
ETH Library

Simulation and validation of
compressible flow in nozzle
geometries and validation of
OpenFOAM for this application

Master Thesis

Author(s):
Wüthrich, Benjamin

Publication date:
2007

Permanent link:
https://doi.org/10.3929/ethz-a-005575219

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005575219
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Institute of Fluid Dynamics

Simulation and validation of

compressible flow in nozzle geometries

and validation of OpenFOAM for this application

Benjamin Wüthrich

Computational Science and Engineering MSc

Master Thesis SS 07

Institute of Fluid Dynamics

ETH Zurich

Written at

ABB Corporate Research

Baden-Dättwil

Supervisors: Dr. H. Nordborg

Dr. Y.-J. Lee

Professor: Prof. Dr. L. Kleiser

Abstract

In this thesis, the open source CFD software framework OpenFOAM is evaluated
with regard to its suitability for the simulation of supersonic compressible flows as
they occur during arc extinguishing in high-voltage circuit breakers. After a gen-
eral introduction to circuit breakers and the switching case of interest, switching of
capacitive currents, a short overview of the functionality of OpenFOAM is given. A
selection of compressible flow solvers is then tested in two verification cases (shock
tube and supersonic wedge flow) and two validation cases (backward facing step
and transonic diffuser flow). Results include the elimination of some solvers from
further analysis, high demands on grid refinement for accurate simulation of recir-
culation and satisfactory performance for a normal shock/flow separation scenario.
Taking the lessons learned from these cases into account, a series of cold gas flow
simulations for ABB circuit breaker geometries is run and the results are compared
to experimentally obtained values, again with a satisfactory outcome. The largest
deviations from measured values have their roots always in a false estimation of
shock locations. The flow phenomena encountered in this thesis comprise normal
and oblique shocks, expansion waves, flow separation and reattachment as well as
recirculation. The main result of the present work is a recommendation to use
OpenFOAM as the basis for more complete simulations of circuit switching and arc
extinguishing.

iii

Contents

Notation ix

1 Introduction 1

1.1 Self-blast circuit breakers . 2

1.2 Challenges in simulating the switching procedure 2

1.3 Objective of this thesis . 3

1.4 Conventions and structure of this report 3

1.4.1 Typesetting conventions . 3

1.4.2 Structure of this report . 4

1.4.3 The difference between verification and validation 4

2 OpenFOAM: A first glance 5

2.1 History . 5

2.2 Features . 5

2.2.1 Solvers . 5

2.2.2 Utilities . 6

2.2.3 Extensibility . 7

2.3 Running a case . 7

2.3.1 Mesh issues . 8

2.3.2 Fluid properties . 9

2.3.3 Schemes and solution algorithms 10

2.3.4 Simulation control . 11

3 Verification cases 13

3.1 The shock tube problem . 13

3.1.1 Description and relevance . 14

3.1.2 Analytical solution . 15

3.1.3 Solver quality evaluation . 22

3.1.4 Temporal convergence . 28

3.1.5 Spatial convergence . 29

3.1.6 Algorithm analysis . 31

3.1.7 Comparison to CFD-ACE+ . 32

3.1.8 Insights gained . 32

3.2 The supersonic wedge problem . 34

3.2.1 Description and relevance . 34

3.2.2 Analytical solution . 35

3.2.3 Solver quality evaluation . 41

3.2.4 Spatial convergence . 45

3.2.5 Comparison to CFD-ACE+ . 46

3.2.6 Insights gained . 47

v

Validation of OpenFOAM for nozzle flows Contents

4 Validation cases 49
4.1 The backward facing step problem . 49

4.1.1 Description and relevance . 49
4.1.2 Solver quality evaluation . 51
4.1.3 Insights gained . 53

4.2 The transonic diffuser problem . 54
4.2.1 Description and relevance . 55
4.2.2 Solver quality evaluation . 59
4.2.3 Insights gained . 62

5 Cold gas flow in a circuit breaker 67
5.1 Case description . 67
5.2 Meshes and solver settings . 68
5.3 Progression and computational costs . 69
5.4 Exemplary Mach and pressure fields . 70
5.5 Comparison to measurements . 71
5.6 Summary for circuit breaker case . 72

6 Summary and outlook 75
6.1 Lessons learned and recommendation . 75
6.2 Outlook . 76

Acknowledgements 77

References 80

A Contents of the CD 81

B MATLAB source code 83
B.1 The shock tube function . 83
B.2 The oblique shock function . 85

C Additional results 87
C.1 Shock tube plots from the solver quality evaluation 87
C.2 Supersonic wedge plots from the solver quality evaluation 89

vi

List of Figures

1.1 Gas insulated switchgear . 1
1.2 Self-blast circuit breaker . 2
3.1 Example of a shock tube . 14
3.2 Shock tube initial conditions, pressure along the tube 15
3.3 Shock tube after the diaphragm is broken 16
3.4 Setup for OpenFOAM solver evaluations at time t = 0 16
3.5 Characteristics for an expansion wave centred at 0 19
3.6 1D mesh for the shock tube problem . 23
3.7 2D mesh for the shock tube problem . 23
3.8 Axi-symmetric mesh for the shock tube problem 24
3.9 3D mesh for the shock tube problem . 24
3.10 Pressure comparison of OpenFOAM solvers 26
3.11 Pressure distribution at t = 2.5 · 10−4 s for the rhoSonicFoam solver 27
3.12 Temporal convergence/CPU time requirements for laminar solvers 28
3.13 Temporal convergence/CPU time requirements for turbulent solvers 29
3.14 Spatial convergence/CPU time requirements for laminar solvers 30
3.15 Spatial convergence/CPU time requirements for turbulent solvers 30
3.16 CFD-ACE+ computations compared to analytical solution 33
3.17 Supersonic wedge flows . 35
3.18 Setup for OpenFOAM evaluations of the supersonic wedge problem 36
3.19 Oblique shock wave . 37
3.20 θ-β-Ma relation . 39
3.21 The mesh for the supersonic wedge problem 41
3.22 Analytical Mach number for the wedge problem 42
3.23 OpenFOAM Mach number results, laminar 42
3.24 Comparison of laminar solver parallel samples to analytical solution 43
3.25 OpenFOAM Mach number results, turbulent 44
3.26 Comparison of turbulent solver samples to analytical solution 44
3.27 Mesh convergence for the wedge case . 46
3.28 New sample locations for the wedge case 47
3.29 Mesh convergence for the wedge case (downstream of shock) 48
3.30 CFD-ACE+ solution for the wedge case 48
4.1 The backward facing step problem . 50
4.2 The mesh for the backward facing step case 50
4.3 Velocity field in the neighbourhood of the step 51
4.4 Backward step solution obtained with the finer mesh 53
4.5 Pressure field for the steady-state solution 54
4.6 Pressure sample comparison for the backward facing step 55
4.7 The transonic diffuser setup . 56
4.8 The geometry of the transonic diffuser . 57
4.9 Mesh for the transonic diffuser . 57
4.10 Steady-state diffuser velocity field for R = 0.13 58
4.11 Weak shock solution for the diffuser . 58

vii

Validation of OpenFOAM for nozzle flows List of Figures

4.12 Pressure plots for weak shock solution . 60
4.13 Velocity plots for weak shock solution . 61
4.14 Strong shock solution for the diffuser . 62
4.15 Streamlines in the strong shock case . 63
4.16 Pressure plots for strong shock solution . 64
4.17 Velocity plots for strong shock solution . 65
5.1 ABB breaker geometries . 67
5.2 Circuit breaker mesh for 57 mm case . 68
5.3 Necessary reduction of ∆t . 70
5.4 Residuals for the 87 mm case . 71
5.5 Pressure and Mach number field (62 mm, 1.8 bar) 72
5.6 Sensor 1 comparison for the circuit breaker case 73
5.7 Sensor 2 comparison for the circuit breaker case 74
5.8 Sensor 3 comparison for the circuit breaker case 74
C.1 Comparison of OpenFOAM solvers for the 1D case 87
C.2 Comparison of OpenFOAM solvers for the 2D case 87
C.3 Comparison of OpenFOAM solvers for the axi-symmetric case 88
C.4 Comparison of OpenFOAM solvers for the 3D case 88
C.5 Comparison of laminar solver perpendicular samples to analytical solution 89

viii

Notation

Roman symbols

Symbol Description Units

As Sutherland coefficient [kg/(m · s · K1/2)]
a Local speed of sound [m/s]
cp Specific heat capacity at constant pressure [J/(kg · K)]
Cµ Turbulent-viscosity constant in the k–ε tur-

bulence model
—

cv Specific heat capacity at constant volume [J/(kg · K)]
Co Courant number —
e Specific internal energy [J/kg]
Hf Heat of fusion [kJ/kg]
h Specific enthalpy [J/kg]
h Step height for the backward facing step case,

channel height for the diffuser case
[m]

h∗ Throat height of the transonic diffuser [m]
k Turbulent kinetic energy [m2/s2]
Li Distance from inlet to step [m]
Lo Distance from step to outlet [m]
Lu Distance from step to upper boundary [m]
M Molecular weight [u]
Ma Mach number —
Man Normal component of the Mach number —
Mas Moving shock Mach number —
p Pressure [Pa]
p0 Total pressure [Pa]
Pr Prandtl number —
R Specific gas constant [J/(kg · K)]
R Exit static to inflow total pressure ratio —
T Temperature [K]
Ts Sutherland temperature [K]
T0 Total temperature [K]
t Time [s]
u Velocity field [m/s]
u x-component of velocity/component parallel

to shock
[m/s]

up Velocity of gas behind the normal shock wave [m/s]
v Specific volume [m3/kg]
v y-component of velocity [m/s]
W Wave velocity [m/s]
w z-component of velocity/component perpen-

dicular to shock
[m/s]

continued on next page

ix

Validation of OpenFOAM for nozzle flows Notation

continued

Symbol Description Units
x Position along the x-axis [m]
y Position along the y-axis [m]
z Position along the z-axis [m]

Greek symbols

Symbol Description Units
β Shock wave angle [rad]
γ Heat capacity ratio cp/cv —
ε Turbulent dissipation rate [m2/s3]
εrms Root mean square error —
θ Deflection angle [rad]
κ Thermal conductivity [W/(m · K)]
µ Dynamic viscosity [kg/(m · s)]
ρ Density [kg/m3]

x

(a) (b)

Figure 1.1: Gas insulated switchgear, type ABB ELK-3 (voltage up to 550 kV): (a) pho-
tography; (b) schematic drawing. (Source: http://www.abb.com/)

1 Introduction

Switch components are a key element in the journey of electrical energy from the generator
to the consumer; the reliability of our energy supply depends heavily on their proper
functioning. Switchgear enables the actual distribution of electricity and the combination
of load as necessary: almost every major branch is connected to a hub by means of a
switching device.

Circuit breakers are an integral part of switchgear: they take care of protecting their
respective circuit from faults such as overload or short circuit by actually—as their name
suggests—breaking the circuit. This is effected by mechanically opening a contact, much
like pulling the plug of a household appliance; the difference is that circuit breakers do
so automatically at the right time and that for higher voltages, some issues arise when
“pulling the plug”.

A switching device for high voltage (up to 500 kV) is shown in Fig. 1.1; our principal
interest lies in the part labelled “1”, the circuit breaker. The device seen here is so called
gas insulated switchgear (GIS): the contacts are insulated by pressurised SF6, a gas with
excellent insulating properties.

Switching high voltages gives rise to the phenomenon of the light arc: the gas between
the contacts is ionised and becomes a conductor. To definitely break the circuit, this arc
has to be quenched. One of the methods to do so is the motivation for this thesis.

In Section 1.1, a type of circuit breakers that use the energy of the arc to have it
extinguish itself is presented. Section 1.2 outlines the difficulties in simulating this process;
in Section 1.3, the ultimate goal of this thesis is described. Section 1.4 finally explains
the typesetting conventions of this document and gives an overview of the content of the
other chapters.

1

http://www.abb.com/

Validation of OpenFOAM for nozzle flows 1 Introduction

V

Figure 1.2: Functioning principle of a self-blast circuit breaker: the heat of the arc is used
to build up pressure, which induces a flow back to the arc, finally extinguishing it (source:
http://en.wikipedia.org).

1.1 Self-blast circuit breakers

One of the measures to quench the arc is to cool it sufficiently. In simple terms, this is
effected by a gas flow along the arc to withdraw heat from it; it is “blown out”. SF6 is
especially well suited for this task because of its insulating properties. The gas flow can be
caused by, for example, a piston; breakers where the relative movement between the gas
and the arc is provided by the arc itself are called self-blast breakers. Figure 1.2 illustrates
the idea: after the contact is opened, the arc starts to burn. In alternating current high-
voltage circuits (the case we are interested in), it may extinguish at every current zero,
but reignites immediately after passing zero crossing. The heat being generated by the
arc is now used to build up pressure in a special chamber, from which gas flows back to
the arc, now burning in a nozzle/diffuser geometry. The goal is to avoid reignition after
the next zero crossing.

Of the various switching cases (terminal fault, closing of inductive currents etc.), the
switching of capacitive currents is of special interest for our purposes: if restriking of the
arc occurs, the voltage load on the breaker can reach a multiple of the peak value of the
driving voltage.

The goal of the gas flow is on the one hand to provide for cooling, but on the other
hand, low pressure and the associated low density caused by high speed flow must be
avoided, because it lowers the dielectric strength of the insulating gas and facilitates
restriking of the arc.

More details about switchgear, physical foundations and the various switching cases
can be found in Lindmayer (1987) and Gremmel & Kopatsch (2007); Fröhlich (2006) is a
little more general and less in-depth.

1.2 Challenges in simulating the switching procedure

If one was able to simulate the complete breaker procedure, including the plug move-
ment, arc ignition, electromagnetism, fluid dynamics (supersonic and turbulent flow with

2

http://en.wikipedia.org

1.3 Objective of this thesis Validation of OpenFOAM for nozzle flows

shocks), fluid-structure interaction and the physics of the transient burning arc, circuit
breaker development would profit immensely. Understandably, this has not been achieved
yet but is a declared long-term goal. However, already coupling computational electro-
magnetics (CEM) and computational fluid dynamics (CFD) to computational magneto-
hydrodynamics (CMHD) for compressible fluids is a very challenging task.

Various attempts at solving or simulating at least partial aspects of the above problem
have been undertaken:

• Kim et al. (2003) describes how to optimise the shape design of gas circuit breakers
by means of an evolutionary algorithm. For evaluation of the objective function, an
Euler finite volume solver is used.

• Wolter (1997) examines CFD codes with respect to their suitability for gas flow
simulations in high voltage circuit breakers, quite similar to the topic of the present
thesis.

• Mantilla Florez (2007) creates a robust reference experiment after which simulations
could be assessed and compares CFD-ACE+ predictions to the measured values.

1.3 Objective of this thesis

To get closer to the goal of simulating the complete circuit breaking procedure, there are
basically two alternatives: software could be developed from scratch, or existing software
could be extended. Closed-source commercial codes such as Fluent, ANSYS CFX or
CFD-ACE+ are naturally not suitable for extensions, thus open source software must
serve as a basis.

OpenFOAM is such a software (see Chapter 2 for details about OpenFOAM): open
source and especially designed with extensibility in mind. The goal of this thesis is thus:

Evaluation of OpenFOAM with respect to its suitability
for flows as they occur in circuit breaker nozzle/diffuser
geometries and laying the groundwork for making an in-
formed decision as to whether OpenFOAM could be used
as the basis for circuit breaker simulation specific exten-
sions

To this end, various test cases are to be performed; see the following section for details.

1.4 Conventions and structure of this report

1.4.1 Typesetting conventions

We follow largely the conventions used in OpenCFD (2007b):

• The names of utilities and solvers of OpenFOAM are typeset in sans-serif: Mach,
sonicTurbFoam

• Directories and dictionaries are typeset in slanted sans-serif: thermophysicalProper-

ties, polyMesh

3

Validation of OpenFOAM for nozzle flows 1 Introduction

• Command line examples, source code and specific settings/keywords in dictionaries
are set in typewriter font: Mach . myNozzle -latestTime

1.4.2 Structure of this report

Chapter 2 gives an overview of OpenFOAM, the software used in this thesis.
In Chapter 3, two verification cases are examined: the shock tube problem and the

supersonic wedge problem. The studies include mesh refinement analysis, comparisons
among different OpenFOAM solvers and also commercial tools. The subject of Chapter 4
are two validation cases: the backward facing step and the Sajben transonic diffuser. The
results are compared to experimentally obtained values and the predictions of commercial
software.

Chapter 5 is a real-world application: cold gas flow in an ABB circuit breaker geom-
etry and comparison to the experiment in Mantilla Florez (2007). Every case contains a
“lessons learned” section; Chapter 6 summarises the learnings and insights of the whole
thesis and outlines possible directions for future research activity.

The appendix contains a listing of the contents of the accompanying CD, source code
of Matlab scripts and functions as well as additional plots not included in the main
chapters.

1.4.3 The difference between verification and validation

As it is used in this thesis and according to Gerritsma (2002), verification could be defined
as “solving the equations right” and validation as “solving the right equations”.

In verification, we are interested in learning whether our numerical method actually
solves (or approximates) the (partial) differential equation describing our problem or if it
converges to an erroneous solution. We do this by comparing the numerical solution to a
known exact (analytical) solution.

Because theory is just an approximation of the physical reality, we also want to know
if the equations we solve actually describe the real world; this is validation. We com-
pare our result to experimental outcomes, so validation is actually a test of how well
theory describes the physical reality—provided that we know our solution converges to
the theoretical one, as established by verification.

4

2 OpenFOAM: A first glance

OpenFOAM stands for “Open Source Field Operation and Manipulation”; it is the soft-
ware being evaluated in the course of this thesis. This chapter is intended to give the
reader who is unfamiliar with it an idea of OpenFOAM; it is by no means an attempt at
a complete documentation. More complete information can be obtained from OpenCFD
(2007a) and OpenCFD (2007b); even though partially outdated and not complete either,
these documents are probably the best starting points for OpenFOAM beginners.

In Subsection 2.1, a short outline of the history of OpenFOAM is given; Subsection
2.2 describes its features, and Subsection 2.3 gives an idea of what has to be done to run
a case like the ones carried out in the later chapters.

2.1 History

OpenFOAM started as FOAM around 1993 at Imperial College, London, as a collabo-
ration of Henry Weller and Hrvoje Jasak, who started working on his PhD thesis, Jasak
(1996), at that time. The motivation to develop CFD software from scratch was mainly
dissatisfaction with legacy codes in Fortran and the goal to create something reusable by
others.

For a few years, FOAM was developed as a closed-source commercial software, before
becoming open source in December 2004 with the announcement of OpenFOAM 1.0.
Since then, four major releases were launched; the latest version is OpenFOAM 1.4.1,
released in August 2007. OpenFOAM is, according to their website1, used by R&D teams
in large companies such as Audi, Bayer, Mitsubishi, Shell and Volkswagen, as well as by
more than 200 academic institutions, among them Imperial College London, Chalmers
University and the Tokyo Institute of Technology.

Main sources for information about OpenFOAM are, apart from the website and the
users and programmer’s guide mentioned above, the OpenFOAM message board2 and the
OpenFOAM Wiki3.

2.2 Features

OpenFOAM is on the one hand a C++ library, on the other hand a collection of appli-

cations (created using these libraries). The applications can be divided into two different
categories: solvers and utilities, of which the former perform the actual calculations and
the latter provide a range of functionalities for pre- and post-processing.

2.2.1 Solvers

OpenFOAM covers an impressive range of applications with solvers ranging from a simple
potential flow solver (potentialFoam) over incompressible steady-state (simpleFoam), tran-
sient laminar (icoFoam) turbulent (turbFoam) or dynamic mesh (icoDyMFoam) solvers,

1http://www.opencfd.co.uk/
2http://openfoam.cfd-online.com/cgi-bin/forum/discus.cgi
3http://openfoamwiki.net/index.php/Main_Page

5

http://www.opencfd.co.uk/
http://openfoam.cfd-online.com/cgi-bin/forum/discus.cgi
http://openfoamwiki.net/index.php/Main_Page

Validation of OpenFOAM for nozzle flows 2 OpenFOAM: A first glance

compressible steady-state (rhoSimpleFoam) or trans- and supersonic turbulent (sonic-

TurbFoam) solvers to multiphase flow solvers (e. g., interFoam), LES solvers (oodles),
combustion codes (dieselEngineFoam), electromagnetics (mhdFoam), solid stress analysis
(solidDisplacementFoam) and even finance (financialFoam) solvers.

Naturally, the focus in this thesis lies on the compressible flow transient solvers; Open-
FOAM comes with five of them. More on the solver selection process can be found in
Chapter 3.

2.2.2 Utilities

The utilities can basically be divided into supporting pre- and post-processing tasks.
There is also a tool called FoamX, which is actually just a GUI to effect changes in the
different dictionary files and execute other utilities, instead of calling them directly from
the command line. It works only with solvers for which a FoamX configuration file exists,
and even its creators recommend switching to editing the files directly as soon as possible.

Utilities are usually called using

<utility > <root > <case > [-optionalParameters]

where <utility> is the name of the utility (e. g., blockMesh), <root> is the path to the
root directory, and <case> is the path of the actual case, relative to the root directory.
More about the directory structure can be found in Section 2.3. As an example, to
calculate the Mach number for the latest time step in a case called ABBnozzle, one has to
issue

Mach . ABBnozzle -latestTime

where the working directory has to be the root directory.

Pre-processing utilities Of the many pre-processing utilities that come with Open-
FOAM4, the following are used most often in the course of the test cases executed for this
thesis:

• mapFields maps volume fields from one mesh to another; this is useful for mesh
refinement studies to map results from a coarse mesh to a finer one without starting
all over.

• blockMesh is the small included mesh generator. It is quite powerful in principle,
but for more complicated meshes, it is recommended to use mesh conversion tools.

• checkMesh checks the mesh for validity, skewness and the like and gives information
about its size.

• setFields is used to set initial conditions for the different volume fields, especially for
cases where they are not uniform.

• fluentMeshToFoam converts Fluent meshes to OpenFOAM format. This is used for
the ABB nozzle meshes in Chapter 5.

4A complete list of all utilities can be found in OpenCFD (2007b, Section 3.6).

6

2.3 Running a case Validation of OpenFOAM for nozzle flows

Post-processing utilities The following post-processing utilities are the ones that offer
functionality required for this thesis:

• Mach calculates the local Mach number and writes it at each time in a database.

• sample allows to sample arbitrary quantities at specified locations. This is used to
compare to experiments or analytical solutions.

• foamLog extracts data such as initial residuals, iterations and Courant number from
a log file for plotting and observing trends over longer periods of time.

To view and post-process simulations graphically, OpenFOAM comes with paraFoam,
a reader module for the open source visualisation application ParaView5. To allow post-
processing with 3rd party applications, data could be converted to other formats such as
Fluent, EnSight or OpenDX, but ParaView is sufficient for our needs here.

2.2.3 Extensibility

One of the key advantages of OpenFOAM is its extensibility: the source code is accessible,
and the architecture of OpenFOAM should make it easy to write for example a new solver
or adapt existing ones. The creators take pride in the high level of abstraction, which is
supposed to make the source code of a solver its own documentation. An equation such
as

∂ρu

∂t
+ ∇ · ϕu −∇ · µ∇u = −∇p (2.1)

is represented by the code

solve

(

fvm::ddt(rho , U)

+ fvm::div(phi , U)

- fvm:: laplacian(mu , U)

==

- fvc:grad(p)

);

In this way, the understanding of the actual algorithm, the implemented models and
equations are supposed to be much more important than a deep knowledge of object
orientation and C++ programming. This author disagrees with this statement, see the
critique in Subsection 3.1.6.

2.3 Running a case

Every OpenFOAM case has a similar structure with slight differences stemming only from
the particular choice of solver. The basic file structure corresponds to the following list:

• system

– controlDict

– fvSchemes

5http://www.paraview.org/

7

http://www.paraview.org/

Validation of OpenFOAM for nozzle flows 2 OpenFOAM: A first glance

– fvSolution

– Dictionaries for utilities like setFields or sample

• constant

– . . . Properties

– polyMesh

∗ points

∗ cells

∗ faces

∗ boundary

• Time directories (0, . . .)

This section outlines the various steps to be undertaken when setting up a simulation
in OpenFOAM: boundary conditions have to be set (Subsection 2.3.1), fluid properties
selected (Subsection 2.3.2), numerical schemes and algorithms for the solution of systems
of equations must be chosen (Subsection 2.3.3), and finally general simulations settings
must be fixed (Subsection 2.3.4).

2.3.1 Mesh issues

OpenFOAM operates with unstructured polyhedron meshes where volumes can have any
number of faces. After having obtained a mesh, either using blockmesh or one of the
import utilities, the appropriate boundary types and conditions have to be set. To this
end, the boundary types in the boundary dictionary have to be set to the right values. An
excerpt from that dictionary might look like

inlet

{

type patch;

nFaces 50;

startFace 10325;

}

bottom

{

type symmetryPlane;

nFaces 25;

startFace 10375;

}

obstacle

{

type patch;

physicalType adiabaticWall;

nFaces 110;

startFace 10400;

}

defaultFaces

{

type empty;

nFaces 10500;

startFace 10510;

}

8

2.3 Running a case Validation of OpenFOAM for nozzle flows

where our focus lies on the lines with type in them. patch is a generic type, while
symmetryPlane is for symmetry boundary conditions, and empty is to reduce the dimen-
sionality of a problem6.

When the mesh is created using blockMesh, the boundary types in boundary are already
set as they should. If the mesh is imported however, boundary conditions are usually reset
and must be edited again.

Apart from the boundary dictionary, every volume field dictionary has to be edited to
set the right boundary conditions. The volume fields are contained in the time directories,
whose name is the corresponding time level. Suppose we want to start a simulation from
time zero, the field files in 0 have to be edited accordingly.

The part in the pressure file p where a fixed value of p = 15 kPa for the inlet is to be
prescribed could look like

inlet

{

type fixedValue;

value uniform 15e3;

}

The fixed velocity inlet (150 m/s in x-direction) and no-slip wall conditions in the velocity
file U could be

inlet

{

type fixedValue;

value uniform (150 0 0);

}

bottom

{

type fixedValue;

value uniform (0 0 0);

}

In this manner, every field has to be edited, until all the boundary conditions are
set. Depending on the type of solver, there might be only p, T and U dictionaries; for
turbulent solvers, there are also k and epsilon. Details about boundaries can be found in
OpenCFD (2007b, Section 6.2).

2.3.2 Fluid properties

Up next, the dictionaries in the constant directory are being looked at. For all the solvers
used in this thesis, there is a thermophysicalProperties dictionary: it determines fluid model
settings for the equation of state, whether cp is constant or not, what transport model
should be used and so on. This information is all put into one long string, followed by the
corresponding parameter values. An excerpt (with comments) for a pure mixture called
“air” with constant cp using the constant transport model might look like

hThermo <pureMixture <constTransport <specieThermo <hConstThermo <perfectGas >>>>>

mixture // keyword

air 1 28.9 // name of specie , number of moles , molecular weight (kg/kmol)

1000 2.544e6 // thermodynamic coefficients : cp and heat of fusion

1.8e-5 0.7 // transport coefficients : mu and Prandtl number

6OpenFOAM handles only 3D meshes, so to work on a 2D case, a mesh with a depth of one volume
has to be created and empty boundary conditions specified along the dimension one wants to drop.

9

Validation of OpenFOAM for nozzle flows 2 OpenFOAM: A first glance

If the solver is turbulent, there is also a turbulenceProperties dictionary in which the
turbulence model can be chosen and even the coefficients for every single model can be
edited.

Details about models and physical properties can be found in OpenCFD (2007b, Chap-
ter 8).

2.3.3 Schemes and solution algorithms

The fvSolution dictionary in the system directory controls solvers, tolerances and algo-
rithms for the systems of equations solved to obtain every variable. Part of this dictionary
might look like

solvers

{

p ICCG 1e-06 0.01;

U BICCG 1e-05 0.1;

T BICCG 1e-05 0.1;

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 0;

}

This means: when solving for pressure, use the Incomplete-Cholesky preconditioned con-
jugate gradient solver ICCG with a tolerance of 10−6 and a relative tolerance of 0.01.
For velocity and temperature, use the Incomplete-Cholesky preconditioned biconjugate
gradient solver BICCG with a tolerance of 10−5 and a relative tolerance of 0.1.

The PISO subdictionary specifies settings for the pressure-implicit split-operator meth-
od used for transient solvers: the number of corrections ncorrector, the number of correc-
tions to account for mesh non-orthogonality nNonOrthogonalCorrectors, and sometimes
more. The possible settings for the fvSolution dictionary are listed in OpenCFD (2007b,
Section 4.5).

The fvSchemes dictionary on the other hand determines the numerical schemes for
terms appearing in the constituent equations: time schemes, divergence, Laplacian terms
and more. For every type of term, the user can choose from a comprehensive list of
schemes. The first few lines of fvSchemes with second order implicit time stepping and a
second order unbounded scheme for the ∇ · (ρuu) divergence terms would look like

ddtSchemes

{

default implicit;

}

divSchemes

{

default none;

div(phi ,U) Gauss linear;

}

The fvSchemes settings are listed in OpenCFD (2007b, Section 4.4).

10

2.3 Running a case Validation of OpenFOAM for nozzle flows

2.3.4 Simulation control

The last dictionary with essential settings for every simulation is controlDict in the system

directory. In this dictionary, the starting time startTime, the end time endTime and
the time step deltaT are set; furthermore, the timing of writing output, its format and
compression are determined.

More details about controlDict can be found in OpenCFD (2007b, Section 4.3).
With all the settings effected, a solver can be started just like a utility: to run our

ABBnozzle case using the sonicTurbFoam solver, we would enter

sonicTurbFoam . ABBnozzle

provided that the current working directory is the root directory of the ABBnozzle case
directory.

11

3 Verification cases

This chapter comprises two verification cases, i. e., problems for which an exact analytical
solution is known (see Subsection 1.4.3). The intention is to identify the OpenFOAM
solvers best suited for the kind of problem in question and, once this goal is reached, try
to understand why they outperform the other solvers.

The documentation of OpenFOAM for users is not very detailed; the description of
a solver in the User Guide, OpenCFD (2007b), is just a single phrase per solver. When
looking for the optimal solver, we keep the projected application in mind: a supersonic
flow of a compressible gas, possibly turbulent. The approach to select that optimal solver
is then as follows:

• Compilation of a shortlist based on the requirements and the short descriptions in
OpenCFD (2007b)

• Evaluation of the solver quality, comparison to analytical solution

• Analysis of temporal and spatial convergence, CPU time requirements

Ideally, this leads to the selection of one laminar and one turbulent solver.
Of all the solvers in OpenFOAM, only the ones classified as suitable for “compressible

flow” are candidates for the shortlist. The descriptions of the five solvers chosen read as
shown in Tab. 3.1:

rhopSonicFoam Pressure-density-based compressible flow solver
rhoSonicFoam Density-based compressible flow solver
sonicFoam Transient solver for trans-sonic/supersonic, laminar flow of a

compressible gas
rhoTurbFoam Transient solver for compressible, turbulent flow
sonicTurbFoam Transient solver for trans-sonic/supersonic, turbulent flow of

a compressible gas

Table 3.1: Solver descriptions from OpenCFD (2007b).

The two verification cases selected are the shock tube problem (Section 3.1) and the
supersonic wedge problem (Section 3.2).

3.1 The shock tube problem

This section deals with the well-known shock tube problem (also: Riemann problem).
Subsection 3.1.1 describes the problem in detail and explains its relevance as a CFD ver-
ification case. In Subsection 3.1.2, the analytical solution is derived and a few comments
about its implementation in Matlab are given. In Subsection 3.1.3, the numerical solu-
tions of the chosen solvers are compared to that analytical solution; Subsections 3.1.4 and
3.1.5 deal with temporal and spatial convergence behaviour. Subsection 3.1.6 is a review
of the source code, Subsection 3.1.7 compares the results with a commercial product and
Subsection 3.1.8 lastly summarises the findings and draws conclusions from them.

13

Validation of OpenFOAM for nozzle flows 3 Verification cases

Figure 3.1: Example of a shock tube (source: http://history.nasa.gov/).

3.1.1 Description and relevance

The shock tube problem is a classical verification1 case for CFD codes. Real-world shock
tubes (see Fig. 3.1) are devices used for the study of travelling shock waves and the
high-temperature, high-pressure gases created by them.

Basically, a shock tube is a very long pipe in which a strong shock wave is generated.
In the initial configuration, the tube is divided by a diaphragm into two compartments:
the driver section containing the gas with the higher pressure p4 and the driven section

with the gas at the lower pressure p1. The gases can be of different species, i. e., have
different molecular weights M and heat capacity ratios γ; furthermore, they might differ
in temperature T and, as a consequence of all that, in speed of sound a. The initial
conditions are depicted in Fig. 3.2.

After the diaphragm is broken, the following happens:

• A normal shock wave propagates into the driven section with velocity W

• The contact surface between the driver and driven gases moves at the velocity up of
the gas behind the shock

• An expansion wave propagates into the driver section

This state is illustrated in Fig. 3.3.
The aspect of the problem making it interesting as a verification case for CFD is mainly

the occurrence of discontinuities. Solvers could vary with respect to how well the shock
and other discontinuities are captured and whether the numerical solution is “smeared”
and/or spurious oscillations appear. Other than that, the flow field is likely to be very
unspectacular since the problem is just one-dimensional.

1See the definition of “verification” (as opposed to “validation”) in Subsection 1.4.3.

14

http://history.nasa.gov/

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

Driver section Driven section

High pressure

p4, T4, M4, a4, γ4

4©
Low pressure

p1, T1, M1, a1, γ1

1©

Diaphragm

p4

p1

P
re

ss
u
re

Distance

Figure 3.2: Shock tube initial conditions, pressure along the tube.

Setup used for testing For the actual testing, we utilise the configuration described in
Slater (2005). The shock tube has a length of 3.048 ·10−1 m and a radius of 3.048 ·10−2 m.
The diaphragm is placed in the exact middle at x = 1.524 · 10−2 m.

Both compartments are filled with air, so γ = 1.4, but at different pressures and
temperatures (see Table 3.2)2.

Compartment Pressure (in Pa) Temperature (in K)
Left (Driver) p4 = 6.897 · 104 T4 = 288.89
Right (Driven) p1 = 6.897 · 103 T1 = 231.11

Table 3.2: Initial values for the shock tube problem.

The tube is closed at both ends, but reflected waves are of no particular interest for
our purposes, so solutions at a time after the first wave reaches a wall are disregarded.
The tube walls are assumed to be slip walls and air is treated as a calorically perfect gas.
The situation at time zero is depicted in Fig. 3.4.

3.1.2 Analytical solution

The derivation of an exact solution to the shock tube problem can be found in any
textbook on compressible flows. Here, we follow Anderson (2003, Chapter 7), omitting
the parts about reflected shock and expansion waves as well as some theory considered
too general: on the following page, the right-running normal shock is treated, on page 18
the expansion wave, and on page 20, the solution to the complete problem is given; on
page 21, the implementation in Matlab is described.

2This seemingly odd choice of lengths is due to the fact that Slater (2005) uses U. S. customary units,
so the tube dimensions correspond to 10 ft length and 1 ft radius. Consequentially, also pressure (from
pound per square inch absolute) and temperature (from Rankine) are converted from “nice” numbers to
somewhat odd ones.

15

Validation of OpenFOAM for nozzle flows 3 Verification cases

Expansion wave
propagating to
the left

Contact surface (interface
between the driver and driven
gases) moving at the velocity
of the gas behind the shock up

Normal shock wave
propagating to the right with
wave velocity W (relative to
the laboratory)

up
4© 3© 2© 1©

W

p4

p1

P
re

ss
u
re

Distance

p3 = p2

Figure 3.3: Shock tube after the diaphragm is broken.

3.048 cm

0 cm

0 cm 15.42 cm 30.48 cm

p4 = 6.897 · 104 Pa

T4 = 288.89 K

p1 = 6.897 · 103 Pa

T1 = 231.11 K

4© 1©

Driver Driven

Diaphragm

Figure 3.4: Setup for OpenFOAM solver evaluations at time t = 0.

The moving shock wave We start from the continuity, momentum and energy equations
for a stationary normal shock wave:

ρ1u1 = ρ2u2 (3.1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (3.2)

h1 +
u2

1

2
= h2 +

h2
2

2
(3.3)

where the index 1 refers to gas upstream of the wave, index 2 to gas downstream of the
wave. The important point is that u1 and u2 are interpreted as velocities relative to the
wave; because it is stationary, they are in this case also relative to the laboratory. For
the moving wave as seen in Fig. 3.3, the velocities relative to the wave are W (for the gas
ahead) and W − up (for the gas behind). After replacing u1 and u2, Eqs. (3.1) to (3.3)

16

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

become

ρ1W = ρ2(W − up) (3.4)

p1 + ρ1W
2 = p2 + ρ2(W − up)

2 (3.5)

h1 +
W 2

2
= h2 +

(W − up)
2

2
(3.6)

Equations (3.4) to (3.6) are the normal-shock equations for a shock moving with
velocity W into a stagnant gas. They can be rearranged and substituted, using h = e+p/ρ,
to obtain

e2 − e1 =
p1 + p2

2
(v1 − v2) (3.7)

Equation (3.7) is the Hugoniot equation, which is also valid for a stationary shock. Because
we assume air to be calorically perfect, e = cvT and v = RT/p; Eq. (3.7) becomes

T2

T1

=
p2

p1

(

γ+1
γ−1

+ p2

p1

1 + γ+1
γ−1

p2

p1

)

(3.8)

or

ρ2

ρ1

=
1 + γ+1

γ−1
p2

p1

γ+1
γ−1

+ p2

p1

(3.9)

Equations (3.8) and (3.9) give the temperature and density ratios across the shock wave
as functions of the pressure ratio.

We define the moving shock Mach number as

Mas =
W

a1

By taking the calorically perfect gas relations and Eqs. (3.4) to (3.6) into account, we can
derive

p2

p1

= 1 +
2γ

γ + 1
(Ma2

s − 1)

or, solved for Mas,

Mas =

√

γ + 1

2γ

(

p2

p1

− 1

)

+ 1 (3.10)

Since Mas = W/a1, Eq. (3.10) leads to

W = a1

√

γ + 1

2γ

(

p2

p1

− 1

)

+ 1 (3.11)

Equation (3.11) relates the velocity of the moving shock wave to the pressure ratio across
the wave and the local speed of sound of the gas ahead of the shock wave.

17

Validation of OpenFOAM for nozzle flows 3 Verification cases

The last quantity we are interested in is the velocity up of the mass motion induced
by the shock wave. Equation (3.4) can be rewritten

up = W

(

1 − ρ1

ρ2

)

(3.12)

After substitution of Eqs. (3.9) and (3.11) into Eq. (3.12), we obtain

up =
a1

γ

(

p2

p1

− 1

)

(

2γ
γ+1

p2

p1

+ γ−1
γ+1

)1/2

(3.13)

With what we have derived so far, we can obtain for a given pressure ratio p2/p1 and
speed of sound a1 the corresponding values of ρ2/ρ1, T2/T1, W and up from Eqs. (3.8),
(3.9), (3.11) and (3.13).

The next paragraph deals with the counterpart of the moving shock wave, namely the
expansion wave.

The incident expansion wave While the last paragraph has been dealing with the
relations between the regions 1 and 2 of Fig. 3.3, this paragraph examines the regions
3 and 4, i. e., the expansion wave between them. The formulas relate to a left-running
expansions wave; they would be similar for a right-running one, except some changes of
the signs in the equations.

To examine the expansion wave problem on its own, we use the fact that the gas in
region 4 feels as if a piston was pulled to the right with velocity u3. In fact, u3 is the
mass-motion velocity of the gas behind the expansion wave.

It can be shown (see e. g. Anderson (2003, Section 7.6)) that any part of a left-running
finite wave moves with local velocity u− a. In region 4, the gas is at rest (u4 = 0), so the
head of the expansion wave moves with a velocity u4 − a4 = −a4. This means that in the
xt plane, the path of the head is a straight line (see Fig. 3.5).

Inside the wave, a mass motion with velocity u is induced, directed toward right.
Temperature T and subsequently the local speed of sound a are reduced; because of this,
the head of the wave propagates faster into region 4 than other parts of the wave, so the
wave is spreading out while running down the tube.

The tail of the wave moves at velocity dx/dt = u3−a3. Note that if u3 > a3, i. e., u3 is
supersonic, the tail of the wave propagates to the right although the wave is left-running.
It can be shown that the characteristics of the expansion wave are straight lines and thus
the values of u, a (and consequently also p, ρ, T etc.) are constant along them. Such
a wave is called a simple wave; a nonsimple waves where the characteristics are curved
comes up for example when the expansion wave is reflected.

To obtain a closed analytical form for the expansion wave, we use that

u +
2a

γ − 1
= const through the wave (3.14)

(without derivation). Evaluation of Eq. (3.14) in region 4 gives

u4 +
2a4

γ − 1
= 0 +

2a4

γ − 1
= const (3.15)

18

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

0

x

t

3©

4©

1

u3−a3

1

u−a

−1

a4

u = u4 = 0
a = a4

T
ail

Head

Figure 3.5: Characteristics for an expansion wave centred at 0.

and from combining Eqs. (3.14) and (3.15) we obtain

a

a4

= 1 − γ − 1

2

(

u

a4

)

(3.16)

which relates a and u within the expansion wave. Because a =
√

γRT , Eq. (3.16) also
gives

T

T4

=

(

1 − γ − 1

2

(

u

a4

))2

(3.17)

Because we assume the flow to be isentropic, p/p4 = (ρ/ρ4)
γ = (T/T4)

2γ/(γ−1), so from
Eq. (3.17) we also find

p

p4

=

(

1 − γ − 1

2

(

u

a4

))2γ/(γ−1)

(3.18)

and

ρ

ρ4

=

(

1 − γ − 1

2

(

u

a4

))2/(γ−1)

(3.19)

Equations (3.16) to (3.19) give all the properties within the simple expansion wave as a
function of the local gas velocity u.

To get them as a function of x and t, we look at any of the straight characteristics in
Fig. 3.5:

dx

dt
= u − a

19

Validation of OpenFOAM for nozzle flows 3 Verification cases

or, because the wave is centred, i. e., the characteristics are straight lines through the
origin,

x = (u − a)t (3.20)

Inserting Eq. (3.20) into Eq. (3.16) gives

x =

(

u − a4 +
γ − 1

2
u

)

t

or, solved for u,

u =
2

γ + 1

(

a4 +
x

t

)

(3.21)

With this, the properties within the expansion wave, −a4 ≤ x/t ≤ u3−a3, are determined.

Shock tube relations Finally, we combine the findings from the last two paragraphs
for a closed analytical solution to the shock tube problem. To this end, we recall that
u3 = u2 = up and p2 = p3 across the contact surface; up was obtained

up = u2 =
a1

γ1

(

p2

p1

− 1

)

(

2γ1

γ1+1

p2

p1

+ γ1−1
γ1+1

)1/2

(3.13)

Appyling Eq. (3.18) to the tail of the expansion wave,

p3

p4

=

(

1 − γ4 − 1

2

(

u3

a4

))2γ4/(γ4−1)

(3.22)

Solving Eq. (3.22) for u3 gives

u3 =
2a4

γ4 − 1

(

1 −
(

p3

p4

)(γ4−1)/2γ4

)

(3.23)

Because p3 = p2, Eq. (3.23) becomes

u3 =
2a4

γ4 − 1

(

1 −
(

p2

p4

)(γ4−1)/2γ4

)

(3.24)

Finally, because u2 = u3, we can equate Eqs. (3.13) and (3.24) as

a1

γ1

(

p2

p1

− 1

)

(

2γ1

γ1+1

p2

p1

+ γ1−1
γ1+1

)1/2

=
2a4

γ4 − 1

(

1 −
(

p2

p4

)(γ4−1)/2γ4

)

(3.25)

Equation (3.25) can be rearranged

p4

p1

=
p2

p1

1 − (γ4 − 1)(a1/a4)(p2/p1 − 1)
√

2γ1

(

2γ1 + (γ1 + 1)(p2/p1 − 1)
)

−2γ4/(γ4−1)

(3.26)

Equation (3.26) gives the incident shock strength p2/p1 as an implicit function of the
diaphragm pressure ratio p4/p1. We can now unfold a recipe for the solution of the shock
tube problem, which consists of all the boxed equations:

20

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

1. Calculate p2/p1 from Eq. (3.26) to get the strength of the shock wave3.

2. Calculate all other shock properties from Eqs. (3.8), (3.9), (3.11) and (3.13).

3. Calculate p3/p4 = (p3/p1)/(p4/p1) = (p2/p1)/(p4/p1) to get the strength of the
expansion wave.

4. All other properties behind the expansion wave can be found using

p3

p4

=

(

ρ3

ρ4

)γ

=

(

T3

T4

)γ/(γ−1)

5. The properties inside the expansion wave can be found from Eqs. (3.16) to (3.19)
and (3.21).

The following subsection describes the implementation of this in Matlab.

Implementation in MATLAB The complete source code of the function described here
can be found in Section B.1. The function offers an interface

function [x_mesh ,u,a,rho ,T,p] = shocktube(time ,p1 ,p4 ,T1 ,T4)

where x_mesh is a vector containing the x-positions where the solution is evaluated; u,
a, rho, T and p are vectors of the size of x_mesh containing the local velocity, speed of
sound, density, temperature and pressure at the corresponding positions.

time specifies at what time the solution is to be evaluated; p1, p4, T1 and T4 are the
initial settings for pressure and temperature in the two compartments. The indices 1 and
4 refer to the scheme depicted in Fig. 3.3. If only time is given, the other variables are
set to the values defined in Tab. 3.2.

After parsing the input and optionally setting the default values, some constants are
specified4: the heat capacity ratio gamma (to 1.4), the specific gas constant of air R (to
287.05) and the position of the diaphragm L1 (to 0.1524). Instead of centring the tube at
zero, it was chosen to have its left end at zero (see Fig. 3.4).

Next, the local speeds of sound and the densities for compartments 1 and 4 are com-
puted from the quantities known so far. To get the wave velocity W of the moving shock,
we have to solve Eq. (3.26) for p2/p1, i. e., we have to find a p2/p1 satisfying

p2

p1

1 − (γ4 − 1)(a1/a4)(p2/p1 − 1)
√

2γ1

(

2γ1 + (γ1 + 1)(p2/p1 − 1)
)

−2γ4/(γ4−1)

− p4

p1

= 0 (3.27)

Equation (3.27) is solved using the Matlab function fzero, which employs a combination
of bisection, secant, and inverse quadratic interpolation methods to find a zero. As an
initial guess, (p4/p1)/2 is taken. From this, the pressure in region 2, p2, is obtained. With
the pressure ratio p2/p1 at hand, all other shock properties can be calculated: temperature

3As this is an implicit equation, it has to be dealt with accordingly. Details can be found in every
calculus textbook, e. g., Blatter (1996).

4All variables use SI units; the dimensions are given in the commentary of the source code.

21

Validation of OpenFOAM for nozzle flows 3 Verification cases

T2, density rho2, local speed of sound a2, wave velocity W and the velocity of the mass
motion behind the wave, u_p.

Since pressure and velocity are constant across the contact surface between regions
2 and 3, we know p3, u2 and u3; using these, the other quantities in region 3 can be
determined.

Now, the mesh x_mesh is initialised, usually to a size of 1 × 100, but the number of
points could also be changed to some other value if desired. Before iterating through all
the solution vectors, the boundaries of the regions are determined using the knowledge
about the velocities of head and tail of the expansion wave, the induced mass motion
behind the shock wave and the velocity of the shock itself:

% Calculate boundaries of different zones.

% Boundary between leftmost driver gas and expansion wave.

x4_exp = L1 - time*a4;

% Boundary between expansion wave and lower pressure driver gas.

exp_x3 = L1 + time*(u3 - a3);

% Boundary between driver gas and driven gas.

x3_x2 = L1 + time*u_p;

% Location of the shock wave.

x2_x1 = L1 + time*W;

Now, the function iterates over all the points, checks what region the point belongs
to and sets the corresponding value in the solution vectors u, a, rho, T and p. For points
that are in the expansion wave, the nested function

function [u_exp ,a_exp ,rho_exp ,T_exp ,p_exp] = expansion_wave (x)

is called to calculate the properties using Eqs. (3.16) to (3.19) and (3.21).
Three Matlab scripts on the accompanying CD generate movies, which visualise the

pressure, density and Mach number progression calculated using shocktube.m; Tab. 3.3
lists their names and the name of the generated video file. See Appendix A for details on
the CD.

Script Video file Quantity
shocktube animation p.m shocktube p.avi Pressure p
shocktube animation rho.m shocktube rho.avi Density ρ
shocktube animation Ma.m shocktube Ma.avi Mach number Ma

Table 3.3: Scripts for video files visualising the analytical solution.

3.1.3 Solver quality evaluation

The first step in evaluating the solvers listed on page ?? consists in comparing the solutions
obtained to the exact solution derived in Subsection 3.1.2. Details about the different
meshes used are to be found below, the results are shown and commented on page 24.

The different meshes used Calculations are basically performed using four different
meshes: one-dimensional, two-dimensional, axi-symmetric and three-dimensional. All
meshes are structured—consist of hexahedral cells—and have a resolution of 100 cells in
x-direction, so ∆x = 3.048 · 10−4 m. Grading is uniform along all axes.

22

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

Figure 3.6: 1D mesh for the shock tube problem. The x-axis is from left to right, the y-axis
is perpendicular to it in the paper plane, and the z-axis is perpendicular to the paper plane.

Figure 3.7: 2D mesh for the shock tube problem. The axes are oriented as in the 1D mesh
(Fig. 3.6).

1D mesh Because OpenFOAM handles only 3D meshes, meshes for problems with
a lower dimensionality still have to be at least one cell deep in every dimension. By spec-
ifying empty type patches at the corresponding boundaries, OpenFOAM is instructed to
treat this dimension of the mesh as infinite, effectively reducing the number of dimensions.
For the 1D mesh, this means having 100 cells in total with empty boundaries in y- and
z-directions. The result is shown in Fig. 3.6.

2D mesh The 2D mesh has empty boundary conditions only on patches perpen-
dicular to the y-axis. It has the same dimensions as the 1D mesh but has 10 cells in
y-direction, leading to a cell count of 1’000. The mesh is shown in Fig. 3.7.

Axi-symmetric mesh For axi-symmetric problems, blockMesh allows the generation
of wedge geometries. For use with the cylindric problem at hand, we follow the recom-
mendations in OpenCFD (2007b) and create a wedge shaped block of one cell thickness
and a 5◦ angle at the centre. The axisymmetric planes are specified as wedge type patches;
the block has 5 cells in z-direction, leading to a cell count of 500. The outer boundary is
actually curved, but this has no influence on the solution. The curved boundary patch is
set to slip type. The resulting mesh is shown in Fig. 3.8.

3D mesh The full 3D mesh finally is created using five blocks, resulting in an O-grid
type mesh. The yz cross section in Fig. 3.9a shows the central block having 10× 10 cells
and the other blocks having 5 cells in radial and 10 cells in azimuthal direction; the total

23

Validation of OpenFOAM for nozzle flows 3 Verification cases

Figure 3.8: Axi-symmetric mesh for the shock tube problem. The wedge is aligned along
the xy-plane.

(a) (b)

Figure 3.9: 3D mesh for the shock tube problem: (a) yz cross section; (b) perspective view.

cell count is 30’000. The mesh is shown in Fig. 3.9b.

Quality evaluation results The shock tube is included in OpenFOAM as an example
for the solvers sonicFoam, rhoSonicFoam and rhopSonicFoam, namely the 1D case. We
copy and modify it for our purposes.

The end time is set to 3 · 10−4 s, a time where according to the exact solution the
shock wave has not reached the end of the tube yet, so we can avoid dealing with reflected
waves. Apart from deltaT (time step) and writeInterval, all settings5 have been left
in the quasi-default given by the example cases for the respective solvers. The three
laminar solvers (rhopSonicFoam, rhoSonicFoam and sonicFoam) have the time step set to
∆t = 10−6 s; for the turbulent solvers (rhoTurbFoam, sonicTurbFoam) it is ∆t = 0.5·10−7 s.

The time scheme is Euler (first order) for all solvers.
To compare the solvers, the pressure distribution obtained after 2.5 · 10−4 s is com-

5I. e., all settings in the dictionaries controlDict, fvSchemes and fvSolution.

24

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

pared to the analytical solution. Following Slater (2005), also density and Mach number
distributions are compared to their exact counterparts, but because pressure alone seems
to be sufficient to judge the quality of the solvers, these plots are not shown here, but
only in Appendix C.1. They basically show the same behaviour as the pressure plots,
thus reinforcing the findings based on these.

Setting the initial conditions according to Fig. 3.4 is done by means of the setFields

tool. The velocity field u is set to zero everywhere; the pressure p and the temperature T
are set to the values given in Table 3.2. For the turbulent solvers, which are both using
the k–ε turbulence model6, the turbulent kinetic energy k and the turbulent dissipation
rate ε have to be initialised as well.

k is given by

k =
1

2
(u′2 + v′2 + w′2) (3.28)

where u′2, v′2 and w′2 are the fluctuating components of velocity in x, y and z direction.
Following OpenCFD (2007b), we assume initially isotropic turbulence, i. e., u′2 = v′2 =
w′2, and that the fluctuations are equal to 5% of the expected velocity up:

u′ = v′ = w′ =
5

100
up ≈

5

100
· 267 m/s (3.29)

Substituting Eq. (3.29) into Eq. (3.28) results in

k =
3

2

(

5

100
· 267

)2
m2

s2
≈ 267.3

m2

s2

which is too large by far. As a remedy, the fluctuations are scaled by a factor l, which
corresponds to the tube diameter times 0.07:

k =
3

2

(

l · 5

100
· 267

)2
m2

s2
≈ 7.789 · 10−4 m2

s2
(3.30)

Equation (3.30) gives a result in the expected order of magnitude. For the dissipation
rate ε, we have

ε =
C0.75

µ k1.5

l
(3.31)

where Cµ is a constant of the k–ε model7 , Cµ = 0.09. Substituting this and Eq. (3.30)
into Eq. (3.31) gives

ε =
0.090.75 · (7.789 · 10−4)1.5

0.07 · (2 · 3.048 · 10−2)

m2

s3
≈ 8.37 · 10−4 m2

s3
(3.32)

6The question might arise, what the sense of testing a turbulent solver on a laminar case is. The
reason is that like this, the quality of solving hyperbolic transport equations of the compressible flow can
be assessed.

7The value of Cµ = 0.09 = (0.3)2 stems from the empirical observation |〈uv〉|/k ≈ 0.3 in regions where
P/ε is close to unity, P being the rate of production of turbulent kinetic energy. For details, see Pope
(2000, Section 10.4).

25

Validation of OpenFOAM for nozzle flows 3 Verification cases

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7
x 10

4

x−coordinate of tube [m]

P
re

ss
ur

e
[P

a]

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(a) 1D case

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7
x 10

4

x−coordinate of tube [m]

P
re

ss
ur

e
[P

a]

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(b) 2D case

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7
x 10

4

x−coordinate of tube [m]

P
re

ss
ur

e
[P

a]

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(c) Axi-symmetric case

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7
x 10

4

x−coordinate of tube [m]

P
re

ss
ur

e
[P

a]

rhopSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(d) 3D case

Figure 3.10: Pressure distribution at t = 2.5 · 10−4 s: comparison of OpenFOAM solvers.

For rhoTurbFoam and sonicTurbFoam, k and ε are set to the values obtained in Eqs. (3.30)
and (3.32).

With all the necessary values set, we can start evaluating the solver quality. Fig. 3.10
shows the obtained pressure distributions for all four meshes. 100 samples are taken
along the x-axis for y = z = 0 using the sample utility. The interpolation scheme is
set to cellPointFace, i. e., the cells are decomposed into tetrahedra, one of the tetra-
hedra vertices coinciding with a face centre, which inherits field values by conventional
interpolation schemes using values at the centres of cells that the face intersects.

1D case (Fig. 3.10a) The first observation is that rhopSonicFoam performs best of
all solvers: it does not exhibit any overshoots and only little numerical dissipation8.

8Numerical dissipation (or artificial viscosity) is the diffusive behaviour of a numerical solution that
is purely numerical in origin; it is usually caused by even-order derivatives (∂2u/∂x2, ∂4u/∂x4, etc.) as
the leading term of the truncation error and could be described as “smearing out” the solution.

26

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

Figure 3.11: Pressure distribution at t = 2.5 · 10−4 s for the rhoSonicFoam solver. Instead
of the expected constant pressure in y-direction (vertical axis in the picture), seemingly
random variations occur.

sonicFoam has no overshoots either, but clearly the most numerical dissipation of the
three laminar solvers. rhoSonicFoam lies in between in that respect but seems to be a
victim of numerical dispersion9, as the wiggles in the neighbourhood of large gradients
indicate.

Of the turbulent solvers, rhoTurbFoam has the largest deviations in the expansion
wave on the one hand and the largest overshoot at the shock wave on the other hand.
rhoSonicFoam finally exhibits some numerical dissipation, but less so than other solvers.

2D case (Fig. 3.10b) Because the solution should not show variations of any variable
in y-direction, no big differences to the 1D case are to be expected. In fact, upon closer
inspection, the behaviour is qualitatively the same for all solvers, not yielding any new
insights.

Axi-symmetric case (Fig. 3.10c) Also here, rhopSonicFoam performs best and son-

icFoam shows some numerical dissipation. The two turbulent solvers perform exactly
identically, smearing out the solution in the expansion wave and showing a small over-
shoot at the shock wave. rhoSonicFoam however deviates significantly from the analytical
solution, exposing very large oscillations between expansion and shock wave. A look at
the pressure distribution over the whole wedge in Fig. 3.11 shows that pressure varies in
radial direction, which should not be the case.

It is decided at this point to exclude rhoSonicFoam from further investigations and
focus on the better performing rhopSonicFoam and sonicFoam, as far as laminar solvers
are concerned.

3D case (Fig. 3.10d) The final test on the 3D mesh shown in Fig. 3.9 confirms the
findings so far. rhopSonicFoam is still the best in class, and only rhoTurbFoam shows some
numerical dispersion. Artificial viscosity is more or less pronounced, but very similar for
the three solvers other than rhopSonicFoam.

As a last remark, it can be stated that sonicTurbFoam calculates the pressure between
expansions and shock wave to a value that is too little, but not by much; also density and
Mach number plots in Section C.1 show these inaccurracies.

9Numerical dispersion on the other hand is caused by odd-order leading terms (∂3u/∂x3, etc.); dis-
tortion of the propagation of different phases of a wave shows up as “wiggles” in front of and behind the
wave. For details, see Anderson (1995, Section 6.6).

27

Validation of OpenFOAM for nozzle flows 3 Verification cases

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−6

0

500

1000

1500

2000

2500

3000

3500

4000

∆t [s]

C
P

U
 ti

m
e

[s
]

rhopSonicFoam
sonicFoam

(a) CPU time required

10
−7

10
−6

10
−5

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

∆t [s]

ε rm
s

rhopSonicFoam
sonicFoam

(b) Error behaviour

Figure 3.12: Temporal convergence and CPU time requirements for the laminar solvers.

3.1.4 Temporal convergence

In this subsection, we investigate the temporal convergence behaviour of the four solvers
left, i. e., we want to observe how the accuracy is improved when the time step is reduced.
“Error” is defined as follows: we take the same 100 pressure samples p1, p2, . . . , p100 with
the sample utility as described above. These values are then compared to the exact
solutions pex,i and the difference is set relative to a reference pressure for the problem,
pref = 3 · 104 Pa. Of these relative errors

{p̄1, p̄2, . . . , p̄100} = {(p1 − pex,1)/pref, (p2 − pex,2)/pref, . . . , (p100 − pex,100)/pref}

the root mean square (RMS) error εrms is calculated. It is defined

εrms :=

√

√

√

√

1

100

100
∑

i=1

p̄2
i =

√

p̄2
1 + p̄2

2 + · · · + p̄2
100

100

In addition, the CPU times required are recorded and compared in consideration of a
possible trade-off between accuracy and CPU time required.

Because with some of the time steps used, no intermediate result is available for
t = 2.5·10−4 s, the comparisons are made for t = 3·10−4 s. Also, we confine ourselves to the
3D mesh from now on, as it is the most interesting regarding more realistic applications.

Laminar solvers The results for the laminar solvers are shown in Fig. 3.12. First of
all, it can be said that the good performance of rhopSonicFoam comes with a price tag:
Fig. 3.12a shows that it constantly takes more time than sonicFoam, up to 80% more for
the smallest time step of ∆t = 10−7 s. Also, the CPU time of nearly one hour for this
relatively simple problem on a moderately large mesh seems quite long.

On the other hand, the relative error of rhopSonicFoam as seen in Fig. 3.12b is twice
as small as the one of sonicFoam. An interesting observation is that for rhopSonicFoam,

28

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

0 1 2 3 4 5 6

x 10
−7

0

2000

4000

6000

8000

10000

12000

14000

∆t [s]

C
P

U
 ti

m
e

[s
]

rhoTurbFoam
sonicTurbFoam

(a) CPU time required

10
−8

10
−7

10
−6

10
−5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

∆t [s]

ε rm
s

rhoTurbFoam
sonicTurbFoam

(b) Error behaviour

Figure 3.13: Temporal convergence and CPU time requirements for the turbulent solvers.

the error has a minimum for ∆t = 0.5 · 10−6 s; for smaller values of ∆t, the error increases
again. A possible explanation for this phenomenon could be that although it is imperative
to have a Courant number equal to or less than unity for stability, Co ≤ 1, the accuracy
can suffer if the time step is chosen very small, ∆t ≪ ∆tCo=1, where ∆tCo=1 is the time
step for which exactly Co = 1. Details can be found in Anderson (1995, Section 4.5).

Turbulent solvers Figure 3.13 shows the corresponding results for the turbulent solvers.
Again, one of the solvers (sonicTurbFoam) requires clearly more CPU time than the other,
but not as pronounced as with the laminar solvers. In general, the turbulent solvers
require a much smaller time step to produce a meaningful solution at all, so the different ∆t
investigated lead to rather time-consuming runs: around three hours for ∆t = 0.25·10−7 s,
the smallest time step shown in Fig. 3.13a.

The necessity of setting ∆t to a very small value is also reflected in the error plot,
Fig. 3.13b: for runs where ∆ > 10−7 s, the relative error is 15% or more. It is increased
to around 45% for ∆t = 0.25 ·10−5 s, while the laminar solvers have errors of only 7% and
3.5% for this time step size.

A second observation is that sonicTurbFoam performs constantly better, but only by
very little. It is to expect that this will be more pronounced for cases where actual
supersonic flows occur, see for example, Subsection 3.2.3.

3.1.5 Spatial convergence

As a final stage of evaluating the solvers for the shock tube case, spatial convergence is
examined. The number of cells in x-direction—always 100 so far—is varied between 25
and 200, always using the same (small) time step. The error is measured at t = 2.5·10−4 s.

Laminar solvers For the laminar solvers, this small time step is ∆t = 0.5 · 10−6 s (the
time step for which the error is minimal for rhopSonicFoam). Figure 3.14a confirms the

29

Validation of OpenFOAM for nozzle flows 3 Verification cases

25 50 75 100 200
0

200

400

600

800

1000

1200

1400

1600

1800

Number of cells in x−direction N
x

C
P

U
 ti

m
e

[s
]

rhopSonicFoam
sonicFoam

(a) CPU time required

10
1

10
2

10
3

10
−2

10
−1

10
0

Number of cells in x−direction N
x

ε rm
s

rhopSonicFoam
sonicFoam
1st order convergence
rhopSonicFoam (larger ∆t)

(b) Error behaviour

Figure 3.14: Spatial convergence and CPU time requirements for the laminar solvers.

25 50 75 100 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of cells in x−direction N
x

C
P

U
 ti

m
e

[s
]

rhoTurbFoam
sonicTurbFoam

(a) CPU time required

10
1

10
2

10
3

10
−2

10
−1

10
0

Number of cells in x−direction N
x

ε rm
s

rhoTurbFoam
sonicTurbFoam

(b) Error behaviour

Figure 3.15: Spatial convergence and CPU time requirements for the turbulent solvers.

findings of the previous subsection: rhopSonicFoam takes roughly twice as much time as
sonicFoam and CPU time requirements grow approximately proportional to the mesh size.
In turn, the mesh convergence rate of rhopSonicFoam as seen in Fig. 3.14b is much better
(roughly first order convergence).

In addition to the mesh convergence tests with ∆t = 0.5 · 10−6 s, we carry out an
additional run with rhopSonicFoam, using 200 cells in x-direction, but a larger time step,
namely 10−6 s. The result is indicated by the star in the plot. It shows that rhopSonicFoam,
although using a time step twice as large as sonicFoam, still performs much better; and
this with a CPU time of only 870 seconds, thus roughly the same as sonicFoam required
for the finest grid.

30

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

Turbulent solvers For the turbulent solvers, ∆t is set to 10−7 s. As before, computations
for the turbulent solvers require more time (see Fig. 3.15a). The accuracy decreases with
an increasing number of cells from 50 cells on again such that the result for 200 cells is
as bad as for 25 cells (Fig. 3.15b).

3.1.6 Algorithm analysis

The claim that algorithm implementations in OpenFOAM are so readable that they serve
as their own best documentation is somewhat bold. The example mentioned everywhere
(Eq. (2.1) in this thesis) paints a picture that is a little too promising; in the actual solvers
used in this thesis, for example rhopSonicFoam, there is definitely no obvious one-to-one
correspondence of every expression used in the code to a term in one of the constituting
equations. The complete absence of comments is not helpful, either.

In the list of OpenFOAM solvers in the OpenFOAM Wiki, source code of some of the
solvers is commented extensively, for example for icoFoam10. Not for our compressible
solvers, though.

What can be said about the transient solvers is that they all use some flavour of
PISO, which stands for Pressure Implicit with Splitting of Operators. It is a predictor–
corrector11 method much like the popular SIMPLE (Semi-Implicit Method for Pressure-
Linked Equations); both PISO and SIMPLE can be used for steady-state and transient
problems, whereas SIMPLE was originally designed for steady-state flows and PISO for
transient flows.

Transient PISO performs, simply speaking, at every time step the steady-state PISO
algorithm with some extra terms in the pressure and momentum equations. Steady-state
PISO (for 2D) can be described as follows:

• Starting from an initial guess p∗, u∗ and v∗, some steps of the SIMPLE algorithm
are performed, namely

– Solving the discretised momentum equations

– Solving the so called pressure correction equation

– Correcting pressure and velocities

• PISO now solves a second pressure correction equation

• Pressure and velocities are corrected

• Once the corrections are smaller than a certain threshold, the results are taken as
the initial guess of the next time step. Otherwise, the procedure is repeated on the
same time level.

10http://openfoamwiki.net/index.php/IcoFoam
11Starting from a guessed pressure field p∗, a correction p′ is defined as the difference to the correct

pressure field p; similarly, velocity corrections are defined. The correct velocity field satisfies the continuity
equation, the guessed field does not. In an iterative procedure, pressure and velocity fields are updated,
until the continuity equation is satisfied.

31

http://openfoamwiki.net/index.php/IcoFoam

Validation of OpenFOAM for nozzle flows 3 Verification cases

SIMPLE, PISO and variations of these algorithms suited for particular applications
are for example described in Versteeg & Malalasekera (1995).

OpenFOAM allows to specify even more corrector steps and also corrections for non-
orthogonality of the mesh, see Subsection 2.3.3.

Getting to really understand what exactly is implemented in the OpenFOAM solvers
would be an effort so large that it is decided to shelve this plan and focus on the perfor-
mance of OpenFOAM in the more challenging and time-consuming test cases.

3.1.7 Comparison to CFD-ACE+

To compare the performance of OpenFOAM to a commercially available product, the
shock tube problem is solved using CFD-ACE+12, a solver widely employed within ABB.
The fluid dynamics module of CFD-ACE+ is based on a pressure based FV method formu-
lation Navier–Stokes equation flow solver and, according to the manufacturer, suitable to
model “almost any gas or liquid system”. Like OpenFOAM, general unstructured meshes
with arbitrary mesh interfaces are supported; differencing schemes include upwind (1st
and 2nd order), central, 2nd order limiter, 3rd order and smart schemes.

Earlier work dealing with ABB nozzle flows such as Mantilla Florez (2007) relies on
CFD-ACE+ for their simulations, so this makes comparison of the results described in
Chapter 5 to earlier findings possible.

For the shock tube problem, two meshes are created: a 2D axi-symmetric one and
a 3D one. Like the meshes used in Subsection 3.1.3, they have 100 cells in x-direction.
For both meshes, the solver is run using first order spatial differencing first, then second
order. The results are then examined at t = 0.3 ms. Because the first order run on the
3D mesh diverges, a snapshot at t = 0.12 ms is taken and compared to the corresponding
analytical solution.

The result is shown in Fig. 3.16. Apart from diverging later on, the first order/3D
mesh result also exhibits large oscillations between around the centre of the expansion fan
and the shock wave travelling to the right. In a similar way, the first order solution on
the axi-symmetric mesh features behaviour where in that same region the result is quite
simply wrong.

The second order solutions are far better. There is no visible difference between the
two grids, some artificial viscosity effects at the beginning and the end of the expansion
fan and weak oscillations next to the shock wave. Table 3.4 shows the RMS relative
errors (obtained as described in Subsection 3.1.4) for 100 samples in the axi-symmetric
case and 370 samples in the 3D case. Clearly, the first order spatial discretisation results
are useless, while second order results are quite accurate. The best OpenFOAM solver
however, rhopSonicFoam, performs better with half as many cells in x-direction already,
and with the identical mesh settings (100 cells in x-direction), the RMS relative error is
only little more than one third of the CFD-ACE+ value.

3.1.8 Insights gained

The main findings of this section can be summarised as follows:

12See http://www.cfdrc.com/serv_prod/cfd_multiphysics/software/ace/

32

http://www.cfdrc.com/serv_prod/cfd_multiphysics/software/ace/

3.1 The shock tube problem Validation of OpenFOAM for nozzle flows

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7
x 10

4

x−coordinate of tube [m]

P
re

ss
ur

e
[P

a]

Axisymmetric 1st order
Axisymmetric 2nd order
3D 1st order
3D 2nd order
Analytical (t = 0.3 ms)
Analytical (t = 0.12 ms)

Figure 3.16: Results of CFD-ACE+ computations compared to analytical solution.

Solver Grid/differencing RMS relative error
CFD-ACE+ Axi-symmetric, 1st order 28.7%
CFD-ACE+ Axi-symmetric, 2nd order 4.5%
CFD-ACE+ 3D, 1st order 19.6%
CFD-ACE+ 3D, 2nd order 4.6%
rhopSonicFoam 3D (50 cells) 3.2%
rhopSonicFoam 3D (100 cells) 1.9%

Table 3.4: Quantitative comparison of CFD-ACE+ solver and rhopSonicFoam.

• All the solvers we looked at are capable of capturing the main features of the shock
tube problem.

• rhopSonicFoam has the highest accuracy of all solvers for this problem.

• rhoSonicFoam struggles with the axi-symmetric problem and is excluded from further
investigation.

• The turbulent solvers require significantly smaller time steps than the laminar
solvers to get the error down to a reasonable value; the reason for this is proba-
bly that the initial flow configuration has extreme space gradients at the border.

• The better performing solver per category (rhopSonicFoam and sonicTurbFoam) re-
quires more CPU time than the worse one under otherwise identical conditions.

33

Validation of OpenFOAM for nozzle flows 3 Verification cases

• The differences between the laminar solvers are larger than between the turbulent
solvers. However, when ∆t of rhopSonicFoam is increased such that it is as fast as
sonicFoam, its precision is still much better.

• OpenFOAM, or at least its best performing solver for this case, rhopSonicFoam,
compares favourably to the commercial software CFD-ACE+, outperforming it by
a factor of almost 3.

As the differences between the two turbulent solvers are only small so far, it is decided
to carry them both along to see whether they differ more clearly when applied to other
flows (e. g., supersonic ones).

3.2 The supersonic wedge problem

The second verification case is the supersonic wedge problem, which will be addressed in
this section. After having treated a basically one-dimensional problem in Section 3.1, a
two-dimensional problem is now being tackled.

We will proceed in a similar manner as in the previous section: in Subsection 3.2.1, the
wedge problem is described as a case of an oblique shock wave and its relevance is pointed
out. Subsection 3.2.2 describes how to obtain an analytical solution using the so called
θ-β-Ma relation and how this solution is implemented as a Matlab function. Subsection
3.2.3 evaluates the qualitative behaviour of the four relevant solvers, and in Subsection
3.2.4, the reduction of the error when refining the grid is looked at. In Subsection 3.2.5,
the results are compared to the commercial package CFD-ACE+. Subsection 3.2.6 finally
summarises the results and lessons learned.

3.2.1 Description and relevance

While the shock tube problem can be represented by one-dimensional Euler equations,
the supersonic wedge problem involves two dimensions. The situation is as shown in
Fig. 3.17a: a horizontal stream with Ma > 1 encounters a wedge whose axis of symmetry
is parallel to the flow direction. The supersonic flow is then “turned into itself”, resulting
in an oblique shock wave, after which the flow is again parallel and uniform.

Depending on the deflection angle θ, two different cases occur:

• θ < θmax: The shock is attached and a straight line (Fig. 3.17a).

• θ > θmax: The shock is detached and bow-shaped (Fig. 3.17b).

The value of θmax will be derived in Subsection 3.2.2. For the attached shock, there are
again two different cases: the strong shock solution and the weak shock solution, where
the shock wave angle β is larger for the strong shock than for the weak shock. Again, the
derivation is postponed to Subsection 3.2.2.

Because the analytical treatment of the attached shock is much simpler than treatment
of the detached shock, we focus on the first case; in particular, the weak shock solution,
which usually occurs in nature, is analysed.

Oblique shock waves are prevalent in the study of super- and hypersonic flows, so it
is crucial that a compressible flow solver is able to handle them well.

34

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�������������������������������������

Ma1 > 1

θ < θmax

Atta
ch

ed
sh

oc
k

(a)

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������� ����������������������

Ma1 > 1

θ > θmaxD
et

a
ch

ed
sh

o
ck

(b)

Figure 3.17: Supersonic wedge flows: (a) attached shock; (b) detached shock.

Setup used for testing The test cases are again modelled after Slater (2005); the setup
is depicted in Fig. 3.18. Because of the symmetry of the problem, only the upper half of
the wedge is being looked at.

The free stream Mach number is Ma∞ = 2.5, the temperature at the inlet is Ti =
288.9 K and the pressure at the inlet is pi = 101.35 kPa. The fluid is treated as a perfect
gas with γ = 1.4 (dry air). Using the definition of the Mach number, Ma = u/a, and
because a =

√
γRT (with the specific gas constant for dry air, R = 287.05 J/(kg · K))

we obtain the inlet velocity ui = 851.84 m/s. Again, these values look less random when
converted to U. S. customary units, since 288.9 K = 520.0 ◦R and 101.35 kPa = 14.7 psi.

The deflection angle θ is set to 15 ◦.

3.2.2 Analytical solution

The derivation of oblique shock relations can be found in many standard fluid dynamics
textbooks, e. g., Kundu & Cohen (2004) or Anderson (2003). Here, we follow the latter.
Below, we describe how quantities change across an oblique shock; on page 38, the in-
terdependence of Mach number, deflection and shock wave angle is dealt with, and on
page 39, it is shown how to deal with that result mathematically; on page 40, the outline
of a Matlab function implementing the analytical solution is given.

Oblique shock relations Let the index 1 refer to quantities upstream of the shock and
index 2 to those behind the shock. u1 is the upstream (horizontal) velocity with its com-
ponents u1 (parallel to the shock) and w1 (perpendicular to the shock); the corresponding
Mach number is Ma1. The oblique shock makes an angle β with respect to u1, and the
flow is deflected by the angle θ. Behind the shock, the velocity is u2 with the parallel and
perpendicular components u2 and w2; the Mach number is Ma2.

35

Validation of OpenFOAM for nozzle flows 3 Verification cases

�������
�������
�������

�������
�������
�������

��
��
��

��
��
��

������

������

������

������

θ = 15◦

pi = 101.35 kPa

Ti = 288.9 K

Ma∞ = 2.5

ui = 851.84 m/s

Figure 3.18: Setup for OpenFOAM evaluations of the supersonic wedge problem.

The normal and tangential Mach numbers corresponding to the parallel and perpen-
dicular velocity components are called Man1

and Mat1 ahead of the shock and Man2
and

Mat2 behind the shock. Figure 3.19 illustrates the nomenclature.
Applying the integral forms of the conservation equations to a control volume across

the shock (see top of Fig. 3.19) yields, for the continuity equation, −ρ1u1A1 +ρ2u2A2 = 0
where A1 = A2 are the areas of the faces a and d, respectively. The other faces are
parallel to the velocity and contribute nothing to the surface integral, so the oblique
shock continuity equation is

ρ1u1 = ρ2u2 (3.33)

The oblique shock momentum equation is split into tangential and normal components.
For the tangential component, the faces a and d contribute nothing, and the components
on b and f as well as c and e cancel each other out, so we get

(−ρ1u1)w1 + (ρ2u2)w2 = 0 (3.34)

After division of Eq. (3.34) by (3.33), we have

w1 = w2

or, in words: the tangential velocity component is preserved across an oblique shock wave.
For the normal component, we get

(−ρ1u1)u1 + (ρ2u2)u2 = −(−p1 + p2)

or
p1 + ρ1u

2
1 = p2 + ρ2u

2
2 (3.35)

For the energy equation applied to the control volume in Fig. 3.19, we get

−(−p1u1 + p2u2) = −ρ1

(

e1 +
u2

1

2

)

u1 + ρ2

(

e2 +
u2

2

2

)

u2

36

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������PSfrag

β

u1, Ma1

w 1
,M

a t 1
u
1 ,M

a
n
1

θ

w 2
,M

a t 2

u2
,Ma2

u
1 ,M

a
n
1

1© 2©

u1 u2

a

f
e

d

c
b

Figure 3.19: Oblique shock wave.

or
(

h1 +
u2

1

2

)

ρ1u1 =

(

h2 +
u2

2

2

)

ρ2u2 (3.36)

After division of Eq. (3.36) by (3.33), we get

h1 +
u2

1

2
= h2 +

u2
2

2
(3.37)

Since u2 = u2 + w2 and w1 = w2, we have

u2
1 − u2

2 = (u2
1 + w2

1) − (u2
2 + w2

2) = u2
1 − u2

2

so Eq. (3.37) becomes

h1 +
u2

1

2
= h2 +

u2
2

2
(3.38)

The Eqs. (3.33), (3.35) and (3.38) are exactly the normal shock wave relations, see
Eqs. (3.1) to (3.3) on page 16. Consequently, the shock relations can be expressed as
functions of the normal component of the upstream Mach number Man1

where

Man1
= Ma1 sin β (3.39)

37

Validation of OpenFOAM for nozzle flows 3 Verification cases

For a calorically perfect gas, this yields

ρ2

ρ1

=
(γ + 1)Ma2

n1

(γ − 1)Ma2
n1

+ 2
(3.40)

p2

p1

= 1 +
2γ

γ + 1
(Ma2

n1
− 1) (3.41)

Ma2
n2

=
Ma2

n1
+
(

2/(γ − 1)
)

(

2γ/(γ − 1)
)

Ma2
n1

− 1
(3.42)

and

T2

T1

=
p2

p1

ρ1

ρ2

(3.43)

The Mach number behind the shock, Ma2, is

Ma2 =
Man2

sin(β − θ)
(3.44)

For β = π/2, the Eqs. (3.40) to (3.43) become the normal shock relations, which thus are
just a special case of the oblique shock relations.

The θ-β-Ma relation All the oblique shock relations are functions of Ma1 and the
shock angle β. To find Ma2 as given in Eq. (3.44) however, the flow deflection angle θ is
required. θ is also a unique function of Ma1 and β:

tan β =
u1

w1

(3.45)

and

tan(β − θ) =
u2

w2

(3.46)

(3.47)

Combining Eqs. (3.45) and (3.46) and using that w1 = w2, we get

tan(β − θ)

tan β
=

u2

u1

(3.48)

Combining Eq. (3.48) with Eqs. (3.33), (3.39) and (3.40) yields

tan(β − θ)

tan β
=

2 + (γ − 1)Ma2
1 sin2 β

(γ + 1)Ma2
1 sin2 β

(3.49)

or, after some trigonometric manipulations,

tan θ = 2 cot β

(

Ma2
1 sin2 β − 1

Ma2
1(γ + cos 2β) + 2

)

(3.50)

38

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Deflection angle θ, degrees

S
ho

ck
 w

av
e

an
gl

e
β,

 d
eg

re
es

Ma1
= 2

Ma1
= 3

Ma1
= 5

Ma1
= ∞

Figure 3.20: θ-β-Ma relation: deflection angle as a unique function of Mach number and
shock wave angle.

Equation (3.50) is called the θ-β-Ma relation: it specifies θ uniquely as a function of Ma1

and β. A plot showing some Mach isolines is given in Fig. 3.20.

The two possible cases now correspond to the weak/strong and detached shock cases
mentioned in Subsection 3.2.1; θmax is, for a given Mach number, the value that corre-
sponds to the rightmost point of the Mach isoline. For values of θ smaller than θmax, two
angles β are possible, the smaller being the weak shock case, the larger the strong shock
case. If θ is larger than θmax, the shock is detached.

An alternative form of the θ-β-Ma relation Often, one is interested in the weak shock
angle β for a given deflection angle θ and upstream Mach number Ma1. One method is
to consult a large and precise diagram of the kind shown in Fig. 3.20, for example in
Anderson (2003), which is of course very unhandy for automated lookup. Alternatively,
Eq. (3.50) can be solved implicitly for β with the associated disadvantages of doing so.

The solution to the problem is to rewrite Eq. (3.50) as a cubic in tan β:

(

1 +
γ − 1

2
Ma2

1

)

tan θ tan3 β − (Ma2
1 − 1) tan2 β +

(

1 +
γ + 1

2
Ma2

1

)

tan θ tan β + 1 = 0

(3.51)
Equation (3.51) has three different real roots for an attached shock with given Ma1 and
θ, of which one is negative. The positive roots correspond to the weak and strong shock

39

Validation of OpenFOAM for nozzle flows 3 Verification cases

solutions and can be written

tan β =
Ma2

1 − 1 + 2λ cos
(

(4πδ + cos−1 χ)/3
)

3
(

1 + γ−1
2

Ma2
1

)

tan θ
(3.52)

where for δ = 0, we get the strong shock solution and for δ = 1, we get the weak shock
solution. λ and χ are

λ =

(

(Ma2
1 − 1)2 − 3

(

1 +
γ − 1

2
Ma2

1

)(

1 +
γ + 1

2
Ma2

1

)

tan2 θ

)1/2

(3.53)

and

χ =
(Ma2

1 − 1)3 − 9
(

1 + γ−1
2

Ma2
1

) (

1 + γ−1
2

Ma2
1 + γ+1

4
Ma4

1

)

tan2 θ

λ3
(3.54)

With Eqs. (3.53) and (3.54) plugged into (3.52), we have an exact explicit formula for β
when θ and Ma1 are given.

Implementation in MATLAB The complete implementation of the analytical solution
is given in Section B.2; here, we confine ourselves to a short description of the Matlab

function.
The function is called using
function [Ma ,p,T,rho] = obliqueshock(x,y,Ma1 ,p1 ,T1 ,theta)

where x and y are the coordinates of the point in space for which Mach number Ma,
pressure p, temperature T and density rho are to be computed. If none of the other input
parameters are specified, they are set to the values given in Subsection 3.2.1. Alternatively,
everything but the deflection angle theta can be specified, which sets theta to 15 degrees.

After checking the input, some constants are set and the density upstream of the shock
is computed using the perfect gas relation, ρ1 = p1/(R · T1). Also, the value of theta is
made sure to be positive, because expansion waves cannot be treated by this function.

The core part of the function is the implementation of Eq. (3.52):

% Calculate and check shock wave angle using the beta -theta -Mach relation.

lambda = sqrt((Ma1^2 - 1)^2 - 3*(1 + (gamma -1)/2* Ma1 ^2)*...

(1 + (gamma +1)/2* Ma1 ^2)* tan(theta)^2);

chi = ((Ma1^2 - 1)^3 - 9*(1 + (gamma -1)/2* Ma1 ^2)*...

(1 + (gamma -1)/2* Ma1^2 + (gamma +1)/4* Ma1 ^4)* tan(theta)^2) / lambda ^3;

beta = atan((Ma1^2 - 1 + 2* lambda*cos ((4*pi + acos(chi))/3)) /...

(3*(1 + (gamma -1)/2* Ma1 ^2)* tan(theta)));

if (beta < 0 || ~isreal(beta))

error(’The shock is detached , choose a smaller theta or a larger Ma1.’)

end

By setting δ from Eq. (3.52) to δ = 1, we ensure to obtain the weak shock solution,
unless β is negative or imaginary, which would mean that the shock is detached. The if

statement at the end of the above code block makes sure that this is not the case.
Now that the shock angle β is known, all that is left to be done is finding out where

the coordinates in question are located: upstream of the shock, downstream of it, or in a
position that makes no sense, i. e., in the wedge or in the lower half plane. The upstream
case is trivial—the input values are returned as the result—, the downstream case returns
the values obtained from Eqs. (3.39) to (3.44), and the last case throws an error.

40

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

Figure 3.21: The 75×50 mesh used for solver quality evaluation with the supersonic wedge
problem.

3.2.3 Solver quality evaluation

As in Subsection 3.1.3 for the shock tube, the different solvers are evaluated from a
qualitative perspective first. Below, the mesh used for the computations is presented
and an overview of the solver settings is given, and on the next page, the results for the
different solvers are compared.

The wedge mesh For quality evaluation, a mesh of the size 75× 50 is used (Fig. 3.21),
where the rectangular part is of the size 25 × 50 volumes and the part above the wedge
is 50× 50. The spacing on the corresponding edges is uniform. As seen before, to solve a
two-dimensional problem, a three-dimensional mesh has to provided, where the depth in
z-direction is one volume only.

Solver setup For the four solvers under consideration, rhopSonicFoam, sonicFoam, rho-

TurbFoam and sonicTurbFoam, the following settings are applied:

• The upper boundary and the horizontal part of the lower boundary are set to the
symmetry type.

• The part of the lower boundary representing the wedge is set to the slip type13.

• The outlet boundary has zeroGradient type for all quantities.

• The inlet boundary is of zeroGradient type for epsilon and k; for p, T and U, it is
of fixedValue type with the values given in Subsection 3.2.1.

13I. e., zero gradient condition for scalars and a zero normal component for vectors.

41

Validation of OpenFOAM for nozzle flows 3 Verification cases

Figure 3.22: Analytical Mach number for the wedge problem, sampling locations.

(a) (b)

Figure 3.23: OpenFOAM Mach number results: (a) rhopSonicFoam at t = 1.5ms; (b)
sonicFoam at t = 3ms.

• The flow field at time zero is set to the inlet values.

For later analysis, the locations for samples are determined: 100 samples are taken
parallel to the lower boundary, 100 perpendicular to the wedge, as shown in Fig. 3.22,
which also shows the Mach number field obtained using the Matlab function described
above.

Results In this paragraph, the Mach number fields for the laminar and turbulent solvers
are evaluated.

Laminar solvers Figure 3.23 shows the Mach number fields for the two laminar
solvers after convergence. rhopSonicFoam takes a bit longer to converge, but computation
times are in the order of magnitude of a few minutes for both. The shock position and
angle is captured well in both cases; rhopSonicFoam (Fig. 3.23a) however features some

42

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

x−coordinate of domain [m]

M
ac

h
nu

m
be

r

rhopSonicFoam
sonicFoam
Analytical

(a)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

x−coordinate of domain [m]

M
ac

h
nu

m
be

r

rhopSonicFoam 2nd order
sonicFoam 2nd order
Analytical

(b)

Figure 3.24: Comparison of laminar solver parallel samples to analytical solution: (a) 1st
order spatial discretisation; (b) 2nd order spatial discretisation.

slight oscillations in the region downstream of the shock, whereas sonicFoam (Fig. 3.23b)
seems to be smooth, just like theory predicts.

A closer look at the actual Mach values reveals that—although smoother—the sonic-

Foam solution’s Mach numbers behind the shock are systematically too high. In Fig. 3.24a,
it can be seen that both solvers smear out the solution a little around the shock, but
while rhopSonicFoam oscillates around the correct value with a fading amplitude behind
the shock, sonicFoam stays above the value predicted by theory.

This behaviour is confirmed by the samples taken perpendicularly to the wedge. The
corresponding plots do not add much information, but for reasons of completeness, they
are included in Section C.2 (Fig. C.5a).

To improve the behaviour of the solution in the neighbourhood of the shock, the
selection of a more adequate spatial discretisation scheme can help. In OpenFOAM,
these schemes are specified in the fvSchemes dictionary. Every type of terms has its own
subdictionary, e. g., gradSchemes for gradient terms or divSchemes for divergence terms.
Since almost all terms are, by default, set to some higher order scheme, we only change
the divergence terms with 1st order methods to be treated with the MUSCL14 approach,
a method for the generation of second order upwind schemes via variable extrapolation;
refer to Hirsch (1990, Section 21.1) for details.

However, this does not improve the results: the rhopSonicFoam solution is still oscilla-
tory downstream of the shock, and the sonicFoam solution still predicts the Mach numbers
too large behind the shock plus oscillates now also. In addition, the Mach number pre-
diction upstream of the shock has worsened considerably. Figure C.5b in the appendix
confirms these findings: it seems that the default settings are the better choice.

Turbulent solvers The two turbulent solvers, rhoTurbFoam and sonicTurbFoam, are
designed for viscous flows, and the viscosity cannot simply be set to zero, so it is being

14Monotone Upstream-centred Scheme for Conservation Laws

43

Validation of OpenFOAM for nozzle flows 3 Verification cases

(a) (b)

Figure 3.25: OpenFOAM Mach number results: (a) rhoTurbFoam at t = 2ms; (b) sonic-

TurbFoam at t = 2ms.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

x−coordinate of domain [m]

M
ac

h
nu

m
be

r

rhoTurbFoam
sonicTurbFoam
sonicTurbFoam 2nd order
Analytical

(a)

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
0

0.05

0.1

0.15

0.2

0.25

Mach number

D
is

ta
nc

e
fr

om
 w

ed
ge

 [m
]

rhoTurbFoam
sonicTurbFoam
sonicTurbFoam 2nd order
Analytical

(b)

Figure 3.26: Comparison of turbulent solver samples to analytical solution: (a) parallel
samples; (b) perpendicular samples.

kept at the value for air, µ = 1.84 · 10−5 kg/(m · s).
The initial values for k and ε are estimated as in Subsection 3.1.3, based on a turbulence

intensity of 5%. The resulting Mach number fields (convergence after 2 ms) are shown in
Fig. 3.25.

Again, the shocks are at the right position with the correct angle. rhoTurbFoam, ac-
cording to its description not explicitly designed for transonic or supersonic flows, exhibits
quite a strong dip after the shock and a somewhat non-uniform Mach number field behind
the shock in general. These shortcomings are likely to be a combination of viscosity effects
and the inability to cope with shocks. sonicTurbFoam on the other hand, the turbulent
solver designed for transonic and supersonic flows, features a much smoother Mach field
behind the shock, yet still not perfectly so.

A look at the comparison of the sampled values to the analytical solutions in Fig. 3.26
confirms the suspected oscillations: rhoTurbFoam dives below the exact value, oscillates

44

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

strongly with an amplitude of roughly 20% of the shock height and comes at rest at a
value slightly above the exact value. sonicTurbFoam oscillates as well, but reaches faster
a constant value.

Overall, the turbulent solvers capture the shock more sharply than the laminar solvers,
but oscillate and have a Mach number larger than predicted by theory behind the shock.
An attempt at using exclusively second and higher order schemes with sonicTurbFoam

(MUSCL leads to errors when used with rhoTurbFoam), shown by red squares in Fig. 3.26,
results in only marginal improvement and is dropped as a remedy.

3.2.4 Spatial convergence

For a more quantitative way of comparing the solvers, a mesh convergence study is con-
ducted. Five different meshes are used, of which the coarsest has half as many cells
(38× 25) as the original mesh from Subsection 3.2.3 and the finer meshes have 150× 100,
300 × 200 and 600 × 400 volumes, respectively.

The source after which most verification and validation cases in this thesis are mod-
elled, Slater (2005), uses the so called grid convergence index (GCI) for its order-of-
accuracy studies. The GCI is defined in Roache (1994) as a means of uniform reporting
of grid refinement studies in CFD; the method is based on an error estimation derived
from the extrapolation method introduced in Richardson (1927). After considering to
report grid refinement studies using the GCI, it is decided not do so, mainly because the
main advantage of doing so is to be able to compare results achieved by different solvers
for maybe different problems, while we are interested in comparing the performance of
different OpenFOAM solvers for the same problem. Also, GCI results for the test cases
done with CFD-ACE+ or other codes have not been recorded in earlier works such as
Wolter (1997) or Mantilla Florez (2007).

Similar to Subsection 3.1.4, the RMS error is defined

εrms :=

√

√

√

√

1

200

200
∑

i=1

Ma2
i =

√

Ma2
1 + Ma2

2 + · · · + Ma2
200

200

where Ma1, . . . , Ma100 are the relative errors of the parallel samples and Ma101, . . . , Ma200

the ones of the perpendicular samples. The relative errors are defined

Mai =
Mai − Maex,i

Maref

where Maex,i are the exact solutions and Maref = 2.5, the inflow Mach number.
The resulting error behaviour is shown in Fig. 3.27. While for sonicFoam the mesh

refinement does not effect any significant improvement—it seems we have reached grid
independence—, rhopSonicFoam exhibits error convergence with an order of 0.5 (see be-
low). For the turbulent solvers, increasing the mesh resolution does improve the error,
but no convergence order can be seen. A look at the y-axis tick marks reveals that the
improvements are almost negligible (in the order of magnitude of a few percent between
the coarsest and the finest meshes).

45

Validation of OpenFOAM for nozzle flows 3 Verification cases

10
1

10
2

10
3

10
−3

10
−2

10
−1

Number of cells in x−direction N
x

ε rm
s

rhopSonicFoam
sonicFoam
Convergence of order 0.5

(a)

10
1

10
2

10
3

10
−1.6

10
−1.5

Number of cells in x−direction N
x

ε rm
s

rhoTurbFoam
sonicTurbFoam

(b)

Figure 3.27: Mesh convergence for the wedge case: (a) laminar solvers; (b) turbulent solvers.

But why is the error convergence of rhopSonicFoam only 0.5? After the results in
Subsection 3.1.5 and according to the settings in the fvSchemes dictionary, one would
have expected it to be 1. A possible explanation is that the shock prevents the expected
behaviour and that looking at this few points is too much of an arbitrary selection; in
Slater (2005), only the values behind the shock are taken into account. We adapt the
corresponding Matlab scripts accordingly to only use values downstream and away from
the shock: the samples shown in Fig. 3.28 are now chosen such that they cover more or
less uniformly the region behind the shock.

In Fig. 3.29, the error plots for this new configuration are shown. On the one hand,
rhopSonicFoam now exhibits 1st order convergence behaviour before reaching grid inde-
pendence, as expected. On the other hand, only now it becomes obvious that the results
are quite accurate: for rhopSonicFoam, the RMS error becomes smaller than 0.73%. son-

icFoam seems to have reached grid independence for the coarsest configuration already.
The turbulent solvers seem to behave erratically, but the differences between the largest

and smallest RMS error are even smaller than before: 0.9% for rhoTurbFoam and 0.83%
for sonicTurbFoam, so also here, speaking of grid independence seems to be appropriate.

3.2.5 Comparison to CFD-ACE+

For comparison, three runs are performed in CFD-ACE+: two using a mesh with 150
cells in x-direction and one with 300 cells. Of the first two, one uses first order spatial
discretisation, the other second order; the third case uses second order discretisation.

Figure 3.30 shows the parallel samples for these three runs. Overall, the agreement is
very good; the first order solution smears out the shock a little, but switching to second
order improves this, at the price of some oscillations behind the shock. The solution on
the finer mesh is very similar to the coarse second order solution, just captures the shock
more accurately.

In the region further behind the shock, no oscillations occur at all, and the Mach
number estimation is very accurate, as opposed to some of the OpenFOAM solutions.

46

3.2 The supersonic wedge problem Validation of OpenFOAM for nozzle flows

Figure 3.28: New sample locations for the wedge case.

3.2.6 Insights gained

The findings of the supersonic wedge investigations can be summarised as follows:

• None of the four solvers struggles fundamentally: all solutions converge to a steady
state and the shock geometry is captured correctly.

• rhopSonicFoam is confirmed as the most accurate of the four solvers with a RMS
error of less than one percent for the finer meshes.

• sonicFoam, although featuring a very smooth Mach number field behind the shock,
deviates systematically from the analytical solution behind the shock.

• rhoTurbFoam, not designed for transonic or supersonic flows, exhibits the strongest
oscillations of all solvers behind the shock.

• The turbulent solvers incorporate viscosity effects, whereas the analytical solution
is based on the inviscid Euler equations, which probably accounts for the overall
worse results of rhoTurbFoam and sonicTurbFoam.

Because of its less than optimal behaviour behind the shock, rhoTurbFoam is considered
as unsuitable for this kind of flows and will not be included in the validation cases.

47

Validation of OpenFOAM for nozzle flows 3 Verification cases

10
1

10
2

10
3

10
−3

10
−2

10
−1

Number of cells in x−direction N
x

ε rm
s

rhopSonicFoam
sonicFoam
Convergence of order 1

2.30% 0.73%

4.99%

(a)

10
1

10
2

10
3

10
−1.4

10
−1.3

Number of cells in x−direction N
x

ε rm
s

rhoTurbFoam
sonicTurbFoam

4.24%

3.34%

6.04% 5.23%

(b)

Figure 3.29: Mesh convergence for the wedge case, only samples downstream of the shock:
(a) laminar solvers; (b) turbulent solvers.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

x−coordinate of domain [m]

M
ac

h
nu

m
be

r

150 cells, 1st order
150 cells, 2nd order
300 cells, 2nd order
Analytical

Figure 3.30: Parallel samples of three CFD-ACE+ runs for the supersonic wedge problem.

48

4 Validation cases

As opposed to verification, where comparison to an analytical solution is possible, the
validation cases cannot be solved analytically. Simulation results have to be compared to
experimentally obtained values (see Subsection 1.4.3).

4.1 The backward facing step problem

The backward facing step problem is the first validation case. In Subsection 4.1.1, the
problem is described and its relevance pointed out; also, a short overview of the referenced
literature is given. Subsection 4.1.2 shows simulation results and their comparison to the
reference experiment and CFD-ACE+, and Subsection 4.1.3 summarises the findings of
the section.

4.1.1 Description and relevance

The backward facing step problem cannot be solved analytically; because of its many
interesting flow features, it is a popular test case for numerical schemes. In Slater (2005),
tests are conducted for incompressible flow as well as compressible flow with supersonic
incident flow; we focus on the compressible case here. Figure 4.1 shows the computational
domain and the main features of the flow:

• Right after the step, an expansion fan is formed

• The flow separates after the step

• Behind the step, there is a recirculation area

• The end of the recirculation area is marked by a weak oblique reattachment shock

To evaluate the performance of a solver, interesting quantities to look at are the
pressure field in general and, more specifically, the pressure along the elongation of the
step as well as the location of the reattachment shock. In Slater (2005), the results are
compared to Smith (1967). The results from this study come primarily in the shape of
printed graphs, so an exact comparison to simulation results is not possible, but we still
get an idea of how well OpenFOAM performs.

Setup used for testing In Smith (1967), three different geometries are used, differing
by the step height. We only look at the configuration with the medium step height,
h = 11.25 mm. The other relevant dimensions1 of the mesh shown in Fig. 4.2 are: distance
from inlet to step Li = 0.1016 m, distance from step to outlet Lo = 0.3048 m, and distance
from step to upper boundary Lu = 0.1475 m.

The block above the step has 30 × 40 volumes, the block to the right of it 60 × 40
volumes, and the block behind the step has 60 × 39 volumes, resulting in 5940 volumes
in total.

1Again, these are round lots when using feet, e. g., the distance between inlet and step corresponds to
exactly 4 ft.

49

Validation of OpenFOAM for nozzle flows 4 Validation cases

8h

h

u

x

Recirculation region

Exp
an

sio
n

fa
n

Reatt
ach

ment
shock

Figure 4.1: The backward facing step problem and its main flow features: expansion fan,
separation/recirculation, reattachment shock.

The inflow Mach number is 2.5 Ma, which for the given static inflow pressure of pi =
15.35 kPa equals a velocity of ui = 651.9 m/s. The temperature to the left of the step is
initialised to 169.2 K, to the right of the step to 153 K; the velocity to the left of the step
is set to the inflow velocity, to the right of and above the step to 619.9 m/s (results in
continuous Mach number across the step) and behind the step to zero. The idea of setting
the velocity to zero behind the step is to ensure proper development of the recirculation
region.

The boundary conditions are as follows:

• Zero gradient for k and ε at all boundaries

Figure 4.2: The mesh for the backward facing step case (5940 volumes).

50

4.1 The backward facing step problem Validation of OpenFOAM for nozzle flows

(a) (b)

Figure 4.3: Velocity field in the neighbourhood of the step: (a) solution at t = 1.5ms (good
agreement with experiment); (b) steady-state solution at t = 3.5ms (poor agreement with
experiment).

• Fixed value p = pi = 15.35 kPa at the inlet, zero gradient everywhere else for
pressure

• Fixed value T = Ti = 169.2 K at the inlet, zero gradient everywhere else for tem-
perature

• Fixed value u = ui = 651.9 m/s at the inlet, no-slip walls at the lower boundary,
slip wall at the upper boundary and zero gradient at the outlet for velocity

For turbulence, the standard k–ε model is chosen.

The settings in the thermophysicalProperties dictionary are, as in the supersonic wedge
case, based on the values for air and the following choice of models:

• Constant thermodynamic coefficients, with a specific heat capacity cp = 1005 J/(kg ·
K) and heat of fusion Hf = 2.544 · 106 J/kg

• Constant transport coefficients with the dynamic viscosity µ = 18.27 ·10−6 kg/(m ·s)
and the Prandtl number Pr = cpµ/κ = 0.7, where κ is the thermal conductivity,
κ = 0.0262 W/(m · K).

The numerical schemes in the fvSchemes dictionary and the equation solvers, toler-
ances and algorithms in the fvSolution dictionary all remain at their default settings.

4.1.2 Solver quality evaluation

For the assessment of a first result, we focus on a basic aspect of the resulting flow field: the
location of the reattachment shock, i. e., the length of the recirculation zone. According
to the measurements in Smith (1967), this should take place at ≈ 2.4h once steady-state
is reached. Since turbulence plays a vital role, the laminar solvers rhopSonicFoam and
sonicFoam are not used for this case.

51

Validation of OpenFOAM for nozzle flows 4 Validation cases

First results The results after some time, shown in Fig. 4.3a, are very promising, the
recirculation zone ends pretty exactly at 2.4h. However, in the steady-state solution in
Fig. 4.3b, it has shrunken to ≈ 0.56h, which agrees very poorly with measured data and is
much worse than results achieved by NASA using their WIND code, as reported in Slater
(2005). Also, the separation takes place slightly under the edge, which is unphysical.

Efforts towards improvement To improve this rather unsatisfactory result, various mea-
sures are taken:

• For turbulence, the RNG2 k–ε model is chosen. While computationally only slightly
more expensive than the standard k–ε model, its creators report very good predic-
tions of the flow over a backward facing step, according to Versteeg & Malalasekera
(1995). The idea, in brief, is to remove small scales of motion from the governing
equations by expressing their effects in terms of larger scale motions and a modified
viscosity; for details, refer to the original publication, Yakhot & Orszag (1986).

• The constant transport model, constTransport, is replaced by sutherlandTransport,
the Sutherland transport model. µ is now a function of the temperature T , using a
Sutherland coefficient As and a Sutherland temperature Ts:

µ =
As

√
T

1 + Ts/T

where As = 1.452 · 10−6 kg/(m · s ·K1/2) and Ts = 120 K. Information about Suther-
land’s formula can be found in Anderson et al. (1984, Section 5-1.4) or Hirsch (1988,
Section 2.1).

However, these measures do not improve the result perceivably. As a last resort, the mesh
is refined, even though in Slater (2005), very good results are achieved with our current
mesh. The new mesh is twice as fine as the old one in every direction and consists of
23’760 volumes; computation time until steady-state is reached is increased from around
4.5 hours for the old mesh to now around 43 hours, due to the smaller time step necessary.

The resulting velocity field around the step can be seen in Fig. 4.4a. With the reat-
tachment at ≈ h, this is an improvement indeed, but still far away from the experimental
value. On the other hand, when looking at the stream lines around the recirculation area
in Fig. 4.4b, it can be stated that the recirculation as such is handled well.

Even though there is obviously much room for improvement—we suspect that further
mesh refinement, especially next to the boundaries, would give better results—, the so-
lution is accepted for reasons of time limitations and the interesting cases in Section 4.2
and Chapter 5 still to be treated.

Pressure comparison Figure 4.5 shows the steady-state pressure field obtained using the
refined mesh introduced in the last paragraph. The major features are easily recognised:
the expansion fan at the step, the compression wave starting after the recirculation region,
and the low pressure region behind the step.

2RNG stands for “Renormalization-Group”.

52

4.1 The backward facing step problem Validation of OpenFOAM for nozzle flows

(a) (b)

Figure 4.4: Solution obtained with the finer mesh: (a) velocity field; (b) streamlines,
coloured by velocity.

Along the white line in Fig. 4.5, we take pressure samples and compare them to the
experimental values given in Smith (1967) and results from CFD-ACE+ simulations, as
shown in Fig. 4.6. The x-axes denote the distance from the step in inches3, the y-axes
stand for the pressure relative to the inflow static pressure, p∞ = 15.35 kPa.

All curves feature low relative pressures directly after the step; the compression wave
is crossed a bit after two inches, and the values approach the inflow pressure after it.
However, upon closer inspection, many discrepancies become visible: the OpenFOAM
simulation predicts values in the expansion fan of around 0.2, whereas measurements
are around 0.4, and the actual compression wave crosses the two inch mark, while the
simulation predicts it to be clearly further away. The CFD-ACE+ solutions are a little
more accurate in the low pressure region (but still too low), smear out the shock and
feature higher pressures further downstream. The shock is even further downstream than
in the OpenFOAM prediction, so overall, it can be said that CFD-ACE+ performs a little
better than OpenFOAM for this case, even though the difference between OpenFOAM
and CFD-ACE+ is smaller than the one between CFD-ACE+ and the experiment.

4.1.3 Insights gained

The following points summarise this section:

• sonicTurbFoam, as a transient solver, “passes by” the correct solution, ending up at
a steady state where the recirculation region is too small. Basic flow characteristics
are captured nevertheless.

• Switching to the more realistic Sutherland transport model or the—in principle—
better suited RNG k–ε turbulence model does not improve the result.

3This is not in SI units to facilitate the direct comparison to the data from Smith (1967), which is
given in U. S. customary units and as a graph only.

53

Validation of OpenFOAM for nozzle flows 4 Validation cases

Figure 4.5: Pressure field for the steady-state solution with the refined mesh. The white
line indicates the sample locations for the comparison to the experiment.

• Refining the mesh leads to a closer match to the experimental values, but implies
also a massive increase in computational costs. Even further refinement or a more
elaborate mesh based on more blocks4 is suspected to improve the results again. A
possible explanation is the reduction of numerical viscosity when refining a mesh,
leading to a larger and more accurate recirculation region.

• A pressure sample comparison confirms the not quite satisfactory performance.

The backward facing step seems not to be a simple problem, so difficulties do not come
completely unexpected: Fruth (2007) compared the performance of OpenFOAM and
ANSYS CFX for the incompressible backward facing step case described in OpenCFD
(2007a, Section 3.2) and reports reports troublesome convergence behaviour, even when
using a simpler steady-state solver.

The lesson learned from this case is the fact that recirculation needs special care and
fine meshes; satisfactory agreement to experimental values requires a lot of tweaking.

4.2 The transonic diffuser problem

The second validation case is the transonic diffuser problem. Subsection 4.2.1 describes
the experimental and the simulation setup and gives an overview of the different sources,
as consistent information is somewhat dispersed across several publications. Subsection
4.2.2 tests the performance of sonicTurbFoam on the basis of two different variants of the
case and compares it to CFD-ACE+; Subsection 4.2.3 finally summarises the section.

4The mesh generation tool blockMesh does not allow for bigeometric refinement, so to emulate that
blocks have to be split.

54

4.2 The transonic diffuser problem Validation of OpenFOAM for nozzle flows

(a)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Distance from step [inches]

p/
p ∞

sonicTurbFoam
CFD−ACE+ coarse
CFD−ACE+ fine

(b)

Figure 4.6: Pressure sample comparison for the backward facing step: (a) experimental
values from Smith (1967); (b) simulation results using the finer mesh in OpenFOAM and
two different meshes in CFD-ACE+.

4.2.1 Description and relevance

As the backward facing step, the transonic diffuser5 is a popular benchmark for CFD
codes. Figure 4.7 shows the setup: subsonic flow enters a duct with a constant cross-
section. The duct then converges until a throat height h∗ is reached, accelerating the
flow to supersonic speed; the diverging part accelerates the flow further, until after a
normal shock speeds go back to subsonic. Somewhere after the shock, we also find the
flow separating from the upper wall.

Slater (2005) conducts studies on this case for NASA’s WIND code and gives quite a
comprehensive overview of the case. However, to get enough details to be able to conduct
our own proper study, we have to consult several other publications: from Georgiadis et al.

(1994), an evaluation of different turbulence models in NASA’s older PARC code, we
obtain more detailed information about the computational mesh; the exact description of
the diffuser geometry is taken from Bogar et al. (1983), where oscillation frequencies for
the transonic diffuser flow are examined; in Hsieh et al. (1987), a numerical investigation
of unsteady inlet flow fields—the actual experiments we try to mimic here—are described,
and in Salmon et al. (1983) finally, laser Doppler velocimetry measurements of the same
flow are the subject.

5Sometimes also called “transonic nozzle”.

55

Validation of OpenFOAM for nozzle flows 4 Validation cases

y
/
h
∗

x/h∗

S
u
b
so

n
ic

in
fl
o
w

h(x) h∗

Shock
wave

Flow separation

Figure 4.7: The transonic diffuser setup: subsonic inflow is accelerated to supersonic speed,
a normal shock appears in the diverging part as well as flow separation.

Geometry and computational mesh The geometry of the diffuser is shown in Slater
(2005), but defined more clearly in Bogar et al. (1983): the channel has a flat bottom and
the top wall height h(x) is given by

h̃(x̃) =
α cosh ζ

(α − 1) + cosh ζ
(4.1)

where values with a tilde are made dimensionless by division by the throat height h∗ =
44 mm, e. g., h̃ = h/h∗. ζ in Eq. (4.1) is given by

ζ =
C1(x̃/ℓ̃)

(

1 + C2(x̃/ℓ̃)
)C3

(1 − x̃/ℓ̃)C4

(4.2)

The values for the different constants in Eqs. (4.1) and (4.2) in the convergent and di-
vergent part are given in Tab. 4.1. C3 is not given for the diverging part because C2 = 0

there and thus
(

1 + C2(x̃/ℓ̃)
)C3 = 1C3 = 1.

Constant Converging Diverging
α 1.4114 1.5

ℓ̃ -2.598 7.216
C1 0.81 2.25
C2 1.0 0
C3 0.5 —
C4 0.6 0.6

Table 4.1: Constants for the calculation of the diffuser geometry.

Inlet and exit are defined to be at x̃i = −4.04 and x̃e = 8.65, respectively. A plot of
the resulting shape is shown in Fig. 4.8 (with dimensionalised values). When calculating
the geometry, attention has to be paid that the formulas are only to be used in the
non-constant cross-section region −2.598 ≤ x̃ ≤ 7.216. For the constant regions, h̃(x̃ <
−2.598) = 1.4114 and h̃(x̃ > 7.216) = 1.5 are valid.

To create a mesh that enables enough flexibility from this data using blockMesh, 10
blocks are defined: five for the upper half and five for the lower half to emulate bigeometric
refinement at the walls. In axial direction, block boundaries are set conveniently to ensure
a fine mesh where it is required, i. e., in the region where the normal shock is expected.
The block edges that are curved are approximated by polygonal lines with a sufficient
number of nodes. The mesh has 81 × 51 volumes, just like the coarse one described in
Georgiadis et al. (1994); it is shown in Fig. 4.9.

56

4.2 The transonic diffuser problem Validation of OpenFOAM for nozzle flows

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.02

0.04

0.06

Figure 4.8: The geometry of the transonic diffuser, as calculated from Eqs. (4.1) and (4.2).
Axes are labelled in metres.

Figure 4.9: The 81 × 51 mesh for the transonic diffuser (axes labelled in metres).

Specific task description Two cases are being looked at, a so called strong shock and a
weak shock case. They differ by the ratio R of exit static to inflow total pressure: for the
strong shock it is R = 0.72, for the weak shock R = 0.82. The flow conditions are shown
in Tab. 4.2.

Inflow Outflow
Total pressure [kPa] 134.4 Static pressure, weak shock [kPa] 110.7
Total temperature [K] 277.8 Static pressure, strong shock [kPa] 97.2
Mach number 0.9

Table 4.2: Flow conditions for the transonic diffuser.

To specify these values in a more convenient way, the total inflow values are converted
to static values, using the perfect gas relations

T0

T
= 1 +

γ − 1

2
Ma2 (4.3)

p0

p
=

(

T0

T

)γ/(γ−1)

=

(

1 +
γ − 1

2
Ma2

)γ/(γ−1)

(4.4)

where the index 0 stands for the total values and γ is set to 1.4 for air. This results in
the inflow values Ti = 266.6 K and pi = 116.8 kPa; the velocity, based on Mach number
and inflow temperature, is ui = 150.6 m/s.

Solver setup and computation strategy The boundary conditions are set as follows:

• p: Fixed value at inlet and exit, zero gradient at the walls

• T : Fixed value at inlet, zero gradient at exit and walls

• u: Fixed value at inlet, zero gradient at exit, no-slip at walls

57

Validation of OpenFOAM for nozzle flows 4 Validation cases

Figure 4.10: Steady-state diffuser velocity field for R = 0.13.

(a)

(b)

Figure 4.11: Weak shock solution for the diffuser: (a) pressure field; (b) velocity field with
Ma = 1 isoline. The vertical bars indicate the locations of the four velocity samples taken.

• k and ε: Zero gradient everywhere

To start with, R is set to a small value, R = 0.13, which corresponds to an exit static
pressure of pe = 17.24 kPa, and the turbulence model is set to laminar; the idea is to
end up with an initial flow field where no shock occurs. Starting from this smooth field,
the weak and strong shock cases are obtained by setting the corresponding exit pressure
conditions. The initial fields are set as follows:

• p: Exit value everywhere (discontinuity at the inlet)

• T : Inlet value everywhere

• u: Zero velocity everywhere

• k and ε: Appropriate values, estimated based on a 5% turbulence intensity

At t = 30 ms with a time step ∆t = 4 · 10−6 s, a steady state is reached; the corre-
sponding smooth velocity field is shown in Fig. 4.10.

58

4.2 The transonic diffuser problem Validation of OpenFOAM for nozzle flows

The initial approach, switching to the RNG k–ε turbulence model and setting the
pressure ratio to the weak shock configuration, results in a shock wave moving towards
the inlet, where pressure oscillations with unphysically high peak values occur, blowing
up the simulation in the end.

Instead, a different method leads to more stable results: the exit pressure is increased
in small steps, each time kept fixed until a steady-state flow field is reached, and then
increased again. This way, the strong shock results are obtained first, and the weak shock
results afterwards.

The transport model is, as in the backward facing step case, set to Sutherland trans-
port.

4.2.2 Solver quality evaluation

In Slater (2005), tables containing the exact numerical values of the measurements exe-
cuted in Hsieh et al. (1987) are included, so we can numerically compare our simulation
results to them instead of just visually compare different plots. Also, we include results
from CFD-ACE+ simulations. The two quantities being looked at are the pressure dis-

tribution along the top and bottom wall and velocity profiles at four different positions,
2.882, 4.611, 6.340 and 7.493 (dimensionless values).

The weak shock case Figure 4.11 shows pressure and velocity fields for the weak shock
solution, with an isoline for Ma = 1 in black, matching the pressure jump. Flow separation
is not strongly developed, the low speed boundary layers after the shock are quite thin.

In Fig. 4.12, the pressure along the bottom and the top wall is shown. While the
location of the shock is captured well, its minimum is estimated too high by sonicTurb-

Foam; the shock prediction, especially at the bottom (Fig. 4.12a), is also less sharp than
the measurements. Agreement before and after the shock, however, is satisfactory. CFD-
ACE+ captures the shock better and sharper, but predicts a minimum pressure value
lower than the actual one, just like in the region immediately behind the shock, i. e., it
predicts the shock a bit too far to the right.

Figure 4.13 shows velocity profiles (only the x-component of the velocity) at four
different locations downstream of the throat (the vertical bars in Fig. 4.11b). Both son-

icTurbFoam and CFD-ACE+ systematically underestimate velocities; the CFD-ACE+
results are more accurate, though. Even the highly optimised WIND and NPARC results
in Slater (2005) underestimate velocity; the reason for the boundary layers being too large
for sonicTurbFoam might again be numerical viscosity, caused by a mesh that is too coarse.

In an endeavour to improve these results, especially concerning the shock sharpness,
a simulation with a mesh refined in x-direction (114 × 51 volumes) around the shock
location is set up; however, because of stability issues and quite large demands on CPU
time, it is decided to not follow the mesh refinement study approach any further.

The strong shock case The strong shock case (R = 0.72) pressure and velocity fields
are shown in Fig. 4.14. The shock now appears further downstream than in the weak
shock case, and the area where Ma > 1 is correspondingly larger. Figure 4.14b shows

59

Validation of OpenFOAM for nozzle flows 4 Validation cases

−5 0 5 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

x/h∗

p/
p 0,

in

sonicTurbFoam
CFD−ACE+
Sajben experiment

(a)

−5 0 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1

x/h∗

p/
p t,i

n

sonicTurbFoam
CFD−ACE+
Sajben experiment

(b)

Figure 4.12: Pressure distribution for the weak shock case, comparison to CFD-ACE+
solution and experimental values: (a) bottom wall; (b) top wall

that the first velocity sample is taken right where the shock occurs, so prediction of the
shock at the wrong place leads to very large deviation in the velocity sample.

Figure 4.14b features a low speed region after the shock which is much larger than for
the weak shock case (see Fig. 4.11b); as can be seen in Fig. 4.15, this is the recirculation
pocket for this case. There is a second recirculatory area near the bottom wall, as indicated
by the small bump in the lowest streamline. We show the streamlines only for the strong
shock case because the features are the same as for the weak shock case, but they are
more developed and thus better visible in the strong shock case.

The pressure distribution shown in Fig. 4.16 shows very good agreement between son-

icTurbFoam and the measurements. The shock is predicted a little too far downstream,
but the minimum values agree very well. For the bottom wall (Fig. 4.16a), the CFD-
ACE+ result—again—features the shock even further downstream than sonicTurbFoam,
and again with a minimum value that is too small. We will see later that this slight dif-
ference has a quite strong effect on the velocities measured. For the top wall (Fig. 4.16b),
the simulation results are almost identical, the CFD-ACE+ shock being only marginally
downstream of the sonicTurbFoam one. Differences of this order of magnitude could easily
be caused be slight differences in meshing—the two simulations do not use the same mesh.

Figure 4.17 shows the strong shock velocity profiles. In the sample right at the shock
(Fig. 4.17a), sonicTurbFoam overpredicts the velocity everywhere except in the upper core
flow region, where the values agree with the measurements. CFD-ACE+ however, as
mentioned before, suffers from predicting the shock too far downstream: the profile shows
no recirculation and velocity overpredictions of up to 100 m/s.

The agreement of CFD-ACE+ with the measurements is much better further down-
stream, even though the shape of the core flow is not quite captured in the two downstream
samples (Figs. 4.17c and 4.17d). While for both solvers, the upstream velocity predictions
at the top wall are too high, they agree excellently in the third sample and are even un-
derpredicted in the last sample. sonicTurbFoam underpredicts core flow velocities in the

60

4.2 The transonic diffuser problem Validation of OpenFOAM for nozzle flows

60 80 100 120 140 160 180 200 220 240 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(a) x̃ = 2.822

40 60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(b) x̃ = 4.611

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(c) x̃ = 6.340

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(d) x̃ = 7.493

Figure 4.13: Weak shock velocity profiles at different x̃-locations, comparison to CFD-
ACE+ and experimental values.

last three samples.

Potential improvements In Slater (2005), a different computation strategy is chosen:
after setting up supersonic flow without shocks (R = 0.12), the pressure is directly set
to the weak shock case (R = 0.72) and run for 1000 iterations with an SST6 turbulence
model, from which the k–ε model is initialised and run for 10’000 iterations. For the strong
shock case, the weak shock solution is taken as the starting point and the simulation is
run for 10’000 iterations directly using the k–ε turbulence model.

In addition to using an SST model, WIND offers two more correction factors:

• Sarkar compressibility correction: provides for an increase in the dissipation rate at
higher Mach numbers to account for observed reduction in thin shear layer growth

6Shear Stress Transport: Near the walls, a turbulence/frequency based model (k–ω) is solved, in the
bulk flow, k–ε is used. A blending function ensures smooth transition between the two models.

61

Validation of OpenFOAM for nozzle flows 4 Validation cases

(a)

(b)

Figure 4.14: Strong shock solution for the diffuser: (a) pressure field; (b) velocity field with
Ma = 1 isoline. The vertical bars indicate the locations of the four velocity samples taken.

rate with increasing Mach number.

• Variable Cµ: reduces turbulent viscosity in regions where the ratio of production to
dissipation of turbulent kinetic energy becomes large.

Using both correction factors, the results in Slater (2005) are clearly improved. Open-
FOAM features no SST turbulence model; neither Sarkar compressibility nor a variable Cµ

option are included. The open architecture would of course allow to extend OpenFOAM
to that effect, but doing so lies beyond the scope of this work.

4.2.3 Insights gained

The main learnings from this section can be summarised as follows:

• Flow results are not obtained easily: quite an elaborate procedure is required to
obtain results.

• Results for the weak shock case are satisfactory, even though the shock is not cap-
tured very sharply and velocities are slightly underestimated. CFD-ACE+ outper-
forms sonicTurbFoam for this case.

• For the strong shock case, the results are even better; CFD-ACE+ suffers from pre-
dicting the shock too far downstream. Specifically, it predicts the location of shock
waves at a larger cross-sectional area than measured, overestimating the compress-
ibility of the flow.

• Further improvements would require to extend OpenFOAM, which is—contrary
to most of the commercial CFD codes—possible. For this case, better physical
modelling for boundary layer/shock interaction would have to be implemented.

62

4.2 The transonic diffuser problem Validation of OpenFOAM for nozzle flows

Figure 4.15: Detail of the strong shock velocity field with streamlines, showing separation
and the recirculation pocket.

With the confidence that sonicTurbFoam is able to handle diffuser flows with shocks,
separation and recirculation, the final case with a real world application, the cold gas flow
in a circuit breaker nozzle geometry, is tackled in Chapter 5.

63

Validation of OpenFOAM for nozzle flows 4 Validation cases

−5 0 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1

x/h∗

p/
p 0,

in

sonicTurbFoam
CFD−ACE+
Sajben experiment

(a)

−5 0 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1

x/h∗

p/
p t,i

n

sonicTurbFoam
CFD−ACE+
Sajben experiment

(b)

Figure 4.16: Pressure distribution for the strong shock case, comparison to CFD-ACE+
solution and experimental values: (a) bottom wall; (b) top wall

64

4.2 The transonic diffuser problem Validation of OpenFOAM for nozzle flows

−100 0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(a) x̃ = 2.822

−100 −50 0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(b) x̃ = 4.611

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(c) x̃ = 6.340

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity, U [m/s]

V
er

tic
al

 p
os

iti
on

, y
/h

sonicTurbFoam
CFD−ACE+
Sajben experiment

(d) x̃ = 7.493

Figure 4.17: Strong shock velocity profiles at different x̃-locations, comparison to CFD-
ACE+ and experimental values.

65

1 2

3

-

(a)

1
2

3

-

(b)

Figure 5.1: ABB breaker geometries (cross-sections): the high pressure reservoirs (inlets)
are to the left, the constant pressure reservoirs (outlets) to the right. The red dots mark
the sensor positions. (a) plug at 37mm; (b) plug at 112mm.

5 Cold gas flow in a circuit breaker

The final case—the real world application—is the simulation of cold gas flow in a ge-
ometry very similar to the one of a circuit breaker at different plug positions and inflow
pressures. Subsection 5.1 describes the exact setup of the case; Subsection 5.2 gives some
more information about the meshes used and the solver settings; Subsection 5.3 reports
on challenges encountered during the simulations; in Subsection 5.4, typical results are
shown, and in Subsection 5.5, the simulation results are compared to experimental values.
Subsection 5.6 wraps up the chapter by summarising its findings.

5.1 Case description

As laid out in the description of the self-blast breaker functioning principle in Section 1.1,
gas flows from a high pressure reservoir along the light arc to a lower pressure region.
In Fig. 5.1, the corresponding geometries are shown in 2D; the real geometries would
be obtained by rotating the cross-sections about their axis of symmetry. We see two
snapshots with different distances between plug and tulip: in Fig. 5.1a, the plug has
moved 37 mm, in Fig. 5.1b it is 112 mm away. These are the two most extreme cases we
look at in this chapter.

In particular, the fourteen cases measured in Mantilla Florez (2007) are modelled, i. e.,
with the plug positioned at 37 mm, 42 mm, 47 mm, 52 mm, 57 mm, 62 mm, 67 mm, 72 mm,
77 mm, 82 mm, 87 mm, 92 mm, 102 mm and 112 mm.

The measurements in Mantilla Florez (2007) are performed as follows for every plug
position:

• Initial pressure is 1 bar everywhere

• Initial temperature is 25 ◦C = 298.15 K everywhere

• Within 25 ms, the inflow pressure is linearly raised to 3 bar

• Every 2.5 ms, the pressure is measured with three sensors

67

Validation of OpenFOAM for nozzle flows 5 Cold gas flow in a circuit breaker

Figure 5.2: Mesh for the 57mm circuit breaker case (80’740 volumes).

The approximate sensor placement is marked in Fig. 5.1 with numbered dots; sensors 1
and 2 are fixed on the diffuser, sensor 3 is being moved with the plug. In total, there are 10
measurements for each of the 14 plug positions, generating three values per measurement.
The exact placement of the sensors is shown in Tab. 5.1.

Sensor number x-coordinate y-coordinate
1 (nozzle) 73.9479mm 13.3117mm
2 (diffuser) 92.7000mm 16.6100mm
3 (plug) 12.7321mm + xc 9.9928mm

Table 5.1: Location of the control points for the ABB circuit breaker case. xc is the plug
location, e. g., 37 mm in for the 37 mm case.

5.2 Meshes and solver settings

For every plug position, a structured mesh is created using CFD-GEOM. It is then ex-
ported to GAMBIT, saved as a Fluent .msh file and finally converted to OpenFOAM
format using the fluentMeshToFoam utility. These meshes feature between 75’500 vol-
umes for the 37 mm case and 128’780 volumes for the 112 mm case. An example (the
57 mm case) is shown in Fig. 5.2.

The meshes have five volumes in azimuthal direction and constitute thus a compromise
between a full 3D approach and a 2D axi-symmetric one. To get an idea of the dimensions:
the length (axial direction) of the geometry is approximately 260 mm, the radius of the
plug around 10 mm.

68

5.3 Progression and computational costs Validation of OpenFOAM for nozzle flows

The outer walls, the tulip and the plug surfaces are assigned the wall type with no-
slip for the velocity field and zero gradient for every other field. The outlet patch is of
fixedValue type for pressure (p = 1 bar) and zeroGradient for the other fields.

The large surface patches that constitute the “cut surfaces” are assigned the symme-

tryPlane type. While OpenFOAM would allow for wedge-shaped volumes, CFD-GEOM
does not, so the axis of symmetry is actually a very narrow surface, which is also set to
the symmetryPlane type.

The first idea for the inlet patch is to have it as a fixed pressure inlet and run one
simulation for every pressure/plug position combination until steady-state is reached, thus
requiring 140 simulation runs. However, first tests show that it takes very long until the
residuals are acceptably small, so a different approach is chosen.

The inlet is assigned the timeVaryingUniformFixedValue type, which is not mentioned
in the documentation, but does exactly what we are looking for: a series of points in
time with corresponding pressure values can be specified, and OpenFOAM interpolates
linearly between them, so we can exactly copy the experimental setup in Mantilla Florez
(2007) (and also the CFD-ACE+ settings therein).

The experiments are conducted with N2, so the thermodynamicProperties dictionary
is adapted accordingly. Because temperature effects are expected to be negligible, the
transport model is set to constant transport. For turbulence, RNG k–ε is chosen.

The solver of choice is, based on the encouraging experience in Section 4.2, sonicTurb-

Foam. The initial time step is set to ∆t = 5 · 10−7 s, and as the time scheme, backward is
chosen, a second order implicit scheme. Intermediate volume fields are written out every
0.625 ms.

5.3 Progression and computational costs

The choice of backward as the time scheme turns out to be a bad one because of the
scheme’s unboundedness, so it is decided to switch to CrankNicholson with a blending
coefficient of 0.6; this scheme is also second order implicit, but bounded.

sonicTurbFoam does not feature an adaptive time step. It would not be extraordinarily
difficult to extend the solver to this end though, but for reasons of simplicity, we stick to
the fixed time step and simply reduce it whenever problems come up.

Even though the scheme is bounded, it is not arbitrarily stable. Especially for the
cases with a smaller plug distance where the nozzle effect is maximal, the initial step size
leads quickly to the non-convergence of one of the variables. Whenever this happens,
∆t is reduced and the simulation restarted from the last intermediate result. Figure 5.3
shows what this means for three selected geometries.

For the 37 mm case, the step size has to be reduced to 10−7 s after 1.25 ms. At 3.125 ms,
∆t is already down to 10−8 s. The 72 mm case gets a bit further and seems to need no
smaller ∆t than 2.5 · 10−8 s. The time step for the 102 mm case finally has to be reduced
no earlier than at 7.5 ms.

A single time step requires roughly five seconds to compute on a single CPU of the
parallel cluster at ABB, depending on the actual mesh size and various other parameters.
At ∆t = 10−8 s, 2.5 ms require 250’000 time steps; at five seconds per time step, this
equals more than two weeks of computing time. Because of limited computing resources,

69

Validation of OpenFOAM for nozzle flows 5 Cold gas flow in a circuit breaker

0 0.002 0.004 0.006 0.008 0.01

10
−8

10
−7

10
−6

Time [s]

∆t
 [s

]

37 mm
Latest result 37 mm
72 mm
Latest result 72 mm
102 mm
Latest result 102 mm

Figure 5.3: Necessary reduction of ∆t with increasing inlet pressure, shown for three dif-
ferent geometries.

only around one third of all the measurement values are simulated; however, this should
be enough to make a well-grounded statement about the performance of OpenFOAM for
this case.

The discontinuities in the time step size are also reflected in the residual plots. As
an example, we look at the initial residuals of the 87 mm case, shown in Fig. 5.4a: with
the increasing pressure, the Courant number becomes larger and larger, until at 2.5 ms,
the time step has to be reduced for the first time, because the simulation diverges shortly
afterwards otherwise. The reduction is to 5 · 10−8 s, because the first try with 10−7 s does
not work out; this causes the sharp drop visible at 2.5 ms.

From then on, the residuals seem to behave pretty wildly, but a look at the magnifi-
cation of just 1 ms (Fig. 5.4b) reveals that the spikes are just occasional and the residual
behaviour is smooth otherwise. Also, only initial residuals are shown, which makes the
plot seem more discontinuous than how the actual quantities really behave.

5.4 Exemplary Mach and pressure fields

To get an idea what flow patterns come up in the course of such a run, we take a look at
a snapshot of the 62 mm case, shown in Fig. 5.5.

A variety of flow phenomena already encountered in the earlier cases of this thesis can
be observed:

• A weak expansion fan occurs in front of the tulip at x ≈ 0.01 m (consult Fig. 5.1
for the axis labels).

70

5.5 Comparison to measurements Validation of OpenFOAM for nozzle flows

0 1 2 3 4 5 6 7

x 10
−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

Co
0

h
0

p
0

Ux
0

Uy
0

(a)

4.8 5 5.2 5.4 5.6 5.8 6

x 10
−3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

Co
0

h
0

p
0

Ux
0

Uy
0

(b)

Figure 5.4: Initial residuals for the 87mm case: maximum Courant number Co0, entrophy
h0, pressure p0, x- and y-components of velocity Ux,0 and Uy,0: (a) 0–7 ms; (b) 5–6 ms.

• Directly in front of the tulip, there is a stagnation point (not well visible with the
colour scheme used).

• In the diffuser, the flow is accelerated to supersonic speeds until a normal shock

occurs, visible in both the pressure and the Mach number field.

• After the shock, separation occurs and a recirculatory area around the plug is
formed.

5.5 Comparison to measurements

These flow features all seem plausible, but cannot be validated because the measurements
only yield values at individual points in the flow field. To assess the simulation on a more
quantitative basis, we now compare the OpenFOAM predictions to the measured values
from Mantilla Florez (2007).

To this end, the predicted and measured values are set relative to the inlet pressure;
Figs. 5.6 to 5.8 show these relative pressures as functions of the plug position for all
three sensors. OpenFOAM predictions and the measurements for a configuration are in
the same plots for direct comparison. Some data points that are extremely off call for
explanations, so after checking the corresponding pressure and velocity fields, usually a
reason can be given for strong deviations.

Sensor 1, nozzle (Fig. 5.6) For the lower pressure cases in Fig. 5.6a, the pressure dip
for the 57 mm configuration is the most obvious deviation. The reason is a normal shock
being predicted a little too far downstream, i. e., behind the sensor. In Fig. 5.6b with the
higher pressures, there are only few simulation results. The value at 77 mm lies exactly
in a small flow separation area behind a shock; the values at 102 and 112 mm are, again,
slightly upstream of a shock, behind which the pressure corresponds to the measurement.

71

Validation of OpenFOAM for nozzle flows 5 Cold gas flow in a circuit breaker

Figure 5.5: Pressure and Mach number field for the 62mm case at t = 10ms, i. e., inflow
pressure at 1.8 bar.

Sensor 2, diffuser (Fig. 5.7) In Fig. 5.7a, the “off” point is at 72 mm for the 1.6 bar
case; the reason is again a normal shock being estimated too far downstream. It is to
suspect that inaccurate shock locations are also the reason for the wiggles in the 1.4 bar
series. The few higher pressure values in Fig. 5.7b are all satisfactory or even almost
perfect.

Sensor 3, plug (Fig. 5.8) Apart from the systematic underestimation of pressure for
cases up to 57 mm—this happened also to the CFD-ACE+ simulation in Mantilla Florez
(2007)—, the spikes at 82 mm are the most striking feature of Fig. 5.8a. Again, there is
a shock next to the sensors for these configurations, but this time, it is estimated too far
upstream, leading to increased pressure.

5.6 Summary for circuit breaker case

The following learnings are taken from this case:

• OpenFOAM’s sonicTurbFoam is able to handle real world applications with satisfac-
tory results.

• Importing meshes is not a big problem.

• The non-adaptivity of the time step is quite a nuisance: once reduced to a small value
like 10−8 s, cases with meshes containing tens of thousands of volumes require a huge
amount of computing time. On the other hand, nobody precludes the development
of such an adaptive scheme.

• Arbitrarily selected Mach number and velocity fields seem to be plausible.

72

5.6 Summary for circuit breaker case Validation of OpenFOAM for nozzle flows

30 40 50 60 70 80 90 100 110 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Plug position [mm]

p/
p in

OpenFOAM 1.2 bar
Experiment 1.2 bar
OpenFOAM 1.4 bar
Experiment 1.4 bar
OpenFOAM 1.6 bar
Experiment 1.6 bar

(a)

30 40 50 60 70 80 90 100 110 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Plug position [mm]

p/
p in

OpenFOAM 1.8 bar
Experiment 1.8 bar
OpenFOAM 2.0 bar
Experiment 2.0 bar
OpenFOAM 2.2 bar
Experiment 2.2 bar

(b)

Figure 5.6: Comparison of simulation predictions and measured values for pressure values
at sensor 1 (nozzle). Crosses stand for simulation values, circles for measured values; lines
in the same colour are for the same pressure. (a) 1.2 bar–1.6 bar; (b) 1.8 bar–2.2 bar.

• Comparison to measurements yields respectable results; whenever a value is way off,
the reason is a false estimation of a shock location.

73

Validation of OpenFOAM for nozzle flows 5 Cold gas flow in a circuit breaker

30 40 50 60 70 80 90 100 110 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Plug position [mm]

p/
p in

OpenFOAM 1.2 bar
Experiment 1.2 bar
OpenFOAM 1.4 bar
Experiment 1.4 bar
OpenFOAM 1.6 bar
Experiment 1.6 bar

(a)

30 40 50 60 70 80 90 100 110 120

0.35

0.4

0.45

0.5

0.55

Plug position [mm]
p/

p in

OpenFOAM 1.8 bar
Experiment 1.8 bar
OpenFOAM 2.0 bar
Experiment 2.0 bar
OpenFOAM 2.2 bar
Experiment 2.2 bar

(b)

Figure 5.7: Comparison of simulation predictions and measured values for pressure values
at sensor 2 (diffuser): (a) 1.2 bar–1.6 bar; (b) 1.8 bar–2.2 bar.

30 40 50 60 70 80 90 100 110 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plug position [mm]

p/
p in

OpenFOAM 1.2 bar
Experiment 1.2 bar
OpenFOAM 1.4 bar
Experiment 1.4 bar
OpenFOAM 1.6 bar
Experiment 1.6 bar

(a)

30 40 50 60 70 80 90 100 110 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Plug position [mm]

p/
p in

OpenFOAM 1.8 bar
Experiment 1.8 bar
OpenFOAM 2.0 bar
Experiment 2.0 bar
OpenFOAM 2.2 bar
Experiment 2.2 bar

(b)

Figure 5.8: Comparison of simulation predictions and measured values for pressure values
at sensor 3 (plug): (a) 1.2 bar–1.6 bar; (b) 1.8 bar–2.2 bar.

74

6 Summary and outlook

This chapter summarises the findings of the thesis (Section 6.1) and gives an outline for
suggested future research in the subject area (Section 6.2).

6.1 Lessons learned and recommendation

Each of the five test cases features its own section on what constitutes the key learnings
of the case. This section here draws conclusions from these learnings and points out
commonalities.

• All in all, OpenFOAM is able to deal with every case it is presented with: the
outcomes are between excellent (less than 1% deviation for a fine grid using rhop-

SonicFoam in the supersonic wedge case, less than 2% in the shock tube case), good
(transonic diffuser results) and barely satisfactory (recirculation in the backward
step case).

• The outcome of the application to the ABB nozzle problem is satisfactory, even
though time step limitations gets in the way of obtaining more than a third of all
the measured values within feasible time. Large differences in the results can almost
all be explained by false shock position estimations.

• The results are in some cases better than results obtained using CFD-ACE+, in some
cases a little worse. Overall, OpenFOAM does not have to fear the comparison to

commercial codes.

• For inviscid cases, we recommend using rhopSonicFoam, for viscous cases sonicTurb-

Foam.

• The extensibility comes with a price: pre- and post-processing are not very con-
venient. Importing a huge mesh and editing all the boundaries, which are only
distinguishable by their name, can be very tedious; importing and exporting from
and to third party tools is also cumbersome.

• Proper treatment of recirculation requires special care.

• As the two major weaknesses, the absence of an adaptive time step for the transient
sonicTurbFoam and false estimations for shock locations in the more complicated
flows are identified. However, thanks to the flexibility and extensibility of Open-
FOAM, both points could be improved.

Based on all this, we come to the conclusion that Open-
FOAM would serve well as the basis for extensions towards
more complete simulations of circuit breaking.

However, it should be kept in mind that the correct prediction of shock locations is
crucial for meaningful results; a type of compressible flow solver that is especially well

75

Validation of OpenFOAM for nozzle flows 6 Summary and outlook

suited for this is the Riemann solver 1. It could not just be added as another solver to
OpenFOAM but would require changing and extending the core libraries, resulting in an
immense work investment.

6.2 Outlook

Starting from the results achieved in this thesis, several directions for future research are
thinkable, ranging from small projects to very challenging tasks:

• The simulations for the ABB nozzle case are still running, so within a few weeks
these results will be complete.

• An adaptive time step for sonicTurbFoam could be implemented.

• Improved shock handling could be implemented, see the remarks about Riemann
solvers above.

• A starting point for a more complete simulation could be a setting with a dynamic
mesh, i. e., an actually moving plug.

• Efforts to strongly couple the Navier–Stokes equations with the Maxwell equations
are already under way.

• Finally, an extension of OpenFOAM for arc simulations based on first principles,
coupled with the existing flow solvers, would be a big step towards the accurate
simulation of circuit breaking.

Thanks to the active and growing user base of OpenFOAM, it is to expect that the
software will improve further towards a real multi-physics tool, while maintaining all the
advantages of being open source.

1See for example Anderson (1995) for an introduction to Riemann solvers.

76

Acknowledgements

I would like to thank the following people (in alphabetical order):

• Leonhard Kleiser for agreeing, without hesitation, to supervise an external thesis
and providing valuable input during our intermediate reviews.

• Yong-Joong Lee and Henrik Nordborg for extensive on-site support and guidance.

• Carolyn Wardle-Davies for proofreading key parts of this report. Remaining flaws
are of course an oversight on my part.

77

References

Anderson, Dale A., Tannehill, John C., & Pletcher, Richard H. 1984. Com-

putational Fluid Mechanics and Heat Transfer. New York: McGraw-Hill.

Anderson, Jr, John D. 1995. Computational Fluid Dynamics: The Basics with Ap-

plications. Singapore: McGraw-Hill.

Anderson, Jr, John D. 2003. Modern Compressible Flow: With Historical Perspective.
Third edn. New York: McGraw-Hill.

Blatter, Christian. 1996. Ingenieur Analysis 1. Second edn. Heidelberg: Springer.

Bogar, T. J., Sajben, M., & Kroutil, J. C. 1983. Characteristic Frequencies of
Transonic Diffuser Flow Oscillations. AIAA Journal, 21(9), 1232–1240.

Fröhlich, Klaus. 2006 (Nov.). Elektrische Energiesysteme: Systemtechnologie. Script.
ETH Zurich.

Fruth, Florian. 2007. Benchmark of OpenFOAM and CFX. Seminar thesis, ETH
Zurich.

Georgiadis, N. J., Drummond, J. E., & Leonard, B. P. 1994 (Jan.). Evalua-

tion of Turbulence Models in the PARC Code for Transonic Diffuser Flows. Technical
memorandum 106391. NASA Lewis Research Center, Ohio.

Gerritsma, M. I. 2002 (July). Computational Fluid Dynamics: Incompressible Flows.
Script. TU Delft.

Gremmel, Hennig, & Kopatsch, Gerald (eds). 2007. ABB Switchgear Manual. 11
edn. Berlin: Cornelsen.

Hirsch, Charles. 1988. Fundamentals of Numerical Discretization. Numerical Com-
putation of Internal and External Flows, vol. 1. New York: Wiley.

Hirsch, Charles. 1990. Computational Methods for Inviscid and Viscous Flows. Nu-
merical Computation of Internal and External Flows, vol. 2. New York: Wiley.

Hsieh, T., Wardlaw, Jr, A. B., Collins, P., & Coakley, T. 1987. Numerical
Investigation of Unsteady Inlet Flowfields. AIAA Journal, 25(1), 75–81.

Jasak, Hrvoje. 1996 (June). Error Analysis and Estimation for the Finite Volume

Method with Applications to Fluid Flows. Ph.D. thesis, Imperial College London.

Kim, Hong-Kyu, Park, Kyong-Yop, Im, Chang-Hwan, & Jung, Hyun-Kyo.
2003. Optimal Design of Gas Circuit Breaker for Increasing the Small Current Inter-
ruption Capacity. IEEE Transactions on Magnetics, 39(3), 1749–1752.

Kundu, Pijush K., & Cohen, Ira M. 2004. Fluid Mechanics. Third edn. San Diego:
Elsevier Academic Press.

79

Validation of OpenFOAM for nozzle flows References

Lindmayer, Manfred (ed). 1987. Schaltgeräte: Grundlagen, Aufbau, Wirkungsweise.
Berlin: Springer-Verlag.

Mantilla Florez, Javier Dario. 2007 (Mar.). Measurements and Simulations of Cold

Gas Flows in Basic Gas Circuit Breaker Geometries. Master thesis, RWTH Aachen.

OpenCFD. 2007a (Apr.). OpenFOAM: The Open Source CFD Toolbox. Programmer’s

Guide Version 1.4. OpenCFD Limited, Reading UK.

OpenCFD. 2007b (Apr.). OpenFOAM: The Open Source CFD Toolbox. User Guide

Version 1.4. OpenCFD Limited, Reading UK.

Pope, Stephen B. 2000. Turbulent Flows. Cambridge UK: Cambridge University Press.

Richardson, Lewis F. 1927. The Deferred Approach to the Limit Part I. Single Lattice.
Philosophical Transactions of the Royal Society of London, Series A, 226, 299–361.

Roache, P. J. 1994. Perspective: A Method for Uniform Reporting of Grid Refinement
Studies. Journal of Fluids Engineering, 116(3), 405–413.

Salmon, J. T., Bogar, T. J., & Sajben, M. 1983. Laser Doppler Velocimeter Mea-
surements in Unsteady, Separated, Transonic Diffuser Flows. AIAA Journal, 21(12),
1690–1697.

Slater, John W. 2005 (Sept.). CFD Verification & Validation: NPARC Alliance.
http://www.grc.nasa.gov/WWW/wind/valid/. Accessed 12th June 2007.

Smith, Howard E. 1967 (Mar.). The Flow Field and Heat Transfer Downstream of a

Rearward Facing Step in Supersonic Flow. Technical report ARL 67-0056. Aerospace
Research Laboratories, Ohio.

Versteeg, H. K., & Malalasekera, W. 1995. An Introduction to Computational

Fluid Dynamics: The Finite Volume Method. Boston: Prentice Hall.

Wolter, Frank. 1997 (Oct.). Untersuchung von CFD-Codes auf ihre Anwendbarkeit zur

Gasströmungssimulation in Hochspannungs-Leistungsschaltern. Diploma thesis, RWTH
Aachen.

Yakhot, Victor, & Orszag, Steven A. 1986. Renormalization-Group Analysis of
Turbulence. Physical Review Letters, 57(14), 1722–1724.

80

http://www.grc.nasa.gov/WWW/wind/valid/

A Contents of the CD

The enclosed CD contains the data created during working on this thesis. The following
list describes briefly the contents of the various directories.

• algorithm source: C++ source codes of the five solvers tested

• intermediate reports: small reports to present intermediate results; directories la-
belled by date of creation

• linux : reference manuals for bash scripting and using vi (the editor)

• matlab: Matlab scripts and functions

– ABB nozzle: scripts to plot residuals for the 87 mm case, changes in ∆t for
the different cases and comparison of OpenFOAM results to measurements;
residual log files; overview of results from Mantilla Florez (2007)

– backstep: script to compare OpenFOAM and CFD-ACE+ pressure samples;
script to plot residuals; residual log files and pressure data

– shocktube: scripts to compare 1–3D and axi-symmetric solutions to exact so-
lution; files with samples of T , u and p for different configurations; scripts to
create animations of the exact solution and the resulting video files

∗ cfdace comparison: script to compare to CFD-ACE+ results, sample files
from CFD-ACE+

∗ dt convergence: script to generate error plots for temporal convergence
tests

∗ mesh convergence: script to generate error plots for spatial convergence
tests

– supersonicwedge: script to compare with CFD-ACE+ results; function to ob-
tain analytical solution; script to generate analytical solution for test configu-
ration; script to generate θ-β-Ma plot; scripts to compare OpenFOAM solution
to exact solution; scripts for spatial convergence study; files with sampled Mach
number values

– transonicnozzle: scripts to compare OpenFOAM weak and strong solutions to
experiment; script to generate diffuser geometry; files with sampled pressure
and velocity data

• openfoam: data from the OpenFOAM case directories, contains a directory for every
verification/validation case and within these, the root directories of the solvers used
for the specific case; in the case directories, the 0, constant and system directories
are contained, thus everything required to perform the simulation. Results at later
times are not included because of the large data volume (data produced during
thesis: 29 GB)

• presentations: presentations from intermediate reports at ETH and ABB, final pre-
sentations at ETH and ABB

81

Validation of OpenFOAM for nozzle flows A Contents of the CD

• references: all the references (except text books) from this thesis: journal articles,
technical reports, PhD, Master and Seminar theses, scripts and manuals

• report: the .tex source files of the report and the PDF versions: screen.pdf with
coloured hyperlinks for reading on a computer, print.pdf with all text in black for
printing

– img : all the .eps pictures for the report as well as pictures in other formats,
as exported from OpenFOAM or required for presentations

– source: Matlab source code for inclusion in the report

• varia: the ABB nozzle case management spreadsheet for progress monitoring and
an early draft of a mile stone plan

82

B MATLAB source code

B.1 The shock tube function

1 function [x_mesh ,u,a,rho ,T,p] = shocktube(time ,p1 ,p4 ,T1 ,T4)

2 % SHOCKTUBE Analytical solution for unsteady wave motion in a shock tube.

3 % [X_MESH ,U,A,RHO ,T,P] = SHOCKTUBE(TIME ,P1 ,P4 ,T1 ,T4) solves the shock

4 % tube problem analytically . The diaphragm is placed at 15.24 cm ,

5 % pressure and temperature to the left of it are P4 and T4 , to the right

6 % of it P1 and T1 (at time zero). The function returns X_MESH (1000

7 % equally spaced points between 0 and 30.48 cm) and the mass velocity U,

8 % the local speed of sound A, the density RHO , the temperature T and the

9 % pressure P at time TIME for further analysis.

10 %

11 % If only one argument is given (TIME), P1 , P4 , T1 and T4 are set to

12 % default values.

13 %

14 % SHOCKTUBE only treats right running shock waves and left running

15 % expansion waves.

16 %

17 % The gas in the tube is air with corresponding R and gamma; it is

18 % treated as inviscid.

19

20 % ***

21 % This m-file is part of the Master Thesis

22 %

23 % "Simulation and validation of compressible flow in nozzle geometries and

24 % validation of OpenFOAM for this application"

25 %

26 % by Benjamin Wuethrich , MSc student of Computational Science and

27 % Engineering at ETH Zurich.

28 %

29 % Work carried out at ABB Corporate Research in Baden -Daettwil from

30 % 15/04/07 until 14/09/07.

31 %

32 % Contact: benjamin.wuethrich@alumni.ethz.ch

33 % ***

34

35 % Parse arguments.

36 if nargin ==1

37 % Set defaults.

38 p1 = 6.897e3; % Lower pressure (right chamber) in [Pa].

39 p4 = 6.897e4; % Higher pressure (left chamber) in [Pa].

40 T1 = 231.11; % Lower temperature (right chamber) in [K].

41 T4 = 288.89; % Higher temperature (left chamber) in [K].

42 elseif (nargin ==5) && (p1 > p4)

43 error(’This would be a left -running shock wave , which is not supported.’)

44 elseif nargin ==5

45 % Everything fine.

46 else

47 error(’Wrong number of arguments specified.’)

48 end

49

50 % Set constants.

51 gamma = 1.4; % Heat capacity ratio of air.

52 R = 287.05; % Specific gas constant of air in [J/(kg*K)].

53 L1 = 0.1524; % Initial position of the diaphragm in [m].$

54

55 % Calculate speeds of sound and densities.

56 a1 = sqrt(gamma*R*T1);

57 a4 = sqrt(gamma*R*T4);

58 rho1 = p1/(R*T1);

59 rho4 = p4/(R*T4);

60

61 % Calculate p2/p1 , get p2.

62 p2p1 = fzero(@(p2p1)p2p1 * (1 - ((gamma -1)*(a1/a4)*(p2p1 -1)) / ...

63 sqrt (2* gamma *(2* gamma + (gamma +1)*(p2p1 -1))))^(-2* gamma/(gamma -1))...

83

Validation of OpenFOAM for nozzle flows B MATLAB source code

64 - p4/p1 ,(p4/p1)/2);

65 p2 = p2p1 * p1;

66

67 % Calculate incident shock properties.

68 T2 = T1 * p2/p1 * (((gamma +1)/(gamma -1) + p2/p1) /...

69 (1 + (gamma +1)/(gamma -1)*p2/p1));

70 rho2 = rho1 * (1 + (gamma +1)/(gamma -1)*p2/p1) /...

71 ((gamma +1)/(gamma -1) + p2/p1);

72 a2 = sqrt(gamma*R*T2);

73 % Wave velocity of moving shock.

74 W = a1 * sqrt((gamma +1)/(2* gamma) * (p2/p1 - 1) + 1);

75 % Mass motion behind the wave.

76 u_p = a1/gamma * (p2/p1 - 1) * sqrt ((2* gamma /(gamma +1)) /...

77 (p2/p1 + (gamma -1)/(gamma +1)));

78

79 % Pressure and velocity to the right of the expansion wave (constant

80 % across the contact surface).

81 p3 = p2;

82 u2 = u_p;

83 u3 = u_p;

84

85 % Other properties behind the expansion wave.

86 rho3 = rho4 * (p3/p4)^(1/ gamma);

87 T3 = T4 * (p3/p4)^((gamma -1)/ gamma);

88 a3 = sqrt(gamma*R*T3);

89

90 % Define mesh.

91 x_mesh = linspace (0,2*L1 ,100);

92

93 % Initialise vectors for all the quantities.

94 u = zeros(size(x_mesh));

95 a = zeros(size(x_mesh));

96 rho = zeros(size(x_mesh));

97 T = zeros(size(x_mesh));

98 p = zeros(size(x_mesh));

99

100 % Calculate boundaries of different zones.

101 % Boundary between leftmost driver gas and expansion wave.

102 x4_exp = L1 - time*a4;

103 % Boundary between expansion wave and lower pressure driver gas.

104 exp_x3 = L1 + time*(u3 - a3);

105 % Boundary between driver gas and driven gas.

106 x3_x2 = L1 + time*u_p;

107 % Location of the shock wave.

108 x2_x1 = L1 + time*W;

109

110 % Iterate through x_mesh and fill in all the quantities.

111 for i = 1: length(x_mesh)

112 if x_mesh(i) < x4_exp

113 % We are in region 4.

114 u(i) = 0;

115 a(i) = a4;

116 rho(i) = rho4;

117 T(i) = T4;

118 p(i) = p4;

119 elseif x_mesh(i) < exp_x3

120 % We are in the expansion wave.

121 [u(i),a(i),rho(i),T(i),p(i)] = expansion_wave (x_mesh(i)-L1);

122 elseif x_mesh(i) < x3_x2

123 % We are in region 3.

124 u(i) = u3;

125 a(i) = a3;

126 rho(i) = rho3;

127 T(i) = T3;

128 p(i) = p3;

129 elseif x_mesh(i) < x2_x1

130 % We are in region 2.

131 u(i) = u2;

84

B.2 The oblique shock function Validation of OpenFOAM for nozzle flows

132 a(i) = a2;

133 rho(i) = rho2;

134 T(i) = T2;

135 p(i) = p2;

136 else

137 % We are in region 1.

138 u(i) = 0;

139 a(i) = a1;

140 rho(i) = rho1;

141 T(i) = T1;

142 p(i) = p1;

143 end

144 end

145

146 function [u_exp ,a_exp ,rho_exp ,T_exp ,p_exp] = expansion_wave (x)

147 % Calculate properties within expansion wave. The expressions here

148 % are valid for -a4 <= x/time <= u3 - a3.

149 % Calculate mass velocity.

150 u_exp = 2/(gamma +1) * (a4 + x/time);

151 % Calculate speed of sound.

152 a_exp = a4 * (1 - (gamma -1)/2 * u_exp/a4);

153 % Calculate temperature.

154 T_exp = T4 * (1 - (gamma -1)/2 * u_exp/a4)^2;

155 % Calculate pressure.

156 p_exp = p4 * (1 - (gamma -1)/2 * u_exp/a4)^(2* gamma/(gamma -1));

157 % Calculate density.

158 rho_exp = rho4 * (1 - (gamma -1)/2 * u_exp/a4)^(2/(gamma -1));

159 end

160 end

B.2 The oblique shock function

1 function [Ma ,p,T,rho] = obliqueshock (x,y,Ma1 ,p1 ,T1 ,theta)

2 % OBLIQUESHOCK Analytical solution for the oblique shock problem.

3 % [MA ,P,T,RHO] = OBLIQUESHOCK(X,Y,MA1 ,P1 ,T1 ,THETA) computes Mach number ,

4 % pressure , temperature and density at the coordinates given by X and Y

5 % for an oblique shock problem specified by MA1 , P1 and T1 (free flow

6 % Mach number , pressure and temperature) and THETA (deflection angle).

7 %

8 % THETA should be positive (otherwise , it would be an expansion problem.

9 % If THETA is large enough for the shock to become detached , an error

10 % comes up. If THETA is not specified , it is set to 15/180* pi radians.

11 %

12 % If MA1 , P1 and T1 are not specified , they are set to 2.5 Mach , 101 ’350

13 % Pascal and 288.9 Kelvin , respectively.

14 %

15 % If X and Y are specified such that the point is in the wedge or in the

16 % lower half -plane , an error message is issued. Points exactly on the

17 % shock wave are treated as upstream of the shock wave. The origin is

18 % treated as part of the shockw wave.

19

20 % ***

21 % This m-file is part of the Master Thesis

22 %

23 % "Simulation and validation of compressible flow in nozzle geometries and

24 % validation of OpenFOAM for this application"

25 %

26 % by Benjamin Wuethrich , MSc student of Computational Science and

27 % Engineering at ETH Zurich.

28 %

29 % Work carried out at ABB Corporate Research in Baden -Daettwil from

30 % 15/04/07 until 14/09/07.

31 %

32 % Contact: benjamin.wuethrich@alumni.ethz.ch

33 % ***

34

35 % Parse arguments.

36 switch nargin

85

Validation of OpenFOAM for nozzle flows B MATLAB source code

37 case 2

38 % Set defaults.

39 Ma1 = 2.5; % Freestream Mach number.

40 p1 = 101.35 e3; % Pressure upstream of shock in [Pa].

41 T1 = 288.9; % Temperature upstream of shock in [K].

42 theta = 15/180* pi; % Deflection angle.

43 case 5

44 theta = 15/180* pi; % Deflection angle.

45 case 6

46 % Everything fine.

47 otherwise

48 error(’Wrong number of arguments specified.’)

49 end

50

51 % Set constants for air.

52 R = 287.05; % Specific gas constant of air in [J/(kg*K)].

53 gamma = 1.4; % Heat capacity ratio of air.

54

55 % Compute rho1 from perfect gas relation.

56 rho1 = p1/(R*T1);

57

58 % Check deflection angle (is it compression or expansion ?)

59 if theta < 0

60 error(’This would result in an expansion wave (theta is negative).’)

61 elseif theta >= pi/2

62 error(’theta cannot be equal or larger than pi/2.’)

63 end

64

65 % Calculate and check shock wave angle using the beta -theta -Mach relation.

66 lambda = sqrt((Ma1^2 - 1)^2 - 3*(1 + (gamma -1)/2* Ma1 ^2)*...

67 (1 + (gamma +1)/2* Ma1 ^2)* tan(theta)^2);

68 chi = ((Ma1^2 - 1)^3 - 9*(1 + (gamma -1)/2* Ma1 ^2)*...

69 (1 + (gamma -1)/2* Ma1^2 + (gamma +1)/4* Ma1 ^4)* tan(theta)^2) / lambda ^3;

70 beta = atan((Ma1^2 - 1 + 2* lambda*cos ((4*pi + acos(chi))/3)) /...

71 (3*(1 + (gamma -1)/2* Ma1 ^2)* tan(theta)));

72 if (beta < 0 || ~isreal(beta))

73 error(’The shock is detached , choose a smaller theta or a larger Ma1.’)

74 end

75

76 % Check if the given point is upstream or downstream of the shock wave (or

77 % in a nonsensical position).

78 [phi ,r] = cart2pol(x,y+eps);

79 if (phi < theta && r > 0)

80 % The point lies IN the wedge or in the lower half -plane.

81 error ([’The specified coordinates belong to a point IN the wedge ’ ,...

82 ’or in the lower half -plane.’])

83 elseif (phi < beta && r > 0)

84 % The point is downstream of the shock wave.

85 Ma_n1 = Ma1 * sin(beta); % Normal component of upstream Ma number.

86 rho = rho1 * (gamma + 1) * Ma_n1^2 / ((gamma - 1)* Ma_n1^2 + 2);

87 p = p1 + p1*2* gamma / (gamma + 1) * (Ma_n1^2 - 1);

88 Ma_n2 = sqrt((Ma_n1 ^2 + 2/(gamma -1)) / (2* gamma / (gamma -1) * Ma_n1 ^2 - 1));

89 T = T1 * p/p1 * rho1/rho;

90 Ma = Ma_n2 / sin(beta - theta);

91 else

92 % The point is upstream of the shock wave or at the origin.

93 Ma = Ma1;

94 rho = rho1;

95 p = p1;

96 T = T1;

97 end

86

C Additional results

C.1 Shock tube plots from the solver quality evaluation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x−coordinate of tube [m]

D
en

si
ty

 [k
g/

m
3]

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(a) Density distribution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x−coordinate of tube [m]

M
ac

h
nu

m
be

r

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(b) Mach number distribution

Figure C.1: Density and Mach number distribution at t = 2.5 · 10−4 s: comparison of
OpenFOAM solvers for the 1D case.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x−coordinate of tube [m]

D
en

si
ty

 [k
g/

m
3]

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(a) Density distribution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x−coordinate of tube [m]

M
ac

h
nu

m
be

r

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(b) Mach number distribution

Figure C.2: Density and Mach number distribution at t = 2.5 · 10−4 s: comparison of
OpenFOAM solvers for the 2D case.

87

Validation of OpenFOAM for nozzle flows C Additional results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x−coordinate of tube [m]

D
en

si
ty

 [k
g/

m
3]

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(a) Density distribution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−coordinate of tube [m]
M

ac
h

nu
m

be
r

rhopSonicFoam
rhoSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(b) Mach number distribution

Figure C.3: Density and Mach number distribution at t = 2.5 · 10−4 s: comparison of
OpenFOAM solvers for the axi-symmetric case.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x−coordinate of tube [m]

D
en

si
ty

 [k
g/

m
3]

rhopSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(a) Density distribution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−coordinate of tube [m]

M
ac

h
nu

m
be

r

rhopSonicFoam
sonicFoam
rhoTurbFoam
sonicTurbFoam
Analytical

(b) Mach number distribution

Figure C.4: Density and Mach number distribution at t = 2.5 · 10−4 s: comparison of
OpenFOAM solvers for the 3D case.

88

C.2 Supersonic wedge plots from the solver quality evaluation Validation of OpenFOAM for nozzle flows

C.2 Supersonic wedge plots from the solver quality evaluation

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
0

0.05

0.1

0.15

0.2

0.25

Mach number

D
is

ta
nc

e
fr

om
 w

ed
ge

 [m
]

rhopSonicFoam
sonicFoam
Analytical

(a)

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
0

0.05

0.1

0.15

0.2

0.25

Mach number

D
is

ta
nc

e
fr

om
 w

ed
ge

 [m
]

rhopSonicFoam 2nd order
sonicFoam 2nd order
Analytical

(b)

Figure C.5: Comparison of laminar solver perpendicular samples to analytical solution: (a)
1st order spatial discretisation; (b) 2nd order spatial discretisation

89

