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Abstract

This thesis deals with the topic of control and analysis of constrained dynamical

systems.

Specifically, we consider the dass of hybrid dynamical systems, i.e. systems which

combine continuous dynamics with discrete logic. Such systems can efficiently describe

the dynamical behavior of systems with on/off switches, gear shifts, or can be used to

approximate nonlinearities by utilizing the concept of multiple linearizations.

It is well known that the task of deriving stabilizing controllers for dynamical

systems subject to constraints on states and inputs can be attacked by utilizing the

concept of Receding Horizon Control (RHC). In RHC, the sequence of manipulated

variables is obtained by optimizing a given performance function subject to specified

constraints. Subsequently, only the first input of that sequence is applied to the sys­

tem. At the next time step, the state is measured again and the procedure is repeated.

However, the computational complexity involved in solving each optimization problem

significantly limits the minimal admissible sampling rate at which RHC can be applied

on-line.

This problem has been alleviated to some degree by the recent introduction of

multi-parametric programming to control theory. In this approach the given RHC

optimization problem is solved off-line for all admissible initial conditions which satisfy

system constraints. By solving the problem in a parametric fashion, the solution can

be shown to take the form of a look-up table, which describes a piecewise affine state

feedback law defined over a polyhedral partition. The on-line implementation of such

feedback laws then reduces to a simple set-membership set, which can be performed

very efficiently on-line, thus allowing to apply the concept of RHC to processes with

fast dynamics. The main drawback of the multi-parametric technique, however, is

the growing complexity of the look-up table as the problem size increases. One of the

aims of this thesis is therefore to mitigate this problem.
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IV Abstract

Specifically, various schemes to speed up the calculation of the parametric solutions

to RHC problems are presented in this thesis. A combination of reachability-based

methods along with efficient polytope reduction techniques yields new computation

algorithms which are substantially faster than other known schemes. Moreover, new

algorithms are given which serve to speed up the task of finding a correct entry in the

look-up table on-line.

Large part of this thesis is devoted to a description of the Multi-Parametric Toolbox

(MPT), which is a novel software tool for modeling, control, and analysis of constrained

dynamical systems. The main strong point of MPT is that it simplifies and automates

many tasks a control engineer has to go through when designing and validating optimal

control laws based on the RHC principle. The toolbox offers a broad spectrum of

algorithms compiled in a user friendly and accessible format starting from different

performance objectives (linear, quadratic, minimum-time) to the handling of systems

with persistent additive and polytopic uncertainties. Users can add custom constraints,

such as polytopic, contraction or collision avoidance constraints, or create custom

objective functions. Resulting optimal controllaws can either be embedded into target

applications in the form of the C code, or deployed to control platforms using the Real

Time Workshop.

The MPT toolbox contains all of the algorithms presented in this thesis as well as a

wide range of additional algorithms and tools developed by the academic community.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Analyse und Regelung dynamischer

Systeme mit Beschränkungen.

Die untersuchte Systemklasse der hybriden Systeme zeichnet sich durch die Kom­

bination kontinuierlicher Dynamik mit diskreter Logik aus. Diese Klasse eignet sich

sowohl für eine effiziente Beschreibung schaltender, dynamischer System als auch zur

Approximation nichtlinearer Systeme mit Hilfe einer stückweisen Linearisierung.

Die Berechnung stabilisierender Regelgesetze für solche dynamischen Systeme unter

zusätzlichen Stell- und Zustandsbeschränkungen wird häufig mittels Optimierungsver­

fahren durchgeführt, wobei das Konzept Receding Horizon Control (RHC) zur An­

wendung kommt. Hierbei wird, durch Prädiktion der Zustände und unter Berück­

sichtigung von Nebenbedingungen, ein Gütefunktional minimiert, um eine optimale

Stellgrössensequenz zu generieren. Von dieser Sequenz wird der erste Eingangsvektor

auf das System gegeben. Im nächsten Zeitschritt initiiert die Messung des neuen

Systemzustands eine neuerliche Optimierung. Die Komplexität dieser einzelnen Opti­

mierungsprobleme limitiert massgeblich die maximal erreichbare Abtastrate der RHC.

Durch die Einführung der multi-parametrischen Programmierung in der Regelung­

stechnik konnte diese Grenze deutlich verschoben werden. Bei diesem neuartigen

Ansatz wird das Optimierungsproblem der RHC offline, d.h. für alle möglichen

Zustände des Systems, gelöst. Das Ergebnis ist eine parametrische Darstellung des op­

timalen Eingangs und des Gütefunktionswertes als Funktion dieser Anfangszustände.

Es handelt sich dabei um eine stückweis-affine Funktion, deren Partitionierung durch

lineare Ungleichungen beschrieben wird. Durch die effiziente Darstellung des Regelge­

setzes in Form einer Look-up Tabelle reduziert sich die online Auswertung auf das

Auffinden der aktiven Region des gemessenen Zustandes und das Auswerten eines

affinen Regelungsgesetzes. Dies erlaubt die Anwendung der Modelprädiktiven RHC

für Systeme, die eine hohe Abtastrate benötigen. Ein wesentlicher Nachteil dieser Tech­

nik ist die stark steigende Komplexität der Lösung bei wachsender Problemgrösse.
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VI

Ein Ziel dieser Arbeit ist es, dieses Problem zu entschärfen.

Zusammenfassung

Es werden verschiedene Verfahren zur Beschleunigung der Lösungsberechnung

für das RHC Problem vorgestellt. Dabei kommen eine Kombination aus Erreich­

barkeitsmethoden und effizienten Verfahren zur Polytopreduktion zur Anwendung.

Dies führt auf einen neuen, deutlich verbesserten Algorithmus, der eine schnellere

Berechnung der Regelgesetze erlaubt. Darüber hinaus werden neue Algorithmen für

das Auffinden der aktiven Region und damit das Auswerten der Look-up Tabelle

präsentiert.

Ein grosser Teil der Arbeit befasst sich mit der Beschreibung der Multi­

Parametrischen Toolbox (MPT), einem neuen Programm zur Modellierung, Regelung

und Analyse dynamischer Systeme mit Stell- und Zustandsbeschränkungen. Die

Stärke dieser Software ist eine deutlich vereinfachte und automatisierte Prozedur

zum Entwurf optimaler Regelungen und dessen Validierung. Die Toolbox bietet

ein breites Spektrum von benutzerfreundlichen Algorithmen angefangen bei der Un­

terstützung für verschiedene Gütefunktionale (linear, quadratisch, zeit-minimal, be­

nutzerdefiniert), über die Berücksichtigung additiver und polytopischer Störungen

bis hin zu verschiedenartigen Beschränkungen (polytopisch, kontrahierend oder kolli­

sionsvermeidend).

Das berechnete, optimale Regelgesetz kann automatisch entweder in C-Code ex­

portiert und auf die Zielplattform heruntergeladen werden, oder mittels Real-Time

Workshop auf eine Regelungsplattform portiert werden.

Die MPT Toolbox enthält alle in dieser Arbeit vorgestellten Algorithmen, sowie eine

Vielzahl weiterer Algorithmen und Werkzeuge, die weltweit an Universitäten entwickelt

wurden.
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1

INTRODUCTION

Outline

The focus of this thesis is on Receding Horizon Control (RHC) and Model Predictive

Control (MPC) of discrete-time linear time invariant (LTI) and piecewise-affine (PWA)

systems. PWA systems represent a powerful modelling tool to capture nonlinear and

hybrid behavior of dynamical systems and have therefore received great interest in

academia and industry. Therefore we present in this thesis a novel software tool which

addresses the problems of modeling of hybrid systems, control synthesis, analysis and

deployment of control laws to target platforms.

It is well known, that optimal state feedback controllers for the dass of linear and

hybrid systems can be computed by applying multi-parametric programming tech­

niques. The resulting controller then takes the form of a feedback law which is affine

over polyhedral sets, such that the optimal input becomes a piecewise affine function

of the current state. The necessary on-line effort thus reduces to identifying which

polyhedral set contains the current state and evaluating the associated affine feedback

law. The advantage of this scheme is that no time consuming on-line optimization is

necessary and the control input can be computed with low hardware cost and small

computation time. However, there is a drawback: in the worst case, the number of

controllaws grows exponentially with the size of the control problem and may quickly

reach a prohibitive number of elements.

In this thesis, these complexity issues are investigated and methods for reducing

complexity are presented. Specifically, we attack the two main factors which incur

complexity concerns: (1) the computation of the control laws and (2) the process of

on-line implementation of said controllers. In this thesis we present new approaches

to addressing these two issues for PWA systems.

1



2 1 INTRODUCTION

The thesis is subdivided into four main parts, whereby each part is written to be

self-contained. Hence, certain key theorems and definitions are stated more than once

throughout the thesis.

In the first part of the thesis, the necessary background from the field of optimal

control and computational geometry is summarized. We also present there a novel

way of speeding up the calculation of parametric solutions to mathematical programs.

Part II of this thesis deals with controller construction for PWA systems. It

shows how to obtain stabilizing feedback laws for PWA systems along with the

associated terminal penalties. Based on these results, it is then shown how to for­

mulate control problems which yield feedback controllers of very low complexity.

Finally, a search algorithm based on bounding boxes that speeds up the on-line

application of PWA controllers is illustrated. The results in this part are based

on [SLG+04, GKBM04, GKBM05, CKJM07]

In Part III, the Multi-Parametric Toolbox (MPT) is presented. The MPT toolbox

for MATLAB contains all the algorithms presented in this thesis as weIl as a wide range

of additional algorithms and tools developed by the international academic commu­

nity. This part of the thesis will introduce the reader to MPT, describe the software

framework and provide examples. The content in this part is based on [KGB04].

Finally, several case studies are presented in Part IV which illustrate the potential

and capabilities of the Multi-Parametric Toolbox. Specifically, we show how MPT

was used to design an optimal infusion policy of intravenous Morphine and Ketamine

during the anaesthesia process. Secondly, control design for mechanical systems with

backlash is presented. The content of this part is based on [SZKM05] and [RBBM06].

Contributions

The main contribution of this thesis may be looked at from two perspectives. From

the theoretical point of view we propose new ways of dealing with optimal control of

hybrid systems with constraints. Specifically, we show that stability of the closed-loop

system can be enforced if a suitable terminal set constrain together with an appropriate



3

terminal penalty are used in the MPC-based control design.

These issues are reviewed in Chapter 7 where we provide a simple algorithm to

calculate the stabilizing piecewise linear feedback laws along with a Lyapunov-type

terminal penalty matrix for the dass of PWA systems. We show that the search for

these two entities can be formulated as a positive semidefinite program which can be

solved efficiently using state-of-the-art optimization techniques. The results of this

chapter are exploited in Chapter 8 where we show how the concept of minimum-time

control [GKBM05] may be used to derive feedback controllers for the dass of PWA

systems. The idea is based on steering the system states into an appropriately chosen

terminal set in the least possible number of steps. Once the state is contained in the

terminal set, a stabilizing feedback law drives the states towards the origin. We show

that if such a procedure is used to construct the controller, usually the control law

will be of lower complexity compared to other optimization-based strategies. Equally

important is the fact that the construction of the controller is shown to be fast. The

resulting controller guarantees dosed-loop stability and constraint satisfaction.

We further extend this framework in Section 8.3 to show that if one drops the re­

quirements of exponential stability when constructing the controllaws and only deals

with constraint satisfaction, very simple control laws can be obtained. The stabil­

ity then needs to be checked a-posteriori by searching for a suitable Lyapunov function.

In Chapter 9 we then address the problem of on-line region identification, which

is the procedure one needs to perform in order to apply the resulting PWA optimal

control law on-line. We show that exploiting certain geometrie structure a so-called

interval search tree [CKJM07] can be constructed with very low effort. The tree serves

to speed up the region identification step by eliminating elements which are of no

interest at a particular stage.

The second main contribution presented in Part UI [KGBM03a, KGBC06] is the

description of a software tool- the Multi-Parametric Toolbox - which is a MATLAB­

based toolbox which simplifies and automates many tasks a control engineer has to

go through when designing and validating optimal control laws based on the MPC

principle. As the name of the tool hints, its primal objective is to address the problem

of multi-parametric programming described in Chapter 4. Based on this principle,

the toolbox allows to formulate, solve, analyze and deploy feedback controllers for
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linear and hybrid systems with constraints. The toolbox offers a broad spectrum

of algorithms compiled in a user friendly and accessible format starting from dif­

ferent performance objectives (linear, quadratic, minimum-time) to the handling of

systems with persistent additive and polytopic uncertainties. Users can add custom

constraints, such as polytopic, contraction or collision avoidance constraints, or create

custom objective functions. Resulting optimal contral laws can either be embedded

into target applications in the form of the C code, or deployed to control platforms

using the Real Time Workshop.

ote that many results in this thesis have been obtained in dose collaboration with

various colleagues based on the papers listed in Chapter 27. Moreover, not all of the

results which were obtained during my graduate studies are contained in this thesis.
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2

Standard Optimization Problems

For the sake of completeness, some standard optimization problems and definitions

will first be introduced. For a detailed reference, we refer the reader to the excellent

book [BV04].

A generic optimization problem can be described by the following set of equations.

mm fa(x) (2.1a)
x

subj. to fi(X) :S 0, i = 1, ... ,q, (2.1b)

gj(x) = 0, j = 1, ... , qeq, (2.1c)

with an objective function fa : JRn ---> JR and constraint functions fi : JRn ---> JR,

gj : JRn ---> JR. The variable x is the optimization variable and the solution x* to

optimization problem (2.1) is referred to as optimizer.

Definition 2.1.1 (Convex Function, [Weil) A convex function is a continuous

function whose value at the midpoint of every interval in its domain does not ex­

ceed the average of its values at the ends of the interval. In other words, a function

f(x) is convex on an interval [a, b] if for any two points Xl and X2 in [a, b],

If f (x) has a second derivative in [a, b], then a necessary and sufficient condition for it

to be convex on that interval is that the second derivative f"(x) ~ 0 for alt x in [a, b].

If the objective function fa and the constraint functions f;(x) are convex and the

equality constraints gj are all affine (i.e. Aeqx = Beq ), problem (2.1) is a convex

optimization problem. Although general convex optimization problems can be solved

7
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relatively efficiently it is always advantageous to use dedicated solvers for specific

problems. A number of specific convex optimization problems for which such solvers

exist will be discussed in the following.

Linear Program (LP)

min cT x
x

subj. to Ax ~ B,

Aeqx = B eq .

A practical algorithm to solve an LP with n variables and s constraints requires

roughly O((n3 +n2 s)y's) operations on average (see Section 4.3, page 36). There

are two fundamentally different types of algorithms for solving LPs: simplex and

interior-point solvers. The runtime for the simplex method is exponential in the

worst case, while interior-point algorithms have a worst-case polynomial bound.

However, this worst-case bound has little relevance for practical problems and

both schemes are competitive in practice.

Quadratic Program (QP)

min
x

subj. to

1
-xTQx + cTX
2

Ax ~ B,

Aeqx = Beq .

When referring to QPs it is generally assumed that Q t 0, such that the resulting

optimization problem is convex. QPs can be solved with roughly the same

efficiency as LPs, but on average the solvers are approximately 5-times slower

than LP solvers [Neu04, page 37].

Linear Matrix Inequality (LMI) The semidefinite cone F(x) >- 0 can be described

with LMIs according to

q

F(x) = Fo+ LX(i)Fi t 0,
i=O

x E IRq F = FT E IRnxn
,1. 1. ,

where X(i) denotes the i-th element of the vector x. LMIs are generally used

when searching for a matrix, for which some linear combination of the matrix is
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required to be positive definite, hence the term Linear Matrix Inequality (LMI).

In contral for example, LMIs are often used to obtain Lyapunov functions and

stabilizing feedback laws [BGFB94]. Note that an LMI defines a feasible set and

is not an optimization problem as (2.1).
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Polytopes

Polytopic (or, more general, polyhedral) sets are an integral part of most standard

constrained contral problems. For this reason we present some definitions and funda­

mental operations with polytopes. For additional details on polytope computation we

refer the reader to [Zie94, GrüOO, FukOO].

3.1 Definitions

Some basic definitions in computational geometry will be introduced in this section.

Definition 3.1.1 (Convex Set, [BV04D A set C is convex if the line segment be­

tween any two points in C lies in C, i. e., if for any Xl, X2 E C and any real scalar e

with 0::; e ::; 1, we have eXI + (1 - e)X2 E C.

Definition 3.1.2 (Neighborhood, [WeiD The neighborhood of a point X E IRn

(also called an epsilon-neighborhood or infinitesimal open set) is the set of points inside

an n-ball with center X and radius E > O.

Definition 3.1.3 (Closed Set, [WeiD A set S is closed if every point outside S has

a neighborhood disjoint from S.

Definition 3.1.4 (Bounded Set, [WeiD A set in IRn is bounded if it is contained

inside some ball ßR = {x E IRn I IIxI12 ::; R} of finite radius R.

Definition 3.1.5 (Compact Set, [WeiD A set in IRn is compact if it is bounded

and closed.

11
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Definition 3.1.6 (Polyhedron, [GrüOO]) A convex set S ~ IRn given as an inter­

section of a finite number of closed half-spaces

(3.1)

is called a polyhedron. Here, So E IRq, SX E IRqxn where q denotes the number of

half-spaces defining Sand the operator :S denotes an element-wise comparison of two

vectors.

Definition 3.1.7 (Polytope, [GrüOO]) A bounded polyhedron P c IRn

(3.2)

is called a polytope. Here, po E IRq, px E IRqxn where q denotes the number of

half-spaces defining P and the operator :S denotes a element-wise comparison of two

vectors.

A polytope defined by half-spaces is depicted in Figure 3.1(a).

Definition 3.1.8 (Dimension of Polytope) A polytope P c IRn is of dimension

d :S n, if there exists a d-dimensional ball with radius E > 0 contained in P and there

exists no (d + 1) -dimensional ball with radius E > 0 contained in P.

Definition 3.1.9 (Face,Vertex, Edge, Ridge, Facet, [Zie94]) A linear inequal­

ity aT x :S b is called valid for a polyhedron P if aT x :S b holds for all x E P. A

subset :F of a polyhedron is called a face of P if it can be represented as

(3.3)

for some valid inequality aT x :S b. The faces of a polyhedron P of dimension 0, 1,

(n - 2) and (n - 1) are called vertices, edges, ridges and facets, respectively.

Note that 0 and P itself are also faces of P [FukOO].

One of the fundamental properties of a polytope is that it can be described in

half-space representation as in Definition 3.2 or in vertex presentation, as given below,

Vp vp

P = {x E IRn Ix= L:>~iV~i), O:S ai:S 1, Lai = I}, (3.4)
i=l i=l
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M
><

x,
(a) Illustration of the half-space representa-

tion of a polytope P. The half-spaces p(~) x ::;

p(~)' i = 1, ... , 7 are depicted in bold.

Xl

(b) Illustration of the vertex representation of
. (1) (7)a polytope P. The vertIces Vp , ... , Vp are

depicted in bold.

Figure 3.1: Illustration of a polytope P in half-space and vertex representation.

where V~i) denotes the i-th vertex of P, and Vp is the total number of vertices of P

(see Figure 3.1(b)).

It is obvious from the above definitions that every polytope represents a convex and

compact set. We say that a polytope P c ~n, P = {x E ~n I pXx ::; PO} is Juli

dimensional if::Jx E ~n, E E ~ such that E > 0 and PX(x + <5) ::; po, \j <5 E ~n subject

to 11<511 ::; E, i.e., it is possible to fit an-dimensional ball inside the polytope P. A

polytope is referred to as empty if ~x E ~n such that PXx ::; po. Furthermore, if

IIP(~)II = 1, where p(~) denotes i-th row of a matrix px, we say that the polytope Pis

normalized.

Remark 3.1.10 Note that the MPT toolbox (see Part III or !KGB04J) only deals

with Juli dimensional polytopes. Polyhedra and lower dimensional polytopes are not

considered, since they are not necessary to Jormulate realistic control problems, i. e. it

is always possible to Jormulate the problems using Juli dimensional polytopic sets only.

We say that a polytope P c ~n, P = {x E ~n I pXx ::; PO} is in a minimal repre­

sentation if the removal of any of the rows in pXx ::; po would change it (i.e., there are

no redundant half-spaces). The computation of a minimal representation (henceforth

referred to as polytope reduction) of polytopes is discussed in Section 4.3 and generally

requires to solve one LP for each half-space defining the non-minimal representation of

P [Bon83]. It is straightforward to see that a normalized, full dimensional polytope P
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has a unique minimal representation. This fact is very useful in practice. Normalized,

full dimensional polytopes in a minimal representation allow us to avoid any ambiguity

when comparing them and very often speed up other polytope manipulations.

Definition 3.1.11 (P-collection) A P-collection is the (possibly non-convex) union

of a finite number of R polytopes R r! i.e. R = UrE{l, .. ,R} R r .

Note that the polytopes R r defining the P-collection R can be disjoint and/or over­

lapping.

Remark 3.1.12 Algorithms for all operations and functions described in this chapter

are contained in the MPT toolbox (see Part III or fKGB04j).

3.2 Operations on Polytopes

In this section, some of the basic manipulations on polytopes will be defined.

Chebychev Ball: The Chebychev Ball of a polytope P = {x E JRn I pxx ::; PO}

corresponds to the largest radius ball BR(xc ) = {x E JRn Illx - xclb ::; R}, such

that BR C P, see Figure 3.2(a). The center and radius of the Chebychev ball

can be easily found by solving the following LP [BV04]

maxR
xc,R

(3.5a)

(3.5b)

The subindex (i) in (3.5) denotes the i-th row of p(~) and p(~)' respectively and

P is defined by the intersection of q half-spaces. If the obtained radius R = 0,

then the polytope is lower dimensional; if R < 0, then the polytope is empty.

Note that the center of the Chebychev Ball is not unique, in general, i.e. there

can be multiple solutions (e.g. for rectangles).

Projection: Given a polytope P = {x E !Rn, y E JRm I pxx + pYy ::; PO} c !Rn+m the

orthogonal projection onto the x-space !Rn is defined as
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N
X

Xl

(a) Chebychev ball contained in a poly-

tope P.

~

(b) Projection of a 3-dimensional polytope P onto

a plane.

15

Figure 3.2: Illustration of the projection operation and the Chebychev ball.

An illustration of a projection operation is given in Figure 3.2(b). Current

projection methods can be grouped into four classes: Fourier elimination [Cer63,

KS90], block elimination [BaI98], vertex based approaches and wrapping-based

techniques [JKM04]. For a good introduction to projection, we refer the reader

to [JKM04] and the references therein.

Set-Difference: The Set-Difference of two polytopes P and Q

R = P \ Q ~ {x E jRn I xE P, x ~ Q}, (3.7)

is a P-collection R = Ui R i , which is easily computed by consecutively inverting

the half-spaces defining Q as described in [BMDP02] (see Figure 3.3). The set

difference between two P-collections C and D can be computed as described

in [BT03, GKBM05, RKM03]. Checking whether C ~ D is easily implemented

since C ~ D {::} C \ D = 0. Similarly C = D is also easily verified since C = D {::}

(C \ D = 0 and D \ C = 0).

Remark 3.2.1 The set difference of two closed sets C and D is an open set, if

C n D i- 0. In this thesis, we will henceforth only consider the closure of C \ D.

Convex Hull: The convex hull of a set of points V = [VI, ... ,Vp] is defined as
vp vp

hull(V) = {x E jRn I x = Laivi, 0 ~ ai ~ 1, Lai = I}. (3.8)
i=1 i=l
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x'"

P

X,

(a) Polytopes P and Q

'"x

X,

(b) Set difference R = UiE{1, .. ,4} R i = P\ Q.

Figure 3.3: Illustration of the set-difference operation.

The convex hull operation is used to switch between half-space and vertex rep­

resentations. The convex hull of a union of polytopes (referred to as Extended

Convex Hull, [FLLOOJ) R r C lRn , r = 1, ... , R, is a polytope

hull (Q 'R,-) !'c {x Eil." I Clx" E 'R", x ~t ,,"x", 0 S a,. S 1, t "" ~ I}.

(3.9)

An illustration of the convex hull operation is given in Figure 3.4.

Envelope: The envelope of two polyhedra P = {x E lRn I pxx :S PO} and Q = {x E

lRn I QXx :S QO} is given by

(3.10)

where pxx :S po is the subsystem of pxx :S po obtained by removing all the

inequalities not valid for the polyhedron Q, and (Jxx :S (Ja are defined in a similar

way with respect to QX x :S QO and P [BFT01]. The envelope can analogously

be computed for a P-collection or a complex. An illustration of the envelope

operation is depicted in Figure 3.5. The envelope can be computed by solving

c· d LPs where c is the number of input polytopes (here: P and Q, i.e. c = 2)

and d is the total number of facets [BFT01]. It holds that Pu Q ~ env(P, Q)
and that Pu Q is convex <=> Pu Q = env(P, Q). Note that the envelope of

several polytopes can be a polyhedral set or even lRn , e.g. the envelope of a star

shaped object is lRn .
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x,
(a) P-collection R = UiE{1,2} R i .

N
X

hull(R)

x,
(b) Convex hull of R.

Figure 3.4: Illustration of the convex hull operation.

x,
(a) P-collection R = UiE{1,2} R i .

N
X

x,
(b) Envelope env(R).

Figure 3.5: Illustration of the envelope operation.

Vertex Enumeration: The operation of extracting the vertices of a polytope P given

in half-space representation is referred to as vertex enumeration [FP96, Fuk97].

This operation is the dual to the convex hull operation and the algorithmic

implementation is identical to a convex hull computation, i.e. given a set of

points V = [Vl, ... ,vp] it holds that V = vert(hull(V)), where the operator vert

denotes the vertex enumeration.

Pontryagin Difference: The Pontryagin difference (also known as Minkowski­

Difference) of two polytopes P and Q is a polytope

Pe Q ~ {x E JRn I x + q E P, Vq E Q}. (3.11)

The Pontryagin difference can be computed by solving one LP for each half-space

defining P [KG98]. For special cases (e.g. when Q is a hypercube), even more
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efficient computational methods exist [KM03]. An illustration of the Pontryagin

difference is given in Figure 3.6(a).

PEBQ--;-------

x'"

Xl Xl

(a) Pontryagin difference of two polytopes (b) Minkowski surn of two polytopes P EB Q.
PeQ.

Figure 3.6: Illustration of the Pontryagin difference and Minkowski sum operations.

Minkowski Sum: The Minkowski sum of two polytopes P and Q is a polytope

P EB Q ~ {x + q E JRn I xE P, q E Q}. (3.12)

If P and Q are given in vertex representation, the Minkowski sum can be com­

puted in time bounded by a polynomial function of input and output size. If

P and Q are given in half-space representation, the Minkowski sum is a com­

putationally expensive operation which requires either vertex enumeration and

convex hull computation in n-dimensions or a projection from 2n down to n di­

mensions. The implementation of the Minkowsi sum via projection is described

below.

p = {y E JRn IpYy :S PO},

it holds that

W PEBQ

{x E JRn I x = y + z, pYy :S po, QZz:S QO, y, z E JRn}

{x E JRn I :Jy E JRn, subj. to pYy :S po, QZ(x - y) :S QO}

{ x E ~n I 3y E ~n, subj to [~" ~,] [:] < [~:] }
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Both the projection and vertex enumeration based methods are implemented in

the MPT toolbox (see Part III or [KGB04]). An illustration of the Minkowski

sum is given in Figure 3.6(b).

Remark 3.2.2 The Minkowski sum is not the complement 01 the Pontryagin

difference. For two polytapes P and Q, it holds that (P e Q) EB Q <;::; P. This is

illustrated in Figure 3.7.

P p pe Q) EB Q

"
(a) Two polytopes P and Q. "

(b) Polytope P and Pontryagin

difference P e Q.

"
(c) Polytope P e Q and the set

(P e Q) EB Q.

Figure 3.7: Illustration that (P e Q) EB Q <;::; P.

3.3 Operations on P-collections

This section covers some results and algorithms which are specific to operations with

P-collections. P-collections are unions of polytopes and therefore the set of states

contained in a P-collection can be represented in an infinite number of ways, i.e.

the P-collection representation is not unique. For example, one can subdivide any

polytope P into a number of smaller polytopes whose union is a P-collection which

covers P. Note that the complexity of all subsequent computations depends strongly

on the number of polytopes representing a P-collection. The smaller the cardinality

of a P-collection, the more efficient the computations.

The first two results given here show how the set difference of a P-collection and a

P-collection (or polyhedron) may be computed:
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Lemma 3.3.1 Let C ~ UjE{l, ... ,J} Cj be a P-collection, where all the Cj, j E {I, , J},

are non-empty polyhedra. If S is a non-empty polyhedron, then C\ S = UjE{l, ,J} (Cj \

S) is a P-collection.

Lemma 3.3.2 Let the sets C ~ UjE{l, ... ,J} Cj and D ~ Uy=l, ... ,Y Dy be P-collections,

where all the Cj, j E {I, ... , J}, and D y , y E {I, ... ,Y}, are non-empty polyhedra. If

[0 ~ C and [y ~ [y-l \ Dy , Y E {I, ... ,Y} then C \ D = [y is a P-collection.

The reader is referred to [RKM03] for proofs and comments on computational efficiency.

That C ~ D can be easily verified since C ~ D B C \ D = 0, similarly C = D is also

easily verified since

C = D B (C \ D = 0 and D \ C = 0)

ext, an efficient algorithm for computing the Pontryagin difference of a P­

collection and a polytope is presented. If Sand Bare two subsets of JRn it is known that

S eB = [SC EB (-B)t (see for instance [Ser88,KerOO]), where (f denotes the set com­

plement. The following algorithm taken from [RGK+04] implements the computation

ofthe Pontryagin difference of a P-collection C ~ UjE{l, ... ,J}Cj , where Cj,j E {I, ... , J}
are polytopes in JRn, and a polytope B c lRn.

Algürithm 3.3.3 (Püntryagin Difference für P-cüllectiüns, C e B)

1. Input: P-collectionC, polytope B;

2. H ~ env(C) (or H ~ hull(C));

3. D ~HeB;

4· [~H\C;

5. F~[EB(-B);

6. 9 ~ D \ F;

7. Output: P-collection 9 ~ C e B.

Remark 3.3.4 Note that H in Step 2 of Algorithm 3.3.3 can be any convex set con­

taining the P-collection C. Furthermore, the computation of H is generally more effi­

cient if the envelope operation is used instead of convex hull.
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N
X

Xl

(a) UjE{l,.,J} Cj and 8.

Xl

(b) H=hull(C).

,,,,,
N ,

X ,,,,,

l""",.

'~~~~~-",,'

Xl

(d) [=H\C .

,,,,,,,,,,,,

N
X

•/
:F

\
.-, ,

""" """.f '-

Xl

(e) F = [EB (-8).

N
X

Figure 3.8: Graphical illustration of Algorithm 3.3.3.
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Remark 3.3.5 It is important to note that (UjE{l, ...,J}Cj ) e 8 =F UjE{l, .. ,J}(Cj e
8), where Band Cj are polyhedra; hence, the relatively high computational effort of

computing the Pontryagin difference of a P-collection and a polytope.

Theorem 3.3.6 (Computation of Minkowski Difference, [RGK+04]) For Al­

gorithm 3.3.3, 9 = C e 8.

Proof It holds by definition that

1) ~ 'H e 8 = {x rt x + w E 'H, Vw E 8},

E ~ 'H \ C = {x rt x E 'H and x tj. C}.

By the definition of the Minkowski sum:

F ~ E fB (-8) = {x rt x = z + w, z E E, w E (-8)}

= {x rt:Jw E (-8), S.t. x+w E E}.

By definition of the set difference:

1) \ F ~ {x I x E 1) and x tj. F}

= {x E 1) rt ~ w E 8 s. t. x + w E E}

= {x E 1) rt x + w tj. E, Vw E 8}.

From the definition of the set 1):

1) \ F = {x rt x + w E 'H and x + w tj. E, Vw E 8}

And from the definition of the set E and because C s: 'H:

1) \ F = {x rt x + w E 'H and (x + w tj. 'H or x + w E C) Vw E 8}

= {x rt x + w E C, Vw E 8}

=Ce8.

o

Algorithm 3.3.3 is illustrated on a sample P-collection in Figures 3.8(a) to 3.8(f).
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Remark 3.3.7 It should be noted that Algorithm 3.3.3 for computation of the Pon­

tryagin difference is conceptually similar to the one proposed in (Ser88, KerOO, KM02j.

However, the envelope (BFT01) operation employed in step 2 significantly reduces (in

general) the number of sets obtained at step 4, which in turn results in fewer Minkowski

set additions. Since the computation of a Minkowski set addition is expensive, a run­

time improvement can be expected. The necessary computations can be efficiently im­

plemented by using standard computational geometry software such as (Ver03, KGB04J.
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Multi-Parametric Programming

In this chapter, the basics of multi-parametric programming will be summarized. For a

review of standard optimization techniques, we refer the reader to [BV04]. An in-depth

discussion of multi-parametric programs is given in [Bor03] and [T0nOO].

4.1 Definitions

Consider the following optimization problem

J1v(x)

subj. to

min V(x, UN )
UN

GUN::::; W +Ex,

(4.1a)

(4.1b)

where UNE lFtN is the optimization variable and x E lFtn is the parameter with

GE lFtqXN
, W E lFtq and E E lFtqxn

. In multi-parametric programming, the objective is

to obtain the optimizer U'N for a whole range of parameters x, i.e. to obtain U'N(x) as

an explicit function of the parameter x. The term multi is used to emphasize that the

parameter x is a vector and not a scalar. Depending on whether the objective function

V (x, UN) is linear or quadratic in the optimization variable UN, the terminology multi­

parametrie Linear Program (mp-LP) or multi-parametric Quadratic Program (mp-QP)

is used. First, we give the basic definitions using the mp-QP nomenclature before re­

stating the properties of both mp-QP and mp-LP solutions in Section 4.2.

Consider the following quadratic program

J1v(x)

subj. to

If}~n { U~HUN + x
T

FUN}

GUN::; W + Ex,

H>- 0,

(4.2a)

(4.2b)

(4.2c)

25
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where the column vector UN E IRN is the optimization vector. The number of con­

straints q corresponds to the number of rows of W, i.e. W E IRq. Henceforth, Uiv(x)

will be used to denote the optimizer of (4.2) for a given parameter x. For any given

x, it is possible to obtain the optimizer by solving a standard quadratic programming

problem l
. Before going further , we will introduce the following definitions.

Definition 4.1.1 (Feasible Set X N ) We define the feasible set X N ~ IRn as the set

of states x for which the optimization problem (4.2) is feasible, i. e.

(4.3)

The set Xoo is defined accordingly by Xoo ~ limN->oo XN . The set XN can be computed

via a projection operation as in (3.6).

Definition 4.1.2 (Polytopic/Polyhedral Partition) A collection of polytopic

(polyhedral) sets {Pr }~l = {Pl, ... , PR} is a polytopic (polyhedral) partition of

a polytopic (polyhedral) set G if (i) U~=l Pr = G, (ii) (Pr \8Pr) n (Pq\8Pq ) = 0,

\Ir i- q, where () denotes the boundary.

Definition 4.1.3 (PWA and PWQ) Consider the function f over a polyhedral set

S.

f : S ---t IRd with d E N+ is piecewise affine (PWA), if a partition {Pr }~=l of set S

exists, such that f(x) = Lrx + Cr if x E Pr.

f : S f---t IR is piecewise quadratic (PWQ), if a partition {Pr }~=l of set S exists, such

that f(x) = xTQrx + Lrx + Cr if x E Pr'

Definition 4.1.4 (Active Constraints AN (x)) The set of active constraints AN (x)

at point x of problem (4.2) is defined as

AN (x) = {i E J I G(i)U'fy(x) - W(i) - E(i)x = O}, J = {I, 2, ... , q},

where G(i)' W(i), and E(i) denote the i-th row ofthe matrices G, W, and E, respectively,

and q denotes the number of constraints, i. e. W E IRq.

Definition 4.1.5 (Linear Independence Constraint Qualification, [TJB03a])

For an active set of constraints AN, we say that the linear independence constraint

qualification (LICQ) holds if the set of active constraint gradients are linearly inde­

pendent, i. e. GAN has full row rank.

IThe standing assumption here is that H >- O. The case H ~ 0 is covered in [TJB03b].
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As shown in [BMDP02, TJB01], we wish to solve problem (4.2) for all x within the

polyhedral set of values XN , by considering (4.2) as a multi-parametric Quadratic

Program (mp-QP).

Theorem 4.2.1 (Properties mp-QP, [BMDP02, Bor03]) Consider the multi­

parametrie Quadratic Program (4.2). Then, the set of feasible parameters X N is

convex, the optimizer UN : XN ----t lRN is continuous and piecewise affine (PWA), i.e.

U~(x) = Frx + Gr, if x E Pr = {x E lRnjHrx :s; Kr}, r = 1, ... , R, (4.4)

and the optimal value function J* : X N ----t lR is continuous, convex and piecewise

quadratic.

Definition 4.2.2 (Region) Each polyhedron Pr of the polyhedral partition {Pr }~=l

is referred to as a region.

For some mp-QP problem, the region partition {Pr}~l and PWQ value function J*(x)

is depicted in Figures 4.1(a) and 4.2(a), respectively. ote that the evaluation of the

PWA solution (4.4) of the mp-QP provides the same result as solving the quadratic

program, i.e. for any given parameter x, the optimizer UN(x) in (4.4) is identical to

the optimizer obtained by solving the quadratic program (4.2) for x.

Problem (4.1) with an objective (4.1a) that is linear in the optimizer UN can be

stated as an mp-LP [BBMOOa]. The properties of mp-LP solutions are stated below.

Theorem 4.2.3 (Properties mp-LP, [Bor03, Ga195]) Consider the the optimiza­

tion problem (4.1), with a linear objective V(x, UN ) = xTcfuN + cIuN . Then, the set

of feasible parameters XN is convex, there exists an optimizer UN : XN ----t lR.Nm which

is continuous and piecewise affine (PWA), i.e.

and the value function JN : XN ----t lR is continuous, convex and piecewise affine.

For some mp-LP problem, the region partition {Pr}~l and PWA value function J*(x)

is depicted in Figures 4.1(b) and 4.2(b), respectively.
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Controller partition with 31 regions.
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(b) mp-LP Partition.

Figure 4.1: Partition {Pr }~l for an mp-LP and an mp-QP problem. The constraints

(4.1 b) are identical for both problems. Therefore XN is also identical for

both problems.

Remark 4.2.4 Assume that the origin is contained in the interior of the constraint

polytope (4.1b) in x-UN space. Because the value function for mp-QPs is PWQ, the

origin is always contained in the interior of a single region. Specijically, the origin

is always contained in the unconstrained region, z. e. the set of active constraints

AN(x) = (/) for x = O. See Figure 4.1.
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(a) mp-QP Partition with PWQ J*(x).
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K
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(b) mp-LP Partition with PWA J*(x).

Figure 4.2: Partition {Pr }~=l and value function J*(x) for an mp-LP and an mp-QP

problem.
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Abrief outline of a generic mp-QP algorithm will be given next. For a detailed

discussion of mp-QP algorithms we refer the reader to the literature [BMDP02,TJB03a,

Bao02]. Before reviewing the algorithm, it is useful to define

(4.5)

and to transform the QP formulation (4.2) such that the state vector x apears only in

constraints, i.e.

J';y (x) = m}n { zT HZ}
subj. to Cz :s; W + Sx

(4.6a)

(4.6b)

where S = E+CH- 1pT. An mp-QP computation scheme then consist of the following

three steps:

1. Active Constraint Identification: A feasible parameter x is determined and the

associated QP (4.6) is solved. This will yield the optimiser z and active con­

straints A(x) defined as inequalities that are active at solution, i.e.

A(x) = {i E J I C(i)Z = W(i) + S(i)x} , J = {I, 2, ... , q}, (4.7)

where C(i), W(i)' and S(i) denote the i-th row of the matrices C, W, and S,
respectively, and q denotes the number of constraints. The rows indexed by the

active constraints A(x) are extracted from the constraint matrices C, Wand S

in (4.6) to form the matrices CA, WA and SA'

2. Region Computation: Next, it is possible to use the Karush-Kuhn-Tucker (KKT)

conditions to obtain an explicit representation of the optimiser UN(x) which is

valid in some neighborhood of X. These are for our problem defined as

Hz+CT),=O

),T (CZ - W - Sx) = 0

),2:0

Cz:S; W + Sx

Optimised variable z can be solved from (4.8a)

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.9)
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Condition (4.8b) can be separated into active and inactive constraints. Für

inactive constraints holds AI = O. For active constraints are the correspond­

ing Lagrange multipliers AA positive and inequality constraints are changed to

equalities. Substituting for z from (4.9) into equality constraints gives

(4.10)

and yields expressions for active Lagrange multipliers

(4.11)

The optimal value of optimiser z and optimal control trajectory UN are thus

given as affine functions of x

where

z = -H-IG~(GAH-IG~)-l(WA + SAX)

UN = z - H-1FTx

= -H-IG~(GAH-IG~)-l(WA + SAX) - H-1FTx

= Frx + Gr

Fr = H-IG~(GAH-IG~)-lSA - H-1FT

Gr = H-IG~(GAH-IG~tlWA

(4.12)

(4.13)

(4.14)

(4.15)

In a next step, the set of states is determined where the optimiser UN(x) satisfies

the the same active constraints and is optimal. Such a region is characterised

by two inequalities (4.8c), (4.8d) and is written compactly as Hrx :S Kr where

(4.16)

(4.17)

3. State Space Exploration: Once the controller region is computed, the algorithm

proceeds iteratively until the entire feasible state space XN is covered with con­

troller regions Pr, i.e. XN = Ur=l, .. ,R Pr.
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Remark 4.2.5 The number of rows in Hr is equal to the number of initial constraints

(4.1b), i.e. H r consists of q rows if W E IRY. Therefore, in order to obtain a non­

redundant representation of Pr, it is necessary to salve q LPs (see Chapter 3) for each

region r E {I, ... , R}. In most cases one can increase the computational efficiency of

multi-parametric solvers by computing the non-redundant representation of the original

constraint polytape (4.1b) before solving the multi-parametric program.

4.3 Efficient Polytope Reduction in

Multi-Parametric Programming

Computation of the minimal representations of the controller regions Pr = {x E

IRn !Hrx :s: Kr} where Hr and Kr are given, respectively, by (4.16) and (4.17) can

significantly reduce the computational load in most multi-parametric programming

solvers [TJBOl]. Therefore in this section we describe techniques which can be ap­

plied in order to speed up the process of obtaining minimal representations of convex

polytopes.

The standard approach to detect if the jth constraint in the set

Hx < K (4.18)

H

K

is redundant, is to define a new polyhedron with the jth constraint removed,

hj- 1 hj+l ... her

kj- 1 kj+l ... ker

and maximize hJx in the reduced polytope iix :s: K

s.t.

max hJx
x

- -
Hx:S: K

(4.19a)

(4.19b)

If the optimal objective value of this problem is less than or equal to kj , the constraint

is redundant and can be removed [FukOO].
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To detect and remove all redundant constraints, the algorithm requires the solution

of c LPs with, in the worst-case, c - 1 constraints and n variables. To improve the

performance of this algorithm, we need to reduce the number of LPs to be solved, and

preferably also their size. Our approach to do this is to perform an initial, computation­

ally cheap, pre-solve analysis to detect a sub-set of the redundant and non-redundant

constraints.

4.3.1 Detecting Non-Redundant Half-Spaces

By detecting some of the non-redundant constraints, we can reduce the number of LPs

that have to be solved to derive the minimal representation of a polytope. We first

propose the application of a simple randomized ray-shooting approach [Bon83].

1. Initialize the set of non-redundant constraints :IN = 0

2. Calculate an interior point Xint, H Xint < K

3. Generate a random direction d E !Rn

4. Calculate intersections between the line Xint + tid and the hyper-plane hTx = ki ,

giving t = k, -h;Xmt

t h;d

5. Find the closest intersecting hyper-planes along positive and negative direction

d, corresponding to smallest positive and largest negative t respectively. Let the

corresponding indices to these hyper-planes be ip and in. These constraints are

non-redundant such that :IN := :IN U ip U in

6. Let the mid-point of the line between the two intersection points Xint + tpd and

Xint + tnd serve as a new interior point, Xint := Xint + tip;t
in d

7. Repeat from 3)

An illustration of this algorithm is given in Figure 4.3. The algorithm requires an

interior point to begin with in step 2. To find one, we calculate the Chebychev center

of the polytope, requiring the solution of one LP (see (3.5)).

Remark 4.3.1 Note that the active constraints (see Definition 4.1.4) which are ob­

tained when solving the Chebychev-Ball problem can also be used to initialize the set

of non-redundant constraints :IN. Obviously, all half-spaces which are 'touched' by the

ball are non-redundant, provided all duplicate half-spaces have been removed.
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(a) Half-spa~es defining

the polytope.

o

(d) Compute int~rsection of ray

with dosest half-spaces (bold cir­

des). These half-spaces are non­

redundant.

o

(b) 0 btain inter;~r point Xint by

computing the Chebychev ball.

o

(e) Compute ne~ interior point

-I?ti;;-O--=--'---;,--_J-!:o---==;=-

(g) Compute int~rsection of ray

with dosest-half spaces (bold cir­

des).

o
"

(c) Create random ray emanating

from Xint.

0" 0

o
"

(f) Create random ray emanating

from Xint.

Figure 4.3: Illustration of the scheme to detect non-redundant half-spaces. Here,

all non-redundant constraints happen to be identified by computing the

Chebychev ball (see Remark 4.3.1).

Of-course the number of ray-shooting iterations is an important parameter. In the

current implementation, Ic/2l iterations are performed. This value was heuristically

determined by numerous simulation runs.
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Although there is no guarantee that we find all , or even a significant part of the

non-redundant half-spaces, the algorithm is simple enough to motivate its use. Note

that the algorithm is most efficient when the fraction of redundant constraints is low.

4.3.2 Detecting Redundant Half-Spaces

By detecting redundant half-spaces, we not only reduce the number of LPs that have

to be solved in (4.19), but we also reduce the size of these LPs, since the corresponding

constraints can be removed.

Detecting redundant constraints in LPs is a standard problem, and is done in most

LP solvers during a pre-solve analysis of the problem. The key idea in pre-solve

algorithms is to exploit variable bounds L ~ x ~ U to detect obviously redundant

constraints [Gon97].

To detect if hTx ~ ki , hi = [hi1 hi2 ... hin] is redundant, each term in hTx is

individually maximized to obtain an upper bound on hTx

n

L hiXi ~ L hijUj + L hijLj
i=l jE{j:hij>O} jE{j:hij<O}

(4.20)

If the right-hand side of (4.20) is less than ki , the constraint is redundant and can be

removed. Hence, the set of redundant constraints detected in the pre-solve analysis is

defined by

:lR~{iE{l""'C}1 (4.21)

Tight variable bounds Land U are crucial for this pre-solve algorithm to be effi­

eient. In a pre-solver used in an LP solver, crude bounds are typically given by a

priori knowledge, and by applying a more advanced pre-solve algorithm iteratively,

the bounds can in some cases be improved upon by inferring more information from

the constraints.

The standard pre-solve analysis that is applied before solving an LP is required to

be cheap in order to actually yield runtime benefits, since the LP itself can be solved

efficiently. In contrast, we are here solving a total of c LPs for polytope reduction,

where c denotes the total number of constraints, i.e., the number ofrows of H. Hence,

we can spend a lot more effort on a pre-solve analysis since it benefits each of the c

LPs.
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Since tight lower and upper bounds are crucial for the detection of redundant con­

straints using (4.20), we solve 2n LPs (x E ]Rn) to derive exact lower and upper

bounds on x in the polytope H x ::; K. Specifically we solve the following LP for all

iE{l, ... ,n}:

S.t.

min ±x(i)
x

Hx ::; K

(4.22a)

(4.22b)

where X(i) denotes the i-th element of the vector x E ]Rn. Of-course, spending the effort

of solving 2n LPs to find the bounding box of a polytope, to be used in the possibly

inefficient algorithm (4.20), is only reasonable if the expected number of detected

redundant constraints is large and n is sufficiently small compared to c. This is

generally the case if multi-parametric programming is used in the context of controller

computation. An illustration of the bounding box computation is given in Figure 4.4.

Figure 4.4: Illustration of abounding box. If the bounding box does not intersect a

hyper-plane, it is redundant.

4.3.3 Complete Algorithm

Putting the two parts together, we obtain the reduction algorithm.

Algorithm 4.3.2 (Efficient Polytope Reduction)
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1. Calculate upper and lower bounds using (4.22)

2. Apply (4.21) to remove redundant constraints JR.

3. Compute the Chebychev ball to find interior points and a subset Je oi non­

redundant constraints

4· Find a subset JN oi the non-redundant constraints using ray-shooting on the

constraints J / JR.

5. Check redundancy oi remaining unresolved constraints h[x ::; k i , Vi E J /(JR U

Je U JN) by solving the LP (4.19).

Observe that the ray-shooting algorithm is efficient for polytopes with few redundant

constraints, while the bounding box method is most useful for polytopes with many

easily detected redundant constraints. Hence, the two pre-analysis algorithms together

cover many levels of redundancy.

The expected computational gains from the two pre-solve steps can be estimated if

we take the computational complexity of solving an LP into account. A rough com­

plexity analysis of a modern interior-point algorithm to solve an LP with n variables

and s constraints would typically give O((n3 + n2s).jS) operations2 [dH94]. Hence,

a polytope reduction algorithm, solving s LPs, will have super-quadratic complexity

with respect to the number of constraints in the original polytope. Consequently, the

effect of removing redundant constraints by using the bounding box approach will be

super-quadratic, i.e. removing half of the constraints will reduce the computational ef­

fort by more than a factor of four. The impact of the ray-shooting scheme on the total

runtime will however only be linear, since the size of the remaining LPs is unaffected,

only the number of LPs is reduced.

4.3.4 Other Usage of Bounding Boxes

The outer box approximations defined by (4.22) can be efficiently used in many prob­

lems arising in fields of reachability analysis for hybrid systems, approximate projec-

2The main computational burden in each interior-point iteration is the calculation of the Schur­

matrix H T DH and factorization of this matrix (D is a diagonal matrix which depends on the

particular algorithm). Creating the Schur-matrix requires O(n2 s) operations and the factorization

O(n3
). Additional computations also have linear complexity in s. The number of iterations can

be bounded by O((n3 +n2s)JS), but is typically between 5 and 50.
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tions and computation of explicit controllaws for hybrid systems.

For instance in reach-set computation for hybrid systems [Tor03], bounding boxes

can be used to decrease memory requirements by keeping only two extreme points of a

bounding box instead of storing the complete half-space representation of a polytope

H x :s: K. This is mainly important because of the explosion of the number of polytopes

at each step of the iterative exploration procedure.

As already indicated, bounding boxes can be effectively used in the area of multi­

parametric programming for PWA systems. Optimal control problems for PWA sys­

tems are generally solved in a dynamic programming fashion [BCM03a, BCM03b,

KM02]. At each step of the dynamic program, the cost expression associated with a

polytope over which the control law is defined needs to be compared to the cost of

each other region which intersects the first one. To avoid unnecessary computation,

it is useful to detect any possible intersections before further processing. This feature

is also relevant in the context of stability analysis of PWA systems, since answering

the question if two boxes intersect reduces to a simple set of IF-THE statements.

Despite the over-approximation nature of bounding boxes this method performs very

weH in practice.

Furthermore, search tree structures can be created more efficiently using the box

approximations of polytopes [GTM04, TJB03a]. In Chapter 9 we will present a novel

search algorithm which is entirely based on bounding boxes. Since the optimizer UN(x)

is piecewise-affine over a polyhedral partition UrE"R Pro the procedure to obtain the

control action for a given state x reduces to a simple membership test. Without a

search tree, one would need to check every region Pro r E R, which could be expensive

when the number of regions becomes very large. In such search trees, each node of

the tree consists of a hyperplane and a list of regions which satisfy this inequality and

a list of regions which do not. Bounding boxes are a very effective tool in deciding to

which list a region belongs to. Again, the speedup results from the fact that such an

evaluation has to be performed only on two extreme points of the box, without the

need to compute extreme points of the original polytope, which requires the solution

to an LP. Hence, the construction of such search trees can be speeded-up significantly

by the use of bounding boxes.

The computation of outer box approximations (4.22) in the algorithm described in

the previous section is therefore not a one-purpose operation. The boxes can be stored

along with the original polytope to significantly speed up subsequent operations, some

of which were mentioned in this section.
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4.3.5 Numerical Examples

4 Multi-Parametric Programming

The computational improvements of the proposed pre-solve approach depend strongly

on the multi-parametric problem being solved. To find a general trend for problems

typically solved using multi-parametric techniques, we have investigated the mp-QP

solution to the Constrained Finite-Time Optimal Control problem (cf. Chapter 5) for

10 random stable linear systems with n = 3 states and m = 2 inputs. The respective

control problems were solved for prediction horizons N = 2,4,6,8 and 10, where the

size of the horizon directly correlates with the size of the investigated multi-parametric

quadratic program. Averaged results for the proposed polytope reduction algorithms

are depicted in Figure 4.5. It should be noted that the polytope reduction contributed

by roughly 60% to the overall runtime of the investigated mp-QP algorithm.

.. "" naSß
-BB

12 •.• BB-RS

10

.. ~ .. '" ................ -....

-g
0

! 150

.~
c
0

I

prediction Horizon N prediction Horizon N

(a) Total time spent on polytope reduction. (b) Total number of LPs solved for polytope

reduction.

Figure 4.5: Comparison of average time spent and average number of LPs solved for

various polytope reduction schemes (noBB : standard polytope reduction,

BB : polytope reduction using bounding boxes, BB-RS : polytope reduction

using bounding boxes and ray-shooting)

The experiments indicate that the impact of efficient polytope reduction is increas­

ing with the prediction horizon N. This was to be expected from the construction

of the controller regions in 4.16-4.17, i.e. as N increases, the number of initial half­

spaces grows. On the other hand it has been observed that, in general, the number of

half-spaces defining the controller regions grows sub-linearly. Therefore, the fraction

of redundant half-spaces grows with increasing prediction horizon. As we described
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earlier, the computational efficiency of the bounding box approach grows quadrati­

cally with respect to the fraction of detected redundant constraints, so an improved

performance für longer horizons is to be expected.

The impact of ray-shooting is less impressive. In the multi-parametric application,

most half-spaces are redundant, hence few non-redundant half-spaces will be found.

The number of solved LPs is decreased by the ray-shooting, but the cost to find the

small number of non-redundant half-spaces is comparable to the cost of solving the

additional LPs, at least with the current implementation of the ray-shooting algorithm.
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Optimal Control for Linear

Time-Invariant Systems

Consider optimal control problems for discrete-time linear, time-invariant (LTI) sys­

tems

x(k + 1) = Ax(k) + Bu(k), (5.1)

with A E ]Rnxn and BE ]Rmxn. Let x(k) denote the measured state at time k and

Xk denote the predicted state at k steps ahead, given the state x(O). Let Uk be the

predicted input k steps ahead, given x(O). In this chapter we will give abrief overview

of optimal contral problems for LTI systems discussed in the literature.

5.1 Constrained Finite-Time Optimal Control

(CFTOC)

Assume now that the states and the inputs of system (5.1) are subject to the following

constraints

x(k) E X ~ ]Rn, kE{O, ... ,N}, (5.2)

where X and 1U are polyhedral sets containing the origin in their interior1
. Now consider

the constrained finite-time optimal contral problem

(5.3a)

lThe extension to mixed constraints CX x + CUu ~ Co is straightforward and omitted here.

41
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subj. to VkE {l, ... ,N-1},

XN E 4,et,

Xk+l = AXk + BUk, Xo = x(O),

Qu >-- 0, Qx ~ 0, QXN ~ O.

(5.3b)

(5.3c)

(5.3d)

(5.3e)

The terminal set constraint (5.3c) is an additional constraint which is often added to

obtain certain properties (i.e. stability and constraint satisfaction. Henceforth, we will

assurne the terminal weight matrix QXN to be equal to the ARE matrix P given by the

solution of a corresponding Riccati equation. The solution to problem (5.3) has been

studied in [BMDP02]. We will briefly summarize the main results. By substituting

Xk = Akx(O) + L~~~ AjBUk-l-j, problem (5.3) can be reformulated as a quadratic

program (QP), i.e.

J;"(X(O))

subj. to

x(OfYx(O) + rr;~n {U~HUN + x(OfFUN}

GUN :s: W + Ex(O),

H >-- 0,

(5.4a)

(5.4b)

(5.4c)

where the column vector UN ~ [U6, ... ,U~_ljT E JRNm is the optimization vector and

H, F, Y, G, W, E are easily obtained from Qx, Qu, QXN' the system (5.1) and the

constraints (5.2) (see [Mac02] for details2).

Remark 5.1.1 The constraints Qu >-- 0, Qx ~ 0 and QXN ~ 0 are imposed in (5.3),

in order to guarantee that H >-- 0 in (5.4).

The optimizer of (5.4) will henceforth be denoted by Uiv(x). It follows from Theorem

4.2.1 that Uiv(x) is a PWA function of the state x, which we can obtain by solving

problem 5.4 as an mp-QP (see Chapter 4 for details).

If the objective function in (5.3) is linear, i.e.

N-l
J;"(x(O)) = min L (1lQuUkllp + IIQxXkllp) + IIQxNXNllp,

UO,···,UN-l
k=O

subj. to, Xk E X, Uk-l E 1IJ, Vk E {1, ... , N},

(5.5a)

(5.5b)

(5.5c)

(5.5d)
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where 11·llp denotes some linear vector norm (either the 1- or the 00- norm), then the

problem, with the optimizer UN = [uiL ... ,U~_l]T, can be recast as an LP [BBMOOa,

Bor03] by substituting Xk = AkX(O) + L7:~ A kBUk-l-j. For instance, in the case of

the 11 . 1100 norm, we have

Jlv( x(O))

subj. to

N-l

UN' ,T,:ir.:
N

_
j

, L (Ek + (\) + ')'
Oo,··.,ON_j,-, k=O

GUN:::; W + Ex(O),

QuUk:::; lEk, -QuUk:::; lEk , k = 0, , N - 1

QxXk :::; lOk, -QxXk:::; lOk> k = 0, ,N - 1

QXNXN :::; 1')', -QxNXN:::; 1')'.

(5.6a)

(5.6b)

(5.6c)

(5,6d)

(5.6e)

Constraint (5.6b) corresponds to (5.2) and constraints (5.6c)-(5.6e) are used to de­

scribe the linear objective function. It follows from Theorem 4.2.3 that the optimizer

Ulv(x) is a PWA function of the state x, which we can be obtained by solving problem

(5.6) as an mp-LP (see Chapter 4 for details).

5.2 Receding Horizon Contral

If the model predictive control problems (5.3) and (5.5), which are formulated over a

finite prediction horizon N, are solved on-line for a particular initial condition Xo =
x(O), one obtains the vector Ulv of optimal control moves which can be applied to the

system in an open-loop fashion to move the system states from x(O) to x(N). If x(N)

is not equal to the desired set-point, the problem has to be re-solved for a new value of

the initial condition Xo = x(N +1) in order to obtain a new sequence of control actions.

However, there is no guarantee that the problem remains feasible at this point. To

overcome this limitation, one can extend the prediction horizon N to infinity, which

leads to so-called infinite-time optimal control problems [GBTM04]. However, the

infinite-time optimal control problems are often too complex to be computationally

tractable. Therefore it has become a common practice to approximate the infinite­

time solution by solving a sequence of finite time optimal control problems, a strategy

which is commonly referred to as Receding Horizon Control (RHC). Another reason for

applying the RHC strategy is the fact the predicted system behavior, represented by the

prediction model based on which the optimal input trajectory UIv is calculated, usually
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differs from the actual behavior of the plant. Due to this model-plant mismatch, just

applying the whole open-loop sequence could lead either to sub-optimal performance

or, in the worst case, even to violation of system constraints.

For a more detailed discussion of RHC, we refer the reader to the review paper

[MRRSOO]. For in-depth insights, we recommend the publications [CMT87, Mac02,

LÖ3]. The RHC policy has become standard practice in modern control applications

and besides numerous PhD theses [Mig02, Bor03, KerOO, T0ll00] and survey papers

[QB97, MRRSOO, BM99b, ABQ+99, GPM89, May01, ML99], several textbooks [Mac02,

Ros03, CB99, KC01] have been published on this topic.

The RHC policy is based on solving finite-time optimal control problems at each

time step to obtain the optimal input sequence UN0 Subsequently, only the first

element of that sequence is applied to the system. At the next time step, the state

is measured again and the procedure is repeated from the beginning for the updated

value of the initial condition Xo. In the sequel by Receding Horizon Control we will

denote any strategy which is based on finite horizon control problems implemented

in a receding horizon fashion. Therefore, RHC applies to model predictive control,

where the corresponding optimization problem is solved on-line (see Fig. 5.1), but also

applies to cases where the solution to an optimal control problem was obtained by

using techniques of parametric programming as described in Chapter 4, as depicted in

Figure 5.2.

U * { * * *}N = uo , U1 ' ••. , UN_1

te x

utput Y

obtain UN*
optimization

problem

plant sta

apply Uo*
system 0

Figure 5.1: The MPC scheme solved on-line.

However, a mere repetition of the optimization at each step, on its own, is not

enough to guarantee feasibility for all time. To attain such goal, the terminal set

applied in (5.3c) has to be chosen appropriately. Therefore in Chapter 7 we present
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contral u.. state X

system output y
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Figure 5.2: The RHC scheme based on a parametric solution.
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a procedure which can be used to calculate target sets for generic PWA systems such

that feasibility guarantees are maintained.

If the optimization problem is solved parametrically as an explicit function of the

initial condition xo, the optimal feedback law u* = f(xo) takes a form of a look­

up table. The on-line implementation of such table then reduces to a simple set­

membership test, also known as the point ioeation problem. Here, the table has to be

searched through and the element which contains the current state measurement has

to be found. Even though such search can be performed faster compared to solving the

corresponding optimization problem on-line, the complexity of the table still limits the

minimal admissible sampling time of the dosed-loop system. Therefore in Chapter 8

we describe techniques which yield look-up tables with relatively small number of

elements. In addition we also outline a novel algorithm which serves to speed up the

search through the tables in Chapter 9.
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Part 11

EFFICIENT CONTROL OF PWA

SYSTEMS
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6

Problem Description

6.1 Introduction

This part of the thesis will address the topic of feedback control of discrete-time,

time-invariant, piecewise affine (PWA) , systems subject to constraints. Optimal

control of PWA systems has garnered increasing interest in the research com­

munity since this system type represents a powerful tool for approximating non­

linear systems and because of its equivalence to many classes of hybrid systems

[Tor03, HDBOl, Son96, Son81]. The optimal control inputs for PWA systems may

be obtained by solving mixed-integer optimization problems on-line [BM99a, MR03],

or as was shown in [BCM03b, BBBM03, KM02, Bor03, DPar], by solving a number of

multi-parametric programs off-line. Additional methods for controlling hybrid systems

are reported in [LR03, MR03, KA02, MR02, BZOO, LTS99, TLSOO].

In their pioneering work [BMDP02] the authors show how to formulate an optimal

control problem for constrained linear discrete-time systems as a multi-parametric

program (by treating the state vector as a parameter) and how to solve such a program

(see Chapter 4). Basic ideas from [BMDP02] for linear systems were extended to PWA

systems in [BCM03b,BBBM03,KM02,Bor03]. The associated solution (optimal control

inputs) takes the form of a PWA state feedback law. If the control objective is linear,

the state-space is partitioned into polyhedral sets and for each of these sets the optimal

control law is given as an affine function of the state. For quadratic objectives the

state space partition is not polyhedral, in general [BBBM03].

In the on-line implementation of these explicit controllers, input computation reduces

to a simple set-membership test. Even though the approaches in [BCM03b, BBBM03,

KM02, Bor03] rely on off-line computation of a feedback law, the computation quickly

becomes prohibitive for larger problems. This is not only due to the high complexity of
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the multi-parametric programs involved [GM03, BMDP02], but mainly because of the

large number of multi-parametric programs which need to be solved when a controller

is computed in a dynamic programming fashion [BBBM03, KM02].

In addition, there are few results in the literature which explicitly address the issue

of computing feedback controllers which provide stability guarantees. The few publi­

cations which address this issue (e.g., [MR03]) assume that the origin is contained in

the interior of one unique dynamics or rely on end-point constraints (e.g., [BBMOOb]).

The only exception is the infinite horizon solution proposed in [BCM03a], which is

computationally tractable for small problems only.

In the following chapters we therefore address the two main aspects of construction

and implementation of control policies for PWA systems which guarantee closed-loop

stability. Specifically, we first present a procedure to calculate a stabilizing terminal set

along with the associated piecewise linear feedback law for PWA system in Chapter 7.

The results allow one first to find the feedback law which guarantees exponential

stability via solving a semidefinite program. Subsequently, an algorithm to calculate

an associated maximal invariant set is presented. Such sets are then used in Chapter 8

to design feedback controllers which guarantee all-time feasibility and exponential

stability. First two algorithms are based on the principle of steering all system states

into a stabilizing target set in a minimum-time fashion. The schemes are shown to

lead controllers of" lower" complexity compared to optimal controllers of e.g. [BCM03a,

BBBM03] and features a "fast" construction of the control policy. These results are

further extended in Section 8.3 where we show that if constraint satisfaction is dealt

with independently of the stability analysis, controllers of even lower complexity can

be obtained. Finally, in Chapter 9 we present an algorithm which serves to speed up

the task of on-line implementation of parametric controllers. The procedure is based

on utilizing bounding boxes already described in Section 4.3 to construct an interval

search tree, which speeds up the task of region identification.

6.2 Background and Definitions

A detailed overview of multi-parametric programming principles is given in Chapter

4. Here we will give a basic introduction to RHC of PWA systems
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Consider a discrete-time linear time-invariant system

x(k + 1) = Ax(k) + Bu(k)
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(6.1)

with A E JRnxn and B E JRnxffi. Let x(k) denote the measured state at time k and Xk

(Uk) denote the predicted state (input) at time k, given x(O). Assurne now that the

states and the inputs of the system in (6.1) are subject to the following constraints

x(k) EX C JRn, u(k) E 10 c JRffi, Vk 2: 0, (6.2)

where X and 10 are polytopic sets containing the origin in their interior.

Remark 6.2.1 Por ease of notation, we restriet ourselves to separate constraints on

state and input in (6.2). It is straightforward to modify alt algorithms in this chapter

to deal with systems subject to mixed constraints, i.e. CXx(k) +CUu(k)::; ce, Vk 2: O.

Consider the constrained finite-time optimal control problem with a linear objective

N-l
J~(x(O)) = min :L (1IQuUklll,oo + \\Qxxklh,oo) + IIQxNxNIiI,oo,

UO,···,UN_l
k=O

subj.to, xkEX,ukE1O, VkE{0, ... ,N-1},

XN E Tset,

(6.3a)

(6.3b)

(6.3c)

(6.3d)

where (6.3c) is a user defined set-constraint on the final state and 11·111,00 denotes the

1- or oo-norm of a vector, respectively.

Definition 6.2.2 (Feasible Set XN) We define the N -step feasible set XN ~ JRn as

the set of initial states x(O) for which the optimal control problem (6.3) is feasible, i.e.

XN ={x(O) E JRn l3UN = [uif, ... ,u~-lf, Xk+l = AXk + BUk,

Xk E X, XN E Let, Uk E 10, Vk E {O, ... ,N -I}}.

where UN E JRNffi is the optimization vector. By considering x(O) as a parameter,

problem (6.3) can be stated as an mp-LP [BBMOOa] which can be solved to obtain a

feedback solution with the following properties (derived from [Bor03, Gal95]):

Theorem 6.2.3 Consider the finite time constrained regulation problem (6.3), with

a linear objective in (6.3a). Then, the set of feasible parameters XN is convex, there
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exists an optimizer U'N : XN -. jRNm which is continuous and piecewise affine (PWA),

z. e.

U'N(x(O)) = Frx(O) + Gr> if x(O) E Pr = {x E jRnlHrx :::; Kr}, r = 1, ... , R

and the value function J'N : XN -. jR is continuous, convex and piecewise affine.

According to Theorem 6.2.3, the feasible state space XN is partitioned into R polytopic

regions, i.e., X N = Ur=l, ... ,R Pr'

It was shown in [BBBM03, KM02, BBMOOa] how to compute the optimal explicit

feedback controller for PWA systems of the form

x(k + 1) fpWA(X(k),u(k)) = Ax(k) + Biu(k) + fi'

if [x(kf u(kff E Vi, i EI,

(6.4a)

(6.4b)

where x E jRn is the state vector, u E jRm is the control vector and {Vi}~l is a

bounded polyhedral partition of (x, u) C jRn+m space. For simplicity, the sets Vi here

define both regions in which a particular state update equation is valid as well as the

constraints on the state and input variables. The set I is defined as I ~ {I, 2, ... ,D}

where D denotes the number of different dynamics. We will henceforth assurne that

the sets Vi are non-intersecting.

Henceforth, we will abbreviate (6.4a) and (6.4b) with x(k + 1) = fpwA(x(k),u(k)).

The optimization problem considered here is thus given by

N-l

J'N(x) = min L (1lQuUkllp + IIQxXkllp) + IIQxNXNllp,
UO,···)UN-l

k=O

subj. to XN E Tset,

Xk+l = fpWA(Xk,Uk), Xo = x,

(6.5a)

(6.5b)

(6.5c)

using either the standard squared Euclidean norm (p = 2) or linear norms (p = 1 and

p = 00).
In the case of linear norms, [BCM03b, KM02] suggest to solve multi-parametric

Linear Programs (mp-LP) in a dynamic programming fashion to obtain the feedback

solution to (6.5). It was shown that the resulting feedback law is piecewise affine over

polyhedra. In [BBBM03], the feedback solution to (6.5) with a quadratic objective in

(6.5a) was computed by solving a sequence of multi-parametric Quadratic Programs
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(mp-QP) in a dynamic programming fashion. It was shown that the resulting feedback

law is piecewise affine over (possibly) non-convex sets bounded by quadratic surfaces.

Various additional methods to obtain explicit feedback solutions to linear or quadratic

optimization problems for PWA systems are given in [Bor03, MR03, BCM03a, KM02].

Consider now an autonomous PWA system given by

if x(k) E TJr, (6.6)

where the currently active dynamic r is defined by the polytope TJr . The system (6.6)

can be obtained from (6.4) by assuming that the contral variable u(k) is driven by

the expression u(k) = Frx(k) + Gr if the state x(k) resides in the region TJr. The

remaining definition is derived from [KerOO].

Definition 6.2.4 (Maximal Positively Invariant Set O~WA) The maximal pos­

itively invariant set O;;'WA, for the discrete time system in (6.6) (x(k + 1) = fa(x(k)))

subject to the constraints in (6.2) (x(k) EX, Vk ~ 0) is defined by

O:;'WA ~ {x(O) E X I cjJ(k; x) EX, k E N+}, (6.7)

where cjJ(k; xo) denotes the solution of x(k + 1) = fa(x(k)) at time k if the initial state

is x(O).

As already mentioned in Chapter 5.2, the concept of set invariance is important in

order to derive MPC policy which guarantees infinite-time feasibility.
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Construction of Stabilizing

Controllers for Piecewise Affine

Systems

A large part of the literature has focused on end-point constraints to guarantee asymp­

totic stability of the closed-loop system (e.g., [Bor03, BBMOOb, BM99a]). This type

of constraint generally requires the use of large prediction horizons for the controller

to cover the maximal positively invariant set, such that the computational complex­

ity quickly becomes prohibitive. Other methods (e.g., [MR03]) only provide stability

guarantees if the origin is contained in the interior of one of the dynamics Vi' In this

section, a method is presented for obtaining stabilizing controllers for generic PWA

systems. The results in this section are derived from [GKBM05j1.

For any dynamical system, stability is guaranteed if an invariant set is imposed as

a terminal state constraint in (6.5b) and the terminal cost in (6.5a) corresponds to a

Lyapunov function for that set. In addition, the decay rate of the 'terminal Lyapunov

function' must be bounded from above by the stage cost. Here we show how to compute

a control invariant set O::WA (6.7) with the associated Lyapunov function such that

stability and constraint satisfaction of RHC is guaranteed. The scheme is based on

the results in [MFTMOO,RGK+04] and was first published in [GKBM04].

Remark 7.1.5 We cover here the case where the origin is located on the boundary of

multiple dynamics Vi' The case where the equilibrium point is located on the boundary

of multiple dynamics is by no means a pathologically rare case. Many physical systems

exhibit a change in their dynamic behavior when certain states change their sign.

1 Note that identical results were simultaneously obtained by others in [LHWB04].
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The computation scheme is based on the assumption that the origin is an equilib­

rium state of the PWA system and hence the closed loop dynamics fi = 0, Vi E I o
(see (6.4)). If this assumption is not satisfied, the approach proposed here will fail.

We will now show how the terminal set Tset and cost QXN can be computed such

that stabilizing RHC controllers can be constructed for generic PWA systems. In the

first step, we stabilize each dynamics of the PWA system which contains the origin by

a linear state feedback controller Fi of the form u = FiX if X E Vi. We denote by I o
the set of indices of dynamics which contain the origin in their respective interiors, i.e.

I o~ {i E I I 0 E Vi}'

Then the search for stabilizing linear feedback controllers Fi and an associated common

quadratic Lyapunov function V(x) = xTPx can be posed as

xTpx 2: 0, Vx E X,

xT(Ai + BiFifp(A + BiFi)x - xTpx:s: -xTQxx - xTFrQuFiX, Vx E Vi, Vi E I o.

If we relax this condition by setting Vi = !Rn, Vi E I o, the problem can be rewritten

as an SDP by using Schur complements and introducing the new variables Yi = FiZ
and Z = l;yp-l (see [BGFB94, KBM96, MFTMOO] for details),

Z

min "(, subj. to,
Y'i,Z,/'

Z >- 0,

(AZ + BiYi) (Q~.5Zf (Q~.5Yif

(7.1a)

(7.1b)

(AZ + BiYif
(Q~.5Z)

(Q~.5Yi)

Z

o
o

t 0, Vi E I o· (7.1c)

where the scalar "( is introduced to optimize for the worst case performance, whereby

the 'worst case' corresponds to an arbitrary switching sequence. ote that it may

not be possible for the worst case switching sequence considered in (7.1) to occur in

practice due to the relaxation Vi = !Rn, since in the original PWA model (6.4) not all

dynamics i are defined over the entire state space.

Remark 7.1.6 1f (7.1) is posed for an LT1 system (i.e. I o = 1), the optimal LQR

state feedback solution K and the solution to the Algebraic Riccati Equation P is

recovered.
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In a second step, the maximal positively invariant set O~WA (6.7) of the PWA

system subject to the feedback controllers Fi can be computed with the algorithm

in [RGK+04], which is guaranteed to terminate in finite time for the problem at hand,

since the closed loop system is asymptotically stable.

The proposed computation scheme is summarized in the following algorithm:

Algorithm 7.1.7 (Computation of Maximal Positively Invariant Set O~WA)

1. 1dentify all dynamics i which contain the origin, i. e. i E La ~ {i E N+ I 0 E 1\}.

2. Solve (7.1) for all i E La, to obtain Fi and P. 1f (7.1) is infeasible, abort the

algorithm.

3. Compute the maximal positively invariant set O!:oWA corresponding to the closed

loop system x+ = (Ai + BiFi)x, if x E Vi with the method in [RGK+04].

4· Return the calculated set O!:oWA, the feedback laws Fi and the associated matrix

P.

Theorem 7.1.8 (Exponential Stability of RHC for PWA Systems,

[GKBM04, GKBM05]) Assume the optimization problem (6.5) is given with a

quadratic objective, i.e. (6.5a) corresponds to

N-l

J1v(x(O)) = min L (UIQuUk + XIQxXk) + X~QxNXN,
UQ"",UN-l k=a

Qx t 0, QXN t 0, Qu >- 0,

the terminal set is Tset = O!:oWA and the terminal cost is QXN = P (obtained with

Algorithm 7.1.7). 1fthis problem is solved at each time step for the PWA system (6.4)

and only the first input is applied (Receding Horizon Control as described in Chapter

5.2), then the closed loop system is exponentially stable.

Proof Algorithm 7.1.7 trivially satisfies the conditions for exponential stability in

[MRRSbO, Section 3.3]. 0

ote that we only need to consider a single convex terminal set for linear systems

[GT91,MRRSOO] whereas for PWA systems, the terminal set O~WA is given as a union
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of several convex sets O~WA = UXi. If the union UXi is convex, the regions can

be merged with the method in [BFT01]. Convexity of the target set is a desirable

property since simpler target sets Tset generally lead to reduced algorithm run-time

and solution complexity for the type of optimization problem given in (6.5).

Remark 7.1.9 The procedure described in this section is merely sufficient for asymp­

totic stability. We cannot guarantee that the Lyapunov function and the associated

state feedback laws will be found in the suggested manner. However, we have observed

in an extensive case study that the approach works very well in practice. Short of the

computationally very demanding construction of the infinite horizon solution proposed

in (BCM03aj, there is currently no alternative method for guaranteeing closed-loop

stability for control of generic PWA systems.

Furthermore, the method we propose here can be easily used to calculate suitable

target sets and terminal penalties which can be used in other controller computation

schemes (e.g., (BBBM03, MR03, KM02, BCM03bjJ to obtain controllers which guaran­

tee closed-loop stability fOT PWA systems.
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Low Complexity Feedback Control

of Piecewise Affine Systems

This chapter will address the problem of deriving stabilizing controllaws for the dass

of piecewise affine (PWA) systems. As outlined in Section 7, stability and feasibility

guarantees can be obtained if a finite time optimal control problem is solved with a

suitable choice of the terminal set and terminal cost. However, one of the key problems

in solving such problems for PWA systems is the lack of convexity of the terminal sets.

This fact, combined with the complexity of the objective function (6.3), gives rise to

computational overhead when solving such optimal control problems either on-line,

or using parametric programming techniques. To mitigate this problem, the so-called

dynamic programming approach [BBBM03, KM02], based on iteratively solving the

optimal control problem backwards in time, can be used. But even in this approach,

the complexity of the cost function (affected mainly by the choice of the prediction

horizon N) and the non-convex nature of terminal sets make it necessary, in the

worst case, to explore an exponentially growing number of possible transitions during

the iterations. The algorithms presented here avoid these issues to some extent by

considering 'simpler' objective functions.

The first approach, presented in Section 8.1, is based on driving system states into a

pre-specified target set in the minimal possible number of discrete time steps. In other

words, instead of minimizing a weighted sum of state and input contributions in (6.3a)

over a horizon N (i.e. solving one problem of size N), we aim at minimizing the number

of steps in which the system states enter a given terminal set. We will show that this

goal can be achieved by solving a sequence of N optimization problems with prediction

horizon of 1. An advantage of this modification is that several sets generated at each

iteration can be merged into larger parts, hence reducing the number of transitions

which needs to be explored. This leads to a faster construction of the controllaw, but
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also reduces the complexity of the resulting feedback controller. Another advantage of

this approach is that the set of states, for which the minimum-time problem is feasible,

defines the maximal controllable set of states for a given PWA system.

The second approach, introduced in Section 8.2, is similar to the minimum-time

approach described above in the sense that it also leads to controllers which drive the

system states into a given target set in the least possible number of discrete steps.

The addition here is that the control law is constructed in a way such that it tries to

prevent the system states from changing switching to a different dynamics for as long

as possible. A substantial advantage of this procedure, compared to the minimum-time

approach, is that convexity of the terminal sets can be maintained for more than just

for one step, which can lead to a substantial decrease of the runtime of the algorithm,

as well as to a decrease in the complexity of the resulting controllaw.

The third approach, described in Section 8.3, is based on dealing with the issue

of constraint satisfaction and asymptotic stability separately. In this scheme, in the

sequel denoted as M-step control, the feedback law is obtained by solving the CFTOC

problem (6.3) for a shorter prediction horizon M (with M < N) with an additional

target set constraint on the first predicted state (i.e. Xl E 'Tsed. We show that if

'Tset is equal to the set where the minimum-time problem was feasible, the M-step

controller guarantees constraint satisfaction for all time. However, asymptotic sta­

bility of the dosed-loop system is not enforced by construction. Instead, it has to

be checked a-posteriori by looking for a suitable Lyapunov function. This function,

if found, then certifies asymptotic stability. Because usually short prediction hori­

zons are considered in this scheme (ideally M = 1), the main advantage of this ap­

proach is that the resulting feedback law is of low complexity. This is illustrated on

an extensive comparison reported in Section 8.4. There we show that all introduced

schemes yield controllers of much lower complexity compared to the traditional meth­

ods (e.g. [BCM03b, BBBM03, KM02]) that a whole new dass of problems becomes

tractable.

8.1 Minimum-Time Controller

A minimum-time controller aims at driving the system state x(k) into a pre-specified

target set in minimum number of time steps. Unlike the approaches in [BBBM03], the

cost-to-go for the minimum-time controller assurnes only integer values. Because of
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the 'simple' cost-to-go, the target sets which need to be considered at each iteration

step are larger and fewer in number than those which would be obtained if an optimal

controller with a different cost objective were to be computed [BBBM03, BCM03a].

Thus, both the complexity of the feedback law as well as the computation time are

greatly reduced, in general.

A minimum-time controller computation scheme for PWA systems was first intro­

duced in [KM02], using projection methods. Though giving general ideas about the

computation concept and the character of the minimum-time solution, computational

issues are not addressed in detail. A detailed algorithmic implementation of the

minimum-time algorithm will be described in the following, using multi-parametric

programming1.

When the minimum-time algorithm terminates, the associated feedback controller

will cover the N -step stabilizable set KrvWA (Or:x,WA).

Definition 8.1.1 (N-step stabilizable set K~WA(O~WA)) The set K~WA(O;;'WA)

denotes the N-step stabilizable setjor a PWA system (6.4), i.e., it contains all states

which can be steered into O;;'WA in N steps. Specijically,

K~WA(O~WA) = {x(O) E!Rn I :3u(k) E !Rm
, S.t. x(N) E O~WA,

x(k + 1) = jpwA(x(k), u(k)), Vk E {O, ... , N - I}}.

Accordingly, the set K;;'WA (O;;'WA) denotes the maximal stabilizable set jor N -+ 00.

8.1.1 Minimum-Time Controller: Off-Line Computation

An algorithm for computing the minimum-time controller will be presented in this

section. The computation scheme is based on solving a sequence of multi-parametric

programs at each iteration step. The number of iterations corresponds to the number

of time steps which are needed to reach the target set. At each iteration, a controller

partition is computed which drives the state into the partition that was obtained in

the previous iteration.

Before presenting the algorithm, some preliminaries will be introduced. Assume a

P-collection SO of LOpolytopes S?, i.e. SO = UlE'cO S?, where LO~ {I, 2, ... ,LO}. In

1Multi-parametric programming can be seen as a form of projection and thus the content of this

section can be viewed as a special case of [KM02].
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the following, the set S without subscript will be used to denote P-collections while

the subscript is used to denote polytopes. All states which can be driven into the set

So in one time step for the PWA system (6.4) are defined by:

Pre(SO) = {x E !Rn I :Ju E !Rm
, !PWA(X, u) E SO}

= UU{X E !Rn I :Ju E !Rm
, [xT uTf E Vi, Aix + Biu + fi E sr}

iEIIE.c.ü

= UXI,j.

jEJü

For the feasible set XI,j, the subindex 1 denotes that the set was obtained for a

prediction horizon of 1 (see Definition 6.2.2). The second subindex, j, is used to

access the different feasible sets which are obtained for various combinations of active

dynamics and target sets. The index set J O contains all valid values for j in X1,j.

For a fixed i and l, the target set Sp is convex and the dynamics affine, such that it

is possible to apply standard multi-parametric programming techniques to compute

the set of states which can be driven into Sp [BMDP02]. Therefore the set Pre(SO)

is a union of polytopes and can be computed by solving JO = D . LO multi-parametric

programs, where D denotes the number of dynamics and LO is the number of poly­

topes which define So. Each of these multi-parametric programs will yield a controller

partition {PJ.r}~1 consisting of R controller regions whose union covers the feasible

set X1,j = Ur=l,o,R PJ.r (see Definition 6.2.2). Since the set Pre(SO) is computed via

multi-parametric programming, we also obtain an associated feedback law u(x) which

provides feasible inputs as a function of the state (see Theorem 4.2.3). Note that the

various controller partitions may overlap, but that each controller will drive the state

into SO in one time step, i.e. !PWA(X, u(x)) E So. Henceforth, we will use the notation
Siter+l = Pre(Siter) = U0 ° siter+l

JEJ,ter+l J .

In the following, the algorithm for computing the minimum-time controller for PWA

systems will be introduced.

Algorithm 8.1.2 (Minimum-Time Controller Computation)

1. Compute the invariant set O~WA around the origin (see Figure 8.1 (a)) as welt as

the associated Lyapunov function V(x) = xTPx andfeedback laws Fi as described

by Algorithm 7.1.7.
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2. Initialize the set list SO = O!:oWA and initialize the iteration counter iter = O.
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3. Compute Siter+1 = Pre(Siter) = U
jEJ

iter+l Srr+l, by solving a sequence of

multi-parametric programs (see Figure 8.1 (b)). Thus, a feedback controller par­

tition {Pj~:r+l}~l is associated with each obtained set Sjter+1. Obviously, the

number of regions R of each partition is a function of iter and j.

4 P, ll'* E '7iter+l. I'fsiter+l C {U Siter+l} U {u Si}. or a J J . J j* _ jEJiter+l\{j*} j iE{l, ... ,iter}'

then discard Sj:er+1 from Siter+l and set Jiter+l = Jiter+l \ {j*} (see Figures

8.1(c) and 8. 1(d)).

5. If Siter+1 i- 0, set iter = iter + 1 and goto Step 3.

6. For all k E {I, ... , iter - I} and r E N+ discard all controller regions p;'~l for

which p;'~l s;:; UiE{l, ... ,k} Si since the associated controllaws are not time-optimal

and will never be applied.

The index iter corresponds to the number of steps in which astate trajectory will

enter the terminal set O~WA if a receding horizon control policy is applied. If the

algorithm terminates in finite time, then the set Siter is the maximum controllable set

K~WA(O~WA) as given in Definition 8.1.1.

Remark 8.1.3 Note that Algorithm 8.1.2 may not terminate infinite time (e.g. ifno

bounds are imposed on certain state variables while solving a corresponding optimiza­

tion problem). This is a problem inherent property and not a result of the computation

scheme. It is therefore advisable to specify a maximum step distance N which can be

used as a termination criterion in Step 5 of Algorithm 8.1.2. The resulting controller

computation will then terminate in finite time and the feedback controller will cover

K~WA(O!:oWA).

Remark 8.1.4 The implementation of Algorithm 8.1.2 requires a function that can

detect if a convex polyhedron Po is covered by a finite set of non-empty convex polyhedra

{Pr }~l' i. e. if Po s;:; UrE{l, ... ,R} Pr. For instance, this operation is needed to check

if two unions of polyhedra cover the same non-convex set (RGK+04] (e.g., Step 5 of

Algorithm 8.1.2). We refer the reader to (BT03], where an efficient algorithm is given

to perform this task.
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(a) Invariant target set 0
00

Step 1 of Alg. 8.1.2).

(b) Set of states 5 which enter 5 in one

time step. The individual controller parti­

tions defining 51 are not depicted (cf. Step 2

of Alg. 8.1.2).

c The transition partition does not expand

the generated set of states. The individual

controller partitions defining 51 are not de­

picted (cf. Step 4 of Alg. 8.1.2).

d The transition controller expands the con­

trollable set of states. The individual con­

troller partitions defining 51 are not depicted

(cf. Step 4 of Alg. 8.1.2).

Figure 8.1: Description of Algorithm 8.1.2.

8.1.2 Minimum-Time Controller: On-Line Application

In the minimum-time algorithm presented in here, we can take advantage of some of

the algorithm features to speed up the on-line region identification procedure. We

propose a three-tiered search tree structure which serves to significantly speed up the

region identification. Unlike the search tree proposed in [TJB03a], the tree structure

proposed here is computed automatically by Algorithm 8.1.2, i.e. no post-processing
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(a) Identify dy~amics Vi con­

taining the state measurement

X(O).

cI'.., >.... "
' , ,........

"\ ·4 ) 2 ., 0 , 2 3 4 5

(b) Identify feasible controller set

x;ter containing the state that has

the smallest value for iter.
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(c) Identify the region pj~:r

containing the current state

measurement x(O).

Figure 8.2: Illustration of Algorithm 8.1.5.

is necessary. The following algorithm illustrates how the controller obtained with

Algorithm 8.1.2 can be applied, such that the resulting closed-loop trajectories are

minimum-time optimal.

Algorithm 8.1.5 (On-Line Application of Minimum-Time Controller)

1. Identify the active dynamics i, such that x E Vi, i E I (see Figure 8.2(a)J2.

2. Identify controller set syer associated with dynamic i which is 'closest' to the

target set So, i. e. miniter,j iter, s. t. x E syer, j E Jiter (see Figure 8. 2(b)).

3. Extract the controller partition {p;~;r}~=l with the corresponding feedback laws

FT) Gr and identify the region r which contains the state x E p;~;r (see Figure

8.2(c)).

4· Apply the control input u = Frx + Gr. Goto 1.

Note that the association of controller partitions Sjter to active dynamics in Step 2

is trivially implemented by building an appropriate lookup-table during the off-line

computation in Algorithm 8.1.2.

Theorem 8.1.6 (Properties of Minimum-Time Control, [GKBM05]) The

controller obtained with Algorithm 8.1.2 and applied to a PWA system (6.4) in a

receding horizon control fashion according to Algorithm 8.1.5, guarantees asymptotic

stability and feasibility of the closed loop system, provided x(O) E JC~WA(O;;'WA).

2 Note that once the control law has been computed, a unique dynamic i can be associated with

each state, even if the original PWA system was defined in x-u-space
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Proof Assume the initial state x(O) is contained in the set siter with a step distance

to O~WA of iter. The controllaw at Step 4 of Algorithm 8.1.5 will drive the state into

a set Siter-l in one time step (see Step 3 of Algorithm 8.1.2). Therefore, the state

will enter O~WA in iter steps. Once the state enters O~WA the feedback controllers

associated with the common quadratic Lyapunov function ensure stability. 0

8.2 Reduced Switching Controller

In general, it is possible to obtain even simpler controllers and faster computation times

by modifying Algorithm 8.1.2. Instead of computing a minimum-time controller, an

alternative scheme which aims at reducing the number of switches can be applied. A

change in the active system dynamic Vi -t V j , (i i- j) is referred to as a switch.

The proposed procedure does not guarantee the minimum number of switches, though

straightforward modifications to the algorithm would yield such a solution. The "min­

imum number of switches" solution is not pursued here since computation time is the

primary objective.

The proposed reduced switch controller will avoid switching the active dynamics for

as long as possible. We will introduce the following operator for i E I:

Once the j -th controller set syer obtained at iteration iter is computed (see Algorithm

8.1.2, step 3) for dynamics i, the set is subsequently used as a target set for as long as

the controllable set of states can be enlarged without switching the active dynamics i.

With this scheme, the total number of convex sets needed to describe the controlled set

Siter remains constant while the size of Siter increases. Therefore, this scheme generally

results in significantly fewer sets during the iterations compared to Algorithm 8.1.2.

Specifically, the algorithm works as follows:

Algorithm 8.2.1 (Computation of Controller with Reduced Number of

Switches)

1. Compute the invariant set O!:cWA around the origin (see Figure 8.3(a)) as welt
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as the associated Lyapunov function V(x) = xT Px and linear feedback laws Fr

as described by Algorithm 7.1.7.

2. Initialize the set list SO = O~WA = UjEJO SJ and initialize the iteration counter

iter = O.

3. Initialize siter+l = 0 and execute the following for all dynamics i E I and set­

indices j E Jiter:

a) Initialize counter c = 0 and set Co = syer.

b) Compute Ce+1 = Prei(Ce) (see Figure 8.3(b)) by using multi-parametric

programming and store the associated controller partition. Thus, a feedback

controller partition {Pj,~l,iter}~=l is obtained.

c) If ce C Ce+1 (see Figure 8. 3(c)), set c = c + 1 and goto step 3b.

d) Set siter+l = Siter+l uCe (see Figure 8.3(d)).

4. If siter+l i- Siter, set iter = iter + 1 and goto 3.

5. For all k E {1, ... , iter - 1}, c E N and r E N+ discard all controller regions

Pj:;+l for which Pj:;+l c UiE{l, ... ,k} Si since the associated control law has a

non-minimum number of switches and will never be applied.

The on-line computation is identical to the scheme described in Section 8.1.2 and the

same finite time termination conditions as in Remark 8.1.3 apply.

Remark 8.2.2 In Algorithm 8.2.1 the counter 'iter' associated with the control sets

Siter corresponds to the number of dynamic switches which will occur before the target

set O~WA is reached.

Remark 8.2.3 If we always have ce ct. Ce+l in step 3c of Algorithm 8.2.1, then

Algorithm 8.2.1 is identical to Algorithm 8.1.2. However ifCe c Ce+1
, it is possible to

perform a large part of the computations on convex sets, which makes Algorithm 8.2.1

more efficient than Algorithm 8.1.2, in general.

Theorem 8.2.4 (Properties ofMinimum-Switch Control, [GKBM05]) A con­

troller computed according to Algorithm 8.2.1 and applied to a PWA system (6.4) ac­

cording to Algorithm 8.1.5, guarantees stability and feasibility of the closed loop system,

provided x(O) E K:~WA(O~WA).
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(a) Invariant target set Sj'

c Iteratively proceed exploring as long as
ce C Ce+1 .

(b) Set of states C which enter Sj in one time

step.

(d) Stop the exploration if ce cf- Ce+ . Return

ce in such case.

Figure 8.3: Description of Algorithm 8.2.1.

Proof Follows from Theorem 8.1.6.

8.3 M -step Controller

o

In the previous section, stability was guaranteed by imposing an appropriate terminal

set constraint O;:'WA and by driving all states towards this set in a minimum-time

fashion. In order to cover large parts of the state space, this type of constraint generally

entails the use of large prediction horizons which results in controllers with a large
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number of regions.

In this section, instead of enforcing asymptotic stability with an appropriate terminal

set constraint (and the associated cost), we propose to enforce constraint satisfaction

only. This can be easily achieved by imposing a set-constraint on the first predicted

state in the formulation of the optimization problem. Hence, the terminal-set con­

straint (6.5b) becomes superfluous and we do not need to rely on large prediction

horizons. Asymptotic stability is analyzed in a second step. This scheme is inspired

by promising complexity reduction results for LTI systems in [GPM03,GM03].

8.3.1 Constraint Satisfaction

If the constrained finite time optimal control problem (6.5) is solved via multi­

parametric programming for any prediction horizon M < N with x M E 4et = ]Rn

in (6.5b) and the additional constraint x(l) E KfvWA(Or:x,WA), the resulting RHC con­

troller guarantees that the state remains within KfvwA (Or:x,WA) for all time. The set

constraint on the first step guarantees that the resulting controller partition will be

positive invariant, which directly implies feasibility for all time [Bla99, KerOO]. The

set Or:x,WA can be computed as described by Algorithm 7.1.7 and KfvWA(Or:x,WA) can be

obtained by applying Algorithm 8.1.2.

Since the target set KfvwA (Or:x,WA) = UCE{l, ... ,C} K'N is non-convex in general (i.e. a

union of C polytopes K'N) a controller partition can be obtained by solving a sequence

of C . D multi-parametric programs, e.g. (5.5) or (5.3), where D corresponds to the

total number of different dynamics. Specifically, the M-step controller can be obtained

by solving C· D multi-parametric programs (e.g., (5.5) or (5.3)) for an arbitrary M

with 4et = K'N in (6.5b) (C different sets) and for D different dynamics in (6.4).

The smaller M the lower the controller complexity. However, the choice of M has no

impact on the size of the generated sets.

8.3.2 Stability Analysis

The controller partition obtained in the previous subsection will generally contain

overlaps such that the c1osed-loop dynamics associated with a given state x(O) may

not be unique. It is therefore not possible to perform a non-conservative stability

analysis of the c1osed-loop system. However, by using the PWA value function J'N(x)
in (6.5a) as a selection criterion it is possible to obtain a non-overlapping partition
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( [GKBM05] or [Bor03], pg. 158-160) by solving a number of LPs, i.e. only the cost

optimal controller is stored.

The resulting controller partition is invariant and a unique controller region r (x E

Pr) and unique dynamics l (x E VI) is associated with each state x, i.e. the closed

loop system corresponds to an autonomous PWA system

Xk+l = (Al + BIFr)Xk + BIGr + fl'

= Arxk + fn

(8.1a)

(8.1b)

Since every controller region Pr is only contained in one unique dynamic VI, the update- -
matrix Ar and vector fr are uniquely defined. In the sequel we will show how formulate

the search for a PWA Lyapunov function for autonomous PWA systems as a linear

program.

It was shown how to use Semi-Definite Programming (SDP) to compute piecewise

quadratic (PWQ) Lyapunov functions for continuous-time PWA systems in [JR98] and

for discrete-time PWA systems in [FTCMM02,GLPM03]. The search for a PWQ Lya­

punov function is conservative, since the SDP formulation is based on the S-procedure,

which is not lossless for the cases considered [BGFB94]. Therefore, instead of search­

ing for a PWQ Lyapunov function via SDP, we here show how to compute a PWA

Lyapunov function via LP. The proposed scheme is based on results for continuous

time systems which were published in [Joh03].

The computation scheme for the PWA Lyapunov function is non-conservative (i.e.

if a PWA Lyapunov function exists for the given partition, it will be found) such that

it may succeed when no PWQ Lyapunov function can be found with the schemes

in [FTCMM02, GLPM03]. However, the converse is also true. Furthermore, the value

function associated with a mp-LP controller partition is PWA, such that this function

type is a natural candidate in the search for a Lyapunov function. The following

Theorem is based on [Vid93, p. 267]:

Theorem 8.3.1 (Asymptotic Stability) The origin x = 0 is asymptotically stable

if there exists a function V (x) and scalar coefficients a > 0, ß > 0, p > 0 such that:

ßllxkll 2: V(Xk) 2: allxkll and V(Xk+l) - V(Xk) :s; -pllxkll, VXk E X and V(x) = 00,

Vx Fj:. X. The successor state Xk+l is defined in (6.6), 11·11 denotes a vector norm and

X denotes the state space of interest.

In order to pose the problem of finding a PWA Lyapunov function without intro­

ducing conservative relaxations, a region transition map is created. Specifically, a
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transition map S is created according to

S(i,j) = { 1, if ::3Xk.E int(Pi ), S.t. Xk+l E P j ,
0, otherwlse.
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where Xk+l is defined by (6.4) and Theorem 4.2.3 and int(·) denotes the strict interior

of a set.

Remark 8.3.2 In principle, one LP needs to be solved for each element of the tran­

sition map S, i.e. a total of R 2 LPs, where R denotes the total number of system

dynamics. However, instead of solving LPs directly, it is advisable to first compute

bounding boxes (hyper-rectangles) for each region Pr (1' ER). In addition, abounding

box of the affine map of the region P: = {Arx+ J,. E }RnIX E Pr} needs to be computed.

The number of LPs which need to be solved in order to compute the bounding boxes

is linear in the number of regions Rand state space dimension n. This computation

is tractable even for very complex partitions. The bounding boxes can be efficiently

checked for intersections, such that certain transitions i ---; j can be mled out. In our

experience, the bounding box implementation is the most effective way to compute T

for complex region partitions.

In a second step, the polytopic transition sets Pij for system (6.6) are explicitly com­

puted as

Pij = {Xk E }Rn I Xk E Pi, Xk+J E P j }, Vi,j E {I, ... , R}, S.t. S(i,j) = 1.

If S( i, j) = 0, we can directly set Pij = 0. Subsequently, the vertices of the transition

sets (vert(Pij )) and the controller sets (vert(Pi)) are computed. The problem of finding

a PWA Lyapunov function,

if x E Pi, i = 1, ... , R

for the autonomous PWA system (6.6) such that the conditions in Theorem 8.3.1 are

satisfied can now be stated as

ßIIXIII ~ PWAi(x) ~ odlxlh, a, ß > 0, Vx E vert(Pi ), Vi E {I, ... , R},

(8.2a)

PWAj(Xk+J) - PWAi(Xk):S pllxklll' p< 0, VXk E vert(Pij ), Vi,j E {I, ... , R}.

(8.2b)

Since the vertices of all sets Pi and Pij are known, the resulting problem is linear in

Li, Ci, a, ß, p and can therefore be solved as an LP.



72 8 Low Complexity Feedback Control of Piecewise Affine Systems

Theorem 8.3.3 If the LP (8.2) associated with the autonomous PWA system (6.6)

is feasible, then this system is asymptotically stable.

Proof Since the function PWAi (x) is piecewise affine, it follows that satisfaction of

(8.2a) for all vertices of Pi implies that the inequalities in (8.2a) will also hold Vx E Pi.

Furthermore, if (8.2b) holds for all vertices of P ij , it follows from linearity of the system

dynamics (6.6) that the inequality will hold for all states x E Pij . Since the partition

is invariant, it follows that UiE{l, .. ,R} Pi = Ui,jE{l, .. ,R} P ij . Therefore, the inequalities

in (8.2a) and (8.2b) hold Vx E UPi such that the conditions in Theorem 8.3.1 are

satisfied, i.e. feasibility of (8.2) implies asymptotic stability of the autonomous PWA

system (6.6) . []

It should be noted that the required computation time may become large because

of the extensive reachability analysis, vertex enumeration and size of the final LP.

Specifically, the LP (8.2) introduces one constraint for each vertex of each region

Pr, Vr E {1, ... , R} (see (8.2a)) and one constraint for each vertex of each Pij , Vi,j E

{1, ... , R} (see (8.2b)). The number of variables is (n + l)R, where R denotes the

number of regions and n the state space dimension.

However, in the authors experience, stability analysis problems for a couple of hun­

dred regions in astate space dimension of less than five are tractable and the necessary

computation effort is comparable to the approaches in [FTCMM02,GLPM03].

8.3.3 M-step Controller Computation

The M-step contral scheme utilizes tools from invariant set computation and stability

analysis in order to compute controllers with small prediction horizons which guarantee

constraint satisfaction as well as asymptotic stability. The basic procedure consists of

two main stages. In the first stage, a M-step optimal controller is computed which

guarantees constraint satisfaction for all time. Since constraint satisfaction does not

imply asymptotic stability, it is necessary to analyze the stability properties of the

closed-loop system in a second stage. Specifically, the algorithm works as follows.

Algorithm 8.3.4 (M-step Controller Computation)

1. Compute the invariant set O~WA around the origin and an associated Lyapunov

function as described by Algorithm 7.1.7.
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2. Compute the set K~WA(()~WA) = UCE{l, ... ,C} KN (N --+ co) by applying Algorithm

8.1.2.

3. Solve a sequence of C . D mp-LPs (5.6) for prediction horizon M with Tset =
KN, '>;jc E {I, ... , C} in (6.5b), affine dynamics i E I = {I, ... , D} in (6.4)

and M:::; N.

4· Remove the region overlaps by using the P WA value function Jiv (x) as a selection

criterion (see [GKBM05] or [Bor03] for details).

5. Attempt to find a PWA Lyapunov function using the procedure described in Sec­

tion 8.3.2, or a PWQ Lyapunov function as described in [Gri04, Chapter 8].

There is no guarantee that Step 2 of Algorithm 8.3.4 will terminate in finite time

to the set K~WA(()~WA) or that a Lyapunov function can be found in Step 5.

If the former happens, following Remark 8.1.3 one can impose an artificial upper

bound on the number of iterations in Step 5 of Algorithm 8.1.2, which leads to

a set K~WA(()~WA) C K~WA(O~WA). Note that even if this case happens, the set

K~WA(O~WA) is still positively invariant far all time in the sense of Definition 6.2.4.

If no Lyapunov function is found, the resulting controller is still guaranteed to satisfy

the system constraints for all time, but no proof of asymptotic stability can be given.

However, the state is guaranteed to remain within a bounded invariant set.

Remark 8.3.5 1f the stability analysis in Step 5 of Algorithm 8.3.4 fails, it is advis­

able to recompute the controller in Step 3 using different weights Qu, Qx, QXN and/or

a different prediction horizon M in (6.5). Slight modifications in these parameters

may make the subsequent stability analysis in Step 5 feasible. Some hints on how

to tune the respective parameters have been presented in [LÖ3], where it is advised

that extending the prediction horizon and/or increasing the state weights Qx and QXN

tends to lead controllers for which closed-loop stability can be shown. However as il­

lustrated in [Löf03, Section 2.5] the domain of such parameters which provide closed­

loop stability is non-convex even for linear systems, therefore the precise tuning is not

straightforward.

Theorem 8.3.6 (Properties of M-step Control, [GKBM05]) 1f the stability

analysis in Step 5 of Algorithm 8.3.4 is successful and the feedback law obtained in
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Step 4 is applied to system (6.4) in a RHC fashion, then the closed-loop system is

exponentially stable on JCtWA(O~WA) and the system constraints are satisfied for all

time.

Proof The partition computed in Step 4 is invariant by construction, hence constraint

satisfaction is guaranteed. Exponential stability follows trivially from the successful

stability analysis in Step 5. 0

8.4 N umerical Examples

As was shown in [GM03,GPM03] and will also be illustrated in this section, algorithms

of type 8.1.2,8.2.1, and 8.3.4 generally yield controllers of significantly lower complexity

than those which are obtained if a linear norm-objective is minimized as in (6.5)
[BCM03a, BCM03b, KM02].

Example 8.4.1 Consider the 2-dimensional problem adopted from [MR03j,

(8.3)x(k + 1) =

~ on x(k) + [ ~ ] u(k) + [ ~ ] if x(l)(k):S 1

O~5 0;2] x(k) + [ ~ ] u(k) + [ O~5] if x(l)(k)?: 1
subject to constraints -x(l)(k) + x(2)(k) ~ 15, -3X(1)(k) - x(2)(k) ~ 25, 0.2x(1)(k) +
x(2)(k) ~ 9, x(l)(k) 2: -6, x(l)(k) ~ 8, and -1 ~ u(k) ~ 1. Weight matrices in the

cost function were chosen as Qx = land Qu = 0.1 in (6.5).

Example 8.4.2 Consider the 3-dimensional PWA system introduced in [MR03j,

x(k + 1) =

if x(2)(k) 2: 1

, (8.4)

subject to constraints -10 ~ x(l)(k) ~ 10, -5 ~ x(2)(k) ~ 5, -10 ~ x(3)(k) ~ 10, and

-1 ~ u(k) ~ 1. Again, weights in the cost function are Qx = I, Qu = 0.1.
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Example 8.4.3 Consider the 4-dimensional PWA system introduced in [MR03j,
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x(k + 1) =

(8.5)

subject to constraints -10 ::; x(l)(k) ::; 10, -5 ::; x(2)(k) ::; 5, -10 ::; x(3)(k) ::; 10,

-10::; x(4)(k)::; 10, and -1::; u(k)::; 1. Weighting matrices in the costfunction are

Qx = I, Qu = 0.1.

Onee the set Or:c,WA is computed, Algorithms 8.1.2, 8.2.1, and 8.3.4 are applied to

Examples 8.4.1 - 8.4.3. A runtime comparison of the computation procedures as well

as complexity of the resulting solutions are reported in Table 8.1. It is worth noting

that the stability analysis part of Algorithm 8.3.4 for Example 8.4.3 failed due to a

prohibitive size ofthe LMI [Gri04, Inequality (8.6)] which needs to be solved in order to

obtain a PWQ Lyapunov function. Specifically, for this particular example such LMI

contains more than 236000 variables and more than one million constraints, which is

not traetable by any of the available solvers. These numbers are directly related to the

number of controller regions, in this case 4627. Adjusting the parameters of the mp­

LPs (5.6) solved in Step 3 of Algorithm 8.3.4 according to the hints in Remark 8.3.5

didn't help to decrease the complexity to a tractable level. Controller regions for

Example 8.4.2 are depicted in Figures 8.4(a)-8.4(c).

Example 8.4.3 nicely illustrates the benefits of the reduced-switching algorithm de­

scribed in Section 8.2. In this case, the controller was calculated 40 times faster com­

pared to the minimum-time algorithm. The reason for this substantial speedup is that

in Algorithm 8.2.1 the target sets were convex for multiple successive steps, which

simplified the controller construetion.

In order to compare low complexity control strategies diseussed in this chapter

with the cost-optimal dynamie programming approach of [BCM03a], we generated 10

random PWA systems with 2 states, 1 input and 4 piecewise-affine dynamics. All

elements in the state space matrices were assigned random values between [-2,2] (i.e.,
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Alg. 8.1.2 Alg. 8.2.1 Alg. 8.3.4, N = 1 Alg. [BCM03a]

t #R t #R t #R t #R
Ex. 8.4.1 61 sec. 279 40 sec. 186 53 sec. 61 5.5 h 1413

Ex. 8.4.2 1153 sec. 1519 755 sec. 1044 286 sec. 522 * *
Ex. 8.4.3 92 h 7894 2.2 h 2434 4.3 ht 4627t * *

Table 8.1: Off-line CPD-time t and number of controller regions #R for different algo­

rithms. The CPD-time for Algorithm 8.3.4 includes the stability analysis.

The * denotes that the computations were not completed after 7 days. The

t symbol denotes that the stability analysis procedure failed. The compu­

tation was run on a 2.8GHz Pentium IV CPD running the Windows version

of MATLAB 6.5 along with the AG foundation LP solver.

.,

-;;-,- ..7--..0-,-.,;----.0-,-'0;----;---'-,;----,;----,e--,

(a) Final controll~r partition (cut

on X(l) = 0).

."
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(b) Final controli~rpartition (cut

on X(2) = 0).
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(c) Final controll~r partition (cut

on X(3) = 0).

Figure 8.4: The controller partition obtained by applying Algorithm 8.1.2 on Example

8.4.2. The actual partition is three dimensional (see (8.4)), but only the

axis intersections are shown.

stable and unstable systems were considered). Each of the random PWA systems

consists of 4 different affine dynamics which are defined over non-overlapping random

sets whose union covers the square X = [-5,5] x [-5,5]. The origin was chosen to

be on the boundary of multiple dynamies. All simulation runs as well as the random

system generation were performed with the MPT toolbox [KGB04j3.

Algorithms 8.1.2, 8.2.1, and 8.3.4, as well as the cost-optimal strategy of [BCM03a]

were applied to these systems. Complexity of the resulting solution and run time of

each algorithm are depicted graphically in Figures 8.5(a) and 8.5(b).

3For random PWA systems mpt...randPWAsys of the MPT toolbox [KGB04] was called
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Figure 8.5: Complexity and runtime for 10 random PWA systems.

To further investigate the behavior of different control strategies, another test on

a set of 10 random PWA systems was performed to show how the complexity of

Algorithms 8.1.2, 8.2.1, and 8.3.4 scales with increasing volume of the exploration

space. A comparison with the approach in [BCM03a] is depicted in Figures 8.6(a)

and 8.6(b). For the random systems considered here, the necessary runtime is reduced

by two orders of magnitude and the solution complexity is reduced by one order of

magnitude, on average. In addition, these differences become larger with increasing

size of the state constraints. Although we have not come across any examples where

the proposed schemes are inferior to the approaches in [BBBM03, KM02], such cases

mayexist.

None of the algorithms presented in this chapter guarantee optimal closed-loop

performance in the sense of the cost-objective (6.5). In order to assess the degradation

in performance, equidistantly spaced data points inside the set r::r:x,WA (O~WA) were

generated as feasible initial states. Subsequently, the closed-loop trajectory cost for

these initial states was computed according to the performance index (6.5a). The

average decrease in performance with respect to the cost-optimal solution of [BCM03a]

is summarized in Figures 8.7(a) and 8.7(b). It can be seen that closed-loop performance

gets better with increasing size of the exploration space. The intuitive explanation of

this observation is as follows. If the state is far away from the origin, going at "full

throttle" will be the optimal strategy, since the contribution of the state penalty term
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Figure 8.6: Complexity and runtime versus size of exploration space (average over 10

random PWA systems).

in (6.5a) is much higher than the term which penalizes the control action. Therefore

almost the same performance is achieved with low complexity strategies as with cost­

optimal algorithms for a majority of the controllable state-space, resulting in good

average performance.

8.5 Conelusion

In this chapter, three novel algorithms to compute low complexity feedback controllers

for constrained PWA systems have been presented. All three schemes lead to con­

trollers which guarantee constraint satisfaction for all time as well as asymptotic sta­

bility. The first proposed computation scheme iteratively solves aseries of optimal

control problems with N = 1 such that a feedback controller is obtained which drives

the state into a target set in a minimum time fashion. We have showed that by consid­

ering simpler objective function (which in this case takes a form of a piecewise constant

function) one can decrease the number of possible transition which need to be checked

during the controller construction phase. Furthermore, a search tree for efficient on­

line identification of the resulting feedback law is automatically constructed by the

minimum-time algorithm.

The second algorithm also uses the principle of driving system states into a corre­

sponding terminal set in the least possible number of steps. But in addition the control
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Figure 8.7: Performance degradation with respect to cost-optimal solution

of [BCM03a]. The performance of Algorithm 8.3.4 can be improved by

increasing N.

law is constructed in a way such that the number of switches between various dynamics

of the controlled PWA systems is reduced. By doing this, convexity of the target sets

used at each step of the design algorithm can be maintained for more than for one

step, which leads to increased runtime performance and decrease of the complexity of

solution.

The third computation scheme (referred to as M-step control) separately deals with

the requirements of constraint satisfaction and asymptotic stability. We have illus­

trated that feasibility für all time can be achieved by imposing a suitable terminal set

constraint on the first predicted state. In the M -step scheme, stability is not enforced

but merely verified aposteriori. This is done by searching for a Lyapunov function,

which then provides a certificate of dosed-loop asymptotic stability. There is, however,

no guarantee that such function will be found. In such case we have proposed how to

adjust the parameters of the optimization problem to increase the chance of finding

such function.

An extensive case study was also provided which dearly indicates that all presented

algorithms reduce complexity versus optimal controllers [BBBM03, KM02] by several

orders of magnitude, in general. The proposed procedures make problems tractable



80 8 Low Complexity Feedback Contral of Piecewise Affine Systems

that were previously too complex to be tackled by standard methods. On the other

hand, one usually has to face a performance drop of about 15% if the minimum-time

and reduced-switching approaches are used to design a feedback controller, and up to

50% when employing the M-step scheme. It is therefore up to the control engineer

to decide whether the significantly decreased controller complexity outperforms the

decreased controller performance.



9

Efficient Evaluation of Piecewise

Control Laws defined over a

Large Number of Polyhedra

In this chapter we consider the point-loeation or set membership problem [Sno97] for

the dass of discrete-time control problems with linear state and input constraints for

which an explicit time-invariant piecewise state feedback control law over a set of

possibly overlapping polyhedral regions is given. The point-location problem comes

into play on-line when evaluating the controllaw. One must identify the state space

region in which the measured state lies at the current sampling instance. As the

number of defining regions grows, a purely sequential seareh (also known as exhaustive

seareh) through the regions is too lengthy to achieve high sampling rates. Hence, it is

important to find an efficient on-line search strategy in order to evaluate the control

action 'in time' without the need of a heavy additional memory and preprocessing

demand.

This work is motivated, but not limited, by the recent developments in the field of

controller synthesis für hybrid systems [vSOO, Hee99, Son81, BBMOOb, Bor03, Joh03]. A

significant amount of the research in this field has focused on solving constrained opti­

mal control problems, both for continuous-time and discrete-time hybrid systems. We

consider the dass of constrained discrete-time pieeewise affine (PWA) systems [Son81]

that are obtained by partitioning the extended state-input space into polyhedral re­

gions and associating with each region a different affine state update equation.

As shown in previous sections, for piecewise affine systems the constrained finite time

optimal control problem can be solved by means of multi-parametric programming and

the resulting solution is a time-varying piecewise affine state feedback control law. If

the solution to the CFTOC problem is used in a reeeding horizon eontrol [Mac02]

81
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strategy the time-varying PWA state feedback controllaw becomes time-invariant and

can serve as a control 'look-up table' on-line, thus enabling receding horizon control

to be used for fast sampled systems. However, due to the combinatorial nature of

the problem the number of state space regions over which the controllook-up table is

defined grows in the worst case exponentially [Bor03, BMDP02] and therefore efficient

on-line search strategies are required to achieve fast sampling rates.

In this section we present a novel, computationally efficient algorithm that performs

the aforementioned point-location search for general closed-form piecewise (possibly

nonlinear) state feedback control laws defined over a finite number of polyhedra or

over a finite number of regions for which abounding box [BFT04] computation is

feasible. Moreover, control laws that do not form a polyhedral partition, but are

composed of a collection of overlapping polytopic sets, are included naturally in the

algorithm. The proposed point-location search algorithm offers a significant improve­

ment in computation time at the cost of a low additional memory storage demand and

very low pre-computation time for the construction of the search tree. This enables

the algorithm to work for controller partitions with a large number of regions, which

is demonstrated on numerical examples. In order to show its efficiency, the algorithm

is compared with the procedure proposed in [TJB03a] where a binary search tree is

pre-computed over the controller state space partition.

9.1 Point Location Problem

We consider arbitrary discrete-time control problems with a closed-form (possibly

nonlinear) time-invariant piecewise state feedback controllaw of the form

p,(x(t)) := P,i(X(t)), if x(t) E Pi, (9.1 )

where i = 1, ... , Np. Here x(t) E !Rnx denotes the state of the controlled system at

time t 2: 0, P,i ( .) E !Rn" are nonlinear control functions (or oracles), and the sets Pi

are compact and possibly overlapping, i.e. there exist Pi and Pj with i i= j such that

Pi n Pj is full-dimensional. Moreover, P := {Pi}~ denotes the collection of sets Pi'

In an on-line application the closed-form piecewise control law is u(t) = p,(x(t)),

where u E !Rn" denotes the control input. In order to evaluate the control one needs to

identify the state space region Pi in which the measured state x(t) lies at the sampling

instance t, i.e.
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Algorithm 9.1.1 (Control evaluation)

1. measure the state x(t) at time instanee t

2. seareh for the index set of regions I sueh that x(t) E Pi

for alt i E I

IF I = 0 THEN problem infeasible STOP

IF III > 1 THEN piek one element i* EI aeeording to eertain strategy

3. apply the eontrol input u(t) = J.Li*(X(t)) to the system
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The second step in Algorithm 9.1.1 is also known as the point-loeation or the set

membership problem [Sno97]: in other words, given a point x E ~nx and a set of sets

{Pi}~, the goal is to list the set of indices I such that x E Pi for all i E I. If

the cardinality of the set I in Step 2 is bigger than one, the proper element i* which

corresponds to the optimal feedback J.Li* has to be decided based on the property of

the solution l .

9.2 Alternative Search Approaches

Due to the combinatorial nature of the CFTOC problem (5.5), the controller com­

plexity, or the number Np of state space regions Pi, can grow exponentially with its

parameters in the worst case [Bor03,BMDP02]. Hence, for general control problems, a

purely sequential search through the regions is not sufficient in an on-line application.

It is therefore important to utilize efficient on-line search strategies in order to evaluate

the control action 'in time' without the need of a heavy additional memory demand.

Several authors addressed the point-Iocation/memory storage issue but with moder­

ate success for geometrically complex regions or controllers defined over a large number

of regions. A few interesting ideas are mentioned in the following. For the solution

to the particular CFTOC problem when, additionally, the system is constrained and

linear, i.e.

fpWA(x(t) , u(t)) := Ax(t) + Bu(t), with [~g\] E 1),

the authors in [BBBM01] propose a search algorithm based on the convexity of the

piecewise affine value function. Even though this algorithm reduces the storage space

1For instance, if the partition was generated as a solution to a CFTOC problem (5.5), then i*

corresponds to the region in which the cost function for a corresponding state x is minimal. If

the partition represents a minimum-time controller described in Chapter 8 then i* corresponds

to the region which has the least step distance to the origin.
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Figure 9.1: Overlapping collection of polytopic sets {Pi }r=1 with bounding box BI of

PI'

significantly, the storage demand as weIl as the search time are still linear in the

number of regions. [JGR05] address this issue for the same CFTOC problem dass

by demonstrating a link between the piecewise affine value function of [BBBMOl]

and power diagrams (extended Voronoi diagrams). Utilizing standard Voronoi search

methods the search time then reduces to O(log(Np )).

To the authors knowledge only two other approaches tackle the more general prob­

lem, where the only restriction is that the domain of the controllaw is a non-overlapping

polyhedral partition of the state space. (Note that this is more restrictive than the

algorithm presented here, cf. 9.3.) [GTM04, GTM03] aim at pre-computing a minimal

polyhedral representation of the original controller partition in order to reduce storage

and search complexity. However, the computation is 'practically' limited to a small

number of regions with a small number of facets2 [GrüOO], since the pre-computation

time grows exponentially. Relaxations to a larger number of regions is possible at the

cost of data storage and a higher search complexity.

An alternative approach, which will be used here for comparison, was proposed by

T0ndel et al. in [TJB03a], where a binary search tree is constructed on the basis of

2 A facet of a polyhedran P of dimension nx is any (nx - l)-dimensional intersection of P with a

tangent hyperplane.
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Figure 9.2: Projection B;l) of the bounding boxes of the polytopic set-collection

{PJf=l of Figure 9.1 onto the Xl-space sorted by the region's index. Indi­

cators for the construction of the first node level of the first dimension of

the interval tree are represented in green.

the geometrical structure of the polyhedral partition3 by utilizing the facets of the

regions as separating hyperplanes to divide the polyhedral partition at each tree level.

This however, can lead to a worst case combinatorial number of subdivisions of existing

regions and therefore to an additional increase in the number of regions to be considered

during the search procedure. The on-line point-location search time is in the best case

logarithmic in the number of regions Np, but worst case linear in the total number of

facets, which makes the procedure equivalent to sequential search in the worst case.

Moreover, note that the total number offacets, NF , is typically larger than the original

number of regions in the partition, i.e. N F > Np. Although the scheme works very well

for polyhedral partitions that have a 'simple' geometrie structure and/or have a small

number of regions, it tends to be computationally prohibitive in the preprocessing

time for more complex controller partitions. This is due to the fact that for each

hyperplane that defines a facet of each region one has to determine on which side of

the hyperplane every region lies. In the worst case 2NFN p linear programs need to

3Even though in the introduction of [TJB03a] it is mentioned that overlapping regions and 'holes' in

the domain of the controller are handled by the proposed algorithm, these cases are not explicitly

treated in the algorithm nor it is directly apparent how this will influence the complexity of the

algorithm.
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be solved, making this method untenable for moderate to large problems, i.e. greater

than 10000 regions, cf. Section 9.5.3. The memory storage requirement for the binary

search tree is (in the worst case) in the order of nxNF .

9.3 The Proposed Search Algorithm

The proposed search algorithm is based on minimal volume bounding boxes Bi for each

region Pi, which are defined as

where the lower and upper bounds li and Ui are given by

(li,Ui) :=argmin vol(B(l,u))
l,ll

subj. to B(l,u) = {x E lRnx Il::; x::; u} 2 Pi.

In other words, Bi is the 'smallest' axis-aligned nx-dimensional hyper-rectangle that

contains Pi. An example bounding box B1 can be seen in Figure 9.1.

Remark 9.3.1 Note that if the regions Pi are polytopes, then a minimal volume

bounding box can be computed using 2nx linear programs of dimension n x [BFT04).

For a given a query point, or measured state x(t), the proposed algorithm operates in

two stages. First, a list 'LB of bounding boxes containing the point x(t) is computed,

i.e. x(t) E Bi for all i E 'LB (Section 9.3.1). Second, for each index i E 'LB
, the region

Pi is tested to determine if it contains x(t) (Section 9.3.2). In the following x(t) is

simply denoted by x for brevity.

The first stage of this procedure is extremely efficient and computationally 'inexpen­

sive' , since the containing bounding boxes can be reported in logarithmic time. This

can be done by breaking the search down into one-dimensional range queries, which

is possible due to the axis-aligned nature of the bounding boxes. The complexity of

the second stage of the algorithm is a function of the overlap between the bounding

boxes of adjacent regions. A significant advantage of the proposed search tree is a

very simple and effective preprocessing step, which allows the method to be applied to

controllers defined over a very large number of regions, i.e. several tens of thousands.

As is shown in Section 9.5, there are severallarge problems of interest to control which

have a structure that makes this procedure efficient.
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Figure 9.3: Two-dimensional interval tree for the collection of polytopes P in Fig­

ure 9.1. The gray indicated node in d = 1 is explored further in d = 2.

Remark 9.3.2 (Overlapping regions) Note that overlapping regions are treated

naturally and without any additional heuristics by the algorithm.

9.3.1 Bounding Box Search Tree

In this section we will detail the procedure for reporting the set of indices I ß of all

bounding boxes that contain a given point x. The algorithm relies on the fact that one

can decompose the search of a query point x E lRnx in a set of bounding boxes in an

nx-dimensional space into nx separate one-dimensional sequential or parallel searches,

because the bounding boxes are all axis-aligned.

The basic steps for constructing the search tree are given in Algorithm 9.3.3.

Algorithm 9.3.3 (Building the search tree)

1. compute the bounding box Bi for each Pi
2. project each bounding box Bi onto each dimension

d = 1, ... , nx: define B~d) as the resulting interval

3. build an nx-dimensional interval tree

Note that Step 2 of Algorithm 9.3.3 for axis-aligned bounding boxes is merely a coor­

dinate extraction of the corner points li and Ui.

The proposed search algorithm is an extension to the weH known concept of interval

trees [dSvOOO, CLRSOl]. Standard interval trees are efficiently ordered binary search

trees for determining a set of possibly overlapping one-dimensionalline segments that
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contain a given point or line segment. Consider Figure 9.2, in which the intervals of

the bounding boxes in the first dimension for the example in Figure 9.1 are shown.

The intervals are spread vertically, ordered by their respective index i, to make them

easier to see.

Each node of the search tree, cf. Figure 9.3 and 9.2, is associated with a median

point M. For example the root node T in Figure 9.3 is associated with the point MI in

Figure 9.2. The node splits the set of intervals into three sets: The set .c, consisting of

those entirely on the left of the point M, n those entirely on the right and M, those

that intersect it. The set M is stored in the node and the left and right branches of the

tree are formed by choosing points above and below M and repeating this procedure

on .c and n, respectively. By choosing the point M to be the median

of the considered intervals J at a given step, the number of intervals at each level of the

tree drops logarithmically. This standard interval tree for the example in Figure 9.2

is shown in the left (d = 1) of Figure 9.3.

The tree can then be used on-line to determine the set TB of intervals containing a

given point [xh, which is the first dimension of the query point x, as follows. Beginning

at the root node T, the point [xh is compared to the point MI associated with the

root node. If we assume that the point [xh is larger than MI, then it is contained in

all intervals in the set M whose right endpoint [uih is larger than [xh, since MI is less

than [xh and is also contained in the interval. Note that this search over the set M
can be done in logarithmic time by pre-sorting the endpoints of the intervals in M.
Finally, the tree is followed down the right branch, denoted T--->R in Figure 9.3, and

this procedure is repeated recursively. If the point [xh is less than MI, then a similar

procedure is carried out on the lower bounds and the left branch is followed, which is

labeled T--->L in Figure 9.3.

We now extend this standard method to higher dimensions by building an interval

tree over the sets M at each node using the next dimension [xh, i.e. d = 2. In
Figure 9.3, the tree on the left resembles the interval tree for the first measured

dimension [xlI- The root node T contains several elements M = {I, 3}, i.e. IMI > 1,

and therefore an interval tree, labeled T--->D in Figure 9.3, over the second dimension

(d = 2) is constructed for this node, in which only the elements {1,3} are considered

and where the search is performed for the second dimension of the measured variable
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[xh only. This tree is shown on the right of the figure. By continuing in this manner,

the approach is extended to arbitrary dimensions nx .

9.3.2 Local Search

As already mentioned, the interval search tree only provides a list of candidates I ß

that are possible solutions to the point-location problem. In order to identify the

particular index set I S;;; I ß that actually contains the measured point x(t), cf. Step

2 of Algorithm 9.1.1, a local search algorithm needs to be executed on the list of

candidate regions by exhaustively testing a set membership x E Pi for all i E I ß .

If the cost function associated with a solution of a CFTOC Problem (5.5) is convex,

one can use the approach of [BBBM01] in which the local search can be performed in

(2nx + 2)IIß I arithmetic operations.

9.4 Complexity

9.4.1 Preprocessing

The preprocessing phase for the proposed algorithm occurs in two steps. First, the

bounding boxes for each region are computed, and then the nx-dimensional interval tree

is built. The calculation of abounding box requires two linear programs per dimension

per region. Therefore, if there are Np regions, then the calculation of the bounding

boxes requires exactly 2nx Np linear programs of dimension nx . The construction of

the interval tree can be performed in O(nxNp log(Np )) [dSvOOO] and as can be seen

from the examples in Section 9.5, the required computation is insignificant compared

to the computation of the bounding boxes.

Note that as the preprocessing for this algorithm requires two linear programs per

region, it is guaranteed to take significantly less time than the initial computation of

the controller. It follows that this approach can be applied to any system for which an

explicit controller can be calculated. Note also that bounding boxes are computed in

some parametric solvers as the solution is computed [KGB04], making the additional

off-line computation negligible.
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The algorithm requires the storage of abounding box as well as a list of defining

inequalities for each critical region. Furthermore the structure of the tree must be

stored. Abounding box of dimension nx requires exactly 2nx numbers to be stored

and since each bounding box appears in exactly one node of the interval tree in each

dimension, the tree has a worst case storage of 2nx N p pointers, where the 2 is for the

left and the right branch pointers of the tree.

9.4.3 On-line Complexity

The interval tree can be traversed in o (log(Np ) + II8 1) time, where II8 1is the number

of intervals returned [dSvOOO]. However, all current methods of doing the secondary

search over the list of II8 Ipotential regions returned must be done in linear time. The

worst-case complexity is therefore determined by the maximum number of regions

that can be returned by the interval tree search, or equally the maximum number of

bounding boxes that contain a single point. The efficiency of the proposed algorithm

is therefore determined by the structure of the set collection P. It is demonstrated

by example in the following section that there exist control problems for which the

proposed method offers a significant improvement over current approaches.

9.5 Numerical Examples

9.5.1 Constrained LTI System

The proposed algorithm of Section 9.3 was applied to the following linear system with

three states and two inputs

[
7/10 _1/10 0 1 [1/10 01

x(t + 1) = 1/5 _1/2 1/10 x(t) + 1/10 1 u(t).
o 1/10 1/10 1/10 0

The system is subject to input constraints, -511.2 ::; u(t) ::; 511.2 , and state constraints,

-2011.3 ::; x(t) ::; 2011. 3 . The CFTOC Problem (5.5) is solved with p = 1, N = 8,

Qx = 13, Qu = 110 h, and QXN = 03x3. The receding horizon state feedback control

law (4.4) consists of 2568 polyhedral regions in JR3.
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As can be seen from Table 9.1, the algorithm presented in Section 9.3 is required

to solve 2 . 3 . 2568 = 15408 linear programs in the preprocessing phase and needs to

store 15408 real numbers to represent the bounding boxes, as well as 4424 pointers

in order to represent the tree. Since the cost function für this example is piecewise

affine and convex, it is possible to use the method in [BBBMOl] for the local search,

cf. Section 9.3.2, which requires an additional storage of 10272 real numbers.

In comparison, the binary search tree of [TJB03a] for this case consists of 815 unique

hyperplanes. For each such hyperplane 2Np LPs must be solved in the preprocessing

phase to compute the index set which corresponds to 4 185840 linear programs. An

actual additional 1184782 linear programs are needed to construct the tree, which

does not correspond to the worst case scenario.

In order to identify the control law on-line, one has to perform 707 floating point

operations to traverse the interval tree in the worst case. Since the tree only provides

a necessary condition for the point-location problem, one has to perform a local search

on the regions identified by the tree as possible candidates (Section 9.3.2). To provide

a worst case bound, an exhaustive check for all possible intersections of the intervals

stored in the presented tree was performed. In the worst case 36 regions need to be

checked using the method of [BBBMOl], which corresponds to 216 flops. However, as

can be seen from Figure 9.4, a unique controllaw is automatically reported by the here

proposed search tree in 31 % of all cases without the requirement of doing a secondary

local search. In addition, approximately 90 % of all search queries do not require an

exhaustive check of more than 15 regions.

sequential
Alg. in [TJB03a]

Alg. 9.3.3

search ( [BBBMOl] locally)

number of LPs (off-line) - 5370622 15408

runtime (off-line) - 10 384 secs 10 secs

on-line arithm. operations
106295 110 923

(worst case)

Table 9.1: Computational complexity for the example in Section 9.5.1.
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Figure 9.4: Histogram of the relative occurrence of the number of 'local' regions for

the example in Section 9.5.1.

9.5.2 Constrained PWA System

Consider the following piecewise affine system from [MR03]

{

AIX(t) + Bu(t),
x(t + 1) =

A2x(t) + Bu(t) + a,

if [0, 1, O]x(t) :::; 1,

otherwise,

where

The system is subject to input constraints, -1 :::; u(t) :::; 1, and state constraints,

[-10, -5, -10]' :::; x(t) :::; [10,5, 10]'. With p = 1, N = 7, Qx = hx3, Qu = 1/10, and

QXN = 03x3. The solution to the CFTOC Problem (5.5) resulted in a receding horizon

state feedback controllaw (4.4) defined over 2222 polyhedral regions in ~3.

The off-line construction of the interval search tree for this example required 13332

LPs to be solved, compared to 7.9.106 linear programs which are needed to construct
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Figure 9.5: Histogram of the relative occurrence of the number of 'local' regions for

the example in Seetion 9.5.2.

the binary search tree of [TJB03a]. (This does not correspond to the worst case

scenario.) Since the cost function of a given CFTOC solution is not necessarily convex,

one cannot use the method of [BBBM01], and therefore one must perform a sequential

search as outlines in Section 9.3.2 on possible candidates. Using the same methodology

as in the previous example, we have found that at most 39 regions have to be searched

exhaustively. This however, takes at most 1 720 flops. The worst case number of

floating point operations needed to traverse the interval tree is 882. Moreover, almost

60 % of all search queries result in a unique contral law during the first phase of the

algorithm (Section 9.3.1), cf. Figure 9.5. Therefore no additional sequential searches

are necessary in these cases. Results on the computational complexity are summarized

in Table 9.2.
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Figure 9.6: Ball & Plate laboratory setup. The ball follows a pre-specified trajectory.

sequential
Alg. in [TJB03a] Alg. 9.3.3

search

number of LPs (off-line) - 7913462 13332

runtime (off-line) - 12810 secs 4.8 secs

on-line arithm. operations
97984 352 2602

(worst case)

Table 9.2: Computational complexity for the example in Section 9.5.2.

9.5.3 Ball & Plate System

The mechanical 'Ball & Plate' system was introduced in [Bor03, Her96]. The exper­

iment consists of a ball rolling over a gimbal-suspended plate actuated by two inde­

pendent motors, cf. Figure 9.6. The control objective is to make the ball follow a

prescribed trajectory, while minimizing the control effort. The dynamical model for

the y-axis of such a device is given by

[01 0 0] [0]x(t) = gg70g ~ x(t) + g u(t),
o 0 0 -34.69 3.1119

(9.2)
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where x := [y, y, a, a]' is the state. -30:::; y :::; 30 and -15 :::; Y :::; 15 are the

position and velocity of the ball with respect to the y-coordinate, -0.26 :::; a :::; 0.26 and

-1 :::; a :::; 1 denote the angular position and angular velocity of the plate, respectively.

The input voltage to the motor is assumed to be constrained by -10 :::; u :::; 10. In
order to take the tracking requirements into account, the state vector is extended with

an additional element, which contains the reference signal, hence the augmented state

vector is in ~5. The model (9.2) was then discretized with sampling time Ts = 0.03

and a closed-form PWA feedback law (4.4) was derived for the CFTOC Problem

(5.3), where the following parameters N = 10, Qx = diag([6, 0.1, 500, 100,6]), Qu = 1,

and QXN = Q were considered. The controller obtained using the Multi-Parametric

Toolbox [KGB04] for MATLAB® is defined over 22286 regions in ~5.

The computational results for the respective search trees are summarized in Ta­

ble 9.3. Due to the high number of regions, the binary search tree of [TJB03a] was

not applicable to this example (denoted by * in Table 9.3), since it would require the

solution of 3.5 . 109 LPs already in the preprocessing stage to determine the index set

before building the binary search tree. In contrast, in the preprocessing stage, the

here proposed algorithm has to solve 228860 LPs to obtain the bounding boxes for all

regions. The overall time needed to construct the complete search tree, including the

computation of the bounding boxes, was just 80 seconds. 9324 pointers are needed to

represent the tree structure, and 222860 floating point numbers are needed to describe

the bounding boxes.

To estimate the average and the worst case number of arithmetic operations needed

to identify the controllaw on-line, we have investigated 10000 random initial conditions

over the whole feasible state space. It can be seen from the histogram distribution

depicted in Figure 9.7 that the search tree algorithm identifies at most 500 regions as

sequential
Alg. in [TJB03a] Alg. 9.3.3

search

number of LPs (off-line) - 3.5.109 228860

runtime (off-line) - * 80 secs

on-line arithm. operations
1400178 208849

(worst case) *

Table 9.3: Computational complexity for the example in Section 9.5.3. * denotes that

the algorithm in [TJB03a] is not computable for this example.
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possible candidates in 86% of all tested initial conditions. The subsequent exhaustive

check on 500 regions corresponds to 30000 floating point operations. In 99% of all

tested cases the algorithm identifies at most 1000 regions for subsequent Iocal search,

which corresponds to at most 60 000 flops. In the worst case, the search tree will

identify as many as 2544 regions as possible candidates for a sequential search. Notice

that this number represents, in the worst case, only 11 %of the total number of regions.

This amounts to a maximum of 152640 flops, whereas traversal of the tree contributes

another 56 209 flops. The sequential search on all regions, on the other hand, would

require 1.4 . 106 operations and is currently the only method that can be applied to

such a large system. The total number of flops which are needed to be performed

on-line is thus reduced by one order of magnitude. To give a sensible feeling for

this number of floating point operations, note that a 3 GHz Pentium 4 computer can

execute approximately 800 . 106 flOPS/sec. Given this performance the controlled system

can be run at a sampling rate of 4 kHz in the case of the presented search tree, whereas

the sequential search has a limit of 500 Hz.
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Figure 9.7: Histogram of the relative occurrence of the number of 'local' regions for

the example in Seetion 9.5.3.
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In this chapter we presented a search tree algorithm utilizing the concept of bounding

boxes and interval trees for the fast on-line evaluation of piecewise closed-form control

laws defined over compact regions. The power of the proposed approach lies in its

ability to rapidly preprocess a large number of (possibly overlapping) regions into a tree

that minimizes the on-line computational burden. The algorithm offers a significant

improvement in the on-line controller evaluation and can handle much larger systems

than current approaches. The procedure was compared with existing methods in the

literature and its effectiveness was demonstrated for large examples
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Introduction

As already mentioned in the previous sections, optimal control of constrained linear

and piecewise affine systems has garnered great interest in the research community

due to the ease with which complex problems can be stated and solved. The aim of

the Multi-Parametric Toolbox (MPT) is to provide efficient computational means to

obtain feedback controllers for these types of constrained optimal control problems in

a MATLAB [TMOO] programming environment. As the name of the tool hints, it is

mainly focused on calculation of feedback laws in the parametric fashion in which the

feedback law takes a form of a PWA look-up table, as explained in Chapter 4. But

the toolbox is also able to formulate and solve MPC problems on-line in the receding

horizon fashion, i.e. by solving the optimization problem for a particular value of the

initial condition at each time step.

In short, the Multi-Parametric Toolbox can be described as being a free Matlab

toolbox for design, analysis and deployment of MPC-based controllaws for constrained

linear, nonlinear and hybrid systems. Efficiency of the code is guaranteed by the

extensive library of algorithms from the field of computational geometry and multi­

parametric optimization. The toolbox offers a broad spectrum of algorithms compiled

in a user friendly and accessible format: starting from modeling systems which combine

continuous dynamics with discrete logic (hybrid systems), through design of control

laws based on different performance objectives (linear, quadratic, minimum time) to

the handling of systems with persistent additive and polytopic uncertainties. Users

can add custom constraints, such as polytopic, contraction, or collision avoidance

constraints, or create custom objective functions. Resulting optimal control laws can

either be embedded into control applications in the form of a C code, or deployed to

target platforms using Real Time Workshop.

MPT can also be viewed as a unifying repository of hybrid systems design tools

from international experts utilizing state-of-the-art optimization packages. The list of

101
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included software packages includes packages for linear programming (CDD [Fuk97],

GLPK [MakOI]), quadratic programming (CLP), mixed-integer linear programming

(GLPK), and semi-definite programming (SeDuMi [Stu99]). In addition, MPT

ships with a dedicated solver for computing projections of convex polytopes, called

ESP [Jon05], a boolean optimization package ESPRESSO, as well as with the HYSDEL

modeling language [TBB+02].

The main factor which distinguishes this toolbox from other alternatives is the

big emphasis on efficient formulation of the problems which are being solved. This

means that the toolbox provides implementation of novel control design and analysis

algorithms, but also offers the user an easy way to use them without the need to be

an expert in the respective fields. MPT aims at providing tools which can be used in

the whole chain of the process of successful control design. It allows users not only

to design optimization-based controllers, but also to formally verify that they behave

as desired, investigate the'behavior of the closed-loop system, and to post-process the

resulting feedback laws in order to simplify them without loosing prescribed design

properties.

In the following chapters we present the toolbox from the user's perspective. In
Chapter 11 we first describe how the user can define a dynamical model of plant

to be controlled and how different types of constraints (e.g. constraints on plant

states, inputs, outputs, as well as rate constraints) can be defined. In the subsequent

chapter we present a novel tool, called matrixHYSDEL, which significantly expands

the capabilities of the Hybrid Systems Description Language HYSDEL [TBB+02] used

to easily define the behavior of hybrid systems in a user friendly way.

Chapter 13 then explains how different types of model predictive control problems

can be formulated using the MPT framework. We illustrate that the toolbox can

formulate and solve different types of control problems, ranging from finite-horizon

setups, through infinite-time and minimum-time problems (cf. Section 8.1), up to low

complexity strategies, represented by the M-step scheme presented in Section 8.3. In
this chapter we also show that the user can freely modify the underlying optimization

problem. This can be done either by adding custom constraints (such as constraints

involving logic decisions, norms, move blocking type of constraints, etc.), or by modi­

fying the objective function.

Chapter 14 is devoted to the analysis capabilities of the MPT toolbox. Specifically,

we show that the toolbox is able to perform reachability analysis [Tor03] for the class of

PWA systems. This module can be further used to verify certain properties of closed-
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loop control systems, including checking safety and liveness of such systems. In addi­

tion, the analysis library includes functions which can be used to calculate Lyapunov

functions of different types (such as quadratic, piecewise linear, piecewise quadratic,

or polynomial functions of higher order). These functions then serve as certificates

of closed-loop stability. As part of this module MPT also provides functions which

serve to decrease the complexity of parametric controllers, i.e. controllers composed

of polyhedral regions. The reduction is achieved by performing the so-called "region

merging" in which multiple controller regions are merged to larger convex parts.

In Chapter 15 we then describe ways how optimization-based controllers can be

implemented on target devices in the form of a C code, and how the controllers can

be used for simulations in the Simulink environment.

Visualization capabilities of the toolbox are then reported in Chapter 16, before

presenting several examples in Chapter 17.

MPT on its own can also be used by users mainly concerned with computational

geometry. Specifically, in Chapter 18 we show how wide range of operations on convex

polytopes and nonconvex unions thereof can be performed using the toolbox. The

functionality under consideration includes, but is not limited to, computation of convex

hulls and convex unions of several polytopes, enumeration of extremal vertices, and

calculation of Minkowski sums and Pontryagin differences of several convex polytopes.

The theoretical background behind the presented methods is presented in Chapter 3.

In Chapter 19 we then summarize the review the main differences between MPT, the

Hybrid Toolbox [Bem03] and the MPC toolbox, which are all tools devoted to design

of MPC-based controllers. This chapter compares all three tools from the users per­

spective and highlights similarities and differences in the respective user interfaces and

richness of offered features. In the same chapter we also review how AMPL [FGK93]

(A Mathematical Programming Language) can be used to solve MPC-based problems

on-line and how it compares to MPT.

Finally, in Chapter 20 we review possible goals for the future development of the

Multi-Parametric Toolbox.
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Modelling of LTI and PWA

Systems

In this chapter we will show how to model linear and piecewise affine systems in

the MPT framework. The behavior of a plant is in general driven by two major

components: system dynamics and system constraints. Both these components have

to be described in the system structure.

11.1 System Dynamics

MPT can deal with three types of discrete-time models of dynamical systems:

1. Linear Time-Invariant (LTI) models

2. Piecewise-Affine (PWA) models

3. Mixed Logical Dynamical (MLD)

This chapter only covers modeling of LTI and PWA systems, while modeling of systems

in the MLD framework will be explained in Chapter 12.

11.1.1 LTI Dynamics

LTI dynamics can be captured by the following linear relations:

x(k + 1)

y(k)

Ax(k) + Bu(k)

Cx(k) + Du(k)

(11.1)

(11.2)

where x(k) E Rnx is the state vector at time instance k, x(k + 1) denotes the state

vector at time k + 1, u(k) E Rnu and y(k) E Rny are values of the control input and
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system output, respeetively. A, B, C and D are matriees of appropriate dimensions,

i.e. Ais a nx x nx matrix, dimension of Bis nx x nu , Cis a ny x nx and D a ny x nu

matrix.

Dynamieal matriees are stored in the following fields of the system strueture:

sysStruct.A A

sysStruct.B B

sysStruct.C C

sysStruct.D D

Example 11.1.1 Assume a double integrator dynamics sampled at 1 second:

x(k + 1) =

y(k) =

[~

[~

1 ] x(k) + [ 1 ] u(k)
1 0.5

~ ] x(k) + [ ~ ] u(k)

(11.3)

(11.4)

In MPT, the above described system can be defined as follows:

sysStruct.A

sysStruct.B

sysStruct.C

sysStruct.D

[1 1; 0 1J;

[1; o. 5J ;
[1 0; 0 1J;

[0; OJ

11.1.2 PWA Dynamics

Pieeewise-Affine systems are systems whose dynamies are affine and ean be different

in different parts of the state-input state. In partieular, they are defined by

x(k + 1)

y(k)

Aix(k) + Biu(k) + fi

Cix(k) + Diu(k) + gi

if [X( k) ] E 1).
u(k) t

(11.5)

(11.6)

(11.7)

The subindex i takes values 1 ... N pWA , where N pWA is total number ofPWA dynamies

defined over a polyhedral partition 1). Dimensions of matriees in (11.5)-(11.7) are

summarized in Table 11.1.2.
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Matrix Dimension

A nx x nx

B nx x nu

f nx x 1

C ny x nx

D ny x nu

g ny x 1
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Table 11.1: Dimensions of matrices of a PWA system.

Matrices in equations (11.5) and (11.6) are stored in the following fields of the system

structure:

Equation (11.7) defines a polyhedral partition of the state-input space over which

the different dynamics are active. Different segments of the polyhedral partition D

are defined using so-called guard lines, i.e. constraints on state and input variables.

In general, the guard lines are described by the following constraints:

Gfx(k) + GYu(k) ::; G~ (11.8)

which means that dynamics i represented by the tuple [Ai, Bi, fi, Ci, Di, gi] will be

active in the part of state-input space which satisfies constraints (11.8). If at future

time the state x( k +T) or input u(k +T) moves to a different sector of the polyhedral

partition, say Gjx(k + T) + Gju(k + T) ::; Gj, the dynamics will be driven by the

tuple [Aj,Bj,fj,Cj,Dj,gj]' and so on.

In MPT, PWA systems are represented by the following fields of the system struc­

ture:

sysStruet.A {Al, A2, An}

sysStruet.B {Bl, B2, ... , Bn}

sysStruet.f {H, f2, ... , fn}

sysStruet.C {Cl, C2, ... , Dn}

sysStruet.D {Dl, D2, ... , Cn}

sysStruet.g {gl, g2, ... , gn}

sysStruet.A {Al, A2, ... , An}

sysStruet.guardX {Gxl, Gx2, ... , Gxn}

sysStruet.guardU {Gul, Gu2, ... , Gun}

sysStruet.guardC {Gel, Ge2, ... , Gen}
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In PWA case, each field of the structure has to be a cell array of matrices of appropriate

dimensions. Each index i E 1,2, ... , n corresponds to one PWA dynamics, i.e. to one

tuple [A, Bi, fi, Ci, Di, gi] and one set of constraints Gfx(k) + G'tu(k) ~ Gi

Unlike the LTI case, one can omit sysStruct. fand sysStruct. g if they are zero.

All other matrices have to be defined in the structure.

11.2 Import of Models from External Sources

MPT can design controllaws for discrete-time constrained linear, switched linear and

hybrid systems. Hybrid systems can be described in Piecewise-Affine (PWA) or Mixed

Logical Dynamical (MLD) representations and an efficient algorithm is provided to

switch from one representation to the other form and vice-versa. To increase user's

comfort, models of dynamical systems can be imported from various sources:

• Models of hybrid systems generated by the HYSDEL [TB02] and matrixHYS­

DEL languages,

• MLD structures generated by the function mpLpwa2mld

• Nonlinear models defined by mpLnonlinfcn template

• State-space and transfer function objects of the Control toolbox,

• System identification toolbox objects,

• MPC toolbox objects.

In order to import a dynamical system, one has to call

model=mpt_sysCobject, Ts)

where object can be either astring (in which case the model is imported from a

corresponding HYSDEL or matrixHYSDEL source files), or it can be a variable of

one of the above mentioned object types. The second input parameter Ts denotes

sampling time and can be omitted, in which case Ts = 1 is assumed.

Example 11.2.1 The following code will first define a continuous-time state-space

object which is then imported to MPT:



11.3 System Constraints

% sampling time

Ts 1;

%continuous-time model as state-space object

di = ss C[1 1; 0 1], [1; O. 5J, [1 0; 0 lJ, [0; 0]);
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%import the model and discretize it

sysStruct = mpt_sysCdi, Ts);

Note: If the state-space object is already in discrete-time domain, it is not necessary

to provide the sampling time parameter Ts to mpLsys. After importing a model using

mpLsys it is still necessary to define system constraints as described previously.

11.3 System Constraints

MPT allows to define following types of constraints:

• MiniMax constraints on system outputs

• MiniMax constraints on system states

• MiniMax constraints on manipulated variables

• MiniMax constraints on slew rate of manipulated variables

11.3.1 Constraints on System Outputs

Output equation is in general driven by the following relation for PWA systems

and by

y(k) = Cx(k) + Du(k)

(11.9)

(11.10)

for LTI systems. It is therefore clear that by choice of Clone can use these

constraints to restrict system states as weIl. MiniMax output constraints have to be

given in the following fields of the system structure:

sysStruct.ymax outmax

sysStruct.ymin outmin

where outmax and outminare n y x 1 vectors.
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11.3.2 Constraints on System States

11 Modelling of LTI and PWA Systems

Constraints on system states are optional and can be defined by

sysStruct.xmax xmax

sysStruct.xmin xmin

where xmax and xmin are n x x 1 vectors.

11.3.3 Constraints on Manipulated Variables

Goal of each control technique is to design a controller which chooses a proper value

of the manipulated variable in order to achieve the given goal (usually to guarantee

stability, but other aspects like optimality mayaIso be considered at this point). In

most real plants values of manipulated variables are restricted and these constraints

have to be taken into account in controller design procedure. These limitations are

usually saturation constraints and can be captured by min I max bounds. In MPT,

constraints on control input are given in:

sysStruct.umax

sysStruct.umin

inpmax

inpmin

where inpmax and inpmin are n u x 1 vectors.

11.3.4 Constraints on Slew Rate of Manipulated Variables

Another important type of constraints are rate constraints. These limitations restrict

the variation of two consecutive control inputs (8u = u(k) - u(k - 1)) to be within of

prescribed bounds. One can use slew rate constraints when a "smooth" control action

is required, e.g. when controlling a gas pedal in a car to prevent the car from jumping

due to sudden changes of the controller action. Minimax bounds on slew rate can be

given in:

sysStruct.dumax

sysStruct.dumin

slewmax

slewmin

where slewmax and slewmin are nu x 1 vectors.

Note: This is an optional argument and does not have to be defined. If it is not given,

bounds are assumed to be ±oo.
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MPT allows to define system with discrete-valued control inputs. This is especially

important in a framework of hybrid systems where control inputs are often required

to belong to certain set of values. We distinguish two cases:

1. All inputs are discrete

2. Some inputs are discrete, the rest are continuous

11.4.1 Purely Discrete Inputs

Typical application of discrete-valued inputs are various on/off switches, gears, selec­

tors, etc. All these can be modelled in MPT and taken into account in controller

design. Defining discrete inputs is fairly easy, all that needs to be done is to fill out

sysStruct.Uset = Uset

where Uset is a cell array which defines all possible values for every control input. If

the system has, for instance, 2 control inputs and the first one is just an on/off switch

(i.e. Ul = {O, I}) and the second one can take values from set {-5, 0, 5}, it can be

defined as follows:

sysStruct.Uset{1}

sysStruct.Uset{2}

[0, 1J

[-5, 0, 5J

where the first line corresponds to Ul and the second to U2. If the system to be

controlled has only one manipulated variable, the cell operator can be omitted, i.e.

one could write:

sysStruct.Uset = [0, 1J

The set of inputs doesn't have to be ordered.

11.4.2 Mixed Inputs

Mixed discrete and continuous inputs can be modelled by appropriate choice of

sysStruct. Uset. For each continuous input it is necessary to set the correspond­

ing entry to [- rnf rnfJ, indicating to MPT that this particular input variable should

be treated as a continuous input. For a system with two manipulated variables, where
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the first one takes values from a set {-2.5, 0, 3.5} and the second one is continuous,

one would set:

sysStruct.Uset{l}

sysStruct.Uset{2}

[-2.5, 0, 3.5J

[-Inf InfJ

11.5 System Structure sysStruct

System structure sysStruct is a structure which describes the system to be contralled.

MPTcan deal with two types of systems:

1. Discrete-time linear time-invariant (LTI) systems

2. Discrete-time Piecewise Affine (PWA) Systems

Both system types can be subject to constraints imposed on contral inputs and

system outputs. In addition, constraints on slew rate of the control inputs can also be

given.

11.5.1 LTI systems

In general, a constrained linear time-invariant system is defined by the following rela­

tions:

x(k + 1) Ax(k) + Bu(k)

y(k) Cx(k) + Du(k)

subt. to

Ymin < y(k) S Ymax

Umin < u(k) S Umax

Such an LTI system is defined by the following mandatory fields:

sysStruct.A

sysStruct.B

sysStruct.C

sysStruct.D

A',
B',
C;

= D;
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sysStruet.ymax

sysStruet.ymin

sysStruet.umax

sysStruet.umin

ymax;

ymin;

umax;

umin;

Constraints on slew rate of the control input u(k) can also be imposed by:

sysStruet.dumax

sysStruet.dumin

dumax;

dumin;

which enforces 6.um in <= u(k) - u(k - 1) <= 6.umax .

Note: If no constraints are present on certain inputs/states, set the associated values

to Inf.

LTI system which is subject to parametrie uncertainty and/or additive disturbances

is driven by the following set of relations:

x(k + 1)

y(k)

Auncx(k) + Buncu(k) + w(k)

Cx(k) + Du(k)

where w(k) is an unknown, but bounded additive disturbance, i.e.

w(n) E W

To specify an additive disturbance, set

sysStruet.noise = W

"In E (O ... InJ)

where Wis a polytope object bounding the disturbance. MPTalso supports lower­

dimensional noise polytopes. If one wants to define noise only on a subset of system

states, it can be done by defining sysStruet. noise as a set of vertices representing

the noise. For instance, to impose a +/- 0.1 noise on xl, but no noise should be used

for x2, this can be done with:

sysStruet.noise = [-0.1 0.1; 0 OJ;

A polytopic uncertainty can be specified by a cell array of matrices Aune and Bune

as follows:

sysStruet.Aune

sysStruet.Bune

{Al,

{Bl,

... ,

... ,
An};

Bn};
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11.5.2 PWA Systems

11 Modelling of LTI and PWA Systems

PWA systems are models for describing hybrid systems. Dynamical behavior of such

systems is captured by relations of the following form:

x(k + 1) Aix(k) + Biu(k) + fi

y(k) Cix(k) + Diu(k) + gi

subj. to

Ymin < y(k) ::; Ymax

Umin < u(k) ::; Umax

tlumin < u(k) - u(k - 1) ::; tlumax

Each dynamics i is active in a polyhedral partition bounded by the so-called guard­

lines:

which means dynamics i will be applied if the above inequality is satisfied.

Fields of sysStruct describing a PWA system are listed below:

sysStruct.A {Al, ... , An}

sysStruct.B {Bi, ... , Bn}

sysStruct.C {Cl, ... , Cn}

sysStruct.D {Dl, ... , Dn}

sysStruct.f {fl, ... , fn}

sysStruct.g {gi, ... , gn}

sysStruct.guardX {guardXl, guardXn}

sysStruct.guardU {guardUl, ... , guardUn}

sysStruct.guardC {guardCl, ... , guardCn}

Note that all fields have to be cell arrays of matrices of compatible dimensions, n

stands for total number of different dynamics. If sysStruct . guardU is not provided,

it is assumed to be zero.

System constraints are defined by:
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sysStruct.ymax ymax;

sysStruct.ymin ymax;

sysStruct.umax umax;

sysStruct.umin umin;

sysStruct.dumax dumax;

sysStruct.dumin dumin;

115

Constraints on slew rate are optional and can be omitted.

MPTis able to deal also with PWA systems which are affected by bounded additive

disturbanees:

where the disturbance w(k) is assumed to be bounded for all time instances by some

polytope W. To indicate that the dynamical system is subject to such a disturbance,

set

sysStruct.noise = W;

where Wis a polytope object of appropriate dimension.

Mandatory and optional fields of the system structure are summarized in Ta­

bles 11.5.2 and 11.5.2, respectively.

A, B, C, D, f, g

umin, umax

ymin, ymax

guardX, guardU, guardC

State-space dynamic martices in (5.1) and (11.5)-(11.7).

Set elements to empty if they do not apply.

Bounds on inputs umin :s: u(t) :s: umax.

Constraints on the outputs ymin :s: y(t) :s: ymax.

Polytope cell array defining where the dynamics

are active (for PWA systems).

Vi = {(x, u) I guardXi x + guardUi u :s: gujardCi}.

Table 11.2: Mandatory fields of the system structure sysStruct.
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Uset Declares discrete-valued inputs

dumin, dumax Bounds on dumin :S u(t)-u(t-l) :S dumax.

Pbnd Polytope limiting the feasible state-space of intersest.

Table 11.3: Optional fields of the system structure sys8truct.
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Modelling of MLD Systems

12.1 Mixed Logical Dynamical Systems

Most of the control theory and tools have been developed for systems, whose evolu­

tion is described by smooth linear or nonlinear state transition functions. In many

applications, however, the system to be controlled also comprises parts described by

logic, such as for instance on/off switches or valves, gears or speed selectors, evolu­

tions dependent on if-then-else rules. Often, the control of these systems is left to

schemes based on heuristic rules inferred from practical plant operation. In the 1990s,

researchers started dealing with hybrid systems, namely hierarchical systems compris­

ing dynamical components at the lower level, governed by upper levellogical/discrete

components ( [GNAE93], [BBM98]). Hybrid systems arise in a large number of applica­

tion areas, and have been attracting much attention in both academic theory-oriented

circles as well as in industry.

In late 1990s, Tyler and Morari [TM99] and then Bemporad and Morari [BM99a] set

out to establish a framework for modeling and controlling models of systems described

by interacting physical laws, logical rules, and operating constraints. According to

techniques described, for example, by Williams [Wil93], Cavalier et al. [CPS90] and

Raman and Grossmann [RG92], propositional logic can be transformed into linear

inequalities involving integer and continuous variables. Combining the logic with the

continuous system we obtain mixed logical dynamical (MLD) systems described by

linear dynamic equations subject to linear mixed-integer inequalities, i.e. inequalities

involving both continuous and binary (or logical, or 0-1) variables:

Xk+1 = AXk + BIUk + B 26k + B 3 zk

Yk = CXk + D I Uk + D26k + D3zk

E 20k + E 3zk ::; EIUk + E4Xk + E 5

(12.1a)

(12.1b)

(12.1c)
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where the state x, the output y and the input u can have continuous as weIl as

binary components. The continuous variables z are introduced when translating some

propositionallogic expressions into mixed-integer inequalities.

Though this may not be obvious at first sight, many practical discrete-time sys­

tems can be described in the MLD framework. MLD systems generalize a wide set

of models, among which there are linear hybrid systems, finite state machines, some

classes of discrete event systems, constrained linear systems, and nonlinear systems

whose nonlinearities can be expressed (or, at least, suitably approximated) by piece­

wise linear functions. Indeed, when the described map is continuous, then Heemels

et al. [HDBOl] have shown that MLD systems are entirely equivalent in their expres­

siveness to a wide range of other system descriptions in discrete time, in particular,

piecewise affine (PWA) systems, linear complementarity systems, max-plus systems,

finite state machines, etc.

12.2 HYSDEL

In general, the derivation of an MLD model on the basis of an engineering description

is a tedious task almost impossible to do by hand except for trivial example systems.

Therefore we have developed a modeling language HYSDEL [TBB+02] that makes the

novel framework readily accessible to the engineering community.

The HYbrid System DEscription Language (HYSDEL) is a modeling language to

describe hybrid systems in a textual fashion. In this subsection we will briefly introduce

the language capabilities. Even though the HYSDEL description is only an abstract

modeling step, the associated HYSDEL compiler then translates the description into

several computational models, in particular into the MLD and PWA models.

A HYSDEL list is composed of two parts - INTERFACE and IMPLEMENTATION.

The INTERFACE section contains the declarations, divided into subsections called

STATE, INPUT, OUTPUT and PARAMETER, the order in which those sections are

declared is not relevant. The first three declarations are referred to as variable decla­

ration, while the last is a parameter declaration.

The second part, IMPLEMENTATION, is composed of specialized sections describ­

ing the relations among the variables. The IMPLEMENTATION seetion starts with

an optional AUX seetion which contains the declarations of the internal signals of the

DHA system, called also auxiliary variables. The declaration follows the general syn-
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tax of the variable declaration. The OUTPUT seetion allows specifying static linear

and logic relations für the output vector. The HYSDEL seetion AD allows to define

Boolean variables from continuous ones. The seetion LOGIC allows to specify arbitrary

functions of Boolean variables. The HYSDEL section DA defines continuous variables

according to if-then-else conditions on Boolean variables. The CONTINUOUS seetion

describes the linear dynamies, expressed as difference equations. HYSDEL allows also

to define a continuous variable as an affine function of continuous variables in the LIN­

EAR section. The AUTOMATA section specifies the state transition equations of the

finite state machine (FSM) as Boolean functions. Finally, the MUST section specifies

constraints on continuous and Boolean variables, i.e., linear constraints and Boolean

formulas. More generally, the MUST section allows also mixed constraints on states,

inputs, and outputs).

Once the hybrid system is modeled properly, the HYSDEL compiler translates it into

the MLD form (22.4) and optionally generates also a MATLAB simulator. Detailed

description of how to obtain the MLD representation out of HYSDEL-represented

model is given in [TBB+02].

12.3 matrixHYSDEL

As already mentioned, the derivation of MLD models on the basis of an engineering

description is difficult to do by hand, but can easily be automated using the modeling

language HYSDEL. Although HYSDEL was successfully used in many case studies, it's

modeling features are restricted to scalar variables, which can make modeling complex

systems very time consuming. Because of that we developed an extension called ma­

trixHYSDEL, which allows to use vector and matrix variables when modeling hybrid

systems. In addition, repetitive tasks can be easily simplified by using matrixHYS­

DEL's support of nested FOR loops. We spend the rest of this section highlighting

individual features of matrixHYSDEL which help to ease the effort of modeling of

complex hybrid systems.

12.3.1 Vector and Matrix Variables

matrixHYSDEL extends syntax of HYSDEL models by adding the possibility to use

vector and matrix variables and parameters. Dimensions of the variables can be defined

in the standard MATLAB-like fashion, e.g.
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REAL X(m, n)

12 Modelling of MLD Systems

will define a matrix variable with m rows and n columns whose elements are all

real. It is also possible to define a vector variable by, e.g. REAL X(m), which will be

automatically interpreted as a m x 1 vector. Bounds on variables can be defined if

the variable is a vector, e.g.

REAL X(3) [-1, 1; -3, 0; 0, 4J

where each column in the matrix is separated by a comma (" ,") and each row is

delimited by a semi-column (";").

12.3.2 Vector and Matrix Parameters

Vector and matrix parameters can be of two kinds. Either their value is explicitly

given at compilation time, or their value is adjusted dynamically at the time when the

generated MLD model is used inside of the MATLAB environment.

If symbolical parameters are used, it is necessary to define their dimensions, which

will remain persistent at all further stages. Dimensions are defined in the same way

as by vector and matrix variables, i.e.

REAL C(3, 3)

will define the parameter C as a 3 x 3 symbolic matrix. If a parameter is a vector, it

is possible to omit the second dimension, e.g.

REAL D(3)

will define D as a 3 x 1 symbolic vector. Values of vector and matrix parameters can

be specified by endosing them in the [, J environment, e.g.

REAL A = [1, 1; 0, lJ

will define the parameter A as a 2 x 2 matrix. Note that it is not necessary to provide

dimensions of parameters which have a defined value.
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12.3.3 Indexing of Vectors and Matrices
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Vector and matrix variables and parameters can be indexed using the MATLAB-like

index operators. Indexes can be either scalar, e.g.

Z = X(2)

or defined by a range, e.g.

Z=X(1:3)

which corresponds to Z = (X (1), X(2), X(3)). In addition, increments can be spec­

ified as weIl. The increments can be both positive as weH as negative, providing that

they are aH integer-valued. For instance

Z = X(1:2:4)

will result into Z = (X (1), X(3)). Variables can also be indexed by means of a

non-symbolic parameter, e.g.

X(K)

where K is a pre-define real parameter. This case can be further extended to indexing

by an indexed parameter, e.g.

K = [2, 3, 1J

Z = X(K(2))

will correspond to Z = X(3). Matrix variables and parameters can also be indexed in

the same fashion by providing a separate index for the rows and a separate index for

the columns of the respective variables or parameters. For instance

Z = X(1: 2, 3: 4)

will return Z which contains first two rows of the 3rd and 4th columns of the matrix

variable X.

Example 12.3.1 We show benefits of using vector variables and parameters on the

following example. Assume we have a particle moving in a two-dimensional plane with

forces in each dimensions as inputs. Furthermore we assume that movement in each

direction is independent, i. e. there is no coupling. The model of such system in the
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discrete-time domain with sampling time of ls can be thus approximated by two double

integrators:

(

Px 1+ (1 1 0 01(Px 1 (1Sx 0 1 0 0 Sx + 0.5

py 0 0 1 1 py 0

Sy 0 0 0 1 Sy 0

o 1o U

0~5
(12.2)

where Px and py are positions of the particle in the x and y direction, respectively.

Sx and Sy denote speed along each direction. Furthermore we assume there is an

additional boolean input to our plant. If that input is true, forces applied to the system

are amplijied by a factor of 2. If the boolean input takes a false value, applied forces

are not amplijied, i. e.

u=
(~) ifub=O

2( :X
y

)r. if Ub = 1.

(12.3)

In addition, every time the force boost is applied, value of an associated counter is

increased by one, i. e.

b~ = bc + 1 (12.4)

Using a vector representations of the state vector X = (Px, SX, Py, sv' bcjT and the input

forces F = (Fx, FyjT it is possible to model the aforementioned dynamical system by

the following matrixHYSDEL code:

1. SYSTEM xy {

2. INTERFACE {

3. STATE {

4. REAL X(5);
5. }

6. INPUT {

7. REAL F(2);
8. BOOL u_b;
9. }

10. PARAMETER {

11. REAL A = [1, 1, 0, 0; 0, 1, 0, 0; 0, 0, 1, 1; 0, 0, 0, 1J;
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}

IMPLEMENTATION {

AUX {

REAL Ft(2);

}

DA {

Ft = {IF u_b THEN 2*F ELSE F};

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27. }

}

REAL B

}

}

CONTINUOUS

XO: 4)

X(5)

}

[1, 0; 0.5, 0; 0, 1; 0, O. 5J ;

{

A*X(1:4) + B*Ft;

X(5) + (REAL u_b);

12.3.4 Loops

Repetitive tasks can easily be simplified using matrixHYSDEL's support of FOR-loops.

A general syntax for loops is as follows:

« iterator = boundl: [increment:Jbound2 »

where the special delimiters «,» enclose the cycle, i terator is an identifier of a

variable which takes values from boundl to bound2. If the increment parameter is

omitted, it is assumed to be equal to 1. Negative increments are also allowed, e.g.

« i = 3:-1:1 »

will result into i taking values 3, 2 and 1. Alternatively, values of the iterator can also

be enumerated explicitly as a vector, e.g.

« i = [2, 4, 5J »

The identifier of the iterator must be explicitly provided in the AUX section by using

the INDEX keyword. For instance
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AUX { INDEX i; }

12 Modelling of MLD Systems

will define the variable i to act as an iterator in subsequent loops. The identifier must

not conflict with any existing state, input, output, or other auxiliary variables. When

the FOR-loop is used, it applies only to a statement which directly precedes the cycle

itself, as will be illustrated by the following example.

Example 12.3.2 Consider the same system as in Example 12.3.1, but this time we

assume that we want to model the movement of N particles instead of just one. This

goal can be achieved with matrixHYSDEL first by considering the state and input

variables as matrices of appropriate size, e.g.

1. SYSTEM xy_many {

2. INTERFACE{
3. PARAMETER {

4. REAL N = 3;
5. }

6. STATE {
7. REAL X(5, N);
8. }

9. INPUT {
10. REAL F(2, N);
11. BOOL u_b(N);
12. }

13. }

where N denotes number of particles to consider. The state variables X are now defined

as a 5 x N matrix, with each column representing the state vector of one particle. The

input forces Fand the boosting trigger u_b are represented in a similar fashion.

14. IMPLEMENTATION {
15. AUX {
16. INDEX ip;
17. REAL Ft(2);
18. }

19. DA {

20. Ft(1:2, ip) {IF u_b(ip) THEN 2*F(1:2, ip)
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ELSE F(1:2, ip)}21.

22.

23.

24.

25.

26.

27. }

28. }

}

CONTINUOUS {

X(1 :4, ip)

X(5, ip)

}

« ip

A*X(1:4, ip) + B*Ft(1:2, ip) « ip

X(5, ip) + (REAL u_b(ip)) « ip

l:N »;

l:N »;

l:N »;

After the loop-counting variable ip was defined on line 16, we used it on lines 20, 23

and 24 to repeat given commands for alt particles of our system (ip= 1 ... N).

12.3.5 Nested Loops

FOR-loops can also be nested, which leads to multi-level cydes. General syntax of

nested loops is as follows

« i1 = Li: [ine1:]U1, i2 = L2: [ine2:]U2, ... , in = Ln: [inen:]Un »

Again, it is possible to replace the range operator Ln: [inen:] Un with an explicit

list of values. When such a nested cyde is evaluated, the inner-most iterators are

incremented first. When the upper limit is reached, value of the inner-most operator

is decreased back to it's original value, and value of the iterator directly preceding this

one is incremented. To illustrate this, suppose we have the following FOR-cyde which

consists of two iterators:

« i = 1:2, j = 0:1 »

When such a cyde is evaluated, following sequence of values of the iterator variables

will be obtained:

i=l, j=O

i=l, j=l

i=2, j=O

i=2, j=l

Example 12.3.3 We extend Example 12.3.2 by adding further specifications that ve­

locity of each particle along every axis must be restricted to be between ±1O units per
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time. We recall that the matrix of state variables as defined in Example 12.3.2 was

defined as a 5 x N matrix, where N defines number of particles in our system. Hence

the state vector corresponding to particle i was X (1 : 5, i). By further recalling system

definition (12.2) we know that the velocities in respective directions are the 2nd and

4th components of the state vector. Since the objective is to add constraints on these

elements of the state vector of each particle, we can do so by means of nested loops in

the MUST section:

AUX {

INDEX ip, ix;
}

MUST {

XCix, ip) <= 10 « ip l:N, ix [2, 4J »;

XCix, ip) )= -10 « ip l:N, ix [2, 4J »;

}

Here the iterator ip loops through all particles and the iterator ix cycles through the

states of interest.

12.3.6 Vector Functions

matrixHYSDEL defines three new internal functions which simplify operations with

vector variables. The function surn sums up all elements of a given vector, i.e.

Z = surn(X);

is equivalent to writing Z=X (1) +X (2) +... +X (n). Indexed vectors can also be provided

as an input argument of the surn function, e.g.

Z = surn(X([l, 3, 4J))

will sum up only the 1st, 3rd and 4th element of a given vector X, i.e. it is identical

to writing Z=X(1)+X(3)+X(4).

The function all can be used to impose a logical AND condition on all elements of

a given vector, e.g.

Z all (B)
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is identical to writing Z = BC1) & B(2) & ... & BCn) and the variable Z will take

a true value if and only if all elements of the vector Bare true. Again, indexed vectors

can be used as input arguments of the function.

The function any is used to impose a logicalOR condition on all elements of a given

vector, e.g.

Z = anyCB)

is identical to writing Z = B(1) I B(2) I ... I BCn), i.e. Z will be true if any of

the elements of the vector Bare true. Again, indexed vectors can be used as input

arguments of the function.

12.4 Import of Models Generated by HYSDEL

and matrixHYSDEL into MPT

Once a model of a hybrid system is defined in the HYSDEL or matrixHYSDEL lan­

guages, it can be imported into MPT using the same approach as described in Chap­

ter 11. Specifically, one can use the function mpLsys to perform such import. The

user has to provide the name of the file which contains description of the modeled

system, e.g. for HYSDEL:

sysStruct = mpt_sysC'hysdelfile.hys', Ts);

or, for matrixHYSDEL:

sysStruct = mpt_sysC'matrixhysdelfile.mhys', Ts);

Note: Hybrid systems modeled in HYSDEL are already defined in the discrete-time

domain, the additional sampling time parameter Ts is only used to set the sampling

interval for simulations. If Ts is not provided, it is set to 1.

The description of the hybrid system defined in the file hysdelf ile. hys is first

transformed into an MLD model ofthe form 22.4 using the HYSDEL (matrixHYSDEL)

compilers. Subsequently, an equivalent PWA representation of the same system is

created automatically. It is possible to avoid the PWA transformation by calling

sysStruct = mpt_sysC'hysdelfile.hys', Ts, 'nopwa');

or, for matrixHYSDEL:
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sysStruct = mpt_sysC'matrixhysdelfile.mhys' , Is, 'nopwa');

The import function also extracts whichever constraints have been defined in the orig­

inal source code and automatically fills out the required fields of the system structure

sysStruct.
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Control Design

13.1 Controller Computation

For constrained linear and hybrid systems, MPT can design optimal and sub-optimal

control laws either in implicit form, where an optimization problem of finite size is

solved on-line at every time step and is used in a Receding Horizon Control (RHC)

manner or, alternatively, solve an optimal control problem in a multi-parametric fash­

ion. If the latter approach is used, an explicit representation of the control law is

obtained.

The solution to an optimal control problem can be obtained by a simple call of

mpLcontro1. The general syntax to obtain an explicit representation of the control

law is:

ctrl = mpt_control(sysStruct, probStruct)

On-line MPC controllers can be generated by

ctrl = mpt_control(sysStruct, probStruct, 'online')

Based on the system definition described by sysStruct (cf. Section 11.5) and

problem description provided in probStruct (cf. Section 13.8), the main control

routine automatically calls one of the functions reported in Table 13.1 to calculate the

explicit solution to a given problem. mpLcontrol first verifies if all mandatory fields

in sysStruct and probStruct structures are filled out. If not, the procedure will

break with an appropriate error message. Note that the validation process sets the

optional fields to default values if they are not present in the two respective structures.

Again, an appropriate message is displayed.

Once the controllaw is calculated, the solution (here ctrl) is returned as an instance

of the mptctrl object. Internal fields of this object, described in Section 13.2, can be

accessed directly using the sub-referencing operator. For instance

129
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ReferenceSystem I N I Suboptimality I Problem I Function

LTI fixed 0 CFTOC mpLoptControl [Bao02, Bor03]

LTI Inf 0 CITOC mpt_optInfControl [GBTM04]
LTI Inf 1 CMTOC mpLiterative [GM03, GPM03]
LTI Inf 2 LowComp mpLoneStepCtrl [GM03, GPM03]

PWA fixed 0 CFTOC mpt_optControlPWA [BBBM03, KM02, Bor03]
PWA Inf 0 CITOC mpt_optInfControlPWA [BCM03a]
PWA Inf 1 CMTOC mpt_iterativePWA [GKBM04]
PWA Inf 2 LowComp mpt_iterativePWA [GKBM04]

Table 13.1: List of control strategies applied to different system and problem defini­

tions.

Pn = ctrl.Pn;

will return the polyhedral partition of the explicit controller defined in the variable
ctrl.

Controllaws can further be analyzed and/or implemented by functions reported in

Chapters 15 and 16.

MPT provides a variety of control routines which are being called from mpLcontrol.

Solutions to the following problems can be obtained depending on the properties of the

system model and the optimization problem. One of the following control problems

can be solved:

A. Constrained Finite Time Optimal Control (CFTOC) Problem.

B. Constrained Infinite Time Optimal Control Problem (CITOC).

C. Constrained Minimum Time Optimal Control (CMTOC) Problem.

D. Low complexity setup.

The problem which will be solved depends on the parameters of the system and

the problem structure, namelyon the type of the system (LTI or PWA), prediction

horizon (fixed or infinity) and the level of sub-optimality (optimal solution, minimum­

time solution, low complexity). Different combinations of these three parameters lead

to a different optimization procedure, as reported in Table 13.1.
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13.2 Fields of the rnptctrl object
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The controller object includes all results obtained as a solution of a given optimal

contral problem. In general, it describes the obtained contral law and can be used

both for analysis of the solution, as well as for an implementation of the controllaw.

Fields of the object are summarized in Table 13.2. Every field can be accessed using

the standard. (dot) sub-referencing operator, e.g.

Pn = ctrl.Pn;

Fi = ctrl. Fi;

runtime = ctrl.details.runtime;

Pn

Fi, Gi

Ai, Bi, Ci

Pfinal

dynamies

details

overlaps

sysStruct

probStruct

The polyhedral partition over which the control law is defined is

returned in this field. It is, in general, a polytope array.
The PWA contrallaw for a given state x(k) is given by u = Fi{r}

x (k) + Gi{r}. Fi and Gi are cell arrays.
Value function is returned in these three cell arrays and for a given

state x(k) can be evaluated as J = x(k)' Ai{r} x(k) + Bi{r}

x (k) + Ci{r} where the prime denotes the transpose and r is the

index of the active region, i.e. the region of Pn containing the given

state x(k).
In this field, the maximum (achieved) feasible set is returned. In

general, it corresponds to the union of all polytopes in Pn.
A vector which denotes which dynamics is active in which region of

Pn. (Only important for PWA systems.)
More details about the solution, e.g. total run time.

Boolean variable denoting whether regions of the controller partition

overlap.
System description in the sysStruct format.

Problem description in the probStruct format.

Table 13.2: Fields of MPT controller objects.
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13.3 Design of Custom MPC Problems

13 Contra! Design

MPTby means of the function mpLownmpc allows one to add (almost) arbitrary con­

straints to an MPC setup and to define a custom objective functions.

First we explain the general usage of the functionality. The design of custom MPC

controllers is divided into three phases:

1. Design phase. In this part, general constraints and a corresponding cost function

are designed

2. Modijication phase. In this part, the user is allowed to add custom constraints

and/or to modify the cost function

3. Computation phase. In this part, either an explicit or an on-line controller which

respects user constraints is computed.

13.3.1 Design Phase

Aim of this step is to obtain constraints which define a given MPC setup, along with

an associated cost function, and variables which represent system states, inputs and

outputs at various prediction steps. In order to obtain said elements for the case of

explicit MPC controllers, call:

» [GON, OBJ, VARS] = mpt_ownmpcCsysStruct, probStruct)

or, for on-line MPC controllers, call:

» [GON, OBJ, VARS] = mpt_ownmpcCsysStruct, probStruct, 'onIine')

Here the variable GON represents a set of constraints, OBJ denotes the optimization

objective and VARS is a structure with the fields VARS.x (predicted states), VARS.u

(predicted inputs) and VARS. Y (predicted outputs). Each eiement is given as a cell

array, where each element corresponds to one step of the prediction (i.e. VARS. xl

denotes the initial state xO, VARS. x2 is the first predicted state xl, etc.) If a particular

variable is a vector, it can be indexed directly to refer to a particular element, e.g.

VARS.x3Cl) refers to the first element of the 2nd predicted state (i.e. x2).
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The MPC setup can be modified by adding own constraints andjor by modifying the

objective function. The examples below given more information about this topic.

Note: It is strongly recommended to always add constraints on system states

(sysStruct.xmin, sysStruct.xmax), inputs (sysStruct.umin, sysStruct.umax)

and outputs (sysStruct. ymin, sysStruct. ymax) when designing a controller for

PWAjMLD systems, or if logic constraints are going to be added. Not adding the

constraints will cause the resulting optimization problem to be badly scaled, which

can have bad impact on performance of numerical solvers.

13.3.3 Computation Phase

Once the constraints andjor the objective have been modified according to one's needs,

either an explicit controller can be computed by

» ctrl = mpt_ownmpc(sysStruct, probStruct, GON, OBJ, VARS)

or an on-line MPC controller can be constructed by calling

» ctrl = mpt_ownmpc(sysStruct, probStruct, GON, OBJ, VARS, 'online')

Example 13.3.1 (Polytopic constraints) Assume that we would like to introduce

polytopic constraints of the form H Xk :S K on each predicted state, including the initial

state xo. Ta da that, we simply add these constraints to our set GON:

for k 1:1ength(VARS.x)

GON GON + set(H * VARS.x{k} <= K);

end

At this point one can continue with computation phase described above, which will

return a controller which respects given constraints.

Example 13.3.2 (Polytopic constraints) We now extend the previous example

and add the specification that polytopic constraints should only be applied on the 1st,

3rd and 4th predicted state, i. e. on Xl, X3 and X4. It is important to notice that the

variables contained in the VARS structure are organized in cell arrays, where the first

element of VARS. x corresponds to xo, i. e. to the initial condition. Therefore to meet

or specifications, we would write following code:
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for k = [1 3 4J ,

%VARS. x{1} corresponds to x(O)

%VARS.x{2} corresponds to x(1)

%VARS.x{3} corresponds to x(2)
%VARS.x{4} corresponds to x(3)

%VARS.x{5} corresponds to x(4)

%VARS.x{6} corresponds to x(5)

GON = GON + set(H * VARS.x{k+l} <= K);

end

Example 13.3.3 (Move blocking) Assume that we want to use more complicated

move blocking with following properties: Uo = Ul, (Ul -U2) = (U2 -U3), and U3 = K X2·

These requirements can be implemented by

%VARS.u{l} corresponds to u(O)

%VARS.u{2} corresponds to u(l), and so on

%u_O == u_l

» GON = GON + set(VARS.u{l} VARS.u{2});

% (u_l-u_2) == (u_2-u_3)

»GON GON + set((VARS.u{2}-VARS.u{3}) (VARS.u{3}-VARS.u{4}));

%u_3 == K*x_2

» GON = GON + set(VARS.u{4} == K * VARS.x{3});

Example 13.3.4 (Mixed constraints) As illustrated in the move blocking example

above, one can easily create constraints which involve variables at various stages of the

prediction. In addition, it is also possible to add constraints which involve different

types of variables. Por instance, we may want to add a constraint that the sum of

control inputs and system outputs at each step must be between certain bounds. This

specijication can be expressed by:

for k 1:1ength(VARS.u)

GON GON + set(lowerbound < VARS.y{k} + VARS.u{k} < upperbound);

end
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Example 13.3.5 (Equality constraints) Assume that we want to add a constraint

that the sum of all predicted control actions along the prediction horizon should be

equal to zero. This can easily be done by

» CON = CON + set ((VARS.u{1}+VARS.u{2}+VARS.u{3}+ ... +VARS.u{end}) 0);

or, in a vector notation:

» CON = CON + set(sum([VARS.u{:}]) == 0);

Example 13.3.6 (Constraints involving norms) We can extend the previous ex­

ample and add a specijication that the sum of absolute values of all predicted control

actions should be less than some given bound. To achieve this goal, we can make use

of the l-norm function, which exactly represents the sum of absolute values of each

element:

» CON = CON + set(norm([V.u{:}], 1) <= bound);

The same can of course be expressed in a more natural form:

» CON = CON + set(sum(abs([V.u{:}]» <= bound);

Example 13.3.7 (Contraction constraints) The norm-type constraints can be

used to dejine "contraction " constraints, i. e. constraints which force state Xk+l to be

closer to the origin (in the llInf-norm sense) than the state Xk has been:

for k 1:1ength(VARS.x)-1

CON CON + set (norm(VARS.x{k+1} , 1) <= norm(VARS.x{k}, 1»;
end

Note that these types of constraints are not convex and resulting problems will be

difficult to solve (time-wise).

Example 13.3.8 (Obstacle avoidance) It is a typical requirement of control syn­

thesis to guarantee that the system states will avoid some set of "unsafe" states (typi­

cally an obstacle or a set of dangerous operating conditions). These kinds of problems

can be solved by MPTif one adds suitable constraints. If we want, for instance, the

system to avoid a given polytopic set of states, we would proceed as follows:
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%first define set of unsafe states

»Punsafe polytope(H, K);
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%now define the complement of the "usafe" set versus some large box,

%to obtain the set of states which are "safe":

» Pbox = unitbox(dimension(Punsafe), 100);

» Psafe = Pbox \ Punsafe;

%now add constraints that each predicted state must be inside

%of the "safe" set of states

for k 1:1ength(VARS.x)

GON = GON + set(ismember(VARS.x{k}, Psafe));

end

Here set (ismember(VARS. xk, Psafe)) will impose a constraint which tells MPTthat

it must guarantee that the state Xk belongs to at least one polytope of the polytope

array Psafe, and hence avoiding the "unsafe" set Punsafe. Notice that this type of

constraints requires binary variables to be introduced, making the optimization problem

difficult to solve.

Example 13.3.9 (Logic constraints) Logic constraints in the form of IF-THEN

conditions can be added as well. For example, we may want to require that if the first

predicted input Uo is smaller or equal to zero, then the next input Ul has to be bigger

than 0.5:

%if u(O) <= 0 then u(l) must be >= 0.5

» GON = GON + set(implies(VARS.u{l} <= 0, VARS.u{2} >= 0.5));

Notice that this constraint only acts in one direction, i. e. if Uo :S 0 then Ul 2: 0.5, but

it does enforce any particular value of Ul if Uo > O.

To add an "if and only if" constraint, use the iffO operator:

%if u(O) <= 0 then u(l) >= 0.5, and

%if u(O) > 0 then u(l) < 0.5

» GON = GON + set(iff(VARS.u{l} <= 0, VARS.u{2} >= 0.5));

which will guarantee that if Uo > 0, then the value of Ul will be smaller than 0.5.
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Example 13.3.10 (Custom optimization objective) In the last example we

have shown how to define custom objective functions. Depending on the value of

probStruct. norm, the objective can either be quadratic, or linear.

To write a custom cost function, we simply sum up the terms we want to penalize.

For instance, the standard quadratic cost function can be defined by hand as follows:

OBJ = 0;
for k = l:length(VARS.u),

%cost for each step is given by x'*Q*x + u'*R*u

OBJ OBJ + VARS.x{k}' * Q * VARS.x{k};

OBJ OBJ + VARS.u{k}' * R * VARS.u{k};
end

%cost for the last predicted state x_N'*P_N*x_N

OBJ = OBJ + VARS.x{end}' * P_N * VARS.x{end};

For llInf-norm cost functions, one can use the overloaded norm() operator, e.g.

OBJ 0;
for k = l:length(VARS.u),

% cost for each step is given by 11 Q*x 11 + 11 R*u 11

OBJ OBJ + norm(Q * VARS.x{k}, Inf);

OBJ OBJ + norm(R * VARS.u{k}, Inf;

end

%cost for the last predicted state I IP_N*x_NI I
OBJ = OBJ + norm(P_N * VARS.x{end}, Inf);

If we now want to penalize deviations of predicted outputs and inputs from a given

time-varying trajectories, we can do so by defining a cost function as follows:

yref = [4 3 2 lJ;

uref = [0 0.5 0.1 -0.2J

OBJ

for k

OBJ
OBJ

end

o·,
l:length(yref)

OBJ + (VARS.y{k}

OBJ + (VARS.u{k}

- yref(k)), * Qy * (VARS.y{k} - yref(k));

uref(k)), * R * (VARS.u{k} - uref(k));
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13.4 Soft Constraints
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Since MPT 2.6 it is possible to denote certain constraints as soft. This means that

the respective constraint can be violated, but such a violation is penalized. To soften

certain constraints, it is necessary to define the penalty on violation of such constraints:

• probStruct .Sx - if given as a "nx" x "nx" matrix, all state constraints will be

treated as soft constraints, and violation will be penalized by the value of this

field.

• probStruct. Su - if given as a "nu" x "nu" matrix, all input constraints will be

treated as soft constraints, and violation will be penalized by the value of this

field.

• probStruct. Sy - if given as a "ny" x" ny" matrix, all output constraints will be

treated as soft constraints, and violation will be penalized by the value of this

field.

In addition, one can also specify the maximum value by which a given constraint

can be exceeded:

• probStruct. sxmax - must be given as a "nx" x 1 vector, where each element

defines the maximum admissible violation of each state constraints.

• probStruct. sumax - must be given as a "nu" x 1 vector, where each element

defines the maximum admissible violation of each input constraints.

• probStruct. symax - must be given as a "ny" x 1 vector, where each element

defines the maximum admissible violation of each output constraints.

The aforementioned fields also allow to specify that only a subset of state, input, or

output constraint should be treated as soft constraints, while the rest of them remain

hard. Say, for instance, that we have a system with 2 states and we want to soften

only the second state constraint. Then we would write:

» probStruct.Sx = diag([l 1000J)

» probStruct.sxmax = [0; 10J

Here probStruct. sxmax (1) =0 tells MPT that the first constraint should be treated

as a hard constraint, while we are allowed to exceed the second constraints by at most

10 and every such violation will be penalized by the factor of 1000.
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13.5 Control of Time-Varying Systems
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MPT can use models of time-varying systems for the synthesis of optimal controllers.

This approach can be used either to design controllaws for systems whose parameters

vary with respect to time, or for systems whose constraints are time-dependent. To

tell MPT that it should consider a time-varying system, one system structure for each

step of the prediction has to be defined, e.g.

» Double_Integrator

»81 sys8truct;

»82 sys8truct; 82.C

»83 sys8truct; 83.C

O.9*81.C;

O.8*81.C;

Here we have three different models which differ in the C element. Now we can define

the time-varying model as a cell array of system structures by

» model = {81, 82, 83};

» prob8truct.N = 3;

Note that order of systems in the model variable determines that the system 81 will

be used to make predictions of states x(1), while the predicted value of x(2) will be

determined based on model 82, and so on. Once the model is defined, one can now

compute either the explicit, or an on-line MPC controller using the standard syntax:

» explicitcontroller = mpt_control(model, prob8truct)

»onlinecontroller = mpt_control(model, prob8truct, 'online')

Systems with time-varying constraints can be defined in a similar fashion, e.g.

» Double_Integrator

» 81 sys8truct; 81. ymax [5 ; 5J; 81.ymin [-5 ; -5];

» 82 sys8truct; 82.ymax [4; 4J; 82.ymin [-4; -4J;

» 83 sys8truct; 83.ymax [3; 3]; S3.ymin [-3; -3];

» 84 sys8truct; 84.ymax [2 ; 2]; 84.ymin [-2; -2J ;

» prob8truct.N = 4;

» ctrl = mpt_control({81, 82, 83, 84}, prob8truct) ;
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One can go as far as combining different classes of dynamical systems at various stages

of the predictions, for instance one can arbitrarily combine linear, Piecewise-Affine

(PWA) and Mixed Logical Dynamical (MLD) systems. For instance, one can use a

detailed PWA model for the first prediction, while having a simple LTI model for the

rest:

» pwa_DI; pwa = sysStruct;

» Double_Integrator; lti = sysStruct;

» probStruct.N = 5;

» model = {pwa, pwa, lti, Iti, lti};

» ctrl = mpt_control(model, probStruct);

%PWA model with 4 dynamics

%simple LTI model

13.6 On-line MPC für Nonlinear Systems

MPTallows to solve on-line MPC problems based on nonlinear or piecewise nonlinear

systems. In order to define models of such systems, one has to create a special function

based on the mpLnonlinf cn. mtemplate. Once the describing function is defined, one

can use the mpt_sys function to convert it into format suitable for further computation:

» sysStruct = mpt_sys(@function_name)

where function_name is the name of the function which contains description of the

system. An on-line MPC controller can then be constructed using the standard syntax:

» ctrl = mpt_control(sysStruct, probStruct, 'online');

or

» [C, 0, V] = mpt_ownmpc(sysStruct, probStruct, 'online');

%modify constraints and objective as needed

» ctrl = mpt_ownmpc((sysStruct, probStruct, C, 0, V, 'online');

The resulting controller can be used either in Simulink, or in Matlab-based simulations

invoked either by

» u = ctrl(xO);

or by
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» [X, U, Y] = simCetrl, xO, number_of_simulation_steps)

» simplotCetrl, xO, number_of_simulation_steps)
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Note: It should be no surprise for the reader that generic nonlinear problems are

very difficult to solve. MPT, at this stage, only formulates the nonlinear problem and

passes it to an external nonlinear solver. Also note that currently only polynomial type

of nonlinearities is supported, i.e. no i/x terms or log/exp functions are allowed.

13.7 Move Blocking

Move blocking is a popular technique used to decrease complexity of MPC problems.

In this strategy the number of free control moves is usually kept low, while some of

the control moves are assumed to be fixed. To enable move blocking in MPT, define

the control horizon in

» probStruet.Ne = Ne;

where Ne specifies the number of free control moves, and this value should be less

than the prediction horizon probStruet. N. Control moves Uo up to UNe-l will be then

treated as free control moves, while UNe'" ., UN-l will be kept identical to UNel, i.e.

13.8 Problem Structure probStruct

Problem structure probStruet is a structure which states an optimization problem to

be solved by MPT.

13.8.1 One and Infinity Norm Problems

The optimal control problem with a linear performance index is given by:

min
u(O), ... ,u(N-l)

subj. to

N-l

IIPNx(N)llp + L IIRu(k)llp + IIQx(k)llp
k=O

x(k + 1) = fdyn(x(k), u(k), w(k))

Umin :s; u(k) :s; U max
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where:

ßUmin ::; u(k) - u(k - 1) ::; ßumax

Ymin ::; gdyn(x(k), u(k)) ::; Ymax

x(N) E Tset

13 Contra! Design

u vector of manipulated variables over which the optimization is performed

N prediction horizon

p linear norm, can be 1 or Inf for 1- and Infinity-norm, respectively

Q weighting matrix on the states

R weighting matrix on the manipulated variables

PN weight imposed on the terminal state

Umin, Umax constraints on the manipulated variable(s)

ßUmin, dumax constraints on slew rate of the manipulated variable(s)

Ymin, Ymax constraints on the system outputs

Tset terminal set
the function fdyn(x(k), u(k), w(k)) is the state-update function and is different for

LTI and for PWA systems (see Section 11.5 for more details).

13.8.2 Quadratic Cost Problems

In case of a performance index based on quadratic forms, the optimal control problem

takes the following form:

min
u(O), ... ,u(N-l)

subj. to

N-l

x(N?PNx(N) + L u(k?Ru(k) + x(k?Qx(k)
k=O

x(k + 1) = fdyn(x(k) ,u(k), w(k))

Umin ::; u(k) ::; Umax

ßUmin ::; u(k) - u(k - 1) ::; ßumax

Ymin ::; gdyn(x(k), u(k)) ::; Ymax

x(N) E Tset

If the problem is formulated for a fixed prediction horizon N, we refer to it as

to Constrained Finite Time Optimal Control (CFTOC) problem. If N is infinity, the

Constrained Infinite Time Optimal Control (CITOC) problem is formulated. Objective
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of the optimization is to choose the manipulated variables such that the performance

index is minimized.

13.8.3 Mandatory Fields

In order to specify which problem the user wants to solve, mandatory fields of the

problem structure probStruct are listed in Table 13.3.

probStruct.N

probStruct.Q

probStruct.R

probStruct.norm

probStruct.subopt_lev

prediction horizon

weights on the states

weights on the inputs

either 1 or Inf for linear cost, or 2 for quadratic cost objective

level of optimality

Table 13.3: Mandatory fields of the problem structure probStruct.

13.8.4 Level of Optimality

MPT can handle different setups of control problems. Specifically:

1. The cost-optimal solution that leads a controllaw which minimizes a given per­

formance index. This strategy is enforced by

probStruct.subopt_lev 0

The cost optimal solution for PWA systems is currently supported only for linear

performance index, Le. probStruct. norm = 1 or probStruct .norm = Inf.

2. Another possibility is to use the time-optimal solution, i.e. the control law will

push a given state to an invariant set around the origin as fast as possible. This

strategy usually leads to simpler control laws, Le. fewer controller regions are

generated. This approach is enforced by

probStruct.subopt_lev 1
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3. The last option is to use a low-complexity control scheme. This approach aims

at constructing a one-step solution and subsequently a PWQ or PWA Lyapunov

function computation is performed to verify stability properties. The approach

generally results in a small number of regions and asymptotic stability as weIl as

closed-loop constraint satisfaction is guaranteed. If one wants to use this kind

of solution, he/she should set:

probStruct.subopt_lev 2

13.8.5 Optional Fields

Optional fields are summarized in Table 13.4.
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probStruet . Qy used for output regulation. If provided the addi­

tional term 11 Q(y - Yre!) IIp is introduced in the cost

function and the controller will regulate the output(s)

to the given references (usually zero, or provided by

probStruet.yref.
probStruet.traeking 0/1/2 flag

o - no tracking, resulting controller is astate regula­

tor which drives all system states (or outputs, if prob­

Struct.Qy is given) towards origin

1 - tracking with ßu-formulation. The controller will

drive the system states (or outputs, if probStruet. Qy

is given) to a given reference. The optimization is

performed over the difference of manipulated variables

(u(k)-u(k-1)), which involves an extension ofthe state

vector by nu additional states where nu is the number

of system inputs.

2 - tracking without ßu-formulation. The same as

probStruet. traeking=l with the exception that the

optimization is performed over u(k), i.e. no ßu­

formulation is used and no state vector extension is

needed. Note, however, that offset-free tracking can­

not be guaranteed with this setting.

Default setting is probStruet . traeking = O.
probStruet .yref instead of driving astate to zero, it is possible to re-

formulate the control problem and rather force the out­

put to zero. To ensure this task, define probStruet. Qy

which perializes the difference of the actual output and

the given reference.
probStruet. P_N weight on the terminal state. If not specified, it is

assumed to be zero for quadratic cost objectives, or

PN = Q for linear cost.
probStruet. Ne control horizon. Specifies the number of free control

moves in the optimization problem.
probStruet. Tset a polytope object describing the terminal set. If not

provided and probStruet .norm = 2, the invariant LQR

set around the origin will be computed automatically to

guarantee stability properties.

Table 13.4: Optional field of the probStruet structure.
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Analysis and Post-Processing

The toolbox offers broad functionality for analysis of hybrid systems and verification

of safety and liveliness properties of explicit control laws. In addition, stability of

closed-loop systems can be verified using different types of Lyapunov functions.

14.1 Reachability Computation

MPT can compute forward N-steps reachable sets for linear and hybrid systems as­

suming the system input either belongs to some bounded set of inputs, or when the

input is driven by some given explicit controllaw.

To compute the set of states which are reachable from a given set of initial conditions

XO in N steps assuming system input u(k) E Uo, one has to call:

R = mpt_reachSets(sysStruct, XO, UO, N);

where sysStruct is the system structure, XO is a polytope which defines the set of

initial conditions (x(O) E ,1'0), UO is a polytope which defines the set of admissible

inputs and N is an integer which specifies for how many steps should the reachable set

be computed. The resulting reachable sets Rare returned as a polytope array. We

illustrate the computation on the following example:

Example 14.1.1 First we define the dynamical system for which we want to compute

reachable sets

%define matrices of the state-space object

A = [-1 -4; 4 -lJ; B = [1; lJ; C = [1 OJ; D
syst = ss(A, B, C, D);

Ts = 0.02;

O',
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%create a system structure by discretizing the continous-time model

sys8truct = mpt_sys(syst, Ts);

%define system constraints

sys8truct.ymax 10; sys8truct.ymin = -10;

sys8truct.umax = 1; sys8truct.umin = -1;

Now we can define a set 01 initial conditions XO and a set 01 admissible inputs UO as

polytope objects.

%set of initial states

XO = polytope([0.9 0.1; 0.9 -0.1; 1.1 0.1; 1.1 -0.1]);

%set of admissible inputs

UO = unitbox(l,O.l); %inputs should be such that lul <= 0.1

Finally we can compute the reachable sets.

N 50;

R mpt_reachSets(sysStruct, XO, UO, N);

%plot the results

plot(XO, 'r', R, 'g');

The reachable sets (green) as welt as the set 01 initial conditions (red) are depicted in

Figure 14.1.

To compute reachable sets for linear or hybrid systems whose inputs are driven by

an explicit controllaw, the following syntax can be used:

R = mpt_reachSets(ctrl, XO, N);

where ctrl is the controller object as generated by mpLcontrol, XO is a polytope

which defines a set of initial conditions (x(O) E Xo), and Nis an integer which specifies

for how many steps should the reachable set be computed. The resulting reachable

sets Rare again returned as polytope array.

Example 14.1.2 In this example we illustmte the reachability computation on the

double integrator example
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Figure 14.1: Reachable sets für Example 14.1.1.

%load system and problem parameters

Double_Integrator

%compute explicit controller

ctrl = mpt_control(sysStruct, probStruct);

%define the set of initial conditions

XO = unitbox(2,1) + [3;0];

%compute the 5-Steps reachable set

N 5;

R mpt_reachSets(ctrl, XO, N);

%plot results

plot (ctrl. Pn, 'y', XO, 'r', R, 'g');

The reachable sets (green) as welt as the set of initial conditions (red) are depicted on

top of the controller regions (yellow) in Figure 14.2.
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Figure 14.2: Reachable sets for Example 14.1.2.

14.2 Verification

Reachability computation can be directly extended to answer the following question:

Do the states of a dynamical system (whose inputs either belong to some set of admis­

sible inputs, or whose inputs are driven by an explicit control law) enter some set of

"unsafe" states in a given number of steps?

Example 14.2.1 In this example we show how to answer the verification question for

the first case, i. e. system inputs belong to some set of admissible inputs (u( k) E Uo).

Although we use a linear system here, exactly the same procedure applies to hybrid

systems in PWA representation as well.

%define matrices of the state-space object

A = [-1 -4; 4 -lJ; B = [1; lJ; C = [1 OJ; D

syst = ss(A, B, C, D);

Ts = 0.02;

O',

%create a system structure by discretizing the continous-time model

sysStruct = mpt_sys(syst, Ts);

%define system constraints

sysStruct.ymax 10; sysStruct.ymin = -10;

sysStruct.umax = 1; sysStruct.umin = -1;
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%define the set of initial condintions as a polytope object

XO = polytope([0.9 0.1; 0.9 -0.1; 1.1 0.1; 1.1 -O.lJ);

%set of adrnissible inputs as a polytope object

UO = unitbox(l,O.l); %inputs should be such that lul <= 0.1

%set of final states (the "unsafe" states)

Xf = unitbox(2,0.1) + [-0.2; -0.2J;

%number of steps

N = 50;

%perform verification

[canreach, NfJ = mpt_verify(sysStruct, XO, Xf, N, UO);
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If the system states can reach the set XI, canreach will be true, otherwise the function

will return false. In case XI can be reached, the optional second output argument NI

will return the number of steps in which XI can be reached fTOm XO.

Example 14.2.2 It is also possible to answer the verification question if the system

inputs are driven by an explicit contTOl law:

%load dynamical system

Double_Integrator

%compute explicit controller

expc = mpt_control(sysStruct, probStruct);

%define set of initial condintions as a polytope object

XO = unitbox(2,1) + [3;OJ;

%set of final states (the "unsafe" states)

Xf = unitbox(2,0.1) + [-0.2; -0.2J;

%number of steps
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lyaptype

'quad'

'sos'

'pwa'

'pwq'

'pwp'

14 Analysis and Post-Processing

Type of Lyapunov function

Common quadratic Lyapunov function

Common sum-of-squares Lyapunov function

Piecewise affine Lyapunov function

Piecewise quadratic Lyapunov function

Piecewise polynomial Lyapunov function

Table 14.1: Allowed values of the functiontype parameter in mpLlyapunov.

N = 10;

%perform verification

[canreach, Nf] = mpt_verifyCexpc, XO, Xf1, N);

14.3 Lyapunov-type Stability Analysis

In terms of stability analysis, MPT offers functions which aim at identifying quadratic,

sum-of-squares, piecewise quadratic, piecewise affine or piecewise polynomial Lyapunov

functions. If such a function is found, it can be used to show stability of the closed­

loop systems even in cases where no such guarantee can be given apriori based on the

design procedure. To compute a Lyapunov function, one has to call

ctrl_lyap = mpt_lyapunovCctrl, lyaptype}

where ctrl is an explicit controller and lyaptype is astring parameter which defines

the type of a Lyapunov function to compute. Allowed values of the second parameter

are summarized in Table 14.1. Parameters of the Lyapunov function, if one exists, will

be stored in

lyapfunction ctrl_lyap.details.lyapunov

14.4 Complexity Reduction

MPT also addresses the issue of complexity reduction of the resulting explicit control

laws. As explained in more detail in Chapter 9, the on-line evaluation of explicit

controllaws involves checking which region of the controller contains a given measured
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state. Although such an effort is usually small, it can become prohibitive for complex

controllers with several thousands or even more regions. Therefore MPT allows to

reduce this complexity by simplifying the controller partitions over which the control

law is defined. This simplification is performed by merging regions which contain

the same expression of the control law. By doing so, the number of regions may be

greatly reduced, while maintaining the same performance as the original controller.

The results of the merging procedure for a sampIe explicit controller of a hybrid system

is depicted in Figure 14.3.

"
(a) Regions of an explicit controller before simpli-

fication (252 regions).

IO'.---..::::--------------~

(b) Regions of an explicit controller after simplifi­

cation (39 regions).

Figure 14.3: Region merging results.

To simplify the representation of a given explicit controller by merging regions which

contain the same controllaw, one has to call:

ctrl_simple = mpt_simplifyCctrl)

If the function is called as indicated above, a heuristic merging will be used. It is

also possible to use optimal merging based on boolean minimization:

ctrl_simple = mpt_simplifyCctrl, 'optimal')

Note, however, that the optimal merging can be prohibitive for dimensions above 2

due to an exponential complexity of the merging procedure [Gey05].
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Implementation of Control Laws

15.1 Evaluation of Explicit Control Laws

The controllaw obtained as a result of mpLcontrol is stored in a respective controller

object mptctrl (see Section 13.2 for more details). The explicit controller takes the

form a of Piecewise Affine control law where the actual control action is given by

U(k) = F[x(k) + G~ (15.1)

where the superindex r denotes the active region, i.e. the region which contains the

given state x(k).

In the controller structure, the matrices Fi and Gi are stored as cell arrays, i.e.

ctrl.Fi {Fi{l} Fi{2}

ctrl.Gi {Gi{l} Gi{2}
FHn} }

GHn} }

Regions of the state-space, where each affine control (15.1) is active, are stored as a

polytope array in the following field:

ctrl.Pn = [ Pn(l) Pn(2) ... Pn(n)]

Moreover, the expression of the value function is stored in

ctrl.Ai

ctrl.Bi

ctrl.Ci

{ AH1} AH2}

{ BH1} BH2}
{ Ci{1} Ci{2}

Ai{n} }

BHn} }
Ci{n} }

Therefore the cost associated with a given state x(k) can easily be obtained by simply

evaluating the cost expression, which is defined by

J = x(kfA~x(k) + B[x(k) + e[ (15.2)
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Therefore the procedure to obtain the contral action for a given state x(k) reduces to

a simple membership-test. First, the index of the active region r has to be identified.

Since the polyhedral partition is a polytope object, the function isinside will return

indices of regions which contain the given state x(k). Since certain types of optimiza­

tion problems naturally generate overlapping regions, the active region corresponds to

the region in which the cost expression (15.2) is minimal. Once the active region is

identified, the control action is calculated according to (15.1) and can be applied to

the system.

If the optimal contral prablem was solved for a fixed prediction horizon N, the

evaluation (15.1) gives a vector of contral moves which minimize the given performance

criterion, i.e.

u ~ [u(Ofu(lf .. ·u(Nff (15.3)

When applying the obtained controllaw in closed-loop, only the first input u(O) is

extracted from the sequence U and is applied to the system. This policy is refereed to

as the Receding Horizon Policy.

The algorithm to identify the active controllaw is summarized below:

Algorithm 15.1.1 getInput(xo, Pn , Fi, Gi, Ai, Bi, Ci)

Input: Polyhedral partition Pn , PWA controllaw Fi , Gi, matrices oJ the cost expres­

sion Ai, Bi, Ci.

Output: Optimal control action U associated to a given state, Index oJ the active

region r

1. IdentiJy regions oJ Pn which contain the point xo. Denote array oJ oJ the asso­

ciated regions by R.

2. IF R = 0, return ERROR - No associated control law Jound.

3. Set J = 0

4· POR each element oJ R DO

a) J = xöArxo + Bixo + Ci

b) Add the ordered pair {J, r} to J

5. END POR

6. IdentiJy the minimal cost Jrom the set oJ ordered pairs J.
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u
feasible

region

cost

ctrl

xO

Options

Feedback controllaw obtained by (15.1)

Boolean variable (0/1) denoting whether there is at least one region

which contains the point xO in it's interior
Index of the active region in ctrl. Pn

Cost associated with the given state xO

Controller structure

State vector

Additional optional arguments

Table 15.1: Input and output arguments of mpLgetInput.

7. Extract from J the region r associated to the minimal cost

8. Compute the optimal input sequence U = K Xo +FiXo +Gi (K will be zero unless

feedback pre-stabilization enabled.

9. Return U, r

15.2 Implementation

The Algorithm 15.1.1 is implemented by the function mpLgetlnput. The syntax of

the function is the following

CU, feasible, region, cost]

CU, feasible, region, cost]

mpt_getlnput(ctrl, xO)

mpt_getInput(ctrl, xO, Options)

where the input and arguments are described in Table 15.1

The function returns the optimizer U associated with a region in which the cost

expression (15.2) is minimal. If there is no region associated with a given state xo, the

variable feasible will be set to 0 (zero).

Unless specified otherwise, the function mpLgetInput returns only the first element

of the sequence U (15.3), i.e. U = u(O), which can be directly applied to the system

to obtain the successor state x(k + 1). If the user wants to return the full sequence U,

Options.openloop has to be set to 1.

The above described function (mpLgetInput) processes the controller structure as

an input argument. If, for any reason, the solution to a given multi-parametric program

was obtained by a direct call to mpLmpLP or mpt-.1IlpQP, the function
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CU, feasible, region]=mpt_getOptimizer(Pn, Fi, Gi, xO, Options)

can be used to extract the sequence of arguments which minimize the given perfor­

mance criterion. Note that unlike Algorithm 15.1.1, mpLgetOptimizer does not take

into account overlaps. This is because overlapping regions are (usually) not generated

by mpLP and mpQP algorithms which are implemented in MPT.

The function sim calculates the open-loop or closed-loop state evolution from a given

initial state xo. In each time step, the optimal control action is calculated according to

Algorithm 15.1.1 by calling mpLgetInput. Subsequently, the obtained control move is

applied to the system to obtain the successor state x(k+ 1). The evolution is terminated

once the state trajectory reaches the origin. Because of numerical issues, a small box

centered at origin is constructed and the evolution is stopped as soon as all states

enter this small box. The size of the box can be specified by the user. For tracking

problems, the evolution is terminated when all states reach their respective reference

signals. The validation of input and output constraints is performed automatically

and the user is provided with a textual output if the bounds are exceeded.

General syntax is the following:

[X,U,Y]=sim(ctrl,xO)

[X,U,Y]=sim(ctrl,xO,N)

[X,U,Y]=sim(ctrl,xO,N,Options)

[X,U,Y,cost,feasible]=sim(ctrl,xO,N)

[X,U,Y,cost,feasible]=sim(ctrl,xO,N,Options)

where the input and output arguments are summarized in Table 15.2. Note: If the

third argument is an empty matrix (N = []), the evolution will be automatically

stopped when system states (or system outputs) reach a given reference point with a

pre-defined tolerance.

The trajectories can be visualized using the simplot function:

simplot (ctrl)

simplot(ctrl, xO)

simplot(ctrl, xO, N)

If xO is not provided and the controller partition is in ]R2, the user will be able to

specify the initial state just by clicking on the controller partition.
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x Matrix containing evolution of the system states, i.e. X =

[x(O)x(l) ...x(n + l)jT
U Matrix containing the control actions applied at each time step, i.e.

U = [u(O)u(l) ...u(n)jT
Y Matrix containing the evolution of system outputs, i.e. Y =

[y(O)y(l) ...y(n)]T
cast Overall cost obtained as a sum of (15.2).

feasible Boolean variable (0/1) denoting whether there is at least one region

which contains the point xO in it's interior
ctrl Controller object

xO Initial conditions

N Number of steps for which the evolution should be computed.

Options Additional optional arguments

Table 15.2: Input and output arguments of the sim function.
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15.2.1 Using different dynamical system in sim and simplot

It is possible to specify different dynamical systems to be used in simulations. In such

a case the control actions obtained by a given controller can be applied to a different

system than that which was used for computing the controller:

sim(ctrl, system, xO, N, Options)

simplot(ctrl, system, xO, N, Options)

Note that the N and Options arguments are optional. The user can specify his/hers

own dynamics in two ways:

1. By setting the system parameter to a system structure, i.e.

sim(ctrl, sysStruct, xO, N, Options)

2. By setting the system parameter to a handle of a function which will provide

updates of system states in a discrete-time fashion:

sim(ctrl, @sim_function, xO, N, Options)

Take a look at help dLsim_fun on how to write simulation functions compatible

with this function.
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15.3 Simulink Library

15 Imp!ementation of Contra! Laws

The MPT Simulink library can be accessed by starting

on Matlab command prompt. At this time the library offers 3 blocks:

The MPT Controller block supplies the control action as a function of the mea­

sured state. Auxiliary state/output references can be provided for tracking controllers

(probStruct. tracking = 112). If the controller is an explicit one, it is possible to

directly compile a Simulink model which includes one or more of the MPT Controller

blocks using the Real Time Workshop.

The Dynamical System block serves for simulations of constrained linear and hybrid

systems described by means of the MPT sysStruct structures. The user must specify

initial values of the state vector in a dialog box.

The In polytope block returns true if a input point lies inside of a given polytope,

false otherwise. If the polytope variable denotes a polytope array, the output of this

block will be the index of a region which contains a given point. If no such region

exists, 0 (zero) will be returned.

15.4 Export of Controllers to C-code

It is possible to export explicit controllers to standalone code using

mpt_exportc(ctrl)

mpt_exportc(ctrl, filename)

If the function is called with only one input argument, a file called mpLgetInput .h will

be created in the working directory. It is possible to change the filename by providing

a second input argument to mpLexportc. The header file is then compiled along with

mpLgetInput. c and the target application:

%generate an explicit controller using 'mpt_control'

» Double_Integrator

» controller = mpt_control(sysStruct, probStruct);

%export the explicit controller to C-code
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» mpt_exportc(controller);

%compile the example

» !gcc mpt_example.c -0 mpt_example

15.5 Export of Search Trees to C-code
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If a binary search tree was calculated for a given controller by calling mpLsearchTree,

it is possible to export such tree into a standalone C-file by calling

» mpt_exportST(ctrl, filename)

where the filename argument specifies the name of the file which should be created.

The controller ctrl used in this example must have the search tree stored inside. If

it does not, use the mpLsearchTree function to calculate it first:

» ctrl = mpt_searchTree(ctrl);
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Visualization

MPT provides broad range of functionality for visualization of polytopes, polyhedral

partitions, controllaws, value functions, general PWA and PWQ functions defined over

polyhedral partitions. Part of the functions operate directly on the resulting controller

object ctrl obtained by mpLcontrol, while the other functions accept more general

input arguments.

16.1 Plotting of Polyhedral Partitions

The explicit solution to a optimal control problem results in a PWA controllaw which

is defined over regions of a polyhedral partition. If the solution was obtained by a call

to mpt_control, it is returned in the form of the controller object ctrl, which encom­

passes the polyhedral partition over which the controllaw is defined (see Seetion 13.2

for more details). The polyhedral partition ctrl. Pn is a polytope object and can

therefore be plotted using the overloaded plot function. However, MPT provides also

a more sophisticated plotting method, where, depending on the type of the solution,

regions are depicted in approapriate colors which helps to understand behavior of the

controller. This kind of plot is obtained by a call to

plot(ctrl)

i.e. the plot function is overloaded to accept mptctrl objects directly.

If ctrl contains a solution to Constrained Infinite Time Optimal Control Problem,

or to Constrained Time Optimal Control Problem, the regions are depicted in a red­

green shading. Generally speaking, red regions are dose to the origin, while the more

green color the region contains, the more steps will be needed to reach the origin.
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16.2 Visualization of Closed-loop and Open-loop

Trajectories

Once the explicit solution to a given optimal control problem is obtained, the resulting

control law can be applied to the original dynamical system. MPT provides several

ways of visualizing the dosed-loop and open-loop evolution of state trajectories. As

mentioned in Chapter 15, the PWA feedback law which corresponds to a given state

x(k) has to be identified and evaluated in order to obtain the successor state x(k + 1).

Moreover, when applying the RHC strategy, this procedure has to be repeated at each

time instance. The function sim described in Section 15.2 can be used to perform this

repeated evaluation, and subsequently returns evolution of state, input and output

trajectories assuming the initial state x(O) was provided. To visualize the computed

trajectories, the following command can be used:

simplot(ctrl)

which allows to pick up the initial state x(O) by a mouse dick, providing the controller

object represents an explicit controller and dimension of the associated polyhedral

partition is equal to 2. Subsequently, the state trajectory is calculated and plotted on

top of the polyhedral partition over which the control law is defined. If the solution

was obtained for a tracking problem, the user is first prompted to choose the reference

point, again by a mouse dick. Afterwards, the initial state x(O) has to be selected.

Finally, the evolution of states is again plotted on top of the polyhedral partition.

If the same command is used with additional input arguments, e.g.

simplot(ctrl, xe, horizon)

then the computed trajectories are visualized with respect to time. The system is not

limited in dimension or number of manipulated variables. Unlike the point-and-dick

interface, the initial point x(O) has to be provided by the user. In addition, the maximal

number of steps can be specified in horizon. If this variable is missing, or set to an

empty matrix, the evolution will continue until the origin (or the reference point for

tracking problems) is reached. Additional optional argument Options can be provided

to specify additional requirements. Similarly, as described by Section 15.2.1, also the

simplot function allows the user to use different system dynamics when calculating

the system evolution.
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16.3 Visualization of General PWA and PWQ

Functions

A piecewise affine function is defined by
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if x E P~ (16.1)

where the superindex r indicates that the expression for the function is different in

every region r of a polyhedral partition Pn .

Piecewise Quadratic functions can be described as follows

if x E P~ (16.2)

Again, expression for the cost varies in different regions of the polyhedral set Pn .

MPT allows one to visualize both aforementioned types of functions. For instance, the

command

mpt_plotPWA(Pn, L, C)

plots the PWA function (16.1) defined over the polyhedral partition Pn. Typical

application of this function is to visualize the controllaw and value function obtained

as a solution to a given optimal control problem. For the first case (visualization of

control action), one would type:

mpt_plotPWA(ctrl.Pn, ctrl.Fi, ctrl.Gi)

since the control law is affine over each polytope of ctrl. Pn.

Note: The function supports 2-D partitions only.

To visualize the value function, one simply calls

mpt_plotPWA(ctrl.Pn, ctrl.Bi, ctrl.Ci)

to get the desired result. The same limitation applies also in this case.

Piecewise quadratic functions defined by (16.2) can be plotted by function

mpt_plotPWQ(Pn, Q, L, C, meshgridpoints)

Inputs are the polytope array Pn, cell arays Q, Land C. When plotting a PWQ function,

the space covered by Pn has to be divided into a mesh grid. The fourth input argument

(meshgridpoints) states into how many points should each axis of the space of interest
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be divided. Default value for this parameter is 30. Note that dimension of Pn has to

be at most 2.

MPT provides a "shortcut" function to plot value of the control action with respect

to the polyhedral partition directly, without the need to pass each input (Pn, L, C)

separately:

mpt_plotU(ctrl)

If the function is called with a valid controller object, value of the contral action in each

region will be depicted. If the polyhedral partition Pn contains overlapping regions, the

user will be prompted to use the appropriate reduction scheme (mpLremoveOverlaps)

first to get a proper result.

Similarly, values of the cost function associated to a given explicit controller can be

plotted by

mpt_plotJ(ctrl)

Also in this case the partition is assumed to contain no overlaps.
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Examples

In order to obtain a feedback controller, it is necessary to specify both a system as

weIl as the problem.

Example 17.0.1
We demonstrate the procedure on a simple second-order double integrator, with bounded
input lul :S 1 and output Ily(k) 1100 :S 5.

» sysStruct.A=[l 1; 0 1]; % x(k+1)=Ax(k)+Bu(k)
» sysStruct.B=[O 1] ; % x(k+1)=Ax(k)+Bu(k)
» sysStruct.C=[l 0; 0 1]; % y(k)=Cx(k)+Du(k)
» sysStruct.D=[O;O] ; % y(k)=Cx(k)+Du(k)

» sysStruct.umin=-l; % Input constraints umin<=u(k)
» sysStruct.umax=l; % Input constraints u(k)<=umax
» sysStruct.ymin=[-5 -5] '; % Output constraints ymin<=y(k)
» sysStruct.ymax=[5 5] '; % Output constraints y(k)<=ymax
» sysStruct.xmin = [-5; -5]; % State constraints x(k»=xmin
» sysStruct.xmax = [5 ; 5]; % State constraints x(k)<=xmax

For this system we will now formulate the problem with quadratic cost objective in
(5.3) and a prediction horizon of N = 5:

» probStruct.norm=2;

» probStruct.Q=eye(2);

» probStruct.R=l;

» probStruct.N=5;

» probStruct.subopt_lev=O;

If we now call

%Quadratic Objective

%Objective: min_U J=sum x'Qx + u'Ru .

%Objective: min_U J=sum x'Qx + u'Ru .

%... over the prediction horizon 5

%Compute optimal solution, not low complexity.

»ctrl=mpt_control(sysStruct,probStruct); %Compute feedback controller

» plot(ctrl)
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the controller for the given problem is returned and plotted (see Figure 17.1(a)), i.e.,

if the state x E P A(i), then the optimal input for prediction horizon N = 5 is given

by u = Fiix + Gii. If we wish to compute a low complexity solution, we can run the

following:

» probStruct.subopt_lev=2; % Compute low complexity solution.

» probStruct.N = 1; % Use short prediction horizon

» ctrl = mpt_control(sysStruct,probStruct);

» plot(ctrl) % Plot the controller partition

» Q = ctrl.details.lyapunov.Q;

» L = ctrl.details.lyapunov.L;

» C = ctrl.details.lyapunov.C;

» mpt_plotPWQ(ctrl.finalPn,Q,L,C); % Plot the Lyapunov Function

~IH -ll -{, .... -2 (I 1 ~ '" H IlJ

(a) The N = 5"step optimal

feedback solution.
(b) The iterativ~'low complex­

ity solution for the double in­

tegrator.

(c) Lyapunov fun~tion for the

low complexity solution.

Figure 17.1: Results obtained for Example 17.0.1.

The resulting partition and Lyapunov function is depicted in Figures 17.1(b) and

17.1(c) respectively.

Example 17.0.2
Now we will solve the PWA problem introduced in [MR03] by defining two different
dynamics which are defined in the left- and right half-plane of the state space respec­
tively.

» H=[-l l' -3 -1; 0.2 l' -1 0; 1 0; 0 -lJ; %Polytopic state constraints Hx(k)<=K, ,
» K= [ 15; 25; 9' 6; 8; 10]; %Polytopic state constraints Hx(k)<=K,

» sysStruct.C{l} = [1 oJ; %System Dynamics 1 ; y(k)=Cx(k)+Du(k)+g
» sysStruct.D{l} = 0; %System Dynamics 1 ; y(k)=Cx(k)+Du(k)+g
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» sysStruct.g{l} = [0] ;
» sysStruct.A{l} = [0.5 0.2; o 1];
» sysStruct . B{1} = [0 ; 1];

» sysStruct.f{l} = [0.5; 0] ;
» sysStruct.guardX{l} = [1 O' H] ;,
» sysStruct.guardC{l} = [ l' K];,

» sysStruct.C{2} = [1 0];
» sysStruct.D{2} = O',
» sysStruct.g{2} = [0];
» sysStruct.A{2} = [0.5 0.2; o 1];

» sysStruct.B{2} = [0 ; 1];
» sysStruct.f{2} = [0.5; 0];
» sysStruct.guardX{2} = [-1 0; H];

» sysStruct.guardC{2} = [ -1; K] ;

» sysStruct.ymin = -10;
» sysStruct.ymax = 10;
» sysStruct.umin = -1 ;
» sysStruct.umax = l',

%System Dynamics 1: y(k)=Cx(k)+Du(k)+g

%System Dynamics 1: x(k+l)=Ax(k)+Bu(k)+f

%System Dynamics 1: x(k+l)=Ax(k)+Bu(k)+f

%System Dynamics 1: x(k+l)=Ax(k)+Bu(k)+f

%Dynamics 1 defined in guardX*x <= guardC

%Dynamics 1 defined in guardX*x <= guardC

%System Dynamics 2: y(k)=Cx(k)+Du(k)+g

%System Dynamics 2: y(k)=Cx(k)+Du(k)+g

%System Dynamics 2: y(k)=Cx(k)+Du(k)+g

%System Dynamics 2: x(k+l)=Ax(k)+Bu(k)+f

%System Dynamics 2: x(k+l)=Ax(k)+Bu(k)+f

%System Dynamics 2: x(k+l)=Ax(k)+Bu(k)+f

%Dynamics 2 defined in guardX*x <= guardC

%Dynamics 2 defined in guardX*x <= guardC

%Output constraints for dynamic 1 and 2

%Output constraints for dynamic 1 and 2

%Input constraints for dynamic 1 and 2

%Input constraints for dynamic 1 and 2

we can now compute the low complexity feedback controller by defining the problem

» probStruct.norm=2;

» probStruct.Q=eye(2);

» probStruct.R=O.l;

» probStruct.subopt_lev=l;

and calling the contral function,

%Quadratic Objective

%Objective: min_U J=sum x'Qx + u'Ru .

%Objective: min_U J=sum x'Qx + u'Ru .

%Compute low complexity controller.

» ctrl=mpt_control(sysStruct,probStruct);

» plot (ctrl)

The result is depicted in Figure 17.2.

For more examples we recommend to look at the demos which can be found in

respective subdirectories of the mpt/examples directory of your MPTinstallation.
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Figure 17.2: Controller partition obtained for Example 17.0.2.
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Polytope Library

As mentioned in Section 3, a polytope is a convex bounded set which can be represented

either as an intersection of a finite number of half-spaces (H-representation) or as a

convex hull of vertices (V- representation). Both ways of defining a polytope are allowed

in MPT and one can switch from one representation to the other one. However, by

default all polytopes are generated in H-representation only to avoid unnecessary

computations.

18.1 Creating a Polytope

A polytope in MPT is created by a call to the polytope constructor as follows:

P = polytope(H,K)

creates a polytope by providing it's H-representation (3.2), i.e. the matrices Hand K

which form the polytope

p = {x E!Rn I Hx :::; K}. (18.1)

If input matrices define some redundant constraints, these will be automatically re­

moved to form a minimal representation of the polytope. In addition, center and

diameter of the largest ball which can be inscribed into the polytope are computed

as well and the H-representation is normalized to avoid numerical problems. The

constructor then returns a polytope object.

A polytope can also be defined by it's vertices (3.4) as follows:

P = polytope(V)
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where V is a matrix which contains vertices of the polytope in the following format:

_ [V~'l .:. v~,n]
V - : : :

Vk,l ... Vk,n

(18.2)

where k is the total number of vertices and n is the dimension. Hence vertices are

stored row-wise. Before the polytope object is created, the V-representation is first

converted to the half-space description by eliminating all points from V which are

not extreme points. The convex hull (3.9) of the remaining points is then computed

to obtain the corresponding 1i-representation. Extreme points will be stored in the

polytope object and can be returned upon request without additional computational

effort.

18.2 Accessing Data Stored in a Polytope Object

Each polytope object is internally represented as a structure, but because of the

Object-Oriented approach, this information cannot be directly obtained by using struc­

ture deferencing through the . (dot) operator. Special functions have to be called in

order to retrieve individual fields.

Fields of the polytope structure are summarized it Table 18.2.

H, K

xCheb, RCheb

normal

minrep

Vertices

1i-representation of the polytope

Center and radius of Chebyshev's ball

Flag whether the 1i-representation is normalized (1/0)

Flag whether the 1i-representation is reduced (1/0)

Extreme points of the V-representation) of the polytope

Table 18.1: Data stored in thepolytope object.

In order to access the 1i-representation (matrices Hand K), one has to use the

command double as follows:

[H,K] = doubleCP)

to store matrices Hand Kindividually, or alternatively:

HK = doubleCP)
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which returns a matrix HK = [H Kl.

Center and radius of Chebyshev's ball can be obtined by:

[xCheb, RCheb] = chebyballCP)

If the polytope is in normalized representation, call to

flag = isnormalCP)

will return 1, 0 otherwise.

The command

flag = isminrepCP)
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return 1 if polytope P is in minimal representation (i.e. the H-representation contains

no redundant hyperplanes), Ootherwise.

The polytope is bounded if

flag isboundedCP)

returns 1 as the output.

The dimension of a polytope can be obtained by

d = dimensionCP)

and

nc = nconstrCP)

will return the number of constraints (i.e. number of half-spaces) defining the given

polytope P.

The vertex representation of a polytope can be obtained by:

v = extremeCP)

which returns the vertices stored row-vise in the matrix V. As enumeration of extreme

vertices is an expensive operation, the computed vertices can be stored in the polytope

object. To do it, we always recommend to call the function as follows:

[V,R,P] = extremeCP)
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which returns extreme points V, extreme rays Rand the update polytope object with

vertices stored inside (p).

To check if a given point x lies in a polytope P, use the following call:

flag = isinside(P,x)

The function returns 1 if x E P, 0 otherwise. If P is a polyarray (see Section 18.3 for

more details about polyarrays), the function call can be extended to provide additional

information:

[flag, inwhich, closest] = isinside(P,x)

which returns a 1/0 flag which denotes if the given point x belongs to any polytope

of a polyarray P. If the given point lies in more than one polytope, inwhich contains

indexes of the regions which contain x. If there is no such region, index of a region

which is dosest to the given point x is returned in closest.

The functions mentioned in this chapter are summarized in Table 18.2.

P=polytope(H,K)

P=polytope(V)

double(P)

display(P)

nx=dimension(P)

nc=nconstr(P)

[ , ]

( )

length(PA)

end

[c,r]=chebyball(P)

V=extreme(P)

bool=isfulldim(P)

bool=isinside(P,x)

Constructor for creating the polytope P = {x E ffi.n I H x :S K}.

Constructor for creating the polytope out of extreme points

Access internal data of the polytope, e.g. [H, K] =double (P).

Displays details about the polytope P.

Returns dimension of a given polytope P

For a polytope P = {x E ffi.n I H x :S K} returns number of

constraints of the H matrix (i.e. number of rows).

Horizontal concatenation of polytopes into an array,

e.g. PA= [P!, P2, P3] .

Subscripting operator for polytope arrays,

e.g. PA(i) returns the i-th polytope in PA.

Returns number of elements in a polytope array PA.

In indexing functions returns the final element of an array.

Returns center c and radius r of the Chebychev ball inside P.

Computes extreme points (vertices) of a polytope P.

Checks if polytope P is full dimensional.

Checks if x E P. Works also for polytope arrays.

Table 18.2: Functions defined for dass polytope.
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18.3 Polytope Arrays
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Instances of the polytope object can be concatenated into arrays. Currently, only

one-dimensional arrays are supported by MPT and it does not matter if the elements

are stored row-wise or column-wise. An array of polytopes is created using standard

Matlab concatenation operators [,], e.g. A = [B C D].

It does not matter whether the concatenated elements are single polytopes

or polyarrays. To illustrate this, assurne that we have defined polytopes

Pl, P2, P3, P4, P5 and polyarrays A = [Pl P2] and B = [P3 P4 P5]. Then

the following polyarrays M and N are equivalent:

M = [A B]

N = [Pl P2 P3 P4 P5]

Individual elements of a polyarray can be obtained using the standard referencing

(i) operator, i.e.

P = M(2)

will return the second element of the polyarray M which is equal to P2 in this case.

More complicated expressions can be used for referencing:

Q = M([1,3:5])

will return a polyarray Qwhich contains first, third, fourth and fifth element of pol­

yarray M.

If the user wants to remove some element from a polyarray, he/she can use the

referencing command as follows:

M(2) = []

which will remove the second element from the polyarray M. Again, multiple indices

can be specified, e.g.

M([l 3]) = []

will erase first and third element of the given polyarray. If some element of a polyarray

is deleted, the remaining elements are shifted towards the start of the polyarray. This

means that, assuming N = [Pl P2 P3 P4 P5], after

N([l 3]) = []
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the polyarray N = [P2 P4 P5] and the length of the array is 3. No empty positions in

a polyarray are allowed. Similarly, empty polytopes are not being added to a polyarray.

A polyarray is still a polytope objeet, henee all functions whieh work on poly­

topes support also polyarrays. This is an important feature mainly in the geometrie

funetions.

Length of a given polyarray is obtained by

1 = length(N)

A polyarray ean be flipped by the following eommand:

Nf = fliplr(N)

l.e. if N [Pi P2 P3 P4 P5] then Nf = [P5 P4 P3 P2 Pi].

18.4 Geometrie Operations on Polytopes

The polytope library of MPT ean efficiently perform many geometrie manipulations

on polytopes and polyarrays (non-eonvex unions of polytopes). A theoretieal deserip­

tion of some basie operations has been already been given in Chapter 3. A list of

eomputational geometry functions is provided in Table 18.3.

Exeept of bounding_box, all other functions are implemented to take polytopes

and/or polyarrays as input arguments. We reeommend to eonsult help files for respee­

tive funetions for more details about extended function ealls and other details.

The following examples show how to use some of the funetionality deseribed in

Table 18.3:

Example 18.4.1

»P=polytope([eye(2);-eye(2)],[11 1 1]');

» [r,c]=chebyball(P)
r= [0 0] ,

c=l

»W=polytope([eye(2);-eye(2)],0.1*[11 1 1]');

» DIF=P-W;

» ADD=P+W;

» plot(ADD, P, DIF, W);

%Create Polytope P

%Chebychev ball inside P

%Create Polytope W

%Pontryagin difference P-W

%Minkowski addition P+W

%Plot polytope array
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P == Q
P ",= Q

P >= Q

P <= Q
P > Q

P < Q

P & Q

P I Q

P + Q

P - Q

P \ Q
B=bounding_boxCP)

E=envelopeCP,Q)

P=rangeCQ,A,f)

P=dornainCQ,A,f)

R=projectionCP,dirn)

Check if two polytopes are equal (P = Q).
Check if two polytopes are not-equal (P =I Q).
Check if P 2 Q.
Check if P S;; Q.

Check if P ~ Q.

Check if Pe Q.

Intersection of two polytopes, P n Q.
Union of two polytopes, Pu Q. If the union is convex, the polytope

Pu Q is returned, otherwise the polyarray [P Q] is returned.

Minkowski sum, P EB Q (cf. (3.12)).

Pontryagin difference, pe Q (cf. (3.11)).

Set difference operator (cf. (3.7)).

Computes minimal hyper-rectangle containing a polytope P.

Computes envelope E of two polytopes P and Q according to (3.10).

Affine transformation of a polytope.

P = {Ax + f E IRn I x E Q}.
Compute polytope that is mapped to Q.

P = {x E IRn I Ax + fE Q}.
Orthogonal projection of P onto coordinates given in dirn (cf. (3.6))

Table 18.3: Computational geometry functions

1.5

0.5

-<l.5

-,

"''TI U

0

-1.:.~':-.5-~-1----:!:0.5---:----:0':-.5-~-----:,.5

Figure 18.1: The result of the plot call in Example 18.4.1
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The resulting plot is depicted in Figure 18.1. When a polytope object is created,

the constructor automatically normalizes its representation and removes all redundant

constraints. Note that all elements of the polytope dass are private and can only be

accessed as described in the tables. Furthermore, all information on a polytope is

stored in the internal polytope structure. In this way unnecessary repetitions of the

computations during polytopic manipulations in the future can be avoided.

Example 18.4.2

» P=unitbox(2, 1);

» Q=unitbox(2, 0.1);

» D=P\Q;

» length(D)

ans=4

» U=DIQ;

» length(U)

ans=l

» U==P

ans=l

%Create Polytope P as a box in 2D with sides of size 1

%Create Polytope Q as a box in 2D with sides of size 0.1

%Compute set difference between P and Q

%D is a polytope array with 4 elements

%Compute union of D and Q

%Union is again a polytope

%Check if two polytopes are equal

-,~=-;;-;~~=::=~~~~~----;.

(~) Set P (larg;r box) "'and Q '(small~~

box).

-~~,-~-<l''''''(b''''')-TLh~oe~s=et=s'7.pt"'\=Q=."-+-----:.

Figure 18.2: Visualization of the sets P, Q, and D = P \ Q in Example 18.4.2.

The polytopes P and Q, as weIl as the set difference D are depicted in Figure 18.2.

The next example will illustrate the use of the hull and extreme functions.

Example 18.4.3
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» P=polytope([eye(2);-eye(2)J, [0 1

» Q=polytope([eye(2);-eye(2)J,[1 1

» VP=extreme(P);

» VQ=extreme(Q);

» D1=hull([P QJ);

» D2=hull([VP;VQJ);

» D1==D2

ans=l
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1 1J '); %Create Polytope P

o 1J '); %Create Polytope Q

%Compute extreme vertices of P

%Compute extreme vertices of P

%Create convex Hull of P and Q

%Create convex Hull of vertices VP and VQ

%Check if hulls are equal

The purpose of the extreme function is to convert the polytope given by the 'H.­

representation (18.1) into an equivalent V-representation (18.2), i.e. to enumerate the

extremal vertices Vi. The hull function then performs then reverse operation, i.e.

given a set of vertices, calculate the corresponding 'H.-representation of the convex huH

of these points. As can be seen fram the example, the hull function is overloaded in

a way such that it takes both elements of the polytope dass as weH as matrices of

points as input arguments.
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Overview of Other Available

Software Packages

This chapter provides an overview of available software packages and identifies strong

and weak points of each such package. We focus on the main players on the field of

MPC-based control, namely the Hybrid Toolbox and the MPC Toolbox and compare

them to the Multi-Parametric Toolbox presented in this thesis. The general compar­

ison is focused on user interface, amount of provided functionality and integration

with Simulink. In Seetion 19.4 we also give a comparison between MPT and AMPL

(A Mathematical Programming Language), which is a modeling language for rapid

prototyping of optimization problems.

19.1 Hybrid Toolbox

The Hybrid Toolbox [Bem03] is a Matlab toolbox for design of MPC controllaws for

linear and hybrid systems. The most notable features of the toolbox include:

• Uses HYSDEL to obtain models of hybrid systems

• Is capable of computing off-line solutions to MPC problems for linear and hybrid

systems based on the Constrained Finite Time Optimal Control policy

• Features a Simulink interface which allows to simulate on-line and off-line con­

trollers in Simulink

• Is capable of exporting off-line controllers into a standalone C-code

• Contains solvers for multi-parametric linear and quadratic programming and for

mixed-integer multi-parametric linear programming

• Is shipped with the CDD, GLPK and QPACT solvers

181
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19.2 Model Predictive Control Toolbox

The Model Predictive Control Toolbox is a commercial Matlab toolbox focused at

design and simulation of on-line MPC controllaws for linear systems with constraints.

Only quadratic cost functions are supported by the toolbox. Controllers designed by

the toolbox always use the ßu formulation and support tracking of free output refer­

ences. For synthesis, the toolbox can use models affected by measured or unmeasured

disturbances. State estimators can be designed such that output feedback can be used.

More details will given in Section 19.3.

19.3 Comparison of MPT, Hybrid Toolbox and the

MPC Toolbox

This section is devoted to a more detailed comparison of the three software tools which

can be used for contral design - MPT, the Hybrid Toolbox and the MPC Toolbox. The

comparison is reported with respect to three categories: the user interface, amount of

functionality provided by each package, and, finally, the integration of each tool with

Simulink.

19.3.1 User Interface

As outlined in the introduction section, all toolboxes use different input data when

designing MPC controllers.

The user interacts with the MPT toolbox by means of three objects:

• Description of the plant model (the sysStruct structure)

• Description of the contral problem (the probStruct structure)

• A controller object

The system structure sysStruct contains description of the plant model, along with

plant constraints. It can be obtained automatically from following sources:

• HYSDEL source code

• Matrices of a Mixed Logical Dynamical (MLD) model
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• Matrices of a Piecewise Affine (PWA) model
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• Control toolbox objects (both state-space and transfer function representation)

• MPC toolbox objects

• System identification toolbox objects

Each conversion is fully automatie, with as much information extracted from the source

object as possible. MPT supports LTI, PWA and MLD models with constraints as

target models. Several functions are available in MPT which allow open-loop simula­

tions of various models either in Matlab or in Simulink. Similarly, conversion functions

between PWA and MLD models exist.

The problem structure probStruct describes parameters of a given control problem.

It is used by users to define prediction horizon, penalty matrices, target set constraints

and/or stability properties of the resulting control laws. Although easy to define

for users, the problem structure will never be capable to capture all possible desired

problem description. To solve this usability problem MPT introduced the "Design your

own MPC" function, which gives experienced users the option to alter the problem

setup by means of adding constraints involving the optimization variables directly.

This new approach received very positive critiques from the user community.

Finally, the controller object encapsulates a given control law and provides users

with accessible methods to perform common tasks. These include, but are not limited,

to:

• Simulation of closed-loop systems

• Simplification of off-line controllaws by means of merging

• Generation of binary search trees which facilitate faster application of off-line

controllaws on-line

• Export of off-line controllaws to C-code

• Stability analysis of closed-loop systems

• Verification of safety and liveness properties of controllers
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Important to notice is that the controller object viewed from outside is a unique

compact object. This means that regardless whether the controller represents an on­

line or an off-line (parametric) controller, users interact with such controllers in the

same way, by calling overloaded methods and functions.

The Hybrid Toolbox accepts the plant model as an object representingeither LTI,

PWA or MLD dynamics. Only HYSDEL can be used to derive hybrid models (PWA or

MLD). Parameters of the optimization problem, such as the prediction horizon, penalty

matrices or constraints have to be provided as a comma separated list to the controller

synthesis function. Depending on whether one aims at an on-line controller for hybrid

systems, or an on-line controller for linear systems, or an off-line controller, the toolbox

offers three different functions which produce three different types of controller objects.

It is then possibly to "convert" an on-line controller into its equivalent off-line form

while preserving the original controller untouched. It is not, however, possible to

modify the controller object directly. If a parameter changes, a new controller has to

be built. The toolbox also provides a unified set of overloaded functions which then

operate on all three types of the controller objects.

The Model Predictive Control toolbox uses the Control Toolbox objects (state-space

and transfer function objects) as a basis for controller design. Once the plant dynamics

is given, the toolbox constructs adefault controller object where it presets certain

parameters of the optimization problem to their default values (e.g. the prediction

horizon or penalties). The user is then given the possibility to change these values

according to his needs. It is therefore the controller object itself acting 'as a single

"storage" for all user-tunable parameters.

19.3.2 Provided Functionality

MPT is the most feature-packed toolbox of the three available choices. The MPC

Toolbox focuses entirely on on-line MPC for linear plants based on quadratic perfor­

mance index. The Hybrid Toolbox is comparable to MPT with respect to functionality

for Constrained Finite Time Optimal Control of linear and hybrid plants (both on-line

and off-line strategies) and also provides a function to perform reachability analysis

(based on solution to a feasibility MILP). With respect to functionality MPT at this

point represents almost a superset of what is contained elsewhere1 . Moreover it fea-

1Currently missing is only support for non-symmetrical soft constraints and dealing with measured

disturbances as present in the MPC Toolbox
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tures advanced control strategies such as minimum-time or low-complexity algorithms

or stability analysis.

A major advantage of MPT, however, is its ability to expose MPC formulations to

users and to let them add custom constraints or modify the performance index. This

allows one to easily deal with topics like polytopic or collision avoidance constraints,

without cluttering the user interface with custom options for each particular type of

constraint.

19.3.3 Simulink Integration

All three toolboxes offer specialized blocks which allow one to use controllers in

Simulink schemes. MPT provides a single block which automatically recognizes

whether a given controller can be exported to C-code (which is a case of off-line

controllers). If it can, the block will automatically switch to aC-code implementation.

The code was intentionally written in a way such that it can not only be used to

run within Simulink, but can also be directly compiled by the Real-Time Workshop

and automatically downloaded to a target machine. It should be noted that as of

MPT 2.6.1 we are not yet able to export all types of off-line controllers into C-code.

Specifically, controllers which contain overlapping polyhedra where the value of the

cost function needs to be checked (CFTOC solutions for quadratic cost for PWA sys­

tems) are not yet supported. If the controller represents an on-line MPC controller, a

Matlab-coded function is used to evaluate the controller for a particular value of the

state vector during the simulation.

The Hybrid Toolbox provides three different Simulink blocks which are responsible

for evaluating controllers on-line. The first such block accepts off-line controllers and

supports also checking of cost functions for overlapping partitions. Unlike MPT, such

blocks need to be compiled every time the Simulink model is started (MPT comes

with a pre-compiled version of such block). The other two blocks are each responsible

for either on-line controllers for LTI systems or on-line controllers for hybrid systems.

This implies that the user has to manually exchange the blocks if he changes the type

of the controller (MPT auto-detects such change and switches automatically). The

block which evaluates off-line controllers for linear systems includes state estimation.

On-line controllers are evaluated using Matlab-based functions.

The MPC Toolbox only provides one block which allows to use on-line MPC con­

trollers in Simulink. The block links description of the quadratic programming problem
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with a QP solver (qpdantz) on aC-code level. No other QP solvers are supported. A

state estimator is included in the controller block.

19.4 Comparison between MPT and AMPL

AMPL (A Mathematical Programming Language) is a comprehensive and powerful

algebraic modeling language for linear and nonlinear optimization problems, including

discrete or continuous variables. AMPL lets users use a common notation and familiar

concepts to formulate optimization models and examine solutions, while the computer

manages communication with an appropriate solver. AMPL's flexibility and conve­

nience render it ideal for rapid prototyping and model development, while its speed

and control options make it an especially efficient choice for repeated production runs.

Due to AMPL's support for discrete as well as continuous optimization variables,

it allows to formulate MPC problems involving models of hybrid systems. It was,

however, observed on numerous test studies that the underlying optimization problem

can be solved more efficiently if HYSDEL2 is used to obtain numerical description of

the MLD model of the system to be controlled. As will be explained in more details

in Section 19.4.2, this is mainly due to the fact that HYSDEL automatically derives

numerically better suited models. The same quality of models can also be achieved

in AMPL, however the model has to be tuned manually, which is a tedious and not

straightforward job.

19.4.1 Testing Methodology and Numerical Results

We have investigated the effect of each modeling approach on the time needed to solve

the MPC problem on-line for a given initial state x(O). Here we present two examples

- the "car on a PWA hill" [KGBC06] reported in Appendix 24, and the "three tanks

benchmark" [MM01] reported in Appendix 25.

Results in terms of time needed to solve the optimal control problem for each mod­

eling approach are summarized in Tables 19.1 and 19.2. As can be seen from both

tables, the optimization problem formulated by MPT based on HYSDEL-generated

models is, on average, ten times faster compared to AMPL-formulated problems. In

both cases the resulting mixed-integer problem has been solved with CPLEX 9.0 on a

2In the rest of this section by HYSDEL we refer to both the HYSDEL language and compiler, as

weil as to the matrixHYSDEL extension.



19.4 Comparison between MPT and AMPL 187

2.8 GHz Pentium 4 maehine. AMPL 8.1 was used to model the optimization problems.

Horizon HYSDEL+MPT AMPL

30 7 sees 51 sees

32 10 sees 107 sees

34 27 sees 182 sees

36 27 sees 591 sees

38 99 sees 1750 sees

40 190 sees 3244 sees

Table 19.1: Time needed to solve the MPC problem for the "ear on a PWA hill"

benchmark for different values of the prediction horizon.

Horizon HYSDEL+MPT AMPL

7 0.1 sees 1 sees

8 0.6 sees 3 sees

9 8.5 sees 31 sees

10 50 sees 252 sees

Table 19.2: Time needed to solve the MPC problem for the three tanks benchmark for

different values of the predietion horizon.

19.4.2 Discussion

Even though the formulation of an MPC problem done by MPT, based on models

generated by HYSDEL, and by AMPL is, in prineiple, identieal, obtained results

summarized in Tables 19.1 and 19.2 show superiority of our approach. In the rest

of this seetion we explain what we believe is the reason for the superior performance

of the approach reported here versus AMPL. First, we reeall standard results from

propositional ealculus [BM99a]:

{

f(X) < M(l - 8)
[f(x) :::; 0] +--+ [8 = 1] is true iff -

f(x) 2 E+ (m - E)8.
(19.1)



188 19 Overview of Other Available Software Packages

where f : Rn f---+ R is linear and M and mare defined by

M = maxf(x),
xE;\:'

and

m = minf(x),
xE;\:'

(19.2)

(19.3)

where X is a given bounded set and E is a small positive number (typically the machine

precision). Equation (19.1) tells that the statement that a binary variable fJ will take

a true value if and only if f (x) :::; 0 can be expressed as a set of two inequalities

involving parameters M, m, and E. Ideally, M should be chosen as the maximum of

the function f(x) on a certain domain, but any sufficiently big number will do. If the

function f(x) is very complex (which happens often in modeling of real plants), it is

not always possible by hand to make a good estimate of what the value of M should

be. The same argument is also true for finding a good estimate of m.

Expressions such as (19.1) are important for us because they are directly related

to the way how hybrid systems described in the HYSDEL language are converted

into a corresponding MLD form. The following code of the AD section can be directly

translated into inequalities of the form (19.1):

AD {

d = xl + 2*x2 - 3*x3 <= 0
}

by assuming f(x) = Xl + 2X2 - 3X3. If bounds on the variables xl, x2 and x3 are

known, HYSDEL can automatically compute the upper and lower bound according to

equations (19.2) and (19.3), respectively. Since HYSDEL only allows linear or affine

expressions to be defined, it is always possible to find the exact maximum (minimum) of

the function f(x) by a simple enumeration. AMPL, on the other hand, is a much more

generallanguage, not specifically tailored to modeling of hybrid systems. Therefore, it

is the user's responsibility to provide the bounds M and m. As will be illustrated later

by Example 19.4.3, strictness of these bounds has a significant effect on time needed to

solve problems which involve propositionallogic of this type. In order to proceed with

the discussion, we need an insight in how optimization problems involving continuous

and discrete variables are solved. For now consider that the objective function of

such an optimization problem is linear, in which case the problem can be written as a
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mixed-integer linear program (MILP) of the following form:
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min f(x, d) (19.4a)

subj. to x ERn, (19.4b)

dE{O,l}, (19.4c)

g(x, d) ~ 0, (19.4d)

where x is an n-dimensional real vector and d is a vector of boolean variables. The

objective f(·) and the constraints g(-) are assumed to be linear in the respective

variables. In order to find the global optimum to the problem (19.4) using the Branch

& Bound technique, the following algorithm can be applied [NW88]:

Algorithm 19.4.1 (Branch & Bound)

1. Relax binary constraints di E {O, I} -+ 0 ~ di ~ 1.

2. Solve the relaxed problem (bounding phase).

3. Choose an index i and (branching phase):

a) Fix di = 0; go to Step 2.

b) Fix di = 1; go to Step 2.

The branching phase in Step 3 of Algorihtm 19.4.1 traverses through a tree of possible

choices of the binary variables d, whereas the bounding phase in Step 2 is used to prune

the tree. Specifically, one can stop exploring a given branch if one of the following

conditions is satisfied:

1. Relaxation is infeasible.

2. Relaxation gives a binary result.

3. Relaxation has worse cost than best binary so far.

Usually it is the last case which is most important for good performance of Algo­

rithm 19.4.1. In most practical problems, the tighter the relaxation is, the higher is

the chance that exploration of a given branch in the tree will be terminated based

on the objective value of the relaxed problem. The example below illustrates how

relaxation of mixed-integer problems depends on the choice of parameters M and m

used to convert logic statements into mixed integer inequalities (cf. relation (19.1)).
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Example 19.4.2 We have analyzed the impact of parameters M and m on the relax­

ation of mixed-integer problems for the following example:

with Ilxll :S 3 and Ilyll :S 3.

y= {
2x + 1 if x :S 0,

0.5x + 1 otherwise,
(19.5)

Using the propositional calculus [BM99a] system (19.5) can be rewritten into the

following set of mixed-integer inequalities:

x < M(l - (1) (19.6a)

y - 2x - 1 < -m(l - (1) (19.6b)

-(y-2x-1) < M(l - (1) (19.6c)

-x < M(l - (2) (19.6d)

y - 0.5x - 1 < -m(l - (2) (19.6e)

-(y - 0.5x - 1) < M(l - (2) (19.6f)

61 + 62 1 (19.6g)

-3 :S x :S3 (19.6h)

-3 :S y :S3 (19.6i)

where 61 and 62 are binary variables. Obviously, any feasible solution to (19.6) must lie

on the lines given by y = 2x + 1 (for x :S 0) and y = 0.5x + 1 (for x > 0), respectively.

We have investigated how the choice of parameters M and m influences the tightness

of the relaxed problem in Step 2 of Algorithm 19.4.1. Knowing the bounds on x and

y in (19.6), one can compute precise values of parameters M and m in (19.6a)-(19.6f)

by solving (19.2) and (19.3), respectively. By relaxing the binary variables and by

assuming 0 :S 6i :S 1, the feasible set of the problem (19.6) with M and m as in

Table 19.3 is denoted by Ftight in Figure 19.1. If values of M and m were to be

fixed to a single value in (19.6a)-(19.6f), e.g. M = 10 and m = -10, it would result

in a much larger feasible set denoted by Floose in Figure 19.1. Having large feasible

sets of the relaxed problem is undesirable, since they negatively impact the bounding

properties in Step 2 of Algorithm 19.4.1. Tight relaxations, on the other hand, often

lead to significant performance improvement of Branch & Bound algorithms.
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Constraint LHS expression m M

(19.6a) x -3 3
(19.6b) Y - 2x - 1 -10 8
(19.6c) -(y - 2x - 1) -8 10

(19.6d) -x -3 3
(19.6e) y - 0.5x - 1 -5.5 3.5

(19.6f) -(y - 0.5x - 1) -3.5 5.5

Table 19.3: Values of M and m for constraints in (19.6) computed by (19.2) and (19.3),

respectively.

..
•.
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Ftight /
•••.

•.
,##'........

#

,,,,
Floose ",,,,,,,,,,,,

-, ,,,,,
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-3'L;:=::::;:::::::::::::::::=:::::::==~__~_-:-

-3 -2 -1

Figure 19.1: Feasible sets of the relaxed mixed-integer problem of Example 19.4.2.

Example 19.4.3 To show the impact of the relaxation parameters M and m on the

performance of mixed-integer programs, we have examined again the three tanks bench­

mark and compared how the choice of M (m) infiuences the total time needed to solve

the particular mixed-integer program. As can be seen from Table 19.4, the impact is

very big and a good choice of M can change the solution time by almost one order of

magnitude. However, it is very difficult to tighten the bounds as much as possible just

by hand. In our experiments we have used one fixed value of M (m) for alllogic rules

in the model of the system, which introduces some conservatism. Fine-tuning of the

two parameters is difficult, though, since a wrong choice can even lead to infeasibility

of the mixed integer program.

On the other hand, HYSDEL can automatically compute a specific set of M and
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m parameters for every logic statement separately, leading to even better performance

(cf. Table 19.2).

Horizon M=50 M=25 M= 10

7 1 sees 1 sees 1 sees

8 6 sees 5 sees 3 sees

9 265 sees 52 sees 31 sees

Table 19.4: Time needed to solve the MPC problem for the three tanks benchmark

with AMPL for different values of the predietion horizon and different

values of M. Value of m was chosen as m = -M.
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Future Development

In this chapter we outline what we think are the important points the future devel­

opment of the Multi-Parametric Toolbox should focus on. As a main goal, MPT's

development should concentrate on being an MPC-based control toolbox, with high

emphasis on providing novel, efficient algorithms. Simultaneously, it is desired to keep

the tool attractive for users working in other areas, such as the computational geom­

etry community. While design, analysis and implementation of off-line MPC control

laws was the main driving factor in the initial period of MPT's development, on-line

MPC should be considered equally important. Specifically, users should be encouraged

to use on-line MPC for performance tuning and for initial verification of the design.

Subsequently, it should be possible, in a user friendly way, to derive the off-line form

of the controllaw, either for the purpose of implementation on target platforms or for

tasks like stability analysis.

More effort should be invested into providing easy ways for the implementation of

resulting MPC controllers. Specifically, the area of state estimation will need to be

covered along with better export of off-line controllers into executable code. Better

support for industrial target platforms, such as dSPACE, is also needed.

A major challenge will be to keep MPT a "research tool inside of an engineering

tool". This implies that new advances made in the field of off-line MPC should be

easily added to the current framework, without affecting the underlying engine and

without changing the user interface. This task will involve are-design of data exchange

structures and turning more functionality into relatively separated library-like modules.

The possibility of turning MPT into a domain-tailored tool should also be investi­

gated. For instance, the Multi-Parametric Toolbox was successfully applied to control

of systems with frictions. A Simulink library containing specialized blocks, such as

different friction models, on/off switches or standardized instruments could be cre­

ated. Users would then use such blocks to model their plants. An automatie analyzer
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would then parse such Simulink scheme and automatically generate an appropriate

hybrid model which can then be used for controller synthesis. Completing this task

will involve creating a methodology for dealing with compositional hybrid systems.

The easiest way of achieving this goal seems to be to write a YALMIP-based parser of

HYSDEL models, because it is very easy to "connect" different models together and

obtain the overall model once individual subsystems are defined by means of YALMIP

variables.

Future versions of MPT should therefore aim at achieving the following global goals:

• Encourage a better workflow

• Complete the cycle of implementation of MPC controllers by adding support for

state estimation and improve export of controllers to C-code

• Provide better interface for both internal and external tools

• Allow new algorithms and techniques to be added easily

While attacking given goals, one should stick to the following design principles:

• Keep more functionality in self-contained libraries, similar to the polytope li­

brary. This mainly involves more explicit support for functions defined over

polyhedral domains. If this principle is strictly followed, further enhancements

will boil down to adding a couple of new functions, instead of rewriting a sub­

stantial amount of code.

• Correctness, consistency and coherence of the individual modules contained in

MPT should be maintained at all costs. It should be possible to easily exchange

results generated at various stages by various modules. This includes higher­

level abstractions provided to tools like YALMIP. Extensive testing is the key

to eliminate human mistakes.

• Speed and efficiency are important, but they should not be achieved at the cost

of lowering the level of maintainability of the code. While it is possible to rewrite

critical parts of the code into C to gain better runtime, such effort should only

concentrate on a limited amount of functions. Matlab code will always be easier

to read and extend than C programs.
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• If a particular problem setup cannot be handled by the tool, the user should be

clearly warned and should be given understandable hints of what can be done

in such cases. Error messages should be helpful.

Individual tasks needed to achieve these goals are described in subsequent sections.

20.1 Improved Export of Controllers to C-code

Off-line controllers in MPT can be exported to C-code in three different ways:

1. As a standalone C-code implementing the binary search tree algorithm.

2. As a standalone C-code implementing the exhaustive search algorithm.

3. As aC-code Simulink S-function implementing the exhaustive search algorithm.

These three approaches are represented by three different code templates. Even though

there are substantial similarities on the code level between methods 2 and 3, there

is currently no code sharing between the actual implementations. The exhaustive

search implementation is also currently not capable of searching through partitions

with overlapping regions based on checking the minimal value of the cost function.

Another missing piece is a Simulink version of a block which would implement the

binary search tree algorithm.

The following improvements are therefore planned:

• Extend the Simulink MPT controller block to support binary search trees. This

will allow one to export such trees using Real-Time Workshop to target plat­

forms.

• Extend the exhaustive search C-code implementation to support overlapping

partitions.

• Move the search algorithm into a single library-like code and reuse it at all places.

The changes will, however, need to be coordinated with the progress achieved while

completing tasks as described in section 20.3.
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20.2 State Estimation

20 Future Development

The last missing piece in the process of implementation of MPC controllers in the

MPT framework is state estimation. Design and correct application of estimators

is currently left to the users. It is desirable to come up with a unified scheme of

design and Simulink implementation of state estimators, at least for linear systems.

The whole procedure must be general enough to be able to cope with moving horizon

estimators in the future as weIl.

Individual coding tasks are outlined as follows:

• Analyze possibility of (semi)automatic generation of state estimators for linear

and hybrid systems.

• Create a new object to express state estimators.

• Create a Simulink block to evaluate the estimator.

• Make sure the block is compatible with Real-Time Workshop.

20.3 Re-design of Controller Objects

As outlined in the introduction, one of the main future goals is to encourage better

workflow when designing MPC controllers. Specifically, the idea is to allow tuning

of controllers by directly changing the controller objects. Currently, such tasks can

only be achieved by first modifying the problem structure with subsequent call to a

function which constructs a new controller object.

The new approach should be very similar to what the MPC Toolbox offers. Namely,

change the MPT controller structure and access methods such that parameters like

the prediction horizon, penalties or constraints can be changed on-the-fly in the object

itself. This also implies another major change - controller objects, by default, should

represent on-line MPC controllers. Only upon a user request they should be converted

into an off-line form. This will allow a much more intuitive approach to performance

tuning and will save users the time otherwise spent in constant re-computation of

off-line solutions. Such a change will also allow to clearly separate model and design

constraints and will allow a more consistent definition of time-varying elements, such

as penalties.

To achieve this task, the following steps will be needed:
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• Review the current structure of controller objects and identify elements which

can be directly adjusted by the user. The structure of MPC Toolbox controllers

could be used as a template.

• Consider changing the default behavior to always generate on-line controllers

instead of off-line ones. Will need to clearly communicate such change to users.

• Consider using default values for certain optimization parameters. The MPC

Toolbox, for instance, sets defaults for the prediction horizon and for penalty

matrices, according to pre-defined rules. This, on one hand, allows faster jump­

start for novice users, on the other hand it is difficult to come up with good

default setting especially in view of complexity of off-line solutions.

• Make description of time-varying elements, such as constraints or penalties, more

intuitive and more consistent.

• Analyze how the concept of the "Design your own MPC" function fits into this

new framework. Major obstacle currently being that YALMIP objects repre­

senting constraints cannot be saved to disk and re-loaded later.

• Adjust the way an off-line solution is stored in a controller object. Use the

new objects as described in Section 20.4. Make such storage general enough in

view of perspective extension in the future (e.g. support for off-line MPC for

polynomial systems).

20.4 New Object Representing Functions Defined

over Polytopes

Increasing usage of YALMIP in and with MPT showed a shortcoming of the MPT

design in the area of data exchange structures. On one hand MPT provides many

useful algorithms, such as optimal complexity reduction, reachability analysis, or visu­

alization functions. On the other hand, the way how external tools, such as YALMIP,

interact with said functions is not ideal. Specifically, each such functionality was

originally designed to cope with MPT's internal controller objects, which encompass

elements unrelated to the scope of external tools (e.g. model of the plant or specific

internal information). This implies that each external tool first needs to create a
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"dummy" controller object, call one of the MPT's native functions and then remove

all unnecessary fields from the result.

The type of exchanged data we are discussing here are functions defined over a

specific domain. The aim is to make the formulation as general as possible. We start

by implementing objects representing functions defined over polyhedral regions, such as

Piecewise Affine or Piecewise Quadratic functions. Later, objects describing functions

defined over regions defined by polynomial boundaries will be added. There will be a

weIl defined set of functions operating on these objects, such that the external tool or

user doesn't have to care what type of object he deals with. This is important mainly

in view of dealing with outputs of multi-parametric solvers. Regardless of whether the

output is a PWQ function (e.g. a value function praduced as a solution to mpQP)

or a PWA function (e.g. the controllaw), the user should be able to use the result

as one compact object and use identical methods while processing it. Currently such

processing is not straightforward, since the user has to deal with the polytopic domain

and the quadratic, affine and constant terms individually. This is error-prane and

imposes unnecessary load on the user.

The main goal in this area is to come up with a library of functions dealing with

functions defined over a polyhedral or polynomial domains. The polytope library

present in MPT clearly showed that such approach is superior to using individual,

self-contained functions.

The plan is to separate the "core" part of stored information into a new object,

which will be used both by external tools as weIl as by MPT's native controller object.

The main motivation being to stabilize the data interchange object and make its

structure independent of possible modifications of the controller object in the future.

This would give external tools a very stable interface which will, ideally, endure for

the whole remaining lifetime.

The implementation plan is as follows:

• Identify a set of overloaded functions which should be supported.

• Implement objects representing functions defined over polytopes.

• Refactor current code and generate the new objects where appropriate.

Once finished, the overall code structure will be much simpler, since it will use a

bottom-to-up approach, using smaller building blocks and combining them together.
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This is in contrast to the current implementation, where almost each function is self­

contained. It will also make further adjustments and enhancements much easier and

more transparent.

20.5 Polytope Library

One major missing piece of the polytope library contained in MPT, as of now, is the

support for lower-dimensional polytopes and polyhedra. This is viewed as a deficiency

since flat polytopes occur frequently e.g. in reachability analysis or when dealing

with lower-dimensional regions which can arise while modelling certain PWA systems.

Therefore it is of imminent importance to include such functionality into the Multi­

Parametric Toolbox. However, the implementation has to be done carefully as to take

all the theoretical issues into account.

20.6 Main Goals for HYSDEL

Following goals are envisioned as future possible extensions of HYSDEL:

• Rewrite the language parser into Matlab. The currently available C++ imple­

mentation is poorly extendible and exhibits certain memory leaks when compil­

ing models with a very large number of symbolic parameters. Morover, a pure

Matlab-based compiler would allow to use advanced techniques, such as removal

of redundant constraints or access to linear programming solvers. YALMIP looks

to be an ideal candidate of an underlying engine for a Matlab-based implemen­

tation. It would much simplify handling of vector and matrix elements, along

with generation of better models in the sense of tighter big-M relaxations.

• Extend the Matlab-based parser to handle compositional hybrid systems, where

each subsystem is described by its own HYSDEL code and set of interconnecting

conditions is specified either on a textuallevel, or by means of a Simulink scheme.

• Extend the HYSDEL syntax. This includes one-way implication statements in

AD sections, or improved syntax of IF-THEN-ELSE statements. Specifically, it

should be possible to use continuous conditions in the IF part of the statement.

Doing so would simplify the language and will not require users to define auxiliary

boolean variables to denote fulfillment conditions involving continuous variables.



200 20 Future Development

• Investigate the possibility and benefit of an automatie eonversion of HYSDEL

models into AMPL. The apparatus for doing such eonversion was already devel­

oped as part of the matrixHYSDEL project and further work will only involve

writing a simple XML eonverter.



Part IV

CASE STUDIES
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Introduction

In this part of the thesis we illustrate how the Multi-Parametric Toolbox, described in

the previous part, can be used to synthesize model predictive controllers. We consider

two case studies.

First, in Chapter 22 we investigate the problem of optimal infusion policy for in­

jecting morphine and ketamine intravenously. In this project the aim is to optimally

schedule time instances on which the drugs are injected into humans veins such that

certain level of anaestesia is achieved and pain during a surgery is suppressed. In order

to design an optimal injection policy, first the model of the drug concentration in the

body (referred to as the pharmacokinetic model) is derived. The parameters of the

model can be estimated from real measurement data collected during a surgery pro­

cess. In addition, it is necessary to derive a model which, simply speaking, represents

the patient's reaction to the drugs. This so-called "well-being" model, once derived, is

then used to identify an optimal range of drugs which has to be reached by properly

dosing the drug injection. Once both models are available, the control problem, which

takes the discrete nature of the drug boluses into account, can be formulated. The op­

timal control problem involves both discrete variables (time instances at which a bolus

is applied) and continuous variables (concentration of drugs in the blood and their

effect on the patient's shape). The objective of the control problem is then to decide

time instances on which to inject a bolus, such that a given concentration range of the

drugs in the blood is reached. This is reached by optimizing the time instances such

that the distance between the predicted drug concentration and a certain operating

point is minimized over a finite prediction horizon. We show that control problems

like this can be easily formulated using MPT and solved on-line in a receding horizon

fashion.

The second case study concerns the real-time optimal control of a mechanical device

with backlash. This kind of systems is very common in practice. Therefore, the task
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of optimally controlling such devices is of imminent importance. First, we show that

backlash-like behavior can be captured with enough precision by the PWA modelling

framework. The parameters of the model are derived using basic mass conservation

relations and equations of motion. Accuracy of the model is subsequently verified

with experimentally collected data. The controller design procedure is again based

on a constrained finite time optimal control setup. Because the sampling time of the

plant under consideration is very small (Ts = 0.04 seconds), in this case study we solve

the control problem off-line using the techniques of multi-parametric programming

outlined in Chapter 4. Specifically, we have investigated two different optimization­

based control strategies. The first approach is based on formulating a CFTOC problem

for a linear model of the system. This approach is later extended to cope with the

PWA model of the device. Both problems have been formulated and solved using the

Multi-Parametric Toolbox to obtain the optimal feedback laws in a look-up table form.

Finally, on simulations we have compared the performance of both controllers against

a simple LQR controller. As will be shown in Section 23.6, the MPC-based controllers

provide satisfactory performance and guarantee constraint satisfaction.
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Optimal Infusion Policy of

Intravenous Morphine and

Ketamine

In anaesthesia, different drugs are injected into patients' bodies in order to eliminate

the pain during a surgery and to keep patients asleep. Since different drugs have dif­

ferent effects on the human body, combinations of different drugs are usually used in

order to amplify positive effects of the drugs and to mitigate the side effects. There­

fore it is of imminent importance for the anaestheologist to choose a suitable ratio

of multiple drugs to be used, as well as to properly inject such a mixture into the

patients' blood. Although the process of anaesthesia is almost exclusively governed

by experienced professionals, in this chapter we try to design an automated infusion

policy which could, eventually, free the anaestheologist from routine.

Specifically, we aim at designing an optimal infusion strategy which takes the pa­

tients condition into account and administers the drugs following certain rules. Based

on the known model of drug interactions and drug concentrations in humans blood

we formulate an optimal control problem which takes this dynamical behavior into

account, maximizes the patients comfort during the surgery, minimizes the side effects

of the injected drugs, and also minimizes the drug consumption.

The general aim of this case study is to validate the application of the model on the

clinical relevant question of the combination of intravenous morphine and ketamine

and to show how this theoretical approach can be used to determine optimal drugs

dosing.

To do so, we first derive a model of the drug concentration in humans body, as

well as a model for drug interactions [MSS+OO]. We show that the parameters of the

model can be estimated from real measured data. Then we consider the well-being
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Effect Camp.

Figure 22.1: Representation of PK and link model.

parameter as the global outcome of the patient after drugs administration. The goal

will be to keep the value of this parameter near a desired range.

22.1 Methods

22.1.1 The model

After administration, any drug distributes in the body reaching the site where the

action takes place (" effect compartment"). The process can be described in a simplified

way representing the body as composed of a limited set of compartments exchanging

drug mass, as illustrated in Fig. 22.1, where the kij represent the mass transport

coefficients. The model of the distribution from infusion to plasma is referred to as

pharmacokinetic (PK) model, while the link-model accounts for the distribution from

the plasma to the effect compartment. The evolution of the effect can be described as

a sigmoidal function of the drug concentration in the effect compartment (PD model).

We consider each combination of drugs A and B as having a positive (Ep ) and a

side effect (Es). According to the model [ZSS+05] these effects are described by the

following equations:

(UAj+UB i ) "'"Ii (0)

E (e ) USOo(lh) P S
i = Emaxi i (UA'o+UBO) (0)' i= ,1 + t t"'"li i

USOi(Oi)

where UAi and UBi are the normalized drug concentrations:

(22.1)
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and

UBi = CB/ECsO,Bi

e _ UBi
,- U

Ai
+ U

Bi

Emaxi (ei) = EmaxAi +(EmaxBi -EmaxAi -ßEi)·ei+ßEi .e;

1'; (e;) I'A;+hB; -I'Ai -ß'Yi)·e;+ß'Yi· e;
U50i (ei) = l-ßU50i .ei+ ßU50i .e;

207

where Emaxji' {ji' ECSOji are the parameters of the PD model for drug j when admin­

istered alone. According to the model [ZSS+05], the weH-being (W) of the patient can

be defined as the algebraic sum of positive and side effects:

W = Ep-w·Es

where w is the relative weight of the two effects. The weH-being can be represented as

a 3-D function of the drugs effect compartment concentrations.

In order to draw the weH-being surface of the combination of morphine and ketamine,

aH the parameters mentioned above are needed. According to [ZSS+05] the foHowing

model simplifications can be made:

- Emax,A = Emax,B = Emax,AS = Emax,BS = 1

- ßEmax = ßEmaxs = 0

- ßI' = ßI'S = 0

Thus, only the two interaction parameters ß U50 and ßU50S need to be known, in the

following referred to as ß and ßs. The PD parameters for both drugs and the two

interaction parameters ß and ßs were either found in the literature [MPL91] or esti­

mated from published experimental data.

Further, in order to relate the infused drug amount to the obtained effect computed

through the weH-being surface, the parameters of the PK and the link models are

needed. AH the PK model parameters for both drugs were available in the litera­

ture [PLC+S7], [HSB+90], while the parameters of the link model for both drugs were

estimated from published experimental data [MATCOO], [MPL91]. In particular, for

morphine and ketamine, we considered analgesia as positive effect and dizziness as

negative, since this last was the most commonly experienced by patients in the ad­

ministered dose-range. For details of the estimation procedures, we refer the reader

to [SZS+05].
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22.1.2 The Optimal Control Problem

In this section we show how drug infusion policy can be optimized based on a known

model of drug concentrations and their interactions, while respecting certain con­

straints. Following [SGE+03], the objectives for the optimal control problem can be

formulated assuming that:

• The patients receive a solution containing a fixed mass ratio cP of the two drugs.

• The solution is administered always in bolus doses (impulses) of 1 ml.

• The minimal time interval between two boluses is 400 seconds.

The aim of the optimization is to find the optimal drug ratio cP in the solution and

the optimal time sequence of boluses to bring and maintain the patients at the target

with minimal drug consumption.

First, we state the optimal control problem for a dass of linear systems in discrete-time

domain of the following form:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),

(22.2a)

(22.2b)

where x(k) ERn, u(k) E Rm, and y(k) E RP are the state, input and output vectors

respectively. In this specific case, the matrices A, Band C are given by:

A = [AmorPh 0 ]
o Aket

C= [001000]
o 0 000 1

Note that the mass ratio cP enters the equations as UdU2. According to their PK and

link-models, the distribution of both drugs can be described by two compartments

plus the effect compartment. Thus, the matrices Aket and Amorph are:

A-J-
[

-klOj - k12j k21j it2)V1j

k12j V1)V2j -k21j
keOj 0 -Ll
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where j=ket, morph., tbol = 20sec is the time interval within which a bolus dose of 1

ml is administered and u(k) is the vector of drug doses of morphine and ketamine in

[mg].

The optimal sequence of inputs UN = [u(O), ... ,u(N - 1)] can be obtained by solving

the foIlowing optimization problem:

N-1

J'N(UN,xo) = min L IIRukl11 + IIQ(Yk - r)111
UO,···,UN-l k=O

subj.to XkEX, VkE{O, ,N-I},

Uk EU, Vk E {O, , N - I},

YkEY, VkE{O, ,N-I},

Xk+1 = AXk + BUk, Vk E {O, ... , N - I},

Yk = CXk, Vk E {O, ... , N - I},

(22.3a)

(22.3b)

(22.3c)

(22.3d)

(22.3e)

(22.3f)

where Xk (Yk) denotes the state (output) vector at time k obtained from Xo by applying

the sequence of inputs Uk = [uo, ... ,uk-d to the system (22.2). Q and R are user

defined penalty matrices and N is the prediction horizon. The variable r denotes

a reference point, 11 . 111 is a vector I-norm, and X, Y, and U are given polyhedral

sets which define constraints on system states, system outputs and system inputs,

respectively. For a given initial state Xo = x(O), and a finite value of the prediction

horizon N, problem (22.3) can be solved as a Linear Program (LP). The solution is

a sequence of control moves UN which minimizes a given objective function (22.3a).

As stated previously, it is possible to use the concept of optimal control to obtain the

optimal drug mass ratio <p as weIl as the time instances at which the boluses should

be delivered. The behavior of the system can be captured by the foIlowing set of

IF-THEN-ELSE conditions:

Algorithm 22.1.1

1. IFt = 0

2. choose <Po

3. assume x(k + 1) = Ax(k) + B<po, y(k) = Cx(k)

4· ELSEIF (k - tB) 2 T AND apply = true
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5. tB = t

6. assume x(k + 1) = Ax(k) + B</>o, y(k) = Cx(k)

7. ELSE

8. assume x(k + 1) = Ax(k), y(k) = Cx(k)

9. END

10. t = t + 1

11. Goto 1.

The first condition (lines 1-3) specifies that we are only allowed to select the mass

ratio of the two drugs (</>0) at the very beginning, i.e. at time t = O. After </>0 is

chosen, it is assumed to stay fixed for all subsequent time instances. The condition on

line 4 dictates that we are only allowed to deliver the bolus if T time instances have

elapsed since the last bolus. These assumptions were chosen to exactly reproduce the

conditions available during a patients controlled analgesia [SGE+03]. The variable

apply denotes a logical decision which evaluates to true if we decide to administer the

bolus, and to false otherwise. We remark here that the value of the variable apply

is to be decided by the optimization procedure. If the two conditions both evaluate

to a true statement, we first remember the time when we decided to apply the bolus

(line 5) and further assume that the evolution of the states of the system is driven by

a given state update equation, assuming the value of </>0 was already decided on line 2.

If neither the condition on line 1 nor the expression on line 4 are satisfied, we assume

that we do not deliver any bolus and the system evolves autonomously according to

line 8. Finally, the time variable t is incremented and we return to line 1. Using

the tool HYSDEL [Tor02], the above mentioned logic rules can be translated into a

mathematical model which is suitable for optimization. The model in question is the

so-called Mixed Logical Dynamical (MLD) [BM99a] model which is described by the

following set of equalities and constraints:

x(k + 1)

y(k)

E2o(k)

Ax(k) + B1u(k) + B2o(k) + B3 z(k)

Cx(k) + D1u(k) + D2o(k) + D3z(k)

+ E3z(k) ~ E1u(k) + E4x(k) + E5

(22.4a)

(22.4b)

(22.4c)
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Table 22.1: Estimated keo and PD parameters of morphine and Ketamine

Morphine Ketamine

keo [1/min] 0.046 [MPL91] 0.02 [MATCOO]

EC50 [mg/l] 0.063 [MPL91] 0.032 [MATCOO]

1[-] 1.4 [MPL91] 1.54 [MATCOO]

EC50,s [mg/l] 0.11 [ZLF+94] 1.46 [MATCOO]

IS [-] 0.6 [ZLF+94] 0.15 [MATCOO]
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where x E Rncx {O, 1}nl is a vector of continuous and binary states, u E Rmcx {O, 1}ml

denotes the input vector, and y E RPc x {O, 1}Pl the output vector. 8 E {O, 1}T
I, Z E RTc

represent auxiliary binary and continuous variables introduced when transforming logic

rules into mixed-integer linear inequalities (22.4c). Assuming that the evolution of the

system states and outputs in (22.3e)- (22.3f) is driven by the MLD model (22.4),

the optimal control problem can be formulated as a Mixed-Integer Linear Program

(MILP), which can be solved efficiently using state-of-the-art software [IL004].

22.2 Results

22.2.1 The model

The estimated mean values of the link model and the PD parameters of morphine and

ketamine are reported in Table 22.1. The interaction parameters have been estimated

as ß = 2.5 and ßs = -3 [SGE+03]. For the details of the estimation procedures,

please refer to [SZS+05]. The resulting weH-being surface is shown in Fig. 22.2 and

the corresponding contour lines in Fig. 22.4.

22.2.2 The Control Problem

We have solved (22.3) with the foHowing parameters: prediction horizon N = 54,

sampling time ts = 20 seconds, minimum time between two boluses T = 400 seconds,

penalty on manipulated variables R = 10-41, and penalty on variation of system
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Table 22.2: Optimal time instances (in seconds) on which to apply a bolus.

Index of bolus Time of bolus Index of bolus Time of bolus

1 o (initial bolus) 8 5000

2 400 9 6200

3 800 10 7400

4 1400 11 8800

5 2200 12 10200

6 3000 13 11600

7 4000 14 13000

outputs from a given references Q = 1031. The reference point r was chosen as

r = [0.03,0.05]T

Assuming that the patient has not received any drug before time zero (Le. x(O) =

[0 .. .0jT), the given optimal control problem (22.3) with model of the system in the

form of (22.4) has been formulated using the Multi-Parametric Toolbox and was solved

in 5.5 seconds on a Pentium 4 2.8 GHz computer, using CPLEX 9.0 [IL004]. The

obtained optimal mass ratio of the two drugs was <Popt = 0.55.

To determine the time instances at which the boluses should be administered, such that

the concentration of the two drugs in the effect compartment reaches the prescribed

reference point (22.2.2), the optimal control problem (22.3) has to be solved at every

time step for the updated measurements of the state Xo = x(k). The average time

needed to solve the optimal control problem (22.3) on a 2.8 GHz Pentium 4 processor

using Matlab and the CPLEX solver was 3.7 seconds, which is far below the selected

sampling time of 20 seconds. We have carried out the calculations for the time interval

of 4 hours and obtained the results reported in Table 22.2. The time evolutions of the

concentrations of morphine and ketamine in the effect compartment are depicted in

Figure 22.3. As can be seen from the picture, both concentrations are kept dose to

their respective reference points. Figure 22.4 depicts the concentrations of ketamine

and morphine concentration during the simulation.



22.3 Discussion

0.8

....

0.6

0.4

0.2

0

-0.2
004

0.3 0.0~~'~"~,:::>",
ekel [mg/Il 0,1 ~,».:'

o 0

2

213

Figure 22.2: WeIl-being surface as a function of the effect compartment concentrations

of morphine and ketamine, according to the estimated parameters.

22.3 Discussion

In the previously proposed model [ZSS+05] the limitations on the administrable

amount of drugs imposed by the occurrence of side effects are directly taken into

account in the global expression of the weIl-being function. This aIlows for the identi­

fication of the effect compartment concentrations range maximizing the weIl-being of

the patient. This approach provides a tool to investigate the behavior of drug combi­

nations and, in particular, a tool to address the critical issue of optimal drug dosing,

by stating the identification of the optimal dosing as a control problem. The com­

plexity of the control of biological systems is often complicated by the non-linearity

describing the underlying processes. The application of the new interaction model

aIlows for overcoming this complication by reformulating the problem of controlling a

defined effect into the control of the corresponding effect compartment concentrations.

The formulation of the problem in terms of a Mixed-Integer Linear Programs is able

to capture the intrinsic logic behind common drug administration in clinical practice.

The results depicted in Fig. 22.3 and 22.4 show that the computed administration pol­

icy succeeded in bringing and maintaining the drug concentrations inside the optimal
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Figure 22.3: Evolution of concentrations of morphine and ketamine with respect to

time according to the optimal infusion policy.
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range. The concentration of morphine rapidly reaches the reference value and oscillates

around this point. The concentration of morphine shows a slower response, therefore

the reference value is reached slightly later. An oscillatory behavior is present in both

cases, because of the discrete nature of the input. A decrease in the minimal time span

between two consecutive boluses would lead to a decrement of the oscillations and in

a smoother reference tracking. The result is satisfactory, since after having quickly

pushed the concentrations into the optimal range, the controller is able to keep the

system in this condition and thus to provide the maximal well-being for the patient.

22.4 Conclusion

In this chapter we have shown that the new proposed model for drug interactions can

successfully be applied to a clinically relevant combination and builds the framework

for an optimal approach to drug administration. The methodology is based on an

optimal control framework, assuming that the model of the system can be described

with a set of IF-THEN-ELSE conditions. The resulting optimization problem can be

formulated as a Mixed-Integer Linear Program which can be solved in order to obtain

the optimal mass ratio of morphine and ketamine in any bolus, as weIl as the time

instances on which the boluses should be administered. The results show that the

optimal control framework is weIl suited for the given task and provides a systematic

approach to deal with the logic involved in drug administration.
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Control of Mechanical Systems

with Backlash

23.1 Introduction

Backlash is a common problem in mechanical systems occurring whenever there is a

gap in the transmission link, e.g. in the differential gearbox of a power train. This

transmission gap causes problems when the system input changes from acceleration

to braking or vice versa. During a short time interval the driving torque will not be

transmitted to the load. When the backlash gap is traversed, sudden contact will

cause a large change in the torque exercised on the load, causing undesirable bumps

and possible damages of the mechanical elements in contact. Furthermore, improperly

designed control for mechanical systems with backlash may cause undesired vibrations,

thus limiting performance and causing additional wear of the mechanical parts.

The problem of controlling mechanical systems with backlash has been considered

for a long time by the control community. Arecent survey ofthis topic includes [LagOI]

and [NG02]. A detailed treatment of different approaches towards control and estima­

tion of mechanical systems with backlash is given in [Lag04]. New developments have

followed the developments in the theory of hybrid systems, [MBB03], and (relatively)

recent achievements in the area of model predictive control (MPC), [BBBM05].

A natural way to model a mechanical system with backlash is to distinguish between

two operating modes, namely the "backlash mode", when the two mechanical parts are

not in contact, and the "contact mode", when the contact between the two mechanical

parts is established and the transmission of the momentum takes place. The inherent

switching between these two modes makes this system a prime example of a hybrid

system and motivates the "hybrid approach" to modeling and control of mechanical

systems with backlash.
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A Model predictive control strategy is particularly convenient when the system to

be controlled is subject to constraints. The Explicit solution to a MPC problem, which

is obtained off-line, makes the application of this control scheme possible also for sys­

tems requiring a fast control sampling rate. The approach is successful for constrained

linear system, as well as for a dass of hybrid systems, namely piecewise affine (PWA)

systems. The application of MPC to mechanical systems containing backlash is par­

ticularly attractive since it enables a control design incorporating constraints which

could increase the safety and reduce the wear of mechanical parts, while preserving

satisfactory control performance. An application of MPC to automotive power trains

with backlash has been reported in [LE05], where the authors deploy a linear accel­

eration controller for the system in backlash mode and MPC to traverse the backlash
gap.

In this chapter we perform a comparative study of three different control strategies

on a mechanical system with elastic shaft and backlash in the transmission. We

compare the performance of dassical LQR to MPC designed for a linear model (and

applied to the actual system with backlash) and MPC designed using a hybrid model

of the system. Unlike [LE05], we present a more holistic approach by modeling the

mechanical system as a hybrid system and computing the explicit MPC for such a

system. The emphasis of this chapter is on potential benefits that could be obtained

by applying MPC to such systems, in particular, related to the satisfaction of different

constraints. Furthermore, our aim is also to demonstrate a systematic hybrid control

design procedure based on recently developed, freely available MPC controller design

tools, [KGBM03a] and [Löf04]. In the comparison both performance and complexity

of the controllers are taken into account.

23.2 Mechanical System with Backlash

To be able to evaluate control and estimation results not only in theory but in areal

application, a laboratory physical model of a mechanical system with backlash has

been constructed. This laboratory setup, which models an automotive power train

system, can be seen in Figure 23.1. The main elements of the experimental system are

two rotating masses, the backlash element, aspring, two motors and two encoders that

provide position measurements. The system is driven by a DC motor while another

motor of the same type is used on the load side. The rotating masses represent the
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Figure 23.1: The experimental setup of a mechanical system with backlash.
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inertia of the motor and the load. The spring connecting both sides (see Fig. 23.1)

has been included to model the flexibility of the shaft. In contrast to automotive

power trains, where shafts are usually rather stiff, we have chosen an elastic shaft,

to make the laboratory-scale experiment more demanding. The backlash gap size

of the backlash element can be changed to four different values, either 2°, 4°, 6° or

10°. The measured signals are the angles of the motor shaft Bm and the load shaft BI,

which are obtained from two incremental encoders with aresolution of 2000 counts per

revolution, i.e. approximately 0.0031 rad. This resolution is sufficient to measure the

position of the system in backlash mode for the smallest backlash gap used (2° ~ 0.035

rad). However, if only sensors with a lower resolution are available, KaIman filters as

proposed by [LE03a] can be used.

23.3 Modeling and Parameter Identification

The system described in Section 23.2 has been modeled using a first principle model.

The modeling and parameter identification pracedure is illustrated in this section.

23.3.1 Modeling of Hybrid Systems

Recognizing the hybrid nature of the system makes the pracess of modeling, contral

and state estimation more accurate and systematic. The models presented will be
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Figure 23.2: Schematic representation of a rotating mechanical system with backlash.

given in the form of piecewise-affine (PWA) systems

Xk+l = jpWA(Xk, Uk) = A{i}Xk + B{i}Uk + j{i},

iE [::] E VU),

VU) .~ { [ :] I [(P")U) (P)li)] [ : ] ,; (P"j"'} ,
(23.1)

where k 2: 0, x E lRn is the state vector, U E lRm is the control vector and

{V{i}}~l is a bounded polyhedral partition of (x, u) C lRn +m space. The constraints

(Px){i}X + (Pu){i}U :s: (PO){i} define both regions in which a particular state update

equation is valid as weIl as constraints on the state and input variables. Under some

technical assumptions, PWA system representation is equivalent to several other mod­

els of hybrid systems and one can convert one into the other, [HDB01]. For our pur­

pose, i.e. the computation of the explicit solution to MPC for the hybrid systems, the

PWA model (23.1) is the most suitable one.

23.3.2 Backlash Model

A schematic representation of the rotating mechanical system with backlash is shown in

Figure 23.2. The motor M 1 is the driving motor. The inertia Jm represents the motor

flywheel, the inertia Jl represents the load. The spring-damper combination models a

flexible shaft with damping. The dampers bm and bl represent viscous friction. The

second motor, M 2 , can be used to model disturbance torques caused e.g. by different

road friction. An important parameter in a rotating mechanical system with backlash

is the size of the backlash gap, which shaIl be denoted as 2a.

The configuration of Figure 23.2 can be described approximately by the foIlowing
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differential equations, using balance of moments:

-bmwm + Tm - Ts,

-blWl +Ts ,
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(23.2)

(23.3)

where Tm is the motor torque and Ts is the shaft torque. When shaft damping is taken

into account, the shaft torque, Ts , is given by

(23.4)

Here, the angles ßB = Bm - Bl and Bbare the total shaft displacement and the position

in backlash, respectively. The backlash position angle Bb can be described by the

following nonlinear differential equation, [Ne97],

if Bb = -a

if IBbl < a

if Bb = a

(23.5)

where a is half the backlash gap size. From this differential equation for Bb conditions

can be derived which define when the system is in backlash mode. The system is in

backlash mode if one of the following three conditions holds

IBbl < a

Bb=-a 1\ iJd+~(Bd-Bb»O

Bb=a 1\ iJd+~(Bd-Bb) <0

(23.7a)

(23.7b)

(23.7c)

Conditions (23.7b) or (23.7c) become true, if the system is in positive or negative

contact mode and the backlash elements starts to move away from the driving shaft.

The distribution of the backlash and the contact mode over the backlash angle Bb and

its derivative eb is visualized in Figure 23.3. While the contact mode is marked by the

two thick lines, the backlash mode consists of the remaining reachable space.

This leads to the state update equation:

{

Acox(t) + Bu(t) (Positive contact)

x(t) = AblX(t) + Bu(t) (Backlash)

Acox(t) + Bu(t) (Negative contact)

(23.8)
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Figure 23.3: Distribution of backlash and contact mode. Dark line: contact mode,

white space: backlash mode

where the state x(t) and the matrices A co , Abi and Bare given by

x = [ Wm WI Bm BI Bb ] T ,

bm+b b c c c
-~ - Jm - Jm Jm Jm

b -~ c c c

Aco = Yt J l Yt -Yt -Yt
1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

bm 0 0 0 0- Jm

0 _EI. 0 0 0J l

Abi = 1 0 0 0 0

0 1 0 0 0

1 -1 c c c
t; -t; -t;

(23.9)

(23.10)

(23.11)

B = [J: 0 0 0 0 r· (23.12)

Note that, since!:i.B = Wm -WI can be expressed in terms of state variables, Eq. (23.5)

together with Eq. (23.5) describes a continuous-time PWA system defined over a poly­

hedral partition.

For using discrete-time model predictive control, the continuous model from Equa­

tion (23.8) still has to be discretized. This can be done for each linear subsystem sepa­

rately either straight forward via the Euler discretization or with a more sophisticated
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discretization algorithm. Finally, a discrete hybrid model

{

~cox[k] + ~u[k] (Positive contact)

x[k + 1] = Ablx[k] + Bu[k] (Backlash)

iCox[k] + Bu[k] (Negative contact)
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(23.13)

can be obtained where the~denotes matrices of a discrete-time model. The models

were implemented with special tools alongside Matlab to deal with hybrid systems.For

simulation of PWA systems and design and simulation of controllers for PWA systems

the Multi-Parametric Toolbox (MPT) was used.

23.3.3 Parameter Identification

In order to identify the parameters for the model, the backlash element was removed

from the experimental system and the shafts were connected. This leads to a system

with almost linear behavior governed by the following differential equations:

(23.14)

The numerical values for the parameter can now be obtained using linear subspace

identification methods, e.g. with the Matlab Identification Toolbox, [Lju06]. Since

we used a first principle modeling approach, the parameters of the linear system are

the same as the corresponding contact mode parameters in the hybrid model. There­

fore, the identified parameters of the linear system can be used in the hybrid model

that includes backlash. Afterwards backlash mode parameters can be extracted using

physical relations.

For the identification of the system in contact mode, a pseudo-random binary signal

has been used with an amplitude of ±5 [V]. Figure 23.4 shows the first three seconds

of the identification signal and the corresponding system response, i.e. the evolution

of the motor shaft angle Bm and the angle of the load shaft BI.

The derived linear model is verified by comparing the model simulations to measure­

ments as shown in Figure 23.5. It can be concluded that the model is quite accurate

although some nonlinearities are not considered, in particular the strong influence of

Coulomb friction.
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Figure 23.4: First three seconds of input and output signals during identification.

23.4 State Estimation

In the experimental setup considered here only the motor and load position are di­

rectly available through measurement. For the purpose of state-feedback contral the

remaining of the states, i.e. position in backlash fh and rotational speed of motor and

load W m and Wl need to be estimated. This motivates the design of astate estimator

described in this section.

In applications where the switching signal is assumed to be available or can be

derived easily by observing sign-changes in the motor input signal, switching between

linear observers can be used to recover the states of the system, [ACOl]. Due to the

high elasticity of the spring in the experimental system at hand, a considerable time

delay between sign-changes in the input signal and the actual switching can occur. In

order to cope with this, a switching observer is designed which does not rely on an

external switching sequence, [LE03b].
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Figure 23.5: Comparison between measurements (-) and simulation results (- -).

The size of the backlash gap 2cx is considered to be known. In general however this

gap size may be unknown. In these cases this parameter can either be identified in the

model identification process or estimated during the system operation. In [LE03b] it

is argued that in most cases on-line estimation is the only feasible option.

Since the piecewise-affine model (23.8) consists only of two distinct linear dynamies,

the design of an extended Kaiman filter (EKF) is similar to the design of two Kaiman

filters for each linear dynamic. A linearisation of the nonlinear dynamic done at each

time-step in a classical EKF is nothing more but using the linear dynamic valid in each

region. The advantage of this decoupled design, proposed in [LE03b], is that linear

steady state gains can be calculated as stationary solutions to the Riccati equation.

In general this is not possible in EKF design.

For the switched observer we choose the following structure

±(t) = { Acox(t) + Bu(t) + L1ßy(t)
AblX(t) + Bu(t) + L2 ßy(t)

fj(t) = Cx(t),

(Contact)

(Backlash)
(23.15a)

(23.15b)

and switching condition:

(Contact) ,{ V
Bb = -cx 1\ wm - Wl + HOd - Ob) < 0

Bb =cx 1\ wm - Wl + ~(Od - Ob) > 0

(BacklMh) , {

Bb = -cx 1\ wm - Wl + ~ (Od - Ob) ~ 0

V IObl <cx

V Bb =cx 1\ wm - Wl + ~ (Od - Ob) :S 0

(23.16a)

(23.16b)
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Figure 23.6: Simulation of the state estimation scheme, Position in Backlash Bb (-)

and tlB (- -)

where x(t) = [Wm, w/, em , ßt, eb] E jR5 is the estimated state vector at time t, tly(t) =

y(t) - fj(t) is the output estimation error at time t and LI, L2 E jR5x2 are KaIman filter

gains, computed for each linear subsystem separately.

23.4.1 Validation

The validation of the proposed filter has been done in two steps. First a continuous time

model of the system including measurement quantization has been simulated together

with the designed observer. A comparison between estimated backlash position and

simulated position within backlash is shown in Figure 23.6. The validation is similar

for the other states: the employed estimation scheme shows a fast convergence to the

actual states.

Finally the observer was verified experimentally. Since only position measurements

Bm and B/ are available, the comparison (Fig. 23.7) is done using the measurement of

the difference between both positions, tlB, and the estimated position within backlash

Bb. The position in backlash can be estimated sufficiently weH as shown in simulation

and experimental verification.

It could be observed during experimental verification that the switching signal shows

undesirably high frequency variations in contact mode for high weights on the position

Bb. Low values however lead to a steady state position error in Bm and B/. A proper

trade off has been found with the values stated above.
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Figure 23.7: Experimental verification of the state estimation scheme, Position in

Backlash Ob (-) and t::.O (- -)

Remark: Stability of the designed estimation scheme has not yet been verified. This

would be possible with a Lyapunov analysis of the state estimation error, see [JHW02].

23.5 Controller Design

In this section we will briefl.y describe design of explicit MPC based on the PWA

model presented in section 23.3.2. The model includes the position in backlash, Ob, in

contrast to the approach in [LE05], were a simplified model is used. This allows us to

use all available information from the state observer presented in the previous section

and may lead to better control performance. The main aim of the control will be to

keep the impact velocity between the motor and the load part within certain bounds.

23.5.1 Model Predictive Control for constrained linear and

PWA systems

In this section we will give abrief overview of the results related to the explicit solution

of the MPC problem for constrained linear and PWA systems.

We consider constrained discrete-time linear systems defined by the following state

update equation:

x E X, U E llJ (23.17)
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where X and U are polyhedral sets defining constraints on states x E ]Rn and inputs
U E ]Rm.

Given a model of the system, we denote the model based k-step prediction of state x

at time instance t as Xt+klt for a given sequence of inputs Ut+klt. Consider the following

cost function of states and inputs:

N-l Nc-l

J(U{'c-\xo):= II(xt+Nlt-xr)II~N+L II(xt+klt-Xr)II~+ L Ilut+klt-urll~, (23.18)
k=O k=O

where N and Ne :S N stand for the prediction and control horizon, respectively.

We use the following shortened notation: Ilxlllr = xT Mx. Weight matrices PN ,

Q and R in (23.18) are assumed to be positive semi-definite. Vector U{'c- 1 =

[u~t, ... , Ui+Nc-1I t ] T E ]RmNc contains all control inputs over the horizon and Xr and

Ur denote reference (desired) values for the state and control vectors, respectively.

Consider the following constrained finite time optimal control (CFTOC) problem:

(23.19a)

(23.19b)

where fDYN(Xt+klt> Ut+klt) represents astate update equation ((23.1) or (23.17)). Set

1[' is a compact polyhedral terminal set, i.e. the set of admissible states at the final

(finite) time instance N.

Classical MPC implementation assumes solving the problem (23.19a)-(23.19b) on­

line, i.e. at each time instance t for a given (measured) current state Xtlt and using the

optimal u;lt' if exists, as the control input at time t. This amounts to solving a mixed­

integer quadratic program (MIQP) at each time instance t. Due to computational

requirements, this approach is intractable for control systems requiring high sampling

rate.

As shown in [BBBM05], the problem (23.19a)-(23.19b) for constrained LTI and

PWA systems can be solved explicitly off-line using dynamic programming and multi­

parametric quadratic program. The generated explicit solution is a look-up table whose

structure is defined by the properties of the solution to the problem (23.19a)- (23.19b)).

Those are summarized by the following theorems [Bor03]:

Theorem 23.5.1 (CFTOC solution for constrained linear systems) For an

optimal control problem (23. 19a)-(23.19b) with the state update equation (23.17) and
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cost function J(U{'c-l,xtIt) defined by (23.18), the optimizer function u*(Xt+klt) zs

continuous and piecewise-affine over polyhedra, i. e. of the form:

*( ) F{i} C{i}
U Xt+klt = k Xtlt + k f 'D{i}

Z Xt+klt E '''k , (23.20)

where Rii
}! i = 1, ... ,Nk are polyhedra defining a polyhedral partition of the set 'Xk of

states Xt+klt for which the problem (23. 19aJ-(23. 19bJ has a feasible solution.

Theorem 23.5.2 (CFTOC solution for PWA systems) The solution to the op­

timal control problem (23. 19aJ- (23.19bJ with the quadratic cost function (23.18) zs a

PWA state feedback controllaw:

*( ) F{i} C{i}
U xt+klt = k Xtlt + k 'f 'D{i}

Z Xt+klt E '''k , (23.21)

where the regions Rii
} , i = 1, ... ,Nk whose closure is given by:

define a partition of the set of feasible states 'Xk in the k-th step .

(23.22)

The on-line operation of the controller consists of identification of pre-computed affine

feedback control law for a measured (estimated) state Xtlt by searching for a region

R~i} containing the state vector Xtlt. This way the computational overhead is moved

off-line and the real-time deployment of the MPC becomes possible.

23.5.2 MPC design für mechanical system with backlash

The goal we wish to achieve with MPC is tracking of a speed reference for the load,

with satisfaction of certain constraints. For the comparison we design MPC based on

a constrained linear model describing the system in contact mode (Le. ignoring the

backlash mode) and MPC using the PWA model of the system.

We introduce constraints on the difference between W m and Wl in order to reduce

impact forces between mechanical parts when traversing from backlash to contact

mode. Additionally, in order to avoid feasibility problems that might occur from this

constraint we define this constraint on speed difference to be a soft constraint.

Since we are interested only in the reference tracking of a particular state (speed of

the load), we modify the general formulation by augmenting the state vector in the
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following way:
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(23.24b)

(23.24a)

Xt+klt = [u~~::I:lt ] , (23.23)

WIR

where Xt+klt = [wm Wl ße e b ] is the original state vector, Ut+k-llt is the control

input in the previous sampling interval and WIR is a referent value for the rotational

speed of the load (Wl). Instead of estimating the reference values for Ur, we use

ßUt+klt ~ UHkit - UHk-llt as the optimization variable. Formulation of the MPC

control problem is the following:
N-l Nc-l

min qss2 + :L Ilwl - wLRII~ + :L IIßUHkltllk,
ßu['c-1,s k=O k=O

. { Xt+k+llt = fDYN(Xt+klt, UHklt),

sub]. to IWI - wml :S ßwrnax + S,

S ~ 0,

where S is an additional optimization variable introduced to enforce the soft constraints

and ßwrnax is the maximal difference between the rotation speeds between the load

and the motor.

Augmentation of the state vector, needed for the tracking of arbitrary references,

increases the dimension of the explicit solution. In order to reduce the complexity

a move-blocking strategy is used, i.e. the optimization problem (23.19a)-(23.19b) is

simplified by considering only Utlt and Ut+llt as optimization variables and set the value

Ut+klt = Ut+llt for k > 1.

23.6 Comparison of different control strategies

The control aim of the simulation experiment is to have the load shaft follow a certain

speed reference trajectory. The simulation experiment involves one braking procedure

from 25 [radis] to -10 [radis] and one accelerating procedure back to 15 [radis]. The

initial speeds of the motor and the load shaft have been set to be above the reference

trajectory and to differ slightly (29 [radis] and 30 [radis]' respectively). The following

constraints need to be fulfilled:

5 V,

5° ,

~ radis,

(23.25)
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where the last one (ßw) is added as a soft constraint in the MPC design. As mentioned

in the introduction, we compared the performance of the standard integral action LQR

controller with MPC based on the constrained linear model and MPC using a hybrid

PWA model of the system, as described in the Section 23.5.

For the LQR controller design, the state vector is augmented by an integral of the

tracking error to eliminate steady-state error. In the design a large weight was put

on the state Wl to achieve fast reference tracking. While it is physically impossible

to exceed the input and the backlash angle constraints, the safety constraint can be

violated.

Similar as in LQR, in both MPC a large weight is put on the term penalizing the

tracking error in the cost function. For MPC we used discrete-time models with sam­

pling period of Ts = 0.04 [s] and prediction horizon N = 5. As stated in Section 23.5.2,

only two values of the control input are considered as optimization variables, thus

achieving significant reduction in complexity of the explicit controllers. With this

setup, we obtained an explicit MPC based on a constrained LTI model comprising

115 polyhedral regions in 6 dimensions and hybrid MPC containing 4890 polyhedral

regions in 6 dimensions.

Simulation results are shown on Figures 23.8-23.10. It can be seen that all three

controllers have approximately same performance in tracking the reference signal.

Therefore, evaluation of these three control strategies has to be done by considering

the complexity issue and the satisfaction of prescribed constraints. LQR admits very

simple control law and provides satisfactory tracking performance. However, the con­

straint on the speed difference between the load and the motor cannot be enforced

without sacrificing performance. MPC based on the linear model (Fig. 23.9) is rela­

tively simple in structure and gives satisfactory performance with proper constraint

satisfaction for the control input u. Again, MPC based on linear model comes quite

elose to fulfilling the constraints on ßw (Fig. 23.9 (c)). Finally, MPC using the hy­

brid model of the system offers very tight constraint satisfaction (Fig. 23.10). At the

same time, the complexity of this controller (storage and computational requirements),

though still reasonable for performing laboratory tests, represents an obstaele for its

practical implementation.
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23.7 Conclusion
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A mechanical system with backlash has been specified and built, providing a bench­

mark system for hybrid control and identification strategies. Modern control strate­

gies for hybrid systems can be verified and their realisability on a real system can be

investigated. A first step towards a "hybrid" benchmark problem was obtained.

The full design cycle containing modeling, estimation and control design for this

rotational system with backlash has been performed. An observer, based on [LE03b]

was implemented and tested in simulations and experiments with the laboratory setup.

In both situations the observer works satisfactorily. The goal was to design a controller

that tracks the rotational speed of the load shaft while minimizing bumps or damages

that can occur when the system is operated and backlash is not taken into account.

This was realized by constraining the difference in speed between the drive and the

load Wm - Wl.

Three different controllers were designed and investigated in a simulated scenario.

A standard LQR controller, where constraints cannot be considered directly, was com­

pared to model predictive control for a linear and a hybrid model. To ensure the imple­

mentability in real backlash systems like power trains of automobiles, explicit solutions

have been computed in the latter cases. The different handling of the constraints by

the investigated controllers have been shown during these simulations. While the con­

straints are violated significantly with LQR control, MPC with a linear model shows

only small violations of the constraints. With a hybrid model, which considers the

backlash in the system, violations of the constraints can be avoided.

The explicit solution for the hybrid model comprises thousands of regions, such that

additional effort has to be spent in future research to reduce the complexity. Explicit

solutions based on the minimum time control concept seem to be more suitable for a

real time implementation. Analyzing these questions is part of the ongoing work to

find an efficient realization of the MPC control scheme for the experimental system.
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24

Car on a PWA HilI

24.1 System dynamics

Assume a frictionless car moving horizontally on a hill with different slopes, as illus­

trated in Figure 24.1. Dynamics of the car is driven by Newton's laws of motion:

~4 -3 -0.5

Figure 24.1: Car moving on a PWA hill.

dp

dt
dv

m­
dt

v

u - mgsina

(24.1 )

(24.2)

where p denotes horizontal position and v stands for velocity of the object. If we now

define x = [p, vjT, assume the mass m = 1 and discretize the system with sampling

time of 0.1 seconds, we obtain the following affine system:

x(k + 1) = [1 0.1] x(k) + [ 0.005 ] u(k) + [ c. ]
o 1 0.1 -gsma

(24.3)

239
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It can be seen that speed of the car depends only on the force applied to the car

(manipulated variable u) and slope of the road 0:. Slope is different in different sectors

of the road. In particular we have:

Sector 1: p ~ -0.5 => 0: = 0°

Sector 2: -3 ~ p ~ -0.5 => 0: = 10°
(24.4)

Sector 3: -4 ~ p ~-3 => 0: = 0°

Sector 4: p ~-4 => 0: = _5°

In addition, there are constraints defined on position of the car (-40 ~ p ~ 40) and

speed of the car (-40 ~ v ~ 40). Input force is restricted to satisfy -5 ~ u ~ 5.

24.2 Control Objectives

The control objective is to drive the car from a given initial conditions (p = -3.5,

v = 0) to the origin (p = 0, v = 0), while minimizing the fuel consumption. To take

both these objectives into account, following performance index was specified:

J~(x(O))

subj. to

N-l

min L IIRukih
UO,···,UN_l

k=O

XN =0

(24.5)

(24.6)

and the predictions Xk are made based on equation 24.3 by taking state and input

constraints into account. The penalty on fuel consumption has been chosen as R = 0.1.

24.3 matrixHYSDEL model

SYSTEM pwa_car {

INTERFACE {
STATE {

REAL x(2) [-40, 40J;
}

INPUT {

REAL u(N) [-5, 5J;
}

PARAMETER {
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REAL cfl = [0.01541; 0.854998J;

REAL cf2 = [-0.02568; -1.703489J;

REAL A = [1, 0.1; 0, lJ;

REAL B = [0.005; O.lJ;

REAL N = 30;
}

}

IMPLEMENTATION {

AUX {

REAL fl(2, N), f2(2, N), z(2, N+l);

BOOL dl(N), d2(N), d3(N);

INDEX k;

}

LINEAR {

z(1:2, 1) = x;

241

/* slope 1 */
/* slope 2 */

/* prediction horizon */

}

AD {

dl(k) = z(l, k) <= -0.1

d2(k) = z(l, k) <= -3

d3(k) = z(l, k) <= -4

« k = l:N »;

« k = l:N »;

« k = l:N »;

}

DA {

f1(1:2, k)

f2(1:2, k)

{ IF d3(k) THEN cfl } « k = l:N »;
{ IF (-d2(k) & dl(k)) THEN cf2 } « k = l:N »;

}

LINEAR {

z(1:2, k+l) = A*z(1:2, k) + B*u(k) +

fl(1:2, k) + f2(1:2, k)
}

CONTINUOUS {

x = z(1:2, N+1);

}

MUST {

/* state constraints */
fl <= 40;

« k = l:N »;
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f1 >= -40;

f2 <= 40;

f2 >= -40;

z <= 40;

z >= -40;
}

}

}

24.4 AMPL model

24 Car on a PWA Hill

param Tinteger >=1; # horizon length

param nx integer >=1; # number of states

param nu integer >=1; # number of inputs

param M >=0; # big number for the logical

# constraints transformation

param m <= 0; # small number

param epsilon >=0; # small tolerance

set TIME ordered .= O.. T ,
set INPUT ordered - 1.. nu

set STATE ordered - 1.. nx

param A{STATE,STATE};

param B{STATE,INPUT};

param StateO{STATE};

param StateF{STATE};

param maxstate{STATE} >=0;

param minstate{STATE} <=0;

param maxinp{INPUT} >=0;

param mininp{INPUT} <=0;

param cf1{STATE};

param cf2{STATE};

#system matrix

#system matrix

#initial state

#final state

#maximum allowed velocity

#maximum negative allowed velocity

#maximum allowed input

# minimum allowed input
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var Input {t in TIME,u in INPUT: t < last(TIME)} >= mininp[u] ,<=maxinp[u];

var State {t in TIME,s in STATE} >=minstate[s] ,<=maxstate[s];

var d1 {t in TIME: t < last(TIME)} binary;

var d2 {t in TIME: t < last(TIME)} binary;

var d3 {t in TIME: t < last(TIME)} binary;

var mode {t in TIME: t < last(TIME)} binary;

var f1 {t in TIME,s in STATE: t < last(TIME)} <=maxstate[s], >=minstate[s];

var f2 {t in TIME,s in STATE: t < last(TIME)} >=minstate[s] ,<=maxstate[s];

minimize energy:

sum {t in TIME, i in INPUT: t < last(TIME)} O.l*Input[t,i]*Input[t,i];

subject to initial {s in STATE}:

State[O,s]=StateO[s] ;

subject to final {s in STATE}:

State[last(TIME),s]=StateF[s] ;

subject to system {t in TIME,s in STATE: t < last(TIME)}:

State[t+1,s]= sum{pr in STATE} A[s,pr]*State[t,pr]

+ sum{i in INPUT} B[s,i]*Input[t,i]

+ fHt, s] + f2[t, s];

#==================================================

subject to guardia {t in TIME: t < last(TIME)}:

# d1(t) = State(t, 1) >= -0.1

-0.1 -State[t,l] <= M*(1-d1[t]);

subject to guard1b {t in TIME: t < last(TIME)}:

# d1(t) = State(t, 1) >= -0.1

-0.1 -State[t,l] >= epsilon + (m-epsilon)*d1[t];

#==================================================
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#==================================================
subject to guard2a {t in TIME: t < last(TIME)}:

# d2(t) = State(t, 1) )= -3

-3 -State[t,1] <= M*(1-d2[t]);

subject to guard2b {t in TIME: t < last(TIME)}:

# d2(t) = State(t, 1) )= -3

-3 -State[t,1] )= epsilon + (m-epsilon)*d2[t];

#==================================================

#==================================================
subject to guard3a {t in TIME: t < last(TIME)}:

# d3(t) = State(t, 1) )= -4

-4 -State[t,1] <= M*(1-d3[t]);

subject to guard3b {t in TIME: t < last(TIME)}:

# d3(t) = State(t, 1) )= -4

-4 -State[t,1] )= epsilon + (m-epsilon)*d3[t];

#==================================================

#==================================================
subject to mode_a {t in TIME: t < last(TIME)}:

# mode = -d1[t] & d2[t]

-(1-d1[t]) + mode[t] <= 0;

subject to mode_b {t in TIME: t < last(TIME)}:

# mode = -d1[t] & d2[t]

-d2[t] + mode[t] <= 0;

subject to mode_c {t in TIME: t < last(TIME)}:

# mode = -d1[t] & d2[t]

(1-d1[t]) + d2[t] - mode[t] <= 1;

#==================================================

24 Car on a PWA Hili
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#==================================================
subject to slopel_a {t in TIME, s in STATE: t < last(TIME)}:

# -d3 -> fl cfl

fl[t, s] <= M * (1-d3[t]);

subject to slopel_b {t in TIME, s in STATE: t < last(TIME)}:

# -d3 -> fl = cfl

fl[t, s] >= m * (1-d3[t]);

subject to slopel_c {t in TIME, s in STATE: t < last(TIME)}:

# -d3 -> fl = cfl

fl[t, s] <= cfl[s] - m*d3[t];

subject to slopel_d {t in TIME, s in STATE: t < last(TIME)}:

# -d3 -> fl = cfl

fl[t, s] >= cfl[s] - M*d3[t];

#==================================================

#==================================================
subject to slope2_a {t in TIME, s in STATE: t < last(TIME)}:

# mode -> f2 = cf2

f2[t, s] <= M * mode[t];

subject to slope2_b {t in TIME, s in STATE: t < last(TIME)}:

# mode -> f2 = cf2

f2[t, s] >= m * mode[t];

subject to slope2_c {t in TIME, s in STATE: t < last(TIME)}:

# mode -> f2 = cf2

f2[t, s] <= cf2[s] - m*(l - mode[t]);
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subject to slope2_d {t in TIME, s in STATE: t < last(TIME)}:

# mode -> f2 = cf2

f2[t, s] >= cf2[s] - M*(l - mode[t]);

#==================================================
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The Three Tanks System

25.1 System dynamics

,

3
Q23V2 ..

hV23 2

Figure 25.1: casy Three Tank Benchmark System

2

The three tank system in Figure 25.1, has been proposed as benchmark system for

fault detection and reconfigurable contral. This benchmark system has been developed

within the casy (Control of Complex Systems) project of the European Science

Foundation.
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The system consists of three liquid tanks, that can be filled with two independent

pumps acting on the outer tanks 1 and 2. The pumps deliver the liquid flows QI and

Q2 and they can be continuously manipulated from a flow of 0 to a maximum flow

Qmax' The tanks are interconnected to each other through upper and lower pipes. The

flow through these pipes can be interrupted with switching valves VI, 112, V13 , V23 , that

can assurne either the completely open or the completely closed position. The liquid

levels hl , h2 , h3 in each tank can be measured with continuous valued level sensors. The

nominal outflow from the system is located at the middle tank. Physical parameters

of the plant can be found in [MM01].

25.2 Control Objectives

The control objective is to steer heights of liquid levels in each tank to a desired

reference value by manipulating the liquid flows Qi and Q2 and by opening or closing

of valves Vi, V2 , V13 , V23 . To achieve this purpose, following optimization problem can

be formulated and solved:

JN(X(O) )

subj. to

N-I

min L IIRukl h
UO"··,UN-l

k=O

(25.1)

(25.2)

and by taking system dynamics and constraints into account. The value r specifies a

reference value which should be reached by the final predicted state.

25.3 matrixHYSDEL model

SYSTEM tank03nf {

INTERFACE {
STATE {

REAL h1 [0, 0.62J, h2 [0, 0.62J, h3 [0, 0.62J;
}

INPUT {
REAL Q(2,N) [0, 1J;

BOOL V(2,N);
}
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PARAMETER {

REAL N = 7;

REAL Area = 0.0143; /* Cross-Area of tank */

REAL g = 9.81; /* Gravity Constant */

REAL s13 = 10.ge-6;

REAL s23 = 8.8ge-6;

REAL s2 = 5.54e-6;

REAL sl = 9.36e-6; /* Cross Section of valves */

REAL dT = 10; /* sampling time */

REAL hv = 0.3; /* m */

REAL hmax = 0.62; /* m */

REAL kl = 7.3291e-5, k2 = 4.337ge-5;

REAL k13 = 6.1317e-5, k23 = 5.001e-5;

REAL TdA = 699.3;
}

} /* end interface */

IMPLEMENTATION {

AUX {

REAL xx(N+l,3) [0, 0.62J;

REAL zO(N,3) [-0.32,0.32J, zl(N) [-0.32, 0.32J;

REAL z2(N) [-0.32, 0.32J, z13(N), z23(N);

BOOL dO(N,3);

INDEX k,s;
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}

LINEAR {

/* initial state */

xx (1 , 1) = hl;

xx (1 , 2) = h2;

xx (1 , 3) = h3;

xx(k+l,l) = xx(k,1)+TdA*(Q(1,k)/le4-kl*zl(k)-k13*z13(k))

«k=l :N»;

xx(k+l,2) = xx(k,2)+TdA*(Q(2,k)/le4-k2*z2(k)-k23*z23(k))

«k=l :N»;

xx(k+l,3) = xx(k,3)+TdA*(kl*zl(k)+k2*z2(k)+k13*z13(k)+k23*z23(k))

«k=l :N»;
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}

AD {

dO(k,s)
}

DA {

zO(k,s)

zl(k)

z2(k)

z13(k)

z23(k)
}

25 The Three Tanks System

-xx(k,s) + hv <= 0.0 «k=1:N,s=1:3»;

{IF dO(k,s) THEN (xx(k,s) - hv) } «k=1:N,s=1:3»;

{IF V(1,k) THEN zO (k , 1) - zO(k,3) } «k=l :N»;

{IF V(2,k) THEN zO(k,2) zO(k,3) } «k=l: N»;

{IF V(1,k) THEN xx(k,1) - xx(k,3) } «k=l :N»;

{IF V(2,k) THEN xx(k,2) - xx(k,3) } «k=l :N»;

CONTINUOUS {

h1 = xx(N+1, 1) ;

h2 = xx(N+1,2);

h3 = xx(N+1,3);
}

MUST {

zO <= 0.62;

zO >= O',

zl <= 0.32;

zl >= -0.32;

z2 <= 0.32;

z2 >= -0.32;

z13 <= 0.62;

z13 >= -0.62;

z23 <= 0.62;

z23 >= -0.62;

xx <= 0.62;

xx >= 0;
}

} /* end implementation */
} /* end system */
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#big number for the logical constraints transformation

# small number

# small tolerance

param Tinteger >=1;

param nx := 3;

param nur 2;

param nub := 2;

param M >=0;

param m <= 0;

param epsilon >=0;

param hmax := 0.62;

param Qlmax := 1;

#horizon length

param Q2max - l'l
param Area 0.0143;

param g .= 9.81;

param s13 := 10.ge-6;

param s23 - 8.8ge-6;

param s2 .= 5.54e-6;

param si := 9.36e-6;

param dT - 10;

param hv - 0.3;

param TdA = dT / Area;

param kl - si * sqrt(2 * g / (hmax - hv));

param k2 - s2 * sqrt(2 * g / (hmax - hv));

param k13 - s13 * sqrt(2 * g / hmax);
param k23 - s23 * sqrt(2 * g / hmax);

set TIME ordered := O.. T

set INPUTREAL ordered - 1.. nur;

set INPUTBOOL ordered .= 1. .nub;

set STATE ordered - 1 .. nx

param StateO{STATE}; #initial state

param StateF{STATE}; #final state

param maxstate{STATE} >=0; #maximum allowed velocity
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param minstate{STATE} <=0; #maximum negative allowed velocity

param maxinp{INPUTREAL} >=0; #maximum allowed input

param mininp{INPUTREAL} <=0; # minimum allowed input

var InputReal {t in TIME,u in INPUTREAL: t < last(TIME)} >= mininp[u] ,<=maxinp[u]

var InputBool {t in TIME, u in INPUTBOOL: t < last(TIME)} binary;

var State {t in TIME,s in STATE} >=minstate[s] ,<=maxstate[s];

var d {t in TIME, s in STATE: t < last(TIME)} binary;

var zO {t in TIME, s in STATE: t < last(TIME)} <= 1, >= -1;

var z1 {t in TIME: t < last(TIME)} <= 1, >= -1;

var z2 {t in TIME: t < last(TIME)} <= 1, >= -1;

var z13 {t in TIME: t < last(TIME)} <= 1, >= -1;

var z23 {t in TIME: t < last(TIME)} <= 1, >= -1;

var EpsReal {t in TIME, u in INPUTREAL: t < last(TIME)} >=mininp[u], <= maxinp[u]

minimize energy:

sum {t in TIME, u in INPUTREAL: t < last(TIME)} EpsReal[t, u] +

sum {t in TIME, ub in INPUTBOOL: t < last(TIME)} InputBool[t, ub];

subject to slacks_rea11 {t in TIME, i in INPUTREAL: t < last(TIME)}:

-EpsReal[t,i] <= InputReal[t,i];

subject to slacks_rea12 {t in TIME, i in INPUTREAL: t < last(TIME)}:

-EpsReal[t,i] <= -InputReal[t,i];

subject to initial {s in STATE}:

State[O,s]=StateO[s] ;

subject to final {s in STATE}:

State[last(TIME),s]=StateF[s] ;

subject to system_a {t in TIME: t < last(TIME)}:

State[t+1, 1] = State[t, 1] + TdA *
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(-k1 * z1[tJ - k13 * z13[tJ + InputReal[t, 1J / 1e4);

subject to system_b {t in TIME: t < last(TIME)}:

State[t+1, 2J = State[t, 2J + TdA *

(-k2 * z2[tJ - k23 * z23[tJ + InputReal[t, 2J / 1e4);

subject to system_c {t in TIME: t < last(TIME)}:

State[t+1, 3J = State[t, 3J + TdA *

(k1 * z1[tJ + k2 * z2[tJ + k13 * z13[tJ + k23 * z23[tJ);

################ AD section #######################

#==================================================

subject to guard_a {t in TIME, s in STATE: t < last(TIME)}:

# d_i(t) = -State(t, i) + hv <= °
-State[t,sJ + hv <= M*(1-d[t, sJ);

subject to guard_b {t in TIME, s in STATE: t < last(TIME)}:

# d_i(t) = -State(t, i) + hv <= °
-State[t,sJ + hv >= epsilon + (m-epsilon)*d[t,sJ;

#==================================================

################ DA section #######################

#==================================================

subject to zO_a {t in TIME, s in STATE: t < last(TIME)}:

# d_i -> zO_i = h_i - hv

zO[t,sJ <= M * d[t,sJ;

subject to zO_b {t in TIME, s in STATE: t < last(TIME)}:

# d_i -> zO_i = h_i - hv

zO[t,sJ >= m * d[t,sJ;

subject to zO_c {t in TIME, s in STATE: t < last(TIME)}:
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# d_i -) zO_i = h_i - hv

zO[t,sJ <= (State[t,sJ - hv) - m*(l-d[t,sJ);

25 The Three Tanks System

subject to zO_d {t in TIME, s in STATE: t < last(TIME)}:
# d_i -) zO_i = h_i - hv

zO[t,sJ )= (State[t,sJ - hv) - M*(l - d[t,sJ);

#==================================================

#==================================================
# zl = {IF Vi THEN zOl - z03};

subject to zl_a {t in TIME: t < last(TIME)}:

# Vi -) zl zOl - z03

zl[tJ <= M * InputBool[t,lJ;

subject to zl_b {t in TIME: t < last(TIME)}:

# Vi -) zl zOl - z03

zl[tJ )= m * InputBool[t,lJ;

subject to zl_c {t in TIME: t < last(TIME)}:

# Vi -) zl = zOl - z03

zl[tJ <= (zO[t, lJ - zO[t, 3J) - m*(l-InputBool[t,lJ);

subject to zl_d {t in TIME: t < last(TIME)}:

# Vi -) zl = zOl - z03

zl[tJ )= (zO[t, lJ - zO[t, 3J) - M*(l - InputBool[t,lJ);

#==================================================

#==================================================
# z2 = {IF V2 THEN z02 - z03};

subject to z2_a {t in TIME: t < last(TIME)}:

# V2 -) z2 z02 - z03

z2[tJ <= M * InputBool[t,2J;
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subject to z2_b {t in TIME: t < last(TIME)}:

# V2 -> z2 = z02 - z03

z2[t] >= m * InputBool[t,2];

subject to z2_c {t in TIME: t < last(TIME)}:

# V2 -> z2 = z02 - z03

z2[t] <= (zO[t, 2] - zO[t, 3]) - m*(1-InputBool[t,2]);

subject to z2_d {t in TIME: t < last(TIME)}:

# V2 -> z2 = z02 - z03

z2[t] >= (zO[t, 2] - zO[t, 3]) - M*(1 - InputBool[t,2]);

#==================================================

#==================================================
# z13 = {IF V1 TREN h1 - h3 };

subject to z13_a {t in TIME: t < last(TIME)}:

# V1 -> z13 = h1 - h3

z13[t] <= M * InputBool[t,1];

subject to z13_b {t in TIME: t < last(TIME)}:

# V1 -> z13 = h1 - h3

z13[t] >= m * InputBool[t,1];

subject to z13_c {t in TIME: t < last(TIME)}:

# V1 -> z13 = h1 - h3

z13[t] <= (State[t, 1] - State[t, 3]) - m*(1-InputBool[t,1]);

subject to z13_d {t in TIME: t < last(TIME)}:

# V1 -> z13 = h1 - h3

z13[t] >= (State[t, 1] - State[t, 3]) - M*(1 - InputBool[t,1]);

#==================================================

#==================================================
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# z23 = {IF V2 THEN h2 - h3 };

subject to z23_a {t in TIME: t < last(TIME)}:

# V2 -> z23 = h2 - h3

z23[tJ <= M * InputBool[t,2J;

subject to z23_b {t in TIME: t < last(TIME)}:

# V2 -> z23 = h2 - h3

z23[tJ >= m * InputBool[t,2J;

25 The Three Tanks System

subject to z23_c {t in TIME: t < last(TIME)}:

# V2 -> z23 = h2 - h3

z23[tJ <= (State[t, 2J - State[t, 3J) - m*(1-InputBool[t,2J);

subject to z23_d {t in TIME: t < last(TIME)}:

# V2 -> z23 = h2 - h3

z23[tJ >= (State[t, 2J - State[t, 3J) - M*(l - InputBool[t,2J);

#==================================================
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