Verunreinigungsprofil und Stabilität von Aminosäuren diverser Herkunft

Author(s):
Künzle, Urs

Publication Date:
2008

Permanent Link:
https://doi.org/10.3929/ethz-a-005756067

Rights / License:
In Copyright - Non-Commercial Use Permitted
Verunreinigungsprofil und Stabilität von Aminosäuren diverser Herkunft

ABHANDLUNG
Zur Erlangung des Titels
DOKTOR DER WISSENSCHAFTEN

der
ETH ZÜRICH

vorgelegt von

URS KÜNZLE
eidg. dipl. Apotheker
geboren am 26. September 1970
Bürger von Waldkirch SG

Angenommen auf Antrag von
Prof. Dr. P. A. Schubiger, Referent
Prof. Dr. H. Altorfer, Korreferent
Prof. Dr. R. Schibli, Korreferent
Dr. I. Werner, Korreferent

2008
Inhaltsverzeichnis

1. Zusammenfassungen .. 1

 1.1. Abstract in English .. 1

 1.2. Zusammenfassung in Deutsch .. 2

2. Problemstellung .. 4

3. Aminosäuren in der Pharmakopöe ... 6

 3.1. Allgemeiner Teil .. 6

 3.1.1. Aminosäuren .. 6

 3.1.2. Struktur und Klassifikation der Aminosäuren .. 7

 3.1.3. Aminosäuren - Geschichtlicher Hintergrund .. 8

 3.1.4. Aminosäuren – pharmazeutische Bedeutung .. 10

 3.1.5. Industrielle Herstellung von Aminosäuren ... 11

 3.1.6. Fermentation ... 12

 3.1.7. Direkte Fermentation .. 13

 3.1.7.1. Fermentationsprozess ... 13

 3.1.7.2. Grobisolierung ... 13

 3.1.7.3. Reinigung .. 13

 3.1.8. Fermentation mit Vorstufen .. 14

 3.2. Aminosäuremonographien in der Pharmakopöe ... 14

 3.2.1. Überarbeitung der Monographien ... 16

 3.2.2. Verunreinigungsprofil von Aminosäuren ... 16

 3.2.3. Stoffklassen .. 18

 3.3. Aminosäuren und Derivate .. 19

 3.3.1. HPLC Methode mit Vorsäulenderivatisierung ... 19

 3.3.2. Derivatisierung mit Dabsyl-Cl ... 20

 3.3.3. Derivatisierung mittels UPLC und ACCQ-Tag ... 21

 3.3.4. Derivatisierung mit FMOC-Cl .. 22

 3.3.4.1. Geräte und Materialien ... 22

 3.3.4.2. Methodenentwicklung ... 23

 3.3.4.2.1. Derivatisierung ... 23

 3.3.4.2.2. Extraktion mit n-Pentan ... 26

 3.3.4.2.3. Trennung und Detektion der derivatisierten Aminosäuren ... 27

 3.3.4.2.4. Bestimmung der Messabweichung der Methode ... 29

 3.3.4.3. Probenvorbereitung und Methode .. 30

 3.3.4.4. Resultat der Untersuchungen auf Aminosäuren und Derivate ... 30

 3.3.4.4.1. Untersuchung von 19 Aminosäuren ... 30

 3.3.4.4.2. Untersuchung von 19 Chargen Isoleucin ... 50

 3.3.4.4.3. Untersuchung von 15 Chargen Phenylalanin ... 53

 3.3.4.4.4. Untersuchung von 11 Chargen Serin ... 56
3.4. Flüchtige Verunreinigungen und Lösungsmittelrückstände............. 60
3.4.1. Headspace GC-MS von Aminosäuren... 61
3.4.1.1. Geräte und Materialien .. 61
3.4.1.2. Methodenentwicklung .. 61
3.4.1.3. Probenvorbereitung und Methode .. 65
3.4.1.4. Resultat der Untersuchungen auf flüchtige Verunreinigungen und Lösungsmittelrückstände ... 65
 3.4.1.4.1 Unbehandelte Aminosäuren .. 70
 3.4.1.4.2 Wärmebehandelte Aminosäuren .. 70
 3.4.1.4.3 ε- und γ-behandelte Aminosäuren ... 70

3.5. Kohlenhydrate ... 72
3.5.1. Dünnsschichtchromatographie ... 72
3.5.1.1. Geräte und Materialien .. 72
3.5.1.2. Methodenentwicklung .. 73
 3.5.1.2.1 Löslichkeitsversuche ... 73
 3.5.1.2.2 Wahl des optimalen Sprühreagenz ... 73
 3.5.1.2.3 Fliessmitteloptimierung .. 73
 3.5.1.2.4 Beladungsgrenze ... 76
 3.5.1.2.5 Nachweigrenze .. 77
 3.5.1.2.6 Detektionsgrenze .. 77
3.5.1.3. Probenvorbereitung und Methode .. 77
3.5.1.4. Resultat der Untersuchungen auf Kohlenhydrate 78
3.5.2. HPLC mit Brechzahldetektor ... 78
3.5.3. HPLC mit UV-Detektion bei 210 nm .. 78
3.5.4. Schnelltest auf Glucose in Aminosäuren .. 79

3.6. Antibiotika ... 81
3.6.1. Dünnsschichtchromatographie ... 81
3.6.1.1. Geräte und Materialien .. 81
3.6.1.2. Methodenentwicklung .. 82
 3.6.1.2.1 Wahl des optimalen Sprühreagenz und Detektionsgrenze 82
3.6.1.3. Probenvorbereitung und Methode .. 83
3.6.1.4. Resultat der Untersuchungen auf Kanamycin, Neomycin und Streptomycin ... 83
3.6.2. HPLC mit Festphasenextraktion ... 84
3.6.2.1. Geräte und Materialien .. 84
3.6.2.2. Methodenentwicklung .. 85
 3.6.2.2.1 Detektionswellenlänge ... 85
 3.6.2.2.2 Trennsäule .. 86
 3.6.2.2.3 Optimierung der Trennung ... 86
 3.6.2.2.4 Detektionsgrenze .. 88
 3.6.2.2.5 Festphasenextraktion ... 88
3.6.2.3. Probenvorbereitung und Methode .. 89
3.6.2.4. Resultat der Untersuchungen auf Chloramphenicol, Penicillin und Tetracyclin ... 89
3.7. Metalle ... 91

3.7.1. ICP-MS ... 92

3.7.1.1. Geräte und Materialien ... 92

3.7.1.2. Methodenentwicklung ... 93

3.7.1.2.1. Probenaufschluss und Verdünnung .. 93

3.7.1.2.2. Übersichtsmessung ... 93

3.7.1.2.3. Optimierung der Konzentrationsbestimmung mittels externer Kalibration .. 94

3.7.1.3. Messung ... 94

3.7.1.4. Resultat der Untersuchungen auf Metalle .. 94

3.8. Diskussion der Aminosäuren in der Pharmakopöe .. 96

3.8.1. Vorschlag einer neuen Prüfung auf verwandte Substanzen .. 100

4. Stabilitätsuntersuchung von Aminosäuren nach Strahlensterilisation 102

4.1. Antimikrobielle Behandlung und Sterilität .. 102

4.1.1. Antimikrobielle Behandlung mit trockener Hitze .. 102

4.1.2. Bestrahlung ... 103

4.1.2.1. Bestrahlung von Aminosäuren .. 104

4.2. Antimikrobielle Behandlung von 20 Aminosäuren ... 107

4.2.1. Aminosäuren und Sterilisationsmethoden ... 107

4.2.1.1. Trockensterilisation .. 107

4.2.1.2. Strahlensterilisation .. 108

4.2.2. Visuelle und organoleptische Beurteilung .. 108

4.2.3. Oberflächenfluoreszenz .. 109

4.2.3.1. Geräte und Materialien ... 109

4.2.3.2. Probenvorbereitung und Methode .. 109

4.2.3.3. Resultat der Oberflächenfluoreszenz ... 109

4.2.4. Optische Drehung .. 111

4.2.4.1. Geräte und Materialien ... 111

4.2.4.2. Probenvorbereitung und Methode .. 111

4.2.4.3. Resultat der optischen Drehung ... 111

4.2.5. Dünnschichtchromatographie ... 114

4.2.5.1. Geräte und Materialien ... 114

4.2.5.2. Methodenentwicklung .. 114

4.2.5.3. Probenvorbereitung und Methode .. 114

4.2.5.4. Resultat der Dünnschichtchromatographie .. 115

4.2.6. HPLC mit FMOC Vorsäulenderivatisierung .. 115

4.2.7. Headspace GC/MS ... 115

4.3. e- Bestrahlung von Aminosäuren mit 30 kGy und 100 kGy .. 116

4.3.1. Aminosäuren und Packmittel .. 116

4.3.1.1. Probenvorbereitung und Bestrahlung .. 116

4.3.2. Visuelle Beurteilung .. 117

4.3.3. Außenlichtspektroskopie und Schmelzpunkt-Mikroskopie .. 117

4.3.3.1. Geräte und Materialien ... 118

4.3.3.2. Resultat der Außenlichtspektroskopie und Schmelzpunkt-Mikroskopie. 118
4.3.4. UV/Vis Untersuchungen ... 120
 4.3.4.1. Geräte und Materialien ... 120
 4.3.4.2. Probenvorbereitung und Methode .. 120
 4.3.4.3. Resultat der UV/Vis Untersuchungen 120
4.3.5. Oberflächenfluoreszenz ... 122
 4.3.5.1. Geräte und Materialien ... 122
 4.3.5.2. Probenvorbereitung und Methode .. 122
 4.3.5.3. Resultat der Oberflächenfluoreszenz 122
4.3.6. Gehaltsbestimmung mittels Titration ... 124
 4.3.6.1. Geräte und Materialien ... 124
 4.3.6.2. Probenvorbereitung und Methode .. 125
 4.3.6.3. Resultat der Gehaltsbestimmung mittels Titration 125
4.3.7. Optische Drehung .. 126
 4.3.7.1. Geräte und Materialien ... 126
 4.3.7.2. Probenvorbereitung und Methode .. 126
 4.3.7.3. Resultat der optischen Drehung .. 127
4.3.8. Peroxidgehalt .. 128
 4.3.8.1. Geräte und Materialien ... 128
 4.3.8.2. Probenvorbereitung und Methode .. 128
 4.3.8.3. Resultat des Peroxidgehalts ... 128
4.3.9. Headspace GC-MS Untersuchungen .. 129
 4.3.9.1. Geräte und Materialien ... 129
 4.3.9.2. Probenvorbereitung und Methode .. 130
 4.3.9.3. Resultat der Headspace GC-MS Untersuchungen 130
4.3.10. HPLC mit FMOC-Cl Vorsäulenderivatisierung 132
 4.3.10.1. Geräte und Materialien .. 132
 4.3.10.2. Probenvorbereitung und Methode .. 132
 4.3.10.3. Resultat der HPLC mit FMOC-Cl Vorsäulenderivatisierung 133

4.4. Diskussion der Stabilitätsuntersuchungen von Aminosäuren nach Sterilisationsbehandlung ... 136

5. Abschliessende Diskussion und Schlussfolgerung 139

6. Referenzen ... 141

7. Anhang .. 146
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>CE</td>
<td>Kapillarelektrophorese</td>
</tr>
<tr>
<td>DC</td>
<td>Dünnschichtchromatographie</td>
</tr>
<tr>
<td>em.</td>
<td>Emission</td>
</tr>
<tr>
<td>ex.</td>
<td>Excitation</td>
</tr>
<tr>
<td>FL</td>
<td>Fluoreszenz</td>
</tr>
<tr>
<td>GABA</td>
<td>Gammaaminobuttersäure</td>
</tr>
<tr>
<td>gr.</td>
<td>griechisch</td>
</tr>
<tr>
<td>HILIC</td>
<td>Hydrophilische Interaktionschromatographie</td>
</tr>
<tr>
<td>lat.</td>
<td>Lateinisch</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektrometerie</td>
</tr>
<tr>
<td>RFU</td>
<td>relative fluorescence units</td>
</tr>
<tr>
<td>rsd</td>
<td>relative Standardabweichung (%)</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>ld-PE</td>
<td>low density Polyethylen</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylen</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylen</td>
</tr>
<tr>
<td>PTV</td>
<td>Programmed Temperature Vaporizer</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per trillion</td>
</tr>
<tr>
<td>SPE</td>
<td>solid phase extraction</td>
</tr>
<tr>
<td>uww</td>
<td>und viele weitere</td>
</tr>
<tr>
<td>w/w</td>
<td>weight/weight</td>
</tr>
</tbody>
</table>
1. Zusammenfassungen

1.1. Abstract in English

Today amino acids are produced in large amounts (2 million tons/year commonly used in food- or pharmaceutical industry) by diverse manufacturing processes, i.e. fermentation, extraction, chemical synthesis, whereas until 1980 mainly chemical synthesis was common. Although the impurity profiles of the amino acids changed by these new manufacturing processes, the purity tests of the Ph. Eur. were only partially adjusted until now. The pharmacopoeial authorities want to replace the TLC method and furthermore to limit the impurities to 0.1 percent. As a consequence of the growing market of amino acids, the demand for a fast and easy sterilization method such as radiation sterilization is increasing. Since radiation of high doses is known to affect amino acids and to cause by-products a closer look is of interest.

The goal of this study was to establish a suitable impurity profile for 18 pharmacopoeial amino acids and propose new purity tests. After screening the chosen amino acids with the proposed tests, they were exposed to e-, γ- (28 kGy) and heat (160 °C, 2 h) treatment. A following comparison of the original amino acids with the under sterilization condition treated amino acids should answer questions of stability and degradation.

As a result a new impurity profile for amino acids was proposed including substances with primary or secondary amines, volatile substances, carbohydrates, antibiotics and metals.

To analyze impurities with primary or secondary amines a HPLC method with precolumn derivatization with the reagent FMOC-Cl was suggested. Impurities could be found in 17 of 19 analyzed amino acids. Additionally differences between sterilization treated and untreated amino acids could be shown. As a consequence a new purity test for Ph. Eur. was proposed.

A headspace GC-MS method was developed for volatile impurities. With the exception of Leu untreated amino acids showed no impurities whereas in 8 heat treated, 10 e- and 10 γ-irradiated amino acids decomposition products were detected. 15 of these products were identified.

For the detection of carbohydrates a TLC method with thymol reagent was proposed. The limit of detection for glucose, saccharose and fructose was 0.05 % (m/m). All tested amino acids did not show evidence for carbohydrates as impurities. Other methods like HPLC with RI- or far UV-detection failed in the carbohydrate analysis because of a higher limit of detection.

As possible impurities from fermentation process several antibiotics were analyzed by TLC and anisaldehyde-sulfuric acid reagent and by solid phase extraction and HPLC. No evidence for antibiotics as residues in the samples could be found.

The concentration of 28 metals was examined in 4 amino acids (L-Asp, Gly, L-Ile and L-Ser) by ICP-MS. Results indicated that the 10 ppm limit for heavy metals (set by the Ph. Eur.) was not exceeded.

To evaluate radiation as possible sterilization process for amino acids, 20 biogenous amino acids were treated by e⁻- and γ-irradiation (30 kGy) and other 5 amino acids by e⁻-irradiation with a higher dose (100 kGy). It could be shown that amino acids undergo significant changes by this process. In addition, several degradation products could be found and identified. At this point, radiation seems not qualified as sterilization method for amino acids.
1.2. Zusammenfassung in Deutsch

Zur Detektion der Kohlenhydrate wurde eine DC Methode mit Thymolreagenz entwickelt. Die Nachweisgrenze lag dabei für Glucose, Saccharose und Fructose bei 0.05 % (m/m). Alle untersuchten Aminosäuren zeigten jedoch keine Hinweise auf Verunreinigungen dieser Stoffklasse. Andere Methoden wie HPLC mit RI- oder UV-Detektion scheiterten an der höheren Nachweisgrenze.

Die Konzentrationen von 28 Metallen wurden in 4 Aminosäuren (L-Asp, Gly, L-Ile und L-Ser) mittels ICP-MS bestimmt. Es konnte gezeigt werden, dass das Limit von 10 ppm (Ph. Eur.) für Schwermetalle nicht überschritten wurde.

Um die Eignung von Bestrahlung als Sterilisationsmethode für Aminosäuren zu bewerten, wurden 20 biogene Aminosäuren mit e- und γ-Strahlung (30 kGy) und
2. Problemstellung

Resultate der Untersuchungen sollte zudem die Möglichkeit einer Strahlen-sterilisation von pulverförmigen Aminosäuren erörtert werden.
3. Aminosäuren in der Pharmakopöe

3.1. Allgemeiner Teil

3.1.1. Aminosäuren

3.1.2. Struktur und Klassifikation der Aminosäuren

Tabelle 1 Struktur und pKa-Werte der Aminosäuren[7]

<table>
<thead>
<tr>
<th>Struktur</th>
<th>Name</th>
<th>Code</th>
<th>pKa α-COOH</th>
<th>pKa α-NH$_3^+$</th>
<th>pKa Seitenkette</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asparaginsäure</td>
<td>Asp</td>
<td>1.99</td>
<td>9.9</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Glutaminsäure</td>
<td>Glu</td>
<td>2.1</td>
<td>9.47</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td>Arginin</td>
<td>Arg</td>
<td>1.82</td>
<td>8.99</td>
<td>12.48</td>
</tr>
<tr>
<td></td>
<td>Histidin</td>
<td>His</td>
<td>1.8</td>
<td>9.33</td>
<td>6.04</td>
</tr>
<tr>
<td></td>
<td>Lysin</td>
<td>Lys</td>
<td>2.16</td>
<td>9.18</td>
<td>10.79</td>
</tr>
<tr>
<td></td>
<td>Asparagin</td>
<td>Asn</td>
<td>2.1</td>
<td>8.84</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cystein</td>
<td>Cys</td>
<td>1.92</td>
<td>10.78</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td>Glutamin</td>
<td>Gln</td>
<td>2.17</td>
<td>9.13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Serin</td>
<td>Ser</td>
<td>2.19</td>
<td>9.21</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Threonin</td>
<td>Thr</td>
<td>2.09</td>
<td>9.10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tyrosin</td>
<td>Tyr</td>
<td>2.20</td>
<td>9.11</td>
<td>10.13</td>
</tr>
<tr>
<td>Struktur</td>
<td>Name</td>
<td>Code</td>
<td>pKa</td>
<td>pKa</td>
<td>Seitenkette</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Alanin</td>
<td>Ala</td>
<td>2.35</td>
<td>9.87</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Glycin</td>
<td>Gly</td>
<td>2.35</td>
<td>9.87</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Isoleucin</td>
<td>Ile</td>
<td>2.32</td>
<td>9.76</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Leucin</td>
<td>Leu</td>
<td>2.33</td>
<td>9.74</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Methionin</td>
<td>Met</td>
<td>2.13</td>
<td>9.28</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Phenylalanin</td>
<td>Phe</td>
<td>2.16</td>
<td>9.18</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prolin</td>
<td>Pro</td>
<td>2.95</td>
<td>10.65</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tryptophan</td>
<td>Trp</td>
<td>2.43</td>
<td>9.44</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Valin</td>
<td>Val</td>
<td>2.29</td>
<td>9.74</td>
<td>-</td>
</tr>
</tbody>
</table>

3.1.3. Aminosäuren - Geschichtlicher Hintergrund

Asparagin war die erste Aminosäure, die 1806 von Vauquelin und Robiquet aus dem Saft der Spargel (*Asparagus officinalis* L.) isoliert wurde[8]. Cystin, das oxidierte Dimer des Cysteins, wurde bereits 1810 von Wollaston entdeckt, aber erst 1899 als Bestandteil von Proteinen erkannt[9].

3.1.4. Aminosäuren – pharmazeutische Bedeutung

3.1.5. Industrielle Herstellung von Aminosäuren

Der Verbrauch an Aminosäuren wird weltweit auf über 2 Millionen Tonnen pro Jahr geschätzt. Ungefähr die Hälfte wird als Geschmacksverstärker oder Futterzusatz verwendet. Vor allem in asiatischen Ländern findet Glutamat als Gewürz und Geschmacksverstärker einen grossen Absatz. Dieser Markt wächst um 6 % pro Jahr[30]. Der für pharmazeutische Produkte benötigte Anteil Aminosäuren beträgt lediglich 15’000 Tonnen pro Jahr[31]. Die meisten Aminosäuren zeigen jedoch ein Marktwachstum von 10 % oder höher[30].

Tabelle 2 Aminosäuren und ihre Herstellungsmethoden [32, 34, 35]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-Alanin</td>
<td>chemisch</td>
<td>150</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>L-Alanin</td>
<td>Fermentation, chemisch</td>
<td>150</td>
<td>500</td>
<td>1500</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>enzymatisch, chemisch</td>
<td>1000</td>
<td>1200</td>
<td>2000</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>enzymatisch</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>enzymatisch</td>
<td>4000</td>
<td>7000</td>
<td>14000</td>
</tr>
<tr>
<td>L-Cystein</td>
<td>enzymatisch, Extraktion</td>
<td>1000</td>
<td>1500</td>
<td>4500</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>Fermentation</td>
<td>850</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>L-Glutaminsäure</td>
<td>Fermentation, enzymatisch</td>
<td>340000</td>
<td>1000000</td>
<td>1200000</td>
</tr>
<tr>
<td>Glycin</td>
<td>chemisch</td>
<td>6000</td>
<td>22000</td>
<td>16000</td>
</tr>
<tr>
<td>L-Histidin</td>
<td>Fermentation</td>
<td>350</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>Fermentation</td>
<td>200</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>Extraktion</td>
<td>200</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>L-Lysin</td>
<td>Fermentation, enzymatisch</td>
<td>700000</td>
<td>250000</td>
<td>600000</td>
</tr>
<tr>
<td>DL-Methionin</td>
<td>chemisch</td>
<td>250000</td>
<td>350000</td>
<td>550000</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>chemisch, enzymatisch</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>Fermentation, chemisch</td>
<td>3000</td>
<td>8000</td>
<td>13000</td>
</tr>
<tr>
<td>L-Prolin</td>
<td>Fermentation, Extraktion</td>
<td>150</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>L-Serin</td>
<td>Fermentation, Extraktion</td>
<td>60</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>DL-Threonin</td>
<td>Fermentation, chemisch</td>
<td>200</td>
<td></td>
<td>400000</td>
</tr>
<tr>
<td>L, DL-Tryptophan</td>
<td>Fermentation, chemisch, enzymatisch, Extraktion</td>
<td>250</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>Extraktion</td>
<td>60</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>L-Valin</td>
<td>Fermentation, chemisch</td>
<td>200</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>
3.1.6. Fermentation

Als mengenmässig wichtigste Methode wird hier kurz auf ihre Technik eingegangen und ein Augenmerk auf den Reinigungsprozess gelegt. Wie in Tabelle 2 aufgeführt, können die meisten Aminosäuren aus fermentativen Prozessen gewonnen werden. Dabei kann als Vorteil gewertet werden, dass natürlicherweise L-Aminosäuren in grosser Menge geerntet werden können. Tabelle 3 listet die Aminosäuren nochmals mit ihren typischen Produktionsmikroorganismen und deren benötigte C-Quellen auf. 1.5 Millionen Tonnen Aminosäuren werden jährlich alleine von Coryneform bacteria hergestellt [30].

Der Prozess der Aminosäuren-Fermentation kann weiter in eine direkte Fermentation und in eine Fermentation mit Vorstufen unterteilt werden. Bei der direkten Fermentation stellen die verwendeten Mikroorganismen die gewünschte Aminosäure aus billigen C-Quellen ohne weitere Zusätze in großem Überschuss her [32]. Verständlicherweise wird in der Industrie diese ökonomischere Methode, jener der precursor Zugabe vorgezogen.

Tabelle 3 Mikroorganismen zur Herstellung von Aminosäuren mit C-Quellen [34, 36, 37]

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Mikroorganismus</th>
<th>C-Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-Alanin</td>
<td>Corynebacterium gelatinosum, Brevibacterium flavum</td>
<td>Glucose</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>Brevibacterium flavum</td>
<td>Glucose, Essigsäure</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>Brevibacterium flavum</td>
<td>Glucose, Essigsäure, Ethanol</td>
</tr>
<tr>
<td>L-Glutaminsäure</td>
<td>Corynebacterium sp., (C. glutamicum, C. hydrocarbolastus, C. alkanolyticum), Brevibacterium sp, (B. flavum, B. thiogenitalis), Microbacterium ammoniophilum, Bacillus megaterium, Arthrobacter paraffineus</td>
<td>Glucose, Essigsäure, Ethanol, Propylenglycol, n-Paraffin, Benzoessäure</td>
</tr>
<tr>
<td>Glycin</td>
<td>Chemische Synthese</td>
<td></td>
</tr>
<tr>
<td>L-Histidin</td>
<td>Brevibacterium flavum</td>
<td>Glucose, Essigsäure, Ethanol</td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>Brevibacterium flavum</td>
<td>Glucose, Essigsäure</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>Brevibacterium lactofermentum</td>
<td>Glucose</td>
</tr>
<tr>
<td>L-Lysin</td>
<td>Corynebacterium glutamicum, Brevibacterium flavum, Brevibacterium lactofermentum</td>
<td>Glucose, Essigsäure, Ethanol, n-Paraffine</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>Corynebacterium glutamicum</td>
<td>Glucose</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>Corynebacterium glutamicum, Arthrobacter paraffineus, Brevibacterium flavum</td>
<td>Glucose, n-Paraffine, Ethanol</td>
</tr>
<tr>
<td>L-Prolin</td>
<td>Brevibacterium flavum, Corynebacterium acetoadipophilum</td>
<td>Glucose, Essigsäure, Ethanol</td>
</tr>
<tr>
<td>L-Serin</td>
<td>Corynebacterium glycinophilum, Arthrobacter paraffineus</td>
<td>n-Paraffine</td>
</tr>
<tr>
<td>L-Threonin</td>
<td>Escherichia coli, Brevibacterium flavum, Arthrobacter paraffineus</td>
<td>Glucose, Essigsäure, Ethanol, n-Paraffine</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>Corynebacterium glutamicum</td>
<td>Glucose</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>Corynebacterium glutamicum, Arthrobacter paraffineus</td>
<td>Glucose, n-Paraffine</td>
</tr>
<tr>
<td>L-Valin</td>
<td>Brevibacterium sp., (B. flavum, B. lactofermentum), Corynebacterium acetoadipophilum</td>
<td>Glucose, Essigsäure, Ethanol</td>
</tr>
</tbody>
</table>
3.1.7. Direkte Fermentation

Arg, Glu, Gln, Iso, Leu, Lys, Phe, Pro, Thr, Tyr und Val lassen sich durch direkte Fermentation gewinnen[32]. Eine typische Fermentation kann in folgende 3 Prozesse gegliedert werden: den Fermentationsprozess, die Grobisolierung und die Reinigung des Produktes bis zur gewünschten Qualität[31].

3.1.7.1. Fermentationsprozess

3.1.7.2. Grobisolierung

3.1.7.3. Reinigung

Aminosäuren in der Pharmakopöe

3.1.8. Fermentation mit Vorstufen

3.2. Aminosäuremonographien in der Pharmakopöe

Neben den Monographien, welche sich direkt an die einzelnen Aminosäuren wandten, kamen allgemeine Monographien hinzu. Diese stellten zusätzliche Anforderungen an die Aminosäuren und definierten die Verantwortlichkeit an den Hersteller oder Anwender. Ein Beispiel, welches die fermentativ hergestellten Aminosäuren betrifft, ist der Artikel zur Kontrolle bei Verfahrensänderungen in der allgemeine Monographie Fermentationsprodukte (Ph. Eur. 6.2, 01/2008:1468). „If the production process is altered in a way that causes a significant change in the impurity profile of the product, the critical steps associated with this change in impurity profile are revalidated.“ Darin wird erstens ersichtlich, dass immer der Hersteller die Verantwortung über die Verunreinigungen seines Produktes bei neuen Verfahren trägt und zweitens die Ph. Eur. keine expliziten Methoden angibt, wie eine solche Änderung im Verunreinigungsprofil festgestellt werden soll. Eine Reinheitsprüfung mittels DC auf Ninhydrin nachweisbare Substanzen in der entsprechenden Aminosäuremonographie würde dafür sicher nicht genügen.

Eine weitere allgemeine Monographie, welche die Aminosäuren betrifft, ist die Kontrolle von Verunreinigungen in Substanzen zur pharmazeutischen Verwendung (Ph. Eur. 6.2, 01/2008:51000). Darin wird unter anderem die Art der Verunreinigung, welche auftreten kann, definiert. Es wird unterschieden zwischen „Spezifizierten Verunreinigungen“ und „Anderen bestimmmbaren Verunreinigungen“. Zu ersteren
gehören jene, welche zum Zeitpunkt der Erstellung der Monographie bereits bekannt und in Bulkwaren der Substanz nachweisbar waren. Diese werden in der Monographie einzeln aufgelistet und enthalten ein zusätzliches Akzeptanzkriterium. Wann immer möglich sollte die Struktur der Verunreinigung aufgeklärt sein. Sollte dies nicht möglich sein, sollten vom Hersteller oder dem zuständigen Labor die unternommenen misslungenen Schritte zur Strukturaufklärung in einer Studie belegt werden[45]. In der Monographie zu Tryptophan (Ph. Eur. 6.2 01/2008:1272) wurden unter dem Reinheitstest auf „1,1′-ethylidene(bistryptophan), andere verwandte Substanzen“ bereits spezifizierter Verunreinigungen implementiert.

Zu den anderen bestimmmbaren Verunreinigungen werden jene gezählt, welche aufgrund ihrer Synthese oder durch Lagerung auftreten könnten. Diese wurden aber zum Zeitpunkt der Erstellung der Monographie nicht gefunden oder sie wurden von den vorgeschriebenen Prüfungen erfasst und kontrolliert, lagen jedoch in einer Konzentration unter 0.1 %[46]. Eine Tabelle mit Grenzwerten für die Identifizierung und Qualifizierung von Verunreinigungen befindet sich in der allgemeinen Monographie Substanzen zur pharmazeutischen Verwendung (Ph. Eur. 6.2 01/2008:2034).

Tabelle 4 Aminosäuren in der Pharmakopöe

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>1. Monographie</th>
<th>In Kraft bei Beginn Dissertation Reinheitsprüfung Ph. Eur. 4</th>
<th>In Kraft bei Ende Dissertation Reinheitsprüfung Ph. Eur. 6.2</th>
<th>Detektions Limit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>1994 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Arginin HCl</td>
<td>1994 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Asparagin Monohydrat</td>
<td>2005 Ph. Eur. 5</td>
<td>-</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>1994 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Cystein HCl Monohydrat</td>
<td>1995 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Glutaminsäure</td>
<td>1971 Ph. Helv VI 1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>Glycin</td>
<td>1991 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Histidin</td>
<td>1995 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Histidin HCl</td>
<td>1976 Ph. Helv. VI 1995 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Lysin HCl</td>
<td>1995 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>1996 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Prolin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Serin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Threonin</td>
<td>1996 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>2000 Ph. Eur. 4</td>
<td>DC mit Ninhydrin HPLC mit UV-Detektion (220 nm)</td>
<td>DC mit Ninhydrin HPLC mit UV-Detektion (220 nm)</td>
<td>0.5 10 ppm 1,1′-ethylidene(bistryptophan)</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>1997 Ph. Eur. 3</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Valin</td>
<td>1993 Ph. Eur. 2</td>
<td>DC mit Ninhydrin</td>
<td>DC mit Ninhydrin</td>
<td>0.5</td>
</tr>
</tbody>
</table>
3.2.1. Überarbeitung der Monographien

3.2.2. Verunreinigungspalz von Aminosäuren

Tabelle 5 stellt potentielle Verunreinigungen dar, wie sie bei der Fermentation auftreten könnten. Da es jedoch auszuschliessen ist, dass eine einzige Reinheitsprüfung in der Lage ist, sämtlichen Anforderungen bei allen Aminosäuren zu genügen, wurden diese potentiellen Verunreinigungen als Stoffgruppen erfasst (siehe 3.2.3. Stoffklassen) und entsprechende Prüfmethoden für die jeweiligen Gruppen erarbeitet.

Tabelle 5 potentielle Verunreinigungen in Aminosäuren, wie sie bei fermentativer Herstellung auftreten könnten.

<table>
<thead>
<tr>
<th>Bakterienbestandteile/ Bakterienstoffwechsel</th>
<th>Zellwand</th>
<th>N-Acetyl-D-muraminsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nukleinsäure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlenhydrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucosamine</td>
<td></td>
<td>N-Acetyl-D-glucosamin</td>
</tr>
<tr>
<td>Proteine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligopeptide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipeptide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminosäuren</td>
<td>Ala, Met, Ile, Thr, Val, Leu</td>
<td></td>
</tr>
<tr>
<td>Biogene Amine</td>
<td>Cadaverin</td>
<td></td>
</tr>
<tr>
<td>Organische Säuren und weitere</td>
<td>Acetate, Lactat, Pyruvat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nährmedium</th>
<th>Salze</th>
<th>NaCl, Citrat, CaCl₂, MgSO₄, EDTA, FeSO₄, K₃HPO₄, (NH₄)₂SO₄, MnSO₄, Na₂B₄O₇, FeCl₃, ZnSO₄, CuCl₂, (NH₄)₆Mo₇O₂₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamine</td>
<td>Thiamin, Biotin, Pantothensäure</td>
<td></td>
</tr>
<tr>
<td>Melasse</td>
<td>Glucose, Saccharode</td>
<td></td>
</tr>
<tr>
<td>andere AS</td>
<td>Thr, Met, Leu,</td>
<td></td>
</tr>
<tr>
<td>Weitere</td>
<td>Urea</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hilfsstoffe</th>
<th>Tenside</th>
<th>Tween, Dodecylammoniumacetat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antischuammittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotika</td>
<td>Penicillin, Kanamycin, Teracyclin</td>
<td></td>
</tr>
<tr>
<td>Lokalanästhetika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olsäure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aufarbeitung</th>
<th>Lösungsmittel</th>
</tr>
</thead>
</table>
3.2.3. Stoffklassen

In einem ersten Schritt wurden Analysemethoden für diese Stoffklassen erstellt um dann die Reinheit von 20 kommerziellen Aminosäuren mit Ph. Eur. Qualität zu untersuchen. Die Fähigkeit der entwickelten Methoden Verunreinigungen oder Zersetzungsprodukte zu detektieren, sollte durch Vergleich mit gestressten Proben (Wärme und Bestrahlung) erbracht werden.

In dieser Arbeit wurden Aminosäuren vor allem im Zusammenhang mit Fremdaminosäuren und Derivaten, Flüchtigen Verunreinigungen, Lösungsmittelrückständen, Kohlenhydraten, Antibiotika und Metallen untersucht. Die Stoffgruppe der anderen Verunreinigungen stellte all jene dar, welche hier nicht berücksichtigt wurden. Dazu gehören beispielsweise Anforderungen, wie sie an Parenteralia (Ph. Eur. 01/2008:0520) gestellt werden (Sterilität, Endotoxine/Pyrogene), Hilfsstoffe (Tenside, Antischäummittel), Proteine, Nuklein- und organische Säuren.

Tabelle 6 Stoffklassen, welche bei Erstellung des Verunreinigungsprofils für Aminosäuren überprüft wurden

<table>
<thead>
<tr>
<th>Flüchtige Verunreinigungen und Lösungsmittelrückstände</th>
<th>Antibiotika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminosäuren und Derivate</td>
<td>Metalle</td>
</tr>
<tr>
<td>Kohlenhydrate</td>
<td>Andere Verunreinigungen</td>
</tr>
</tbody>
</table>
3.3. Aminosäuren und Derivate

In dieser Arbeit wurde eine Alternativmethode auf Basis von HPLC erstellt. Der Grund ist vor allem darin zu sehen, dass HPLC in der industriellen pharmazeutischen Praxis verbreiteter ist als CE (siehe 3.8.).

3.3.1. HPLC Methode mit Vorsäulenderivatisierung

Nebenprodukten möglichst limitiert und klar abtrennbar sein. Das Derivat sollte die Detektion einer potentiellen Verunreinigung in einer Aminosäure bis zu einer Nachweisgrenze von 0,05 % (Mol/Mol) ermöglichen. Dazu sollte es bei Raumtemperatur möglichst stabil sein um längere Analysezeiten zu ermöglichen. Schließlich wäre es noch wünschenswert, wenn das Derivatisierungsreagenz nicht zu teuer und bereits gut erprobt wäre. Aus diesem Grund fiel die Wahl auf das bereits gut untersuchte FMOC, welches diese Anforderungen erfüllte [47]. Daneben wurde aber auch die Derivatisierung mittels Dabsyl-Cl (4-Dimethylaminoazobenzol-4-sulfonylchlorid) und AccQ-Tag (Kit der Firma Waters zur Aminosäurenanalyse mittels 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) in Betracht gezogen. Tabelle 7 zeigt einen Vergleich der 3 Derivatisierungsreagenzien.

Tabelle 7 Vergleich von 3 Derivatisierungsreagenzien

<table>
<thead>
<tr>
<th>Derivatisierungsreagenz</th>
<th>Preis (05/08)</th>
<th>Stabilität</th>
<th>Nachweisgrenze Bereich</th>
<th>Reaktion</th>
<th>Detektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMOC-Cl</td>
<td>44,50 Fr. 1 g Fluka</td>
<td>stabil</td>
<td>fmol</td>
<td>pH 8,5, 1 min, RT</td>
<td>UV 254 FL ex. 260 nm em. 313 nm</td>
</tr>
<tr>
<td>Dabsyl-Cl[54, 55]</td>
<td>126,50 Fr. 1 g Fluka</td>
<td>stabil</td>
<td>pmol</td>
<td>pH 9, 15 min, 70 °C</td>
<td>UV 436 nm</td>
</tr>
<tr>
<td>AccQ-Tag Ultra Derivatization Kit 250 Analyses [56, 57]</td>
<td>690.- Fr. 250 Analysen Waters</td>
<td>stabil</td>
<td>fmol</td>
<td>pH 8,5, 10 min, 55 °C</td>
<td>UV 250 nm FL ex. 250 em. 395/520 nm</td>
</tr>
</tbody>
</table>

3.3.2. Derivatisierung mit Dabsyl-Cl

Es wurde dabei eine automatisierte Methode zur Derivatisierung von Aminosäuren mit Dabsyl-Cl angestrebt. Das verwendete Equipment bestand aus einem Interface (DX-LAN Dionex), einer Gradient Pump (GP50 Dionex), einem UV-VIS-Detektor (AD25 Dionex), PeakNet Software und einem programmierbaren Autosampler mit Heizblock (AS3500 Dionex). Die Derivatisierung wurde unter den Bedingungen wie in Tabelle 7 erwähnt durchgeführt. Es zeigte sich aber schnell, dass die Derivatisierung zu vielen störenden Nebenpeaks führte. Zudem gelang es nicht den Peak (Dabsyl-OH), des im Überschuss zugegebenen Derivatisierungsreagens genügend von den gesuchten Aminosäuren abzutrennen. Die gewünschte Nachweisgrenze von 0,05 % (Mol/Mol) konnte ebenfalls nicht gewährleistet werden. Deswegen wurde diese Methode nicht mehr weiter verfolgt.
3.3.3. Derivatisierung mittels UPLC und ACCQ-Tag

Hierbei handelte es sich nur um einen einmaligen Kurzversuch, welcher bei der Firma Waters (Baden-Dättwil) durchgeführt wurde. Es sollte abgeklärt werden, ob mit einer bereits entwickelten Applikation zur Aminosäurenanalyse vergleichbare Resultate wie mit der FMOC-Cl Methode (3.3.4.) erzielt werden konnten. Dazu wurde L-Asp mit 0.05 % (Mol/Mol) L-Ala, Gly, L-Met und L-Tyr verunreinigt. Es sollte dadurch gezeigt werden, ob diese Verunreinigungen mit der Firmenmethode gefunden werden konnten. Die verwendete Gerätekonfiguration bestand aus einem Acquity Ultraperformance LC (Binary Solvent Pump, Sample Manager, Column Manager, PDA Detector), AccQ Tag Ultra Säule (2.1 x 100 mm, 1.7 µm, 0134161861CC) und Empower Software zur Auswertung. Die Derivatisierung wurde mit einem AccQ-Tag Ultra Derivatisierungskit (Lot.No. 060482, Cat.No. 186003836) nach Anleitung durchgeführt und die Proben analysiert. Leider konnten jedoch keine verwertbaren Resultate erzielt werden und der Nachweis der Verunreinigungen in L-Asp gelang zu diesem Zeitpunkt nicht. Für weiterführende Untersuchungen stand die Firma leider nicht mehr zur Verfügung. Aus analytischer Sicht wurde das Potential der Methode aber noch lange nicht ausgeschöpft.
3.3.4. Derivatisierung mit FMOC-Cl

3.3.4.1. Geräte und Materialien

Gerät
Interface D-7000 (Merck HITACHI)
Gradient Pump L-7100 (Merck HITACHI)
Autosampler L-7200 (Merck HITACHI)
UV-VIS-Detektor L-7400 (Merck HITACHI)
FL-Detektor L-7480 (Merck HITACHI)
Software D-7000 HMS

Säulen
Vorsäule Spherisorb® ODS2 5µm 4x4mm (Waters)
Trennsäule Spherisorb® ODS2 5µm 250x4mm (Waters)

Detektion Fluoreszenz (ex. 260 nm, em. 313 nm)

Injektionsvolumen 10 µl (entspricht 125 pmol eingespritzte Aminosäure)

Fließgeschwindigkeit 1 ml/min

Mobile Phase
A: Puffer: 10 mM NaH$_2$PO$_4$ pH 8 – Acetonitril (90:10)
B: Acetonitril

Trennprogramm

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>91</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>25</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>35</td>
<td>81</td>
<td>19</td>
</tr>
<tr>
<td>36</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>42</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>55</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>

Substanz	Qualität	Hersteller
FMOC-Cl | BioChemika, ≥99.0% (HPLC), for fluorescence | Fluka
Acetonitril | gradient grade HPLC | Merck
NaH$_2$PO$_4$ Dihydrat | Ph. Eur. | Hänseler
NaOH in rotulis | puriss p. a. | Fluka
Borsäure | puriss p. a. ACS reagent | Fluka
n-Pentan | SupraSolv® | Merck
3.3.4.2. Methodenentwicklung

3.3.4.2.1 Derivatisierung

Die optimalen Reaktions- und Detektionsbedingungen von FMOC-Cl mit Aminosäuren wurden bereits gut untersucht (siehe Tabelle 8). Die Abbildung S. 150 im Anhang zeigt die Probenvorbereitung mit Derivatisierung, wie sie für die Hauptversuche durchgeführt wurden.

Tabelle 8 Literatur zur Derivatisierung von Aminosäuren mit FMOC-Cl

<table>
<thead>
<tr>
<th>Literatur</th>
<th>pH</th>
<th>Temperatur</th>
<th>Reaktionszeit</th>
<th>Stabilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einarsson et al.[59, 60]</td>
<td>7.7</td>
<td>RT</td>
<td>30 - 120 s</td>
<td>Bis 13 Tage, ausser His</td>
</tr>
<tr>
<td>Haynes et al.[61, 62]</td>
<td>8.5</td>
<td>21 °C</td>
<td>90 s</td>
<td>Sicher bis 24 h</td>
</tr>
<tr>
<td>Chan et al.[63]</td>
<td>9.3</td>
<td>RT</td>
<td>60 s</td>
<td>stabil</td>
</tr>
<tr>
<td>Ou et al.[64]</td>
<td>8.8</td>
<td>RT</td>
<td>90 s</td>
<td>-</td>
</tr>
<tr>
<td>Novatchev et al.[47]</td>
<td>9.3</td>
<td>RT</td>
<td>120 s</td>
<td>stabil</td>
</tr>
<tr>
<td>Ph. Eur. 5.08 (2.2.56.)</td>
<td>-</td>
<td>RT</td>
<td>30 s</td>
<td>Stabil, ausser His</td>
</tr>
</tbody>
</table>

Bei einer Reinheitsprüfung sollte die zu prüfende Substanz so wenig wie möglich vor der Messung verändert werden und selbst Lösungsvorgänge bergen schon das Risiko einer Kontamination der Probe. Dasselbe gilt entsprechend für die Derivatisierung. Da es sich bei der Derivatisierung um Zugabe eines reaktiven Fremdstoffes in die zu untersuchende Probe handelt, sollte dieses deshalb in möglichst kleiner Menge zugeführt werden. Trotzdem muss die Menge ausreichen für reproduzierbare Ergebnisse.

Um ein optimales Verhältnis zwischen dem eingesetzten Derivatisierungsreagenz und den zu untersuchenden Aminosäuren zu finden, wurde L-Ser mit verschiedenen Überschüssen FMOC-Cl (2 – 20 in 7 Schritten) derivatisiert. Daneben wurde L-Ser mit 0.05 % (mol/mol) L-Asp, L-Leu und L-Val verunreinigt um das Verhalten von kleinen Mengen Aminosäuren als potentielle Verunreinigungen in L-Ser bei unterschiedlichen Verhältnissen FMOC-Cl zu verfolgen (siehe Abbildung 1). Es zeigte sich, dass die Signalfläche von L-Ser bei allen untersuchten Verhältnissen FMOC-Cl annähernd gleich blieb (siehe Abbildung 2). Ähnlich verhielt es sich, wenn die zu detektierenden Aminosäuren als 0.05 %-ige (Mol/Mol) Verunreinigung der Hauptsubstanz zugesetzt waren (siehe Abbildung 3). Auch hier schien schon 2-facher Reagenzienüberschuss zu einem vernünftigen Signal zu führen. Um sicher genügend Kapazität zu erreichen, wurde 6-facher Derivatisierungsumberschuss gewählt.

Auf Stabilitätsuntersuchungen der derivatisierten Aminosäuren wurde verzichtet, da diese in der Literatur als stabil bei Raumtemperatur während 1 Woche beschrieben worden waren (siehe Tabelle 7). Es ergaben sich während den Untersuchungen auch keine Anhaltspunkte für eine Problematik mit der Stabilität (ausser bei L-His.
siehe Tabelle 7). Die Proben wurden bei Raumtemperatur im Dunkeln gelagert und innerhalb 8 Stunden zum ersten Mal gemessen. Eine Messserie dauerte nie länger als 48 h.

Abbildung 1 HPLC mit FMOC Vorsäulendarivatisierung und Fluoreszenzdetection von L-Ser

Abbildungen 1 HPLC mit FMOC Vorsäulendarivatisierung und Fluoreszenzdetection von L-Ser
Abbildung 2 Derivatisierung von L-Ser mit FMOC-Cl Überschuss (2-20-fach)

Abbildung 3 FMOC-Derivatisierung von L-Ser mit 0.05 % L-Asp, L-Leu und L-Val (FMOC-Cl Überschuss 2-20-fach)
3.3.4.2.2 Extraktion mit n-Pentan

3.3.4.2.3 Trennung und Detektion der derivatisierten Aminosäuren

Die angestrebte Trennmethode sollte der Reinheitsprüfung von Aminosäuren dienen und deswegen in der Lage sein ein möglichst breites Feld an aminhaltigen Verbindungen aufzutrennen. Die 19 zu untersuchenden Aminosäuren bildeten genau so einen Pool und gehörten sowieso zu den erwarteten potentiellen Verunreinigungen. Es schien daher Vernünftig eine Methode zu entwickeln, welche in der Lage war diese Aminosäuren voneinander zu trennen. Damit konnten alle Untersuchungen mit derselben Trennmethode durchgeführt werden und ein Vergleich untereinander wäre auch möglich. Zudem sollte die Reinheitsprüfung eine Detektion von Fremdaminosäuren bis zu einem Limit von 0.05 % (Mol/Mol) gegenüber der zu untersuchenden Aminosäure gewährleisten.

Für die Detektion standen 2 Möglichkeiten offen. FMOC derivatisierte Verbindungen lassen sich entweder im UV-Bereich bei 256 nm oder mittels Fluoreszenz (ex. 260 nm/em. 313 nm) detektieren. Da sich Fluoreszenzdetektion durch sehr hohe Empfindlichkeit auszeichnet und dies für Analysen im Spurenbereich gefordert ist, wurde diese der UV-Vis-Detektion vorgezogen. Die höhere Spezifität der Fluoreszenzdetektion wurde hier nicht als Nachteil gewertet, da bei diesen Untersuchungen das Interesse nur im Nachweis der derivatisierten Verbindungen lag.

Als Trennsäule wurde eine endcapped RP18 Säule (Waters Spherisorb® 5µm ODS2 4.0x250mm) verwendet.

Abbildung 4: Trennung eines Aminosäuren-Testgemisches mit der entwickelten Methode (1 L-Asp, 2 L-Glu, 3 L-Asn, 4 L-Gln, 5 L-Ser, 6 Gly, 7 L-Thr und L-His, 8 L-Ala, 9 L-Pro, 10 L-Tyr, 11 L-Val, 12 L-Met, 13 L-Ile, 14 L-Leu, 15 L-Arg, 16 L-Phe, 17 L-Lys, 18 L-Cys und 19 FMOC-OH)

Abbildung 5: Response von 19 Aminosäuren nach FMOC-Derivatisierung (Response der AS nach FMOC-Derivatisierung)
3.3.4.2.4 Bestimmung der Messabweichung der Methode

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Messung 1 (mVs)</th>
<th>Messung 2 (mVs)</th>
<th>Messung 3 (mVs)</th>
<th>Mittelwert (mVs)</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asp 1</td>
<td>4360553</td>
<td>4323948</td>
<td>4335412</td>
<td>4339971</td>
<td>0.43</td>
</tr>
<tr>
<td>L-Asp 2</td>
<td>4418140</td>
<td>4411401</td>
<td>4399088</td>
<td>4409543</td>
<td>0.22</td>
</tr>
<tr>
<td>L-Asp 3</td>
<td>4322672</td>
<td>4315836</td>
<td>4357275</td>
<td>4331927</td>
<td>0.51</td>
</tr>
<tr>
<td>L-Asp 4</td>
<td>4281114</td>
<td>4275303</td>
<td>4305442</td>
<td>4287286</td>
<td>0.37</td>
</tr>
<tr>
<td>L-Asp 5</td>
<td>4360557</td>
<td>4329125</td>
<td>4372142</td>
<td>4353941</td>
<td>0.51</td>
</tr>
<tr>
<td>L-Asp 6</td>
<td>4547630</td>
<td>4585114</td>
<td>4604845</td>
<td>4579196</td>
<td>0.63</td>
</tr>
<tr>
<td>Mittelwert (mVs)</td>
<td>4381778</td>
<td>4373455</td>
<td>4395701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rsd (%)</td>
<td>2.13</td>
<td>2.58</td>
<td>2.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9 relative Standardabweichung nach HPLC-Messung von 6 L-Asp-Lösungen (Signalflächen entsprechen 2.5 fmol L-Asp) mit FMOC-Vorsäulenderivatisation

\[
\text{Standardabweichung des Mittelwertes} = \frac{\text{Std}}{\sqrt{\text{Anzahl Messungen}}}
\]

\[
\text{Messabweichung} (%) = \left(\frac{t\text{-Faktor} \times \text{Standardabweichung des Mittelwertes}}{\text{Mittelwert}}\right) \times 100
\]

<table>
<thead>
<tr>
<th>Vertrauensniveau P</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student t-Faktor für n=6</td>
<td>2.57</td>
</tr>
<tr>
<td>Messabweichung</td>
<td>118340</td>
</tr>
<tr>
<td>Mittelwert Messung 2</td>
<td>4373455</td>
</tr>
<tr>
<td>Messabweichung in %</td>
<td>2.71</td>
</tr>
</tbody>
</table>
3.3.4.3. **Probenvorbereitung und Methode**

Die zu untersuchende Aminosäure wurde nach dem Schema S. 150 hergestellt und derivatisiert.

3.3.4.4. **Resultat der Untersuchungen auf Aminosäuren und Derivate**

3.3.4.4.1 **Untersuchung von 19 Aminosäuren**

Außer bei L-Ala und L-Pro konnten bei allen untersuchten Aminosäuren zusätzliche Peaks gefunden werden, welche auf Verunreinigungen hindeuten. Abbildung 6 zeigt eine qualitative Zusammenfassung der Resultate. Im Folgenden wurden die Resultate der untersuchten Aminosäuren einzeln aufgelistet. Beim Gehaltsvergleich wurde die Signalfläche der unbehandelten Aminosäure jeweils auf 100 % gesetzt und die unter Sterilisationsbedingungen behandelten prozentual dazu angegeben. Ein Wert musste über 5.5 % von den 100% abweichen um als signifikant zu gelten (siehe auch 3.3.4.2.4).

![Abbildung 6 Übersicht der HPLC Messungen mit FMOC-Vorsäulenderivatisierung](image-url)
L-Alanin
Es konnten keine Verunreinigungen und kein signifikanter Unterschied im Gehalt zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Ala gefunden werden.

<table>
<thead>
<tr>
<th></th>
<th>L-Ala</th>
<th>L-Ala TS</th>
<th>L-Ala e</th>
<th>L-Ala γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.0%</td>
<td>103.8%</td>
<td>100.2%</td>
<td>102.1%</td>
</tr>
<tr>
<td>Verun.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

L-Arginin
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Arg. Für L-Arg konnten 5 Verunreinigungspeaks gefunden werden und die Gesamtverunreinigung lag um 1 %. Bei e- und γ-bestrahltem L-Arg konnten zusätzlich 2 kleine peaks detektiert werden. Auf die Gesamtverunreinigung hatte dies aber keinen Einfluss.

<table>
<thead>
<tr>
<th></th>
<th>L-Arg</th>
<th>L-Arg TS</th>
<th>L-Arg e</th>
<th>L-Arg γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.0%</td>
<td>94.9%</td>
<td>99.5%</td>
<td>105.0%</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>1.07%</td>
<td>1.00%</td>
<td>1.01%</td>
<td>0.83%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>11.49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>65510</td>
<td>11.6</td>
<td>63773</td>
<td>6.7</td>
</tr>
<tr>
<td>2.</td>
<td>29.71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70217</td>
<td>27.1</td>
<td>104459</td>
<td>15.9</td>
</tr>
<tr>
<td>3.</td>
<td>39.25</td>
<td>1806912</td>
<td>13.5</td>
<td>1702346</td>
<td>8.5</td>
<td>1654941</td>
<td>11.3</td>
<td>1679801</td>
<td>6.0</td>
</tr>
<tr>
<td>4.</td>
<td>40.23</td>
<td>189271</td>
<td>14.5</td>
<td>204810</td>
<td>51.7</td>
<td>327034</td>
<td>53.7</td>
<td>139255</td>
<td>12.5</td>
</tr>
<tr>
<td>5.</td>
<td>42.87</td>
<td>1716238</td>
<td>1.3</td>
<td>1627265</td>
<td>1.0</td>
<td>1550112</td>
<td>5.3</td>
<td>1507195</td>
<td>1.3</td>
</tr>
<tr>
<td>6.</td>
<td>47.97</td>
<td>1598246</td>
<td>1.7</td>
<td>1508450</td>
<td>0.6</td>
<td>1439911</td>
<td>2.2</td>
<td>1354944</td>
<td>2.2</td>
</tr>
<tr>
<td>7.</td>
<td>50.04</td>
<td>1217359</td>
<td>21.1</td>
<td>772342</td>
<td>54.8</td>
<td>1074425</td>
<td>19.1</td>
<td>503063</td>
<td>40.4</td>
</tr>
</tbody>
</table>
L-Asparagin

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4.96</td>
<td>1216122</td>
<td>1236662</td>
<td>1235704</td>
<td>1206779</td>
<td>1206779</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>5.83</td>
<td>56128</td>
<td>49529</td>
<td>37801</td>
<td>39457</td>
<td>39457</td>
<td>24.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>23.92</td>
<td>3567101</td>
<td>3584445</td>
<td>2826724</td>
<td>2990326</td>
<td>2990326</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>26.27</td>
<td>439171</td>
<td>123210</td>
<td>159697</td>
<td>99709</td>
<td>99709</td>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>40.95</td>
<td>3326481</td>
<td>3247089</td>
<td>3304900</td>
<td>3260580</td>
<td>3260580</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>43.61</td>
<td>968565</td>
<td>1101967</td>
<td>1046078</td>
<td>912007</td>
<td>912007</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L-Asparaginsäure
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Asp. Das strahlenbehandelte L-Asp zeigte einen zusätzlichen Peak gegenüber dem unbehandelten und temperaturbehandelten L-Asp. Die Gesamtverunreinigung war mit 0.06 % sehr klein.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.23</td>
<td>191699</td>
<td>3.4</td>
<td>208931</td>
<td>11.8</td>
<td>167093</td>
<td>2.2</td>
<td>152513</td>
<td>7.0</td>
</tr>
<tr>
<td>2.</td>
<td>10.35</td>
<td>69479</td>
<td>5.2</td>
<td>42418</td>
<td>12.2</td>
<td>12867</td>
<td>23.8</td>
<td>23508</td>
<td>23.8</td>
</tr>
<tr>
<td>3.</td>
<td>14.60</td>
<td>96176</td>
<td>6.3</td>
<td>93652</td>
<td>10.6</td>
<td>75152</td>
<td>5.6</td>
<td>82572</td>
<td>3.8</td>
</tr>
<tr>
<td>4.</td>
<td>20.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33797</td>
<td>9.7</td>
<td>36779</td>
<td>3.4</td>
</tr>
</tbody>
</table>
L-Cystein HCl

Die Peaks von L-Cys und FMOC lagen sehr dicht beieinander und konnten bei der Reinheitsprüfung nicht vollständig getrennt werden. Deswegen wurde für den Gehaltsvergleich ein Alternativgradient verwendet, welcher die vollständige Auftrennung ermöglichte.

Gehalt%

<table>
<thead>
<tr>
<th>L-Cys HCl</th>
<th>L- Cys HCl TS</th>
<th>L- Cys HCl eʻ</th>
<th>L- Cys HCl γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.00%</td>
<td>8 % (zersetzt)</td>
<td>106.50%</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>4.57%</td>
<td>-</td>
<td>3.45%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5.22</td>
<td>231168</td>
<td>74.4</td>
<td>136733</td>
<td>94.2</td>
<td>333281</td>
<td>80.0</td>
<td>304851</td>
<td>68.6</td>
</tr>
<tr>
<td>2.</td>
<td>6.99</td>
<td>-</td>
<td>-</td>
<td>410216</td>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>7.75</td>
<td>-</td>
<td>-</td>
<td>60216</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>8.68</td>
<td>-</td>
<td>-</td>
<td>257680</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>8.97</td>
<td>-</td>
<td>-</td>
<td>397029</td>
<td>3.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>9.31</td>
<td>-</td>
<td>-</td>
<td>505541</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>10.19</td>
<td>-</td>
<td>-</td>
<td>928368</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>11.42</td>
<td>-</td>
<td>-</td>
<td>205833</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>17.58</td>
<td>-</td>
<td>-</td>
<td>306932</td>
<td>22.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>19.49</td>
<td>-</td>
<td>-</td>
<td>62177120</td>
<td>1.7</td>
<td>158716</td>
<td>3.5</td>
<td>164488</td>
<td>1.4</td>
</tr>
<tr>
<td>11.</td>
<td>26.45</td>
<td>961524</td>
<td>33.4</td>
<td>492597</td>
<td>42.5</td>
<td>737436</td>
<td>35.6</td>
<td>1072951</td>
<td>33.3</td>
</tr>
<tr>
<td>12.</td>
<td>27.32</td>
<td>-</td>
<td>-</td>
<td>473844</td>
<td>36.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>27.76</td>
<td>83118</td>
<td>12.7</td>
<td>1086043</td>
<td>13.4</td>
<td>78883</td>
<td>5.4</td>
<td>65001</td>
<td>9.8</td>
</tr>
<tr>
<td>14.</td>
<td>28.77</td>
<td>447282</td>
<td>2.4</td>
<td>1577898</td>
<td>7.4</td>
<td>469065</td>
<td>3.0</td>
<td>419113</td>
<td>2.9</td>
</tr>
<tr>
<td>15.</td>
<td>29.61</td>
<td>444365</td>
<td>5.9</td>
<td>1553625</td>
<td>3.9</td>
<td>459610</td>
<td>11.0</td>
<td>391279</td>
<td>5.0</td>
</tr>
<tr>
<td>16.</td>
<td>30.39</td>
<td>-</td>
<td>-</td>
<td>524013</td>
<td>12.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>31.84</td>
<td>30427</td>
<td>24.1</td>
<td>163272</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18.</td>
<td>35.57</td>
<td>-</td>
<td>-</td>
<td>1266476</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19.</td>
<td>37.53</td>
<td>503376</td>
<td>29.3</td>
<td>10553278</td>
<td>1.2</td>
<td>976899</td>
<td>14.5</td>
<td>750885</td>
<td>16.5</td>
</tr>
<tr>
<td>20.</td>
<td>39</td>
<td>-</td>
<td>-</td>
<td>5008405</td>
<td>75.9</td>
<td>171229</td>
<td>83.2</td>
<td>61387</td>
<td>120</td>
</tr>
<tr>
<td>21.</td>
<td>39.12</td>
<td>-</td>
<td>-</td>
<td>9393616</td>
<td>25.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22.</td>
<td>39.39</td>
<td>-</td>
<td>-</td>
<td>141262</td>
<td>7.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23.</td>
<td>40.63</td>
<td>-</td>
<td>-</td>
<td>587280</td>
<td>42.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24.</td>
<td>42.21</td>
<td>-</td>
<td>-</td>
<td>1798573</td>
<td>34.5</td>
<td>111014</td>
<td>66.0</td>
<td>73525</td>
<td>9.7</td>
</tr>
</tbody>
</table>
L-Glutamin
L-Gln zersetzte sich nach der Wärmebehandlung vollständig, was auch im Chromatogramm erkennbar war. Die Strahlenbehandlung zeigte keinen signifikanten Unterschied im Gehalt gegenüber der unbehandelten Aminosäure. Bei Peak 1 könnte es sich nach Vergleich der Relativenretention um Glu handeln.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5.71</td>
<td>43335</td>
<td>6.1</td>
<td>442754</td>
<td>4.0</td>
<td>40675</td>
<td>9.0</td>
<td>44511</td>
<td>4.5</td>
</tr>
<tr>
<td>2.</td>
<td>14.89</td>
<td>-</td>
<td>-</td>
<td>46521</td>
<td>24.3</td>
<td>78349</td>
<td>19.6</td>
<td>102848</td>
<td>27.8</td>
</tr>
<tr>
<td>3.</td>
<td>21.37</td>
<td>103291</td>
<td>5.9</td>
<td>417606</td>
<td>53.0</td>
<td>101111</td>
<td>42.4</td>
<td>141905</td>
<td>23.7</td>
</tr>
<tr>
<td>4.</td>
<td>23.92</td>
<td>54475</td>
<td>19.4</td>
<td>-</td>
<td>-</td>
<td>53210</td>
<td>25.6</td>
<td>109808</td>
<td>17.7</td>
</tr>
<tr>
<td>5.</td>
<td>39.09</td>
<td>-</td>
<td>-</td>
<td>355619</td>
<td>9.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>40.73</td>
<td>7231273</td>
<td>0.7</td>
<td>207469</td>
<td>5.9</td>
<td>7481023</td>
<td>2.5</td>
<td>8230319</td>
<td>0.4</td>
</tr>
<tr>
<td>7.</td>
<td>41.51</td>
<td>-</td>
<td>-</td>
<td>1133641</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>100587</td>
<td>13.4</td>
</tr>
<tr>
<td>8.</td>
<td>45.95</td>
<td>-</td>
<td>-</td>
<td>62283333</td>
<td>19.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>48.12</td>
<td>-</td>
<td>-</td>
<td>2276733</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
L-Glutaminsäure

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.39</td>
<td>394883</td>
<td>3.0</td>
<td>480487</td>
<td>2.1</td>
<td>379191</td>
<td>2.5</td>
<td>365333</td>
<td>1.6</td>
</tr>
<tr>
<td>2.</td>
<td>5.12</td>
<td>99080</td>
<td>3.8</td>
<td>86451</td>
<td>5.2</td>
<td>101976</td>
<td>3.0</td>
<td>100695</td>
<td>2.8</td>
</tr>
<tr>
<td>3.</td>
<td>15.91</td>
<td>2282903</td>
<td>1.6</td>
<td>2063712</td>
<td>0.5</td>
<td>2284244</td>
<td>3.9</td>
<td>2258216</td>
<td>1.7</td>
</tr>
<tr>
<td>4.</td>
<td>19.57</td>
<td>48679</td>
<td>7.3</td>
<td>54937</td>
<td>3.4</td>
<td>58359</td>
<td>5.9</td>
<td>61785</td>
<td>7.0</td>
</tr>
<tr>
<td>5.</td>
<td>28.00</td>
<td>47113</td>
<td>7.6</td>
<td>44252</td>
<td>5.6</td>
<td>54035</td>
<td>4.1</td>
<td>55056</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Glycin
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem Gly. Der unbekannte Peak 3 war verantwortlich, dass die Gesamtverunreinigung über 1 % stieg.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3.47</td>
<td>97372</td>
<td>4.1</td>
<td>88195</td>
<td>7.8</td>
<td>95853</td>
<td>1.4</td>
<td>110287</td>
<td>5.4</td>
</tr>
<tr>
<td>2.</td>
<td>15.82</td>
<td>37191</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45631</td>
<td>19.9</td>
</tr>
<tr>
<td>3.</td>
<td>42.11</td>
<td>8180548</td>
<td>0.8</td>
<td>7726135</td>
<td>0.6</td>
<td>7869945</td>
<td>2.5</td>
<td>8748843</td>
<td>1.9</td>
</tr>
</tbody>
</table>
L-Histidin

Für His war die Messabweichung für die Gehaltsbestimmung wie sie beim Asp berechnet wurde nicht repräsentativ. Es zeigte sich nämlich, dass Schwankungen zwischen den Messungen der gleichen Probe (im schlechtesten Fall lag die rsd bei 7 %) auftraten. Der Gehalt wurde zwar bestimmt, aber es konnte damit keine vergleichende Aussage gemacht werden. Trotzdem zeigte sich ein Verunreinigungsmuster, welches von den verschiedenen Behandlungsmethoden unbeeinflusst blieb und auf 8 mögliche Verunreinigungen hinwies.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7.39</td>
<td>66131</td>
<td>6.2</td>
<td>29672</td>
<td>10.4</td>
<td>42568</td>
<td>8.5</td>
<td>27071</td>
<td>15.3</td>
</tr>
<tr>
<td>2.</td>
<td>15.83</td>
<td>64090</td>
<td>35.4</td>
<td>109256</td>
<td>20.9</td>
<td>77646</td>
<td>16.2</td>
<td>60111</td>
<td>44.0</td>
</tr>
<tr>
<td>3.</td>
<td>26.57</td>
<td>54094</td>
<td>16.1</td>
<td>69559</td>
<td>25.5</td>
<td>71219</td>
<td>22.3</td>
<td>96830</td>
<td>7.2</td>
</tr>
<tr>
<td>4.</td>
<td>40.48</td>
<td>87336</td>
<td>3.0</td>
<td>87903</td>
<td>0.8</td>
<td>92225</td>
<td>16.8</td>
<td>72040</td>
<td>11.4</td>
</tr>
<tr>
<td>5.</td>
<td>41.36</td>
<td>187668</td>
<td>5.9</td>
<td>163766</td>
<td>9.1</td>
<td>159241</td>
<td>8.3</td>
<td>138901</td>
<td>21.7</td>
</tr>
<tr>
<td>6.</td>
<td>41.91</td>
<td>1666312</td>
<td>33.9</td>
<td>1705034</td>
<td>32.6</td>
<td>1750255</td>
<td>32.0</td>
<td>1390101</td>
<td>46.9</td>
</tr>
<tr>
<td>7.</td>
<td>47.27</td>
<td>428372</td>
<td>37.1</td>
<td>479537</td>
<td>28.9</td>
<td>517672</td>
<td>22.6</td>
<td>237533</td>
<td>20.6</td>
</tr>
<tr>
<td>8.</td>
<td>50.28</td>
<td>1155501</td>
<td>6.1</td>
<td>893224</td>
<td>12.7</td>
<td>796979</td>
<td>2.4</td>
<td>1042001</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Die Tabelle zeigt die Ergebnisse der Messungen an L-Histidin unter verschiedenen Behandlungsbedingungen. Die Spalten enthalten die Nummer (Nr.), die Retentionzeit (Rt), die Signalfläche (mVs), die relative Standardabweichung (rsd) und die Gesamtvariation der Signalfläche. Die Ergebnisse sind für die unbeeinflussten Verunreinigungen dargestellt, die unter 8% liegen.
L-Isoleucin
Bei L-Ile konnte kein signifikanter Gehaltsunterschied durch die Sterilisationsbehandlung beobachtet werden. Bei dem strahlenbehandelten L-Ile trat ein kleiner Peak (Nr.2) mehr auf als bei der unbehandelten Aminosäure, welche 4 zusätzliche Peaks enthielt. Nach Vergleich der relativen Retentionszeit, könnte es sich bei Peak 1, 3 und 4 um Pro, Tyr und Val handeln.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Gehalt (%)</th>
<th>Gesamtver. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>103.8</td>
<td>0.69</td>
</tr>
<tr>
<td>3</td>
<td>100.2</td>
<td>0.74</td>
</tr>
<tr>
<td>4</td>
<td>102.1</td>
<td>0.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.05</td>
<td>417521</td>
<td>549362</td>
<td>435925</td>
<td>452224</td>
<td>4.9</td>
</tr>
<tr>
<td>2</td>
<td>27.47</td>
<td>740786</td>
<td>91310</td>
<td>955221</td>
<td>824348</td>
<td>15.6</td>
</tr>
<tr>
<td>3</td>
<td>28.13</td>
<td>648961</td>
<td>767066</td>
<td>895686</td>
<td>779477</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>29.01</td>
<td>1415820</td>
<td>1992782</td>
<td>1974671</td>
<td>1674639</td>
<td>18.3</td>
</tr>
<tr>
<td>5</td>
<td>39.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
L-Leucin

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>20.33</td>
<td>29581</td>
<td>11.1</td>
<td>18056</td>
<td>4.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>23.51</td>
<td>-</td>
<td>-</td>
<td>19354</td>
<td>3.0</td>
<td>27721</td>
<td>9.7</td>
<td>38261</td>
<td>20.0</td>
</tr>
<tr>
<td>3.</td>
<td>26.46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>116435</td>
<td>5.7</td>
<td>114217</td>
<td>6.4</td>
</tr>
<tr>
<td>4.</td>
<td>28.19</td>
<td>38727</td>
<td>11.4</td>
<td>74407</td>
<td>1.1</td>
<td>722498</td>
<td>1.9</td>
<td>745847</td>
<td>0.7</td>
</tr>
<tr>
<td>5.</td>
<td>28.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72339</td>
<td>21.1</td>
<td>112024</td>
<td>21.3</td>
</tr>
<tr>
<td>6.</td>
<td>30.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47677</td>
<td>14.3</td>
<td>40434</td>
<td>19.2</td>
</tr>
<tr>
<td>7.</td>
<td>30.95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>109015</td>
<td>5.9</td>
<td>115710</td>
<td>6.3</td>
</tr>
<tr>
<td>8.</td>
<td>33.53</td>
<td>97899</td>
<td>2.9</td>
<td>93393</td>
<td>6.8</td>
<td>98591</td>
<td>21.7</td>
<td>107453</td>
<td>21.8</td>
</tr>
<tr>
<td>9.</td>
<td>34.80</td>
<td>4211898</td>
<td>0.3</td>
<td>4113521</td>
<td>0.2</td>
<td>4397742</td>
<td>1.0</td>
<td>3987988</td>
<td>0.4</td>
</tr>
<tr>
<td>10.</td>
<td>39.04</td>
<td>1100988</td>
<td>30.7</td>
<td>972382</td>
<td>1.4</td>
<td>1344524</td>
<td>6.2</td>
<td>1036506</td>
<td>15.3</td>
</tr>
<tr>
<td>11.</td>
<td>39.63</td>
<td>95812</td>
<td>0.7</td>
<td>54911</td>
<td>5.6</td>
<td>53500</td>
<td>2.6</td>
<td>48708</td>
<td>4.6</td>
</tr>
</tbody>
</table>
L-Lysin HCl

Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Lys. Die Gesamtverunreinigung war mit 1.72 % eher hoch. Dies lag auch daran, dass Lys einen viel kleineren Response als die meisten anderen Aminosäuren zeigte (siehe Abbildung 5) und somit die gefundenen 10 Nebenpeaks eine stärkere Gewichtung erfuhren.

Tabelle: L-Lys HCl - Analyse

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.17</td>
<td>30284</td>
<td>8.7</td>
<td>30248</td>
<td>5.2</td>
<td>37169</td>
<td>4.4</td>
<td>28730</td>
<td>3.9</td>
</tr>
<tr>
<td>2.</td>
<td>22.20</td>
<td>31190</td>
<td>4.0</td>
<td>27686</td>
<td>7.4</td>
<td>32218</td>
<td>4.3</td>
<td>25194</td>
<td>1.7</td>
</tr>
<tr>
<td>3.</td>
<td>24.86</td>
<td>172228</td>
<td>2.4</td>
<td>110733</td>
<td>5.5</td>
<td>128717</td>
<td>3.9</td>
<td>136511</td>
<td>3.9</td>
</tr>
<tr>
<td>4.</td>
<td>26.22</td>
<td>716454</td>
<td>1.7</td>
<td>685140</td>
<td>3.2</td>
<td>687774</td>
<td>2.2</td>
<td>662128</td>
<td>0.7</td>
</tr>
<tr>
<td>5.</td>
<td>28.44</td>
<td>126636</td>
<td>3.5</td>
<td>100412</td>
<td>7.0</td>
<td>96447</td>
<td>8.0</td>
<td>79432</td>
<td>7.7</td>
</tr>
<tr>
<td>6.</td>
<td>28.73</td>
<td>221261</td>
<td>3.6</td>
<td>179584</td>
<td>5.4</td>
<td>210846</td>
<td>5.4</td>
<td>194527</td>
<td>2.4</td>
</tr>
<tr>
<td>7.</td>
<td>29.19</td>
<td>814096</td>
<td>2.0</td>
<td>818440</td>
<td>2.7</td>
<td>855106</td>
<td>2.9</td>
<td>786478</td>
<td>2.5</td>
</tr>
<tr>
<td>8.</td>
<td>30.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72835</td>
<td>10.3</td>
<td>75370</td>
<td>7.7</td>
</tr>
<tr>
<td>9.</td>
<td>30.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>114954</td>
<td>7.8</td>
<td>101729</td>
<td>5.2</td>
</tr>
<tr>
<td>10.</td>
<td>30.80</td>
<td>60385</td>
<td>1.8</td>
<td>60442</td>
<td>4.6</td>
<td>1049795</td>
<td>2.7</td>
<td>1028406</td>
<td>1.4</td>
</tr>
<tr>
<td>11.</td>
<td>32.83</td>
<td>613853</td>
<td>65.9</td>
<td>775762</td>
<td>57.2</td>
<td>837896</td>
<td>55.8</td>
<td>826695</td>
<td>42.8</td>
</tr>
<tr>
<td>12.</td>
<td>41.67</td>
<td>449874</td>
<td>1.4</td>
<td>464012</td>
<td>3.2</td>
<td>478886</td>
<td>3.1</td>
<td>468046</td>
<td>2.4</td>
</tr>
</tbody>
</table>
L-Methionin
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Met. Beim unbehandelten, wärme- und e⁻-behandelten L-Met blieb das Verunreinigungs muster mehr oder weniger gleich, hingegen schien die γ-Bestrahlung zu mehr Zersetzung zu führen. Insbesondere verdoppelte sich die Fläche von Peak 3 nach einer solchen Behandlung.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>5.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>14.61</td>
<td>1045211</td>
<td>26.5</td>
<td>1331322</td>
<td>35.3</td>
<td>1237464</td>
<td>25.8</td>
<td>2645701</td>
<td>29.0</td>
</tr>
<tr>
<td>4.</td>
<td>15.41</td>
<td>645865</td>
<td>55.2</td>
<td>406525</td>
<td>58.2</td>
<td>439392</td>
<td>7.1</td>
<td>505031</td>
<td>13.0</td>
</tr>
<tr>
<td>5.</td>
<td>16.26</td>
<td>459402</td>
<td>69.2</td>
<td>298164</td>
<td>37.1</td>
<td>254504</td>
<td>53.2</td>
<td>186459</td>
<td>19.4</td>
</tr>
<tr>
<td>6.</td>
<td>33.09</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>103631</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>40.08</td>
<td>210427</td>
<td>6.5</td>
<td>205467</td>
<td>6.8</td>
<td>213817</td>
<td>7.4</td>
<td>217026</td>
<td>1.0</td>
</tr>
</tbody>
</table>
L-Phenylalanin
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Phe. Gesamthaft konnten neben dem Hauptpeak 8 zusätzliche Peaks detektiert werden, welche auf Verunreinigungen hinweisen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Gehalt</th>
<th>Gesamtver.</th>
<th>L-Phe</th>
<th>L-Phe TS</th>
<th>L-Phe (\gamma)</th>
<th>L-Phe (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0 %</td>
<td>0.37 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>101.9 %</td>
<td>0.34 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>98.5 %</td>
<td>0.29 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100.0 %</td>
<td>0.27 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.00</td>
<td>73962</td>
<td>3.1</td>
<td>28597</td>
<td>9.0</td>
<td>35621</td>
<td>10.2</td>
<td>13449</td>
<td>11.2</td>
</tr>
<tr>
<td>2</td>
<td>20.55</td>
<td>86748</td>
<td>7.5</td>
<td>28900</td>
<td>4.9</td>
<td>57207</td>
<td>4.3</td>
<td>18463</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>27.49</td>
<td>226907</td>
<td>4.8</td>
<td>219288</td>
<td>6.1</td>
<td>31613</td>
<td>19.4</td>
<td>62581</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>30.45</td>
<td>57291</td>
<td>5.2</td>
<td>53060</td>
<td>2.8</td>
<td>60858</td>
<td>6.0</td>
<td>54143</td>
<td>7.9</td>
</tr>
<tr>
<td>5</td>
<td>33.64</td>
<td>45669</td>
<td>1.8</td>
<td>40941</td>
<td>7.1</td>
<td>48895</td>
<td>2.4</td>
<td>41531</td>
<td>6.5</td>
</tr>
<tr>
<td>6</td>
<td>39.08</td>
<td>1549823</td>
<td>24.8</td>
<td>1562446</td>
<td>4.0</td>
<td>1418945</td>
<td>10.0</td>
<td>1376253</td>
<td>13.1</td>
</tr>
<tr>
<td>7</td>
<td>40.08</td>
<td>80515</td>
<td>11.1</td>
<td>155445</td>
<td>2.2</td>
<td>32678</td>
<td>9.8</td>
<td>30235</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>41.55</td>
<td>130653</td>
<td>6.4</td>
<td>39047</td>
<td>5.1</td>
<td>52001</td>
<td>7.0</td>
<td>31069</td>
<td>4.9</td>
</tr>
</tbody>
</table>
L-Prolin
Ein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Pro konnte nicht festgestellt werden, wobei wärmebehandeltes L-Pro eine Tendenz zur Gehaltsabnahme aufwies. Beim unbehandelten L-Pro konnten keine Hinweise auf Verunreinigungen gefunden werden. Die Wärmebehandlung dieser Aminosäure führte zu einem zusätzlichen Peak und die Strahlenbehandlung zu 2 kleinen Peaks.

<table>
<thead>
<tr>
<th>Gehalt</th>
<th>L-Pro</th>
<th>L-Pro TS</th>
<th>L-Pro e⁻</th>
<th>L-Pro γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>100.0 %</td>
<td>94.6 %</td>
<td>98.9 %</td>
<td>101.1 %</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>-</td>
<td>0.02 %</td>
<td>0.01 %</td>
<td>0.01 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
<th>Signalfläche (mVs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rsd (%)</td>
<td>rsd (%)</td>
<td>rsd (%)</td>
<td>rsd (%)</td>
</tr>
<tr>
<td>1.</td>
<td>12.67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>38957</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39926</td>
</tr>
<tr>
<td>2.</td>
<td>18.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>42405</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37524</td>
</tr>
<tr>
<td>3.</td>
<td>41.88</td>
<td>-</td>
<td>-</td>
<td>122514</td>
<td>-</td>
</tr>
</tbody>
</table>
L-Serin
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Ser. Bei unbehandeltem und wärmebehandelten L-Ser konnte ein zusätzlicher Peak gefunden werden, welcher auf Verunreinigung hinwies. Derselbe Peak wurde auch nach Strahlenbehandlung gefunden, wobei sich dabei seine Fläche verdoppelte. Deswegen könnte dies auf ein Zersetzungsprodukt von L-Ser hindeuten.

![Graphik](image)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signallfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.94</td>
<td>148822</td>
<td>2.1</td>
<td>165247</td>
<td>3.6</td>
<td>271217</td>
<td>2.4</td>
<td>325749</td>
<td>7.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-Ser</th>
<th>L-Ser TS</th>
<th>L-Ser e⁻</th>
<th>L-Ser γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.0 %</td>
<td>98.8 %</td>
<td>100.6 %</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>0.02 %</td>
<td>0.02 %</td>
<td>0.04 %</td>
</tr>
</tbody>
</table>

Gehalt

<table>
<thead>
<tr>
<th>L-Ser</th>
<th>L-Ser TS</th>
<th>L-Ser e⁻</th>
<th>L-Ser γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.0 %</td>
<td>98.8 %</td>
<td>100.6 %</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>0.02 %</td>
<td>0.02 %</td>
<td>0.04 %</td>
</tr>
</tbody>
</table>

Gehalt

<table>
<thead>
<tr>
<th>L-Ser</th>
<th>L-Ser TS</th>
<th>L-Ser e⁻</th>
<th>L-Ser γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.0 %</td>
<td>98.8 %</td>
<td>100.6 %</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>0.02 %</td>
<td>0.02 %</td>
<td>0.04 %</td>
</tr>
</tbody>
</table>
L-Threonin

Bei γ-bestrahltem L-Thr zeigte sich eine signifikante Gehaltsabnahme und auch wärmebehandeltes L-Thr zeigte eine Tendenz zu Gehaltsabnahme. Insgesamt konnten bei dieser Aminosäure 5 Peaks detektiert werden, welche auf Verunreinigungen hinwiesen. Die Fläche von Peak 3 nahm nach einer Strahlenbehandlung drastisch zu und wies damit auf ein Zersetzungsprodukt von L-Thr hin.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.59</td>
<td>193702</td>
<td>5.6</td>
<td>103449</td>
<td>7.3</td>
<td>113899</td>
<td>2.0</td>
<td>119314</td>
<td>13.6</td>
</tr>
<tr>
<td>2</td>
<td>16.35</td>
<td>504646</td>
<td>1.7</td>
<td>484206</td>
<td>6.2</td>
<td>515591</td>
<td>2.6</td>
<td>523474</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>17.47</td>
<td>18232</td>
<td>6.5</td>
<td>27714</td>
<td>9.0</td>
<td>798428</td>
<td>2.5</td>
<td>1126620</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>21.86</td>
<td>304768</td>
<td>7.9</td>
<td>350490</td>
<td>1.5</td>
<td>362033</td>
<td>4.6</td>
<td>350718</td>
<td>3.3</td>
</tr>
<tr>
<td>5</td>
<td>28.8</td>
<td>118722</td>
<td>5.0</td>
<td>95820</td>
<td>10.8</td>
<td>156453</td>
<td>7.0</td>
<td>106267</td>
<td>18.0</td>
</tr>
</tbody>
</table>
L-Tyrosin
Es zeigte sich kein signifikanter Gehaltsunterschied zwischen unbehandeltem und unter Sterilisationsbedingungen behandeltem L-Tyr. Vor allem Peak 3 war verantwortlich, dass die berechnete Gesamtverunreinigung über 3 % lag. Dies lag aber nicht daran, dass L-Tyr schlechter Qualität war, sondern dass diese Aminosäure mit der verwendeten Methode einen kleinen Response aufwies. Derselbe Effekt konnte auch bei L-Lys beobachtet werden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>36.72</td>
<td>63452</td>
<td>5.7</td>
<td>64770</td>
<td>2.9</td>
<td>64557</td>
<td>5.7</td>
<td>81848</td>
<td>7.6</td>
</tr>
<tr>
<td>2.</td>
<td>39.08</td>
<td>471403</td>
<td>7.1</td>
<td>433752</td>
<td>1.7</td>
<td>479616</td>
<td>7.1</td>
<td>458201</td>
<td>5.3</td>
</tr>
<tr>
<td>3.</td>
<td>40.96</td>
<td>1619857</td>
<td>1.1</td>
<td>1642571</td>
<td>2.4</td>
<td>1648079</td>
<td>1.1</td>
<td>1723903</td>
<td>1.2</td>
</tr>
<tr>
<td>4.</td>
<td>47.99</td>
<td>569836</td>
<td>7.1</td>
<td>372854</td>
<td>14.8</td>
<td>579763</td>
<td>7.1</td>
<td>305035</td>
<td>7.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L-Tyr</th>
<th>L-Tyr TS</th>
<th>L-Tyr e⁻</th>
<th>L-Tyr γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehalt</td>
<td>100.0 %</td>
<td>104.2 %</td>
<td>98.4 %</td>
<td>98.4 %</td>
</tr>
<tr>
<td>Gesamtver.</td>
<td>3.56 %</td>
<td>3.15 %</td>
<td>3.68 %</td>
<td>3.41 %</td>
</tr>
</tbody>
</table>
L-Valin

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113380</td>
</tr>
<tr>
<td>2</td>
<td>18.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43289</td>
<td>12.8</td>
</tr>
<tr>
<td>3</td>
<td>20.81</td>
<td>720218</td>
<td>2.4</td>
<td>713149</td>
<td>0.9</td>
<td>723956</td>
<td>2.1</td>
<td>734190</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>24.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85823</td>
<td>13.8</td>
</tr>
<tr>
<td>5</td>
<td>26.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64465</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>32.36</td>
<td>418993</td>
<td>8.1</td>
<td>452909</td>
<td>0.5</td>
<td>449663</td>
<td>2.6</td>
<td>456273</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>33.88</td>
<td>66749</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66034</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>39.04</td>
<td>215441</td>
<td>14.6</td>
<td>193200</td>
<td>14.0</td>
<td>176257</td>
<td>1.3</td>
<td>250437</td>
<td>14.2</td>
</tr>
<tr>
<td>9</td>
<td>42.21</td>
<td>366071</td>
<td>5.8</td>
<td>356559</td>
<td>4.7</td>
<td>364413</td>
<td>3.0</td>
<td>375138</td>
<td>5.1</td>
</tr>
</tbody>
</table>
3.3.4.4.2 Untersuchung von 19 Chargen Isoleucin

Mit der unter 4.2.1.3 entwickelten HPLC Methode wurden mehrere Chargen Ile von 2 verschiedenen Herstellern (im Folgenden als Hersteller A und Hersteller B bezeichnet) untersucht. Von Hersteller A wurden 13 Chargen und von Hersteller B 6 Chargen auf Verunreinigungen geprüft.

Bei Hersteller A konnten bei den untersuchten Chargen Ile jeweils 4 bis 5 Verunreinigungen detektiert werden. Peak 3 wurde durch Aufstockung als Valin identifiziert und bei Peak 1 handelt es sich wahrscheinlich um Ala. Die Gesamtverunreinigung bei Hersteller A lag zwischen 0.32 und 0.47 %. Hersteller B wies 2 bis 3 Verunreinigungen auf. Dadurch lag die Gesamtverunreinigung (0.1 bis 0.17 %) tiefer als bei Hersteller A. Es konnte durch Aufstockung gezeigt werden, dass Valin als Verunreinigung auch bei diesem Hersteller vorkam. Ein Gehaltsvergleich zwischen den beiden Herstellern (siehe Abbildung 7) ergab, dass sich ihre Chargen in den gleichen Größenordnungen bewegten.

Isoleucin Hersteller A

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.87</td>
<td>108262</td>
<td>5.85</td>
<td>81007</td>
<td>2.08</td>
<td>80635</td>
<td>12.73</td>
<td>79794</td>
<td>8.55</td>
</tr>
<tr>
<td>2.</td>
<td>25.03</td>
<td>551865</td>
<td>0.34</td>
<td>646735</td>
<td>3.54</td>
<td>640256</td>
<td>2.68</td>
<td>524795</td>
<td>4.53</td>
</tr>
<tr>
<td>3.</td>
<td>28.43</td>
<td>1025692</td>
<td>1.99</td>
<td>824646</td>
<td>0.93</td>
<td>786004</td>
<td>1.36</td>
<td>937748</td>
<td>1.71</td>
</tr>
<tr>
<td>4.</td>
<td>29.2</td>
<td>313255</td>
<td>8.38</td>
<td>322540</td>
<td>4.89</td>
<td>268565</td>
<td>3.84</td>
<td>316771</td>
<td>2.17</td>
</tr>
<tr>
<td>5.</td>
<td>39.39</td>
<td>796483</td>
<td>7.87</td>
<td>1056548</td>
<td>17.88</td>
<td>980138</td>
<td>6.62</td>
<td>796954</td>
<td>7.10</td>
</tr>
</tbody>
</table>
Aminosäuren in der Pharmakopöe

Hersteller A

<table>
<thead>
<tr>
<th>Charge 5</th>
<th>Charge 6</th>
<th>Charge 7</th>
<th>Charge 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.36</td>
<td>0.57</td>
<td>0.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.87</td>
<td>69598</td>
<td>7.01</td>
<td>57525</td>
<td>10.03</td>
<td>44243</td>
<td>13.77</td>
<td>100935</td>
<td>4.60</td>
</tr>
<tr>
<td>2.</td>
<td>25.03</td>
<td>385589</td>
<td>5.99</td>
<td>472535</td>
<td>3.09</td>
<td>497655</td>
<td>4.49</td>
<td>586324</td>
<td>1.92</td>
</tr>
<tr>
<td>3.</td>
<td>28.43</td>
<td>938821</td>
<td>1.07</td>
<td>1062824</td>
<td>1.09</td>
<td>774709</td>
<td>2.45</td>
<td>1047912</td>
<td>0.98</td>
</tr>
<tr>
<td>4.</td>
<td>29.2</td>
<td>110936</td>
<td>7.26</td>
<td>110535</td>
<td>11.79</td>
<td>159167</td>
<td>8.37</td>
<td>149419</td>
<td>7.02</td>
</tr>
<tr>
<td>5.</td>
<td>39.39</td>
<td>836374</td>
<td>-</td>
<td>1831980</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 9</th>
<th>Charge 10</th>
<th>Charge 11</th>
<th>Charge 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.37</td>
<td>0.38</td>
<td>0.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.87</td>
<td>50501</td>
<td>7.15</td>
<td>64110</td>
<td>11.59</td>
<td>49548</td>
<td>17.52</td>
<td>53269</td>
<td>5.45</td>
</tr>
<tr>
<td>2.</td>
<td>25.03</td>
<td>373141</td>
<td>1.70</td>
<td>363433</td>
<td>6.07</td>
<td>342047</td>
<td>0.64</td>
<td>375988</td>
<td>7.51</td>
</tr>
<tr>
<td>3.</td>
<td>28.43</td>
<td>855391</td>
<td>1.17</td>
<td>1022041</td>
<td>0.76</td>
<td>954657</td>
<td>0.59</td>
<td>748912</td>
<td>1.73</td>
</tr>
<tr>
<td>4.</td>
<td>29.2</td>
<td>455317</td>
<td>5.37</td>
<td>138367</td>
<td>4.37</td>
<td>114075</td>
<td>9.16</td>
<td>228209</td>
<td>11.31</td>
</tr>
<tr>
<td>5.</td>
<td>39.39</td>
<td>680247</td>
<td>5.24</td>
<td>752775</td>
<td>16.06</td>
<td>760522</td>
<td>3.32</td>
<td>820392</td>
<td>5.69</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.87</td>
<td>244853</td>
<td>4.93</td>
</tr>
<tr>
<td>2.</td>
<td>25.03</td>
<td>329566</td>
<td>5.15</td>
</tr>
<tr>
<td>3.</td>
<td>28.43</td>
<td>879938</td>
<td>1.16</td>
</tr>
<tr>
<td>4.</td>
<td>29.2</td>
<td>193963</td>
<td>5.30</td>
</tr>
<tr>
<td>5.</td>
<td>39.39</td>
<td>429027</td>
<td>1.46</td>
</tr>
</tbody>
</table>
Isoleucin Hersteller B

<table>
<thead>
<tr>
<th>Hersteller B</th>
<th>Charge 1</th>
<th>Charge 2</th>
<th>Charge 3</th>
<th>Charge 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.100</td>
<td>0.100</td>
<td>0.114</td>
<td>0.110</td>
</tr>
<tr>
<td>Nr.</td>
<td>Rt (min)</td>
<td>Signalfläche (mVs)</td>
<td>rsd (%)</td>
<td>Signalfläche (mVs)</td>
</tr>
<tr>
<td>1.</td>
<td>24.93</td>
<td>93650</td>
<td>1.60</td>
<td>106077</td>
</tr>
<tr>
<td>2.</td>
<td>28.51</td>
<td>516368</td>
<td>3.05</td>
<td>505947</td>
</tr>
</tbody>
</table>

Hersteller B

<table>
<thead>
<tr>
<th>Hersteller B</th>
<th>Charge 5</th>
<th>Charge 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.166</td>
<td>0.161</td>
</tr>
<tr>
<td>Nr.</td>
<td>Rt (min)</td>
<td>Signalfläche (mVs)</td>
</tr>
<tr>
<td>1.</td>
<td>24.93</td>
<td>53594</td>
</tr>
<tr>
<td>2.</td>
<td>28.51</td>
<td>520601</td>
</tr>
<tr>
<td>3.</td>
<td>39.32</td>
<td>453787</td>
</tr>
</tbody>
</table>
Abbildung 7 Gehaltsvergleich verschiedener Chargen Ile nach FMOC Derivatisierung

3.3.4.4.3 Untersuchung von 15 Chargen Phenylalanin
Es wurden mit der unter 4.2.1.3 entwickelten HPLC Methode mehrere Chargen Ile von 2 verschiedenen Herstellern (im Folgenden als Hersteller A und Hersteller B bezeichnet) untersucht. Von Hersteller A wurden 12 Chargen und von Hersteller B 3 Chargen auf Verunreinigungen geprüft.
Alle untersuchten Chargen Phe des Herstellers A wiesen ein Verunreinigungsmuster von 3 Peaks auf (Peak Nr. 3, 4, 5). Daneben wiesen die Chargen 4, 5, 6 und 7 eine zusätzliche Verunreinigung auf. Der Versuch einer Identifizierung mittels Aufstockung lieferte keine klaren Ergebnisse, sondern lediglich Hinweise. Dies lag daran, dass die gefundenen Peaks zu klein für eine klare Zuordnung waren. Peak 1 könnte aufgrund der Retentionszeit ein Hinweis auf Tyr sein. Bei Peak 2 könnte es sich um Val handeln und bei Peak 3 um Ile. Peak 4 und 5 liessen sich nicht zuordnen.
Bei Phe von Hersteller B konnten ebenfalls 3 Peaks detektiert werden. Wahrscheinlich sind die Peaks 2 und 3 identisch mit Peak 4 von Hersteller A, welcher manchmal eine kleine Schulter aufwies. Die Gesamtverunreinigung fiel bei Hersteller B (0.14-21 %) trotz weniger Verunreinigungspeaks höher aus als bei Hersteller A (0.08-0.12 %). Dies lag sicherlich auch daran, dass Peak 1 und 3 bei Hersteller B besser von Phe abgetrennt werden konnte als bei Hersteller A (Peak 4).
Der Gehalt von Phe lag bei beiden Herstellern in der gleichen Grössenordnungen (siehe Abbildung 8).
Aminosäuren in der Pharmakopöe

Phenylalanin Hersteller A

Charge 1

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>27.19</td>
<td>22866</td>
<td>18.53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>30.33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>33.49</td>
<td>39164</td>
<td>4.49</td>
<td>38432</td>
<td>5.99</td>
<td>44474</td>
<td>10.17</td>
<td>28179</td>
<td>2.53</td>
</tr>
<tr>
<td>4.</td>
<td>39.17</td>
<td>56426</td>
<td>1.69</td>
<td>622093</td>
<td>-</td>
<td>640435</td>
<td>-</td>
<td>709777</td>
<td>11.93</td>
</tr>
<tr>
<td>5.</td>
<td>40.31</td>
<td>14262</td>
<td>19.17</td>
<td>24431</td>
<td>16.07</td>
<td>26824</td>
<td>19.56</td>
<td>32383</td>
<td>18.75</td>
</tr>
</tbody>
</table>

Charge 2

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>27.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>30.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>33.00</td>
<td>32690</td>
<td>17.21</td>
<td>33647</td>
<td>4.30</td>
<td>43743</td>
<td>4.61</td>
<td>32478</td>
<td>1.99</td>
</tr>
<tr>
<td>4.</td>
<td>39.20</td>
<td>556897</td>
<td>4.41</td>
<td>430131</td>
<td>5.38</td>
<td>583024</td>
<td>5.76</td>
<td>474039</td>
<td>7.03</td>
</tr>
<tr>
<td>5.</td>
<td>40.36</td>
<td>37258</td>
<td>3.12</td>
<td>38588</td>
<td>3.96</td>
<td>43643</td>
<td>8.49</td>
<td>58858</td>
<td>4.02</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 1</th>
<th>Charge 2</th>
<th>Charge 3</th>
<th>Charge 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 5</th>
<th>Charge 6</th>
<th>Charge 7</th>
<th>Charge 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.08</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 1</th>
<th>Charge 2</th>
<th>Charge 3</th>
<th>Charge 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 5</th>
<th>Charge 6</th>
<th>Charge 7</th>
<th>Charge 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.08</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 1</th>
<th>Charge 2</th>
<th>Charge 3</th>
<th>Charge 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 5</th>
<th>Charge 6</th>
<th>Charge 7</th>
<th>Charge 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.08</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 1</th>
<th>Charge 2</th>
<th>Charge 3</th>
<th>Charge 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Hersteller A

<table>
<thead>
<tr>
<th>Charge 5</th>
<th>Charge 6</th>
<th>Charge 7</th>
<th>Charge 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtver.</td>
<td>0.10</td>
<td>0.08</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Aminosäuren in der Pharmakopöe

Hersteller A

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>27.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>30.33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>33.34</td>
<td>32478</td>
<td>1.99</td>
<td>38624</td>
<td>7.31</td>
<td>32088</td>
<td>4.98</td>
<td>35224</td>
<td>6.16</td>
</tr>
<tr>
<td>4.</td>
<td>39.23</td>
<td>474039</td>
<td>7.03</td>
<td>465700</td>
<td>14.16</td>
<td>461371</td>
<td>7.13</td>
<td>512721</td>
<td>5.89</td>
</tr>
<tr>
<td>5.</td>
<td>40.44</td>
<td>58858</td>
<td>4.02</td>
<td>53447</td>
<td>5.12</td>
<td>50616</td>
<td>5.85</td>
<td>48761</td>
<td>9.05</td>
</tr>
</tbody>
</table>

Phenylalanin Hersteller B

Hersteller B

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>39.23</td>
<td>494252</td>
<td>0.22</td>
<td>335826</td>
<td>2.05</td>
<td>543058</td>
<td>10.81</td>
</tr>
<tr>
<td>2.</td>
<td>39.59</td>
<td>369714</td>
<td>2.99</td>
<td>612060</td>
<td>0.71</td>
<td>755086</td>
<td>7.97</td>
</tr>
<tr>
<td>3.</td>
<td>40.53</td>
<td>40898</td>
<td>5.72</td>
<td>70662</td>
<td>5.00</td>
<td>62265</td>
<td>6.55</td>
</tr>
</tbody>
</table>
3.3.4.4 Untersuchung von 11 Chargen Serin

Es wurden mit der unter 4.2.1.3 entwickelten HPLC Methode mehrere Chargen Ser von 3 verschiedenen Herstellern (im Folgenden als Hersteller A, Hersteller B und Hersteller C bezeichnet) untersucht. Von Hersteller A wurden 4 Chargen, von Hersteller B 5 Chargen und von Hersteller C 2 Chargen auf Verunreinigungen geprüft.

Alle untersuchten Chargen wiesen zusätzliche Peaks bei einer Retentionszeit von 20.13, 28.51 und 42.83 min auf. Die Identifizierung dieser gefundenen Verunreinigungen mittels Aufstockung konnte lediglich Hinweise aufgrund der Retention liefern, da die Peaks zu klein oder zu nahe am Hauptpeak lagen. Bei dem Peak bei 20.13 min dürfte es sich aufgrund der Retentionszeit um Alanin handeln. Die anderen beiden konnten nicht zugeordnet werden. Die berechnete Gesamtverunreinigung, welche bei allen Herstellern und Chargen (0.95 – 1.86%) sehr hoch ausfiel, konnte direkt auf den Peak bei 42.83 min zurückgeführt werden. Dieser Peak ist problematisch, da er nicht identifiziert werden konnte. Es wurde ausserdem beobachtet, dass ein ähnlicher Peak mit derselben Konsequenz bei L-Gln, Gly und L-Tyr (siehe 3.3.4.4.1) gefunden wurde. Deswegen wäre es denkbar, dass es sich dabei um eine unbekannte Problematik mit der Derivatisierung handeln könnte.

Die untersuchten Chargen von Hersteller A enthielten nur diese 3 Verunreinigungen. Bei Hersteller B wiesen die Chargen 2, 3, 4, 5 einen zusätzlichen Peak (Nr.1) auf, bei welchem es sich wahrscheinlich um Thr handelte. Bei Peak 4 in Charge 3 dürfte es sich um Leu handeln. Hersteller C wies auf Spuren von Ile hin (Nr 3).
Serin Hersteller A

![Chromatogramm](image)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>20.13</td>
<td>482849</td>
<td>4.61</td>
<td>323900</td>
<td>3.70</td>
<td>330231</td>
<td>4.65</td>
<td>334225</td>
<td>9.43</td>
</tr>
<tr>
<td>2.</td>
<td>28.51</td>
<td>154880</td>
<td>7.31</td>
<td>186080</td>
<td>3.03</td>
<td>174859</td>
<td>5.10</td>
<td>281167</td>
<td>9.54</td>
</tr>
<tr>
<td>3.</td>
<td>42.83</td>
<td>7439101</td>
<td>0.55</td>
<td>6561285</td>
<td>1.19</td>
<td>6272267</td>
<td>0.58</td>
<td>6411237</td>
<td>3.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtver.</th>
<th>Charge 1</th>
<th>Charge 2</th>
<th>Charge 3</th>
<th>Charge 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.17</td>
<td>1.06</td>
<td>1.06</td>
<td>1.03</td>
</tr>
</tbody>
</table>
Serin Hersteller B

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.72</td>
<td>200326</td>
<td>3.34</td>
<td>228754</td>
<td>14.25</td>
<td>238437</td>
<td>7.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>20.65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>191673</td>
<td>6.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>28.67</td>
<td>655080</td>
<td>0.61</td>
<td>254616</td>
<td>3.05</td>
<td>346218</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>37.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>42308</td>
<td>8.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>41.96</td>
<td>12451502</td>
<td>0.90</td>
<td>5916569</td>
<td>0.57</td>
<td>5058315</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hersteller B

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19.16</td>
<td>213842</td>
<td>7.58</td>
</tr>
<tr>
<td>2.</td>
<td>19.92</td>
<td>162476</td>
<td>5.41</td>
</tr>
<tr>
<td>3.</td>
<td>28.80</td>
<td>216441</td>
<td>15.60</td>
</tr>
<tr>
<td>4.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>41.80</td>
<td>5690669</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Serin Hersteller C

Abbildung 9 Gehaltsvergleich verschiedener Chargen Ser nach FMOC Derivatisierung
3.4. Flüchtige Verunreinigungen und Lösungsmittelrückstände

3.4.1. Headspace GC-MS von Aminosäuren

3.4.1.1. Geräte und Materialien

Headspace-Sampler Varian Genesis head space
GC Varian Star CX 3400
MS Varian Saturn GC/MS/MS 4D
Software Varian Saturn Ver. 5.2
 NIST92 Mass Spectral Search Program Ver. 1.1a

Säule
Restek RTX-624. 60 m, ID 0.32 mm, DF: 1.8, Cat.-Nr. 10972, Serial-Nr. 196266
Rtx-624 (fused silica), Crossbond 6% cyanopropylphenyl 94%dimethylpolysiloxan
Temperaturbereich: -20 - 240 °C

<table>
<thead>
<tr>
<th>Headspace-Sampler</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate temperature 85 °C</td>
<td>Injektor 220 °C</td>
</tr>
<tr>
<td>Plate equil. 1 min</td>
<td>Temp. Transferline 220 °C</td>
</tr>
<tr>
<td>Sample equil. 60 min</td>
<td>Carrier gas Helium 5.0</td>
</tr>
<tr>
<td>Vial size 22 ml</td>
<td>Transfer line back pressure 55-70 kPa</td>
</tr>
<tr>
<td>Mixer Off</td>
<td>flow 1.4 ml/min</td>
</tr>
<tr>
<td>Mix power -</td>
<td></td>
</tr>
<tr>
<td>Stabilize 1 min</td>
<td></td>
</tr>
<tr>
<td>Press 1.5 min up to 8 psi</td>
<td></td>
</tr>
<tr>
<td>Press equil. 0.2 min</td>
<td></td>
</tr>
<tr>
<td>Loopfill 1.5 min</td>
<td></td>
</tr>
<tr>
<td>Loopfill equil. 0.2 min</td>
<td></td>
</tr>
<tr>
<td>Inject time 1.5 min</td>
<td></td>
</tr>
<tr>
<td>Loop temperature 220 °C</td>
<td></td>
</tr>
<tr>
<td>Line temperature 220 °C</td>
<td></td>
</tr>
<tr>
<td>Injection per vial 1</td>
<td></td>
</tr>
<tr>
<td>Loop volume 1 ml</td>
<td></td>
</tr>
<tr>
<td>GC cycle time 80 min</td>
<td></td>
</tr>
<tr>
<td>Method optimization mode off</td>
<td></td>
</tr>
</tbody>
</table>

3.4.1.2. Methodenentwicklung

Für die Untersuchungen wurde eine Restek RTX-624 Säule (60 m, ID 0.32 mm, DF: 1.8 µm, fused silica, Crossbond 6% cyanopropylphenyl 94%dimethylpolysiloxan, Cat.# 10973) verwendet, welche dieselben Anforderungen erfüllt, wie sie die Ph. Eur. 5 unter Test auf Lösungsmittelrückstände[71] fordert und welche von vielen Laboratorien zur Untersuchung von flüchtigen organischen Substanzen verwendet wird. Das Temperaturprogramm gestaltete sich wie folgt: Nach der Injektion wurde die Säulentemperatur 20 min bei 40 °C gehalten und stieg dann mit einem Gradient von 10 °C/ min auf 220 °C an, wo sie noch mal 20 min gehalten wurde. Die Trenndauer betrug damit 58 min und entsprach im Wesentlichen ebenfalls der Ph. Eur. 5 Methode. Als Lösungsmittel für die Aminosäureproben wurde destilliertes Wasser gewählt. Vorversuche hatten keinen Vorteil von pulverförmigen Proben gezeigt und das Auflösen der Aminosäuren sollte helfen flüchtige Verunreinigungen
leichter freizusetzen. Die Temperatur für die Probeninkubation wurde auf 85 °C gewählt, da dort noch keine Zersetzung der Aminosäuren zu erwarten ist. Dieser Schluss wurde ebenfalls aus Voruntersuchungen gezogen, bei denen sich für pulverförmige Aminosäuren selbst bei 100 °C noch keine Probleme mit Zersetzung zeigten. Zur Ermittlung einer optimalen Zeit bis zur Gleichgewichtseinstellung vor der Injektion wurde ein Testgemisch aus Acetaldehyd, Acetonitril, Allylacetat, Benzol, Benzaldehyd, Butyraldehyd, 2-Propanol und Pyrrol bei 20, 40 und 60 min je viermal vermessen. Die eingesetzten Mengen entsprachen dabei einer theoretischen Verunreinigung von 0.01 % (V/m) bezogen auf 100 mg Aminosäureprobe. Das Resultat zeigte, dass alle Referenzsubstanzen zu allen Equilibrationszeiten detektiert werden konnten (siehe Abbildung 10). Die relativen Standardabweichungen lagen zwischen 0.5 und 8.1 Prozent und hatten für die meisten der untersuchten Substanzen bei 40 min die kleinste Streuung (siehe Tabelle 10). Es zeigte sich jedoch wie erwartet, dass längere Equilibrationszeiten zu höheren Signalen führten. Besonders ausgeprägt war dies bei Benzol ersichtlich. Eine Erhöhung der Equilibriierungszeit von 20 auf 60 min führt zu einem über 25% stärkeren Signal. Da Sensitivität bei der zu entwickelnden Methode höher gewichtet wurde als die Streuung, wurde 60 min als Equilibriierungszeit gewählt. Auf über 60 min wurde verzichtet, da sonst unvernünftig lange Messzeiten entstanden wären und die Proben zu lange einer erhöhten Temperatur ausgesetzt worden wären.
Aminosäuren in der Pharmakopöe

Abbildung 10 Chromatogramm der Referenzlösung nach einer Equilibrierungszeit von 60 min. Die erhaltenen Signale entsprechen einer Verunreinigung von 0.01 % bezogen auf 100 µl Reinsubstanz (für Benzol 0.0025 % auf 100 mg Reinsubstanz)

Tabelle 10 Effekt von verschiedenen Equilibrierungszeiten auf die Signale der Referenzsubstanzen

<table>
<thead>
<tr>
<th>Equilibration Zeit</th>
<th>20 min</th>
<th>40 min</th>
<th>60 min</th>
<th>Retentionszeit (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyd</td>
<td>334688</td>
<td>344426</td>
<td>367398</td>
<td>5.37</td>
</tr>
<tr>
<td>rsd</td>
<td>1.2</td>
<td>3.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2-Propanol</td>
<td>333936</td>
<td>371473</td>
<td>375102</td>
<td>10.17</td>
</tr>
<tr>
<td>rsd</td>
<td>3.2</td>
<td>2.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Acetonitril</td>
<td>262884</td>
<td>279327</td>
<td>287574</td>
<td>11.1</td>
</tr>
<tr>
<td>rsd</td>
<td>3.1</td>
<td>1.0</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyd</td>
<td>227883</td>
<td>250827</td>
<td>269767</td>
<td>17.4</td>
</tr>
<tr>
<td>rsd</td>
<td>0.5</td>
<td>0.6</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Benzol</td>
<td>5162712</td>
<td>5964068</td>
<td>7034036</td>
<td>23.27</td>
</tr>
<tr>
<td>rsd</td>
<td>1.4</td>
<td>2.0</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Allylacetat</td>
<td>2553883</td>
<td>2873128</td>
<td>2778619</td>
<td>26.51</td>
</tr>
<tr>
<td>rsd</td>
<td>2.3</td>
<td>2.4</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>Pyrrol</td>
<td>314733</td>
<td>378525</td>
<td>373068</td>
<td>31.43</td>
</tr>
<tr>
<td>rsd</td>
<td>4.4</td>
<td>3.5</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyd</td>
<td>848312</td>
<td>993395</td>
<td>959274</td>
<td>37.09</td>
</tr>
<tr>
<td>rsd</td>
<td>6.7</td>
<td>8.7</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>
Eine gefundene Substanz wurde nur dann als identifiziert erklärt, wenn sie mit einer Referenzsubstanz hinsichtlich Retentionszeit und Fragmentierungsmuster übereinstimmte (siehe Tabelle 11). Auf Substanzen, welche nur über die verwendete Bibliothek (NIST92 Mass Spectral Search Programm Vers. 1.1a) und das Fragmentierungsmuster zugeordnet werden konnten, wurde immer explizit hingewiesen. Die Suche in der Bibliothek wurde mit der Funktion reverse fit durchgeführt. Wobei fit den Grad in Prozent (0-100 %) beschreibt, mit welcher eine Probe mit einer Substanz in der Datenbank übereinstimmt.

Tabelle 11 Referenzsubstanzen, die zur Identifikation verwendet wurden. Die eingesetzten Mengen entsprechen dabei einer Verunreinigung von 0.01 und 0.01% (V/m oder m/m)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Verunreinigung von 0.01 % (V/m oder m/m)</th>
<th>Verunreinigung von 0.001 % (V/m oder m/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rt</td>
<td>Fläche Ø</td>
</tr>
<tr>
<td>Acetaldehyd</td>
<td>5.46</td>
<td>106937</td>
</tr>
<tr>
<td>2-Methyl-1-butene</td>
<td>7.45</td>
<td>12273150</td>
</tr>
<tr>
<td>Furan</td>
<td>8.40</td>
<td>17042996</td>
</tr>
<tr>
<td>Dimethylsulfid</td>
<td>9.49</td>
<td>9722408</td>
</tr>
<tr>
<td>Aceton</td>
<td>9.56</td>
<td>1189436</td>
</tr>
<tr>
<td>Carbon Disulfid</td>
<td>10.08</td>
<td>15852</td>
</tr>
<tr>
<td>2,5-Dihydrofuran</td>
<td>19.10</td>
<td>1687670</td>
</tr>
<tr>
<td>Benzol</td>
<td>23.43</td>
<td>21582598</td>
</tr>
<tr>
<td>Thiophene</td>
<td>24.34</td>
<td>23624803</td>
</tr>
<tr>
<td>2-Nitropropan</td>
<td>28.50</td>
<td>659463</td>
</tr>
<tr>
<td>Dimethylsulfid</td>
<td>29.15</td>
<td>21412454</td>
</tr>
<tr>
<td>Toluol</td>
<td>29.53</td>
<td>22901759</td>
</tr>
<tr>
<td>2-Methylthiophene</td>
<td>30.12</td>
<td>29670346</td>
</tr>
<tr>
<td>3-Methylthiophene</td>
<td>30.37</td>
<td>27331380</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>33.23</td>
<td>34143194</td>
</tr>
<tr>
<td>2,5-Dimethylthiophene</td>
<td>33.41</td>
<td>48419285</td>
</tr>
<tr>
<td>Styrene</td>
<td>34.32</td>
<td>38212636</td>
</tr>
<tr>
<td>Dimethyltrisulfid</td>
<td>37.06</td>
<td>801736</td>
</tr>
<tr>
<td>Benzaldehyd</td>
<td>37.30</td>
<td>636652</td>
</tr>
</tbody>
</table>
3.4.1.3. Probenvorbereitung und Methode

20 Aminosäuren (Tabelle 21, S.107) wurden auf Lösungsmittelrückstände und flüchtige Verunreinigungen untersucht und mit trockener Hitze- (160 °C, 2h), e– (25 kGy) und γ– (25 kGy) sterilisierten Aminosäuren verglichen.

Je 100 mg Aminosäurenprobe wurde mit 10 ml Wasser in einem headspace vial gelöst, mit Stickstoff geflutet und luftdicht verschlossen. Bei Asp, Glu, His und Tyr war jedoch eine vollständige Lösung der Proben nicht möglich. Alle Messungen wurden dreimal wiederholt.

3.4.1.4. Resultat der Untersuchungen auf flüchtige Verunreinigungen und Lösungsmittelrückstände

Abbildung 11 GC/MS Untersuchungen auf flüchtige Verunreinigungen oder Zersetzungsprodukte der Aminosäuren Ala, Arg, Asp, Cys HCl, Glu, Gln, Gly, His, Ile

Abbildung 12 GC/MS Untersuchungen auf flüchtige Verunreinigungen oder Zersetzungsprodukte der Aminosäuren Leu, Lys HCl, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val

Legende für Tabelle 10
Identifikation
Kursiv Schrift: Vermutung aufgrund Fragmentierungsmuster und Bibliothekvergleich
Normal Schrift: Identifiziert mit Referenzsubstanzen
Rot: Verunreinigung über 0.01 %(V/m; m/m)
Orange: Verunreinigung zwischen 0.01 und 0.001 %(V/m; m/m)
Gelb: Verunreinigung unter 0.001 %(V/m; m/m)
<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>unbehandelt (100 mg)</th>
<th>wärmebehandelt (100 mg)</th>
<th>e-behandelt (100 mg)</th>
<th>y-behandelt (100 mg)</th>
<th>Identifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT (min)</td>
<td>Mittelwert</td>
<td>rsd</td>
<td>RT (min)</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>L-Alanin</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Aspartat</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-CysteinhCl</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Cystein</td>
<td>4.18</td>
<td>315285</td>
<td>7.3</td>
<td>4.20</td>
<td>352073</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>5.35</td>
<td>464800</td>
<td>38.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Aspartat</td>
<td>5.55</td>
<td>24757</td>
<td>27.1</td>
<td>5.58</td>
<td>9996</td>
</tr>
<tr>
<td>L-CysteinhCl</td>
<td>9.52</td>
<td>280149</td>
<td>11.3</td>
<td>9.56</td>
<td>63473</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>14.34</td>
<td>29664</td>
<td>12.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Aspartat</td>
<td>24.19</td>
<td>303891</td>
<td>12.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>30.00</td>
<td>403892</td>
<td>14.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Aspartat</td>
<td>30.26</td>
<td>566190</td>
<td>12.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>33.32</td>
<td>251882</td>
<td>13.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Aspartat</td>
<td>33.50</td>
<td>485007</td>
<td>13.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>34.15</td>
<td>164721</td>
<td>13.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>36.17</td>
<td>372295</td>
<td>9.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>37.41</td>
<td>384348</td>
<td>8.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>37.49</td>
<td>451359</td>
<td>13.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>39.54</td>
<td>177816</td>
<td>10.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>42.28</td>
<td>1164804</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>44.13</td>
<td>270930</td>
<td>8.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>44.40</td>
<td>743476</td>
<td>14.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>46.28</td>
<td>163907</td>
<td>12.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>46.57</td>
<td>482900</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Glutamat</td>
<td>5.44</td>
<td>94628</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycin</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Histidin</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aminosäure</td>
<td>unbehandelt (100 mg)</td>
<td>wärmebehandelt (100 mg)</td>
<td>e-behandelt (100 mg)</td>
<td>y-behandelt (100 mg)</td>
<td>Identifikation</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>RT (min)</td>
<td>Mittelwert</td>
<td>rsd</td>
<td>RT (min)</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.09</td>
<td>9382068</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.23</td>
<td>673372</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.41</td>
<td>783416</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.42</td>
<td>706168</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.39</td>
<td>3497234</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.04</td>
<td>56524</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.27</td>
<td>24774</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.41</td>
<td>62991</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.59</td>
<td>49963</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.44</td>
<td>337015</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>24.33</td>
<td>745580</td>
<td>29.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>25.12</td>
<td>151164</td>
<td>26.9</td>
<td>25.02</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25.26</td>
<td>90721</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.02</td>
<td>269110</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.18</td>
<td>2879079</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.47</td>
<td>18058188</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.07</td>
<td>3278556</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.20</td>
<td>174935</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.39</td>
<td>58694</td>
</tr>
<tr>
<td></td>
<td>6.21</td>
<td>19272</td>
<td>27.1</td>
<td>6.26</td>
<td>13953</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.44</td>
<td>459064</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.40</td>
<td>12742</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>8.50</td>
<td>28235</td>
<td>40.3</td>
<td>8.41</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.46</td>
<td>1401317</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.13</td>
<td>101205</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.50</td>
<td>658795</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23.37</td>
<td>26217</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>24.33</td>
<td>461010</td>
<td>17.2</td>
<td>24.31</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26.06</td>
<td>28540</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26.32</td>
<td>15600</td>
</tr>
<tr>
<td>L-Lysin HCl</td>
<td>-</td>
<td>24.34</td>
<td>319456</td>
<td>61.1</td>
<td>-</td>
</tr>
<tr>
<td>Aminosäure</td>
<td>unbehandelt (100 mg)</td>
<td>wärmebehandelt (100 mg)</td>
<td>e-behandelt (100 mg)</td>
<td>y-behandelt (100 mg)</td>
<td>Identifikation</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>RT (min)</td>
<td>Mittelwert</td>
<td>rsd</td>
<td>RT (min)</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>-</td>
<td>5.42 37834 0.2</td>
<td>-</td>
<td>-</td>
<td>Acetaldehyd</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>6.02 43430 27.5</td>
<td>6.01 33216 6.8</td>
<td>6.01 56042 11.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.49 27426 13.1</td>
<td>9.47 62377 37.4</td>
<td>9.46 31761 5.3</td>
<td>Dimethylysulfit</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>10.05 9121 23.7</td>
<td>-</td>
<td>10.01 11655 38.2</td>
<td>Kohlenstoffdisulfit</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>24.35 216937 40.2</td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>29.13 9601845 6.9</td>
<td>29.11 8323619 10.2</td>
<td>29.10 34381257 6.0</td>
<td>Dimethylysulfit</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>37.05 197355 23.7</td>
<td>37.04 82888 15.0</td>
<td>36.59 1681064 18.6</td>
<td>Dimethyltrisulfit</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>-</td>
<td>-</td>
<td>23.43 241957 8.5</td>
<td>23.46 123706 16.0</td>
<td>Benzol</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>29.51 974455 9.5</td>
<td>29.52 1085051 17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>33.28 240786 14.5</td>
<td>33.31 207326 20.7</td>
<td>Ethylbenzene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>34.31 1669655 13.9</td>
<td>34.31 2527331 11.1</td>
<td>Styre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>37.21 788900 12.6</td>
<td>37.21 769009 5.8</td>
<td>Benzaldehyd</td>
<td></td>
</tr>
<tr>
<td>L-Prolin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L-Serin</td>
<td>-</td>
<td>5.43 45378 9.3</td>
<td>5.43 1509159 4.9</td>
<td>5.42 1910077 6.2</td>
<td>Acetaldehyd</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>8.40 36364 6.5</td>
<td>8.39 36585 1.1</td>
<td></td>
<td>Furan</td>
</tr>
<tr>
<td>L-Threonin</td>
<td>-</td>
<td>-</td>
<td>5.43 140652 1.0</td>
<td>5.44 128665 6.3</td>
<td>Acetaldehyd</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.25 568280 7.2</td>
<td>9.26 405674 7.3</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.50 1209252 4.4</td>
<td>9.51 1087656 3.7</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L-Valin</td>
<td>-</td>
<td>4.20 995438 8.2</td>
<td>4.20 955465 7.0</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4.49 420739 19.9</td>
<td>4.50 328550 4.0</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5.09 8250844 6.2</td>
<td>5.09 9942935 6.4</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5.26 235610 8.8</td>
<td>5.27 225635 6.3</td>
<td>2-methyl-1-Propen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5.45 156278 7.1</td>
<td>5.44 146241 5.8</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.51 861885 22.6</td>
<td>9.47 6740734 4.0</td>
<td>9.48 6840679 6.9</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>13.56 648836 29.8</td>
<td>13.52 6060738 5.7</td>
<td>13.54 5801746 5.2</td>
<td>2-Butenal</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>15.20 150468 6.0</td>
<td>15.19 160253 12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>18.52 415075 3.9</td>
<td>18.54 418857 9.3</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>23.44 46583 17.3</td>
<td>23.44 50851 20.6</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
3.4.1.4.1 Unbehandelte Aminosäuren

3.4.1.4.2 Wärmebehandelte Aminosäuren

Von den 20 untersuchten Proben enthielten die 8 Aminosäuren Cys HCl, Glu, Iso, Leu, Lys HCl, Met, Ser und Val zusätzliche Peaks. Das Cys HCl dabei die meisten Peaks zeigte, was nicht weiter verwunderlich, da sich diese Aminosäure bei einer Trockensterilisation von 160 °C während 2 h völlig zersetzte. Dabei entstanden stark schweflige, unangenehm riechende Verbindungen. Die Untersuchung wurde trotzdem durchgeführt um die anfallenden Zersetungsprodukte mit denjenigen der e⁻- und γ–Sterilisation zu vergleichen. Für Cys HCl konnten 21 zusätzliche Peaks detektiert werden. Dabei wurden Acetaldehyd und Kohlenstoffdisulfid als Verunreinigung identifiziert mit einem Anteil von mehr als 0.01 %. Methanethiol und Thiophen wurden als Verunreinigung zwischen 0.01 und 0.001% gefunden. Dimethyldisulfid, 2-methyl-Thiophen, 3-methyl-Thiophen und 2,5-dimethyl-Thiophen wurden ebenfalls gefunden und identifiziert, lagen aber 0.001 %. An Hand des Fragmentierungsmusters und Bibliothkenvergleichs wurden 3 Peaks Carbonylsulfid, dimethyl-Thiophen und thieno-Thiophen zugeordnet.

Trockensterilisiertes Glu hatte im Vergleich mit dem unbehandelten einen zusätzlichen Peak. Dieser konnte Acetaldehyd mit einem Anteil zwischen 0.01 und 0.001% zugeordnet werden. Ile zeigte 3 Peaks, wovon einer nur nach Trockensterilisation detektiert werden konnte. Durch Vergleich mit der Bibliothek und dem Fragmentierungsmuster wurde dem ersten Peak Butanal zugeordnet. Für Leu wurden 3 unbekannte Peaks erhalten. Bei einem davon handelte es sich um denselben wie unter 4.1.2.4. erwähnt. Met enthielt 7 zusätzliche Peaks, darunter Acetaldehyd, Kohlenstoffdisulfid, Dimethyldisulfid und Dimethyltrisulfid zwischen 0.01 und 0.001 %. Dimethylsulfid wurde unter 0.001 % gefunden. Bei Ser konnte Acetaldehyd zwischen 0.01 und 0.001 % gefunden werden. Val lieferte 2 unbekannte Peaks.

3.4.1.4.3 e⁻- und γ-behandelte Aminosäuren

Nach e⁻- und γ-Bestrahlung wurden jeweils bei den 10 Aminosäuren Ala, Asp, CysHCl, Iso, Leu, Met, Phe, Ser, Thr und Val Zersetzungsprodukte gefunden. Lediglich das γ–sterilisierte Asp und Met enthielten einen Peak mehr als die e⁻-sterilisierten. Für Ala wurde Acetaldehyd in beiden Fällen über 0.01% gefunden. Ebenfalls in Asp konnte Acetaldehyd gefunden werden. Die Menge lag aber unter 0.001 %. Dazu trat bei der γ–Behandlung ein zusätzlicher unbekannter Peak auf. Cys HCl zeigte Kohlenstoffdisulfid über 0.01%. Daneben wurde Methanethiol und Dimethyldisulfid unter 0.001% gefunden. Carbonylsulfid wurde nach Bibliotheken- und Fragmentmustervergleich einem Peak zugeordnet. Bei Ile wurden 13 zusätzliche Peaks gefunden. 2-methyl-1-Buten konnte identifiziert werden und lag zwischen 0.01 und 0.001%, wobei das Signal nach γ-Behandlung grösser war als nach e⁻-Behandlung. 2-methyl-1-Propen und Butanal wurden auf Grund eines Bibliotheken- und Fragmentmustervergleichs zugeordnet. 2 der gefundenen Peaks waren identisch mit denjenigen, die bei einer Trockensterilisation auftreten, hatten aber ein um ein Vielfaches stärkere Signal. Leu hatte 16 zusätzliche Peaks, darunter 2-methyl-1-
Aminosäuren in der Pharmakopöe

Buten unter 0.01%. Isobutan, 2-methyl-1-Propen und 2-methyl-2-Propanol werden nach Bibliotheken- und Fragmentmustervergleich vermutet. Ein unbekannter Peak konnte sowohl bei unbehandelten, als auch sterilisierten Proben gefunden werden. Nach einer e^-- und γ-Behandlung wurden aber um das zwanzigfache grössere Flächen erhalten. 2 weitere Peaks konnten auch nach einer Trockensterilisation gefunden werden. Met enthielt nach γ-Behandlung Dimethyltrisulfid und Dimethyldisulfid über 0.01% und nach e^--Behandlung zwischen 0.01 und 0.001%. Kohlenstoffdisulfid wurde nur nach γ-Behandlung zwischen 0.01 und 0.001% gefunden. Dimethyldisulfid konnte bei beiden Behandlungsarten unter 0.001% nachgewiesen werden. Dagegen konnte Actaldehyd und ein zweiter Peak, welcher sich nach der Trockensterilisation zeigten, nicht detektiert werden. Bei Phe lag Benzaldehyd in beiden Fällen über 0.01 % vor, Styrene nach γ-Behandlung zwischen 0.01 und 0.001 % und bei e^--Behandlung unter 0.01 %. Benzol, Toluol und Ethylbenzen konnten unter 0.001% detektiert werden. Ser enthielt neben Acetaldehyd, welches über 0.01% lag, noch Furan unter 0.001%. Furan konnte nach der Trockensterilisation nicht nachgewiesen werden. Für Thr wurden 3 Zersetzungsprodukte gefunden, wobei es sich bei dem ersten um Acetaldehyd über 0.01% handelte. Val zeigte 10 zusätzliche Peaks, wobei 2 davon durch Vergleich mit der Bibliothek und den Fragmentierungsmustern 2-methyl-Propen und 2-Butenal zugeordnet wurden.

Es konnte damit gezeigt werden, dass die Bestrahlung zu signifikanten Veränderungen bei der Hälfte der untersuchten Aminosäuren führte. Dabei konnte kein wesentlicher Unterschied zwischen e^-- oder γ-Bestrahlung gefunden werden.
3.5. Kohlenhydrate

Kohlenhydrate werden in grossen Mengen der Fermentationsbrühe zugegeben und dienen den Mikroorganismen als C-Quellen für Zellwachstum und Produktion der Aminosäuren (siehe Tabelle 3). Die Monographien der Aminosäuren der Ph. Eur. sehen keine Überprüfung dieser Stoffklasse vor. Da es sich aber zumindest bei den fermentativ hergestellten Aminosäuren um potentielle Verunreinigungen handelt, wurden 20 biogene Aminosäuren (Tabelle 21, S. 107) auf Kohlenhydrate überprüft. Die zu entwickelnde Methode sollte die Monosaccharide Fructose und Glucose und das Disaccharid Saccharose bis zu einer Konzentration von 0.05 % (Aminosäure/Kohlenhydrat w/w) detektieren. Als endogene Substanz, welche am Bakterienstoffwechsel beteiligt ist, wurde das Zuckerderivat N-Acetyl-D-glucosamin als Verunreinigung ebenfalls in Betracht gezogen.

3.5.1. Dünnschichtchromatographie

3.5.1.1. Geräte und Materialien

Auftragegerät: Linomat IV (CAMAC)
Glaswanne: Flachbodenkammer (CAMAG) 20 x 20 cm Typ N mit Deckel
UV-Gerät: UV-Cabinet II (CAMAG)

Kieselgelplatte (60 F_254 20 x 20 cm (MERCK))

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Qualität</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (\text{H}_2\text{O})</td>
<td>Ph. Eur.</td>
<td>Hänselel</td>
</tr>
<tr>
<td>Fructose</td>
<td>Ph. Eur.</td>
<td>Hänselel</td>
</tr>
<tr>
<td>Saccharose</td>
<td>Ph. Eur.</td>
<td>Hänselel</td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamin</td>
<td>≥ 99%</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Ninhydrin</td>
<td>≥98.0% (UV)</td>
<td>Fluka</td>
</tr>
<tr>
<td>Aceton</td>
<td>Purum, ≥ 99%</td>
<td>Hänselel</td>
</tr>
<tr>
<td>Thymol</td>
<td>Purum</td>
<td>Fluka</td>
</tr>
<tr>
<td>Ethanol 99.8%</td>
<td>Rein</td>
<td>Merck</td>
</tr>
<tr>
<td>Schwefelsäure 95%</td>
<td>purum</td>
<td>Hänselel</td>
</tr>
<tr>
<td>1-Propanol</td>
<td>Puriss p.a</td>
<td>FLUKA</td>
</tr>
<tr>
<td>Methanol</td>
<td>Analytic grade</td>
<td>Scharlau</td>
</tr>
<tr>
<td>Essigsäure 99%</td>
<td>Ph. Eur.</td>
<td>Hänselel</td>
</tr>
<tr>
<td>Dichlorethan</td>
<td>Purisse p.a.</td>
<td>FLUKA</td>
</tr>
<tr>
<td>Ammoniaklösung 32%</td>
<td>reinst</td>
<td>Merck</td>
</tr>
</tbody>
</table>
3.5.1.2. Methodenentwicklung

3.5.1.2.1 Löslichkeitsversuche

3.5.1.2.2 Wahl des optimalen Sprühreagens

3.5.1.2.3 Fliessmitteloptimierung
Aus Literatur und Ph. Eur., welche sich mit ähnlichen Problemstellungen befasste, waren zahlreiche Fliessmittel zur Auftrennung von Aminosäuren und Zuckern beschrieben worden. 6 Fliessmittel (siehe Tabelle 13) wurden an den Aminosäuren L-Ala, L-Glu, Gly, L-Lys, L-Met, L-Phe, L-Thr und den Zuckern Fructose, Glucose und Saccharose auf optimale Trennung getestet. Daraus wurde das vielversprechendste ausgewählt und an allen 20 Aminosäuren erprobt. Es stellte sich heraus, dass das Fliessmittel 6, welches die Ph. Eur. 4 zur Identitätsprüfung von Fructose, Glucose und Saccharose verwendete, auch geeignet war Aminosäuren aufzutrennen. Abbildung 13 zeigt die Auftrennung von 7 Aminosäuren und 4 Zuckern. Dabei bewegten sich die Zucker eher im unteren Bereich der Platte (Rf-Werte 0.21 – 0.24) und die Aminosäuren lagen tendenziell höher. Eine Trennung aller 20 Aminosäuren
Aminosäuren in der Pharmakopöe

(siehe Abbildung 14) zeigte jedoch, dass dieses Flussmittel für L-Cys HCl und L-Tyr ungeeignet war. Für die Untersuchung dieser Aminosäuren wurde Flussmittel 3, wie es die Ph. Eur verwendet, eingesetzt.

Tabelle 13 verschiedene Flussmittel zur Trennung von Aminosäuren mittels DC

<table>
<thead>
<tr>
<th>Flussmittel</th>
<th>Zusammensetzung</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H$_2$O:1-Propanol (30:70)</td>
<td>Laskar et al., 2001</td>
</tr>
<tr>
<td>2</td>
<td>H$_2$O:AcCOOH:Butanol (20:20:60)</td>
<td>Ph. Eur. 5.04 Identitätsprüfung von Gly, Ala, Val, Leu, Ile, Met, Phe, Thr, Asp, Glu, His</td>
</tr>
<tr>
<td>3</td>
<td>NH$_3$ 32 %:1-Propanol (30:70)</td>
<td>Ph. Eur. 5.04 Identitätsprüfung von Cys, Tyr, Lys, Arg</td>
</tr>
<tr>
<td>4</td>
<td>H$_2$O:AcCOOH:1-Propanol (20:20:60)</td>
<td>Variante von Flussmittel 2</td>
</tr>
<tr>
<td>5</td>
<td>NH$_3$:EtOH:Ethylacetat (20:40:40)</td>
<td>Neues Flussmittel (ohne Vorlage)</td>
</tr>
<tr>
<td>6</td>
<td>H$_2$O:MeOH:AcCOOH:Dichlorethan (10:15:25:50)</td>
<td>Ph. Eur. 5.04 Identitätsprüfung von Glucose</td>
</tr>
</tbody>
</table>
Abbildung 13 DC mit Fliessmittel 6 zur Trennung von Aminosäuren und Zuckern. Die Platte wurde erst zur Detektion der AS mit Ninhydrin-Reagenz behandelt und dann mit Thymol-Reagenz zur Detektion der Zucker. Es handelt sich also um einen Zusammenschnitt von 2 Fotos, aber der gleichen Platte.

<table>
<thead>
<tr>
<th>Auftragungsmenge: 25µg</th>
<th>Substanz</th>
<th>R<sub>F</sub> -Wert</th>
<th>Substanz</th>
<th>R<sub>F</sub> -Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösungsmittel:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeOH: H<sub>2</sub>O: NH<sub>3</sub></td>
<td>Gly</td>
<td>0.20</td>
<td>L-Lys</td>
<td>0.10</td>
</tr>
<tr>
<td>500:300:15</td>
<td>L-Ala</td>
<td>0.24</td>
<td>Glc</td>
<td>0.21</td>
</tr>
<tr>
<td>Fliessmittel</td>
<td>L-Met</td>
<td>0.39</td>
<td>Fruc</td>
<td>0.22</td>
</tr>
<tr>
<td>H<sub>2</sub>O:MeOH:AcCOOH:Dichlorethan</td>
<td>L-Phe</td>
<td>0.46</td>
<td>Sacc</td>
<td>0.16</td>
</tr>
<tr>
<td>10:15:25:50</td>
<td>L-Thr</td>
<td>0.23</td>
<td>NAG</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>L-Glu</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5.1.2.4 Beladungsgrenze

Da die Zucker noch in möglichst tiefer Konzentration in den Aminosäuren detektiert werden sollten, war es notwendig an der Beladungsgrenze der Aminosäuren zu arbeiten. Es zeigte sich, dass eine Auftragung von 120 µg Aminosäure auf einer 5 mm Bande noch möglich war ohne zu einer Überladung der DC-Platte zu führen.
3.5.1.2.5 Nachweisgrenze

Tabelle 14 Nachweisgrenze von 4 Kohlehydraten mittels DC

<table>
<thead>
<tr>
<th>Substanz</th>
<th>R<sub>F</sub>-Wert</th>
<th>Nachweisgrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose</td>
<td>0.16</td>
<td>20 ng</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.15</td>
<td>20 ng</td>
</tr>
<tr>
<td>Saccharose</td>
<td>0.12</td>
<td>30 ng</td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamin</td>
<td>0.26</td>
<td>300 ng</td>
</tr>
</tbody>
</table>

3.5.1.2.6 Detektionsgrenze
Getestet wurden dabei die Nachweisgrenzen der vier Substanzen Fructose, Glucose, Saccharose und N-Acetyl-D-glucosamin als Verunreinigung in L-Phe. In Verdünnungsreihen (100 µg Aminosäure gespiked mit 10 µg – 10ng Zucker in 10 Verdünnungsschritten) konnte gezeigt werden, dass die Zucker ausser NAG bis zu einer Grenze von 0.05 % (m/m) nachgewiesen werden konnten. Tabelle 15 gibt eine Übersicht.

Tabelle 15 Nachweisgrenze von gespikten Kohlenhydraten mittels DC

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Verunreinigung</th>
<th>R<sub>F</sub>-Wert</th>
<th>Nachweisgrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aminosäure</td>
<td>Zucker</td>
<td>Menge % (m/m)</td>
</tr>
<tr>
<td>L-Phe</td>
<td>Fructose</td>
<td>0.40 0.16</td>
<td>30 ng 0.03</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>0.40 0.15</td>
<td>50 ng 0.05</td>
</tr>
<tr>
<td></td>
<td>Saccharose</td>
<td>0.40 0.12</td>
<td>50 ng 0.05</td>
</tr>
<tr>
<td></td>
<td>N-Acetyl-D-glucosamin</td>
<td>0.40 0.26</td>
<td>800 ng 0.8</td>
</tr>
</tbody>
</table>

3.5.1.3. Probenvorbereitung und Methode
Von den 20 Aminosäuren (Tabelle 21, S.107) wurden mit dem jeweiligen Lösungsmittel (siehe 3.5.1.2.3) 1 % Lösungen (m/V) hergestellt. Von jeder Aminosäure wurden eine blank-Auftragung (LM), 3 Probenauftragungen (120 µg AS), 1 Auftragung mit der jeweiligen Aminosäure gespiked mit Glucose (0.05 % (m/m)) und 1 Auftragung Glucose entwickelt.
3.5.1.4. **Resultat der Untersuchungen auf Kohlenhydrate**

Es konnte bei keiner der 20 untersuchten Aminosäuren Glucose, Fructose oder Saccharose detektiert werden. Die untersuchten Proben enthielten damit keine dieser potentiellen Verunreinigungen in einer Konzentration von über 0.05 % (m/m). Ebenfalls konnten keine Hinweise auf N-Acetyl-Glucosamin gefunden werden, bei welchem die Detektionsgrenze bei 0.8 % (m/m) lag. Die untersuchten Proben erschienen im Rahmen der entwickelten Methode als rein und zeigten keine zusätzlichen Flecken, welche auf Verunreinigungen schliessen lassen würden.

3.5.2. **HPLC mit Brechzahldetektor**

Um Kohlenhydrate als mögliche Verunreinigungen von Aminosäuren zu isolieren und zu detektieren, wurde die Eignung einer HPLC-Methode mit Brechzahldetektor in Betracht gezogen. Brechzahldetektoren eignen sich zur unselektiven Detektion zahlreicher Substanzen. Dabei wird eine Änderung der Brechzahl eines Gemisches aus Elutionsmittel und Probe gegenüber der Brechzahl des reinen Elutionsmittel gemessen. Dem Vorteil der unselektiven Detektion stehen aber einige Nachteile gegenüber. Brechzahldetektoren sind weniger empfindlich als UV/Vis Detektoren und anfälliger auf äussere Einflüsse wie Temperatur- oder Druckschwankungen. Der Umstand, dass zu jedem Zeitpunkt gegen eine Referenz gemessen werden muss, hat zur Folge, dass nur unter isokratischen Bedingungen getrennt werden kann[73]. Dies schränkt die Möglichkeiten einer Trennung sehr ein. Eigene Versuchen mit einem HPLC-System (Merck Hitachi D-6000), LiChrospher 100 NH₂ (5µm, 250x4 mm) Säule und einem Brechzahldetektor (Merck RI-71) scheiterten schon an der Nachweisgrenze von Glucose (50 µg/ml H₂O/ACN 25:75). Der Response von Fructose und N-Acetyl-D-glucosamin war mit Glucose vergleichbar und es waren dementsprechend Nachweisgrenzen in ähnlicher Grössenordnung zu erwarten gewesen. Auf eine Optimierung der Methode wurde verzichtet, da eine Verbesserung die Nachweisgrenze bestenfalls um den Faktor 10 erniedrigt hätte. Dies hätte bei weitem nicht ausgereicht Glucose als 0.05 %-ige (m/m) Verunreinigung in Aminosäuren zu detektieren. Aus diesem Grund und der Einschränkung bedingt durch die isokratische Trennung wurde die entwickelte DC-Methode 3.5.1. als geeigneter zur Prüfung von Zuckern eingestuft. Es ist zu erwähnen, das neuere Modelle von Brechzahldetektoren (Bsp. RefractoFlow 60 SunChrom) schon werkseitig eine Empfindlichkeit für Glucose von 0.05 µg/ml garantieren. Unter diesen Umständen könnte eine solche Methode wieder aktuell werden.

3.5.3. **HPLC mit UV-Detektion bei 210 nm**

Im tiefen UV-Wellenlängenbereich zeigen fast alle Substanzen eine Absorption. Diese Eigenschaft könnte deshalb auch zur unselektiven Detektion von Aminosäuren und Kohlenhydraten genutzt werden. Der Versuch Fructose und Glucose mit dem gleichen HPLC-System wie unter 3.5.2. beschrieben und mit einem UV/Vis-Detektor (Merck Hitachi L-4250) bei einer Wellenlänge von 210 nm zu detektieren gelang nicht. Das Zuckerderivat NAG liess sich jedoch bis zu einer Konzentration von 0.5 µg/ml nachweisen. Damit wäre eine solche Methode zum Nachweis von NAG in Aminosäuren geeigneter als die entwickelte DC-Methode. Da aber die einfachen Zucker nicht zu detektieren waren, wurde der DC der Vortritt gelassen.
3.5.4 Schnelltest auf Glucose in Aminosäuren

Materialien

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Qualität</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose . H₂O</td>
<td>Ph. Eur.</td>
<td>Hänseler</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>Ph. Eur.</td>
<td>Fluka</td>
</tr>
</tbody>
</table>

Proben- und Probenvorbereitung

Es wurden 4 Proben zur Untersuchung hergestellt. Probe 1 bestand aus Asp und diente als Referenz, Probe 2 enthielt Asp mit 10 % (m/m) Glucose, Probe 3 enthielt Asp mit 0.1 % (m/m) Glucose und Probe 4 enthielt Asp mit 0.01 % (m/m) Glucose. Die Proben 2-3 wurden durch Verreibung im Mörser hergestellt. Probe 1 wurde ebenfalls im Mörser verrieben, aber ohne Glucose zu zusetzen. Abbildung 15 zeigte die Proben zu 100 mg in 3 ml Gewindeflaschen vor der Hitzeeinwirkung. Es konnten dabei optisch keine Unterschiede zwischen den Proben festgestellt werden.

Abbildung 15 Proben 1- 4 (je 100 mg) vor der Hitzeeinwirkung
Hitzebehandlung der Proben

Resultat von einfachem Test auf Glucose in Aminosäuren
Wie Abbildung 16 zeigt, verfärbten sich einige Proben. Nach Befragung von 6 Personen (es wurde im Voraus kein Hinweis über den Versuch gegeben), welche gebeten wurden, die Proben anhand der Stärke der Verfärbung anzuordnen, waren sich alle einig, dass sich die Proben 2 und 3 am stärksten verfärbt hatten. 3 Personen sagten aus, dass Probe 4 ein wenig dunkler war als Probe 1. Die anderen 3 Befragten konnten zwischen Probe 1 und 4 keinen deutlichen Unterschied erkennen. Dies liefert einen klaren Hinweis, dass eine potentielle Glucoseverunreinigung in Asp durch erhitzen bei 160 °C für 2 Stunden bis zu einer Konzentration von 0.1 % (m/m) gegen eine Referenz optisch erkannt wird. Es handelte sich also um den denkbar einfachsten Test um Glucose in Aspartat nachzuweisen und es wäre zu erwarten, dass der Test auch für weitere Aminosäuren und reduzierende Zucker funktioniert.

Abbildung 16 Proben 1-4 (je 100 mg) nach 2 h Inkubation bei 160 °C, deutliche Verfärbungen traten auf
3.6. Antibiotika

3.6.1. Dünnschichtchromatographie

20 Aminosäuren (Tabelle 21, S. 107) wurden mittels Dünnschichtchromatographie und Anisaldehyd-Schwefelsäure-Reagenz auf Kanamycin, Neomycin und Streptomycin überprüft.

3.6.1.1. Geräte und Materialien

Auftragegerät: Linomat IV (CAMAC)
Glaswanne: Flachbodenkammer (CAMAG) 20 x 20 cm Typ N mit Deckel
UV-Gerät: UV-Cabinet II (CAMAG)

Kieselgelplatte (60 F\textsubscript{254} 20 x 20 cm (MERCK))

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Qualität</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanamycin Sulfat</td>
<td>cell culture tested</td>
<td>Sigma</td>
</tr>
<tr>
<td>Neomycin Trisulfat</td>
<td>cell culture tested</td>
<td>Sigma</td>
</tr>
<tr>
<td>Streptomycin Sulfat</td>
<td>752 I.U./mg</td>
<td>Sigma</td>
</tr>
<tr>
<td>Anisaldehyd</td>
<td>purum</td>
<td>Fluka</td>
</tr>
<tr>
<td>4-(Dimethyloamin) –zimtaldehyd</td>
<td>purum</td>
<td>Fluka</td>
</tr>
<tr>
<td>Ninhydrin</td>
<td>BioChemika</td>
<td>Fluka</td>
</tr>
<tr>
<td>Ammoniak 32%</td>
<td>puriss p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Eisessig 100%</td>
<td>Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>Essigsäure 99%</td>
<td>Ph. Eur.</td>
<td>Hänselear</td>
</tr>
<tr>
<td>Salzsäure 36%</td>
<td>Ph. Eur.</td>
<td>Hänselear</td>
</tr>
<tr>
<td>Schwefelsäure 95%</td>
<td>purum</td>
<td>Hänselear</td>
</tr>
<tr>
<td>1-Butanol</td>
<td>reagent grade</td>
<td>Scharlau</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>puriss p.a.</td>
<td>Fluka</td>
</tr>
<tr>
<td>Ethanol</td>
<td>gradient grade</td>
<td>Merck</td>
</tr>
</tbody>
</table>
3.6.1.2. Methodenentwicklung

Die Methode entsprach im Wesentlichen derjenigen zur Untersuchung von Kohlehydraten (siehe 3.5.1.) und wurde für die Detektion von Aminoglykosidantibiotika in Aminosäuren erweitert. Die 3 zu untersuchenden Antibiotika wanderten mit dem verwendeten Laufmittel nur sehr wenig und blieben nahe der Startlinie. Dies war nicht optimal, aber dadurch waren sie deutlich von den Aminosäuren getrennt.

Die Weiterentwicklung der Methode beinhaltete Wahl des optimalen Sprühreagenz und Bestimmung der Detektionsgrenze. Dazu wurden je 6 Verreibungen von L-Glu mit den entsprechenden Antibiotika hergestellt. Die Konzentrationen betrugen 10, 1, 0.5, 0.1, 0.05, 0.01 % (w/w) Antibiotikum in L-Glu.

3.6.1.2.1 Wahl des optimalen Sprühreagenz und Detektionsgrenze

Zur Detektion von Kanamycin, Neomycin und Streptomycin in L-Glu wurde das Anisaldehyd-Schwefelsäure-, Ninhydrin- und 4-(Dimethylamino)-zimtaldehyd-Salzsäure-Reagenz getestet (Anhang S. 146). Es zeigte sich, dass das Anisaldehyd-Schwefelsäure-Reagenz die besten Resultate lieferte (siehe Tabelle 16) und im Falle von L-Glu konnten die 3 Antibiotika bis zu einem Limit von 0.05 % (w/w) detektiert werden. Allerdings liessen sich mit diesem Reagenz die Aminosäuren in der Regel nicht anfärben (siehe Abbildung 17). Die Ausnahmen bildeten L-Arg, L-Asn, L-Gln, L-Phe L-Ser, L-Thr, L-Trp und L-Tyr. Da das Interesse bei den Antibiotika lag und es sich um eine gut untersuchte DC-Methode handelte, bei der die Positionen der zu untersuchenden Aminosäuren bekannt waren, stellte dies kein Hinderungsgrund dar.

Tabelle 16 Antibiotikanachweis mittels DC und verschiedenen Sprühreagenzien

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Rf-Wert</th>
<th>Anisaldehyd-Schwefelsäure-Reagenz</th>
<th>4-(Dimethylamino)-zimtaldehyd-Salzsäure-Reagenz</th>
<th>Ninhydrin-Reagenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanamycin Sulfat</td>
<td>0.02</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Neomycin Trisulfat</td>
<td>0.02</td>
<td>0.05</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>Streptomycin Sulfat</td>
<td>0.04</td>
<td>0.05</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>
3.6.1.3. Probenvorbereitung und Methode

Es wurden Probelösungen (1 %, m/V) aus den 20 Aminosäuren mit dem jeweiligen Lösungsmittel (siehe 3.5.1.2.1) hergestellt. Von jeder Aminosäure wurde ein Blank (LSM) und 2 Proben (120 µg AS) entwickelt.

3.6.1.4. Resultat der Untersuchungen auf Kanamycin, Neomycin und Streptomycin

Es konnten keine Hinweise auf das Vorhandensein von Kanamycin, Neomycin oder Streptomycin bis zu einem Limit von 0.05 % (m/m) in den 20 untersuchten Aminosäuren gefunden werden. Das nachträgliche bedampfen mit Iod lieferte auch keine weiteren Erkenntnisse. Die untersuchten Aminosäuren erschienen als rein.
Das verwendete Anisaldehyd-Schwefelsäure-Reagenz reagiert nicht nur mit Aminoglykosidantibiotika, sondern auch mit Tetracyclin, Makrolidantibiotika und den Stoffklassen der Antioxidantien, Steroiden, Prostaglandinen, Kohlenhydraten, Phenolen, Glycosiden, Sapogeninen und Mykotoxinen[75]. Es konnten aber auch sonst keine zusätzlichen Flecken detektiert werden, welche auf Verunreinigungen schliessen lassen könnten. Potentielle Verunreinigungen der Aminosäuren mit Chloramphenicol oder Penicillin lassen sich mit diesem Reagenz nicht nachweisen.

3.6.2. HPLC mit Festphasenextraktion

3.6.2.1. Geräte und Materialien

Festphasenextraktion

Gerät: SPE-10 (Baker)
SPE Säule: Oasis® HLB 1cc (30 mg) (Waters)

Gerät
Gradient Pump: GP 50 (Dionex)
Autosampler: AS 3500 (Dionex)
UV-VIS-Detektor: AD25 (Dionex)
Software: PeakNet (Version 6.30 SP3 Build 594)

Säulen
Vorsäule: LiChroCart® RP-18 250x4 (Merck)
Trennsäule: LiChrosper® RP select B 250x4 (Merck)

Detektion: 210 nm

Injektionsvolumen: 20 µl

Fließgeschwindigkeit: 1 ml/min

Mobile Phase
A: Puffer: 10 mM Phosphatpuffer pH 2.1
B: Acetonitril

Trennprogramm

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>
85

3.6.2.2 Methodenentwicklung

Das Ziel der Methode lag im Nachweis von Chloramphenicol, Penicillin V und Tetracyclin in Aminosäuren bis zu einer Limite von 0.05 %. Die Methodenentwicklung umfasste die Ermittlung der optimalen Detektionswellenlänge, die Wahl der Trennsäule, die Optimierung der Trennung, Detekionsgrenze und die Festphasenextraktion. Die Methodenentwicklung wurde anhand von L-Glu und dessen Verreibungen mit den entsprechenden Antibiotika durchgeführt. Die Konzentrationen der Verreibungen betrugen 10, 1, 0.5, 0.1, 0.05, 0.01 % (w/w) Antibiotikum in L-Glu. Die Literatur, welche sich mit ähnlichen Problemstellungen befasst hatte, bildete die Ausgangslage [76].

<table>
<thead>
<tr>
<th>Untersuchte Substanz</th>
<th>Detektion</th>
<th>Säule</th>
<th>Mobile Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramphenicol [77]</td>
<td>278 nm</td>
<td>RP 18</td>
<td>0.005 M (NH₄)₂PO₄ : ACN (76:24)</td>
</tr>
<tr>
<td>Chloramphenicol [78]</td>
<td>DAD</td>
<td>RP 18</td>
<td>0.01 M NaCH₃COO (710 ml) : ACN (290 ml)</td>
</tr>
<tr>
<td>Penicillin [79]</td>
<td>DAD/ 225 nm</td>
<td>RP 8</td>
<td>Gradient mit 20 mM Na₂HPO₄, MeOH und ACN</td>
</tr>
<tr>
<td>Tetracyclin [77]</td>
<td>254 nm</td>
<td>RP 18</td>
<td>H₂O (760 ml), ACN (240 ml), N,N-dimethyl-formamide (60 ml), Ethanolamine (5 ml), NaHPO₄ (2.5 g)</td>
</tr>
<tr>
<td>Tetracyclin [80]</td>
<td>355 nm</td>
<td>RP 18</td>
<td>0.02 M Oxalsäure : MeOH : ACN (60 : 20 : 20)</td>
</tr>
</tbody>
</table>

3.6.2.2.1 Detektionswellenlänge

Zur Ermittlung der optimalen Detektionswellenlänge wurden Wellenlängenscans zwischen 200 und 800 nm von allen 3 Antibiotika und L-Glu durchgeführt (Gerät siehe 4.3.4.1). Als Lösungsmittel wurde Phosphatpuffer (10mM, pH 6.2) verwendet. Aus dem Vergleich der Spektren wurde 210 nm als Detektionswellenlänge bestimmt. Ein weiterer Grund für diese Wahl war, dass der tiefe Wellenlängenbereich zudem eine unspezifische Detektion erlaubte und so die Möglichkeit bestand in den zu untersuchenden Aminosäuren neben den Antibiotika auch andere Verunreinigungen zu detektieren.
3.6.2.2 Trennsäule

Die Trennbarkeit einer Mischung aus Chloramphenicol, Penicillin V und Tetracyclin (0.08 mg/ml 10 mM Phosphatpuffer pH 3.15) wurde an 4 verschiedenen Säulen erprobt. Es handelte sich dabei um 2 LiChrospher® RP select B unterschiedlicher Länge (250x4 bzw. 125x4 mm), einer LiChrospher® RP8 250x4 mm und einer LiChrospher® 100 RP18 endcapped (Merck). Es wurden für die Trennung folgende Bedingungen verwendet: Eluent 10 mM Phosphatpuffer pH 3.15 (A)/Acetonitril (B); Injektionsvolumen 20 µl; Fluss 1 ml/min; Detektion UV 220 nm. Dazu wurde ein einfaches Gradientenprogramm verwendet (0 min 95% A, 20 min 60% A, 30 min 15% A, 35 min 15% A).

Es zeigte sich, dass unter diesen Bedingungen die LiChrosper® RP select B 250x4 mm die beste Trennung ermöglichte.

3.6.2.2.3 Optimierung der Trennung

Eine Mischung aus Chloramphenicol, Penicillin V und Tetracyclin wurde bei unterschiedlichem pH getrennt (pH 2.1, 2.5, 3.15 und 6.2). Dabei wurden folgende Bedingungen verwendet: Eluent 10 mM Phosphatpuffer mit entsprechendem pH (A)/Acetonitril (B); Injektionsvolumen 20 µl; Fluss 1 ml/min; Detektion UV 210 nm; Gradientenprogramm 0 min 75% A, 2 min 75% A, 19 min 60% A, 30 min 15% A, 35 min 15% A.

Abbildung 18 Antibiotika Mischung getrennt bei pH 2.1

Abbildung 19 Antibiotika Mischung getrennt bei pH 6.2

Abbildung 20 Trennung einer Mischung von L-Glu und Antibiotika mit der entwickelten Methode, wie sie auch für die Hauptmessungen verwendet wurde.
3.6.2.2.4 Detektionsgrenze

Aus Verreibungen von Chloramphenicol, Penicillin V, Tetracyclin HCl mit L-Glu in den Konzentrationen 10, 1, 0.5, 0.1, 0.05, 0.01 % (w/w) wurde die Detektionsgrenze der entwickelten Methode bestimmt. Dazu wurden Probelösungen (2.5 mg Probe/ml) jeder Verreibung und reinem L-Glu in 10 mM Phosphatpuffer (pH 2.1) hergestellt und wie unter (3.6.2.1.) Geräte und Materialien beschrieben analysiert. Die Detektionsgrenze für Chloramphenicol und Penicillin in L-Glu lag bei 0.05 %.

Tetracyclin HCl liess sich mit dieser Methode nur bis zu 0.5 % nachweisen (siehe Tabelle 17). Dies lag daran, dass Tetracyclin HCl in kleinen Konzentrationen mit dem verwendeten Trennprogramm eine starke Peakverbreitung mit tailing aufwies. Um das gesteckte Nachweisziel von 0.05 % trotzdem zu erreichen, wurde eine Anreicherung der Probenlösung mittels der Technik der Festphasenextraktion durchgeführt. Dadurch konnte eine Erniedrigung der Detektionsgrenze bei allen Antibiotika erreicht werden (siehe Tabelle 17). Tetracyclin HCl konnte nun bis 0.05 % in L-Glu nachgewiesen werden. Zusätzlich waren die relativen Standardabweichungen an der Detektionsgrenze deutlich tiefer als zuvor.

Tabelle 17 Detektionsgrenze von Chloramphenicol, Penicillin V und Tetracyclin HCl in L-Glu mit und ohne Festphasenextraktion

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Chloramphenicol</th>
<th>Penicillin V</th>
<th>Tetracyclin HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ohne SPE</td>
<td>Mit SPE</td>
<td>Ohne SPE</td>
</tr>
<tr>
<td>Detektionsgrenze in L-Glu (w/w)</td>
<td>0.05 %</td>
<td>0.01 %</td>
<td>0.05 %</td>
</tr>
<tr>
<td>Signalfläche (µAU/min)</td>
<td>478</td>
<td>835</td>
<td>260</td>
</tr>
<tr>
<td>rsd %</td>
<td>12.7</td>
<td>1.81</td>
<td>27.8</td>
</tr>
<tr>
<td>Linearität (R²)</td>
<td>0.9994</td>
<td>0.9991</td>
<td>0.9981</td>
</tr>
</tbody>
</table>

3.6.2.2.5 Festphasenextraktion

Die Festphasenextraktion zur Probenvorbereitung wurde aufgrund der Problematik der zu hohen Nachweissgrenze von Tetracyclin HCl in L-Glu (siehe 3.6.2.2.4) eingeführt. Dabei sollten Chloramphenicol, Penicillin V und Tetracyclin HCl aus der Probelösung an der festen Phase angereichert werden, während die zu untersuchenden Aminosäuren nur wenig Wechselwirkung mit der Säule zeigen sollten. Die Wahl fiel aufgrund bereits vorhandener Anwendungen mit ähnlichen Problemstellungen auf die Oasis® HLB (Waters) SPE Säulen. Das Protokoll zum Vorgehen befindet sich im Anhang S. 151. Bei einer erneuten Ermittlung der Detektionsgrenze konnte gezeigt werden, dass die Festphasenextraktion erfolgreich war (siehe Tabelle 17).
3.6.2.3. Probenvorbereitung und Methode

Die 20 zu untersuchenden Aminosäuren (Tabelle 21, S.107) wurden in 10 mM Phosphatpuffer pH 2.1 gelöst (25 mg AS in 10 ml Puffer). Aufgrund von Löslichkeitsproblemen wurden L-Asp 50 µl und L-Tyr 100 µl HCl (36%) zugegeben. Diese Lösungen wurden zuerst ohne Festphasenextraktion wie unter 3.6.2.1. beschrieben analysiert. Zusätzlich wurden jeweils 5 ml der Probelösungen einer Festphasenextraktion unterzogen (Protokoll siehe Anhang S. 151) und nochmals auf dieselbe Weise analysiert.

3.6.2.4. Resultat der Untersuchungen auf Chloramphenicol, Penicillin und Tetracyclin

Abbildung 21 L-Asp Chromatogramm (210 nm) vor und nach SPE

<table>
<thead>
<tr>
<th>L-Asp</th>
<th>vor SPE</th>
<th>nach SPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Rt (min)</td>
<td>Signalfläche (mVs)</td>
</tr>
<tr>
<td>1.</td>
<td>2.60</td>
<td>1288</td>
</tr>
</tbody>
</table>

Signalfläche nach SPE 5.3-fach größer
Abbildung 22 L-Val Chromatogramm (210 nm) vor und nach SPE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche nach SPE 2.3-fach größer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4.97</td>
<td>730</td>
<td>34</td>
<td>1679</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 23 L-Lys Chromatogramm (210 nm) vor und nach SPE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche nahm mit t zu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.73</td>
<td>250</td>
<td>27.6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>1.84</td>
<td>67</td>
<td>7.6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Aminosäuren in der Pharmakopöe

Abbildung 24 L-Tyr Chromatogramm (210 nm) vor und nach SPE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Rt (min)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
<th>Signalfläche (mVs)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.84</td>
<td>11958</td>
<td>64.7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Signalfläche nahm mit t zu

3.7. Metalle

Die Untersuchungen auf Metallkontaminationen in L-Asp, Gly, L-Ile und L-Ser wurden mit grosser Unterstützung von Prof. D. Günther und im Rahmen einer Semesterarbeit von Herrn S. Staub am Laboratorium für analytische anorganische Chemie (ETHZ) durchgeführt.
3.7.1. ICP-MS

ICP-MS (ionductively-coupled-plasma mass spectrometry) stellt eine der leistungsfähigsten Methoden in der Elementaranalytik dar. Die Nachweigrenzen liegen typischerweise im ppb-Bereich.

3.7.1.1. Geräte und Materialien

ICP-Sektorfeld-MS: Element2 (ThermoFinnigan, Bremen)
- high-resolution sector-field MS
- dynamic range: 9 units (LOD:ppt)
- meinhard-nebulizer (double pass spraycamber)

Geräteparameter

<table>
<thead>
<tr>
<th>Torch-Position (mm)</th>
<th>Lenses (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-pos.</td>
<td>4.8 extraction</td>
</tr>
<tr>
<td>y-pos.</td>
<td>2.8 focus</td>
</tr>
<tr>
<td>z-pos.</td>
<td>-5 x-deflection 2.2 shape 160 y-deflection 5.1</td>
</tr>
</tbody>
</table>

Gas Flows (l/min)
- cool gas 16.8
- auxiliary gas 1.1

Sample gas 1
- Rotation Quad1
- focus Quad1
- mass window (%) 80
- integration window (%) 50
- sample time (s) 0.01
- mittlere Auflösung (m/Δm) 4000 Samples per peak

Probenaufschluss: ultraCLAVE II (MLS GmbH)

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>Temperatur (°C)</th>
<th>Leistung (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>900</td>
</tr>
<tr>
<td>20</td>
<td>135</td>
<td>90</td>
</tr>
<tr>
<td>30</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Pipetten: Eppendorf Reference (0.1, 0.2, 0.5, 1 und 2 ml)
Waagen: Mettler AE 240, Mettler AT 400

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Qualität</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₃ 65%</td>
<td>suprapur</td>
<td>Merck AG</td>
</tr>
<tr>
<td>H₂O₂ 30%</td>
<td>suprapur</td>
<td>Merck AG</td>
</tr>
<tr>
<td>Wasser</td>
<td>Milli-Q</td>
<td></td>
</tr>
</tbody>
</table>
3.7.1.2. Methodenentwicklung
Die Methodenentwicklung umfasste den Probenaufschluss, eine Übersichtsmessung und Optimierung der Konzentrationsbestimmung der Metalle mittels externer Kalibration.

3.7.1.2.1 Probenaufschluss und Verdünnung
Da die zu untersuchenden Aminosäuren in HCl und HNO₃ löslich waren, stellte der Probenaufschluss keine grossen Probleme dar. Für die Hauptmessung wurden jeweils 100 mg Aminosäure in 2 ml HNO₃ und 0.2 ml H₂O₂ mit einem ultraCLAVE aufgeschlossen. Die Proben wurden vor der Messung mit HNO₃ (5%) um den Faktor 100 verdünnt, wobei im letzten Verdünnungsschritt Indium (10 ppb, CPI International, PeakPerformance) als interner Standard zugegeben wurde.

3.7.1.2.2 Übersichtsmessung
Die Übersichtsmessungen der 4 Aminosäuren, bei welchen das gesamte Massenspektrum (m/z 5-255) gescannt wurde, ergaben, dass folgende Elemente weiter untersucht werden sollten:

| Na, Mg, Al, P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Y, Mo, Pd, Cd, Sb, Ba, Hf, W, Pt, Hg, Tl, Pb, Th, U |

Für die Übersichtsmessung wurden jeweils 1 ml Probe (0.01 mg Aminosäure /ml 1 M HCl), 2 ml HNO₃ und 0.2 ml H₂O₂ mit einem ultraCLAVE aufgeschlossen. Als blank diente 1 ml Milli-Q-Wasser. Daraus wurden 2 Serien mit 100 ppm bzw. 1000 ppm Matrixbelastung vermessen. Indium (10 ppb, CPI International, PeakPerformance) diente als interner Standard. Der Massenanteil der Elemente wurde durch Vergleich der erhaltenen Intensitäten mit dem internen Standard abgeschätzt und daraus die weiter zu untersuchenden Elemente und die Probenverdünnung bestimmt.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Herstellung</th>
<th>Verfärbung nach Bestrahlung</th>
<th>Qualität</th>
<th>Prüfung auf Schwermetalle</th>
<th>Prüfung auf Eisen</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asparaginsäure</td>
<td>Enzymatische Synthese</td>
<td>keine</td>
<td>Ph. Eur.</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Glycin</td>
<td>synthetisch</td>
<td>stark gelb</td>
<td>Ph. Eur.</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>Fermentation</td>
<td>keine</td>
<td>Ph. Eur.</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>L-Serin</td>
<td>Fermentation</td>
<td>bräunlich</td>
<td>Ph. Eur.</td>
<td>Ja</td>
<td>ja</td>
</tr>
</tbody>
</table>
3.7.1.2.3 Optimierung der Konzentrationsbestimmung mittels externer Kalibration

Der Aufschluss und die Verdünnung der Proben erfolgten wie unter Probenaufschluss beschrieben. Für die externe Kalibration wurden Lösungen mit 1, 5, 10 und 20 ppb Elementkonzentrationen hergestellt. Dazu wurden 1000 ppm Standards (Merck-IV-Standard) dementsprechend mit HNO₃ (5%) verdünnt. Um Einflüsse der Matrix auf den internen Standard zu überprüfen, wurden zusätzlich zwei HNO₃ (5%) Lösungen mit 10 ppb Indium hergestellt. Als erstes wurden die Kalibrationslösungen gemessen um die Linearität der Kalibrationsgerade zu überprüfen ($R^2 > 0.998$, Ausnahme Na und Ca). Danach wurden die Aminosäureproben und zum Schluss die Indium Blanklösungen vermessen.

3.7.1.3. Messung

3.7.1.4. Resultat der Untersuchungen auf Metalle

Tabelle 18: Auflistung der gefundenen quantifizierten Elemente mittels ICP-MS und externer Kalibration

<table>
<thead>
<tr>
<th>Element</th>
<th>LOD (ppb)</th>
<th>R²</th>
<th>L-Asp (ppm)</th>
<th>rsd (%)</th>
<th>Gly (ppm)</th>
<th>rsd (%)</th>
<th>L-Ile (ppm)</th>
<th>rsd (%)</th>
<th>L-Ser (ppm)</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.1</td>
<td>0.9938</td>
<td>0.8</td>
<td>25.0</td>
<td>0.6</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ba</td>
<td>0.1</td>
<td>0.9986</td>
<td>0.02</td>
<td>10.0</td>
<td>0.04</td>
<td>10.0</td>
<td>0.04</td>
<td>10.0</td>
<td>0.02</td>
<td>10.0</td>
</tr>
<tr>
<td>Cr</td>
<td>0.03</td>
<td>0.9997</td>
<td>0.05</td>
<td>20.0</td>
<td>0.09</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>15.0</td>
</tr>
<tr>
<td>Cu</td>
<td>0.8</td>
<td>0.9932</td>
<td>1.1</td>
<td>9.1</td>
<td>0.3</td>
<td>16.7</td>
<td>0.2</td>
<td>15.0</td>
<td>0.1</td>
<td>20.0</td>
</tr>
<tr>
<td>Fe</td>
<td>0.6</td>
<td>0.9973</td>
<td>0.6</td>
<td>16.7</td>
<td>3.2</td>
<td>9.4</td>
<td>0.3</td>
<td>13.3</td>
<td>0.4</td>
<td>12.5</td>
</tr>
<tr>
<td>K</td>
<td>26.8</td>
<td>0.6481</td>
<td>4.5</td>
<td>8.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>26.9</td>
<td>0.9914</td>
<td>3.2</td>
<td>18.8</td>
<td>3.3</td>
<td>21.2</td>
<td>1.0</td>
<td>50.0</td>
<td>1.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.9996</td>
<td>0.04</td>
<td>10.0</td>
<td>0.5</td>
<td>10.0</td>
<td>0.005</td>
<td>20.0</td>
<td>0.01</td>
<td>9.0</td>
</tr>
<tr>
<td>Na</td>
<td>0.8</td>
<td>0.5372</td>
<td>14.0</td>
<td>8.6</td>
<td>1.2</td>
<td>8.3</td>
<td>12.2</td>
<td>9.0</td>
<td>1.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Ni</td>
<td>0.2</td>
<td>0.9963</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>0.0</td>
<td>0.02</td>
<td>10.0</td>
<td>0.2</td>
<td>10.0</td>
</tr>
<tr>
<td>P</td>
<td>13.2</td>
<td>0.9992</td>
<td>2.8</td>
<td>10.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sb</td>
<td>0.1</td>
<td>0.9978</td>
<td>0.03</td>
<td>33.3</td>
<td>0.08</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>0.008</td>
<td>50.0</td>
</tr>
<tr>
<td>Sr</td>
<td>0.04</td>
<td>0.9989</td>
<td>0.1</td>
<td>10.0</td>
<td>0.1</td>
<td>10.0</td>
<td>0.03</td>
<td>16.7</td>
<td>0.04</td>
<td>12.5</td>
</tr>
<tr>
<td>W</td>
<td>0.1</td>
<td>0.9977</td>
<td>0.07</td>
<td>2.9</td>
<td>-</td>
<td>-</td>
<td>0.01</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>2.3</td>
<td>0.9977</td>
<td>0.3</td>
<td>13.3</td>
<td>0.2</td>
<td>15.0</td>
<td>0.1</td>
<td>20.0</td>
<td>0.2</td>
<td>15.0</td>
</tr>
</tbody>
</table>
3.8. Diskussion der Aminosäuren in der Pharmakopöe

Aminosäuren und Derivate
Wie unter 3.3.4. beschrieben konnte mit Hilfe von Vorsäulenderivatisierung, HPLC und Fluoreszenzdetektion eine Reinheitsprüfung für Aminosäuren erstellt werden, welche es ermöglichte fremde Aminosäuren und Aminderivate bis zu einer Grenze von 0.05 % (Mol/Mol) zu detektieren. Tabelle 19 stellt einen Vergleich zwischen der Ph. Eur. Prüfung, der Methode mittels Kapillarelektrophorese nach Novatchev [47] und der entwickelten Methode dar.

Tabelle 19 Methodenvergleich der Reinheitsprüfungen auf Fremdaminosäuren und Derivate

<table>
<thead>
<tr>
<th>Methode</th>
<th>Ph. Eur. Methode</th>
<th>Kapillarelektrophorese</th>
<th>HPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technik</td>
<td>DC</td>
<td>CE</td>
<td>HPLC</td>
</tr>
<tr>
<td>Derivatisierungsreagenz</td>
<td>Ninhydrin</td>
<td>FMOC</td>
<td>FMOC</td>
</tr>
<tr>
<td>Detektion</td>
<td>Sichtbare Flecken auf DC-Platte</td>
<td>UV (254 nm)</td>
<td>Fluoreszenz (ex. 260 nm/ em. 313 nm)</td>
</tr>
<tr>
<td>Nachweisgrenze auf Fremdaminosäuren</td>
<td>0.5 %</td>
<td>0.05 %</td>
<td>0.05 %</td>
</tr>
</tbody>
</table>

FMOC in 6-fachem Überschuss mit einer Reaktionszeit von 2 min bei RT konnte als geeignetes Derivatisierungsreagenz für Aminosäuren bestätigt werden. Es wurde zudem eine n-Pentan Extraktion nach Derivatisierung zur Entfernung von überschüssigem Derivatisierungsreagenz angewendet (siehe 3.3.4.2.2). Dabei war man sich des Risikos bewusst, dass potentielle lipophile Verunreinigungen durch diese Extraktion der Analyse entzogen werden könnten. Die zusätzlichen Untersuchungen an 19 Aminosäuren mit und ohne n-Pentan Extraktion ergaben jedoch keine Anhaltspunkte auf eine grössere diesbezügliche Problematik, so dass der Vorteil der Extraktion zur Entfernung von überschüssigem Reagenz klar überwog. Es ist aber festzuhalten, dass sehr lipophile Verunreinigungen durch die n-Pentan Extraktion der anschliessenden Analyse entzogen werden könnten.

Das Trennprogramm wurde zur Auftrennung von 19 Aminosäuren optimiert (siehe 3.3.4.2.3). Damit konnte bei allen 19 zu untersuchenden Aminosäuren das gleiche Trennprogramm verwendet werden, was somit einen Quervergleich der erhaltenen Chromatogramme erlaubte. Eine Basislinien Trennung konnte dabei nicht bei allen Aminosäuren erreicht werden (zwischen L-Gln und L-Ser, sowie Gly und L-Thr). L-His konnte mit dieser Methode nicht verlässlich erfasst werden. Zum einen fiel die Retentionszeit von L-His mit derjenigen von L-Thr zusammen und zum andern
zeigten sich Stabilitätsprobleme, wie sie die Ph. Eur. unter 2.2.56 erwähnt. Es muss damit darauf hingewiesen werden, dass die Methode zum Nachweis von L-His nicht zuverlässig ist. Die anderen untersuchten Aminosäuren zeigten diese Problematik nicht.

Ein weiteres Phänomen, welches oft bei einer Trennung auftrat, war eine Retentionszeitverschiebung (z. B. siehe L-Asn Peak S. 32). Diese konnte manchmal auch 1 min betragen. Es wurde vermutet, dass diese Problematik mit dem verwendeten flachen Gradientenprogramm zusammenhängt, welches vom HPLC-Gerät nicht immer problemlos umgesetzt werden konnte (siehe 3.3.4.1.). Die relative Retention blieb davon aber ausgenommen und so wurde diese zum Vergleich verschiedener Chromatogramme verwendet.

Der verwendete Puffer (\(\text{NaH}_2\text{PO}_4, 10\ \text{mM}, \text{pH} 8\)) war basisch und lag damit an der Grenze der Anwendungsmöglichkeit der verwendeten Säule (Waters Spherisorb® 5µm ODS2 pH 2-8) (siehe 3.3.4.2.3.). Dadurch musste eine Säule jeweils nach ca. 300 Analysen ersetzt werden. Durch Verwendung einer basestabileren Säule könnte die Wirtschaftlichkeit der Methode ohne analytische Einbussen noch zusätzlich verbessert werden.

Die Messabweichung der Methode zum Gehaltvergleich verschiedener Chargen der gleichen Aminosäuren war mit 5.5 % eher gross (siehe 3.3.4.2.4.). Dies lag vor allem an den vielen kleinen Verdünnungsschritten, welche bei der Derivatisierung notwendig waren (siehe Anhang S. 150). Sollte sich das Interesse nur auf einen Gehaltvergleich oder eine Gehaltsbestimmung einer Aminosäure beschränken, so liesses sich durch Optimierung der Verdünnungsschritte die Messabweichung leicht senken.

Untersuchung von 19 Aminosäuren

Im Vergleich mit dem Test auf Ninhydrin nachweisbare Substanzen der Ph. Eur. konnte mit der HPLC Methode mit FMOC Vorsäulenderivatisierung wesentlich mehr Information über die Reinheit der Aminosäuren gewonnen werden (siehe 3.3.4.). Mit der Ph. Eur. Methode wurden zuvor bei den untersuchten Aminosäuren keine zusätzlichen Verunreinigungen detektiert und die Proben galten nach Ph. Eur. Kriterien als rein (siehe 4.2.5.4.). Die Analysen derselben Proben mit der entwickelten HPLC-Methode ergaben ein differenzierteres Bild (siehe 3.3.4.4.1.). Mit Ausnahme von L-Ala und L-Pro konnten bei allen untersuchten Aminosäuren zusätzliche Peaks gefunden werden. Die Verwendung einer sensitiveren Methode zur Detektion von potentiellen Verunreinigungen erwies sich somit als erfolgreich und es konnte gezeigt werden, dass unter der 0.5 % Limite sehr viele detektierbare Verunreinigungen auftraten. Insgesamt wiesen aber alle untersuchten Aminosäuren sehr hohe Reinheit auf und die Gesamtverunreinigung wurde in allen Fällen als unkritisch beurteilt.

Untersuchung von 19 Chargen Isoleucin

Die untersuchten Chargen beider Hersteller A und B wiesen nach Untersuchung (wie deklariert) hohe Reinheit auf (siehe 3.3.4.4.2.). Trotzdem konnten Verunreinigungen mit der entwickelten HPLC-Methode detektiert werden. Bei beiden Herstellern konnte Valin als Verunreinigung identifiziert werden. Insgesamt war die Reinheit bei Hersteller B (Gesamtverunreinigung 0.17 %) höher als bei Hersteller A (Gesamtverunreinigung 0.47 %).
Untersuchung von 15 Chargen Phenylalanin
Es wurden insgesamt 15 Chargen Phe von 2 Herstellern untersucht (siehe 3.3.4.4.3). Es konnten dabei nur sehr kleine Unterschiede zwischen den beiden Herstellern gefunden werden. Typischerweise enthielt Phe des Herstellers A einen kleinen Peak bei einer Retentionszeit von 33.49 min, welcher bei Hersteller B nicht vorkam. Allerdings standen bei Hersteller A auch mehr Chargen zur Untersuchung zur Verfügung als bei Hersteller B. Bei beiden Herstellern zeigten die Aminosäuren mit der verwendeten Methode hohe Reinheit.

Untersuchung von 11 Chargen Serin
Alle 3 Hersteller zeigten ein ähnliches Verunreinigungsprofil, welches aus mindestens 3 Verunreinigungen bestand (siehe 3.3.4.4.4). Die Gesamtverunreinigung fiel durch das Vorhandensein eines Peaks (siehe Peak 3 Hersteller A, S. 57) sehr hoch aus (> 1%). Es bestehen aber berechtigte Zweifel, dass es sich dabei um eine echte Verunreinigung handelt. Viel wahrscheinlicher erscheint es, dass es sich dabei um ein Nebenprodukt der Derivatisierung handelt, da dieses Phänomen auch noch bei anderen Aminosäuren beobachtet wurde (3.3.4.4.1 Gln, Gly und Tyr). Zudem wäre eine so grosse Verunreinigung der zuvor angewendeten Ph. Eur. Prüfung kaum entgangen. Ohne diese Verunreinigung lag die Gesamtverunreinigung bei allen 3 Herstellern unter 0.14 %, was einer sehr hohen Reinheit entsprach.

Flüchtige Verunreinigungen und Lösungsmittelrückstände
Bei den unbehandelten Aminosäuren konnten bis auf eine Ausnahme (Leu) keine flüchtigen Verunreinigungen oder Zersetzungsprodukte detektiert werden (siehe 3.4.1.4.1). Da sich damit ausser für Leucin keine Hinweise auf eine Problematik mit dieser Gruppe von Verunreinigungen ergaben, wurde der Schluss gezogen, dass bei der Produktion anfallende flüchtige Verunreinigungen effektiv bei der Reinigung entfernt werden konnten. Dass die Methode aber geeignet war um flüchtige Zersetzungsprodukte von Aminosäuren sehr sensitiv zu detektieren, zeigte sich einerseits in der Methodenentwicklung (siehe 3.4.1.2.) und andererseits im Vergleich zu den antimikrobiell behandelten Aminosäuren (siehe 3.4.1.4.2 und 3.4.1.4.3), bei welchen viele Zersetzungsprodukte auftraten und wovon viele identifiziert werden konnten.

Kohlenhydrate
Obwohl 12 der 20 untersuchten Aminosäuren mittels Fermentation hergestellt wurden und damit während der Produktion massivem Zusatz von Kohlehydraten als Nährstoffquelle ausgesetzt waren, konnte bei keiner Aminosäure ein Hinweis auf Kohlenhydrate über 0.05 % mit der entwickelten DC-Methode gefunden werden (siehe 3.5.1.4.). Die Hypothese, wonach bei fermentativ hergestellten Aminosäuren Kohlenhydrate als Verunreinigungen auftreten könnten, wurde bei den untersuchten
Aminosäuren nicht bestätigt. Sollte es sich in der Zukunft oder durch andere Untersuchungen als notwendig erweisen, eine Grenzprüfung auf Kohlenhydrate bei Aminosäuren einzuführen, so könnte auf die entwickelte Methode zurückgegriffen werden. Eine Ph. Eur. Grenzprüfung auf Saccharose für Phe könnte wie folgt aussehen:

Mit Thymol-Schwefelsäure-Reagenz nachweisbare Substanzen: Die Prüfung erfolgt mit Hilfe der Dünnstichchromatographie (2.2.27) unter Verwendung einer Schicht eines geeigneten Kieselgels.

Untersuchungslösung a: 0.10 g Substanz werden in einer Mischung aus Methanol R, Wasser R und konzentrierter Ammoniak-Lösung R 1 (500:300:15 Volumenteile) zu 10 ml gelöst.

Referenzlösung a: 10.0 mg Saccharose R werden in einer Mischung aus Methanol R, Wasser R und konzentrierter Ammoniak-Lösung R 1 (500:300:15 Volumenteile) zu 10 ml gelöst. 500 µl dieser Lösung werden mit derselben Mischung zu 100 ml gelöst.

Referenzlösung b: 10.0 g Saccharose R werden in einer Mischung aus Methanol R, Wasser R und konzentrierter Ammoniak-Lösung R 1 (500:300:15 Volumenteile) zu 10 ml gelöst. 9 ml dieser Lösung werden mit 1 ml Untersuchungslösung a gemischt.

Auf die Platte werden getrennt 12 µl (5 mm Banden) jeder Lösung aufgetragen. Die Platte wird an der Luft getrocknet. Die chromatographie erfolgt mit einer Mischung von 10 Volumenteilen Wasser R, 15 Volumenteilen Methanol R, 25 Volumenteilen wasserfreier Essigsäure R und 50 Volumenteilen Dichlorethan R über eine Laufstrecke von 10 cm. Die Platte wird im Warmluftstrom getrocknet, mit einer Lösung aus 0.5 g Thymol R in 5 ml Schwefelsäure R und 95 ml Ethanol 96% R besprüht und für 10 min bis die Flecken erscheinen bei 115 °C erhitzt. Kein im Chromatogramm der Untersuchungslösung a auftretender Nebenfleck darf größer oder stärker gefärbt sein als der Fleck im Chromatogramm der Referenzlösung a (0.05 Prozente). Die Prüfung darf nur ausgewertet werden, wenn das Chromatogramm der Referenzlösung b 2 deutlich getrennte Flecken aufweist.

Eine noch einfachere Lösung könnte der Schnelltest auf Glucose liefern (siehe 3.5.4.).

Antibiotika

Die DC-Methode, welche zum Nachweis von Aminoglycosidantibiotika verwendet wurde und im Wesentlichen derjenigen für Kohlenhydrate entsprach, war in der Lage Aminosäuren von Antibiotika zu trennen. Allerdings blieben die Antibiotika sehr nahe am Auftragungspunkt und liessen sich nicht untereinander trennen (siehe 3.6.1.2.). Eine Optimierung der Trennung durch Wahl eines neuen Laufmittels oder einer anderen Platte wäre angebracht.

Mittels HPLC und SPE konnten die 3 Antibiotika Chloramphenicol, Penicillin und Tetracyclin von den untersuchten Aminosäuren getrennt werden. Insbesondere die Technik der SPE eignet sich hervorragend zum Anreichern der gesuchten Antibiotika in der Probe (siehe Tabelle 17). Damit liess sich die Nachweisgrenze um den Faktor 5 senken.

Vor allem Tetracyclin stellte eine hohe Anforderung an die anschliessende Trennung. Nur durch Verwendung eines sehr sauren pH’s (2.1) war eine Analyse möglich.
Dadurch entstanden aber Stabilitätsprobleme mit Penicillin, welches sehr schnell (innert Stunden) Zersetzung zeigte. Zukünftige Fragestellungen über die Anwesenheit von Penicillin oder Tetracyclin in Aminosäuren sollten besser mit separaten und auf das jeweilige Antibiotikum zugeschnittenen Methoden beantwortet werden.

Metalle

3.8.1. Vorschlag einer neuen Prüfung auf verwandte Substanzen

Der Fall von Tryptophan hatte in der Vergangenheit bewiesen, dass Nebenprodukte fermentativ hergestellter Aminosäuren schon in kleinsten Mengen die Gesundheit gefährden können (im Falle von Trp limitiert die Ph. Eur. Methode die mit der Problematik assoziierte Substanz 1,1′-ethylidenbis(tryptophan) auf 10ppm). Die in dieser Arbeit entwickelte Methode basierend auf HPLC stellt einen Lösungsansatz dieser Problematik dar. Mit ihrem Potential Fremdaminosäuren und Derivate als Verunreinigungen bis 0.05 % zu detektieren, ergibt sich dadurch eine bessere Kontrolle der Reinheit und damit auch der pharmazeutischen Sicherheit. Letztlich dürfte auch die Akzeptanz in der Industrie durch Verwendung einer verbreiteten Analysetechnik gesichert sein.

Im Folgenden wurde ein Vorschlag erarbeitet, wie eine neue Prüfung auf verwandte Substanzen im Falle von Serin aussehen könnte. Es muss aber betont werden, dass es sich dabei um einen Vorschlag handelt. Eine vollständige Methodenvalidierung müste durchgeführt werden und auch das Gradientenprogramm, welches zur Trennung von 19 Aminosäuren optimiert wurde, müsste letztlich auf jede einzelne Aminosäure angepasst werden.

Prüfung auf verwandte Substanzen

Die Prüfung erfolgt mit Hilfe der Flüssigchromatographie (Ph. Eur. 6.2/ 2.2.29). *Alle Lösungen müssen frisch hergestellt sein.*

FMOC-Cl-Lösung (6 nmol/µl): 15.6 mg FMOC-Cl werden in 10.0 ml Acetonitril R gelöst.

Borsäurepuffer (200 mM Borsäure R, pH 8.5): 3.10 g Borsäure R werden in 200 ml Wasser R gelöst und mit 2 M Kaliumhydroxid R auf pH 8.5 eingestellt. Anschliessend wird mit Wasser R auf 250,0 ml ergänzt.

Untersuchungslösung a: 24.0 mg Substanz werden in 20.0 ml Borsäurepuffer gelöst. 1,0 ml dieser Lösung wird mit Borsäurepuffer zu 10 ml verdünnt.

Stammreferenzlösung: 24.0 mg Serin CRS werden in 20.0 ml Borsäurepuffer gelöst.
Referenzlösung a: 1.0 ml Stammreferenzlösung wird mit Borsäurepuffer zu 10.0 ml verdünnt.

Referenzlösung b: 26.0 mg Asparaginsäure CRS und 23.0 mg Valin CRS werden in 20.0 ml Borsäurepuffer gelöst. 0.50 ml dieser Lösung wird mit Borsäurepuffer zu 10.0 ml verdünnt. 0.20 ml dieser Lösung wird mit Borsäurepuffer zu 20.0 ml verdünnt. 1.0 ml dieser Lösung und 1.0 ml Stammreferenzlösung werden mit Borsäurepuffer zu 10.0 ml verdünnt.

Referenzlösung c: 10 ml Borsäurepuffer.

Derivatisierung: Es werden die Untersuchungslösung, die Referenzlösung a, Referenzlösung b und Referenzlösung c mit FMOC-Cl derivatisiert.

Es werden je 0.20 ml der jeweiligen Lösung mit 0.20 ml FMOC-CL-Lösung bei Raumtemperatur für 2 min intensiv gemischt. Das Reaktionsgemisch wird zweimal mit 0.40 ml Pentan R extrahiert und der organische Überstand verworfen.

Die Chromatographie kann durchgeführt werden mit
- einer Säule von 0.25 m Länge und 4 mm innerem Durchmesser, gepackt mit octadecylsilyliertem Kieselgel zur Chromatographie R (µm)
- Einsatz einer linearen Gradientenelution zweier mobiler Phasen A und B mit einer Durchflussrate von 1 ml/min

<table>
<thead>
<tr>
<th>mobile Phase A (% V/V)</th>
<th>mobile Phase B (% V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>89</td>
</tr>
<tr>
<td>25</td>
<td>82</td>
</tr>
<tr>
<td>35</td>
<td>81</td>
</tr>
<tr>
<td>36</td>
<td>65</td>
</tr>
<tr>
<td>42</td>
<td>65</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>55</td>
<td>98</td>
</tr>
<tr>
<td>60</td>
<td>98</td>
</tr>
</tbody>
</table>

- einem Fluoreszenzdetektör bei einer Exzitation von 260 nm und einer Emission von 313 nm

Die Temperatur der Säule wird bei 25 °C gehalten. Je 10 µl Referenzlösung a, b und c werden getrennt eingespritzt. Werden die Chromatogramme unter den Vorgegebenen Bedingungen aufgenommen, so beträgen die Retentionszeiten für Serin etwa 15 min, für Asparaginsäure etwa 5 min, für Valin etwa 31 min und für FMOC-OH etwa 45 min. Das System darf nur verwendet werden, wenn die Referenzlösung c bis zum Erscheinen des FMOC-OH keine störenden Peaks aufweist und in Referenzlösung b die Peaks für Asparaginsäure und Valin klar gegen über der Referenzlösung c detektiert werden können.

10 µl Untersuchungslösung a wird eingespritzt. Das Chromatogramm der Untersuchungslösung a wird mit demjenigen der Referenzlösung a verglichen. Kein erhaltener Peak darf grösser sein als die doppelte Fläche von Valin in Referenzlösung b (0.1 %). Die Gesamtverunreinigung darf nicht grösser sein als die 10fache Fläche von Valin in Referenzlösung b (0.5 %). Peaks deren Fläche kleiner ist als das 0.5fache der Fläche von Valin in Referenzlösung b (0.025 %), werden nicht berücksichtigt.
4. Stabilitätsuntersuchung von Aminosäuren nach Strahlensterilisation

4.1. Antimikrobielle Behandlung und Sterilität

Für Aminosäuren in Lösung sind die Behandlung in gespanntem Wasserdampf (121 °C, 15 min) und die Sterilfiltration die Methoden der Wahl. Eine kostengünstige antimikrobielle Behandlung von Bulkwaren ist damit aber nicht zu erreichen. Für Aminosäuren als Trockensubstanz käme nur Trockensterilisation oder Bestrahlung in Frage. Gassterilisation (Ethylenoxid) eignet sich bestenfalls für Gegenstände und darf nur eingesetzt werden, wenn keine Alternative zur Verfügung steht (Ph. Eur. 01/2008:50101).

4.1.1. Antimikrobielle Behandlung mit trockener Hitze

Tabelle 20 Schmelzpunkte von Aminosäuren nach verschiedenen Quellen

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Smp (° C) [84]</th>
<th>Smp (° C) [85]</th>
<th>Smp (° C) [86]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td>297</td>
<td>297</td>
<td>295 - 297</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>244</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>235</td>
<td>236</td>
<td>220 - 235</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>270</td>
<td>269 - 271</td>
<td>269 - 271</td>
</tr>
<tr>
<td>L-Cystein HCl</td>
<td>-</td>
<td>-</td>
<td>175 - 178</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>185</td>
<td>184 - 185</td>
<td>185 - 187</td>
</tr>
<tr>
<td>L-Glutaminsäure</td>
<td>224</td>
<td>247 - 249</td>
<td>247 - 249</td>
</tr>
<tr>
<td>Glycin</td>
<td>290</td>
<td>233</td>
<td>233</td>
</tr>
<tr>
<td>L-Histidin</td>
<td>287</td>
<td>277</td>
<td>287</td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>284</td>
<td>285 - 286</td>
<td>285 - 286</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>293</td>
<td>293 - 296</td>
<td>293 - 295</td>
</tr>
<tr>
<td>L-Lysin HCl</td>
<td>-</td>
<td>-</td>
<td>193</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>281</td>
<td>270</td>
<td>280 - 281</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>283</td>
<td>283 - 284</td>
<td>283 - 284</td>
</tr>
<tr>
<td>L-Prolin</td>
<td>221</td>
<td>220 - 222</td>
<td>220 - 222</td>
</tr>
<tr>
<td>L-Serin</td>
<td>228</td>
<td>223 - 228</td>
<td>228</td>
</tr>
<tr>
<td>L-Threonin</td>
<td>256</td>
<td>253</td>
<td>251 - 257</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>289</td>
<td>289</td>
<td>290 - 295</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>343</td>
<td>342 - 344</td>
<td>342 - 344</td>
</tr>
<tr>
<td>L-Valin</td>
<td>314</td>
<td>315</td>
<td>315</td>
</tr>
</tbody>
</table>

4.1.2. Bestrahlung

In Bezug auf die eingesetzte Bestrahlungsenergie können zwischen tiefen Dosen (< 1 kGy), mittleren Dosen (1-10 kGy) und hohen Dosen (> 10 kGy) unterschieden werden. Tiefere Dosen werden vor allem im Lebensmittelbereich eingesetzt und reichen zur Bekämpfung von Insektenbefall und Verlangsamung des Reifungs- und Sprossungsprozesses bei Gemüse und Früchten aus. Mittlere Dosen werden eingesetzt zur Reduktion von pathogenen oder Verderbnisbakterien und Parasiten[90]. Um Sterilität zu gewährleisten müssen hohe Dosen angewendet und die mikrobiologische Grundlast im zu behandelnden Produkt so tief wie möglich gehalten werden. Eine Sterilitäts sicherheit von 10\(^6\) kann unter diesen Umständen mit der meist verwendeten Dosis von 25 kGy erreicht werden[91].

Gammastrahlenanlagen verwenden fast ausschliesslich das Radionukleid \(^{60}\)Co. Im Bezug auf Strahlensterilisation zeichnet sich die Gammastrahlung vor allem durch
Stabilitätsuntersuchung von Aminosäuren nach Strahlensterilisation

104

Demgegenüber ist die Bestrahlungsintensität bei Betastrahlung (1-200 kGy/s) viel höher als bei der Gammastrahlung (1-10 kGy/h)[94]. Daraus ergibt sich, dass die Aufenthaltszeit des Sterilisierguts im Falle der Gammastrahlung mehrere Stunden dauern kann. Hingegen können Elektronenstrahlbeschleuniger augenblicklich die gewünschte Dosis aufbringen und zeichnen sich deswegen durch eine hohe Durchsatzrate geeigneter dünner Produkte aus.

Für Wissenschaftler, welche sich in diesem Feld der Forschung bewegen, ist es wichtig sich des belasteten Verhältnisses der Öffentlichkeit mit dem Thema Radioaktivität bewusst zu sein. Als Konsequenz sollte mit Forschungsergebnissen dementprechend vorsichtig und verantwortungsvoll umgegangen werden.

4.1.2.1. Bestrahlung von Aminosäuren

Abbildung 26 generalisiertes Reaktionschema für bestrahlte Aminosäuren nach Sagstuen et al. [104]
4.2. Antimikrobielle Behandlung von 20 Aminosäuren

20 Aminosäuren wurden vor und nach antimikrobieller Behandlung analysiert. Als Methoden kamen Trockensterilisation (2h, 160 °C) und Strahlensterilisation (Dosis 28 kGy, e und γ) zum Einsatz. Es handelte sich dabei um Standardbedingungen, wie sie üblicherweise zur Keimabtötung verwendet werden.

4.2.1. Aminosäuren und Sterilisationsmethoden

Die verwendeten Aminosäuren wurden bei einem kommerziellen Anbieter eingekauft. Tabelle 21 listet die untersuchten Aminosäuren, deren Qualität und Herkunft auf.

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Qualität</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>TLC 98%</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Cystein HCl Monohydrat</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>>=99%</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Glutaminsäure</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>Glycin</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Histidin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Isoleucin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>Ph. Eur.</td>
<td>Extraktion (soybean)</td>
</tr>
<tr>
<td>L-Lysin HCl</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Prolin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Serin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Threonin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>Ph. Eur.</td>
<td>Extraktion (soybean)</td>
</tr>
<tr>
<td>L-Valin</td>
<td>Ph. Eur.</td>
<td>Fermentation</td>
</tr>
</tbody>
</table>

4.2.1.1. Trockensterilisation

2 g jeder Aminosäure wurden in ein headspace Glasvial (20 ml) gefüllt und die Öffnung mit Alufolie verschlossen. Die Proben wurden bei 160 °C für 2 h in einem Thermocenter (salvis) inkubiert. Die Proben wurden in 2 ml Glasvials umgefüllt und bis zum Gebrauch luftdicht verschlossen bei -20 °C im Tiefkühler aufbewahrt.
4.2.1.2. Strahlensterilisation

5 g jeder Aminosäure wurden in ld-PE Beuteln (qualiFILM Flachschlauch (Mat.Nr. 2436) (Semadeni)) verschweisst und von der Firma Studer AG (Däniken) mit e$^+$ \((27.1 - 29.9 \text{ kGy})\) und γ-Strahlen \((27.2 - 27.4 \text{ kGy})\) behandelt. Die Proben wurden in 2 ml Glasvials umgefüllt und bis zum Gebrauch luftdicht verschlossen bei -20 °C im Tiefkühler aufbewahrt.

4.2.2. Visuelle und organoleptische Beurteilung

Tabelle 22 optische und organoleptischen Veränderungen der untersuchten Aminosäuren nach antimikrobieller Behandlung

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Optische Veränderung (e$^+$ und γ-Bestrahlung)</th>
<th>Optische Veränderung (160 °C 2 h)</th>
<th>Geruch nach Behandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ala</td>
<td>Gelb</td>
<td>keine</td>
<td>Leicht würzig</td>
</tr>
<tr>
<td>L-Arg</td>
<td>Keine</td>
<td>keine</td>
<td>Kein Unterschied zu vorher</td>
</tr>
<tr>
<td>L-Asn</td>
<td>Hellgelb</td>
<td>keine</td>
<td>schwacher Geruch</td>
</tr>
<tr>
<td>L-Asp</td>
<td>Hellgelb</td>
<td>keine</td>
<td>Leicht nach Fleisch</td>
</tr>
<tr>
<td>L-Cys HCl</td>
<td>Hellgelb</td>
<td>zersetzt, hell</td>
<td>Stechend nach Trockensterilisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leicht fleischig nach Strahlenbehandlung</td>
</tr>
<tr>
<td>L-Gln</td>
<td>Hellgelb</td>
<td>zersetzt, dunkel</td>
<td>Stechend nach Trockensterilisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kein Unterschied zu vorher nach Strahlenbehandlung</td>
</tr>
<tr>
<td>L-Glu</td>
<td>Hellgelb</td>
<td>keine</td>
<td>schwacher Geruch</td>
</tr>
<tr>
<td>Gly</td>
<td>Gelb</td>
<td>keine</td>
<td>Kein Unterschied zu vorher</td>
</tr>
<tr>
<td>L-His</td>
<td>Hellbraun</td>
<td>keine</td>
<td>Leicht fleischig</td>
</tr>
<tr>
<td>L-Ile</td>
<td>Stich von gelb</td>
<td>keine</td>
<td>schwacher Geruch</td>
</tr>
<tr>
<td>L-Leu</td>
<td>Keine</td>
<td>keine</td>
<td>Stark nach Fleisch</td>
</tr>
<tr>
<td>L-Lys HCl</td>
<td>Hellgelb</td>
<td>keine</td>
<td>Stark nach Fleisch</td>
</tr>
<tr>
<td>L-Met</td>
<td>Stich von gelb</td>
<td>gelb</td>
<td>Stärkerer Geruch</td>
</tr>
<tr>
<td>L-Phe</td>
<td>Hellgelb</td>
<td>keine</td>
<td>Starker Geruch</td>
</tr>
<tr>
<td>L-Pro</td>
<td>Stich von gelb</td>
<td>keine</td>
<td>Starker Geruch</td>
</tr>
<tr>
<td>L-Ser</td>
<td>hellbraun</td>
<td>gelb</td>
<td>schwacher Geruch</td>
</tr>
<tr>
<td>L-Thr</td>
<td>gelb</td>
<td>keine</td>
<td>Kein Unterschied zu vorher</td>
</tr>
<tr>
<td>L-Trp</td>
<td>hellbraun</td>
<td>gelb</td>
<td>Kein Unterschied zu vorher</td>
</tr>
<tr>
<td>L-Tyr</td>
<td>keine</td>
<td>keine</td>
<td>Kein Unterschied zu vorher</td>
</tr>
<tr>
<td>L-Val</td>
<td>Stich von gelb</td>
<td>keine</td>
<td>Kein Unterschied zu vorher</td>
</tr>
</tbody>
</table>
4.2.3. Oberflächenfluoreszenz

Die sterilisierten und unbehandelten Aminosäuren wurden auf einer 96-er multiwell Platte mit einem Fluoreszenzdetektor untersucht. Dabei wurden erst die pulverförmigen Proben vermessen und danach dieselben als Lösung.

4.2.3.1. Geräte und Materialien

Multiwell reader mit Fluoreszenzdetektor: TECAN GENios Pro
Software: XFLUOR4GENIOSPRO Version: V 4.53
96-er multiwell Platte für Fluoreszenz: greiner Microlon F

Geräteeinstellung:
Measurement mode: Fluorescence
Excitation wavelength: 485 nm
Emission wavelength: 535, 590, 612, 620 nm
Gain (Optimal): 30 - 41 (Pulver), 27 - 47 (Lösung)
Number of flashes: 10
Lag time: 0 µs
Integration time: 40 µs
Mirror selection: Dichroic 3 (e.g. Fl)
Plate definition file: 96-well

Salzsäure 36 % (Hänserel AG, Ph. Eur.)

4.2.3.2. Probenvorbereitung und Methode

Es wurden pro Vertiefung 5 mg Aminosäure in eine 96-er multiwell Platte eingewogen. 8 Vertiefungen enthielten keine Probe und dienten als blank. Nach Messung der Fluoreszenz der pulverförmigen Proben bei einer Anregung von 485 nm und der Detektion bei 535, 590, 612 und 620 nm wurden die Proben in 200 µl 1 M HCl gelöst. 8 Vertiefungen mit 200 µl 1 M HCl dienten als blank. Die Platte wurde anschliessend noch einmal bei denselben Wellenlängen vermessen.

4.2.3.3. Resultat der Oberflächenfluoreszenz

Stabilitätsuntersuchung von Aminosäuren nach Strahlensterilisation

Abbildung 28 Fluoreszenzmessung von 20 pulverförmigen Aminosäuren

Abbildung 29 Fluoreszenzmessung von 20 gelösten Aminosäuren (1 M HCl)
4.2.4. Optische Drehung

Um den Einfluss der 3 Sterilisationsmethoden (trockene Hitze, e\(^{-}\), γ-Strahlen) auf die Chiralität der Aminosäuren zu untersuchen, wurden die optischen Drehungen bestimmt.

4.2.4.1. Geräte und Materialien

Polarimeter: Perkin-Elmer 241
Natriumlampe: 589 nm
Quecksilberlampe: 578nm, 546nm, 436nm und 365nm
Kühlsystem: RM6 LAUDA
Salzsäure 36 % (Hänsele AG, Ph. Eur.)

4.2.4.2. Probenvorbereitung und Methode

Die Prüflösungen wurden anhand der Monographien der Ph. Eur. 4.3 hergestellt. Da für die optische Drehung sehr viel Probesubstanz (100 – 500 mg AS/5 ml Lösungsmittel) aufgewendet werden musste, wurde jeweils nur eine Prüflösung pro Probe verwendet. Diese wurde dann dreimal gemessen und der Mittelwert gebildet. Nachfolgende Messungen, bei welchen 3 Lösungen der gleichen Probe vermessen wurden, zeigten nur sehr geringe Standardabweichungen (siehe Tabelle 30). Eine weitere Sicherheit stellte der Vergleich der Messung der unbehandelten Aminosäure mit dem Analysezertifikat dar. Neben der Wellenlänge 589 nm wurde die optische Drehung auch bei 365 nm gemessen.

4.2.4.3. Resultat der optischen Drehung

Abbildung 30 Vergleich der optischen Drehung von Aminosäuren vor und nach Sterilisationsbehandlung

Tabelle 23 Spezifische optische Drehung der unbehandelten Aminosäuren und nach Behandlung unter Sterilisationsbedingung

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Limit Ph. Eur. 4.3 (°)</th>
<th>Analysezertifikat (°)</th>
<th>Spezifische Drehung (°)</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ala unbeh.</td>
<td>13.5 – 15.5</td>
<td>14.8</td>
<td>13.69</td>
<td>0.25</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>13.68</td>
<td>13.60</td>
<td>13.63</td>
<td>0.09</td>
</tr>
<tr>
<td>e-behandelt</td>
<td>26.67</td>
<td>26.67</td>
<td>26.67</td>
<td>0.08</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>26.46</td>
<td>26.46</td>
<td>26.46</td>
<td>0.08</td>
</tr>
<tr>
<td>L-Arg</td>
<td>25.5 – 28.5</td>
<td>27.3</td>
<td>27.3</td>
<td>0.07</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>26.67</td>
<td>26.67</td>
<td>26.67</td>
<td>0.08</td>
</tr>
<tr>
<td>e-behandelt</td>
<td>26.18</td>
<td>26.18</td>
<td>26.18</td>
<td>0.15</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>26.46</td>
<td>26.46</td>
<td>26.46</td>
<td>0.08</td>
</tr>
<tr>
<td>L-Asn</td>
<td>nicht bestimmt</td>
<td>30.0</td>
<td>32.33</td>
<td>0.06</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>32.28</td>
<td>32.28</td>
<td>32.28</td>
<td>0.06</td>
</tr>
<tr>
<td>e-behandelt</td>
<td>32.15</td>
<td>32.15</td>
<td>32.15</td>
<td>0.06</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>32.20</td>
<td>32.20</td>
<td>32.20</td>
<td>0.03</td>
</tr>
<tr>
<td>L-Asp</td>
<td>24.0 – 26.0</td>
<td>25.1</td>
<td>24.95</td>
<td>0.08</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>24.96</td>
<td>24.96</td>
<td>24.96</td>
<td>0.08</td>
</tr>
<tr>
<td>e-behandelt</td>
<td>24.97</td>
<td>24.97</td>
<td>24.97</td>
<td>0.13</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>24.99</td>
<td>24.99</td>
<td>24.99</td>
<td>0.05</td>
</tr>
<tr>
<td>L-Cys HCl</td>
<td>5.5 – 7.0</td>
<td>6.8</td>
<td>5.90</td>
<td>1.29</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>zersetzt</td>
<td>zersetzt</td>
<td>zersetzt</td>
<td></td>
</tr>
<tr>
<td>e-behandelt</td>
<td>5.24</td>
<td>5.24</td>
<td>5.24</td>
<td>2.96</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>5.15</td>
<td>5.15</td>
<td>5.15</td>
<td>1.50</td>
</tr>
<tr>
<td>L-Glu</td>
<td>nicht bestimmt</td>
<td>6.7</td>
<td>6.61</td>
<td>0.38</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>zersetzt</td>
<td>zersetzt</td>
<td>zersetzt</td>
<td></td>
</tr>
<tr>
<td>e-behandelt</td>
<td>6.64</td>
<td>6.64</td>
<td>6.64</td>
<td>0.22</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>6.61</td>
<td>6.61</td>
<td>6.61</td>
<td>0.38</td>
</tr>
<tr>
<td>L-Glu</td>
<td>30.5 – 32.5</td>
<td>30.6</td>
<td>30.93</td>
<td>0.11</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td>11.56</td>
<td>11.56</td>
<td>11.56</td>
<td>0.09</td>
</tr>
<tr>
<td>e-behandelt</td>
<td>31.04</td>
<td>31.04</td>
<td>31.04</td>
<td>0.09</td>
</tr>
<tr>
<td>γ-behandelt</td>
<td>31.01</td>
<td>31.01</td>
<td>31.01</td>
<td>0.06</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>L-His</td>
<td>11.8 – 12.8</td>
<td>12.5</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>12.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>12.26</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>12.27</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>L-Ile</td>
<td>40.0 – 43.0</td>
<td>41.0</td>
<td>1.4</td>
<td>0.14</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>41.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>41.35</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>41.39</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>L-Leu</td>
<td>14.5 – 16.5</td>
<td>15.3</td>
<td>0.8</td>
<td>0.16</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>15.98</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>15.92</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>15.85</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>L-Lys HCl</td>
<td>21.0 – 22.5</td>
<td>21.2</td>
<td>0.4</td>
<td>0.04</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>21.13</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>21.24</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>21.26</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>L-Met</td>
<td>22.5 – 24.0</td>
<td>23.4</td>
<td>0.9</td>
<td>0.22</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>23.26</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>23.58</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>23.54</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>L-Phe</td>
<td>-33.0 – -35.5</td>
<td>-34.1</td>
<td>1.1</td>
<td>0.09</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>-33.28</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>-33.06</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>-33.05</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>L-Pro</td>
<td>-84.0 – -86.0</td>
<td>-85.0</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>-85.12</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>-85.16</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>-85.34</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>L-Ser</td>
<td>14.0 -16.0</td>
<td>15.3</td>
<td>1.3</td>
<td>0.13</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>15.38</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>15.88</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>15.94</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>L-Thr</td>
<td>-27.6 - -29.0</td>
<td>-28.2</td>
<td>0.6</td>
<td>0.06</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>-27.96</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>-27.96</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>-27.96</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>L-Trp</td>
<td>-30.0 - -33.0</td>
<td>-31.4</td>
<td>1.4</td>
<td>0.32</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>-31.12</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>-31.17</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>-31.21</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>L-Tyr</td>
<td>-11.0 - -12.3</td>
<td>-11.7</td>
<td>0.6</td>
<td>0.36</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>-11.36</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>-11.34</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>-11.30</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>L-Val</td>
<td>26.5 – 29.0</td>
<td>28.5</td>
<td>2.0</td>
<td>0.05</td>
</tr>
<tr>
<td>wärmebehandelt</td>
<td></td>
<td>27.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e- behandelt</td>
<td></td>
<td>27.58</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>γ behandelt</td>
<td></td>
<td>27.43</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>
4.2.5. Dünnschichtchromatographie

Die e⁻- und γ-bestrahlten Aminosäuren wurden mit der unter 3.5.1 entwickelten Methode auf Zersetzungsprodukte überprüft. Als Sprühreagenz kam die Ninhydrin-Lösung R, welche sich zur Detektion von aminhaltigen Verbindungen eignet, und unspezifisch die Iodkammer zur Anwendung (siehe Anhang S. 146).

4.2.5.1. Geräte und Materialien

Es wurden die gleichen Geräte und DC-Platten wie unter 3.5.1 beschrieben verwendet.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Qualität</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninhydrin</td>
<td>≥98.0% (UV)</td>
<td>Fluka</td>
</tr>
<tr>
<td>Anisaldehyd</td>
<td>Purum, ≥99%</td>
<td>Fluka</td>
</tr>
<tr>
<td>Iod</td>
<td>Puriss p. a.</td>
<td>Fluka</td>
</tr>
<tr>
<td>Essigsäure 99%</td>
<td>Ph. Eur.</td>
<td>Hänßeler</td>
</tr>
<tr>
<td>Schwefelsäure 95%</td>
<td>purum</td>
<td>Hänßeler</td>
</tr>
<tr>
<td>Ammoniaklösung 32%</td>
<td>reinst</td>
<td>Merck</td>
</tr>
<tr>
<td>1-Butanol</td>
<td>z. A.</td>
<td>Scharlau</td>
</tr>
<tr>
<td>1-Propanol</td>
<td>Puriss p.a.</td>
<td>Fluka</td>
</tr>
<tr>
<td>Methanol</td>
<td>Analytic grade</td>
<td>Scharlau</td>
</tr>
<tr>
<td>Dichlorethan</td>
<td>Purisse p. a.</td>
<td>Fluka</td>
</tr>
</tbody>
</table>

4.2.5.2. Methodenentwicklung

Die Methode, Lösungsmittel und Laufmittel entsprachen denjenigen von 3.5.1 im Wesentlichen handelt es sich um eine analoge Methode wie sie die Ph. Eur. für viele Aminosäuren zur Reinheitsprüfung verwendet.

4.2.5.3. Probenvorbereitung und Methode

Es wurden 0.1 % Lösungen (m/V) von den 20 Aminosäuren und den entsprechenden bestrahlten Aminosäuren hergestellt. Zur Untersuchung einer Aminosäure wurde eine DC-Platte verwendet. Das Auftragungsschema der Platte sah wie folgt aus:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Auftragung</th>
<th>Nr.</th>
<th>Auftragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aminosäure unbehandelt (120 µg)</td>
<td>6.</td>
<td>Aminosäure unbehandelt (120 µg)</td>
</tr>
<tr>
<td>2.</td>
<td>Aminosäure γ behandelt (120 µg)</td>
<td>7.</td>
<td>Aminosäure e behandelt (120 µg)</td>
</tr>
<tr>
<td>3.</td>
<td>Aminosäure γ behandelt (120 µg)</td>
<td>8.</td>
<td>Aminosäure e behandelt (120 µg)</td>
</tr>
<tr>
<td>4.</td>
<td>Aminosäure γ behandelt (120 µg)</td>
<td>9.</td>
<td>Aminosäure e behandelt (120 µg)</td>
</tr>
<tr>
<td>5.</td>
<td>Blank (Lösungsmittel)</td>
<td>10.</td>
<td>Blank (Lösungsmittel)</td>
</tr>
</tbody>
</table>

Nach Entwicklung und Trocknung der Platte wurde diese erst unter UV-Licht (254 und 366 nm) auf Verunreinigungen und Zersetzungsprodukte überprüft. Die nächste Kontrolle erfolgte mit der Ninhydrinlösung R und abschliessend wurde die Platte noch in die Iodkammer gestellt.
4.2.5.4. **Resultat der Dünnschichtchromatographie**

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>e- behandel.- (Rf)</th>
<th>γ- behandel.- (Rf)</th>
<th>Bild im Anhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-His</td>
<td>0.22</td>
<td>0.22</td>
<td>S. 147</td>
</tr>
<tr>
<td>L-Ile</td>
<td>0.24</td>
<td>0.24</td>
<td>S. 147</td>
</tr>
<tr>
<td>L-Leu</td>
<td>0.29</td>
<td>0.54</td>
<td>S. 148</td>
</tr>
<tr>
<td>L-Lys HCl</td>
<td>0.27, 0.4</td>
<td>0.27, 0.4</td>
<td>S. 148</td>
</tr>
<tr>
<td>L-Met</td>
<td>0.23</td>
<td>0.23</td>
<td>S. 149</td>
</tr>
<tr>
<td>L-Ser</td>
<td>Startfleck, 0.22</td>
<td>Startfleck, 0.22</td>
<td>S. 149</td>
</tr>
</tbody>
</table>

4.2.6. **HPLC mit FMOC Vorsäulenderivatisierung**
Die Untersuchungen wurden unter 3.3.4. abgehandelt.

4.2.7. **Headspace GC/MS**
Die Untersuchungen wurden unter 3.4.1. abgehandelt.
4.3. e⁻-Bestrahlung von Aminosäuren mit 30 kGy und 100 kGy

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Lieferant</th>
<th>Produktnr.</th>
<th>Lotnr.</th>
<th>Qualität</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td>SIGMA ALDRICH</td>
<td>A7469</td>
<td>016K0711</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>Fluka</td>
<td>77737</td>
<td>1089479</td>
<td>Ph. Eur.</td>
<td>fermentativ</td>
</tr>
<tr>
<td>Glycin</td>
<td>Fluka</td>
<td>50058</td>
<td>1103270</td>
<td>Ph. Eur.</td>
<td>synthetisch</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>SIGMA ALDRICH</td>
<td>L8912</td>
<td>116K0042</td>
<td>Ph. Eur.</td>
<td>Sojaextraktion</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>SIGMA ALDRICH</td>
<td>P5482</td>
<td>104K0251</td>
<td>Ph. Eur.</td>
<td>fermentativ</td>
</tr>
</tbody>
</table>

PE: Lowdensity Polyethylen (qualiFILM Flachschlauch (Mat.Nr. 2436) (Semadeni)) ohne Weichmacher, Hilfsstoff: Erucasäureamid (725 ppm) und Siliciumdioxid (625 ppm)

PP: Polypropylen (Beutel 70 x 100 mm (Art.-Nr. 22223) (Egli plastic) ohne Weichmacher, Hilfsstoff: Siliconöl

4.3.1.1. Probenvorbereitung und Bestrahlung

Die Aminosäuren wurden ohne vorangehende Homogenisierung direkt aus dem Originalgebinde aufgeteilt. 5 g jeder Aminosäure wurden einmal in einem Polyethylen- und einmal in einem Polypropylenbeutel verschweisst. Als Kontrolle diente je 5 g Titandioxid. Die e⁻-Bestrahlung wurde von der Firma Studer (Dänikon) durchgeführt. Die Proben mit 30 kGy Dosis wurden in einem Durchgang erzeugt. Die Proben mit 100 kGy wurden in 4 Auftragungen zu 25 kGy erzeugt. Dadurch sollte verhindert werden, dass die Temperatur in den Proben während der Bestrahlung 80 °C überstieg und eine potentielle Zersetzung eher durch thermischen Stress als durch Bestrahlung erklärt wärn.
4.3.2. Visuelle Beurteilung

![Abbildung 31 Glycin unbehandelt, nach 30 kGy und 100 kGy Bestrahlung](image)

4.3.3. Auflichtspektroskopie und Schmelzpunkt-Mikroskopie

4.3.3.1. Geräte und Materialien

- **Stereomikroskop:** ZEISS SteREO Lumar.V12
- **Beleuchtung:** KL 1500 LCD 3300 K
- **Kamera:** ZEISS AxioCam color
- **Software:** AxioVision AxioVs40 V4.5.0.0.
- **Einstellung:** Best Fit, AxioCam HR: Exposure 53 ms 5%
- **Mikroskop:** Olympus BH-2
- **Kamera:** Panasonic WV-CL700
- **Schmelzpunktgerät:** Mettler Toledo FP90 Central Processor
- **Software:** Hauppauge WinTV USB Version 2.13

4.3.3.2. Resultat der Auflichtspektroskopie und Schmelzpunkt-Mikroskopie

Alle Chargen der 5 unbehandelten und bestrahlten Aminosäuren (L-Asp, L-Ala, Gly, L-Leu, L-Phe) wurden gegen einen blauen Hintergrund mit einem ZEISS Stereomikroskop mit 10-facher Vergrößerung untersucht. Abbildung 32 und 33 zeigt als Beispiel unbehandelt Alaninkristalle und solche nach e̅-Bestrahlung mit 100 kGy unter dem Stereomikroskop.

Einen Unterschied gleicher Proben bedingt durch die beiden Verpackungsmaterialien Polyethylen und Polypropylen konnte in diesen Versuchen nicht festgestellt werden.

Tabelle 25 Schmelzbereich von L-Ala, L-Asp, Gly, L-Leu und L-Phe vor und nach der Bestrahlung

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Schmelzbereich nach Literatur[106] (°C)</th>
<th>Unbehandelt (°C)</th>
<th>PE 100 kGy (°C)</th>
<th>Zersetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ala</td>
<td>297</td>
<td>226 - 248</td>
<td>225 - 244</td>
<td>braun caramelartig, Blasenbildung</td>
</tr>
<tr>
<td>L-Asp</td>
<td>269 - 271</td>
<td>(250) 265 - 285</td>
<td>(240) 250 - 278</td>
<td>weiss, bräunlich, caramelartig</td>
</tr>
<tr>
<td>Gly</td>
<td>233</td>
<td>(225) 250 - 255</td>
<td>(220) 235 - 247</td>
<td>schwarz, caramelartig</td>
</tr>
<tr>
<td>L-Leu</td>
<td>293 - 295</td>
<td>255 - 283</td>
<td>255 - 287</td>
<td>hellgelb, Tröpfchenbildung</td>
</tr>
<tr>
<td>L-Phe</td>
<td>283</td>
<td>(198) 205 - 255</td>
<td>(184) 200 - 250</td>
<td>braun caramelartig</td>
</tr>
</tbody>
</table>
4.3.4. UV/Vis Untersuchungen

Wie unter 4.3.2. erwähnt, zeigten die bestrahlten Aminosäuren L-Ala, L-Asp, Gly, L-Leu und L-Phe gegenüber den unbestrahlten eine gelbliche Verfärbung, welche sich unter höherer Strahlendosis noch intensivierte. Ein Wellenlängenscan (200 – 800 nm) bildete eine einfache Methode um die Verfärbungen in gelöstem Zustand weiter zu verfolgen.

4.3.4.1. Geräte und Materialien

Spektralfotometer: Cary 50 Scan
Software: Cary WinUV Software (Version 3.00(182))
Quarzküvette: HELMA 282 QS 1.00

Salzsäure 36 % (Hänseler AG, Ph. Eur.)

4.3.4.2. Probenvorbereitung und Methode

Nach Vorversuchen wurden wässerige Lösungen (1% (m/V)) der unbehandelten und strahlenbehandelten Aminosäuren vermessen. Da L-Phe starke Absorption zeigte, wurde diese Lösung auf 0.1% (m/V) verdünnt und für L-Asp wurde wegen Löschlichkeitsproblemen in Wasser 0.8 %-ige Salzsäure verwendet. Die erhaltenen Spektren (200 – 800 nm, 600 nm/min) wurden anschließend mit der Cary WinUV Software aufbereitet und ausgewertet.

4.3.4.3. Resultat der UV/Vis Untersuchungen

\[
Faktor = \frac{Absorption \text{ der bestrahlten Aminosäure}}{Absorption \text{ der unbehandelten Aminosäure}}
\]

belegten auch die berechneten Faktoren bei 250 nm, welche sich um den Wert 1 bewegten (zwischen 0.7 und 1.2).

Einen Einfluss auf die Spektren durch die Verwendung unterschiedlicher Verpackungsmaterialien (ld-PE und PP), konnte nicht wahrgenommen werden. Die Faktoren bei gleicher Strahlendosis bewegten sich um die gleichen Werte.

Abbildung 36 Spektrum von unbehandeltem und bestrahltem Alanin 200 - 350 nm

Tabelle 26 Absorption von L-Ala, L-Asp, Gly, L-Leu bei 250 nm und L-Phe bei 275 nm (Einwaage einberechnet)

<table>
<thead>
<tr>
<th></th>
<th>L-Alanin 250 nm</th>
<th>L-Asparaginsäure 250 nm</th>
<th>L-Leucin 250 nm</th>
<th>L-Phenylyalanin 275 nm</th>
<th>Glycin 250 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbehandelt</td>
<td>0.0053</td>
<td>0.0252</td>
<td>0.0059</td>
<td>0.0069</td>
<td>0.0116</td>
</tr>
<tr>
<td>ld-PE 30 kGy</td>
<td>0.0130</td>
<td>0.0686</td>
<td>0.0394</td>
<td>0.0122</td>
<td>0.0078</td>
</tr>
<tr>
<td>PP 30 kGy</td>
<td>0.0151</td>
<td>0.0688</td>
<td>0.0394</td>
<td>0.0122</td>
<td>0.0078</td>
</tr>
<tr>
<td>ld-PE 100 kGy</td>
<td>0.0281</td>
<td>0.1415</td>
<td>0.1249</td>
<td>0.0341</td>
<td>0.0099</td>
</tr>
<tr>
<td>PP 100 kGy</td>
<td>0.0303</td>
<td>0.1420</td>
<td>0.1256</td>
<td>0.0346</td>
<td>0.0135</td>
</tr>
</tbody>
</table>
4.3.5. Oberflächenfluoreszenz

Aus Vorversuchen unter UV-Licht (CAMAG UV-Cabinet II) bei 366 nm war bekannt, dass L-Asp, L-Leu und L-Phe nach Strahlenbehandlung Fluoreszenz zeigten. Mit einem Fluoreszenzdetektor sollte dieser Umstand genauer untersucht werden.

4.3.5.1. Geräte und Materialien

Multiwell reader mit Fluoreszenzdetektor: TECAN GENios Pro
Software:
XFLUOR4GENIOSPRO Version: V 4.53
96-er multiwell Platte für Fluoreszenz: greiner Microlon F

Geräteeinstellung:
Measurement mode: Fluorescence
Excitation wavelength: 485, 612 nm
Emission wavelength: 535, 590, 612, 620 nm
Gain (Manual): 25 (Pulver), 50 (Lösung)
Number of flashes: 10
Lag time: 0 µs
Integration time: 40 µs
Mirror selection: Dichroic 3 (e.g. Fl)
Plate definition file: 96-well

Salzsäure 36 % (Hänseler AG, Ph. Eur.)

4.3.5.2. Probenvorbereitung und Methode

5 mg der zu untersuchenden Aminosäuren wurden im Doppel in eine 96-er multiwell Platte eingewogen. Die Vertiefungen ohne Proben dienten als blank. Es wurden Fluoreszenzmessungen bei Anregungswellenlängen von 485 nm (Detektionen bei 535, 590, 612 und 620 nm) und 612 nm (Detektion bei 620 nm) durchgeführt. Danach wurde derselbe Versuch in gleicher Anordnung mit gelösten Proben (0.5 % (m/V) in Wasser, 200 µl pro Vertiefung) wiederholt. Für L-Asp wurde aus Gründen der Löslichkeit 1M Salzsäure verwendet.

4.3.5.3. Resultat der Oberflächenfluoreszenz

Pulverförmige Proben

Auch bei diesem Versuch wurde kein Unterschied ersichtlich zwischen Proben, welche in Polyethylenbeuteln bestrahlt wurden, gegenüber denen, bei welchen Polypropylen als Packmaterial verwendet wurde.

Abbildung 37 Fluoreszenzmessung pulverförmiger Aminosäuren (Anregung 485 nm, Absorption 535 nm)

<table>
<thead>
<tr>
<th>Behandlung</th>
<th>L-Ala</th>
<th>rsd (%)</th>
<th>L-Asp</th>
<th>rsd (%)</th>
<th>Gly</th>
<th>rsd (%)</th>
<th>L-Leu</th>
<th>rsd (%)</th>
<th>L-Phe</th>
<th>rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbehandelt</td>
<td>-</td>
<td>-</td>
<td>292</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>151</td>
</tr>
<tr>
<td>30 kGy PE</td>
<td>-</td>
<td>-</td>
<td>315</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>32</td>
<td>10</td>
<td>1287</td>
<td>9</td>
</tr>
<tr>
<td>30 kGy PP</td>
<td>-</td>
<td>-</td>
<td>319</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>32</td>
<td>12</td>
<td>1190</td>
<td>18</td>
</tr>
<tr>
<td>100 kGy PE</td>
<td>-</td>
<td>-</td>
<td>386</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>107</td>
<td>3</td>
<td>2388</td>
<td>9</td>
</tr>
<tr>
<td>100 kGy PE</td>
<td>-</td>
<td>-</td>
<td>347</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>77</td>
<td>48</td>
<td>2525</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabelle 27 Fluoreszenzmessung pulverförmiger Aminosäuren (Anregung 485 nm, Absorption 535 nm)
Gelöste Proben

4.3.6. Gehaltsbestimmung mittels Titration

4.3.6.1. Geräte und Materialien
Titrando-System
Titrando 836 (Metrohm)
Magnetührer 801 (Metrohm)
Touch Control (Metrohm)
Elektrode 6.0451.100 (Pt, Metrohm), 6.0229.100 (LiCl sat. In EtOH, Metrohm)

Titrisol Natronlauge 1 N (Merck, 1.09956.0001)
Essigsäure 100% (Merck, K36522863636, pro analysis)
Ameisensäure 100% (Fluka, Ph. Eur.)
Perchlorsäure 0.1 N (Merck, 08557153, zur Titration in nicht wässerigen Flüssigkeiten)
4.3.6.2. **Probenvorbereitung und Methode**

Tabelle 28 Liste der Ph. Eur. Monographien zu den untersuchten Aminosäuren

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Ph. Eur. Monographie 01/2005:0752</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td></td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td></td>
</tr>
<tr>
<td>Glycin</td>
<td></td>
</tr>
<tr>
<td>L-Leucin</td>
<td></td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td></td>
</tr>
</tbody>
</table>

4.3.6.3. **Resultat der Gehaltsbestimmung mittels Titration**

Tabelle 29 titrierter Gehalt der unbehandelten Aminosäuren

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Limit Ph. Eur. 5.08 (%)</th>
<th>Analysezertifikat (%)</th>
<th>Titrierter Gehalt (%)</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td>98.5 – 101.0</td>
<td>100.3</td>
<td>100.28</td>
<td>0.41</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>98.5 – 101.5</td>
<td>99.6</td>
<td>99.98</td>
<td>0.24</td>
</tr>
<tr>
<td>Glycin</td>
<td>98.5 – 101.0</td>
<td>101.0</td>
<td>100.87</td>
<td>0.20</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>98.5 – 101.0</td>
<td>100.2</td>
<td>100.60</td>
<td>0.39</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>98.5 – 101.0</td>
<td>100.1</td>
<td>100.24</td>
<td>0.09</td>
</tr>
</tbody>
</table>
4.3.7. Optische Drehung

Da es sich bei den untersuchten Aminosäuren (L-Ala, L-Asp, L-Leu, L-Phe) um chirale Verbindungen handelte, bildete die Messung der optischen Drehung eine einfache Methode um den Zustand der bestrahlten Proben zu überprüfen. Glycin wurde weggelassen, da diese Aminosäure kein chirales Zentrum besitzt.

4.3.7.1. Geräte und Materialien

Polarimeter: Perkin-Elmer 241
Natriumlampe: 589 nm
Quecksilberlampe: 578 nm, 546 nm, 436 nm und 365 nm
Kühlsystem: RM6 LAUDA

Salzsäure 36 % (Hänsele AG, Ph. Eur.)

4.3.7.2. Probenvorbereitung und Methode

Die Prüflösungen zur Messung der optischen Drehung wurden wie in der Monographie der Ph. Eur. 5.08 beschrieben hergestellt (siehe Tabelle 28). Die optische Drehung wurde bei 20 °C bei 589 nm, 578 nm, 546 nm, 436 nm und 365 nm gemessen. Es wurden pro Probe jeweils 3 Lösungen hergestellt und jede Lösung dreifach bestimmt. Die so erhaltenen Werte wurden gemittelt.
4.3.7.3. Resultat der optischen Drehung

Tabelle 30 Spezifische optische Drehung von unbehandeltem L-Ala, L-Asp, L-Leu und L-Phe

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Limit Ph. Eur. 5.08 (°)</th>
<th>Analysezertifikat (°)</th>
<th>Spezifische Drehung (°)</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Alanin</td>
<td>13.5 - 15.5</td>
<td>14.8</td>
<td>14.768</td>
<td>0.47</td>
</tr>
<tr>
<td>L-Asparaginsäure</td>
<td>24.0 - 26.0</td>
<td>25.1</td>
<td>25.528</td>
<td>0.33</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>14.5 - 16.5</td>
<td>15.3</td>
<td>15.152</td>
<td>0.38</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>– 33.0 - – 35.5</td>
<td>- 34.0</td>
<td>- 33.953</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Abbildung 39 Optische Drehung von unbehandelten und bestrahlten Aminosäuren
4.3.8. Peroxidgehalt

4.3.8.1. Geräte und Materialien

Peroxid-Test: Merckoquant® (1.10011.0001, 0.5–25 mg/l H₂O₂)
Salzsäure 36% (Hänseler AG, Ph. Eur.)

Tabelle 31 Trocknungsverlust von L-Ala, L-Asp, Gly, L-Leu und L-Phe nach Analysezertifikat

<table>
<thead>
<tr>
<th>Aminosäuren</th>
<th>Trocknungsverlust nach Analysezertifikat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ala</td>
<td>0.01</td>
</tr>
<tr>
<td>L-Asp</td>
<td>0.05</td>
</tr>
<tr>
<td>Gly</td>
<td>0.01</td>
</tr>
<tr>
<td>L-Leu</td>
<td>0.08</td>
</tr>
<tr>
<td>L-Phe</td>
<td>0.01</td>
</tr>
</tbody>
</table>

4.3.8.2. Probenvorbereitung und Methode

Die Prüfung der Aminosäuren auf Peroxid wurde 8 Wochen nach der Bestrahlung (Lagerung bei 8°C im Kühlschrank) durchgeführt. Dazu wurden wässerige Lösungen (0.1% (m/V)) dreifach vermessen. Für L-Asp wurde aus Gründen der Löslichkeit Salzsäure (0.1 %) verwendet.

4.3.8.3. Resultat des Peroxidgehalts

Tabelle 32 Peroxidgehalt von L-Ala, L-Asp, Gly, L-Leu und L-Phe

<table>
<thead>
<tr>
<th>Peroxidgehalt (mg/l H₂O₂)</th>
<th>unbehandelt</th>
<th>PE 30 kGy</th>
<th>PP 30 kGy</th>
<th>PE 100 kGy</th>
<th>PP 100 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ala</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Asp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gly</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Leu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>L-Phe</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
4.3.9. Headspace GC-MS Untersuchungen

Die 5 Aminosäuren L-Ala, L-Asp, Gly, Leu und L-Phe wurden mittels Headspace GC-MS auf flüchtige Zersetzungsprodukte untersucht. Die Untersuchungen mit der gleichen Technik hatten im Vorfeld keine Hinweise auf flüchtige Verunreinigungen oder Lösungsmittelrückstände bei unbehandelten Aminosäuren geliefert (siehe 3.4.).

4.3.9.1. Geräte und Materialien

Headspace-Sampler: TriPlus Autosampler (Thermo Electron Corporation)
GC: Trace GC Ultra (Thermo Electron Corporation)
MS: DSQ II (Thermo Electron Corporation)
Software: Xcalibur™ Home Page version 1.4 SR1
Bibliothek: NIST MS Search 2.0 2005

Säule
Restek RTX-624. 60 m, ID 0.32 mm, DF: 1.8, Cat.-Nr. 10972, Serial-Nr. 196266
Rtx-624 (fused silica), Crossbond 6% cyanopropylphenyl 94%dimethylpolysiloxan Stabil bis 280 °C

TriPlus Autosampler Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syringe</td>
<td>Heated syringe body 2.5 ml headspace</td>
</tr>
<tr>
<td>Incubation mode</td>
<td>constant</td>
</tr>
<tr>
<td>Agitator temperature</td>
<td>85 °C</td>
</tr>
<tr>
<td>Incubation time</td>
<td>60 min</td>
</tr>
<tr>
<td>Sample draw</td>
<td>1 ml</td>
</tr>
<tr>
<td>Syringe temperature</td>
<td>85 °C</td>
</tr>
<tr>
<td>Filling volume</td>
<td>1 ml</td>
</tr>
<tr>
<td>Filling counts</td>
<td>3</td>
</tr>
<tr>
<td>Filling delay</td>
<td>1 s</td>
</tr>
<tr>
<td>Post-Injection syringe flush</td>
<td>30 s</td>
</tr>
<tr>
<td>Filling speed</td>
<td>25 ml/min</td>
</tr>
<tr>
<td>Injection speed</td>
<td>4 ml/min</td>
</tr>
<tr>
<td>Injection depth</td>
<td>20 mm</td>
</tr>
<tr>
<td>Pre-Injection delay</td>
<td>5 s</td>
</tr>
<tr>
<td>Post-Injection delay</td>
<td>5 s</td>
</tr>
<tr>
<td>Anticipated time</td>
<td>3 min</td>
</tr>
<tr>
<td>Needle speed in vial</td>
<td>200 mm/s</td>
</tr>
</tbody>
</table>

Trace GC Ultra Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector</td>
<td>PTV CT splitless 250 °C</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Helium 5.6</td>
</tr>
<tr>
<td>Carrier gas flow</td>
<td>1 ml/min constant</td>
</tr>
<tr>
<td>Equilibration time</td>
<td>70 min</td>
</tr>
<tr>
<td>GC Trennprogramm</td>
<td></td>
</tr>
<tr>
<td>Initial temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>Initial hold time 1</td>
<td>20 min</td>
</tr>
<tr>
<td>Program rate 1</td>
<td>10 °C/min</td>
</tr>
<tr>
<td>Final temperature 1</td>
<td>220 °C</td>
</tr>
<tr>
<td>Final hold time 2</td>
<td>20 min</td>
</tr>
</tbody>
</table>

DSQ II Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion source</td>
<td>250 °C</td>
</tr>
<tr>
<td>Start time</td>
<td>4.5 min</td>
</tr>
<tr>
<td>Detector gain</td>
<td>$1 	imes 10^5$ (Multipler voltage: 1049 V)</td>
</tr>
<tr>
<td>Scan time</td>
<td>0.765 s</td>
</tr>
<tr>
<td>Scan per second</td>
<td>1.3245</td>
</tr>
<tr>
<td>Scan rate</td>
<td>500.0 amu/s</td>
</tr>
<tr>
<td>Mass range</td>
<td>34 – 400</td>
</tr>
</tbody>
</table>
4.3.9.2. Probenvorbereitung und Methode

Die Methode wurde aus 3.4. (Flüchtige Verunreinigungen und Lösungsmittelrückstände) übernommen, musste aber an das neue Injektionssystem (PTV) angepasst werden (siehe 4.1). Das gleiche Testgemisch bestehend aus Acetaldehyd, 2-Propanol, Acetonitril, Butanal, BenzoL, Allylacetat, Pyrrol und Benzaldehyd konnte getrennt und ebenfalls bis zu einer Konzentration von 0.01 % (V/m bezogen auf 100 mg Aminosäure) nachgewiesen werden. Allerdings zeigten sich, vermutlich bedingt durch das unterschiedliche Injektionssystem, stärkere Standardabweichungen.

Es wurden je 100 mg Aminosäurenprobe in 10 ml Wasser in einem headspace vial gelöst, mit Stickstoff geflutet und luftdicht verschlossen. L-Asp konnte nicht vollständig gelöst werden. Alle Messungen wurden dreimal wiederholt. Die Identifizierung wurde mittels der NIST-Bibliothek und Vergleich des erhaltenen Fragmentierungsmuster durchgeführt.

4.3.9.3. Resultat der Headspace GC-MS Untersuchungen

Die Resultate standen auch in Einklang mit früheren Untersuchungen (3.4.1.4.3 e- und γ-Bestrahlung von 20 Aminosäuren mit 30 kGy). Das Verpackungsmaterial zeigte auch in diesem Versuch keinen Einfluss auf die bestrahlten Aminosäuren.
<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>PE 30 kGy (100 mg)</th>
<th>PP 30 kGy (100 mg)</th>
<th>PE 100 kGy (100 mg)</th>
<th>PP 100 kGy (100 mg)</th>
<th>Identifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT (min)</td>
<td>Mittelwert</td>
<td>rsd</td>
<td>RT (min)</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>L-Ala</td>
<td>13.96</td>
<td>5.39</td>
<td>45.16</td>
<td>10.90</td>
<td>5.41</td>
</tr>
<tr>
<td>L-Asp</td>
<td>19.16</td>
<td>5.46</td>
<td>18.84</td>
<td>6.03</td>
<td>5.51</td>
</tr>
<tr>
<td>Gly</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Leu</td>
<td>21.13</td>
<td>4.70</td>
<td>1.13</td>
<td>23.52</td>
<td>6.14</td>
</tr>
<tr>
<td>L-Leu</td>
<td>22.56</td>
<td>22.16</td>
<td>6.69</td>
<td>22.61</td>
<td>6.39</td>
</tr>
<tr>
<td>L-Phe</td>
<td>22.56</td>
<td>22.16</td>
<td>6.69</td>
<td>22.61</td>
<td>6.39</td>
</tr>
<tr>
<td>L-Leu</td>
<td>21.36</td>
<td>4.70</td>
<td>1.13</td>
<td>23.52</td>
<td>6.14</td>
</tr>
</tbody>
</table>

Abbildung 40: Resultat der headspace GC-MS Untersuchungen und Zersetzungsschema von L-Leu
4.3.10. HPLC mit FMOC-Cl Vorsäulenderivatisierung

Die Aminosäuren L-Ala, L-Asp, Gly, L-Leu und L-Phe wurden mit der unter 3.3.4. entwickelten HPLC-Methode auf Zersetzungsprodukte und Verunreinigungen überprüft. Als Zersetzungsprodukt wurde ein Peak dann ausgewiesen, wenn eine zunehmende Strahlendosis zu einer Signalflächenvergrößerung führte. Im Gegenzug galt ein Peak, welcher trotz Strahlenbehandlung gleichbleibende Signalfläche aufwies, als Verunreinigung.

4.3.10.1. Geräte und Materialien
Es wurden die gleichen Geräte und Materialien wie unter 3.3.4.1. beschrieben verwendet.

4.3.10.2. Probenvorbereitung und Methode
Die Probenvorbereitung und Methode war identisch wie unter 3.3.4.3. beschrieben. Die Messabweichung beim Gehaltsvergleich wurde ebenfalls auf 5.5 % gesetzt. Die Gesamtverunreinigung wurde prozentual aus der Summe aller gefundenen Zersetzungsprodukte und Verunreinigungen gegenüber der Hauptsubstanz gebildet.
4.3.10.3. Resultat der HPLC mit FMOC-Cl Vorsäulenderivatisierung

L-Asp zeigte 2 Verunreinigungen und 3 Zersetzungsprodukte. Der Peak bei einer Retentionszeit von 32.08 min zeigte eine Signalflächenabnahme über die Zeit, was die grosse Standardabweichung erklärte.

Gly wies 2 Zersetzungsprodukte und 1 Verunreinigung auf. Die Verunreinigung erschien bei ähnlicher Retentionszeit, wie diejenige von L-Ala und verursachte ebenfalls, dass die Gesamtverunreinigung sehr hoch ausfiel. Auch in diesem Fall wurde bezweifelt, dass es sich um eine echte Verunreinigung handelte.

Die Chromatogramme von L-Leu enthielten 5 Zersetzungsprodukte und 6 Verunreinigungen.

Bei L-Phe konnten 4 Zersetzungsprodukte und 5 Verunreinigungen detektiert werden.

Wie schon bei den GC-MS-Messungen zeigten L-Leu und L-Phe mehr Zersetzungsprodukte als die übrigen Aminosäuren. Die erhaltenen Resultate wurden in Tabelle 34 zusammengefasst. Dabei bezeichnen die weissen Felder Verunreinigungen und die hellgrauen Zersetzungsprodukte.

Das Packmittel zeigte auch bei diesem Versuch keinen Einfluss auf die bestrahlten Proben.

Der Gehaltvergleich war bedingt durch die vielen Verdünnungsschritte, die zur Herstellung der Untersuchungslösungen notwendig waren, mit einer grossen Unsicherheit behaftet (siehe Abbildung 42) und deswegen nur schwer beurteilbar. Er stand aber in keinem Widerspruch mit der Gehaltsbestimmung mittels Titration (siehe 4.3.6.), die keinen Unterschied feststellen konnte.
<table>
<thead>
<tr>
<th>L-Ala</th>
<th>L-Ala PE 30 kGy</th>
<th>L-Ala PP 30 kGy</th>
<th>L-Ala PE 100 kGy</th>
<th>L-Ala PP 100 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt (min)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
</tr>
<tr>
<td>43.48</td>
<td>3013303</td>
<td>3.08</td>
<td>2930480</td>
<td>2.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-Asp</th>
<th>L-Asp PE 30 kGy</th>
<th>L-Asp PP 30 kGy</th>
<th>L-Asp PE 100 kGy</th>
<th>L-Asp PP 100 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt (min)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
</tr>
<tr>
<td>3.09</td>
<td>233139</td>
<td>7.77</td>
<td>220410</td>
<td>5.64</td>
</tr>
<tr>
<td>18.23</td>
<td>128847</td>
<td>17.09</td>
<td>126909</td>
<td>1.52</td>
</tr>
<tr>
<td>20.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26.36</td>
<td>43936</td>
<td>1.97</td>
<td>89547</td>
<td>15.67</td>
</tr>
<tr>
<td>32.08</td>
<td>-</td>
<td>-</td>
<td>40253</td>
<td>24.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Gly PE 30 kGy</th>
<th>Gly PP 30 kGy</th>
<th>Gly PE 100 kGy</th>
<th>Gly PP 100 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt (min)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
</tr>
<tr>
<td>4.78</td>
<td>75987</td>
<td>5.17</td>
<td>80266</td>
<td>2.18</td>
</tr>
<tr>
<td>7.43</td>
<td>-</td>
<td>-</td>
<td>21751</td>
<td>11.74</td>
</tr>
<tr>
<td>42.83</td>
<td>10679486</td>
<td>0.66</td>
<td>1030957</td>
<td>0.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leu</th>
<th>Leu PE 30 kGy</th>
<th>Leu PP 30 kGy</th>
<th>Leu PE 100 kGy</th>
<th>Leu PP 100 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt (min)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
</tr>
<tr>
<td>17.35</td>
<td>106058</td>
<td>5.75</td>
<td>35914</td>
<td>5.35</td>
</tr>
<tr>
<td>19.67</td>
<td>73045</td>
<td>7.29</td>
<td>44718</td>
<td>6.50</td>
</tr>
<tr>
<td>22.2</td>
<td>43214</td>
<td>7.57</td>
<td>133499</td>
<td>2.48</td>
</tr>
<tr>
<td>26.62</td>
<td>-</td>
<td>-</td>
<td>845178</td>
<td>2.44</td>
</tr>
<tr>
<td>29.09</td>
<td>-</td>
<td>-</td>
<td>55232</td>
<td>9.38</td>
</tr>
<tr>
<td>29.49</td>
<td>130694</td>
<td>4.91</td>
<td>135186</td>
<td>0.91</td>
</tr>
<tr>
<td>30.89</td>
<td>-</td>
<td>-</td>
<td>116595</td>
<td>2.50</td>
</tr>
<tr>
<td>31.8</td>
<td>-</td>
<td>-</td>
<td>523478</td>
<td>0.30</td>
</tr>
<tr>
<td>32.87</td>
<td>467374</td>
<td>6.53</td>
<td>538049</td>
<td>0.81</td>
</tr>
<tr>
<td>39.24</td>
<td>116949</td>
<td>5.65</td>
<td>115593</td>
<td>13.38</td>
</tr>
<tr>
<td>39.73</td>
<td>-</td>
<td>-</td>
<td>116949</td>
<td>5.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-Phe</th>
<th>L-Phe PE 30 kGy</th>
<th>L-Phe PP 30 kGy</th>
<th>L-Phe PE 100 kGy</th>
<th>L-Phe PP 100 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt (min)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
<td>Mittelwert (µV*s)</td>
<td>rsd (%)</td>
</tr>
<tr>
<td>7.54</td>
<td>41643</td>
<td>5.07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17.96</td>
<td>-</td>
<td>-</td>
<td>22134</td>
<td>5.47</td>
</tr>
<tr>
<td>20.56</td>
<td>-</td>
<td>-</td>
<td>22134</td>
<td>5.47</td>
</tr>
<tr>
<td>28.49</td>
<td>19437</td>
<td>16.95</td>
<td>23726</td>
<td>41.72</td>
</tr>
<tr>
<td>30.95</td>
<td>57960</td>
<td>9.48</td>
<td>56742</td>
<td>7.30</td>
</tr>
<tr>
<td>34.49</td>
<td>46148</td>
<td>19.04</td>
<td>48951</td>
<td>7.82</td>
</tr>
<tr>
<td>40.49</td>
<td>59883</td>
<td>6.40</td>
<td>47737</td>
<td>7.58</td>
</tr>
<tr>
<td>40.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42.09</td>
<td>32734</td>
<td>3.99</td>
<td>50444</td>
<td>8.10</td>
</tr>
</tbody>
</table>
Abbildung 42 Gehaltvergleich von L-Ala, L-Asp, Gly, L-Leu und L-Phe mittels HPLC mit FMOC-Cl Vorsäulenderivatisierung

Tabelle 35 Gehaltvergleich und Gesamtverunreinigung von L-Ala, L-Asp, Gly, L-Leu und L-Phe mittels HPLC mit FMOC-Cl Vorsäulenderivatisierung

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Rt (min)</th>
<th>Mittelwert (µV*s)</th>
<th>rsd (%)</th>
<th>Gesamtverunreinigung (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Ala</td>
<td>23.97</td>
<td>7191990</td>
<td>1.19</td>
<td>4.19</td>
</tr>
<tr>
<td>L-Ala 30 kGy PE</td>
<td>23.73</td>
<td>6900543</td>
<td>0.83</td>
<td>4.25</td>
</tr>
<tr>
<td>L-Ala 30 kGy PP</td>
<td>23.35</td>
<td>6852747</td>
<td>0.85</td>
<td>4.24</td>
</tr>
<tr>
<td>L-Ala 100 kGy PE</td>
<td>23.57</td>
<td>6850275</td>
<td>0.51</td>
<td>4.23</td>
</tr>
<tr>
<td>L-Ala 100 kGy PP</td>
<td>23.52</td>
<td>6833697</td>
<td>1.54</td>
<td>4.33</td>
</tr>
<tr>
<td>L-Asp</td>
<td>7.50</td>
<td>6728432</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>L-Asp 30 kGy PE</td>
<td>7.42</td>
<td>6493486</td>
<td>0.67</td>
<td>0.07</td>
</tr>
<tr>
<td>L-Asp 30 kGy PP</td>
<td>7.48</td>
<td>6570093</td>
<td>0.46</td>
<td>0.07</td>
</tr>
<tr>
<td>L-Asp 100 kGy PE</td>
<td>7.48</td>
<td>6555856</td>
<td>0.69</td>
<td>0.10</td>
</tr>
<tr>
<td>L-Asp 100 kGy PP</td>
<td>7.69</td>
<td>6809827</td>
<td>0.86</td>
<td>0.10</td>
</tr>
<tr>
<td>Gly</td>
<td>22.03</td>
<td>7473661</td>
<td>0.37</td>
<td>1.44</td>
</tr>
<tr>
<td>Gly 30 kGy PE</td>
<td>21.90</td>
<td>7270969</td>
<td>0.65</td>
<td>1.43</td>
</tr>
<tr>
<td>Gly 30 kGy PP</td>
<td>21.73</td>
<td>7597806</td>
<td>0.89</td>
<td>1.47</td>
</tr>
<tr>
<td>Gly 100 kGy PE</td>
<td>22.31</td>
<td>7096834</td>
<td>0.96</td>
<td>1.46</td>
</tr>
<tr>
<td>Gly 100 kGy PP</td>
<td>22.17</td>
<td>7503917</td>
<td>0.83</td>
<td>1.50</td>
</tr>
<tr>
<td>L-Leu</td>
<td>34.11</td>
<td>6643008</td>
<td>0.35</td>
<td>0.93</td>
</tr>
<tr>
<td>L-Leu 30 kGy PE</td>
<td>34.19</td>
<td>6427664</td>
<td>0.40</td>
<td>1.09</td>
</tr>
<tr>
<td>L-Leu 30 kGy PP</td>
<td>34.01</td>
<td>6243649</td>
<td>0.12</td>
<td>1.10</td>
</tr>
<tr>
<td>L-Leu 100 kGy PE</td>
<td>33.92</td>
<td>6127001</td>
<td>0.33</td>
<td>1.35</td>
</tr>
<tr>
<td>L-Leu 100 kGy PP</td>
<td>34.29</td>
<td>6193407</td>
<td>0.20</td>
<td>1.31</td>
</tr>
<tr>
<td>L-Phe</td>
<td>38.52</td>
<td>6409477</td>
<td>1.04</td>
<td>0.04</td>
</tr>
<tr>
<td>L-Phe 30 kkGy PE</td>
<td>38.83</td>
<td>6409477</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>L-Phe 30 kkGy PP</td>
<td>38.05</td>
<td>6423175</td>
<td>0.90</td>
<td>0.05</td>
</tr>
<tr>
<td>L-Phe 100 kkGy PE</td>
<td>38.23</td>
<td>6219555</td>
<td>0.74</td>
<td>0.08</td>
</tr>
<tr>
<td>L-Phe 100 kkGy PE</td>
<td>37.56</td>
<td>6316410</td>
<td>0.43</td>
<td>0.08</td>
</tr>
</tbody>
</table>
4.4. Diskussion der Stabilitätsuntersuchungen von Aminosäuren nach Sterilisationsbehandlung

Antimikrobielle Behandlung von 20 Aminosäuren

Einen weiteren Hinweis auf Veränderungen lieferten die Untersuchungen der Oberflächenfluoreszenz (siehe 4.2.3.3.). Dabei zeigte sich, dass vor allem nach Wärmebehandlung bei den meisten Aminosäuren im pulverförmigen Zustand Fluoreszenz auftrat. Nach Lösung dieser Proben mit 1 M HCl zeigten nur noch 4 Aminosäuren Fluoreszenz. Es scheint, dass die Veränderungen, welche zur Fluoreszenz führten, bei den andern Aminosäuren nur an der Oberfläche der Kristalle auftraten. Es besteht natürlich auch die Möglichkeit, dass das zugefügte HCl zu Quenching führte. Bei den Aminosäuren, welche im gelösten Zustand noch Fluoreszenz zeigten, gehörte das vollständig zersetzte L-Cys und L-Gln. Daneben war auch L-Met davon betroffen, welches durch die SH-Gruppe leicht zu Zersetzung neigt.

Die antimikrobiellen Behandlungen schienen bei den meisten Aminosäuren keinen grossen Einfluss auf die Chiralität zu haben (siehe 4.2.4.3.). Ein Muster konnte erst bei anschliessenden Untersuchungen gezeigt werden, wonach die Drehung nach Bestrahlung Dosis abhängig abnahm (siehe 4.3.7.3.). Der Grund, dass dieses Muster hier nicht auftrat, könnte in der Zeit zwischen der Bestrahlung und den Messungen liegen. Die Proben dieses Versuches wurden erst nach 1.5 Jahren vermessen, die neuen unmittelbar nach Bestrahlung.

Bei L-Cys HCl lag die optische Drehung bei allen 3 verwendeten Sterilisationsmethoden ausserhalb der Limite. Damit war keine der verwendeten antimikrobiellen Methoden für L-Cys geeignet. Es zeigte sich auch, dass Trockensterilisation bei L-Glu zu einem starken Verlust der Chiralität führte und somit als Sterilisationsmethode ungeeignet war.

Durch DC mit Ninhydrin-Detektion konnte bei 6 Aminosäuren Hinweise auf Zersetzungsprodukte gefunden werden (siehe 4.2.5.4.). Eine starke Zersetzung der Proben durch die Strahlenbehandlung konnte mit dieser Methode jedoch nicht festgestellt werden.

Diese Befunde konnten mit der entwickelten HPLC-Methode (siehe 3.3.4.) bestätigt werden. Allerdings war die HPLC wesentlich sensitiver und es konnte bei der Hälfte der untersuchten Aminosäuren Hinweise auf Zersetzungsprodukte nach antimikrobieller Behandlung gefunden werden (siehe 3.3.4.4.1). Die einzige Ausnahme bildete L-Ala, welche weder Hinweise auf Verunreinigungen noch auf Zersetzungsprodukte lieferte. Insgesamt lagen die gefundenen Zersetzungsprodukte aber an der Nachweisgrenze und die detektierten Veränderungen waren eher klein.

Schon anhand der Geruchsemissionen der Proben wurde vermutet, dass durch die antimikrobielle Behandlung flüchtige Zersetzungsprodukte entstehen. Dies konnte durch GC-MS erfolgreich gezeigt werden (siehe 3.4.1.). Bei Cys und Met traten wie erwartet typische sulfidhaltige Verbindungen auf. Acetaldehyd fand sich gleich bei mehreren Aminosäuren (Ala, Asp, Glu, Met und Thr). Wie man erwarten würde,
konnte bei Phe Verbindungen wie Benzol, Toluol und Benzaldehyd gefunden werden. Interessanterweise fanden sich gleichzeitig bei Tyr keine solchen Zersetzungsprodukte. Tyr war die einzige Aminosäure, bei der mit allen verwendeten Methoden keine Veränderungen nach antimikrobieller Behandlung detektiert werden konnte.

Bei den bestrahlten Aminosäuren konnten mittels GC-MS mehr Zersetzungsprodukte detektiert werden als bei den wärmebehandelten (siehe 3.4.1.4.2 und 3.4.1.4.3). Dies konnte auch mit den HPLC Untersuchungen bestätigt werden, wobei hier der Unterschied weniger deutlich ausfiel. Dafür trat bei Bestrahlung mit 30 kGy keine Totalzersetzung auf wie im Falle von Cys und Gln nach Wärmebehandlung. Die Untersuchungen zeigten klar, dass die antimikrobielle Behandlung von Aminosäuren mittels trockener Hitze oder Bestrahlung mit Zersetzung verbunden war. Die Wärmebehandlung führte dabei tendenziell zu weniger Veränderung als die Bestrahlung. Es konnte auch kein wesentlicher Unterschied zwischen der Anwendung von e- oder γ-Strahlen festgestellt werden.

Da für Aminosäuren zur pharmazeutischen Anwendung die Reinheit höchsten Ansprüchen genügen muss, war letztlich keine der verwendeten Techniken in der Lage die Sterilfiltration zu ersetzen.

e⁻-Bestrahlung von Aminosäuren mit 30 kGy und 100 kGy

Durch Untersuchungen an 5 ausgewählten Aminosäuren (L-Ala, L-Asp, Gly, Leu und L-Phe), welche mit unterschiedlichen Strahlendosen (30 kGy und 100 kGy) behandelt wurden, sollten die Effekte der Verfärbungen und das Verhalten der Zersetzungsprodukte genauer untersucht werden (siehe 4.3.).

Einen Einfluss des Packmittels auf die Verfärbungen oder die Zersetzungsprodukte liess sich durch die Verwendung von 2 Packmaterialien (ld-PE und PP) während der Bestrahlung in den anschliessenden Analysen nicht finden. Es konnten mit keiner der verwendeten Methoden Unterschiede gefunden werden. Es zeigte sich schon visuell, dass die Stärke der Verfärbung mit der Dosis zunahm (siehe Abbildung 31). Dies wurde als ersten Hinweis gewertet, dass die Verfärbungen nicht durch reine Oberflächeneffekte zu erklären waren. Bestätigt wurde dies auch durch Auflichtspektroskopie, bei welcher die Aminosäurekristalle eine gleichmässige Verfärbung aufwiesen (siehe Abbildung 33). Die Vermutung, dass die Verfärbungen aufgrund von Fremdeinschlüssen in den Kristallen auftreten und somit im Zusammenhang mit Verunreinigungen standen, konnte nicht bestätigt werden (siehe 4.3.3.3.).

Die anschliessenden UV/Vis Untersuchungen stimmten mit diesen Erkenntnissen überein und zeigten eine Zunahme der Absorption mit steigender Bestrahlungsdosis (siehe 4.3.4.3.). Gly bildete dabei eine Ausnahme und eine Zunahme der Absorption konnte nicht festgestellt werden, obwohl die Zunahme der Verfärbung bei höherer Dosis visuell klar erkennbar war. Die Oberflächenfluoreszenzuntersuchungen bestätigten die Ergebnisse der zuvor durchgeführten Messungen (siehe 4.3.5.3.). Zusätzlich korrelierte die Oberflächenfluoreszenz bei pulverförmigen Phe und Leu mit der Strahlendosis. Nach Lö sung der Proben in Wasser (Asp in 1 M HCl) zeigte nur noch Phe eine Zunahme der Fluoreszenz.

Durch Titration konnte keine Veränderung des Gehaltes selbst nach einer Bestrahlung von 100 kGy festgestellt werden (siehe 4.3.6.3.). Daraus liess sich schliessen, dass nur wenig Zersetzung auftrat. Die Untersuchungen der optischen Drehung zeigten ein interessantes Muster (siehe 4.3.7.3.). Nach Bestrahlung waren die Drehwinkel erniedrigt, aber unabhängig von
Stabilitätsuntersuchung von Aminosäuren nach Strahlensterilisation

Peroxid konnte nach einer Bestrahlung von 100 kGy in Ala, Gly, Leu und Phe nachgewiesen werden (siehe 4.3.8.3.). Dadurch wurde deutlich, dass mit Zersetzungsprozessen, wie sie in wässerigen Lösungen ablaufen, prinzipiell auch bei Bestrahlung von Aminosäurepulvern gerechnet werden muss. Ein Zusammenhang von Peroxidgehalt und Restwasserteverhältnis in den Proben konnte nicht offenbart werden. Dies könnte auch daran liegen, dass der Versuch erst 8 Wochen nach der Bestrahlung durchgeführt wurde.

Bei Ala und Asp konnte mittels GC-MS Acetaldehyd als Zersetzungsprodukt gefunden werden (siehe 4.3.9.3.). Für Leu und Phe konnte ein Zersetzungsschema erstellt werden (Abbildung 40 und 41). Typischerweise und wie erwartet nahmen die detektierten Zersetzungsprodukte mit steigender Strahlendosis zu. Bei Gly liessen sich keine Zersetzungsprodukte finden.

HPLC Untersuchungen mit FMOC Vorsäulendervatisierung lieferten keinen Hinweis auf eine starke Zersetzung der Proben durch die verwendeten Strahlendosen (siehe Abbildung 42). Ein weiteres Indiz dafür lieferte die Gesamtverunreinigung. Obwohl bei L-Asp, Gly, L-Leu und L-Phe nach einer Strahlenbehandlung einige Zersetzungsprodukte gefunden wurden, stieg die Gesamtverunreinigung nicht übermässig an (siehe Tabelle 35). L-Leu zeigte eine maximale Zunahme nach 100 kGy von 0.38 %. Alle anderen zeigten eine Zunahme unter 0.07 %. Dieses Resultat stand im Einklang mit der Gehaltsbestimmung mittels Titration (siehe 4.3.6.).
5. Abschliessende Diskussion und Schlussfolgerung

Aminosäuren und Derivate

Das verwendete Trennprogramm wurde darauf ausgelegt alle zu untersuchenden Aminosäuren in einem Lauf aufzutrennen. Eine Basalinitientrennung konnte jedoch bedingt durch die hohe Anzahl der zu trennenden Stoffe nicht in jedem Fall erreicht werden. Hinsichtlich einer Eignung als Reinheitsprüfung für die Ph. Eur. wäre es notwendig, das Trennprogramm individuell auf die jeweilige Aminosäure abzustimmen.

Flüchtigen Verunreinigungen und Lösungsmittelrückstände
Es konnte mittels headspace GC-MS gezeigt werden, dass zur Qualitätsbeurteilung von Aminosäuren den flüchtigen Verunreinigungen eine wesentliche Rolle zu gesprochen werden muss. Die untersuchten Aminosäuren neigten bei Stressbehandlung zu zahlreichen flüchtigen Zersetzungsprodukten, welche durch diese Technik wirksam detektiert werden konnten. Deswegen sollte bei Fragestellungen, welche sich mit der Stabilität von Aminosäuren beschäftigen (Bsp. Halbarkeits-, Verwendbarkeitsfristen) diese Methode eine wesentliche Rolle spielen.

Kohlenhydrate

Metalle

Bei der Untersuchung von L-Asp, Gly, L-Ile und L-Ser traten keine Metallkontaminationen über 10 ppm auf. Da Aminosäuren (z.B. L-Ala, L-Asp, L-Glu, Gly und L-His) aber in Proteinen als Chelatoren katalytisch aktiver Metalle (z.B. Fe, Cu, Mn, Ni oder Zn) in Funktion treten, wäre die Untersuchung weiterer Aminosäuren vor und nach Aussetzung verschiedener Konzentrationen entsprechender Metalle von Interesse. Nur so könnte eine fundierte Aussage über das Risiko einer Metallkontamination gemacht werden.

Antibiotika

Für die in dieser Arbeit untersuchten Aminosäuren liessen sich keine Anzeichen von Antibiotikaverunreinigungen finden. Trotzdem stellen sie, wenn sie bei der fermentativen Herstellung von Aminosäuren verwendet werden, ein potentielle Verunreinigung dar. Da der Herstellungsprozess aber der Geheimhaltung unterliegt und das verwendete Antibiotikum der Öffentlichkeit nicht offengelegt wird, liegt die Verantwortung darüber ganz bei den Herstellern. Dabei müsste die zuständige Behörde sicherstellen, dass die notwendige Überwachung gewährleistet wurde.

Antimikrobielle Behandlung von Aminosäuren

Bei den Untersuchungen konnte kein wesentlicher Unterschied im Verunreinigungsprofil zwischen e⁻- und γ-bestrahlten Aminosäuren gefunden werden.
6. Referenzen

56. *AccQ-Tag Ultra Derivatization Kit (care and use manual)*. 2007, Waters Corporation: USA.

7. Anhang

Sprühreagenzien zur Detektion in der DC

Anisaldehyd-Schwefelsäure-Reagenz
Eine Mischung aus 85 ml Methanol und 10 ml Eisessig wurde unter Eiskühlung vorsichtig mit 8 ml konz. Schwefelsäure und 0.5 ml Anisaldehyd versetzt.

Die Platten wurden nach Entwicklung an der Luft trocknen gelassen, mit dem Reagenz besprüht und 15 min lang bei 125 °C erhitzt.

Ninhydrin-Lösung
0.2 g Ninhydrin wurden in 5 ml verdünnter Essigsäure R (3 g Essigsäure R in 25 ml Wasser R) und 95 ml 1-Butanol R gelöst.

Die Platten wurden nach Entwicklung an der Luft trocknen gelassen, mit dem Reagenz besprüht und 15 min lang bei 105 °C erhitzt.

Thymol-Sprühreagenz
0.5 mg Thymol wurden in 95 ml EtOH 94% gelöst und unter Eiskühlung 5 ml Schwefelsäure 95% dazugegeben.

Die Platten wurden nach Entwicklung an der Luft trocknen gelassen, mit dem Reagenz besprüht und 10 min lang bei 115 °C erhitzt.

Vanilin-Schwefelsäure-Reagenz
0.5 g Vanillin wurden in 85 ml Methanol gelöst. Danach wurden 10 ml Essigsäure und vorsichtig 5 ml konzentrierte Schwefelsäure unter Eiskühlung zugegeben.

Die Platten wurden nach Entwicklung an der Luft trocknen gelassen, mit dem Reagenz besprüht und 10 min lang bei 115 °C erhitzt.

4-(Dimethylamino)-zimtaldehyd-Salzsäure-Reagenz
0.5 g 4-(Dimethylamino)-zimtaldehyd wurden in 50 ml Salzsäure (5 mol/l) gelöst und mit Ethanol auf 100 ml aufgefüllt. Diese Lösung wurde anschliessend mit Ethanol 1 : 1 verdünnt.

Die Platten wurden nach Entwicklung an der Luft trocknen gelassen, mit dem Reagenz besprüht und 10 min lang bei 110 °C erhitzt.
Dünnschichtchromatographie von bestrahlten Aminosäuren

<table>
<thead>
<tr>
<th>Bahn</th>
<th>Substanz</th>
<th>LSM</th>
<th>Konzentration (mg/ml)</th>
<th>Volumen (µl)</th>
<th>RF-Wert</th>
<th>Menge (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-His Referenz A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>L-His γ-bestrahlt A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Blank A</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L-His Referenz A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>L-His ε-bestrahlt A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Blank A</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L-Histidin

Laufmittel 1
Ninhydrin R

Nach e^--Bestrahung trat ein zusätzlicher schwacher Fleck bei einem Rf von 0.22 auf.

γ-bestrahltes L-His enthielt einen Fleck an derselben Stelle, aber dieser war noch schwächer.

L-Isoleucin

Laufmittel 1
Ninhydrin R

Nach e^-- und γ-Bestrahang trat ein zusätzlicher schwacher Fleck bei einem Rf von 0.24 auf.
Nach γ-Bestrahung trat ein zusätzlicher schwacher Fleck bei einem Rf-Wert von 0.54 auf.

Nach e²-Bestrahung trat ein zusätzlicher schwacher Fleck bei einem Rf-Wert von 0.29 auf.

L-Leucin
Laufmittel 1
Ninhydrin R

L-Lysin HCl
Laufmittel 1
Ninhydrin R

Nach e²- und γ-Bestrahung traten 2 Flecken bei einem Rf-Wert von 0.27 und 0.4 auf.

Der Fleck bei Rf 0.4 war intensiver.
L-Methionin

Laufmittel 1
Ninhydrin R

Nach e^-- und γ-Bestrahlung trat 1 Fleck bei einem Rf-wert von 0.23 auf.

<table>
<thead>
<tr>
<th>Bahn</th>
<th>Substanz</th>
<th>LSM</th>
<th>Konzentration (mg/ml)</th>
<th>Volumen (µl)</th>
<th>RF-Wert</th>
<th>Menge (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-Met Referenz</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.35</td>
<td>120</td>
</tr>
<tr>
<td>2-4</td>
<td>L-Met γ-bestrahlt</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.35</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>Blank</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L-Met Referenz</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.35</td>
<td>120</td>
</tr>
<tr>
<td>7-9</td>
<td>L-Met e^--bestrahlt</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.35</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>Blank</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L-Serin

Laufmittel 1
Ninhydrin R

Sowohl die unbehandelten als auch die bestrahlten Aminosäuren wiesen einen Starfleck auf.

Zusätzlich zeigten die bestrahlten Aminosäuren einen Flecken bei einem Rf von 0.22.

<table>
<thead>
<tr>
<th>Bahn</th>
<th>Substanz</th>
<th>LSM</th>
<th>Konzentration (mg/ml)</th>
<th>Volumen (µl)</th>
<th>RF-Wert</th>
<th>Menge (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-Ser Referenz</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
</tr>
<tr>
<td>2-4</td>
<td>L-Ser γ-bestrahlt</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>Blank</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L-Ser Referenz</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
</tr>
<tr>
<td>7-9</td>
<td>L-Ser e^--bestrahlt</td>
<td>A</td>
<td>10</td>
<td>12</td>
<td>0.15</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>Blank</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FMOC Derivatisierungsschema von Aminosäuren

Aminosäurestammlösung (10 nmol/µl) gelöst in Borpuffer (pH 8.5, 200 mM)

1 : 10 Verdünnung mit Borpuffer (pH 8.5, 200 mM)

FMOC-Cl Lösung (6 nmol/µl)

15.55 mg FMOC-Cl wurden in 10 ml ACN im Ultraschallbad (2 min) gelöst und gut gemischt.

Aminosäurelösung (1 nmol/µl)

200 µl

Derivatisierung:

200 µl der Aminosäurelösung wurden mit 200 µl FMOC-CL-Lösung mit dem Vortexmischer 2 min bei Raumtemperatur in einem HPLC-Glässchen gemischt (0.5 nmol/µl). Das Reaktionsgemisch wurde 2-mal mit 400 µl n-Pentan extrahiert. Der n-Pentanüberstand wurde verworfen.

Derivatisierte Aminosäurelösung (25 fmol/µl)

Diese Lösung wurde für die Reinheitsprüfung verwendet

Derivatisierte Aminosäurelösung (0.25 fmol/µl)

Diese Lösung wurde für den Gehaltsvergleich verwendet

Derivatisierte Aminosäurelösung (2.5 fmol/µl)

Diese Lösung wurde für den Gehaltsvergleich verwendet
Protokoll SPE

1. Konditionierung
Die Säule (HLB Oasis®, 30 mg, Porengrösse 80 Å) wurde mit 3ml Acetonitril und 3 ml Phosphatpuffer pH 2.1 (10mM) gespült.

2. Extraktion
5 ml Probe (gelöst in Phosphatpuffer pH 2.1) wurden über die Extraktionssäule gegeben. Die so angereicherte Probe wurde anschließend 1 ml Acetonitril in ein Eppendorf Röhrchen eluiert und dann in ein HPLC-Vial überführt. Die erhaltene Probelösung wurde danach mit der entwickelten HPLC-Methode (4.4.2.) analysiert.
Danksagung

Diese Arbeit wäre ohne die Unterstützung und Übernahme des Referats von Herrn Prof. Schubiger nicht zu Stande gekommen. Ich möchte mich für die Hilfestellungen und das Interesse an dieser Arbeit bedanken.

Bei Herrn Prof. Schibli möchte ich mich für die Übernahme des Korreferats und die Begutachtung meiner Arbeit bedanken.

Ein spezieller Dank gilt Frau Dr. Werner, welche ein Korreferat für diese Arbeit übernommen hat und mir stets mit Rat und Tat zur Seite stand.

Bei Herrn Prof. Dr. D. Günther und S. Staub möchte ich mich für die Hilfe bei den ICP-MS Messungen bedanken.

Bedanken möchte ich mich auch bei S. Stocker, M. Bürzle und M. Tomic, die mir durch ihre Diplom- und Semesterarbeit eine grosse Unterstützung in diesem Projekt waren.

Bei R. Alder, D. Lüthi, T. Baumann und M. Chatfield möchte ich mich für die Hilfe an Geräten und die Hilfe bei den unterschiedlichsten Messungen bedanken.

Ich möchte mich an dieser Stelle auch bei meinen Eltern und meiner Freundin bedanken, welche mich immer vorbehaltlos unterstützt haben.
Lebenslauf

Name: Künzle Urs
Geburtsdatum: 26.09.1970
Bürgerort: Waldkirch SG
Zivilstand: ledig

Ausbildung

04.2004 – 09.2008 Doktorand und Assistent Institut für Pharmazeutische Analytik ETHZ
10.1998 - 10.2003 Pharmazie, Apotheker ETH ZH
03.1992 - 03.1995 eidg. Matura, 2.Weg AKAD SG
04.1987 - 03.1991 Berufslehre Mechaniker und Berufsmittelschule Spühl AG SG