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Summary

In recent years, the increased availability of cost-effective, hardware
accelerated computing equipment has enabled academic and indus-
trial simulations and research hitherto restricted to supercomputers.
The finite-difference time-domain (FDTD) method in electromagnet-
ics (EM) was one of the first methods to benefit hugely from these mas-
sively parallel computing solutions. The simple and robust structure
of the method allows a very efficient parallel implementation. Process-
ing speeds up to 50 times faster compared to single CPU computing
are common, with new hardware becoming available every year.

This surge in computing power has triggered a paradigm shift. As
the actual FDTD method is no longer the main bottleneck in the en-
tire process flow, methodological improvements to the FDTD method
have ceased to be the focus because they do not provide competitive
alternatives to parallelized FDTD. The sheer computational power
available today has shifted the focus from discretization errors and
algorithmic speed improvements towards other sources of error and
other bottlenecks in computation time.

The feasibility to run larger simulations in shorter times entailed
applications with unprecedented levels of detail. The number of CAD
objects in state-of-the-art industrial grade applications is in the order
of a few hundred to a few thousand. The first link in the chain to
process very complex 3D simulation configurations is the setup of
a suitable FDTD grid. With the simulation time for most of these
applications being just minutes, it is not desirable to invest more time
in finding a suitable grid.

Chapter 4 describes the development of a novel approach to com-
pute an FDTD grid in the shortest time possible. The approach is

ix



x SUMMARY

based on an ultra-fast grid generation algorithm that operates on an
optimized dataset containing all the relevant information about the
model. The algorithm is able to compute a new grid configuration
from such data within a fraction of a second. Changes in user settings
are reflected in localized changes in the preprocessed grid data, which
allows the grid engine to adapt the grid and the user to see the impact
of his changes immediately. This feedback loop between the user and
the grid engine significantly reduces the time needed to set up a grid
for any given geometry. Moreover, the algorithm is designed to pro-
duce optimal grids in the sense that it tries to maximize the minimal
grid step while simultaneously minimizing the total number of steps.

A direct result of being able to resolve and run structures in very
high resolution is the fact that the discretization errors due to the
orthogonal grid have become small compared to the influence of ma-
terial modeling. Chapters 5 to 7 describe advanced material models
in FDTD. All of these models have been developed against the back-
drop of the requirement to work efficiently with the accelerated FDTD
kernels.

For many applications, the losses in metals play a key role, and
the perfect electric conductor (PEC) approximation no longer yields
accurate enough results. Addressing the material group of good con-
ductors that are difficult to model with FDTD, Chapter 5 describes
the modeling of bulk metallic structures with finite conductivity and
Chapter 6 describes a novel approach to modeling very thin metallic
layers.

Chapter 5 describes the generalization of a surface impedance
boundary condition model (SIBC) to three-dimensional structures.
The model adopts an existing approach to express the frequency-
dependent surface impedance with an equivalent electric network,
which introduces an additional updating scheme to account for the
surface impedance.

Chapter 6 introduces a novel algorithm to model the group of very
thin conductive sheets with thicknesses in the range of the skin depth.
Electromagnetic waves incident on such a sheet can penetrate it. It
is shown that the conventional FDTD update scheme offers enough
degrees of freedom to model thin conductive sheets by changing the
update coefficients only. Therefore, despite a complex scheme to iden-
tify the FDTD edges that need special update coefficients, the stability
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and robustness of the conventional algorithm are preserved.
An entirely different type of material is described in Chapter 7.

Three-dimensional (3D) FDTD simulations in optics have tradition-
ally been very demanding with regard to computer resources due to
the small wavelengths involved. By exploiting the speed gain of the
new hardware, more and more problems in this field can be investi-
gated with FDTD. The novel scheme presented in this chapter allows
the modeling of any combination of linear (Drude, Lorentz, Debye)
dispersion types with the nonlinear Raman scattering and the Kerr
effect. The approach retains the conventional FDTD update equa-
tions in its formulation, making efficient use of the existing hardware
implementation.





Zusammenfassung

In den letzten Jahren hat die Entwicklung von auf Grafik-Prozes-
soren basierenden Computerkomponenten, die Hardware-Beschleuni-
gung für spezifische Applikationen unterstützen, grosse Fortschritte
gemacht. Dies ermöglicht es, heute akademische und industrielle Si-
mulationen kostengünstig durchzuführen, die bislang Supercompu-
tern vorbehalten waren. Die sogenannte finite-difference time-domain
(FDTD)-Methode für die Simulation von elektromagnetischen (EM)
Feldern war einer der ersten Anwendungsbereiche, der von diesen mas-
siv-parallelen Rechensystemen profitiert hat. Die robuste und zugleich
einfache Struktur der FDTD-Methode erlaubt eine äusserst effiziente,
parallele Programmierung. Geschwindigkeitsgewinne von einem Fak-
tor 50 oder mehr im Vergleich mit Implementationen für Einprozessor-
Systeme sind erreicht worden, und jährlich wird verbesserte Hardware
verfügbar.

Der plötzliche Anstieg der Rechenleistung hat zu einem Paradig-
menwechsel geführt. Weil die eigentliche FDTD-Berechnung nicht
länger den grössten Anteil am gesamten Zeitaufwand bei der Mo-
dellierung und Simulation eines elektromagnetischen Problems dar-
stellt, sind methodisch verbesserte FDTD-Varianten kaum mehr kon-
kurrenzfähige Alternativen zu den parallelisierten Systemen. Die Ver-
besserung der Rechengeschwindigkeit durch neue Methoden und das
Problem der numerischen Ungenauigkeit bei zu groben Diskretisie-
rungen haben an Bedeutung verloren. Bislang weniger berücksichtigte
Fehlerquellen sowie andere zeitintensive Schritte bei der Simulations-
durchführung sind dagegen in den Vordergrund gerückt.

Die Möglichkeit, grössere Rechnungen in kürzerer Zeit durchzufüh-
ren, erlaubt Simulationen von nie dagewesener Komplexität und De-

xiii
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tailgenauigkeit. Moderne industrielle CAD-Anwendungen können aus
mehreren hundert bis mehreren tausend Einzelteilen bestehen. Der
erste Schritt, um ein fertiges Computermodell mit FDTD zu ana-
lysieren, ist die Erstellung eines räumlichen Gitters. Da der Zeit-
aufwand für die FDTD-Berechnung für viele Anwendungsgebiete im
Bereich von einigen Minuten liegt, ist es nicht sinnvoll, eine grössere
Zeitspanne für die Gittergenerierung zu verwenden.

Kapitel 4 beschreibt einen neuen Ansatz um FDTD-Gitter in der
kürzest möglichen Zeit zu generieren. Er basiert auf einem effizien-
ten Algorithmus, der eine optimierte Datenstruktur mit den für das
Gitter relevanten Daten verarbeitet. Geänderte Parameter werden im
Bruchteil einer Sekunde in Änderungen der Datenstruktur übersetzt,
was einer aus Sicht des Benutzers sofortigen Aktualisierung des Git-
ters gleichkommt. Dieses Feedback reduziert die Zeit, welche benötigt
wird, um Gitter für komplexe Simulationsmodelle zu erstellen. Da-
rüber hinaus garantiert der Algorithmus optimale Gitter im Sinne
einer Maximierung des kleinsten erzeugten Gitterschrittes und einer
gleichzeitigen Minimierung der totalen Anzahl Gitterpunkte.

Eine direkte Folge der Machbarkeit von hochauflösenden Simu-
lationen ist, dass die Diskretisierungsfehler klein sind gegenüber dem
Einfluss ungenauer Materialmodellierung. Kapitel 5 bis 7 beschreiben
erweiterte Materialmodelle in FDTD, welche vor dem Hintergrund
einer möglichst effizienten Integration in die bestehenden hardware-
beschleunigten Systeme erarbeitet wurden.

In vielen Anwendungen spielen die Verluste von realen Metallen
eine entscheidende Rolle. Die konventionelle Approximation von Met-
allen durch perfekt leitendes Material mit unendlicher Leitfähigkeit
ist nicht länger genügend. Um die Gruppe von Materialien mit ho-
her Leitfähigkeit für die Analyse mit FDTD zugänglich zu machen,
behandelt Kapitel 5 die Simulation von ausgedehnten Strukturen und
Kapitel 6 beschreibt einen neuartigen Ansatz zur Modellierung von
sehr dünnen metallischen Schichten.

Kapitel 5 beschreibt die Generalisierung und Implementation eines
Oberflächenimpedanz-Modells für dreidimensionale Strukturen. Ein
bestehender Ansatz, der die Oberflächenimpedanz mittels äquivalen-
ter elektrischer Netzwerke modelliert, wurde umgesetzt und evaluiert.

Kapitel 6 führt einen neuen Algorithmus für die Simulation von
sehr dünnen metallischen Schichten mit Stärken im Bereich der Skin-
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tiefe ein. Elektromagnetische Wellen, die auf eine solche Schicht tref-
fen, können diese durchdringen. Es wird gezeigt, dass die konventio-
nellen FDTD-Gleichungen genügend Freiheitsgrade besitzen, um sol-
che Schichten zu modellieren. Ein komplexer Algorithmus sucht und
identifiziert diejenigen Feldkomponenten im FDTD-Gitter, welche mit
speziellen Koeffizienten versehen werden müssen. Da dem konven-
tionellen FDTD-Algorithmus keine neuen Gleichungen hinzugefügt
sondern nur die Koeffizienten im Gitter verändert werden, bewahrt
der Ansatz die Robustheit und Stabilität der FDTD-Methode.

Eine ganz andere Art von Materialien wird in Kapitel 7 behan-
delt. Simulationen im Bereich von optischen Anwendungen sind sehr
anspruchsvoll in Bezug auf Computerressourcen aufgrund der sehr
kleinen Wellenlängen. Die heute verfügbaren beschleunigten Systeme
ermöglichen jedoch die Untersuchung von immer komplexeren Prob-
lemen in diesem Gebiet. Der in diesem Kapitel vorgestellte neue Al-
gorithmus erlaubt die Simulation von wichtigen Dispersionsphänome-
nen. Er verbindet lineare und nichtlineare Dispersionsmodelle (Drude,
Lorentz, Debye, Raman scattering, Kerr effect) und ist so formuliert,
dass die konventionellen FDTD-Gleichungen Bestandteil des Algo-
rithmus sind, um das Potenzial der hardware-beschleunigten Systeme
möglichst effizient auszunutzen.

Diese Doktorarbeit besteht aus unabhängig voneinander erarbei-
teten Publikationen und kann daher Wiederholungen und sich über-
schneidende Teile enthalten. Des Weiteren ist die Implementation der
hier beschriebenen Algorithmen nicht dokumentiert, sie ist jedoch ein
fester Bestandteil dieser Arbeit.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Since 2005 hardware acceleration based on graphics cards has been
commercially available for the finite-difference time-domain (FDTD)
method in the simulation of electromagnetic (EM) fields [1]. The lat-
est systems offer a 50 fold speed gain for large simulations. This de-
velopment, together with advances in personal and professional com-
puting, has opened up a new field of problems that can be analyzed
with affordable equipment.

In the FDTD process flow, consisting of model creation/import,
material assignment and simulation parameter setup, grid generation,
discretization, simulation, and result analysis, the simulation part has
traditionally borne the largest time consumption footprint. The avail-
able speed improvements have been and still are shifting the bottle-
neck in this process flow to the pre- or post-processing steps, i.e., to
the processing steps before and after a simulation run.

While post-processing is by and large a question of processing
power, pre-processing, i.e., the grid generation and subsequent dis-
cretization, is responsible for producing valid input data for the sim-
ulation. Moreover, because the grid generation is the first step in the
purely numerical part of the FDTD process flow, it depends on user
knowledge specific to the model at hand. For example, in modern

3



4 CHAPTER 1. INTRODUCTION

applications with hundreds of CAD objects, many of the smaller di-
electric parts have no significant influence on the simulation results
and can be ignored during the grid process. On the other hand, radi-
ating or scattering structures need to be identified as they may need
a very fine resolution.

For all of the above reasons, the first objective of this thesis was
to create a reliable grid generation framework that allows the user to
inject the specific knowledge and to see its impact on the grid, while
at the same time preventing him to deal with each object separately.

A second consequence of the newly available processing power is
the fact that, due to the possibility of running complex simulations
with very fine resolution in a reasonable time, the errors due to inac-
curate material modeling have gained importance. Also, simulations
in optics that were traditionally too large for FDTD, due to the very
small wavelengths, are now open for investigation. For these two
reasons, new and more accurate material methods need to be consid-
ered for use with FDTD. Existing approaches were not intended to
run with specialized hardware equipment and their algorithmic design
does not allow for efficient implementation within the framework of
the available acceleration systems.

The second objective of this thesis was the development of novel
material models to enhance the applicability of FDTD in general and
of acceleration systems in particular.

The most important steps to achieve these goals were:

• Investigation of the requirements for a grid generation frame-
work capable of handling the most complex simulations. Assess-
ment of the advantages and shortcomings of existing approaches.

• Definition of quality and validity criteria for FDTD grids. De-
velopment of a primary fast grid generation algorithm following
these criteria.

• Development of a novel geometrical object analysis. Enhance-
ment of the primary grid generation algorithm to process geo-
metrical information.

• Implementation of a complete grid generation framework. Ap-
plication and testing with state-of-the-art industrial FDTD sim-
ulations.
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• Literature research on existing lossy metal models and models
for higher-order optical phenomena.

• Development and implementation of a novel material models for
optical media, bulk lossy metallic structures, and thin conduc-
tive sheets with focus on an efficient implementation within the
framework of hardware accelerated systems.

• Benchmarking of the material models with generic and real-
world examples.

1.2 Outline

The remaining chapters of this thesis are outlined as follows:

Chapter 2 introduces Maxwell’s theory as foundation of the devel-
oped methods in this thesis. Also, the fundamental theory behind the
linear and nonlinear dispersion models are discussed.

Chapter 3 reviews properties of the FDTD algorithm including the
influence of the discretization. The basic principles and current state
of the FDTD acceleration platform used throughout this thesis are
also summarized.

Chapter 4 defines the quality requirements for an FDTD grid and
the primary grid generation algorithm developed to meet these goals.
The advanced methods used in the final implementation are described
along with generic and real-world benchmarks and examples.

Chapter 5 reviews the surface impedance models and explains the
generalization to arbitrary 3D structures. The validity of the model
is illustrated with benchmarks.

Chapter 6 describes the approach and algorithm to model thin
conductive sheets with the conventional FDTD stencil. A range of
generic benchmarks shows the accuracy of the model. The applica-
tion of the algorithm to a real-world example is described, where a
former discrepancy between measurement and simulation was able to
be resolved.
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Chapter 7 describes the details of a novel arbitrary dispersive ma-
terial (ADM) algorithm. The stability considerations are discussed,
and computational examples and benchmarks are presented.



Chapter 2

Fundamentals in
Electromagnetics

2.1 Maxwell’s Equations

Classically, the electromagnetic field is described by Maxwell’s equa-
tions [2]

∇×E = −∂B
∂t

(2.1a)

∇×H =
∂D
∂t

+ j (2.1b)

∇ ·D = ρ (2.1c)

∇ ·B = 0. (2.1d)

The electric current density j is connected to E via Ohm’s law (where
valid, i.e., at sufficiently low intensities)

j = σE (2.2)

where σ is the electric conductivity.

7



8 CHAPTER 2. FUNDAMENTALS IN ELECTROMAGNETICS

2.2 Constitutive Relations

In a dielectric medium, the constitutive equations can be written as

D = µE = µ0(E + P) (2.3a)

B = µH = µ0(H + M) (2.3b)

where P is the electric polarization and M is the magnetization [2, 3].
Except for specific types of magnetic materials, the magnetization M
is a linear and isotropic function of H. For a linear, isotropic, and
non-dispersive material, the same holds true for the polarization P,
which becomes a linear function of E.

To investigate higher order polarization effects, the polarization
can be described in the frequency domain with

Pi = ε0

∑
ij

χ
(1)
ij Ej +

∑
ijk

χ
(2)
ijkEjEk + · · ·

 (2.4)

where the χ(n) are dielectric susceptibility tensors of rank n+ 1 [3].

2.3 Linear Dispersion

Ignoring the higher order terms in the series on the right hand side
of Equation (2.4) yields a polarization P that depends linearly on E.
Frequency dependent first order susceptibilities χ(1)(ω) give rise to
linear dispersion, where the term linear refers to the linearity of P
in E.

The frequency dependence can take different forms depending on
distinct physical phenomena. Commonly, the Drude, Debye, and
Lorentz models are used to describe linear dispersion. A thorough
discussion of these models and their physical foundation can be found
in [3] or [4].

2.4 Nonlinear Dispersion

The higher-order terms on the right hand side of Equation (2.4) yield
a polarization P that depends non-linearly on E.
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In centrosymmetric materials, the second-order susceptibility χ(2)

must vanish (cf. [3]). The approach presented in Chapter 7 models
the third order Kerr effect and Raman scattering.

The Kerr effect modeled by this approach is the constant, iso-
tropic, and instantaneous third order response χ(3) = χ

(3)
0 , and its

polarization contribution is given by

PKerr(t) = ε0χ
(3)
0 |E(t)|2E(t). (2.5)

On the other hand, the Raman scattering model accounts for non-
resonant phonon interaction. It describes a single Lorentzian line
centered on the optical phonon frequency 1/τ1 with a bandwidth of
1/τ2, the reciprocal phonon lifetime. The susceptibility response and
polarization contribution due to Raman scattering are given by

χ
(3)
Raman(t) = χ

(3)
0

τ2
1 + τ2

2

τ2
1 τ

2
2

e−
t
τ2 sin (

t

τ1
)H(t) (2.6a)

PRaman(t) = ε0E(t)
[
χ

(3)
Raman(t) ∗ |E(t)|2

]
(2.6b)

where H is the Heaviside function.
The Kerr effect is a frequency-independent, intensity-dependent

contribution to the permittivity. Despite its simple mathematical de-
scription, its effects are complex. The strength of the Kerr effect
depends on the local field intensity and amplitude. Thus, different
parts of a light-pulse are affected differently. Depending on the sign
of the susceptibility χ

(3)
0 , the Kerr effect is either focusing or defo-

cusing. In a well balanced case, it is possible that pulse-broadening
due to linear dispersion is neutralized by the Kerr effect such that the
light pulse retains its shape. Such pulses are called solitons, and some
illustrative results are shown in Section 7.5.2.

For nonresonant electronic nonlinearities, the third-order suscep-
tibility χ(3) can be expected to be of the order of 1/E2

at, where Eat is
the characteristic atomic electric field strength Eat = 1/(4πε0) · e/a2

0

of the hydrogen atom with Bohr radius a0 [3]. Using Equation 2.4 as a
definition for the susceptibilities, numerical values in the MKS system
for the third order susceptibility are expected to be in the order of

χ(3) ∼= 4× 10−23 m2

V2 . (2.7)
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However, values for materials showing electronic nonlinearities can be
up to 5 orders of magnitude larger, as shown in Table 2.1.

Table 2.1: Nonlinear optical susceptibilities for materials showing elec-
tronic nonlinearities. Adapted from [5].

Material χ(3) [m2/V2]

Diamond 21×10−22

Yttrium aluminum garnet 8.4×10−22

Sapphire 4.2×10−22

Borosilicate crown glass 3.5×10−22

Fused silica 2.8×10−22

CaF2 2.2×10−22

LiF 1.4×10−18



Chapter 3

The FDTD Method

The origin of the FDTD method to solve EM problems dates back to
the paper by Kane S. Yee in 1966 [6]. Yee created a gridding scheme
where each point of the grid represents a component of the E or H-
field in one of the Cartesian directions. His insight was to arrange the
components in a way such that each E-field component is surrounded
by four H-field components in the complementary two directions, and
vice versa. The four surrounding field components can be interpreted
as representing the path integral along a rectangle around the central
component, the integral being a finite approximation of the rotation
operator. Therefore, the Yee scheme can be seen as a collection of
finite rotation operators, optimally arranged into a symmetric distri-
bution of the six E and H-field components, optimally matched to the
rotation character of Maxwell’s equations. Therein lies one of the keys
to the robustness of the FDTD scheme, which in turn is the reason
that, more than four decades after its conception, the method is still
the tool of choice for a wide range of applications.

3.1 General Properties

3.1.1 The Yee Grid

Figure 3.1 shows a single Yee cell with the E-field components on the
edges and the H-field components on the faces of the cell. Each cell in

11
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x

y

z

(i + 1, j, k) (i + 1, j + 1, k)

Ez |i+1,j,k+1/2
Ez

Ey|i+1,j+1/2,k

Ey

Ey

Ex

Ex

Ez

Ex|i-1/2,j+1,k

Hx

Hz

Hy

Figure 3.1: Yee cell with E-field components on the edges and H-field
components on the faces.

an FDTD grid is numbered by a three-dimensional index (i, j, k). Each
E-field component is offset by half a grid step in the direction that
it inscribes, as in, for example, Ex|i-1/2,j,k. Each H-field component
is offset by half a grid step in its complementary directions, as in
Hx|i,j+1/2,k+1/2.

Analogously, the temporal axis is discretized with a time step ∆t.
The E-field components are computed and stored at the full steps
n ·∆t, and the H-field components are computed and stored at the
intermediate steps (n+ 1/2) ·∆t.

3.1.2 The Yee Algorithm

Using the finite-difference approximation of a derivative

∂

∂k
F (k = n∆k) =

F ([n+ 1/2]∆k)− F ([n− 1/2]∆k)
∆k

, (3.1a)
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Maxwell’s Equations (2.1a) and (2.1b) can be rewritten to find the
FDTD update equations

Ex|n+1
i+1/2,j,k = αE · Ex|ni+1/2,j,k +

βE ·

∆Hz|n+1/2
i+1/2,j±1/2,k

∆yHj
−

∆Hy|n+1/2
i+1/2,j,k±1/2

∆zHk

 (3.2a)

Hx|n+1/2
i,j+1/2,k+1/2 = αH ·Hx|n−1/2

i,j+1/2,k+1/2 −

βH ·
(

∆Ez|ni,j+1/2±1/2,k+1/2

∆yEj
−

∆Ey|ni,j+1/2,k+1/2±1/2

∆zEk

)
(3.2b)

where the contracted notation ∆F |ni,j±1/2,k denotes the difference be-
tween the field values F |i,j+1/2,k and F |i,j−1/2,k, and ∆iE and ∆iH

denote the local spatial steps. The distinction between the grid steps
for the E and H-field updates is necessary when a nonuniform grid is
used (cf. Section 3.2.2). Analogous update equations for the remain-
ing four components can be obtained by permuting the axis indices
x→ y → z → x.

Using exponential time-differencing (ETD) (cf. [7]) the update co-
efficients are

αE = exp
(
−σ∆t

ε

)
σ→0−−−→ 1 (3.3)

βE =
1− αE
σ

σ→0−−−→ ∆t
ε

(3.4)

αH = 1 (3.5)

βH = −∆t
µ
. (3.6)

Although these update coefficients yield a stable algorithm for all
conductivities, an FDTD grid would have to resolve the skin-depth
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and wavelength for highly conductive materials. This is usually not
feasible because the resulting grid steps would become extremely small
compared to the wavelength of interest. Thus, for conductivities above
approx. 1000 S/m, surface impedance models, as described in Chap-
ter 5, are required to make such simulations feasible.

It can be shown that the Yee-Algorithm, although it is derived
from Equations 2.1a and 2.1b, inherently upholds the divergence free
nature in a charge free region (see, for example, [8]).

Also, the algorithm is conditionally stable with the stability limit

∆t ≤ min
Yee Cells

{ √
1/(εµ)√

1/(∆x)2 + 1/(∆y)2 + 1/(∆z)2

}
, (3.7)

which coincides with the Courant-Friedrichs-Lewy (CFL) criterion [9].
In many applications, the smallest grid steps are approximately equal
along all axes. In this case, and if those minimal steps can be found
in the same material, Equation (3.7) can be approximated by

∆t ≈ ∆x√
3
√
εµ
, (3.8)

which reveals an linear relationship between time step and grid step.
Thus, in the worst case, refining the grid by a factor r can cause an
r4 increase in computational resources needed to complete the sim-
ulation. It is therefore imperative to avoid any unnecessary overdis-
cretization.

3.2 Numerical Dispersion

Equation (A.14) describes the relation between the numerical wave
vector K and the numerical frequency Ω in the Yee grid. By choosing
a fixed frequency ω and/or a fixed wave vector k, one can solve for
their respective numerical counterparts.

3.2.1 Uniform Grids

The dispersion error has been thoroughly analyzed in a range of pub-
lications [10, 11, 12, 13, 14, 15].
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Figure 3.2: Numerical phase velocity and spurious attenuation of the
Yee algorithm as a function of the uniform grid resolution for different
Courant factors (CF).
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Figure 3.2 shows the phase velocity and the attenuation coefficient
as functions of the grid resolution for different Courant factors (CF),
defined by CF= ∆t/∆tmax, for wave propagation along a major grid
axis, taken from [14, 16]. Also, the dispersion error was found to be
below 1 % for any incident angle for a wavelength resolution of λ/10
or less [15].

Generally, a grid resolution of

∆x ≤ λ

10
(3.9)

is considered to yield sufficiently accurate results. However, the re-
quired accuracy depends heavily on the application, and a grid gener-
ation engine must be able to process any chosen wavelength resolution
factor for any material.

3.2.2 Nonuniform Grids

State-of-the-art FDTD applications can not be modeled using uniform
grids. The necessary resolution of fine structures would produce grids
too large to be processed.

A range of error sources are present in nonuniform FDTD [17, 18].
First, the second-order central difference approximation is lost be-
cause the grid steps ∆iE in Equation (3.2b) need to be averaged over
two adjacent cells. Although the global second order accuracy is pre-
served [19], locally first order errors influence the overall uncertainty
depending on the grading ratio and cell size. Despite the loss in ac-
curacy, nonuniform grids clearly outperform uniform grids in almost
all applications as long as the grid resolution limit (3.9) is satisfied
throughout the grid [15, 20, 21, 22]. A range of approaches has been
proposed to improve the error in nonuniform grids [15, 23, 24, 25, 26].
Another source of error in nonuniform grids is an increased dispersion
error.

Finally, the orthogonal gridding used in the Yee scheme results in
a staircased representation of curved structures. The staircasing of
perfect electric conductors (PEC) such as antennas and waveguides
can have a significant impact on the accuracy of the simulation [27,
28, 29, 30]. An summary and overview of the possible side-effects of
staircasing in FDTD can be found in [31]. In the case of PEC objects,
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it has been found that, aside from the need to meet the wavelength
resolution criterion (3.9), tilted PEC planes should be resolved such
that the diagonals of the FDTD cells at the object boundaries are
bounded to

∆x ≤ λ/2. (3.10)

An advanced grid generation algorithm should be able to process
the geometry of critical structures in order to ensure a sufficiently fine
resolution for conducting bodies and, if necessary, dielectric objects
that have a significant impact on the simulation accuracy. A rigor-
ous approach to allow for an optimal gridding of such structures is
presented in Chapter 4.
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Chapter 4

Grid Generation

4.1 Introduction

Grid generation in FDTD is the process of creating a nonuniform spa-
tial grid in three dimensions that satisfies the necessary numerical and
geometrical constraints. Most importantly, different material models
demand certain restrictions as to how large the distance between the
discrete field components (grid step) can become. Also, the geometry
may require the grid to be refined for very fine or curved structures.

The first FDTD applications using nonuniform grids were reported
in the late 70s. The scheme was successfully applied to EM problems
in the fields of Radar Cross Section (RCS) assessment [32, 33], low
frequency scattering problems [34], waveguide structures [21, 35, 22,
36], numerical dosimetry [37, 38, 39], antenna analysis [40, 41], and
optics [42, 43]. All of these applications have demonstrated that the
savings in computational resources by graded meshes clear outweigh
decreased accuracy [20, 44].

Empirically derived rules for appropriate grid generation in FDTD
have been published by [44, 45, 46]. The effect of a graded grid on
the dispersion error in FDTD simulations has been thoroughly ana-
lyzed in [15]: Firstly, the dispersion error is increased because the time
step for most cells is smaller than the CFL limit. Secondly, the grad-
ing introduces spurious amplification and attenuation. In practice, a

21
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grading ratio of 1.2 and a maximal step size of λ/10 have proved to
be a good compromise between accuracy loss and simulation speedup
due to a reduction in grid size.

Several approaches to automating the grid generation to a certain
degree have been published [47, 48, 23]. However, none is designed to
handle to complexity of modern FDTD applications, and they do not
offer the necessary level of control over the grid generation process.

One of the foremost challenges for modern FDTD solutions is the
processing of very complex models. State-of-the-art models can con-
tain hundreds of different 3D parts with distinct material properties.
For example, simulations involving human phantoms are nowadays
performed routinely with the phantom containing about 100 dielec-
tric tissue parts. Together with the radiating structures of interest,
such as on-body or in-body antennas, MRI coils, mobile phones, etc.,
the complexity reaches a level where it is no longer possible to set
up the grid parameters for each model part manually in a reasonable
time. On the other hand, these models require detailed knowledge of
the simulation to set up the grid properly. Questions, such as which
model parts have the largest influence on radiation and scattering
patterns, are known only to the user and cannot be automatically de-
tected. Therefore, user interaction with the grid engine is unavoidable
in order to create and verify a reliable discretization of a model.

The approach presented is designed to minimize the time needed
for the user to set up a suitable grid. It is based on an ultra-fast grid
engine that computes the grid interactively, where interactivity means
that changes in user interface settings are immediately reflected in a
new grid configuration, i.e., typically within fractions of a second. The
typical trial and error phase during grid setup, which is in essence the
process of incorporating the specialized user knowledge into the grid
setup, can be shortened considerably with this approach.

4.2 Problem Definition

In all FDTD models1, a certain number of points in space can be
identified so that the three grid axes contain elements to match their

1Even for an empty simulation, the domain boundaries can serve as two fixed
points.
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components, i.e., where a grid without a point at that location is not
suitable for the model at hand. Examples of entities to require such
special points are excitation sources, sensors, or sharp boundaries of
radiating structures. The existence of such fixed points or baselines is
the rationale behind the approach of splitting a grid axis into distinct
regions and to apply a grid algorithm to each region separately.

The FDTD-grid engine has to fill the regions with grid points while
satisfying the constraints inside and across their boundaries. The spa-
tial axes are interdependent only with regard to the constraints origi-
nating from geometrical features and material types. However, these
preconditions are themselves not dependent on the grid configura-
tions, and the three axes of an FDTD grid can thus be independently
generated.

The two major constraints that need to be satisfied are the wave-
length resolution and the grading ratio. Different materials exhibit
different wavelengths in the frequency band of interest, and it is nec-
essary to resolve all wavelengths that can occur in a simulation with
a certain number of grid steps to ensure sufficient accuracy. On the
other hand, the grid stepping between regions of different wavelengths
should not vary too quickly and the concept of capturing this require-
ment is to introduce a grading ratio (cf. Definitions 2 and 4).

A good grid engine satisfies all the numerical restrictions while
finding an optimal solution in terms of grid size. Because of the sta-
bility constraints in FDTD, the smallest grid step is linked to the time
step of the simulation. Thus, an FDTD simulation can be large not
only in its three spatial but also in the temporal dimension, i.e., a very
small spatial step can induce a very small time step. A grid engine
must try to keep the grid “small” in the spatial domain by producing
a minimal number of cells, and also in the time axis by keeping the
smallest cell as large as possible.

4.2.1 Definitions

A few definitions are necessary to facilitate the description and analy-
sis of the presented algorithm. For completeness, the frequently used
terms grid point and baseline are defined first.

Definition 1 (Basic Definitions). A grid point or grid line is a
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coordinate of an edge of a cell of the primary orthogonal FDTD Yee-
grid (cf. [8]). A baseline is a given grid point that can neither be
moved nor removed2 during the grid generation.

Definition 2 (Region). A region R is a set of numbers

R = {a0, b0, g,∆g,∆a0,∆b0} ∈ R6,

b0 > a0, g > 1,
0 < ∆g ≤ b0 − a0,

0 < ∆a0 ≤ b0 − a0, 0 < ∆b0 ≤ b0 − a0,

(4.1)

where a0 and b0 are the region boundaries, g is the grading ratio,
∆g is the maximal step, and ∆a0 and ∆b0 are the boundary steps.

Essentially, a region describes an interval bounded by two baselines
along with the local grid constraints or parameters. The meanings
of the grading ratio, the maximal step, and the boundary steps are
developed in Definition 4.

Definition 3 (Grid). A Grid G is a set of n+ 1 points

G = {p0, . . . , pn} ∈ Rn,
pk+1 > pk ∀k, 0 ≤ k < n.

(4.2)

The intervals or steps ∆pk are the n distances between adjacent grid
points

∆pk = pk+1 − pk ∀k, 0 ≤ k < n. (4.3)

Without further restrictions, any strictly monotone series of real
numbers is a grid. Definition 4 now introduces the constraints neces-
sary for a grid to be used in an FDTD simulation.

Definition 4 (Regional Grid). A regional grid M is a grid to a
region R where the following conditions are satisfied:

p0 = a0, pn = b0,

∆p0 ≤ ∆a0, ∆pn−1 ≤ ∆b0,
∆pk ≤ ∆g ∀k, 0 ≤ k < n,

g−1 ≤ ∆pk+1

∆pk
≤ g ∀k, 0 ≤ k < n− 1.

(4.4)

2Note that baselines can not be removed during grid generation, but they can
be removed during preprocessing, cf. Section 4.4.3.
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Definitions 3 and 4 describe the nature of an FDTD grid. The
maximal step usually originates from the need to resolve the wave-
length inside some material. The distance between region boundaries
and their neighboring grid points is limited by the boundary steps.
The most important part of this section is Definition 5:

Definition 5 (Optimal Regional Grid). A regional grid is optimal
with respect to its region if a) there is no other regional grid that has
fewer grid points, and b) there is no other regional grid whose smallest
interval is larger.

An optimal grid combines the two goals of having a grid which
is as small as possible, both in terms of spatial and temporal steps.
The latter is reflected in the need to maximize the smallest step in a
regional grid.

Clearly, the boundary steps can safely be assumed to be smaller
than the maximal step. If they were larger, they would have been
overridden by the maximal step to be met in the entire region.

Definition 6 (Domain). A domain is a set of m regions and a grad-
ing relaxation constant gr

D = {R0, . . . , Rm, grelax}, m ≥ 1,
grelax ∈ R, grelax ≥ 1,

(4.5)

where

b0|Rk= a0|Rk+1 ∀k, 0 ≤ k < m,

max
i=k,k+1

{ 1
grelax · g|Mi

} ≤ ∆b0|Rk
∆a0|Rk+1

∀k, 0 ≤ k < m,

min
i=k,k+1

{grelax · g|Mi
} ≥ ∆b0|Rk

∆a0|Rk+1

∀k, 0 ≤ k < m.

(4.6)

Definition 6 ensures that a relaxed grading ratio is satisfied across
region boundaries. Regions can, by definition, have distinct grading
ratios. Because any grid that satisfies a grading ratio g also satisfies
any larger grading ratio g′ > g, only the smaller of the two has to be
considered.
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The grading relaxation grelax, with typical values of approx. 1.1
or 10 %, plays an important role in the creation of domain grids, and
is described in Section 4.4.4.

A domain describes an entire one-dimensional interval that encom-
passes the FDTD model on one of the axes. An FDTD grid engine
is presented with three domains, one for each axis, as input data.
The creation of the axial domains is part of the preprocessing and is
described in Section 4.4.3.

Finally, the definition of a grid for an entire domain wraps up the
list of definitions:

Definition 7 (Domain Grid). A domain grid DM of a domain D
is a set of m regional grids

DM = {M0, . . . ,Mm}, m ≥ 1, (4.7)

where the Mk are valid grids of their corresponding regions Rk in D.

Because the definition of a domain D already enforces the neces-
sary constraints across the region boundaries, Definition 7 is a com-
plete definition of a valid grid along one axis. The following section
contains some additional definitions as they arise in the investigation
of the grid algorithm.

4.3 Algorithm

The innermost part of the grid algorithm is described in this section.
It is responsible for computing the regional grids. The algorithm, by
design optimized for speed, avoids higher mathematical functions of
any sort and relies on the most simple floating point operations only.
Moreover, it attempts to create an optimal grid directly, as opposed
to searching iteratively for a solution.

The solutions computed by the presented algorithm might be ob-
tained by other methods. However, the most important advantage
of the presented approach is that it can be augmented to provide
advanced methods to further optimize a grid. These methods are
discussed in Section 4.5.

Figuratively, the regional grid is created by pushing the lower re-
gion boundary a0 stepwise toward the upper boundary b0, and by
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∆a

∆ba0 a1 an

b0b1bm

∆g, g

· · ·

· · ·

α0 · · · αn−1

αi· · ·· · ·αn

Figure 4.1: Grid region with fixed boundaries (baselines) a0 and
b0. The region is filled from both boundaries with the grid line sets
a0, . . . , an and b0, . . . , bm, respectively, until the sets overlap.

pulling b0 toward a0, respectively, until the two points pass each other.
Then, the two sets of intervals created are normalized such that the
two last points of each set meet.

4.3.1 Push-Pull Algorithm

Figure 4.1 depicts the intermediate situation for a region R. It is
bounded by its baselines a0 and b0, respectively. The goal is to find
two sets of points

A = {a0, . . . , an} and B = {b0, . . . , bm},
n,m ≥ 0, ak+1 > ak, bk−1 > bk,

(4.8)

that satisfy the following conditions:

a0|A= a0|R, b0|B= b0|R, an ≥ bm,
∆a0|A≤ ∆a0|R, ∆b0|B≤ ∆b0|R,
1
g
≤ ∆ak+1

∆ak
≤ g ∀k, 0 ≤ k < n,

1
g
≤ ∆bk+1

∆bk
≤ g ∀k, 0 ≤ k < m,

∆ak ≤ ∆g ∀k, 0 ≤ k < n,

∆bk ≤ ∆g ∀k, 0 ≤ k < m.

(4.9)
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Definition 8 (Intermediate Sets). The sets A and B described above
are called intermediate sets of the grid M and they combine to form
the intermediate grid M̃ = {A,B}, where A is its left-hand set
and B its right-hand set.

An example situation of two intermediate sets filling a region is
shown in Figure 4.1. The push-pull algorithm to construct such an
initial configuration consists of the following steps:

A) The initial sets of grid points are given by: A(0) = {a0} and
B(0) = {b0}.

B) For two sets of points A(i) and B(j) compute the maximal next
step for each of the sets given by

∆amax =

min{∆g,∆a0} if i = 0

min{∆g, g · (ai − ai−1)} if i > 0

∆bmax =

min{∆g,∆b0} if j = 0

min{∆g, g · (bj−1 − bj)} if j > 0

(4.10)

C) Choose the smaller of the two steps ∆amax and ∆bmax and add
an additional point to the corresponding set, i.e., Ai+1 = Ai ∪
(ai + ∆amax) or Bj+1 = Aj ∪ (bj −∆bmax), thereby increasing i
or j by one. If the two steps are equal, choose a side at random.

D) Stop if the largest element of set A is larger than or equal to the
smallest element of set B. Otherwise, repeat Step B with the
new sets.

It is easy enough to see that the push-pull algorithm described
above terminates for every region. The intermediate sets A and B
are divergent series, because the grading ratio, by definition, can not
be smaller than 1. A simple boundary for the maximal number of
iterations Imax can readily be given by

Imax ≤
b0 − a0

min{∆a0,∆b0,∆g}
. (4.11)
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4.3.2 Normalization

An equivalent description of the sets A and B is given by defining a
set of intervals normalized to a positive grid step ∆s

I = {α0, . . . , αi=n+m−1} (4.12)

through

αk =


ak+1−ak

∆s if 0 ≤ k < n

bm+n−k−1−bm+n−k
∆s if n ≤ k < m+ n

(4.13)

as depicted in Figure 4.1. The excess length S is defined by

S =
m+n−1∑
k=0

(αk − 1)∆s. (4.14)

If ∆s is chosen to be equal to the smallest interval in A and B,
the excess length describes the amount by which the interval sum∑m+n−1

0 αk∆s can be reduced such that it is still larger than the
region without compromising the grading or stepping requirements.

In order to find a valid set of grid points that satisfy Definition 4,
the interval description I is renormalized writing

α̃k = 1 + (αk − 1)Q (4.15)

with the renormalization factor

Q = 1− an − bm
S

. (4.16)
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The sum of the renormalized intervals α̃k writes

m+n−1∑
k=0

α̃k∆s =
m+n−1∑
k=0

[1 + (αk − 1)Q)] ∆s =

m+n−1∑
k=0

[
1 + αk − 1− an − bm

S
(αk − 1)

]
∆s =

m+n−1∑
k=0

αk∆s − ∆s
m+n−1∑
k=0

an − bm
S

(αk − 1) =

(b0 − a0) + (an − bm)− (an − bm) = b0 − a0, (4.17)

which is exactly the initial interval to be gridded.
Employing this normalization/renormalization routine, the last

step of computing the final grid lines inside the interval is given as
follows:

• Normalize the constructed set of overlapping grid lines to the
smallest grid step ∆s found in both intermediate sets.

• If the resulting renormalization factor Q is positive, i.e., if S >
(an − bm), the final grid points are given iteratively by

p0 = a0, pk+1 = pk + α̃k∆s. (4.18)

• If Q is negative, the normalization step ∆s needs to be com-
promised in order to fill the interval. In that case, the region is
split into m+ n− 1 uniform intervals.

4.4 Analysis

Having established a regional grid generation algorithm that termi-
nates for every region, the question remains whether its output is
always a regional grid and, if it is, whether it is optimal according to
Definition 5. The first question is answered in Section 4.4.1, and the
second question in Section 4.4.2.
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4.4.1 Validity

Theorem 1. A grid M created with the push-pull algorithm is a re-
gional grid.

Proof. In order for M to be a regional grid, it has to be shown that
the set pk created by the push-pull algorithm satisfies Definition 4.

The first two requirements, namely p0 = a0 and pn = b0 are trivial,
because a0 and b0 are by definition equal to the region boundaries, p0

is by definition equal to a0, and with the sum of all intervals described
by the pk equal to b0 − a0 as shown in Equation (4.17), it follows
immediately that pn = b0.

The boundary step conditions ∆p0 ≤ ∆a0 and ∆pn−1 ≤ ∆b0 are
satisfied. This follows directly from Equation (4.10) and the following
consideration: It is not possible for either the left-hand or the right-
hand intermediate set to surpass the opposite region boundary with
a step larger than the boundary step because, in such a case, the
push-pull algorithm would have chosen to add a step to the opposite
intermediate set, thus enforcing the boundary step.

The regional step constraint pk+1 − ak ≤ ∆g|R is clearly satisfied
because of Equations (4.10), (4.15), (4.16), and (4.18). The normal-
ization factor Q can not be larger than 1. Therefore, the final inter-
vals α̃k∆s can not be larger than the intermediate intervals computed
by the push-pull algorithm, and the latter are, by Equation (4.10),
strictly bounded to ∆g.

The grading ratio g is enforced throughout the grid: From Equa-
tion (4.10) follows that the ratio of two adjacent intervals in an inter-
mediate set can be written as a function of Q: g(Q) = (1 + Q(α −
1))/(1 + Q(β − 1)). Q is by definition in the range 0 < Q ≤ 1 and
one can assume without loss of generality that α > β > 1. Clearly,
g(Q) is a monotonously increasing function in Q. This directly shows
that the normalization process can only decrease the grading ratio
between adjacent intervals, because Q decreases during the renormal-
ization process from 1 to some value smaller than 1.

It remains to be shown that the grading ratio is satisfied between
the last intervals of both intermediate sets. The trivial cases where
either A or B has only one element is easily dismissed, because in that
case the grading ratio can not be violated as the intervals have grown
from one side only. Now, let both intermediate sets have more than
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one element. One can look at the last intervals created in both sets
αn in A and βm in B. Without loss of generality, let αn be larger
than βm, which implies that βm was created last.

Now, let αn be larger than g ·βm, which would violate the grading
ratio. This implies that αn−1 (or the boundary step if n = 1) is
larger than βm, because of the grading ratio g. But then, αn−1 is
larger than all the intervals in B, which would have prevented αn
from being added to A in the first place. Thus, αn cannot be larger
than g · βm, and the grading ratio is always satisfied.

4.4.2 Quality

Theorem 2. For a region R that satisfies Definition 2 and a regional
grid M created with the push-pull algorithm, there is no other regional
grid M ′ that satisfies Definition 4 with n|M ′< n|M .

Proof. Let M ′ be an arbitrary regional grid according to Definition 4,
and let M be a regional grid created with the push-pull algorithm and
M̃ its intermediate grid. The number of intervals in the left-hand set
A of M̃ is denoted by n and the number of intervals in the right-hand
set B of M̃ by m.

Clearly, because of the definition of the push-pull algorithm, there
can be no other series a′0, . . . , a

′
n′ with a′n′ = an and n′ < n that fulfills

the requirements of Definition 4. This is because the series created by
the push-pull algorithm starts by definition with the largest possible
initial step and grows with the maximally possible grading ratio. A
completely analogous derivation holds for the right-hand series B.

The trivial cases where either n = 0 or m = 0 are now easily
proved, for it follows directly from the above. For example, if m =
0 and n > 1, the push-pull algorithm created a intermediate series
a0, . . . , an with an−1 < b0 and an ≥ b0. Looking a the reduced series
a0, . . . , an−1, one can apply the above and see that there can be no
series a′0, . . . , a

′
n−1 with n− 1 elements that can reach b0.

In the general case there is n > 0 and m > 0. Let x be a point
between an and bm, i.e., bm ≤ x ≤ an. If x is not equal to any point
in M ′, then some integer q can be found such that a′q−1 < x < a′q.
Looking at the constructed left- and right-hand series in M̃ , one can
see that in order for M ′ to have less intervals than M , q − 1 ≤ n− 1
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and n′ − q ≤ m − 1. Then, a′q−1 ≤ an−1 and a′q ≥ bm−1. But then,
a′q − a′q−1 ≥ bm−1 − an−1 is an interval larger that ∆g, because the
push-pull algorithm would have found an overlap with one step less,
i.e., either n or m would have been one less. Thus, M ′ is no regional
grid if it has less intervals than M .

Finally, in the special case where an = bm = a′q for some q, one
can immediately see that q can not be smaller than n, and n′ − q can
not be smaller than m.

To verify that the initial goal of generating an optimal grid for a
region R is reached, this section is concluded with Theorem 3:

Theorem 3. The push-pull algorithm for regional grid generation
yields an optimal regional grid as given by Definition 5 for every region
R that satisfies Definition 2.

Proof. Let M̃ be the intermediate grid that is created after the push-
pull phase and M be the final regional grid as constructed by the full
push-pull algorithm.

Equation (4.10) enforces all the steps in the push-pull phase to
be larger than or equal to ∆a0 and ∆b0 respectively. Thus, before
normalization, the smallest step in two sets A and B is given by

∆s = min{ak+1 − ak, bk − bk+1} = min{∆a0,∆b0 ∆g}. (4.19)

The step ∆s given by Equation (4.19) is by definition the normal-
ization step used in the push-pull algorithm. It follows immediately
that all the interval values as given by Equation (4.13) must be larger
than or equal to 1.

Assuming for the moment that Q is positive, one can immediately
see through Equation (4.15) that the normalized interval factors α̃k
are larger than or equal to one. Then, Equation (4.18) ensures that
the final grid steps pk describe intervals no smaller than ∆s.

Assuming that there is another regional grid M ′ with a small-
est interval larger than ∆s, this grid would necessarily violate Equa-
tion (4.19). Therefore, M ′ does not suffice Definition 4.

If, on the other hand, Q is negative, one can create a second inter-
mediate grid M̃ ′ by normalizing the intermediate sets A and B of M̃
with Q′ = 0. This yields two intermediate sets A′ and B′ where all
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intervals are equal to ∆s. Because Q′ is larger than the original factor
Q defined by Equation (4.16), it follows directly from Equation (4.17)
that the sum of all intervals in A′ and B′ must still be larger than the
region itself. Thus, the region cannot be split into m+n− 1 intervals
of length ∆s. It follows immediately that the largest possible mini-
mal step cannot be larger than (b0 − a0)/(m+ n− 1), and the only
optimal regional grid in this case is the grid with m+ n− 1 uniform
steps.

Therefore, together with Theorem 2, it follows that M is indeed
optimal.

4.4.3 Domain Grid Preprocessing

In order to apply the push-pull algorithm to the connected regions
of a domain, the dataset describing a domain needs to be generated.
In other words, upon initialization of the grid engine, the simulation
data needs to be processed and translated into regions.

This involves a number of steps such as the computation of the
wavelengths inside the present material types or a geometrical analysis
if requested (cf. Section 4.5). Also, the necessary baselines need to be
collected. Typical simulations with hundreds of CAD parts can yield
very large numbers of baselines. The distances between such baselines
can be arbitrarily small, especially if the triangulation of the 3D data
is of low quality, giving rise to numerical artifacts. Thus, the initial
baseline collection needs to be filtered. This is done by assigning
priority values to the initial baselines according to material types and
manual input and subsequently ignoring baselines of low priority that
are too closely spaced.

This preprocessing step can consume a considerable amount of
time. For large simulation setups, execution times of up to a few sec-
onds have been observed, although the average time needed is well
below one second. The additional resources needed for the prepro-
cessing step do not slow the push-pull grid engine down because this
step needs to be performed only once in full. Subsequent user induced
parameter changes result in small changes to the preprocessed dataset
since they can affect only one model part at a time.
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Left Region (l) Right Region (r)

al,0 al,L

ar,0 ar,R

∆gl, gl ∆gr, gr

Figure 4.2: Two adjacent grid regions with the corresponding con-
straints. With a small grading ratio gl in the left region, the small
boundary step al,0 can propagate to the common boundary br,0 = al,0
of the two regions. The grading constraint across the boundary is
violated and the right region needs to be updated.

4.4.4 Domain Grid Generation

A complete grid problem consists of multiple regions with shared
boundaries as depicted in Figure 4.2. The methodology presented
in Section 4.3 can be applied to each section, yielding valid grid con-
figurations that are valid for each region respectively.

The push-pull algorithm can produce grid steps at the region
boundaries that might be smaller than the initial boundary steps a0

and b0. Then, the grading ratio across the region boundaries might
be too large, and the neighboring regions need to be updated with
new boundary steps.

As an example, in Figure 4.2, the leftmost grid step ar,1 − ar,0 of
the right region is too large. Therefore, the maximal boundary step
∆a0,r at the left side of the right region needs to be updated to

∆a0,r = (al,L − al,L−1) · grelax · min{gl, gr}. (4.20)

Equation (4.20) shows that such a boundary step correction can only
yield smaller values. If Equation (4.20) were to give a larger value,
it would mean that the opposite region had needed its boundary step
updated.
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In the limit of a grading ratio close to 1, as well as for areas
of closely spaced baselines, it is often necessary to apply grid steps
much smaller than the smallest region in order to satisfy the grading
ratio across all region boundaries. As an example, for two regions
of 10 and 11 mm, respectively, and a grading ratio of 1, the only
solution is a uniform grid step of 1 mm. If the regions themselves are
already very small compared to the simulation wavelength, this can
lead to an unnecessarily fine discretization. In order to avoid this, it is
necessary to relax the grading ratio across region boundaries whenever
the maximal boundary step is updated.

No proof has been found that there might not be a domain config-
uration which leads to an infinite number of such correction steps. In
order to avoid unnecessarily repetitive regional grid cycles, the grid
engine sorts the regions according to the smallest stepping constraints
present in each region (min{∆a0,∆b0,∆g}). In doing so, it tries to
estimate which region may yield the smallest grid step, and, subse-
quently, triggers a boundary step update for its neighboring regions
and processes the regions in this order. Empirical data, summarized
in Table 4.1, indicates that the number of correction steps per grid
run (Reprocessed Regions) is indeed limited (cf. Section 4.6).

4.5 Advanced Grid Generation

The push-pull algorithm, as described in the previous sections, pro-
vides a powerful basis to further optimize and simplify the grid gen-
eration.

It is beyond the scope of this work to describe all the refinements
and additions to the basic push-pull algorithm. The most important
addition, however, is its ability to handle more complex restrictions re-
garding the stepping. The basic algorithm operates on regions where
all steps are bound to a maximum ∆g. For many regions this restric-
tion itself leads to suboptimal grids.

4.5.1 Subinterval Stepping

An extended version of the push-pull algorithm allows the process-
ing of arbitrary stepping constraints that may differ throughout the
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region. The maximal step ∆g is replaced by a subinterval stepping
vector:

Definition 9 (Subinterval Stepping). A stepping vector S to a
region R is a set S1 of n maximal steps paired with a set S2 of n+ 1
subintervals

S1 = {∆g0, . . . ,∆gn} ∈ Rn

gk > 0 ∀k, 0 ≤ k ≤ n,
S2 = {s0, . . . , sn+1} ∈ Rn+1

sk+1 > sk ∀k, 0 ≤ k ≤ n

(4.21)

where each successive pair {sk, sk+1} defines a subinterval to be grid-
ded with max step ∆gk, and the first and last elements of S2 match
the boundaries a0 and b0 of the region R.

To process this information, Equation (4.10) has to be replaced
during the push-pull phase with a more sophisticated method to find
the next possible step to be added to the intermediate sets. Also, the
normalization process must be adapted to account for intermediate
sets with arbitrarily varying intervals.

A push-pull algorithm that can process arbitrary maximal steps
supports two important cases: First, small regions that originate from
model parts with low significance can be merged into enclosing regions
by relaying their stepping constraints. This can significantly reduce
the number of regions and baselines, thus increasing the degree of
freedom for the grid algorithm.

Second, the model may be analyzed for its geometry, and stepping
constraints derived for critical structural features. This geometrical
analysis allows the automatic resolution of the geometry of critical
model parts such as antennas.

4.5.2 Geometrical Analysis

Many applications include structures much smaller than the wave-
lengths of interest. The major geometrical characteristics of a 3D
structure with respect to a staircased grid are the widths (thicknesses)
of its subparts, the curvature radii of its surfaces, and the distance
between surfaces facing each other (slot widths).
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Therefore, an algorithm has been developed and implemented that
analyses a structure for the smallest curvature radii, thicknesses, and
slots, and translates the gathered information into a stepping vector.

Alongside the main objective of simplifying the grid generation
process, the geometrical analysis forms the basis of the optimization
engine in SEMCAD X due to its ability to follow changes in geometry
automatically [49, 50].

Curvature and Thickness Analysis

Figure 4.3 shows a comparison between conventional and geometri-
cal grid generation for a helix type antenna. Both grids and their
corresponding voxels are suitable discretizations because both resolve
the antenna features correctly. However, the grid created using the
geometry analysis is significantly smaller.

4.3 a) and 4.3 c) show a manually set up grid with maximal step
and boundary steps iteratively decreased such that the subsequent
voxel generation produced an error free discretization after [51]. This
manual grid needed the fine tuning of 6 parameters (boundary steps
and maximal steps for each axis) and is only suitable for the helix
as is. For a changed geometry, these settings produce a suboptimal,
i.e., either an over- or undersampled, grid. On the other hand, Fig-
ures 4.3 b) and 4.3 d) show the grid and voxels produced with geomet-
rical analysis. Only 1 to 2 parameters (thickness and/or curvature
resolution) are needed here to produce a suitable grid in less than
three iterations. More importantly, the geometrical analysis produces
optimal grids for any change in geometry, automatically resolving the
thickness and curvatures.

Slot Analysis

Figure 4.4 shows an example of geometrical grid generation for a slot
antenna, cf. [50]. Figure 4.4 a) shows a uniform grid of a slot antenna
where the max step was reduced until the subsequent discretization
in Figure 4.4 b) was suitable. The fine grid step is necessary due to
highly curved parts of the antenna, and the resulting grid is unneces-
sarily fine for most areas. This manual grid needed the fine tuning of
6 parameters (boundary steps and maximal steps for each axis) and is
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a) b)

c) d)

Figure 4.3: Grid and voxels of two different discretizations of a he-
lical antenna. Both meshes resolve the geometry correctly, a visual
inspection shows little difference. However, the automatic geometric
analysis reduces the total grid size significantly without compromis-
ing the smalles grid step. a), c): Manually tuned uniform grid using
44’000 Cells. b), d): Grid and voxels generated with the automatic
geometry analysis. Due to the automatic coarsening of the grid, the
resulting discretization needs only 22’000 Cells.
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only suitable for the antenna as is. For any change in geometry, these
settings produce a suboptimal, i.e., either an over- or undersampled,
grid. On the other hand, Figures 4.4 b) and 4.4 d) show the grid and
voxels produced with geometrical analysis. Only 1 to 2 parameters
(thickness and/or curvature resolution) and less than 3 user iterations
are necessary to produce a suitable grid. More importantly, the geo-
metrical analysis produces optimal grids for any change in geometry,
automatically resolving the slots with the chosen number of grid steps.

4.5.3 Summary of Advanced Features

This section gives an overview over the key features of the interactive
grid engine and provides the basis for the interpretation of the results
presented in Section 4.6.

Grid Parameters

The following list explains and defines the key grid parameters pro-
vided by the interactive grid analysis window (cf. Figure 4.6).

• Grid Size. The grid size is given in million cells (MCells) and
is defined by

(nx − 1) · (ny − 1) · (nz − 1) · 10−6 (4.22)

where nk is the total number of grid lines along axis k.

• Estimated Runtime. The interactive grid engine features a
simulation runtime estimation algorithm that estimates the time
step based on the smallest grid steps found in the grid configu-
ration and the material properties assigned to these cells.

• Min Step. The minimal grid interval or step of the domain
grid of an axis, see Definitions 3 and 7.

• Max Step. The maximal grid interval of step of the domain
grid of an axis, see Definitions 3 and 7.

• Max Grad. The maximal grading ratio of the domain grid
of an axis, see Definitions 3 and 7. Here, the grading ratio is,
without loss of generality, defined to be the ratio of the larger
and the smaller of two intervals, and not vice versa.
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a) b)

Figure 4.4: Grid and voxels of two different discretizations of a slot
antenna. Both meshes resolve the geometry correctly, a visual inspec-
tion shows little difference. However, the automatic geometric analy-
sis reduces the total grid size significantly without compromising the
smalles grid step. a), c): A slot antenna gridded manually with a uni-
form grid. The grid enclosing the antenna consists of 400’000 Cells.
b), d): The same model is gridded using the slot analysis using only
80’000 Cells. In spite of the much coarser grid, the slots and connec-
tors (indicated by the white arrows) are correctly resolved to ensure
accurate results.
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Global Grid Settings

The global settings define the default criteria for all objects that do
not bear manual (local) settings as described in Section 4.5.3. All of
the following global settings can be defined separately for each axis:

• Max Step. The maximal step ∆g applied to all regions. By
default, given in fractions of the smallest wavelength present in
the region.

• Baseline Resolution. The minimal allowed distance between
baselines. The pre-processed collection of baselines is filtered
according to the baseline resolution and their respective impor-
tance.

• Scale Factor. The scale factor is a multiplier for the maximal
step and the baseline resolution. Its main use is the interactive
refinement of grid sections.

• Padding (Low, High). The padding defines the layer of back-
ground material (usually free space) around a model.

• Grading Ratio. The grading ratio defines the maximally al-
lowed grading.

• Grading Relaxation. The grading relaxation defines the max-
imally allowed relaxation of the grading ratio for densely spaced
baselines.

Local Grid Settings

Any model part can be modified to be gridded in one of the following
modes:

• Not Relevant for Grid. The object along with its material
parameters is ignored.

• Regional. No baselines are generated, the maximal step is met,
and entries in the grid stepping vectors of the enclosing regions
are generated.
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• Bounding Box Baselines are created at the boundaries of the
object to create a region with individual grid stepping con-
straints.

• Geometrical. The object is subjected to a geometrical anal-
ysis. Grid stepping vectors are produced for the thicknesses,
surface curvatures and slots and resolved according to the re-
spective advanced settings.

In addition to the parameters max step, baseline resolution, and
scale factor, the following so-called local settings can be adapted for
any object in the model:

• Boundary Steps (Low, High). The boundary steps define
the maximal boundary steps at the lower and higher end of a
region belonging to a model part.

• Curvature Resolution. The curvature resolution defines a
scale factor for the curvature stepping vector. Only in combina-
tion with the geometrical mode.

• Width Resolution. The width resolution defines a scale factor
for the width stepping vector. Only in combination with the
geometrical mode.

• Slot Resolution. The slot resolution defines a scale factor for
the slot stepping vector. Only in combination with the geomet-
rical mode.

4.6 Results

4.6.1 Empirical Algorithm Analysis

Table 4.1 summarizes data from more than 50 simulations for various
industrial and academic applications performed at IT’IS [52]. The
total of 1968 generated grids, i.e., 1968 × 3 axes = 5904 domain grid
generation cycles, shows that an average of about 40 grids were gen-
erated for each simulation, which illustrates the trial-and-error phase
during grid setup.
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The computers used in this study all had a 2 GHz cpu clock speed
or better. The data indicate that the vast majority of execution times
are well below 1 ms. This enables the implementation of the algorithm
as an interactive feature, where parameter changes are immediately
reflected in new grid configurations.

Table 4.1 also shows that the number of regions that needed to be
reprocessed (No. of Reprocessed Regions) is, on average, 5 out of 32.
More importantly, the number of iterations experienced by a single
region (No. of Iterations per Region) never exceeded 2.

Finally, Table 4.1 gives the average and minimal ratio between the
smallest grid step and the smallest constraint present throughout all
regions (MinMax Ratio), where the smallest constraint is defined as
the global minimum of all region widths b0−a0 and all boundary and
maximal steps, cf. Definition 2. The average of 0.84 underlines the
excellent quality of the algorithm.

Table 4.1: Algorithm Performance
Parameter Value

Max. Execution Time [ms] 41

Avg. Execution Time [µs] 224

Standard Deviation of Execution Time [µs] 934

Max. No. of Regions 157

Avg. No. of Regions 32

Max. No. of Reprocessed Regions 65

Avg. No. of Reprocessed Regions 5

Max. No. of Iterations per Region 2

Max. No. of Lines 3872

Avg. No. of Lines 331

Min. MinMax Ratio 0.17

Avg. MinMax Ratio 0.84
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4.6.2 Case Study

A fictitious case study presented in this section shows the process
flow of an interactive grid generation for a highly complex simulation.
The study is thought to investigate a possible influence of implanted
devices on the SAR distribution in the human body on exposure to
real-world mobile phones. An example simulation of such a study is
subject to the new interactive grid generation approach and consists
of the following main parts:

• A male phantom forms the basis of the presented study. Taken
from the Virtual Family [53], the phantom consists of more than
80 different tissue parts with relative permittivities between 1
and 118 and conductivities between 0 and 2 S/m.

• The Motorola v980 flip phone [54] is placed next to the human
phantom head. The phone consists of more than 200 distinct
CAD parts, and the helical antenna has a diameter of less than
0.5 mm.

• A pacemaker implant is positioned inside the human phantom.
The generic model features lead wires with a radius of 0.5 mm
that extend over a region more than 100 mm in diameter.

The resulting model is depicted in Figure 4.5. The leads from the
pacemaker and the main antenna of the mobile phone are highlighted.
The phone operates in the GSM-1900 band, and the simulation is
carried out at 1880 MHz, the center frequency of this band.

The goal is to set up a grid that allows the investigation of whether
the pacemaker has a significant impact on the SAR distribution in the
upper body part. This exemplary problem demands that all of the
three major components are discretized with a sufficiently fine reso-
lution. Additionally, the specifications of the hardware in use limit
the maximal resolution to 200 MCells [1] including the PML bound-
aries. Therefore, a size of 175 MCells is targeted, with the premise
to discretize the model as accurately as possible without exceeding
that boundary. The following step-by-step case study shows that all
of these goals can be met within a few iterations. After each step,
the feedback from the interactive grid generation algorithm is used
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to evaluate the current quality of the grid and to decide on the next
steps that need to be taken.

1. Initial Grid. Upon starting the grid engine, the initial dataset
is created and the default settings are applied to each model
part depending on the material type. The default grid step is
0.07λ for all objects. Baselines are created at the boundaries of
all metallic parts and the default baseline resolution is 0.002λ.
The key parameters of the initial grid are:

Grid Size: 521 MCells Min. Step: 0.132 mm
Max. Step: 8.79 mm Est. Runtime: -

2. Padding Adjustment. In a second step, the padding of the
simulation, i.e., the layer of air surrounding the model, is ad-
justed. To investigate a possible influence of the pacemaker, it
is not necessary to include the entire body in the simulation.
The radiation absorbed by the legs is typically very low due to
their distance from the radiating device.

Therefore, the domain boundary in the negative z-direction is
moved by 1.2 m, reducing the domain length from 1.9 m to 0.7 m.
This is instantly reflected in the grid size while the minimal and
maximal step are unaffected:

Grid Size: 247 MCells Min. Step: 0.132 mm
Max. Step: 8.35 mm Est. Runtime: -

3. Global Settings. This step, typical for many applications, is
the fine-tuning of the global parameters. In this example, a
dense distribution of baselines is generated for the large number
of very small metallic parts of the phone, leading to grid do-
mains with over 100 regions and a min step of 0.132 mm. This
yields an overdiscretization for most parts of the model. In or-
der to reduce the number of baselines and regions, the grading
relaxation is increased to a value of 1.15 (15 %) and the baseline
resolution is increased to λ/100 ≈ 1.6mm. The resulting min
step is 0.76 mm, about half of the baseline resolution, as is typ-
ically expected for dense distributions of baselines.



4.6. RESULTS 47

Grid Size: 52 MCells Min. Step: 0.76 mm
Max. Step: 8.42 mm Est. Runtime: 13 min

4. Tissue Settings. The human phantom is a very inhomoge-
neous collection of parts with hugely varying material proper-
ties. Its non-metallic parts, by default, produce no baselines. In
order to further reduce the grid, the wavelength resolution inside
the tissue parts is set to 0.09λ. This guarantees a correct dis-
cretization of the phantom. More importantly, the influence of
the subsequent refinement steps on the grid performance can be
assessed more accurately because parameters such as the total
grid size can be covered by the influence of electrically large bod-
ies. Thus, reducing the grid for the dielectric parts can greatly
ease the grid setup for the metallic structures.

Grid Size: 32 MCells Min. Step: 0.76 mm
Max. Step: 8.6 mm Est. Runtime: 10 min

5. Phone. The most important step in the grid generation process
is the refinement of the phone because the antenna contains very
thin radiating parts. The setup of these parts will determine
the smallest grid step throughout the simulation domain and,
therefore, have the greatest influence on the total simulation
time.

First, the metallic parts that belong to the antenna are switched
to geometrical mode. Due to the thin wires of the helical an-
tenna, the width resolution is set to 1 to ensure that the entire
antenna is resolved with at least 1 voxel.

In a second step, the most critical parts of the antenna are
refined one by one to improve the accuracy where necessary.
Figure 4.6 is a screenshot of the interactive grid session during
refinement of the inner helix of the antenna. The user is provided
with the grid lines in the main modeling window. It shows the
normal grid lines (gray), the baselines (green) defining the grid
regions, and the baselines ignored due to the baseline resolution
(purple). A scaling window allows interactive refinement of the
local grid by scaling the max step for the currently selected
model part, while an analysis windows lists the most important
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grid characteristics. The user can scale the part interactively
to reach an optimal trade off between a fine resolution and an
acceptable min step.

This refinement increases the grid size considerably. Due to the
reduction of the grid during Steps 1 to 4, the grid parameters
after the refinement, when compared to the values taken af-
ter Step 4, give an idea of the influence of such a detailed phone
model on the total simulation performance. The grid, increasing
from 32 to 105 MCells, yields an estimated 2.5 hours of simula-
tion time:

Grid Size: 105 MCells Min. Step: 0.04 mm
Max. Step: 8.6 mm Est. Runtime: 2.5 hrs

6. Pacemaker. The refinement of the pacemaker follows a pro-
cedure analogous to Step 5. The identical geometrical settings
are applied to the wires and a subsequent manual refinement
is performed. This results in an additional increase of the grid
size. However, due to the massive reduction in Steps 2 to 4,
the grid is still well below the target of 175 MCells, and a final
global refinement can be applied (Step 7).

Grid Size: 137 MCells Min. Step: 0.04 mm
Max. Step: 9.0 mm Est. Runtime: 3 hrs

7. Global Refinement. Because the hardware used to run the
simulation exhibits higher efficiency for grid sizes closer to the
supported maximum, and the goal was to run the simulation
with the highest possible accuracy, the grid can be enlarged and
refined up to the targeted size. The scaling of the global max
step preserves the min step in the grid because it can only affect
areas with a previously large stepping. Therefore, the global
scaling can safely be reduced until the targeted 175 MCells are
reached. This results in a max step in the grid of 1.86 mm, an
excellent resolution for the phantom.

Grid Size: 174.6 MCells Min. Step: 0.04 mm
Max. Step: 1.86 mm Est. Runtime: 13 hrs
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Summary

A grid has been created meeting the targeted 175 MCells with a min-
imal resolution of 40 microns and maximal resolution of 1.86 mm in 7
simple steps. Figures 4.8 and 4.7 show the voxels of the phone and the
pacemaker in the generated grid and illustrate the accurate resolution
of the critical model parts.

During and after each step, the interactive grid engine has provided
the key grid parameters to guide the user towards the desired grid
configuration. The methodology can easily be adapted to meet a
different set of goals such as providing a grid with the shortest possible
simulation time, where the focus would lie on gridding the smallest
antenna parts with the coarsest grid possible.

Figure 4.5: Upper half of the model used in the fictitious case study
combining an industrial CAD model of a mobile phone, a full body
phantom and a generic pacemaker. The left hand side shows a solid
rendering, the right hand side a transparent image where the main
antenna of the phone and the pacemaker leads are highlighted.
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Figure 4.6: Interactive grid generation session to set up the refined
regions for the helical antenna of the mobile phone. The scaling win-
dow allows interactive refinement of the main parameters for the grid
regions of any chosen CAD part, while the feedback window provides
a real-time analysis of the current grid.
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Figure 4.7: Voxel representation of the pacemaker after discretization
of the final grid with the voxel generation engine of SEMCAD X [51].
The leads are accurately discretized.
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Figure 4.8: Voxel representation after discretization of the final grid
with the voxel generation engine of SEMCAD X [51]. The main an-
tenna components are accurately discretized.



Chapter 5

Lossy-Metal Modeling

5.1 Introduction

In order to provide a complete set of algorithms to analyze the influ-
ence of losses in metallic structures, a surface impedance boundary
condition has been implemented and verified in SEMCAD X. The
original approach published in [55] has been enhanced for arbitrary
3D-structures.

One of the shortcomings of the conventional FDTD algorithm is its
inability to model and simulate highly conductive media in an efficient
manner. The conventional self- and curl-coefficients for the E-update
of dielectric, lossy media are given by

αE =
(

1− σ∆t
2ε

)
/

(
1 +

σ∆t
2ε

)
(5.1a)

βE =
(

∆t
ε∆x

)
/

(
1 +

σ∆t
2ε

)
. (5.1b)

From Equation (5.1a), one can easily derive the boundary for σ above
which αE is negative:

σ =
2ε
∆t

. (5.2)

For a typical time-step of ∆t ≈ 10−12 in an RF simulation at a fre-
quency of f0 = 2 GHz, Equation (5.2) yields an approximate boundary
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of σ ≈ 1 S/m. The exponential update coefficients, Equations (3.3)
through (3.6), keep the simulation stable, if not very accurate, for
conductivities that are slightly too large for the conventional update
equations.

In principle, it is possible to model any conductivity value with the
conventional or exponential update coefficients if the grid-step and the
time-step are sufficiently small. However, for almost all applications
that need to model high conductivities, this approach is not feasible
since it results in extremely large grids and small time-steps.

Surface impedance boundary conditions (SIBCs) have been used
for more than 50 years [56, 57, 58]. In FDTD, SIBCs are used to avoid
having to resolve the interior of bulk metallic objects. Instead, the
complex surface impedance is modeled at the object boundaries.

5.2 Method

Two entirely different approaches have been reported to model broad-
band SIBC conditions in FDTD. The first group models the SIBC by
expressing the frequency-domain SIBC condition by a convolution in
the time-domain, and avoiding the infinite sum resulting from the con-
volution by a recursive-sum technique [59, 60]. These methods show
good results, but make it necessary to introduce an additional ele-
ment into the update equations to account for the convolution terms,
altering the conventional update equations significantly. Therefore, it
is not possible to combine these material models with other models.
As an example, it is not possible to place dispersive media next to
lossy metallic objects.

The second method is based on the modeling of the frequency-
domain SIBC through an equivalent electrical network that takes the
E and H-field components tangential to the metal surface as input [55].
The method bears the advantage that it can be implemented to modify
the surface E-field components only, which enables a straightforward
combination with all dielectric material models. However, it lacks a
general derivation for arbitrary geometries and structures, and the
algorithm reported in [55] and summarized in [8] can be applied to
brick-shaped objects only. Nevertheless, the possibility of combin-
ing the method with other frequency-dependent material models and
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its simple algorithmic structure make this approach suitable for an
implementation in a professional EM-FDTD tool.

In this section, the equivalent network method is generalized to
arbitrarily shaped three-dimensional structures. The method is non-
conformal, i.e., it requires a staircased representation of the metal
structure to be modeled. This ensures the preservation of the conven-
tional FDTD updating scheme.

5.2.1 The Equivalent Network Model

The equivalent network model is based on the introduction of a special
updating scheme for E-Field edges. The model requires moderate ad-
ditional computational resources compared to the conventional PEC
model.

The relation between the tangential E-field and surface-current
vectors as described by Ohm’s law is given by [61]:

Etan(r) = Zs(r, ω)J(r) = Zs(r, ω) [n(r)×H(r)] . (5.3)

In the Leontovich boundary approximation [56], the surface im-
pedance writes

Z(ω) =

√
iωµ

σ
. (5.4)

This frequency dependence can be approximated by an equivalent
network. An infinite ladder of RC elements, as shown in Figure 5.1,
has the input admittance

Y (ω) =

√
iωC

R
. (5.5)

The authors of [55] show that a truncation of the ladder with 8
RC-elements yields sufficient accuracy. Also, they suggest balancing
the parasitic effects of too small or too large values for R and C with
the following values to model the surface impedance (5.4):

G =
√
ω0µ

σ

∆x
∆y

(5.6a)

C =
√

µ

ω0σ

∆x
∆y

. (5.6b)
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By applying Equation (5.3) to the FDTD update Equation (3.2b),
one finds that Y connects the surface current ES∆e with the surface
voltage HS∆h:

ES∆e = Y ·HS∆h (5.7)

where ∆e and ∆h are the respective grid steps in direction of the
surface E and H components (cf. Figure 5.2).

Figure 5.2 illustrates two cases that require distinct treatment:
The left case depicts the situation for a staircased boundary of a
metallic object, such as for flat but tilted or curved surfaces. In this
case, two H-field components are used to extrapolate the surface volt-
age, where HS in Equation (5.7) is taken to be the average. The right
case depicts the situation for a flat surface as described in [55] where
only one H-field component is used.

The remaining cases, for example, when a lossy metal E-field edge
ES is surrounded by three or four H-field components that do not
belong to a lossy metal surface, are ignored, i.e., the E-field edge is
considered to represent perfect metal (Es ≡ 0).

5.3 Results & Validation

5.3.1 Lossy Waveguide

A coaxial cable with inner radius ri = 3.04 mm and outer radius
ro = 7.0 mm serves as a primary benchmark for evaluating the ac-

2G2G G G

C C C

i0 i1 i2

v0 v1 v2Yin

Figure 5.1: A network of an infinite number of RC-elements with
input admittance Yin.
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curacy of the broadband SIBC for curved surfaces. Figure 5.3 shows
the simulated transmission S12 over a distance of 30 cm compared to
the analytical solution [62]. The results show a gradually growing
deviation from the analytical values with decreasing conductivity.

Nevertheless, the model has proved to be sufficiently accurate to
model the influence of metallic losses for the majority of applications.
Further refinements may include a conformal variant to account for
the error introduced by curved surfaces.

5.3.2 Lossy Microstrip Filter

The circuit used for this benchmark was originally published in [63].
Its functionality and the measurement results used in this benchmark
have been thoroughly verified and found to be accurate in [64] and [65]
by comparison with the results obtained from the method of moments
as well as commercial finite element software.

The structure, as defined in [64], has been modeled with SEM-
CAD X. Figure 5.4 shows the 3D model of the device including the
coaxial waveguides used in the measurement prototype.

The structure was analyzed with the equivalent network model as
described in Section 5.2.1. The S-Parameters obtained with SEM-
CAD X are compared to the measurement results taken from [64] in
Figure 5.5. The FDTD results show the pass-band shifted by less than
0.05 GHz and are in excellent agreement with the measured values.
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∆h

MetalMetalMetal

Figure 5.2: The primary two situations for SIBC surface edges ES
and HS . Left: Staircased surface of a lossy metal object. Right: Flat
surface. The H-field edges H0 are considered to be inside the metallic
object and do not contribute to the SIBC computation, i.e., H0 ≡ 0.
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Figure 5.3: S12 of a 30 cm long coaxial cable with inner radius ri =
3.04 mm and outer radius ro = 7.0 mm. The contiguous lines show
the simulated results, the dashed lines the analytical values.
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Figure 5.4: The multilayer boxed printed circuit as reported in [63]
acts as a bandpass filter. The waveguides at the input and output are
excited in SEMCAD X with waveguide sources [66].
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Figure 5.5: S-Parameters of the microstrip filter. Left: Simulated
(s) and measured (m) S-Parameters. The unequal S11 and S22 from
measurement indicate to a small asymmetry in the prototype. Right:
The simulated S-Parameters for the nonlossy (pec) and lossy (lossy)
case depict a significant influence of the metallic losses.





Chapter 6

Thin Conductive Sheets

6.1 Introduction

Presumably the most significant drawback of the conventional Yee
FDTD method in electromagnetics [6] is the linear relation between
the discretization steps in space and time. If, for example, an electri-
cally small structure makes it necessary to refine the FDTD grid by
a factor r in all three spatial dimensions, the total increase in com-
putational resources ranges between r2 and r4. Thus, the method as
is cannot be used to model structures relevant to the simulation hav-
ing dimensions much smaller than the wavelength of interest, such as
metallic coatings with thicknesses in the range of 1 µm for frequencies
around 1 GHz.

One of the subgroups of electrically small objects is the set of
thin conductive (TC) sheets. Multiple approaches to treat TC sheets
([67, 68, 69, 70, 71, 72, 73, 74], an overview can be found in [75])
and thin layers in general ([76, 59, 77, 78, 79, 80]) with the FDTD
method have been reported. However, most suffer from the fact that
they show results for flat, grid-aligned sheets only. More importantly,
the common methodology underlying all of these approaches is that
they start from Maxwell’s equations to find a discretized form that
can be combined with the Yee scheme. By introducing additional
degrees of freedom (DOF), i.e., additional grid components or state
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variables, the proven robustness and implementational feasibility are
no longer guaranteed. Therefore, problems such as instabilities or
unmanageable implementational burdens leave such approaches unfit
for commercial use in 3D EM FDTD applications.

In this paper, we pursue a different approach: Before enhancing
the Yee scheme itself, we propose that the possibility of modeling
the phenomenon under consideration with the DOF offered by the
Yee scheme should be carefully evaluated. Any such modeling, ulti-
mately resulting in a special set of update coefficients, will be able to
exploit the following core advantages over the conservative approach
described above:

• The well documented robustness and stability of the Yee scheme
are preserved.

• A set of special update coefficients can always be transformed
into special material properties, allowing modular programming
without the need to change existing FDTD kernels.

Starting from the analytical description of a plane wave incident
to a TC sheet, we ask whether we can match its discretized form with
the unaltered FDTD equations by choosing appropriate coefficients.
The result is an efficient way of treating 3D TC sheets within FDTD
without the need to resolve the sheet thickness. We show that it is the
physical properties of TC sheets that enable us to do so without the
need of additional DOF. In fact, in the case of TC sheets not all DOF
offered by the Yee scheme are used, i.e., there is an infinite number of
sets of update coefficients that can model TC sheets accurately.

The algorithm has been implemented into the full-featured EM
FDTD simulation platform SEMCAD X [66] and applied to various
canonical and real-world problems.
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6.2 Method

6.2.1 1D Analysis

Plane Wave Penetration

The first step is to define the set of TC sheets. Any 3D object is con-
sidered to be a sheet when it can be accurately described by a three-
dimensional surface that is extruded along the local surface normals.
The extrusion depth is called the thickness of the sheet.

The material of a TC sheet is a good conductor, i.e., inside a TC
sheet S with permittivity εS and conductivity σS the current density
JS = σSES must be substantially larger than the dielectric displace-
ment current density εS

d
dtES where ES is the electric field strength.

For the harmonic case with angular frequency ω this condition reduces
to

σS � ωεS . (6.1)

The second requirement is that the thickness of a sheet dS is sig-
nificantly smaller than the skin depth δS inside the sheet material:

dS � δS =
√

2
ωσSµS

. (6.2)

Such sheets exhibit the following key properties necessary for the
presented algorithm to be applicable:

1. A ray incident on such a sheet will cross the sheet (almost)
normally because of the high conductivity. Thus, the distance
that a wave travels inside a sheet does not depend on the angle
of incidence.

2. Because of 1) and Equation (6.2) the sheet is lossless in very
good approximation.

The range of applicability of this method is defined by Equa-
tions (6.1) and (6.2). In practice, the accuracy starts to drop as soon
as the sheet thickness reaches dS = δS/20.

Considering plane waves incident with an angle θ, TC sheets ex-
hibit the following key features: In the case of normal incidence
(θ = 0) and identical material on either side of the sheet, the sum
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Figure 6.1: 1D Yee grid with a TC sheet S of thickness dS located at
z = 0. The material parameters of S are εS , µS and σS .

of the total reflection coefficient R and transmission coefficient T is
unity in very good approximation (R + T = 1), i.e., the loss within
the sheet is neglectable.

For sheets where the conductivity is not large enough, there will
be propagation inside the sheet in direction parallel to the sheet’s
surface which cannot be neglected. Thus, in order to treat sheets
with smaller values of conductivity with this method, it would be
necessary to consider propagation parallel to the sheet surface when
deriving the update coefficients (cf. Section 6.2.1) which is subject to
further research.

Plane Wave Approximation

Figure 6.1 depicts the situation of a one-dimensional TC sheet S at
position z = 0 in a uniform grid surrounded by free space. The
immediate field components are H|n−1/2 and H|n+1/2. The spacing
between these field components and the E-field edge at the thin sheet
boundary is dG/2, i.e., half a grid step.

In the case of a plane wave propagating through the sheet in the
+z-direction, the field on the −z side of the sheet is the superposition
of the incident and reflected waves, and the field on the +z side is the
transmitted part of the plane wave. The analytical field components
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are given by

E(t, z)|z<0 = A0e
i(ωt−kz) −RA0e

i(ωt+kz) (6.3)

E(t, z)|z>0 = TA0e
i(ωt−kz) (6.4)

H(t, z)|z<0 =
1
Z
A0e

i(ωt−kz) +
1
Z
RA0e

i(ωt+kz) (6.5)

H(t, z)|z>0 =
1
Z
TA0e

i(ωt−kz). (6.6)

where Z is the free space impedance and A0 is the amplitude of the
incident E-field.

In contrast, the Yee update equations for the thin sheet edge
E
n+1/2
S = E|n+1/2

0 and the H-field edge H|n+1
+1/2 are

E|n+1/2
0 = αSE|n−1/2

0 + βS

(
H|n−1/2 −H|n+1/2

)
(6.7)

H|n+1
+1/2 = αHH|n+1/2 + βH

(
E|n+1/2

0 − E|n+1/2
+1

)
(6.8)

where the update coefficients αS , βS , and βH are a priori unknown and
αH = 1 in free space. Assuming harmonic behavior in steady state
for the thin sheet edge ES = SA0e

i(ωt) with amplitude SA0, one can
insert the analytical solution given by Equations (6.3) to (6.6) into
Equation (6.8) to find

1
Z
TA0e

−ik dG2
(
eiω

dT
2 − e−iω dT2

)
= βH

(
SA0 − TA0e

−ikdG) . (6.9)

For S = T it follows that βH must be equal to

βH =
1
Z

sinω dT2
sin k dG2

(6.10)

which can be simplified to

βH ∼=
dT

µdG
(6.11)

using sinx ∼= x, x � 1. This corresponds to the standard definition
for the curl update coefficient in the Yee scheme. Analogously, if
βH = dT

µdG is inserted into Equation (6.9), one finds that the amplitude
S of the field component at z = 0 must be S = T . Furthermore, the
corresponding derivation for the field component H|n+1

−1/2 yields the
very same result.
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1D Coefficients

An intermediate conclusion is that the reflection and transmission of
a 1D plane wave at a TC sheet in a uniform grid can be modeled
by forcing the sheet edge to ES(t) = TA0e

iωt. In order to find the
appropriate update coefficients, Equation (6.7) is used. Inserting the
analytical solutions from Equations (6.3) to (6.6), dividing by the
common factor A0e

iωt and using R = 1− T leads to

TeiωdT = αST + βS
R

Z
eiω

dT
2

(
eik

dG
2 + e−ik

dG
2

)
, (6.12)

a single equation with the two unknown variables αS and βS . Ob-
viously, there exists an infinite number of solutions which might be
exploited to model a wider range of material properties and/or geome-
tries with this approach. In practice, the following procedure removes
one degree of freedom and has produced reliable and stable results.
Introducing the common normalized factor c using αS = cα0 = c and
βS = cβ0 with the free space values α0 = 1 and β0 = dT/ε0dG yields
in the limit of an infinitesimally refined grid (dG, dT → 0)

T = cT + cβ0
2
Z

R

dG
, (6.13)

which leads to the following formula for the 1D coefficient c and the
corresponding update coefficients for the sheet edge:

c =
ZT

ZT + 2Rβ0
, (6.14)

αS = c, (6.15)
βS = cβ0. (6.16)

This solution fits nicely into the established material coefficient
schemes: For T → 0 and R → 1, i.e., for PEC, it follows that c = 0.
For T → 1 and R→ 0, i.e., free space, it follows that c = 1.

6.2.2 Generalization to 3D

The Minimal Grid

To model arbitrarily curved TC sheets that are not grid aligned, we
start from their representation in the primary grid, i.e., the E-field
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Figure 6.2: Full grid and minimal grid in the primary FDTD grid: a)
Full E-field edge representation of a surface. b) A minimal grid. The
dotted lines represent reassigned edges.

edges that are associated with a particular sheet. Throughout the
following discussion we assume that for all points in space the corre-
sponding grid step is substantially smaller than the curvature radius
of the sheet. Thus, the following discussion is spared implementa-
tional considerations that are not relevant to the core functionality of
the presented TC sheet algorithm.

Figure 6.2a shows part of a staircased representation of a 3D sur-
face in the primary Yee grid. A (numerical) wave incident with wave
vector k = (0,+1,−1) will excite the FDTD edges in the order in-
dicated in Figure 6.2 by the dotted line. The wave will cross (or be
reflected by) the sheet by exciting Ex|ni+1,j+2,k and Ex|ni+1,j+2,k−2.

If the surface models a perfect electric conductor (PEC) where the
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values of the corresponding E-field edges are always equal to zero, the
numerical wave following the staircased path shown in Figure 6.2 will
never reach edge Ex|ni+1,j+2,k−2. With regard to the incident wave, it
does not matter whether that edge is updated with PEC coefficients.
Thus, starting from the full FDTD representation of a surface, there
must be at least one subset of edges that models a (PEC) surface
accurately that cannot be further reduced. We call such a subset of
edges a minimal grid.

The minimal grid from Figure 6.2b, in which the dotted lines are
normal free space edges, yields the very same numerical result as the
full grid from Figure 6.2a in the case of a PEC surface and a wave
incident as described above. In contrast, a numerical wave incident
with wave vector k′ = −k = (0,−1,+1) would clearly experience
a difference: In the case of the minimal grid, it would pass edge
Ex|ni+1,j+2,k−2 before being reflected. Thus, every possible minimal
PEC grid provides 100 % reflection but may introduce a small dif-
ference in the phase of the reflected wave compared to the standard
representation. However, because both the minimal grid and the full
grid represent merely a numerical approximation of the original 3D
sheet, both have the same level of validity.

In the context of the presented thin sheet algorithm, the important
property of a minimal grid is that every edge is responsible for con-
necting field components from either side of the sheet. Thus, we can
see the minimal grid as a collection of one-dimensional edges. The 3D
TC sheet algorithm can be seen as a collection of 1D transmissions,
each of them responsible for a certain polarization.

Minimal Grid Generation A minimal grid can be found using the
algorithm outlined by the following items where the edge and corner
labeling depicted in Figure 6.3 is used:

1. Collect all voxels (FDTD cells in the primary grid) that con-
tain at least 7 edges that are assigned to some thin sheet. The
number of such edges is called the thin sheet edge count of a
voxel.

2. Find the subset of voxels with the largest thin sheet edge count
and perform the following analysis for each voxel in this subset:
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3. Find all thin sheet edges that have two “parallel neighbors” that
also belong to the thin sheet. If, for example, edges 0, 2 and 4
belong to the thin sheet, mark edge 0, if edges 8, 9 and 10 are
thin sheet edges, mark edge 9, and so on . . .

4. Using the marked edges from item 3, find the corners that belong
to three thin sheet faces (faces of the voxel where all 4 edges
belong to a thin sheet). If, for example, edges 2, 3 and 11 are
marked, corner D is a thin sheet corner.

5. If a thin sheet corner is found in item 4, reassign all edges con-
necting to this corner to belong to the material surrounding the
thin sheet and re-evaluate the voxel by going back to step 3.
Note: If multiple corners are found, only perform the reassigned
for one of them (to be chosen at random).

6. If no thin sheet corner is found (anymore), reassign all of the
marked edges found in item 3.

7. Stop if the processed subset of voxels had a thin sheet edge count
of 7 (cf. item 2) and no edges had to be reassigned. Otherwise,
return to item 2.

Coefficients in 3D

For flat, grid aligned1 (FG) sheets in uniform grids, Equation (6.14)
gives very accurate results as shown in Section 6.3.2. For staircased,
curved sheets the situation becomes a bit more challenging. If the
special update coefficients as defined by Equation (6.14) are applied to
the minimal grid of an arbitrary 3D surface, the simulation effectively
models a staircased surface with a much larger total surface area than
the original 3D model. The simulation becomes strongly dependent
on the grid.

To alleviate this discretization error, each E-field edge of the min-
imal grid is considered to model the tangential component Et =
TE0e

iωt of a plane wave that is incident at a normal angle. In other

1i.e., with a surface normal in x-, y-, or z-direction.
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Figure 6.3: Enumeration of the 12 edges (numerals) and 8 corners
(letters) of a voxel in the primary grid.
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Figure 6.4: A surface element (gray area) in the FDTD grid. At the
point where the Ex pierces the surface, the surface normal n is used
to find the largest tangential component Et and the projection ratio
Cx.
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words, the E-field edges that model a TC sheet are required to repre-
sent a field component tangential to the original 3D sheet. Trivially,
this condition is satisfied for FG sheets.

In the case of tilted or curved sheets, the E-field edges of the
resulting minimal grid are no longer orthogonal to the local (averaged)
surface normal. Thus, in a case as depicted in Figure 6.4 the 1D theory
cannot be applied directly. Such an edge does not model a locally
tangential field component. Furthermore, this geometrical problem
applies to the H-field edges as well.

If the local surface normal2 is known, the projection to the tan-
gential component is straightforward. Figure 6.4 shows a staircased
grid sliced by a curved surface (gray). In general, the numerical Yee
component Ex is not tangential to the surface. Rather, it is thought
to model the tangential component Et, which is defined by the in-
tersection of the local surface and the plane spanned by n and Ex,
i.e., Et is the largest possible projection of Ex onto the local surface.
As a result, the projection fraction Cx has to be applied during the
derivation of the coefficient modification factor c.

Using the normalized vectors ex and et = Et/ |Et| = (n× ex)× n
the projection fraction Cx is

Cx = |et · ex| =
√
n2
y + n2

z. (6.17)

Analogously, the coefficients Cy and Cz for the H-field components
are

Cy = |et × n| · ey = |nz| /
√
n2
y + n2

z (6.18)

Cz = |et × n| · ez = |ny| /
√
n2
y + n2

z. (6.19)

In analogy to Equation (6.13) the simplified update equation for
the case of arbitrary field components is

CxT = CxcT + cβ0
2
Z

(
Cy

1− T
dZ

+ Cz
1− T
dY

)
. (6.20)

2The local surface is the plane defined by the local surface normal and the
point where the 3D sheet is pierced by the Yee grid edge under consideration.
The normal of the local surface is well defined for a sufficiently large curvature
radius (cf. Section 6.2.2).
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Thus, using β′0 = β0dG = dT/ε, the final formula for the normal-
ized update coefficient c is

c =
CxZT

CxZT + 2Rβ′0
[
Cz
dY + Cy

dZ

] . (6.21)

which again reduces to Equation (6.14) for the FG case (Cx = Cy ≡
1, Cz = 0, dY = dZ ≡ dG).

Summary

To model TC sheets that meet the specifications given in Section 6.2,
we need information about the local surface normals and the pre-
computed transmission and reflection coefficients of a sheet in free
space with the given parameters.

By projecting the sheet edges onto the local surface of the sheet,
we can find modification factors accounting for surfaces that show an
arbitrary angle to the grid axes.

Because of the special properties of TC sheets, the dependence on
the angle of incidence is intrinsically taken care of by the Yee scheme.
Furthermore, as will be shown in Section 6.3, although the properties
of the material surrounding a TC sheet can alter the reflection and
transmission coefficients significantly, their influence is automatically
modeled by the Yee scheme. Thus, the computation of c is indepen-
dent from the materials a TC sheet is embedded in.

6.3 Results

6.3.1 Rationale

The benchmarking process is grouped into four steps:

Plane Wave equations provide the basis for the proposed method.
Naturally, the first step is to compare numerically analyzed plane wave
problems with their analytical solutions.

A Canonical Benchmark modeling a thin metallic bowl in free
space allows investigation of the error that tilted, curved sheets and
non-uniform grids may introduce.
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A Generic Application consisting of a simplified microstrip struc-
ture serves as a general verification where the parameters of interest
are not directly related to the reflection and transmission of plane
waves.

A Real-World Example modeling a cell phone shows how the TCS
algorithm has been successfully applied to a problem that would have
been impossible to compute by standard FDTD because of the com-
putational costs.

6.3.2 Plane Wave Verification

Because analytical solutions are required in this step, the set of pos-
sible structures is limited to simple geometries, i.e., flat sheets. In
this section, the correct treatment of the following variables that can
influence the behavior of a sheet is shown:

• Polarization of the incoming wave.

• Angle of incidence of the incoming wave.

• Tilting angle of the thin sheet with respect to the grid.

• Material parameters on either side of the thin sheet.

The common setup for all plane wave verification simulations con-
sisted of a flat sheet either grid-aligned or tilted at one or two axes.

A Total Field/Scattered Field plane wave source3 (cf. [8], Chap-
ter 5) was used to excite the plane wave. The simulation size and
time were chosen such that errors originating at the model and source
boundaries could not propagate to the field recording region, i.e., a
cubic region at the center of the sheet. The measurements were per-
formed by averaging the extracted RMS E-field values in the field
recording region. Table 6.1 summarizes the relevant setup parame-
ters for the presented simulations.

Figure 6.5 shows the simulation result of transmission and reflec-
tion coefficients in comparison with the corresponding analytical val-
ues for Simulation A (Table 6.1). The deviation to the analytical

3The TF/SF source was solely used to excite a plane wave and not to measure
the scattered field.
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Table 6.1: Plane Wave Simulation Parameters
Parameter Sim. A Sim. B Sim. C

Frequency GHz 1.8

Sheet Thickness µm 1

Sheet Conductivity1 S/m 5309

Free Space2:

Reflection % 50

Transmission % 50

Material Parameters3:

Incident Side εr = 1, µr = 1, σ = 0

Outgoing Side εr = 2, µr = 1, σ = 0

Grid Resolution λ/20

Sheet Position:

X-Axis Tilt: 0◦ 0◦ 30◦

Y-Axis Tilt: 0◦ 45◦ 30◦
1The chosen conductivity yields 50 % reflection for a sheet in free space
with the given simulation parameters.
2Characteristics of a TC sheet with the given parameters in free space.
3A range of simulations with different combinations of parameters yielded
the same accuracy.

values is below the error that can be expected from the simulation
uncertainty. The uncertainty was estimated by performing the RMS
measurement at the outgoing side when using a PEC sheet which re-
sulted from wave propagation from the edge of the simulation where
the plane wave source would inject a field at high angles of incidence.

A series of simulations with different material parameters at both
incident and outgoing side showed, that for grid-aligned, flat sheets
the algorithm models transmission and reflection of an incident plane
wave with good agreement for all material parameters and incident
angles.
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Figure 6.5: Reflection (×) and transmission (+) coefficients of a plane
wave incident on a flat, grid-aligned sheet (cf. Table 6.1, Sim. A).
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Figure 6.6: Reflection (×) and transmission (+) coefficients of a plane
wave incident on a flat, tilted sheet (cf. Table 6.1, Sim. B).
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Figure 6.7: Reflection (×) and transmission (+) coefficients of a plane
wave incident on a flat, tilted sheet (cf. Table 6.1, Sim. C).

Figure 6.6 and 6.7 show the transmission and reflection coefficients
for Simulations B and C, respectively (cf. Table 6.1). These simula-
tions describe a canonical example of the generalization to non-grid-
aligned sheets as described in Section 6.2.2. As could be expected,
there occur small deviations compared to the accuracy of the grid-
aligned case shown in Figure 6.5. The resulting slight overall shift
in R and T is different for each simulation and polarization. This
shift could be due to either dispersion or boundary effects and will be
subject to further research.

6.3.3 Canonical Shielding Benchmark

In order to investigate curved sheets in non-uniform grids, a canonical
benchmark is used. Because most thin sheet structures are electrically
too thin to be modeled with standard FDTD, the range of possible
benchmark structures is limited. The geometry used in the presented
benchmark consists of a TC sheet in the shape of a spherical dome as
depicted in Figure 6.8. It is surrounded by free space. The simulation
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Figure 6.8: Canonical example of a curved TC sheet simulation.

shown in Figure 6.8 proved suitable for our purposes, i.e., it provided
the simulation parameters given in Table 6.2 and a full resolution sim-
ulation of the dome with standard FDTD is possible with commonly
available computational resources.

Figure 6.9 shows a comparison of the root mean square (RMS)
E-field values in dB in the x-y-plane at y = 0, i.e., the cross-section
in the middle of the dome, for the three simulations described in
Table 6.2. While the left side shows the simulation results normalized
to 1 V/m, the right side shows the difference to the fully resolved FDTD
reference simulations.

One can see that the conductivities of the three different sheets
have a strong impact on the resulting field distribution. Thus, good
agreement between regular FDTD and TCS algorithm provides a
strong indication of the validity and performance of the TCS algo-
rithm.

The level of agreement between regular FDTD and TCS algorithm
can be ascertained from the difference-plots on the right side of Fig-
ure 6.9: As one can expect, the field values differ in close proximity
to the thin sheet due to the entirely different modeling approach but
otherwise match within −40 dB.
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Figure 6.9: Simulation results from simulations A, B and C in the x-
y-plane at y = 0 as listed in Table 6.2. Left: RMS E-field distribution
in dB normalized to 1 V/m. Right: Difference in E-field RMS between
the fully resolved FDTD simulations and the results obtained using
the TCS algorithm.
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Table 6.2: Shielding Benchmark Simulation Parameters
Parameter Simulation

A B C

Frequency GHz 60.0

Sheet Dimensions mm 6.0× 6.0× 2.0

Sheet Thickness µm 20

Sheet Conductivity S/m 1065 265 66

Free Space Reflection % 80 50 20

Free Space Transmission % 20 50 80

Resources (Staircased FDTD only):

Max Grid Step µm 35.5

Min Grid Step µm 7.75

Size MCells∗ 22.6

Simulation Time sec 1150

Speed MCells/sec 121

Resources (With TCS Algorithm):

Max Grid Step µm 54.4

Min Grid Step µm 49.7

Size MCells 0.64

Simulation Time sec 2.4

Speed MCells/sec 73

Running on: SEMCAD X [66]
featuring

ClusterInABox 400 [1]
∗Million Yee Cells
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6.3.4 Canonical Microstrip Benchmark

To provide an example that relies on a derived value rather than ana-
lyzing and comparing the field values, a generic microstrip line is used
as defined by Table 6.3. The simple structure allowed the microstrip
to be resolved with standard FDTD in order to investigate the re-
lation between the input impedance and the strip parameters. As
shown in Figure 6.10, the results taken from the standard FDTD sim-
ulations are in very good agreement with the TCS algorithm. Despite
the large differences in the discretization and required computational
resources as shown in Table 6.3, the TCS algorithm accurately mod-
els the strong dependence of the impedance value on the conductivity
over the entire frequency range.

One must note, however, that the algorithm was deliberately de-
signed to work with modification of coefficients only. Thus, there can
be no true dispersive behavior. The microstrip benchmark merely
shows the robustness and validity for broadband simulations as com-
pared to conventional FDTD without dispersive material.

6.3.5 Real-World Problem

Finally, the approach was applied to a real-world application. The
multiband (GSM/DCS) phone Nokia 8310 was simulated using SEM-
CAD X. A discrepancy with the measured results was successfully
alleviated using the novel TCS algorithm. One of the parts, a di-
electric support frame shown in Figure 6.11, was coated with a thin
metallic paint to facilitate grounding between the two printed circuit
boards (PCB). Using the TCS algorithm, a series of simulations with
different parameters applied to the coating shows a significant effect:
as the properties of the coating become less metallic, the grounding
between the 2 PCBs is degraded. Significant influence on the E-field
strength above the antenna can be seen in Figure 6.12, changing the
overall radiation performance of the device.

6.4 Conclusion

A novel algorithm that extends the applicability of FDTD to include
the group of arbitrarily curved, thin metallic sheets has been devel-
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Figure 6.10: Input impedance Z(f) of the microstrip defined in Ta-
ble 6.3, simulated with regular FDTD and FDTD using the new
TCS algorithm. For conductivities between 5000 and 20000 S/m, the
recorded impedances are within ±3 %.
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Figure 6.11: SEMCAD X model of the Nokia 8310. The support frame
(highlighted) was coated using a conductive spray, which then acts as
a grounding mechanism between main and keypad PCBs. Integrated
into enhanced FDTD platforms [66] the novel algorithm allows the
simulation of such complex 3D real-world problems including EMI
and metallic coatings which could not be performed by the standard
Yee scheme.
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a) b)

c) d)

0 -10|E|RMS in dB

Figure 6.12: E-field RMS distribution at 902 MHz measured 5 mm
above the phone casing. With a sheet thickness of 0.5 µm, the trans-
mission factor and conductivity for the four different cases are: a)
75 %, 3500 S/m b) 50 %, 104 S/m c) 25 %, 3 ·105 S/m d) 0 %, 108 S/m
(PEC).
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Table 6.3: Microstrip Benchmark Simulation Parameters
Parameter Simulation

A B C

Center Frequency GHz 3.0

Bandwidth GHz 3.0

Substrate Dimensions mm 90.0× 70.0× 0.3

Substrate Material εr = 2.7; µr = 1.0

σ = 0.002 S/m

Microstrip:

Dimensions mm 90.0× 0.8× 0.01

Conductivity 103 S/m 5 10 20

Resources (FDTD only):

Max Grid Step mm 4.67

Min Grid Step µm 10.0

Size MCells∗ 3.3 5.24 8.4

Simulation Time hrs 2.0 2.75 3.75

Speed MCells/sec 80 90 110

Resources (With TCS Algorithm):

Max Grid Step mm 4.67

Min Grid Step µm 40

Size MCells 0.124

Simulation Time sec 5

Speed MCells/sec 60

Running on: SEMCAD X [66]
featuring

ClusterInABox 400 [1]
∗Million Yee Cells
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oped, implemented and applied to various benchmarks and real-world
problems. The core advantage of the approach is that it does not
introduce new dependencies to the common FDTD scheme; the TCS
update coefficients can thus be transformed into effective material
parameters. The algorithm could be successfully applied to existing
solvers, including new hardware accelerated solutions.

The benchmarks and applications show very good agreement with
analytic values and reference simulations using standard FDTD.

Future work and research will include an extension of the scheme
to treat a broader range of materials: Layers with low or zero con-
ductivity may be treated by using the additional DOF offered by the
unused H-field edges inside the minimal grids. Those H-field edges
can be used to model the propagation inside the layer tangential to
the surface. Losses may be considered by investigating the effect of
distributing the modification factor c differently on the update coef-
ficients and/or including more than one layer of edges in the FDTD
scheme into the derivation.





Chapter 7

Dispersive Materials

7.1 Introduction

Emerging applications in the fields of photonics [81, 82, 83, 84, 85]
and metamaterials [86, 87, 88, 89, 90, 91, 92] involve materials having
frequency and intensity dependent polarizations and magnetizations.
In the approach by Greene and Taflove [93], it has been shown that the
auxiliary differential equation (ADE) method is well suited to model
materials that incorporate several non-trivial properties. However,
with the prospect of such a method being applied to state-of-the-
art problems in optics, the so-called General Vector ADE approach
(GVADE) proposed by Greene and Taflove suffers from two major
shortcomings:

• Modularity: The method relies on the solution of vector equa-
tions such that its structure makes parallelization and adaption
to existing FDTD kernels difficult.

• The method employs a Newton iteration to solve the nonlinear
equations. This comes with a considerable speed penalty as the
inverse of a 3× 3 matrix has to be computed for each iteration.

In this paper, an improved ADE-FDTD algorithm is proposed that
allows electromagnetic wave propagation to be modeled in materials
that exhibit any combination of the first order Drude and Lorentz

87
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dispersion models and the third order phenomena Kerr effect and
Raman scattering.

The approach is based on two steps. Firstly, the new variable

I = |E|2 (7.1)

is introduced to preserve the linear nature of the FDTD update equa-
tions (cf. Section 7.3). Secondly, it is shown that the determining
equation for I is a cubic equation that can be solved analytically if
the third-order susceptibility χ(3) is positive.

The pre-existing code- and data-structure of an existing FDTD
kernel can make an implementation of the analytical solution difficult.
Therefore, another approach to solve the cubic equation is presented
that uses a fixed-point iteration with proven convergence (the equation
is badly conditioned for the more efficient Newton iteration). Despite
the fixed-point iteration being less efficient than the Newton iteration
in terms of number of iterations, the resulting algorithm is shown to
be faster than GVADE due to the efficient algorithmic structure of
the fixed-point iteration.

To provide validation, the algorithm has been implemented in both
Matlab code and the full-featured EM FDTD simulation platform
SEMCAD X [66]. Using both implementations, the algorithm is ap-
plied to generic benchmark problems and used to verify existing re-
sults.

7.2 Dispersion

7.2.1 Introduction

The following discussion provides a summary and description of the
phenomena modeled by the proposed algorithm.

In a dielectric medium, the constitutive equations are:

B = µH = µ0H + M (7.2)
D = εE = ε0E + P. (7.3)

In most cases the magnetization M is negligible because the mag-
netic susceptibility is small compared to the electric permittivity. The
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overall polarization in terms of higher order susceptibilities (cf. [3])
commonly writes

Pi = ε0

∑
ij

χ
(1)
ij Ej +

∑
ijk

χ
(2)
ijkEjEk + · · ·

 (7.4)

where χ(n) are the dielectric susceptibility tensors of rank n+ 1.

7.2.2 Linear Dispersion

Ignoring the higher order terms in the series on the right hand side
of Equation (7.4) yields a polarization P that depends linearly on
E. Frequency dependent first order susceptibilities χ(1)(ω) that relate
E to P give rise to linear dispersion. A thorough discussion of the
physical concepts and their contribution to linear dispersion can be
found in [3] and [4].

Drude Media

The Drude model is based on the collective excitation of the free
charges as observed in metals. Their displacement against the ionic
trunks results in positively and negatively charged clouds that exert
an attractive force on each other. The polarization due to a single
Drude pole Pd is given by

Pd(ω) = ε0χ
(1)
d E(ω) = −ε0

ω2
d

ω2 + iωδd
E(ω) (7.5)

where ωd is the pole frequency and δd is the inverse of the pole relax-
ation time.

Lorentz Media

A harmonic oscillator is assumed to produce a dipole-moment linear
to the amplitude of the excitation. This situation can be found in
systems with electrons that are bound harmonically to the atomic
trunks, natural frequencies of molecules with dipole-moment or lat-
tice oscillations of ionic crystals. For the polarization due to a single
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Lorentz pole Pl one finds the relation

Pl(ω) = ε0χ
(1)
l E(ω) = ε0

∆ε ω2
l

ω2
l − ω2 − 2iωδl

E(ω) (7.6)

with resonance frequency ωl, damping constant δl and ∆ε = εs − ε∞
being the difference between static and high frequency limit relative
dielectric constants.

7.2.3 Nonlinear Dispersion

Because the second-order susceptibility χ(2) cannot exist in an isotro-
pic medium, this approach models Kerr effect and Raman-Scattering,
both of which are third-order effects (cf. [3]).

In a simplified model of the electron response accounting for non-
resonant and intensity dependent nonlinear effects, the general equa-
tion for P(E) reduces in the Born-Oppenheimer [5] approximation
to

P (t) = ε0χ
(3)
0 E(t)

t∫
−∞

g(t− t′)E(t′)2dt′ (7.7)

where g(t) is the normalized causal response function. The induced
polarization is assumed to lie in the same direction as the electric field.
The modeled non-resonant third-order processes include phonon in-
teractions and non-resonant electronic effects. The response function
can be described as

g(t) = αδ(t) + (1− α) gr(t) (7.8)

where α ∈ [0, 1] represents the relative strengths of the Kerr and
Raman polarizations. δ(t) is a Dirac delta function modeling the
instantaneous Kerr non-resonant virtual transitions, and

gr(t) =
τ2
1 + τ2

2

τ2
1 τ

2
2

e−
t
τ2 sin(

t

τ1
)H(t) (7.9)

is an approximation of the Raman response function with parameters
τ1 and τ2 chosen to fit the Raman-gain spectrum and where H(t) is
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the Heaviside function. gr(t) models transient Raman scattering. Ef-
fectively, gr(t) models a single Lorentzian line centered on the optical
phonon frequency 1

τ1
having a bandwidth of 1

τ2
, the reciprocal phonon

lifetime.
Thus, the polarization due to the Kerr effect is given by

Pk(t) = ε0χ
(3)
0 E(t)

∞∫
−∞

αδ(t− t′)|E(t′)|2dt′

= ε0αχ
(3)
0 |E(t)|2E(t) = ε0χ

(3)
k |E(t)|2E(t)

(7.10)

and the polarization due to Raman scattering is

Pr(t) = ε0E(t)
[
χ(3)
r (t) ∗ |E(t)|2

]
(7.11)

where
χ(3)
r (t) = (1− α)χ(3)

0 gr(t). (7.12)

The Kerr effect is a frequency-independent, intensity-dependent
contribution to the permittivity. Despite that its contribution looks
trivial, its effects are very complex. The strength of the Kerr effect is
intensity dependent and depends therefore also on the field amplitude.
Thus, different parts of a light-pulse are differently affected by the
Kerr effect. Depending on the sign of the susceptibility χ(3)

k , the Kerr
effect is either focusing, when positive, or defocusing, when negative.
In a well balanced case it is possible that the pulse-broadening due to
dispersion is neutralized by the Kerr effect such that the light-pulse
retains its shape. Such wave-pulses that retain their shape are called
solitons. Some illustrative results of solitons are shown in Section 7.5.

7.3 ADE Algorithm

7.3.1 Introduction

The following discussion provides an overview of the modeling of lin-
ear and nonlinear dispersion and summarizes the underlying concepts
with respect to the ADE formulation. A more thorough discussion
can be found in [8].
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The ADE method to model dispersive materials in FDTD uses
time-domain differential equations to link polarisation terms to the
electric flux density. These equations are time stepped in synchronism
with Maxwell’s curl equations, yielding a composite and self-consistent
system. For example, the electric field is still updated via Ampere’s
law

∇×H =
∂D
∂t

+ σE = ε0ε∞
∂E
∂t

+
∂P
∂t

+ σE (7.13)

and the polarization term requires an additional update equation that
is solved in parallel. ADE methods have second-order accuracy. Their
time-domain basis makes the modeling of arbitrary nonlinear disper-
sive media particularly attractive. Furthermore, this method bypasses
the computation of convolutions.

The ADE-FDTD formulation presented in this work will be de-
rived for the electric field only. The derivation of the expressions for
the magnetic field is completely analogous.

7.3.2 Linear Dispersion

Consider a dispersive medium with D Drude poles and L Lorentz
poles in its susceptibility response. In the frequency-domain, the con-
tributions to the polarization from Drude-pole d and Lorentz-pole l
write:

Pd(ω) = − ε0ω
2
d

ω2 + iωδd
E(ω) (7.14)

and

Pl(ω) =
ε0∆εlω2

l

ω2
l − ω2 − 2iωδl

E(ω) (7.15)

respectively. A Fourier-transformation of Equations (7.14) and (7.15)
to the time-domain, applying finite-difference expressions and substi-
tuting αd,l = ω2

d,l∆t
2 and βd,l = δd,l∆t one finds the ADE update

equations for the Drude contributions to be

Pn+1
d =

4Pn
d + (βd − 2)Pn−1 + 2ε0αdEn

βd + 2
(7.16)
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and for the Lorentz contributions

Pn+1
l =

(2− αl)Pn
l + (1− βl)Pn−1

l + ε0∆εlαEn

1 + βl
. (7.17)

The update equation for the electric field is then derived by eval-
uating Ampere’s law (7.13) at time step n + 1/2. Using the finite-
difference expression for the polarization current Jn+1/2 = Pn+1−Pn

∆t ,
the update equation for En+1 writes

En+1 = C1En + C2∇×Hn+1/2

− C2

D∑
d=1

Jn+1/2
d − C2

L∑
l=1

∆Jn+1/2
l

(7.18)

with update coefficients

C1 =
2ε0ε∞ − σ∆t
2ε0ε∞ + σ∆t

, C2 =
2∆t

2ε0ε∞ + σ∆t
. (7.19)

7.3.3 ADE Formulation of the Nonlinear Effects

The following derivation follows the approach presented in [93] up to
the point where a Newton iteration is used.

Kerr effect

The equation for the polarization of the Kerr effect at time step n is
obtained directly by the finite-difference expression of Equation (7.10):

Pn
k = ε0χ

(3)
k |En|2En. (7.20)

Raman scattering

Equation (7.11) is solved by introducing a scalar auxiliary variable for
the convolution:

R(t) .= χ(3)
r (t) ∗ |E(t)|2. (7.21)
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Taking the Fourier transform of Equation (7.21) leads to the Ra-
man frequency domain susceptibility

χ(3)
r (ω) =

χ
(3)
r ω2

r

ω2
r + 2iωδr − ω2

(7.22)

with

ωr =

√
τ2
1 + τ2

2

τ2
1 τ

2
2

, δr =
1
τ2
. (7.23)

Multiplying both sides by (ω2
r + 2iωδr − ω2), transforming back

to the time-domain and applying finite-difference expressions leads to
following update equation for Rn+1:

Rn+1 =
(

2− ω2
r∆t2

δr∆t+ 1

)
Rn +

(
δr∆t− 1
δr∆t+ 1

)
Rn−1

+

(
χ

(3)
r ω2

r∆t2

δr∆t+ 1

)
|En|2,

(7.24)

and the finite-difference expression of Equation (7.11) at time step n
becomes

Pn
r = ε0EnRn. (7.25)

7.3.4 Arbitrary Dispersive Material Algorithm

To outline the final form of the algorithm, consider Ampere’s law
where we introduce the total polarization Ptot:

∇×H = ε0ε∞
∂E
∂t

+
∂Ptot

∂t
+ σE (7.26)

where Ptot is given by

Ptot =
L∑
l=1

Pl +
D∑
d=1

Pd + Pk + Pr. (7.27)
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The finite-difference expression that follows from (7.26) can be
written as

∇×Hn+1/2 = En+1 (2ε0ε∞ + σ∆t)
2∆t

−

En (2ε0ε∞ − σ∆t)
2∆t

+ Jn+ 1
2

tot .

(7.28)

The Drude and Lorentz contributions are computed via Equa-
tions (7.16) and (7.17) and do not depend on En+1. The nonlinear
contributions are given by Equations (7.20) and (7.25), where the Ra-
man term depends linearly on En+1. In order to preserve the structure
of the conventional FDTD update scheme, the linear dependence is
enforced for the Kerr term by introducing the new variable

In
.= |En|2. (7.29)

Equation (7.28) can now be solved for En+1:

En+1 = C1En + C2∇×Hn+1/2

+ C2

[
L∑
l=1

Jn+1/2
l +

D∑
d=1

Jn+1/2
d

] (7.30)

with update coefficients

C1 =
ε0ε∞ − σ

2 ∆t+ ε0R
n + ε0χ

(3)
k In

ε0ε∞ + σ
2 ∆t+ ε0Rn+1 + ε0χ

(3)
k In+1

,

C2 =
∆t

ε0ε∞ + σ
2 ∆t+ ε0Rn+1 + ε0χ

(3)
k In+1

.

(7.31)

Lastly, one has to compute In+1, which is by definition

In+1 = En+1 ·En+1. (7.32)

Noting that the update coefficients C1 and C2 in Equation (7.31) share
the same denominator, one can easily verify that Equation (7.32) can
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be written in the scalar form

In+1 =
ã2

(b̃+ c̃In+1)2
= f(In+1) (7.33)

where

ã2 =
∑

i=x,y,z

[
(ε∞ −

σ∆t
2ε0

+Rn + χ
(3)
k In)Eni

+
∆t
ε0
∇×Hn+1/2

∣∣∣
i
+

1
ε0

∆P
∣∣∣
i

]2

,

b̃ = ε∞ +
σ∆t
2ε0

+Rn+1, and c̃ = χ
(3)
k .

(7.34)

The term ∇×Hn+1/2
∣∣
i

stands for the i-component of the finite-
difference expression of the rotation of the H-Field. The term ∆P

∣∣
i

stands for the i-component of the terms containing the linear disper-
sion contributions.

Using the substitution X = In+1, Equation (7.33) can be rewritten
as a cubic equation

aX3 + bX2 + cX + d = 0 (7.35)

with
a = c̃2, b = 2b̃c̃,

c = b̃2, and d = −ã2.

(7.36)

The corresponding depressed cubic for Y = X + b/(3a) is

Y 3 + pY + q = 0 (7.37)

with

p = − 1
3

(
b

a

)2

+
c

a
,

q =
2
27

(
b

a

)3

− bc

3a2
+
d

a
.

(7.38)
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This depressed cubic has one real solution if the discriminant D given
by

D =
(p

3

)3

+
(q

2

)2
(7.39)

is positive, which reduces to

4b̃3c̃+ 27ã2c̃2 > 0. (7.40)

If D is positive, then the solution of Equation 7.35, i.e., the update
equation for I is given by

In+1 =
(
−q

2
+
√
D
) 1

3
+
(
−q

2
−
√
D
) 1

3 − b

3a
. (7.41)

An upper boundary of the second-order Raman contribution Rn

depending on the maximal electric intensity Imax = |E|2 is given by

R(t) < χ(3)
r (t) ∗ Imax <

χ
(3)
k

τ1
Imax. (7.42)

Therefore, if the condition

χ(3)

τ1
Imax � ε∞ (7.43)

is satisfied, b̃ is always positive and Equation (7.40) is satisfied for all
positive values of c̃ and, thus, for all positive values of χ(3).

Alternatively, Equation (7.33) can be solved by a fixed-point iter-
ation. It can be shown that the fixed-point iteration is stable if the
applied field intensities are within a certain range. However, ongoing
research is investigating the relation between the stability constraints
of the solution of the cubic and the stability of the fixed-point itera-
tion.

Thus, the update cycle of the electric field components can be
summarized as in Table 7.1.
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Table 7.1: Algorithm Summary
Type Mathematical Description Equation

Drude Pn
d → Pn+1

d (7.16)

Lorentz Pn
l → Pn+1

l (7.17)

Raman Rn → Rn+1 (7.24)

Kerr In → In+1 (7.33)

E-Field En → En+1 (7.30)

7.4 Stability

7.4.1 Dispersion Relation

Inserting a discrete plane wave

E(t, r) = E0 · ei(ωnt∆t−kxnx∆x−kyny∆y−kznz∆z) (7.44)

into Maxwell’s equations (no free charges, no currents)

∇×E = −µnum
∂

∂t
H (7.45)

∇×H = −εnum
∂

∂t
E (7.46)

∇ ·E = 0 (7.47)

∇ ·H = 0 (7.48)

(7.49)

leads to the general dispersion relation

K ·K = Ω2ε0εnumµ0µnum = Ω2 1
c20
εnumµnum (7.50)

where εnum and µnum are the relative numerical permittivity and
permeability, respectively, and the numerical frequency Ω and the
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numerical wave vector K are given by

K =
ex
∆x

sin
kx∆x

2
+

ey
∆y

sin
ky∆y

2
+

ez
∆z

sin
kz∆z

2
, (7.51)

Ω =
1

∆t
sin

ω∆t
2
. (7.52)

In a medium with a permeability that is determined by one Drude-
pole, one Lorentz-Pole, and the Kerr effect, and a permittivity deter-
mined by one Drude-pole, one Lorentz-Pole, Raman scattering and
the Kerr effect, the relative numerical permittivity and permeability
are given by

εnum = ε∞ + χ
(3)
k,ε |E|

2 +
∆εω2

l,ε

ω2
l,ε − Ω2 − 2iΩδl,ε

(7.53)

−
ω2
d,ε

Ω2 + iΩδd,ε
+

χ
(3)
r,εω2

r |E|2
ω2
r − Ω2 + 2δriΩ

(7.54)

and

µnum = µ∞ + χ
(3)
k,µ |H|

2 +
∆µω2

l,µ

ω2
l,µ − Ω2 − 2iΩδl,µ

(7.55)

−
ω2
d,µ

Ω2 + iΩδd,µ
(7.56)

respectively.

7.4.2 Phase Velocity Error

Inserting Equations (7.53) and (7.55) into the dispersion relation given
by Equation (7.50) and solving for the numerical wave vector K yields

K =
2

∆x
arcsin

[√
εnumµnum

S
sin
(
πS

Nλ

)]
. (7.57)

where we used the conventional definition of the Courant-number

S =
c0∆t
∆x

(7.58)
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Figure 7.1: The real (solid line) and imaginary (dashed line) parts of
the phase velocity v = ω/k as functions of the grid sampling Nλ. For
N larger than ≈ 2.5 the imaginary part vanishes and the numerical
phase velocity approaches the physical phase velocity.

and the grid sampling number Nλ = λ/∆x for a given uniform spatial
discretization step ∆x ≡ ∆y ≡ ∆z.

Equation (7.57) can be solved numerically. An example solution
is shown in Figure 7.1. For a large enough grid sampling Nλ, the
imaginary part vanishes and the numerical phase velocity approaches
the physical phase velocity.

However, Figure 7.1 only shows the qualitative shape of the nu-
merical phase velocity since the latter depends on the material param-
eters as well as the incident field. It is therefore necessary to estimate
the peak intensity that is expected during a simulation to compute
a bound for the grid density. As a result, it may be necessary to
run multiple simulations with refined grids if the intensity inside the
dispersive material is estimated inaccurately.

7.4.3 Stability and Accuracy Analysis

In order to find an upper bound for the time step that guarantees
stability, Equation (7.50) has to be solved for the numerical frequency
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Ω. In the general case, this is not possible analytically. Moreover,
this nonlinear dispersion-relation might contain multiple roots, each
of which describes an individual numerical frequency component that
yields its own time step boundary.

It is part of ongoing research to develop a reliable and easy to
use framework to safely predict the necessary time step constraint for
each combination of material parameters.

However, it has been shown in practice that it is sufficient to derive
the stability conditions for each material effect separately and choose
a time step which satisfies the smallest boundary.

Table 7.2: Stability Conditions

Type εnum ∆t < ∆x <

Drude1 ε∞ − ω2
d

4Ω2

√
4ε∞∆x2

4c20+∆x2ω2
d

√
4c20

ω2ε∞−ω2
d

Lorentz1,2,3 ε∞ + ∆εω2
l

ω2
l−4Ω2

√
2ε∞

ξ1+
√
ξ21+ξ22

√
4c20∆ωl

ω2(ε∞∆ωl+ω2
l ∆ε)

Kerr ε∞ + χ
(3)
k I ∆x

c0

√
ε∞ + χ

(3)
k I

√
4c20

ω2(ε∞+χ
(3)
k I)

Raman1,2,4 ε∞ + χ(3)
r Iω2

r

ω2
r−4Ω2

√
2ε∞

ξ̃1+
√
ξ̃21+ξ22

√
4c20∆ωr

ω2(ε∞∆ωr+ω2
rχ

(3)
r I)

1Lossless case (δd ≡ 0)

2 ξ1 =
c20

∆x2 sin2( kx∆x
2

) + 1
4
ω2

l εs; ξ2 =
√
ε∞ωlc0

1
∆x

sin( kx∆x
2

)

3 ∆ωl = ω2
l − ω2

4 ξ̃1 =
c20

∆x2 sin2( kx∆x
2

) + 1
4
ω2

r

“
(1− α)χ

(3)
r + ε∞

”
; ∆ωr = ω2

r − ω2

Table 7.2 summarizes the stability conditions for the different dis-
persion effects.

Another constraint on the time step can be derived from accuracy
requirements. It originates in the fact that the physical frequency
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ω is misrepresented by the numerical frequency Ω because the time
step ∆t is always finite. Only in the limit of an infinitesimally small
time step are the numerical and the physical frequencies equal. Thus,
it is important when simulating dispersive effects that the difference
between the numerical and physical frequency is small, i.e., ωmax∆t ≤
0.1 where ωmax is the maximum frequency in the applied frequency
spectrum.

7.4.4 Fixed Point Iteration Convergence

The convergence of the fixed point iteration that can be used in the
update algorithm for the Kerr effect is proven with Banach’s fixed
point theorem [94].

Noting that the update coefficients C1 and C2 given by Equa-
tion (7.31) share the same denominator, one can easily verify that
Equation (7.33) can be written in the scalar form

In+1 =
a2
x + a2

y + a2
z

(b+ cIn+1)2
= f(In+1) (7.59)

where

ak = (ε∞ −
σ∆t
2ε0

+Rn + αχ
(3)
0 In)Enk

+
∆t
ε0
∇×Hn+1/2

∣∣∣
k

+
1
ε0

∆P
∣∣∣
k

b = ε∞ +
σ∆t
2ε0

+Rn+1

c = αχ
(3)
0 .

(7.60)

The term ∇×Hn+1/2
∣∣
k

stands for the component k of the finite-
difference term of the rotation of the H-Field. The term ∆P

∣∣
k

stands
for the polarization contributions by Lorentz- and Drude-poles.

The fixed point theorem can be applied to Equation (7.59). It has
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to be shown that the first derivation of f(I) given by

f ′(In+1) =
−2c(a2

x + a2
y + a2

z)
(b+ cIn+1)3

(7.61)

is limited ∀In+1 within an interval D. The supremum of |f ′(In+1)| is
given where In+1 = 0:

S = sup
In+1∈D

|f ′(In+1)| = 2|c|(a2
x + a2

y + a2
z)

|b|3 . (7.62)

If the supremum S is smaller than 1 such that f(In+1) is Lipschitz-
continuous with a Lipschitz-constant L ≤ 1, then f(In+1) is a con-
traction on D and the fixed point iteration will converge ∀In+1 ∈ D.

However, because ak is dependent on In, the course of a(In) has
to be considered. As it will be shown later, this limits the fixed point
convergence to an electric amplitude interval D = [0, |En|2max].

The condition for f(In+1) to be a contraction on the interval D
can now be written as

|c|(a2
x + a2

y + a2
z) ≤

|b|3
2
. (7.63)

In order to find the constraints necessary for the fixed-point it-
eration to converge, an upper bound for the left hand side of Equa-
tion (7.63) and a lower bound for its right hand side have to be found.
Presuming sufficiently small spatial and temporal discretization, the
upper boundary for |c|(a2

x + a2
y + a2

z) can be estimated by neglecting
the derivative terms in ak, setting σ = 0 and α = 1. Equally, the
lower bound estimate for b is found by setting σ = 0 and α = 1. For
α = 1 there is no Raman scattering present and Rn = 0∀n. Thus,
the contraction condition 7.63 can now be written as

(ε∞ + χ
(3)
0 In)2

∑
(Enk )2χ

(3)
0 ≤ ε3∞

2
. (7.64)

With In =
∑

(Enk )2 = |En|2 the final expression is given by

|En|2
(
ε∞ + χ

(3)
0 |En|2

)2

≤ ε3∞
2χ(3)

0

. (7.65)
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The amplitude of the electric field |En|2 has to be limited to an upper
value which is determined by the amplitude of the third-order suscep-
tibility χ(3)

0 in order to assure convergence of the fixed point iteration.
In this context it is interesting to note that also the Newton-iteration
used by [93] becomes unstable for field amplitudes larger than Enmax.
Equality in Equation (7.65) is reached at Enmax, such that the con-
vergence interval D = [0, Inmax = En2

max]. Enmax can be raised to any
desired value by decreasing χ

(3)
0 . But for a specific material where

χ
(3)
0 is fixed, only a limited range of intensities can by applied. Fur-

thermore, one has to be aware that the above result is an upper limit
which lies too high because some terms were neglected. As a con-
sequence, it is recommended to choose amplitudes that are enough
below the above limit.

Equation (7.65) is of third order in |En|2. It can be shown that
there exists one real root given by

|En|2 = 0.96
ε∞

χ
(3)
0

(7.66)

which is very similar to the upper boundary for the analytical solution
of In+1, given by Equation (7.43).

Considering the order of magnitude for the third order suscepti-
bilities of physical media as estimated by Equation (2.7), one can see
that virtually all media are treatable by both the fixed-point iteration
approach and the analytical solution to solve for In+1.

7.5 Results

The algorithm is subjected to a quantitative accuracy analysis in Sec-
tion 7.5.1. The verification of the simulated physics of the nonlinear
algorithm is done by reproducing the qualitative behavior of the non-
linearity in Section 7.5.2 and a comparison with existing numerical
results is in Section 7.5.3.

7.5.1 Four-Wave Mixing (FWM)

In order to test the accuracy of numerical models of the third-order
nonlinearity more quantitatively, the approach presented in [84] has
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been followed: the analytical solution of a four-wave mixing (FWM)
experiment is compared with numerical results. FWM depends only
on the third order nonlinearity. Therefore, the accuracy analysis is
not affected by inaccuracies of the linear dispersion models.

FWM describes how a pump and a signal wave of frequency ωp
and ωs, respectively, are converted to a frequency ωc = 2ωp−ωs that
is parametrically amplified.

Figure 7.2 shows the output power spectrum at the end of a dielec-
tric slab with a Kerr nonlinearity of χ(3)

0 = 10−18. The slab of length
50 µm is illuminated with a pump wave at 192 THz and a signal wave
at 195 THz with -20 dB of signal strength. The generated frequencies
at 189 THz and 198 THz are clearly visible.

The results of the accuracy analysis are shown in Figure 7.3, where
the signal-conversion efficiency in a nonlinear Kerr-medium as a func-
tion of pump amplitude is shown. The conversion efficiency is defined
as the amplitude ratio of the generated wave and the pump wave. It
is found that the FDTD results asymptotically converge to the an-
alytical solution as pump power is decreased. Generally, the FDTD
method shows a smaller conversion efficiency than the analytical so-
lution, which is due to the fact that pump and signal depletion in the
analytical formulation are ignored (an effect that grows with increas-
ing field intensities). Moreover, the so-called small-signal condition
used in the analytical derivation is no longer valid for strong beam
intensities. Overall, high accuracy for the new FDTD formulation of
the third-order susceptibility can be assessed.

7.5.2 Solitons

A pulse traversing a linear dispersive material suffers from pulse-
broadening. On the other hand, nonlinear effects can focus a pulse [82,
95]. If the parameters are well balanced the focusing and defocusing
will compensate each other and the pulse will not change its shape,
i.e., a soliton is formed.

The results presented here reproduce the findings in [95]. Fig-
ures 7.4 and 7.5 show the mode shape of a secant-pulse

P (t) = P0 · sech(
t− 4w
w

)2 ∗ sin(ωt) (7.67)
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Figure 7.2: Electric field power spectrum of the four-wave mixing
experiment. The first two generated frequencies due to FWM are
visible at 189 THz and 198 THz.
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Figure 7.3: Signal-conversion efficiency in a nonlinear Kerr-medium as
a function of pump amplitude. The solid line represents the analytical
solution, the dotted line results from the proposed FDTD algorithm.
For high pump power, signal depletion is observed, giving rise to a
strong deviation from the analytical solution.
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with Amplitude P0 and pulse width w, that enters and traverses a
dielectric slab with Lorentz dispersion. The TEM pulse, traversing the
slab of 60 µm, suffers from pulse broadening, as depicted in Figure 7.4.
In the second case, where the nonlinear Raman and Kerr effects are
present, a soliton is formed, as shown in Figure 7.5. The soliton
retains its envelope shape while traversing the slab, indicated through
the dotted lines in Figure 7.5. The parameters used in this benchmark
are summarized in Table 7.3. Note that the material parameters are
not physical. They were chosen to model the soliton phenomenon in
order to test the general validity of the algorithm.

Table 7.3: Soliton Benchmark Parameters
Parameter Value

Pulse Amplitude P0 [V/m] 1

Pulse Width w [fs] 10

Center Frequency [THz] 192

Rel. Permittivity 5.25

Pole Frequency [GHz] 100

Pol Relax. Time [109 s] 2

Kerr Amplitude [m2/V2] 1

Raman Phonon Frequency [GHz] 120

Raman Phonon Lifetime [fs] 32

7.5.3 Photonic Crystal Waveguide

In order test the 3D performance of our implementation in conjunction
with the accelerated hardware solution, the photonic crystal waveg-
uide presented in [96] has been modeled and analyzed in three di-
mensions. The result is shown in Figure 7.7. For comparison, the
power-spectrum obtained with the proposed algorithm is shown in
Figure 7.8. It confirms the device’s general dynamic performance.

The deviation between the two results may be due to several rea-
sons. First, parameters such as the used boundary method, the reso-
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Figure 7.4: A secant pulse is launched and suffers from pulse-
broadening due to linear dispersion. The pulse shapes a) through
d) show the recorded E-Field values inside the slab at 0, 20, 40, and
60 µm respectively.
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Figure 7.5: A secant pulse is launched and a soliton is formed due to
linear and nonlinear dispersion. The pulse shapes a) through d) show
the recorded E-Field values inside the slab at 0, 20, 40, and 60 µm
respectively. The dotted lines show the constant pulse envelopes.
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lution of the simulation, and the excitation scheme may differ between
the two implementations. Second, the current implementation of the
algorithm lacks a parameter averaging among the FDTD cells, which
gives rise to a strong staircasing.

The device is depicted in Figure 7.6, along with four snapshots
of the pulse traversing the device. The simulation parameters and
benchmark results are given in Table 7.4.

Table 7.4: Waveguide Benchmark Parameters and Results
Parameter Value

Center Frequency [GHz] 11.15

Lattice Constant a [mm] 10

FDTD Grid Step [mm] 0.3

Simulated Periods 120

Simulated Time [ns] 5

Total Simulation Time [min] 3.27

7.6 Conclusion

A novel algorithm that extends the applicability of FDTD to media
exhibiting an arbitrary combination of linear and nonlinear effects
has been developed, implemented and applied to various benchmarks
and real-world problems. The algorithm has been designed to be
applied to complex 3D models. In particular, it has been successfully
implemented to augment an existing, full-featured simulation package.

The core advantage of the approach is that it avoids the need to
employ a vectorial, iterative algorithm to resolve the nonlinear terms.
The nonlinear finite-difference expressions are solved by introduction
of a new variable. This splits the problem into a linear and nonlinear
part, where the latter can be solved by a scalar fixed-point iteration.
More importantly, it has been found that the nonlinear terms can be
solved analytically for all material compositions with positive third-
order susceptibilities, resulting in significant speed improvements.



7.6. CONCLUSION 111

Figure 7.6: A Gaussian pulse is launched into a photonic crystal
waveguide. Introducing a nonlinear effect in 3 rods at the waveg-
uide bend improves the transmittance for the lower frequency band
shown in Figure 7.8.
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Figure 7.7: Power-spectrum of the transmitted pulse at the waveguide
exit (cf. Figure 7.6) as taken from [96]. The solid line represents the
linear, the dotted line the nonlinear case.
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Figure 7.8: Power-spectrum of the transmitted pulse at the waveguide
exit (cf. Figure 7.6), simulated with the new algorithm. The solid line
represents the linear, the dotted line the nonlinear case.
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The benchmarks and applications show very good agreement with
analytic values and reference simulations. Future work and research
will include an extension of the scheme to treat a broader range of
materials, as well as a more detailed analysis of the applicability of the
analytical solution to the nonlinear terms. Furthermore, the algorithm
is being applied to various research problems in optics with the focus
on 3D phenomena.
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Chapter 8

Conclusion

In 2005, when I started working towards my Ph.D. in the IT’IS Lab-
oratories, the first version of SEMCAD X with support for hardware
acceleration was just about to be released. It soon became clear that
this new technology would enable simulations at a level of detail not
previously possible. However, these new possibilities demanded inno-
vative algorithms and methods in order to deal with the new level of
detail and complexity. The challenge of developing a grid generation
engine that could cope with the new generation of simulations was
formulated.

The goal of developing an easy to use, fast, and reliable grid genera-
tion framework has been thoroughly achieved. A basic grid generation
algorithm has been developed that computes high quality nonuniform
grids for the FDTD method in a fraction of a second. The algorithm
operates on a optimized data structure that contains all the relevant
data from the model and material settings together with a set of pa-
rameters designed to work with the grid generation algorithm. More-
over, the algorithm has been designed to be able to process advanced
datasets containing information about the geometry of the modeled
structure.

The combination of an optimized data and parameter set and an
ultra-fast algorithm enables the implementation of an interactive fea-
ture, where user changes in parameters are immediately reflected in
new grid configurations. It has been shown that this approach signif-
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icantly reduces the time necessary to set up a suitable grid configura-
tion. This feature has now been implemented in SEMCAD X and is
being used by its customers on a daily basis.

Furthermore, a geometrical analysis that identifies the most criti-
cal parts of a structure has been developed. Along with an enhanced
version of the grid generation algorithm to process the geometrical
data, this feature greatly simplifies the treatment of objects that are
highly relevant to the simulation such as antennas or scattering ob-
jects.

In order to exploit the possibilities offered by the hardware accel-
eration systems, an equivalent network method of treating losses in
good conductors has been generalized to three dimensions and imple-
mented in SEMCAD X. The results have been shown to be in good
agreement with analytical examples and results from recent research.
Moreover, it is applied regularly by customers from the mobile phone
industry to study the influence of loss on antenna performance.

The broad field of optical applications has moved within reach of
FDTD due to the enhanced speed of the accelerated solutions. To
provide the means to investigate advanced structures and materials,
a novel algorithm to model linear and nonlinear dispersion has been
developed. The approach has been tested with generic examples and
results from research projects. Stability considerations have been in-
vestigated and discussed in detail.

All methods have been designed for maximum efficiency in con-
junction with the accelerated solvers. The novel material models have
been exposed to both generic and real-world examples and have been
found to yield accurate results.



Chapter 9

Outlook

The processing power available through the hardware acceleration
technology continues to open new opportunities and challenges. This
thesis provides a solid basis on which to overcome the following:

• A range of geometries and structures remains that is not yet
optimally supported by the geometrical analysis. An enhanced
version that identifies and respects the distinct requirements of
different types of 3D objects, e.g., sheets and wires, could further
simplify the grid generation process.

• It is not possible to guarantee the stability of every simulation
involving media with nonlinear effects. The results of such sim-
ulations can depend on parameters such as the amplitude of the
excitation that have no qualitative effect in conventional FDTD.
A framework to predict the stability and assess the necessary
grid and time steps could greatly enhance the usability of the
method in investigating optical phenomena.

• Simulations that involve several of the developed material mod-
els are not yet supported in every case. An algorithm allowing
the simulation of any arbitrary combination of material types
would further extend the range of applications.
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Appendix A

Dispersion Relation

Starting from the source- and chargefree Maxwell’s equations

∇×E = −µnum
∂

∂t
H (A.1)

∇×H = −εnum
∂

∂t
E (A.2)

∇ ·E = 0 (A.3)
∇ ·H = 0 (A.4)

the Helmholtz equation is derived by applying the rotation operator
to Equation (A.1), solving for ∇×H and combining the result with
Equation (A.2):

∆E = εnumµnum
∂2

∂t2
E. (A.5)

A plane wave in the discretized grid is of the form

E(t, r) = E0 · ei(ωnt∆t−kxnx∆x−kyny∆y−kznz∆z). (A.6)

In order to insert Equation (A.6) into the Helmholtz equation, the
discrete, second-order accurate, central-difference approximation to
the second partial derivative of a function u(x) at grid point (ui, xi)
is used:

∂2u

∂x2

∣∣∣∣∣
xi

=
ui−1 − 2ui + ui+1

(∆x)2
+O[(∆x)2]. (A.7)
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122 APPENDIX A. DISPERSION RELATION

The Laplace operator, when applied to a vector v, is of the form:

∆v =

∆vx
∆vy
∆vz

 =


∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

 ·
vxvy
vz

 . (A.8)

With Equations (A.7), (A.8), and (A.6), Equation (A.5) is trans-
formed into

2
(∆x)2 [cos kx∆x− 1] + 2

(∆y)2 [cos ky∆y − 1] + 2
(∆z)2 [cos kz∆z − 1]

2
(∆x)2 [cos kx∆x− 1] + 2

(∆y)2 [cos ky∆y − 1] + 2
(∆z)2 [cos kz∆z − 1]

2
(∆x)2 [cos kx∆x− 1] + 2

(∆y)2 [cos ky∆y − 1] + 2
(∆z)2 [cos kz∆z − 1]



·

E0,x

E0,y

E0,z

 = εnumµnum
2

(∆t)2
[cosω∆t− 1] ·

E0,x

E0,y

E0,z


,

(A.9)

which is a homogeneous system of three equations in the unknown
E0. This equation holds if and only if∑

i=x,y,z

2
(∆i)2

[cos ki∆i− 1] = εnumµnum
2

(∆t)2
[cosω∆t− 1] (A.10)

which can be simplified to the final form of the dispersion relation∑
i=x,y,z

1
(∆i)2

sin2 ki∆i
2

=
εnumµnum

(∆t)2
sin2 ω∆t

2
(A.11)

Introducing the numerical frequency Ω and the numerical wave
vector K where

K =
ex
∆x

sin
kx∆x

2
+

ey
∆y

sin
ky∆y

2
+

ez
∆z

sin
kz∆z

2
(A.12)

Ω =
1

∆t
sin

ω∆t
2

(A.13)

the dispersion relation simplifies to

K ·K = Ω2εnumµnum. (A.14)



Appendix B

List of Acronyms

ADE Auxiliary Differential Equation

ADM Arbitrary Dispersive Material

CAD Computer Aided Design

CF Courant Factor

CFL Courant-Friedrichs-Lewy

CPU Central Processing Unit

DCS Digital Cellular System

DOF Degree of Freedom

EM Electromagnetic

FDTD Finite-Difference Time-Domain

FG Flat & Grid-Aligned

FWM Four-Wave Mixing

GSM Global System for Mobile Communications

GVADE General Vector Auxiliary Differential Equation

IT’IS Foundation for Information Technologies in So-
ciety

MCells Million Cells
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MKS Meter Kilogram Second

MRI Magnetic Resonance Imaging

PCB Printed Circuit Board

PEC Perfect Electric Conductor

PML Perfectly Matched Layer

RC Resistance-Capacitance

RCS Radar Cross Section

RF Radio Frequency

RMS Root Mean Square

S-Parameter Scattering-Parameter

SAR Specific Absorption Rate

SEMCAD Simulation Platform for Electromagnetic Com-
patibility Antenna Design and Dosimetry

SIBC Surface Impedance Boundary Condition

SPEAG Schmid & Partner Engineering AG

TCS Thin Conductive Sheet

TEM Transverse Electric and Magnetic

TF/SF Total-Field/Scattered-Field



Appendix C

List of Symbols

Symbol Dimension Description

∇×v Rotation (∂/∂z − ∂/∂y, ∂/∂x − ∂/∂z,
∂/∂y − ∂/∂x)T · v

∇ · v Divergence (∂vx/∂x + ∂vy/∂y + ∂vz/∂z)

α 1 Relative strength of Kerr effect and Ra-
man scattering respectively

αE , αH 1 FDTD E-Field and H-Field self-update
coefficients respectively

βE , βH 1 FDTD E-Field and H-Field curl-update
coefficients respectively

ε As
Vm Electric permittivity

εr Relative electric permittivity ε/ε0
ε0

As
Vm Electric permittivity of free space:

ε0 = 1/(c0µ0) ≈ 8.8542 · 10−12

λ m Wavelength

µ Vs
Am Magnetic permeability

µr Relative magnetic permeability µ/µ0

µ0
Vs
Am Magnetic permeability of free space:
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126 APPENDIX C. LIST OF SYMBOLS

µ0 = 4π · 10−7

σ 1
Ωm Conductivity

χ(3) m2

V2 Third order susceptibility

ω,Ω rad
s Analytical and numerical angular fre-

quency respectively

B Vs
m2 Magnetic flux density

C C
V Capacity

Cx 1 Projection fraction of the x-component in
the TCS algorithm

D As
m2 Electric displacement current

E V
m Electric field

E|n(i,j,k)
V
m E-field component at grid point (i, j, k)

and at time n ·∆T
H A

m Magnetic field

I V2

m2 Auxiliary variable in the ADM algorithm

(i, j, k) Indices of grid lines in an FDTD grid in
x-, y- and z-direction respectively

J A
m2 Current density

k,K 1
m Analytical and numerical wave number re-

spectively

P As
m2 Polarization

M Vs
m2 Magnetization

n Surface normal (normalized)

Nλ 1 Grid density Nλ = λ/∆x

R Ω Resistance

R 1 Reflection coefficient

T 1 Transmission coefficient

∆t s Time-step

x, y, z m Cartesian vector components
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∆x m Grid step on the x-axis, analogous for the
y- and z-axes

∆xEi m Average grid step on the x-axis between
grid lines i − 1 and i + 1 as used in the
FDTD E-field update

∆xHi+1/2 m Grid step on the x-axis between grid lines
i and i + 1 as used in the FDTD H-field
update

Y 1
Ω Impedance

Z Ω Admittance
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Mosig. Benchmark III: Three-layer bandpass filter, analy-
sis of multilayer boxed printed circuit, 2006. ESA-ESTEC
16332/02/NL/LvH, Technical Note TN504Äı̀3.
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