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Abstract

Energy balance and healthy eating behaviour are essential aspects that de-
termine health risks for chronic diseases and general morbidity. This crucial
relation becomes most prominent with the increasing share of citizens devel-
oping excessive body fat and weight worldwide. While short-term clinical in-
terventions can help obese patients, long-term strategiesare sought to prevent
overweight and obesity. Sustained success in prevention isexpected by support-
ing individuals in changing personal lifestyle and maintaining an appropriate
eating behaviour.

Current weight and diet coaching programs use self-reporting techniques of
eating behaviour to adapt and personalise feedback to participants. However
maintaining these reports is an additional burden for participants. Moreover
the reports incur large bias and hence, limit program success. Novel tools and
technical solutions are sought that alleviate the individual from manual eating
behaviour reporting.

In this work a novel concept is introduced, called automaticdietary moni-
toring (ADM), that targets this goal. New ADM-based diet coa ching solutions
are supported by the constant trend in electronic miniaturisation. Miniaturi-
sation permits to embed sensors and computers in everyday objects, including
clothing, accessories, and buildings. Systems that leverage this paradigm of
pervasive computing can support their user with personalised health status
and diet coaching services. Moreover ADM-based solutions conceptually per-
mit coaching program durations of several years in order to make the coaching
most e�ective. The essential functions of ADM-based solutions are sensing and
recognition of the user's eating behaviour. This work evaluates on-body sensing
and pattern recognition solutions for ADM.

The thesis comprises eight scienti�c publications that address four speci�c
goals of this work: (1) to review on-body sensing solutions and modalities,
relevant for diet monitoring, (2) to evaluate recognition of intake activities from
continuous sensor data, (3) to infer intake cycles from temporally distributed
activity events, and (4) to estimate eating behaviour from recognised activities.

On-body sensing solutions were reviewed with respect to thephysiology
of eating and activities directly related to food intake. Th ree activities were
selected for further evaluation: intake gestures (using inertial sensors at arms
and torso), chewing (using an ear-worn microphone to recordfood breakdown
sounds) and swallowing (using Electromyography, EMG, and astethoscope
microphone).

A procedure to recognise activity events in continuous datawas devel-
oped. The procedure utilises explicit data segmentation (equidistant or data-
adaptive), a pattern search based on feature similarity andan event fusion
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step. All selected activities were evaluated using the recognition procedure.
Data-adaptive segmentation was utilised for inertial sensors and EMG data.
Equidistant segmentation was evaluated for all modalities. The feature simi-
larity search was used to spot activity events of variable length. Finally, event
fusion was used to combine several similarity search instances in one recogni-
tion result. The recognition performance for spotting and categorising activity
events from all sensing solutions was quantitatively analysed in several studies.
It was shown how individual recognition stages improve performance.

A model was developed to describe food intake cycles. The model is based
on a temporal composition of intake gestures, chewing, and swallowing events.
To implement the model an activity event parsing approach was used. Appli-
cability of the implementation was evaluated for di�erent t ypes of intake (food
categories, drinking). In a second investigation, acoustic chewing phases were
identi�ed in intake cycles using an exploratory search approach. An acous-
tic chewing sequence model was introduced to facilitate thesearch task. The
results show that acoustic phasing structure depends on food texture.

Finally, estimation of food type and amount from on-body sensor infor-
mation was investigated. The relation of food, material texture and acoustic
breakdown emissions was used to derive pattern models for discriminating
up to 19 foods. Recognition of food-texture groups corresponding to nutri-
tional recommendations (food pyramid) was evaluated. Furthermore, robust
recognition of a �xed food set was demonstrated by combiningthe recogni-
tion procedure with intake cycle information. Food weight was estimated for
individual bites of recognised foods. The weight estimation is based on timing
and count variables of the chewing cycle structure. Predictive information of
several variables was investigated. In a further investigation, bolus volume was
classi�ed from the swallowing reex. While the latter appro ach provided cate-
gorical amount information, the approach based on chewing sequence variables
allowed a continuous weight prediction.



Zusammenfassung

Energiegleichgewicht und gesundes Ern•ahrungsverhalten sind zwei wesentliche
Faktoren, die das Risiko f•ur chronische Krankheiten und allgemeine Morbid-
it •at beeinussen. Der weltweit wachsende Anteil von Personenmit •uberh•ohtem
K•orperfett und -gewicht verdeutlicht diese Abh•angigkeit. W•ahrend kurzfristige
klinische Interventionen bei Adipositas-Patienten helfen, sind jedoch langfristige
Strategien notwendig, um •Ubergewicht und Adipositas zu vermeiden. Einen
nachhaltigen Erfolg versprechen Pr•aventionsmassnahmen, die pers•onliche
Lebensver•anderung und ad•aquates Ern•ahrungsverhalten unterst•utzen.

Aktuelle Beratungsprogramme f•ur Gewicht und Ern •ahrung benutzen
Berichte •uber das Ern•ahrungsverhalten, die vom Teilnehmer selbst verfasst
wurden. Die Beratung wird entsprechend dieser Berichte angepasst und per-
sonalisiert. F•ur Programmteilnehmer ist das Ausf•ullen der Berichte jedoch ein
zus•atzlicher Aufwand. Dar •uber hinaus, haben die Berichte einen hohen Bias
und begrenzen damit den Programmerfolg. Neue Methoden und technische
L•osungen sind n•otig, um Programmteilnehmer von der manuelle Erfassung
des Ern•ahrungsverhaltens zu entlasten.

In dieser Arbeit wird ein neues Konzept eingef•uhrt, genannt Automat-
ic Dietary Monitoring (ADM), dass diese Entlastung zum Ziel hat. Neue,
ADM-basierte Beratungsprogramme werden insbesondere durch den anhal-
tenden Miniaturisierungstrend bei elektronischen Systemen unterst•utzt. Die
Miniaturisierung erlaubt es, Sensoren und Computer in allt•agliche Objekte
zu integrieren, wie zum Beispiel in Kleidung, Accessoires und in Geb•aude.
Systeme, die diesen Gedanken des Pervasive Computing verfolgen, k•onnen
ihren Benutzer mit personalisierten R•uckmeldungen zum Gesundheitssta-
tus und Ern•ahrungsberatungsdiensten unterst•utzen. Dar•uber hinaus erlaubt
das ADM Konzept eine Programmdauer von mehreren Jahren, um die Be-
ratung wirkungsvoll zu gestalten. Die wesentlichen Funktionen ADM-basierter
L•osungen sind die messtechnische Erfassung und Erkennung des individuellen
Ern•ahrungsverhaltens. Dieser Arbeit untersucht insbesondere k•orpergetragene
Sensoren und L•osungen zur Mustererkennung f•ur ADM.

Die Arbeit besteht aus acht wissenschaftlichen Publikationen, die vier spez-
i�sche Ziele verfolgen: 1. Evaluierung von k•orpergetragene Messl•osungen und
Modalit •aten zur Ern•ahrungsbeobachtung, 2. Untersuchung zur Mustererken-
nung in Aktivit •aten der Nahrungsaufnahme, 3. Erkennung des Nahrungsauf-
nahmezykluses aus zeitlich verteilten Aktivit•atsereignissen und 4. Bestimmung
des Ern•ahrungsverhaltens auf Basis der Aktivit•atserkennung.

Es wurden k•orpergetragene Messl•osungen im Hinblick auf die Ern•ahrungs-
physiologie und Aktivit •aten untersucht, die direkt mit der Nahrungsaufnahme
zusammen h•angen. Drei Aktivit •aten wurden f•ur die weitere Untersuchung aus-
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gew•ahlt: Gesten zur Nahrungsaufnahme (mit Hilfe von Inertialsensoren an den
Armen und am Rumpf), Kauen (mit Hilfe eines Ohrmikrophon zur Aufnahme
von Kauger•auschen) und Schlucken (mit Hilfe von Elektromyographie, EMG,
und einem Stethoskop-Mikrophon).

Ein Verfahren zur Mustererkennung von Aktivit •atsereignissen in kon-
tinuierlichen Daten wurde entwickelt. Das Verfahren nutzt die drei Schritte
Datensegmentierung (•aquidistant oder daten-adaptiv), eine Mustersuche
basierend auf Merkmal•ahnlichkeiten und eine Ereignis-Fusion. Alle aus-
gew•ahlten Aktivit •aten wurden mit diesem Erkennungsverfahren untersucht.
Die daten-adaptive Segmentierung wurde f•ur Inertialsensoren und EMG-
Daten eingesetzt. Die •aquidistante Segmentierung wurde auch f•ur alle weit-
eren Sensormodalit•aten untersucht. Die Merkmal•ahnlichkeitssuche wurde be-
nutzt, um Aktivit •atsereignisse mit variabler L•ange zu erkennen. Schliesslich
wurde die Ereignis-Fusion entwickelt, um mehrere Instanzen zur Merk-
mal•ahnlichkeitssuche in einem Erkennungsergebnis zu verkn•upfen. Die Erken-
nungsleistung f•ur Detektion und Kategorisierung von Aktivit •atsereignissen
aller Messl•osungen wurde in mehreren Studien quantitativ untersucht.Die Ar-
beit zeigt, wie die Erkennungsschritte eine kontinuierliche Erkennungsleistung
verbessern.

Ein Modell wurde entwickelt, um den Nahrungsaufnahmezyklus zu be-
schreiben. Das Modell basiert auf einem zeitlichen Verbundvon Gesten, Kau-
und Schluckereignissen. Zur Umsetzung des Modells wurde ein linguistischer
Analyseansatz zur Verarbeitung von Aktivit •atsereignissen benutzt. Die An-
wendbarkeit wurde anhand von verschiedenen Ern•ahrungsformen (Speisekate-
gorien, Trinken) untersucht. In einer zweiten Untersuchung wurden akustische
Phasen im Nahrungsaufnahmezyklus mit Hilfe einer explorativen Suche iden-
ti�ziert. Ein akustisches Kausequenzmodell wurde eingef•uhrt, um die Suche zu
erm•oglichen. Die Ergebnisse zeigen eine Phasenstruktur in Abh•angigkeit von
der Speisentextur.

Schliesslich wurde die Bestimmung von Speisetyp und -mengeaus In-
formationen der k•orpergetragenen Sensoren untersucht. Die Beziehung von
Speise, Materialtextur und akustischen Zerbrechemissionen wurde benutzt,
um akustische Modelle f•ur die Unterscheidung von 19 Speisen zu bestim-
men. Die Erkennung von Speisen-Texturgruppen wurde in Anlehnung an
Ern•ahrungsempfehlungen (Ern•ahrungspyramide) untersucht. Weiterhin wurde
die stabile Erkennung einer festgelegten Speisenzahl gezeigt, indem das Erken-
nungsverfahren mit Informationen aus dem Nahrungsaufnahmezyklus erg•anzt
wurde. Das Speisengewicht wurde f•ur einzelne Bissen einer Speise bestimmt.
Diese Gewichtssch•atzung basiert auf zeitlichen Variablen und Z•ahlgr•ossen aus
der Kausequenzstruktur. Die Sch•atzqualit •at verschiedener Variablen wurde un-
tersucht. In einer weiteren Untersuchung wurde das Bolusvolumen w•ahrend
des Schluckreexes diskriminiert. W•ahrend der zweite Ansatz kategorische
Mengeninformationen liefert, erlaubt der Ansatz basierend auf Kausequenz-
Variablen die Sch•atzung eines kontinuierlichen Gewichtswerts.







1
Introduction

An introduction on the relevance of nutrition in daily life i s pro-
vided. The global struggle in �ghting diet-related pandemics and the
need for alternative diet monitoring solutions is summarised. This
lack of adequate diet reporting solutions motivates the present work
{ the development of novel automatic on-body diet monitoring tech-
niques.

By reviewing state-of-the-art diet assessments, vital requirements
for such new systems are presented. Moreover, initial monitoring
attempts, originating in the area of pervasive healthcare,are dis-
cussed. Finally, the aims and outline of this thesis on on-body mon-
itoring are presented.



2 Chapter 1: Introduction

1.1. The need for diet monitoring

Food intake aims at compensating energy expenditure, henceto attain a bal-
anced metabolism. However, intake is more than that { it involves an enjoyable
stimulus which cues eating. In the 20th century, the original challenge to ac-
quire food became a commodity and many foods were designed with high
energy content, oils, fat and caloric sweeteners [35, 42]. Concurrently, energy
expenditure has decayed [28]. This is primarily due to reduced physical ac-
tivity, required to accomplish everyday tasks and work. The World Health
Organisation (WHO) reported a global rise in body fat, determined by the
body mass index1 (BMI) as consequence of energy imbalance [41]. Accord-
ing to [40, 41], BMI is used to identify overweight (BMI > 25), or more severe,
obesity (BMI > 30). Both, overweight and obesity are a predispose for cardio-
vascular diseases, diabetes mellitus type 2 and further health risks [36], all
eventually increasing morbidity [5, 29]. For 2005, WHO estimated a pandemic
of 1.6 billion overweight and 400 million obese adults worldwide [42]. An even
increasing trend was projected for 2015 that emphasises a surge in child and
adolescent obesity.

The prevalence of obesity in the US population (aged 20 yearsand over)
increased from 14% in 1980 to 23% in 1994 and reached 30% in 2000 [9].
Moreover, by 2000 the ratio of overweight US-citizens exceeded 64%. In 2004,
17% of US-children and adolescents aged 2 to 19 years were overweight [24].
National prevalence among adults in Europe ranges from 8% inSwitzerland
and 10% in Italy and the Netherlands to 25% in England and nearly 30% in
Greece and Croatia. In 2008 about 21% of the German adult population was
obese [16].

Estimations for economic cost of obesity range between 2% and 8% of
total healthcare costs in several developed countries. While these estimates
are conservative, obesity represents one of the largest cost items in national
healthcare budgets [41].

Moreover, overweight and obesity is not restricted to high-industrialised
regions and is even faster growing in developing countries.In 2002 about 15% of
the Chinese citizens were overweight [16]. { Fighting theseepidemic dimensions
is a critical challenge for the success of our species!

Besides energy balance2, food intake provides unique access to nutrients
that cannot be su�ciently synthesised by the body, such as vitamins, miner-
als and water [44]. This explains the enjoyable stimulus andmotivation for

1Body weight normalised by the squared body height; depends o n age and body com-
position. Initially proposed by Adolphe Quetelet between 1 830{1850. It is persistently used
to assess body fat, despite its shortcomings (http://en.wi kipedia.org/wiki/Body mass index
and [7, 10, 21]).

2Substances providing energy include proteins, fats, carbo hydrates.
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a diversi�ed diet composition. It warrants su�cient amount of all required
nutrients [13]. Hence, any form of eating disorder is detrimental for health [4].

Several further eating disorders exist [3, 12], including crash dieting,
anorexia nervosa, binge eating, bulimia and orthorexia (see page 219 for de-
scriptions). Hence, there are many aspects inuencing individual food intake,
including genetic and physiologic as well as psychologicaland social con-
straints [17]. The result is an individual eating behaviour described by speci�c
food choice and restraint, portion size, energy intake and meal intake frequency.
Eating behaviour is reported in temporal resolutions ranging from individual
snacks and meals every day to averages over several years, depending on the
type of investigation [45].

Monitoring eating behaviour is the prerequisite for research on disease in-
tervention and epidemiology as well as in deployed prevention, such as weight
loss coaching programs [25, 46]. In order to systematicallyreduce disease risks,
these programs target a modi�cation of accustomed lifestyle. However, this is a
tough challenge for the individual. It requires continuous, potentially life-long,
everyday support and coaching [25]. To support the coach andindividual with
actual information, eating behaviour reporting must provi de a similar temporal
resolution, thus requires tracking of every individual meal intake. Such actual
information is particularly vital to adapt feedback in coaching programs and
has been identi�ed to improve success rates [23].

Current studies on eating behaviour and weight loss consider typical inter-
vention periods of six months [37]. However only 20% of the individuals that
initially lost at least 10% of their weight, can maintain the new weight one
year after discharge [47]. This result suggests an even longer coaching phase of
two to �ve years.

To date, most investigations and weight loss programs assess daily eating
behaviour (intake schedule, food composition, amount and energy content)
with the help of questionnaires [48]. Questionnaire assessments in the form of
self-reports could capture eating behaviour in the required temporal resolu-
tion and information detail. However, they fail due to the bu rden of manual
logging [48]. All diet assessments (see Section 1.2 below) are either laboratory-
based or require a considerable e�ort by the respondent.

Novel tools and technical solutions are sought that alleviate the individual
from manual food intake logging. The vision for such solutions is to provide
eating behaviour information in the conceptual quality of daily self-reports.
This is the goal of automatic dietary monitoring (ADM). These solutions will
remove the inter-individual estimation error and increaseuser compliance in
interventions. Moreover, they would permit novel risk-prevention programs
through long-term personalised coaching [6] { clearly infeasible using manual
monitoring.
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1.2. Classic assessment of metabolism and diet

Various monitoring solutions have been developed that targeted the under-
standing of human metabolism, its modi�cation through food choices and in-
take patterns. The approaches can be grouped into metabolism-focused assess-
ments, eating-rate monitoring and questionnaires.

Direct and indirect calorimetry assessments using metabolic chambers and
the doubly-labelled water test represent the most accuratesolutions to mea-
sure metabolic rate. The highest standard of metabolic assessment is achieved
through heat or gas exchange measurement in metabolic chambers, hence by
monitoring the e�ect of ingested energy [34]. However, thisprocedure is neither
feasible for monitoring behaviour under the impact of natural environments nor
acceptable for investigations spanning months. In contrast, the doubly-labelled
water test [30] is particularly useful for measuring average metabolic rate while
following normal lifestyle. It is performed by tracking the loss of deuterium and
oxygen-18 from body uids (saliva, urine, or blood) after administering dose
of water labelled with the heavy isotopes. It is typically used for studies with
durations of two weeks or less [27].

In order to speci�cally assess food weight and eating rate (intake weight
over time in g/s) an \Universal Eating Monitor" (UEM) was int roduced [18].
The approach utilises a table with an integrated scale to measure the plate or
bowl weight. The system was used for assessments of uid intake or prepared
solid food pieces mostly. The table can track potential deceleration in the
intake speed. The UEM is applicable for laboratory studies and was used in
clinical assessments of obesity [19] and, more recently, for investigations on
psychological aspects of eating behaviour [15].

Dietary assessment based on questionnaires measure food intake directly.
They can be utilised without activity-restricting supervi sion or laboratory en-
vironments. Three techniques exist: food-frequency history, 24 h recall and food
records. Food-frequency assessments have been designed for epidemiology stud-
ies, capturing food consummation history (food item from a list and calendar-
ing frequency) for long time periods (months to several years) [43]. The 24 h
recall quanti�es consumption of a single day through speci�c questions of an
interviewer (food type and qualitative portion size) [48]. Food records are daily
self-reports maintained by the respondent for up to one week, recording food
type, time of consumption and weighted amounts [48]. Energyintake is assessed
through manual analysis of reported food products by a dietitian.

Based on their temporal resolution of individual days to weeks 24 h recall
and food records are used in eating behaviour studies and weight coaching
programs [37]. However, both su�er from a number of shortcomings, such as
motivation, intake awareness as well as memorising and literate capabilities
of the respondent [48]. Moreover, respondents are inuenced by changing per-
ceptions of desirability and increasing self-awareness due to the reporting. In
turn, food details that could be interpreted as abnormal areomitted, snacks
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are forgotten. Reporting errors varied between 50% under- and overestima-
tion [14, 31, 39]. Due to the required e�ort and large errors,food records are
not applicable for monitoring durations longer than one week. Similarly, the ef-
fort of respondent and interviewer to maintain twenty-four hour recalls render
the method infeasible for longer periods [48].

1.3. Diet monitoring using personal assistants

The constant trend of electronic miniaturisation has enabled sensors and com-
puters to be embedded in everyday objects, including clothing, tools and build-
ings. Systems that leverage this pervasive computing paradigm can support
their user with personal in-time health status and coachingservices. The core
functions for such personal assistants are (1) sensing and recognising the user's
state and activity, (2) inferring health state as well as tracking tasks and ac-
tions relevant for the targeted service, and (3) providing adequate feedback.
Minimising the user's disturbance by the system is a core property that a�ects
the entire design.

In the light of dietary monitoring, sensing is a di�cult chal lenge due to the
complexity of eating behaviour. No single sensor or observable e�ect exist that
would speci�cally resemble a manual self-report in naturalenvironments. For
this reason investigators and commercial solutions omit the sensing step and
rather use classic self-reporting approaches instead. Diet monitoring research
has focused on the translation of paper-based self-reporting into electronic
diaries, such as PDA- or smartphone-based solutions e. g. [32]. Latest inves-
tigations and discussions indicate that PDAs cannot improve the validity of
manual self-reporting assessments. They may even introduce new challenges
to untrained users [1, 49, 50]. Investigations of alternatedata entry methods,
such as voice logs, bar-code and shopping receipt scanning resulted in simi-
lar estimation and validity errors [20, 33]. Commercialised solutions include
many Internet-based coaching platforms using self-reports e. g. [2]. Moreover,
services based on alternate reporting solutions have been established, such as
MyFoodPhone [22] that uses mobile phone pictures for diet tracking.

Research has made sporadic attempts towards ADM. Typically, these works
have focused on single activities and modalities. Patterson et al. [26] used radio-
frequency-identi�cation RFID tags on 60 household objectsand a reader worn
at the user's hand to track morning activities, including br eakfast preparation
and consumption. Chang et al. [8] used a table equipped with RFID readers to
identify food containers and weight sensors and tracked food transport from
containers to personal plates. While the �rst approach has potential to assess
the meal timing and food type, the latter can additionally record food weight.
Both approaches require speci�c labelling of objects and food to identify it.
Finally, Gao et al. [11] deployed an computer vision approach to identify hand
motions towards the head (\dining motions") of patients at a nursing home.
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Their approach required cameras installed in the room. In addition to the
behaviour sensing and recognition challenge, all purely infrastructure-based
sensing approaches need to identify the person, e. g. the camera surveillance
system requires an additional face recognition to robustlyassign the move-
ments to a speci�c person. Consequently, the development ofwearable sensing
approaches seems advantageous to eliminate these shortcomings.

1.4. Aims of the work

The aim of this work was to develop and evaluate new sensing and recogni-
tion solutions for ADM. With these solutions eating behaviour was inferred.
All investigations focus on on-body sensing solutions. In order to emphasise
the technical system development at this early stage, all studies considered
healthy individuals in individual recording sessions up to3 h duration for each
participant. Speci�cally, the following goals were investigated:

Review of relevant on-body sensing solutions and modalitie s.

The lack of ADM solutions stems from the absence of unimodal
sensing opportunities for food intake. All previous approaches re-
quired an instrumented environment, e. g. RFID, weight tables or
cameras as information source. This work investigates the appli-
cability of sensors worn at the body or attached to garments.As
these sensors reside close to the body, detailed information regard-
ing the eating behaviour is expected. In example, on-body sensors
allow the recognition of individual food intake gesture types, rather
than the unspeci�c to-head movement obtained from surveillance
cameras. Body-worn sensors can provide information originating
from physiologic responses to eating as well as activities prepar-
ing food absorption. In this work, behaviour sensing solutions are
considered both aspects. Out of all solutions considered, asubse-
quent selection and detailed evaluation was made. The selection
covered intake gesture, chewing and swallowing activitiesin order
to describe the complete food intake cycle.

Recognition of intake activities in continuous sensor data .

Recognition of patterns in sensor data provides the basis for esti-
mating eating behaviour information in this work. The focus was
set on short-term (up to a several seconds in length), non-repetitive
patterns in user activity. These units of activity are referenced as
activity events throughout this work.
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The challenge of activity event recognition originates from the re-
quirements in practical deployment: (1) to spot activity events em-
bedded in other, unknown data (NULL class) and (2) to categorise
events according to a application-speci�c de�nition. The spotting
can be viewed as a time-domain search problem with the aim to
determine time of occurrence and length of every relevant event in
the data. For the detection of variable, habitual and partly uncon-
scious activities, as in eating behaviour, many classic recognition
solutions fail. Sliding a �xed observation window over the data is
not feasible, as certain activities, such as gestures, are varying ap-
prox. 100 percent in length. Moreover, evaluating the observation
window for every new data sample is an ine�cient processing ap-
proach. Finally, the presence of unknown embedding data prevents
the generalisation of a naive binary classi�cation (correct activity
event or NULL class). For this problem [38] proposed the restriction
on an activity subset. However this closed-set approach does not ex-
tend to one-class problems, such as the spotting of swallowing or a
single food. Finally, the combination of detection and classi�cation
algorithms need to be evaluated for the class-speci�c independent
recognition used in the work.

Fusion of temporally distributed activity events to infer i ntake
cycles.

The complexity of eating behaviour cannot be captured in single
activity events. By partitioning the activity recognition problem,
individual results (activity event streams) are obtained that can
be viewed as independent services. In this work, a temporal par-
titioning of dietary activities is considered. In order to i nfer eat-
ing behaviour, an intake cycle model is sought that permits the
temporal combination of multiple recognition services in composite
activities. In order to verify the model, an implementation is re-
quired that can parse activity event streams and permits recursive
relations, such as consecutive sequences of chewing and swallowing
events. The temporal fusion of activity events is a prerequisite for
the food type and amount estimation.

Estimation of eating behaviour from activity recognition.

Most prominent diet monitoring goals include intake schedule, food
composition, amount and energy content. In this work, the ADM
approach is evaluated regarding the estimation of food typeas well
as amount. The recognised activity events and composite activities
are used to quantitatively evaluate the food identi�cation perfor-
mance and estimate food amount.
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1.5. Thesis outline

This thesis comprises eight scienti�c publications addressing the aims sum-
marised above (Chapters 3 to 10). In Chapter 2 achievements and conclusions
of the thesis are summarised. Finally, Chapter 2 provides anoutlook onto open
and new research challenges.

On-body
sensing

Chapter 3

Intake
gestures

Chapters 4, 5

Chewing
Chapters 4, 6

Swallowing
Chapter 9

Intake
modelling

Chapters 7, 10

Food type
Chapters 3, 4, 10

Food amount
Chapters 8, 9

Thesis aims

Sensing solutions &
modalities

Recognition of
intake activities

Fusion of temporally
distributed activity events

Estimation of
eating behaviour

Figure 1.1. Outline of the scienti�c contributions included in the thes is according
to the aims presented in Section 1.4. Arrows indicate result relations.

Table 1.1 lists the included publications and the chapter organisation. The
publications are grouped according to the thesis aims presented in Section 1.4.
Originating from the review of sensing solutions for diet monitoring in Chap-
ter 3, three activity-based sensing approaches were evaluated in Chapter 4 and
further in Chapter 5 (intake gestures), Chapter 6 (chewing), Chapter 9 (swal-
lowing).

The fusion of activity events and recognition of intake cycles are discussed
in Chapter 7 and 10. Chapter 7 targets the clustering of chewing cycles within
chewing sequences. Chapter 10 presents an intake cycle modelling approach
covering all three selected sensing solutions.

Eating behaviour was assessed regarding food type in Chapter 3 (food
classi�cation), Chapter 4 (texture group recognition) and Chapter 10 (intake
cycle identi�cation). Furthermore, food amount estimatio n was investigated in
Chapter 8 (bite weight) and Chapter 9 (swallowing volume).

Figure 1.1 visualises the thesis contributions according to the aims pre-
sented in Section 1.4. Arrows indicate result relations.
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Table 1.1. Publications included in the thesis (Chapters 3 to 10).

Chapter Publication

3 Automatic Dietary Monitoring: On-body sensing solutions for
eating behavior monitoring.
O. Amft and G. Tr•oster. Submitted to IEEE Pervasive Computing , sub-
mitted June 2008.

4 Recognition of dietary activity events using on-body sensors.
O. Amft and G. Tr•oster. Arti�cial Intelligence in Medicine , 42(2), 121{
136, February 2008.

5 Gesture spotting with body-worn inertial sensors to detectuser
activities.
H. Junker, O. Amft, P. Lukowicz, and G. Tr•oster. Pattern Recogni-
tion , 41(6), 2010{2024, June 2008.

6 Analysis of chewing sounds for dietary monitoring.
O. Amft, M. St•ager, P. Lukowicz, and G. Tr•oster. UBICOMP 20 05: Pro-
ceedings of the 7th International Conference on Ubiquitous Computing ,
LNCS Vol. 3660, 56{72, Springer Berlin, Heidelberg, 2005.

7 Automatic identi�cation of temporal sequences in chewing
sounds.
O. Amft, M. Kusserow, and G. Tr•oster. BIBM 2007: Proceedings of the
IEEE International Conference on Bioinformatics and Biome dicine , 194{
201, IEEE Press, 2007.

8 Bite weight estimation using acoustic recognition of chewing.
O. Amft, M. Kusserow, and G. Tr•oster. Submitted to IEEE Transactions
on Biomedical Engineering , submitted June 2008.

9 Methods for detection and classi�cation of normal swallowing
from muscle activation and sound.
O. Amft and G. Tr•oster. PHC 2006: Proceedings of the First International
Conference on Pervasive Computing Technologies for Health care, ICST,
1{10, 2006.

10 Probabilistic parsing of dietary activity events.
O. Amft, M. Kusserow, and G. Tr•oster. BSN 2007: Proceedings of the
International Workshop on Wearable and Implantable Body Se nsor Net-
works, IFMBE Proceedings Vol. 13, Springer, 242{247, 2007.
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2
Thesis summary

This chapter summarises the approach and most important achieve-
ments of the thesis. Speci�cally, on-body sensing solutions for diet
monitoring are discussed, the performance of an activity event
recognition procedure is summarised, and the results of di�erent
activity event fusion algorithms are presented.

Moreover, results of food type and amount estimation from the on-
body sensing and recognition are summarised.

Conclusions, derived from the di�erent achievements, are pre-
sented. The chapter closes with a discussion of limitationsand an
outlook, indicating open challenges and new research directions.
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2.1. Summary of contributions

The most important results and novel achievements that advance the state-
of-the-art in on-body diet sensing and recognition are presented below. The
summary is structured according to the thesis aims introduced in Section 1.4
and illustrated in Figure 2.1. Detailed result descriptions and discussions can
be found in the particular publication chapter referenced in this summary.

On-body sensor
selection & positioning

Section 2.1.1

Intake gestures,
chewing & swallowing

recognition
Section 2.1.2

Intake cycle
modelling & clustering

Section 2.1.3

Food type & amount
estimation
Section 2.1.4

Thesis aims(Section 1.4) Contributions

Sensing solutions &
modalities

Recognition of
intake activities

Fusion of temporally
distributed activity events

Estimation of
eating behaviour

Figure 2.1. Outline of the contribution summary, presented in Section 2 .1) accord-
ing to the aims listed in Section 1.4. Arrows indicate result relations.

2.1.1. Sensing solutions and modalities

Regarding the �rst objective of this work (see Section 1.4 onpage 6), the ca-
pabilities of body-worn sensing solutions for monitoring individual meal intake
were reviewed. The analysis covered the physiology of eating as well as activ-
ities preparing food absorption. Table 3.1 on page 41 provides an overview of
all considered on-body sensing solutions.

The timing of physiologic responses and activities is a crucial aspect for
monitoring individual meal intake. It was assumed that responses following
food intake with a long or variable delay greater than 10 min, are disturbed
by other activities or subsequent food intake. Consequently, late stage diges-
tion (gastric tract activity following the stomach) was exc luded from the re-
view.

� Physiologic responses related to food intake. The literature re-
view showed that e�ects are variable in magnitude, duration and delay,
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depending on various context aspects, such as mental state and physical
activity (Section 3.5, page 38).

The varying magnitude, long response times (up to 3 h for cardiac ac-
tivity) and variable response delays ( 15-30 min for heart rate) limit the
feasibility of these information sources for ADM. Physiologic responses
were not further considered in this work.

� Activities preparatory to food absorption. The review considered
food preparation and ingestion (intake gestures), food breakdown in the
mouth (chewing), bolus transport (swallowing, oesophageal movement)
and gastric activity (stomach movement).

Except intake gestures, all activities require an indirectmeasurement ap-
proach, due to comfort and privacy restrictions (Table 3.1,page 41). The
review showed that all existing principles to assess oesophageal move-
ment and gastric activity require controlled laboratory environments to
maximise signal to body-noise ratio (Section 3.5, page 38).

Based on the review results, further discussion focuses on the following set
of activities: intake gestures, chewing and swallowing. This set was selected,
since it reects the core activities of an intake cycle, as detailed in Section 2.1.3.
For each activity, the selected sensor type, positioning and relevance for diet
monitoring is summarised below.

� Sensing of intake gestures. Inertial sensors at lower and upper arms
and the upper torso (Figure 5.9 on page 97) were investigatedfor intake
gesture recording. Inertial measurement units (consisting of acceleration,
gyroscope, magnetic �eld sensors) were initially used (Chapter 5). Later
re�nement showed that a subset of these sensors (lower arms and torso
acceleration and gyroscopes) were su�cient to recognise four frequently
used food intake gestures (Section 4.4, page 59).

Food category is related to cutlery and, in turn, to the intak e gestures
used. For example, a soup is consumed with a spoon, rather than fork and
knife. Inertial sensors can be integrated into clothing or accessories (Sec-
tion 3.4.1, page 33).

� Sensing of chewing. Chewing was recorded from food breakdown
sounds that propagate through mandible and skull. Section 6.1.4 on
page 114 provides an introduction to the sensing approach. The eval-
uation showed that emitted sound pattern is related to food texture and
can be used to identify chewed foods (Section 6.5, page 122).

The chewing sound evaluation at various facial positions showed that
the ear canal received +30 dB higher sound intensity among all positions
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listed in Table 6.3 on page 120. Furthermore, sound intensity was +60 dB
above the level of normal speaking (Section 6.2, page 120). The latter
result depends on ear occlusion. Lower occlusion increasescomfort, but
lowers food recognition performance.

Two sensor prototypes with di�erent occlusion were implemented and
evaluated (Figure 3.3(a), page 37). Food classi�cation rates increased up
to 10% for a higher occlusion model (Section 3.4.2, page 35).

� Sensing of swallowing. Swallowing was assessed using surface Elec-
tromyography (EMG) at the hyoid (position close to the Adam' s ap-
ple) and a stethoscope microphone at the lower neck (see Figure 9.2
on page 184 for exact positions). These sensors were investigated in a
collar-prototype (Figure 3.4, page 38). Submental EMG (below chin) was
investigated as additional source of information (Figure 9.2, page 184),
however this position cannot be integrated in a collar. Furthermore,
movement of the thyroid cartilage (Adam's apple) was analysed using
a strain-sensitive fabric integrated in a collar (Figure 3.4, page 38).

All investigated sensors were sensitive to head movement and voluntary
neck contraction (Section 9.5, page 195). Hyoid EMG and sound were
further analysed for the identi�cation of swallowing, see Section 2.1.2
below.

2.1.2. Recognition of intake activities

To address the challenges of activity event recognition, introduced in Sec-
tion 1.4, a recognition procedure was developed that accommodates the dif-
ferent sensing solutions considered in this work. In this e�ort, the following
achievement were made.

� Activity event recognition procedure. The recognition procedure
comprises (1) segmentation, (2) feature similarity search(FSS) and
(3) event fusion was developed (Figure 4.1, page 54). As data-adaptive
segmentation the Sliding-window and bottom-up (SWAB) algorithm was
utilised for inertial sensors (intake gestures, Section 5,page 79) and EMG
data (swallowing, Section 9.3, page 185). Equidistant segmentation was
used with all sensing modalities, e. g. in Chapter 4 on page 47.

The FSS algorithm was used to spot variable-length activityevents, such
as intake gestures. The search algorithm is illustrated in Section 4.3.1 on
page 54.

The event fusion step was used to combine several FSS detection in-
stances in one recognition result. The fusion selected one event among
all concurrently spotted events. To this end, the spotting result can be
used with standard classi�cation algorithms, such as hidden Markov
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models (HMMs) (Section 5.4, page 87) or a linear discriminant analy-
sis (LDA)-algorithm (Section 8.3, page 158). This event fusion is not
intended to combine temporally distributed activity event s, such as dis-
cussed in Section 2.1.3.

� Temporal-spatial transformation of features. This work demon-
strates that the temporal event pattern provides important information
for the detection and classi�cation of activity events. Thi s was exploited
by the HMM-approach in Chapter 5.

To assess this information during FSS detection, features were com-
puted for evenly-sized sections within every activity event (Section 4.3.2,
page 56). This approach represents a temporal-spatial transformation
of event features. It allows to use the FSS detection withoutan addi-
tional HMM classi�cation, such as in chewing event spotting (Section 4.5,
page 62). However, this transformation multiplies the feature count by
the number of event sections. In this work, three and four event sections
were used in Chapter 8 and Chapter 4, respectively.

� Competitive and supportive event fusion. Using the classi�cation
as event fusion method is an inexible closed-set concept that requires
retraining once a class is added or removed. Moreover, it cannot be used
for one-class problems, such as the spotting of swallowing events (Sec-
tion 9.3, page 185).

An alternate event fusion approach was proposed, using competitive
and supportive event fusion (Section 4.3.1, page 56). For example, the
swallowing event recognition was improved by combining independent
sound and EMG-based spotting results. In this particular case, events
were retained if both, sound and EMG-based spotting agreed (support-
ive event fusion, Section 4.6 on page 65). The event fusion reduced false
positives (insertions) by -30% compared to the independentspotting re-
sults (Table 4.9, page 69).

� Soft-alignment event performance assessment. To account for im-
precise event boundaries of recognition and ground truth a new activ-
ity event accounting technique based on a soft-alignment was intro-
duced (Section 4.3.3, page 57). The soft-alignment was implemented us-
ing a jitter allowance for matching event start and end between recogni-
tion and ground truth (Eq. 4.2 on page 58).

In this work, a jitter was allowed that corresponds to 50% of the event
length. Consequently, if the boundary mismatch between recognition re-
sult and ground truth exceeded this jitter, the recognition result was
counted as an insertion (false positive).

Chapter 4 compares the soft-alignment technique to a sample-accurate
counting. Di�erences of less than 10% between recall and accuracy
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demonstrate good agreement of the assessments. However, the soft-
alignment approach additionally provides the precision ofa spotting al-
gorithm.

The recognition procedure was evaluated in di�erent con�gurations for in-
take gestures using inertial sensors (data rate: 50-100Hz), chewing, using a mi-
crophone (44 kHz) and swallowing using EMG (0.5-2 kHz) and microphone (22-
44 kHz). The following achievements were made for individual sensing solu-
tions:

� Recognition of intake gestures. Using a equidistant segmentation,
the FSS procedure achieved an average recall of 86% at 28% precision
for four subjects (Table 4.3, page 62). The event fusion by comparing
events (selecting the most probable event, COMP) boosted the result
to 64% precision (+30% increase), while maintaining 80% recall. In a
second evaluation using HMMs, precision gained +16% to 73%,while
maintaining � 80% recall (Table 5.7, page 102).

In conclusion, the COMP approach is applicable and competitive, espe-
cially when a large number of classes are available (in this work only
four classes were considered). In the case of a low-precision class how-
ever, such as the less distinctive \Handheld" (HH) gesture,the HMM
approach achieved almost +20% increase in precision (to 59%), while
COMP reached a +10% increase (to 38%) only.

� Intake gesture recognition performance. Intake gestures are af-
fected by an accustomed eating style of every individual. The challenge
to recognise these gestures was shown in comparison to object interaction
gestures. For those object interaction gestures, the recognition procedure
achieved a +10% higher recall compared to intake gestures (Table 5.7,
page 102). This di�erence is explained by the increased variability in in-
take gestures.

For intake gestures, the overall best result was achieved byusing the
recognition procedure with a SWAB segmentation and HMM classi�ca-
tion (79% recall and 73% precision, Table 5.7, page 102). This recognition
performance demonstrates that the gesture sensing and recognition ap-
proach is applicable for the intake cycle recognition, as summarised in
Section 2.1.3 below.

� Recognition of chewing. Chewing events (corresponding to the
mandible closing phase of chewing cycles) were spotted for two food-
texture groups: wet- and dry crisp. For the chewing recognition, an event
fusion based on logistic regression (LR) improved the eventdetection by
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+18% in recall (to 93%) and +11% in precision (to 52%) (Table 4.6,
page 67).

The low precision (52%) was attributed to an insu�cient anno tation of
chewing cycles. As Figure 4.5 on page 65 illustrates, no ground truth in-
formation was available for the \cleanup"-phase after chewing sequences.
Consequently, chewing events, retrieved in these sectionswere counted
as errors. In a followup work, this issue was resolved (Section 8.2.3,
page 157). In conclusion, chewing events of wet- and dry crisp texture
were robustly detected and discriminated using the event spotting pro-
cedure.

� Recognition of individual foods from chewing events. The afore-
mentioned recognition approach works for a texture-based grouping of
foods. However, if similar-texture foods (such as lettuce,apple or potato
chips) were discriminated, the FSS showed confusions between the foods.
This is indicated by a low precision (� 35%) at a recall of 80% in Fig-
ure 8.3 on page 164. Utilising a classi�cation-based fusionstep improved
precision by +5% to +10% (Figure 8.3, page 164).

� Recognition of swallowing. EMG and sound data were considered in-
dependently and in combination (feature-level fusion) forthe spotting of
swallowing events (using SWAB segmentation of EMG time-series, Sec-
tion 9.3.2, page 186). For all combinations of EMG and sound,a high
sensitivity was observed, yielding FSS recalls of 73%{84%.However, pre-
cision was very weak (15%{18%). While the feature-level fusion obtained
a marginally higher precision (+1%), the event fusion removed more
than 50% of the insertions, precision was 31% at 65% recall (Table 9.3,
page 188).

� Swallowing detection performance. Compared to a detection based
on EMG signal intensity, the spotting performance incurred only 50% of
the insertions (Table 9.3, page 188). In conclusion, EMG andsound data
are most relevant for the swallowing event detection when considered in
combination using event fusion. Head and neck movements disturb the
swallowing detection, resulting in insertion errors.

Further work is needed to evaluate alternative sensors and recognition
features (Section 4.7.4, page 71). The results presented inChapter 9 were
the �rst quantitative evaluation published on swallowing d etection per-
formance.

2.1.3. Fusion of temporally distributed activity events

In the e�ort to combine the activity event recognition from a ll sensing solu-
tions (according to the thesis aims in Section 1.4), the following achievement
were made.
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� Model of intake cycle. A temporal model was developed to describe
food intake cycles. The model represents a temporal composite of an in-
take gesture, multiple chewing events (chewing sequence),and swallowing
events (intermediate and �nal swallows) (Eq. 10.4, page 208).

The implementation of this concept requires that event recursions are
resolved. These occur for chewing-swallowing event repetitions within an
intake cycle.

With this model, the plausibility of speci�c intake types (g esture
type, chewed food, swallowing frequency) was determined (Figure 10.2,
page 210). For example, eating lettuce (chewing events) is performed us-
ing fork and knife, rather than bare hands (intake gesture).

� Intake cycle model evaluation. The model was evaluated using
probabilistic context-free grammar (PCFG) parsing (intro duced in Sec-
tion 10.1.3 on page 205). Individual grammars were derived for chewable
foods (Eq. 10.6, page 210) and drinking (Eq. 10.7, page 211).

An evaluation using annotated event data showed parsing recalls of > 80%
for 9 out of 11 intake types (10 foods and drinking). Precision was be-
tween 55%-100% for a non-recursive chewing-swallowing grammar (Fig-
ure 10.3, page 213). Using a re�ned grammar with recursion (Eq. 10.10,
page 213) increased precision by up to +40% (Figure 10.4, page 214).
This result indicates the relevance of recursion modellingfor foods with
intermediate swallows (foods with wet compartments as in lettuce and
lasagna).

Finally, food-texture grouping showed that the PCFG approach is feasi-
ble to detect solid foods as well as to identify drinking (86%recall and
95% precision, for 8 foods and drinking, Figure 10.5, page 215).

� Estimation of chewing sequence phases. Chewing sounds alter
within a chewing sequence due to the progressing food destruction (Sec-
tion 7.1, page 134). The existence of phases (temporal clusters of chewing
events) was investigated using a chewing sequence model (Section 7.2.3,
page 138).

An analysis of four foods with di�erent texture found a two ph ase result
for all, with a shorter �rst phase (30%-40% of the sequence length, Sec-
tion 7.4, page 143). The two-phase structure was con�rmed byclassi�ca-
tion rates of � 80% for potato chips and chocolate (Figure 7.5, page 146).
This result was initially expected for the dry texture of pot ato chips only.
In contrast, the strict temporal phasing was not con�rmed for apple and
lasagna (� 60% classi�cation rate).

In conclusion, foods that show a fast deterioration during oral break-
down (due to wetting with saliva or melting) adhere to a two-phase
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structure. This result can be used to derive recognition models adapted
for speci�c food groups and sequence phases.

2.1.4. Estimation of eating behaviour

The �nal part of the thesis contributions addresses eating behaviour infor-
mation derived from on-body sensing and recognition solutions. Speci�cally,
food type and amount estimation was considered, according to the thesis aims
in Section 1.4.

� Food category and type extraction from chewing. Acoustic emis-
sions during food breakdown reect the material texture (Section 6.1.4,
page 114). The classi�cation of chewing events from 19 foodsand three in-
dividuals, resulted in an average classi�cation rate of 83%. Figure 3.3(b)
on page 37 visualises the classi�er confusion. While these foods were
chosen to represent a large variety of textures, they also included sim-
ilar ones, such as in lettuce, apple and carrots. This classi�cation re-
sult demonstrates the discrimination capabilities of acoustic chewing pat-
terns.

In contrast, using the spotting procedure, FSS precision was 30%-40%
at a recall > 80% in three foods, see Section 2.1.2 above. Grouping foods
according to their texture simpli�es the recognition task ( as shown in
Table 4.6 on page 67). The continuous recognition of individual foods
was further improved by chewing sequence information (majority vote
for intake cycles), see below.

� Food identi�cation from intake cycles. Based on a �xed-size sliding-
window approach, chewing recognition rates ranged between66% and
86% in four foods (Table 6.4, page 125). In this approach a sound energy-
threshold was used to identify chewing events. Majority voting for all
chewing events in a chewing sequence led to performance gains of up to
+20% (Table 6.5, page 125).

The performance gain is even more profound, if a chewing event annota-
tion is available to train the classi�er. Based on the three-food recognition
cited earlier (Chapter 8, page 153), a classi�cation and chewing sequence
vote resulted in > 90% correct identi�ed sequences (+50% increase in
precision, to � 70%, Figure 8.4, page 165). In conclusion, sequence infor-
mation is vital for an accurate identi�cation of individual foods.

The classi�cation and sequence vote were demonstrated to work with up
to four foods. To increase the number of foods, further information of
the intake cycle was used. This included the intake gesture type and the
chewing-swallowing interaction, as summarised in Section2.1.3 above.

� Food weight estimation from chewing. Food weight of single habit-
ual bites was estimated from the chewing event microstructure. Variables
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derived from chewing sequences, such as the total number of chewing
events, showed high correlations (up to 0:96) with bite weight. Figure 8.6
on page 167 shows the variable relevance for three foods and eight indi-
viduals.

Bite weight was predicted with an average error of 19% for apples, 28% for
potato chips and 31% for lettuce (Table 8.2, page 169). The error obtained
for apples is in the range of natural fruit weight variation, hence it is com-
parable to the amount quanti�cation in simpli�ed self-repo rts (without
weighting).

Degradation due to fruit storage, addition of toppings (e. g. for lettuce)
increase uncertainty on the correct weight (Section 8.6, page 169). Nev-
ertheless, these results are encouraging to investigate further foods and
combine the prediction with the swallowing bolus volume classi�cation
as summarised below.

� Food volume classi�cation. Swallowing events were classi�ed accord-
ing to bolus volume in a study using �xed bolus sizes (Table 9.4, page 190
summarises the considered food items). The classi�cation rate for two bo-
lus volumes, large volume (15 ml water) and small volume (5 mlwater,
spoonful of yogurt and 2 cm3 bread), was� 70% for �ve participants (Ta-
ble 9.6, page 194). Stethoscope sound provided the best-discriminating
features.
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2.2. Conclusion

Diet monitoring is relevant for clinical interventions on eating behaviour and
prevention programs on weight coaching alike. Self-assessments, however, ob-
tain a low respondent compliance due to the high e�ort required in maintaining
them. These assessments are not appropriate when followinga normal everyday
life.

An essential change in the monitoring paradigm was proposedin this work:
freeing the individual from manual logging of food intake. Speci�cally, this
work evaluated new techniques for on-body dietary monitoring. Based on the
summary presented in Section 2.1 above, the following conclusions were made:

� On-body sensing and recognition solutions provide vital information
for diet monitoring: Activities related to food intake can b e moni-
tored, namely, intake gestures (using inertial sensors at lower arms and
torso), chewing (using an ear-worn microphone to record food break-
down sounds) and swallowing (using hyoid EMG and a stethoscope mi-
crophone).

� The evaluations showed that intake gestures and chewing events are ro-
bust sources of information. For intake gestures, a recognition perfor-
mance of 79% recall and 73% precision was obtained. For chewing events,
recall was 93% at 52% precision. Swallowing event detectionrequires fur-
ther investigations (65% recall at 31% precision).

� A recognition procedure for activity event spotting and event fusion was
introduced and evaluated, using various sensing modalities (inertial sen-
sors, EMG, sound). The recognition procedure is applicablefor activity
event spotting and identi�cation.

� Food categories and chewing events, aligned to food-texture groups, can
be recognised from chewing sounds (93% recall, 52% precision for two
groups: wet- and dry-crisp texture). Event fusion methods improve the
recognition result (precision of 70% with recalls above 90%for three
individual foods). The classi�cation of chewing cycles demonstrates the
discrimination capabilities of acoustic chewing patterns(classi�cation of
19 foods resulted in an accuracy of 83%).

� Bite weight was estimated from the chewing event recognition with an av-
erage error of less than 20% for apples. Foods with low bite weight ( < 4 g),
such as potato chips and lettuce resulted in 30%-35% prediction error.

� Both, food type and amount estimation depend on the segmentation of
intake cycles in continuous data. The intake cycle is a vitalstep to com-
bine the activity event information from three sensing solutions. Robust
results were achieved for the recognition (86% recall, 95% precision for
eight solid foods and drinking).



26 Chapter 2: Thesis summary

2.3. Limitations and relevance

Based on the sensing solution results obtained, it was concluded that an es-
timation of intake timing is a feasible recognition task. However, it was not
evaluated in this work. Furthermore, the estimation of energy intake was not in-
vestigated. In the practice of self-reports, energy intakeis estimated from food
product information. However, these information details (exact food product,
brand and ingredients) were not automatically recognised in this work. Nev-
ertheless, an average energy level could be derived from thefood type and
amount estimation presented in this work. Further work in th is direction is
needed.

This work has focused on the evaluation of sensing and recognition methods
using a small number of foods (up to 19) only. The recognitionapproach,
using food-texture grouping as well as the partitioning of chewing sequences
were initial attempts to expand and generalise the food set.These approaches
require further investigations and should be applied in larger food sets with
various textures.

Recognition performance was evaluated in presence of noiseand similar
foods. Therefore, the results demonstrate that initial systems can be realised
instantly for a �xed set of pre-trained foods. Moreover, an early practically
applied system may be allowed to ask the user if recognition con�dence is low.
It can o�er a choice of the most likely foods or food categories to support the
monitoring.

Eating behaviour is an accustomed habit that di�ers strongly between indi-
viduals. Consequently, personalised pattern models were required for all recog-
nition solutions in this work. Ongoing and future research on diet monitoring
needs to address this issue.
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2.4. Outlook

This work has opened new and promising research perspectives that may con-
verge to applicable solutions in the near future. To raise awareness on diet
monitoring among researchers working in pervasive healthcare and exchange
research results, an international symposium series was initiated in 2007, called
\e-Nutrition" (http://www.e-nutrition.org).

Further research should address the following challenges:

� A combination of chewing and swallowing recognition will resolve ambi-
guities in detection of both activities, since chewing and swallowing are
tightly coupled. Moreover, this combination has potential for the food
amount estimation, based on the results presented in this work.

� Selecting appropriate features is a challenging task even in classi�cation
problems. The number of available features typically exceeds the required
amount of modelling data by far. This problem is exacerbatedby expen-
sive datasets, e. g. due to the annotation requirements for chewing. In this
work, promising results were achieved using a feature selection procedure
adapted to activity event spotting (Chapter 8). Further inv estigations on
feature selection are needed for all sensing solutions.

� In order to validate diet monitoring solutions, systems should be evalu-
ated in typical use scenarios, as soon as technically feasible. The evalu-
ated solutions for intake gestures and chewing have reachedthis maturity.
Further work on swallowing recognition is needed.

� The combination of on-body and environmental sensors o�ersvast poten-
tial for resolving shortcomings that both approaches have independently.
While RFID technology is promising to identify foods, knowing the loca-
tion will provide information needed to reduce the set of potential foods,
e. g. from the menu in a restaurant. Even plausibility checksare useful,
such as eating on an gym ergometer is unlikely, while drinking is. These
concepts will decrease the recognition complexity. Moreover, information
on food preferences, e. g. from food frequency questionnaires, are a sen-
sible approach to reduce the set of likely foods and intake types.
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Abstract

Automatic dietary monitoring aims to recognise eating behaviour
from sensors. This information is required to adapt and personalise
feedback of weight and diet coaching programs. On-body sensors can
be used for continuous monitoring of eating behaviour.
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3.1. Introduction

The balance between energy in consumed food and energy expenditure is a
key to success for good long-term health. However this balance is challenging
to maintain as alerted by the pandemic of overweight and obesity. Worldwide
more than one billion adults are overweight and 400 million are obese (WHO
statistics 2005, http://www.who.int/topics/obesity/en /). By 2015 WHO pre-
dicts an increase to more than 700 million obese patients.

Weight and diet management programs have been established to support
weight changes. The programs coach individuals to improve eating behaviour
by daily or weekly status feedback, meal suggestions and behaviour recom-
mendations. However, only 20% of the individuals that achieved at least 10%
reduction in body weight, are able to maintain the new weightfor one year [21].
From these outcomes researchers have concluded that support durations of two
to �ve years are needed to raise success of coaching programs. Practicability
of current programs is their main limitation. Participants have to complete
detailed self-reports on eating behaviour, while maintaining their lifestyle and
eating behaviour modi�cation on a day-to-day basis. Besides a personal pro�le,
self-reports are the unique source of information to adapt and personalise feed-
back and recommendations for coaching programs participants. Unfortunately,
self-reports have a high bias and are hard to maintain.

Automatic dietary monitoring (ADM) aims to replace manual reporting
of eating behaviour with a sensor-based estimation. In thisarticle we discuss
requirements and options for on-body sensing of eating behaviour. We demon-
strate that indeed, on-body sensor information can resemble some information
of self-reports. These initial solutions towards ADM are research prototypes
and consequently not yet comfortable enough for long-term (months and years)
continuous use. However, they highlight crucial bene�ts ofon-body sensing and
the ADM concept for future eating behaviour coaching.

Besides energy, food provides essential nutrients for the organism. Eating
disorders, such as binge eating, underline psychological inuence on eating. As
a consequence, strict everyday energy balance is not the primary optimisation
goal in food choice. Self-reports capture these aspects in aset of items to
answer.

Nevertheless, self-reports and similar manual assessments of eating be-
haviour su�er from a number of shortcomings. These include the respondents
motivation to complete questionnaires, awareness for foodintake, snacks in
particular, as well as memorising, perception and literatecapabilities [22]. Re-
porting errors range between 50% under- and overestimation[17].
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3.2. Towards ADM - What will it help?

Researchers have proposed a broad range of alternate self-reporting solutions
and, more recently, attempted to automatically recognise eating behaviour
from ubiquitous sensors (see box: diet monitoring approaches). We envision
that a sensor-based automatic monitoring will release individuals from a strin-
gent manual reporting and provide more robust eating behaviour information.
Hence, ADM will simplify long-term coaching programs on eating behaviour
that are urgently needed, and infeasible using current, manual monitoring tech-
niques.

To replace manual logging, ADM systems shall supply information on eat-
ing behaviour, as self-reports conceptually intend. This information - the di-
mensions of eating behaviour - include:

� intake timing,

� food type or category,

� food amount, and

� energy content (calories)

of every consumed food piece. Moreover, ADM systems shall beapplicable for
long-term use regarding operational requirements, robustness and user comfort.

3.2.1. Challenges for ADM

The challenge for self-reports and ADM solutions is to capture the diversity
of consumed foods and the variability in personal eating behaviour. For exam-
ple, energy intake is most accurately determined if the calories of consumed
food products are reported. However, even with direct calorie reporting, en-
ergy estimation requires additional information, including amount of consumed
food and whether certain changes had been made (e.g. addition of a lettuce
dressing). Furthermore, calorie reporting is often infeasible for self-prepared
meals.

Personal preferences regarding choice of food or food category and meal
schedule exist. ADM solutions can integrate these preferences as prior infor-
mation for eating behaviour estimation. Nevertheless, actual eating behaviour
is inuenced by varying environmental and psychological aspects, including
constraints in food availability, social interaction duri ng meals, and emotions.

A particular challenge for ADM solutions is to robustly recognise eating
behaviour from sensor data. No single sensor, independent of its location and
recorded physiological or activity information, can capture all dimensions of
eating behaviour. This challenge is reected in restrictions of initial ADM
approaches. Typically, these solutions emphasise particular dimensions of eat-
ing behaviour, such as recording consumed food amount usinga weight scale,
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while restricting location to the weighting-enabled table. Moreover, solutions
that rely on environment-embedded sensors only, raise the challenge in assign-
ing measurements robustly to one person. While these works represent rele-
vant advancements towards ADM, we concluded that a multimodal sensing
approach will support the monitoring of several eating behaviour dimensions.

3.2.2. Bene�ts of on-body sensing for ADM

Monitoring eating behaviour continuously and independent of a particular lo-
cation is a vital property of an ADM system, since modern lifestyles imply
many location-changes, for work and leisure purposes. Consequently, food is
consumed in various locations and in transit. Solutions that depend on a par-
ticular environment, such as a home location, will miss a snack \in between"
or an entire business lunch. Such partly coverage limits thee�ect of behaviour
coaching severely and could lead to misleading recommendations. Hence coach-
ing requires a continuous monitoring that covers all daily situations.

On-body sensors can provide continuous monitoring of eating behaviour,
independent from dedicated sensor-enabled environments.In contrast to
environment-embedded sensors, on-body sensors allow a direct association of
recorded information to the wearer.

3.3. Diet monitoring approaches

Classic dietary monitoring techniques require manually recording of eating
behaviour. Among these assessments, respondent self-reports are intended to
capture every food intake as required by weight and diet management pro-
grams. However, low adherence and accuracy restricts the report validity, and
consequently the feasibility of coaching programs that useself-reports [6].

Multiple attempts were made to simplify tedious and error-prone logging.
Studies con�rmed that electronic devices, as replacement for paper-based self-
reports could not reduce reporting errors, e.g. [24].

We highlight here some alternate manual methods for capturing eat-
ing behaviour information. Jennifer Manko� and her colleagues scanned
shopping receipts to simplify diet monitoring [14]. MyFoodPhone Nutrition,
Inc. (http://www.myfoodphone.com) introduced commercia l service to assess
food intake from mobile phone pictures. Katie Siek and her colleagues used
bar codes and voice recordings to replace self-report questionnaires [18].

For all manual dietary monitoring, participants of a coaching programs are
asked to record their eating behaviour. In contrast, automatic dietary moni-
toring aims to estimate eating behaviour without the partic ipant in the loop.

Approaches towards automatic dietary monitoring can be categorised by
their sensing approach into environment-embedded, on-body and implantable
solutions. A few pioneering solutions have been developed using environment-
embedded sensors. Keng-hao Chang and his colleagues developed a dining ta-
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ble that detected the weight of foods and identi�ed food bowls from radio-
frequency identi�cation tags (RFID) [7]. Jiang Gao and coll eagues recognised
arm movements to the mouth from surveillance video [9]. In a general evalua-
tion of RFID for home monitoring, Donald Patterson and colleagues estimated
morning activities, including breakfast consumption timi ng [16].

Implantable solutions, such as in-oral sensing [19], couldprovide more pre-
cise information on the eating process. However, this solution is technical chal-
lenging and alters oral sensation. Hence, it appears infeasible for long-term diet
monitoring.

3.4. Evaluation of on-body sensing solutions

We analysed on-body sensing approaches and modalities to evaluate the ben-
e�ts for ADM. The analysis covered both, activities related to eating and
physiological responses to food consumption (see Figure 3.1 for an overview).

To assess the relevance for ADM, we evaluated sensing solutions regarding
eating behaviour information and wearer comfort. For the �r st evaluation, we
analysed what particular dimensions a solution can estimate as well as their
limitations.

As summarised before, the estimation of energy intake requires at least food
category and amount information, combined with a more complex inference.
Hence energy intake was not considered in the evaluation. Table 3.1 and 3.2
summarise our evaluation and review results on dimensions of eating behaviour,
particular limitations and comfort for all sensing solutio ns.

From all sensing solutions we selected three activity-based solutions: in-
take gestures, chewing and swallowing. These activities represent a tempo-
ral description of food intake and permit the recognition of intake cycles. In
our analysis of these solution, we evaluated estimation performances regard-
ing food category and amount in user studies. Here we used a Na•�ve Bayes
classi�er preceded by linear discriminant feature extraction, to obtain person-
adapted performances. To ensure robustness of results, we deployed a �ve-fold
cross-validation.

3.4.1. Intake gestures

Movements of the upper body (arms and trunk) are required formost forms
of intake. They can be separated into a coarse preparation offood or beverage
items, such as unpacking, cooking and plate loading, and actual food intake
phase. Food intake includes movements to �ne-cut and maneuvering prepared
piece to the mouth. In the intake phase, tools such as fork andknife are used.
We focused our recognition approach on these intentional arm movements. In-
spired by the observation that gestures reect intake types(eating or drinking)
and food category (from tools used), intake gestures provide timing and food
category information.
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Chewing

Chewing strokes from food
breakdown sounds during
food intake.

Swallowing

Swallowing reex initiated
during food intake.

Intake gestures

Intensional arm movements
to bring food into mouth.

Thermic e�ect

Temperature increase after
food intake at liver region.

Body weight

Immediate body weight in-
crease after food intake.

Cardiac responses

Heart rate and blood pressure
change related to food intake.

Gastric activity

Stomach activity and bowel
sound related to food intake.

Body composition

Body composition changes re-
lated to food intake.

Figure 3.1. Major on-body sensing solutions for food intake. We selected intake
gestures, chewing and swallowing to estimate food intake cycles.

Intake gestures can be recorded using inertial sensors at wrists and up-
per back. We derived a comfortable recording setup by integrating commercial
motion sensors (http://www.xsens.com) in a jacket (see Figure 3.2(a)). The
sensing units contain three-dimensional acceleration, gyroscope and magne-
tometers.

To evaluate the discrimination performance of di�erent gestures, we con-
ducted a study with four students eating foods from four di�erent movement
categories [12]. The categories included, eating lasagna with fork and knife,
drinking from a glass, eating a soup with a spoon, and eating bread using
one hand only. The students ate all foods in random orders, without partic-
ular movement instructions. During recording breaks, they performed further
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activities (reading newspaper, using phone) to promote natural movement vari-
ability. In total, 1020 intake gestures were recorded in 4.68 hours. Using the
classi�cation procedure, we obtained an accuracy of 94%. Figure 3.2(b) shows
the result for all gesture categories. Only temporal features from arm acceler-
ation sensors were used for this recognition. We observed that the temporal
structure of intake gestures can be modelled by computing features in four
sections of each gesture instance. Without these features we achieved simi-
lar classi�cation results, but required all modalities of t he motion sensors and
hidden Markov models [12].

While the motion sensor jacket was a useful research prototype, we plan to
replace it with less complex sensors. The classi�cation using only acceleration
shows that sensors can be reduced. However, already in the current study
wearers reported that the jacket was comfortable for sitting activities.

3.4.2. Chewing

Chewing strokes (jaw opening and closing) can be monitored from masseter and
temporalis muscle activation using surface Electromyography (EMG). Since
muscles are located in exposed facial regions, privacy cannot be retained with
this technique.

Nevertheless, we found a feasible solution: chewing generates sound emis-
sions during food breakdown that conduct through mandible,skull and body
tissue. Using an ear-attached microphone, we recorded these chewing sounds.
From their acoustic pro�le during chewing we classi�ed foods [3] and anal-
ysed di�erent microphones and ear-device cases. Figure 3.3(a) shows a device,
where a miniature microphone was embedded into a standard headphone case.
In another construction, we used an ear-pad case. With this setup we studied
how users perceived the ear occlusion. Smaller pads reducedocclusion and in-
creased user comfort, however it reduced the signal to noiseratio too. Users
found the headphone device convenient, especially when they were used to
wearing similar models with music players.

We studied the scalability of food classi�cation using various foods. We
asked three male students with natural dentation to eat 19 standard foods
as they were used to. In several sessions we recorded chewingusing a low
occlusion ear-pad device. In this setup, the wearer could understand o�ce-room
conversation in 2 m distance. Totally, we obtained� 12000 chewing strokes in
5 hours of data. For the classi�cation of all foods, we obtained a high accuracy
of 80%. For the headphone case, we observed an accuracy drop by 5% to 10%,
depending on environmental noise. As features, spectral energy bands, cepstral
and linear predictive coe�cients were used, detailed further in [5]. We selected
these features based on robust results obtained with earlier recordings.

Figure 3.3(b) shows a colour-coded classi�er confusion. This representation
provides a quick assessment of the classi�er performance for all foods. Con-
fusions (non-white colour besides the main-diagonal) indicate acoustic groups
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(eating a soup)
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Figure 3.2. Intake gestures: (a) User wearing the motion sensor jacket during eating.
(b) Classi�cation rates for di�erent intake gestures, incl uding inter-person min-max
values.

among foods. For example, lettuce is partly confounded withcarrots and ap-
ples, indicating that sound patterns are primarily control led by food texture.

Food texture was our main selection criteria in this evaluation. The set in-
cludes similar textures, e.g. lettuce, apples, and covers abroad variety of mate-
rials and preparation styles, e.g. cooked meat. While this result demonstrates
texture-based discrimination capabilities, we deploy chewing sound recognition
for nutritional-relevant food groups in the food pyramid. For example, fruits
and vegetables can be grouped, based on a similar \wet-crisp" texture and
recognised in continuous sound data [5].
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Mu�n C10
Toast C11

Cooked potato C12
Pepper C13
Maize C14

Orange C15
Wa�es C16

Cornbar C17
Biscuit C18

Peanuts C19

A
ct

ua
lc

la
ss

(b)

Figure 3.3. Chewing sounds: (a) Miniature microphone integrated in hea dphone
case. (b) Colour-coded classi�er confusion for chewing of 19 foods. This classi�cation
con�rms individual sound patterns in foods.

3.4.3. Swallowing

Swallowing often occurs unconsciously during a day, with increased frequen-
cies during food intake [13]. After food was converted into abolus by chew-
ing, tongue movements initiate a reex of throat muscles that propel a bolus
through the throat into the oesophagus.

Most swallowing studies analyse abnormal swallowing in laboratory set-
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tings. Since tongue and oesophageal movements are challenging to monitor
with on-body sensors, we focused on the swallowing reex using sensors at the
throat. We developed a set of collars to investigate di�erent sensing modalities.

Figure 3.4. Swallowing: Collar prototypes with integrated surface EMG and mi-
crophone (left) and carbon-loaded rubber elongation sensors (right).

In one collar system, we monitored textile elongation to detect skin move-
ment during swallowing (see Figure 3.4). Elongations occurfor male subjects
mainly, since females have a less prominent Adam's apple. Moreover, the strain
sensing collar required accurate positioning. Signals were impaired by move-
ments of neck and collar itself.

In a second solution, we combined surface EMG and a stethoscope-like
microphone, to monitor both, throat muscle contraction in deep tissue layers
and swallowing sounds (see Figure 3.4). While EMG is impaired by other throat
muscle activations, sound pattern is inuenced by food viscosity. We combined
both modalities to determine swallowed food amount.

We used the sensors with �ve students eating foods and drinking water as
they naturally do. From several sessions we analysed totally 4.85 hours of data
and 868 swallows [4]. We discriminated low swallowing volume (5 ml water,
spoonful yoghurt, 2cm3 bread pieces) vs. large volume (15 ml water) with an
accuracy of 73%. Similar to chewing sound classi�cation, swallowing volume
discrimination required a spectral feature set, describedin [4].

As expected, users found both collars uncomfortable for long-term mon-
itoring. Our current work aims to replace the collar prototy pes with more
convenient systems, such as a collar-shirt.

3.5. Further on-body sensing options

We analysed whether further sensing solutions could provide eating behaviour
information. Our goal was to review activities and physiological responses
closely related to food intake and summarises available knowledge.
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3.5.1. Gastric activity

Swallowed food arrives at the stomach after� 15 minutes. It is subsequently
decomposed by stomach muscle contractions. Further digestion in the gastro-
intestinal tract incurs time delays in the range of hours with respect to the
originating intake and thus is far less deterministic.

On-body sensing options are rare for late stages of digestion. The electric
and magnetic �elds of stomach muscles were captured by researchers using lab-
oratory setups, such as Electrogastrography (EGG) [1]. However EGG has not
reached broad clinical acceptance. Furthermore, abdominal sounds from food
movement in intestines can be assessed by stethoscope. While bowel sounds
are typically loudest after fasting, a relation to intake was recently con�rmed
for laboratory settings [23]. All measurements are perturbed by heart and res-
piration activity as well as body movement.

3.5.2. Thermic e�ect of food intake

The thermic e�ect of food intake (TEF) is a thermogenesis in response to
intake above resting metabolic rate. Although TEF is the smallest component
in human energy expenditure, researchers studied its relation to intake restraint
and obesity.

Optimal TEF assessment requires a respiratory chamber to measure
changes in resting metabolic rate before and after intake. TEF starts im-
mediately after food reached the stomach and peaks after� 60 minutes. For
unrestrained eating in normal weight individuals, skin temperature above the
liver increased between 0.8 and 1.5 K [20]. TEF depends on regularity of intake
and is lower for irregular intake [8].

3.5.3. Body weight

Food intake is associated with immediate gain in body weight. If weight is
monitored, intake timing and food amount can be determined.Typical meals
are in the range from 50 g, to 500 g or more, e.g. for multiple course menus.
Snack sizes are in the range of a few grams (5 g and more) but could contribute
an important share in intake, such as snacks from high-calorie foods or sweets.

In contrast to classical body weight measurements once a week, intake-
related weight changes require a continuous weighting. Shoes would serve ide-
ally for this purpose. Compared to a scale, the challenges for shoe-based weight-
ing are related to a low mechanical pro�le, high torsion exi bility and low sys-
tem weight. Weight must be measured from foot force distribution in (even
short) moments, when the user is standing.

Classic load cells do not ful�l the mechanical constraints.Pressure sensing
arrays struggle at resolution requirements. Capacitive in-shoe gait measure-
ment systems, have an error of 2.7% [11], corresponding to 1890 g for a 70 kg
person. We studied arrays of Force Sensitive Resistors (FSRs) and observed
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even larger errors due to signal noise and shoe torsion. In conclusion, a wearable
measurement of body weight remains unsolved.

3.5.4. Cardiac responses

After meal intake, blood is redistributed to the stomach and lower gastro-
intestine tract. Studies reported an increase in heart rate30 minutes after in-
take [15].

Blood pressure is known to depend on food composition, especially on salt
and sugar. Classic blood pressure measurements require cu�-based solutions
that are inconvenient for everyday use. Novel cu�-less approaches, e.g. based
on pulse arrival time, are part of ongoing research.

The responses depend on a variety of aspects, including physical activity,
body posture, fasting time and time of day.

3.5.5. Body composition

Single food intake modi�es body composition immediately. Clinically, body
impedance is measured between hand and foot. In a laboratorysetting com-
position altered 30 minutes after intake [10]. The e�ect depends on gender and
food type. Further investigations are needed to study the validity of compo-
sition assessments. Movement artefacts make the e�ect impractical for ADM
systems.
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3.6. Intake cycle modelling

Intake gestures, chewing and swallowing represent a temporal description of
food intake. We selected these solutions to construct a hierarchical recognition
procedure to identify intake cycles as shown in Figure 3.5(a). In our approach,
an intake cycle stretches from an intake gesture (taking a bite of food) until
swallowing of this bite. We deployed individual detectors to recognise activity
events from each sensing solution.

Intake
gestures

Chewing

Swallowing

Gesture
detection

Chew stroke
detection

Swallowing
detection

Intake cycle
recognition

Sensing
solutions

Event
detection Events Information

fusion

(a)

Gesture
detection

Chew stroke
detection

Swallowing
detection

Time

Event detection map

Drinking Eating one bite of apple

Hand

WWW WWWWW

S S

Drink

S

Drink: Moving glass to mouth and back
Hand: Moving apple to mouth and back
W: wet-crisp chewing strokes
S: swallowing event

(b)

Figure 3.5. Intake cycle recognition approach. (a) Hierarchical recognition proce-
dure, e.g. for food category estimation. (b) Intake event sequences for drinking and
eating one bite of apple.

Figure 3.5(b) illustrates two event sequences, representing intake cycles for
drinking and eating. To recognise intake cycles from activity events, we imple-
mented a probabilistic context-free grammar (PCFG) parser [2]. The parser
estimates the �t of event sequences to an intake grammar. We derived gram-
mars for particular food categories, such as drinking and eating fruits. With
PCFGs, recursive event structures can be modelled, such as the recursion of
chewing and swallowing events shown in Figure 3.5(b) for eating apple.
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The approach provides a number of bene�ts for estimating of eating be-
haviour:

� The temporal fusion of individual food category estimations from intake
gestures and chewing permits more diverse food categories.

� Estimation errors of individual sensing solutions can be complemented
by the fusion.

� At event level, the hierarchical recognition allows simpli�ed synchronisa-
tion of sensing solutions with di�erent sampling rates.

ADM aims to replace manual diet monitoring that is currently in prac-
tice for weight and diet coaching. Hence, eating behaviour information that
is obtained using manual monitoring provide requirements and benchmark for
ADM solutions.

In our evaluations, we observed that recognising intake activities from on-
body sensors provides information on intake timing, food category and amount.
Moreover, by using on-body sensors, information is obtained continuously, in-
dependent from particular locations. Nevertheless, most on-body sensing solu-
tions have limitations regarding sensor artefacts and wearer comfort.

By combining selected solutions in a hierarchical recognition, we could com-
pensate estimation errors. Still, this approach re�nes estimations for food cat-
egories only. In comparison to self-reports that include anexact food type
reporting, this is a limitation of on-body sensing solutions. Similar restrictions
apply for food amount and hence, estimation of energy intake. However, if
practical issues and bias of self-reports are considered, even a categorical infor-
mation indicates ADM bene�ts. We expect that initially depl oyed systems will
track a small number of food categories, such as fruits and vegetables, related
to particular nutritional recommendations. In our studies , we achieved high
recognition performances for identifying these categories.

Among all selected solutions, primarily the swallowing solutions lacks in
comfort. In our on-going research we aim to replace the current collar proto-
types with more convenient solutions. Moreover, we plan to combine on-body
and environmental sensing solutions, to leverage the advantages of both ap-
proaches.
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Abstract

Objective: An imbalanced diet elevates health risks for many
chronic diseases including obesity. Dietary monitoring could con-
tribute vital information to lifestyle coaching and diet management,
however current monitoring solutions are not feasible for along-
term implementation. Towards Automatic Dietary Monitorin g, this
work targets the continuous recognition of dietary activities using
on-body sensors.

Methods: An on-body sensing approach was chosen, based on three
core activities during intake: arm movements, chewing and swal-
lowing. In three independent evaluation studies the continuous
recognition of activity events was investigated and the precision-
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recall performance analysed. An event recognition procedure was
deployed, that addresses multiple challenges of continuous activity
recognition, including the dynamic adaptability for variable-length
activities and exible deployment by supporting one to manyinde-
pendent classes. The approach uses a sensitive activity event search
followed by a selective re�nement of the detection using di�erent
information fusion schemes. The method is simple and modular in
design and implementation.

Results: The recognition procedure was successfully adapted to the
investigated dietary activities. Four intake gesture categories from
arm movements and two food groups from chewing cycle sounds
were detected and identi�ed with a recall of 80% to 90% and a pre-
cision of 50% to 64%. The detection of individual swallows resulted
in 68% recall and 20% precision. Sample-accurate recognition rates
were 79% for movements, 86% for chewing and 70% for swallowing.

Conclusions: Body movements and chewing sounds can be accu-
rately identi�ed using on-body sensors, demonstrating thefeasibility
of on-body dietary monitoring. Further investigations are needed to
improve the swallowing spotting performance.

4.1. Introduction

Daily dieting behaviour strongly inuences the risk for developing disease con-
ditions. The most prevalent disease associated to an imbalanced diet is obesity.
Current estimations account for over one billion of overweight and 400 million
obese patients worldwide. This still increasing trend was attributed to the rapid
changes in society and behavioural patterns in the last decades [42]. However,
obesity is not a unique diet-related disease that decreaseshealthy life-years in
many populations. Rather, it increases the risk for relateddiseases, including
diabetes mellitus, di�erent types of cancer and cardio-vascular diseases. Often
the diseases confound or overlay each other, preventing accurate accounting.

Several key risk factors have been identi�ed, that are controlled by dieting
behaviour. These include the timing of food intake and integration into daily
schedule. For example, intermediate snacking was found to add a major part
to the daily energy intake [34]. Another critical aspect is the food selection.
High-energy food can be replaced by lower energy densities,such as fruits and
vegetables. This improves the diet quality and lowers body weight [31].

Minimising individual risk factors is a preventive approach to systemati-
cally �ght the origin of diet-related diseases. It is the most promising solution
for improving quality of life in the future. Since nutrition is an inherent part
of daily activities, the adoption of a healthy diet requires individual lifestyle
changes. These changes need to be implemented and maintained over peri-
ods of months and years. For this purpose, a convenient long-term monitoring
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of dietary behaviour could become a vital tool to assess eating disorders and
support diet modi�cations through feedback and coaching.

4.1.1. Dietary behaviour monitoring

No single-sensor solution exist that could capture the process of food intake and
is simple to implement for diet management. Currently, dietary activities are
studied manually by entering the information into food inta ke questionnaires.
Mobile devices and Internet appliances are used to support the information
entry, e.g. by taking pictures of the food [28] and estimating calories from
entered data [7]. Further approaches to simplify data entryinclude the scanning
of shopping receipts [27] as well as bar codes or recording voice logs [33].

These manual acquisition methods require a considerable e�ort of study
participants, primarily to remember entering the informat ion into the ques-
tionnaire, and study managers, to verify and analyse the data. Typically, this
method is prone to errors such as imprecise timing due to back-�lling, missing
food item details, e.g. when using voice recordings [33] and low user compli-
ance, especially for paper-based diaries [36].

Many dietary parameters such as the rate of intake (in grams/sec.) or the
number of chews for a food piece are rarely assessed because adequate sensing
facilities are only available in laboratory settings. However, these parameters
are related to palatability, satiety and speed of eating [41]. Behavioural inves-
tigations have utilised weighting tables in controlled settings to measure the
amount and rate of food intake during the consumption of individual meals [22].
An oral implant sensor was developed to acquire informationabout these pa-
rameters [35]. However these techniques certainly inuence the user's behaviour
and are not feasible for long-term monitoring.

All non-invasive dietary monitoring techniques su�er from estimation errors
regarding the exact amount and calories of every consumed food item. However,
a rough estimation for relevant parameters such as ratio of uid and solid foods,
food category and timing information, such as eating schedule and meal intake
durations over the day, will provide a solid basis for behavioural coaching. We
believe that much of this information can be extracted from on-body sensors.

4.1.2. Paper contributions and outline

In this work, we evaluate on-body sensing methods to automatically monitor
dietary intake behaviour. In particular, three core aspects of dietary activ-
ity ( sensing domains) were investigated by on-body sensors:

1. Characteristic arm and trunk movements associated with the intake of
foods, using inertial sensors.

2. Chewing of foods, monitored by recording the food breakdown sound
with an ear microphone.
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3. Swallowing activity, acquired by a sensor-collar containing surface Elec-
tromyography (EMG) electrodes and a stethoscope microphone.

We derive pattern models for speci�c activity events using the sensor data
of each domain and analyse the event recognition performance. For example,
individual chews are considered as events in the domain chewing. In particular,
the paper makes the following contributions:

1. We present a exible event spotting method that can be applied either to
an individual sensing modality or a combination of several.The approach
obtains its adaptivity from a variable-length feature patt ern search. Its
selective power originates from competitive and supportive fusion of event
spottings with largely independent sources of errors. We summarise the
domain-speci�c adaptations of the procedure. The pattern description is
achieved by using time and frequency-domain features that model the
temporal characteristics of an event. Using this approach,more complex
algorithms, like hidden Markov models (HMMs) were avoided.

2. We analyse the recognition of individual arm movements aswell as chew-
ing and swallowing activities from the intake of di�erent fo od items. For
each domain, we describe the activity sensing approach, thedomain-
speci�c recognition constraints and the conducted case studies to obtain
naturalistic evaluation data. Since our work targets a combined detection
and classi�cation of the activity events, we present quantitative results
for both, indicating a good performance and the feasibilityof the sensing
approaches for Automatic Dietary Monitoring.

The evaluations are performed on data from three di�erent studies. To
analyse the recognition performance under realistic conditions, the data sets
included other common activities,e.g. conversations and arbitrary movements.

4.2. Dietary activity domains and related work

Activity monitoring and recognition has attracted researchers from many back-
grounds, including machine vision and more recently pervasive and wearable
computing. An exhaustive review of the literature is beyondthe scope of this
work. Instead, we focus on systems for behaviour and Automatic Dietary Mon-
itoring as well as research on the three sensing domains considered in this work.

Approaches towards Automatic Dietary Monitoring typicall y build on intel-
ligent infrastructures. Chang et al. [10] developed a monitoring table to detect
activities in a dining scenario. The table is partitioned into several sensing sec-
tions equipped with radio-frequency-identi�cation (RFID ) readers to identify
food containers and weight sensors to track food transport between containers
and personal plates. The precision of the system is bound to the spatial resolu-
tion of table sensing sections and requires static assignment of food containers
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to these sections. The concept of load sensing on a table surface for user activ-
ity detection was introduced earlier by Schmidt et al. [32]. In their approach
coarse object movements were estimated from a single sensing section.

Beigl et al. [8] equipped household objects with sensing capabilities. In the
presented example, a cup was chosen to identify activities carried out with it.

For dietary monitoring applications, RFID technology has great potential as
a combined wearable and environmental sensing modality. Patterson et al. [30]
attached tags to 60 household objects. The detection was restricted to morning
activities, recorded by an RFID reader worn at the user's hand. The activities
included, using the bathroom, preparing breakfast foods and eating breakfast.

The infrastructure sensing approaches provide valuable information on var-
ious user activities were sensors can be easily attached or hidden. However the
approaches generally su�er from the user identi�cation problem: while one user
may prepare the foods, several others can consume them. Wearable sensors can
bridge this gap and associate the user directly to the activities. Moreover, since
worn at the body, the sensors can reveal more detailed information that oth-
erwise would require laboratory setups.

4.2.1. Movement recognition

Movements and gestures related to dietary intake can be roughly discriminated
into a preparation phase of the food or beverage items, such as unpacking,
opening, cooking and plate or cup �lling, and the actual feeding. The feeding
movements target the �ne-cutting, loading, and manoeuvring of the prepared
piece to the mouth. In the feeding phase speci�c tools, such as fork and knife
can be used.

Our focus is to recognise intentional arm and upper body movements during
the feeding phase. These movements are a result of handling the tool in the
hand(s) and the food material properties viscosity and size. These properties
relate directly to the food category. For example a soup is usually feed with
a spoon while a glass, cup, or bottle is used for drinking. Hence all relevant
movement events can be characterised as directed gestures of the left or right
arm, supported by the upper body.

A large base of existing works addressed the problem of classi�cation
on well-de�ned sequences or previously isolated gestures,e.g. for Kung Fu
moves [9] or in a worker assembly scenario [29]. Works that targeted the con-
tinuous recognition used explicit segmentation steps or implicit segmentation
capabilities of algorithms, such as HMMs. Lee and Kim [24] used HMMs and
introduced a threshold model to eliminate detection noise.The threshold model
is constructed from all trained gesture models. Explicit segmentation was used
by Ward et al. [39] in an assembly task. Recognition was achieved by fus-
ing classi�er outputs. Lee and Yangsheng [23] used acceleration thresholds in
combination with HMMs. In previous works of the authors on intake gesture
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recognition, HMMs were used together with an explicit data-adaptive segmen-
tation [2].

While HMMs are helpful to model the temporal structure of movements,
they were avoided in this work to minimise the complexity of the search pro-
cedure for both training and actual search.

4.2.2. Chewing recognition

Chewing targets simultaneous food breakdown and lubrication to form a food
bolus that can be swallowed. A chewing sequence starts afterthe food piece is
transferred to the mouth. The food breakdown is composed of arbitrary tongue
movements and cyclic opening and closing of the jaw (chewing cycle). During
the material breakdown sounds are emitted that are partially audible by air-
conduction in the near vicinity, but e�ectively transmitte d by bone-conduction
from teeth and jawbone to the skull and the ear canal.

The emitted sounds are related to the food material texture. Interaction
of chewing with the acoustic sensation and perception of food items has been
investigated to study food preferences. Typically, studiorecording setups were
used to analyse air-conducted chewing sounds [38] and laboratory installations
to assess the deformation sounds with a destruction instrument [12]. The loud-
ness of a food item during chewing depends mainly on its innerstructure, the
arrangement of cells, impurities and existing cracks [1]. Wet cellular materi-
als, such as apples and lettuce, are termedwet-crisp since the cell structures
contain uids, whereas dry-crisp products, such as potato chips have air inclu-
sions [18].

The food deformation in a chewing cycle is understood as a gradually
decomposition of the material structure, observed as a decline of the sound
level [17]. Initial attempts were made by DeBelie et al. [14]to discriminate two
classes of crispness in apples by analysing principal components in the sound
spectrum of the initial bite. In a followup work DeBelie et al . [15] classi�ed the
sound emissions from the initial bite of di�erent dry-crisp snacks. Both works
addressed the isolated classi�cation. In our previous workthe microphone po-
sitioning and classi�cation of four di�erent foods was investigated [4]. The ear
canal provided the best signal (chewing) to noise (user speaking) ratio. This
sensor positioning can be comfortable and socially acceptable for continuous
monitoring, comparable to mobile headsets or hearing aids.

In this work, following our recognition approach, the identi�cation of in-
dividual chewing cycles from food breaking sounds was targeted. The food
category is subsequently classi�ed from the sound pattern of the cycle.

4.2.3. Swallowing recognition

Swallowing is a frequent activity during food intake. It is m ostly performed
unconsciously and when initiated, controlled by a pattern of muscle activa-
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tions [19]. The swallowing act is often partitioned into (1) oral preparation
phase (food in the mouth), (2) pharyngeal phase (food bolus in the throat)
and (3) oesophageal phase (food propulsion towards the stomach) [16]. After
transforming the food to a sallowable bolus in the oral phase, the swallowing
reex is initiated by the tongue, starting the pharyngeal ph ase. In this phase a
sequence of muscle activations is used to transport the bolus and protect the
respiratory tract.

A number of clinical assessment methods have been developedto anal-
yse the complex interaction of swallowing, phonation and respiration at the
pharynx and diagnose abnormal swallowing in the pharyngealphase. The as-
sessment methods can be broadly grouped as invasive methods, that require a
strict laboratory or clinic setting and a variety of non-inv asive sensing meth-
ods. In the latter category, the following main approaches were taken: sensing
muscle activations by surface EMG,e.g. [20], listening to the throat sounds us-
ing a stethoscope [26] as well as stethoscope-like acoustictransducers or sealed
microphones [11].

A large share of research works targeted the basic understanding of
the swallowing process, only few addressed the continuous monitoring. Dan-
bolt et al. [13] used sensors to detect hyoid movement at the throat. It was
found that the sensor incurs heavy measurement artifacts from neck and tongue
movements as well as from speaking. Limdi et al. [25] trackedmuscle contrac-
tion intensity based on surface EMG to inform the user of elevated swallowing
rates. Sukthankar and Reddy et al. [37] used surface EMG and vibration sen-
sors and targeted applications in dysphagia rehabilitation. Both latter works
did not present a performance evaluation for their approaches to the contin-
uous recognition problem. In our previous work [5], swallowing was analysed
from surface EMG and sound for the isolated classi�cation ofswallowed bolus
types, e.g. solid or uid. Moreover, an initial investigation towards t he con-
tinuous detection was made. The approach is taken forward inthe present
evaluation by extending the swallowing study and evaluating the performance
of di�erent fusion methods.

4.3. Recognition and evaluation methods

The envisioned system shall be continuously worn during daily routine. In all
sensing domains relevant activity events occur only sporadically, often embed-
ded into a large set of other, non-relevant activities (NULL class). For example,
stethoscope-like sound recordings intended to record swallowing sounds at the
throat, inherently pick up speaking, or even environmentalnoises.

A method that targets the spotting of relevant activity even ts should be
e�ective in retrieving correct events while omitting NULL c lass data. However,
the sensing domains considered in this work have very few constraints, result-
ing in a highly variable NULL class. As a consequence of this diversity, it is
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not feasible to derive a model for NULL (garbage model) without integrating
assumptions about these random activities. Moreover, training of the relevant
event model(s) should be critically reviewed for its dependency on NULL.

Another challenge is the variable length of the activities,leading to duration
variances in the relevant events. Consider for example a intake gesture using
fork and knife where the food must be cut into appropriate sized pieces before
manoeuvring it to the mouth. This indicates that a simple, �x ed sliding window
search would not be able to identify the gestures accurately.

Our approach to detecting and classifying dietary activities is based on
three main steps: (1) an explicit segmentation of signals tode�ne search
bounds, (2) a sensitive event detection using a feature similarity search algo-
rithm with an adaptive, dynamically de�ned window size, and (3) a selective
fusion of detection results exploiting independent sources of error to �lter out
false positives and obtain an event classi�cation in the same step. Figure 4.1
outlines the components of our event detection and classi�cation method.

Sensor
data

source
Segmentation

Detector
instance 1

Detector
instance 2

...

Detector
instance n

Event fusion
(competitive /

supportive)

Detected
and classi�ed

event

Figure 4.1. Event detection and classi�cation procedure used in the wor k. The
detector instances (1 to n) can be trained to spot activity ev ent patterns of speci�c
classes or individual modalities. The event fusion can combine events of di�erent
type (competitive) or modalities for one type (supportive) . Both concepts are pre-
sented in this work.

4.3.1. Event recognition procedure

In the �rst step a segmentation is obtained that speci�es the bounds for the
following search. Various data-adaptive methods or a �xed distance can be
used for this purpose. In this work, we used the latter approach with a domain-
speci�c distance setting.

Event detection using feature similarity search

The event detection step utilises the segmentation points to search for poten-
tial activity event sections using a similarity-based algorithm. The search is
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performed by comparing features of a data section under investigation to a
previously trained pattern.

The following search principle is illustrated in Figure 4.2. For a given seg-
mentation point, the history of sensor data is analysed between a lower and
upper search bound. These bounds are determined in the training step from
the overlapping of manually annotated events and the segmentation points.
For each search section the similarity of a feature set to a pre-trained set is
quanti�ed by computing the Euclidean distance (DEvent ) between them. A
distance threshold (DT hres ), also obtained during the training, is used to re-
move unlikely sections. The similarity search works as a detector that returns
a list of event sections associated with a distance to the training pattern.

One bene�t of this algorithm is that it can operate as a single pattern de-
tector, when applied to retrieve one relevant type from continuous sensor data
only. Using the feature similarity search, multiple detector instances can be
combined to independently spot di�erent classes. This permits an independent
feature set for each class. Furthermore, as we will show for the detection of
swallowing, instances trained from independent sensing modalities can be used
to detect one event type in parallel.

Time
Current

segmentation point

Segmentation

Event search step

Upper
search
bound

Lower
search
bound

Search
sections

�

Figure 4.2. Schematic of the activity event search step. The segmentation is indi-
cated by the dotted line. The search is performed by computin g feature sets from the
sensor data (not shown) between lower and upper search bounds. The search sections
are evaluated by comparing their feature sets to a pre-train ed pattern. (Please refer
to the text for more details.)
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Competitive and supportive event fusion

By selecting an appropriate distance threshold (DT hres ), the similarity search
is con�gured to spot most of the activities in the sensor data. Consequently
it can incur false positives. In the fusion step di�erent class- or modality-
speci�c event detectors are combined to reduce these errors. This improvement
originates from the independent sources of error of each detector and modality.

For multiple detectors a competitive fusion strategy was used to select the
�nal events. A supportive strategy was deployed to combine the modality-
speci�c detection of one activity type, since here the detectors could reinforce
each other.

In this work we evaluated di�erent fusion methods: (1) comparison of the
events, keeping the event with the highest con�dence (COMP), (2) agreement
of the detectors (AGREE) and (3) re-weighting of the detection by logistic
regression (LR). The methods are commonly used to combine classi�er out-
puts [21, 39]. In this work, COMP corresponds to the competition strategy and
AGREE implements a supportive approach. LR can be used for both strategies.

To select the most probable from concurrently reported events, the compet-
itive fusion compares a con�dence associated to each event.This con�dence was
derived from the similarity search distances (DEvent ) by normalisation using
the distance threshold (DT hres ) in each detector instance (Equation 4.1).

Conf idence =
DT hres � DEvent

DT hres
(4.1)

A sliding bu�er of candidate events is used and continuouslyupdated as new
events are entering from the detector instances. For each entering event the
collision (temporal overlapping of the event section with events already in the
bu�er) is resolved according to the selected fusion strategy. The events are
released from the bu�er after a timeout as �nal result of the p rocedure.

4.3.2. Feature computation

The temporal structure of many complex activities is a key element for their
pattern modelling and subsequent machine recognition. Forexample, move-
ments are frequently modelled with HMMs and time-continuous features to
capture this e�ect.

In this work, we integrated the temporal structure of the act ivity events
in individual single-value features. The features were computed for prede�ned
sections of an event. We spitted the event in two or four slices. This solution
provided an acceptable trade-o� between temporal description and total num-
ber of features. The solution permits a combination of sliced features and fea-
tures for the entire event. Moreover, this approach can simplify both modelling
and event search, compared to time-continuous features. Weused it with the
recognition approach presented above. The similarity search is then performed
using the features to describe each event and search every section.
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4.3.3. Evaluation procedure

Experimental concept

The analysis of each sensing domain was based on experimental data, individ-
ually acquired for each domain. Figure 4.3 indicates the sensor attachment at
the body for all domains. For the recording of movements a commercial mo-
tion acquisition system based on inertial sensors was used.Customised systems
were utilised for the chewing (ear microphone) and swallowing (sensor collar)
recordings. Table 4.1 provides a detailed description of the sensors used. In
each study the activities were manually annotated by an observer. The study
procedures are further detailed in the evaluation sectionsfor each sensing do-
main.

Ear microphone

Sensor collar
(EMG and microphone)

Upper body
inertial sensors

Figure 4.3. Schematic sensor positioning at the body. (See Table 4.1 fora detailed
description.)

Soft alignment procedure

In order to account an event as recognised, the detection procedure must return
a valid begin and end of an activity section and its identity (for multi-class
detections). The section boundaries were compared to beginand end of the
annotated events. However the boundaries do not match exactly since the
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Table 4.1. List of sensors systems used in the dietary activity studies.

Sensor type Sensor description Sensing
domain

Inertial sensors Sensor modules containing acceleration
sensors, gyroscopes (rate of turn) and com-
pass sensors (magnetic �eld), each in 3
dimensions. The modules were attached
to the user's arms. Manufacturer: XSens,
model: MTi.

Movement
activity

Ear micro-
phone

Electret miniature condenser microphone.
The microphone was embedded into an ear
pad foam and worn at the ear canal. Man-
ufacturer: Knowles Acoustics, model: TM-
24546.

Chewing
activity

Stethoscope
microphone

Electret condenser microphone. The micro-
phone was attached with medical tape or
worn in a collar below the hyoid. Manufac-
turer: Sony, model: ECM-C115.

Swallowing
activity

Electromyogram
(EMG)

Electromyogram electrodes and acquisition
system. Electrodes were directly attached
or worn in a collar at the infra-hyoid
throat position. Manufacturer: MindMedia,
model: Nexus-10.

manual annotation was not accurate on the granularity of each sample and the
segmentation algorithm can introduce a small alignment error in the detection.

For the feasibility in the envisioned dietary monitoring application the exact
alignment is not a critical aspect, if the event is associated to the true activity
at all. Hence, we applied a soft alignment matching, following the concept of
a boundary jitter. Equation 4.2 describes the accounting ofcorrect events.

Recognised=

(
true, if j � max

�
jA Begin � E Begin j

A End � A Begin
; jA End � E End j

A End � A Begin

�

false, otherwise
(4.2)

The parametersABegin and AEnd correspond to start and stop sample of
the manual annotation and likewise, EBegin and EEnd to the retrieved event.
The jitter parameter j can be set, depending on the acceptable jitter for an
application. The jitter j = 0 corresponds to an exact matching of the bound-
aries and j = 1 would allow a jitter in size of the event duration. Moreover,
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this accounting procedure assures that large events, covering more than the
annotation section, will be rejected as well, if their beginand end do not con-
form to Equation 4.2. Multiple counts of matches and misses were especially
avoided.

For the evaluation in this work a jitter of j = 0 :5 was chosen. We believe
that this is an adequate accuracy for applications in dietary monitoring.

Performance measurement

To account for variations in the acquired data sets, a four-fold cross-validation
procedure was used to determine training and testing set forthe performance
analysis. For training, three of four data parts were used. Evaluation was per-
formed on the left-out data part. This procedure was repeated until all four
parts were used for testing once. The partition boundaries were adapted to
avoid intersecting the manually annotated event sections.The choice of four
partitions reects an empirical trade-o� between processing e�ort, the need
for enough training observations in all combinations of thepartitions and the
intended averaging e�ect for the �nal results. An additiona l performance gain
could be achieved by higher iteration counts, potentially using more events for
training.

To analyse the recognition performance, we used the metricsPrecision and
Recall, commonly used for information retrieval assessments. These metrics are
derived as follows:

Recall =
Recognised events
Relevant events

; P recision =
Recognised events
Retrieved events

(4.3)

Relevant eventscorresponds to the manually annotated number of actually
occurred event instances.Retrieved events represents the number of events
returned by the event recognition procedure. Finally, Recognised eventsrefers
to the correctly returned number of events. Both metrics have a value range
of [0; 1]. A recall value of one indicates a perfect accuracy of a method (all
relevant events are recognised), while a precision value ofone indicates that
the method does not return false positives (insertion errors).

4.4. Movement recognition

4.4.1. Study description

To evaluate our recognition approach for movements, a case series was recorded,
utilising commercially available inertial sensors. Table4.1 speci�es the sensors
used. The inertial sensors were attached onto a jacket at thelower and upper
arm as well as the upper back. Figure 4.3 illustrates the sensor positions.
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The movements of the arms and upper body was recorded with a sampling
rate of 100 Hz from four right-handed volunteers (1 female, 3male, aged be-
tween 25 to 35 years). The participants were seated in front of a table carrying
the food items and tools. They were instructed to eat and drink as they would
normally do.

Intake sessions were recorded from each participant on separate days. Four
intake activities were recorded for each session: (1) eating meat lasagne with
fork and knife (cutlery, CL), (2) fetching a glass and drinking from it (DK),
(3) eating a soup with a spoon (SP), and (4) eating slices of bread with one
hand only (HD). All meals were served at adequate temperature for normal
eating/drinking. Table 4.2 summarises the acquired data which was inspected
and annotated.

In order to enrich diversity of the data set and avoid long periods without
movements, the participants were asked to conduct a set of other, non-relevant
movements and gestures. Besides arbitrary movements of theparticipants the
following additional arm gestures have been recorded and annotated to quantify
the data set noise: scratching head (96 times), touching chin (92 times), reading
and turning pages of newspaper (99 times), using tissue (89 times), glancing at
the watch (92 times) and answering a simulated mobile phone call (90 times),
all total numbers of the data set.

Table 4.2. Movement study: Statistics of acquired and annotated intak e gestures.

Number of participants 4
Annotated gestures 1020
Relevant event share 97.44 min (34.7%)
Total length of data set 4.68 hours

4.4.2. Evaluation results

The event recognition procedure was adapted to the movementdomain in the
following way:

1. A time constant of 0.5 s was used for segmentation.

2. For each of the four gesture categories an event detector instance was
trained. Using the Euler angles of the lower arms, features such as mean,
variance and signal sum in four sliced sections and for the complete ges-
ture were computed. By visually inspecting test recordingswe found that
the upper arm and the back sensors could not support the recognition
without constructing a more complex body model. Hence, theywere ex-
cluded from the analysis.

3. The event fusion using the competitive strategy was subsequently applied
to the detector instance results and the event category withthe highest
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con�dence was selected as �nal result. Due to variable lengths of gestures
in our data set, the candidate bu�er was con�gured to releaseevents only
after 30 s.

Figure 4.4 shows precision-recall (PR) graphs for a user-speci�c evaluation
of the movement event fusion using the COMP method. The curves were cre-
ated by evaluating the performance at various con�dence thresholds for every
class and for every participant (A-D). Best performance is found towards the
top-right corner (high precision, high recall).

Both graphs indicate a good performance for the movement event recogni-
tion. The best result was achieved for the category DK, whileHD performed
less well. Since the latter gesture is very simple it was often confused with
other movements towards the head. In contrast, DK is more complex (fetching,
drinking). The second graph shows that all participants performed similarly
well.
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Figure 4.4. Movement study: User-speci�c PR analysis (con�dence thres hold sweep)
of the event fusion results using the COMP method. Best perfo rmance is found to-
wards the top-right corner (high precision, high recall). ( a) Analysis for every cat-
egory (CL=cutlery, DK=drink, SP=spoon, HD=hand only). (b) Analysis for every
study participant (A-D).

Table 4.3 summarises the results obtained from the event detection and
the event fusion. For the SP gestures, we observed that participants bend
themselves over the bowl, to avoid spilling and to minimise the movements.
This a�ected the detection performance, since only lower arm features were
used in the evaluation.

Table 4.4 shows a confusion matrix of the event recognition,obtained by
comparing the recognition results to the annotation for each sensor data sam-
ple. Complementary to the soft alignment counting scheme used for the results
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in Table 4.3, this representation shows the sample-accurate result. For all cat-
egories and NULL a recognition rate of 75% to 82% was achieved. This rate
was computed as class-relative accuracy (correct C

relevant C
).

Table 4.3. Movement study: Summary for the user-speci�c performance f or the
event detection and the fusion method COMP.

Metric Event detection
Event fusion

(COMP)

CL DK SP HD CL DK SP HD Total

relevant 276 245 266 233 276 245 266 233 1020
retrieved 347 247 284 717 278 221 263 518 1280

recognised 223 210 208 201 220 199 204 198 821
deletions 53 35 58 32 56 46 62 35 199

insertions 124 37 76 516 58 22 59 320 459
recall 0.81 0.86 0.78 0.86 0.80 0.81 0.77 0.85 0.80

precision 0.64 0.85 0.73 0.28 0.79 0.90 0.78 0.38 0.64

Table 4.4. Movement study: Confusion matrix of the �nal user-speci�c e valuation
result using COMP fusion (duration in seconds and ratios).

Predicted category

NULL CL DK SP HD

A
ct

ua
l

ca
te

go
ry

NULL 8869 613 233 305 982
(81%) (6%) (2%) (3%) (9%)

CL 452 2130 0 0 8
(17%) (82%) (0%) (0%) (0%)

DK 302 1 1182 0 34
(20%) (0%) (78%) (0%) (2%)

SP 237 19 0 807 10
(22%) (2%) (0%) (75%) (1%)

HD 103 20 0 0 541
(16%) (3%) (0%) (0%) (81%)

4.5. Chewing recognition

4.5.1. Study description

For the evaluation of chewing sounds we used an ear microphone as indicated
in Figure 4.3. The miniature microphone was build into a standard type ear
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pad and kept at the ear canal by an ear hook, as it is used for mobile phone
headsets. In a single case study the chewing sounds from di�erent foods were
recorded at 16 bit, 44 kHz from a male individual with natural dentition (aged
29 years).

The participant was seated conveniently on a chair close to atable carry-
ing the foods. He could still hear normal-level conversation in the room and
was allowed to move and speak during the recording sessions.The room was
controlled for a constant noise level of an o�ce environment (the recording
in a sound studio was avoided). Recordings were made in individual sessions
on separate days. The participant took bites from the foods as he wished. All
of the foods belonged to his normal diet. The food products included for the
recognition analysis were:

1. Dry-crisp food: potato chips, approx. 3 cm in diameter

2. Wet-crisp foods: (1) mixed lettuce, containing endive, sugar loaf, fris�ee,
raddichio, chicory, arugula, and (2) raw carrots.

3. Soft foods: (1) cooked chicken meat and (2) pasta.

The foods evaluated in this work, contained many chewing cycles. Manual
annotation of every chewing cycle was performed in a post-recording step by
reviewing the waveforms and listening to the sounds. This procedure is accurate
in identifying every chewing cycle until the food bolus is swallowed, however
it makes the recordings very expensive.

The recordings included chewing sounds from further food products (bread
and chocolate), as well as environmental conversation and speaking. Table 4.2
summarises the acquired data which was inspected and annotated.

Table 4.5. Chewing study: Statistics of acquired and annotated chewin g sounds.

Number of participants 1
Annotated chewing cycles 1947
Relevant event share 10.50 min (21.7%)
Total length of data set 0.81 hours

4.5.2. Evaluation results

The event recognition procedure was adapted to the chewing domain in the
following way:

1. A time constant of 125 ms was used for segmentation. This choice was
made based on the average duration of a chewing sound (as annotated)
of 350 ms or less, depending on the food type.
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2. Initially, for each of the three food categories a featuresimilarity instance
was trained. Using the microphone data, spectral features such as band
energy, auto-correlation and cepstral coe�cients in four sliced sections
were computed. We observed during the evaluation, that the detector
for soft foods worked poorly, resulting in many insertion errors. This
behaviour was attributed to the low signal to noise ratio. We omitted this
model in the further evaluation to demonstrate the good performance of
the dry and wet food detectors.

3. The event fusion using the competitive strategy was subsequently ap-
plied to the detected chewing cycles and the category with the highest
con�dence was selected as �nal result. We analysed the COMP and LR
methods for the fusion.

The low-amplitude chewing sounds from the soft foods (meat and pasta)
created a special problem for the detector. While a high recall was achieved,
the detection was very sensitive to other sounds (as seen in the low precision
in Table 4.6). COMP and LR fusion of the three detectors did not solve this
problem, because the number of soft-food insertions was toohigh.

For every intake cycle all chews were annotated until the food bolus was
swallowed and the normal mouth cleaning phase began. In thisphase, chews
were hard to observe in the sound waveform. However the algorithm was still
able to detect them. Figure 4.5 visualises an example waveform including a
chewing sequence of potato chips, the cleanup and a conversation phase. For
this food the chewing cycles can be seen very well in the soundwaveform. The
vertical bars indicate the annotation. In the lower plot, th e detected chewing
events are shown as horizontal bars. As the diagrams shows, additional events
were reported for the cleanup phase. We exemplarily veri�edthat these chews
were correctly retrieved.

Since the actually existing chews in the cleanup phase couldnot be auto-
matically veri�ed, they were counted as insertion errors. The impact can be
seen in the PR performance analysis in Figure 4.6 and the summary in Ta-
ble 4.6. For both food categories the COMP and LR fusion methods return
good results. We concluded from the quantitative summary inTable 4.6 that
LR removes slightly more insertion errors and has less deletions.

Table 4.7 shows the confusion matrix derived by applying theLR method.
Using the same procedure as presented for the movement confusion analysis,
class-relative recognition rates of 85% to 87% were achieved. This indicates a
very good performance. Especially, a low confusion rate of the dry and wet
categories was observed.
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Figure 4.5. Chewing study: Example waveform of a chewing sequence of potato
chips, cleanup and conversation phases, indicated by the shaded areas. Upper plot:
sound waveform. Lower plot: chewing cycle detection result . (The detector correctly
identi�ed chewing cycles in the cleanup phase, that were not annotated. Please see
the related text for more details.)

4.6. Swallowing recognition

4.6.1. Study description

Swallowing was analysed from surface EMG electrodes and a microphone sen-
sor. The sensor positioning was equal for all participants.For some participants
the sensors were embedded in a collar. The collar helped to quickly attach the
sensors to the correct throat region. The location of the EMGwas constantly
veri�ed, however the collar supported the stable positioning at the infra-hyoid
position very well. The microphone was situated at the lowerpart of the throat,
below the larynx. EMG was recorded at 24 bit, 2 kHz and bandpass �ltered.
Sound data was recorded at 16 bit, 22 kHz. Figure 4.3 and Table4.1 summarise
positioning and setup of the sensors and the collar.

Six volunteers (4 male, 2 female, aged 20 to 30 years) withoutknown swal-
lowing abnormalities were instructed to eat and drink di�er ent food items:
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Figure 4.6. Chewing study: User-speci�c PR analysis (con�dence thresh old sweep)
of the event fusion stage. Best performance is found towardsthe top-right corner (high
precision, high recall). (a) Analysis for the two food categ ories (\dry" and \wet").
(b) Analysis for the two competitive fusion methods (COMP an d LR).

5 and 15 ml of water, spoonfuls of yoghurt and pieces of bread (approx. 2 cm3).
The individuals were seated conveniently on a chair in frontof a table carrying
the foods. They were allowed to move, chew and speak normallyduring the
recording sessions. The room was controlled for a normal andconstant noise
level of an o�ce environment. To account for physiologic variations, two in-
take sessions were recorded on di�erent days. The participants were asked to
swallow the food items in one piece after chewing and manipulating the bolus
as usual. None of the participants expressed a dislike for any of the included
foods nor problems to swallow the selected bolus sizes. Table 4.8 summarises
the acquired data that was inspected and annotated.

4.6.2. Evaluation results

The event recognition procedure was adapted to the chewing domain in the
following way:

1. A time constant of 250 ms was used for segmentation.

2. Feature similarity instances were trained using the EMG and microphone
data individually. The foods were initially grouped regarding their ex-
pected bolus size into small (5 ml water, spoonfuls of yoghurt and pieces
of bread) and large (15 ml water). This approach was dropped,since no
clear discrimination of the two categories was found. In thefollowing, we
targeted the detection without further classi�cation. We c oncluded from
early tests that the EMG is disturbed by di�erent muscle acti vations, in-
dependent from swallowing. The investigated hyoid muscle is covered by
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Table 4.6. Chewing study: Summary for the user-speci�c performance fo r the event
recognition (three categories) and the fusion methods (COM P and LR). The fusion
results were derived using the food categories \Dry" and \We t" only.

Metric Event detection Event fusion
COMP LR

Dry Wet Soft Dry Wet Total Dry Wet Total

relevant 187 979 781 187 979 1166 187 979 1166
retrieved 1327 2098 3483 416 1693 2109 416 1687 2103

recognised 186 909 460 152 722 874 184 900 1084
deletions 1 70 321 35 257 292 3 79 82

insertions 1141 1189 3023 264 971 1235 232 787 1019
recall 0.99 0.93 0.59 0.81 0.74 0.75 0.98 0.92 0.93

precision 0.14 0.43 0.13 0.37 0.43 0.41 0.44 0.53 0.52

Table 4.7. Chewing study: Confusion matrix of the �nal user-speci�c ev aluation
result using LR fusion (duration in seconds and ratios).

Predicted category
NULL Dry Wet

A
ct

ua
l

ca
te

go
ry

NULL 2791 100 344
(86%) (3%) (11%)

Dry 12 76 0
(13%) (87%) (0%)

Wet 57 3 332
(15%) (1%) (85%)

several layers of other muscle tissue. We concentrated on a simple activity
detection using time domain features such as sum, maximum and peaks
of the signal. For the sound data, spectral features such as band energy,
auto-correlation coe�cients and signal energy were used. An initial test
of sliced features did not lead to an improvement in recognition.

3. The event fusion using a supportive strategy was subsequently applied to
the detected swallowing events from EMG and sound data. We analysed
the performance of AGREE and LR methods.

For the AGREE fusion all participants reached a high recall, indicating that
the detection procedure was able to retrieve many events. Figure 4.7 presents
the corresponding PR analysis. The evaluation revealed twogroups: for par-
ticipants (C and D) the detection performance was higher than for the others.
However, these participants did neither belong to the same gender, nor were
they recorded with the collar. We observed that many other participants exhib-



68 Chapter 4: Recognition of dietary activity events using on-body sensors

Table 4.8. Swallowing study: Statistics of acquired and annotated swa llowing ac-
tivity.

Number of participants 6
Annotated swallows 1265
Relevant event share 44.58 min (9.3%)
Total length of data set 7.93 hours

ited either a high EMG response or sound, for C and D both sensors provided a
consistent event pattern. Consequently, both EMG and sound-based detection
more often returned a correct result for them, whereas for the remaining partic-
ipants no reduction of the insertion errors was achieved. Further investigation
of this issue is required.
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Figure 4.7. Swallowing study: PR analysis (con�dence threshold sweep) for each
study participant (A-F) using the agreement fusion (AGREE) . Best performance is
found towards the top-right corner (high precision, high re call).

On average for all participants, the AGREE fusion method improved the
precision. LR did not improve the individual spotting resul ts. Table 4.9 sum-
marises the results obtained from the event detection instances and the fusion
methods.

The sample-accurate detection result was determined from the AGREE
fusion result. The swallowing recognition rate was 64%, forthe NULL class
75% were obtained. This indicates that the detection provides a sensible result.
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Table 4.9. Swallowing study: Summary for the user-speci�c performanc e for the
event detection using muscle activity (EMG), audio (SND), a nd the fusion meth-
ods (LR and AGREE).

Metric Event
detection

Event fusion

LR AGREE
EMG SND EMG+SND EMG+SND

relevant 1265 1265 1265 1265
retrieved 6046 8093 8085 4345

recognised 955 834 824 861
deletions 310 431 441 404

insertions 5091 7259 7261 3484
recall 0.75 0.66 0.65 0.68

precision 0.16 0.10 0.10 0.20

4.7. Discussion

4.7.1. Methodology

The continuous recognition of dietary activity events from sensor data pat-
terns was evaluated in this work. Spotting activity events in continuous sensor
data is a vital prerequisite for the deployment of activity d etection in general.
While the targeted activities can be described by a domain expert, the embed-
ding data (NULL class) cannot be modelled due to the degrees of freedom in
the human activities and the cost for large training data sets. Consequently,
assumptions about the embedding should be minimised to achieve an accept-
able performance generalisation. We believe that the current work is a step
towards resolving this challenge, although the presented method is not com-
pletely free from assumptions. The most critical aspects inthis respect include
the selection of features and event detection thresholds.

A combination of individual single-value features for activity event slices
were used for the detection. With this approach the temporalstructure of the
activities was transformed into a spatial representation.This is a useful concept
to model activities for the continuous search. In an earlierwork, we applied
this principle to the recognition of gaming gestures only [6]. For each domain,
features were selected from visual inspection of the sensorwaveforms and from
previous experience. We expect that the recognition performance could be
improved by a thorough feature search and selection strategy. This will also
help to identify sensors that can be omitted or adjusted in its placement.

We introduced the scheme of competitive and supportive event fusion to
construct a selective re�nement step for spotted events. Bydesign of the recog-
nition system, the choice of the fusion strategy is made. Thesupportive strat-
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egy was applied for spottings from independent sensors, describing the same
event type. Using competitive fusion, we selected the most appropriate event
from di�erent event type spottings. Both strategies could be combined to more
complex selection schemes. In related works, they have beenused to combine
classi�er outputs mostly [39].

An advantage of our method is its ability to work on single event detec-
tion classes with individual feature sets. For the detection of one event type,
typically a supportive fusion strategy can still be used, by deploying di�erent
sensors. An application for detecting single event types indietary monitoring
was shown in the swallowing evaluation. Further applications are the detection
of drinking gestures to assess uid consumption or using a single food model
to assess one category of foods in dietary intake.

In order to describe the complexity of the event detection asa search prob-
lem, we listed the embedding size of the data sets. This size was expressed as
ratio of total annotated event duration over the total lengt h of the data set.
For the data sets in this work, the ratio was 34.7% for the movement, 21.7%
for chewing and 9.3% for the swallowing study. The ratio indicates the severity
of the search: the smaller the ratio, the more di�cult it is to achieve a good
recognition results due to the large and potentially diverse embedding data.
However, we believe that the high embedding size in the swallowing study is not
the unique reason for its weak precision. Section 4.7.4 discusses the swallowing
study in detail.

We introduced a soft alignment measure to account for the variability in
alignment between annotation and event detection. A boundary jitter nor-
malised by the annotated length of the event was de�ned as threshold, below
which the event is counted as recognised. The larger the jitter, the more mis-
match in alignment is allowed and an event reporting that may otherwise be
accounted as insertion/deletion will be accepted as correct. In its extreme,
the counting of correct events could be made by simply checking if an over-
lap with the annotation exist at all. For the targeted applic ations in dietary
monitoring an exact match is less critical as long as the activity is captured
at all. Therefore, we selected a jitter value that is neither too optimistic (by
permitting large alignment errors) nor pessimistic (being overly strict in the
boundary match). The comparison with sample-accurate confusion matrices
con�rms that the soft alignment is a sensible solution for event spotting per-
formance analyses. For a more detailed analysis of detection errors, the Error
Distribution Diagrams [40] could be used.

4.7.2. Movement recognition

Di�erent gesture types were de�ned, that occur frequently i n European and
American diets, to evaluate the recognition of food intake movements. The re-
sults indicate that all types could be recognised from lowerarm motion, most
of them with good accuracy. To improve the recognition of certain gestures,
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information from inertial sensors at the subject's back could be added. The
proposed event fusion method is a valuable addition to the feature similarity
search for movement detection. In a related work of the authors, a two-stage
approach based on a similarity search and HMMs was used [2]. While the
HMMs proved valuable for re�ning the detection result in the second stage,
they add a high complexity in both, initial design and parameter estimation.
In comparison, the performance achieved with the event fusion approach in
the current work could match the recall, but performs approx. 10% lower in
precision than the HMMs on the same data set. Further re�nement of features
and segmentation could close this gap. Moreover, we presented a rigorous eval-
uation framework using cross-validation in this work, that was not previously
available.

4.7.3. Chewing recognition

For the recognition of chewing sounds, novel achievements on a chew-accurate
detection were presented. Using the recognition procedure, individual chewing
cycles were identi�ed in two food categories with good performance. This result
was achieved by considering the chew as a non-stationary event and grouping
the foods with similar textures. In comparison to our earlier investigation ([4]),
the current recognition rates are approx. 15% higher and a majority vote over
multiple chewing cycles could be avoided. However, for low-amplitude chewing
sounds, found in soft foods such as cooked pasta or meat, a lowdetection per-
formance persists with the current approach. This e�ect wasattributed to the
low signal to noise ratio of these sounds. Moreover, the chewing sequence is not
consistent over the entire intake cycle as assumed in the current approach [3].
This is observed as a variability in the detection con�dences and hinders fu-
sion methods such as LR to achieve a higher performance. Consequently, food
models should include the sequence information more carefully.

4.7.4. Swallowing recognition

The automatic detection of swallowing using EMG and sound information was
evaluated. We found that swallows can be retrieved from continuous data at
high recall rates using both sensing sources. By observing the �nal detection,
we found that the method is disturbed by neck movements and coughing.
In comparison to our previous work ([5]), we presented results from additional
fusion methods (AGREE, LR) and an extended study. The AGREE fusion was
able to remove a large share of insertion errors. The currentresults con�rm
the previous �ndings: while the detection works to some extend in controlled
environments, it retrieved many false positives in our evaluation. These errors
could not be completely removed by the currently applied fusion techniques.

The collar worked well to standardise and maintain the sensor positioning.
No di�erences in the spotting results were observed for the collar-based swal-
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lowing data. For a subgroup of two participants an improved performance was
achieved. The di�erence could not be explained by the available information.
A larger study with more participants could reveal whether the subgroups
persist. Further investigations are required to analyse options for food bolus
categorisation and to increase the algorithm precision.

4.8. Conclusion

We presented novel approaches to monitor dietary activities from body-worn
sensors. Three sensing domains were analysed, that are directly linked to the
sequence of dietary activities: intake movements, chewing, and swallowing.
We presented evaluation results from studies in each domainusing an event
recognition procedure, that supports the detection and identi�cation of speci�c
activities in continuous sensor data.

The recognition of natural movements, such as for dietary intake, is a
challenging task, since it is strongly related to personal habits. The detec-
tion procedure in combination with the simple comparison fusion yielded good
recognition results for di�erent intake types. This is a val uable result for the in-
tended application, since the intake movements help to categorise the consumed
foods. Moreover, the movement recognition could be used independently. For
example, the detection of drinking movements can be used to monitor uid
consumption and avoid dehydration.

Chewing is a very important part in the intake process. In this work a
successful continuous recognition of two food types was achieved. This is a vital
result for a detailed analysis of food chewing. Based on the presented approach,
additional models can be derived that reect the mechanical properties of
foods. Besides the identi�cation of consumed foods, the chewing recognition
permits the assessment of dietary parameters, such as chewsper food and
chewing speed. Both parameters can be used as indications for too fast, or
stress eating.

Swallowing concludes the intake cycle. The swallowing frequency depends
on the food category, where foods containing uid compartments require ele-
vated swallowing rates. The current detection method, using sound and muscle
activity at the throat, still incurs many insertion errors. However, it does pro-
vides an indication for swallowing events. We plan to use this information in
combination with the previous sensing domains. Further works will address
di�erent fusion strategies and additional sensors.

The three domains provide a comprehensive picture of dietary activities and
a broad amount of information, that is vital for a long-term d ietary coaching
and health management. This includes the food type as well asintake timing
and the overall meal schedule.

We have shown in this work, how our recognition procedure to spot sporadic
activity events can be slightly adapted to ful�l the require ments of very di�er-
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ent sensor modalities and activities. We believe that the procedure is a helpful
tool for Automatic Dietary Monitoring and similar applicat ions in continuous
activity recognition.
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Abstract

We present a method for spotting sporadically occurring gestures
in a continuous data stream from body-worn inertial sensors. Our
method is based on a natural partitioning of continuous sensor sig-
nals and uses a two-stage approach for the spotting task. In a�rst
stage, signal sections likely to contain speci�c motion events are
preselected using a simple similarity search. Those preselected sec-
tions are then further classi�ed in a second stage, exploiting the
recognition capabilities of Hidden Markov models. Based ontwo
case studies, we discuss implementation details of our approach
and show that it is a feasible strategy for the spotting of various
types of motion events.
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5.1. Introduction

Monitoring and classi�cation of human activity using simpl e body-worn sen-
sors is emerging as an important research area in machine learning. Activity
monitoring itself is motivated by a variety of mobile and ubi quitous computing
applications, such as personalisation of the user interface, behavioural moni-
toring in medicine, medication assessment, assistive systems for the elderly and
cognitively disabled or intelligent information delivery and recording systems
for industrial assembly and maintenance.

The choice of simple sensors, such as accelerometers instead of computer vi-
sion stems from the limited computational resources of mobile and ubiquitous
systems and the very diversi�ed, dynamic environment in which such systems
need to operate. The later often implies varying light conditions, changing back-
grounds and a large clutter. This makes extracting relevantinformation from
visual signals di�cult and computationally intensive. Bod y-mounted motion
sensors on the other hand, are inuenced by user activity only. The problem
with activity recognition using such sensors lies less in the extraction of rel-
evant features than in the fact that the information is often ambiguous and
incomplete. Thus, once a vision system has managed to track,for example the
user's arm, relatively exact trajectories could be obtained for activity recog-
nition. In contrast, arm worn accelerometers react to a combination of earth
gravity and arm speed changes. Gyroscopes describe rotational motions of the
arm. However none of the above provides exact trajectory information.

Despite the disadvantages listed above, body-worn motion sensors have
been successfully used for a variety of tasks (see related work). One area where
little progress has been made so far, is the spotting of sporadically occurring
activities in a continuous data stream. This is known to be di�cult, even if
complete trajectory information is available from a vision system. It is even
more di�cult in a wearable sensors based environment.

This paper describes a novel method for tackling this problem based on
appropriately adapted machine learning techniques. Focusing on activities as-
sociated with distinct arm gestures, the performance of theproposed method
is evaluated in two elaborate case studies.

5.1.1. Paper Scope and Background

Depending on the speci�c application, very di�erent types of activity recog-
nition are needed. As an example, consider a system designedto monitor the
overall physical activity level of a person. The idea behindsuch systems is to
provide general information about the e�ect of certain behavioural recommen-
dations or to estimate energy expenditure without having the patient admitted
to stationary care or a laboratory for observation. A wearable system deploy-
ing appropriate body-worn sensors can be used to collect this data. Obviously,
the type of information, that such systems need to deliver isnot about single,
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speci�c actions, but more about the overall level of activity. Often, the activity
level can be assessed by averaging parameters, such as mean acceleration of
speci�c body parts. In a way, this is a very simple form of activity recognition.

On the other side of the spectrum are applications, where reliable recogni-
tion on a more �ne-grained level is needed. Such applications may include e.g.
the monitoring of speci�c tasks and/or movements in a rehabilitation scenario,
the spotting of speci�c gestures for novel, more natural human computer in-
terface or the classi�cation of dietary intake gestures for an automated diet
monitoring system. Such recognition tasks are particularly di�cult, because
the relevant activities occur sporadically in between a large variety of other
activities. For example, in between the actual activity a user might fetch tools,
drink, chat with anther person or just scratch the head. As a consequence,
the task at hand can be described asactivity spotting. It is widely recognised
as a particularly complex domain of activity recognition and is still an open
problem.

The work described in this paper is part of a larger e�ort of our groups,
directed at this problem, e.g. [31, 34, 35]. It focuses on activities that are
associated with a characteristic arm gestures. For such activities, the paper
presents a novel gesture spotting method based on arm-worn motion sensors.
The method uses a natural partitioning of human motions. In order to achieve
a balance between precision and recall with reasonable computational e�ort,
the task is partitioned into a fast highly sensitive stage to pick up potentially
interesting signal segments and a more complex, highly selective second stage
to narrow down the selection and get rid of false positives.

Our method is primarily intended as part of a large activity spotting system
that uses additional information such as location, modes oflocomotion, e.g. sit-
ting standing, walking [14], supplementary location sensors [26] or information
on objects involved in the activity [27]. Nonetheless, we present experiments
on activities from two di�erent everyday life domains indic ating, that even on
its own our method achieves reasonable performance.

5.1.2. Related work

In contrast to isolated motion recognition that has been shown in various areas,
the spotting task is much more challenging. The di�culty of s potting speci�c
human motion events stems from a number of sources. These include, among
others, co-articulation, where consecutive gestures inuence each other [13],
as well as intra- and inter-person variability. Another challenge, the system
has to deal with, is the fact that the motion events to be spotted may only
occur sporadically, in a continuous data stream, while at the same time being
embedded into other, partly arbitrary movements (called zero class). These
movements however are inherently di�cult to model, due to th eir complexity
and unpredictability. As a consequence, conventional recognition schemes for
continuous classi�cation, such as Hidden Markov Models (HMMs) are not di-
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rectly applicable for our recognition task, since they relyon appropriate zero
class models. Consequently, we cannot take advantage of theimplicit data seg-
mentation capabilities, that HMMs provide. Moreover, we have to deal with
the fact, that motion events are typically very short. This m eans that for any
explicit segmentation-based recognition, exact localisation of event boundaries
is important.

The recognition of gestures has been studied extensively over years and
many approaches have been proposed to tackle the diverse problems. In general,
these approaches can be broadly categorised in either of thetwo following
categories: Gesture recognition, requiring external infrastructure and gesture
recognition, focusing on wearable instrumentation.

The �rst category is dominated by vision-based motion recognition, using
a single or multiple cameras. While an exhaustive review of literature is be-
yond the scope of this work, we exemplary indicate related works. Starner [32]
proposed an approach for American Sign Language recognition, Campbell and
Bobick [10] developed a system for recognising classical ballet steps, Yamato
et al. [37] worked on the recognition of di�erent tennis strokes, Brand et al. [7]
targeted T'ai Chi movements, Lee and Kim [20] dealt with typi cal gestures
for interacting with a computer and Rao and Shah [29] aimed atmanipulative
gestures. Further literature on vision-based motion capture and recognition
can be found in [24, 30, 36].

More recently the use of wearable instrumentation for gesture recognition
has gained much attention mainly due to the success in sensorminiaturisa-
tion. Various approaches dealing with the recognition of activities or events
have been presented. Chambers et al. [11] targeted Kung Fu moves and Ben-
basat [5] focused on the recognition of \atomic" gestures. Kern et al. [18] looked
at activities, such as keyboard typing, writing on a white-board and shaking
hands. Cakmakci et al. [9] tried to identify when a person waslooking at the
watch. Bao [4] aimed at typical household activities including vacuuming, fold-
ing laundry, watching TV or brushing teeth. Lukowicz et al. [ 23] concentrated
on workshop activities including sawing, hammering, drilling, and �ling. Bras-
hear et al. [8] dealt with gestures for American Sign Language and Lementec
and Bajcsy [21] worked on the recognition of gestures used toinstruct pilots
after landing.

Although many motion recognition approaches exist, few aredealing with
the spotting task itself. Deng and Tsui [12] proposed a method for spotting
gestures in continuous data. Their approach makes use of an HMM-based ac-
cumulation score, that supports endpoint detection of a particular gesture
in a continuous data stream. Based on a potential endpoint their algorithm
searches for a corresponding start point using the viterbi algorithm. While this
approach seems promising, it has been evaluated solely for the recognition of
two-dimensional trajectories (Arabic numbers). Lee and Kim [20] developed a
method deploying HMMs directly, to spot gestures in a continuous stream of
sensor data. They introduced the concept of a threshold model that calculates
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the likelihood threshold of an input pattern and provides a con�rmation mech-
anism for the provisionally matched gesture patterns. The threshold model is a
weak model for all trained gestures and is constructed from all existing gesture
models. Lukowicz et al. [23] demonstrated continuous, on-line motion recog-
nition by partitioning the incoming data using an intensity analysis based on
the signals of two microphones exploiting the fact that the movements to be
recognised are accompanied with a particular sound.

While the �rst two approaches made use of the implicit segmentation ca-
pabilities of HMMs, the third approach used an explicit segmentation step to
facilitate spotting. We believe that explicit gesture segmentation can be very
helpful and e�cient to facilitate the spotting task. Lee and Yangsheng [19]
developed a system for online gesture recognition using HMMs. They were
among the �rst researchers to use segmentation as a pre-processing step to ges-
ture recognition and were able to recognise 14 di�erent gestures online. While
they proposed acceleration thresholds for segmentation, they used a simple
velocity-based segmentation relying on the fact that theremust be short pauses
between two consecutive gestures. They successfully demonstrated good recog-
nition performance for the trained gestures, however they did not deal with
the rejection of non-relevant movements. Kahol et al. [16] proposed a gesture
segmentation algorithm which employs a hierarchical layered structure to rep-
resent the human anatomy. The algorithm used low-level motion parameters to
characterise motion in the various layers of this hierarchyand was able to pre-
dict segmentation boundaries based on pro�les, generated from segmentation
results. The segmentation, in turn, was provided by observers, who manually
segmented training data. In a recent work, Kahol et al. [15] used the con-
cept to fully document every motion in dance activities using a Vicon camera
system. Wang et al. [33] presented an approach for automatically segment-
ing sequences of natural activities into atomic sections and clustering them.
The segmentation was based on �nding the local minimum of velocity and local
maximum of change in direction. The minimum below and the maximum above
the certain threshold were selected as segment points. The limitation of their
approach is that it can only segment and label continuous human gestures,
but not spot them. Liang and Ouhyoung [22] used a temporal segmentation
based on the discontinuity of the movements according to four gesture param-
eters and HMMs to perform real-time continuous gesture recognition of sign
language. Their approach allows the recognition of gestures that were de�ned
in vocabularies only, thus rejection of non-gesture patterns is not considered.
Morguet [25] proposed a two-step approach to the continuousrecognition of
gestures in video sequences. In a �rst step, a simple segmentation algorithm
was used to identify start and end points of potentially meaningful segments.
This segmentation process used a threshold on a speci�c motion parameter in
conjunction with simple rules to obtain valid segments. These segments were
then classi�ed in isolation. However, this approach cannotreject non-gesture
patterns that are falsely retrieved in the �rst stage.
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5.1.3. Paper Contributions and Organisation

As stated in the introduction, the work presented in this paper is part of a
large e�ort towards reliable spotting of complex activitie s using simple on-body
sensors. It focuses on the recognition of gestures, that build the basis for the
inference of more abstract activities. The primary aim is to support complex
activity spotting systems rather then to develop an activit y spotting system
based solely on arm gestures. Nonetheless, we show how, for suitable domains,
good performance can be achieved without any additional information.

Within this scope the paper makes the following contributions:

1. It presents a novel, two-stage gesture spotting method based on body-
worn motion sensors. The method is speci�cally designed towards the
needs and constraints of activity recognition in wearable and pervasive
systems. This includes a large null class, lack of appropriate models for
the null class, large variability in the way gestures are performed and a
variable gesture length. It also refrains from excessivelycomputationally
intensive operations such as correlations over large data sets or com-
plex searches. Instead, it uses a natural partitioning of human motions,
combined with a simple parametrisation scheme as a computationally
cheap preselection stage that identi�es potentially interesting data sec-
tions. These sections are then reevaluated using HMMs to reduce the
number of classi�cation errors. This combination of a cheap, highly sen-
sitive initial stage with a highly selective second stage iswhat makes our
approach unique and well suited to the intended domain.

2. The paper describes the veri�cation of the proposed method on two sce-
narios that together comprise of nearly a thousand relevantgestures.
The �rst one, interaction with di�erent everyday objects, i s part of a
wide range of wearable systems applications. The second one, food in-
take, is a highly specialised application motivated by the needs of a large
industry dominated health monitoring project. In both cases studies we
arrive at recall values between 80% and 90% and a precision ofover 70%.
The signi�cance of these case studies and results is twofold. First, they
con�rm the soundness of our approach. Second they are a strong indica-
tion for the feasibility of reliable activity spotting usin g wearable sensors,
in particular, since the approach presented in this paper ismeant to be
used as part of a large system that uses other information to further
improve the results.

As indicated in the related work section, two-stage activity spotting ap-
proaches have been tried before. However, to our knowledge,the speci�c ap-
proach described in this paper, with its focus on the peculiarities of activity
spotting using simple sensors and wearable systems is novel. Taking into ac-
count the results achieved in our case studies it representsa signi�cant contri-
bution to the �eld.
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Paper Organisation In Section 2 of the paper, we introduce our two-stage
spotting approach. In Section 3, we describe the case studies used to validate
our approach. In Section 4, we focus on implementation details of the spotting
algorithm and in Section 5, we detail the experimental setupto acquire sen-
sor data for the case studies. In Section 6, we �nally presentour evaluation
results. In Sections 7 and 8, we discuss the results and highlight future work,
respectively.

5.2. Spotting Approach

Our two-stage spotting approach consists of a preselectionstage (1st stage)
and a classi�cation stage (2nd stage) as shown in Figure 5.1.The task of the
preselection stage is to localise and preselect sections inthe continuous signal
stream, likely to contain relevant motion events. These candidate sections are
then passed on to the classi�cation stage and are classi�ed in isolation using
appropriate classi�ers.

Candidate
sections

Preselection
stage

Classi�cation
stage

Inertial
sensor
data

Identi�ed
motion
event

Figure 5.1. Sensor data ow through the two-stage recognition framewor k.

The preselection of sections in a continuous signal stream can be considered
as a search problem. In a naive approach, the search may be performed on all
possible sections in the data stream. The major problem of this exhaustive
approach is its computational e�ort. To reliably capture hu man motions with
inertial sensors, the sensors are usually sampled with up to100 Hz. Considering
that a relevant motion event may take several seconds, the above mentioned
search strategy would require to check a large number of sections.

Obviously, one solution to reduce the complexity is to applya coarse search,
where not all but only certain sections in the continuous signal stream are
considered for the search. One way to implement such a coarsesearch is to
partition the signal stream into segments which are signi�cantly longer than
a single sampling interval and to consider the segment boundaries as possible
start/end points of the sections to be searched. However, anarti�cial parti-
tioning is likely to miss the exact boundaries of the relevant motion events
contained in the data stream. This makes the recognition more complicated,
since sections may contain only parts of the relevant motionevent as well as
other motions.
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We propose to use a natural partitioning of the data into 'motion seg-
ments'. Inspired by the taxonomy of Bobick [6] these motion segments are
described as non-overlapping, atomic units of human movement, characterised
by their spatio-temporal trajectories. Assuming that a mot ion event can be
subdivided into a sequence of motion segments, we can obtaina natural, non-
ambiguous partitioning of the overall motion with the start and end of the
motion events corresponding to the start/end of a speci�c motion segment.
Thus, the search can be constrained to those sections, whoseboundaries co-
incide with the boundaries of the motion segments. Table 5.1summarises the
terminology used in this work.

For the partitioning task, motion parameter(s) were used that represent
the motion event closely. The number and types of motion parameters to be
used is speci�c to the motion event to be recognised. For arm-related motion
events, they include e.g. relative orientation information, such as joint angles
between the lower and the upper arm, absolute orientation information of the
arm segments to an earth-�xed reference frame, or simply theraw signals from
the sensors attached to the arm segments.

While the preselection stage identi�es potential candidate sections, the clas-
si�cation stage is used to eliminate those sections that have been falsely re-
trieved in the preselection stage. This is achieved by individually classifying
the candidate sections using HMMs and comparing the classi�cation result to
the result of the preselection stage.

The main motivation behind this two-stage approach is to reduce the com-
plexity of the spotting task, by constraining the search space within the con-
tinuous data stream and by applying a simple similarity analysis to preselect
potential sections. The subsequent classi�cation stage isused to make the
recognition more robust and retain only relevant sections.

5.3. Case Studies

In order to discuss the implementation of our approach, we considered the
spotting of typical, everyday-life gestures in a continuous data stream from
body-worn inertial sensors. Speci�cally, we investigatedtwo di�erent case stud-
ies:
Case study 1 deals with the spotting of diverse object interaction gestures,
reecting common activities of daily living. The detection of such gestures is
considered as key component in a context recognition system, to monitor com-
plex human activities. Furthermore, such gestures may facilitate more natural
human-computer interfaces.
Case study 2 focuses on dietary intake gestures. The spotting of body motions
related to human intake are expected to become one sensing domain of an au-
tomated dietary monitoring system [1]. Although the automatic determination
of exact type and amount of all foods is rather visionary, we believe that an
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Table 5.1. Applied terminology of human motion in this work.

Term Description

Motion segment Represents atomic, non-overlapping unit of human mo-
tion that can be characterised by their spatio-temporal
trajectory.

Motion event Span a sequence of motion segments. A gesture can
be considered as a particular class of motion events,
mainly involving movements of the arms and trunk.

Activity Describes a situation, that may consist of various mo-
tion events. Thus, it refers to higher-level context.

Signal segment A slice of sensor data that corresponds to a motion
segment.

Candidate section A slice of sensor data that may contain a gesture.

assistive system based on di�erent sensors is conceivable.Hence, the gestures
included in this study refer to frequently used human feeding motions. Detect-
ing such gestures reveals information about the timing of nutrition events, e.g.
breakfast or lunch and on the category of the food item, e.g. asoup is fed with
a spoon, a glass, cup or bottle is usually used for drinking.

Figure 5.2 and Figure 5.3 illustrate the gestures that we aimed to recog-
nise (relevant gestures) in each case study (see Table 5.2 for a brief description).
All relevant gestures are characterised by distinctive movements of the left or
right arm. While in case study 1 only movements from the right arm and trunk
were used to detect the gestures, case study 2 uses information from both arms
as well as from the trunk.

5.4. Spotting Implementation

The implementation of our two-stage spotting approach is detailed in this sec-
tion. The �rst stage preselects candidate sections and the second stage re�nes
the preselection (see Figure 5.4).

5.4.1. Preselection Stage

This section details the segmentation scheme used for the initial partition-
ing of the continuous signal stream into motion segments, the search strategy
and similarity measure applied to identify potential sections and �nally, the
selection of candidate sections.
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Table 5.2. Description of the relevant gestures in case study 1 and 2. Unless oth-
erwise noted, all gestures were conducted with the right arm pointing downwards at
start/end in case study 1 and with both arms at rest on table at start/end in case
study 2.

Gesture Description

C
as

e
S

tu
dy

1

Light button (LB) Press light button to turn lights on.

Handshake (HS) Greet person by shaking hands.

Phone up (PU) Pick up receiver. Start position: arm resting on leg,
end position: hold receiver to ear.

Phone down (PD) Put down telephone receiver: End position: arm
resting on leg.

Door (DR) Turn door knob and open door of cabinet.

Coin (CN) Take out purse from right back pocket of trousers -
open purse with right hand - take coin and insert
it into slot of vending machine - close purse with
right hand - put purse back into pocket.

C
as

e
S

tu
dy

2

Cutlery (CL) Meal intake of Lasagne using fork and knife. Fork
tap, loading and manoeuvring to mouth and back
with left hand.

Drink (DK) Pick up cup from table - take a sip - put cup back
on table.

Spoon (SP) Meal intake of cereals or soup using a spoon. Spoon
loading and manoeuvring to mouth and back.

Hand (HD) Meal intake of bread slice or chocolate bar using
the hand only: Moving the left hand to mouth and
back.
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(a) Handshake

(b) Light button (c) Door

(d) Phone

(e) Coin

Figure 5.2. Visualisation of the relevant gestures (acted) as performed in case
study 1.
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(a) Cutlery

(b) Drink

(c) Spoon

(d) Hand

Figure 5.3. Visualisation of the relevant gestures (acted) as performed in case
study 2.

Motion segment partitioning

The task of the segmentation algorithm was to partition a motion parameter
into non-overlapping, meaningful segments. This task can be considered as
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Motion
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Section
similarity

search

Selection of
candidate
sections

HMM-based
section

classi�cation

1. Preselection stage 2. Classi�cation stage

Inertial
sensor
data

Identi�ed
gesture
sections

Figure 5.4. Detailed structure of the two-stage recognition framework .

a time-series segmentation problem, which has been extensively studied in
many application domains. An excellent review of time series segmentation
approaches was provided by Keogh et al. [17].

As motion parameter, we used the pitch and the roll of the lower arm, which
are the angle of the lower arm segment to the horizontal planeand the rotation
angle with the rotation axis along the limb of the lower arm (see Figure 5.5).

These angles have been chosen mainly for the following reasons: Many
movements of the entire arm typically involve movements of the lower arm as
well. Furthermore, the signals of the lower arm orientation (and in particu-
lar pitch and roll) correlated well with our visual percepti on of the gestures.
Despite good initial results by using the pitch in case study1, the roll was ad-
ditionally investigated in case study 2. For certain gestures the segmentation
based on the roll matched the gesture boundaries better. This can be explained
by the typical feeding motion (moving the hand with a tool to t he mouth),
involved in the gestures of case study 2.

Although relative orientation information between the low er arm and the
upper arm segment, such as joint angles would generally be well suited for
the partitioning of the signal streams, we found that the estimation of those
angles using inertial sensors attached to the arm segments can be prone to large
errors. The two major sources of errors were inaccurate orientation estimation
of the involved sensors (mainly due to magnetic disturbances) and the loose
attachment of the sensors to the arm segments. Attachment issues make the
sensors susceptible to displacement while moving the arm. Conversely the pitch
and roll of the lower arm could be derived very robustly. The estimation of these
angles from raw sensor data was less prone to magnetic disturbances than other
orientation angles, speci�cally the orientation in the hor izontal plane.

For the segmentation task, we used the Sliding-window and Bottom-Up
algorithm (SWAB) introduced by Keogh et al. [17]. Based on the evaluation of
typical test data, we found the algorithm to be well suited for our application.
SWAB combines the advantages of a precise bottom-up segmentation scheme
with those of a sliding window algorithm. This allows the algorithm to be used
on-line while keeping a global view on the data.

The algorithm kept a small bu�er of the signal data. A bottom- up seg-
mentation was applied to the data in the bu�er. From the resul ting signal
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Pitch
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Roll
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Figure 5.5. Orientation angle 'pitch' and 'roll' of the lower arm segmen t.

segmentation, the segment with the oldest data was extracted from the bu�er
and new data was added using the sliding window approach. This procedure
was repeated as long as new data was available, potentially forever.

The bottom-up partitioning of each bu�er of length n started from the ar-
bitrary segmentation of the signal into n/2 segments. Next, the cost of merging
each pair of adjacent segments was calculated and the lowestcost pair in the
bu�er was iteratively merged. As the algorithm iterates, more signal segments
were merged until all adjacent segments in the bu�er exceeded a cost thresh-
old when merged. Figure 5.6(a)-5.6(b) depicts the segmentation process of
the bu�ered signal for di�erent segmentation steps (iterat ions). At iteration 0
the �ne-grained initial partitioning can be seen. The �nal s tate is depicted in
Figure 5.6(b). The sliding-window algorithm of SWAB report ed the left-most
segment from the bottom-up bu�er and added new data accordingly. The pro-
cedure was restarted with this new data in the bottom-up bu�er.

The cost metric for merging two segments was based on the error of approx-
imating the signal with its linear regression (residuals) in the bounds de�ned
by the merged segment. This method can be explained as follows: When the
pair of segments di�er strongly in its signal shape, the approximation of the
merged segments incurs large residuals. Hence it is less likely that the segments
belong to the same motion segment. We used the squared sum of the residuals
in the bounds of the merged segment as cost function.

To ensure that the algorithm provided a good approximation of the signal,
a small cost threshold was required, typically leading to a large number of
segments for any of the relevant gestures. These segments did not correspond
well to the small number of visually perceived sub-movements of the gesture.
As a solution to this problem, we merged adjacent segments, as created by
the SWAB-algorithm, if their linear regressions had similar slopes. As result
of this extension we obtained motion segment boundaries. Figure 5.7 depicts
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Figure 5.6. Segmentation of an example signal stored in the bottom-up bu �er at
di�erent algorithm iterations. The 'cross'-symbols indic ate segment boundaries.

an example of the segmentation steps, based on the 'DK' gesture that uses the
pitch angle as segmentation signal.

For each gesture an individual segmentation parameter could be chosen.
Person-speci�c training was used to accommodate for the dominant body side.
In the investigated case studies, the body side was �xed. Table 5.3 summarises
the �nal choices made in our implementation.

Table 5.3. Motion parameter selection for the SWAB algorithm.

Gesture SWAB mo-
tion parame-
ter

Body side
used in stud-
ies

S
tu

dy
1 Light button (LB), Handshake

(HS), Phone up (PU), Phone
down (PD), Door (DR), Coin
(CN)

pitchLA (t) a right

Cutlery (CL) roll LA (t) a left
Drink (DK), Spoon (SP) pitchLA (t) right

S
tu

dy
2

Hand (HD) pitchLA (t) left

aPitch, roll, and yaw are Euler angles representing rotation s of an object in 3-dimensional
Euclidean space. The orientation of pitch and roll angles ar e described in Section 5.4.1 and
Fig. 5.5. The yaw angle corresponds to absolute orientation in the horizontal plane.

The mean number of segmentation points per gesture for the data sets of
both case studies are shown in Table 5.4. The ratio of segmentation points to
the total recorded samples indicates the achieved reduction in search e�ort.
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Figure 5.7. Segmentation of the 'DK'-gesture using the pitch of the lowe r arm as
segmentation signal. The cross symbols ('x') correspond to segmentation boundaries
obtained from the SWAB-algorithm. The circles ('o') highli ght the remaining seg-
mentation points (motion segment boundaries) based on the proposed extension of
the segmentation algorithm.

Table 5.4. SWAB segmentation results. The SWAB segmentation points co rrespond
to the total number of segmentation points for the entire dat a sets. The ratio of
segmentation points by total recorded samples indicates the reduction in search e�ort
achieved by the preselection stage.

Segmentation category Case Study 1 Case Study 2

Mean number of SWAB segmenta-
tion points per gesture

15506 13020

Ratio of segmentation points per
gesture by total recorded samples

2.2% 0.77%

Section similarity search

A coarse search based on the motion segment boundaries was used to �nd
sections that contain relevant gestures. The search was performed by consid-
ering each motion segment endpoint as potential end of a gesture. For each
endpoint, potential start points were derived from preceding motion segment
boundaries. The search was performed for each gesture separately. To con�ne
the search space, we introduced two constraints on the sections to be searched.
These constraints were adapted to the gesture by training data:

1. For the actual length T of the section we constrainedTmin � T � Tmax ,
where Tmin and Tmax denote the minimum and maximum length of the
section to be considered.
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2. For the number of motion segmentsnMS in the actual section, we selected
NMS;min � nMS � NMS;max where NMS;min and NMS;max corresponds
to the minimum and maximum number of motion segments to be con-
tained in the section, respectively.

As search criterion, we used the normalised Euclidean distance1 given in
Eq. 5.1, wheref P S denotes theNF -dimensional feature vector of the preselec-
tion stage, derived from the section under consideration.

We used simple single-value features, such as minimum and maximum sig-
nal values of the lower and upper arm pitch and roll, sum of signal samples,
the duration of the gesture and the number of motion segmentsin the section
under consideration. In case study 2, the minimal distance between the hand
and estimated head position was additionally used.

The parameters� ik and � ik represent the mean and the standard deviation
of the i-th element of the feature vector of gestureGk . These were computed
from training data.

d(fP S ; Gk ) =

vu
u
t

N FX

i =1

�
f P S i � � ik

� ik

� 2

; fPS = [ f P S 1 ; ::; f P S N F
] (5.1)

The normalised Euclidean distance provided a measure of howsimilar the
motion pattern given in the section were to a speci�c gesture. During the
evaluation of all possible start points for one endpoint, only the section with
the minimal distance were retained.

If the distance d(fP S ; Gk ) was smaller than a gesture-speci�c threshold
value dmin (Gk ), the section under investigation was considered to contain ges-
ture Gk . If the condition was satis�ed for more than one gesture, thesection
was considered to contain either one of the corresponding gestures. Depending
on the application such collisions need to be checked and handled.

Selection of candidate sections

Figure 5.8 schematically shows the collision of two sections obtained by the
section search procedure. These overlapping candidate sections were resolved
by selecting sections with the smallest similarity values for every occurring
collision. In this way non-overlapping candidate sectionswere obtained for a
particular gesture.

1The normalised Euclidean distance corresponds to the Mahal anobis distance where the
covariance matrix is a diagonal matrix.
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Figure 5.8. Overlapping candidate sections.

5.4.2. Classi�cation Stage

In the classi�cation stage, we used Hidden Markov Models (HMMs), which
have long been used in speech recognition, due to their ability to cope with
temporal and spatial variations of input patterns [28].

For our evaluation, we considered left-right models with eight continuous
features. The features used for the classi�cation di�er from the features used in
the preselection stage. While in the preselection stage, data sections were char-
acterised by single-valued features, such as the minimum and maximum signal
value and the duration of the section, the HMMs were fed with time-series
features derived from the candidate sections. Moreover, a separate de�nition
of the feature set was useful to address the classi�cation goal.

The following features were used for the HMM-based classi�cation stage:

� Pitch and roll angles from the lower arm sensors.

� Pitch and roll angles from the upper arm sensors.

� Derivative of the acceleration signal from the lower arm sensor, with the
measurement orientation along the pitch angle measurement.

� The cumulative sum of the acceleration from the lower arm (orientation
as before).

� Derivative of the rate of turn signal from the lower arm sensor, with the
measurement orientation along the roll angle measurement.

� The cumulative sum of the rate of turn from the lower arm (orientation
as before).
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We found that all gestures could be modelled using single Gaussian models.
Our gesture models consisted of 4 to 10 states. The choice of the states for each
gesture model reects a trade-o� between the complexity of the gesture on the
one hand, and available training data, which is necessary toestimate the model
parameters properly, on the other. Although some gestures may require more
states, we achieved good recognition results with our models, as shown below.

5.5. Experiments

For the experimental evaluation of our approach, we recorded a variety of
di�erent data sets using a commercially available measurement system2 with
�ve inertial sensors placed on the body (see Figure 5.9). Sensors were attached
to the wrists, upper arms and on the upper torso.

Upper arm sensors

Upper torso sensor

Lower arm sensors

Figure 5.9. Sensor placement for gesture recording.

Using this setup, we independently recorded continuous data sets from one
female and three male right-handed subjects, aged 25 to 35 years in both case
studies. In case study 2 food intake was recorded in two sessions on di�erent
days. The subject data sets (S1.1-S1.4 for case study 1 and S2.1-S2.4 for case
study 2) were used for testing of our spotting approach. Additional person-
speci�c data was used for training purposes. The purpose of the studies was
explained to the subjects. However, the subjects were askedto perform the
movements as natural as possible while wearing the sensors.

In order to obtain data sets with a realistic zero class, we did not set con-
straints to the movements of the subjects, except that we asked the subject to
perform the relevant gestures according to the descriptions given in Table 5.2.

2http://www.xsens.com
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Moreover, to enrich the diversity of movements and to avoid wide intervals
constituting no motion, we de�ned eight additional gestures to be carried out
during the recording which were similar to those gestures weintended to spot.
In total 2 hours of motion data were recorded for case study 1,and 4.7 hours for
case study 2, with only 25.4% and 34.7% of the data sets containing relevant
gestures for case study 1 and 2, respectively (see Table 5.5).

Table 5.5. Statistics of the recorded data sets.

Feature Case Study 1 Case Study 2

Total duration of all
data sets

7185 Sec (2.00 Hours) 16848 Sec (4.68 Hours)

Share of relevant ges-
tures in data sets

25.4% (1826 Sec) 34.7% (5846 Sec)

5.6. Results

For the evaluation of our approach, the evaluation metricsPrecision and Recall
were used. These metrics were derived as follows:

Recall =
Recognised Gestures
Relevant Gestures

P recision =
Recognised Gestures
Retrieved Gestures

Relevant gestures are those gestures that have been conducted by the sub-
ject, while retrieved gestures represent the sections thathave been reported
in either preselection stage or classi�cation stage. A recognised gesture is a
relevant gesture that has been retrieved. Furthermore, we derived the number
of insertions (sections that have been retrieved but do not contain a relevant
gesture), and the number of deletions (relevant gestures that have not been re-
ported). Figure 5.10 illustrates the di�erent evaluation m etrics schematically.
Set A corresponds to the relevant gestures, set B to the retrieved gestures after
the preselection stage (PS) and set C to gestures retained after the classi�ca-
tion stage (CS). The depicted subsets (1 to 5) reect the metrics used in this
paper.

5.6.1. Preselection Stage

For the spotting of sections likely to contain motion events, appropriate thresh-
old values dmin (Gk ) were identi�ed for each gesture Gk , by evaluating the
performance of the preselection stage on the training data.In general, we ob-
served that the larger the threshold value, the more relevant gestures were
retrieved. However, at the same time, the total number of falsely retrieved ges-
tures increased. The precision-recall curves given in Figure 5.11 for the gesture
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3
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1 + 2
5
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2
4 + 5

Figure 5.10. Visualisation of the applied evaluation metrics for the pre selec-
tion (PS) and classi�cation (CS) stages.

'HS' from case study 1 and Figure 5.12 for the gesture 'SP' from case study 2
illustrate this trade-o� for the test data sets (S1.1 to S2.4) respectively. More-
over, the individual curves in Figures indicate the variation of the detection
performance among the subjects.

The vertical lines towards the maximum recall in Figure 5.12can be seen as
limitation of the similarity search. For these gestures, some instances were not
successfully detected due to variation between training and testing gestures.

Based on such precision-recall curves derived from training data, appro-
priate threshold values can be chosen considering application-speci�c require-
ments. For further evaluation of our approach, we set the thresholds for the
individual gestures such, that at least 90% of the relevant gestures (gestures
that have been conducted) were retrieved in case study 1 and 70% of the
relevant in case study 2. This corresponds to a recall value of 0.90 and 0.70
respectively.

Table 5.6 �nally summarises the results of the preselectionstage for both
case studies. For an overall recall value larger than 0.90, we obtained an overall
precision value of 0.47 in case study 1. In case study 2, with arecall larger
than 0.70, precision dropped to 0.57. The low precision indicated many falsely
retrieved sections, that did not contain a relevant gesture(insertions). As can
be seen, the spotting of simple gestures such as 'HS' and 'HD'tend to cause
more insertions (smaller precision values) than the others.

5.6.2. Classi�cation Stage

We used HMMs to re�ne the spotting results from the preselection stage.

Model Training and Initial Testing

To accommodate for varying quality in the training process, that is due to
random initialisation of certain HMM parameters, we trained 10 instantiations
of each model and kept the one with the highest score.
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Figure 5.11. Precision-recall curves for the 'HS'-gesture from case study 1, based
on the evaluation of data sets from four di�erent test subjec ts (S1.1-S1.4).

For initial model validation, isolated recognition was performed on the test
data based on manually added labelling information. From 258 gestures in case
study 1, 254 were classi�ed correctly, leading to a recognition rate of 98.4%.
For case study 2, a recognition rate of 97.4% was reached from784 gestures.
The results indicate that the models represented the gestures well and were
able to recognise the di�erent gestures in the test set accurately.

Classi�cation of Candidate Sections

The trained models were used to classify the candidate sections that have
been retrieved in the preselection stage. Only those sections were retained, for
which the recognition of preselection and classi�cation stages agreed. Table 5.7
presents the �nal results of this stage for both case studiesand all subjects.

The classi�cation stage correctly recognised most of the relevant gestures
that have been retrieved in the preselection stage (the average recall value was
slightly reduced from 0.96 to 0.93 for case study 1 and from 0.80 to 0.79 for
case study 2). The classi�cation stage discarded many sections that have been
falsely retrieved, leading to much higher precision values, especially in case of
the 'HD', 'HS' and 'LB' gestures. Finally, Figure 5.13 depic ts the summarised
spotting results for all gestures of the case studies 1 and 2.
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Figure 5.12. Precision-recall curves for the 'SP'-gesture from case study 2, based
on the evaluation of data sets from four di�erent test subjec ts (S2.1-S2.4).

5.6.3. Extensions of the classi�cation stage

Several options exist in which our spotting approach can be extended. One
possibility was to include a zero-class model in the classi�cation stage. The
modelling of the zero-class is a challenging and yet unsolved problem. We eval-
uated the use of two di�erent zero-class models as extensionof the classi�cation
stage. These extensions propose no viable elements of our spotting approach,
but rather indicate directions of further research. The preliminary results of
this investigation are shown in this section.

In case study 1 we evaluated the performance of a zero-class model that is
extracted from all relevant gesture models, following the approach presented
by Lee and Kim [20]. This modi�ed classi�cation stage yields a total recall
performance of 0.81 (without threshold model: 0.93) and a total precision
of 0.82 (without threshold model: 0.74). In direct comparison to the classi-
�cation without the threshold model, a further increase of t he precision was
achieved, however at the cost of decreased recall. Figure 5.13 shows the results
graphically.

In case study 2, we evaluated the spotting performance usinga zero-class
model that was constructed on the basis of additional gestures that were
carried out by the subjects. An equal number of the gestures was used to
build one additional HMM. This garbage model was included inthe classi�ca-
tion stage. The modi�ed classi�cation stage yielded a total recall performance
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Table 5.6. Evaluation results of preselection stage.

Case Study 1 Case Study 2
HS CN DR LB PU PD Total CL DK SP HD Total

Relevant a 43 43 43 43 43 43 258 196 165 186 153 700
Retrieved a 159 64 90 97 63 65 473 278 199 196 310 983
Recognised a 41 41 41 40 42 43 248 146 138 154 125 563
Insertions a 118 23 49 57 21 22 290 132 61 42 185 420
Deletions a 2 2 2 3 1 0 10 50 27 32 28 137
Recall 0.95 0.95 0.95 0.93 0.98 1.0 0.96 0.74 0.84 0.83 0.82 0.80
Precision 0.26 0.64 0.46 0.41 0.67 0.66 0.47 0.53 0.69 0.79 0.40 0.57

aSee Figure 5.10 for corresponding description of evaluatio n metrics.

Table 5.7. Spotting results after classi�cation (2nd stage).

Case Study 1 Case Study 2
HS CN DR LB PU PD Total CL DK SP HD Total

Relevant a 43 43 43 43 43 43 258 196 165 186 153 700
Retrieved a 57 61 58 41 47 65 329 225 155 163 209 752
Recognised a 41 41 41 31 42 43 239 146 137 145 124 552
Insertions a 16 20 17 10 5 22 90 79 18 18 85 200
Deletions a 2 2 2 12 1 0 19 50 28 41 29 148
Recall 0.95 0.95 0.95 0.72 0.98 1.0 0.93 0.74 0.83 0.78 0.81 0.79
Precision 0.72 0.67 0.71 0.76 0.89 0.66 0.74 0.65 0.88 0.89 0.59 0.73

aSee Figure 5.10 for corresponding description of evaluatio n metrics.

of 0.78 (without garbage model: 0.79) and a total precision of 0.77 (without
garbage model: 0.73). Compared to the results of the classi�cation without the
garbage model this indicates an improvement of precision atalmost constant
recall.

Both concepts indicate that classi�cation improvements with zero-class
models can be achieved, however further work in this area is needed.

5.7. Discussion

Hidden Markov Models (HMMs) have proven to be applicable forrecognition
tasks in a variety of application domains, including gesture classi�cation from
inertial body-worn sensors. However, the spotting of gestures in a continuous
data stream with HMMs is problematic due to their complexity and require-
ment for a zero-class. The similarity-based search in the preselection stage
of our approach presents an elegant way to avoid the explicitmodelling of a
zero-class. In the HMM-based classi�cation we exploit the competition of all
trained models to select the most probable one. This requires that more than
one gesture needs to be included in the classi�cation stage,which can be seen
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Figure 5.13. Summary of the total spotting results for the preselection ( PS) and
classi�cation (CS) stages in case study 1 and 2. Additionall y, the results of two
extensions, discussed in Section 5.6.3, are shown.

as a limitation of our approach. However, for most applications, the spotting
of several di�erent motion events is aimed. Moreover, an explicit zero-class
model can be added, when available, to improve the recognition. Initial results
for two di�erent zero-class extensions have been presentedin this work.

The similarity-based search procedure used in the preselection stage permits
di�erent feature sets for individual gestures. Thus, the search can be tailored to
the individual characteristic of a gesture. For example, consider game control
gestures, as in [3], that are conducted in the horizontal or vertical plane only.
Such gestures could be described more precisely by speci�c feature sets. This is
an advantage over many established classi�cation procedures, such as k-nearest
neighbour classi�ers or HMMs, which use the same features for all gestures to
be recognised.

The section similarity search can be regarded as a natural extension of the
frequently used sliding window approach for motion and activity detection, as
e.g. in [34]. We introduced a size-variable search window toaccommodate for
the variability in the length of gestures and used a dynamic step size given by
the segmentation points. While the trivial sliding window w as mainly used for
the detection of repetitive motions, such as hammering, theapproach presented
in this work was successfully evaluated for non-cyclic motion events in the two
case studies.

The problem of human gesture recognition depends largely onthe applica-
tion domain: In contrast to arti�cial gestures used for human-computer control
or repetitive motions in very speci�c activities, natural m otions in activities of
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daily living are more challenging to spot. This is due to the fact that control
gestures can be constructed to provide strong discrimination, that is typically
not the case for gestures being part of activities of daily living. Hence, such ges-
tures contain more intra- and inter-person variability, making the spotting task
more challenging. However, the presented results indicate, that our spotting
procedure performs well for these types of gestures.

In a related work of the authors, one-hand gestures, speci�cally constructed
for game control, were investigated [3]. The approach in that work di�ered from
the current work in �rstly, raw inertial sensor signals were used from a sensor
attached to a glove at the hand and secondly, the gestures were designed to aim
at discrimination and detection in a gaming scenario. In contrast, the current
work aimed at recognising natural everyday life gestures with large uctuations
in length and execution from using sensor data from the lowerand upper arm.
Consequently, with the use of HMMs, a more complex approach was deployed
in the current work to achieve the recognition.

The focus of the current work was to analyse the recognition performance
using person-speci�c training. The case studies were designed to incorporate
additional motions and gestures and maintain a low share of relevant gestures:
25.4% in case study 1 and 34.7% in case study 2. Both case studies evaluated
four subjects each. An initial insight into the subject-speci�c variability was
obtained from reviewing the precision-recall curves. However, a larger number
of users should be evaluated in future works, to study the uctuation in recog-
nition performance and investigate non-personalised detection models in more
depth.

The temporal phases of a gestures are onset, core and conclusion. Typically,
onset and conclusion are variable transfer states between consecutive gestures.
However, the core part is speci�c for a gesture. In the evaluated case studies
most of the gestures were acquired with a de�ned start and ending position,
but all contained a core part. For example, in the phone pickup gesture, the
user's hand moved towards the receiver, picked it up and moved the receiver
to the ear. While the movement may commence with the hand at anarbitrary
position, the core is preserved in order to successfully complete the activity. The
motion segments in the core phase and during the transitionsinvolve direction
changes in the segmentation signal. In our approach, segmentation points were
created at these positions. Based on the preselection feature set, the section
similarity search was used to test for gestures cores at every segmentation
point. Hence, we expect that by using the segmentation and search procedure,
gestures embedded in arbitrary transitions can be detected.

Looking at the individual results of case study 1 and case study 2, we ob-
serve lower spotting performance for those gestures included in case study 2.
We assume that this is due to higher intra-person variability of those ges-
tures. More speci�cally, we observed the following additional challenges for the
spotting of gestures: 1) di�erences in the size and consistency of food pieces,
2) additional degrees of freedom produced by the tools used for the food intake
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and 3) temporal aspects, such as the temperature change of the food and the
natural satiety of the subject developed during the intake session. To over-
come potential weaknesses in the spotting of gestures related to food-intake,
we argue that the recognition of such gestures can be enhanced by combining
di�erent sensing modalities to develop a dietary monitoring system [2].

We expect that the presented spotting approach can be applied to other
types of motion events. At the implementation level an appropriate motion
parameter must be selected. This motion parameter shall describe the major
properties of the motion event and lead to a reproducible anddistinctive motion
segmentation. We believe that this can be achieved for many applications.

5.8. Conclusion and Outlook

We conclude that our spotting scheme based on the concept of motion segments
is a feasible strategy for the identi�cation of motion events in a continuous sig-
nal stream. We demonstrated that our approach works well forarm-based mo-
tions, that are particularly di�cult to recognise due to the inherent complexity
of arm motions. Moreover, we have shown that our approach simpli�es the re-
jection of non-relevant gestures. We argue that our method is likely to facilitate
a wide range of real-life applications of context and activity recognition.
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Abstract

The paper reports the results of the �rst stage of our work on an
automatic dietary monitoring system. The work is part of a large
European project on using ubiquitous systems to support healthy
lifestyle and cardiovascular disease prevention. We demonstrate
that sound from the user's mouth can be used to detect that he/she
is eating. The paper also shows how di�erent kinds of food canbe
recognised by analysing chewing sounds. The sounds are acquired
with a microphone located inside the ear canal. This is an unob-
trusive location widely accepted in other applications (hearing aids,
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headsets). To validate our method we present experimental results
containing 3500 seconds of chewing data from four subjects on four
di�erent food types typically found in a meal. Up to 99% accuracy
is achieved on eating recognition and between 80% to 100% on food
type classi�cation.

6.1. Introduction

Healthy lifestyle and disease prevention are a major concern for large portions
of the population. Considering the worrying trend of sky-rocketing health care
costs and the ageing population, these are not just personalbut also impor-
tant socio-economic issues. As a consequence all concernedparties: individuals,
health insurance and governments are willing to spend considerable resources
on tools that help people develop and maintain healthy habits. In Europe a
considerable portion of research funding in this area is directed at mobile and
ubiquitous computing technology. Within this program our g roup is involved in
the 34 Million Euro MyHeart project that includes 35 medical , design, textile
and electronics related research institutions and companies.

The aim of the consortium is to develop schemes that combine long term
physiological monitoring and behavioural analysis with a personalised direct or
professional-observed feedback to help users reduce theirrisk of cardiovascular
disease. As is well known, the three main aspects that need tobe addressed
are stress, exercise and diet. In the project our group focuses on the later. Our
aim is to develop wearable sensing technology to aid the userin monitoring
his eating habits. In this paper we report on results of the �rst stage of this
work: using wearable microphones to detect and classify chewing sounds (called
mastication sounds) from the user's mouth.

6.1.1. Dietary monitoring

Dietary monitoring includes a variety of factors starting f rom the diet compo-
sition to frequency, duration and speed of eating, all of which can be relevant
health issues. Today such monitoring is almost entirely done `manually' by user
questionnaires. Electronic devices are at best used as intelligent log books that
can derive long term trends, calculate calories from entered data and give sim-
ple user recommendations. The collection and entry of the data has to be done
by the user which involves considerable e�ort. As a consequence, as anyone
who has ever attempted a diet knows, compliance tends to be very poor.

Since prevention involves the adaptation of a healthier lifestyle, long term,
quasi permanent monitoring (months or years) is needed to really make an
impact on the risk of cardiovascular diseases. Thus any, even very rudimentary,
tool that reduce the e�ort and interaction involved in data c ollection and entry
could make a big di�erence.
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6.1.2. Automating dietary monitoring

The ultimate goal of a system that precisely and 100% reliably determines
the type and amount of all and any food that the user has consumed is cer-
tainly more of a dream then a realistic concept. However, we believe that with
a combination of wearable sensors and a degree of environmental augmenta-
tion useful assistive systems are conceivable. On one hand,such systems could
provide a rough estimate on the food consumption much like many today's
physical activity monitoring devices provide only a rough guess of the caloric
expenditure. On the other hand, it could be used as an entry assistant that,
at the end of the day, would present the user with its best guess of when, how
much, and what he has eaten and ask him to correct the errors and �ll the
gaps.

Overall we imagine such a non-invasive dietary monitoring support system
to rely on the following three components:

1. Monitoring of food intake through appropriate wearable sensors. The
main possibilities are

(a) detecting and analysing chewing sounds,

(b) using electrodes mounted on the base of the neck (e.g in a collar)
to detect and analyse bolus swallowing,

(c) using motion sensors on hands to detect food intake related motions.

2. Monitoring food preparation/purchase through appropriate environmen-
tal augmentation. Here, approaches such as using RFID-tagsto recognise
food components or communicating with the restaurant computer to get
a description and nutrition facts of the order are conceivable.

3. Including user habits and high level context detection asadditional in-
formation sources. Here, one could accentuate the fact thateating habits
tend to be associated with locations, times and other activities. Thus in-
formation on location (e.g in the dining room sitting at the t able), time
of day, other activity (unlikely to eat while jogging) etc. p rovide useful
hints.

6.1.3. Paper contributions

In the paper we concentrate on the �rst component of the envisioned system:
food intake detection. Speci�cally, we consider the detection and classi�cation
of chewing sounds. To this end the paper presents the following results:

1. We show that good quality chewing sound signal can be obtained from
a microphone placed in the ear canal. Since much of the acoustic signal
generated by mechanical interaction of teeth and food during occlusion is
transmitted by bone conduction, these sounds are actually much stronger
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than the speech signal. At the same time the location is unobtrusive and
proved acceptable in applications such as hearing aids or recent high end
mobile phone headsets.

2. We show that chewing sequences can be discriminated from asignal
containing a mixture of speech, silence and chewing.

3. We present a method that detects the beginning of single chews in a
chewing sequence.

4. We show that chewing sound based discrimination between di�erent
kinds of food is possible with a high accuracy.

For the above methods we present an experimental evaluationwith a set of
four di�erent food products selected to represent di�erent categories of food
that might be present in a meal. The experiments consists of atotal of 650
chewing sequences, from 4 subjects that amount to a total of 3500 seconds of
labelled data. We show that recognition rates of up to 99% canbe achieved for
the chewing segment identi�cation and of between 80 and 100%for the food
recognition.

Overall, while much still remains to be done, our work provesthe feasibility
of using chewing sound analysis as an important component ina diet monitor-
ing system. An important aspect of our contribution is the fact that the type
of information derived by our system (what has actually beeneaten) is very
di�cult to derive using other means.

6.1.4. Related work

Activities of daily living are of central interest for high- level context-aware
computing. Information acquisition can be realised by distributing sensors in
the environment and on the human body. Realisation of intelligent environ-
ments have been studied, e.g. in the context of smart homes [16] and mobile
devices [9]. These works are generally focused on enhancingthe quality of life,
e.g. for independent living [15, 18]. Smart identi�cation systems have also been
developed [21] which may provide information associated tonutrition phases,
e.g. smart cups [2].

The interaction of chewing, acoustic sensation and perception of textures
in food has been studied intensively in food science. Work inthis area has been
dedicated mainly to the relation of chewing sounds on the sensation of crispness
and crunchiness. This was done by investigating air-conducted noises produced
during chewing [25, 27] or by instrumental monitoring of thedeformation under
force [5, 7, 11, 12] and studying correlation with sensory perception [23, 26].
The loudness of a foodstu� during deformation depends mainly on the inner
structure, i.e. cell arrangement, impurities and existingcracks [1]. Wet cellular
materials, e.g. apples and lettuce, are termed wet crisp since the cell structures
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contain uids whereas dry crisp products, e.g. potato chips have air inclu-
sions [8]. A general force deection model has been proposed[28] interpreting
the acoustic emissions as micro-events of fracture in brittle materials under
compression.

Initially Drake [7] studied the chewing sound signal in humans when chew-
ing crisp and hard food products. It was found that a normal chewing cycle
after bringing the food piece to the mouth cavity can be partitioned into two
adjacent phases: Gross cutting the ingested material and conversion in �ne
grained particles. This process is understood as a gradually decomposition of
the material structure during chewing and is audible as a decline of the sound
level [7]. A swallowable bolus is formed after a certain level of lubrication and
particle size has been reached. A �rst attempt was made by DeBelie [6] to dis-
criminate two classes of crispness in apples by analysing principal components
in the sound spectrum of the initial bite.

Originating from the pioneering work on the auscultation of the masticatory
system (system related to chewing) done by Brenman [3] and Watt [29] the
stability of occlusion and has been assessed in the �eld of oral rehabilitation
by analysing teeth contact sounds (gnathosonic analysis) [19]. Similarly the
sounds produced by the temporomandibular joints during jaw opening and
closing movements have been studied regarding joint dysfunction [31]. It is not
expected that these sound sources provide a audible contribution to chewing of
food materials in healthy subjects. However, these studiesprovide information
regarding sound transducer types and mounting position that may be usable
also for the analysis of chewing sounds. Recent investigations [19, 24] evaluated
measurement methodology, applicable transducers types and positions.

6.2. Methodology

This section will give an overview of our approach. It is important to note that,
as described in the introduction, we consider the sound analysis to be just one
part of a larger dietary monitoring system. This means that sound analysis
is not meant to solve the entire dietary monitoring problem by itself. Instead
the goal of our work is to demonstrate that a signi�cant amount of useful
information that is di�cult to obtain through other means can be extracted
from chewing sound analysis. Furthermore, the question howit can be expected
to interact with other context information is an important r esearch question
pursued by our group (although it is not the focus of this paper).

6.2.1. Approach

Nutrition intake can be coarsely divided into three phases:fracturing (tearing)
the food mainly with the incisors, chewing of the pieces and swallowing of the
bolus. Ultimately, all three phases should be analysed since the bolus forma-
tion process di�ers for characteristic food materials [10], e.g. a dry potato chip
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di�ers in structure, uid compartments and chewing from coo ked pasta. Initial
bites may have more distinctive properties [6], but occur less often and are not
available for all food types. A combination of fracture sound and bolus pro-
duction process features may permit the acoustic detectionof food products.

In this paper, we concentrate on the longest phase. Therefore we have
chosen to analyse the sound of normal chewing cycles, i.e. beginning after intake
of the food piece up to and excluding swallowing of the bolus.We stopped with
analysing the sound when the amplitude level decayed to approximately 5dB
above the noise level.

Fig. 6.1 illustrates the overall structure of our approach.It consists of three
main steps: signal acquisition, chewing segment identi�cation and food type
classi�cation.

signal acquisition

chewing segment 
identification

classification of 
food typeH
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h 
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Figure 6.1. Approach to the analysis of chewing sounds

The challenge of signal acquisition is to identify a microphone position that
combines good amplitude levels for the chewing sounds, withgood suppression
of other sounds at a location that is comfortable and socially acceptable to the
user.

For chewing segment identi�cation this paper considers only sound-related
means. In particular, we investigate a classi�er that can distinguish between
a broad range of chewing sound and various speech/conversation sounds. In a
wearable computing environment, other means are possible.E.g., food intake
is usually accompanied by moving the arm up and bringing the hand close to
the users mouth. The lower arm is then pointing away from the earths centre
of gravity; something which can easily detected by an accelerometer mounted
on the users wrist. However, the user can perform similar movements for other
activities (e.g. scratching his chin) so other information from sensors in the
environment might be needed (e.g. location information that the user is in the
kitchen or the dining room).

Once a segment is classi�ed as being a chewing sound, the typeof food
needs to be identi�ed. Again, we focus on the audio analysis of the chewing
sound. In doing so, we do not aim to be able to pick any of the thousands
of possible food types. This would clearly be unrealistic. Instead we assume
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(1) that we have a certain prior knowledge about the type of foods that are
relevant to the particular situation and (2) that often it is su�cient to just
be able to identify a general type of food or be able to say \could have been
XY". The �rst assumption is not as far fetched as it might soun d. The intelli-
gent refrigerator/cardboard that knows what food is inside and what has been
taken out (e.g. through RFID) is the prototypical ubiquitou s application. In
a restaurant credit card information or an electronic menu could be used to
constrain the number of possibilities. Additionally, people have certain fairly
predictable eating habits. The second point relates to the type of application
that is required. As stated in the introduction, the system does not need be
fully automated to be useful and to be an improvement over current `manual'
monitoring. Thus it is perfectly su�cient if at the end of the day the system
can remind the user that for example \at lunch you had something wet and
crisp (could have been salad) and some soft texture stu� (spaghetti or pota-
toes)" and asks him to �ll in the details. From the above considerations we
concentrate our initial work on being able to distinguish between a small set
of prede�ned foods and on the distinction between certain food classes.

6.2.2. Experiments

The evaluation of all methods described in the remainder of the paper has been
performed using the following experimental setup.

Test subjects: Four subjects (2 female, 2 male, mean age 29 years) were
instructed to eat di�erent food products normally, with the mouth closed dur-
ing chewing. In this way the chewing phase of the nutrition cycle is covered:
Beginning after intake of the food piece up to swallowing of the bolus (see
Sec. 6.2.1).

By restricting our experiments to the chewing phase, we ensure that the
recognition works solely on chewing. Speci�cally, we exclude swallowing and
tearing sounds since these phases have di�erent acoustic characteristics. Frac-
turing (tearing) and swallowing sounds are regarded as additional source of
information and may be analysed independently. Since theseevents are not
occurring at the same high frequency than chewing, they are considered less
relevant.

The subjects had no denture, no acute teeth or facial pain andno known his-
tory of occlusion or temporomandibular joint dysfunction. Furthermore none
of the subjects expressed a strong dislike of any food product in this study.

Test objects: The food products shown in Table 6.1 have been selected since
they imitate typical components in a meal or daily nutrition . The food groups
reect the acoustic behaviour during chewing and not their nutrition value.
They can be simply reproduced with a high �delity. Furthermo re some of the
crisp-classi�ed products have been referenced in texture studies before: Potato
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chips [28] and apples [6]. Beside the dry-crisp and wet-crisp categories, a third
acoustic group of \soft texture" foods have been included: Cooked pasta and
cooked rice.

Table 6.1. Details for the food products and categorisation

Food product Food group Product/Ingredients/Preparation

Potato chips dry-crisp Zweifel, potato chips
(approx. 3cm in diameter)

Apple wet-crisp type \Jonagold" and \Gala"
washed, cut in pieces, with skin

Mixed lettuce wet-crisp endive, sugar loaf, fris�ee,
raddichio, chicory, arugula

Pasta \soft texture" spaghetti
(al dente)

Rice \soft texture" rice without skin

Initial evaluation of the sound data showed that the rice recordings were
smallest in amplitude of all recorded foods. The potato chips produced the
highest amplitude for all subjects. Fig. 6.5 illustrates a typical waveforms
recorded for apples.

Table 6.2 depicts the inspected sound durations for the foodproducts from
all subjects. The number of single chews is the number given by the single chew
detection algorithm explained in Sec. 6.5.1. The single chews per chewing se-
quence reects the authors' experience that usually potatochips are destruct
with only a few chews, whereas pasta or lettuce require several chews to mas-
ticate properly.

Table 6.2. Statistics of the acquired and inspected sound database for all food
products

Time recorded No. of chew- Detected Chews perFood product
and inspected ing sequences chews sequence

Potato chips 677 sec 179 979 5.5
Apple 1226 sec 245 1538 6.3
Mixed lettuce 1054 sec 152 1691 11.1
Pasta 630 sec 74 1290 17.4
Ricea 240 sec - - -
Total 3827 sec 650 5498

aOmitted because of small amplitude, see Sec. 6.4
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Test procedure: A electret condenser microphone (Type Sony ECM-C115)
was placed in the ear canal as described in Sec. 6.3. After positioning, the
microphone �xation was checked to avoid interference between movements of
the jaw and the microphone in the ear canal. A second microphone of the same
type was used at collar level, at the side of the instrumentedear, as reference to
detect possible environmental sounds during inspection. The waveforms were
recorded at a sampling frequency of 44.1 kHz, 16 bit resolution.

All products were served on a plate. Cutlery was used for the mixed lettuce,
pasta and rice. Subjects were instructed to take pieces, small enough to be
ingested and chewed at once, as described above. The temperature of pasta
and rice was cold enough to allow normal chewing.

6.3. Positioning of the microphone

Sound produced during the masticatory process can be detected by air- and
bone-conduction. Frequency analysis of air-conduced sounds from chewed
potato chips showed spectral energy between zero and 10 kHz [12] although the
frequency range with highest amplitude for various crisp products are in the
range of 1 kHz� 2 kHz [4]. Bone-conducted sounds are transmitted through the
mandibular bones to the inner ear. The soft tissue of mouth and jaw damp high
frequencies and amplify at the resonance frequency of the mandible (160 Hz)
when chewed with closed mouth [11].

Condenser or dynamic microphone transducers have been usedin texture
studies literature at various places with the goal to detectand reproduce hu-
man perception. Mainly the following positions were evaluated: In front of the
mouth [7, 12], at the outer ear above the ear canal [26], a few centimetres in
front of the ear canal opening [5], pressed against the cheek[5, 7] or placed
over the ear canal opening [6, 7]. Gnathosonic studies used astereo-stethoscope
technique [29] and microphones [11] at the forehead or over the zygoma [30].
More recently a method using head-phones with the microphones positioned
over the ear canal opening has been proposed [19].

Several positions for the microphone have been evaluated for this study
as indicated in Table 6.3. This list includes some of the positions used in
previous work. The evaluation of ubiquitous positions, nothindering the user's
perception was emphasised. To this end, positions 1, 5 and 6 are favourable
because their implementation can be hidden in human anatomyor in cloths.

Potential artifacts introduced by daily use could interfer e signi�cantly with
the microphone function. This may a�ect position 5 since it has the disad-
vantage of being hidden under cloths or disturbed by cloth sounds. Position
1 has the advantage of being less a�ected by loud environmental noises since
it is embedded directly into the ear canal: With a directional microphone ori-
ented towards the eardrum, the intensity of any noise from the environment is
reduced.
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Table 6.3. Evaluated microphone positions

Microphone Position

1 Inner ear, directed towards eardrum
(Hearing aid position)

2 2cm in front of mouth
(Headset microphone position)

3 At cheek
(Headset position)

4 5cm in front of ear canal opening
(Reference position for audible chewing sounds)

5 Collar
(Collar microphone position)

6 Behind outer ear
(Hidden by the outer ear, used by older hearing
aid models)
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Figure 6.2. Signal intensity of di�erent microphone positions (see Tab . 6.3)

The position of the microphone was evaluated while a subjectwas chewing
potato chips and while the subject was speaking. The mean amplitude per-
ceived at position 1 was used as reference for normalisation. Fig. 6.2 depicts
the relation of the signal amplitude intensity shown on a logarithmic scale.
It can be seen clearly that position 1 not only has the highestintensity for
chewing sounds but it is also the only position with chewing sound intensity
higher than speech intensity. Therefore for all further measurements position
1 was used.
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A microphone at position 1 does not need to hinder the person,as mod-
ern hearing aids prove. Applicable microphones could be very small and com-
bined with an earphone be used for other applications, e.g. mobile phones.
For example, modern hearing aids already operate with a combined micro-
phone/earphone.

6.4. Chewing segment identi�cation

The identi�cation of chewing segments in a continuous soundsignal can be
regarded as a base functionality and hence is of high importance for the detailed
analysis of the masticated food type. We see mainly two di�erent methods
based on audio signal processing.

A: Intensity of audio signal:

In an environment, like a living room, with background music playing or in a
quiet restaurant, the chewing sound picked up in the inner ear is much louder
than a normal conversation or background music. This is indicated in the
sample recording shown in Fig. 6.3.
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Figure 6.3. Chewing sound and speech recording in a room with backgroundmusic

B: Chewing sound - speech classi�er:

Despite the general suppression of the speech signal, loud speech can at times
develop amplitude peaks similar to chewing signals. Therefore it is necessary
to be able to separate these two classes. This is achieved by calculating audio
features from a short signal segment of lengthtw , averaging the features over
Navg segments and then �nally classifying them with a previously trained
classi�er [22].

Features: We used features that are popular in the area of speech, audio
and auditory scene recognition [13, 14, 17]. In the temporaldomain, those were
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zero-crossing rate and uctuation of amplitude. Frequency domain features
were evaluated based on a 512-point Fast Fourier Transformation (FFT) using
a Hanning window. Here, the features included: frequency centroid, spectral
roll-o� point with the threshold of 0.93, uctuation of spec trum and band
energy ratio in 4 logarithmically divided sub-bands. Addit ionally 6 cepstral
coe�cients (CEP) were evaluated. Both time and frequency domain features
were evaluated on a window oftw = 11:6 ms. No overlap between the windows
was used.

The features were averaged overNavg windows to improve the recognition
results. This method helped to bridge pause gaps between thechewing sounds.
These gaps vary between 100 ms and 600 ms depending on the chewed material
and the progression of decomposition (see Fig. 6.5). Longerpauses may be
observed at the beginning of a chewing sequence for larger food pieces as well
as before and after partial bolus swallowing.

Classi�ers: A C4.5 decision tree classi�er from the Weka Toolkit [32] was
trained with the aforementioned features. The classi�er was 10-fold cross-
validated on a two class data set. The �rst class contained all food products
as speci�ed in Table 6.2 except cooked rice. Rice was excluded since individual
classi�cation of food products against speech signals showed weak results for
rice. This was expected from the low signal-noise ratio of the rice sounds. The
second class included various speech signal segments from several speakers as
well as conversation of test subjects and the authors.

Since the accuracy of a classi�er depends on the class distribution, the ROC
curve (Receiver Operating Characteristic) is presented instead (see Fig. 6.4).
ROC curves help to visualise classi�er performance over thewhole range of
frequency of occurrence [20]; the best classi�er is the one to the top-left corner.
This is useful in our case since the number of occurrences of speech and chewing
sounds may vary and may not be known beforehand. Clearly, theclassi�er that
uses the CEP features dominates. This was expected since theCEP features
help to pick out speech sequences. Furthermore, the numberNavg of averaging
frames was varied. We found that the highest recognition rates can be achieved
if Navg is chosen so that the features are at least averaged over one single chew
which takes about one second. In our case this occurs ifNavg > 1 sec=tw =
86:2.

6.5. Discrimination of foods products

6.5.1. Isolation of single chews

First trials in separating di�erent food products with the s ame methods as in
the previous section (i.e. calculating features over a large window) produced
recognition rates around 60%. The reason for this is mainly due to the rather
long pause between single chews, which produces the same audio signature for
all food items.
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Figure 6.4. ROC curve for chewing sounds (positives) and speech sounds (nega-
tives)

To overcome this problem we have looked in more detail at the temporal
structure of a typical chewing sequence (see Fig. 6.5). It can be seen that the
audio signal of one chew is mainly composed of four phases: The closing of the
mandible to crush the material, a small pause, the opening ofthe mandible
in which material that stick to the upper and lower teeth is un compressed,
and again a pause. The timing between those phases is given mainly by the
mechanical properties of the food and the physical limitations of the mandible.
All test subject showed almost the same timing for the same food, with the
exception of a longer or shorter pause in phase 4 (fast/slow eater). The four
phases are very well distinguishable in crispy food, in softer food like pasta the
phases tend to merge. Still, the pause in phase 4 and the increase in amplitude
at the beginning of phase 1 remain.

A relatively simple algorithms helps us the detect the beginning of each
chew. The short-time signal energy in a 20 ms window is compared to a energy
threshold and the resulting signal is set to 1 if the short-time signal energy
is larger than the threshold and to 0 otherwise. The resulting signal is low-
pass �ltered with a 4th order butterworth �lter. We found tha t a �lter with
a 3dB cut-o� frequency of 4 to 5 Hz reliably responds to the pause in phase 4
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Figure 6.5. Sample sound signal observed for chewing an apple

while �ltering out the shorter pause in phase 2. With help of t he hill climbing
algorithm the beginning of each chew is detected as shown in Fig. 6.5. We
found that this algorithm can detect the start point of about 90% of all chews
while producing only very little insertions.

6.5.2. Classi�cation

Once the audio signal is segmented into single chews, the segments are classi-
�ed using the same procedure as in Sec. 6.4. Several featureswere applied to a
short window that was consecutively shifted. We found that a11.6 ms window
with a shift of 8.7 ms works best for our sound classes. The most promising
features were: zero crossing rate, band energy ratios, uctuation of amplitude,
uctuation of spectrum and bandwidth. The features were further averaged
over the length of a single chew. The length of a single chew was used as an
additional feature and helped to improve the recognition rate of especially the
pasta, since soft-texture foods have shorter durations of chews. The features
were then 10-fold cross-validated with a C4.5 decision treeclassi�er. Recogni-
tion rates range around 66% to 86% and the corresponding confusion matrix
is listed in Table 6.4.

Since the material inside the mouth can not change between single chews,
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Table 6.4. Confusion matrix for single chews

a b c d  classi�ed as Accuracy

669 170 25 115 a = Chips 68.34%
183 1024 41 290 b = Apple 66.58%
25 39 1112 114 c = Pasta 86.20%
125 293 95 1178 d = Lettuce 69.66%

a majority decision over a whole chewing cycle was performed. This measure
resulted in an increase of recognition rate of 15 to 20% as shown in Table 6.5. It
can be seen that there is some confusion between apple and lettuce which can
be explained by them belonging into the same food category (see Table 6.1)
and therefore having similar mechanical properties.

Table 6.5. Confusion matrix for chewing cycles

a b c d  classi�ed as Accuracy

156 12 1 10 a = Chips 87.15%
24 198 1 22 b = Apple 80.82%
0 0 74 0 c = Pasta 100.00%
4 21 0 127 d = Lettuce 83.55%

6.6. Conclusion and future work

6.6.1. Conclusion

The work presented in this paper has proven that chewing sound analysis is
a valuable component for automated dietary monitoring systems. Speci�cally
we have shown that:

1. A microphone location inside the ear can acquire good quality chewing
sounds while suppressing many other sounds originating inside the oral
cavity such as speech. At the same time it is a location that has been
proven to be acceptable to users in other applications (e.g.hearing aids,
headsets). Applicable microphones could be very small, nothindering the
normal perception. Moreover, a combination of microphone and earphone
for shared use with other applications, e.g. a mobile phone,could be
employed.

2. Chewing sounds can be reliably separated from the main sound source
inside the mouth cavity: speech.

3. Individual chews can be isolated and partitioned into phases with a sim-
ple low pass �lter based algorithm



126 Chapter 6: Analysis of chewing sounds for dietary monitoring

4. Audio analysis can be used to distinguish between a small prede�ned set
of di�erent food types as for example found in a single meal.

The food groups introduced in the experiments reect the acoustic behaviour
during chewing and not their nutrition value. The results show, that our ap-
proach is not limited to a speci�c group of foods. Moreover, it is possible to
discriminate foods from the same group. The actual nutrition value can be
derived either precisely from other monitoring components, e.g. RFID tags of
packages, or as an estimate from a generic food database.

An important aspect of our work is the fact that information a bout the
speci�c type of food which is being chewed is very di�cult to d erive using
other sensor modalities. The only alternative we could think of is video analysis
of the items inserted into the mouth. While theoretically feasible it has many
problems of its own, in particular sensitivity to light cond itions and background
clutter as well as large computational complexity.

Overall the results presented in this paper provide crucialgroundwork for
further development that, we believe, will lead to completeautomated dietary
monitoring systems. Within the scope of the EU-funded MyHeart project we
aim to have �rst versions of such a system within the next two to three years.
Additionally, points 1 and 2 have implications beyond dietary monitoring as
they allow a fairly accurate recognition of the fact that the user is eating. This
in itself is an important context information.

6.6.2. Future work

On the sound analysis the next steps that we will undertake are:

1. Modelling temporal evolution of the signal from individual chews with
hidden Markov models to further increase the recognition rates and allow
similar food types to be distinguished.

2. Modelling the temporal evolution of the individual chewing signals over
an entire chewing cycle to extract food type speci�c parameters. This
shall include the number of individual chews needed, their length and
the evolution of the sound intensity.

3. Performing studies about the robustness of the system by adding con-
trolled levels of noise.

4. Performing more studies with more, di�erent food types.

5. Performing studies to determine how the recognition performance de-
grades with increasing number of food types that need to be di�erenti-
ated.

6. Using a hierarchical approach with an initial classi�cation of the category
(dry crisp, wet crisp etc.) and then a category speci�c algorithm for
further recognition, to overcome the above limitation.
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Furthermore, other components of a dietary monitoring system will also be
investigated. In particular, we will look at the detection o f swallowing mo-
tion with collar electrodes, analyse the hand motions related to food intake
and integrate high level context information relevant to eating habits into the
system.
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Abstract

Chewing is an essential part of food intake. The analysis and detection of
food patterns is an important component of an automatic diet ary monitor-
ing system. However chewing is a time-variable process depe nding on food
properties. We present an automated methodology to extract sub-sequences of
similar chews from chewing sound recordings. The approach i s based on a
chew-accurate segmentation of the sound signal, a multi-ob jective evolutionary
search for temporal partitions in the sequence using NSGA-I I and a validation
of the best solution by classi�cation.

We evaluate the method on chewing sound recordings from a fou r participant
study, eating foods with di�erent rheological properties. The proposed methodol-
ogy allows to determine the most appropriate partitioning o f the sequences and
extract relevant sound features at the same time. Potato chi ps and chocolate
showed a two-phase structure, for lasagna and apples a singl e-phase structure
was derived. The results led to the hypothesis that a sequent ial structure can
be found in chewing sounds from brittle or rigid foods.
































































































































































































