Working Paper

Two-dimensionally constrained disaggregate trip generation, distribution and mode choice model theory and application for a Swiss national model

Author(s):
Vrtic, Milenko; Fröhlich, P.; Schüssler, Nadine; Axhausen, Kay W.; Lohse, Dieter; Schiller, Christian; Teichert, H.

Publication Date:
2007

Permanent Link:
https://doi.org/10.3929/ethz-a-005563220

Rights / License:
In Copyright - Non-Commercial Use Permitted
Two-dimensionally constrained disaggregate trip generation, distribution and mode choice model: Theory and application for a Swiss national model

M. Vrtic a,*, P. Fröhlich a, N. Schüssler a, K.W. Axhausen a, D. Lohse b, C. Schiller b,1, H. Teichert b

a IVT, ETH Zürich, CH-8093 Zürich, Switzerland
b Institut für Verkehrsplanung und Straßenverkehr, TU Dresden, D-01069 Dresden, Germany

Received 13 January 2006; received in revised form 11 September 2006; accepted 24 October 2006

Abstract

The Swiss federal government has asked the IVT, ETH Zürich in collaboration with the TU Dresden and Emch + Berger, Zürich to estimate origin–destination matrices by mode and purpose for the year 2000. The complex zoning system employing about 3000 zones required an algorithm which is fast, but also able to face generation, distribution and mode choice simultaneously.

The EVA algorithm developed by Lohse et al. [Lohse, D., Teichert, H., Dugge, B., Bachner, G., 1997. Ermittlung von Verkehrsstromen mit n-linearen Gleichungssystemen unter Beachtung von Nebenbedingungen einschließlich Parameterschätzung (Verkehrsnachfragemodellierung: Erzeugung, Verteilung, Aufteilung). Schriftenreihe des Instituts für Verkehrsplanung und Straßenverkehr, H. 5/1997, Fakultät Verkehrswissenschaften “Friedrich List”, Technische Universität Dresden] was adapted for this purpose. The key properties of the algorithm are a disaggregate description of the demand, and its use of appropriate logit-type models for the demand distribution, while maintaining the known marginal distributions of the matrices generated. The algorithm calculates trip production and attractions by zone using activity pairs. The combined destination and mode choice models are estimated for the different traveller types and activity pairs.

The paper derives and describes for the first time the EVA algorithm in English, including the solution method used. Second, it summarises the results of choice model estimation providing generalised cost elasticities of demand by purpose and traveller type. Third, it discusses the quality of the results by assessing the structure of the matrix against actual census data for road and rail traffic.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: EVA; Choice model; Trip generation; Trip distribution; Mode choice; Activity pairs; National model; Simultaneous solution; O-D matrices; Switzerland
1. Introduction

Travel demand models require, in practical application, that three constraints are met: consistency of the assumed and obtained generalised costs of travel, reproduction of the marginal totals of trip distribution and attraction and non-violation of the capacity constraints of network elements. Ideally, this overall equilibrium is achieved with an internally consistent and theoretically sound model of individual travel behaviour at all levels considered. By tradition models consider four sub-models of production/attraction, distribution, mode choice and assignment, of which assignment has acquired for some time well-established equilibrium formulations. This paper will present an approach to unify the other three steps into a coherent whole, which assures that the second constraint mentioned above is met while employing a sound behavioural model. This approach, called EVA – model from the German terms for production (Erzeugung), distribution (Verteilung) and mode choice (Aufteilung) has been developed by Lohse and his collaborators (Lohse et al., 1997 or Schnabel and Lohse, 1997) and is presented here for the first time in English with a large scale application as a challenging example: the new national transport model for Switzerland. The EVA approach is formulated using a Bayesian approach, while employing the information gain criterion and general solution algorithms for non-linear equations systems to calculate the desired solution.

Preceding national transport models have applied linear formulations of the variables in the logit structures of utility maximisation (see Lundqvist and Mattsson, 2001). In contrast, the EVA approach allows for a non-linear specification of the utility function. As a consequence it is possible to adapt the utility function in various ways with regard to groups of persons, trip purposes and transport modes to name only a few. Thus the elasticities can differ significantly from those of simple power or exponential functions. On the other hand the EVA model is a disaggregate macroscopic model of personal behaviour and traffic flow. Accordingly, the modelling of travel behaviour is based on a detailed segmentation of behaviourally homogeneous groups of persons, their activities and so on. The average travel behaviour is simulated by the means of probability relationships derived from specific and well-founded mathematical algorithms.

Another characteristic of the EVA approach is the possibility to choose between two different types of constraints for the trip distribution:

- Hard constraints are used if the trip production can be derived exclusively from zone characteristics and are independent of transport supply and subsequent competition between zones.
- Soft and elastic constraints are used if the trip production does not only depend on zone characteristics but also on transport supply and the competition between zones.

The Swiss national model is implemented on the basis of 2949 small zones inside the country and 165 increasingly larger zones further away from Switzerland. It distinguishes seventeen combinations of six trip purposes for three modes (motorised private travel, public transport and the combined walking and cycling modes). In total 51 matrices of 3114 * 3114 zones need to be calculated. The differences in data availability and size for the internal and external zones required different treatments for the traffic internal to Switzerland and those leaving, entering and passing through. For simplicity of exposition the paper will focus on the internal traffic and its modelling. The user-equilibrium assignment model of the software package VISUM 8.13 (PTV, 2004) was employed.

The structure of the paper is as follows: the next three sections will discuss the EVA approach first to trip production/attraction, then to distribution and mode choice modelling and finally the solution algorithm. The second part will present the practical application in Switzerland focussing on the simultaneous destination/mode choice model and the quality of the matrices obtained. The paper concludes with an outlook for both the approach and the particular application.

2. Modelling trip generation in EVA

The EVA approach calculates trip production and attraction with deterministic, but finely detailed trip rates on the production side, and proportional to the volume of activity opportunities at the attraction side,
but allowing for hard and soft constraints. Total trip making is disaggregated into activity-purpose pairs at origin and destination, which are associated with the various trip purposes. For the Swiss national model seventeen pairs were distinguished (see Table 1):

These are grouped into types with regard to the involvement of the home, as either at origin or at destination (specific points (*) in Table 1):

Type 1: origin at home location, which can be home (first priority) or work (second priority).
Type 2: destination at home location.
Type 3: neither origin nor destination at home location.

Additionally, one can attach trip purposes to the pairs as follows:

- **Work**: HW, WH, WO, OW.
- **Education**: HE, EH.
- **Business**: HB, BH, BO, OB.
- **Shopping**: HS, SH, SO, OS.
- **Leisure/other**: HL, LH, OO.

Each pair is associated with all or subsets of travellers. For example the HW and WH rates are calculated for employed persons, while HS and SH rates refer to all travellers. The number of persons in each set needs to be determined for each zone, so that trip productions can be calculated. The rates summed across trip purposes used in the Swiss national model are shown in Table 1.

Similarly, the relevant attractors and attraction rates are with each pair (see Table 2 for these links). Again, the numbers or volumes, of for example work places and shop floor areas, were collated for each of the zones. The attraction rates were calculated as the ratio of the produced trips to the total number of attractors. In the case of shopping, the split between trips to normal stores and shopping centres was informed by the data in Bosserhoff (2000). For certain trip purposes or activity-purpose pairs it is possible and necessary to impose a hard constraint, for example work or school, as we expect workers to arrive at their workplaces. In the remaining cases, the attraction rates define an upper limit of what the zone can accommodate, and the number of trips to the zone reflects the spatial competition. Shopping is a good example for such soft constraints.

The ability to distinguish these constraints is a major advantage of the EVA approach, as it avoids the well known pitfalls of unconstrained models, such as simple destination choice models, which only enforce the constraint at the origin. On the other hand, this double constraint formulation has the disadvantage that any

Table 1

Definition of the activity-purpose pairs

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Home</th>
<th>Work</th>
<th>Education</th>
<th>Business</th>
<th>Shopping</th>
<th>Leisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>-</td>
<td>H(1)</td>
<td>HW(1)</td>
<td>HE(1)</td>
<td>HB(1)</td>
<td>HS(1)</td>
<td>HL(1)</td>
</tr>
<tr>
<td>Work</td>
<td>WH(2)</td>
<td>-</td>
<td>-</td>
<td>WO(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>EH(2)</td>
<td></td>
<td>all other combinations, including HH and WW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>BH(2)</td>
<td></td>
<td></td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shopping</td>
<td>SH(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leisure</td>
<td>LH(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) indicates the type of the pair; O = W,E,B,S,L

Table 2
Simultaneous destination and mode choice model by activity-purpose pairs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model parameters (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HW</td>
</tr>
<tr>
<td>Constant car</td>
<td>0.46</td>
</tr>
<tr>
<td>Travel time car</td>
<td>-2.92</td>
</tr>
<tr>
<td>Car availability</td>
<td>1.12</td>
</tr>
<tr>
<td>Costs</td>
<td>-0.19</td>
</tr>
<tr>
<td>Travel time PuT</td>
<td>-1.66</td>
</tr>
<tr>
<td>Access time</td>
<td>-3.35</td>
</tr>
<tr>
<td>Interval</td>
<td>-0.87</td>
</tr>
<tr>
<td>No of changes</td>
<td>-0.50</td>
</tr>
<tr>
<td>GA possession</td>
<td>0.80</td>
</tr>
<tr>
<td>HT possession</td>
<td>0.89</td>
</tr>
<tr>
<td>Age</td>
<td>0.00</td>
</tr>
<tr>
<td>Travel time CWa</td>
<td>-0.94</td>
</tr>
<tr>
<td>Constant CWa</td>
<td>0.51</td>
</tr>
<tr>
<td>Jobsb</td>
<td>0.266</td>
</tr>
<tr>
<td>Wage earnersb</td>
<td>0.322</td>
</tr>
<tr>
<td>Education facilitiesb</td>
<td>0.296</td>
</tr>
<tr>
<td>Residentsb</td>
<td></td>
</tr>
<tr>
<td>Sales areab</td>
<td></td>
</tr>
<tr>
<td>Shopping centreb</td>
<td></td>
</tr>
<tr>
<td>Leisure facilitiesb</td>
<td></td>
</tr>
<tr>
<td>N-observations</td>
<td>23,043</td>
</tr>
<tr>
<td>p</td>
<td>0.03</td>
</tr>
</tbody>
</table>

a CW = Cycling and walking.

b Attraction variable = ln(value of attraction variable/1000).

c Shopping centre: sales area/10^6.

d For Box-Tukey transformation were adjusted by hand and not estimated jointly with the other parameters.
choice model estimated from observed behaviour will need to be adjusted by hand to match the observed trip length distribution under the imposition of the constraints.

Trip production for each activity-purpose pair in each zone e is calculated as

$$H_e = \sum_p S V_p \cdot B P_{ep} \cdot u_{ep}, \quad V = \sum_e H_e$$

with

- $B P_{ep}$ number of persons of group p in zone e
- H_e trip production in zone e
- $S V_p$ production rate of person group p
- u_{ep} share of intrazonal trips for group p in zone e
- V total traffic volume

The trip attractions for each activity-purpose pair result for those with hard constraints (e.g. Home, Work, Education) as

$$Z_j = \frac{\sum_r E R_r \cdot S Z_{ej}}{\sum_j \sum_r E R_r \cdot S Z_{ej}} \cdot V$$ (2)

and for those with elastic constraints (e.g. Shopping, Leisure) as

$$Z_{\text{max},j} = \frac{\sum_r \bar{U}_{ij} \cdot E R_r \cdot S Z_{ej}}{\sum_j \sum_r E R_r \cdot S Z_{ej}} \cdot V$$ (3)

with

- $E R_r$ attraction rate of attractor r
- $S Z_{ej}$ number/volume of attractor r in zone j
- \bar{U}_{ej} load factor of zone j with respect to attractor r
- Z_j attracted traffic to zone j
- $Z_{\text{max},j}$ maximum attracted traffic volume of zone j
- V total traffic volume

$S V$, $E R$ and \bar{U} are estimated from Swiss national travel survey data (Mikrozensus Verkehr, 2000).

3. Joint destination and mode choice in EVA

The EVA approach extends its person-group activity-purpose pair specific approach to the simultaneous modelling of destination and mode choice. The number of trips generated in zone i for each segment Q_i is assumed to be known, as is the number (hard constraint) or the maximum number (elastic constraint) of trips for the segment to zone j Z_j. The share of trips with mode k between zones i and j are calculated as a function of the generalised costs of travel using different model forms, which will be discussed below. This conditional probability $B W_{ijk}$ is

$$B W_{ijk} = P(W | (A_i \cap E_j \cap M_k))$$

With random events defined as follows:

- A_i zone i has been chosen as origin
- E_j zone j has been chosen as destination
- M_k mode k has been chosen
- W trip from i to j using k is accepted with regard to the generalized costs
The preferred form of the function of the generalised costs is a matter of the quality of fit obtained (see Fig. 1 for common examples) and the desired flexibility of the elasticities. Lohse et al. (2004) has suggested the following non-linear transformation of the generalised costs, which requires three additional parameters E, F, and G to obtain a very flexible shape of the elasticity ε over the range of the generalised costs:

$$BW = f(w) = \left[1 + \left(\frac{w}{F}\right)^G\right]^{-\frac{1}{E}}, \quad \varepsilon(w) = -E \cdot \frac{w^G}{F^E + w^G}.$$ \hspace{1cm} (4)

The logit-conform exponential function

$$\text{EXP} : \quad BW = f(w) = \exp(-\beta \cdot w)$$

Fig. 1. Probabilities and elasticities of different transformations.
can be expanded with one or two additional parameters, leading then to a Box–Tukey-transformed formulation

$$\text{EXP}_{\text{BTT}} : BW = f(w) = \exp(-\beta \cdot w^{(\lambda,m)})$$

with $w^{(\lambda,m)} = \begin{cases} (w+m)^\lambda - 1 & \text{for } \lambda > 0 \\ w+m-1 & \text{for } \lambda = 1 \\ \ln(w+m) & \text{for } \lambda = 0 \end{cases}$

Here, the transformation is done by translation of $m = 1$ according to w-axis. Therefore, the conditional probability function BW will pass through point $(0,1)$. The elasticity functions are

$$\varepsilon(w) = -\beta \cdot w \cdot (w+1)^{\lambda-1} \text{ for } \lambda > 0$$
$$\varepsilon(w) = -\beta \cdot w \text{ for } \lambda = 1$$
$$\varepsilon(w) = -\beta \cdot w \frac{w}{w+1} \text{ for } \lambda = 0$$

Sometimes, a power function is used: $\text{POT}: BW = f(w) = w^{-z}$, $\varepsilon(w) = -z$.

The basic model allocates a share of all trips V to a particular relation v_{ijk}. The formulation is structurally a Bayesian model

$$v_{ijk} = \frac{P((A_i \cap E_j \cap M_k)|W)}{\sum_i \sum_j \sum_k P((A_i \cap E_j \cap M_k)|W)} \cdot V$$

$$= \frac{P(A_i) \cdot P(E_j) \cdot P(M_k) \cdot P(W|(A_i \cap E_j \cap M_k))}{\sum_i \sum_j \sum_k P(A_i) \cdot P(E_j) \cdot P(M_k) \cdot P(W|(A_i \cap E_j \cap M_k))} \cdot V$$

in which one can choose any functional form for the calculation of the probability, for example the universal logit model (Maier and Weiss, 1990).

In the case of hard constraints the conditional probabilities are known:

$$P(A_i|W) = \frac{Q_i}{V}, \quad P(E_j|W) = \frac{Z_j}{V} \quad \text{and} \quad P(M_k|W) = \frac{M_k}{V}$$

The ratios of the conditional and unconditional probabilities define the initially unknown balancing factors:

$$q_i = \frac{P(A_i)}{P(A_i|W)}, \quad z_j = \frac{P(E_j)}{P(E_j|W)}, \quad a_k = \frac{P(M_k)}{P(M_k|W)}$$

With $P(A_i) = P(A_i|W) \cdot q_i$, $P(E_j) = P(E_j|W) \cdot z_j$ and $P(M_k) = P(M_k|W) \cdot a_k$ one obtains:

$$v_{ijk} = \frac{P(A_i|W) \cdot q_i \cdot P(E_j|W) \cdot z_j \cdot P(M_k|W) \cdot a_k \cdot P(W|(A_i \cap E_j \cap M_k))}{\sum_i \sum_j \sum_k P(A_i|W) \cdot q_i \cdot P(E_j|W) \cdot z_j \cdot P(M_k|W) \cdot a_k \cdot P(W|(A_i \cap E_j \cap M_k))} \cdot V$$

With the given probabilities $BW_{ijk} = P(W|(A_i \cap E_j \cap M_k))$ and the given conditional probabilities $P(A_i|W) = Q_i/V$, $P(E_j|W) = Z_j/V$ and $P(M_k|W) = M_k/V$ it is possible to determine the balancing factors q_i, z_j and a_k and the probabilities $P(A_i)$, $P(E_j)$ and $P(M_k)$.

After some transformations we obtain a tri-linear system of equations with constraints:

$$v_{ijk} = BW_{ijk} \cdot \frac{Q_i}{V} \cdot q_i \cdot \frac{Z_j}{V} \cdot z_j \cdot \frac{M_k}{V} \cdot a_k \cdot f = BW_{ijk} \cdot f q_i \cdot f z_j \cdot f a_k$$

$$Q_i = \sum_j \sum_k v_{ijk}$$
$$Z_j = \sum_i \sum_k v_{ijk}$$
$$M_k = \sum_i \sum_j v_{ijk}$$

Constraints
This model can be derived from the idea of maximising information gain. Schürger (1998) defined information gain I as the degree of deviation of a probability distribution α in comparison with a given distribution β

$$I = -\sum \left[\alpha \cdot \ln \left(\frac{\alpha}{\beta} \right) \right]$$

Thus, the information-maximising approach is equivalent to the entropy-maximising approach of Wilson (1974) and leads to the same results.

Lamond and Stewart (1984) explain a relaxation method developed by Bregman to solve convex optimisation problems and portray the application of this method to transport planning issues. Furthermore they show that the traffic flow matrix, which belongs to a matrix BW_{ijk} and has row sum conditions in the form of Eq. (13), can also be described as solution of the convex optimisation problem:

$$\sum_i \sum_j \sum_k \left[v_{ijk} \cdot \ln \left(\frac{v_{ijk}}{BW_{ijk}} \right) - v_{ijk} \right] \rightarrow \text{Minimum}$$

By applying Lagrange’s multiplier method on problem (13) with row sum conditions (11), the Lagrange function below can be derived:

$$\Phi = \sum_i \sum_j \sum_k \left[v_{ijk} \cdot \ln \left(\frac{v_{ijk}}{BW_{ijk}} \right) - v_{ijk} \right] + \sum_i \lambda_i \cdot \left(\sum_j \sum_k v_{ijk} - Q_i \right) + \sum_j \mu_j \cdot \left(\sum_i \sum_k v_{ijk} - Z_j \right) + \sum_k v_k \cdot \left(\sum_i \sum_j v_{ijk} - A_k \right)$$

If there is at least one valid solution, a unique optimal solution exists, which satisfies the row sum conditions and the equation:

$$\frac{\partial \Phi}{\partial v_{ijk}} = \ln \left(\frac{v_{ijk}}{BW_{ijk}} \right) + \lambda_i + \mu_j + v_k = 0$$

From this one obtains for the optimum

$$v_{ijk} = BW_{ijk} \cdot e^{-\lambda_i} \cdot e^{-\mu_j} \cdot e^{-v_k}$$

$$v_{ijk} = BW_{ijk} \cdot f q_i \cdot f z_j \cdot f a_k$$

This is the formulation the EVA model requires. It is equivalent to the optimal solution of the optimisation problem because a matrix in this formulation can be unambiguously identified by the row sum condition.

For elastic constraints the second set of constraints is changed to inequalities:

$$v_{ijk} = BW_{ijk} \cdot \frac{Q_i}{\sum_j Z_{max_j}} \cdot \frac{Z_{max_j}}{\sum_i v_{ijk}} \cdot \frac{Z_j}{M_k} \cdot \frac{a_k}{f}$$

$$Q_i = \sum_j \sum_k v_{ijk} \quad Z_{max_j} = \sum_i \sum_k v_{ijk} \quad M_k = \sum_j \sum_i v_{ijk} \quad \text{Constraints}$$

For forecasting, one assumes that the balancing factors $f a_k$ remain constant and obtains a two-dimensional problem, which is solved with the same method:
\[v_{ijk} = (BW_{ijk} \cdot f q_k) \cdot \frac{Q_i}{V} \cdot q_i \cdot \frac{Z_j}{V} \cdot z_j \cdot f \]
\[Q_i = \sum_j \sum_k v_{ijk} \quad \text{Constraints} \]
\[Z_j = \sum_i \sum_k v_{ijk} \]

There is a need to iterate between the travel demand calculations and the assignment to obtain a mutually consistent solution. The software tool VISEVA (Lohse et al., 2004) implements the model and provides tools to implement the full iteration scheme in conjunction with the assignment software VISUM (PTV, 2002).

4. Solution algorithm

The solution algorithm is based on the idea of the maximisation of the information gain (Bergman, 1976; Lohse et al., 1997). In an iterative process one identifies that linear transformation of the matrix BW, which satisfies the constraints. The Furness and the Multi-procedure are possible and efficient solutions for this class of problems. The theory is discussed in Teichert et al. (1997), Evans and Kirby (1974), Furness (1965), Lamond and Stewart (1984) and Mecky (1983), while Schnabel and Lohse (1997) provide practical applications.

The Multi-procedure is an iterative solution, which advances the solution simultaneously for all – here three – dimensions (Schnabel and Lohse, 1997). In contrast, the Furness procedure deals with only one dimension at a time and therefore has to make three calculations in each iteration step to solve this three-dimensional problem. Though the Multi algorithm is more complex and a single calculation needs more time than one of the Furness procedure, the Multi procedure is still twice as fast as the Furness procedure for a three-dimensional problem.

Transforming the equation system we obtain the fixed point problem:

\[f q_i = \sum_j \sum_k BW_{ijk} \cdot f z_j \cdot f a_k, \quad f z_j = \sum_i \sum_k BW_{ijk} \cdot f q_i \cdot f a_k, \quad f a_k = \sum_j \sum_i BW_{ijk} \cdot f q_i \cdot f z_j \]

The three terms are entered simultaneously into other. Using \(v_{ijk}(1) = BW_{ijk} \) as the starting point, one obtains:

\[v_{ijk}(p + 1) = v_{ijk}(p) \cdot \frac{Q_i}{\sum_j \sum_k v_{ijk}(p) \cdot z_j(p) \cdot a_k(p)} \cdot \frac{Z_j}{\sum_i \sum_k v_{ijk}(p) \cdot q_i(p) \cdot a_k(p)} \cdot \frac{VK_k}{\sum_i \sum_j \sum_k v_{ijk}(p) \cdot q_i(p) \cdot z_j(p) \cdot f(p)} \]

which in the next step results in

\[v_{ijk}(p + 1) = v_{ijk}(p) \cdot \frac{q_i(p)}{\bar{q}_i(p)} \cdot \frac{z_j(p)}{\bar{z}_j(p)} \cdot \frac{a_k(p)}{\bar{a}_k(p)} \cdot f(p) \]

with

\[Q_i(p) = \sum_j \sum_k v_{ijk}(p), \quad Z_j(p) = \sum_i \sum_k v_{ijk}(p), \quad VK_k(p) = \sum_i \sum_j \sum k v_{ijk}(p), \quad V(p) = \sum_j \sum k v_{ijk}(p) \]
\[q_i(p) = \frac{Q_i(p)}{\bar{Q}_i(p)}; \quad z_j(p) = \frac{Z_j(p)}{\bar{Z}_j(p)}; \quad a_k(p) = \frac{VK_k(p)}{\bar{V}_k(p)}; \quad f(p) = \frac{V}{V(p)} \]
\[\bar{Q}_i(p) = \frac{\sum_j \sum_k v_{ijk}(p) \cdot (z_j(p) + a_k(p))}{2 \cdot Q_i(p)} \]
\[\bar{Z}_j(p) = \frac{\sum_i \sum_k v_{ijk}(p) \cdot (q_i(p) + a_k(p))}{2 \cdot Z_j(p)} \]
\[\bar{a}_k(p) = \frac{\sum_i \sum_j v_{ijk}(p) \cdot (q_i(p) + z_j(p))}{2 \cdot VK_k(p)} \]

and starting points: \(f q(1) = f z(1) = f a(1) = f(1) = 1 \) and \(v_{ijk}(1) = BW_{ijk} \).
For elastic constraints the solution of the optimisation problem can be derived by the means of an appropriate modification of the Furness procedure (Lohse et al., 1997), which is briefly indicated below:

\[v_{ijk}(p + 1) = \frac{BW_{ijk}}{C_1 f_{qi}(p + 1) / C_1 f_{zj}(p + 1) / C_3 j (p + 1) / C_1 f_{ak}(p + 1)} \]

\[f_{qi}(p + 1) = \frac{Q_i \sum_k BW_{ijk} \cdot Z_{max_j} f_{zj}(p + 1) - f_{ak}(p)} {\sum_j \sum_k BW_{ijk} \cdot Z_{max_j} f_{qi}(p + 1) + f_{ak}(p)} \]

\[f_{zj}(p + 1) = \min \left\{ x_j(p) \cdot \sum_k BW_{ijk} \cdot Z_{max_j} f_{qi}(p + 1) - f_{ak}(p) \right\} \tag{21} \]

\[x_j(p) = F_j \left(x_j(p) \cdot \sum_k BW_{ijk} \cdot f_{qi}(p + 1) - f_{ak}(p) \right) \]

\[f_{ak}(p + 1) = \frac{VK_k \sum_j \sum_k BW_{ijk} \cdot Z_{max_j} f_{qi}(p + 1) - f_{zj}(p + 1)} {\sum_j \sum_k BW_{ijk} \cdot Z_{max_j} f_{qi}(p + 1) - f_{zj}(p + 1)} \]

with the starting points: \(f_{qi}(1) = f_{zj}(1) = f_{ak}(1) = 1. \)

5. Estimation of the simultaneous destination and modal choice model

In line with the EVA approach the Swiss national model employs a simultaneous destination and mode choice model. The nested logit model has modes as the upper level and the destinations as the lower level. This form was adopted after experimenting with the alternative. For estimation a random selection of eleven destinations was selected for each mode. In the case of the chosen mode only ten alternatives were added. The sampling was stratified: the origin zone, three zones within 70% of the observed distance, further three within 70% and 130% and the final three beyond 130% of the observed distance. The stratified sampling approach was chosen to get a sample with a systematic variation of possible destination. The model was estimated separately for ten of the seventeen activity-purpose pairs, as the samples were too small for the remaining ones, using Biogeme 0.7 (Bierlaire, 2003). For these seven pairs the attraction parameters were derived from the logical corresponding and already estimated parameters.

In the revealed preference data set used, the 2000 Swiss national travel survey Mikrozensus Verkehr (ARE and BFS, 2001), the usual strong correlations between travel cost, distance and travel time made the estimation of the mode choice parameters of the private motorised and public transport impossible. These were taken from an earlier stated preference study (Vrtic et al., 2003) together with the parameters for the socio-demographic variables.

Table 2 shows that the activity-purpose pair specific models have generally reasonable goodness-of-fits and all newly estimated parameters are significant at the 95% level, have the correct sign and credible magnitudes. The low explanatory power for work is the effect of both a large share of intrazonal destinations, as well as the lack of differentiation of the types of work possible. After extensive statistical testing to evaluate the tree structure of the NL, the Inclusive Value (IV) parameters on the upper level were fixed to 1. This causes the NL model to collapse into a single level MNL model.

As mentioned above, the introduction of the marginal constraints in the EVA approach requires adjusting some of the variables to obtain the observed distance distributions. These additional \(\lambda \) are direct elasticities in a Box–Tukey transformation of the variables (see also Table 2).

6. Calculation of the origin–destination matrices

Based on the Swiss national travel survey weekday generation rates for each of the seventeen activity-purpose pairs were calculated and associated with a set of zonal attributes, as appropriate: residents per age group, wage earners, jobs, education facilities, cultural facilities, recreation facilities, amusement parks, leisure centres, sales area and shopping centres.
The model estimates for Switzerland 28.39 M trips on the average weekday (3.86 trips per person per weekday). In general the marginal sums were treated as hard constraints. The exception were all pairs that included at least once shopping or leisure/other as a purpose.

As mentioned above three sub-models were developed due to the different level of data available:

- Swiss internal traffic.
- Traffic to and from abroad.
- Traffic passing through or by-passing the country.

The non-internal flows are not estimated individually, but incorporated from the detailed census of alpine and border-crossing traffic (ARE, 2003). The by-pass flows are estimated with a separate model and calibrated to traffic counts on alpine passes and tunnels.

The validation and calibration of the model is only carried out for the motorised private and the public transport. A calibration of the slow private transport flows was not intended and would have required a vastly more detailed road network.

7. Validation of the internal matrices

The resulting matrices can be compared and assessed against a number of independent data sets:

- Trip length distributions from the Population census 2000 for work and education and from the national travel survey for all modes.
- Modal shares again from both sources.
- Cross-section volumes are available for both the railways from an earlier study (Vrtic et al., 2003) as well as for the road network from both federal and cantonal counting stations (ASTRA, 2001).

7.1. Trip length distributions

Fig. 2 shows the modelled trip length distributions in comparison with the national travel survey (MZ, 2000) after an iterative adjustment using the Box–Tukey transformation mentioned above (see Table 2). The need for this adjustment arises from the constraints imposed by the zonal marginal totals, which restrain the unbound choice implied in the MNL.

![Fig. 2. Trip length distribution: Model and national travel survey (public transport).](image-url)
In total, 13.8 million interzonal trips with private and public transport are calculated. This is equivalent to 48% of all weekday trips.

7.2. Mode choice

The modal shares are generally reproduced within a 10% error band (see Fig. 3), which is very satisfactory given the relative coarseness of the network model and the transfer of the model parameters from a different study. Larger deviations can be observed in the case of work and education for the national travel survey (MZ, 2000), but the numbers from the population census 2000 are again matched well. Some of the reported differences are due to differences in the zonal systems, which could not be reconciled. In the national travel survey the large cities are coded as one zone, while they were subdivided for the national model. Therefore a larger share of public transport and walking and cycling trips will be categorised as intrazonal for this source, which explains some of the differences.

Note that little effort was spent on the modelling of walking and cycling. Again, the numbers obtained from the population census were used for working and education, resulting in substantial differences.

7.3. Comparison with traffic counts and cross-section surveys

The initial matrices were assigned to their respective networks. The person trips of the matrices were converted into vehicle trips using the observed car occupancy rates in the national travel survey. The fit was surprisingly good given that no calibration on the counts had been performed (see Fig. 4). The differences for the most heavily used roads, i.e. those with volumes over 10,000 vehicles per day, are below 20%. Larger differences are observed on less important roads, which generally carry higher shares of non-modelled intrazonal traffic. Heavy goods traffic was assigned in advance and considered as a prior load for the purposes of speed calculations. The heavy goods matrix of Francini (2002) had been updated for this purpose.

The exact appraisal of the public transport results is complicated by the uncertain quality of the cross-section counts, especially in agglomerations, due to missing counts from regional trains and due to the less detailed representation of local public transport service in agglomerations, which also carries interzonal traffic. Still, the quality of the initial public transport matrix is nearly as good as the one of the private transport matrix (maximum error of 40% on links with more than 10,000 trips per day) (see Fig. 4).

Another convenient method to appraise the structure of traffic flow matrices is the examination of the origins and destinations of flows passing a particular cross-section. The 2000 Census of Alpine- and Border-Crossing Traffic (ARE, 2003) provides this information for example for the traffic passing through the Gotthard tunnel.

Fig. 5 depicts the private transport flows over the Gotthard in the model and in the Census of Alpine- and Border-Crossing Traffic. It can be seen that the distribution of the traffic flows is very similar, but that the model distributes the traffic systematically across locations, while the sample taken for the census does not cover all points.
7.4. Comparison with the commuter matrices of the population census 2000

The commuter matrix of the population census allows a direct comparison at the level of the origin–destination flow. The mean and median differences were 6.02 and 1.13 person trips per day for the 280822 non-zero origin–destination flows in the car – matrix. These numbers are dominated by the large number of small flows in the spatially very disaggregated matrix developed here.
Fig. 6 shows the comparison of the assignment results and spatial distribution of the substantially different flows in the model and population census. The assignment results show the good congruence between modelled and surveyed link volumes. For the spatial distribution of differences, the zones were aggregated into their administrative Bezirke for clarity. While the assigned volumes are little different, there are substantial differences in flows, which balance overall. It is clear that the model is unable to capture history, such as firms, which have moved over time, or the commuting preferences among certain group or for certain industries. In addition, it should be noted, that the population census is not error free, in particular it included persons which commute biweekly in its counts.

8. Final corrections

The validation identified a series of errors in the network representation. The most frequent errors in the private transport network are wrong free-flow speeds and incorrect capacity estimates for specific links. These mistakes were mainly found in agglomerations and within built-up areas. Whereas the typical errors in the public transport model are erroneous running and dwelling times, wrong departure times, mistaken number of changes and erroneous routings of lines in the network. The errors lead to asymmetric route choice behaviour and asymmetric network loads.
After the correction of these errors it was felt that there was no need for an automatic calibration of the matrices to counts, especially as these methods tend to damage the systematic structure of the matrices in favour of a specific count or set of counts, which in itself might be biased. At a small number of cross-sections the flows passing through these were adjusted with uniform factors by hand. In exceptional cases the flows had to be adjusted differently. The absolute difference matrix between the modelled and adjusted values was retained for forecasting.

Table 3
Comparison of traffic counts and the final adjusted matrices: summary statistics

<table>
<thead>
<tr>
<th></th>
<th>Motorised private transport</th>
<th>Public transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cross-section counts</td>
<td>602</td>
<td>1210</td>
</tr>
<tr>
<td>Mean weighted deviation of absolute values in %</td>
<td>5.97</td>
<td>7.68</td>
</tr>
<tr>
<td>Coefficient of correlation</td>
<td>0.9938</td>
<td>0.9968</td>
</tr>
<tr>
<td>Root of mean square error</td>
<td>841.98</td>
<td>683.53</td>
</tr>
</tbody>
</table>
The overall change caused by the adjustments for both models is relatively small with a reduction in trip numbers by 3.7%, but the calibrated private transport matrix contains 1.2% fewer trips, whereas the difference between the public transport matrices is around 15.7%. This is equivalent to the observed differences between the non-calibrated matrices and the traffic counts. The trip length distribution improved, while the structure of the matrices was maintained. See Table 3 and Fig. 7 for an overview of the remaining differences.

9. Conclusions

The paper has introduced an approach, which allows to model travel demand and its distribution consistent with the natural volume constraints at the zonal level, which are as binding as the common link capacity constraints. Building on a simultaneous nested logit model of destination and model choice the EVA approach reproduced the observed behaviour well, as tested against a range of independent data sources. The initial inconsistencies due to the logit model were corrected by transforming the cost and time parameters non-linearly.

The EVA approach is flexible enough to accommodate any problem, which can be formulated in its terms. It has successfully been applied, for example, to freight demand forecasting. It is fast enough to accommodate large matrices, such as the one developed here, because it is based on an algorithm that has been proven to converge. Other recent examples are the German National Model, which had about twice the number of zones employed here.

The National Model is a big step forward for transport planning in Switzerland. It will provide a coherent framework for both national and regional, cantonal applications. The very detailed set of 51 matrices will allow matching analyses. It is clear, that the model is not perfect, when broken down to individual flows, as could be seen in the case of the commuter matrices. Further work is needed at this point, especially for local and regional applications.

The first big challenge for the National Model are the discussions about a possible mobility pricing scheme for Switzerland, primarily based on pricing the use of motorways. It will be required to convert the average weekday matrices into hourly matrices to allow the necessary dynamic modelling of the demand.

Acknowledgements

The national model was developed for the Swiss Bundesamt für Raumentwicklung, the Swiss Bundesamt für Strassen and the Swiss Bundesamt für Verkehr. The support of the colleagues there, in particular of Micheal Arendt is gratefully acknowledged. The work was undertaken jointly with the Emch+Berger AG, Zürich, especially Stefan Dasen and Stephan Erne.

References

