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Modeling Human Bodies from Video Sequences

N. D’Apuzzoa, R. Plänkersb, P. Fua b, A. Gruena and D. Thalmannb

aInstitute of Geodesy and Photogrammetry, ETHZ, Zürich, Switzerland

aComputer Graphics Lab (LIG), EPFL, Lausanne, Switzerland

ABSTRACT

In this paper, we show that, given video sequences of a moving person acquired with a multi-camera system, we
can track joint locations during the movement and recover shape information. We outline techniques for fitting a
simplified model to the noisy 3–D data extracted from the images and a new tracking process based on least squares
matching is presented. The recovered shape and motion parameters can be used to either reconstruct the original
sequence or to allow other animation models to mimic the subject’s actions. Our utlimate goal is to automate the
process of building complete and realistic animation models of humans, given a set of video sequences.
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1. INTRODUCTION

Synthetic modeling of human bodies and the simulation of motion is a longstanding problem in animation and
much work is involved before a near-realistic performance can be achieved. At present, it takes an experienced
designer a very long time to build a complete and realistic model that closely resembles a specific person. Digital
photogrammetry offers a means to obtain the necessary data faster and in a more realistic fashion. Our ultimate
goal is to automate the process and to produce realistic animation models given a set of video sequences. Eventually
the whole task should be performed quickly by an operator who is not necessarily an experienced graphics designer.
We should be able to invite a visitor to our laboratory, make him walk in front of a set of cameras, and produce,
within a single day, a realistic animation of himself.

In this paper, we show that, given video sequences of a person moving in front of the camera, we can recover
shape information and joint locations, both of which are essential to instantiate the model. This is achieved with
minimal human intervention: to initialize the process, the user simply has to click on the approximate location of
a few key joints in one image triplet. The recovered shape and motion parameters can be used to reconstruct the
original movement or to allow other animation models to mimic the subject’s actions.

We concentrate on a video-based approach because of its comparatively low cost and good control of the dynamic
nature of the process. While laser scanning technology provides a fairly good surface description of a static object
from a given viewpoint, videogrammetry allows us in addition to measure and track particular points of interest,
such as joints, and to record and track surface and point features around the object.

The problem to be solved is twofold: first, robustly extract image information from the data; second, fit the
animation models to the extracted information. In this work, we use video sequences acquired with three synchronized
cameras to extract tracking and stereo information.

We first introduce our approach to computing 3–D stereo information and 3–D surface trajectories. We then
present the animation model we use. Finally, we introduce our fitting procedure and show how we can handle the
different kinds of input information.
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Figure 1. Four frames of a sequence (only odd lines are processed)
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Figure 2. Arrangement of the three CCD cameras

2. 3–D LSM TRACKING ALGORITHM

Our approach to tracking is based on multi-image recording. In previous work (Fua et al.1), we presented a tracking
of retroreflective points stuck on the skin. We have since developed an approach to tracking natural points using least
squares matching techniques,2 without using markers. To simplify the development, we have acquired sequences
of the arm of a person wearing a well textured sweater (see Figure 1). The texture of the clothes facilitates the
establishment of correspondences between the images of the different views and between images of subsequent frames.
However, our final goal is to handle a wide range of textures, includeing bare skin.

2.1. Image Acquisition

Three CCD cameras are arranged in a line (left, center, right) as shown in Figure 2. They acquire 768× 576 8 bits
synchronized image triplets.

The CCD cameras are interlaced, i.e. a full frame is split into two fields which are recorded and read out
consecutively. As odd and even lines of an image are captured at different times, a saw pattern is created in the
image when recording moving objects. For this reason only the odd lines of the images are processed, at the cost of
reducing the spatial resolution in vertical image coordinate direction by 50 percent.

2.2. System Calibration and Orientation

For calibration and orientation, we use the reference bar method (Maas3). A reference bar with two retroreflective
target points is moved through the object space and at each location image triplets are acquired. The image
coordinates of the two target points are measured with centroid operations for each triplet. The three camera system
can then be calibrated and oriented by self-calibrating bundle adjustment with the additional information of the
known distance between the two points at every location.

2.3. Surface Measurement

The first task of the tracking process is the measurement of the object surface at the beginning of the sequence. The
algorithm used for the measurement of the surface is analogous to the one presented by D’Apuzzo.4 The stereo
matcher is based on the adaptive least squares method.2 It considers an image patch around a selected point. One
image is used as template and the others as search images. The patch in the search image is modified by an affine
transformation (translations, sheerings and scalings) and the gray levels are varied by multiplicative and additive
parameters. The algorithm finds the corresponding point in the neighborhood of the initial point in the search images
by minimizing the sum of the squares of the differences between the gray levels in these patches. Figure 3 shows the



Figure 3. Least squares matching algorithm. Left: template image, right: search image
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Figure 4. Tracking process

result of the least squares matching with an image patch of 13 × 13 pixels. The black boxes represent the patches
selected (initial location in the search image) and the white box represents the affinely transformed patch.

At the beginning of the process approximations for a few corresponding points have to be manually selected
in the three images. Starting from these seed points, the stereo matcher automatically determines a dense set
of corresponding points in the triplets. The 3–D coordinates of the matched points are determined by forward
intersection using the calibration and orientation results.

2.4. Tracking Process

The tracking process is based on least squares matching techniques. The spatial correspondences between the three
images of the different views and also the temporal correspondences between subsequent frames are determined with
the same least squares matching algorithm mentioned before.

2.4.1. Tracking single points

To start the process a triplet of corresponding points in the three images is needed. This point is tracked through
the sequence in the three images and therefore its 3–D trajectory can be computed. Figure 4 shows the use of the
least squares matching algorithm to track the point.

In frame i, a triplet of corresponding points in the three images is established with the least squares matching
algorithm (spatial LSM ). In each of the three images (left, center, right) a correspondent point is matched in the
next frame i + 1 also with the same least squares matching algorithm (temporal LSM ). Figure 5 depicts how the
temporal correspondences are established between subsequent frames.

For the frame i + 1 a linear prediction of the position of the tracked point is made: it is assumed that the
movement made from frame i to frame i + 1 is the same as from frame i − 1 to frame i. Around this predicted
position in the frame i + 1, a search box is defined. This box is scanned for searching the position which has the
best value of cross-correlation between the image of frame i and the image of frame i+1. This position is considered
an approximation of the exact position of the point to be tracked. The least squares matching algorithm is applied
at that position and the result can be considered the exact position of the tracked point in the new frame. This
process is done independently for the three images of the different views. A spatial LSM is executed at the positions
resulting from the temporal LSMs and if no significant differences occurs between the two matches, the point can be
considered exactly tracked. Figures 6 and 7 show the results of tracking six single points through the sequence.
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Figure 5. Tracking in image space: at the position of best cross correlation is applied LSM temporal
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Figure 6. Tracking six single points

Figure 7. 2–D trajectories of six single points



Figure 8. 3–D trajectories of six tracked points. Left: front view, right: side view

Figure 9. Vector field of trajectories of surface tracking

The 3–D trajectory of the tracked point is determined by computing the 3–D coordinates of the point through
the sequence by forward intersection. Besides, velocities and accelerations are also computed. Figure 8 shows the
trajectories of the six single points.

2.4.2. Tracking the surface

The tracking algorithm is applied to all the points measured on the surface at the beginning of the sequence. The
result can be seen as a vector field of trajectories (position, velocity and acceleration). An important advantage of
this general tracking scheme of all the points is that at the end the results can be checked for consistency and local
uniformity of the movement. Figure 9 shows the result after passing through two filters.

The first filter consists of thresholds for the velocity and the acceleration of the movement. The second filter
checks for the local (in space and time) uniformity of the movement. Since the human body can be considered
an articulated moving object, the resulting vector field of trajectories must be locally uniform, i.e. the velocity
vector must be nearly constant in sufficiently small regions at a particular time. To check this property, the single
trajectories are compared to local (in space and time) mean values of the velocity vector. If the differences are too
large, the trajectory is considered false and it is truncated or removed. The results of this filtering are not only
trajectories without errors, but also surface measurement (in form of a 3–D points cloud) at each time instance
without errors. The possible errors in the surface measurement done at the beginning of the sequence are removed
during the tracking process, since they probably generate false trajectories.

The tracking system starts with a set of points that constantly becomes smaller during the process, because
erroneous trajectories are removed or truncated by the filters and because points disappear from the scene during
the sequence. To improve the system, it is therefore essential to regenerate lost points and to create new ones as
they become visible. New neighborhood heuristics will also be added to the filters.

3. MODELS

In this section, we first describe the complete model that we use for animation purposes. This model has too many
degrees of freedom to be effectively fit to noisy data without a-priori knowledge. We therefore introduce a simplified
model that we have used to derive an initial shape and position. In this work, we will use this knowledge to initialize
the complete one before refining it.
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Figure 10. The layered human body model: (a) Skeleton. (b) Ellipsoidal metaballs used to simulate muscles and
fat tissue. (c) Polygonal surface representation of the skin. (d) Shaded rendering.

3.1. Complete Animation Model

Generally, virtual humans bodies are structured as articulated bodies defined by a skeleton. When an animator
specifies an animation sequence, he defines the motion using this skeleton.

A skeleton is a connected set of segments, corresponding to limbs and joints. A joint is the intersection of two
segments, which means it is a skeleton point where the limb linked to that point may move.

Our model5 is depicted by Figure 10. It incorporates a highly effective multi-layered approach for constructing
and animating realistic human bodies. Ellipsoidal metaballs are used to simulate the gross behavior of bone, muscle,
and fat tissue; they are attached to the skeleton and arranged in an anatomically-based approximation. The skin
construction is made in a three step process. First, the implicit surface resulting from the combination of the
metaballs influence is automatically sampled along cross-sections with a ray casting method.6,5 Second, the sampled
points constitute control points of a B-spline patch for each body part (limbs, trunk, pelvis, neck). Third, a polygonal
surface representation is constructed by tessellating those B-spline patches for seamless joining different skin pieces
together and final rendering. The method, simple and intuitive, combines the advantages of implicit, parametric
and polygonal surface representation, producing very realistic and robust body deformations. By applying smooth
blending twice (metaball potential field blending and B-spline basis blending), the model’s data size is significantly
reduced.

Since the overall appearance of a human body is very much influenced by its internal muscle structures, the
layered model is the most promising for realistic human animation. The key advantage of the layered methodology is
that once the layered character is constructed, only the underlying skeleton need be scripted for animation; consistent
yet expressive shape deformations are generated automatically.



3.2. Skeleton and State Vector

The state of the skeleton is described by the combined state vector

Sbody = [Smotion, Sskel] . (1)

Since the skeleton is modeled in a hierarchical manner, we can define the static or init state of the skeleton Sskel as
the rotations and translations from each joint with respect to the preceding one. It is fixed for a given instance of
the body model. The variable or motion state vector Smotion contains the actual values for each degree of freedom
(DOF), i.e. the angle around the z-axis towards the next DOF. They reflect the position and posture of the body
with respect to its rest position. All DOFs have only a single-angle freedom, since more complicated articulations
are split into several, single DOF joints.

For any given limb or body part a partial motion state vector for its parent joint can be written as Spart =
[Spre, Θκ], where Spre is the state vector of the preceding joints, and Θκ is a rotation angle around the z-axis of that
joint.

The position of joints in a global world referential is obtained by multiplying the local coordinates by a transfor-
mation matrix. This matrix is computed recursively by multiplying all the transformation matrices that correspond
to the preceding joints in the body hierarchy:

Xj =
∏

i

Di(S) ∗ Xw , (2)

with Xj,w = [x, y, z]T being joint local, resp. world global, coordinates and the homogeneous transformation matrices
Di, which depend on the state vector S, ranging from the root articulation’s first to the reference articulations’s last
DOF. These matrices are split into static and motion matrices, according to the state vector. They are of the form

D = Drotz ∗ Dini . (3)

The rotation matrix Drotz is defined by the motion state vector. It is a sparse matrix allowing only a rotation around
the local z-axis (Θκ). The static transformation Dini = (RX + sT ) is a matrix directly taken from the standard
skeleton. These matrices translate by the bone length and rotate the local coordinate system from the joint to its
parent. The matrix entries are calculated using values s from the state vector Sskel. The variable coefficient s is
necessary because the exact size of the limbs may vary from person to person. For the first DOF of an articulation,
Dini is usually dense but the other DOFs have no translation and the rotational part consists only of a permutation
of the axes to ensure that the DOF rotates around the z-axis.

The articulations may consist of several DOFs, each having its own transformation matrix D. For example, the
elbow joint has two DOFs flexion and twisting: Delbow = Drottwist ∗ Dinitwist ∗ Drotflex

∗ Diniflex
.

3.3. Simplified Model of a Limb

To be able to robustly estimate the skeleton’s position and to reduce the number of DOFs, we replace the multiple
metaballs of Section 3.1 by only three metaballs attached to each limb. In an earlier approach,7,1 we used only one
ellipsoid per limb. This had the advantage of fast calculations but the errors introduced by the imperfection of the
model, were big enough to lead to unsatisfactory fittings. We therefore decided to use a slightly more complicated
model which is capable of better modeling the shape of human limbs. Figure 11 shows the model we have used to
recover the shape and motion from the arm sequences of Figure 1.

The metaballs are rigidly attached to the skeleton. They have a fixed orientation and a fixed position relative to
the length of the limb. Only their size, i.e. their radii, are subject to modification by the fitting process.

The different body parts are segmented before the fitting starts. This is simply done during the initialization
phase where the model takes an approximate posture which is good enough to assign a 3–D observation to the closest
limb. Thus, we do not have to wait for a motion of the person to split a limb such as the arm into two parts, upper
arm and forearm, as is the case in the work of Kakadiaris and Metaxas.8

More sophisticated models that include both global and local deformations, such as tapered superquadrics8 or
evolving surfaces,9 may be able to approximate more closely the exact shape of the limb. However, they require the
setting of more parameters and are thus harder to fit.



Figure 11. Simplified model for fitting. Although the metaballs are displayed as distinct ellipsoids, they blend into
each other to form a single smooth surface.

3.4. Metaballs and their Mathematical Description

3.4.1. Definition10

In the basic formulation proposed by Blinn,11 metaballs or blobs are defined by a set of points Pi(xi, yi, zi) where
each point is the source of a potential field. Each source is defined by a field function Fi(x, y, z) that maps R

3 to
R (or a subset of R). At a given point P (x, y, z) of the Euclidean space, the fields of all sources are computed and
added together, leading to the global field function

F (x, y, z) =
n∑

i=1

Fi(x, y, z) . (4)

A curved surface can then be defined from the global field function F by giving a threshold value T and rendering
the following equipotential surface S for this threshold:

S =
{
(x, y, z) ∈ R

3 |F (x, y, z) = T
}

. (5)

Conceptually it is usually simpler to consider field function Fi as the composition of two functions12: the distance
function di which maps R

3 to R
+, and the potential function fi which maps R

+ to R
3:

F (x, y, z) =
n∑

i=1

fi(di(x, y, z)) . (6)

The function fi(d) characterizes the distance between a given point P (x, y, z) and the source point Pi(xi, yi, zi).
Typically di is defined as a function of a user-provided parameter ra ∈ R

+ (called effective radius) which expresses
the growing speed of the distance function. The most obvious solution for di(x, y, z) is the Euclidean distance, but
several other functions have been proposed in the literature, especially when the potential source is not reduced to
a single point or its field is not equally distributed in space.
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Figure 12. Two metaball field functions. The solid curve is a typical piecewise function and the dotted curve is
our exponential function. rt is the visible size of the primitive which depends on the threshold wt and the effective
radius ra.

3.4.2. Distance function

In this work, we only consider ellipsoids as primitives because they are relatively simple but, nevertheless, allow
modeling of human limbs with a reasonable low number of primitives and thus number of parameters. We represent
the distance function di by the I/O distance of the ellipsoid that is

di(x, y, z) =
(

x

lx

)2

+
(

y

ly

)2

+
(

z

lz

)2

, (7)

where Li = (lx, ly, lz) are the radii of the ellipsoid, i.e. half the axis length along the principal directions.

3.4.3. Potential function

The field value at any point P in space is defined by the distances between P and the source points Pi. Figure 12
shows a typical curve of a density distribution. The center of the primitive, its source, has the greatest density. The
value of the primitive’s density, or weight, decreases toward the element’s outer edge, or effective radius. The visible
size of a primitive, called the threshold radius, is determined by the effective radius and weight.

Field functions should satisfy two criteria:

1. Extrema
The contribution at the source itself will be some maximum value w0, and the field will drop smoothly to zero
at a distance ra, the effective radius.

2. Smoothness
In order to blend multiple metaballs smoothly and gradually, f ′(0) = f ′(ra) = 0.

A single, lower degree polynomial cannot meet both criteria, hence either piecewise quadric or high order polynomials
have been proposed. Their disadvantage are a high complexity and thus high computational cost.

Shen10 used a much simpler approach in his work on human body modeling: fi = wi(1 − d), where d is defined
as in Equation 7 and wi defines the maximum weight w0 for primitive i. This simplified field function satisfies only
the first criterion. The second criterion can be satisfied by using cubic B-spline blending. The simplification used by
Shen yields excellent results for modeling purposes, as can be seen in Figure 10.

3.4.4. Usage in this work

However, here we are attempting to fit the model to 3–D data by minimizing an objective function. In order to do
so, we need to work on a well-defined mathematical basis and the smoothness criterion is essential when fitting a
shape with multiple metaballs. We therefore use an exponential field function:

fi = wi

(
1
ed

)2

= wi ∗ exp(−2d) , (8)



with d also being defined as in Equation 7 and the weight being fixed for the moment (w0 = 1, wt = 0.5). We might
leave the weight as a parameter for the fitting in the future since it allows to easily reproduce sharper edges.

An exponential field function is also more effective in the least squares fitting framework because its derivatives
are very easy to compute. As shown in Figure 12, its equipotential surface S (Eq. 5) is only slightly different from
the standard representation and, more importantly, it never falls to zero.

The last property has two consequences:

1. Each blob has an influence on all other blobs of the same limb, although, it will become very small for distant
blobs. This is obviously undesired for modeling since the designer looses local control.

2. At the same time as each blob influences all other blobs, each blob is influenced by all observations in our
fitting framework. This allows us to work with only a rough initialization of the model’s posture. Since the
observations are already segemented and associated to body parts, the unlimited influence does not pose any
problems.

4. FITTING THE MODELS TO IMAGE DATA

From a fitting point of view, the body model of Section 3.3 embodies a rough knowledge about the shape of the
body and can be used to constrain the search space. Our goal is to fix its degrees of freedom so that is conforms as
faithfully as possible to the image data.

Here we use motion sequences such as the one shown in Figure 1 and corresponding stereo data computed using
the method of Section 2. Thus, the expected output of our system is a state vector that describes the shape of the
metaballs and a set of joint angles corresponding to their positions in each frame.

In this section, we introduce the least squares framework we use and show how we can exploit the tracking and
stereo data that we derive from the images.

4.1. Least Squares Framework

In standard least-squares fashion, we will use the image data to write nobs observation equations of the form

fi(S) = obsi − εi , 1 ≤ i ≤ nobs , (9)

where S is the state vector of Equation 1 that defines the shape and position of the limb and εi is the deviation from
the model. We will then minimize

vT Pv ⇒ Min , (10)

where v is the vector of residuals and P is a weight matrix associated with the observations (P is usually introduced
as diagonal).

Our system must be able to deal with observations coming from different sources that may not be commensurate
with each other. Formally we can rewrite the observations equations of Equation 9 as

f type
i (S) = obstype

i − εi , 1 ≤ i ≤ nobs , (11)

with weight ptype
i , where type is one of the possible types of observations we use. In this paper, type is restricted to

object space coordinates, although other information cues can easily be integrated.

The individual weights of the different types of observations have to be homogenized prior to estimation according
to:

pk
i

pl
j

=

(
σl

j

)2
(
σk

i

)2 , (12)

where σl
j , σk

i are the a priori standard deviations of the observations obsi, obsj of type k, l.

Applying least-squares estimation implies the joint minimum

nt∑
type=1

vtypePtypev
type ⇒ Min , (13)



                                    

Figure 13. Arm model after being fitted to frames 1, 9 and 13 from the images of Figure 1                                    

Figure 14. The recovered animation parameters applied to a completely different animation model

with nt the number of observation types, which then leads to the well-known normal equations which need to be
solved using standard techniques.

Since our overall problem is non-linear, the results are obtained through an iteration process.

4.2. Using Stereo Data

Let us assume that we are given a 3–D point that has been computed using stereo data. We want to minimize the
distance of the reconstructed limb to all such “attractor” points. Given the implicit description of our metaballs, the
simplest way to achieve this result is to write an pseudo-observation equation of the form:

np∑
i=1

wi · exp (−2di) = wt − ε (14)

np∑
i=1

exp

(
−2

((
xi

lxi

)2

+
(

yi

lyi

)2

+
(

zi

lzi

)2
))

=
1
2
− ε , (15)

where np is the number of primitives for this body part, Pi (x, y, z) is the 3–D observation transformed into the local
coordinates of primitive i with radii Li(lx, ly, lz). We use Equation 15 which is the same than Equation 14 except
for the fixed weights wt = 1

2 , wi = 1, i ∈ [1, np].

The optimization is effected wrt. the primitives’ radii Li and the DOFs which reside in the transformation
of each observation from world global to primitive local coordinates. According to Equation 2, each Pi can be
written as a function of its world coodinates and the elements of state Vector S. In practice, we experienced better
convergence by iteratively alternating between primitive parameters and skeleton parameters instead of optimizing
them simultaneously. For more detail we refer the interested reader to a previous publication.1

4.3. Preliminary Results

By fitting our model of the right arm to the stereo information obtained from the images of Figure 1, we can
reconstruct the positions and shapes depicted by Figure 13. The joint angles stored in the state vector can then be
used to animate the very different virtual human of Figure 14.



5. CONCLUSION AND FUTURE WORK

In this paper, we have shown that given video sequences of a moving person acquired with a multi-camera system,
we can recover shape information and track joint locations during the motion. We have outlined techniques for
fitting a simplified model to noisy stereo data and we have presented a new tracking process based on least squares
matching. The recovered shape and motion parameters can be used to create a realistic animation. Our ultimate
goal is to produce automatically, with minimal human intervention, realistic animation models given a set of video
sequences. The capability we intend to develop will be of great applicability in animation areas, since the techniques
used nowadays require a very long time of manual work to generate and animate sophisticated models of humans.
Automating the process will allow an increase of realism with simultaneous decrease of costs.

In future work, will next produce some synthetic data in order to test the accuracy of the system. At the moment
we are applying the algorithms on sequences of full bodies in motion.

We will also investigate the possibilities of having the model guide the tracking process. If a point vanishes due
to occlusion we can employ the model to predict where and when it will appear again.

The next step for the fitting process consists of refining the model from only three primitives to the full set of
the animation model. This would allow us to model the filmed person very realistically. The simplified model only
allows to get a good approximation of the skeleton but a rather rough approximation of the shape.
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