Molecular and phenotypic diversity of wheat (Triticum aestivum L.) for winter hardiness

Author(s): Plassé, Caroline

Publication Date: 2007

Permanent Link: https://doi.org/10.3929/ethz-a-005559543

Rights / License: In Copyright - Non-Commercial Use Permitted
Molecular and phenotypic diversity of wheat (Triticum aestivum L.) for winter hardiness

A dissertation submitted to the
ETH ZURICH
for the degree of
DOCTOR OF SCIENCES

presented by

CAROLINE PLASSE
M.Sc. in Agronomical Sciences, INPL Nancy, France
born 12.07.1978
Citizen of France

accepted on the recommendation of
Prof. Dr. P. Stamp, examiner
Prof. Dr. B. Keller, co-examiner
Dr. J. Leipner, co-examiner

Zurich, 2007
Summary

Wheat (*Triticum aestivum* L.) is cultivated on more than 240 million hectares, a larger area than for any other crop. Furthermore, the trade in wheat worldwide is greater than for all the crops combined. The intraspecific reduction of wheat genetic diversity caused by the development of high-yielding cultivars enhances the risk of loss of adaptation to abiotic stress such as frost, which periodically accounts for significant losses in the production of winter wheat. The use of genetic resources for improving wheat is considered to be the most sustainable way conserving valuable genetic material for the future. In the recent past, genomics emerged as the result of technical advances in molecular biological techniques and in bioinformatics. Genomic research can contribute to the use of genetic resources for wheat adaptation to winter hardiness as it is possible to identify alleles useful for wheat improvement. This project aimed to survey genetic resources for wheat winter hardiness improvement by investigating genetic and phenotypic diversity and by determining the genetic basis of frost tolerance in wheat by association mapping.

The plant material was a set of 320 wheat accessions provided by the genebank of Agroscope Changins-Wädenswil (Switzerland). This material originated from 40 countries and each accession was genotyped at 32 loci with microsatellite (SSR) markers. The genetic diversity study detected a high genetic diversity. A parametric genetic mixture analysis was conducted to analyze the stratification. This analysis identified twelve subpopulations. Many of the populations consisted mainly of accessions from a certain geographic area or of a particular growth type.

A subset of 103 accessions was grown under field conditions without snow cover in Jura in two consecutive winters. Maximum quantum efficiency of PSII primary photochemistry (F_v/F_m) and leaf greenness were determined throughout the season, and winter survival and shoot dry weight were assessed at the end of the winter. Due to low temperatures, as low as -29 °C in both seasons, frost damage occurred in the less winter hardy accessions. The determination of F_v/F_m and leaf greenness enabled a classification of the accessions with respect to winter hardiness and revealed large phenotypic variation within the studied wheat accessions.

In order to investigate the genetic basis of wheat adaptation to frost, a candidate gene-based and a genome-wide association study was performed in a collection of 95 wheat accessions. The gene *TaCBF12*, which codes for a transcription factor of the AP2 type, was used as
candidate gene due to its positional association with the Fr-A2 locus, which is located on chromosome 5A and is known to be the major locus for frost tolerance in wheat. The sequencing of the promoter region of TaCBF12 revealed nine completely associated single nucleotide polymorphisms (SNPs) resulting in two haplotypes. The promoter region was found to contain several cis-acting elements of low temperature regulation. The SNPs caused that the two haplotypes differed in the presence, respectively absence, of two cis-acting elements, which are probably involved in the acclimation to low temperature. Therefore, the two haplotypes were tested for an association with the variation in winter hardiness. No association was found, suggesting a minor effect of TaCBF12 on phenotypic variation in frost tolerance. However, a highly significant association was found between the marker Xefa2173 on chromosome 4D and variation in the fluorescence parameter F/F_m at the beginning of the winter. The identified alleles may be useful in the selection for frost tolerance during winter hardening of wheat.
Résumé

Avec plus de 240 millions d'hectares, le blé est la culture occupant la plus vaste surface dans le monde. Ces échanges sur le marché mondial sont plus importants que ceux des autres cultures réunies. Le développement de cultivars à hauts rendements a entraîné une baisse de la variabilité génétique des variétés cultivées ce qui augmente le risque d'un manque d'adaptation aux stress abiotiques. Parmi ces stress, le gel est régulièrement responsable d'importantes pertes de rendement chez le blé. La caractérisation des ressources génétiques est un pré-requis pour leur intégration future en amélioration végétale et la restauration de la diversité génétique de cette espèce. Ces dernières années, la génomique a émergé grâce aux avancées conjointes des techniques moléculaires et bioinformatiques. La recherche génomique qui permet l'identification d'allèles utiles à l'amélioration du blé, détiennent le potentiel de contribuer à l'utilisation des ressources génétiques pour l'adaptation du blé au gel. L'objectif de ce projet est d'évaluer, chez le blé, les ressources génétiques pour la tolérance au gel par l'étude de la diversité phénotypique et par la détermination des bases génétiques de la tolérance au gel au moyen de la génétique d'association.

Un panel de 320 accessions de blé d'origines diverses fourni par la banque de gènes de l'Agroscope de Changins-Wädenswil (Suisse) a été utilisé. Pour évaluer la diversité génétique de ce panel, chaque accession a été évaluée au moyen de marqueurs microsatellites au niveau de 32 loci. Une grande diversité génétique a été mise en évidence. Une analyse d'hybridation génétique a été menée afin de mettre en évidence la stratification. Cette analyse a permis l'identification de douze sous-populations. Un certain nombre de sous-populations rassemblaient des individus d'une origine géographique donnée ou d'un type particulier de blé (hiver ou printemps).

Un sous-ensemble de 103 accessions a été cultivé en conditions de champ, sans couverture neigeuse, dans le Jura pendant deux hivers consécutifs. Le rendement quantique maximum de la photochimie de PSII (F_{v}/F_{m}) et la verté des feuilles ont été mesurés durant la saison hivernale ; la survie et le poids sec de la partie foliaire ont été évalués à la fin de l'hiver. Des températures atteignant -29°C pendant les deux hivers ont occasionnés des dégâts liés au gel sur les blés les moins tolérants. La détermination du rapport F_{v}/F_{m} et de la verté ont permis une classification des accessions en fonction de leur degré de tolérance et ont révélé une considérable variation phénotypique parmi les génotypes de blé étudiés.
Afin d’étudier les déterminants génétiques de l’adaptation du blé au gel, des études d’association par les approches gène-candidat et «génome-scan» ont été menées chez une population de 95 accessions de blé. Le gène TaCBF12, qui code un facteur potentiel de transcription de type AP2, a été choisi comme gène-candidat à cause de son association positionnelle avec le locus Fr-A2, cartographié sur le chromosome 5A et connu comme étant le locus majeur de tolérance au gel chez le blé. Le séquençage de la région promotrice de TaCBF12 a mis en évidence neuf polymorphismes simples nucléotides (SNPs) complètement associés entre eux, générant deux haplotypes. Des éléments cis-régulateurs de régulation en basses températures étaient visibles dans la région promotrice. Les SNPs ont engendré la présence de deux éléments cis-régulateurs, probablement impliqués dans l’acclimatation au froid, différenciant les deux haplotypes. Ces deux haplotypes ont ensuite été testés pour leur association avec la variation phénotypique. Aucune association n’a été trouvée suggérant un effet mineur de TaCBF12 sur la variation phénotypique de la tolérance au gel. Toutefois, une association fortement significative a été trouvée entre le marqueur Xcfa2173 sur le chromosome 4D et la variation du paramètre de fluorescence F_i/F_m au début de l’hiver. Les allèles identifiés pourraient être utiles en sélection pour la tolérance au gel pendant la phase d’endurcissement du blé.