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Extrinsic Self Calibration of a Camera and a 3D Laser Range Finder

from Natural Scenes

Davide Scaramuzza, Ahad Harati, and Roland Siegwart

Abstract— In this paper, we describe a new approach for
the extrinsic calibration of a camera with a 3D laser range
finder, that can be done on the fly. This approach does not
require any calibration object. Only few point correspondences
are used, which are manually selected by the user from a scene
viewed by the two sensors. The proposed method relies on a
novel technique to visualize the range information obtained
from a 3D laser scanner. This technique converts the visually
ambiguous 3D range information into a 2D map where natural
features of a scene are highlighted. We show that by enhancing
the features the user can easily find the corresponding points of

the camera image points. Therefore, visually identifying laser-
camera correspondences becomes as easy as image pairing.
Once point correspondences are given, extrinsic calibration is
done using the well-known PnP algorithm followed by a non-
linear refinement process. We show the performance of our
approach through experimental results. In these experiments,
we will use an omnidirectional camera. The implication of this
method is important because it brings 3D computer vision
systems out of the laboratory and into practical use.

I. INTRODUCTION

One of the basic issues of mobile robotics is the automatic

mapping of the environments. Autonomous mobile robots

equipped with 3D laser range finders are well suited for

this task. Recently, several techniques for acquiring three-

dimensional data with 2D range scanners installed on a mo-

bile robot have been developed (see [1], [2], and [3]). How-

ever, to create realistic virtual models, visually-perceived

information from the environment has to be acquired and

it has to be precisely mapped onto the range information. To

accomplish this task, camera and 3D laser range finder must

be extrinsically calibrated, that is, the rigid transformation

between the two reference systems must be estimated.

Most previous works on extrinsic laser-camera calibration

concern calibration of perspective cameras to 2D laser scan-

ners (see [4], [5], and [6]). In contrast to previous works, in

this paper we consider the extrinsic calibration of a general

camera with a three-dimensional laser range finder. Because

of the recent development of 3D laser scanners, only little

work about extrinsic calibration of camera and 3D scanners
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exists. Furthermore, the process of external calibration is

often poorly documented. This process usually requires some

modification of the scene by introducing landmarks that are

visible by both the camera and the laser.

Well-documented work about extrinsic calibration of camera

and 3D scanners can be found in [7] and [8]. However, in

[7], the authors deal with the case of visible laser traces.

Conversely, for the case of the invisible laser in [8], the

authors propose a method for fast extrinsic calibration of a

camera and a 3D scanner which makes use of a checkerboard

calibration target, like the one commonly used for the internal

calibration of a camera. Furthermore, they provide a useful

laser-camera calibration toolbox for Matlab that implements

the proposed calibration procedure [9]. Their method re-

quires the user to collect a few laser-camera acquisitions

where the calibration grid is shown at different positions and

orientations. This technique however needs several camera-

laser acquisitions of the grid for a sufficiently accurate

external calibration of the system.

The work described in this paper also focuses on the extrinsic

calibration of a camera and a 3D laser range finder but the

primary difference is that we do not use any calibration

pattern. We use only the point correspondences that the

user hand selects from a single laser-camera acquisition of a

natural scene. As we use no calibration target, we name our

technique self-calibration. This work was motivated while

working in the First European Land-Robot Trial [10]. In that

contest, we presented an autonomous Smart car equipped

with several 3D laser range finders and cameras (both

omnidirectional and perspective cameras). The goal was to

produce 3D maps of the environment along with textures

[11]. Especially when working in outdoor environments,

doing several laser-camera acquisitions of a calibration pat-

tern can be a laborious task. For each acquisition, the

pattern has to be moved to another position and this process

usually takes time. Furthermore, weather conditions (e.g.

wind, fog, low visibility) can sometimes perturb or even

alter the calibration settings. Hence, the calibration must be

done quickly. Because of this, we developed the procedure

presented in this paper. The advantages are that now we need

only a single laser-camera acquisition and that the calibration

input are point correspondences manually selected from

the laser-camera acquisition of a natural scene. Once point

correspondences are given, the extrinsic calibration problem

becomes a camera pose-estimation problem which is well

known in computer vision and can be solved using standard

methods. The difficulty resides in visually identifying the

point correspondences because range images in general lack
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Fig. 1. (a) Pin-hole model used for perspective cameras. (b) Image
formation model for central catadioptric cameras. (c) Unified spherical
projection model for central omnidirectional cameras: every pixel in the
sensed image measures the irradiance of the light passing through the
effective viewpoint in one particular direction. The vectors are normalized
to 1.

in point features. To bypass this problem, we process the

range data so that we can highlight discontinuities and

orientation changes along specific directions. This processing

transforms the range image into a new image that we call

Bearing Angle image (BA). Using BA images, we will show

that visually identifying point correspondences between the

laser and the camera outputs becomes as easy as image

pairing. To show the generality of the methodology, in

our experiments we will use an omnidirectional camera.

The BA images and the application of the method to an

omnidirectional camera are the two main contributions of

this paper.

This document is organized as follows. Section II describes

the projection model of the camera and 3D laser scanner.

Section III defines the concept of BA images and explains

how to compute them. Section IV describes the calibration

procedure. Finally, section V presents some calibration re-

sults.

II. LASER-CAMERA PROJECTION MODEL

A. Camera Model

In this work, we deal with central cameras either perspec-

tive or omnidirectional. Central cameras satisfy the single

effective viewpoint property, that is, they have a single centre

of projection (see Fig. 1). For the case of catadioptric om-

nidirectional cameras, such property can be achieved using

hyperbolic, parabolic, or elliptical mirrors [12]. In the last

years, central omnidirectional cameras using fisheye lenses

have also been built [13].

We assume that the camera has already been calibrated. Some

Matlab toolbox to quickly calibrate these sensors can be

found in [15], [16], and [17].

Assuming the camera is already calibrated, given a pixel

point (u, v) on the camera image plane, we can recover the

orientation of the vector X emanating from the effective

viewpoint to the corresponding 3D point (1). Conversely,

given a 3D point λX , we can reproject it onto the camera

image plane (u, v) (2):

λX = λ[x, y, z]T = F (u, v) (1)

Fig. 2. (a) Our custom-built 3D scanner is composed of a SICK LMS
200 laser range finder mounted on a rotating support. (b) Schematic of the
sensor used for calibration.

[u, v]T = F−1(X) (2)

where λ is the depth factor and ‖X‖ = 1. Function F

depends on the camera used. Some proposed formulations

for F can be found in [13], [14], and [18]. We assume

that the origin of the camera coordinate system coincides

with the single effective viewpoint. This corresponds to the

optical center for perspective cameras and the internal focus

of the mirror, in the catadioptric case. The x-y plane is

orthogonal to the mirror axis for the catadioptric case or

to the camera optical axis for the perspective case (see more

in [5], [14], and [18]). Without loss of generality, in this

paper, we consider omnidirectional cameras, but the same

considerations also apply to perspective cameras. According

to what we have mentioned so far, in the remainder of the

document we assume that for every sensed pixel we know

the orientation of the correspondent vector X on the unit

sphere centered in the mirror frame (Fig. 1.c)

B. Laser Model

3D laser range finders are usually built by nodding or

rotating a 2D scanner in a stepwise or continuous manner

around its lateral or radial axis. Combining the rotation

of the mirror inside the 2D scanner with the external

rotation of the scanner itself, spherical coordinates of the

measured points are obtained. However, since in reality it is

impossible to adjust the two centers of rotation exactly on

the same point, the measured parameters are not spherical

coordinates and offset values exist. These offset values have

to be estimated by calibrating the 3D sensor by considering

its observation model. The approach presented in this paper

for the extrinsic calibration of a 3D laser scanner with

a camera is general and does not depend on the sensor

model. Therefore, we assume the laser is already calibrated.

Neverthless, we explain here the scanner model used in our

experiments, but a different sensor setup can also be used

along with its corresponding observation model.

The 3D range sensor used in this work is a custom-built

3D scanner (Fig. 2). It is composed of a two-dimensional

SICK laser scanner mounted on a rotating support, which is

driven by a Nanotec stepping motor. The sensor model can

be written as:
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Fig. 3. (a) Depth image of a scene. Jet colormap has been used. The color
shade (from blue to red) is proportional to the depth. (b) Sobel based edge
map of the depth image.
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ci = cos(ϕi), cj = cos(θj), si = sin(ϕi), sj = sin(θj) (3)

where ρij is the j-th measured distance with correspond-

ing orientation θj in the i-th scan plane, which makes the

angle ϕj with the horizontal plane (Fig. 2.b). The offset of

the external rotation axis from the center of the mirror in the

laser frame has components dx and dz (as observed in Fig.

2.b). [x, y, z]T are the coordinates of each measured point

relative to the global frame (with its origin at the center of

the rotation axis, the x-axis pointing forward and the z-axis

toward the top). The sensor is calibrated as discussed in [23]

based on a known ground truth.

III. BEARING ANGLE IMAGES

In this subsection, we will describe how to highlight depth

discontinuities and direction changes in the range image so

that the user can easily find the corresponding points of the

camera image points. Such features in the range image are

called image details. Fig. 3.a shows the range image of an

office-like environment extracted by our 3D scanner. In such

an environment, we would like emphasizing key points like

corners arising from the plane intersections of walls, tables,

chairs, and other similar discontinuities. Fig. 3.b shows the

result of directly applying a Sobel edge detector on the range

image. As observed, edge detection does not directly help

for our task, since edges are zones of the range image where

the depth between two adjacent points significantly changes.

In fact, many details in the range image do not create a

big jump in the measured distance. Such edges are called

”roof edges” and correspond to sharp direction changes

(e.g. tetrahedron shaped corners). Therefore, a measure of

direction should be used to highlight all the desired details

in the scene. As representative of the surface direction, its

corresponding normal vector is usually used (see [19] and

[20]). Surface normal vectors are estimated based on the

Fig. 4. (a) Bearing Angles computed along a given scan plan. (b) Plot of
a horizontal BA signal.

neighborhood of each point. However, for our application,

we avoid the use of surface normals as representatives of the

direction. The reason is that we want to highlight the details

of the surface along some specific directions (e.g vertical,

horizontal, and diagonal). We will show that treating each

dimension separately leads to enhanced estimation of the

image details. Let the range data coming from the 3D scanner

be arranged in the form of a 2D matrix where its entries are

ordered according to the direction of the laser beam. This

matrix will be referred to as a depth matrix. We compute

the surface orientation along four separate directions of the

depth matrix, namely the horizontal, vertical, and diagonal

one (the latter having +45◦ and −45◦ orientation).

We define Bearing Angle (BA) the angle between the laser

beam and the segment joining two consecutive measurement

points (see Fig. 4.a). This angle is calculated for each point

in the depth matrix along the four defined directions (that

we call also ”traces”). More formally:

BAi = arccos
ρi − ρi−1 cos dϕ

√

ρ2

i − ρ2

i−1
− ρiρi−1 cos dϕ

(4)

where ρi is the i-th depth value in the selected trace

of the depth matrix and dϕ is the corresponding angle

increment (laser beam angular step in the direction of the

trace). Performing this calculation for all points in the depth

matrix will lead to an image which is referred to as a BA

image. BA images can be calculated from the depth matrix

along any direction, to highlight the details of the scene in

the selected direction. In our application, horizontal, vertical,

and diagonal traces suffice for a successful enhancement of

the details of the scene (Fig. 5). However, any other direction

could be also considered depending on the application. As

observed in Fig. 5, these angular measures show the geom-

etry of the scene by highlighting many details that were not

distinguishable in the range image (Fig. 3.a). Hence, these

will be used in the next section for extracting corresponding

features.

IV. EXTRINSIC LASER-CAMERA CALIBRATION

A. Data Collection

Our calibration technique needs a single acquisition of

both the laser scanner and the omnidirectional camera. The

acquisition target can be any natural scene with a sufficient

number of distinguishable key points, i.e. roof edges or

depth discontinuities. Our calibration procedure consists of

three stages: firstly, we compute the BA images of the
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Fig. 5. BA images for a real scan (top left: vertical, top right: horizontal,
and bottom: two diagonal directions). Observe that, in BA images, the scene
details are very highlighted (e.g. even the corners of the picture hanged on
the left wall are now well distinguishable; in the range image 3.a, they were
not). In this pictures, jet colormap has been used. The color shade (from
blue to red) is proportional to the BA value.

acquired range image. Secondly, we manually select several

point correspondences (at least four) between the BA image

and intensity image. Finally, extrinsic calibration is done

using a camera pose estimation algorithm followed by a

non-linear refinement process. Observe that usually not all

four BA images are needed. Depending on the scene and

the orientation of the laser scanner to the scene, only the

horizontal BA image could suffice. However, the remainder

BA images can be used anyway, to check if there are further

details that would be worth exploiting. At the end of the

visual correspondence pairing, we have n laser points in the

laser frame and their correspondent points on the camera

image plane. We rewrite these points in the following way:

θC = [θC,1, θC,2, ..., θC,n], θL = [θL,1, θL,2, ..., θL,n],
dL = [dL,1, dL,2, ..., dL,n]

(5)

where θC and θL are the unit norm orientation vectors

of the camera and laser points in their respective reference

frames, and dL are the point distances in the laser frame.

B. Extrinsic Calibration

Extrinsic calibration of a camera and a 3D laser range

finder consists in finding the rotation R and translation T

between the laser frame and the camera frame that minimizes

a certain error function. In photogrammetry, the function to

minimize is usually the reprojection error:

minR,T

1

2

n
∑

i=1

‖mi − m̂(R, T, pi)‖
2 (6)

where m̂(R, T, pi) is the reprojection onto the image plane

of the laser point pi according to equation (2). However,

the reprojection error is not theoretically optimal in our

Fig. 6. Estimation of the translation (meters) versus the number of selected
points.

application because the resolution of the camera is not

uniform. A better error function uses the Rienmann metric

associated to a sphere as it takes into account the spatial

distribution (see [5] and [8]). This metric minimizes the

difference of the bearing angles of the camera points and

the bearing angles of the laser points after reprojection onto

the image, that is:

minR,T

1

2

n
∑

i=1

‖ arccos(θT
C,i · θCL,i)‖

2 (7)

where θCL is the unit norm orientation vector of

m̂(R, T, pi). According to equation (2), each correspondence

pair contributes two equations. In total, there are 2×n equa-

tions in 6 unknowns. Hence, at least 3 point associations are

needed to solve for R and T. However, 3 point associations

yield up to four solutions and thus a fourth correspondence is

needed to remove the ambiguity. This problem has already

been theoretically investigated for a long time and is well

known in the computer vision community as PnP problem

(Perspective from n Points). Some solutions to this problem

can be found in [21] and [22]. We implemented the PnP

algorithm described in [21] to solve the calibration problem.

The output of the PnP algorithm are the depth factors

of the camera points in the camera reference frame, that

is dC = [dC,1, dC,2, ..., dC,n]. Then, to recover the rigid

transformation between the two point sets, namely R and

T, we used the motion estimation algorithm proposed by

Zhang [24].

C. Non-Linear Optimization

The drawback of using the PnP algorithm is that the

solution is quite sensitive to the position of the input points,

which were manually selected, and also to noisy range infor-

mation. Furthermore, we have to take into account that the

two sensors can have different resolution and that the rigid

transformation is recovered by linear least-square estimation.

Thus, the solution given in section B is suboptimal. To refine

the solution, we minimized (7) as a non-linear optimization

problem by using the Levenberg-Marquardt algorithm. This

requires an initial guess of R and T, which is obtained using

the method described in subsection B.
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Fig. 7. Estimation of the rotation (roll, pitch, and yaw angles) versus the
number of selected points (the x-axis ranges from 4 to 10).

TABLE I

PARAMETER ESTIMATION

T (m) σ R(deg) σ P ixel error σ

0.207 0.05 0.64 0.21
0.042 0.017 -1.24 0.85 1.6 1.2
0.139 0.005 166.95 1.08

V. RESULTS

The proposed method has been tested on the custom-

built rotating scanner described in section II.B and on an

omnidirectional camera consisting of a KAIDAN 360 One

VR hyperbolic mirror and a SONY XCD-SX910-CR dig-

ital camera. The camera resolution was set as 640 × 480
pixels. The rotating scanner provided 360◦ field of view

range measurements with a vertical angular resolution of 1◦

and a horizontal resolution of 0.5◦. The calibration of the

omnidirectional camera was done using a toolbox available

on the Internet [16]. The calibration of the rotating scanner

was done using a known ground truth as explained in [23].

We evaluated the robustness of the proposed approach with

respect to the number of manually selected points. We varied

the number of laser-camera correspondences from 4 to 10

and for each combination we did ten calibration trials using

different input points. The results shown in Fig. 6 and 7 are

the average. Observe that after selecting more than 5 points,

the values of the estimated R and T become rather stable.

This stability occurs when points are chosen uniformly from

the entire scene viewed by the sensors. Conversely, when

points are selected within local regions of the scene, the

estimated extrinsic parameters are biased by the position of

this region. We also tried to use more than 10 points but

the estimated parameters did not deviate from the average

values that had been already estimated. The estimated R

and T were in agreement with the hand-measured values.

Furthermore, the estimated parameters were stable against

the position of the input points when these input points

were picked uniformly from all around the scene. In table I,

the mean and the standard deviation of R (roll, pitch, and

yaw angles) and T (Tx, Ty, Tz) are shown for the case of

ten correspondence pairs. The results were averaged among

ten different calibration trials. In table I, we also show the

reprojection error (in pixel). For data fusion, this error is the

most important. It measures the distance between the laser

Fig. 8. (a) A detail of the BA image. For visualization, we used a gray
scale where the intensity is proportional to the BA value. (b) Result of a
Sobel edge detector on the BA image. (c) The edges are reprojected onto
the image using the computed R and T.

points reprojected onto the image using the estimated R and

T, and the image points. In our experiments, the average

reprojection error was 1.6 pixels and the standard deviation

was 1.2 pixels. The reprojection of the laser points onto the

image also offers an indirect way to evaluate the quality

of the calibration. To do this, we chose not to reproject all

the laser points onto the image. Rather, we reprojected only

those laser points that represent discontinuities in the range

image. To select only depth discontinuities automatically, we

applied an edge detector to the BA image. The edge points, as

representative of depth discontinuities, were then reprojected

onto the image. The reprojection results are shown in Fig. 8.

As observed, the laser edge points well reprojected onto the

edges of the intensity image. In the end, using the estimated

R and T, we colored an entire 3D scan by reprojecting the

scan onto the corresponding image. The results of this color

mapping are shown in Fig. 9.

VI. CONCLUSIONS

In this paper, we presented a new approach for the

extrinsic calibration of a camera and a 3D laser range finder,

that can be done on the fly. The method uses only a few

correspondent points that are manually selected by the user

from a single laser-camera acquisition of a natural scene. Our

method relies on a novel technique to visualize the range

information. This technique converts the visually ambiguous

3D range information into a 2D map (called BA image)

where natural features of a scene are highlighted. In this way,

finding laser-camera correspondences is facilitated. Once cor-

respondence pairs have been given, calibration is done using

the PnP algorithm followed by a non-linear refinement

process. Real experiments have been conducted using an
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Fig. 9. (a) A panoramic picture of a scene unwrapped into a cylindrical image. The size of the original omnidirectional image was set as 640 × 480
pixels. After extrinsic calibration, the color information was mapped onto the 3D points extracted from a rotating SICK laser range finder. (b), (c), and (d)
show the results of this color mapping. The colors are well reprojected onto the 3D cloud.

omnidirectional camera and a rotating scanner, but the same

approach can be also applied to any other type of camera

(e.g. perspective) or laser range finder. The results showed

that selecting the input points uniformly from the whole

scene, robust calibration can be done by using only from

eight to ten correspondence pairs. The BA images and the

application of the method to an omnidirectional camera were

the two main contributions of this paper. The implication

of the proposed calibration approach is important because it

brings 3D computer vision systems out of the laboratory and

into practical use. In fact, the proposed approach requires no

special equipment and allows the user to calibrate quickly

the system in those cases where special settings are difficult

to be arranged.
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