Verschiedene Aspekte der automatisierten Heparin-Synthese
De Novo Shyntese von Bausteinen, ein neuer Linker und
Zusammenknüpfen von Heparin Oligosacchariden

Author(s):
Bindschädler, Pascal Michael

Publication Date:
2009

Permanent Link:
https://doi.org/10.3929/ethz-a-005838635

Rights / License:
In Copyright - Non-Commercial Use Permitted
DIFFERENT ASPECTS OF AUTOMATED HEPARIN SYNTHESIS:
DE NOVO SYNTHESIS OF BUILDING BLOCKS, A NEW LINKER,
AND SYNTHESIS OF HEPARIN OLIGOSACCHARIDES

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

PASCAL MICHAEL BINDSCHÄDLER

Dipl. Nat. Sci. ETH Zürich

Date of birth
28.4.1979

citizen of
Winterthur (ZH)

accepted on the recommendation of

Professor Dr. Peter H. Seeberger
Professor Dr. Erick M. Carreira

2009
Summary

This dissertation includes two parts: the first part deals with different aspects of automated heparin synthesis. The second part is dedicated to the solution phase synthesis of biologically relevant oligosaccharides.

Part I

Different aspects of automated heparin synthesis are investigated in the first part of this dissertation. Heparin and heparan sulfate are the most complex glycosaminoglycans (GAGs), a class of highly functionalized, linear, and negatively charged bioactive polysaccharides. Heparin is composed of disaccharide repeating units consisting of an uronic acid (D-glucuronic acid or L-iduronic acid) 1,4-linked to a D-glucosamine. Over the last 40 years, highly elaborate chemical methods for the assembly of heparin oligosaccharides have been developed. However, routine access to libraries of heparin oligosaccharides is still not feasible due to the enormous efforts needed for their synthesis in solution. Application of automated solid-phase synthesis to the synthesis of heparin oligosaccharides is of paramount importance as the automated assembly is expected to provide fast access to a large library of heparin oligosaccharides of defined structure and length.

Chapter 2 describes the first synthesis of a specific heparan sulfate carbohydrate sequence that is believed to be involved in scrapie pathogenesis. The solution phase assembly of the tetrasaccharide is accomplished relying on a [2+2]-glycosylation approach. Key to differentiate the two amine groups is the use of the N,N-diacyl group. The synthesis pointed out several challenges and limitations of existing synthetic methods. These issues are addressed in Chapters 3-6.
Fast synthetic access to large quantities of L-iduronic acid (L-IdoA) monosaccharide building blocks represents a major hurdle on the way to synthetic heparin oligosaccharides. **Chapter 3** is dedicated to this issue and describes the large scale *de novo* synthesis of a suitably protected L-idururonic acid from D-xylose and a second approach that further diversifies on the protecting group pattern. The key steps are a MgBr₂·OEt₂-mediated stereoselective cyanation and a subsequent Pinner reaction. The second approach allows to diverge the synthesis to six differentially protected L-iduronic acid monosaccharides building blocks.

The octendiol linker, the linker of choice for the automated synthesis of oligosaccharides, obviates the use of electrophiles, needed for the activation of thioglycosides. Cleavage from the resin and post-assembly modifications of the obtained pentenyl linker are often troublesome. Addressing these issues, **Chapter 4** describes the synthesis and evaluation of a novel linker system for the synthesis of oligosaccharides. The linker is loaded onto a Merrifield resin, and is used for the automated assembly of a 1,6-linked glucose hexasaccharide. Detailed investigations allow for the first time the use of thioglycosides in the...
automated synthesis of oligosaccharides. Upon global deprotection the novel linker yields an amine that can be used directly for biological investigations.

The synthetic utility of the procured L-iduronic acid thioglycoside (Chapter 3) in combination with the novel linker (Chapter 4) for the construction of heparin oligosaccharides is demonstrated in Chapter 5 by the solution phase assembly of a trisaccharide.

To differentiate the amino groups in an assembled heparin oligosaccharide, a second non-participating protecting group that is orthogonal to the commonly used azido group is required. Addressing this issue, Chapter 6 describes the synthesis of N-4-nitrobenzensulphonamide (nosyl) and N-2,4-dinitrophenyl (DNP) protected glucosamine (GlcN) building blocks and their evaluation as glycosylating agents in heparin synthesis.
Part II

The second part of this dissertation includes the solution phase synthesis of two biologically relevant structures. In Chapter 7, the first synthesis of a hexasaccharide repeating unit of a potential carbohydrate antigen, the major cell wall polysaccharide of Bacillus anthracis, is described. The assembly starts with a glycosylation of two elaborate disaccharide building blocks to provide selectively the α-linkage to glucosamine, and is followed by the sequential selective introduction of two α-galactosidic residues. All three couplings rely on glycosyl N-phenyltrifluoroacetimidates.

Finally, Chapter 8 describes the solution phase synthesis of a linker-functionalized Gb-3 trisaccharide, using a monosaccharide based coupling approach. Gb-3 is a receptor for Shiga-like toxins and has recently been shown to play a role in the entry of HIV-1 into cells.
Zusammenfassung

Die vorliegende Doktorarbeit besteht aus zwei Teilen. Der erste Teil handelt von verschiedenen Aspekten der automatisierten Heparinsynthese; der zweite Teil ist der Synthese biologisch wichtiger Oligosaccharide gewidmet.

Teil I

Kapitel 2 handelt von der erstmaligen Synthese einer spezifischen Heparansulfat-Sequenz, von der man vermutet, dass sie an der Entstehung der Traberkrankheit beteiligt ist. Die Synthese wird in Lösung durchgeführt und beruht auf einem [2+2]-Verknüpfungsansatz. Der Schlüssel zur Unterscheidung zweier Amin-Gruppen ist die Verwendung der

Heparin

variable Sequenz

Hauptsequenz

\[\text{R} = \text{SO}_3^-, \text{H} \]
\[\text{R}^1 = \text{SO}_3^-, \text{Ac}, \text{H} \]
N,N-Diacylgruppe. Die Synthese zeigt mehrere Herausforderungen und Grenzen bestehender synthetischer Methoden auf. Die Kapitel 3-6 befassen sich mit diesen Problemen.

Schneller Zugang zu grossen Mengen an L-Iduronsäure (L-IdoA) Monosacchariden stellt eine hohe Hürde auf dem Weg zu synthetischen Heparin-Oligosacchariden dar. **Kapitel 3** ist diesem Problem gewidmet und beschreibt die *de novo* Synthese grosser Mengen einer passend geschützten L-Iduronsäure ausgehend von D-Xylose sowie einen zweiten Ansatz, der das Schutzgruppenmuster weiter diversifiziert. Schlüsselschritte sind eine MgBr₂·OEt₂-vermittelte stereoselektive Zyanierung und eine nachfolgende *Pinner*-Reaktion. Der zweite Ansatz erlaubt das Divergieren der Synthese zu sechs unterschiedlich geschützten L-Iduronsäuremonosaccharid-Bausteinen.

Erster Ansatz:

Zweiter Ansatz:

Der Oktendiol-Linker, der Linker der Wahl für die automatisierte Synthese von Oligosacchariden verunmöglicht den Gebrauch von Elektrophilen, die für die Aktivierung von Thioglykosiden benötigt werden. Abspaltung vom Harz und nachgängige Modifizierung des erhaltenen Pentenyl-Linkers sind häufig beschwerlich. **Kapitel 4** widmet sich diesen Problemen und beschreibt die Synthese und Evaluierung eines neuartigen Linker-Systems für

Kapitel 5 zeigt den synthetischen Nutzen des erhaltenden L-Iduronsäure Thioglykosids (Kapitel 3) in Kombination mit dem neuartigen Linker (Kapitel 4) zum Aufbau von Heparin-Oligosacchariden anhand der Synthese in Lösung eines Trisaccharids.

Um die Amin-Gruppen eines aufgebauten Heparin-Oligosaccharids zu unterscheiden, wird eine zweite nicht-partizipierenden Schutzgruppe benötigt, die orthogonal zur standardmäßig verwendeten Azid-Gruppe ist. Kapitel 6 befasst sich mit dieser Suche und beschreibt die Synthese von \(N-4 \)-nitrobenzolsulphonamid (nosyl) und \(N-2,4 \)-dinitrophenyl (DNP) geschützten Glucosamine-Bausteinen (GlcN) und deren Evaluierung als Glykosilierung-Agentien in der Heparinsynthese.
Teil II

