Assessing abiotic transformations of organic pollutants using compound-specific nitrogen isotope analysis

Author(s):
Hartenbach, Akané Elisabeth

Publication Date:
2008

Permanent Link:
https://doi.org/10.3929/ethz-a-005705210

Rights / License:
In Copyright - Non-Commercial Use Permitted
Assessing Abiotic Transformations of Organic Pollutants Using Compound-Specific Nitrogen Isotope Analysis

A dissertation submitted to
ETH ZURICH

for the degree of
DOCTOR OF NATURAL SCIENCES

presented by
Akané Elisabeth Hartenbach

Dipl. Chimiste, University of Neuchâtel
born 14.10.1980
citizen of Switzerland, Basel (BS), and Japan

accepted on the recommendation of
Prof. René Schwarzenbach, examiner
Dr. Thomas Hofstetter, co-examiner
Prof. Piotr Paneth, co-examiner

Zurich 2008
Summary

The extensive use of chemicals for industrial, agricultural and domestic applications has lead to an increasing contamination of soils and freshwater systems by organic chemicals. To assess the impact of these micropollutants on the aquatic environment, as well as for the design of the appropriate mitigation strategies, knowledge on the organic contaminant transformation is essential. Compound-specific isotope analysis (CSIA) is a rather novel approach addressing this issue by enabling the analysis of stable isotope fractionation in individual organic contaminant. During degradation, the stable isotope composition of a compound may change according to kinetic isotope effects (KIEs) at the reactive bonds. Because isotope fractionation associated with phase transfer or dispersion processes are usually much lower than during chemical transformation, CSIA provides an unique opportunity to detect and identify degradation pathways. Current use of this technique is however mainly restricted to elements carbon and hydrogen, although nitrogen is less subject to isotopic dilution and present in a number of reactive functional groups of organic contaminants.

The goals of this thesis were to (i) make a first screening of 15N effects during important degradation reactions to evaluate the potential of 15N-CSIA in studying the transformation of N-containing organic pollutants and (ii) evaluate the potential of combined analysis of C, H and N isotopes (3-dimensional CSIA) in differentiating between competing degradation pathways. To fulfill the first objective, the magnitude of 15N fractionation was investigated during the abiotic reduction of nitroaromatic compounds, an important class of soil and groundwater contaminant. Three-dimensional isotope analysis, on the other hand, was attempted for the first time to distinguish between direct and indirect photolysis using atrazine as model herbicide. Phototransformation reactions were chosen owing to their importance for the dissipation of many
agrochemicals in sunlit surface waters and because the potential of CSIA to assess these type of transformations has not yet been investigated.

The apparent kinetic isotope effect for nitrogen (AKIE$_N$) during the abiotic reduction of nitroaromatic compounds (NACs) was investigated for a series of NACs covering a wide range of intrinsic reactivity with various model reductants, including suspensions of Fe$^{2+}$/goethite as model heterogeneous reductant, homogeneous solutions of juglone/H$_2$S and anthrahydroquinone-2,6-disulfonate (AH$_2$QDS) as model electron(s) and proton(s) transfer agents, and Fe$^{2+}$-catechol complexes as model one electron transfer agent. During solid-phase mediated NAC reduction as well as in presence of the model hydroquinones, a large and robust AKIE$_N$ value of 1.03 to 1.04 was found for the mono-nitroaromatic compounds, which remained largely insensitive to the aromatic substituent of the NAC. This magnitude of the 15N fractionation suggests that a cleavage of a N-O bond is rate-limiting in these systems. In presence of the Fe$^{2+}$-catechol complexes, however, this AKIE$_N$ value decreased almost linearly with increasing pH to level off at about 1.01 for pH \geq 8. Very similar trend of the AKIE$_N$ value was observed with increasing pH for 1,2-dinitrobenzene and 2,4,6-trinitrotoluene in presence of AH$_2$QDS. We hypothesized that at high pH (low H$^+$ availability) or in presence of very reactive NACs (weaker base), the rate-determining step of overall NAC reduction to the nitroso intermediate can shift from N-O bond cleavage (AKIE$_N$ \rightarrow 1.04) to the reduction of NAC radical anion intermediate (AKIE$_N$ \rightarrow 1.01 associated with the second electron transfer).

Carbon, hydrogen and nitrogen isotope enrichment factors (ε_C, ε_H and ε_N, respectively) during the light-induced transformation of atrazine were determined during (i) oxidation of this herbicide by OH radical, (ii) sensitized photolysis using excited triplet state 4-carboxybenzophenone (34-CBBP*) as sensitizer and surrogate molecule of 3DOM*, and (iii) direct photolysis at 254nm using a low pressure Hg lamp. All experiments were conducted in aerated, aqueous solutions buffered at pH 7 to allow the comparison of the three modes of photolysis. (Photo)oxidation of atrazine was characterized with
moderately large ^2H fractionation (ε_H of -50‰ and -25‰, for $^3\text{4-CBBP}\ast$ and OH radicals, respectively) and rather small ^{13}C and ^{15}N fractionation (-0.3‰ $< \varepsilon_{\text{C,N}} < -1.7‰$). Direct photolysis of atrazine yielding hydroxyatrazine as main product was characterized, in contrast, by inverse ^{13}C and ^{15}N fractionation (ε_C and ε_N values of 4.6±0.3‰ and 4.9±0.2‰, respectively) and no detectable ^2H fractionation. The magnitude of ^2H fractionation during photooxidation is in agreement with an H abstraction mechanism at the N-H and C-H bonds of the N-alkyl side chains. The similitude of the reaction mechanism between the two transient oxidants was further confirmed by the slopes of the 2-dimensional $\Delta\delta^2\text{H}/\Delta\delta^{13}\text{C}$ and $\Delta\delta^2\text{H}/\Delta\delta^{15}\text{N}$ analysis which were identical within error ($\pm 1\sigma$). A magnetic isotope effect involving the excited states of atrazine and depending on the magnetic properties of the C and N nuclei was proposed as possible explanation for the inverse fractionation during direct photolysis. The very different enrichment factors during direct and indirect photolysis of atrazine suggest that the differentiation of these two processes is facilitated for this important herbicide using 3-dimensional CSIA. Furthermore, the inverse C and N fractionation during direct photolysis likely enable a differentiation between enzymatic and photolytic pathway yielding hydroxyatrazine. These first results show that photochemical reactions can be associated with measurable isotope fractionation, thus indicating that these important degradation pathways can be investigated by CSIA.

This work provided first evidence and applications of ^{15}N analysis for the elucidation of transformation pathway of N-containing priority organic contaminant such as nitroaromatic compounds and selected triazine herbicides. For both contaminants, precise insights into their degradation mechanism could be obtained. This thesis illustrates how 3-dimensional isotope analysis of C, H and N should notably improve the identification and differentiation of important degradation pathways of a significantly larger class of priority water contaminants.
Résumé

L’emploi de produits chimiques à des fins industrielles, agricoles et domestiques a entraîné la contamination croissante des sols et des aquifères par des polluants organiques. Pour évaluer l’impact de ces micropolluants sur l’environnement, une bonne compréhension de leur réactivité est essentielle. Une approche relativement récente pour l’étude et l’identification des processus de dégradation des polluants est la mesure du fractionnement isotopique dans le polluant considéré par CSIA (Compound-Specific Isotope Analysis). Cette technique se base sur le fait que les isotopes réagissent avec des vitesses différentes lors des transformations chimiques, entraînant un enrichissement (respectivement appauvrissement) d’un des isotopes au cours de la réaction (effet cinétique isotopique) alors que cette discrimination est typiquement moindre lors des processus de dilution ou de transfert de phase. L’effet cinétique isotopique dépendant directement du mécanisme de réaction, le fractionnement isotopique peut donc être utilisé pour identifier un procédé de dégradation. A l’heure actuelle, l’emploi de cette technique se limite essentiellement aux isotope du carbone et de l’hydrogène, bien que d’autre isotopes, tels que l’azote, soient analytiquement accessible. Les éléments carbone et hydrogène, cependant, sont souvent sujet à une dilution isotopique importante rendant la détection de leur fractionnement isotopique plus difficile. L’élément azote, pour sa part, fait exclusivement partie des groupes fonctionnels des molécules organiques et présente donc le double avantage d’être réactif et isotopiquement moins dilué.

Ce travail de doctorat a pour objet l’évaluation de l’analyse isotopique de l’azote pour l’étude des processus de dégradation des polluants organiques azotés en milieu naturel. Dans une première partie de ce travail, le fractionnement isotopique de l’azote fut exploré de manière détaillée lors de la réduction abiotique des composés nitroaromatiques (NACs), un processus caractérisé par la formation d’amines aromatiques, de toxicité et de mobilité.
souvent supérieure au composé de départ. Dans une deuxième partie de ce projet, l’étude du fractionnement isotopique de l’azote fut combiné à celle du carbone et de l’hydrogène afin d’évaluer le potentiel de l’analyse simultanée de ces trois éléments à différencier entre des procédés de transformations distincts. Pour ce faire, le fractionnement isotopique de ces trois éléments fut comparé lors de la photolyse directe et indirecte, en utilisant l’atrazine comme herbicide modèle. Ces voies de dégradations photochimiques furent choisies d’une part, en raison de leur importance pour la dissipation de nombreux composés agrochimiques en présence de lumière et d’autre part, parce le fractionnement isotopique associé à ce type de réaction demeure largement inconnu à ce jour.

L’effet cinétique apparent de l’azote (AKIE\textsubscript{N}) fut mesuré lors de la réduction d’une série de composés nitroaromatique dont la réactivité intrinsèque fut varié sur plusieurs ordres de grandeur au moyen de leur substituant aromatique. La réduction fut initiée par les systèmes suivants : suspension de Fe2+/goethite (réducteur solide), solution homogène de juglone/H\textsubscript{2}S et d’anthrahydroquinone-2,6-disulfonate (AH\textsubscript{2}QDS) (réducteurs en phase homogène, donneurs potentiels d’électron(s) et de proton(s)) et une solution homogène de complexes Fe2+-catéchol (réducteur en phase homogène, donneur d’un électron). En présence du réducteur solide et des modèles hydroquinones, un AKIE\textsubscript{N} de 1.03 à 1.04 fut observés pour tous les composés mono-nitroaromatiques, sans effet apparent du substituent sur le fractionnement isotopique. Ce fractionnement important indique que la cassure d’une liaison N-O est cinétiquement déterminante dans ces systèmes. En présence des complexes Fe2+-catéchol, cependant, une diminution quasi linéaire de cette valeur fut observée avec l’augmentation du pH, avec une stabilisation de la valeur à 1.01 à partir de pH \geq 8. Une dépendance très similaire de la valeur du AKIE\textsubscript{N} avec le pH fut également observée lors de la réduction des composés poly-aromatiques 1,2-dinitrobenzène et 2,4,6-trinitrotoluène en présence d’AH\textsubscript{2}QDS. Ces résultats semblent indiquer un changement de l’étape cinétiquement déterminante, passant du clivage de la liaison N-O (AKIE\textsubscript{N} \rightarrow 1.04) au transfert du 2ème électron (AKIE\textsubscript{N} \rightarrow 1.01) en solution alcaline et en présence des nitroaromatiques les plus électropositifs (bases plus faible).
Les constantes d’enrichissements isotopiques du carbone, de l’hydrogène et de l’azote (ε_C, ε_H et ε_N) de l’atrazine furent déterminés lors de (i) l’oxydation de cet herbicide par les radicaux OH, (ii) la photosensitization en présence 4-carboxybenzophénone dans son état triplet (34-CBBP*), et (iii) lors de la photolyse directe à 254nm utilisant une lampe à vapeur de Hg basse pression. Les expériences furent toutes réalisées dans des solutions aqueuses tamponnées à pH 7 afin de disposer de la même matrice pour les trois modes de phototransformation. Un fractionnement modéré fut observé pour les isotopes de l’hydrogène lors de la photooxidation de l’atrazine par 34-CBBP* et les radicaux OH (ε_H de -50‰ et -25‰) accompagné d’un faible fractionnement pour le carbone et l’azote (-0.3‰>ε_C,N>-1.7‰). La photolyse directe fut, quant à elle, caractérisée par un fractionnement inverse des isotopes de carbone et d’azote (ε_C de 4.6±0.3‰ et ε_N de 4.9±0.2‰), sans effet isotopique mesurable à l’hydrogène. L’amplitude du fractionnement isotopique de l’hydrogène est en accord avec le clivage de liaison C-H et N-H des chaînes aminiques latérales de l’atrazine. La valeur des pentes (±1σ) obtenues lors de la régression linéaire Δδ^2H/Δδ^{13}C et Δδ^2H/Δδ^{15}N furent identiques pour les deux oxydants, confirmant la similitude du mécanisme de dégradation pour ces deux modes de photolyse indirecte. Une interprétation possible du fractionnement inverse du carbone et de l’azote lors de la photolyse directe pourrait consister en une origine magnétique impliquant les intermédiaires triplet et singlet de l’atrazine. Les fractionnements isotopiques distincts lors de la photolyse directe et indirecte démontrent que sur la base d’une analyse isotopique tridimensionnelle, une nette différentiation de ces deux procédés est possible pour cet herbicide. En outre, le fractionnement inverse de la photolyse directe suggère qu’une différentiation avec la voie enzymatique menant à l’hydroxyatrazine devrait également être possible. Ces premières données illustrent que les transformations photochimiques peuvent être associé à des fractionnements isotopiques considérables, indiquant qu’un suivi de ces réactions est possible par CSIA.

Cette thèse de doctorat constitue la première collection de données des fractionnements isotopique de l’azote lors de processus de dégradations de
polluants organiques azoté en milieux aquatiques. Elle apporte également la première application de l’analyse isotopique tridimensionnelle pour l’élucidation de différents procédés de transformation. L’extension de cette technique à l’azote devrait permettre l’investigation détaillée des processus de dégradations d’un nombre considérablement plus important de polluants organiques prioritaires.