.e., ∆r = ∆z). 

To avoid artificial reflections from the model boundaries, we apply cylindrical 

symmetry conditions along the left model edge and absorbing conditions along the top, 

bottom and right model edges (Figure 2.1). The symmetry conditions are realized by 

mirroring the electric and magnetic field components in the immediate vicinity of the 

cylindrical symmetry axis. For the absorbing boundary conditions, we use the perfectly 

matched layer approach for a lossless uniaxial anisotropic medium (Berenger, 1994; Gedney, 

1996; Taflove and Hagness, 2000). Our uniaxial perfectly matched layer (UPML) method is 

suitable and computationally efficient for lossless dielectric media, but also works well for 

electrically resistive heterogeneous media (Appendices 2.A and 2.B). 

The realistic simulation of georadar antenna radiation requires accurate discretization 

of small intricate structures. Doing this with a uniform grid would result in enormous 

computational costs, because most of the model would be excessively oversampled. This 

problem can be addressed through grid-refinement techniques, either based on subgridding 

algorithms (e.g., Umashankar et al., 1987; Chevalier et al., 1997) or through a locally refined 

Figure 2.1: Sketch of model configuration in a 
cylindrical-coordinate system. RG: refined grid; 
NG: normal grid; A-A’: border between normal 
and refined grid; UPML: uniaxial perfectly 
matched layer absorbing boundary. Zoom 1 shows 
an example of interpolation between the coarse and 
fine grids (crosses: radial electric field; circles: 
vertical electric field; triangles: azimuthal magnetic 
field). Red components are interpolated, with the 
red arrows identifying the contributing components 
(for display purposes, field components along line 
L1 and L2 are displayed apart, i.e., L1 and L2 are 
coincident). Zoom 2 shows the discretization of a 
realistic insulated antenna within a borehole. B: 
borehole; I: insulation; M: metallic antenna rods. 
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grid (e.g., Falk et al., 1996; Robertsson and Holliger, 

1997). We employ the latter approach because of its 

inherent simplicity and suitability for accommodating 

regions with unusually low velocities, such as water-filled 

boreholes. The refinement is achieved by splitting the 

spatial cells (leaving the temporal discretization 

unchanged), such that the normal-grid spacing is an integer 

times the refined-grid spacing. Depending on the integer 

refinement factor and the sequence of the TE-mode 

equations in our algorithm, either the azimuthal magnetic 

field components (odd refinement factors) or the azimuthal 

magnetic and vertical-electric field components (even 

refinement factors) have to be interpolated. The different interpolation approaches are a 

consequence of the staggered-grid layout. When employing odd integer refinement factors, 

field components to be interpolated only occur on vertical lines of the mesh. If even 

refinement factors are used, field components need to be interpolated on horizontal and 

vertical grid-lines. 

The grid-refinement concept is illustrated in Figure 2.1 (Zoom 1) for a refinement 

factor of 3. Compared to the linear interpolation method used by Robertsson and Holliger 

(1997), the third-order Lagrange interpolation scheme (J.O.A. Robertsson 2003, pers. comm.) 

employed in our study provides a significant (i.e., up to one order-of-magnitude) reduction in 

the artificial reflectivity of the boundary between the normal and refined grids without 

markedly increasing the computational cost. We have successfully tested this approach for 

refinement factors up to 5. 

Using this refinement technique, a wire- or rod-type dipole antenna can be explicitly 

discretized (Figure 2.1, Zoom 2). The antenna is excited by feeding a compact Gaussian 

voltage pulse into its central gap: 
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where V0 is the peak amplitude of the pulse, g 2τ  is the time the pulse needs to reach its 

maximum amplitude and pτ  is the pulse width for V(t) = V0e-0.5. 

Figure 2.2: Sketch of resistance 
distribution along metallic antenna 
rods of PEC- and Wu-King-type 
antennae with h0 denoting the 
distance from the central gap to the 
outer edge of the antenna rod (i.e., 
the arm length). 
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A wide variety of borehole georadar antennae can be simulated by simply changing 

the properties of the cells representing their metallic parts. For example, undamped perfect 

electrical conductor (PEC) antennae can be approximated by using very high conductivities 

(e.g. ~5×107 S/m for copper). This corresponds to near-zero resistivity in the cells defining the 

metallic parts (Figure 2.2). PEC antennae can be regarded as an end-member design of typical 

georadar antennae. A more realistic end-member antenna design was proposed by Wu and 

King (1965). In their antennae, the resistive loading increases continuously from the feeding 

point towards the antenna edges (Figure 2.2), thus eliminating internal reflections or ‘ringing’ 

typical of PEC or weakly damped antennae. 

2.4. APPLICATION TO AIR- AND WATER-FILLED BOREHOLES 

Before applying our simulation scheme to air- and water-filled boreholes, extensive 

testing was carried out to validate the simulation algorithm and determine the performance of 

the grid-refinement technique and UMPL absorbing boundaries. The results of key 

benchmark tests are presented in Appendix 2.B. 

Our test model space (medium model) is 5.5 m wide and 9 m deep with an UPML-

frame thickness of 30 cells (Figure 2.3). The material properties of the model are those of 

moist sand (ε = 10ε0, µ = µ0, σ = 5 mS/m). A grid-

refinement factor of 3 is used and the boundary 

between the refined (2 mm) and normal (6 mm) grids 

is located at a radial distance of 0.3 m from the 

cylindrical symmetry axis. Unless mentioned 

otherwise, a 5 cm radius borehole is centered along 

the cylindrical symmetry axis. 

The new algorithm was used to compute the 

radiative properties of an insulated Wu-King-type 

antenna and a non-insulated infinitesimal electric 

dipole located in a homogeneous half-space (Figure 

2.4) and located in air- and water-filled boreholes 

situated within a homogeneous half-space (Figures 2.5 

and 2.6). The radiation patterns are quantified in terms 

of the radial component of the time-averaged 

Figure 2.3: Sketch of medium model 
used for computing radiation patterns. 
RA: receiver array; rA: radiation angle; 
T: transmitter.
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Poynting vector ( = ×S E H ), which is a measure of the emitted energy (Lampe and 

Holliger, 2005). For comparison purposes, Figures 2.4-2.6 also show the analytical radiation 

pattern of an infinitesimal electric dipole located in a homogeneous full-space, which is the 

model commonly used for the tomographic inversion of cross-hole georadar amplitude data. 

A summary of all antenna and medium models is given in Table 2.1. 

 

2.4.1. ANTENNA IN A HOMOGENEOUS HALF-SPACE 

The metallic wire of our Wu-King-type antenna model has a total length of 0.4 m 

(corresponding to an arm length h0 of 0.2 m), a radius of 2 mm and exhibits a hyperbolic 

resistivity distribution. It is surrounded by insulating material (ε = 4ε0, µ = µ0, σ = 0 mS/m) 

Table 2.1: Summary of models used to benchmark our borehole simulation tool. +: considered, -: not 
considered. 

Antenna
models

Medium 
models 

Infinitesimal 
dipole: 
analytic 
solution 

Insulated 
Wu-King 
antenna 

PEC antenna: 
numerical 

and analytic 
solutions 

Infinitesimal 
dipole: 

numerical 
solution 

Figures

Homogeneous half-
space 

+ 
(in all figures) + - + 2.4 

Homogeneous half-
space with air-filled 

borehole 
- + - + 2.5 

Homogeneous half-
space with water-

filled borehole 
- + - + 2.6 

- - - + 2.12-
2.14 Homogeneous half-

space 
+ - + - 2.15 

Figure 2.4: (a) Snapshot of the vertical-
component electric field after 51 ns for an 
insulated Wu-King-type antenna with a 
resonance frequency of ~200 MHz in a 
homogeneous full-space. (b) Numerical 
energy radiation patterns for the same 
antenna (blue line) and an infinitesimal 
electric dipole antenna without insulation 
(red line; not visible due to near-perfect 
overlap with other solutions) compared to the 
analytic full-space radiation pattern for an 
infinitesimal electric dipole (dotted black 
line). All patterns are normalized to their 
maximum values at 90°. 
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that exceeds the length of the antenna rod by 0.1 m on either side and has a radius of 12 mm 

(these characteristics are typical for some commonly used field antennae; A.P. Annan 2002, 

pers. comm.). Figure 2.4 demonstrates that the full-space radiative properties of an insulated 

Wu-King-type antenna in a homogeneous half-space (blue line) is very similar to the 

numerical (red line) and analytical (dotted black line) radiation patterns of an infinitesimal 

dipole located in the same medium. 

2.4.2. ANTENNAE IN AN AIR-FILLED BOREHOLE 

Figure 2.5 demonstrates that 

the fundamental result obtained for an 

insulated antenna in a homogeneous 

environment remains essentially valid 

in the presence of an air-filled 

borehole (ε = ε0, µ = µ0, σ = 0 mS/m). 

Only minor differences between the 

numerical and analytical radiation 

patterns are observed (Figure 2.5b). 

The maximum radiated energy is, 

however, over 36% less than for the corresponding homogeneous full-space environment. 

2.4.3. ANTENNAE IN A WATER-FILLED BOREHOLE 

By comparison, the presence 

of a water-filled borehole (ε = 80ε0, 

µ = µ0, σ = 0.5 mS/m) significantly 

influences the character of the 

snapshot and the radiation pattern 

(Figure 2.6). The snapshot indicates 

that a significant amount of energy is 

trapped in the borehole. Guided waves 

travel along the borehole with a 

velocity close to that of the 

surrounding medium, radiating continuously into this medium. Consequently, a water-filled 

borehole can be regarded as an extended antenna. Receivers close to the transmitter borehole 

record much more energy as a result of the guided phases. This yields radiated energy that 

increases markedly (Figure 2.6b) with decreasing radiation angle (i.e., near 0° and 180°). The 

Figure 2.5: As for Figure 2.4, but the numerical solutions 
are for antennae in an air-filled borehole. 

Figure 2.6: As for Figure 2.4, but the numerical solutions 
are for antennae in a water-filled borehole 
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radiation pattern of the insulated, finite-length antenna is again reasonably well approximated 

by that of a non-insulated infinitesimal electric dipole in the same medium, but differs 

fundamentally from the corresponding analytical full-space radiation pattern. Additional tests 

(not shown here) demonstrated that the overall shapes of the radiation patterns are not 

affected by the length of the recording used to evaluate the time-averaged Poynting vector. 

The maximum radiated energy is again significantly (i.e., ~18%) reduced by the presence of 

the borehole. 

In summary, our simulations indicate that the results of Holliger and Bergmann (2002) 

for an infinitesimal electric dipole in air- and water-filled boreholes are valid for Wu-King-

type antenna systems. This has implications for full-waveform modeling/inversion of 

borehole georadar data, as we shall demonstrate by modeling selected parts of two cross-hole 

georadar data sets collected in very different environments. 

2.5. CASE STUDIES 

2.5.1. GRIMSEL ROCK LABORATORY 

We have acquired a cross-hole georadar data set within the NAGRA (Swiss 

Cooperative for the Storage of Nuclear Waste) Grimsel Rock Laboratory in the central Swiss 

Alps. The two 10 cm diameter subparallel boreholes were ~20 m long, sub-horizontal, air-

filled and ~10 m apart. Previous geological, geomechanical and seismic investigations of the 

Figure 2.7: (a) Sketch of the cross-hole georadar experiment performed at the Grimsel site (Switzerland) 
superimposed on a structural cross-section (modified from Majer et al., 1990). Thick black lines: horizontal 
boreholes. REC and TRC indicate receiver and transmitter locations. Ray-based (b) velocity and (c) 
attenuation tomograms. Np refers to the neper, unit of dimensionless ratio.
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area between these boreholes (Majer et al., 1990) revealed the presence of a major cross-

cutting shear zone (Figure 2.7a). 

The cross-hole georadar survey was carried out using 250 MHz RAMAC borehole 

georadar antennae with the transmitter antenna located in borehole B2 and the receiver 

antenna located in borehole B1 (Figure 2.7a). The data were recorded using transmitter and 

receiver intervals of ~0.5 m. There were a total of 40 transmitter and 41 receiver positions, 

resulting in ~1600 traveltimes and amplitudes. Good ray-coverage was obtained over an 

angular range of ~30°-150° with respect to the borehole axis. 

The first-arrival traveltimes were picked semi-automatically and tomographically 

inverted using an algorithm based on a finite-difference solution of the Eikonal equation 

(Lanz et al., 1998). To estimate the maximum first-cycle amplitudes of the data, we computed 

the envelope of each trace and picked the corresponding maximum. Standard ray-based 

inversion of the amplitude data (Holliger et al., 2001) was performed using the radiation 

pattern of an infinitesimal vertical electric dipole and the raypaths obtained from the inversion 

of the traveltimes. Figure 2.7(b,c) shows the resulting velocity and attenuation structures. 

Lateral variations of velocity and attenuation were rather moderate, amounting to ~2% and 

~20%, respectively. 

The corresponding dielectric permittivity and electric conductivity distributions were 

obtained by applying high-frequency approximations for the electromagnetic velocity v and 

attenuation α: 

2

0

1 vε
µ

−≈  (2.5a) 

and 

0

2 εσ α
µ

≈  (2.5b) 

The inferred dielectric permittivity and conductivity structures were then used to 

generate synthetic cross-hole georadar data with our FDTD simulation tool. In the 

simulations, the transmitting and receiving antennae were represented by insulated Wu-King-

type antennae. The wavelet was determined by first averaging the central traces of all source 

gathers and then extracting the first-cycle of the resulting signal (Zhou et al., 1997). 
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As an example of our simulations, we consider the source gather generated by the 

transmitter antenna located at TRC 20 in the centre of borehole B2 (Figure 2.7a). As 

mentioned in the Methodology section, only the transmitter antenna and borehole can be 

modeled explicitly. A correction is used to account for the receiver antenna and borehole. 

This is achieved by applying correction factors to all synthetic traces based on the radiation 

characteristics of an insulated Wu-King-type antenna located in an air-filled borehole (e.g. as 

shown in Figure 2.5). The receiver locations in the numerical model are set at those used to 

record the data in borehole B1 (Figure 2.7a). 

In Figure 2.8(a), we compare every second observed trace with its simulated 

counterpart. Both the observed and the simulated data are normalized with respect to the 

corresponding maximum amplitude of trace 21. Overall, the agreement between the 

traveltimes, amplitudes and shapes of the observed and simulated traces is excellent over the 

first cycles of the traces. The somewhat larger mismatch for trace 41 may be due to the fact 

that the tunnel wall in the immediate vicinity of this recording is crossed by a large number of 

electric wires and metallic pipes. Similarly good agreement between observed and synthetic 

source gathers is obtained for sources at other locations (not shown). Somewhat surprisingly, 

the boundaries between the different types of granodiorite and the presence of the shear zone 

do not greatly influence the general pattern of uniformly increasing traveltimes and uniformly 

decreasing amplitudes away from the central traces. 

Figure 2.8: Comparison 
of every second 
observed (black lines) 
and modeled (red lines) 
trace for transmitter 
TRC 20 in the cross-
hole georadar exper-
iment shown in Figure
2.7. Simulations are 
computed for (a) an 
insulated Wu-King-type 
transmitter located in an 
air-filled borehole and 
(b) an infinitesimal 
electric dipole trans-
mitter without a bore-
hole. All traces are 
normalized with respect 
to the maximum values 
of the central trace 21. 
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For comparison, we have repeated this simulation using infinitesimal electric dipole 

approximations for the transmitter and receivers. The results (Figure 2.8b) for the first cycle 

of the simulated signal are similar to those obtained for the finite-length-antenna simulations. 

Following the first cycles, the match between observed and synthetic traces is somewhat 

better in Figure 2.8(a) than in Figure 2.8(b), but neither antenna implementation explains the 

detailed characteristics of the observed data. This is consistent with the fact that the model 

used for the FDTD simulations is based on a ray-theoretical inversion of the traveltimes and 

amplitudes, which only accounts for the direct transmitted part of the wavefield, ignoring the 

effects of scattering. Waveform-based inversion approaches are needed to explain the 

observed data beyond the first arriving wavetrain. As Pratt (1999) and Pratt and Shipp (1999) 

showed for seismic data, such approaches should enhance the resolution of the tomographic 

images substantially. 

2.5.2. BOISE HYDROGEOPHYSICAL SITE 

The second cross-hole georadar data set was acquired at the Boise Hydrogeophysical 

Research Site near Boise, USA (Tronicke et al., 2004). The two 10.2 cm diameter boreholes 

C5 and C6 were 20 m deep, separated by 8.5 m and slightly tilted with respect to the vertical 

(Figure 2.9a). They penetrated unconsolidated heterogeneous braided river deposits with 

layers characterized by varying degrees of porosities (22-26%, in Figure 2.9a; Clement et al., 

1999; Barrash and Clemo, 2002). The water table was at 2.96 m depth. 

Data acquisition started at a depth of about 4 m using a 250 MHz RAMAC borehole 

georadar antenna system. Transmitter and receiver antennae were moved at intervals of 0.2 

and 0.4 m, respectively. This resulted in a total of 3080 traces, of which 2064 were employed 

Figure 2.9: (a) Sketch of the cross-hole georadar experiment at the Boise site (Idaho). Thick black lines: 
near-vertical boreholes; REC and TRC indicate receiver and transmitter locations. Ray-based (b) velocity and 
(c) attenuation tomograms (Tronicke et al., 2004). Np refers to the neper, unit of dimension-less ratio. 
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for the inversion process (Tronicke et al., 2004). Dense ray coverage was obtained over an 

angular range of ~35°-145° with respect to the borehole axis. Figure 2.9(b,c) demonstrate that 

velocity and attenuation variations were comparable to the previous case study, amounting to 

~3% and ~19%, respectively. 

We estimated the distribution of electromagnetic material properties between the two 

boreholes and the source wavelet in the same manner as for the previous case study. We also 

used Wu-King-type antennae for the simulations and, again, accounted for the effects of the 

receiver antenna and borehole using a series of correction factors based on our forward 

calculations (e.g. Figure 2.6). Two source gathers generated by the transmitter antennae 

located at TRC 13 and 20 were considered (Figure 2.9b,c). TRC 13 was located within a 

seemingly homogeneous region, whereas TRC 20 was close to the boundary between two 

units with quite different porosities, allowing us to study the influence of this boundary. 

In Figures 2.10 and 2.11, we show a comparison between every third observed and 

simulated trace for transmitters located at TRC 13 and 20. All amplitudes are scaled relative 

to the maximum amplitudes of traces 25 and 37, respectively. For source gather TRC 13, the 

match between the observed and synthetic waveforms is comparable to that obtained in the 

previous case study (Figure 2.8a). Again, a somewhat degraded fit to the observed data was 

achieved when approximating the transmitter and receivers as infinitesimal electric dipoles 

(Figure 2.10b). 

Figure 2.10: Comparison
of every third observed 
(black lines) and modeled 
(red lines) trace for 
transmitter location TRC 
13 in the experiment 
shown in Figure 2.9. 
Simulations are computed 
using (a) an insulated Wu-
King-type transmitter 
located in a water-filled 
borehole and (b) an 
infinitesimal electric 
dipole transmitter without 
a borehole. All traces are 
normalized with respect to 
the maximum value of the 
central trace 25. 
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The overall agreement between observed and modeled 

data is rather poor for source gather TRC 20 (Figure 2.11). 

We suspect that the velocity and attenuation models in the 

vicinity of TRC 20 are inaccurate as a result of inherent 

inadequacies of ray-based tomographic inversion schemes for 

resolving complex structures. The physical properties of a 

medium in the immediate vicinity of an antenna significantly 

influence its radiation characteristics (Holliger et al., 2001). 

This highlights once more the need for waveform-based 

inversion approaches for cross-hole georadar data. 

 

2.6. CONCLUSIONS 

We have developed a FDTD solution of Maxwell’s 

equations in cylindrical coordinates that is suitable for 

modeling the detailed radiation characteristics of finite-length 

borehole georadar antennae. The new algorithm could form the basis for (i) estimating more 

realistic radiation pattern corrections required for ray-based inversions of crosshole georadar 

amplitude data, (ii) developing full-waveform inversion methods, (iii) improving the planning 

of field experiments and (iv) designing new borehole georadar antenna systems. 

Our results suggest that previous work on the radiative properties of infinitesimal 

electric dipole transmitters in air- and water-filled boreholes extend to resistively loaded 

borehole georadar antennae. In particular, radiation patterns of insulated Wu-King-type 

antennae are closely approximated by those of an infinitesimal electric dipole located in the 

same transmitting or recording environment. Given that the design of many borehole georadar 

antennae is based on some form of progressive Wu-King-type resistive loading, this has 

implications for full-waveform modeling and inversions of borehole georadar data.  

We modeled the observed waveforms of two crosshole georadar data sets acquired in 

very different environments. Generally, the matches between the observed and simulated first-

cycles were excellent as long as the effects of the receiver antenna and borehole were 

correctly accounted for. As expected, the agreement between observed and modeled data was 

rather poor when the transmitter was located in a strongly heterogeneous part of the model. 

Figure 2.11: As for Figure
2.10(a), but for transmitter 
location TRC 20. Traces are 
normalized with respect to the 
maximum value of trace 37.
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For such regions, ray-based tomographic models are likely to be inadequate. Together with 

the poorly matched waveforms following the first recorded cycles on most traces, this points 

to the need for waveform-based inversion methods. Our algorithm represents a suitable basis 

for developing such approaches. 
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APPENDIX 2.A. UPML ABSORBING BOUNDARIES FOR CYLINDRICAL 

COORDINATE SYSTEMS 

Using a lossless uniaxial anisotropic medium as a perfectly matched layer (PML) 

allows the non-physical and rather cumbersome split-field notation (Berenger 1996) to be 

avoided. In 3D Cartesian coordinates, Maxwell’s curl equations for the PMLs can be written 

in the frequency domain as (Gedney, 1996; Taflove and Hagness, 2000) 

ˆ ˆj sωε∇× =H E  (2.A-1a) 

ˆ ˆj sωµ∇× =E H  (2.A-1b) 

where Ê  and Ĥ  are the electric and magnetic field vectors, j 1= − , ε is the dielectric 

permittivity, µ is the magnetic permeability, ω is the angular frequency and s  is the 2D 

diagonal relative PML medium tensor, with diagonal elements sϕsz/sr, srsz/sϕ and srsϕ/sz. This 

tensor is a function of ω, ε and σB, where σB is the boundary conductivity function. We 

choose this approach because of its low computational costs and its ability to reduce artificial 

boundary reflections efficiently (Appendix 2.B).  

Transforming (2.A1a) and (2.A1b) to a rotationally symmetric cylindrical-coordinate 

system yields a set of three coupled partial-differential equations: 

ˆ
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where the constitutive parameters sr, sz and sϕ are defined as 

( )B1
jq

q
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ωε

= +  for q = r, ϕ  and z. (2.A-3) 
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Following Gedney (1996), we define the boundary conductivity function of the PML 

frame as ( ) ( )B max
mq qσ σ δ=  , where m and δ are a polynomial exponent and the thickness 

of the PML frame, respectively. Optimal values for the exponent m are model dependent. 

They have to be determined empirically. For our purposes, values between 1.5 and 3.5 result 

in very low amplitude boundary reflections. The maximum conductivity σmax is constrained 

by analyzing the theoretical reflection error due to a perfect electrical conductor (PEC) wall 

surrounding the PMLs (Gedney, 1996). 

Transforming equations (2.A2a)-(2.A2c) to the time domain leads to convolutions 

between the parameters sr, sz and sϕ and the electromagnetic field components, which would 

be cumbersome to implement and computationally inefficient. To circumvent this problem, 

the constitutive relationships may be defined in a way that results in a decoupling of the 

frequency-dependent terms (Taflove and Hagness, 2000). In our case, this yields 

ˆ ˆz
r r
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sD E
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ε=  (2.A-4a) 

ˆ ˆ
z z

z
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D E

s
ϕε=  (2.A-4b) 

ˆ ˆrsB H
sϕ ϕ
ϕ

µ=  (2.A-4c) 

The set of equations that describe electromagnetic wave propagation in the uniaxial 

PML (UPML) absorbing boundaries in cylindrical coordinates can then be written as 

r
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with the corresponding constitutive relationships being defined as 
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Finally, (2.A5a)-(2.A5c) and (2.A6a)-(2.A6c) need to be discretized to obtain the 

FDTD update equations for the UPML absorbing boundary regions. Using the same staggered 

O(2,2)-accurate scheme as for the rest of the grid, this yields for the vertical component Ez of 

the electric field and the associated vertical electric flux-density Dz: 
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with ( ) ( )2 qC q q tε σ± = ± ∆  for q = r, ϕ  and z. 
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APPENDIX 2.B. RESULTS OF BENCHMARKS 

In the following numerical tests, we first 

evaluate the influence of the grid-refinement and 

the UPML absorbing boundaries on wavefields 

radiated by infinitesimal vertical electric dipoles. 

Then the overall validity of our antenna simulation 

algorithm is tested by calculating the radiation 

patterns for a PEC wire-type antenna. Both 

transmitter types are excited by a broad-band 

Gaussian voltage pulse [equation (2.4)]. We use a 

pulse with a total length gτ  of 8.1 ns and a width pτ  

of 0.4 ns, which for an infinitesimal electric dipole 

located in a vacuum corresponds to an emitted 

signal with a dominant frequency of ~500 MHz and 

a bandwidth of 2-3 octaves. Because of the different 

requirements for these benchmarks, two different 

medium models are employed. To test thoroughly 

the grid-refinement and UPML absorbing 

boundaries, we use various models of a vacuum (Figure 2.12 and Table 2.2), whereas the 

overall validity of our antenna simulation algorithm is explored using a realistic model of the 

ground (Figure 2.3, Tables 2.1 and 2.2). 

Table 2.2: Model parameters used for testing the grid-refinement, UPML absorbing boundaries and the 
overall validity of the antenna simulation algorithm. 

Grid-refinement UPML Bench-
marks

Model 
parameters 

Test 
model 

Reference 
model Test model Reference 

model 

Overall 
validity 

Size [m] 6 × 26 6 × 26 6 × 26 10 × 26 5.5 × 9 

Normal grid 
cell-size [mm] 12.5 2.5 12.5 12.5 6 

Refinement 
factor 3.5 1 1 1 3 

UPML [cells] 30 30 15, 20, 30 30 30 

Figure 2.12: Sketch of medium model used 
for evaluating the accuracy of the grid-
refinement scheme and the UPMLs. iA: 
incidence angle; RA1 and RA2: receiver 
arrays for the grid-refinement and UPML 
boundary tests, respectively; T: transmitter. 
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2.B-1. INFLUENCE OF THE GRID-REFINEMENT  

We use 6×26 m models of a vacuum 

(ε =ε0, µ = µ0, σ = 0 mS/m) for evaluating 

reflections associated with the grid-refinement 

(Tables 2.1 and 2.2). The normal grid-cell size in 

the test models is fixed at 0.0125 m (15 gridpoints 

per minimum wavelength) and refinement factors 

of 3 and 5 are considered. Results of the grid-

refinement tests are compared to simulations 

based on a reference model with a much smaller 

grid-cell size of 0.0025 m (75 gridpoints per 

minimum wavelength). A vertical infinitesimal 

electric dipole transmitter is located at a depth of 

13 m. We distribute 150 receivers along a vertical 

line, 0.05 m to the left of the boundary between 

the refined and normal grids (Figure 2.12, receiver 

array RA1). 

Figure 2.13 shows simulated traces that 

would be recorded at RA1 for the reference model 

and for the test model with a refinement factor of 

5 for incidence angles of 0°, 30° and 60°. A 

qualitative comparison suggests excellent 

agreement between the traces of the two modeling 

results (Figure 2.13a-c). The lower diagrams in 

Figure 2.13(a-c) reveal that differences between 

the two numerical solutions are insignificant. 

Figure 2.13(d) shows the artificial reflected 

energy at the boundary between the normal and 

refined grids as a function of incidence angle. It 

demonstrates that for refinement factors of 3 and 

5, less than 1.5×10-4% of the energy incident at 

the boundary is reflected at angles of up to 60°. 

Figure 2.13: Test of the grid-refinement 
scheme. (a)-(c) Traces simulated at RA1 in 
Figure 2.12 for incidence angles of 0°, 30° 
and 60° using a 5-times refined grid (solid red 
lines) and a medium model with a uniformly 
fine grid (dashed black lines); amplitudes are 
normalized with respect to the maximum 
amplitude at 0°. The differences between 
each pair of traces are also shown (solid black 
lines). (d) Energy reflected from the boundary 
zone between the refined and normal grids for
refinement factors of 3 (black line) and 5 
(dashed red line).
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2.B-2. INFLUENCE OF THE UPML ABSORBING BOUNDARIES 

To test the performance of the UPML 

absorbing boundaries, we use a 6×26 m vacuum 

model with a uniform grid cell size of 0.0125 m 

and UPML boundaries with thicknesses of 15, 20 

and 30 cells (Table 2.2). Our reference for this 

series of tests is a wider model of 10×26 m with a 

30-cell UPML boundary. Figure 2.14 (a-c) 

demonstrate that radargrams simulated 0.05 m to 

the left of the 30-cell thick UPML boundary in the 

test model are practically indistinguishable from 

those simulated at the same location in the 

reference model. Artificial reflections from 15-, 

20- and 30-cell thick UPML boundaries are 

<0.25%, <0.1% and <0.05%, of the incident 

energy for angles of up to 60° (Figure 2.14d). 

2.B-3. OVERALL VALIDITY OF THE 

SIMULATION TOOL  

To establish the overall validity of our 

antenna simulation algorithm, we compare 

computed radiation patterns for a PEC wire-type 

antenna located within a homogeneous half-space 

with corresponding analytical solutions (Tables 

2.1 and 2.2; Balanis, 1982). The medium model is 

the same as that used in the main text (Figure 2.3; 

ε = 10ε0, µ = µ0, σ = 5 mS/m). 

The metallic antenna rod has a half-length 

h0 of 0.2 m, a conductivity of 5×107 S/m and is 

not insulated (Figure 2.2). It has a resonant 

frequency of ~100 MHz. The transmitter is 

located at a depth of 4.5 m on the cylindrical symmetry axis and receivers are located at a 

constant radial distance of 1.6 m, or approximately 3.4 dominant wavelengths from the 

Figure 2.14: Test of the UPMLs. (a)-(c) 
Traces simulated at RA2 in Figure 2.12 for a 
30-cell wide (2 minimum wavelengths) 
UPML (red lines) compared to traces 
simulated at the same location for a much 
wider model (dashed black lines). The 
differences between the pairs of traces are 
also shown (solid black lines). (d) Energy 
reflected from 15-cell wide (red line), 20-
cellwide (blue line) and 30-cell wide (black 
line) UPMLs. 
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transmitter (Figure 2.3, receiver array RA), thus ensuring that we are dealing with the far-field 

regime of electromagnetic wave propagation. The radiation patterns are obtained by Fourier 

transforming the tangential component of the electric field and plotting amplitudes for 

frequencies of 100, 200 and 400 MHz in polar coordinates. The resulting radiation patterns 

agree well with their analytical counterparts (compare the solid red and dashed black lines in 

Figure 2.15), thus demonstrating the overall accuracy of our algorithm. 

For comparison, we also show the analytic full-space radiation pattern of an 

infinitesimal electric dipole (dotted black lines in Figure 2.15). These results illustrate that at 

low frequencies (100 MHz), the analytic full-space radiation pattern is an acceptable 

representation of the radiative properties of an undamped ~100 MHz wire-type antenna in a 

homogeneous half-space. At higher frequencies (e.g. 400 MHz), the infinitesimal electric 

dipole is clearly a poor approximation. 

Figure 2.15: Radiation patterns for frequencies of (a) 100, (b) 200 and (c) 400 MHz for numerical (red lines) 
and analytical (dashed black lines) solutions of a PEC antenna with a resonance frequency of ~100 MHz, and 
for the corresponding analytic solutions for an infinitesimal electric dipole in a homogeneous full-space 
(dotted black lines). Radiation patterns are normalized to the maximum values. 
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3.1. ABSTRACT 

Crosshole radar techniques are important tools for a wide range of geoscientific and 

engineering investigations. Unfortunately, the resolution of crosshole radar images may be 

limited by inadequacies of the ray tomographic methods commonly used to invert the data; 

since ray methods are based on high-frequency approximations and only account for a small 

fraction of the information contained in the radar traces, they are restricted to resolving 

relatively large-scale features. As a consequence, the true potential of crosshole radar 

techniques has yet to be realized. To address this issue, we introduce a full-waveform 

inversion scheme based on a finite-difference time-domain solution of Maxwell’s equations. 

We benchmark our new scheme on synthetic crosshole data generated from suites of 

increasingly complex models. The full-waveform tomographic images accurately reconstruct: 

(i) the locations, sizes, and electrical properties of isolated sub-wavelength objects embedded 

in homogeneous media, (ii) the locations and sizes of adjacent sub-wavelength objects 

embedded in homogeneous media, (iii) abrupt media boundaries and average and stochastic 

electrical property variations of heterogeneous layered models, and (iv) the locations, sizes 

and electrical conductivities of water-filled tunnels and closely spaced sub-wavelength pipes 

embedded in heterogeneous layered models. The new scheme is shown to be remarkably 

robust to the presence of uncorrelated noise in the radar data. Several limitations of the full-

waveform tomographic inversion were also identified. For typical crosshole acquisition 

geometries and parameters, small resistive bodies and small closely spaced dielectric objects 

may be difficult to resolve. Furthermore, electrical property contrasts may be underestimated. 

Nevertheless, the full-waveform inversions usually provide substantially better results than 

those supplied by traditional ray methods. 

Key Words: Finite-difference time-domain (FDTD) methods, Maxwell’s equations, 

crosshole radar, full-waveform inversion, dielectric permittivity, electrical conductivity 

3.2. INTRODUCTION 

Crosshole radar surveying is a highly effective technique for mapping subsurface 

electrical properties. To acquire crosshole radar data, dipole-type antennas generate high-

frequency electromagnetic energy in a borehole and sense the resultant wavefields in one or 

more neighboring boreholes. The nominal or center frequencies of most borehole radar 

antennas range from 20 - 250 MHz, corresponding to dominant wavelengths of 5.0 - 0.4 m for 

common earth materials. 
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Tomographic inversions of crosshole radar data are generally based on ray theory 

(Carlsten et al., 1995; Fullagar et al., 2000; Bellefleur and Chouteau, 2001; Holliger et al., 

2001; Tronicke et al., 2001; Holliger and Maurer, 2004; Irving and Knight, 2005; Clement 

and Barrash, 2006; Musil et al., 2006; Paasche et al., 2006). Separate inversions of the first-

arrival times and maximum first-cycle amplitudes provide electromagnetic velocity and 

attenuation images of the probed regions. By making certain plausible assumptions, 

electromagnetic velocity and attenuation are converted to dielectric permittivity and electrical 

conductivity, parameters closely linked to a variety of environmental- and engineering-

relevant subsurface properties (e.g., porosity, water content, salinity, clay fraction, ore grade). 

Conventional ray tomography suffers from several critical shortcomings that are a 

consequence of the small number of signal attributes employed in the inversion process 

(Nolet, 1987; Wielandt, 1987). For instance, ray tomography usually only resolves features 

larger than the dominant signal wavelength (e.g., resolution scales approximately with the 

diameter of the first Fresnel zone Williamson and Worthington, 1993) and it cannot provide 

reliable information on certain important types of low-velocity structure. These deficiencies 

are particularly acute for targets that can only be illuminated from a limited number of 

directions, which is the situation for many crosshole investigations. 

Since inversion is important for a wide range of problems in seismic exploration and 

exploitation, medical imaging, non-destructive testing, tunnel and landmine detection, a 

number of accurate alternative methods for inverting diverse types of wavefield (e.g., 

acoustic, elastic, radar, microwave, optical, X-ray) data have evolved over the past two 

decades. As examples, the following waveform-based tomographic inversion methods have 

been introduced in exploration seismology: 

• Fresnel volume (Cerveny and Soares, 1992; Spetzler and Snieder, 2004); 

• wave-equation traveltime (Luo and Schuster, 1991; Vasco and Majer, 1993; Zhou et 

al., 1995; Zhou et al., 1997); 

• diffraction (Devaney, 1984; Wu and Toksoz, 1987; Pratt and Worthington, 1988; 

Woodward, 1992; Dickens, 1994; Harris and Wang, 1996); 

• full-waveform (Tarantola, 1984a; Tarantola, 1984b; Gauthier et al., 1986; Tarantola, 

1986; Mora, 1987; Beydoun et al., 1989; Pica et al., 1990; Pratt, 1990a; Pratt, 1990b; 
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Pratt and Worthington, 1990; Pratt and Goulty, 1991; Pratt et al., 1991; Song et al., 

1995; Reiter and Rodi, 1996; Zhou and Greenhalgh, 1998b; Zhou and Greenhalgh, 

1998a; Pratt, 1999; Pratt and Shipp, 1999; Hicks and Pratt, 2001; Dessa and Pascal, 

2003; Zhou and Greenhalgh, 2003; Tarantola, 2005). 

These methods have been developed for both acoustic and elastic waves generated and 

recorded at the surface and/or along boreholes. They have included finite-difference and 

finite-element approaches in both the time- and frequency-domains.  

In exploration seismology, waveform-based inversion schemes provide sub-

wavelength resolution (Pratt, 1999) and under favorable conditions the resolution is as good 

as one-half (Wu and Toksoz, 1987) to one-third (Dickens, 1994) of a wavelength. In a direct 

comparison, Dessa and Pascal (2003) demonstrate that waveform-based inversion of ultra-

sonic data improves the resolution threshold by an order-of-magnitude relative to that 

supplied by ray tomography. By considering information contained in relevant parts of the 

entire recorded signal, waveform-based inversions are capable of providing reliable 

information on a broad range of structures, including those distinguished by low velocities. 

Advances in waveform-based tomographic inversions of radar data have either (i) 

been made as a result of independent developments in electromagnetism or (ii) 

implicitly/explicitly followed those made in exploration seismology (i.e., the acoustic/elastic 

equations have been replaced by Maxwell's equations and the solutions have been 

appropriately reformulated). Important advances in the first category resulted from various 

Born iterative methods based on integral representations of Maxwell's equations (Wang and 

Chew, 1989; Chew and Wang, 1990; Sena and Toksoz, 1990; Moghaddam et al., 1991; 

Moghaddam and Chew, 1992; Moghaddam and Chew, 1993; Cui et al., 2001). In the second 

category, Johnson et al. (2005) and Cai et al. (1996) adapted the Fresnel volume and wave-

equation traveltime methods, respectively, and different authors (Strickel et al., 1994; Cui and 

Chew, 2000; Zhou and Liu, 2000; Cui and Chew, 2002; Cui et al., 2004; Popovic and 

Taflove, 2004) reported modified diffraction tomography techniques. An early attempt by 

Moghaddam et al. (1991) to determine the dielectric permittivities of small objects from 

synthetic data using a suitably modified version of Tarantola’s (1984a; 1984b) full-waveform 

inversion approach was not considered fully satisfactory by the authors, primarily because 

significant a priori information was required to ensure correct convergence. We have since 

learned from numerous studies in seismology that a good initial model is required for the 

successful application of many full-waveform tomographic inversion techniques (e.g., see 
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review by Dessa and Pascal, 2003). Independently, three groups have recently developed full-

waveform time-domain tomographic inversion schemes and tested them on synthetic radar 

data (Jia et al., 2002; Ernst et al., 2005; Kuroda et al., 2005). All three groups were able to 

determine the locations and relative permittivities of sub-wavelength bodies located within 

weakly conductive media. 

Despite the considerable advantages compared to ray tomography, most applications 

of waveform-based inversion techniques to synthetic and observed crosshole radar data have 

suffered from one or more of the following limitations (e.g., Sena and Toksoz, 1990; 

Moghaddam et al., 1991; Cui and Chew, 2000; Jia et al., 2002; Takenaka et al., 2003): 

(i) unrealistic assumptions were made about the background media (e.g., they were assumed 

to be homogeneous and/or lossless), (ii) the effects of realistic electrical conductivities were 

ignored, (iii) the conductivities were not determined, (iv) only low contrasts between the 

target structures and background medium were accommodated (e.g., they were based on the 

Born or Rytov weak scattering approximations), (v) only one or a few discrete targets were 

imaged, (vi) target shapes had to be known, (vii) target sizes had to be large relative to the 

dominant wavelength of the signal, and/or (viii) mono-frequency signals were employed. 

In this contribution, we describe a full-waveform time-domain tomographic inversion 

scheme for crosshole radar data. It provides high-resolution dielectric permittivity and 

electrical conductivity images of the earth between boreholes by automatically accounting for 

all phases of the radar signal. The background media may be heterogeneous, the physical 

property contrasts are not limited by the Born or Rytov weak scattering approximations, and 

the size of the dielectric/conductive targets may be smaller than the dominant wavelength of 

the radar signal. As for other full-waveform inversion methods, a good initial model is 

required to prevent the inversion process converging to local minima in the search space. 

Accordingly, we employ conventional ray tomography to derive the initial models (Pratt and 

Goulty, 1991; Pratt, 1999; Pratt and Shipp, 1999; Dessa and Pascal, 2003). 

After presenting the theory for the forward and inverse components of our new 

scheme, key implementation issues are highlighted. We then illustrate the advantages and 

limitations of the new scheme by applying it to a series of synthetic crosshole data sets 

generated for increasingly complicated subsurface media and target structures. All full-

waveform tomography images are compared with the relevant ray tomography results. 
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3.3. METHODOLOGY 

3.3.1. BACKGROUND 

Although finite-difference time- and frequency-domain computer codes have long 

been available for the full-waveform inversion of elastic-wave data (e.g., Tarantola, 1984b; 

Tarantola, 1986; Beydoun et al., 1989; Pratt, 1990a; Pratt, 1990b; Pratt and Goulty, 1991; 

Pratt et al., 1991), recent crosshole seismic research and case studies have mostly been 

concerned with acoustic-wave solutions. This limitation is a consequence of the high cost of 

generating and recording the required data and the huge computing resources needed to 

perform full-waveform elastic-wave inversions. Yet, we know that many crosshole seismic 

data sets contain shear-, converted-, and guided-wave phases in addition to the compressional-

wave phases. 

Finite-difference solutions of Maxwell’s equations are computationally comparable to 

those of the viscoacoustic-wave equations in seismics. Moreover, the responses of radar 

antennas in dry and water-filled boreholes and the effects of placing them near the earth’s 

surface or other discontinuities can be simulated using suitably modified finite-difference 

solutions of Maxwell’s equations (Holliger and Bergmann, 2002; Ernst et al., 2006). 

We use a 2-D finite-difference time-domain (FDTD) solution of Maxwell’s equations 

in Cartesian coordinates for the forward component of our full-waveform inversion scheme. 

This choice is largely based on our extensive experience in FDTD techniques (Bergmann et 

al., 1996; Bergmann et al., 1998; Holliger and Bergmann, 1998; Bergmann et al., 1999; 

Holliger and Bergmann, 2002; Jia et al., 2002; Lampe and Holliger, 2003; Lampe et al., 2003; 

Lampe and Holliger, 2005; Ernst et al., 2006) and their conceptual simplicity. We have 

adapted Tarantola’s (2005) forward-/back- propagation approach for the inversion component 

of the code. 

3.3.2. FORWARD PROBLEM 

3.3.2.1. DIFFERENTIAL FORM OF MAXWELL'S EQUATIONS 

For wave propagation in the (x, z) plane of our Cartesian coordinate system, the 

transverse electric or TE mode of Maxwell’s equation can be written as (Taflove and 

Hagness, 2000): 
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H EE
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∂ ∂∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠
, (3.1c) 

where Ex and Ez are the horizontal and vertical electric field components, Hy is the magnetic 

field perpendicular to the propagation plane, ε is the dielectric permittivity, σ is the electrical 

conductivity, and µ is the magnetic permeability (assumed in the following to be constant and 

equal to the free-space permeability µ0). Bold letters are used to represent vectors and 

matrices. Equations (3.1a) through (3.1c) can be solved efficiently using FDTD techniques 

(e.g., Yee, 1966; Taflove and Hagness, 2000) based on staggered-grid finite-difference 

operators that are second-order accurate in both space and time. Highly efficient generalized 

perfectly matched layer (GPML) absorbing boundaries (Berenger, 1994; Fang and Wu, 1996) 

minimize the artificial reflections at the edges of the model space.  

3.3.2.2. INTEGRAL FORM OF MAXWELL'S EQUATIONS 

To determine the update directions required in our inversion procedure, it is useful to 

work with the integral form of Maxwell's equations. Typical borehole radar systems record 

the vertical component of the electric field Ez, such that Maxwell’s equations can be recast in 

a form corresponding to the telegraphy equation: 

2 2

2 2

1z z z
z

E E E
t tµ

∂ ∂ ∂
− + = Ψ

∂ ∂ ∂
ε σ

x
, (3.2) 

where x is a vector that refers to location (x, z) and zΨ  is the source function. Solutions of 

(3.2) can be formally expressed using Green’s functions Gz (Jackson, 1975): 

max

0

( , ) ( ') ' ( , ; ', ') ( ', ')
T

z z z
V

E t d dt G t t t= Ψ∫ ∫x V x x x x , (3.3) 

where V is the model space and Tmax is the maximum observation time.  
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3.3.3. INVERSE PROBLEM 

3.3.3.1. INVERSION STRATEGY 

Our full-waveform tomographic inversion scheme for crosshole radar data involves 

finding the spatial distributions of ε and σ that minimize a functional of the form: 

( ) ( ) 21 , , , ( ), ( ) , , , ( ), ( )
2

obs
z trn rec z trn rec true trueS E t E t= −x x ε x σ x x x ε x σ x , (3.4) 

where xtrn and xrec are vectors that identify the transmitter and receiver positions, ε and σ are 

the model permittivity and conductivity distributions, and εtrue and σtrue are the true subsurface 

parameters. zE  and obs
zE  are the synthetic (computed) and observed vertical electric fields at 

the receiver locations. Following Tarantola (2005), we use logarithmically scaled versions of 

our unknown parameters: 

( )
0

ˆ log log rε
⎛ ⎞= =⎜ ⎟
⎝ ⎠
εε ε  and ( )

0
ˆ log logσ

⎛ ⎞= =⎜ ⎟
⎝ ⎠
σσ σ ,  (3.5) 

where ε0 is the dielectric permittivity of free space, εr is the relative permittivity, and σ0 is set 

to 1 S/m. Logarithmic scaling ensures positivity and improves convergence. 

We minimize the functional S in (3.4) using a conjugate-gradient-type scheme based 

on an algorithm introduced by Polak and Ribiere (1969). It requires the following steps: 

1. select an initial model ε̂  = ˆ iniε  and σ̂  = ˆ iniσ  (these are defined by the results of prior 

ray tomographic inversions of the first-arrival times and maximum first-cycle 

amplitudes); 

2. compute zE  in (3.3) and S in (3.4) using the initial model parameters; 

3. compute the update directions ε̂γ and σ̂γ ; 

4. compute the step lengths ˆζ ε  and ˆζ σ ; 

5. update the model parameters using the conjugate gradient equations (simplified) 

ˆ ˆˆ ˆupd ζ= − ε εε ε γ  and ˆ ˆˆ ˆupd ζ= − σ σσ σ γ ; 
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6. set ε̂  = ˆupdε  and σ̂  = ˆ updσ  and repeat steps 2 to 6 until convergence is achieved. 

Convergence is assumed to have been reached when S changes by less than 1%. The key 

challenges of this scheme are to define update directions ε̂γ  and σ̂γ  and step lengths ˆζ ε  and 

ˆζ σ  that result in a small number of iterations to reach the minimum of S. 

3.3.3.2. UPDATE DIRECTIONS ε̂γ  AND σ̂γ  

To determine the update directions ε̂γ  and σ̂γ , we consider a linearized form of the 

forward problem: 

ˆ

ˆ

ˆ0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ0z z z zE E E E ε

σ

δ
δ δ δ δ δ

δ
⎡ ⎤ ⎡ ⎤

+ + = + = + ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

Γ ε
ε ε σ σ ε σ ε σ ε σ

Γ σ
, (3.6) 

and we take advantage of the scalar products: 

ˆ ˆ ˆ ˆ

ˆ ˆ
, , ,

ˆ ˆ
T

z z z zE E E E
δ δ

δ δ δ δ
δ δ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

ε,σ ε,σ

ε ε
Γ Γ

σ σ
, (3.7) 

where ε̂Γ  and σ̂Γ  are the Fréchet derivatives with respect to ε̂  and σ̂ , ˆ ˆε,σΓ  is short-hand for 

the matrix containing ε̂Γ  and σ̂Γ  in (3.6), and T indicates the matrix transpose. As shown by 

Tarantola (2005), the update directions ε̂γ  and σ̂γ  are given by: 

ˆˆ
T

zEε δ=εγ Γ  and ˆ ˆ
T

zEδ=σ σγ Γ . (3.8) 

We begin by deriving an expression for ˆ ˆ

ˆ
ˆzE

δ
δ

δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

ε,σ

ε
Γ

σ
 and then determine 

ˆ ˆ ˆ ˆ
T

zEδ=ε,σ ε,σγ Γ  using (3.7). Explicit computations of the Fréchet derivatives are not required. 

In the first step, we apply the perturbations ˆ ˆ ˆδ+ε ε ε  and ˆ ˆ ˆδ+σ σ σ  and substitute 

( )z zE Eδ+ , ˆ ˆ( )δ+ε ε , and ˆ ˆ( )δ+σ σ  in (3.2). Using the definitions of (3.5), this yields: 

( ) ( ) ( )2 2

0 2 2

1ˆ ˆ ˆ ˆexp( ) exp( ) .z z z z z z
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E E E E E E
t t
δ δ δ

ε δ δ
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∂ ∂ ∂
ε ε σ σ

x
 (3.9) 
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After subtracting (3.9) from (3.2), representing the resultant exponential terms as 

power-series, and then ignoring the non-linear terms of the power series, we obtain: 

( ) ( ) ( )2 2 2

2 2 2

1 ˆ ˆz z z z zE E E E E
t t t t
δ δ δ

δ δ
µ

∂ ∂ ∂ ∂ ∂
− + = − −
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ε σ ε ε σ σ

x
. (3.10) 

Equation (3.10) is formally identical to (3.2), but with δEz instead of zE on the left 

side and a source-type term on the right side. A solution of (3.10) in terms of Green’s 

functions can be written as [compare to (3.3)]: 
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In the second step, we consider the integral representations of the scalar products on 

the left and right sides of (3.7): 

max

0

,
T

z z z z
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E E dt E Eδ δ δ δ= ∑ ∑∫ , (3.12) 
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By substituting (3.11) in (3.12), the integral representation of (3.7) becomes:  
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2
0 0 0

ˆ ˆ

ˆ ˆ' '

ˆ ˆ .

T T T
z z

z z z
trn rec V V

T T
z z

V V

E Edt E dV dt G dV dt G
t t

dV E dV E

δ δ δ

δ δ δ δ

⎡ ⎤∂ ∂
− −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

= ⋅ + ⋅

∑ ∑∫ ∫ ∫ ∫ ∫

∫ ∫ε σ

ε ε σ σ

Γ ε Γ σ
 (3.14) 

Since (3.14) is valid for arbitrary small values of ˆδε  and ˆδσ , we can equate the terms 

containing permittivity and the terms containing conductivity on the left and right sides of 

(3.14) to yield expressions for ˆ ˆ
T

zEδ=ε εγ Γ  and ˆ ˆ
T

zEδ=σ σγ Γ : 
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'
T T

z
z z

trn rec

Edt dt G E
t

δ
⎧ ⎫⎡ ⎤⎛ ⎞∂⎪ ⎪= − ⋅ ⋅⎢ ⎥⎨ ⎬⎜ ⎟∂⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫ ∫σγ σ  (3.15b) 

For practical purposes, we rewrite (3.15a) and (3.15b) as: 

max

ˆ
0

( ) ( , ) ( , )
T

z z

trn

E Edt t t
t t

∂ ∂
=

∂ ∂∑ ∫εγ ε x x x , (3.16a) 

max

ˆ
0

( ) ( , ) ( , )
T

z
z

trn

Edt t E t
t

∂
= −

∂∑ ∫σγ σ x x x , (3.16b) 

where 

max

0

( , ) ' ( , '; , ) ( , ')
T

z z rec z rec
rec

E t dt G t t E tδ= ∑ ∫x x x x . (3.16c) 

The integrands in (3.16a) and (3.16b) can be interpreted as zero-lag cross-correlations 

(Tarantola, 2005), whereas (3.16c) corresponds to a Green’s-function-based solution that 

describes the electric field zE  at location x and time t, assuming that the residual fields δEz at 

all receiver locations are simultaneously backward propagated in time.  

3.3.3.3. UPDATE STEP LENGTHS ˆζ ε  AND ˆζ σ   

The updates to the step lengths ˆζ ε  and ˆζ σ  follow closely the approach introduced by 

Pica et al. (Pica et al., 1990), in which: 
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ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
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κ
ζ κ

κ κ

+ − −
=

+ − + −
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ε γ σ ε σ ε γ σ ε σ
, (3.17a) 

and 
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ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )
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κ
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κ κ

+ − −
=
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σ σ
σ σ

σ σ σ σ

ε σ γ ε σ ε σ

ε σ γ ε σ ε σ γ ε σ
, (3.17b) 
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where ˆ ˆ( , )zE ε σ  is the synthetic wavefield at receiver locations xrec for the model parameter 

estimates ( ε̂ ) and ( σ̂ ), ˆκε  and ˆκσ  are small numbers, and ˆ ˆˆ ˆ( , )zE κ+ ε εε γ σ  and ˆ ˆˆ ˆ( , )zE κ+ σ σε σ γ  

are synthetic wavefields computed for perturbed permittivities and conductivities in the 

respective update directions ε̂γ  and σ̂γ . Values of ˆκε  and ˆκσ  are chosen after the first 

iteration. For the tests described here, ˆκε  = 10-5 and ˆκσ  =1.0 were found to be suitable. 

3.3.4. IMPLEMENTATION 

3.3.4.1. STEPPED INVERSION FOR DIELECTRIC PERMITTIVITY AND 

ELECTRICAL CONDUCTIVITY 

In principle, we could update the dielectric permittivities and electrical conductivities 

simultaneously after each iteration. Unfortunately, large differences between the magnitudes 

of the permittivity and conductivity Fréchet derivatives (even though they are not explicitly 

calculated) cause the simultaneous inversion process to fail for complex models (for a 

discussion of the equivalent acoustic problem see (Watanabe et al., 2004)). Because the 

phases and the amplitudes of the observed signals are primarily controlled by the permittivity 

and conductivity, respectively, this problem can be circumvented by adopting a stepped 

approach that involves inverting for the permittivities while keeping the conductivities fixed 

and then inverting for the conductivities while keeping the permittivities fixed. The procedure 

may be repeated until satisfactory convergence is achieved. For all examples presented in this 

paper, only a single computational cycle was required. 

For the dielectric permittivities, we suppress the amplitude information by back-

propagating the following normalized version of the data residuals (see also Watanabe et al., 

2004):  

max

max

2

0

2

0

( , )
( , ) ( , ) ( , )

( , )

T
obs
z rec

obs syn
rec z rec z recT

syn
z rec

dt E t
E t E t E t

dt E t

δ
⎡ ⎤⎣ ⎦

= −

⎡ ⎤⎣ ⎦

∫

∫

x
x x x

x

. (3.18) 

By including realistic conductivities in the input model (e.g., those obtained with ray 

amplitude inversion), we partly account for the effects of electrical conductivity on the phases  

(e.g., Cai et al., 1996). After determining the distribution of permittivities, the residual 
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wavefield is computed without normalization (i.e., square-root terms in (3.18) are 1) and then 

used for the conductivity inversion. 

3.3.4.2. COMPUTATIONAL ISSUES 

Our full-waveform inversion scheme requires the forward problem to be solved three 

times per iteration for each transmitter location: once to evaluate the synthetic data Ez (step 2 

of our implementation of Polak and Ribiere’s (1969) algorithm), once to compute the update 

directions [step 3, (3.16)], and once to determine the step length [step 4, (3.17)]. 

Consequently, the computational costs of the forward modeling largely control the efficiency 

of our waveform inversion scheme. 

Using FDTD techniques to solve the forward problem for a typical crosshole radar 

data set requires 105 to 106 grid points and a few tens of transmitter positions, for which a few 

thousand time steps need to be computed. For computation of the update directions (3.16), the 

complete Ez fields generated by all transmitters at all grid locations need to be kept in 

memory. This would require a large core memory of about 20 x Ntrn GBytes, where Ntrn is the 

number of transmitters. However, the spatial resolution of the data is much lower than the 

discretization needed for accurate forward modeling, so that a number of forward modeling 

cells can be represented with a single inversion cell. We include 3 x 3 forward modeling cells 

within one inversion cell without a loss of resolution in the inversion process. This reduces 

the memory requirements by roughly an order-of-magnitude, thus making the computations 

tractable without having to implement time-consuming memory-swapping procedures. 

Furthermore, because the single transmitter calculations are largely independent of each other, 

the computational scheme can be implemented efficiently on a distributed computer network 

comprising one CPU per transmitter plus a master CPU. The overhead for distributing the 

computations is only about 10%. Accordingly, the total computational time Tcomp required for 

a complete inversion is given by: 

comp forward iterT 3 1.1 T N≈ ⋅ ⋅ ⋅  (3.19) 

where Tforward is the time required for a single forward calculation and Niter is the number of 

iterations. On a PC cluster consisting of Opteron 244 processors with 4 GByte of memory, the 

computational time for a single-parameter inversion with 105 forward grid points requires 

3 hours, whereas that for a two-parameter inversion with 106 forward grid points requires 

18 hours. 
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Table 3.1. Model parameters. Homogeneous models were used as input for all ray tomographic inversions. 
The relative permittivities and conductivities of these models are provided in the last column. 

Model # and 
numerical 

experiments 
(Figures) 

Model 
width & 

depth 
[m] 

#Transmitters 
/ #receivers 

Medium parameters
εr and σ [mS/m] 

Anomalous 
object 

dimensions 
[m] 

Added 
noise 
[%] 

Initial 
parameters 

for ray 
tomography 

εr and σ [mS/m]

1 ε inversion 
(3.2, 3.3) 10 & 10 21 / 21 εrm = 4.0; σm = 0.1 

εra = 5.0; σa  = 0.1 0.5 0, 5, 
20 

εr = 4.0 
σ = 0.1 

2 σ  inversion 
(3.4, 3.5) 10 & 10 21 / 21 εrm = 4.0; σm = 0.1 

εra = 4.0; σa  = 10.0 0.5 0, 5, 
20 

εr = 4.0 
σ = 0.1 

3 
ε & σ  

inversions 
(3.6, 3.7) 

10 & 10 21 / 21 
εrm = 4.0; σm = 3.0 
εrb = 5.0; σb = 10.0 
εrc = 3.0; σc = 0.1 

0.5 & 0.5 0, 5 εr = 4.0 
σ = 3.0 

4 
ε & σ  

inversions 
(3.8, 3.9) 

10 & 20 41 / 41 
εr1  = 5.2; σ1 = 2.8 
εr2 = 3.7; σ2 = 2.0 

εr3 = 5.0; σ3 = 0.1 

- 0 εr = 3.4 
σ = 1.3 

5 
ε & σ  

inversions 
(3.10, 3.11) 

10 & 20 41 / 41 

As for model 4 plus 
stochastic variations 

with 
standard deviations of
εr = 0.1, σ = 0.5 and 
correlation lengths of
x = 1.0 m, z = 0.2 m

- 0 εr = 3.4 
σ = 1.3 

6 
ε & σ  

inversions 
(3.12, 3.13) 

10 & 20 41 / 41 

As for model 4 plus 
stochastic variations 

with 
standard deviations of
εr = 0.3, σ = 1.5 and 
correlation lengths of
x = 1.0 m, z = 0.2 m

- 0 εr = 3.4 
σ = 1.3 

7 
ε & σ  

inversions 
(3.14, 3.15) 

10 & 20 41 / 41 

As for model 4 plus 
pipes and tunnel with

εrp = εrt = 80.0 
σp = σt = 10.0 

pipes: 
0.5, 0.5, 0.5

tunnel: 
2.0 

0 εr = 3.4 
σ = 1.3 

8 
ε & σ  

inversions 
(3.16, 3.17) 

10 & 20 41 / 41 

As for model 5 plus 
pipes and tunnel with

εrp = εrt = 80.0 
σp = σt = 10.0 

pipes: 
0.5, 0.5, 0.5

tunnel: 
2.0 

0 εr = 3.4 
σ = 1.3 

9 
ε & σ  

inversions 
(3.18, 3.19) 

10 & 20 41 / 41 

As for model 6 plus 
pipes and tunnel with

εrp = εrt = 80.0 
σp = σt = 10.0 

pipes: 
0.5, 0.5, 0.5

tunnel: 
2.0 

0 εr = 3.4 
σ = 1.3 
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3.4. APPLICATIONS TO SYNTHETIC DATA 

We explore the potential and limitations of our full-waveform tomographic inversion 

scheme using synthetic data generated from a suite of increasingly complex models. The 

models and acquisition geometries are shown in Figure 3.1 and the key parameters are 

summarized in Table 3.1. For the first three numerical experiments (Figure 3.1a), two 10-m-

deep boreholes are separated by 10 m and the forward and inverse grids have spacings of 

0.02  and 0.06 m, respectively. There are 21 equally spaced transmitter antenna locations in 

the left borehole and 21 equally spaced receiver antenna locations in the right borehole. The 

model space is surrounded by a 0.8-m-thick GPML frame. For the other experiments 

(Figure 3.1b), the borehole depths are increased to 20 m depth and the number of transmitters 

and receivers are increased to 41. All other acquisition parameters are identical to those of the 

first three experiments. 

We employed the same FDTD code to create the synthetic data and to solve the 

forward problems in the inversion process. The waveform of the source signal corresponded 

to a Gaussian pulse with a nominal frequency of ∼150 MHz and a bandwidth of ∼3 octaves, 

which yielded a dominant wavelength of ∼1 m in our models. 

To begin the inversion process, we applied conventional ray tomography using the 

first-arrival times and maximum first-cycle amplitudes (Holliger et al., 2001; Holliger and 

Maurer, 2004; Musil et al., 2006) to obtain velocity and attenuation tomograms that were 

converted to corresponding dielectric permittivity and electrical conductivity distributions 

Figure 3.1: Generic models 
and crosshole source-
receiver configurations used 
for all computations. (a) 
Single anomalous object "a" 
or double anomalous objects 
"b" and "c" embedded in 
various media. (b) Three-
layered geological structure 
containing three pipes and a 
tunnel. Transmitter (T) and 
receiver (R) locations are 
indicated by crosses and 
open circles. For the various 
synthetic computations, 
source gathers are presented 
for transmitter positions T11 
in Figure 3.1a or T21 in 
Figure 3.1b. 
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using the following high-frequency approximations: 

2

0

1 vε
µ

−≈  (3.20a) 

and 

0

2 εσ α
µ

≈  (3.20b) 

where v and α  are velocity and attenuation. The resulting ε and σ  distributions (our optimum 

ray tomograms) were then used as the initial models for the full-waveform tomographic 

inversions. The ε and σ computations usually converged after 20 and 10 iterations, 

respectively. For convenience, we describe our models in the following in terms of the 

relative permittivity εr = ε / ε0. Initial εr and σ  values (converted to corresponding velocities 

Figure 3.2: Relative permit-
tivity (εr) tomograms and 
cross-sections derived from 
synthetic radar traces 
generated for input model 1 
(Table 3.1) with medium 
relative permittivity εrm = 4.0, 
medium conductivity σm = 0.1 
mS/m, and a single small 
object (a in Figure 3.1a) with 
εra = 5.0 and σa = 0.1 mS/m. 
(a) and (b) Tomograms that 
result from applying ray-based 
and full-waveform inversion 
schemes to noise-free 
synthetic radar traces. Dashed 
white circles delineate the 
object's true location. (c) Blue, 
red, and black lines are the A 
cross-sections through the 
tomogram in (a), tomogram in 
(b), and input model. (d) 
Similar to (c), but for the B 
cross-sections. (e) and (f) 
Tomograms that result from 
applying the full-waveform 
inversion scheme to synthetic 
radar traces contaminated with 
5 and 20% random noise. (g) 
Blue, red, and black lines are 
the A cross-sections through 
the tomogram in (e), 
tomogram in (f), and input 
model. (h) Similar to (g), but 
for the B cross-sections. 
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and attenuations) used to start the ray tomographic inversions are shown in the last column of 

Table 3.1. 

3.4.1. NUMERICAL EXPERIMENT 1: SINGLE DIELECTRIC OBJECT IN A 

HOMOGENEOUS MEDIUM 

Model 1 comprises a high-permittivity circular object (a in Figure 3.1a; εra = 5.0) 

embedded in the center of a homogeneous medium (εrm = 4.0). The diameter of the anomalous 

object is ~0.5 m, about half the dominant signal wavelength. Conductivities are low 

(0.1 mS/m) and homogeneous throughout the model. For two of the inversions, 5% and 20% 

band-limited white noise is added to the synthetic input traces (Table 3.1). The bandwidth of 

the noise is chosen to mimic that of observed radargrams. 

Relative permittivity tomograms for the noise-free ray and full-waveform inversions 

are displayed in Figures 3.2a and 3.2b and those for the full-waveform inversions with 5 and 

Figure 3.3: (a) and (b) For the transmitter located at position T11 in Figure 3.1a, the blue, red, and dashed 
black lines display every second radar trace generated from the ray tomogram in Figure 3.2a, full-waveform 
tomogram in Figure 3.2b, and original input model. (c) Blue and red lines show differences between the blue 
and dashed black lines in (a) and between the red and dashed black lines in (b), respectively. (d) and (e) 
Similar to (a) and (b), but for the full-waveform tomograms in Figures 3.2e and 3.2f derived from radar traces 
contaminated with 5 and 20% random noise. (f) Similar to (c), but for the blue, red and dashed black lines in 
(d) and (e). The amplitudes of all traces in any radar section are normalized with respect to the maximum 
amplitude of input trace 11. The amplitudes of residuals in (c) and (f) are gained by a factor of 2 relative to 
the respective radar traces. 
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20% noise are presented in Figures 3.2e and 3.2f. To quantify better the reconstructed εr 

values, cross-sections through the tomograms along A and B are shown in Figures 3.2c, 3.2d, 

3.2g, and 3.2h. Ray tomography barely detects the presence of the sub-wavelength object, 

whereas full-waveform tomography successfully recovers its location and size. The object’s 

distorted shape in Figure 3.2b is a consequence of the limited apertures of the transmitter and 

receiver antenna arrays; additional antennas below and/or above the object would 

substantially improve the resolution of the shape. The recovered maximum relative 

permittivity of 4.5 is a little lower than the true 5.0 value. Adding realistic levels of random 

noise to the data does not significantly affect the convergence and reconstruction capabilities 

of the full-waveform inversion scheme (Figures 3.2e - 3.2h). To account for the noise, the 

inversion process introduces scatterers that appear as small-scale fluctuations in the 

tomograms. These artifacts are most pronounced in the highly sensitive areas of the models 

(e.g., in the vicinity of transmitters and receivers). Application of appropriate regularization 

(e.g., Tarantola, 2005) might reduce the effects of these artifacts. As a further check, we also 

invert for conductivity, which remained even after a few iteration unchanged (not shown). 

Selected traces extracted from FDTD simulations of radar waves traveling through the 

tomograms of Figure 3.2 are compared to the original model input traces (Figure 3.3). Traces 

based on the ray tomogram (blue lines in Figure 3.3a) have a slight phase shift relative to the 

input traces (dashed black lines in Figure 3.3). Close inspection of radargrams demonstrates 

that the automatic routine for recognizing signal onsets mis-identifies the true first breaks by 

~0.2 ns (2 - 3 samples). Traces based on the full-waveform tomograms (red lines in Figure 

3.3b) are practically identical to the input traces (dashed black lines in Figure 3.3b). These 

similarities and differences are emphasized in Figure 3.3c, which shows residual traces (i.e., 

differences between the simulated and input data) for simulations based on the ray and full-

waveform tomograms. 

Figures 3.3d and 3.3e compare simulated traces based on the tomograms of Figures 

3.2e and 3.2f with the two suites of noisy input data. The corresponding residual traces in 

Figure 3.3f are dominated by moderately high-frequency fluctuations, demonstrating the 

robustness of the full-waveform inversion scheme to the presence of random noise. 

3.4.2. NUMERICAL EXPERIMENT 2: SINGLE CONDUCTIVE OBJECT IN A 

HOMOGENEOUS MEDIUM 

For model 2, we replace the sub-wavelength dielectric object of model 1 with a 

conductive one (a in Figure 3.1a and Table 3.1) and repeat the series of computations (Figures 
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3.4 and 3.5). The constant permittivity (εrm = 4.0) throughout the model results in straight ray 

paths. Although the anomalous object is 100 times more conductive than its host medium (10 

mS/m versus 0.1 mS/m), there are only tiny differences between synthetic traces computed for 

this model and those computed for a uniform homogeneous model (not shown). The 

conductivity tomogram and cross-sections in Figures 3.4a, 3.4c and 3.4d show that ray 

tomography, again, barely detects the presence of the anomalous object. By comparison, the 

anomaly’s location, size, and conductivity are satisfactorily reproduced in the full-waveform 

tomograms, even in those based on the noisy traces (Figures 3.4b to 3.4h). As in numerical 

experiment 1, the shape of the reconstructed object is somewhat distorted. 

Since we are primarily interested in the role played by conductivity in this experiment, 

we use the correct constant permittivity to simulate traces based on the conductivity ray 

tomogram of Figure 3.5a (note the absence of anomalous phase shift in this figure). Even 

though differences between the simulated and input traces in Figure 3.5a are quite small (the 

Figure 3.4: Conductivity (σ) 
tomograms and cross-
sections derived from 
synthetic radar traces 
generated for input model 2 
(Table 3.1) with medium 
relative permittivity εrm = 4, 
medium conductivity 
σm = 0.1 mS/m, and a single 
small object (a in Figure
3.1a) with εra = 4 and 
σa = 10.0 mS/m. All other 
details are explained in the 
caption to Figure 3.2. 
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differences are magnified by a factor of 8 in Figure 3.5c), the resolution of the conductivity 

tomogram is poor (Figure 3.4a). In contrast, the even smaller differences between simulated 

and input traces in Figure 3.5b (see also Figure 3.5c) result from the high-resolution 

waveform-based tomogram of Figure 3.4b. Furthermore, traces based on the full-waveform 

tomograms derived from the noisy data match well with the input noisy traces (Figures 3.5d 

to 3.5f). 

3.4.3. NUMERICAL EXPERIMENT 3: TWO DIELECTRIC-CONDUCTIVE 

OBJECTS IN A HOMOGENEOUS MEDIUM 

Model 3 contains two sub-wavelength objects: a high-permittivity/high-conductivity 

object (b in Figure 3.1a and Table 3.1) intended to represent a water-saturated porous zone 

and a low-permittivity/low-conductivity object (c in Figure 3.1a and Table 3.1) intended to 

represent an air-filled porous zone. The two 0.5-m-diameter objects are separated by ∼1.5 m 

in an otherwise homogeneous background medium. The first-break times for the ray inversion 

are picked from noise-free traces, whereas the input traces for the full-waveform inversion 

contain 5% noise. 

Figure 3.5: Similar to Figure 3.3, but showing radar sections and residuals for the inversion results illustrated 
in Figure 3.4. The amplitudes of residuals in (c) and (f) are gained by factors of 8 and 2 relative to the 
respective radar traces. 
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Neither object is clearly distinguishable in the permittivity and conductivity ray 

tomograms (Figures 3.6a, 3.6c, 3.6d and 3.6f). Although there is additional smearing relative 

to the model 1 and 2 results, the permittivity and conductivity full-waveform tomograms 

successfully predict the location and size of the high-permittivity/high-conductivity object 

(Figures 3.6b, 3.6c, 3.6e and 3.6f). The low-permittivity/low-conductivity object is also well 

resolved in the permittivity full-waveform tomogram, but it only appears as a small deviation 

from noisy background values in the conductivity tomogram (Figure 3.6f). We also note that 

the predicted permittivity and conductivity contrasts for both objects are notably smaller than 

the original model. Nevertheless, traces simulated from the full-waveform tomograms 

correspond closely to the input traces (Figures 3.7b and 3.7c), demonstrating that we are 

approaching the resolution limits of the full-waveform inversion scheme with this 

combination of model and borehole geometry. 

Figure 3.6: Relative permittivity 
(εr) and conductivity (σ) 
tomograms and cross-sections 
derived from synthetic radar 
traces generated for input model 3 
(Table 3.1) with medium relative 
permittivity εrm = 4.0, medium 
conductivity σm = 3.0 mS/m, and 
two small objects (b and c in 
Figure 3.1a), the upper with εrb = 
5.0 and σb = 10.0 mS/m and the 
lower with εrc = 3.0 and σc = 0.1 
mS/m. (a) and (d) εr and σ 
tomograms that result from 
applying the ray-based inversion 
scheme to noise-free synthetic 
radar traces. (b) and (e) Similar to 
(a) and (d), but showing the 
results of applying the full-
waveform inversion scheme to 
radar traces contaminated with 
5% random noise. (c) Blue, red, 
and black lines are diagonal cross-
sections C through the tomogram 
in (a), tomogram in (b), and input 
model. (d) Blue, red, and black 
lines are diagonal cross-sections C 
through the tomogram in (d), 
tomogram in (e), and input model. 
Dashed white circles in (a), (b), 
(d), and (e) delineate the objects' 
true locations. 
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3.4.4. NUMERICAL EXPERIMENTS 4 - 6: LAYERED MODELS WITH AND 

WITHOUT STOCHASTIC VARIATIONS 

Many subsurface environments are distinguished by physical properties that vary 

substantially over a wide range of scales. Generally, the large-scale structures can be treated 

in a deterministic fashion, but many small-scale features need to be handled as stochastic 

phenomena (Hewett, 1986; Goff and Jennings, 1999; Tronicke and Holliger, 2005). For the 

next three numerical experiments, we estimate the electrical properties and boundaries of 

three models that contain three distinct layers with different permittivity and conductivity 

distributions (Figures 3.8, 3.10 and 3.12). The average media properties for all three models 

are: layer 1, εr1 = 5.2 and σ2 = 2.8 mS/m; layer 2, εr2 = 3.7 and σ2 = 2.8 mS/m; layer 3, εr3 = 

5.0 and σ3 = 0.1 mS/m (models 4 - 6 in Table 3.1). Layers in model 4 and the lowermost layer 

of models 5 and 6 are homogeneous. Stochastic variations of relative permittivity and 

conductivity characterized by exponential covariance functions with 0.1 and 0.5 mS/m 

standard deviations and 1.0 m horizontal and 0.2 m vertical correlation lengths are added to 

the upper two layers of model 5. For model 6, we increase the standard deviations to 0.3 and 

1.5 mS/m. The synthetic input data used for these numerical experiments are noise-free. 

Figure 3.1b shows the source-receiver geometries. 

For all three synthetic data sets, ray-based inversions of the automatically picked first-

arrival times reproduce the permittivities and approximate depths and shapes of the layer 

boundaries (compare Figures 3.8a and 3.8b, 3.10a and 3.10b, and 3.12a and 3.12b), whereas 

inversions of the maximum first-cycle amplitudes produce only poor representations of the 

Figure 3.7: (a) and (b) For the transmitter located at position T11 in Figure 3.1a, the blue, red, and dashed 
black lines show every second radar trace generated from the ray tomograms in Figures 3.6a and 3.6d, full-
waveform tomograms in Figures 3.6b and 3.6e, and original input model. (c) Blue and red lines show 
differences between the blue and dashed black lines in (a) and between the red and dashed black lines in (b), 
respectively. The amplitudes of residuals in (c) are gained by a factor of 2 relative to the radar traces. 
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conductivity distributions (compare Figures 3.8d and 3.8e, 3.10d and 3.10e, and 3.12d and 

3.12e). In these examples, the amplitude ray tomography is clearly deficient. The 

conductivities do not move sufficiently far from the initial value of 1.3 mS/m (see last column 

of Table 3.1). As a consequence, the first-cycle amplitudes of some traces are inadequately 

explained by the ray tomograms (Figures 3.9a - 3.13a and 3.9c - 3.13c). 

Many fine details of the stochastic permittivity and conductivity variations and reliable 

information on the layer boundaries are provided by the full-waveform tomograms (Figures 

3.8c, 3.8f, 3.10c, 3.10f, 3.12c, and 3.12f). The estimated permittivities and conductivities 

throughout the well-sampled areas of the middle layer are accurate and those of the sparsely 

sampled upper and lower layers are good approximations. The full-waveform tomograms are 

distinguished by correctly located layer boundaries that are sharper than those in the ray 

tomograms. Traces generated from the full-waveform tomograms are very similar to the 

Figure 3.8: (a) and (d) Input εr and σ values for model 4 (similar to Figure 3.1b, but without the pipes and 
tunnel; Table 3.1). Parameters of the 3 layers are: εr1 = 5.2 and σ1 = 2.8 mS/m, εr2 = 3.7 and σ2 = 2.0 mS/m, 
and εr3 = 5.0 and σ3 = 0.1 mS/m. (b) and (e) εr and σ tomograms that result from applying the ray-based 
inversion scheme to noise-free synthetic radar traces generated from model 4. (c) and (f) Similar to (b) and 
(e), but for the results of the full-waveform inversions.
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original synthetic data (Figures 3.9b - 3.13b and 3.9c - 3.13c). Small-scale fluctuations near 

the transmitters and receivers in Figures 3.8c, 3.8f, 3.10c, 3.10f, 3.12c, and 3.12f are again 

artifacts that result from not using regularization in the full-waveform inversion process. 

Increasing the level of stochastic fluctuations eventually results in the layer boundaries 

being poorly resolved in the original models. Nevertheless, the full-waveform tomographic 

inversion scheme can still resolve most of the significant permittivity and conductivity 

variations. 

3.4.5. NUMERICAL EXPERIMENTS 7 - 9: LAYERED MODELS WITH AND 

WITHOUT STOCHASTIC VARIATIONS AND ANTHROPOGENIC FEATURES 

For our final numerical experiments, we include three small collinear pipes and a 

tunnel in the three different layered models (models 7 - 9 in Figures 3.14 - 3.19 and Table 

3.1). The 0.5-m-diameter pipes and 2.0-m-diameter tunnel are filled with conductive water 

(εrp = εrt = 80.0; σp = σt = 10.0 mS/m), such that they are high-attenuation, low-velocity 

targets. 

The presence of the pipes and tunnels only slightly change the average and stochastic 

electrical properties and layer-boundary depths and shapes in the ray and full-waveform 

Figure 3.9: (a) and (b) For the transmitter located at position T21 in Figure 3.1b, the blue, red, and dashed 
black lines show every second radar trace generated from the ray tomograms in Figures 3.8b and 3.8e, full-
waveform tomograms in Figures 3.8c and 3.8f, and original input model. (c) Blue and red lines show 
differences between the blue and dashed black lines in (a) and between the red and dashed black lines in (b), 
respectively. The amplitudes of residuals in (c) are gained by a factor of 2 relative to the radar traces. 
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Figure 3.10: Similar to Figure 3.8, but with stochastic εr and σ variations added to the top two layers with 
standard deviations of εr = 0.1 and σ = 0.5 mS/m and correlation lengths in the x and z directions of 1 m and 
0.2 m (model 5 in Table 3.1). 

 

 

 

Figure 3.11: Similar to Figure 3.9, but for the tomograms in Figure 3.10.
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Figure 3.12: Similar to Figure 3.8, but with stochastic εr and σ variations added to the top two layers with 
standard deviations of εr = 0.3 and σ = 1.5 mS/m and correlation lengths in the x and z directions of 1 m and 
0.2 m (model 6 in Table 3.1). 

Figure 3.13: Similar to Figure 3.9, but for the tomograms in Figure 3.12.
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tomograms (compare Figures 3.8, 3.10, and 3.12 with Figures 3.14, 3.16, and 3.18), and the 

correlations between predicted and original radar traces in Figures 3.15, 3.17, and 3.19 are 

similar to those in Figures 3.9, 3.11, and 3.13. 

Images of the anthropogenic features are very similar in the permittivity tomograms 

produced by the ray and full-waveform inversions of all three synthetic data sets. 

Interestingly, for these models the full-waveform permittivity tomograms are only slightly 

better (i.e., sharper) than the ray-based tomograms. Yet, the full-waveform traces correspond 

much more closely to the input traces than the ray-based ones (Figures 3.15, 3.17, and 3.19). 

The size of the circular tunnel is approximately correct in all six permittivity images (Figures 

3.14b, 3.14c, 3.16b, 3.16c, 3.18b, and 3.18c), but, as in the examples in Figures 3.2, 3.4, and 

3.6, it is slightly elongated in a horizontal direction. Moreover, its relative permittivity is 

much too low (~4.3 versus 80). A single low-contrast elongated anomaly represents the three 

collinear pipes in the ray and full-waveform permittivity tomograms of Figures 3.14b, 3.14c, 

3.16b and 3.16c, but they are not seen in Figures 3.18b and 3.18c. Considering the dimensions 

and magnitudes of artifacts in all permittivity tomograms, it is unlikely that the permittivity 

anomalies caused by the pipes would have been identified as meaningful in a field data set. 

Identification of the individual collinear pipes embedded in the layered structure appears to be 

beyond the resolution limits of the full-waveform permittivity inversion. 

There are hints of the anthropogenic features in the ray conductivity tomograms, with 

the size of the tunnel being overestimated and its conductivity contrast underestimated 

(~3 mS/m versus 10 mS/m; Figures 3.14b - 3.18b). An overly large elongated feature occurs 

at the depth level of the pipes. In contrast, the sizes, shapes, and conductivity contrasts of the 

tunnels and individual pipes are accurately reproduced in the full-waveform conductivity 

tomograms derived from all three synthetic data sets (~11 mS/m for the tunnel and ~25 mS/m 

for the pipes; Figures 3.14c - 3.18c). Considering the relatively poor resolution of the pipes in 

the full-waveform permittivity tomograms (Figures 3.14c - 3.18c), the high-quality images of 

the three pipes in the equivalent conductivity tomograms are somewhat surprising (Figures 

3.14f - 3.18f). 

3.5. CONCLUSIONS 

We have developed a full-waveform tomographic inversion scheme for crosshole 

radar data based on a finite-difference time-domain solution of Maxwell’s equations and 

Tarantola's (1984a; 2005) inversion technique. To avoid convergence to local minima in the 
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search space, ray tomography was used to supply suitable starting models. The new scheme 

implemented on a PC cluster was applied to synthetic data generated from homogeneous and 

heterogeneous models containing targets ranging in size from half to twice the dominant 

signal wavelength. 

Our three suites of numerical experiments provided details on the potential and 

limitations of the new scheme. Full-waveform tomography reproduced the locations, sizes and 

electrical properties of small (half the dominant signal wavelength) dielectric and conductive 

objects embedded in a homogenous medium. Neither object was resolved in the ray 

tomograms. Adding significant levels of band-limited white noise to the radar traces did not 

markedly degrade the full-waveform tomographic images. Comparably good estimates of 

target locations and sizes were observed in full-waveform tomograms obtained for a pair of 

adjacent small objects embedded in a homogeneous medium, one with relatively high 

permittivity and high conductivity and one with relatively low permittivity and low 

conductivity. For this model, deviations of the electrical properties were significantly 

underestimated, yet traces simulated from the full-waveform tomograms were nearly identical 

to the input traces. We conclude that this particular model and acquisition geometry had 

approached the resolution limits of the full-waveform inversion scheme. 

Results of the second suite of numerical experiments demonstrated the ability of the 

full-waveform tomographic inversion scheme to reconstruct sharp media boundaries and 

average and stochastic electric properties of heterogeneous layered models. By comparison, 

the ray inversion method yielded tomograms in which the media boundaries were generally 

blurred and the stochastic variations of dielectric permittivity and the average and stochastic 

variations of electrical conductivity were poorly determined. 

Our final suite of numerical experiments involved inserting a horizontal line of small 

pipes and a relatively large (twice the dominant wavelength) tunnel into the layered models 

and then inverting the synthetic radar data generated from the resultant composite models. 

The pipes and tunnel were filled with conductive water. Addition of the anthropogenic 

features only marginally affected the media boundaries and the average and stochastic 

electrical properties in the full-waveform and ray tomograms. The location and size of the 

tunnel were reproduced in all tomograms, with the most accurate estimates being provided by 

the full-waveform conductivity tomograms. The permittivity of the water was substantially 

underestimated, whereas its electrical conductivity was correctly reproduced. The collinear 

pipes were not well resolved in the permittivity tomograms. Instead, they appeared as a single 
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linear feature in permittivity images with low degrees of stochastic heterogeneity and were 

not observed in an image with a high degree of heterogeneity; resolution of the individual 

pipes was clearly beyond the limits of the permittivity tomograms. By comparison, the 

locations, sizes and conductivities of the individual pipes were faithfully reproduced in the 

full-waveform conductivity tomograms for all levels of tested stochastic heterogeneity. 

By exploiting the complete information content of the synthetic crosshole radar data, 

full-waveform tomographic inversion is capable of yielding dependable, high-resolution 

dielectric permittivity and electrical conductivity images. For many applications, the sub-

wavelength resolution may be comparable to that supplied by borehole geophysical logging, 

core sampling, and direct-push techniques. The synthetic tests considered in this study suggest 

that the new scheme will be a valuable tool for diverse geological, hydrological, archeo-

logical, and civil engineering investigations. 
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Figure 3.14: Similar to Figure 3.8, but with the addition of three pipes and a tunnel filled with moderately 
conductive water (Figure 3.1b; model 7 in Table 3.1). For the pipes and tunnel εrp = εrt = 80, σp = σt = 10.0 
mS/m. 

 

 

Figure 3.15: Similar to Figure 3.9, but for the tomograms in Figure 3.14.
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Figure 3.16: Similar to Figure 3.10, but with the addition of three pipes and a tunnel filled with moderately 
conductive water (Figure 3.1b; model 8 in Table 3.1). For the pipes and tunnel εrp = εrt = 80, σp = σt = 10.0 
mS/m. 

 

 

Figure 3.17: Similar to Figure 3.9, but for the tomograms in Figure 3.16.
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Figure 3.18: Similar to Figure 3.12, but with the addition of three pipes and a tunnel filled with moderately 
conductive water (Figure 3.1b; model 9 in Table 3.1). For the pipes and tunnel εrp = εrt = 80, σp = σt = 10.0 
mS/m. 

 

 

Figure 3.19: Similar to Figure 3.9, but for the tomograms in Figure 3.18.
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4.1. ABSTRACT 

Crosshole radar tomography is a useful tool in diverse geological, hydrological, 

engineering, and archeological investigations. Conventional tomograms provided by standard 

ray-based techniques have limited resolution, primarily because only a fraction of the 

information contained in the radar data (i.e., the first-arrival times and maximum first-cycle 

amplitudes) is included in the inversion. To increase the resolution of radar tomograms, we 

have developed a versatile full-waveform inversion scheme that is based on a finite-difference 

time-domain solution of Maxwell’s equations. This scheme accounts for the 3-D nature of 

radar-wave propagation and includes an efficient method for extracting the source wavelet 

from the radar data. After demonstrating the potential of the new scheme on two realistic 

synthetic data sets, we apply it to two crosshole data sets acquired in very different 

geological / hydrological environments. These are the first applications of full-waveform 

tomography to observed crosshole radar data. The resolution of all full-waveform tomograms 

is shown to be markedly superior to that of the relevant ray tomograms. Boundaries between 

distinct geological / hydrological units and small features, a fraction of the dominant radar 

wavelength, are sharply imaged in the full-waveform tomograms. 

Key Words: Full-waveform inversion, finite-difference time-domain (FDTD) methods, 

Maxwell’s equations, crosshole radar, synthetic and field data. 

4.2. INTRODUCTION 

Crosshole radar methods are capable of providing reliable subsurface tomographic 

images of dielectric permittivity ε and electrical conductivity σ, two properties intimately 

linked to local hydrological conditions, salinity, clay content, and lithological variations. 

Acquisition of crosshole radar data involves generating high-frequency (20 - 250 MHz) 

electromagnetic pulses at numerous locations along one borehole and recording the 

transmitted and scattered waves at a large number of positions along a second borehole. The 

pulses have dominant wavelengths of 5.0 to 0.4 m in the subsurface. 

The vast majority of published tomographic radar images of the shallow subsurface 

have been derived from standard ray-based inversions of first-arrival times and maximum 

first-cycle amplitudes (e.g., Olsson et al., 1992; Carlsten et al., 1995; Fullagar et al., 2000; 

Bellefleur and Chouteau, 2001; Tronicke et al., 2001; 2004; Irving and Knight, 2005; Clement 

and Barrash, 2006; Musil et al., 2006; Paasche et al., 2006). Unfortunately, the resolution 

provided by standard ray tomography is limited by the relatively small amount of information 
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included in the inversion; resolution scales approximately with the diameter of the first 

Fresnel zone (Williamson and Worthington, 1993).  

To improve the resolution provided by radar methods, a number of waveform-type 

approaches have been developed over the past sixteen years. They have included various Born 

iterative methods based on integral representations of Maxwell's equations (Wang and Chew, 

1989; Chew and Wang, 1990; Sena and Toksoz, 1990; Moghaddam et al., 1991; Moghaddam 

and Chew, 1992; 1993; Cui et al., 2001) and wave-equation-traveltime (Cai et al., 1996), 

Fresnel-volume (Johnson et al., 2005), diffraction-tomography (Cui and Chew, 2000; Zhou 

and Liu, 2000; Cui and Chew, 2002; Cui et al., 2004), and full-waveform (Moghaddam et al., 

1991; Jia et al., 2002; Ernst et al., 2005; Kuroda et al., 2005; Ernst et al., 2007) methods. 

Almost all of these waveform-type approaches have only ever been tested on synthetic data 

and not applied to recorded crosshole radar data. A notable exception is Cai et al.’s (1996) 

application of their wave-equation-traveltime method to observed first-arrival traveltimes. 

We have recently introduced a 2-D time-domain full-waveform tomographic scheme 

for the inversion of crosshole radar data (Ernst et al., 2005; 2007). Our intention here is to 

demonstrate its potential and limitations via applications to two realistic synthetic data sets 

and two field data sets, one acquired within a relatively dry granodioritic rock mass (Grimsel 

Rock Laboratory) and one recorded within a water-saturated alluvial aquifer (Boise 

Hydrogeophysical Research Site). To our knowledge, these are the first applications of full-

waveform tomographic inversion to observed crosshole radar data. In contrast to waveform-

type investigations that only involve synthetic data, it is necessary for us to (i) account for the 

3-D nature of wave propagation through the probed media and (ii) estimate the source 

wavelet. 

After reviewing briefly the principal features of the new full-waveform tomographic 

inversion scheme, we summarize key implementation details. Although issues (i) and (ii) are 

very important, we handle them in Appendices A and B to maintain continuity of the main 

text. Finally, we present the results of applying the new scheme to the synthetic and field data 

sets. All full-waveform tomograms are compared to the corresponding conventional ray 

tomograms. 
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4.3. FULL-WAVEFORM INVERSION 

Since Tarantola's (1984a; 1984b; 1986) classic papers appeared on the full-waveform 

inversion of seismic data, numerous inversion methods have been developed and applied to 

seismic waves generated and recorded at the surface and/or along boreholes. They have 

included finite-difference and finite-element approaches based on representations of the 

acoustic-, elastic-, viscoelastic-, and anisotropic-wave equations in both the time- and 

frequency-domains (e.g., Mora, 1987; 1988; Pica et al., 1990; Pratt, 1990a; 1990b; Zhou and 

Greenhalgh, 1998a; Pratt, 1999; Pratt and Shipp, 1999; Zhou and Greenhalgh, 2003; 

Watanabe et al., 2004; Sinclair et al., 2007). Comparable developments on the full-waveform 

inversion of radar data have been much more limited (Moghaddam et al., 1991; Jia et al., 

2002; Ernst et al., 2005; Kuroda et al., 2005; Ernst et al., 2007). In this contribution, we 

employ our new 2-D full-waveform tomographic inversion scheme to synthetic and field data. 

Details on the mathematical formulations and computer realization of this scheme are 

provided by (Ernst et al., 2007). Here, we describe only the most important elements. 

For the forward component of our scheme, we employ a 2-D finite-difference time-

domain (FDTD) solution of Maxwell’s equations in Cartesian coordinates, and for the inverse 

component, we adapt Tarantola’s (1984a) approach to operate in the electromagnetic wave 

regime. In typical borehole radar configurations, the electric-field component parallel to the 

borehole axis dominates, such that the TE-mode Maxwell's equations are appropriate for our 

purposes. These equations are solved using staggered-grid finite-difference operators that are 

second-order accurate in both time and space (Taflove and Hagness, 2000). Application of 

efficient generalized perfectly matched layer (GPML) absorbing boundaries minimizes 

artificial reflections from the model edges (Fang and Wu, 1996). 

During the inversion, a conjugate-gradient technique (Polak and Ribière, 1969) is used 

to find the minimum of a cost functional that defines the differences between the observed 

and model-predicted data. An adjoint method determines the update gradient directions and an 

algorithm described by Pica et al. (1990) supplies optimum estimates of the upgrade step 

sizes. As a consequence, computationally expensive calculations of the Jacobian matrix are 

not required.  

Before applying our 2-D full-waveform tomographic inversion scheme, we need to 

account as best we can for the 3-D characteristics of wave propagation through the media and 

determine an estimate of the source wavelet. These two critical issues are discussed in 
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Appendices 4.A and 4.B. Implementation of our full-waveform tomographic inversion 

scheme involves the following principal steps: 

I. apply pre-inversion data processing to reduce high-frequency noise and the effects of 

out-of-plane energy, and "transform" the crosshole radar data to 2-D (Appendix A); 

II. invert the first-arrival times and maximum first-cycle amplitudes using standard ray 

tomography; 

III. convert the ray velocity and attenuation tomograms to initial ε and σ models; 

IV. compute a synthetic wavefield using the initial ε and σ conductivity models and a 

rough estimate of the source wavelet (boxes 1 and 2 in Figure 4.B-2); 

V. determine a realistic estimate of the source wavelet using the deconvolution method 

outlined in Appendix B (boxes 3 to 5 in Figure 4.B-2); 

VI. compute the synthetic wavefield using the model parameters and the realistic source-

wavelet estimate determined at step V; 

VII. subtract the synthetic data from the observed data to determine the residual wavefield; 

VIII. compute the cost functional; 

IX. use the same model parameters employed at step VI and the residual wavefield to 

generate the back-propagated synthetic wavefield; 

X. calculate the inversion update directions by cross-correlating the forward- and back- 

propagated  wavefields; 

XI. determine the step length that provides fast, yet stable and accurate inversions; 

XII. update the ε and σ model using the derived gradient direction and step length; 

XIII. repeat steps V to XII until convergence is achieved (i.e., the cost functional reaches a 

predetermined minimum value). 

During the inversion, the complete wavefield only needs to be computed three times per 

iteration (i.e., steps VI, IX , and XI). 

Our attempts to invert simultaneously for ε and σ fail, primarily because of the large 

differences between the magnitudes of the ε and σ Fréchet derivatives (even though they are 

not explicitly calculated; Watanabe et al. (2004) discuss the equivalent acoustic problem). 

This problem is resolved by first inverting for ε  while keeping σ  fixed and then inverting for 

σ while keeping ε fixed (Ernst et al., 2007). Although this sequence can be repeated until 

convergence is obtained, only a single computational cycle is required for all examples 

presented in this paper. 
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4.4. APPLICATION TO REALISTIC SYNTHETIC DATA 

In the following, we explore the potential and limitations of our full-waveform 

inversion scheme using two very similar synthetic data sets, one pure 2-D and one quasi-3-D 

(other synthetic examples are presented in Ernst et al., 2007). Medium parameters, borehole 

geometries, and boundaries of the stochastic models used to generate the two data sets are 

identical (Table 4.1 and Figures 4.1a and 4.1d). For convenience, the models are expressed in 

terms of relative permittivity εr = ε /ε0, where ε0 is the dielectric permittivity of free space. 

Average medium properties are εr
mean = 10.3 and σmean = 2.0 mS/m and the stochastic 

variations are defined by exponential covariance functions with standard deviations εr
std

 = 0.8 

and σstd = 1.7 mS/m and horizontal and vertical correlation lengths of 1.0 and 0.2 m, 

respectively. Figures 4.1a and 4.1d show the resultant εr and σ distributions used to generate 

the synthetic data. They have distinct subhorizontal fabrics with zones of generally low εr and 

low σ  within 1 m of the surface and below 16 m depth and a zone of mostly high εr  and high 

σ  between 4 and 10 m depth. The two 20-m-deep boreholes in our models are separated by 

Table 4.1: Summary of model parameters. Homogeneous initial models were used for all ray-tomographic 
inversions. 
 

Grid cell sizes 
[cm] Experiments 

(Figures) 

Model 
width & 

depth 
[m] 

#Transmitters 
/ #receivers 

Input medium 
parameters 

(εr and σ 
[mS/m]) forward inverse

2.5-D to 2-D 
transformation 

/ source 
estimation & 
improvement 

Initial 
parameters 

for ray 
tomography 

(εr and σ 
[mS/m]) 

Synthetic I 
(4.1, 4.2a, 

4.3) 
10 & 20 41 / 41 2 6 No / Yes εr = 10.3 

σ = 1.4 

Synthetic II 
(4.2b, 4.4) 10 & 20 41 / 41 

εr
mean = 10.3; 
σmean = 2.0 
stochastic 

variations with 
standard 

deviations of 
εr

std = 0.8, 
σstd = 1.7 

and correlation 
lengths of 
x = 2.0 m, 
z = 0.2 m 

2 6 Yes / Yes εr = 10.3 
σ = 1.4 

Grimsel 
(4.5, 4.6, 
4.7a, 4.8) 

10 & 20 41 / 40 ? 2 18 Yes / Yes εr = 5.6 
σ = 1.4 

Boise 
(4.7b, 4.9 –

 4.11) 
8.5 & 20 77 / 40 

(see main text) ? 2 14 Yes / Yes εr = 12.4 
σ = 4.7 
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10 m, with 41 equally spaced transmitter antennas in the left borehole and 41 equally spaced 

receiver antennas in the right borehole. The grid spacings used for the forward and inverse 

computations are 0.02 and 0.06 m, and the model space is surrounded by a 0.8-m-thick GPML 

frame. 

We employ an FDTD algorithm in 2-D Cartesian coordinates to generate the true 2-D 

noise-free data for the first synthetic experiment (Synthetic I in Table 4.1) and an FDTD 

algorithm in cylindrical coordinates (Ernst et al., 2006) to generate the pseudo-3-D noise-free 

data for the second experiment (Synthetic II in Table 4.1). The source signal in both 

experiments is a 100 MHz Ricker wavelet that yields signals with ~1 m dominant 

wavelengths in the models. 

4.4.1. SYNTHETIC EXPERIMENT I: DETERMINING THE SOURCE WAVELET 

AND DISTRIBUTIONS OF ε AND σ FROM TRUE 2-D SYNTHETIC DATA  

Conventional ray-based inversions of the first-arrival traveltimes and maximum first-

cycle amplitudes provide the electromagnetic velocity and attenuation tomograms that are 

converted using relatively standard high-frequency relationships (Holliger et al., 2001) to the 

εr and σ  ray tomograms shown in Figures 4.1b and 4.1e. The εr ray tomogram is a somewhat 

blurred image that portrays well the important broad-scale zoning of the original model 

(compare Figures 4.1b and 4.1a), but the σ ray tomogram is a rather poor representation of the 

original model (compare Figures 4.1e and 4.1d).  

Despite their shortcomings, the two ray tomograms are the basis for a source-wavelet 

estimate that practically matches the true wavelet (compare the curves represented by the 

green and dashed black lines in Figure 4.2a; see Appendix 4.A). Using the two ray tomograms 

and associated source-wavelet estimate as the initial input parameters, the full-waveform 

inversion scheme for determining εr and the related source-wavelet computations converge 

after 20 iterations. The subsequent full-waveform inversion scheme for σ  converges after 10 

iterations. 

Since the source-wavelet estimate based on the ray tomograms is remarkably good, it 

is not surprising that the full-waveform inversions produce no noticeable improvements in 

this regard. By comparison, the full-waveform tomograms are significantly more accurate 

with much higher resolution than the ray tomograms (compare Figure 4.1c with Figures 4.1a 

and 4.1b and Figure 4.1f with Figures 4.1d and 4.1e). Whereas the resolution of the ray 

tomograms is generally no better than ~1 m (i.e., the dominant wavelength of the radar 
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signal), that of the full-waveform tomograms is in the 20-30 cm range. The full-waveform σ 

tomogram accurately reconstructs small-scale features in regions of the model that are well 

sampled by multiple crossing wavefronts, but predicts erroneously low σ values at the upper 

and lower extremeties of the model (Figure 4.1f). 

Figure 4.3 shows FDTD-generated receiver gathers for the original model and the ray 

and full-waveform tomograms. First-arrival traveltimes and maximum first-cycle amplitudes 

of traces generated from the ray tomograms are quite close to those generated from the 

original model, but there are small but important differences in the waveforms that are 

exemplified in the difference plots of Figure 4.3c. Traces generated from the full-waveform 

tomograms are practically identical to those generated from the original model. 

Figure 4.1: (a) and (d) input εr and σ  values for the 2-D synthetic data experiment I (Table 4.1). Mean 
dielectric permittivity and electrical conductivity of the stochastic medium are εr

mean = 10.3 and σmean = 1.4 
mS/m with standard deviations εr

std = 0.8 and σstd = 1.7 mS/m and correlation lengths in the x and z directions 
of 2 m and 0.2 m. (b) and (e) εr and σ tomograms that result from applying the ray-based inversion scheme to 
synthetic traces computed from the model shown in (a) and (b). Data were generated using FDTD 
approximations of Maxwell’s equation in 2-D. (c) and (f) as for (b) and (e) but for the full-waveform 
inversion. Black crosses and circles are transmitter and receiver locations.
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Figure 4.3: (a) and (b) are transmitter gathers for a location along the left model edge at 10.1 m depth in 
Figure 4.1. Dashed black and solid blue and red lines show every second radar trace generated from the 
original input model in Figures 4.1a and 4.1d, the ray tomograms in Figures 4.1b and 4.1e, and the full-
waveform tomograms in Figures 4.1e and 4.1f. (c) Blue and red lines show differences between the blue and 
dashed black lines in (a) and between the red and dashed black lines in (b), respectively. Amplitudes in (a) 
and (b) are normalized with respect to the maximum amplitude of the input data. Amplitudes of residuals in 
(c) are amplified by a factor of 2 relative to the radar traces.

Figure 4.2: Source wavelets determined for the tomogramic inversions shown in (a) Figure 4.1 and (b) 
Figure 4.4. Dashed black line is the true source wavelet, and green and red lines are the first and final source 
wavelets determined by the deconvolution method outlined in Appendix B. Amplitudes are normalized with 
respective to the maximum values for display purposes.
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4.4.2. SYNTHETIC EXPERIMENT II: DETERMINING THE SOURCE WAVELET 

AND DISTRIBUTIONS OF ε AND σ FROM PSEUDO-3-D SYNTHETIC DATA 

We use the second synthetic data set created with Ernst et al.'s (2006) FDTD code in 

cylindrical coordinates to demonstrate the efficacy of our approach for minimizing the effects 

of 3-D wave-propagation phenomena on the 2-D inversion scheme. To simulate realistic 

conditions, we only invert 20 ns of each trace starting at the first-arrival onsets. After 

employing equation 4.A-1 in Appendix 4.A to account for the 3-D radiation effects, we follow 

the same procedures as described previous synthetic experiment. Figure 4.2b shows that the 

reconstructed source wavelet is slightly phase shifted relative to the true wavelet. 

Nevertheless, the full-waveform tomograms in Figure 4.4 are very similar to those derived 

from the pure 2-D data set in Figures 4.1c and 4.1f, and the correspondence between receiver 

gathers generated from the full-waveform tomogram and original model is as good as that 

obtained for Synthetic experiment I; small imperceptible differences in the ray tomogram 

compensate for the small phase shifts in the estimated source wavelet (Figure 4.2b; see the 

sensitivity analysis in Appendix 4.B). 

 

Figure 4.4: (a) and (b) εr and σ  tomograms that result from applying the full-waveform inversion scheme to 
synthetic traces generated from a cylindrically symmetric version of the model shown in Figures 4.1a and 
4.1b (Synthetic II, Table 4.1). This is referred to as a 2.5-D model. Data generated using FDTD 
approximations of Maxwell’s equations in 2.5-D were transformed to 2-D in the Cartesian coordinate 
system for use in the full-waveform inversion scheme. Black crosses and circles are transmitter and receiver 
locations. 
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4.5. CASE STUDY I - GRIMSEL ROCK LABORATORY 

We have acquired crosshole radar data 

within the Grimsel Rock Laboratory in the central 

Swiss Alps. Previous geological, geomechanical, 

and seismic investigations at the study site 

identified two marginally different types of 

foliated granodiorite cross-cut by a fractured 

mylonitic shear zone (Figure 4.5; Majer et al., 

1990; Vasco, 1991; Vasco et al., 1998). Both the 

foliation and shear zone trend in a northeast-

southwest direction. The poorly defined 

boundaries shown in Figure 4.5 are based on 

extrapolations of observations along the Main 

Access Tunnel in the east and the Lower Access 

Tunnel in the west and information extracted from 

boreholes (dashed black lines). Very different 

degrees of fracturing at neighboring locations 

along the tunnels and boreholes suggest that the 

shear zone is extremely heterogeneous. 

4.5.1. DATA ACQUISITION 

For our crosshole radar survey, we took advantage of two subhorizontal boreholes 

linking the two tunnels (87.001 and 87.002 in Figure 4.5). These 0.1-m-diameter dry 

boreholes were ~21 m long and separated by a constant distance of ~10 m. Along ~20 m 

lengths of the boreholes, 41 transmitter locations and 40 receiver locations were established at 

~0.5 m intervals. Our 250-MHz RAMAC borehole antennas produced radar waves with a 

surprisingly low dominant frequency of ~125 MHz, which corresponded to wavelengths of 

0.9 - 1.1 m in the granodioritic rock.  

4.5.2. DATA PROCESSING, INVERSIONS AND SOURCE-WAVELET ESTIMATES 

To avoid artifacts associated with rapid variations in the antenna radiation patterns, we 

only considered data for which the angles between the borehole axes and lines connecting the 

transmitter and receiver antennas were >45°. Moreover, because seismic data recorded 

between the two boreholes had a background anisotropy of 7-10% (Majer et al., 1990; Vasco, 

1991; Tura et al., 1992; Vasco et al., 1998), we tested the crosshole radar data for anisotropy. 

Figure 4.5: Sketch of the crosshole radar 
experiment performed at the Grimsel site 
(Switzerland). The geological coss-section is 
based on borehole information (modified from 
Majer et al., 1990). TRN and REC are 
transmitter and receiver locations. 
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Linear and polar plots of 

apparent velocity (i.e., 

transmitter-receiver distance di-

vided by first-arrival traveltime) 

versus transmitter-receiver an-

gle (relative to the borehole 

axes) revealed negligible an-

isotropy (i.e., < 2.5%) in the 

radar data. 

Ray tomograms that 

resulted from inverting the 

semi-automatically picked first-

arrival traveltimes and 

maximum first-cycle 

amplitudes are presented in 

Figures 4.6a and 4.6c. For the 

source-wavelet determination 

and the full-waveform 

inversion, we selected 42 ns of 

each trace starting at the first-

arrival onsets and then followed 

the same procedures as 

described for the synthetic data. 

Whereas maximum cell sizes of forward-modeling grids are determined by numerical 

stability criteria (Bergmann et al., 1996; Holliger and Bergmann, 2002), there is no 

corresponding rule for the inversion cell sizes (Ernst et al., 2007). There are two competing 

requirements to satisfy in defining the inversion cell sizes: (i) a sufficient number of grid 

points is needed to represent the radar signal, and (ii) the number of grid points per antenna 

interval should be limited, otherwise artifacts are generated near the transmitters and receivers 

as a result of their strong influence on the gradient-computation component of the inversion 

process (i.e., step X in the section "FULL-WAVEFORM INVERSION"). Considering the 

0.9 - 1.1 m radar wavelengths and the ~0.5 m source and receiver spacing, a 0.18 m cell size 

is a reasonable compromise for the inversion of the Grimsel crosshole radar data. As for the 

Figure 4.6: (a) and (c) εr and σ tomograms that result from 
applying the ray-based tomographic inversion method to the 
Grimsel crosshole radar traces after application of equation (4.A-1). 
(b) and (d) as for (a) and (c) but for the full-waveform inversion. 
Black crosses and circles are transmitter and receiver locations. 
White lines are the structural elements and black dashed lines are 
the additional boreholes shown in Figure 4.6. 
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synthetic data examples, we use a conservative 0.02 m cell size for the forward modeling and 

the model space is surrounded by a 0.8-m-thick GPML boundary. 

After 20 iterations for εr and 10 iterations for σ , the full-waveform tomograms of 

Figures 4.6b and 4.6d are obtained. Very similar tomograms are obtained for inversion cell 

sizes ranging from 0.06 to 0.24 m. The small artifacts along the lengths of the boreholes are a 

consequence of the aforementioned high sensitivities near the transmitters and receivers. 

Artifacts could be reduced by increasing the inversion cell size, because this would distribute 

sensitivities over larger areas. However, this would decrease the resolution in better sampled 

regions of the tomogram. Increasing the density of transmitter and receiver locations would be 

the correct way to eliminate these artifacts. 

The source wavelets based on the ray and full-waveform tomograms are practically 

identical (Figure 4.7a). They are characterized by two main cycles with a dominant frequency 

of ~125 MHz. Despite these similarities and the good correspondence between observed and 

ray-based first-arrival traveltimes and maximum first-cycle amplitudes, there are important 

differences between the observed and FDTD-generated radar traces derived from the ray 

Figure 4.7: Source wavelets determined for the tomogramic inversions shown in (a) Figure 4.6 (Grimsel 
data set) and (b) Figure 4.10 (Boise data set). Green and red lines are the first and final source wavelets 
determined by the deconvolution method outlined in Appendix B. Amplitudes are normalized with 
respective to the maximum values for display purposes.
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tomograms (Figures 4.8a and 4.8c). In contrast, the radar traces generated from the full-

waveform tomogram match closely the observed ones (Figures 4.8b and 4.8c). 

 

4.5.3. COMPARISON OF RADAR AND SEISMIC P-WAVE VELOCITY 

CROSSHOLE TOMOGRAMS 

Both εr tomograms in Figure 4.6 include regions of relatively high εr values in the 

northwest and southeast separated by a prominent broad band of low εr values. This pattern is 

very similar to that revealed in the Grimsel P-wave velocity tomograms of Vasco (1991), Tura 

et al. (1992), and Vasco et al. (1998), except that moderately high seismic velocities coincide 

with low radar velocities (i.e., high εr values) and low seismic velocities coincide with high 

radar velocities (i.e., low εr values). 

4.5.4. INTERPRETATION 

As for the synthetic data examples, the resolution of the Grimsel full-wave radar 

tomograms is markedly superior to that of the ray tomograms; smaller features are imaged 

and the εr and σ contrasts are stronger and sharper. In both suites of tomograms, a pattern of 

low εr values follows the northeast-southwest trend of the shear zone. According to the full-

wave tomograms, its northwest boundary is distinguished by relatively abrupt changes from 

Figure 4.8: (a) and (b) are transmitter gathers for location TRN 20 in Figure 4.5. The dashed black and solid 
blue and red lines show every second observed radar trace and data generated from the ray tomograms in 
Figures 4.6a and 4.6c and full-waveform tomograms in Figures 4.6b and 4.6d, respectively. (c) Blue and red 
lines show differences between the blue and dashed black lines in (a) and between the red and dashed black 
lines in (b). Amplitudes in all panels are normalized with respect to the maximum amplitude of the input 
data. 
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εr ≈ 4.75 - 5.75 within the shear zone to εr ≈ 5.75-6.50 outside. If relatively low εr values are 

caused by fracturing, then the full-waveform εr tomogram (Figure 4.6b) suggests that the 

southeast boundary of the shear zone is also relatively abrupt and occurs ~4 m further to the 

southeast than shown in Figure 4.5.  

Although σ  changes from generally less than 1.5 mS/m to mostly more than 2.5 mS/m  

across the northwest boundary of the shear zone, evidence for the shear zone is less obvious in 

the σ  tomograms than in the εr tomograms. Since σ  is controlled by the highest conductivity 

component of a system, the presence of relatively dry fractures that do not interrupt current 

flow through the matrix does not significantly influence the average conductivity distribution. 

The evidence from the radar and seismic tomograms is consistent with the ubiquitous 

presence of fractures within the cross-cutting shear zone. These fractures are likely filled or 

partially filled with air or other low εr, low to moderate σ,  and low P-wave velocity material. 

4.6. CASE STUDY II - BOISE HYDROGEOPHYSICAL RESEARCH SITE 

Our second crosshole radar data set was collected at the Boise Hydrogeophysical 

Research Site in Idaho (Tronicke et al., 2004). A dense array of boreholes at this site has been 

used for diverse geological, geomechanical, hydrogeological, and geophysical experiments 

(Clement et al., 1999; Barrash and Clemo, 2002; Barrash and Reboulet, 2004; Tronicke et al., 

2004; Clement and Barrash, 2006). The geology comprised an approximately 20-m-thick 

deposit of braided-river gravel and sand and an underlying clay layer. The water table was at 

2.96 m depth at the time of the measurements. 

4.6.1. DATA ACQUISITION 

Tronicke et al.'s (2004) data were acquired in two 0.1 m-diameter boreholes that were 

~20 m deep and separated by ~8.5 m (C6 and C5 in Figure 4.9). The boreholes, which were 

slightly tilted with respect to the vertical, penetrated three distinct pebble- and cobble-

dominated layers with 21, 26, and 26% porosities (Figure 4.9). Data acquisition extended 

from ~4 to ~19.4 m depth, with 77 transmitter locations at 0.2 m intervals and 40 receiver 

locations at 0.4 m intervals. Although the 250-MHz RAMAC borehole antennas produced 

even lower frequencies than at Grimsel, the dominant ~80 MHz radar waves had similar 0.9 -

 1.1 m wavelengths in the high-εr (low velocity) sediments.  
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4.6.2. DATA PROCESSING, INVERSIONS AND SOURCE-WAVELET ESTIMATES 

The data processing, inversions and 

wavelet estimate procedure applied to the Boise 

data set were very similar to those described for 

the synthetic and Grimsel data sets. We only 

considered data for which the angles between the 

borehole axes and lines connecting the transmitter 

and receiver antennas were >45°, anistotropy was 

determined to be negligible (i.e., <2%), and 78 ns 

of each trace starting at the first-arrival onsets was 

included in the inversion. Forward modeling and 

inverse grid cell sizes were 0.02 m and 0.14 m, 

and the model space was surrounded by a 0.8-m-

thick GPML boundary. 

The resultant ray tomograms are displayed 

in Figures 4.9a and 4.9c, and the full-waveform 

tomograms after 30 iterations for εr and 8 

iterations for σ  are presented in Figures 4.9b and 

4.9d. Like the synthetic and Grimsel examples, the source wavelets based on the ray and full-

waveform tomograms are practically identical (Figure 4.7b). The somewhat ringy character of 

the source wavelet is a result of the Boise boreholes being water filled (Ernst et al., 2006). 

There are notable misfits between the observed and FDTD-generated radar traces 

derived from the ray tomograms, particularly in the central regions of the receiver gather of 

Figures 4.11a and 4.11c. The radar traces generated from the full-waveform tomogram 

correspond closely to the observed ones in Figures 4.11b and 4.11c, but the match is not quite 

as good as for the synthetic and Grimsel examples (Figures 4.3 and 4.8). 

4.6.3. INTERPRETATION 

The full-waveform tomograms contain sharp images throughout the investigated 

volume, whereas the ray tomograms are rather blurred (Figure 4.10). Again, greater detail and 

larger εr and σ  contrasts are observed on the full-waveform tomograms than on the ray 

tomograms. The boundary between the 21% and 26% porosity units seems to be gradational 

on the ray tomograms, with changes in εr and σ  appearing ~0.5 m above the boundary 

Figure 4.9: Sketch of the crosshole radar 
experiment performed at the Boise site 
(Idaho). Geological boundaries are based on 
porosity logs (Tronicke et al., 2004). TRN and 
REC are transmitter and receiver locations.
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mapped in the boreholes (see also Figure 7 of Tronicke et al., 2004). By comparison, abrupt 

changes in εr and σ  are observed in the full-waveform tomograms at the mapped boundary. 

The lower limit of the 26% porosity unit is also better defined on the full-waveform εr 

tomogram than on the ray εr tomogram, but it is not observed as a distinct feature on either 

σ  tomogram. 

Since εr and neutron-neutron counts are both proxies for water content, we plot the 

neutron-neutron logs measured in the two boreholes (Barrash and Clemo, 2002; Tronicke et 

al., 2004) alongside the full-waveform εr tomogram in Figure 4.10b. The correspondence 

between the two types of data ranges from very good to poor. There are close correlations 

between high εr values and high porosities (i.e., values of ~30% or greater) at ~5.7 m, 

~14.8 m, and ~16.5 m in borehole C5 and at ~6.1 m, ~11.3 m, and ~14.8 m in borehole C6. 

Figure 4.10: (a) and (c) εr and σ tomograms that result from applying the ray-based tomographic inversion 
method to the Boise crosshole radar traces after application of equation (4.A-1). (b) and (d) as for (a) and (c) 
but for the full-waveform inversion. Neutron-neutron (porosity) logs measured in the two boreholes are 
displayed to the left and right of the εr tomogram in (b) A capacitive resistivity log measaured in borehole 
C6 is shown to the right of the σ tomogram in (d). Black crosses and circles are transmitter and receiver 
locations. White lines are the boundaries shown in Figure 4.11. 
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There are several moderately high porosity values in the two logs that have no expression in 

the tomogram and the zone of high εr values that spans the tomogram at ~12.5 m depth has no 

expression in either neutron-neutron log. We note, however, that the zone of high εr values at 

~12.5 m depth thins as it approaches both boreholes. 

 

4.7. CONCLUSIONS 

We have outlined the essential elements of a new 2-D full-waveform tomographic 

inversion scheme and described simple methods to account for 3-D radar-wave propagation 

effects and estimate the source wavelet (Appendices A and B). The new scheme has been 

applied to realistic pure 2-D and pseudo-3-D synthetic data as well as field data acquired in 

relatively dry crystalline rock and water-saturated unconsolidated sediments. In all four 

examples, the resolution of the full-waveform tomograms was significantly superior to that of 

the respective ray tomograms. Boundaries between structural units were sharply focused and 

features with dimensions as small as 0.3 - 0.5 of the dominant radar wavelength were clearly 

imaged in the full-waveform tomograms. 

Although transmitter and receiver intervals of half the dominant wavelength proved to 

be suitable for the synthetic case studies, the results of inverting the field data suggested that 

Figure 4.11: (a) and (b) are receiver gathers for location REC 20 in Figure 4.9. The dashed black and solid 
blue and red lines show every third observed radar trace and data generated from the ray tomograms in 
Figures 4.10a and 4.10c and full-waveform tomograms in Figures 4.10b and 4.10d, respectively. (c) Blue and 
red lines show differences between the blue and dashed black lines in (a) and between the red and dashed 
black lines in (b). Amplitudes in all panels are normalized with respect to the maximum amplitude of the 
input data. 
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the intervals should be approximately half this value to avoid artifacts near the antennas. In an 

investigation of potential trade-offs between source-wavelet estimates and the full-waveform 

tomograms (Appendix B), we found that plausible timing errors in the source wavelets are 

unlikely to have major effects on ε  tomograms, but plausible amplitude errors may result in 

moderately inaccurate σ  tomograms. 

The ray-based inversions required about 0.5 hours on a single 32-bit Intel Xeon 

2.4 GHz processor and the full-waveform inversions required less than 12 hours on N+1 64-

bit AMD 244 1.8 GHz processors, where N is the number of transmitters. Clearly, users must 

decide whether the significant improvement in resolution is worth the extra computational 

effort required for the full-waveform inversions.   

Considering that the source wavelet may vary along the length of a borehole according 

to local conditions (Holliger and Bergmann, 2002; Ernst et al., 2006), future developments 

may include the possibility of determining and using a source wavelet for each transmitting 

regime of a borehole. 
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APPENDIX 4.A. ACCOUNTING FOR 3-D EFFECTS 

Crosshole radar data are invariably influenced by 3-D wave-propagation phenomena, 

including both out-of-plane and radiation effects. Because most crosshole radar data are 

acquired with single-component non-directional antennas, there is generally insufficient 

information to discriminate between out-of-plane and in-plane events. Nevertheless, for media 

characterized by moderate velocity heterogeneity, the vast majority of energy contributing to 

the first few cycles of a recorded trace likely originates from within the plane containing the 

transmitter and receiver antennas; for typical crosshole experiments, the initial pulse can only 

contain energy from within a wavelength or two of this plane. Consequently, to minimize 

contamination from out-of-plane energy, we only consider time windows that include the first 

few cycles of the recorded traces in the inversion (see discussions by Pratt, 1999; Pratt and 

Shipp, 1999). 

In applying 2-D computational codes in many disciplines of geophysics, sources and 

structures are assumed to extend to infinity on either side of the observation plane. In our 

FDTD algorithm, the sources are effectively modeled as infinite lines of point dipoles. Yet, 

we know that real antennas radiate energy in three dimensions (Ernst et al. (2006) have shown 

that the radiation pattern of a point dipole closely approximates that of the common insulated 

Wu–King-type antenna). An algorithm that explicitly incorporates 3-D wave propagation in a 

medium that varies in only two dimensions would be one way of addressing this issue (e.g., 

Zhou and Greenhalgh, 1998b). Implementation of such an approach in our time-domain 

scheme would be computationally very costly. We have thus chosen an alternative approach 

proposed by Bleistein (1986), in which appropriate corrections are made for 3-D geometrical 

spreading, a π/4 phase shift, and a frequency scaling effect of 1 ω , where ω is the angular 

frequency. The corrections are made to the observed data in the frequency domain as follows: 

2D obs trn rec
trn rec trn rec mean

2 ( , )( , , ) ( , , ) TE E
i

πω ω
ωε µ

=
−

x xx x x x , (4.A-1) 

where E2D(xtrn, xrec, ω) is the corrected data for a transmitter at location xtrn(x, z) and a 

receiver at xrec(x, z), Eobs(xtrn, xrec, ω) is the original recorded data,  T(xtrn, xrec) is the 

traveltime, i2 = -1, εmean is the mean dielectric permittivity of the media, and we set µ = µ0, the 

magnetic permeability of free space. Thorough testing of this approach on synthetic crosshole 
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radar data demonstrates good agreement between corrected 3-D and corresponding pure 2-D 

data, as long as the data are generated for far-field regimes. 
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APPENDIX 4.B. SOURCE WAVELET ESTIMATION 

4.B.1. FIRST-ARRIVAL PULSE METHOD 

Our first attempt to determine the source wavelet is based on analyses of the first-

arrival pulses. The following relationship links the source current Jtrn we employ in our FDTD 

algorithm to the recorded electric field in the far-field regime Eobs (de Hoop, 1995): 

obs
trn trn rec

'

( , ) ( , ') '
t

J t E t dt∝ ∫x x  (4.B-1) 

where t is time. We avoid problems associated with radiation-angle variations by only 

considering data from shortest-path transmitter-receiver pairs (i.e., those with radiation 

angles ≈ 90°). To obtain a single estimate of the source wavelet, we integrate the radar data 

according to equation 4.B-1 and then compute the average of the extracted first-arrival pulses. 

An example of applying this procedure to synthetic data set I (Figures 4.1 - 4.3 and Table 4.1) 

is shown by the blue curve in Figure 4.B-1. Although the shape of this source-wavelet 

estimate is generally similar to that of the true source wavelet (black dashed line in Figure 

4.B-1), it is not close enough; the resultant tomograms are unsatisfactory. This method 

performs poorly on all synthetic and observed data sets. 

4.B.2. DECONVOLUTION METHOD 

The key steps of our second attempt to determine the source wavelet are outlined in 

Figure 4.B-2. Our radar data can be represented mathematically as the convolution of the true 

source wavelet with the true impulse response (i.e., suite of spike radargrams) of the region of 

Figure 4.B-1: Source wavelet reconstructions for the 2-D synthetic data (Figure 4.1). Dashed black line is 
the true source wavelet, blue line is the source wavelet based on the first-pulse method, and the green and 
red lines are the first and final source wavelets based on the deconvolution method outlined in Figure 4.B-2. 
Amplitudes are normalized with respective to the maximum values for display purposes. The ±1 ns and 30% 
bars indicate the phase shifts and amplitude variations used in the sensitivity analyses. 
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Earth under investigation. In principle, 

the true source wavelet can be obtained 

by deconvolving the radar data with the 

true impulse response of the Earth. Of 

course, we do not know the latter. 

Fortunately, very good estimates of the 

source wavelet can be obtained by 

deconvolving the recorded data with our 

best estimates of the Earth's impulse 

response. 

At the beginning of the full-

waveform inversion, our best estimates 

of the ε and σ distributions are provided 

by the ray tomograms. It is not possible 

to compute directly the Earth's impulse 

response using our FDTD code, because 

an infinitesimal grid spacing would be 

required for computations involving a 

spike source. To circumvent this 

problem, we first employ the FDTD 

code to compute a suite of synthetic 

radargrams Esyn(εk=0, σk=0, Sk=0(t), t) 

using the εray and σray distributions 

defined by the ray tomograms and a 

plausible source wavelet Sk=0(t) (boxes 1 

and 2 in Figure 4.B-2), where k is the 

iteration number. We use the source wavelet Sini(t) determined from the analysis of the first-

arrival pulses for this purpose, but any source wavelet with comparable length and frequency 

content would be sufficient at this stage. After Fourier transformation, we deconvolve (i.e., 

division in the frequency domain) the synthetic data synˆ (f)E  with k=0Ŝ (f)  to give a frequency-

domain estimate of the Earth's impulse response ˆ (f)M , where ^ indicates a frequency-domain 

parameter and f is frequency (box 3 in Figure 4.B-2). Finally, deconvolution of the frequency-

Figure 4.B-2: Flow chart outlining the deconvolution 
source-wavelet estimation method. See text for details.
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domain version of the observed data obsˆ (f)E  with ˆ (f)M  and inverse Fourier transformation 

provides an estimate of the source wavelet k=1S (t)  (boxes 4 and 5 in Figure 4.B-2). 

Since the equation in box 4 of Figure 4.B-2 describes an over-determined problem, in 

which far more data than unknowns are available, we estimate k=1Ŝ (f)  by fitting the 

observations in a minimum least-squares sense. Although the process represented by steps 2-5 

can be repeated using progressively improved full-waveform tomograms, k=1Ŝ (f)  already 

matches closely the true source wavelet in Figure 4.B-1 (compare the solid green and dashed 

black lines). Indeed, source wavelets based on the ray tomograms are uniformly very close to 

those based on the best full-waveform tomograms for all of our synthetic and field data sets 

(compare the green and red lines in Figures 4.2, 4.7 and 4.B-1). 

4.B.3. SENSITIVITY OF THE TOMOGRAMS TO ERRORS IN THE SOURCE 

WAVELET. 

The potential exists for trade-offs between the properties of the source wavelet and 

those of the tomograms. We test the effects of these trade-offs using the source wavelet of 

synthetic data set I. Introduction of ±1 ns phase shifts to the source wavelet (the form and 

amplitude of the wavelet are not changed), which correspond to ~10 data samples and would 

be very visible in the radargrams (Figure 4.B-1), results in root-mean-square (RMS) 

differences of ~2.3% between the final full-waveform ε tomogram and the original input 

model. For no phase shift, the RMS difference is 1.6%. Artificially reducing the amplitude of 

the source wavelet by ~30% (the form and phase of the wavelet are not changed) results in a 

13% RMS difference between the logarithm of the final full-waveform σ tomogram and the 

original input model, whereas the RMS difference is only 5% for the true source wavelet. 
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5. CONCLUSIONS AND OUTLOOK 
 

5.1. REALISTIC BOREHOLE GEORADAR SIMULATION TOOL 

The first part of my thesis research was dedicated to the development of a simulation 

tool for studying the detailed responses of borehole radar antennas that range from simple 

infinitesimal dipole-type to complex insulated finite-length antennas (e.g., Wu-King, PEC). 

The numerical scheme was based on a finite-difference time-domain discretization of the 

governing Maxwell’s equations in cylindrical coordinates. This coordinate system allowed the 

3-D radiation characteristics of the transmitter antennas to be correctly simulated using the 

computational efficiency of 2-D codes. To model accurately small antenna features (e.g., thin 

metallic wires), insulation, and intricate borehole structures, while keeping computational 

costs low, a simple but efficient local grid-refinement technique was implemented. 

Reflections from the boundaries of the model were markedly reduced by employing uniaxial 

perfectly matched layer absorbing boundaries. 

The scheme was tested using a variety of antenna realizations and different borehole 

fillings (e.g., air and water). There were strong similarities in the radiation characteristics of 

infinitesimal dipole- and Wu-King-type antennas as long as the antennas were placed in the 

same media and internal reflections in the metallic rods of the finite-length antennas were 

small. As for the results of previous studies, I concluded that under these circumstances 

infinitesimal dipole-type antenna radiation patterns, which can be described by analytic 

expressions, are suitable approximations for real damped antennas. 

Real antennas are usually designed to minimize reflections within the antenna wires 

while emitting enough energy into the subsurface. Accordingly, the optimal damping model 

for well-designed antennas lies somewhere between perfectly damped (i.e., no internal 

reflections: Wu-King-type antennas) and undamped (i.e., perfect electrical conductors that 

result in many internal reflections: PEC-type antennas). As a consequence, the radiation 

characteristics of infinitesimal dipole- and Wu-King-type antennas can only be used as first-

order approximations to those of real georadar antennas. 
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The type of material filling of the boreholes was found to have a substantial effect on 

the antenna radiation patterns. For example, the radiation characteristics of antennas placed in 

water-filled boreholes were significantly influenced by guided phases that propagated along 

the boreholes. These guided waves dissipated energy along large portions of the boreholes, 

not just in the vicinity of the transmitters. 

Knowledge gained from the numerical studies was applied to analyses of crosshole 

radar measurements made in the dry crystalline rock of the Grimsel Rock Laboratory 

(Switzerland) and in the water-saturated sediments of the Boise Hydrogeophysical Research 

Site (USA). Ray-based velocity and attenuation tomograms generated from these observed 

data sets were used in my full-waveform modeling scheme for the computation of suites of 

synthetic data for different antenna types and borehole fillings. Infinitesimal dipole- and Wu-

King-type antennas yielded similarly good results for the air-filled (i.e. Grimsel) borehole 

experiments. In contrast, for the water-filled (i.e. Boise) borehole experiments, synthetic data 

generated for the Wu-King-type antennas matched closer the observed traces than those 

generated for the infinitesimal dipole-type antennas. 

5.2. FULL-WAVEFORM INVERSION TOOL 

For the second part of my thesis, I developed a new 2-D full-waveform inversion 

scheme that allowed subsurface dielectric-permittivity and electrical-conductivity variations 

to be determined from crosshole radar data (Figure 5.1). Unlike the modeling approach 

presented in the first part of the thesis, the new scheme was built around finite-difference 

time-domain solutions of Maxwell’s equations in 2-D Cartesian coordinates. The boundary 

conditions were improved by employing highly efficient generalized perfectly matched layer 

absorbing boundaries. The inversion component of the new scheme was adapted from 

methods developed in seismology. Cross-correlation of the forward-propagated vertical-

electric wavefields with the back-propagated residual wavefields provided the update 

directions. This approach was particularly suitable for large data sets and models, because 

explicit calculations of the sensitivity matrix and its inverse were not required. To avoid 

convergence to local minima, reasonably accurate initial models were necessary. For this 

purpose, ray-tomographic reconstructions of the permittivity and conductivity distributions 

were found to be sufficient. 

The new full-waveform inversion scheme was tested on synthetic data generated from 

2-D models that contained different degrees of complexity. In general, the new scheme 
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produced good to excellent reconstructions of the original permittivity and conductivity 

models. For example, the locations, shapes, and physical-property contrasts of dielectric 

and/or conductivity bodies that were 0.3 - 0.5 of the dominant radar wavelength were well 

resolved within homogeneous background models, even when realistic random noise was 

added to the data. By comparison, these bodies were either not seen or were only barely 

perceptible in the corresponding ray tomograms. The new scheme was less successful in 

resolving discrete dielectric bodies embedded in heterogeneous (i.e., stochastic) background 

models; the full-waveform tomograms did not resolve these bodies much better than the ray 

tomograms. In contrast, the new scheme determined the key parameters of small and large 

conductive bodies embedded in heterogeneous media. 

Application of the new inversion scheme to the Grimsel and Boise data sets required 

some additional technique developments (Figure 5.1). To account for 3-D effects, I designed 

and implemented a transformation scheme that accounted for 3-D geometrical spreading, a π/4 

phase shift, and a frequency scaling effect of 1 ω , where ω is angular frequency. Tests of 

the scheme on synthetic data resulted in good agreement between tomograms determined 

from true 2-D and transformed pseudo-3-D data. To estimate the source wavelet from the 

Figure 5.1: Summary of the different steps required to invert crosshole radar data using the new full-
waveform inversion scheme. Prior to full-waveform inversion, the data are transformed to 2-D and then 
used to estimate the source wavelet and generate the initial ray tomograms.
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observed data, I derived a deconvolution method that used selected traces of the observed data 

and the ray-based permittivity and conductivity tomograms. The accuracy of this method was 

verified on pertinent synthetic data. 

After application of the two new techniques, full-waveform inversions of the two field 

data sets produced permittivity and conductivity tomograms that contained much higher 

resolution information than the respective ray tomograms; boundaries between structural units 

were more focused and the permittivity and conductivity contrasts were noticeably greater. 

Small-scale features that were 0.3 - 0.5 of the dominant radar wavelengths were clearly 

imaged in the full-waveform tomograms. 

5.3. REMARKS AND PROBLEMS ASSOCIATED WITH FULL-WAVEFORM 

INVERSION IN THE TIME-DOMAIN 

My full-waveform inversion scheme requires 2-D data or at least data that are 

effectively transformed to 2-D and realistic estimates of the source wavelets. I have proposed 

solutions to both points. 

Although the transformation scheme generates reasonably good results, it is an 

approximation that yields progressively poorer results with increasing traveltime. 

Transformation of the observed data could be avoided by using quasi-3-D or full 3-D forward 

modeling algorithms. A quasi-3-D scheme would be computationally less expensive than a 

3-D one, because the 3-D character of the transmitters and receivers would be accommodated 

while assuming the media to be 2-D. Unfortunately, quasi-3-D schemes are cumbersome to 

implement in the time-domain (Williamson and Pratt, 1995). A better approach would be to 

implement a quasi-3-D scheme in the frequency-domain, such that the wavefield modeling 

would concentrate on carefully chosen wavenumber components (e.g., Zhou and Greenhalgh, 

1998). A full 3-D approach at this time is probably not feasible, because of high 

computational costs (e.g., Takenaka et al., 2003; Zhou et al., 2003). 

Source wavelets are unknown at the beginning of radar field studies. They need to be 

estimated from the observed data. Although there is a wide variety of different approaches 

that address this problem (e.g., Mora, 1987; Zhou et al., 1997; Pratt, 1999), there is no single 

“best” solution. Even if the ideal source wavelet were to be determined in laboratory studies 

(e.g., Streich and Van der Kruk, 2006), there are a number of field-related effects (e.g., 

different borehole configurations and variable near-antenna radiation characteristics) that 



 5.4. Application of the modified georadar waveform inversion scheme to seismic data  99

would need to be accommodated in the numerical simulations. This is certainly possible, as I 

have shown in the first part of my thesis, but it increases the computational costs significantly. 

5.4. APPLICATION OF THE MODIFIED GEORADAR WAVEFORM 

INVERSION SCHEME TO SEISMIC DATA 

The electromagnetic and acoustic wave equations are very similar (e.g., Carcione and 

Cavallini, 1995). As a consequence, it is relatively straightforward to modify my scheme for 

the full-waveform inversion of seismic data. Florian Belina, who completed his masters 

research under my supervision, has derived the necessary formulas for models with constant 

density, constant attenuation and variable velocity. He suitably modified my full-waveform 

inversion scheme and tested it on relevant synthetic crosshole seismic data (see Belina, 2006). 

His study demonstrated that the similarities between the electromagnetic and acoustic 

situations are based on similarities between dielectric permittivity and compressibility and 

between the vertical-electric and acoustic-pressure fields. Accordingly, the modified modeling 

code can be used to simulate pressure and particle-velocity fields of acoustic waves 

propagating through heterogeneous models. The modeling domain is delimited by absorbing 

boundaries (e.g., Yuan et al., 1997) that are similar to those implemented in my 

electromagnetic code. 

Figure 5.2: (a) Input acoustic velocity values (see main text). (b) Velocity tomogram that results from 
applying the ray-based inversion scheme to first-arrival traveltimes picked from the synthetic seismic data. 
(c) Velocity tomogram that results from applying a modified version of my full-waveform inversion scheme 
(see Belina, 2006). 
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Belina (2006) has applied the seismic version of the full-waveform inversion scheme 

to a range of increasingly complex models. It yielded accurate high-resolution tomograms that 

were noticeably superior to the standard ray tomograms. Figure 5.2 shows the original model 

and the resultant ray and full-waveform tomograms for one example (note, that 

compressibility was transformed to phase velocity using high frequency approximations). 

Pressure data were generated from a 10 x 20 m model characterized by a stochastic 

compressibility distribution (mean compressibility = 4.44×10-10 m2/N and standard deviation 

= 6.74×10-11 m2/N) using 41 source and 41 receiver locations (density = 1000 kg/m3 and 

attenuation = 0 Np/m). Clearly, the full-waveform tomogram in Figure 5.2 shows markedly 

more detail than the corresponding ray tomogram. 

In its current form, the modified full-waveform inversion scheme is only capable of 

inverting the phase information (i.e., only acoustic velocities are determined). However, with 

further modifications, it should be possible to estimate attenuation distributions by inverting 

the amplitudes. 

5.5. FREQUENCY-DEPENDENT MEDIA PARAMETERS 

A possible step to enhance the capabilities of the full-waveform radar inversion 

scheme would be to include material dispersion, such that the media parameters would be 

frequency dependent. This addition would be relevant to studies involving water-saturated 

environments (e.g., water-filled boreholes, porous materials). Taflove and Hagness' (2000) 

approach for accommodating different types of material dispersion in finite-difference time-

domain algorithms could easily be implemented in my full-waveform inversion scheme. 

However, I suspect that it may only be possible to determine dispersion parameters at 

locations where the structures are very simple and the data are exceptionally good. 

5.6. FUTURE DEVELOPMENTS AND APPLICATIONS 

In the following, I identify research topics that I consider important for future work. 

Application of the 2-D full-waveform inversion scheme to untransformed 3-D 

synthetic data yielded tomograms (not shown) that were surprisingly similar to those based on 

the transformed data. Admittedly, the original source wavelet used to generate the synthetic 

data was noticeably simpler than those determined from the field data (see Chapter 4) and the 

estimated source wavelet differed somewhat from the original. I suspect that the estimated 

source wavelet partially accounted for the missing transformation (i.e., there are trade-offs 
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between the source-wavelet estimation algorithm and the 3-D to 2-D transformation), but this 

issue requires further investigation. 

The advantages and disadvantages of inverting data in the time and frequency domains 

need to be explored further, perhaps via applications to suites of variably complex synthetic 

data. The two approaches would require similar computational efforts if all frequencies were 

to be considered in the frequency-domain inversions. However, a well-known advantage of 

frequency-domain approaches is that a limited number of frequencies may be sufficient to 

reconstruct satisfactorily the media properties, such that the computational time can be 

markedly reduced. By comparison, visualization of intermediate inversion results is more 

complicated in the frequency domain than in the time domain and understanding 

computational processes in the frequency-domain is challenging for the non-specialist. 

Various authors have suggested that good initial models are required for successful 

full-waveform inversions. Unfortunately, there is currently no criteria for determining how 

good the models need to be. Models of (i) small conductive and dielectric bodies embedded in 

homogeneous media and (ii) models of small conductive bodies embedded in heterogeneous 

(stochastic) media can be accurately reconstructed by using quite simple starting models in 

the full-waveform inversion scheme, even if moderate levels of noise are added to the 

synthetic data. The situation is very different for small dielectric bodies embedded in 

heterogeneous media (see Chapter 3). Even the ray tomograms may not be sufficiently close 

to the true model for convergence to satisfactory results. What are the reasons for the poor 

results and what needs to be done to resolve better the dielectric bodies? Tarantola (2005) 

recommends using various starting models obtained from Monte Carlo simulations, but this is 

very expensive. 

Determining suitable source wavelets is a critical component of full-waveform 

inversion schemes. The following stepwise modifications to my scheme could lead to closer 

fits of the model-predicted and observed data and generally more accurate tomograms: 

1. In Chapter 2, I demonstrated that the borehole filling markedly influences the radiation 

characteristics, independent of the source type (e.g., infinitesimal dipole or finite 

length antennas). Accordingly, models of realistic boreholes with corresponding 

fillings should be included in the new scheme. This procedure would be straight-

forward to implement, although it may require variable grids (e.g., a locally refined 

grid; Chapter 2) or a different discretization technique (e.g., finite-element). 
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2. It may be advantageous to determine a source wavelet for each transmitter location (G. 

Pratt, personal communication). This would be appropriate for partially water-filled 

boreholes or for situations where the antenna-borehole coupling varies substantially 

(e.g., due to cavities). 

3. Transmitter and receiver antenna locations are often imprecisely known. Although the 

coordinate errors may be quite small, they may result in significant artifacts in the 

tomograms (e.g., Peterson, 2001). To minimize these artifacts, Maurer (1996) and 

Maurer and Green (1997) included the seismic source and receiver coordinates in their 

ray-based inversion scheme. A similar approach could be included in my full-

waveform inversions scheme. 

4. In Chapter 4, I found artifacts to be created near transmitter and receiver locations, if 

the inversion cell size is too small with respect to the signal wavelength. My approach 

was, to choose cell sizes such that the artifact generation was minimal by still 

providing high-resolution tomograms. Another solution to minimize artifacts may be 

to add additional (virtual) transmitter and receiver positions by using interpolated 

recordings between current antenna locations. Methods have been introduced and 

successfully applied in radar as well as seismic data processing (e.g., f-x-y domain 

trace interpolation method; see Spitz, 1991; Wang, 2002; Heincke et al., 2005). 

These enhancements could lead to improved dielectric permittivity and electrical conductivity 

tomograms by decreasing the artifacts and increasing resolution in poorly constrained areas of 

the models, in particular in the vicinity of the boreholes. 

The full waveform inversion I have presented in this work is based on a cascaded or 

stepped inversion approach (i.e., first I invert for the permittivity and after convergence for 

the conductivity). The drawback of such a stepped scheme is that for example effects of 

electrical conductivity on the phase are mostly ignored (see Chapter 2). Using a simultaneous 

inversion approach, for example by inverting for the complex velocity (i.e., a function of 

permittivity and conductivity), would account for these effects, but typically fails to converge 

(e.g., Watanabe et al., 2004). However, a more sophisticated approach based on the subspace 

method has been proposed by several authors and successfully applied to a variety of seismic 

full-waveform inversion problems (e.g., Kennett et al., 1988; Sambridge et al., 1991; Pratt et 

al., 1998). This approach is particularly suitable for problems with different inversion 

parameter types (e.g., source wavelet, permittivity and conductivity). Instead of considering 
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completely detached (as in a stepped inversion) or merged decent vectors (as in a 

simultaneous inversion), the subspace technique uses a gradient approach (e.g., Tarantola, 

1986) for the different parameters in their subspaces and then tries to find the best 

combination of these parameters types based on a well-constraint small scale matrix 

inversion. It is thus a hybrid between a gradient and a matrix inversion scheme (for a step-by-

step explanation see Sambridge et al., 1991). 

My full-waveform inversion scheme is optimized for crosshole geometries. However, 

the scheme could be modified to include surface measurements by making use of VRP or 

surface-to-surface configurations. Presently, only the transverse electrical (TE) mode 

equations are included in the modeling part of the scheme (i.e., antennas at the surface would 

have to be parallel to the tomographic plane). However, VRP and surface-to-surface studies 

would benefit from including measurements made with antennas oriented perpendicular to the 

observation plane. This would require solving the transverse magnetic (TM) mode equations 

and corresponding additions to the inverse part of my scheme. For investigations that include 

surface-to-surface measurements, it may be necessary to include a distance-dependent 

gradient scaling factor to account for amplitude decay (see Gauthier et al., 1986). 

The full-waveform inversion scheme presented in this thesis has been applied to 

diverse synthetic and field data sets. Although of markedly better reconstructions of the 

subsurface permittivity and conductivity parameter distributions when compared to the 

corresponding standard ray-based inversion results, modifications to the scheme may 

eventually be required on the basis of experience gained by applying it to other data sets.
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APPENDIX A  
 

TESTS OF THE 3-D TO 2-D DATA TRANSFORMATION SCHEME 

Finite-difference time-domain modeling based on crosshole radar configurations may 

be computationally expensive, especially if 3-D geometries in combination with a large 

number of transmitter locations are involved. In most cases, however, only the 3-D nature of 

the transmitter and receiver antennas needs to be considered, the media between the boreholes 

can be assumed to have 2-D characteristics (i.e., the media extends unchanged to infinity on 

either side of the observation plane). This situation is referred to as a 2.5-D or quasi-3-D 

problem (Bleistein, 1986; Williamson and Pratt, 1995). In the frequency domain, quasi-3-D 

solutions of Maxwell’s equations are relatively easy to handle. They require the frequency-

dependent wavefield to be computed for a given set of wavenumbers (e.g., Song and 

Williamson, 1995; Song et al., 1995; Zhou and Greenhalgh, 1998a, for the waveform 

modeling of seismic data). The corresponding approach in the time domain is only feasible if 

a cylindrical coordinate system is used (see Chapter 2) and the transmitters are located along 

the symmetry axis. Realistic synthetic data can be computed for single antennas or for 

transmitter/receiver antennas located along a borehole that coincides with the cylindrical 

Table A-1: Media parameters used for testing the quasi-3-D to 2-D transformation. 
 

Tests and 
Dependencies Figures

Model 
width & 

depth 
[m] 

Number 
of 

Receivers

Media parameters 
εr and σ [mS/m] 

Anomalous object 
dimensions [m] 
(r = radius; w = 

width; h = height) 

Distances 
[m] and 

angles [°] 
tested 

1a Distance A-1a 
A-2a 9 0.5 – 8.5

1b Angle A-1a 
A-2b 

23 & 10.5 
41 

εrm = 5.0; σm = 0.5 - 
0 – 67 

2a Distance A-1b 
A-3a 9 0.5 – 8.5

2b Angle 
A-1b 
A-3b 
A-4 

23 & 10.5 

41 

εrm
mean = 3.7; σm

mean = 1.6 
with εr

std
 = 0.5, σstd = 0.3 

and x = 1.0 m, z = 0.2 m; 
deterministic anomalies:
εrA1 = 10.0; σA1 = 10.0 
εrA2 = 2.0; σA2 = 3.0 
εrA3 = 1.0; σA3 = 0.0 
εrA4 = 5.0; σA4 = 0.1 

rA1 = 0.5 
wA2 x hA2 = 1.0x2.0 
wA3 x hA3 = 1.9x2.8 

0 – 67 
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symmetry axis (see Chapter 4). Because the residual fields required for back-propagation need 

to be emitted simultaneously at all receiver locations, a time-domain inversion code operating 

in cylindrical coordinates would only work if at least one of the boreholes is parallel to the 

cylinder symmetry axis. 

Taking into account the above points and the need to compute the complete 

wavefields multiple times during each waveform iteration, I came to the conclusion that pure 

2-D calculations would be more accurate and faster. Consequently, to invert crosshole radar 

data using the 2-D full-waveform scheme required transformations that account for the 3-D 

nature of the antenna radiation patterns and media. I adopted the transformation approach 

proposed by Bleistein (1986), in which quasi-3-D data are effectively converted to 2-D line-

source-type data (see Chapter 4, Appendix 4.A). In initial tests of the transformation scheme, 

I generated two quasi-3-D synthetic data sets using Maxwell’s equations in cylindrical 

coordinates (see Chapter 2) and converted them to 2-D using Bleistein’s (1986) approach. The 

quasi-3-D and the transformed quasi-3-D to 2-D radar sections were compared to true 2-D 

data computed for the same models (i.e., by using a 2-D modeling code). 

A.1. TEST 1: HOMOGENEOUS MEDIA 

The first tests of the 

quasi-3-D to 2-D transformation 

were conducted on a simple 

model with homogeneous 

dielectric permittivity εrm = 5.0 

and conductivity σm = 0.5 mS/m 

(Tests 1a and 1b in Table A-1; 

Figure A-1). Transmitter and 

receiver antennas were modeled 

as infinitesimal vertical electric 

dipoles. A realistic Ricker-type 

source pulse with a center 

frequency of 150 MHz was 

simulated for transmitter location 

TRN and receivers in the REC 

Groups 1 and 2 (Figure A-1). 

The REC Group 1 receivers were used to test for distance-dependence variations, whereas the 

REC Group 2 receivers were used to test for angle-dependence variations. Ideally, the 

Figure A-1: Sketch of models used for testing the transformation 
scheme. (a) homogeneous model used for Test 1 and (b) stochastic 
model with deterministic anomalies A1 to A4 used for Test 2. 
TRN - transmitter; REC Group 1 and 2 - receivers used for testing 
the distance and angle dependence; iA - incidence angle (see 
Table A-1 for a detailed description of the media parameters). 
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transformed quasi-3-D to 2-D radar section should be identical to the true 2-D section. Figure 

A-2 demonstrates that differences between the two sections are negligibly small over all 

tested distances and incident angles. These differences between the squares of the values 

(percent differences in "energy" in the figure) are at least 20 times smaller than those between 

the quasi-3D and true 2-D sections (compare the black and red lines in Figure A-2). 

 

 

A.2. TEST 2: STOCHASTIC MEDIA WITH DETERMINISTIC ANOMALIES 

The second tests were conducted on models with more realistic media parameter 

distributions (Tests 2a and 2b in Table A-1; Figure 1b). The mean permittivity and 

conductivity of the stochastic models were εrm
mean = 3.7 and σm

mean = 1.6 mS/m and the 

corresponding standard deviations were εrm
std = 0.5 and σm

std = 0.3 mS/m. The stochastic 

variations were defined by exponential covariance functions with correlation lengths of 1.0 

and 0.2 m in the horizontal and vertical directions. Figure A-3 demonstrates that differences 

between the transformed quasi-3-D to 2-D and true 2-D radar sections are negligibly small 

over all tested distances and incident angles up to 45°. The relatively large differences at 

Figure A-2: (a) Distance- (REC group 1) and (b) angle- (REC group 2) dependent residual energies obtained 
from testing the homogeneous permittivity and conductivity models (Figure A-1a). Black and red lines are 
residual energies computed from differences between the quasi-3-D and true 2-D data and the transformed 
quasi-3-D and true 2-D data, respectively. 

Figure A-3: (a) Distance- (REC group 1) and (b) angle- (REC group 2) dependent residual energies obtained 
from testing the heterogeneous permittivity and conductivity models (Figure A-1b). Black and red lines are 
residual energies computed from differences between the quasi-3-D and true 2-D data and the transformed 
quasi-3-D and true 2-D data, respectively. 
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larger angles are due to the slightly erroneous mean dielectric permittivity employed for 

computing the transformation (see Chapter 4-A: Accounting for 3-D effects, equation 4.A-1) 

and the low amplitudes at these angles. Furthermore, traces at incidence angles between 45° 

and 67° are strongly influenced by the rectangular (A2), tunnel (A3) and/or layer (A4) 

anomalies (Figure A-1b). Figure A-4 compares every 4th trace of the true 2-D data simulated 

for receivers in the REC Group 2 of Figure A-1b with the corresponding quasi-3-D and 

transformed quasi-3-D to 2-D traces. The residual traces in Figure A-4c clearly show the 

benefits of transforming the quasi-3-D data. 

 

A.3. CONCLUSION 

My implementation of the quasi-3-D to 2-D transformation algorithm performs well 

for minor to moderate media parameter variations. For media characterized by large contrasts, 

it is likely to yield inaccurate results at relatively large angles and for certain pathological 

cases that could be avoided by using variable permittivities in the transformation process. 

Indeed, Bleistein’s (1986) approach is designed to work with variable media parameters (see 

Figure A-4: (a) and (b) Radar sections for transmitter TRN and every fourth receiver from REC group 2 
(Figure A-1b). The dashed black (barely visible) and solid blue and red lines show traces obtained from the 
true 2-D, quasi-3-D and transformed quasi-3-D data generated from the heterogeneous model shown in 
Figure A-1b. (c) Blue and red lines show differences between the blue and dashed black lines in (a) and the 
red and dashed black lines in (b). Amplitudes in all panels are normalized with respect to the maximum 
amplitude of the true 2-D data. The amplitudes of the residuals in (c) are gained by a factor of 2 relative to 
the respective radar traces. 
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also Williamson and Pratt, 1995). However, variable permittivities would require the 

computation of rays from all transmitters to all receiver locations, the allocation of traveltime 

fractions to each grid cell, and the derivation of final correction factors (see Equation 4.A-1). 

In many cases, the assumption of small variations is valid, such that my simple approach is 

likely to yield reliable information. 
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B.1. SUMMARY 

High-frequency electromagnetic wave propagation phenomena associated with 

borehole georadar experiments are complex. To improve our understanding of the governing 

physical processes, we present a suitable finite-difference time-domain (FDTD) solution of 

Maxwell’s equations in cylindrical coordinates. An important feature of this algorithm is the 

use of a powerful grid refinement technique that enables us to account efficiently for detailed 

design aspects of georadar antennas as well as materials with very high dielectric 

permittivities. This type of modeling provides the basis for improving the ray-based inversion 

of the first-cycle amplitudes and/or for performing the full-waveform inversion of crosshole 

georadar data. We first validate the accuracy of the algorithm with respect to the solutions for 

an infinitesimal electric dipole source as well as a wire-type dipole antenna and then apply it 

to explore the radiative properties of realistic antenna designs used in borehole georadar. 
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B.2. INTRODUCTION 

Borehole georadar is an increasingly popular method for high-resolution probing of 

the shallow subsurface. A typical setup for a borehole georadar experiment consists of an 

emitting dipole-type antenna located in a borehole and a corresponding receiving antenna in a 

neighboring borehole (Peterson, 2001). Tomographic inversions of travel-times and 

amplitudes provide information about the electromagnetic velocity/dielectric permittivity and 

the electric conductivity/attenuation structure, respectively (Olsson et al., 1992). 

Simultaneous inversion of the travel-times and amplitudes therefore holds the promise of 

separating the effects of dielectric permittivity and of electrical conductivity on 

electromagnetic wave propagation. This in turn could allow us to better constrain the 

distributions of important environmental, engineering, and hydrological parameters, such as 

porosity, water content, salinity, clay fraction, or ore grade within the probed region (Topp et 

al., 1980; Fullagar et al., 2000). 

Both ray-based and full-waveform inversion of amplitude information requires a priori 

assumptions about the radiative properties of the borehole georadar emitters and receivers. A 

common approach is to assume that the radiation pattern of dipole-type borehole georadar 

antennas corresponds to the far-field radiation of an infinitesimal electric dipole, or a half-

wave dipole antenna in a homogeneous medium (Olsson et al., 1992; Peterson, 2001). It is, 

however, not clear to what extent this assumption is justified and model studies are required 

to clarify this issue.  

We present a versatile finite-difference time-domain (FDTD) solution of Maxwell’s 

equations in cylindrical coordinates suitable for modeling pertinent aspects of typical 

borehole georadar antennas and experiments. This algorithm represents an extension of the 

method presented by Holliger and Bergmann (2002). The algorithm is first benchmarked 

against analytical solutions available for an infinitesimal electric dipole source and a basic 

thin-wire antenna and then applied to explore the radiation characteristics of typical borehole 

georadar antenna designs. 

B.3. MODELING APPROACH 

Our modeling approach is based on a FDTD solution of Maxwell’s equations in 

cylindrical coordinates. The algorithm is staggered and second-order accurate in both time 

and space (Yee, 1966; Holliger and Bergmann, 2002). The temporal and spatial 

discretizations are chosen to conform to standard numerical stability and dispersion criteria. 

The use of a cylindrical coordinate system implies that the models are rotationally symmetric 
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with respect to the vertical symmetry axis (i.e., the left-hand model edge). This is 

computationally efficient, correctly accounts for the radiative properties of the dipole-type 

transmitters as well as the geometric spreading characteristics of the electromagnetic 

wavefields, and is the most effective way to discretize small-diameter boreholes.  

The assumption of cylindrical symmetry does, however, imply that the transmitters 

must lie on the cylindrical symmetry axis and that only the transmitter antennas can be 

explicitly modeled. Unless mentioned otherwise, the radiative properties of the receiver 

antenna are therefore emulated by recording the vertical component of the electric field, 

which approximates a vertical infinitesimal electric dipole receiver. The transmitter antenna is 

modeled either as an infinitesimal vertical electric dipole or as a finite-length dipole-type 

antenna. The metal parts of such transmitter antennas can be modeled as perfect electrical 

conductors by setting to zero the electric field components tangential to the metal surfaces. 

Alternatively, we can also simulate arbitrary distributions of the electrical conductivity within 

the metal parts of the antennas. The latter is achieved by defining the antenna by special 

“resistor cells” (Maloney and Smith, 1992). The transmitters are excited by a compact 

Gaussian voltage pulse, whose amplitude spectrum is essentially white in the frequency range 

of interest. 

To avoid artificial reflections from the model boundaries, we use cylindrical symmetry 

conditions along the left-hand edge and add a highly conductive and hence highly diffusive 

buffer zone along the top, bottom and right-hand edges of the model space. Cylindrical 

symmetry with regard to the left-hand model edge is achieved by setting to zero the tangential 

component of the magnetic field located directly on the symmetry axis and mirroring the 

values of the vertical component of the electric field located closest to the symmetry axis. The 

conductivity in the absorbing buffer zone is gradually increasing so that the quality factor Q 

for the center frequency reaches a value of ~2 at its outer edges. The width of the diffusive 

buffer zone corresponds to ~2 dominant wavelengths. 

The simulation of georadar antennas involves the discretization of small intricate 

structures. Moreover, parts of the model space, such as a water-filled borehole, may be 

characterized by very high dielectric permittivities and correspondingly short wavelengths. 

Using a uniformly fine grid to accommodate such features is computationally inefficient and 

severely limits the size and realism of the models that can be studied. This problem is 

circumvented by using an adaptation of the grid refinement technique described by 

Robertsson and Holliger (1997). This technique allows for local refinements of the spatial 
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discretization by an integer factor with regard to the master grid. In our experience, odd 

integer refinement factors are clearly preferable, because they require less extensive 

interpolation of the electromagnetic wavefield and hence introduce less numerical 

inaccuracies compared to even refinement factors. 

 

B.4. VALIDATION AND APPLICATION OF THE ALGORITHM 

Figure B-1 serves to illustrate the validity and accuracy of the modelling approach 

described above. Figure B-1a shows a snapshot of the vertical component of the electric field 

radiated from an infinitesimal vertical electric dipole source. In this example, we used a grid 

refinement factor of 5. The snapshot was taken after the electromagnetic wavefield had 

propagated for 18 ns or ~3 dominant wavelengths. The boundary between the finer and 

coarser regions of the grid is indicated by a vertical dashed line. The wavefield appears to be 

smooth and continuous across this “discontinuity” and there is no evidence for reflected or 

“parasitic” stationary energy thus indicating that the algorithm is working properly. This 

impression is quantitatively confirmed by Figure B-1b, which compares individual 

radargrams for the above model and a model with a uniformly fine grid spacing recorded at a 

constant radial distance of 3.5 m at angles of 30°, 60°, and 90° with respect to the vertical. 

Figure B-1: (a) Snapshot of the vertical component of the electric field and (b) corresponding radargrams 
for models with (solid lines) and without (dashed lines) grid refinement. R: reflection from boundary 
between fine and coarse grid regions. 
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The accuracy of the latter has been previously confirmed by comparison with the analytical 

solution (Holliger and Bergmann, 2002). With the exception of a minor reflection from the 

boundary between the finely and coarsely discretized regions of the grid and small phase 

differences due differing amounts of numerical dispersion the two solutions are identical. 

The next step is to test the validity of our algorithm when the electromagnetic 

wavefield is radiated from a realistic finite-length antenna. For this purpose we have 

implemented a wire-type dipole antenna with a radius of 2.5 mm and a length of 45 cm. The 

antenna wire is assumed to be a perfect electrical conductor, which is emulated by setting to 

zero the components of the electric field within the antenna and tangential to its surface. The 

source signal is a Gaussian voltage pulse fed into the central gap, or terminal, of the antenna. 

To evaluate the radiation patterns, the radial and vertical components of the electric field have 

been recorded at a constant distance of 3.5 m, or about ~3 dominant wavelengths, from the 

center of the antenna. From these recordings we calculate the tangential components of the 

Figure B-2: Numerical (solid lines) and analytical (dashed lines) radiation patterns of the tangential 
component of the electric field for a wire-type dipole antenna at various frequencies. The modeled antenna 
is 45 cm long and has a radius of 2.5 mm. The half-wave tuning frequency of this antenna in the considered 
medium (vacuum) is ~335 MHz. 
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electric field and determine the amplitude spectra to evaluate the corresponding radiation 

patterns at various frequencies. 

In Figure B-2 we compare the resulting radiation patterns with corresponding 

analytical far-field radiation patterns for a thin-wire antenna of the same length(Stutzman and 

Thiele, 1998). Radiation patterns are shown for frequencies of 100, 335, 650, and 1000 MHz. 

The half-wave tuning frequency of this antenna is ~335 MHz. Overall, there is quite good 

agreement between the numerical and analytical radiation patterns. At all frequencies, the 

largest discrepancies occur at angles close to the vertical, where also the artificial reflections 

from boundary between the finer and the coarser parts of the grid are largest (Figure B-1b). 

The somewhat larger discrepancies at 1000 MHz are probably due to the fact that at this high 

frequency the radiated amplitude of our modeled antenna is already quite low and 

correspondingly contaminated by numerical noise. 

Finally, we apply the algorithm to realistic georadar antenna designs and compare the 

corresponding radiative properties and signal characteristics. A key characteristic of a well-

designed pulsed georadar antenna is that the signal shape of the radiated electromagnetic field 

should be compact and closely resemble the input voltage pulse. For finite-length dipole-type 

antennas, this implies that internal reflections within the antenna rod must be minimized. This 

can be achieved through appropriate resistive loading of the antenna. The two most common 

ways to achieve this are through a near-constant resistive load along the entire antenna or 

through so-called Wu-King-type resistivity profiles (Wu and King, 1965). The latter emulate 

conductivity profiles within antenna wires that scale hyperbolically with the distance from the 

Figure B-3: (a) Radiation patterns as defined by the Poynting vector and (b) radargrams for a perfectly 
conducting (solid lines), constant conductivity (dashed lines), and “Wu-King-optimized” (dotted lines) wire-
type dipole antennas. The radargrams correspond to the vertical components of the electric field recorded at 
a horizontal distance of 2.5 m from the antenna terminals. 
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terminal. Figures B-3a and B-3b compare the radiation patterns and waveforms of the radiated 

signal, respectively, for antennas with a constant restive load (10 Ωm) and Wu-King-type 

optimized resistive loading with those for a perfectly conducting wire-type antenna. For all 

antennas the wire is 46 cm long and has a radius of 2.5 mm. The radiation patterns are 

represented by the time-averaged Poynting vector, which is indicative on the energy flux of 

the radiated electromagnetic field. Figure B-3a shows that there are significant differences in 

the radiative properties of these basic antenna types. This information is critical for 

quantitative interpretation of the amplitude information recorded in crosshole georadar 

experiments. Figure B-3b shows the vertical component of the electric field radiated from 

these antennas recorded at a horizontal distance of 2.5 m from the center of the antennas. The 

signal character for the perfectly conducting antenna is indeed very “ringy”, whereas the 

waveforms radiated from the loaded antennas exhibit the desired “crispness”. 

B.5. CONCLUSIONS 

We have developed a FDTD solution of Maxwell's equations in cylindrical 

coordinates that is suitable for modeling the detailed radiation characteristics of realistic 

borehole georadar antenna designs. The use of a powerful grid refinement technique greatly 

enhances the numerical accuracy and efficiency of the algorithm and allows us to simulate 

even detailed design aspects of transmitter antennas in an explicit fashion. Although the use 

of a cylindrical symmetry system only allows for the explicit modeling of the transmitter 

antennas, these results are also fully applicable to corresponding receiver antennas due to the 

validity of the reciprocity theorem in antenna theory. This information is a key prerequisite to 

take full advantage of amplitude information of crosshole georadar data through a full-

waveform inversion approach as well as for the optimized design of novel antenna systems. 
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C.1. ABSTRACT 

We present a finite-difference time-domain (FDTD) algorithm to realistically model 

the radiative properties of borehole georadar antenna systems and therefore to improve our 

understanding of the governing physical processes. Using a grid refinement technique and 

uniaxial perfectly matched layer (UPML) absorbing boundary conditions enables us to 

account efficiently and accurately for detailed aspects of antenna design and borehole 

environment, particularly, materials with very high dielectric permittivities such as water. Our 

FDTD-approach provides a suitable basis for improving the ray-based inversion of the first-

cycle amplitudes as well as for performing full-waveform inversions of crosshole georadar 

data. The algorithm is applied to constrain the impact of air-filled boreholes on the radiative 

characteristics of typical georadar antennas. A crosshole data set was acquired under well-

constrained conditions and used to compute a ray-based inversion. The wavefield modeled by 

using the resulting dielectric permittivity and attenuation tomograms is then compared to the 

measured data. 
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C.2. INTRODUCTION 

Borehole georadar is a popular high-resolution method for imaging the shallow 

subsurface. A typical setup for a borehole georadar survey consists of an emitting dipole-type 

antenna and a corresponding receiving antenna in a nearby borehole (Peterson, 2001). 

Tomographic inversion of crosshole georadar traveltimes and amplitudes provide information 

about the dielectric permittivity and the electric conductivity (Olsson et al., 1992). This 

information allows us to constrain better the distributions of important environmental, 

engineering, and hydrological parameters (e.g., porosity, water content, salinity, clay fraction, 

ore grade) within the probed region (Topp et al., 1980). 

Ray-based and full-waveform inversions of crosshole georadar amplitudes require a 

priori knowledge about the radiative properties of the borehole antennas. A common approach 

is to assume that the radiation pattern of a dipole-type borehole antenna corresponds to the 

far-field radiation pattern of an infinitesimal electric dipole or a half-wave dipole antenna in a 

homogeneous medium (Olsson et al., 1992). It is, however, not clear to what extent this 

assumption is justified. Realistic model studies are required to clarify this issue. Reference 

(Holliger and Bergmann, 2002) uses a finite-difference time-domain (FDTD) approach to 

explore the effects of borehole on the radiative properties of an infinitesimal electric dipole 

transmitter. To extend this study, we present a versatile FDTD solution of Maxwell’s 

equations in cylindrical coordinates that is capable of modeling typical borehole georadar 

antenna systems under realistic operating conditions. First, we compare the radiative 

properties of a realistic borehole georadar antenna in a homogeneous medium and in an air-

filled borehole with the analytic full-space solutions for an infinitesimal electric dipole. Then, 

the algorithm is applied to model a crosshole georadar data set acquired under well-controlled 

conditions in the Grimsel Rock Laboratory in the central Swiss Alps. The Swiss Cooperative 

for the Storage of Nuclear Waste (NAGRA) operates this facility. 

C.3. METHODOLOGY 

The cylindrical geometry of boreholes and georadar antennas prefers the use of a 

rotationally symmetric cylindrical coordinate system. Employing a cylindrical coordinate 

system and assuming rotational symmetry not only represents the geometry perfectly, it also 

reduces the computational cost to that of a 2-D problem, while correctly accounting for the 3-

D geometrical spreading and radiation characteristics of dipole-type transmitters. 

Transforming Maxwell’s equations to a 2-D cylindrical coordinate system yields to two sets 

of equivalent coupled partial-differential equations; the transverse magnetic mode (TM) and 
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the transverse electric mode (TE) equations. In a borehole georadar setup, it is the vertically 

oriented electric fields that are important, so we use the TM-mode equations in our approach. 

They are discretized using a staggered leapfrog FDTD scheme that is second order accurate in 

both, time and space (Yee, 1966). The temporal and spatial discretizations are chosen to 

conform to standard numerical stability and dispersion criteria. 

Using a cylindrical coordinate system, however, implies that the transmitting antenna 

must be placed on the symmetry axis (cylinder axis) and that only transmitters can be 

explicitly modeled. The receiving antennas are therefore approximated with a vertical 

infinitesimal electric dipole, whereas the transmitting antennas are modeled as either an 

infinitesimal vertical electric dipole or as a finite-length dipole-type antenna. A realistic 

antenna often consists of a number of resistors fixed along the metallic parts of the antenna to 

minimize internal reflections. This kind of antennas can be simulated for instance by changing 

the resistivity of the cells defining the metallic part of the antenna as proposed by Wu and 

King (1965) or Maloney and Smith (1992). The antenna is excited by feeding a compact 

Gaussian voltage pulse into its central gap, whose amplitude spectrum is essentially white in 

Figure C-1: Numerical radiation patterns calculated using a homogeneous model with an PEC antenna (red) 
and the analytical radiation pattern for a PEC antenna (black-dashed) for diverent frequencies. 
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the frequency range of interest. To allow simulations of finite-length antennas using 

millimeter-range cell sizes, we implemented a locally refined grid in the vicinity of the 

transmitter borehole as described by Robertsson and Holliger (1997). The refinement is 

achieved by splitting cells, such that the coarse-grid spacing is an integer times the fine-grid 

spacing. It is especially suitable for representing regions of unusually low velocities (i.e. high 

dielectric permittivities), such as water-filled boreholes. 

To avoid artificial reflections from the model boundaries, we apply absorbing 

boundary conditions along the top, bottom and right model edges. Cylindrical symmetry 

conditions are employed along the left model edge, by mirroring the electric and magnetic 

field components in the immediate vicinity of the cylinder symmetry axis. For the absorbing 

boundary conditions, we use the perfectly matched layer (PML) approach (Berenger, 1994), 

suitably modified for uniaxial anisotropic medium (Taflove and Hagness, 2000). Our uniaxial 

perfectly matched layer (UPML) algorithm is particularly suitable and computationally 

efficient for heterogeneous media and for the low electrical conductivities that prevail in the 

georadar regime of electromagnetic wave propagation.  

C.4. VALIDATION AND APPLICATION OF THE ALGORITHM 

To validate our algorithm, we modeled the electromagnetic wavefield radiated from a 

realistic finite-length antenna. For this purpose, we implemented a wire-type dipole antenna 

with a radius of 1 mm and a total length of 40 cm in a 4.5 x 9 m homogeneous model 

(dielectric permittivity ε = 9ε0, with ε0 the vacuum permittivity and conductivity σ = 5 mS/m). 

The antenna wire is assumed to be a perfect electrical conductor (PEC), which is achieved by 

setting the conductivity in the metallic parts of the antenna to that of copper (5⋅107 S/m). In 

this case we are working with a half-wave tuning frequency of about 200 MHz. The antenna 

is excited by feeding a Gaussian voltage pulse into its central gap (terminal). The radiation 

characteristic can then be evaluated by calculating the tangential electric field. It can be 

obtained using the radial and vertical electric field components, recorded in a constant 

distance of 1.6 m, or about 4 dominant wavelengths, form the center of the transmitter 

antenna. Calculating the amplitude spectra of the tangential field allows the evaluation of the 

radiation pattern at various frequencies. In Figure C-1 we compare numerically computed 

radiation patterns (red) with the corresponding analytical solutions (black) (Stutzman and 

Thiele, 1998) for frequencies of 100, 200, and 400 MHz. The radiation patterns for low to 

intermediate frequencies (Figure C-1a and C-1b) agree very well with their analytical 

counterpart. The major side-lobes in the radiation pattern at 400 MHz (Figure C-1c) show 
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good agreement with the analytic solution. Whereas the two small lobes at angles close to the 

horizontal show large discrepancies, probably due to the fact, that amplitudes are relatively 

small at high frequencies and the increased influence of the numerical noise. 

We now want to analyze the influence of an air-filled borehole on the radiation 

pattern. For this purpose, we modified the antenna wire such that no reflections inside the 

metallic parts occur. This is achieved by hyperbolically increase the resistivity of the cells 

corresponding to the metallic parts of the antenna. The resistivity-distribution was chosen as 

proposed by Wu and King (1965). Figure C-2 shows the radiation patterns for an insulated 

antenna in an air-filled borehole (black) compared to the simulation with a similar setup, but 

without insulation and borehole (red) and to the infinitesimal vertical electric dipole 

approximation (blue-dashed) at frequencies of 100, 200 and 400 MHz. All models have the 

same dimensions and material properties as in the previous simulation. A 5 cm radius 

borehole with vacuum properties and a 1.25 cm radius insulation (εins = 4ε0 and σins = 0 

mS/m) are centered along the symmetry axis. Good agreement between the shapes of the 

patterns for all solutions is found again at low to intermediate frequencies (Figure C-2a and 

Figure C-2: Radiation patterns for a Wu-King type antenna in a homogeneous model (red), in a 
homogeneous model and insulated antenna (green), homogeneous model and borehole and insulated antenna 
(blue), and the pattern for an infinitesimal vertical electric dipole (black).
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C-2b), while at higher frequencies (Figure. C-2c) the discrepancies are larger. High amplitude 

decay is observed in case of the presence of an air-filled borehole for all frequencies, whereas 

the insulation has only minor effects on the maximum amplitude. The infinitesimal vertical 

electric dipole approximation is particularly a good first order approximation in the low to 

intermediate frequency range. 

We could show that only miniscule differences between the homogeneous model 

without insulation and borehole and the 

corresponding model with insulation and 

borehole occur in the relevant frequency 

range of typical georadar systems. To test 

these observations, we acquired a crosshole 

georadar dataset in an almost homogeneous 

environment in NAGRA’s Grimsel rock 

laboratory in central Swiss Alps. In the 

following, we are going to investigate the 

influence of different modeling approaches 

on the wavefield. This is achieved by 

estimating the electromagnetic properties of 

the survey area using a ray-based inversion 

scheme (Paige and Saunders, 1982). 

Implementing these results in our FDTD-

forward solver allows us to evaluate the 

wavefield with respect to the measured data. 

The two perfectly parallel boreholes, each 20 

m long and 10 m apart, define the survey area 

on which we are focusing. 

Previous seismic, geologic and geomechanical investigations of the area (Figure C-3) 

show a major shear zone (Majer et al., 1990). The survey was carried out with two 250MHz 

RAMAC borehole georadar antennas, with a transmitting antenna in borehole 1 and a 

receiving antenna in borehole 2. Traces were recorded every 0.5 m for both, transmitter and 

receiver, resulting in a total amount of 40 shot and 41 recording positions. We used a sample 

interval of 0.32 ns and a total recording time of 480 ns. To be able to compare measured and 

modeled traces, we compute dielectric permittivity and conductivity tomograms with a ray-

Figure C-3: Geometry and geologic interpretation 
of our survey area (after Majer et al., 1990). Bold 
lines show boreholes used for our radar inversion, 
BH are boreholes used for geologic interpretations, 
dotted lines (S) are thin shear bands and dashed 
lines (K) are cataclasite zones. Blue areas (L) are 
lamprophyres and red lines (unlabeled) are fractures.
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based inversion of traveltime and amplitude data. Traveltimes were found by picking the first 

arrivals of each measured trace. To obtain the amplitude data, we calculated the Hilbert 

transform of each trace and picked the maximum amplitude in a 12 ns time-window starting 

at the first-arrival time. While we manually have to account for the radiation characteristic by 

applying a first order approximation of an infinitesimal vertical electric dipole, the 

geometrical spreading is corrected automatically during the inversion. The resulting dielectric 

permittivity and conductivity tomograms are plotted in Figure C-4. Comparing the results 

with the geologic interpretation (Figure C-3), we find low permittivity and conductivity 

values in the shear zone (high velocities and low attenuations). This area can therefore be 

interpreted as an air-filled fracture zone. The high permittivity and conductivity anomaly in 

the lower left corner of the model could indicate a water-saturated area. The variations for 

both, the dielectric permittivity and conductivity is small, with less then 2ε0 for the 

permittivity and 2 mS/m for the conductivity. 

The deduced dielectric permittivity and conductivity tomograms are now implemented 

in our FDTD algorithm. The transmitting antenna is implemented at the position SRC 20 

(Figure C-3), as a finite-length wire type antenna with resistive loading and an insulation 

(εins = 4ε0 and σins = 0 mS/m). The antenna is excited by feeding a wavelet that is estimated 

using an averaged and to the first cycle tapered recorded trace in to the antenna-terminal. The 

receivers are approximated as infinitesimal vertical electric dipoles at the same positions as 

for the measured data. Both, transmitter and receivers are placed in air-filled boreholes. In 

Figure C-5a we compare simulated traces from the central part of the model with their 

Figure C-4: (a) dielectric permittivity tomogram and (b) conductivity tomogram
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measured counterparts (TRC 16-26). Overall, a very good match for wavelet onsets, 

amplitudes and phases is found. Similar simulations were computed: (1) for a realistic, 

insulated antenna in an air-filled borehole, but only using an averaged homogeneous model 

(εins = 5.5ε0 and σins = 1.5 mS/m) and (2) for a infinitesimal vertical electric dipole using the 

previously calculated tomograms. Figure C-5b shows that the match between the numerical 

and the measured traces is still good, particularly in case of the averaged homogeneous model 

(green). Using the dipole approximation (blue), we find larger discrepancies as well as in the 

onset, the amplitude and also the phase. 

 

C.5. CONCLUSIONS 

We developed a FDTD solution of Maxwell’s equations in cylindrical coordinates that 

is suitable for modeling the detailed radiation characteristics of realistic borehole georadar 

antennas. Our approach allows us to accurately and efficiently model detailed aspects of 

transmitter antennas. In the low to intermediate frequency range, we find good agreement 

between the numerical solution of Wu-King antennas and the full-space radiation pattern of 

an infinitesimal electric dipole even if an air-filled borehole is present. Real data experiments 

in an almost homogeneous environment show a good match between numerical simulation 

with a realistic antenna and a realistic model. Even using a nearly homogeneous survey area 

Figure C-5: Comparisons between simulated and 
modeled traces: (a) TRC 16-26; red simulated, black 
measured and (b) TRC 21 and 35: realistic model 
and antenna (red), homogeneous model and realistic 
antenna (green), realistic model and dipole source 
(blue) and measured data (black). 
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didn’t inhibit in case of the infinitesimal dipole approximation severe discrepancies to the 

measured data at large radiation angles. Only small radiation angles and large offsets are 

problematic. Using a realistic antenna in an averaged homogeneous model produces better 

results but still leaves some smaller phase shifts and amplitude mismatches unresolved. 
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D.1. SUMMARY 

We present a full-waveform inversion scheme for crosshole georadar data based on a 

finite-difference time-domain (FDTD) solution of Maxwell’s equations and test it on pertinent 

synthetic data. Existing tomographic inversion techniques for crosshole georadar data are 

based on geometric ray theory. Such techniques only consider limited aspects of the recorded 

data, only account for first-order wave propagation effects, and hence only resolve large-scale 

components of the subsurface. In contrast, FDTD-based waveform inversions of crosshole 

georadar account for all relevant wave propagation effects. The corresponding results 

demonstrate that our waveform inversion approach is capable of adequately resolving both the 

geometry and the parameter distribution of anomalies whose spatial extent is considerably 

smaller than a dominant wavelength. 
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D.2. INTRODUCTION 

Borehole georadar is an increasingly popular method for probing the shallow 

subsurface. A typical setup for a crosshole georadar experiment consists of an emitting 

dipole-type antenna located in a borehole and a corresponding receiver antenna located in a 

neighboring borehole. The nominal center frequencies of commonly used antennas range 

from ~20 to ~200 MHz, which correspond to dominant wavelengths of ~5 to ~0.5 m, in the 

subsurface. To date, tomographic inversions of crosshole georadar data have been based on 

ray methods. Ray-based inversions of first-arrival traveltimes and the maximum first-cycle 

amplitudes allow us to determine the electromagnetic velocity and attenuation structures of 

the probed regions. These parameters can then be used to resolve dielectric permittivity and 

electrical conductivity distributions, which may provide key constraints on engineering 

parameters, such as water content, salinity, porosity, clay fraction or ore grade.  

Ray-based inversion methods consider only a very limited portion of the recorded 

georadar signal, namely the onset time of the first arriving wave trains and the peak 

amplitudes of the first cycles. As a consequence, these methods suffer from a number of 

inherent limitations. In particular, they can only resolve structures that are relatively large and 

smooth with respect to the dominant wavelength of the signal. Williamson and Worthington 

(1993) argue that, to a first approximation, the resolution of ray-based inversion methods 

scales with the diameter of the first Fresnel zone, whereas that of wave-equation-based 

methods is approximately half a dominant wavelength.  

By considering the detailed waveforms of recorded georadar signals and correctly 

accounting for wave propagation effects in the inversion process, we can therefore expect to 

improve our resolution by nearly an order-of-magnitude. The expected sub-meter resolution is 

comparable to that of expensive and inherently 1D borehole-based studies, such as 

geophysical logging, core sampling and direct-push techniques. In the following, we shall 

first outline the methodological background of our waveform approach, test it on pertinent 

synthetic data and compare its performance with that of standard ray-based inversion 

techniques. 

D.3. METHODOLOGY 

To our knowledge, no attempts to develop full-waveform inversion schemes for 

georadar data have been made so far. In contrast, waveform inversion strategies for seismic 

data have been around for almost two decades. Most seismic waveform inversion schemes are 

based on finite-difference solutions of the wave equation. These forward modeling schemes 
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are accurate, can accommodate strongly heterogeneous media and automatically include all 

wave types of the considered wave propagation regime, such as diffracted or multiply 

scattered waves. In the following, we briefly review what we consider to be the most 

promising and successful approaches for the seismic waveform inversion, discuss the 

pertinent differences between seismic and georadar data, and then describe our algorithm. 

Tarantola (1984a) introduced the concept of full-waveform inversion to exploration 

seismology. Gauthier et al. (1986) and Mora (1987) clarified many of Tarantola’s formalisms, 

presented complete waveform inversion algorithms for acoustic and elastic seismic reflection 

data. Their approaches were based on finite-difference time-domain (FDTD) solutions of the 

acoustic and elastic wave equations. Pratt (1999) clarified and extended earlier work on 

waveform inversion schemes based on a frequency-domain solution of the wave equation. 

Compared to the time-domain approaches pursued by many other workers, his scheme ideally 

allows the solution of the inverse problem to be limited to a number of signal frequencies, 

which may greatly enhance the efficiency of the inversion process. Two decades after 

Tarantola’s (1984a) pioneering work, 2D waveform inversion of seismic reflection and 

crosshole data is clearly feasible. However, the method is still far from being applied 

routinely, primarily because elastic waveform inversion is computationally very expensive 

and acoustic full-waveform inversion does not account for “elastic-wave complications” in 

observed seismograms (e.g., shear, converted and surface waves). Furthermore, strong local 

variations in source and receiver coupling as well as three-dimensional effects may result in 

significant data inconsistencies. 

Finite-difference solutions of Maxwell’s equations require comparable computational 

efforts to corresponding solutions of the acoustic wave equation. However, in contrast to 

acoustic modeling of seismic data, finite-difference solutions of Maxwell’s equations contain 

all wave phenomena present in georadar data. Moreover, unlike for seismic sources and 

receivers, the system responses of georadar antennas can be reliably simulated via appropriate 

finite-difference solutions of Maxwell’s equations. The same is true for other complications, 

such as waveguide effects in water-filled boreholes or the presence of transmitters and/or 

receivers near the Earth’s surface or other discontinuities.  

The full-waveform inversion algorithm for crosshole georadar data presented in this 

study is based on a FDTD solution of Maxwell’s equations in 2D Cartesian coordinates. This 

choice was largely based on our expertise in FDTD forward modeling (e.g., Lampe and 

Holliger, 2003; Ernst et al., 2006) as well as on the intriguing conceptual simplicity of these 
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techniques. Once one has decided on the underlying forward algorithm, all waveform 

inversion approaches proceed by evaluating the gradient of the target parameters through 

iterative minimizations of the misfit between observed and simulated data.  

In the case of borehole georadar experiments, the observed data generally correspond 

to the vertical component of the electrical field Ez and the target parameters are the dielectric 

permittivity ε and the electrical conductivity σ  (e.g., Holliger et al., 2001). In this pilot study, 

we shall limit ourselves to the inversion of the dielectric permittivity, which is generally 

expected to have a dominant influence on the observed waveforms. The corresponding 

gradient can then be regarded as a cross-correlation between the time derivatives of the 

forward-propagated vertical component of the electrical field and the back-propagated 

residuals between the observed and simulated vertical electric field (e.g., Gauthier et al., 

1986): 

2
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where Tr denotes the transmitter number, NTr the total number of transmitters, Tmax the record 

length, t the traveltime, x a particular location in the tomographic plane, xTr the transmitter 

location, and n the iteration number. The distribution of the dielectric permittivity in the 

imaged tomographic plane is then updated as: 
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The step-length η is evaluated as (Pica et al., 1990): 
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where T is the transpose operator, s denotes a “small number” and the superscripts syn, obs 

and pert refer to synthetic, observed and perturbed data, respectively. The perturbed data are 

obtained by adding sδε(x)|n to the dielectric permittivity model resulting from the nth-iteration 

and performing another forward simulation. Based on the work of Pica et al. (1990), we chose 

s = 0.01. 

D.4. RESULTS 

To test the validity and accuracy of our full-waveform inversion approach, we have 

applied it to a variety of synthetic datasets. In the following, we report on the results of two 

such test cases, which we consider to be particularly challenging and illustrative with regard 
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to the potential of our 

algorithm. All models 

considered here are 7 m 

wide and 12 m deep and 

are characterized by a 

central low-velocity/high-

ε anomaly embedded in 

an otherwise homogene-

ous matrix. Transmitters 

and receivers are located 

along the left and right 

model edges with 

spacings of 1 m and 

~0.6 m, respectively. The 

models are uniformly 

non-magnetic and weakly conductive (σ = 0.5 mS/m). The embedding matrix and the 

anomalies of the models are characterized by dielectric permittivities of 2ε0 and 3ε0, 

respectively, with ε0 denoting the free-space permittivity. 

The forward modeling and waveform inversion procedures are based on a FDTD 

solution of Maxwell’s equations in 2D Cartesian coordinates that is second-order accurate in 

both time and space. The model space is surrounded by highly effective generalized perfectly 

matched layer (GPML) absorbing boundary conditions in order to avoid artifacts due to 

reflections from the edges of the computational domain (e.g., Lampe et al., 2003). The 

emitted wavelet corresponds to the first derivative of a Gaussian with a dominant frequency 

of ~160 MHz and a bandwidth of 2-3 octaves. This yields a dominant wavelength of ~1.4 m. 

 

Figure D-2: (a) Horizontal 
and (b) vertical cross-
section through the full-
waveform (red lines) and 
ray-based (blue lines) 
tomograms shown in 
Figure D-1. The dashed 
line denotes the actual 
anomaly. 

Figure D-1: Comparison of tomograms of a square-shaped low-velocity 
anomaly (dashed line) resulting from (a) full-waveform inversion and (b) 
ray-based inversion of first-arrival traveltimes. Arrows denote the locations 
of the cross-sections shown in Figure D-2. 
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The results of our 

tests are summarized in 

Figures D-1 - D-5 by 

comparing the results of 

the waveform inversions 

to those of corresponding 

ray-based inversions of 

the first-arrival travel-

times. For all inversions 

we used a homogeneous 

starting model with a 

constant dielectric permit-

tivity of 2ε0. The anomaly 

of our first test model 

corresponds to a square 

1.0m-by-1.0m low velocity (ε = 3ε0) anomaly (Figures D-1 and D-2). To reduce numerical 

artifacts related to high values in the vicinity of the transmitter and receiver locations, which 

correspond to the most severely underdetermined regions (“null-space”), the inversion 

process is a posteriori regularized by applying a taper at these locations and by smoothing the 

inversion results with a five-point spatial weighted-average filter. Despite the fact that the 

dimensions of this square-shaped anomaly are much smaller than the dominant wavelength, 

the inversion of the waveforms provides a remarkably accurate reconstruction of both the 

shape and the dielectric permittivity of the anomaly. Conversely, the ray-based inversion 

approach barely manages to detect the presence of this anomaly and clearly fails at resolving 

its shape and dielectric permittivity. 

 

Figure D-4: (a) Horizontal 
and (b) vertical cross-
section through the full-
waveform (red lines) and 
ray-based (blue lines) 
tomograms shown in 
Figure D-3. The dashed 
line denotes the actual 
anomaly. 

Figure D-3: Comparison of tomograms of a cross-shaped low-velocity 
anomaly (dashed line) resulting from (a) full-waveform inversion and (b) 
ray-based inversion of first-arrival traveltimes. Arrows denote the locations 
of the cross-sections shown in Figure D-4. 
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The anomaly of our second test 

corresponds to a low-velocity (ε = 3ε0) 

cross, composed of five 0.7 m-by-0.7 m 

square elements (Figures D-3 and D-4). 

Compared to the previously considered 

anomaly, this cross-shaped anomaly is 

characterized by a larger spatial extent and a 

more complex shape. The inversion of the 

waveform allows for an accurate 

reconstruction of the geometrical outline of 

the anomaly and provides a remarkably 

accurate estimate of the dielectric 

permittivity for the entire horizontal arm of 

the cross, but not for its upper and lower 

tips. The latter is most likely to be due to the 

sparse transmitter and receiver spacings as 

well as to the rather limited angular 

coverage characterizing the synthetic data. 

The ray-based inversion of the first-arrival 

traveltimes again fails to adequately resolve 

both the shape and the dielectric permittivity 

of the anomaly. Indeed, based on the ray-

based inversions alone, it is impossible to 

distinguish between the two anomalies. 

Finally, Figures D-5a and D-5b compare the “observed” and inverted radargrams of a 

receiver gather corresponding to a transmitter depth of 6 m for the second test case (Figures 

D-3 and D-4) before the first and after the 20th and final iteration. We see that before the start 

of the inversion procedure there are significant mismatches between the “observed” and 

simulated traces, both in terms of their amplitudes and phases, and that, despite phase 

mismatches of up to 90°, our waveform inversion approach achieves a near-perfect fit. It is 

also important to note that, at least for the experimental setup considered in this study, the 

computational effort was quite moderate, as each iteration only took ~30 minutes on a 

standard desktop computer with two 2.4 GHz processors. 

Figure D-5: “Observed” (black) and simulated (red) 
traces for the model containing the cross-shaped 
low-velocity anomaly (Figures D-3 and D-4) (a) 
before the first and (b) after the 20th and final 
iteration of the waveform inversion procedure. 
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D.5. CONCLUSIONS 

We have presented a full-waveform inversion approach for crosshole georadar data 

based on a FDTD solution of Maxwell’s equations in 2D Cartesian coordinates. Tests on 

synthetic data for challenging low-velocity-anomaly models demonstrate that this approach is 

clearly superior to standard ray-based approaches. We find that our waveform inversion 

approach is capable of resolving both the shape and dielectric permittivity of low-velocity 

anomalies whose spatial extent is considerably smaller than a dominant wavelength. In this 

pilot study, we have limited ourselves to synthetic data and to inverting only for the dielectric 

permittivity. In future, we plan to extend our algorithm to jointly invert for the dielectric 

permittivity and electrical conductivity and apply it to a variety of observed data. The latter 

will require the data to be adequately corrected for the 3D radiation and spreading 

characteristics. The generally underdetermined nature of these problems as well as the 

inherently noisy nature of real data may also mandate a more sophisticated regularization of 

the inversion process. 
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