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Abstract

More and more repositories like the IEEE INEX collection [1], LexisNexis [2]
or the Library of Congress collection [3] store their documents in XML format.
To be able to search over these XML documents, there is a need for efficient
and accurate full-text search features. There are two different approaches that
could be taken into consideration: On one hand, one could use traditional full-
text approaches, but these are not suitable for XML documents as they do
not take the structure of the document into account. On the other hand, one
could use XQuery and XPath. These languages can express a variety of queries,
but queries over XML text content are limited. Full-text search in XQuery is
mainly handled by the function fn:contains($e,keyword) that checks whether the
keyword keyword is contained in the element denoted by $e. This function is
too limited for complex queries. It cannot express queries e.g. like the following
query that includes phrase matching, distance predicates and stemming;:

Example The sample document contains books (see Appendix A). Find the
books that contain the phrases ”Beating the Dealer” with stemming and ”WIN
STRATEGY” with stemming and case insensitive in distance at most 10 words
from each other.

Before this Master thesis, MXQuery Full-Text only supported keyword and
phrase queries [4]. In this Master thesis, we extended MXQuery Full-Text with
the features of the XPath 2.0 and XQuery 1.0 Full-Text W3C specification [5].
This extension includes an improved store and indexes, i.e. a stem index, an
n-gram index, an nextword index and a B+ tree index. Additionally, we imple-
mented the MatchOptions that support queries including stemming, the use of
thesauri, diacritics sensitivity, case options and wildcards. To support logical
operators, we extended MXQuery Full-Text with an FTAndIterator, an FTOrlt-
erator and an FTUnaryNotlterator. For queries including positional filters, we
added an FTSelectionlterator that tests the positional predicates. In addition,
we had a look at several scoring models to design and implement our own scor-
ing method. To test our implementation, we run the XPath 2.0 and XQuery
1.0 Use Cases [6] and did some benchmarking to evaluate the performance and
memory usage.
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Chapter 1

Introduction

Many different approaches have been proposed to search over XML data: One
approach is JuruXML [7] that queries XML documents via pieces of XML doc-
uments or XML fragments. These fragments are of the same nature as the
documents that are queried. A document is considered as a valid result if it
contains the query or part of it as a subtree. An extension of the vector space
model ranks the XML results by relevance.

Another approach uses XSEarch [8]. This search engine uses its own query
language: the user enters search terms, an index is used to find nodes that satisfy
the search terms and find out whether pairs of nodes interconnect. The results
are then ranked using extended traditional information retrieval techniques and
returned.

A third approach is TeXQuery [9] which is a full-text search extension to
XQuery. It provides full-text primitives like boolean operators, phrase matching,
proximity distance, stemming and thesauri. These primitives can be seamlessly
embedded into XQuery. Additionally, it contains a scoring construct that can
be used to score query results. TeXQuery is the precursor of the full-text lan-
guage extensions to XPath 2.0 and XQuery 1.0 [5]. One implementation of
TeXQuery is the Quark Project [10] by the Cornell University and AT&T Re-
search Lab. A first implementation of the XPath 2.0 and XQuery 1.0 Full-Text
W3C specification is GalaTex [11].

This Master thesis aims to integrate all the full-text features of the XPath
2.0 and XQuery 1.0 Full-Text W3C specification to make the implementation
minimal conform [5]. To achieve this, we need to integrate an improved store
and appropriate indexes. In addition, we need to design and implement a scoring
method to rank the results according their relevancy.

The thesis is organized as follows: Chapter 2 gives an introduction to XQuery
1.0 and XPath 2.0 Full-Text 1.0. Chapter 3 describes the initial state of the
MXQuery Full-Text facility. Chapter 4 is about the design and implementa-
tion of parts of the Minimal Conformance of XQuery Full-Text (see Section
2.9). Chapter 5 investigates different ranking strategies for XML documents
and explain our ranking model and Chapter 6 measures performance and mem-
ory usage of our full-text implementation. Chapter 7 concludes the thesis with
a short summary, conclusion and a discussion about future work.






Chapter 2

XQuery 1.0 and XPath 2.0
Full-Text 1.0

This chapter introduces the XQuery and XPath Full-Text specification. It is
organized as follows: Section 2.1 describes the syntax and semantics of the
most fundamental additional XQuery function, the FTContainsExpr. Section
2.2 describes the semantics and restrictions of the Score Variable. Section 2.3 is
about the semantics of the full-text search conditions which are explained more
concisely in Sections 2.4 to 2.8. The last Section, 2.9, is about the Minimal
Conformance of XQuery Full-Text. The XQuery and XPath Full-Text EBNF
can be found in Appendix B.

2.1 Full-text Contains Expression:
FTContainsExpr

A full-text contains expression evaluates a sequence of nodes against a full-text
selection and behaves like a comparison expression. Hence, it can be used any-
where a comparison expression may be used [5].

Syntax: expr "ftcontains” FTSelection

The FTContainsExpr returns a boolean value: It returns true if there is some
node in the search context expr that matches the full-text selection FTSelec-
tion, otherwise it returns false. FTSelection can be a single search term (content
only query) or a more complex full-text search expression containing boolean
connectors (and, or, not) or a scope of a search token, e.g. whether they occur
in the same sentence or paragraph. Other full-text search selections can include
window expressions or number of occurrences of a search term. Additionally,
FTMatchOptions that use stemming!, stop-words, upper and lower case, special
characters or synonyms identified by a thesaurus? can be applied to FTSelec-

IWords that have the same stem are also included as search terms. These terms can be
nouns, verbs, adjectives, and adverb forms of the search term in singular and plural.

2Thesauri include synonyms or related terms of a search term. These can be used to expand
a query.



tions.

Example

//book/title[ .ftcontains "BEATING THE DEALER" with stemming
lowercase]

2.2 Score Variables: FTScoreVar

In addition to returning a boolean value as result of a match of a node and
a full-text selection, full-text search features can also associate scores with the
result nodes. A score expresses the importance of a node to the query and must
be in the range of [0,1]. A higher score must imply a higher degree of relevance
and at the end the results are usually ordered by their score. Scoring may be
influenced by the user adding weight declarations to search tokens, phrases or
expressions.

Example

for $book score $s in
doc("sample_data.xml")
/books/book[. ftcontains "Party"]

where $s > 0.1

return $book/metadata/title

2.3 Full Text Selections: FTSelection

Full-text selections define the full-text search conditions that may include logical
operators, followed by positional filter(s) (e.g. window or distance predicate)
and optionally a weight value. The Primary Full-Text Selection is the basic form
of a full-text selection and specifies words and phrases as search conditions, i.e.
the FTWords operator. There are five different FTAnyallOption options on how
the tokens and phrases can be matched.

e any word: At least one of the query terms needs to match

e all words: All query terms need to match

e phrase: all query terms need to match as a phrase

e any: At least one of the phrases in the sequence of strings needs to match
e all: All of the phrases in the sequence of strings need to match

The Primary Full-Text Selection is optionally followed by a cardinality con-
straint, i.e. whether the term should appear more than one time.

Example

//book/title[ .ftcontains {Six Millions, Vegasl} all words]

10



MatchOptions modify the matching behavior of the primary full-text selec-
tion: They modify the set of keywords in the query or how they are matched
against tokens in the text. There are seven different MatchOptions:

e FTLanguageOption: Specification of the language of search keyword(s).
This option influences tokenization, stemming and stop words and may
influence other MatchOptions.

o FTWildcardOption: Specification whether wildcards are used or not. The
option ”"with wildcards” means that if a word contains a ., .7, .x, .+
or .{n,m} at the beginning, inserted into or at the end of a query key-
word, a matching keyword in the text may have one character, an optional
character, zero or more characters, one or more characters or a range of
characters between n and m as prefix, infix or suffix, respectively.

o FTThesaurusOption: Specification whether a thesaurus is used or not. If
a thesaurus is used, the user must specify the location of this thesaurus.
The terms determined by the thesaurus are processed as if the user had
specified the terms in a disjunction. In addition, one can specify how
many levels within the thesaurus have to be traversed and what kind of
relationship the search term and the terms identified by the thesaurus
have, e.g. in "synonyms” or ”sound like” relationship.

o F'TStemOption: Specification whether stemming is applied or not. There
are the options ”with stemming”, which means that matches can also con-
tain words with the same stem as the query term, or ”without stemming”,
which means that the query term is not stemmed.

e F'TCaseOption: Specification of how uppercase and lowercase characters
are considered. There are four case options:

— Option ”case insensitive”: Keywords and words in the text are matched,
without considering case of characters of the keywords and words in
the text.

— Option ”case sensitive”: Keywords and words in the text are matched,
if and only if the case of the characters in the text is the same as writ-
ten in the query.

— Option ”lowercase”: Keywords and words in the text are matched, if
and only if they match the query terms in lower case characters.

— Option "uppercase”: Keywords and words in the text are matched,
if and only if they match the query terms in upper case characters.

e FTDiacriticsOption: Specification of how diacritics® are considered. There
are two possible options: either diacritics are considered (”diacritics sen-
sitive”), i.e. there is only a match if the diacritics are contained as they
are written in the query or in the text, or the diacritics are not considered
at all (”diacritics insensitive”).

3 A diacritic is a small sign added to a letter to alter pronunciation or to distinguish between
similar words.

11



o F'TStopwordOption: Specification of whether stop words are used or not.
The ”with stop words option” means that if a query token is specified
in the collection of stop words, it is removed and replaced by any word.
In range queries, i.e. using distance or window, they are still considered
and counted as words. If the stop word option is applied during indexing,
i.e. the stop words are removed when building the indexes, the stop word
option has no effect in the query.

o F'TExtensionOption: MatchOption that acts in an implementation defined
way.

Example

//book/summary[ .ftcontains "mit" case insensitive]

MatchOptions of the same group can not be combined. The following query is
not allowed:

Example

//book/summary[ .ftcontains "mit" uppercase lowercase]

It is not allowed to combine options of the same MatchOption. However, it is
allowed to combine different MatchOptions:

Example

//book/summary[ .ftcontains "win.+ strategy" uppercase
with wildcards with stemming with default thesaurus]

If different MatchOptions are combined, the application order has to satisfy the
following constraints: The FTLanguageOption must be applied first as it influ-
ences tokenization, stemming and the use of stop words, and the FTStemOption
must be applied before the FTCaseOption and the FTDiacriticsOption(see Sec-
tion 4.1.2 for our application order).

2.4 Logical Full-Text Operators: FTOr, FTAnd,
FTMildNot, FTUnaryNot

The full-text selections that are defined above can be combined using the fol-
lowing logical operators.

e FTOr: combines two full-text selections using the ftor operand and re-
turns all matches that satisfy at least one of these selections.

e FTAnd: combines two full-text selections using the ftand operand and
returns all matches that satisfy both of these selections.

e MildNot: combines two full-text selections using the not in operand. A
not in B means that a search term A is matched if it is not contained in
the search phrase B.

o UnaryNot: if a full-text selection starts with the prefix operator ftnot, it
returns all the matches that do not satisfy this selection.

12



Example

//book/title[ .ftcontains "Vegas" ftor "Zurich"]

2.5 Positional Filters: FTOrder, FT'Window, FT-
Distance, FTScope, FTContent

The postfix operators are used to filter matches based on constraints on their
positional information. There can be multiple adjacent positional filters that
are applied from left to right.

e FTOrder: The ordered selection consists of a full-text selection followed
by the postfix operator ordered and controls the order of the search terms
to be the same as the order in which they appear in the query.

o FTWindow: The window selection consists of a full-text selection followed
by one of the following window operators:
— window ¢ words
— window ¢ sentences
— window ¢ paragraphs
where ¢ is a user-defined integer number. A match occurs if the search
terms are within the defined number of words, sentences or paragraphs,

i.e. FTUnit and FTBigUnit. Element boundaries are not considered, i.e.
the size of the window is not affected by the element boundaries.

e F'TDistance: The distance selection consists of a full-text selection fol-
lowed by one of the following FTRange operators:

— distance [exactly i | at least ¢ | at most ¢ | from 7 to j] words
— distance [exactly ¢ | at least ¢ | at most ¢ | from ¢ to j] sentences

— distance [exactly ¢ | at least ¢ | at most ¢ | from ¢ to j] paragraphs

where ¢ and j are user-defined integer number. If zero is used, the terms
need to be adjacent to each other. Again, element boundaries are not
considered when determining the distance.

e F'TScope: The scope selection is a full-text selection followed by one of
the following scope operators:

— [same | different] sentence

— [same | different] paragraph

The matched search terms need to be in the same or different sentence or
paragraph, respectively.

e FTContent: The anchoring selection consists of a full-text selection fol-
lowed by one of the content operators:

— at start

13



— at end

— entire content

The matched search terms need to be contained at the start, at the end
or in the entire content of the item being searched.

Example

//book/title[ .ftcontains "the wave" case insensitive ftand
"classroom" window 20 words]

2.6 Cardinality Selection: FTTimes

This selection consists of a search term followed by the FTTimes operator:
occurs [exactly | at least | at most 4 | from 4 to j] times.

where i and j are user-defined integer number. A match occurs if the search
term occurs as many times as defined by the number ¢ and j, respectively.

Example

//book/summary[ .ftcontains "MIT" occurs at least 2 times]

2.7 Ignore Option: FTIgnoreOption

With this option one can define a set of nodes, i.e. by giving an XQuery ex-
pression, whose content are ignored, e.g. without content ./path the content of
element ./path is ignored in the search. Example

//book[ .ftcontains "Professor of Mathematics" without content ./p]

2.8 Extension Selection: FTExtensionSelection

The Extension selection is a selection whose semantics is implementation-defined,
e.g. if several indexes exist, the user could define, which one should be used to
execute the query.

2.9 Minimal Conformance

The first goal of this Master thesis is to fulfill the Minimal Conformance of the
XQuery Full-Text specification [5]. Apart from fulfilling the minimal support
for XQuery 1.0 or XPath 2.0, XQuery Full-Text needs to support the following
operators:

e MatchOptions:

— FTCaseOption: The case sensitive and case insensitive choices need
to be supported.

14



FTDiacriticsOption: needs to be supported.
— FTStemOption: needs to be supported.

— FTThesaurusOption: needs to be supported.
FTWildCardOption: needs to be supported.
— FTExzxtensionOption: needs to be supported.

e Logical Full-Text operators

— FTAndOperator: needs to be supported.
— FTOrOperator: needs to be supported.

— FTUnaryNotOperator: The form that can negate every kind of FT-
Selection does not need to be supported. One can choose to support
the negation operation in a restricted form. One of the two restric-
tions needs to be supported:

* Negation Restriction 1. An FTUnaryNot expression may only
appear as a direct right operand of an ”ftand” (FTAnd) opera-
tion.

x Negation Restriction 2. An FTUnaryNot expression may not
appear as a descendant of an FTOr that is modified by an FT-
PosFilter.

e Positional filters

— FTWindow: The form of the FTWindow postfix operator that can
be applied to any kind of FTSelection, is optional. However, the
restricted use of FTWindow needs to be supported:

x Window Operator Restriction: FTWindow can only be applied
to an FTOr that is either a single FTWords or a combination of
FTWords involving only the operators ”ftand” and ”ftor”.

— FTDistance: The form of the FTDistance postfix operator that can
be applied to any kind of FTSelection, is optional. However, the
restricted use of FTDistance needs to be supported:

x Distance Operator Restriction: FTDistance can only be applied
to an FTOr that is either a single FTWords or a combination of
FTWords involving only the operators ”ftand” and ”ftor”.

— FTOrder: The form of the FTOrder postfix operator that can be ap-
plied to any kind of FTSelection is optional. However, the restricted
use of FTOrder needs to be supported:

x Order Operator Restriction: FTOrder may only appear directly
succeeding an FTWindow or an FTDistance operator.

e Others

FTAnyallOption: needs to be supported.

— FTUnit and FTBigUnit: Not all the choices of FTUnit and FTDBi-
gUnit need to be supported.

FTIgnoreOption: needs to be supported.

— Scoring: needs to be supported.

15
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Chapter 3

Initial State

This chapter describes the state of the MXQuery Full-Text facility before the
work of this Master thesis (see Figure 3.1 for an overview). Section 3.1 describes
how the parser was extended to parse full-text XQueries. Section 3.2, 3.3 and 3.4
are about how the document’s text is preprocessed into Linguistic tokens, how
the inverted list index is built and how the Linguistic tokens can be uniquely
identified. Section 3.5 shortly describes what kind of retrieval model is used and
the last Section 3.6 is about how full-text queries are evaluated.

3.1 Parser and Runtime

The MXQuery parser is extended to parse the full EBNF of XQuery 1.0 and
XPath 2.0 Full-Text 1.0 (see Appendix B for the EBNF). MXQuery is based on
the iterator model® [12]. Although the parser was extended to cover the whole
XQuery Full-Text, the work of the research project only included keyword and
phrase search. To support these kind of queries, MXQuery was extended by
two additional iterators: the Matchlterator and the FTContainslterator. These
iterators are instantiated while parsing the full-text query.

3.2 Preprocessing of the Documents

The preprocessor contains all the methods to convert the text tokens of MX-
Query into Linguistic tokens (see Figure 3.2) and to generate the unique iden-
tifiers. We used Dewey Numbering (see Section 3.4) as unique identifiers as it
simplifies the search for matching words. Each word found during the tokeniza-
tion is inserted into an inverted list.

3.3 Index

The initial state of the index is an inverted list implemented by a hashtable. A
key of the inverted list is a word that is contained in the documents. The value

1An iterator is an object that has two primary operations: referencing one particular
element in the object collection, i.e. element access, and modifying itself so it points to the
next element, i.e. element traversal

17
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Figure 3.1: Initial State of MXQuery Full-Text Implementation
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of this key are all the Linguistic tokens that contain the word. These Linguistic
tokens have the following information: the linguistic term, i.e. the word, its
relative position in the document, its Dewey identifier and the corresponding
XDM token, i.e. the text token containing the word.

3.4 Dewey Numbering

Dewey numbers for XML nodes are generated as follows: Each node is assigned
a vector that represents the depth-first node path from the document’s root
to that node. Text is treated as if it was a child, i.e. a Linguistic token is a
child of the element that contains the Linguistic token’s text [13]. In addition,
the absolute position of the word in the document is appended at the end of
the Dewey identifier. This is used for predicates using window or distance that
operate over tag boundaries. We only use odd numbers for Dewey identifiers
as even numbers are used for updates (see Section 7.3.1 about updates and see
Figure 3.2 for an example of Dewey numbering).

3.5 Retrieval Model

The retrieval model of the initial state is the Boolean Retrieval Model. Given
the nodes that fulfill the structure part of the query, it is checked whether the
predicate is fulfilled, i.e. whether the keyword(s) are contained in the nodes. If
the keyword(s) are contained in a node, the node is considered relevant, if they
are not contained, the node is not relevant, i.e. the node is an exact match for
the query or not. The problem with this model is its lack of ranking. A node is
either relevant or not relevant and the relevant nodes are not ranked according
the relevancy to the query, i.e. we do not determine the best match result for
the query.

From the information retrieval perspective it also suffers from minimal recall:
There might be nodes that are close to the relevant result, but are missed as
they do not fulfill the query predicate exactly.

3.6 Query evaluation

The Query Plan consists of two levels: On the first level, the Linguistic tokens
of the words that match the search term are retrieved. A Match is built, if
the Dewey identifier of the search context’s node is an ancestor of the word’s
Dewey identifier. This Match is then inserted into an AllMatch. MatchOptions,
e.g. case sensitivity, stemming or use of a thesaurus are handled on this level.
These options modify the search words and have the effect that the search term
is changed or the search term is expanded to a set of search terms.

On the second level, the AllMatches built on the first level are manipulated
and filtered, e.g. by proximity selections. If there is no AllMatch left after the
second level an empty sequence is passed to the FTContains and a boolean to-
ken with the value false is generated. If the query has a result, the sequence of
the corresponding AllMatches is passed to the FTContains and a boolean token
with the value true is generated.
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1

<books>
1.1
<boc;k1n1umber= 1> Linguistic Token
<metadata> /
1111
<title> Le petit prince </title>
1.1.1.1.11 1.1.1.1.1.2 1.1.1.1.13
1.1.1.3
<author>Antoine Saint Exupéry</author>
1.1.1.3.14 1.1.1.3.1.5 1.1.1.3.1.6
</metadata>
</book>
1.3 AllMatch
<book number="2">
1.3.1 X .y ; -
cmetadatas | Linguistic Token Linguistic Token
1.3.1.1
<title> Night Flight <[title>
1.3.1.3 1.3.1.1.1.7 1.3.1.1.1.8
/1 Ny
Match Match
<author>Antoine Saint Exupéry</author>
1.3.1.3.1.9 1.3.1.3.1.10 1.3.1.3.1.11
</metadata>
</book>
</books>

Figure 3.2: XML Document with Dewey Numbering
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Example

//book/title[ .ftcontains "Night Flight"]

returns all the books whose title contain ”Night Flight”. The queried document,
the Matches and AllMatch can be found in Figure 3.2.
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Chapter 4

MXQuery Full-Text Design
and Implementation

This chapter is about the design and implementation of parts of the Minimal
Conformance of the XQuery Full-Text specification [5]. The initial state of MX-
Query Full-Text has an ad-hoc store, i.e. the XDM token stream is materialized
in a vector. The only index on that store is an inverted list. The Matchlterator
is the only iterator which has access to the store.

In Section 4.1, we describe the design and requirements of a store that is in-
tegrated into MXQuery, the MatchOptions, the logical and positional operators
and other full-text functions. In Section 4.2, we describe our implementation of
the functionalities described in the design section.

4.1 Design and Requirements

This section describes the design approaches and requirements of the store and
its access methods, the indexes on the store and operators for ftor, ftand and
ftnot to execute the XQuery Full-Text queries. This section is organized as
follows: Section 4.1.1 shortly investigates the requirements that the MXQuery
Full-Text store should fulfill. The other sections describe the semantics and the
design of each MatchOption, the logical and positional operators and additional
full-text functionalities like ”times” and ”ignore” predicates. The examples are
queries over the document in Appendix A.

4.1.1 Store Requirements

The XQuery Full-Text operators only need read access to the store. They read
data from a store in two ways: random and sequential.

Random Id-Based Access and Sequential Scan

Sequential reading is necessary for queries including positional filters and/or
the FTStopword MatchOption. For these queries we need a method that, given
a starting position, returns an iterator that iterates sequentially over the next
Linguistic tokens in the store.
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Random Value-Based Access

In value-based store accesses, given a set of values for a target item, the matching
item id is returned. In our case, the value is usually a string, i.e. a word, and
not the matching Dewey identifier is returned, but the Linguistic tokens of the
matching words.

4.1.2 MatchOptions
FTLanguageOption

The FTLanguageOption specifies the language of search keyword(s). It influ-
ences the tokenization, stemming and the stop words and must, therefore, be
applied first. With regard to white spaces, tokenization should be more or less
the same for Latin languages. For more sophisticated approaches, e.g. using
recognition of end of sentences, there is a need for a tokenization approach for
each language. For stemming and stop words, we need to provide a stemming
algorithm and stop word lists for each language that should be supported.

FTWildcardOption

The FTWildcardOption specifies whether the search term contains a wildcard.

It performs a query expansion, i.e. all words fulfilling the wildcards are
determined and included in the query. To implement the wildcard option, one
can use an n-gram index that contains all the n-grams that occur in the words
of a document and its corresponding list of words that contain that n-gram (see
4.2.2 for a detailed description of an n-gram index).

The evaluation of a wildcard query works as follows: The keyword of the
query that contains a wildcard is fragmented into its n-grams. For each of the
n-grams, we retrieve the list of corresponding words from the n-gram index and
intersect them. The words that are left after intersection are possible candidates
fulfilling the wildcard query. As the intersection produces false positives, the
candidates are checked against the original query and the words fulfilling the
original query are returned.

Example 1
//book [@number="1"]/title[.ftcontains "Student." with wildcards]

returns the title element of the first book because the title element contains
?Students”.

<title>
Bringing Down the House: How Six Students
Took Vegas for Millioms.

</title>

Example 2
//book [@number="1"]/title[.ftcontains "Stu.ents" without wildcards]
returns no result because the title element of the first book does not contain the

word ”Stu.ents”.
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FTThesaurusOption

This MatchOption specifies whether a thesaurus is used or not. The default
option is "without thesaurus”.

If the option is "with thesaurus”, it performs a query expansion, i.e. the
words identified by a thesaurus are integrated into the query. A thesaurus can
be stored locally or can be implemented by a web service.

The found synonyms are included as new keywords. If one of the words
given by the thesaurus is contained, it is a result.

Example

//book/summary[.ftcontains "story" with thesaurus at
*http://localhost:8080/axis/WordNetService. jws?wsdl’]

returns all the books that contain ”story” or its synonyms, e.g. ”history”, in
their summary.

<summary>
"Shy, geeky, amiable" MIT grad Kevin Lewis, was, Mezrich learns
at a party, living a double life winning huge sums of cash in
Las Vegas casinos. In 1993 when Lewis was 20 years old and
feeling aimless, he was invited to join the MIT Blackjack Team,
organized by a former math instructor, who said, "Blackjack is
beatable." Expanding on the "hi-lo" card-counting techniques
popularized by Edward Thorp in his 1962 book, Beat the Dealer,
the MIT group’s more advanced team strategies were legal, yet
frowned upon by casinos. Backed by anonymous investors, team
members checked into Vegas hotels under assumed names and,
pretending not to know each other, communicated in the casinos
with gestures and card-count code words. Taking advantage of
the statistical nature of blackjack, the team raked in millions
before casinos caught on and pursued them.

</summary>

FTStemOption

The FTStemOption specifies whether stemming is applied or not. The default
option is ”without stemming”.

If the option is "with stemming”, it performs a query expansion, i.e. all
words that have the same stem like the original query term are integrated into
the query. By definition of the specification [5], it must be applied before the
FTCaseOption and before the FTDiacriticsOption, because stemming needs the
original version of the word to return meaningful results.

The FTStemOption can be implemented in the following way: to get the
stem for a keyword, we apply the Porter Stemmer [14] and look up the stem
in the stem index to retrieve all the words that contain the stem. These words
are then looked up in the inverted list to retrieve the corresponding Linguistic
tokens.

Example
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/books/book/title[.ftcontains "Win strategy" with stemming]
returns the second book because its title element contains ” Winning strategy”.

<title>
Beat the Dealer: A Winning Strategy for the Game of Twenty-One
</title>

FTCaseOption

The FTCaseOption specifies how upper and lower case characters are consid-
ered. The default option is ”case insensitive”. One way to evaluate the case
predicate is to index all the words of the text in lower case characters. If the
case predicate is ”case insensitive”, the query term is converted into lower case
characters and all the results can be retrieved from the index. In case the predi-
cate is "case sensitive”, ”"lowercase” or "uppercase”, all the results are retrieved
but need to be post-processed:

e If the case predicate is ”case sensitive”, the original query term is com-
pared to the original text term. If they are equal, the result is returned.

e If the case predicate is ”lowercase”, the original query term is converted
into lowercase letters and compared to the original text term. If they are
equal, the result is returned.

e If the case predicate is "uppercase”, the original query term is converted
into uppercase letters and compared to the original text term. If they are
equal, the result is returned.

Example 1

/books/book/summary[. ftcontains ’mit’ uppercase]

returns the first book’s summary because the summary element contains ” MIT”
in upper case characters (see Figure 4.1 for the operator tree).

<summary>
"Shy, geeky, amiable" MIT grad Kevin Lewis, was, Mezrich learns
at a party, living a double life winning huge sums of cash in
Las Vegas casinos...

</summary>

Example 2

/books/book/title[. ftcontains ’the wave’ case insensitive]

returns the title of the third book because it contains ”THE WAVE” and case
of characters is not considered.

<title>THE WAVE. The Classroom is out of Control.</title>
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FTDiacriticsOption

FTDiacriticsOption specifies how diacritics are considered: ”diacritics sensitive”
only matches words in the text if they contain the diacritics as in the query
search terms. If the option is "diacritics sensitive”, it is a normal keyword or
phrase match as the query term(s) and the text term(s) need to be exactly the
same.

In case of ”diacritics insensitive”, e.g. an ”é” could also be an ”e”, we found
two possibilities to support this option:

e For every word in the text that contains a diacritic, we could store the
version without diacritic, e.g. for the word "résumé” in the text, we
also store "resume”. The problems of this approach are the following:
Especially in languages with a lot of diacritic information, we get a lot
of additional tokens in the index. In addition, this approach stores both
versions anyway, even if the diacritics option is not used in the query.

e It could be solved by query expansion: We generate each possible version
of search terms, e.g. for "resume” we generate ”"résume”, "resumé” and
”résumé” and search for all these terms. The problem with this approach
is the amount of the newly generated query terms which may make query
processing very slow.

Example 1
//book/author[. ftcontains "Exupéry" diacritics insensitivel
returns the authors of the fourth and fifth books as diacritics are not considered.

<author>Antoine de Saint Exupéry</author>
<author>Antoine de Saint Exupery</author>

Example 2
//book/author[. ftcontains "Exupéry" diacritics sensitive]
returns only the author of the forth book as diacritics are considered.

<author>Antoine de Saint Exupéry</author>

FTStopWordOption

The FTStop WordOption specifies whether stop words are used or not. Being a
stop word is only relevant to query terms, not to document terms. The default
is "without stop words”.

The following two approaches are possible ways to handle stop words:

1. Filter out the stop words while creating the inverted list index. Defining
a list of stop words that should not be used has no influence.

2. If the query phrase contains stop words and the option is ”"with stop
words”, the stop word are excluded from the set of search terms (any
term can be substituted for it) and their position is stored. For the rest
of the search terms we need to check whether they fulfill:
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e The positional information of the rest of the terms is correct:

Example

/book[ftcontains "Professor of Mathematics"
with stop words {of}]

”Professor” and ”Mathematics” are in distance 2 of each other.

e At the positions of the stop words are any other terms than an ex-
cluded stop word.

Example

/book[ftcontains "Professor of Mathematics"
with stop words {of}]

there is any other word than ”of” between ”Professor” and ”Mathe-
matics”.

For the second approach we need an index that returns for a given Dewey identi-
fier the corresponding Linguistic token. This can be implemented by a B+ tree
on the Dewey identifiers with the Linguistic tokens as leaves. We can search in
the B+ tree for the Linguistic token at the given position and check whether its
word is none of the excluded stop words.

Example

//book/title[. ftcontains "Game of Twenty-one"
with stop words {of}]

returns no result as there is only a title containing ”Game of Twenty-one”
including the stop word ”of”.
FTExtensionOption

The FTEztensionOption specifies a MatchOption that acts in an implementation-
defined way. Depending on what the option does, it needs to be applied at a
particular point in the query.

4.1.3 FTMildNot, FTUnaryNot, FTOr and FTAnd

This section describes the input and output and the semantics of the Logical
Full-Text operators. The examples are queries on the document that can be
found in Appendix A.

FTMildNot

The FTMildNotOperator takes two sequences of AllMatch as input. We refer
to them as leftInput and rightInput. Let’s say we have the following query:

Example

/book/summary[. ftcontains "Blackjack" not in "Blackjack Team"]
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All books that contain ”Blackjack” without neighboring ”Team” in their sum-
mary are returned. There are the following possibilities:

e If the leftInput is empty, the output is the empty sequence.
e If only the rightInput is empty, the output is the AllMatch of the leftInput.

e In case both sequences are non-empty, we need to check for each AllMatch
of the leftInput whether its match(es) are contained in the rightInput All-
Match by comparing their Dewey identifiers. If they are the same, the
AllMatch is not a result, otherwise it is part of the output.

The result of the query above is:

<summary>
"Shy, geeky, amiable" MIT grad Kevin Lewis, was, Mezrich learns
at a party, living a double life winning huge sums of cash in
Las Vegas casinos...

</summary>

FTUnaryNot

The FTUnaryNotOperator is used in queries that contain an ftnot directly fol-
lowed by a FTWords.

Example

//book/author[. ftcontains ftnot "Edward Thorp"]

returns all author elements that do not contain Edward Thorp.

<author>Ben Mezrich</author>
<author>Morton Rhue</author>
<author>Georg Orwell</author>
<author>Antoine de Saint Exupéry</author>
<author>Antoine de Saint Exupery</author>

The evaluation works as follows: If the FTUnaryNotOperator receives an All-
Match, it returns the empty sequence such that the FTContainsOperator cre-
ates a boolean token with value false. If the FTUnaryNotOperator receives the
empty sequence, it creates a dummy AllMatch such that the FTContainsOper-
ator creates a boolean token with value true. In case the ftnot is part of a more
complex F'TSelection, we need more sophisticated ways to evaluate the query.

FTOr

The FTOrOperator takes two or more sequences of AllMatch as input. The
semantics of FTOr states that one of the FTSelections need to be fulfilled.

Example
//book/author[. ftcontains "Edward Thorp" ftor "Ben Mezrich"]

returns all author elements that either contain ” Edward Thorp” or ” Ben Mezrich”
or both.
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<author>Ben Mezrich</author>
<author>Edward Thorp</author>

The evaluation works as follows: If all sequences are empty, the empty sequence
is output. If one or more sequences contain AllMatches, all AllMatches are
unified into one SuperAllMatch. In case this SuperAllMatch is further processed,
every operator needs to unnest the AllMatches to get access to the matches and
their Linguistic tokens (Figure 4.2 depicts the operator tree). The FTOr is
commutative and associative in all cases, i.e. it makes no difference in which
order the sequences are evaluated. As either one of the FTSelection needs to
be satisfied, it makes no sense to constrain the order.

FTAnd

The FTAndOperator takes two or more sequences of AllMatches as input. The
semantics of the FTAnd states that all the FTSelections need to be fulfilled

Example

//book/author[. ftcontains "Edward" ftand "Thorp"]
returns all author elements that contain "Edward” and ” Thorp”.
<author>Edward Thorp</author>

The evaluation works as follows: If one of the sequences is empty, i.e. one of the
input FTSelection is not fulfilled, the empty sequence is output. If all sequences
contain AllMatch, we apply the Cartesian product: We combine each AllMatch
of an input with each AllMatch of the other inputs and generate new AllMatch
containing the matches of these inputs.

The FTAnd is commutative in most cases as the default order constraint is
"unordered”, i.e. the input order can be exchanged. In case an FTOrder filter
is defined in the query:

Example

//book/author[. ftcontains "Edward" ftand "Thorp" ordered]

the search term of the left input "Edward” and the search term of the right
input " Thorp” need to be matched in the text in the same order as defined in
the query.

FTAnd is associative in most cases:

Example

//book/summary[ .ftcontains "Edward" ftand "Thorp" ftand
"Beat the dealer" window 10 words]

it makes no difference if we first compute an ftand of "Edward” and ” Thorp”
and an ftand of its result with "Beat the dealer” or if we compute an ftand
of "Thorp” and ”Beat the dealer” and then with its result an ftand with ”Ed-
ward”. But in case of negation like in the query:

Example
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//book[ .ftcontains "blackjack" ftand "team" ftand
ftnot "blackjack team"]

the FTAnd is not associative. The semantics of the query is to return only
books that contain ”blackjack” and ”team”, but not if these terms occur next
to each other. If we first perform the FTAnd of "blackjack” and ”team”, we
get books that contain both terms. Then we perform an ftand with ”blackjack
team” and get all the books that contain ”blackjack” and ”team” but not next
to each other. If we group in the following way:

//book[ .ftcontains ("blackjack" ftand ("team" ftand
ftnot "blackjack team")]

we first get all the books that contain ”team”, but not if they have a preceding
"blackjack”. If we then perform an ftand with ”blackjack”, we get all the books
that contain ”blackjack” and "team” and also the ones that contain ”blackjack
team”. The information that we do not want books containing ”blackjack team”
is lost.

In case the right input contains a preceding ftnot, the FTAndOperator pro-
cesses the AllMatch differently:

Example
//book[ .ftcontains "blackjack" ftand ftnot "roulette"]

If we evaluate this query in the normal FTAnd way, the empty sequence is
output: If a book only contains ”blackjack” and no "roulette” is found, the
left input of the FTAnd is an AllMatch for the found ”blackjack” and the right
input is the empty sequence, so the empty sequence is output, although the
book containing ”blackjack” is a result. The semantics of the FTAndNot is the
following: An AllMatch is only returned if the ftnot-FTSelection is not satisfied.
We have the following possibilities:

e If both input sequence are empty, the empty sequence is output.
e If the left input is an empty sequence, the empty sequence is returned.

e If the right input is an empty sequence, the FTAndOperator outputs the
AllMatch of the left input.

e In case both input sequences contain AllMatch

— In the simple cases, i.e. the left input and the right input are FT-
Words: The empty sequence is output as the right input is satisfied.

— In the more complex cases, i.e. left input and the right input contain
e.g. positional filters:

Example

/book[. ftcontains "blackjack" ftand ftnot "team"
window 3 words]
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One way is to evaluate the ftand as if there is no ftnot and evaluate
the ftnot with the positional filter: First we find all ”blackjack-team”
combinations. If a result is in window 3 words, the empty sequence
is output. If a result is more than 3 words apart, the AllMatch are
output. The ftnot is not evaluated with the ftand, but further up in
the operator tree.

The specification does not define a binding order for the logical operators. If
there are no parentheses that clarify the evaluation, we apply the logical oper-
ators from left to right.

4.1.4 FTOrder, FTWindow, FTDistance, FTScope,
FTContent, FTRange

This section describes the in- and output and the semantics of the positional
operators. The example queries are all on the sample document that can be
found in Appendix A.

FTOrder

The FTOrder operator takes one sequence of AllMatch as input. The resulting
AllMatches contain matches for which the word positions of the Linguistic to-
kens are in the same order as the search terms in the query. The FTOrder checks
whether the positional information of the Linguistic tokens in the matches of
the AllMatch is in ascending order. If they are in ascending order, the AllMatch
is output. In case of an empty input sequence or an AllMatch with matches in
wrong order, the empty sequence is output.

Example
//book/summary[ .ftcontains "blackjack" ftand "team" ordered]

returns all the books whose summary contain ”blackjack” and "team” in this
order.

<summary>
"Shy, geeky, amiable" MIT grad Kevin Lewis, was, Mezrich learns
at a party, living a double life winning huge sums of cash in
Las Vegas casinos...

</summary>

FTWindow

The FTWindowOperator takes one sequence of AllMatch, one or two Additive-
Expr, i.e. one or two XDM Long token, and a FTUnit as input. The Additive-
Ezpr determines how many units (defined by FT'Unit) the matches need to be
within. The FTUnit is either ”words”, ”sentences” or ”paragraphs”. The All-
Match that is returned contains matches that satisfy the window constraint,i.e.
there exists a sequence of the specified number of subsequent (”words”, ”sen-
tences” or ”paragraphs”) positions, such that all the Linguistic tokens are within
that window. If the F'TUnit is "words”, the FTWindowOperator needs to check
for the matches with the highest and lowest position whether they fulfill the
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window constraint. In case of ”sentences” or ”paragraph”, the FTWindowOp-
erator needs to check the two matches with the highest and lowest ”sentence”
or "paragraph” information. If this constraint is fulfilled, the operator outputs
the AllMatch, otherwise it outputs the empty sequence. In case of an empty
input sequence, the empty sequence is output.

Example

//book/summary[ .ftcontains "Professor of Mathematics" ftand
"Professor Thorp" window 3 paragraphs]

returns all the books that contain a paragraph with ” Professor of Mathematics”
and a paragraph with ”Professor Thorp” and these two paragraphs are in a
window of three paragraphs.

<summary>

<p>
Ever since the time of Cardano, mathematicians have been
delving into the theory of games of chance, but rarely
with the stunning success achieved by Edward Thorp,
Professor of Mathematics at the University of
California at Irvine.

</p>

<p>

Now the new revised point count system shows
how the player can win in spite of
present or future rule changes in Las Vegas,
Atlantic City and Puerto Rico; how to win
in spite of cheating by casinos. The cars in the
book can be used in actual casino play.

</p>

</summary>

FTDistance

The FTDistanceOperator takes a sequence of AllMatch, an FTRange (see Sec-
tion 4.1.4) and a FTUnit as input. The FTRange determines whether the
distance needs to be ”exactly”, ”at least”, "at most” or "from i to j” as long
as the AdditiveEzpr defines. The FTUnit determines whether the distance is
measured in ”"words”, "sentences” or ”paragraphs”. The AllMatch that is re-
turned contains matches that satisfy the distance constraint, i.e. the distance
for every pair of matches is within the specified interval of ”words”, ”sentences”
or "paragraphs” from the end of the preceding Linguistic token to the start of
the next. The FTDistanceOperator checks for each pair of matches whether the
distance constraint is fulfilled. If it is, the AllMatch is a result and is output.
In case the constraint is not fulfilled or the input sequence is empty, the empty
sequence is output.

Example
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//book/summary[ .ftcontains "Professor of Mathematics" ftand
"Professor Thorp" distance at least 4 paragraphs]

returns all the books that contain a paragraph with ” Professor of Mathematics”
and a paragraph with ”"Professor Thorp” and these two paragraphs are in dis-
tance four or more paragraphs. In our example, the empty result is returned as
phrase ”Professor of Mathematics” and phrase ”Professor Thorp” occur in dis-
tance one and two paragraphs from each other (see Figure 4.3 for the operator
tree).

FTScope

The FTScopeOperator takes one sequence of AllMatch and a FTBigUnit as
input which is either the string "sentence” or the string ”paragraph”. An All-
Match returned by the scope ”same sentence” contains those matches whose
Linguistic tokens span only a single sentence and all span the same sentence,
hence an AllMatch returned by the scope ”different sentence” contains those
matches whose Linguistic tokens do not have the same sentence information.
The semantics of ”same paragraph” is similar to ”same sentence”, the only dif-
ference is that the paragraph information needs to be checked. The semantics of
”different paragraph” is similar to ”different sentence”. The FTScopeOperator
checks for each AllMatch whether the matches fulfill the given constraint. If
yes, the AllMatch is output, otherwise the empty sequence is output. In case
the input sequence is empty, the empty sequence is output.

Example

//book/summary[ .ftcontains "Professor of Mathematics" ftand
"Edward Thorp" different sentence]

returns all books that contain ”Professor of Mathematics” and " Edward Thorp”
in different sentences. In this case, the empty result is returned as ”Professor
of Mathematics” and ”Edward Thorp” only occur in the same sentence.

FTContent

The FTContentOperator takes one sequence of AllMatch and one of the post-
fix operators ”at start”, "at end” or "entire content” as input. An AllMatch
returned by the content ”at start” is an AllMatch whose matches contain Lin-
guistic tokens that match the first tokens of the current search context node.
An AllMatch returned by the content ”at end” is an AllMatch whose matches
contains Linguistic tokens that match the last tokens of the current search con-
text node. If the postfix operator is ”entire content”, the query is evaluated as
if it was distance ezxactly 0 words at start at end. This means that the Linguistic
tokens in the match need to match every token in the content of the current
search context node.

To include the FTContent functionality into MXQuery we need to expand
the Linguistic tokens. If a Linguistic token is the first term of an element, we
need to store this information, e.g. by having an isStartingToken boolean flag.
If a Linguistic token is the last term of an element, we also need to store this
information e.g. again by having an isEndingToken boolean flag. When we
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have the postfix operator ”at start” in the query, the F'TContentOperator needs
to check for an AllMatch whether the first match’s Linguistic token is a start-
ing token and whether the following matches’ Linguistic tokens have positional
information in ascending and subsequent order. If the postfix operator is "at
end”, the F'TContentOperator needs to check whether the last match’s Linguis-
tic token is an ending token and whether the other matches are in descending,
subsequent order with regard to the ending token. In case the postfix operator
is ”entire content”, the FTContentOperator needs to check whether the first
token in the AllMatch is a starting token and the last token is an ending token.
In case the input sequence is an empty sequence, the empty sequence is output.

Example
//book/title[ .ftcontains "Beat the Dealer" at start]

returns all titles that contain ”Beat the Dealer” at the beginning of their title
element.

<title>
Beat the Dealer: A Winning Strategy for the Game of Twenty-One
</title>

FTRange

The FTRangeOperator takes one or two AdditiveExpr, i.e. one or two XDM
token and a string having one of the following values: ”at least”, ”at most”,
7exactly” or "from i to j7 as input and passes them as output. The FTRange
is an input for the FTDistanceOperator and the FTTimesOperator.

Multiple Nested Positional Filters

To process queries that contain nested positional filters, e.g. a distance selec-
tion inside another distance selection, it makes sense to create an SuperAllMatch
before evaluating the second distance selection. The semantics of the second dis-
tance selection enforces a constraint on the number of words between the last
Linguistic token of the first F'TDistance selection and the first Linguistic token
of the second F'TDistance selection.

Example

/books/book[ .ftcontains ((("Ben" ftand "Metzrich") distance
at most 2 words) ftand (("Edward" ftand "Thorp") distance
at most 2 words) distance at least 20 words)]/metadata

returns all books’ metadata that contain ”Ben Metzrich” and "Edward Thorp”
in distance at least twenty words of each other.

<metadata>
<title>
Bringing Down the House:
How Six Students Took Vegas for Millioms.
</title>
<author>Ben Mezrich</author>
</metadata>
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The inner distance constraints are evaluated as described above. The FTDis-
tanceOperator sets a flag in the resulting AllMatch that there was a distance
selection already. The following FTAnd does not create an AllMatch contain-
ing all the matches of both input AllMatches, but creates SuperAliMatch by
applying the Cartesian Product on the AllMatch. When evaluating the outer
FTDistance, the FTDistanceOperator checks whether the constraint is fulfilled
for the last Linguistic token of the AllMatch with the smaller Dewey identi-
fiers and for the first Linguistic token of the AllMatch with the bigger Dewey
identifiers. This approach can be used for any positional filters besides FT-
Distance. In case of deeper nesting of positional filters, the approach can be
used in the same way, i.e. by creating a SuperSuperAllMatch;an AllMatch of
SuperAllMatch. To check the positional constraint on this SuperSuperAllMatch
we need to have a unnest method that works for any level of nesting.

4.1.5 FTTimes

This section describes the input and output and the semantics of the Cardi-
nality operator. The FTTimesOperator takes a sequence of AllMatches and
a FTRange expression as input. An AllMatch that is returned by the times
constraint

e "occurs at least N times”, is an AllMatch that contains at least N different
matches of an FTSelection

e "occurs at most N times”, is an AllMatch that contains at most N different
matches of an FTSelection

e "occurs exactly N times”, is an AllMatch that contains exactly N different
matches of an FTSelection

e “occurs from i to j times”, is an AllMatch that contains between ¢ and j
different matches of an FTSelection

The evaluation works as follows: The AllMatches in the sequence are counted
and it is checked whether the times constraint is fulfilled. If it is, all the matches
of the AllMatches are unified and the newly created AllMatch is returned, oth-
erwise the output is the empty sequence. In case of an empty input sequence,
the empty sequence is output.

Example
/books/book[ .ftcontains ’MIT’ at least 2 times]/metadata
returns all books’ metadata that contain ” MIT” at least three times.

<metadata>
<title>
Bringing Down the House:
How Six Students Took Vegas for Millioms.
</title>
<author>Ben Mezrich</author>
</metadata>
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4.1.6 FTIgnoreOption

Using the F'TIgnoreOption, it is possible to modify which parts of the XML
structure are available for a single match of FTSelection [15]. The FTIgnore-
Option can only be specified on the top-level FTSelection and is an optional
extension to the FTContainsExpr: EvaluationContext/.ftcontains FTSelection
without content IgnoreExpr/

The IgnoreEzpr following without content specifies a sequence of nodes,
whose text should be ignored when searching the search context nodes. For
example the following query searches for books that contain ” Professor of Math-
ematics” but not in their p element.

Example

//book[. ftcontains "Professor of Mathematics"
without content .//p]

returns the empty result as ”Professor of Mathematics” only occurs in a para-
graph element.
There are three aspects to this exclusion of nodes from the search context:

e When the phrase ”Professor of Mathematics” appears in a p element (or
descendant element of the p element), it should not be found

e When eliminating paragraphs, the distances of terms in the remaining text
are affected, i.e. when ignoring a paragraph that stands between ”Profes-
sor of” and ”Mathematics”:

Example

<profession>Professor of<p>Discrete</p>
Mathematics</profession>

the terms become adjacent and can be matched as a single phrase [15].

e When eliminating paragraphs, the sentence information of terms in the
remaining text is also affected, i.e. when ignoring a paragraph that stands
between ”Professor of” and ”Mathematics”:

Example

<profession>Professor of<p>Statistics.
He is also chair of</p>Mathematics</profession>

the terms which fall into the same sentence now, were in different sentences
before.

The FTIgnore can be handled by the Matchlterator. If an IgnoreEzpr is defined,
the Matchlterator receives an additional XDM token that contains the ignore
context. The Matchlterator compares the Dewey identifier of the search context
XDM token with the Dewey identifier of the ignore context XDM token. If the
search context XDM token’s Dewey identifier is equal or a descendant of the
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ignore context’s Dewey identifier, no AllMatch is generated. If it is not equal
or descendant, an AllMatch is output.

The aspects that affect the positional and sentence information can be solved
in different ways:

e The ignoring of nodes can be handled like an update such as a deletion.
Depending on how the deletion is handled (see 7.3.1), we can handle the
ignore update in the following ways:

— Positional information is available in the Linguistic tokens and we
use a delta index approach: deletion of the nodes triggers a deletion
and re-insertion of the document into a delta index.

— No positional information is available in the Linguistic tokens: The
deletion has no influence. If we find a ”Professor of” match, we scan
the next token whether it is a ”Mathematics” match.

For the sentence information we could have a similar approach: If it is con-
tained in the Linguistic tokens, we could again use a delta index approach,
otherwise we have to scan the tokens from ”Professor of” to ”Mathemat-
ics” and check whether there is a full stop in between.

e Another approach could be a hybrid of the approaches described above:
We use positional and sentence information, but ignore it when an ignore
option is contained in the query. We then use the scanning approach as
we cannot rely on the positional and sentence information anymore.

4.1.7 FTAnyAllOption

FTWords defines the search terms or phrases that need to be matched in the
text. It consists of two parts: a mandatory FTWordsValue part and an optional
FTAnyallOption part. If the query contains an FTAnyallOption, the query can
be evaluated in the following way:

o {wordl, word2, ...} any word: We check for every word whether it is
contained. If one or more is contained, an AllMatch is built containing
matches for the word(s). If none is contained, the empty sequence is
returned.

e {wordl, word2, ...} all word: We check whether all the words are con-
tained. If they are, an AllMatch containing all the matches is returned
(as if it was a phrase). If not all words are contained, the empty sequence
is returned.

o {wordl, word2, ...} phrase: We check whether all the words, together as
a phrase, are contained. If they are, an AllMatch containing the phrase is
returned. If the phrase is not contained, the empty sequence is returned.

o {phrasel, phrase2, ...} any: We check whether any of the phrases is con-
tained. If one or more are contained, an AllMatch is built containing
matches for the phrase(s). If none is contained, the empty sequence is
returned.

41



AnyallOption Rewriting

{wordl1, word2, ...} any word | wordl ftor word2 ftor ...
{word1, word2, ...} all word | word! ftand word2 ftand ...
{wordl1, word2, ...} phrase (word1 word2 ...) ftor (word2 wordl ...) ftor ...
{phrasel, phrase2, ...} any phrasel ftor phrase? ftor ...
{phrasel, phrase2, ...} all phrasel ftand phrase2 ftand ...

Table 4.1: Rewriting of AnyallOptions

o {phrasel, phrase2, ...} all: We check whether all of the phrases are con-
tained. If they are, an AllMatch containing all the matches for the phrases
is returned. If not all phrases are contained, the empty sequence is re-
turned.

Another way to evaluate the FTAnyallOption, is to perform a rewriting and to
evaluate the rewritten query (see Table 4.1).

4.2 Implementation

This section describes the MXQuery implementation of the indexes, the store
and operators to execute the XQuery Full-Text queries (see Figure 4.4 for an
overview). Section 4.2.1 describes the improved tokenization algorithm, Sec-
tion 4.2.2 is about the indexes on the store and Section 4.2.3 describes the
implementation of the store and its access methods. Section 4.2.4 is about the
implementation of the iterators for ftor, ftand and ftnot and the extension of
the Matchlterator to process the MatchOptions.

4.2.1 Processing of Documents

The LinguisticTokenGenerator is used by the full-text store to generate Lin-
guistic tokens out of XDM text tokens. The text token’s text is tokenized and
for each of the words, a new Linguistic token is generated. To process queries
containing scope predicates, i.e. same or different sentence or paragraph, respec-
tively, we added a very simple tokenization algorithm inspired by [16]. Whenever
there is the pattern:

"Word beginning with a lower case letter followed by a full stop, question or
exclamation mark, followed by a word beginning with a capital letter”

a new sentence is found. This algorithm identifies: ”This is a simple tokeniza-
tion algorithm. It identifies sentences.” as two sentences, but ”This is a simple
tokenization algorithm by G. Grefenstette.” as one sentence, although there are
two ”.” in the sentence. This pattern identifies most of the ”.” correctly either
as full stop or as abbreviation point.

One problem are abbreviations that are written in lower case, e.g. "He is a
techn. Software Engineer.”. The point after ”techn” is identified as a full stop
although it is an abbreviation point. To identify this case, we implemented a
trie on all abbreviations of the English language. In case we identify the pattern
above, we check whether the last word could be an abbreviation by looking it
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up in the trie. If it is found, we identify it as an abbreviation. The sentence
information, i.e. the sentence number the word is belonging to, is stored in the
corresponding Linguistic token.

Paragraph information is only considered in elements that have element
name p, i.e.

<p>This is a paragraph</p>

The Linguistic tokens of this paragraph contain paragraph information, i.e. the
paragraph number the corresponding word is contained in.

In addition, the Linguistic token of the initial implementation is extended by
two fields that indicate whether the token is a starting token, i.e. the Linguistic
token of the first word in a text token, or an ending token, i.e. the Linguistic
token of the last word in a text token. These fields can be used to evaluate the
FTContent predicate. The word itself is not stored in the Linguistic token as a
string, but two offsets indicating the start position and the end position of the
word in the text token’s text.

4.2.2 Indexes

This section describes the indexes that are supported by the implementation:

Inverted List

The inverted list is implemented by a hashtable. The key of an entry is a
word, converted to lower case characters, contained in the document. Its value
is the list of the corresponding Linguistic tokens. With the inverted list, it
can be checked whether a word is contained in the document. If it is not
contained in the hashtable, the word is not contained in the document. If the
word is contained in the hashtable, it can be checked at which positions the
word occurs by retrieving the list of its corresponding Linguistic tokens. To
query the positions, i.e. the Linguistic tokens of a word, we implemented a
function getLinguistic TokensEzact that takes the word as input and returns a
LinguisticTokenlIterator over all the corresponding Linguistic tokens.

N-Gram Index

An n-gram is a sequence of n characters of a word, e.g. the 3-grams for castle are
$ca, cas, ast, stl, tle, 1e$, the special character $ is used to denote the beginning
and end of a word [17]. In an n-gram index the dictionary contains all grams
of size 2 to n, that occur in any term in the vocabulary. Each n-gram points
to the list of vocabulary terms that contain that n-gram. The n-gram index is
implemented by a hashtable. The key of a hashtable’s entry is an n-gram of a
word that is contained in the document. Its value is the list of the words that
contain that n-gram. With the n-gram index, we can evaluate queries containing
wildcards (see Section 4.1.2).

Nextword Index

The nextword index is used to speed up phrase search [18]. It is implemented by
a hashtable. The key of an entry is one of the n most frequent words (firstwords)
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contained in the document. The value of the entry is a list of pairs of Linguistic
tokens. These pairs contain one of the corresponding Linguistic token of one of
the n most frequent words and the Linguistic token next to it, i.e. the Linguistic
token of the word next to the common word (see Figure 4.5). With the nextword
index, we can evaluate phrase queries faster than with the conventional inverted
list.

If a phrase query contains a common word, we do not have to check all
the common word’s occurrences, but can check whether one of its nextwords is
equal to the next word in the phrase. If one of the nextwords is equal to the
next word in the phrase, we already have its Linguistic token and do not have
to retrieve it in a second step. If every word in the text documents is used as
firstword, the size of the nextword index is of approximately twice that of an
inverted list. As much of the speed improvement is for phrase queries including
non-rare words, it is proposed to only use common words as firstwords, i.e. we
use the three most common words as firstwords. Hence, we use a combination
of an inverted list on rare words and a nextword index on common words.

B+ tree

The B+ tree implementation is taken from iMeMez [19]. To make it compatible
with the CLDC! API [20] we needed to make some adaptations®. The B+ tree
is used internally for the nextword index to find a word’s neighboring Linguistic
token. It is also used for the FTStopWordOption (see 4.1.2).

The main classes of the B+ tree implementation are the following:

BTree This classisthe BTree implementation. The most important method
is bulkload which bulk loads an empty tree. Bulkloading is a simple algorithm
to create an index based on a B+ tree very quickly. The algorithm works as fol-
lows: As input we have a sequence of Linguistic tokens that is sorted according
to the Deweyldentifiers. While the sequence is not empty, the Linguistic tokens
are inserted into new leaves according to the B+ tree invariant (see survey [21])
and in the parent node we put a pointer to the leaf. In case the parent node
does not exist, it is created recursively. The advantage of this algorithm is the
absence of node and leaf splits as it creates a B+ tree from left to right and
from bottom to top (see Figure 4.6).

BTreeNode The BTreeNode is the interface of a node in the tree. Its
implementations, leaf and internal node, implement a method bulkAdd that
adds a data pair, Dewey identifier/Linguistic token for leaf and Dewey identi-
fier /pointer to the child BTreeNode for internal nodes respectively.

Stem Index

The stem index is implemented by a hashtable. Keys of the entries are the stems
of the words that are contained in the document. The values of the entries are

LA specification of a framework for Java ME applications targeted at devices with very
limited resources such as pagers and mobile phones.
2MXQuery is CLDC conform so that it can be run on a portable device
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lists of words which have that stem. With the stem index, we can evaluate
queries containing the FTStemOption (see 4.1.2).

4.2.3 Store

The implementation of the full-text store is an extension of the TokenBuffer of
the SMS storage [22]. This store materializes the token stream into a buffer
that is implemented by an array. The text tokens are processed further: They
are fragmented into Linguistic tokens by the LinguisticTokenGenerator. The
FTTokenBufferStore also initiates and creates the indexes and the POS? trie.
The access methods of the store are the following;:

Random Id-Based Access and Sequential Scan

LinguisticToken getLinguisticTokens(DeweylIdentifier did) takes a
Dewey identifier of a Linguistic token as input (this is the starting position) and
returns an iterator over the Linguistic tokens in the store. If the input Dewey
identifier is of an element that does not directly contain Linguistic tokens, null
is returned. This access is implemented by a B+ tree on the Dewey identifiers.
When searching for the Linguistic token with the Dewey identifier did, the B+
tree is traversed for did and the Linguistic token that has this Dewey identifier
is returned, if it exists.

Random Value-Based Access

LinguisticTokenlIterator getLinguisticTokensExact(String word) is
used to return an iterator over the corresponding Linguistic tokens for the search
term word. It is implemented by accessing the inverted index: When searching
the term word, a look up in the inverted index is performed, returning a list of
Linguistic tokens. An iterator over this list is then returned. If the word is not
contained in the text and hence is not found in the index, an empty sequence
iterator is returned.

Wildcard Queries When having queries containing wildcards, the word is, if
possible, provided with $ at the beginning and/or at the end. The word is frag-
mented into n-grams. Those fragments are then looked up in the n-gram index
and the lists of words are retrieved. To find the words that are contained in all
the lists, a boolean ”and” is formed over them and the intersection is computed.
Using this approach, we also get matches that contain the conjunctions of the
n-grams, but do not match the original wildcard query. To cope with this, we
have a post-filtering step in which terms are checked individually against the
original query by a simple string matching operation [17].

Vector get WordsWithSuffix(String prefix) is used to return the set of
all words that have the string ”prefix” as prefix. First the ”prefix” is prepended
a $ and it is fragmented into n-grams. Those are then looked up in the n-
gram index. After retrieving the lists, intersecting them and checking the words
against the original query, the remaining terms are returned. If ”prefix” is not

3Linguistic category of words
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contained in the document, i.e. it is not in the n-gram index, an empty set is
returned.

Example
//book[ .ftcontains "Student." with wildcards]

First of all, ”Student” is fragmented into its n-grams. In our implementation n
is three, so the n-grams are:

e 3-grams: $st, stu, tud, ude, den, ent
e 2-grams: $s, st, tu, ud, de, en, nt

For each of these n-grams, we retrieve the corresponding list of words, intersect
them and check the word against the original query ”Student.”.

Vector get WordsWithPrefix(String suffix) is used to return all words
that have the string ”suffix” as suffix. First the ”suffix” is appended a $ and it
is fragmented into n-grams. The fragments are looked up in the n-gram index
to retrieve the lists of words. After intersecting them and checking the words
against the original query, the remaining terms are returned. If ”suffix” is not
contained in the document, an empty set is returned.

Example
//book[ .ftcontains ".*dents" with wildcards]
The first step is to fragment ”dents” into its n-grams:
e 3-grams: den, ent, nts, ts$
e 2-grams: de, en, nt, ts, s$

For each of these n-grams, we retrieve their list of words, intersect them and
check the word against the original query ”.*dents”.

Vector getWordsWithInfix(String prefix, String suffix) is used to
return all the words that have "prefix” as prefix and ”suffix” as suffix and in
between any number of characters (defined by the wildcard qualifier). First the
"prefix” is prepended a $ and the ”suffix” is appended a $. Prefix and suffix
are fragmented into n-grams and the lists that are returned for the n-grams are
intersected. The terms that survive are then checked against the original query.
The remaining terms are returned. If either there are no words having ” prefix”
as prefix or "suffix” as ”"suffix” or both, an empty set is returned.

Example
//book[ .ftcontains "Stu.{1,2}ents" with wildcards]
At first, "stu” and "ents” are fragmented into their n-grams:
e 3-grams: $st, stu, ent, nts, ts$
e 2-grams: $s, st, tu, en, nt, ts, s$

For each of these n-grams, we retrieve the corresponding list of words, intersect
them and check the word against the original query ”Stu.{1,2}ents”.
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Vector getWordsForMultipleWildCard(String word) is used to re-
turn the set of words that fulfill the word ”word” with its wildcards. If possible
(depending on where the wildcards are), $ are prepended and/or appended and
the parts of ”word” that are not wildcards are fragmented into n-grams. These
n-grams are looked up in the n-gram index, the lists are intersected and the
terms that remain after intersection are checked against the original query. The
terms that survive are returned.

Example

If the query is

e //book[ .ftcontains ".*prov.*" with wildcards]

we look up:

— 3-grams: pro, rov

— 2-grams: pr, ro and ov

e //book[ .ftcontains ".*pr.*vement" with wildcards]

we look up:

— 3-grams: vem, eme, men, ent, nt$

— 2-grams: pr, ve, em, me, en, nt, t$

e //book[ .ftcontains "pr.*ve.*" with wildcards]

we look up:
— 2-grams: pr, ve

in the index, intersect the returned lists of words and check whether the remain-
ing words fulfill the original query.

Stemming

Vector getWordsForStem (String stem) is used to return all the words
that have the stem ”"stem” as prefix. It is implemented by accessing the stem
index. The original query term is stemmed and looked up in the stem index to
retrieve all the words that have the same stem. The problem with this approach
is its overhead: Before it is known whether stemming is used in the query, we
build a special index for it.

Phrase queries Phrase search is implemented by using the nextword index
[18].

Phraselterator getPhraseExact(Vector v, Deweyld ignoreld) Pro-
cessing a phrase query works in the following way: The phrase is tokenized into
single words and for each of the words, it is checked whether
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e It is a firstword: Its list of firstword-nextword pairs is traversed and it is
checked whether one of its nextwords is the next word in the phrase. If it
is, the nextword Linguistic tokens are retrieved and we continue with the
word after the next word. If it is not contained, the whole phrase is not
contained and an empty sequence is returned.

e It is not a firstword: Its list of Linguistic tokens is retrieved and we con-
tinue with the next word in the phrase. If the list is empty, the whole
phrase is not contained and an empty sequence is returned.

If all words in the phrase have either found its nextword Linguistic token or its
list of corresponding Linguistic tokens, it is tested whether there is a Linguistic
token for each of the words in the phrase which are next to each other with
regards to the position. If one or more phrases are found, an iterator over
these phrases is returned. If no phrase is found, an empty sequence iterator is
returned.

An additional speed-up strategy is to have a (possibly time-limited) index
on phrases or word pairs from phrases that are commonly posed as queries (see
Section 7).

Vector getPhraseWithWildcard(Vector phrase) Phrase search con-
taining wildcard(s) is evaluated in the following way: The phrase is again tok-
enized into the single words. If a word contains a wildcard, all its possible words
and their corresponding Linguistic tokens are retrieved. If a word contains no
wildcard, it is processed as explained above. If all words in the phrase have their
list of corresponding Linguistic tokens or neztword Linguistic tokens, it is tested
whether there is a Linguistic token for each of the words in the phrase which
are next to each other. If one or more phrases are found, a vector of phrases
is returned. If no phrase is found, an empty vector is returned. To speed up
wildcard phrase querying, we could have a n-gram index over the nextwords (see
Section 7.3.2).

Vector getPhraseWithStemming(Vector phrase) Phrase search with
stemming is evaluated in the following way: The phrase is tokenized, each of
the words is stemmed and their stems are looked up in the stem index. We then
compute each combination of phrases with the retrieved words, if the query is
the following:

Example
//book[ .ftcontains "Win Strategy"]

we retrieve all the words that have the same stem as ”Win” and ”Strategy” and
compute every possible combinations of these words. These newly generated
phrases are then processed as described above (see Section 4.2.3).

Phrase Search with FTIgnoreOption If phrases go over ignored ele-
ments, they are processed differently.

Example
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We have the following document

<?xml version="1.0" encoding="UTF-8"7>

<books>
<book>
<content>
<p>
Users can be tested at any computer workstation
<footnote>They may be more comfortable
at their own workstation than in a lab.
</footnote>or in a lab.
</p>
</content>
</book>
</books>

and the following query:

//book[. ftcontains ’Users can be tested at any computer
workstation or in a lab’ without content .//footnote]

The phrase can not be found in the conventional way as the position constraint
(all words need to be next to each other) is not fulfilled. If an FTIgnoreOption
is defined and no matching phrase can be found, all words from the last matched
word to the last word in the parent element are scanned (ignoring the element
with the Dewey identifier of the ignore option) to check whether the rest of the
phrase can found.

In our example: Having found ”Users can be tested at any computer work-
station”, we ignore the footnote element and scan the rest of the text in the p
element for ”or in a lab”. The scanning is implemented by accessing the B+
tree index: The Dewey identifier of the last found matching word is looked up
in the B+ tree. Starting from the leaf that contains the Linguistic token of
this word, we scan all leaves and look for the rest of the phrase ignoring the
Linguistic tokens whose Dewey identifier is a descendant of the ignored id. We
stop the scanning as soon as we reach a Linguistic token that is not a child of
the current element.

4.2.4 Iterators

In this section, we describe the most important iterators that are used by the
MXQuery full-text facility.

FTBaselterator

The FTBaselterator contains the basic functionalities of the full-text iterators
FTAndlIterator, FTOrlterator, FTMildNotlterator, FTUnaryNotlterator, FTS-
electionlterator, and Matchlterator. It includes the context and subiterators
of the iterator that is extending it and two methods setContext that sets the
context of the iterator’s subiterators and reset that resets the iterator’s subit-
erators.
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FTUnaryNotIterator

The FTUnaryNotlterator is the implementation of the FTUnaryNot operation.
We only support the restricted version: The FTUnaryNot expression may only
appear as a direct right operand of an FTAnd operation. The FTUnaryNotlter-
ator only returns the AllMatch of its underlying subiterators. The actual ftnot
is evaluated in the FTAndIterator.

FTAndIterator

The FTAndIterator is the implementation of the FTAnd operation. In case one
or all the input iterators are an empty sequence, the FTAndlterator returns
the empty sequence. In case all the input iterators contain AllMatches, we
compute every possible combination of AllMatches that have the same parent
and return it as SuperAllMatch, i.e. an AllMatch that does not contain matches,
but AllMatches. If the right operand of the FTAnd is an FTUnaryNotlterator,
the functionality of the FTAndlterator is inverted: If the FTUnaryNotlterator
returns the empty sequence, a SuperAllMatch is created and returned. If the
FTUnaryNotlterator returns an AllMatch, the empty sequence is returned.

FTOrlIterator

The FTOrlterator is the implementation of the FTOr operation. If the underly-
ing subiterators contain SuperAllMatches (this means that the left and/or right
input of the ftor contains an ftand), the AllMatch is unnested to get access to
the matches.

FTMildNotlIterator

This iterator is not implemented yet, as it is not part of the Minimal Confor-
mance. However, it is needed to build the query plan. It returns the AllMatch
of its subiterator.

FTSelectionlterator

This iterator is the implementation of the FTSelection. It takes the sequence of
AllMatch that fulfill the underlying Primary Full-Text Selection and an FTPo-
sitional (FTDistance, FTWindow or FTOrder) as input and tests the positional
constraint. If is is fulfilled, a SuperAllMatch is created and returned.

Matchlterator

The Matchlterator is one of the most important iterators in the full-text model:
it is the only iterator that has access to the store and the indexes. Its input
are the MatchOptions that are defined in the query and two subiterators that
provide the query context and keyword(s) in the form of XDM tokens. To check
whether a keyword is contained in an element described by the query context,
the Matchlterator applies the MatchOptions on the keyword and accesses the
store to get all the Linguistic tokens of the result words. This list of Linguistic
tokens is then traversed and it is checked whether the Linguistic token is a
descendant of the query context element by comparing the Dewey identifiers.
If the query context element’s Dewey identifier is an ancestor of the Dewey

53



identifier of the Linguistic token, a match is created. In case there are several
Linguistic tokens that match, an AllMatch for each of them is created. In case
of a phrase search, each Linguistic token that is a part of the phrase and fulfills
the ancestor-descendant constraint makes up one match. These matches are
then all part of one AllMatch. In case there are several phrases that match the
phrase search, an AllMatch for each result is created. In addition to the simple
keyword/phrase search with or without MatchOptions, the Matchlterator also
evaluates the FTAnyallOption and the FTIgnoreOption.

MatchOptions The MatchOptions are implemented by the superclass
MatchOption that contains the option written in the query. Each of the MatchOp-
tions has its own class storing any other information that is needed to evaluate
the query. The MatchOptions are applied in the following order (if the option
is part of the query):

1. FTLanguageOption: The implementation of the FTLanguageOption is
defined by the Minimal Conformance of the specification: it compares
whether the language option defined in the prolog and the language option
defined in the query body is the same.

2. FTWildcardOption: Before the other options can be applied, we need
whole words, so the wildcard option is evaluated as first option. In the
FTWildcardOption implementation, it is first checked whether the option
is "with wildcards” or ”without wildcards”. In case of ”with wildcards”,
the words that fulfill the wildcards are retrieved from the store: If the
FTWildcardOption is the only MatchOption in the query, the Linguistic
tokens that contain words fulfilling the wildcards are retrieved. Otherwise
the found words are processed further.

3. FTStemOption: As defined in the specification, stemming needs to be
done before the diacritics and the case option. In the FTStemOption
implementation, it is checked whether the option is ”"with stemming” or
?without stemming”. In the case of ”with stemming”, the words or the
phrases that have the same stem are retrieved from the store. If the
FTStemOption is the only MatchOption in the query, the corresponding
Linguistic tokens are returned. Otherwise the found words or phrases are
processed further.

4. FTDiacriticsOption: In the FTDiacriticsOption implementation, it is check-
ed whether the option is ”diacritics sensitive” or ”diacritics insensitive”.
The words are stored without any diacritics in the indexes, so if the option
is ”diacritics insensitive”, the query is processed as if it was a normal key-
word or phrase query. If the FTDiacriticsOption is the only MatchOption
in the query, the corresponding Linguistic tokens are retrieved. Otherwise
the found words or phrases are processed further. If the option is ”dia-
critics sensitive”, the retrieved Linguistic tokens are checked against the
original keyword or phrase with the diacritics information.

5. FTThesaurusOption: We use a local web service to implement the F'T-
ThesaurusOption as it is lighter in terms of memory usage and does not
need to be adapted to be CLDC conform [20]. This web service calls the
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getSynsets(String word) method provided by the WordNet Simple API. It
is using the WordNet database in turn to return the synonyms of word
"word” [23]. As WordNet returns several levels of synonyms, we imple-
mented a trie over a dictionary file that contains part of speech (POS)
information (see Figure 4.7). Whenever there is a call to the web service,
we first look up the word in the dictionary file and return the word’s POS.
This information is then included in the web service call and constrains
the output to the most matching synonyms. Although proposed by the
specification, we did not integrate more functionality, e.g. relationship or
level. We think that users are usually interested in synonyms and the level
is implemented by not returning all the synonyms, but only the synonyms
that have the same POS like the word for which we look for synonyms.

6. FTCaseOption: The case option is the last option to be applied. We
first apply all the MatchOptions to the keyword or phrase, retrieve the
Linguistic tokens from the store and then check the words of the Linguistic
tokens:

e If the option is "lowercase”, the query term(s) are converted into
lowercase characters and are checked against the text of the Linguistic
token(s). If they are the same, the Linguistic token(s) are returned.

e If the option is "uppercase”, the query term(s) are converted into up-
percase characters and are checked against the text of the Linguistic
token(s). If they are the same, the Linguistic token(s) are returned.

e If the option is " case sensitive”, the query term(s) are checked against
the text of the Linguistic tokens. If they are the same, the Linguistic
token(s) are returned.

The FTStopwordOption is optional according the Minimal Conformance of the
specification, so it is not implemented. If there is an extension defined by the
FTExtensionOption, the user needs to add the corresponding implementation.
Any queries that combine wildcard, stemming and diacritics may not al-
ways return the correct result. The problem is the application order of the
MatchOptions. When building the stem index, words are first stemmed and
then the diacritics are removed. But in the query evaluation, we first look for
words fulfilling the wildcard (this is already done without diacritics informa-
tion) and apply the stemming algorithm on the found words. But as described
in the specification, stemming needs to be applied before the diacritics option
as stem(diacritics(word)) is not always the same as diacritics(stem(word)), e.g.
the stem of ”éducation” is ”éducat”, but the stem of ”education” is "educ”.

FTAnyallOption In the design chapter we described the rewriting of FTAnyal-
{Option into queries using ftand and ftor. Our implementation of the FTAnyal-
[Option evaluation is without rewriting the query:

e phrase: This option is implemented by bringing all the words in the Ezpr*
into a phrase and using the method getPhraseEzact(Vector phrase) of
the FTTokenBufferStore to obtain all the phrases in the text that match
phrase phrase.

4Expr: a general expression of XQuery
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abjc|d n x|y|z| |albjc|d X|y|z
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Word: “ant” POS: “noun” /
ablc|d k X\ylz

Word: “dark” POS: “adjective”

Figure 4.7: Trie with POS information
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e any words: This option is implemented by using the method getLinguis-
ticTokenEzact(String word) of the FTTokenBufferStore to obtain all the
words in the text that match word word.

e all words: This option is implemented by using the method getLinguis-
ticTokenEzact(String word) of the F'TTokenBufferStore to obtain all the
words in the text that match word word. We then find all the ”phrases”
that include all the words contained in the Ezpr. The ”phrases” are not
really phrases as the words do not have to be next to each other.

e any: This option is implemented by using the method getLinguistic To-
kenEzxact(String word) of the FTTokenBufferStore if a word is contained
in the Expr or by using the method getPhraseEzact(Vector phrase) if a
phrase is contained in the Expr to obtain all the words or phrases in the
text that match word word or match phrase phrase.

e all: This option is implemented by using the method getLinguisticTo-
kenEzact(String word) of the FTTokenBufferStore if a word is contained
in the Expr or by using the method getPhraseEzact(Vector phrase) of the
FTTokenBufferStore if a phrase is contained in the FExpr to obtain all
the words or phrases in the text that match word word or match phrase
phrase. We then find all the ”phrases” that include all the words or phrases
contained in the Fzpr. Again, the "phrases” are not really phrases as the
words and phrases do not have to be next to each other.

FTIgnoreOption The FTIgnoreOption is also checked in the Matchlterator.
If an FTIgnoreOption is defined and the Dewey identifier of the ignore context
is an ancestor of the Linguistic token’s Dewey identifier, the result is discarded
and no AllMatch is built.

4.2.5 Minimal Conformance

The following items of the Minimal Conformance are supported in the MXQuery
Full-Text implementation:

e MatchOptions:

FTCaseOption: all choices are supported.

FTDiacriticsOption: supported.
— FTStemOption: supported.

— FTThesaurusOption: supported with exception of relationships de-
fined in ISO 2788.

— FTWildCardOption: supported.
— FTEzxtensionOption: is parsed.

e Logical Full-Text operators

— FTAndOperator: supported.
— FTOrOperator: supported.
— FTUnaryNotOperator: Negation restriction 1 is supported.
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e Positional filters

— FTWindow: Window operator restriction is supported.
— FTDistance: Distance operator restriction is supported.

— FTOrder: Order operator restriction is supported.

o Others

FTAnyallOption: supported.

— FTUnit and FTBigUnit: all the choices of FTUnit and FTBigUnit
are supported.

FTIgnoreOption: supported.

Scoring: not yet supported.
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Chapter 5

Ranking

There are several approaches to XML ranking. To compute the rank of a result,
we investigated four different approaches: One classical approach that only
takes the text content into account (see Section 5.1) and three approaches that
consider structure and content to compute the score (see Section 5.2).

5.1 Content-Based Ranking

Content-based ranking approaches exploit the text data of a document to score
and rank the results of a query. The Ranked Boolean Retrieval Model is a
traditional information retrieval model to obtain score for results. Section 5.1.1
gives a short introduction to the classical model and a proposal on how to adapt
it for XML retrieval and XQuery Full-Text search.

5.1.1 Ranked Boolean Retrieval Model

The main idea about the Ranked Boolean Retrieval Model is the observation
that not every word of a text is equally indicative of the text’s meaning [24].
Therefore different weights are given to different terms, i.e. a term’s weight
should reflect the (estimated) importance of the term. There are several ways
to compute these weights, a common one are tf.idf weights:

Definitions

tf; ; = number of times term w; occurs in document d;

df; = number of documents in collection that contain term w;
n = total number of document in collection

idf; = log(n/df;)

tf.idf weights: tf.idf; ; = tfs ; * idf;

With these weights multiple term occurrences increase document relevance (¢ f)
and less frequently occurring (more discriminative) terms get a higher weight
(idf). These weights are then used in the following way: First the result set is
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computed like in the Boolean retrieval model and then the result set is ranked
based on the term weights:

Score of document ¢ for term j: score; = tf; ; * idf;.

In case of boolean operators like conjunctions or disjunctions, respectively:

score;(w; AND .. . AND w,,) = min; score;(w;)
score;(w1 OR .. . OR wy,) = mazx; score;(w,)

MXQuery and Ranked Boolean Retrieval Model: The Ranked Boolean
Retrieval Model is an easy, but powerful way to calculate the rank of a document.
To use this method for XQuery Full-Text, in particular for MXQuery, we could
adapt the Ranked Boolean Model to XML documents in the following way:
First we need to materialize the documents and calculate the inverse document
frequency weights idf; for every term that is contained in the documents. The
tf; ; weight can be calculated during query processing: tf; ; = number of times
term k; occurs in an XML node n; where k; is the keyword and n; is a node
of the result set. We then calculate all the tf.idf; ; for every term/node pair
values and rank them based on these values [25].

To have a more sophisticated method we could also take proximity of key-
words into account. If the keywords are closer, the node containing the keywords
gets a higher score as a node that contains the keywords but they are all far
apart [26]. This can be added easily to the existing model, as we store the
absolute position in the corresponding Linguistic token of a term.

In addition, we could also take the proximity to the result node into account:
If a keyword is contained in a subelement of the result node, the result is ranked
lower than if it is directly contained in the result node. If there are several
keywords in the query, a result node is ranked higher if it contains all the
keywords directly than if the keywords are distributed over the subelements of
the result node [26].

The problem of this approach is its lack of considering the structure. The
model is too simple for XML retrieval as it does not take the structure of an
XML document into account which in some cases might be as important as the
XML document’s content.

Even though the Ranked Boolean Retrieval Model does not take structural
information into account, we consider it an appropriate ranking Model for MX-
Query Full-Text: It can be applied for any kind of documents (containing much
to few structural information) and idf scores can be precomputed offline, i.e.
before query processing.

5.2 Content and Structure-Based Ranking

In Web search, all of the retrieving and ranking approaches, like PageRank or
HITS, exploit the hyperlink structure of HTML documents.
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In Section 5.2.1 we describe XRank which only supports ranked keyword
search. When queries are only based on search terms, retrieval of structured
data is more difficult than retrieval of unstructured data. One of the difficul-
ties that we encounter is that we want to return parts of the document that
contain the search term, but not the entire document. But which part should
be returned? One important criterion is given by [25]: ”Structured document
retrieval principle: a system should always retrieve the most specific part of a
document answering the query”. XRank exploits link and element-subelement
relationships of the XML document to retrieve and rank the results to a query.

In Section 5.2.2 we investigate an approach that adapts the classical Vector
Space Model to a Vector Space Model for XML documents.

Section 5.2.3 then describes an approach that takes content and structure
into account when computing the score.

5.2.1 XRank

XRank (see [26]) is an approach for ranked keyword search over hyperlinked
XML documents and collections that contain XML and HTML documents.
XRank exploits the structure of the XML documents during query processing.
XRank faces three main challenges:

e Ranking: is done at the granularity of XML elements and is not only based
on hyperlinks as in HTML, but takes both hyperlinks and containment
edges into account.

e Results: The results are returned at the granularity of XML elements as
the deepest node containing a keyword gives more context information
then returning the whole document.

e Proximity: In HTML documents the measure of proximity is the distance
between the keywords, in XML documents on the other hand there are
two measures: width (distance between keywords) and height (distance
between keywords and result XML element) in the XML tree.

XRank considers two reference types as hyperlinks: intra-document references
(IDREF) and inter-document references (XLink). The collection of hyperlinked
documents is modeled as a directed graph G = (N, CE, HE). N is the set of
nodes N = NE U NV where NFE is the set of elements and NV is the set of
values. CF is the set of containment edges: (u,v) € CE iff v is a value/nested
sub-element of u; u is the parent of v or the ancestor if there is a sequence of
containment edges. HE is the set of hyperlinked edges and (u,u) € HE iff u
contains a hyperlink reference to v. The predicate contains*(v,k) is true if node
v directly or indirectly contains keyword &.

Keyword Search with n Keywords
Query Q = kq,..., kn

The set of elements that directly or indirectly contain all the query keywords
is modeled by Ry = {v| v € NEAVY k€ Q (contains*(v,k))}, but the set of
all independent occurrences of the keyword query is modeled by Result(Q)) =
{v|Vke Q3 ce N ((vc) e CENc¢& Ry A (contains*(v,k)))}. The idea of
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Result(Q) is that if a subelement already contains all the query keywords, it (or
one of its descendants) will be a more specific result for the query, so it should
be returned instead of the parent element. The problem with this approach is
that the returned result may be to specific. As a solution they propose to allow
user to navigate in the document or to predefine a set of answer nodes. As
XQuery defines the elements that need to be returned, we do not need to take
this problem into consideration.

Ranking: Properties and Function

The desired properties for the ranking function are the following:

e Result specifity: More specific results should be ranked higher than less
specific results, e.g. keywords are in the same element: this is a more
specific result than if query keywords occur in different elements.

e Keyword proximity: The ranking function should take the proximity of
query words into account

e Hyperlink Awareness: The ranking function should use the hyperlink
structure of XML documents, i.e. widely referenced XML documents
should be ranked higher.

The ranking function is a Google PageRank-like function that takes the nested
structure of XML into account. ElemRank(v) is the importance of an XML
element v and defined as follows: Given query @ = ki,..., k,, R = Result(Q)
and v; € R. The ranking with respect to the query keyword k; is defined by
r(vi,k;) = ElemRank(v;) x decay'~' where there is a sequence of containment
edges (v1,02), ..., (Vt,v441) S.t. vgqq directly contains k;. The rank is scaled
down by the factor of decay € [0,1]. In this way less specific results get lower
ranks. If there are more than one occurrence of a keyword, say m, first the rank
for each occurrence is computed and the ranks are then combined: 7’(vy,k;) =
f(r1, ..., rm) where f can be the maximization or the sum function. The overall
ranking of a result element vy for query @ = ki,..., ky is: R(v1,Q) = (31,
r’(v1,ki)) x p(v1,k1, ..., kn). If a user prefers a keyword over another keyword,
a weight to each keyword can be given and the rank for the keyword can be
weighted accordingly: R(v1,Q) = (31, (r'(vi.ki)) x weight;) x p(vi,ki, ...,

ElemRanks are computed for each XML element by adapting the Page Rank
algorithm:

p(v) = (1-d)/Na + d X3, e P(W)/Na(w)

where Ny is the total number of documents and N, (u) is the number of outgoing
hyperlinks from document u. The first term of the equation designates the
random surfer choosing the document v, the second term designates that page
v is reached through references. This scheme is mapped to XML documents
by mapping each element to a document and all edges to hyperlinked edges.
Several other adaptations need to be done: Omne problem that needs to be
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addressed is the difference between one-directional hyperlinks and bi-directional
containment edges. If an element has a high ElemRank, subelements also have
a high ElemRank. This is called Forward ElemRank. On the other hand if an
element has many subelements that have a high ElemRank, the parent element
should also have a high ElemRank. This is called reverse ElemRank. This is
achieved by the following first change to the PageRank algorithm:

e(v) = (1-d)/Ne + d X 32, )ep e(wW)/(Np(u) + Ne(u) + 1)

where N, is the total number of XML elements and N, () the number of subele-
ments of u. E = HE U CE U CE~! is the set of hyperlink, containment and
reverse containment edges. This adaptation ensures that ElemRanks are trans-
fered bi-directional and not only one directional as in the original PageRank al-
gorithm. The next adaption addresses the fact that hyperlinks and containment
edges are treated similarly although they are usually independent. To discrimi-
nate between containment and hyperlinked edges, the algorithm is adapted the
following:

e(v) = (1-dy-dz)/Ne + dv X 3 pyenp €W/ Na(u) + da X 32, ) ecpuce-1
e(u)/(Ne(u)+1)

where d; and dy are used to weigh the probability of navigating through hyper-
links and containment links, respectively. This method discriminated contain-
ment and hyperlinked edges, but not forward and reverse containment edges: If
an element has a lot of subelements, the ElemRank of each section should be a
fraction of the ElemRank of the whole element and the FlemRank of a parent
should be proportional to the aggregate of the ElemRanks of its subelements.
In the final state of the algorithm, the ElemRanks for the reverse containment
relationships are aggregated:

e(v) = (1~ dy - dy- dy)/(Ne % Nae(w)) + di x S,y o(0)/Na(w) + da x
Z(u,U)ECE e(u)/NC(u) + d3 X Z(U,U)ECE*1 e(u)

where dq, do and ds are used to weigh the probability of navigating through
hyperlinked, forward or reverse containment links, respectively. Ng.(v) is the
number of elements in the XML document containing the element v. If not all
the features are available, e.g. hyperlinks are missing, split among the other
alternatives proportionally.

The goal is to evaluate the query efficiently, ranking and returning the top
m results. There are three query evaluation strategies described:

Dewey inverted list (DIL): There exists an inverted list for every keyword

with the keyword as key and as value the list of Dewey ids of elements that di-
rectly contain the keywords, their corresponding ElemRank and the position(s)
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of the word in that element. The entries are sorted according the Dewey id. Key
idea of the query processing is merging the lists and simultaneously computing
the largest common prefix of the Dewey ids in the different lists. Computing the
longest common prefix identifies the deepest ancestor that contains the query
word(s). The algorithm works as follows. There are two data structures used:
A Dewey stack that stores id, rank, position list of the current dewey id and
keeps track of the longest common prefix and a result heap that keeps track of
the top m results seen so far. The first step is to merge the inverted lists and to
compute the longest common prefix of the current entry and the previous entry
stored on the Dewey stack. Dewey stack components that are not part in the
common prefix are popped from the stack: If any of the popped components
contain all query words, it is added to the result heap, if not, the position list
and the scaled down rank (as the result gets less specific) are added to the parent.

Ranked Dewey inverted list (RDIL): The disadvantage of the above ap-
proach is its long execution time especially if users like to have only few top
results. In this case, all the entries in the inverted lists need to be scanned. To
address this problem, the following data structure is proposed: The inverted
list entries are not sorted by Dewey id, but by the ElemRank as higher ranked
results are likely to appear first and the scanning of the inverted list can be
stopped before reaching the end of the list. This approach is convenient if there
is a single search term. In case of multiple search terms, the approach faces the
problem of having a keyword with a high ElemRank which is at the beginning
of the list, and a keyword with a low ElemRank which is at the end of the list.
The RDIL data structure is similar to the DIL data structure, but the entries
are sorted according the ElemRank. In addition, every inverted list has a B+
tree on the Dewey ids. Query processing works as follows: If we have a keyword
k; with Dewey id d we need to find the longest prefix of d that also contains
the other query words. To find this longest prefix, we use the B+ tree: We
probe the B+ tree of a keyword k; and look for the smallest Dewey id ds that is
larger than d - either this or the predecessor share the longest common prefix.
The problem with this approach is that although the single keywords can have
a high ElemRank, the result element can have a low ElemRank. To guarantee
that the top m results are output without having a look at all the results, a
Threshold Algorithm is used that computes a threshold every point in time. If
there are m results that have all a rank greater or equal to the current threshold,
the algorithm stops. The threshold in this approach is the sum of ElemRanks
of the last processed elements.

Hybrid Dewey inverted list (HDIL): In cases where keywords are not cor-
related in the document, there are few results, but the RDIL structure has to
scan most of the inverted lists, i.e. probing all the entries. In this case the DIL
structure would perform better. The HDIL data structure contains for every
keyword the full inverted list sorted by Dewey id, a fraction of the inverted
list sorted by FlemRank and a B+ tree on the full inverted list. The query
processing is an adaptive strategy: Start with the RDIL strategy and periodi-
cally monitor its performance by measuring a) the time spent so far: -, b) the
number of results above the threshold -r and compute the estimated remaining
time: (m-r)x t/r. If the remaining time is smaller of equal the expected time
for the DIL approach, switch to DIL (its expected time is dependent on the
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number of query words and the size of each query keyword inverted list).

MXQuery and XRank

As mentioned at the beginning of this Section, XRank is an approach for ranked
keyword search over hyperlinked XML documents. But, as stated above, it can
also be used if features like hyperlinks are not contained in a document. The
computation of ElemRanks is meant to be done offline as it takes a while to
converge. This works well if texts in the collections do not change often as the
ElemRanks do not have to be re-computed often. To use this approach, we
need to materialize the XML documents to compute the ElemRanks of their
elements.

XRank is suited for XQuery queries like //*[ftcontains “keyword(s)” ], i.e.
keyword search. If XQuery queries include a PathExpr that already define the
result nodes, we do not need to look for the most specific node. But the XRank
approach could be adapted for queries with PathExpr the following way: If a
node in the result set is a direct parent, the score is higher as if the node is an
ancestor of the node containing the keyword. This could be easily integrated
into the existing full-text model of MXQuery. There already exist functions for
checking whether a Dewey identifier is a ancestor or even a parent of another
Dewey identifier.

XRank would be an adequate for MXQuery Full-Text, but is very time-
consuming to implement and to integrate. For time reasons we prefer a simpler
model. Future work may include the implementation of a more sophisticated
model, e.g. the XRank implementation or a ranking model similar to XRank.

5.2.2 Vector Space Model

In the Vector Space Model documents are represented as vectors in high-dimensional
vector space [24]. The entry j of the vector d; contains the number of times term

t; is contained in document ¢. The query itself is treated as a (short) document.
The similarity between a document d and a query ¢ is calculated using cosine:
cos(d,q). The smaller the angle between query and document, the more similar
the document is to the query. At the end, the documents are ranked based on
their similarity with the query.

Another method that could be used is proposed by [27]. This approach
queries XML documents using pieces or fragments of XML. It presents an ex-
tension of the classical Vector Space Model that integrates a measure of similar-
ity between XML paths: Instead of using term weights, the weight is computed
regarding the term and its corresponding context wp (t;,c;). The context is
expressed by the XPath from the root to the node containing the term. In
addition, it is proposed to relax the cosine of the document and query by de-
termining a value for context resemblance. In this way the score is not only
increased when a same (¢;,¢;) is found, but when the ¢; appears in a context c;
similar to a context ¢;. The classical Vector Space measure

P(QD) =3 conp wolti) * wp(t:)/[1Q[ * [|D]
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is transformed into the following equation:

p(Q’D) = (Z(ti,Ci)EQ Z(ti,Ck)eD wQ(tivck) * wD(tiack) * C’I“(Ci,Ck))/(”QH * ||DH)

where @ is the query, D a document in the collection, ¢; term i and cr € [0,1]
is the measure of resemblance between contexts.

When indexing, vector of (¢, c) pairs are extracted and posting lists for each
pair (t,c) are created. Each (¢, c) pair gets the unique key t#c. The system can
then identify the occurrences of a term ¢ under context ¢ by accessing the posting
list of key t#c. Index terms are stored in a trie structure and the contexts
under which the term is stored, can be retrieved using the key ¢t#. Ranking is
performed in the following way: First for each similar context ¢!, the algorithm
retrieves the posting list (¢;,¢') and scans it to accumulate document scores, i.e.
weight of the term and resemblance between ¢ and ¢’. The documents are then
ranked in descending order according these scores. The context resemblance
is determined by representing contexts as strings and using techniques from
pattern and string matching. A context ¢’ is similar to context c if these criteria
are fulfilled:

e The context ¢ and ¢ have as many axis steps as possible in common and
in the same order.

e The occurrences of axis steps of ¢’ similar to the axis steps of ¢ are closer
to the beginning then to the tail of the path.

e The occurrences of axis steps of ¢’ similar to the axis steps of ¢ are close
to each other

e Of the contexts ¢’ and ¢” that match on the same axis steps, the shorter
of the two paths gets a higher score

Proposals how to determine these scores are described in [27].

MXQuery and Vector Space Model: The Vector Space Model is also sim-
ple model, but the approach has the problem of sparseness and huge size of
the vectors in large XML collections: We need to have an entry for every term
contained in the documents and a vector for every possible node in a document.
To use this method for XQuery Full-Text, we could adapt the model in the
following ways: The most intuitive way is to consider XML nodes as documents
and to build vectors n; ;. The entry j of n; ;, contains the number of times term
w; is contained in node %k of document 1.

As we need to compute the tf information and the cosine during query
evaluation which makes the processing very slow, we do not consider the Vector
Space Model as an appropriate Ranking Model for MXQuery Full-Text.

Lall contexts are assigned a cr score that measure their similarity to the query term context
Ci
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5.2.3 Structure and Content Scoring for XML

The approach described in [28] proposes a scoring method that is based on
the traditional tfxidf measure and takes structure and content into account.
Queries are twig queries: a rooted tree with string-labeled nodes and child
and/or descendant edges. For example a query for an RSS feed document could
be the following: channel/item//title and the title needs to have the value
"ReuterNews” and channel/item//link and the link needs to have the value
“reuters.com”.

To obtain more results then just the exact matches, query relaxations are
applied. There are three possible query relaxations that transform the original
query in an approximate query: edge gemeralization, leaf deletion and subtree
promotion. The relaxation returns additional results, but guarantee that exact
matches to the original query are also matches to the approximate query. Edge
generalization replaces a child axis with a descendant axis, leaf deletion makes a
leaf node optional and subtree promotion moves a subtree from its parent node
to its grandparent node. The relaxation of a query are organized in a DAG.
If a query @’ is obtained from a query @) by applying a relaxation, there is a
directed edge from @ to Q.

Three scoring methods are proposed: twig scoring, path scoring and binary
scoring. Twig scoring computes the score of an answer taking into account
occurrences of all structural and content predicates in the query, i.e. a match to
a query would be assigned an idf score based on the fraction of the number of
results that have the very same path and content match. The ¢f score would be
based on the number of query matches for the specific answer. As this approach
exploits all correlations between nodes in the query, it is very time and memory
consuming. Path scoring loosens the correlations between root-to-leaf paths in
the query, i.e. for queries with different paths, a score is calculated for each path
and combined for the answer score. Binary scoring scores binary predicates with
respect to the query root and assumes independence between these predicates,
i.e. scores are computed between root and its child/children, between the root
and all its descendants (until leaf level) and combine them to the answer score.

To achieve a efficient top-k query processing, the scores need to be stored
and organized so that one can easily determine the highest score of a match
and prune the irrelevant matches. As idf scores are shared across all partial
results of the same query, they can be precomputed and stored for all possible
relaxations of the user query.

MXQuery and Structure and Content Scoring for XML

In XQuery the PathExpr, i.e. the context, is strictly defined and need to be
fulfilled to be a valid result to the query. The goal of the approach described
applies query relaxation to obtain fuzzy matches. We could apply the approach
for XQuery as well, but need to rank the fuzzy matches lower than the exact
matches.

Primarily, we like to implement XQuery Full-Text which only allows exact
matches: If the PathExpr, i.e. the context, is not fulfilled in the first place, an
element is not considered as a possible result. Hence, Structure and Content
Scoring for XML is not an appropriate ranking Model for XQuery Full-Text
as it allows fuzzy matches, i.e. that path requirements are relaxed. Another
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disadvantage of this method is its lack of precomputation: idf and tf scores are
computed for queries, i.e. for each possible relaxed query of the initial query.
This does not allow for precomputation of values before the query processing,
i.e. the query processing might be very slow.

5.3 MXQuery Scoring Model

We decided to use a slightly changed Ranked Boolean Retrieval Model:

5.3.1 Document Collection

If the queries are evaluated over a collection of documents, the ¢f and idf weights
are defined as follows:

Tf.Idf The term frequency is the number of times the word(s) occur in the
result element of a query. To determine this number, we do not need the store:
it can be determined during query processing. The document frequency and
inverse document frequency depend on the number of documents. In a collection
of XML documents, each XML document is treated as a flat document, i.e. the
number of documents is equal to the number of documents in the collection and
the document frequency of a term is in how many different documents the term
occurs. The document frequency can be precomputed and stored for each term,
e.g. in the inverted list.

5.3.2 Single Document

If the data is contained in one single document, the document frequency cannot
be determined. Therefore, w use another measure to compute scores:

deWGY'idf = didparent/diddescendant

where didpgrent is the length of the Dewey identifier of the context element
fulfilling the full-text predicate and didgescendant is the length of the keywords’
Dewey identifier. This measure is then combined with the term frequency of the
keywords. Weight information in the query is combined with the term frequency
of the keywords. The final score looks for keyword search looks as follows:

SCOT €resultnode = didparent/diddescendant * (tfdescendant / #tfdescendant)
* welghtdescendant)

The final score looks for phrase search looks as follows:
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SCOT Cresultnode = didparent/avg(diddescendant) *
((tfdescendant/#tfdescendant)* weightdescendant)

where avg(didgescendant) 1S the average length of the Dewey identifiers of all
keywords in the phrase and #descendants is the number of words in the phrase.

In case of queries containing and ftand or ftor (see 2.4), we combine the
scores as described in Section 5.1.1:

score; (w1 AND .. . AND w,,) = min; score;(w;)
score; (w1 OR .. . OR wy,) = max; score;(w;)

where i is a result element and w;, j = 1...m are keywords. Optimization ideas
for scoring and ranking are described in Section 7.3.4.
Scoring Example

The query

for $book score $s in
doc("sample_data.xml")
/books/book[. ftcontains "party" case insensitivel
where $s => 0.1
order by $s
return $book/metadata/title

returns the result:

<title>1984</title>
<title>Bringing Down the House: How Six Students Took Vegas for Millions</title>

The scores are the following:
e for book with title ”Bringing Down the House: How Six Students Took
Vegas for Millions”:

scorepouse = length(1.1.3)/length(1.1.1.3.1.24) % (1/5) =
1/2 % 1/5 = 1/10 = 0.1

e for book with title 71984”:

scoreiggs = length(1.7.3)/avgiengtn(1.7.3.3.1.1.pos, 1.7.3.3.3.1.pos,
1.7.3.3.3.1.p0s,1.7.3.3.3.1.pos) * (1/5+ 1/5 + 1/5 + 1/5) =
1/3 % 4/5 =4/15 = 0.267

69



The book with title ”71984” is a slightly better match as the term occurs more
times. This could be an indicator that the book is relevant. However, the score
is not that high because the search term is not directly contained in the book,
but in a descendant of book. The book with title ”Bringing Down the House:
How Six Students Took Vegas for Millions” is ranked lower, because the term
occurs only once.
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Chapter 6

Benchmarking

This chapter presents our benchmark results. We used the following data
for the benchmarking: Auctions.xml is auction data converted to XML from
web sources. Mondial.xml is data out of the World geographic database inte-
grated from the CIA World Factbook, the International Atlas, and the TERRA
database among other sources. AllShakes.xml contains all Shakespeare’s plays
converted to XML. In the auction data, the text and structure data ration is
balanced. The mondial data is heavily structured and does not contain a lot of
text data. However, Shakespeare is text data with annotation markup.

Table 6.1 presents the three test documents. Elements is the number of
elements that the document contains. Max depth is the maximal depth, Avg
depth is the average depth of hierarchy. Size denotes the size of the document
and the Date is the creation date of the data. All the data can be found on
[29] and [30]. Section 6.1.1 presents the time measurements for loading the data
into the store, Section 6.1.2 shows the time measurements for creating Linguistic
tokens and Section 6.1.3 is about the time measurements of building the single
indexes. Section 6.1.5 is about the profiling results: we measured the memory
usage for the store, the indexes, the Dewey identifiers and the Linguistic tokens.
The last Section 6.2 gives a short description of how recall and precision could
be measured in XQuery Full-Text.

6.1 Time Measurements

As we do not have a reference implementation, we cannot compare our mea-
surements with the measurements of another XQuery Full-Text engine.

Doc Elements | Max depth | Avg depth | Size Date
Auctions.xml 1151 5 3.76 125 KB | 2001
Mondial.xml 22423 5 3.6 1MB 2002
AllShakes.xml | 179 690 7 NA TMB 2002

Table 6.1: The Three Test documents
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Figure 6.1: Data Loading, Tokenization and Index Creation
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Doc Time
Auctions.xml 539ms
Mondial.xml 3183ms
AllShakes.xml | 8483ms

Table 6.2: Loading Times

Doc Time
Auctions.xml 344ms
Mondial.xml 656ms
AllShakes.xml | 12313ms

Table 6.3: Tokenization Times

6.1.1 Loading the Data

We measured the time to load the data into the FTTokenBufferStore (only XDM
tokens). Table 6.2 presents the measurement results: Time is the processing
time.

6.1.2 Creation of Linguistic Tokens

We measured the time to tokenize the text into Linguistic tokens, i.e. the work
of the LinguisticTokenGenerator. Table 6.3 shows the measurement results:
Time is the processing time.

6.1.3 Building the Indexes

We measured the time to build the indexes on the FTTokenBufferStore given
that the data is already loaded into the store. The nextword index is depen-
dent on the inverted list and the B+ tree. The inverted index, stem index,
n-gram index and the B+ tree are independent from each other. While building
the inverted list, a frequency table is built to determine the n most common
words in the nextword index. Table 6.4 shows the measurements. Index is
the index whose creation time is measured and Time is the processing time.
For a comparison of loading time, tokenization time and index creation time
see Figure 6.1. We observe that for the auction data and the mondial data the
loading of the XML data takes the most time. For the Shakespeare data it is
the tokenization and the index creation that is time consuming.

6.1.4 Queries

The following queries were run and their execution time measured. T'ime, is the
time to evaluate the path, Timey; is the time to evaluate the FTContainsExpr
and Time;orq is the total time. Table 6.5 presents the results for queries over
the auction data, Table 6.6 and Table 6.7 present the results for queries over
the mondial data and Shakespeare’s plays, respectively. The query processing
times are dominated by the path navigation because it is not indexed. Keyword
or phrase queries (with or without logical operators) are fast, queries containing
MatchOptions need more time for processing.
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Doc Index Time
Auctions.xml
inverted list 122ms
n-gram index 274ms
B+ tree index 49ms
nextword index | 92ms
stem index 154ms
Mondial.xml
inverted list 144ms
n-gram index 267ms
B+ tree index 65ms
nextword index | 49ms
stem index 137ms
AllShakes.xml
inverted list 3409ms
n-gram index 23527ms
B+ tree index 995ms
nextword index | 1154ms
stem index 9102ms

Table 6.4: Indexing Times

Query Time, | Timeg | Timeiotar
fn:doc(”auctions.xml”)/auctions|. ftcontains | 2447ms | 27ms 2474ms
” Mastercard” ]

fn:doc(”auctions.xml”) /auctions[. ftcontains | 2395ms | 58ms 2453ms
"Mb” case insensitive]

fn:doc(”auctions.xml”) /auctions]. ftcontains | 2256ms | 165ms | 2421ms
”power” with stemming]

fn:doc(”auctions.xml”) /auctions|. ftcontains | 2439ms | 33ms 2472ms
” American Express”]

fn:doc(”auctions.xml”)/auctions[. ftcontains | 2299ms | 139ms | 2438ms
”Mastercard” ftor ” American Express”]

fn:doc(”auctions.xml”) /auctions]. ftcontains | 2344ms | 117ms | 2461ms
”Mastercard” ftor ” Postfinance”|

fn:doc(”auctions.xml”) /auctions[. ftcontains | 2332ms | 157ms | 2489ms
”Mastercard” ftand ” American Express”]

Table 6.5: Query Processing Times for Auction Data
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Query Timey, Timey; | Timetotar
fn:doc(”mondial.xml”) /mondial[.  ftcontains | 10423ms | 693ms | 11116ms
7 Zurich”]
fn:doc(”mondial.xml”)/mondial[.  ftcontains | 10435ms | 877ms | 11312ms
7 Africa.®” with wildcards]
fn:doc(”mondial.xml”)/mondial[. ftcontains | 10605ms | 453ms | 11058ms
”Santa Cruz”]
fn:doc(”mondial.xml”)/mondial[.  ftcontains | 10005ms | 1557ms | 10120ms
”Santa Cruz” ftor ”Santa Fe”]
fn:doc(”mondial.xml”)/mondial[.  ftcontains | 10382ms | 1161ms | 11543ms
”Santa Cruz” ftand ”Santa Fe”]
fn:doc(”mondial.xml”) /mondial[.  ftcontains | 10283ms | 467ms | 10750ms
”San.1,3 Cruz” with wildcards]

Table 6.6: Query Processing Times for Mondial Data
Query Timey, Timey: | Timetotar
fn:doc(”allShakes.xml”) /plays]. ftcontains | 95924ms | 797ms | 96721ms
7 Julia”]
fn:doc(”allShakes.xml”) /plays]. ftcontains | 92416ms | 8041ms | 100457ms
” Julia” uppercase]
fn:doc(”allShakes.xml”) /plays|. ftcontains | 92763ms | 1499ms | 94262ms
”Demetrius” ftor ”Hamlet”]
fn:doc(”allShakes.xml”) /plays]. ftcontains | 93534ms | 1032ms | 94566ms
”Julia” ftand ”Romeo”]
fn:doc(”allShakes.xml”) /plays|. ftcontains | 92752ms | 3497ms | 96249ms
"speak” with stemming]
fn:doc(”allShakes.xml”) /plays]. ftcontains | 93346ms | 1851ms | 95197ms
"king henry VI” uppercase]

Table 6.7: Query Processing Times for Shakespeare Data
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Doc Ttem Number of Instances | Memory usage
Auctions.xml
Text token 2304 73728Bytes
Dewey identifier | 13488 316kB
Linguistic token | 10032 391kB
Mondial.xml
Text token 34948 1092kB
Dewey identifier | 113273 2654kB
Linguistic token | 8479 331kB
AllShakes.xml
Text token 357741 11179kB
Dewey identifier | 1444110 33846kB
Linguistic token | 906679 35417kB

Table 6.8: Memory Usage for Dewey Identifiers, Text Tokens and Linguistic
Tokens

6.1.5 Profiling Results

We measured the memory usage of full-text items and found some bottlenecks,
mainly in the Dewey identifier generation and the tokenization of the text into
Linguistic tokens. Table 6.8 contains the results: Doc is the document, Num-
ber of Instances is the number of created objects and Memory usage is the
amount of memory that the objects use.

6.2 Recall and Precision

Recall and Precision are information retrieval measures that are used to evaluate
the quality of the results returned by a search engine. Recall is defined as the
number of relevant documents retrieved divided by the total number of relevant
documents. Precision is the number of relevant documents retrieved divided by
the total number of documents retrieved. In our case, we often deal with one
document, but we can define the elements bound by the path as documents.
For example; If we look for all title elements that contain a certain keyword,
we can define the title elements as documents. Hence, the number of relevant
documents retrieved is the number of relevant title elements retrieved. In case
of a document collection, the definition of a documents is a document in the
document collection.
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Chapter 7

Summary and Future Work

The first two sections of this chapter, Section 7.1 and Section 7.2 summarize
the results of this Master thesis and review the XQuery Full-Text specification,
respectively. Section 7.3 describes optimization ideas and future work: Section
7.3.1 explains how Dewey identifiers could be extended to handle updates. Sec-
tion 7.3.2 describes ideas for other indexes and explains how existing indexes
could be extended to speed up query processing. Section 7.3.3 is about op-
timizations of the operator trees and the last Section 7.3.4 describes how the
ranking could be optimized.

7.1 Summary

The goal of this Master thesis was to integrate the full-text features of the
Minimal Conformance of the XPath 2.0 and XQuery 1.0 Full-Text W3C spec-
ification into MXQuery Full-Text. This was achieved by making the following
extensions: we implemented a better store and additional indexes, i.e. a stem
index, an n-gram index, an nextword index and a B+ tree index. This indexes
allow us to support keyword and phrase queries including stemming and wild-
cards. In addition, we extended MXQuery with a local web service to expand
the query terms by synonyms. Other included options support queries with
case sensitivity or queries ignoring content of user-defined elements. For queries
including logical operators, we integrated an FTAndlterator, an FTOrlterator
and an FTUnaryNotlterator. To support queries with window, distance and
order predicates, we added an FTSelectionlterator that process and test them.
Additionally, we investigated several scoring models to design and implement
a scoring method to rank the results according their relevancy. We tested our
implementation by running the XPath 2.0 and XQuery 1.0 Use Cases [6]. The
performance of our implementation, e.g. time to load the data into the store,
building the indexes and query processing and memory usage, e.g. memory used
by the store and the indexes, was measured and some bottlenecks optimized.

7.2 Conclusion

The goal of XPath 2.0 and XQuery Full-Text is to provide the user with full-text
search over XML documents. But on one hand, XQuery is a query language that
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excepts exact results and on the other hand, full-text search returns anything
that has something to do with the search terms. To unify these two worlds, the
W3C working group specified a rich set of features: the MatchOptions do not
only provide a useful advanced search, but also allow the user to find elements
or documents, respectively that are not accurate matches to the query, i.e. they
enable some kind of fuzzy matches. Despite of these MatchOptions, there is
no room for fuzzy matches: If an element does not fulfill the path defined by
the query, it is not match, although it might be a result the user is looking for.
XQuery Full-Text assumes that the user knows the structure of the document(s).
It may make sense to find a way to loosen the strict path constraint and allow
for fuzzy path matches.

7.3 Future Work

7.3.1 Dewey Identifiers and Updates

There are four different types of updates in XQuery: insert, delete, replace and
rename. The initial state of the Dewey number implementation is not yet able
to handle updates, e.g. insertion of an XML node in the document. To avoid
renumbering of all the nodes following an insertion, we implement ORDPATH
(see [13)]).

If we want to insert one or more nodes, we use different strategies depending
on where we want to insert the nodes: The easiest case is inserting a sibling
node to the right of all existing children of a node. We only need to add two
to the last position of the last child. If we would like to insert the nodes to the
left of a set of siblings and the left most child is number one, i.e. there are no
numbers left, we use negative odd numbers. Arbitrary ORDPATH insertions
that insert a new node Y between any two siblings of a parent node X where
there are no in-between numbers left, are called careting in. In this case we
create a component with an even number between the final (odd) numbers of
the two siblings and a following odd number which is usually one. The even
numbers are only used as caret, but do not increase the depth of the tree and,
therefore, do not count for ancestry. Deletion of nodes does not require special
handling. Problems occur with regard to positional information of text tokens:

e Insert: Inserting Dewey numbers while updating have one problem: If
the inserted node(s) contain text data, we not only need to add position
information to the newly inserted text, but also need to update all the
position information of the text following the inserted node. The following
ways can be used to address this problem:

— One could do without the position information: In case of updates,
no position information needs to be updated. The lack of position
information influences the execution of window and distance queries.
The distances and windows need to be evaluated while processing the
query
Example: when processing the query

book//title[ . ftcontains "Bringing"
ftand "House" ftand "Students"
window at most 15]
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we need to check for every possible arrangement of ” Bringing”, ” House”
and ”Students” that are within 15 words. If we find one of the words,
we need to check whether we find the other two in the next 15 words.
If we had position information, we could retrieve the inverted list
entries for the three words and calculate their distance.

— One could have a delta index approach: As text indexing systems
understand update as a delete followed by an insert, one could delete
the updated document and re-insert it into a delta index. Queries
are then send to both indexes and the results are merged. If a query
accesses a updated document, it finds it deleted and ignores the old
index.

e Delete: When deleting nodes, the Dewey numbering face a similar prob-
lem as when inserting nodes: If the deleted node contains text data, the
position information is out of date after a deletion. Distance or window
queries cannot rely on the position information anymore. The two pos-
sible solutions described above could also be used for this case. If there
exists no position information, a delete operation does not influence the
numbering of the document at all. If a delta index approach is used, a
deletion of a node triggers a deletion and re-insertion of the document into
a delta index.

e Replace: There are two different replace operations: value or node re-
placement. Omne can replace the value of a node with another value or
one can replace a node with no node, another node or a sequence of other
nodes. In case of replacing the value of a node with another value, there
is a problem if the value to be replaced is text data, i.e. the positional
numbering changes. In case a node is replaced by no node, it behaves like
a deletion. In case the node is replaced by another or a sequence of other
nodes, the position information can be out of date, if the new node or the
sequence of nodes contain text data.

e Rename: The rename operation does not change the hierarchy or content
of the XML document. It changes the name of an element, attribute or
processing instruction. This has no influence on the positional numbering.

7.3.2 Indexing
Attribute Tokenization and Indexing

The current version does not consider attribute content as text content. It is not
indexed, so full-text queries on attribute content are not supported. A future
version of MXQuery Full-Text could include support for queries on attribute
content.

Indexing for Phrases

Future work may contain other indexes to speed up phrase query processing.
One approach is suggested by [31]: In addition to the inverted list with lists of
nextwords for common words, one can have an index over frequent past phrase
queries. This approach is referred to as Partial phrase indexes: Selected phrase
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queries of lengths [ > 2 are stored as terms in a conventional inverted index
structure. This index could also be dynamic: If the same phrase query occurs
several times, it can be integrated in the index. In order that the index is not
getting too big, older phrase queries could be evicted from the index.

Another approach is described by [32]. They describe another kind of a
common phrase index: The common phrases are sequences of two or more con-
tiguous words that start with a common word (words with highest frequencies)
and end with a terminal word!. These common phrases are then stored as keys
in an inverted index. The values are the list of positions and the frequencies of
this common phrases. This approach also speeds up phrase query processing,
but the preprocessing of the documents takes more time: For each term in the
document it needs to be determined of which part of speech it is (by looking it
up in the POS trie).

Indexing for Wildcard Phrase Queries

The processing and evaluation of wildcard queries could also be speeded up:
Depending on the position of the term with the wildcards, we have the following
approaches:

e If the term containing the wildcard is at the beginning of the phrase and
some of the terms fulfilling the wildcard constraint are firstwords, we can
check their nextword lists for the next term.

Example

If the query is "Win.+ Strategy” and e.g. ”Winning” is a firstword term,
we can check its nextword list whether it contains ”Strategy”. For the
other terms that are not firstword terms we need to evaluate in the com-
mon way: Retrieve the list of Linguistic tokens and merge to find matches
that contain each of the tokens next to each other.

e If the term containing the wildcard is at any other position and the pre-
vious word in the phrase is a firstword term, we need a n-gram index over
the nmextwords. For example: If the query is ”of Math.*” and "of” is a
firstword term we can use the n-gram index over the nextwords to find all
terms that fulfill the wildcard constraint ”Math.*”.

7.3.3 Optimization Ideas for Operator Trees
FTOrder

One possible optimization is the embedding of FTOrder into FTAnd, if we have
a query like

Example

/book[ .ftcontains "Edward"
ftand "Thorp" ordered]}

lterminal words are words that are not a preposition, an adverb, a conjunction, a definite
article, and indefinite article or a pronoun
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we do not build every possible pair of " Edward” and ” Thorp” and check with the
FTOrder whether the Dewey identifier of ”Edward” is smaller than the Dewey
identifier of ” Thorp”. We can integrate the FTOrder into FTAnd by adapting
the generation of the Cartesian product: We only output an AllMatch if the
Dewey identifier of the leftInput AllMatch’s match is smaller than the Dewey
identifier of the rightInput AllMatch’s match. For example if "Edward” is at
position 1, 5 and 10 and ”Thorp” at position 2,4 and 20, we only output the
pairs (1,2), (1,5), (1,20), (5,20) and (10,20), instead of outputting all possible
combinations and filtering them again by applying the FTOrder.

FTScope

Instead of having an FTScope in an FTSelectionlterator, we could embed the
scope constraint into the FTAnd, if we have a query like

Example

/book[ .ftcontains "Edward"
ftand "Thorp" same sentence]}

we do not generate every pair of "Edward” and ”Thorp” and check with the
FTScope whether the occur in the same sentence. We could embed the FTScope
into the FTAnd: Before outputting an AllMatch pair, the FTAndOperator also
checks whether the sentence information is the same.

Access on XDM tokens

There is an index needed that returns the set of corresponding XDM tokens
when giving a path expression as input, i.e. when defining a search context in
the query, we need to have all the XDM tokens that fulfill this search context.

7.3.4 Ranking
Evaluation

We investigated several scoring and ranking approaches of other full-text engines
for XML. Inspired by these strategies, we designed our own scoring model and
integrated it into MXQuery Full-Text. What is missing is a survey of these
scoring models that compare them with each other. Future work could include
implementing additional scoring methods for XQuery Full-Text and comparing
their results and precision.

Optimization for Ranking

When traversing the inverted list for search terms that are descendants of the
query context, for every new query context we start at the beginning of the list.
This could be optimized: The query context nodes are processed in document
order and as the search terms are stored ordered according their Dewey identi-
fier, we could remember the current position in the inverted list when changing
the query context.

Another optimization that solves that problem could be the use of a B+ tree
on the Dewey identifiers: We could directly check whether there are descendants
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for a certain query context by looking up its Dewey identifier and getting all its
descendant Linguistic tokens by doing a range scan on the leaf level (until the
Dewey identifier does not have the same prefix anymore).

7.3.5 Ranked Boolean Retrieval Model for XML

To have a more sophisticated Ranked Boolean Retrieval Model, e.g. to integrate
some structural information, we could enhance the model as described in Section
5.1.1: We could take the proximity to the result node into account. If a keyword
is contained in a subelement of the result node, the result is ranked lower than if
it is directly contained in the result node. We could even calculate the distance
from the result node to the keyword’s parent. The shorter it is, the higher the
node is ranked.

If there are several keywords in the query, a result node is ranked higher if
it contains all the keywords directly than if the keywords are distributed over
the subelements of the result node [26]. In addition, if the keywords are closer,
the node containing the keywords gets a higher score than a node that contains
the keywords but they are all far apart [26]. Hence, the shorter the distance
between the keywords the higher the score.

In case the query contains the use of a thesaurus, the words retrieved by the
thesaurus could be weighted differently. If the original search term is contained
in the context node, the node is ranked higher than if it contains a term retrieved
by the thesaurus. We could even go further: If the thesaurus’ terms are retrieved
in a specific order, i.e. according their semantical closeness to the original term,
we could give the terms a descending weight. If a context node contains a closer
term than another context node, it is ranked higher.
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Appendix A

Sample data

<?xml version="1.0" encoding="UTF-8"7>

<books>
<book number="1">
<metadata>
<title>
Bringing Down the House: How Six Students Took Vegas for Millionms.
</title>
<author>Ben Mezrich</author>
</metadata>
<summary>
"Shy, geeky, amiable" MIT grad Kevin Lewis, was, Mezrich learns at a party,
living a double life winning huge sums of cash in Las Vegas casinos.
In 1993 when Lewis was 20 years old and feeling aimless, he was invited
to join the MIT Blackjack Team, organized by a former math instructor,
who said, "Blackjack is beatable." Expanding on the "hi-lo" card-counting
techniques popularized by Edward Thorp in his 1962 book, Beat the Dealer,
the MIT group’s more advanced team strategies were legal, yet frowned upon
by casinos. Backed by anonymous investors, team members checked into Vegas
hotels under assumed names and, pretending not to know each other,
communicated in the casinos with gestures and card-count code words.
Taking advantage of the statistical nature of blackjack, the team raked
in millions before casinos caught on and pursued them.
</summary>
</book>
<book number="2">
<metadata>
<title>
Beat the Dealer: A Winning Strategy for the Game of Twenty-One
</title>
<author>Edward Thorp</author>
</metadata>
<summary>
<p>

Ever since the time of Cardano, mathematicians have been
delving into the theory of games of chance, but rarely
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with the stunning success achieved by Edward Thorp,
Professor of Mathematics at the University of
California at Irvine.
</p>
<p>
Professor Thorp has devised a gambling system that
really works, as proved by the winnings of the
author himself, and by the thousands who have
used this system.
</p>
<p>
The essentials, consolidated in simple charts, can be
understood and memorized by the average player:
Professor Thorp first published this strategy in 1962.
The system proved so successful that the Las Vegas
casinos were forced to change their rules.
</p>
<p>
Now the new revised point count system shows
how the player can win in spite of
present or future rule changes in Las Vegas,
Atlantic City and Puerto Rico; how to win
in spite of cheating by casinos. The cars in the
book can be used in actual casino play.
</p>
</summary>
</book>
<book number="3">
<metadata>
<title>THE WAVE. The Classroom is out of Control.</title>
<author>Morton Rhue</author>
</metadata>
<summary>
Laurie isn’t sure what to make of ’The Wave’.
It had begun as a simple history experiment to
liven up their World War II studies and had become
a craze that was taking over their lives. Laurie’s
classmates were changing from normal teenagers into
chanting, saluting fanatics. ’The Wave’ was sweeping
through the school - and it was out of control.
Laurie’s friends scoff at her warnings but she knows
she must make them see what they have become before
it’s too late. This book is based on a nightmarish
true episode in a Californian high school.
</summary>
</book>
<book number="4">
<metadata>
<title>
1984
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</title>
<author>Georg Orwell</author>
</metadata>
<summary>
<p>
The year is 1984; the scene is London,
largest population center of Airstrip One.
</p>
<p>
Airstrip One is part of the vast political entity Oceania,
which is eternally at war with one of two other vast entities,
Eurasia and Eastasia. At any moment, depending upon current
alignments, all existing records show either that Oceania
has always been at war with Eurasia and allied with Eastasia,
or that it has always been at war with Eastasia and allied
with Eurasia. Winston Smith knows this, because his work at
the Ministry of Truth involves the constant "correction"

of such records. "’Who controls the past,’ ran the Party slogan,
’controls the future: who controls the present controls the past.’"
</p>
<p>

In a grim city and a terrifying country, where Big Brother
is always Watching You and the Thought Police can practically
read your mind, Winston is a man in grave danger for the simple
reason that his memory still functions. He knows the Party’s
official image of the world is a fluid fiction. He knows the
Party controls the people by feeding them lies and narrowing
their imaginations through a process of bewilderment and
brutalization that alienates each individual from his
fellows and deprives him of every liberating human pursuit
from reasoned inquiry to sexual passion. Drawn into a forbidden
love affair, Winston finds the courage to join a secret
revolutionary organization called The Brotherhood, dedicated
to the destruction of the Party. Together with his
beloved Julia, he hazards his life in a deadly match
against the powers that be.
</p>
</summary>
</book>
<book number="5">
<metadata>
<title>
Le petit prince
</title>
<author>Antoine de Saint Exupéry</author>
</metadata>
</book>
<book number="6">
<metadata>
<title>
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Night Flight
</title>
<author>Antoine de Saint Exupery</author>
</metadata>
</book>
</books>
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Appendix B

A EBNF for XQuery 1.0
Grammar with Full-Text

Extensions

[1] Module ::= VersionDecl? (LibraryModule | MainModule)
[2] VersionDecl ::= "xquery" "version" Stringliteral
("encoding" Stringliteral)? Separator
[3] MainModule ::= Prolog QueryBody
[4] LibraryModule = ModuleDecl Prolog
[5] ModuleDecl = "module" "namespace" NCName "=" URILiteral Separator
[6] Prolog ::= ((DefaultNamespaceDecl | Setter | NamespaceDecl | Import
| FTOptionDecl) Separator)* ((VarDecl | FunctionDecl
| OptionDecl) Separator)x*
[7] Setter ::= BoundarySpaceDecl | DefaultCollationDecl | BaseURIDecl
| ConstructionDecl | OrderingModeDecl | EmptyOrderDecl
| CopyNamespacesDecl
[8] Import ::= SchemaImport | ModuleImport
[9] Separator = My
[10] NamespaceDecl ::= "declare" "namespace" NCName "=" URILiteral
[11] BoundarySpaceDecl ::= "declare" "boundary-space" ("preserve" | "strip")
[12] DefaultNamespaceDecl ::= "declare" "default" ("element" | "function")
"namespace" URILiteral
[13] OptionDecl ::= "declare" "option" (QName StringLiteral
[14] FTOptionDecl ::= "declare" "ft-option" FTMatchOptions
[15] OrderingModeDecl ::= "declare" "ordering" ("ordered" | "unordered")
[16] EmptyOrderDecl ::= "declare" "default" "order" "empty" ("greatest" | "least")
[17] CopyNamespacesDecl ::= "declare" "copy-namespaces" PreserveMode "," InheritMode
[18] PreserveMode ::= "preserve" | "no-preserve"
[19] InheritMode ::= "inherit" | "no-inherit"
[20] DefaultCollationDecl ::= "declare" "default" "collation" URILiteral
[21] BaseURIDecl ::= "declare" "base-uri" URILiteral
[22] SchemaImport ::= "import" "schema" SchemaPrefix? URILiteral
("at" URILiteral("," URILiteral)*)?
[23] SchemaPrefix ::= ("namespace" NCName "=") | ("default"
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[24]

[25]

[26]
[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

[36]
[37]
[38]

[39]
[40]

[41]

[42]
[43]

[44]

[45]

[46]
[47]
[48]

[49]
[50]

NodeComp)FTContainsExpr )7

ModuleImport
VarDecl

ConstructionDecl
FunctionDecl

ParamList
Param
EnclosedExpr
QueryBody
Expr
ExprSingle

FLWORExpr

ForClause

PositionalVar
FTScoreVar
LetClause

WhereClause
OrderByClause

OrderSpecList

OrderSpec
OrderModifier

QuantifiedExpr

TypeswitchExpr

CaseClause
IfExpr
OrExpr

AndExpr
ComparisonExpr

"element" "namespace")
::= "import" "module" ("namespace" NCName "=")?
URILiteral ("at" URILiteral ("," URILiteral)*)?

::= "declare" "variable" "$" QName TypeDeclaration?
((":=" ExprSingle) | "external")
::= "declare" "construction" ("strip" | "preserve")
::= "declare" "function" QName " (" ParamList? ")"
("as" SequenceType)? (EnclosedExpr | "external")
::= Param ("," Param)*

= "$" QName TypeDeclaration?
::= "{" Expr "}"
::= Expr

ExprSingle ("," ExprSingle)*
FLWORExpr| QuantifiedExpr| TypeswitchExpr
IIfExprI OrExpr

= (ForClause | LetClause)+ WhereClause?
OrderByClause? "return" ExprSingle
1:= "for" "$" VarName TypeDeclaration?
PositionalVar? FTScoreVar? "in" ExprSingle
("," "$" VarName TypeDeclaration?
PositionalVar? FTScoreVar? "in" ExprSingle)*
::= "at" "$" VarName
::= "score" "$" VarName
::= (("let" "$" VarName TypeDeclaration?) |

("let" "score" "$" VarName)) ":=" ExprSingle
("," (("$" VarName TypeDeclaration?)
| FTScoreVar) ":=" ExprSingle)x*

::= "where" ExprSingle
::= (("order" "by") | ("stable" "order" "by"))
OrderSpecList
::= OrderSpec ("," OrderSpec)x*
ExprSingle OrderModifier
("ascending" | "descending")?
("empty" ("greatest" | "least"))?
("collation" URILiteral)?
::= ("some" | "every") "$" VarName
TypeDeclaration? "in" ExprSingle
("," "$" VarName TypeDeclaration?
"in" ExprSingle)* "satisfies" ExprSingle
1:= "typeswitch" "(" Expr ")" CaseClauset+
"default" ("$" VarName)? "return"
ExprSingle
::= "case" ("$" VarName "as")?
SequenceType '"return" ExprSingle
pr= "if" "(" Expr ")" "then"
ExprSingle "else" ExprSingle
::= AndExpr ( "or" AndExpr )*
= ComparisonExpr ( "and" ComparisonExpr )*
FTContainsExpr ( (ValueComp| GeneralComp|
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[51]

[52]
[53]

[54]
[55]
[56]

[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]
[73]
[74]
[75]
[76]

[77]
[78]
[79]

[80]
[81]
[82]
[83]

[84]
[85]
[86]

FTContainsExpr

RangeExpr
AdditiveExpr

MultiplicativeExpr

UnionExpr

IntersectExceptExpr

InstanceofExpr
TreatExpr
CastableExpr
CastExpr
UnaryExpr
ValueExpr
GeneralComp
ValueComp
NodeComp
ValidateExpr
ValidationMode
ExtensionExpr
Pragma
PragmaContents
PathExpr

RelativePathExpr
StepExpr
AxisStep
ForwardStep
ForwardAxis

AbbrevForwardStep
ReverseStep
ReverseAxis

AbbrevReverseStep
NodeTest
NameTest
Wildcard

FilterExpr
PredicatelList
Predicate

::= RangeExpr ( "ftcontains" FTSelection
FTIgnoreOption? )7
= AdditiveExpr ( "to" AdditiveExpr )7
= MultlpllcatlveExpr
( ("+" | "-") MultiplicativeExpr )=*
= UnionExpr ( ("*" | "div" | "idiv"
I "mod") UnionExpr )*
::= IntersectExceptExpr ( ("union" | "[")
IntersectExceptExpr )*
::= InstanceofExpr ( ("intersect" |
InstanceofExpr )x*
::= TreatExpr ( "instance" "of" SequenceType )7
::= CastableExpr ( "treat" "as" SequenceType )7
::= CastExpr ( "castable" "as" SingleType )7
::= UnaryExpr ( "cast" "as" SingleType )7

"except")

te= ("=" | "+")x ValueExpr

::= ValidateExpr | PathExpr | ExtensionExpr
ca= N=n | np=n I ngn I ng=n | nsn I ny=n
o= neqn | Ilnell I llltll | nlen I llgtll | llgell
ce= Migh | nggn | Ny

::= "validate" ValidationMode? "{" Expr "}"
i:= "lax" | "strict"

::= Pragma+ "{" Expr? "}"

1:= "(#" S? QName (S PragmaContents)? "#)"

::= (Charx - (Char* ’#)°’ Charx))

::= ("/" RelativePathExpr?)| ("//" RelativePathExpr) |
RelatlvePathExpr

StepExpr (("/" | "//") StepExpr)x*

FilterExpr | AxisStep

(ReverseStep | ForwardStep) Predicatelist
(ForwardAxis NodeTest) | AbbrevForwardStep

("self" "::")| ("descendant-or-self" "::")|
("following-sibling" "::")| ("following" "::")
::= "Q@"? NodeTest

::= (ReverseAxis NodeTest) | AbbrevReverseStep
:= ("parent" "::")

("ancestor" "::")

("preceding-sibling" "::")

("preceding" "::")

("ancestor-or-self" "::")

::= KindTest | NameTest

QName | Wildcard

sz MxM

| (NCName n . n ll*ll)

| (ll*ll n . n NCNanle)

::= PrimaryExpr Predicatelist
Predicatex*

n [Il Expr ll] n
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[87]

[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[971

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]
[107]
[108]
[109]
[110]
[111]
[112]

[113]
[114]

[115]
[116]

PrimaryExpr

Literal
NumericLiteral
VarRef

VarName
ParenthesizedExpr
ContextItemExpr
OrderedExpr
UnorderedExpr
FunctionCall
Constructor

DirectConstructor

DirElemConstructor

DirAttributelList
DirAttributeValue

QuotAttrValueContent
AposAttrValueContent

DirElemContent

CommonContent

DirCommentConstructor
DirCommentContents
DirPIConstructor
DirPIContents
CDataSection
CDataSectionContents
ComputedConstructor

CompDocConstructor
CompElemConstructor

ContentExpr
CompAttrConstructor

::= Literal | VarRef | ParenthesizedExpr

| ContextItemExpr | FunctionCall | OrderedExpr

| UnorderedExpr | Constructor

::= NumericLiteral | Stringliteral

::= IntegerLiteral | Decimalliteral | DoubleLiteral
::= "$" VarName

::= QName

ti= "(" Expr? ")"

: n . n

::= "ordered" "{" Expr "}"

::= "unordered" "{" Expr "}"

::= QName " (" (ExprSingle ("," ExprSingle)*)7 ")"
::= DirectConstructor

| ComputedConstructor

::= DirElemConstructor

| DirCommentConstructor

| DirPIConstructor

::= "<" (QName DirAttributeList ("/>" |

(">" DirElemContent* "</" QName S?7 ">"))

: (S (QName 8?7 "=" S? DirAttributeValue)?)*

::= (0"’ (EscapeQuot | QuotAttrValueContent)* ’"’)
| ("’" (EscapeApos | AposAttrValueContent)* "’")
::= QuotAttrContentChar

| CommonContent

::= AposAttrContentChar

| CommonContent

::= DirectConstructor

| CDataSection

| CommonContent

| ElementContentChar

::= PredefinedEntityRef | CharRef | "{{" | "}}"
| EnclosedExpr

::= "<!--" DirCommentContents "-->"

((Char - ’-?) | (-? (Char - ’-’)))*

= "<?" PITarget (S DirPIContents)? "7>"

(Char* - (Char* ’7>’ Charx))

= "<!I[CDATA[" CDataSectionContents "]]>"
(Char* - (Charx ’]]>’ Charx*))

:= CompDocConstructor

CompElemConstructor

CompAttrConstructor

CompTextConstructor

CompCommentConstructor

CompPIConstructor

::= "document" "{" Expr "}"

::= "element" (QName | ("{" Expr "}"))

"{" ContentExpr? "}"

::= Expr

::= "attribute" (QName | ("{" Expr "}"))

"{" Expr? "}"



[117]
[118]
[119]

[120]
[121]
[122]

[123]
[124]
[125]
[126]

[127]
[128]

[129]
[130]
[131]

[132]

[133]
[134]
[135]
[136]

[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]

[151]
[152]
[153]
[154]
[155]
[156]

CompTextConstructor
CompCommentConstructor
CompPIConstructor

SingleType
TypeDeclaration
SequenceType

Occurrencelndicator
ItemType

AtomicType

KindTest

AnyKindTest
DocumentTest

TextTest
CommentTest
PITest

AttributeTest

AttribNameOrWildcard
SchemaAttributeTest
AttributeDeclaration
ElementTest

ElementNameOrWildcard
SchemaElementTest
ElementDeclaration
AttributeName
ElementName

TypeName

URILiteral
FTSelection

FTOr

FTAnd

FTMildNot

FTUnaryNot
FTPrimaryWithOptions
FTPrimary

FTWords

FTWordsValue
FTExtensionSelection
FTAnyallOption
FTTimes

FTRange

co= "gext" ||{|| EXPI’ n}u
::= "comment" ll{ll Expr u}n
::= "processing-instruction" (NCName |

(ll{ll Expr II}II) ) II{II Expr? Il}ll

::= AtomicType "7"7

::= "as" SequenceType

::= ("empty-sequence" "(" ")")

| (ItemType Occurrencelndicator?)

= neon | Nyt | ngn
::= KindTest | ("item" "(" ")") | AtomicType
::= QName
:= DocumentTest | ElementTest |
AttrlbuteTest | SchemaElementTest
| SchemaAttributeTest | PITest |
CommentTest | TextTest | AnyKindTest
::= "node" "(" ")"

::= "document-node" " (" (ElementTest |
SchemaElementTest)? ")"
= lltextll Il(ll ll)ll
::= "comment" "(" ")"
::= "processing-instruction" " (" (NCName |
StringLiteral)? ")"
::= "attribute" " (" (AttribNameOrWildcard
(" " TypeName)?)? ")"
= AttributeName | "x*"
"schema-attribute" " (" AttributeDeclaration ")"
AttributeName
: "element" " (" (ElementNameOrWildcard
("," TypeName "?"7)7)7 ")"
ElementName | "*"
"schema-element" " (" ElementDeclaration ")"
ElementName
QName
(QName
QName
StringLiteral
FTOr FTPosFilter* ("weight" RangeExpr)?
FTAnd ( "ftor" FTAnd )*
FTMildNot ( "ftand" FTMildNot )=
FTUnaryNot ( "not" "in" FTUnaryNot )*
("ftnot")? FTPrimaryWithOptions
: FTPrimary FTMatchOptions?
::= (FTWords FTTimes?) | ("(" FTSelection ")") |
FTExtensionSelection
= FTWordsValue FTAnyallOption?
Literal | ("{" Expr "}")
Pragma+ "{" FTSelection? "}"
("any" "word"?) | ("all" "words"?) |
::= "occurs" FTRange "times"
("exactly" AdditiveExpr) |

"phrase"
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[157]

[158]
[159]
[160]
[161]
[162]
[163]
[164]

[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]

[182]

[183]

[184]

FTPosFilter

FTOrder
FTWindow
FTDistance
FTUnit
FTScope
FTBigUnit
FTContent

FTMatchOptions
FTMatchOption

FTCaseOption
FTDiacriticsOption
FTStemOption
FTThesaurusOption
FTThesaurusID

FTStopWordOption

FTStopWords

FTStopWordsInclExcl
FTLanguageOption
FTWildCardOption
FTExtensionOption
FTIgnoreOption
IntegerLiteral
DecimallLiteral
DoubleLiteral

Stringliteral

PredefinedEntityRef

EscapeQuot

| ("at" "most" AdditiveExpr)

| ("from" AdditiveExpr "to" AdditiveExpr)
::= FTOrder | FTWindow | FTDistance

| FTScope | FTContent

::= "ordered"

::= "window" AdditiveExpr FTUnit

::= "distance" FTRange FTUnit

::= "words" | "sentences" | "paragraphs"
::= ("same" | "different") FTBigUnit
::= "sentence" | "paragraph"

: ("at" "start") | ("at" "end") |

("entire" "content")

::= FTMatchOption+

: := FTLanguageOption | FTWildCardOption |
FTThesaurusOption | FTStemOption |

FTCaseOption | FTDiacriticsOption|
FTStopWordOption | FTExtensionOption

::= ("case" "insensitive") | ("case" "sensitive") |
"lowercase" | "uppercase"

::= ("diacritics" "insensitive") |

("diacritics" "sensitive")

::= ("with" "stemming") | ("without" "stemming")
::= ("with" "thesaurus" (FTThesaurusID | "default"))
| ("with" "thesaurus" "(" (FTThesaurusID | "default")
("," FTThesaurusID)* ")" | ("without" "thesaurus")
::= "at" URILiteral ("relationship" StringLiteral)?
(FTRange "levels")?

::= ("with" "stop" "words" FTStopWords
FTStopWordsInclExclx*)

| ("without" "stop" "words")

| ("with" "default" "stop" "words"
FTStopWordsInclExclx*)

::= ("at" URILiteral) | ("(" StringLiteral

("," StringLiteral)* ")")

("union" | "except") FTStopWords

::= "language" StringlLiteral

::= ("with" "wildcards") | ("without" "wildcards")
::= "option" (Name StringlLiteral

::= "without" "content" UnionExpr

::= Digits

::= ("." Digits) | (Digits "." [0-9]%)

::= (("." Digits) | (Digits ("." [0-9]1%)7))

[eE] [+-]7 Digits

::= (°"? (PredefinedEntityRef | CharRef |
EscapeQuot | [""&])* ’"’) |

("’" (PredefinedEntityRef |

CharRef | EscapelApos | ["’&])* "°")

si= gt ("1t | “"gt" | "amp" |

"quot" | "apos") ";"

ce= 2nN)
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[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]

EscapeApos
ElementContentChar
QuotAttrContentChar
AposAttrContentChar
Comment

PITarget

CharRef

(QName

NCName

S

Char
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niromn

Char
Char
Char
u(:n
[http
[http
(http
[http
[http
[http

- [{I<&l]
- [ {¥<&]
- [ {¥<&]

(CommentContents | Comment)* ":)"

2/ /uww .
2/ /uww .
VAT
2/ /uww.
2/ /uww .
2/ /uww .

w3.
w3.
w3.
w3.
w3.
w3.

org/TR/REC-xm1#NT-PITarget] XML
org/TR/REC-xm1#NT-CharRef] XML
org/TR/REC-xml-names/#NT-QName] Names
org/TR/REC-xml-names/#NT-NCName] Names
org/TR/REC-xm1#NT-S] XML
org/TR/REC-xm1#NT-Char] XML
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