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Abstract

The use of multiple antennas at both ends of the wireless link is known
as multiple-input multiple-output (MIMO) wireless technology and
enables to transmit multiple data streams concurrently and within
the same frequency band. This method is known as spatial multiplex-
ing (SM) and improves the spectral efficiency and link reliability of
wireless communication systems without requiring additional trans-
mit power. Channel coding can be deployed to further improve the
reliability of SM, which is one of the most promising technologies to
meet the demands of future wireless communication systems for higher
data-rates and improved quality of service.

Joint MIMO detection and channel decoding (JDD) is the opti-
mum method for data detection (in terms of error-rate performance)
in systems employing channel coding and SM. The (often) prohibitive
computational complexity associated with JDD inhibits practical im-
plementation. Iterative MIMO decoding requires significantly less
computational complexity (compared to that of JDD) and was shown
by Hochwald and ten Brink, IEEE Trans. Comm., 2003, to enable
near-optimum detection performance. The main idea underlying this
approach is to separate MIMO detection from channel decoding and
to iteratively exchange reliability information (i.e., soft-information)
between a soft-input soft-output (SISO) detector for MIMO systems
and a SISO channel decoder. So far, not much is known about the
very-large-scale integration (VLSI) implementation complexity asso-
ciated with iterative MIMO decoding.

In this thesis, we design and optimize algorithms for iterative
MIMO decoding and investigate the associated performance and VLSI
implementation aspects.
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First, we optimize the detection algorithm developed by Wang and
Poor, IEEE Trans. Comm., 1999, for low-complexity soft-input soft-
output MIMO detection. To this end, we propose a novel method that
substantially reduces the computational complexity, without sacrific-
ing performance. We design a corresponding high-throughput VLSI
architecture and provide application-specific integrated circuit (ASIC)
implementation results. This reference design demonstrates that SISO
detection for iterative MIMO decoding is feasible in practice.

Secondly, we present a low-complexity SISO detection algorithm
based on the principles of sphere decoding (SD), initially developed by
Pohst, ACM SIGSAM, 1981. Our algorithm resorts to the single tree-
search (STS) paradigm and incorporates clipping of soft-information
into the tree-search, which results in significant complexity savings
and allows to cover a large performance/complexity tradeoff region.
In order to further reduce the complexity and to improve the perfor-
mance of SISO STS-SD, we deploy a variety of techniques. The re-
sulting algorithm clearly outperforms state-of-the-art SISO detection
schemes for iterative MIMO decoding. Moreover, reference VLSI im-
plementation results of soft-output STS-SD show that the proposed al-
gorithm is well-suited for high-performance MIMO detection in prac-
tical systems.

Finally, we study the performance and VLSI implementation com-
plexity associated with SISO channel decoding. To this end, we
develop high-performance VLSI architectures for SISO decoding of
convolutional codes, quasi-cyclic low density parity-check codes, and
turbo codes. Corresponding ASIC implementation results demon-
strate that high-throughput SISO channel decoding is feasible in prac-
tical systems.

Based on the results obtained throughout this thesis, we show that
iterative MIMO decoding is feasible in practical systems and provide
estimates of the silicon-complexity required for iterative MIMO de-
coding. In particular, we demonstrate that the silicon area of iter-
ative MIMO decoding grows approximately linear in the number of
iterations, while even a very small number of iterations is sufficient
to approach the fundamental performance limits of MIMO wireless
communication systems.



Zusammenfassung

Die MIMO (multiple-input multiple-output)-Technologie verwendet
mehrere Antennen an beiden Seiten einer drahtlosen Verbindung und
ermöglicht es, mehrere Datenströme gleichzeitig und im selben Fre-
quenzband zu übertragen. Diese Technik —bekannt als räumliches
Multiplexen— verbessert die spektrale Effizienz sowie die Zuverlässig-
keit der Übertragung ohne die Sendeleistung zu erhöhen. Zusätzlich
kann Kanalcodierung verwendet werden, um die Zuverlässigkeit der
Übertragung weiter zu steigern. Räumliches Multiplexen im Verbund
mit Kanalcodierung ist eine der wichtigsten Technologien, um den
Ansprüchen von zukünftigen drahtlosen Kommunikationsystemen auf
höheren Durchsatz und bessere Übertragungsqualität gerecht zu wer-
den.

MIMO-Detektion mit gleichzeitiger Kanaldecodierung ist die opti-
male Methode um die Fehlerrate in solchen Systemen zu minimieren.
Die benötigte Rechenleistung erlaubt es jedoch nicht, diese Methode
in praktischen Systemen zu verwenden. Methoden, welche auf itera-
tiver MIMO-Decodierung basieren, benötigen signifikant weniger Re-
chenleistung und erreichen dabei, wie Hochwald und ten Brink, IEEE
Trans. Comm., 2003, gezeigt haben, fast gleichwertige Fehlerraten.
Die Kernidee dieser Verfahren besteht darin, MIMO-Detektion und
Kanaldecodierung zu trennen und Zuverlässigkeitsinformation (soft-
information) zwischen den beiden Komponenten auf iterative Weise
auszutauschen; dies benötigt einen sogenannten SISO (soft-input soft-
output)-MIMO-Detektor sowie einen SISO-Kanaldecoder. Bis Heute
ist jedoch nicht viel über die Komplexität von VLSI (very-large scale
integration)-Schaltungen für iterative MIMO-Decodierung bekannt.
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Im Rahmen dieser Arbeit werden Algorithmen für iterative
MIMO-Decodierung entwickelt und optimiert, sowie deren Leistungs-
fähigkeit und VLSI-Implementationskomplexität analysiert.

Zuerst wird der Detektionsalgorithmus von Wang und Poor, IE-
EE Trans. Comm., 1999 untersucht und für bessere Effizienz opti-
miert. Dabei wird eine neue Methode angewendet, welche es ermög-
licht die Komplexität des Algorithmus signifikant zu reduzieren oh-
ne die Leistungsfähigkeit zu verringern. Basierend auf den in dieser
Arbeit optimierten Algorithmus wurde eine VLSI-Schaltung imple-
mentiert, welche sehr hohe Effizienz erreicht und damit beweist, dass
SISO-Detektion für iterative MIMO-Decodierung tatsächlich in die
Praxis umgesetzt werden kann.

Als zweiten Beitrag dieser Arbeit präsentieren wir einen neuen
SISO-Detektionsalgorithmus für MIMO-Systeme, welcher auf dem
Prinzip von Sphere-Decoding (SD) —entwickelt von Pohst, ACS
SIGSAM, 1981— aufbaut. Dieser Algorithmus benutzt das STS (sin-
gle tree-search) Verfahren und bezieht das Limitieren von Zuver-
lässigkeitsinformation in die Baumsuche mit ein. Diese Technik
führt zu einer massiven Komplexitätsreduktion und ermöglicht einen
umfassenden Abtausch zwischen Leistungsfähigkeit und Komplexi-
tät. Ausserdem zeigt der resultierende Algorithmus bessere Lei-
stungsfähigkeit und geringere Komplexität als bestehende SISO-
Detektionsalgorithmen für iterative MIMO-Decodierung. Weiterhin
zeigen wir VLSI-Implementationsresultate einer soft-output-Variante
vom STS-SD Algorithmus und demonstrieren damit, dass diese Me-
thode optimale Leistungsfähigkeit in praktischen Systemen erreichen
kann.

Zuletzt wird der VLSI-Schaltungsaufwand und die Leistungsfä-
higkeit von verschiedenen (state-of-the-art) SISO-Kanaldecodern ana-
lysiert. Zu diesem Zweck wurden dedizierte VLSI-Implementationen
für die SISO-Decodierung von Faltungscodes, LDPC (low-density pa-
rity check)-Codes, sowie Turbocodes entwickelt, welche einen hohen
Durchsatz erreichen. Die daraus resultierenden Implementationsresul-
tate zeigen, dass effiziente SISO-Decodierung für alle drei Codierungs-
verfahren in der Praxis möglich ist.

Basierend auf den Resultaten, die in dieser Arbeit erhalten wur-
den, zeigen wir, dass iterative MIMO-Decodierung in praktische Syste-
me umgesetzt werden kann. Zudem schätzen wir den entsprechenden
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Flächenverbrauch ab und zeigen, dass die benötigte Schaltungsfläche
ungefähr linear mit der Anzahl Iterationen ansteigt, wobei jedoch nur
eine sehr geringe Zahl von Iterationen benötig wird, um die optimale
Leistungsfähigkeit von drahtlosen MIMO-Kommunikationssystemen
näherungsweise zu erreichen.
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Chapter 1

Introduction

During the last decade, many wired communication systems are be-
ing replaced by corresponding wireless services. With the increasing
availability of, e.g., portable computers and personal digital assistants,
wireless services have shifted from voice-based to multimedia-oriented
applications. Such services often tend to require even higher data
rates. The trend towards throughput-intensive applications is sum-
marized by Edholm‘s Law, which states that data rates of wired and
wireless communication systems double every 18 months [1]. Novel
technologies, the evolution of wireless communication standards, and
corresponding low-cost devices, are key to follow this trend, achiev-
ing better quality of service (QoS) and supporting a large amount of
users that communicate simultaneously. The recent development of
the IEEE 802.11n wireless local area network (WLAN) standard [2],
for example, indicates that future wireless systems will be able to sup-
port peak data rates in the range of several hundred megabits up to
gigabits per second, while offering the same reliability and data rates
as their corresponding wired counterparts.

Simply allocating more bandwidth or increasing the transmit power
are not viable solutions to keep up with the growing demand for
higher data rates and a large number of users, while meeting strin-
gent QoS requirements (such as link reliability, coverage, and range).
As bandwidth has become an extremely scarce (and hence expensive)
resource, simply increasing the bandwidth is neither feasible nor eco-

1



2 CHAPTER 1. INTRODUCTION

nomic. Increasing the transmit power is not practicable as well, since
the maximum transmit power is regulated in most of the available fre-
quency bands, e.g., in order to prevent health hazards. In addition, a
high transmit power would significantly reduce the battery lifetime of
portable devices and cause interference to other users communicating
nearby, which reduces the potential of re-using of frequency bands.

In order to meet the contradictory requirements for higher data
rates, better QoS, and a large number of users, while maintaining the
transmit power and bandwidth, novel technologies need to be con-
sidered. Multiple-input multiple-output (MIMO) wireless communi-
cation is believed to be the key technology to meet these demands,
because it improves both, the data rate for a given bandwidth (which
is also known as spectral efficiency) and the QoS of wireless commu-
nication systems.

1.1 MIMO Wireless Technology

Wireless channels suffer from signal fading, caused by destructive in-
terference of multi-path propagation, and from interference caused by
other services sharing the same frequency band. The use of multiple
antennas at the transmitter and/or the receiver enables significant im-
provements in terms of link reliability, range, and spectral efficiency
compared to that of single-antenna systems. However, fully exploit-
ing these gains comes, in general, at the cost of significantly increased
signal-processing complexity, especially in the receiver.1

1.1.1 MIMO Gains

Employing multiple antennas only at the transmitter or the receiver,
is known as multiple-input single-output (MISO) and single-input
multiple-output (SIMO), respectively. Communication with multiple
antennas at both sides of the wireless link is known as multiple-input
multiple-output (MIMO) technology. The gains enabled by multi-
antenna technologies can be categorized as follows (see, e.g., [3–5]).

1Note that it is, in general, not feasible to obtain all gains at once. The
performance improvements of multi-antenna technology rather depends on the
underlying signaling schemes.
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Diversity Gain The main idea underlying diversity corresponds
to transmitting the same signal over independently fading links (also
known as diversity branches). Since not all links fade concurrently
with high probability, combining all versions of the transmit signal
in the receiver mitigates fading effects. Note that the concept of di-
versity is strongly related to link reliability: for a higher number of
independently fading diversity branches, fading becomes less likely.

There are three main sources of diversity that can be exploited in
single-user wireless systems: i) temporal diversity, which is caused by
the delay spread of the signal, ii) frequency diversity, which is caused
by the Doppler spread, and iii) spatial diversity (also known as an-
tenna diversity). While single-antenna systems offer temporal and
frequency diversity (i.e., signals can be transmitted at different time
instances or over different frequencies), multiple antennas at the trans-
mitter and/or the receiver enables spatial diversity, i.e., the signal can
be transmitted over different paths in space. This technique has be-
come popular in wireless communication systems since it improves
link reliability —in contrast to time or frequency diversity— without
reducing the data rate or increasing the bandwidth. In MIMO sys-
tems, the maximum amount of spatial diversity corresponds to the
number of transmit antennas times the number of receive antennas
(if all paths fade independently). Thus, MIMO technology is able to
significantly reduce fading effects and it offers to improve the QoS of
wireless communication systems.

For portable low-complexity and battery-powered wireless devices
it is often not feasible to employ multiple antennas, due to stringent
space and power limitations. For such systems, multiple antennas
are only employed at the base-station (where power consumption and
space is not an issue) and space-time coding is employed; this tech-
nique enables to obtain transmit diversity and it, therefore, improves
link reliability without the need for channel-state information at the
transmitter. In particular, space-time block codes (STBCs) [6,7], such
as the Alamouti scheme [8], have emerged as promising means to offer
transmit diversity in practical systems.

Array Gain refers to an increase in average receive signal-to-noise
ratio (SNR) by the coherent combination (i.e., by alignment of the
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phases using channel knowledge at the receiver) of all signals picked
up at multiple receive antennas.2 The increase in terms of average
SNR grows proportionally to the number of receive antennas; simply
speaking: “more receive antennas pick up more signal energy.” Hence,
array gain as well improves the QoS of wireless communication sys-
tems.

Multiplexing Gain Array gain and spatial diversity can be ob-
tained through multiple antennas at the transmitter or at the re-
ceiver. Employing multiple antennas at both ends of the wireless link
(i.e., MIMO technology) permits the concurrent transmission of mul-
tiple data streams within the same frequency band. This technique
is known as spatial multiplexing (SM) and it is able to yield a linear
increase (in the minimum number of transmit or receive antennas)
in terms of system capacity [9]. It is important to note that the
SM gain improves the spectral efficiency and comes at no expense
of increased transmit power. Since no additional transmit power is
necessary, the potential for bandwidth re-using by users communicat-
ing nearby is improved as well. Hence, SM is key to achieve high
data rates, which is the main reason for the adoption of this tech-
nology by many modern wireless communication standards, such as
IEEE 802.11n [2], IEEE 802.16e [10], and the third-generation part-
nership project (3GPP) consortium long-term evolution (LTE) stan-
dard [11].

1.1.2 The Role of MIMO Decoding

The physical layer of a receiver for MIMO wireless systems consist
of several parts, such as radio frequency (RF) components, synchro-
nization circuitry, channel estimation, and the MIMO decoder. The
MIMO decoder consists of a MIMO detector to separate the spatially
multiplexed data streams and a channel decoder, which computes es-
timates of the transmitted bits. The performance of MIMO systems
is heavily affected by the performance of the MIMO decoder. In order
to fully exploit the gains offered by MIMO technology, it is essential to

2Note that the array gain can also be obtained by employing multiple antennas
at the transmitter, which, requires transmit-side channel knowledge.



1.1. MIMO TECHNOLOGY 5

higher
throughput

longer
range

Figure 1.1: Distance (between transmitter and receiver) versus maxi-
mum achievable rates for 64-QAM data transmission in a 4×4 MIMO-
OFDM system.

employ high-performance MIMO decoding algorithms. However, such
algorithms often entail a prohibitively high amount of signal process-
ing complexity. The tradeoff between performance and complexity
inherently present in MIMO decoding is briefly illustrated below.

Performance/Complexity Tradeoff

Performance Figure 1.1 shows maximum achievable rates at a
given distance (between transmitter and receiver) for two different
MIMO detection algorithms (i.e., optimum hard-output detection
and max-log optimal soft-output detection) as well as the theoret-
ical limit of the considered system (referred to as “coded modula-
tion”).3 We can see that hard-output MIMO detection results in

3This simulation shows the maximum achievable rate in bits per channel use
(bpcu) per OFDM tone for a target frame error-rate (FER) of 1%. We consider an
IEEE 802.11n-like [2] MIMO-OFDM system, with four transmit and four receive
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worse performance, in terms of achievable rates and range, than soft-
output MIMO detection. It is important to note that soft-output
MIMO detection requires, in general, more sophisticated (and hence,
more complex) algorithms compared to hard-output MIMO detec-
tion (see Section 2.2). Hence, more sophisticated MIMO detection
schemes allow an increased achievable rate at a given distance to the
transmitter, or an increased range (i.e., the maximum distance where
a given target rate is supported). We emphasize that there is still a
substantial gap between soft-output MIMO detection and the theo-
retical performance limit. Hence, we conclude that employing even
more sophisticated MIMO detection schemes might further approach
the coded-modulation bound.

Complexity Figure 1.2 illustrates the computational complexity as-
sociated with various algorithms employed in MIMO decoders.4 The
algorithms and implementations provided in this thesis have been
highlighted in this figure; they are able to approach the theoretical
optimum (i.e., the coded-modulation bound). We can see that more
sophisticated algorithms (such as soft-output SD or SISO MMSE
PIC) require higher computational complexity compared to that of
low-complexity algorithms for MIMO decoding, such as soft-output
MMSE detection or hard-output MIMO detection using the sphere
decoder. Hence, we conclude that employing MIMO decoding schemes
that are able to approach the theoretical performance bound, entail —

antennas, 64 OFDM tones, 64-QAM modulation with Gray mapping. The distance
is measured in meters and has been computed from the average receive SNR
according to the TGn type C path-loss model (for 20 MHz bandwidth and 2.4 GHz
carrier frequency) [12]. We consider an implementation loss of 4 dB SNR to obtain
more realistic results, i.e., the average receive SNR has been reduced by 4 dB. The
curves associated with “hard-output” and “soft-output” correspond to that of
hard-output maximum-likelihood (ML) detection and max-log-optimal soft-output
a posteriori probability (APP) performance, respectively. The corresponding rates
are obtained through Monte-Carlo simulations of the mutual information between
the transmitted bits and the log-likelihood ratios or the hard-outputs computed by
the MIMO detectors. The curve associated with “coded modulation” refers to the
maximum achievable rate when using 64-QAM modulation [13], i.e., corresponds
to an upper bound on the performance of iterative MIMO decoding.

4Figure 1.2 has been adapted from [14, Fig. 2.2] and [15, Fig. 1.1] using results
of [16]. The algorithms and implementation results described in this thesis have
been highlighted. The computational complexity is in operations per second (ops).
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as it will be shown in the remainder of this thesis— an (often signifi-
cant) increase in computational complexity.

Furthermore, we can see from Figure 1.2 that the algorithms con-
sidered in this thesis require dedicated high-performance very-large-
scale integration (VLSI) architectures to meet the computational re-
quirements. As it was shown in [15], MIMO decoding contributes
substantially to the VLSI implementation complexity of the total
receiver, strongly affecting the corresponding costs. The ultimate
MIMO receiver must, therefore, achieve best decoding performance at
lowest possible VLSI implementation complexity. This goal can only
be achieved by jointly considering algorithm and VLSI implementa-
tion aspects and by performing careful investigations of the underlying
performance/complexity tradeoffs.

The State-of-the-Art in MIMO Decoding

Almost all recent MIMO receiver designs that can be found in the
open literature employ linear MIMO detection schemes, see e.g., [16–
18]. Note that linear detection offers acceptable error-rate perfor-
mance while requiring low computational complexity (see Figure 1.2).
Hence, most of the currently available implementations lie on the
low-complexity low-performance end of the performance/complexity
tradeoff.

On the algorithmic side, state-of-the-art MIMO decoders employ
non-linear MIMO detection schemes based on, for example, sphere
decoding (SD) and perform iterative MIMO detection and channel
decoding [19]. This technique will be referred to as iterative MIMO
decoding in the remainder of this thesis. This approach is believed to
be a key technology to achieve near-optimum performance in MIMO
wireless systems. However, the associated computational complexity
is significant and —up to now— not much is known about the perfor-
mance and complexity of corresponding VLSI implementations.

1.2 Contributions of this Work

The goal of this thesis is to design and optimize algorithms for iter-
ative MIMO decoding and to investigate the associated performance
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and VLSI implementation aspects. To this end, we analyze and im-
prove soft-input soft-output MIMO detection algorithms for iterative
MIMO decoding and present novel low-complexity solutions. In ad-
dition, we describe corresponding VLSI architectures and provide ref-
erence application-specific integrated circuit (ASIC) implementation
results. Moreover, we compare the performance and VLSI implemen-
tation complexity associated with SISO channel decoding. Finally,
all results obtained throughout this thesis allow a detailed analy-
sis of the performance/complexity tradeoffs associated with iterative
MIMO decoding. Based on this analysis, we describe best-practices
for hardware-efficient iterative MIMO decoding.

In summary, this thesis provides novel high-performance and low-
complexity solutions for iterative MIMO decoding and an analysis of
the associated performance/complexity trade-offs. To the best of the
authors knowledge, all presented VLSI implementations are currently
ranked among the best performing. The contributions of this thesis
are detailed in the following.

SISO MMSE Parallel Interference Cancellation

In Chapter 3, we describe the first VLSI implementation of a soft-
input soft-output (SISO) detector for iterative MIMO decoding. The
algorithm underlying our VLSI implementation is known as SISO min-
imum mean-square error (MMSE) parallel interference cancellation
(PIC). It was initially developed by Wang and Poor in 1999 [20] for
iterative detection in multi-user code division multiple access (CDMA)
systems.

The algorithm in its original form exhibits prohibitive computa-
tional complexity due to the requirement of multiple matrix inversions
at symbol-rate. For economic hardware implementation, we describe
a novel method which requires only one matrix inversion at symbol-
rate, without affecting the algorithm’s performance. The (remaining)
matrix inversion task is performed by a novel high-performance ar-
chitecture based on the LU-decomposition. In addition, a variety of
tricks on algorithmic and architectural level have been employed in
order to attain a low-complexity and high-performance VLSI archi-
tecture of the optimized SISO MMSE PIC algorithm.

The resulting architecture has been integrated in 90 nm CMOS
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technology. The ASIC implementation results demonstrate that SISO
detection based on the proposed SISO MMSE PIC algorithm enables
high-throughput soft-input soft-output MIMO detection in practical
systems.

SISO Single Tree-Search Sphere Decoding

Chapter 4 summarizes and extends our results in [21–27]. We describe
a SISO single tree-search (STS) sphere decoding (SD) algorithm that
is tunable between max-log optimal SISO and hard-output maximum
a posteriori (MAP) detection performance. We develop a max-log op-
timal a priori information processing method, which significantly re-
duces the tree-search complexity compared to [28–32] and avoids the
computation of transcendental functions. The basic idea for complex-
ity reduction and tunability of the algorithm is to incorporate clipping
of the extrinsic log-likelihood ratios (LLRs) into the tree search.

We furthermore propose a method for self-interference compensa-
tion in the LLRs —caused by channel-matrix regularization— directly
in the tree search. Due to prohibitively high worst-case complex-
ity of SD, we propose early termination based on a novel scheduling
technique, which is well-suited for implementation in practical sys-
tems, while only slightly degrading the algorithm’s performance. In
addition, we describe a new method to correct approximate LLRs
from sub-optimal detectors, which (often significantly) improves de-
tection performance at low additional computational complexity; this
method has potential to be a more general tool for improving the
performance for virtually all sub-optimal soft-output detection and
decoding schemes. Simulation results show that the resulting SISO
STS-SD algorithm operates close to outage capacity at remarkably
low computational complexity. In addition, the proposed algorithm
clearly outperforms state-of-the-art SISO detection schemes for itera-
tive MIMO systems.

We describe the first VLSI implementation of the soft-output (SO)
STS-SD algorithm, based on the one-node-per-cycle VLSI implemen-
tation for hard-output Schnorr-Euchner SD developed in [33]. Corre-
sponding VLSI implementation results demonstrate that the proposed
algorithm is suitable for low-complexity and high-performance MIMO
detection in practical systems.
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Soft-Input Soft-Output Channel Decoding

In Chapter 5, we describe three different high-throughput SISO chan-
nel decoder implementations for SISO decoding of convolutional codes
(CCs), low-density parity check (LDPC) codes, and turbo codes.

• For SISO decoding of CCs, we design a high-throughput archi-
tecture and we derive VLSI implementations of the M-BCJR
algorithm [34], supporting different constraint lengths (ranging
from three to seven). Hardware-level optimizations yield sig-
nificant improvements in circuit area and decoding throughput.
The resulting M-BCJR architectures have been implemented in
180 nm CMOS technology. For constraint length seven, the ar-
chitecture is compliant with IEEE 802.11n [2] and is the first of
its kind described in the open literature.

• For SISO decoding of LDPC codes, we summarize our results
presented in [35]. We develop a high-throughput architecture
that is able to decode quasi-cyclic (QC) LDPC codes. The de-
sign of a novel permutation network and a new method to com-
bine control signals with the information contained in the parity-
check matrix enable configurability of the decoder for virtually
all QC-LDPC codes that fit into the allocated memories. Cor-
responding VLSI implementation results in 180 nm CMOS tech-
nology demonstrate that the performance, energy-efficiency, and
area are comparable to that of dedicated (i.e., non-configurable)
architectures. The resulting decoder implementation is compli-
ant with the IEEE 802.11n standard.

• We describe a turbo decoder for the 3GPP LTE standard [11].
Our architecture has been optimized for high throughput by
using an optimized M-BCJR architecture in combination with
a novel interleaver architecture. Corresponding VLSI imple-
mentation results in 130 nm CMOS technology show that the
achieved throughput is 15 to 25 times higher than that of ref-
erence implementations, e.g., [36,37], while being more efficient
in terms of area per throughput.

Finally, we compare the three SISO decoders in terms of VLSI im-
plementation complexity and error-rate performance and analyze the
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underlying tradeoffs.

Performance/Complexity Tradeoff Investigation

Chapter 6 compares the VLSI implementation complexity of iterative
MIMO decoding (consisting of a soft-input soft-output MIMO detec-
tor and a SISO channel decoder) with the (error-rate) performance.
The performance/complexity evaluation is based on a method called
throughput matching, which simplifies the tradeoff analysis and en-
ables to provide an estimate of the silicon complexity required for an
iterative MIMO decoder.

We compare the performance/complexity tradeoffs of linear MIMO
detection and SISO MMSE PIC using CCs, LDPC codes, and turbo
codes. Moreover, we compare the performance/complexity tradeoff
realized by the SISO MMSE PIC to that of the SO STS-SD imple-
mentation. Finally, we propose guidelines for the design of hardware-
efficient high-performance MIMO decoders.

1.3 Notation

Matrices are set in boldface capital letters, vectors in boldface lower-
case letters. The superscripts T , H , and ∗ stand for transpose, conju-
gate transpose, and (element-wise) complex conjugation, respectively.
We write Ai,j for the entry in the ith row and jth column of the
matrix A and bi for the ith entry of the vector b = [ b1 · · · bN ]T .
IN and 0M×N denote the N × N identity matrix, and the M × N -
dimensional all-zero matrix, respectively. 1M is the all-ones vector
of dimension M . Slightly abusing common terminology, we call an
N ×M matrix A, where N ≥ M , satisfying AHA = IM , unitary.
The ℓ2-norm of a vector b is denoted by ‖b‖. The probability of an
event Z is denoted by P[Z], the probability density function (PDF)
of a continuous random variable (RV) z is denoted by p(z), E[Z] and
Var[Z] stand for the expectation and variance of the RV Z, respec-
tively. The real and imaginary part of x ∈ C is denoted by ℜ{x}
and ℑ{x}, respectively. The binary complement of x ∈ {+1,−1} is
x = −x. The round, ceil, floor, and sign operations of x ∈ R are
denoted by ⌈x⌋ ⌈x⌉, ⌊x⌋, and sign(x), respectively. CZ stands for the
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set of Gaussian integers, i.e., CZ = Z +
√
−1 Z, and |O| designates

the cardinality of the set O.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 de-
scribes the system model, introduces iterative MIMO decoding, and
briefly reviews the basics of hard-output and (soft-input) soft-output
MIMO detection. The chapter concludes by a performance compar-
ison of the reference detector with some of the most prominent sub-
optimal low-complexity MIMO detection schemes. In Chapter 3, a
SISO detection algorithm for iterative MIMO decoding is optimized
for VLSI implementation. To this end, novel techniques on algorith-
mic and architectural level are employed and a reference architecture
is proposed. Finally, we show corresponding ASIC implementation
results of the first SISO detector for iterative MIMO decoding re-
ported in the literature. A novel high-performance low-complexity
SISO detection algorithm based on SD is described in Chapter 4. A
variety of techniques are employed to further reduce its computational
complexity. Finally, we propose reference VLSI implementation re-
sults of a soft-output variant of the proposed algorithm. Chapter 5
describes VLSI implementations for SISO decoding of convolutional
codes, LDPC codes, and turbo codes. A detailed tradeoff compari-
son in terms of performance and complexity concludes this chapter.
In Chapter 6, we provide —based on implementation results provided
in the previous three chapters— performance/implementation com-
plexity tradeoff results for iterative MIMO decoding (including the
MIMO detector and the channel decoder). We conclude in Chapter 7
and briefly summarize open research topics.





Chapter 2

Iterative MIMO
Decoding

Optimum detection performance in coded MIMO systems, in terms
of minimizing the error-rate performance, is obtained by joint detec-
tion and decoding (JDD). The computational complexity associated
with JDD is, in general, prohibitively high, even for short code-blocks
(see [38]). Iterative MIMO decoding is believed to be the most promis-
ing approach for low-complexity and near-optimum data detection in
coded MIMO systems. The main idea underlying iterative detection
and decoding is the assumed independence of MIMO detection and
channel decoding. This assumption enables to solve both tasks sepa-
rately, which entails, in general, significantly less computational com-
plexity compared to that of JDD. Since MIMO detection and channel
decoding have been separated, reliability information on the coded
bits is exchanged between the two components in an iterative fashion.
When the iteration process is stopped, the channel decoder produces
estimates of the transmitted bits.

Iterative decoding reaches back to 1963, when Gallager proposed
an iterative decoding method for LDPC codes in his visionary Ph.D.
thesis [39]. Three decades later, iterative decoding has been re-
discovered by Berrou et al. for decoding of turbo codes [40]. The ex-
ceptional performance achieved by iterative decoding of turbo codes,

15
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and the additional generalization of iterative decoding of virtually any
linear block-code by Hagenauer et al. in 1996 [41], sparked tremen-
dous research activities. In 1999, the concept of iterative detection
and decoding has been developed by Wang and Poor for data detec-
tion in multi-user (MU) CDMA systems [20]. In 2002, the idea has
been adapted for detection in inter-symbol interference (ISI) channels
by Tüchler et al. [42]. In the same year, iterative MIMO decoding has
been proposed for MIMO wireless communication systems by Witzke
et al. [43]. In 2003, Hochwald and ten Brink demonstrated that itera-
tive MIMO decoding is able to achieve near channel-capacity [19]; key
for achieving high performance was a SD-based soft-input soft-output
MIMO detection algorithm in combination with turbo codes.

In the remainder of this chapter, we introduce the system model
and describe the concept of iterative MIMO decoding (Section 2.1).
We outline some of the most relevant hard-output and soft-output
MIMO detection algorithms in Section 2.2 and conclude with error-
rate performance simulation results that demonstrate the potential of
iterative MIMO decoding.

2.1 System Model

Consider an iterative MIMO system with MT transmit and MR re-
ceive antennas. In the remainder of this thesis, we assumeMR ≥MT.
The MIMO system is depicted in Figure 2.1 and consists of three main
components: i) the transmitter, ii) the MIMO channel, and iii) the
iterative MIMO decoder; all components are described in the follow-
ing.

2.1.1 Transmitter

The MIMO transmitter obtains a sequence of information bits, de-
noted by the B-dimensional binary-valued vector b. This vector is
referred to as data frame in the remainder of this thesis. In order to en-
able reliable transmission, bit-interleaved coded modulation (BICM)
is performed [44,45]. To this end, the channel encoder introduces re-
dundancy in the data frame and performs interleaving of the coded
bits. The resulting coded and interleaved bit-stream is denoted by the
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Figure 2.1: MIMO wireless communication system employing BICM,
spatial multiplexing (SM), and iterative MIMO decoding [19].

binary-valued vector x of dimension1 B/R, where 0 < R ≤ 1 denotes
the rate of the employed channel code.

The coded bit-stream is mapped to a sequence of N of MT-
dimensional symbol vectors s[k] ∈ OMT , where O denotes the under-
lying complex scalar constellation set with |O| = 2Q and k = 1, . . . , N .
The index k corresponds to the kth transmitted symbol vector.2 Each
symbol vector s[k] is associated with MTQ bits, denoted by xi,b[k]
(for i = 1, . . . ,MT and b = 1, . . . , Q); the indices i and b refer to
the bth bit in the binary label of the ith entry of the symbol vec-
tor s[k]. The bits are chosen from the set {+1,−1} where the null
element (0 in binary logic) of GF(2) corresponds to +1. The bĳec-
tive mapping between bits xi,b[k] (∀i, b) and entries of the symbol

1Zero-padding is employed if B is not an integer multiple of 1/R.
2In orthogonal frequency division multiplexing (OFDM) systems, k stands for

the kth OFDM tone and N denotes the maximum number of used tones.
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vector s[k] =
[
s1[k] · · · sMT

[k]
]T

is denoted by

si[k] = map
(
xi,b[k], b = 1, . . . , Q

)
. (2.1)

The inverse mapping of (2.1) is denoted by
[
si[k]

]
b

= xi,b[k]. The total
number of transmitted information bits per data frame corresponds
to B = RNMTQ bit.

2.1.2 MIMO Channel

The symbol vectors s[k] (∀k) are transmitted over N MIMO channels.
The complex baseband input-output relation of the (frequency-flat)
MIMO channel is given by3

y[k] = H[k]s[k] + n[k] (2.2)

where H[k] stands for the kth complex-valued MR×MT channel ma-
trix, y[k] denotes theMR-dimensional received signal vector, and n[k]
is an i.i.d. circularly symmetric complex Gaussian distributed MR-
dimensional noise vector with variance No per complex entry, i.e.,
n[k] ∼ CN (0, NoIMR

), ∀k. The element Hi,j [k] of the MIMO chan-
nel matrix represents the complex-valued transfer function from the
jth transmit to the ith receive antenna. Different transmit powers on
the individual transmit antennas are assumed to be absorbed in the
channel matrices H[k], which —including the corresponding scaling
factors— will be referred to as the physical MIMO channels. In the
remainder of this thesis we assume that the transmitter has no chan-
nel state information, whereas the receiver is assumed to have perfect
channel state information, i.e., the H[k] (∀k) and No are perfectly
known to the receiver.4

The elements of the N channel matrices are usually assumed to be
i.i.d. (across space and index k) circularly symmetric complex Gaus-
sian distributed with unit variance (e.g., [9]). This assumption is,

3Note that the input-output relation given in (2.2) does not only model MIMO
wireless communication using SM, but it can also represent MIMO channels in-
cluding linear STBCs (e.g., [46]), or other communication channels, such as, ISI
channels.

4Pilot symbols are employed in practice to estimate the channel state in the
receiver. However, perfect channel state information is not possible, since the so
obtained estimates are disturbed by noise [47].
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however, optimistic, since real-world wireless channels usually ex-
hibit correlation across space, time, or frequency. To this end, the
IEEE 802.11 task group N (TGn) specified typical channel models for
WLAN applications [12]. These models enable to obtain simulation
results that are more relevant in practice. Unless specified otherwise,
the TGn type C channel model —corresponding to a typical residen-
tial or small office environment with 30 ns root mean square (RMS)
delay spread [12]— is used throughout this thesis.

Transmit symbols are normalized such that E

[
|si|2

]
= Es (∀i)

and the SNR definition used in this thesis refers to the average SNR
per receive antenna defined as SNR = MTEs/No. For the sake of
simplicity of exposition, the symbol-vector index k is omitted in the
remainder of this thesis.

2.1.3 Iterative MIMO Decoder

The structure of an iterative MIMO decoder depicted in Figure 2.1
consists of a SISO detector for MIMO systems and a SISO channel
decoder. The detector and the decoder iteratively exchange reliability
information of the coded bits x. The iterative detection process is
stopped if a maximum number of iterations is reached. Then, the
SISO channel decoder produces (binary-valued) estimates of the data
bits b̂.

Soft-Input Soft-Output MIMO Detector

The task of the soft-input soft-output MIMO detector is to undo the
MIMO mapping and the influence of the MIMO channel; this is ac-
complished on the basis of the received vector y, the channel state
information (i.e., H and No), and soft-inputs (i.e., a priori reliability
information) in the form of LLRs, denoted by LA1 (see Figure 2.1).
The MIMO detector either produces hard decisions for each trans-
mitted bit x̂i,b (∀i, b) or it computes corresponding a posteriori soft-
outputs in the form of extrinsic LLRs, denoted by LE1

i,b . The vector
containing all a posteriori extrinsic LLR values is denoted by LE1 (see
Figure 2.1).

MIMO detectors that compute soft-outputs on the basis of soft-
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inputs are referred to as soft-input soft-output (SISO) detectors for
MIMO systems. Detectors that compute hard-output estimates (pos-
sibly based on a priori information) are referred to as hard-output
MIMO detectors. The most prominent hard-output and SISO detec-
tion schemes are outlined in Section 2.2.

Soft-Input Soft-Output Channel Decoder

In iterative MIMO decoding, the SISO channel decoder serves two
purposes. Firstly, it computes new a posteriori soft-outputs (in the
form of extrinsic LLRs), denoted by LE2, on the basis of the a priori
LLRs LA2 delivered by the MIMO detector (see Figure 2.1). Note
that if interleaving is used, the LLRs need to be de-interleaved at
the input and interleaved at the output of the channel decoder. Sec-
ondly, the SISO channel decoder also computes hard-output estimates
of the transmitted information bits b̂ at the end of the iteration pro-
cess. It is important to note that the a posteriori LLRs of the chan-
nel decoder LE2 will get a priori LLRs LA1 of the MIMO detector
(i.e., LE2 = LA1) and the extrinsic a posteriori LLRs LE1 will be a
priori LLR-values LA2 of the channel decoder, i.e., LE1 = LA2 (see
Figure 2.1).

Different types of channel codes and corresponding SISO decod-
ing algorithms exist in the literature. The most prominent ones are
reviewed in Chapter 5 together with corresponding VLSI implemen-
tation results.

2.2 The Basics of MIMO Detection

In Section 2.2.1, we review hard-output MIMO detection and the
basics of soft-input soft-output MIMO detection algorithms are de-
scribed in Section 2.2.2.

2.2.1 Hard-Output MIMO Detection

In general, coherent hard-output MIMO detection algorithms com-
pute estimates of the transmitted symbol vector ŝ. Estimates of the
transmitted bits are obtained by remapping the estimated symbol
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vector ŝ to its corresponding bit-labels according to

x̂i,b = [ŝi]b, i = 1, . . . ,MT, b = 1, . . . , Q.

In the following, hard-output MIMO detection schemes (ranging from
optimum (error-rate) performance to low computational complexity)
are reviewed and the associated performance is compared based on
numerical simulation results.

Maximum a Posteriori and Maximum-Likelihood Detection

The optimal hard-output MIMO detector (in terms of minimizing
the probability that the computed estimate does not correspond to
the transmitted symbol vector s′) is referred to as the maximum a
posteriori (MAP) detector corresponding to

ŝMAP = arg max
s∈OMT

P[s′ = s |y,H] (2.3)

where ŝMAP is referred to as the MAP estimate. Bayes’s theorem ap-
plied to (2.3) leads to an equivalent formulation of the MAP detection
rule as follows

ŝMAP = arg max
s∈OMT

{
p(y | s′ = s,H)

P[s′ = s]
p(y)

}

= arg max
s∈OMT

{
p(y | s′ = s,H) P[s′ = s]

}
(2.4)

where the second equality results from the fact that the PDF p(y) does
not depend on s. Due to the assumptions made on the noise statistics
(see Section 2.1.2), the PDF p(y | s′ = s,H) in (2.4) corresponds to the
joint probability density function of a multi-variate complex Gaussian
with i.i.d. circularly symmetric components (each having variance No)
with mean E[y] = Hs, i.e.,

p(y | s′ = s,H) =
1

(πNo)MR
exp

(
− ‖y−Hs‖2

No

)
.

Since log(x) is monotonically increasing in x, maximizing the loga-
rithm of (2.4) is equivalent; this leads to the well-known MAP detec-
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tion rule for MIMO systems [28–32,48]

ŝMAP = arg min
s∈OMT

{‖y−Hs‖2

No
− log P[s′ = s]

}
. (2.5)

If all transmit symbol vectors are equally likely, the MAP solution (2.5)
coincides with the maximum likelihood (ML) solution of the MIMO
detection problem [3–5]

ŝML = arg min
s∈OMT

‖y−Hs‖2 (2.6)

which amounts to solving a closest-vector problem (CVP); this prob-
lem is known to require high computational complexity [49]. Straight-
forward MIMO detection according to (2.5) or (2.6), by performing
an exhaustive search over all possible transmit vectors, can lead to
prohibitively high computational complexity. For example, MAP or
ML detection in a MIMO system with MT = 4 and 64-QAM modula-
tion alphabet requires a comparison of |O|MT ≈ 16.7 · 106 candidates.
In order to avoid the prohibitive computational complexity associ-
ated with solving of (2.5) or (2.6), a variety of low-complexity MIMO
detection schemes have been proposed in the past.

Linear MIMO Detection

The most prominent low-complexity algorithms for MIMO detection
belong to the class of linear detection (LD) schemes [3]. The main idea
underlying LD is to invert the effect of the MIMO channel matrix.
This approach decomposes the MIMO detection problem into MT

single-antenna detection problems that can be solved with (often sig-
nificantly) reduced complexity compared to that of MAP or ML de-
tection. However, the decomposition in MT (independent) detection
tasks leads, in general, to a significant performance loss. Correspond-
ing simulation results are shown below.

Zero-Forcing Detection One of the simplest approaches to low-
complexity MIMO detection is zero-forcing (ZF), which corresponds to
left-multiplication of the Moore-Penrose pseudo-inverse of the channel
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matrix H† = (HHH)−1H to the received vector y such that

H†y = ŷZF = s + H†n. (2.7)

By ignoring the influence of colored noise in (2.7), detection can be
performed separately for each transmit stream according to

ŝZF
i =

⌈
ŷZF
i

⌋
O
, i = 1, . . . ,MT

where ⌈y⌋O denotes mapping of y ∈ C to the nearest constellation
point in O, i.e.,

⌈y⌋O = arg min
s∈O

|y − s|.

Computing the pseudo-inverse and slicing are both of polynomial com-
plexity (in MT) and hence, ZF is a polynomial-time algorithm for
MIMO detection. Note that in (2.7), interference from other streams
is perfectly removed, i.e., ZF decomposes the MIMO detection prob-
lem in MT parallel single-stream problems. However, if the channel
matrix is ill-conditioned, ZF leads to noise enhancement since the
equalized noise H†n in (2.7) can get arbitrarily large [3]; this is the
main cause of the poor error-rate performance realized by ZF detec-
tion.

MMSE Detection LD based on the MMSE criterion is a solution
to trade noise enhancement for interference suppression. Instead of
using the pseudo-inverse of the channel matrix, anMT×MR estimator
matrix M that fulfills the MMSE criterion

M = arg min
M̃∈CMT×MR

E

[
‖M̃y− s‖2

]
(2.8)

is used for equalization. Note that expectation in (2.8) is over the
noise and the symbol vectors. The solution of (2.8) corresponds to
the well-known MMSE estimator matrix [3]

M =

(
HHH +

MT

SNR
IMT

)−1

HH . (2.9)
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Equalization of the MIMO input-output relation with (2.9) leads to

My = H̃s + Mn

with H̃ = MH. As noted in [50], the MMSE estimator in (2.9) is
biased, i.e., the entries on the main-diagonal of H̃ are, in general,
not equal to one. An unbiased MMSE estimator can be obtained by
extraction of the main-diagonal entries of H̃ into aMT×MT diagonal
matrix

D = diag
(
H̃1,1, . . . , H̃MT,MT

)

and by using the unbiased MMSE estimator matrix M̃ = D−1M
instead of (2.9).

Analogous to ZF, linear (and unbiased) MMSE detection corre-
sponds to the application of the unbiased MMSE estimator matrix M̃
to the received vector y according to

M̃y = ŷMMSE = s + ñ (2.10)

and detection is carried out by slicing ŷMMSE
i to the nearest constella-

tion point in O for i = 1, . . . ,MT. The vector ñ in (2.10) corresponds
to the effective noise-plus-(self)-interference (NPI)

ñ =
(
M̃H− IMT

)
s + M̃n. (2.11)

It is important to note that the NPI-term in (2.11) now contains
self-interference, but suffers less from noise enhancement than ZF de-
tection. The reason for reduced noise enhancement is due to the fact
that the inversion in (2.9) is based on a regularized version of the
Gram matrix HHH, which is usually better conditioned than com-
putation of the pseudo-inverse (as required for ZF). Thus, LD based
on the MMSE criterion achieves, in general, better performance than
ZF, while requiring a similar amount of computational complexity.

Successive Interference Cancellation

Similar to LD, successive interference cancellation (SIC) decomposes
the MIMO detection problem into MT single-stream detection prob-
lems. The key difference is that SIC performs detection in a sequential
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manner, i.e., one stream is detected after another while the result of
the previously detected stream is used to cancel out interference in the
subsequent detection steps. The detection process can be described
conveniently using the QR-decomposition (QRD) of the MIMO chan-
nel matrix. In the sequel, the general case of SIC, i.e., including layer
sorting and regularization, is described.

SIC starts by performing a column-sorted QRD of a regularized
version of the channel matrix[

H
αIMT

]
P = QR (2.12)

where α is a suitably chosen regularization parameter, P is aMT×MT

permutation matrix, Q is a unitary (MR +MT)×MT matrix and R is
of dimension MT ×MT and upper-triangular with non-negative real-
valued entries on the main diagonal. Partitioning Q according to

Q =
[

QTa QTb

]T
, where Qa is of dimension MR ×MT and Qb is of

dimension MT ×MT, and left multiplication of the received vector
by QHa , leads to the input-output relation

QHa y = ŷSIC = Rs̃ + ñ (2.13)

where Ps̃ = s and the effective NPI vector is

ñ = −αQHb s + QHa n.

Note that Q is unitary, but Qa and Qb will, in general, not be unitary.
Hence, the effective NPI vector is no longer i.i.d. circularly symmetric
complex Gaussian distributed with variance No per complex entry. In
addition, since Qb is not equal to an all-zero matrix for α 6= 0, the
NPI vector contains self-interference.

MIMO detection based on SIC now amounts to detect the MTth
stream according to

ŝSIC
MT

=

⌈
ŷSIC
MT

RMT,MT

⌋

O

followed by successively detecting the remaining streams

ŝSIC
i =




1
Ri,i

(
ŷSIC
i −

MT∑

j=i+1

Ri,j ŝ
SIC
j

)
O

, i =MT − 1, . . . , 1.
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Note that the procedure described above resembles the solution of
linear equations using back-substitution, with the key difference that
the substituted variables are being sliced to the nearest constellation
symbols.

Various flavors of SIC have been proposed in the literature. The
(error-rate) performance mainly depends on the choice of the regu-
larization parameter α and the column-sorting strategy. The best-
performing variant is the vertical Bell Laboratories layered space-
time (V-BLAST) algorithm [51, 52], which originally employs mul-
tiple matrix inversions instead of a QRD. The original V-BLAST al-
gorithm [51] does not use any regularization (i.e., α = 0) and it per-
forms column sorting such that the layer with largest post-equalization
SNR is detected first. An improved algorithm (in terms of perfor-
mance and complexity) was proposed in [53] and employs regular-
ization according to the MMSE criterion, i.e., α =

√
No/Es, and

it processes spatial streams with highest post-equalization signal-to-
noise-and-interference ratio (SINR) first.

A low-complexity alternative that approximates V-BLAST layer
sorting is based on the sorted QR-decomposition (SQRD) algorithm
as described in [54]. The performance of this algorithm can be im-
proved by using regularization [55] as well. Note that SQRD-based
SIC requires lower computational complexity compared to inversion-
based V-BLAST algorithms [56].

Lattice-Reduction-Aided MIMO Detection

A promising approach for high-performance and low-complexity hard-
output MIMO detection is based on a mathematical tool known as
lattice reduction (LR). The general idea of LR-aided MIMO detec-
tion is to relax the ML detection problem to a CVP on the infinite
lattice. Then, a CVP is solved on a “more orthogonal” lattice basis,
which leads to performance improvements in combination with low-
complexity detection methods, such as LD or SIC. The basic idea of
LR-aided MIMO detection is summarized below.

Transformation to Lattices In order employ techniques from lat-
tice theory to MIMO detection, we start by mapping the elements
s ∈ O to elements x ∈ CZ using the transformation x = as + c. The
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constants a ∈ R and c ∈ C with a > 0 are independent of s and chosen
such that x ∈ X ⊂ CZ with |X | = |O| and

X =
{
x ∈ CZ | (kmin ≤ ℜ{x} ≤ kmax)

∧ (kmin ≤ ℑ{x} ≤ kmax)
}

(2.14)

where kmin, kmax ∈ Z. Note that (2.14) can be used to check whether
x′ ∈ CZ is in X by performing separate boundary checks for the real
and imaginary part of x′.5 The transmit vectors s ∈ OMT can be
mapped to vectors x ∈ XMT ⊂ (CZ)MT according to

x = as + c (2.15)

where c = c1MT
. The inverse transformation associated with (2.15)

is given by s = a−1(x − c). The input-output relation in (2.2) can
now be transformed into

r = Gx + n (2.16)

where G = a−1H and r = y + Gc is a translated version of the re-
ceived vector y. The essence of the transformation of (2.2) into (2.16)
is that now the received vector r can be interpreted as a lattice
point u ∈ L(G) that has been translated by the additive Gaussian
noise vector n. Here,

L(G) ,

{
Gx |x ∈ XMT

}
(2.17)

denotes the finite lattice generated by G.

Relaxation and Lattice Reduction After carrying out the trans-
formation to the lattice L(G), ML-detection (MLD) for (2.16) corre-
sponds to

ûML = arg min
u∈L(G)

‖r− u‖2 (2.18)

which amounts to solving a CVP in the finite lattice L(G). Since each
lattice point in L(G) is associated with a transmit vector in XMT

5In the case of non-square QAM constellations the boundary checks take a
slightly more complicated form.
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according to the relation u = Gx, the ML-estimate ûML obtained by
solving (2.18) can be transformed into6 x̂ML = G†ûML, which upon
inversion of (2.15) yields the ML-estimate ŝML in (2.6).

The key requirement to employ LR for detection is to relax the
finite lattice in (2.17) to the infinite lattice7

L(G) ,

{
Gx |x ∈ (CZ)MT

}
(2.19)

and to compute an equivalent and “more orthogonal” basis for the lat-
tice L(G) with the generator matrix B = GT, where T is anMT×MT

unimodular matrix, i.e., |det(T)| = 1 with Ti,j ∈ CZ (∀i, j). Thanks
to the unimodularity of T, we have L(B) = L(G). It is important to
note that this equivalence only holds for infinite lattices, in contrast
to finite lattices where, in general, L(B) 6= L(G).

LR-Aided MIMO Detection LR-aided MIMO detection is then
performed on the relaxed and reduced lattice L(B) by computing

ûML = arg min
u∈L(B)

‖r− u‖2 (2.20)

followed by compensating the transformation caused by the unimod-
ular matrix according to TûML = x̂ML. Since the resulting estimate
x̂ML is not necessarily in XMT , remapping onto XMT is required when-
ever x̂ML /∈ XMT . Quantization of x̂ML

i to the nearest constellation
point in X (∀i) is the “common” approach for remapping used in the
literature [57,58].

Approximating (2.20) using low-complexity detection algorithms,
such as LD or SIC, results in often significant performance improve-
ments compared to LD or SIC without relaxation and LR [57, 59].
Unfortunately, remapping of x̂ML onto XMT if x̂ML /∈ XMT entails, in
general, a significant performance loss (in terms of an SNR gap) com-
pared to ML performance. Regularization of the channel matrix can
reduce this performance gap up to a certain extent [58]. However, the
only way to mitigate the performance loss associated with relaxation

6Note that G† does not have to be computed explicitly as u in (2.18) can be
replaced by Gx and the minimization can be performed over x ∈ XMT .

7In the remainder of this section, underlined quantities refer to the infinite-
lattice case.
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is to solve a finite-lattice CVP [25]; this again results in high compu-
tational complexity. Generally speaking, LR-aided MIMO detection
seems to be better suited for use in combination with low-complexity
hard-output detectors, such as LD or SIC, with overall sub-optimal
performance.

Performance of Hard-Output MIMO Detection

Diversity Gain A fundamental performance measure of MIMO de-
tection algorithms is the diversity gain d, which refers to the asymp-
totic slope of the error probability as the SNR goes to infinity, i.e., [5]

d,− lim
SNR→∞

log
(
Pe(SNR)

)

log(SNR)
(2.21)

where Pe(SNR) denotes the average (over noise and channel realiza-
tions) error probability of the considered MIMO detector. A large
diversity gain is desirable since it ensures that the error rate decreases
faster for increasing SNR values than it would for a detector with a
low diversity gain.

For MIMO systems employing spatial multiplexing in i.i.d.
Rayleigh fading channels, the optimum diversity gain is attained
by MLD (2.6) and it corresponds to d = MR [60, 61]. The diver-
sity gain of ZF- and MMSE-based linear detection was shown to be
d =MR −MT + 1, which is worse compared to that of MLD [61]. SIC
yields, in general, better performance than linear detection schemes,
but it achieves the same diversity gain as LD, irrespective of the em-
ployed column-ordering strategy and regularization [62]. Hence, the
diversity gain for LD and SIC can only be improved by using more
receive than transmit antennas.

The performance of LR-aided hard-output MIMO detection fun-
damentally differs from LD or SIC. In [63] it was shown that LR
through the Lenstra, Lenstra, and Lovász (LLL) algorithm [64] fol-
lowed by LD achieves the same diversity gain as MLD. Naive lattice
decoding8 was shown to achieve the same diversity gain as MLD, while
leading to an unbounded SNR gap (growing logarithmically in SNR)

8Naive lattice decoding [65] refers to decoding on the infinite lattice and to
declaring an error whenever the relaxed estimate x̂ does not belong to XMT .
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Figure 2.2: Symbol error rate (SER) performance of various MIMO
detection schemes.

for MR = MT [65]. We finally note that the true performance of
LR-aided detection strongly depends on the remapping strategy [25].

Numerical Performance Since the diversity gain only character-
izes the asymptotic performance behavior of MIMO detection schemes,
numerical performance results using symbol (vector) error rate (SER)
are shown in Figure 2.2. The simulation results are for an uncoded
MT = MR = 4 MIMO system with 16-QAM symbol constellation.
The entries of H are i.i.d. circularly symmetric complex Gaussian dis-
tributed with unit variance. For the LR-aided SIC detector (LR-SIC),
lattice reduction has been carried out with a complex-valued version
of the LLL algorithm [66] with δ = 3/4 using regularized (MMSE)
SQRD preprocessing [55] and remapping to the finite lattice is done
by using quantization [25,55].

In Figure 2.2, the diversity gain of all MIMO detectors can be
identified in the high-SNR regime. ML detection and LR-aided SIC
yield the same 4th order diversity gain, whereas LR-aided SIC loses
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approximately 1.2 dB SNR (at SER=10−2) to MLD. LD using ZF or
MMSE show almost the same SER performance (and achieve only
first order diversity), whereas regularized SIC using SQRD [55] yields
approximately 4 dB SNR gain compared to MMSE-based LD. We con-
clude that it is essential to employ detection schemes that realize the
maximum diversity gain, particularly in uncoded (or near rate-one
coded) MIMO systems .

2.2.2 Soft-Input Soft-Output MIMO Detection

Iterative MIMO decoding requires soft-input soft-output (SISO) de-
tection schemes to compute a posteriori reliability information of the
coded bits based on the received vector, on channel state information,
and a priori reliability information. In order to perform this task,
a variety of algorithms exists in the literature. The optimum SISO
detection method and a prominent low-complexity algorithm are de-
scribed below. In the remainder of this section, we only focus on the
MIMO detector and omit the superscript 1 in the LLR notation, i.e.,
we write LA and LE instead of LA1 and LE1, respectively.

Exact A Posteriori Probability MIMO Detection

Optimum performance in iterative MIMO systems can be achieved
by computing exact a posteriori probabilities (APPs) in the form of
intrinsic a posteriori LLRs [19,67]

Li,b, log

(
P[xi,b = +1 |y,H]
P[xi,b = −1 |y,H]

)
(2.22)

for all bits i = 1, . . . ,MT, b = 1, . . . , Q in the label x. Note that the
sign of an LLR-value L indicates whether the corresponding bit xi,b
is more likely to be +1 or −1, while the magnitude |Li,b| denotes the
reliability of the estimate x̂i,b = sign(Li,b). Large magnitudes indicate
high confidence, whereas low magnitudes correspond to estimates with
low reliability.

Bayes’s theorem applied to (2.22) leads to the equivalent formula-



32 CHAPTER 2. ITERATIVE MIMO DECODING

tion of intrinsic a posteriori LLRs

Li,b = log




∑

s∈X
(+1)

i,b

p(y | s′ = s,H) P[s′ = s]




− log




∑

s∈X
(−1)

i,b

p(y | s′ = s,H) P[s′ = s]


 . (2.23)

where X (+1)
i,b and X (−1)

i,b are the sets of symbol vectors that have the bit
corresponding to the indices i and b equal to +1 and −1, respectively.

SISO detection for iterative MIMO decoding requires the compu-
tation of a posteriori LLRs while considering a priori information. The
a priori information (also known as soft-input) in (2.23) is considered
by means of the so-called prior P[s′ = s]. This prior can be computed
on the basis of a priori LLRs LA

i,b, which represent the probability of
the (transmitted) bit being more likely +1 or −1, i.e.,

LA
i,b = log

(
P[xi,b = +1]
P[xi,b = −1]

)
, ∀i, b. (2.24)

From (2.24) it follows that

P[xi,b = +1] =
exp

(
LA
i,b

)

1 + exp
(
LA
i,b

) (2.25)

P[xi,b = −1] =
1

1 + exp
(
LA
i,b

) (2.26)

and, since in systems employing BICM, the bits xi,b are independent
among spatial streams i = 1, . . . ,MT and among bits b = 1, . . . , Q,
the prior term in (2.23) can be rewritten as

P[s′i = si] =
∏

b:xi,b=+1

exp
(
LA
i,b

)

1 + exp
(
LA
i,b

)
∏

b:xi,b=−1

1

1 + exp
(
LA
i,b

) .

followed by computation of P[s′ = s] =
∏MT

i=1 P[s′i = si].
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Iterative decoding is based on feeding back extrinsic a posteriori
LLR-values [40], denoted by LE

i,b (∀i, b), instead of the intrinsic ones
computed in (2.23). Note that a particular intrinsic LLR-value Li,b
has been computed on the basis of the received vector and all a priori
LLRs LA

i,b (∀i, b), i.e., information of all LLR-values LA
i,b is contained

in Li,b. In order to prevent that “old” a priori information is contained
in the new a posteriori output, only “new information” needs to be
fed back. An extrinsic a posteriori LLR-value only contains a priori
information from LAj,l (where j 6= i and l 6= b).9 The common approach
to compute extrinsic LLRs is to first compute intrinsic LLR according
to (2.22) or (2.23), followed by subtracting the corresponding a priori
LLR-values [19,40]

LE
i,b = Li,b − LA

i,b, ∀i, b. (2.27)

Exact APP detection in iterative MIMO systems corresponds to com-
puting (2.23) followed by (2.27) for each LLR-value. However, straight-
forward evaluation of (2.23) requires computation and summation
of |O|MT probabilities, leading to (often) prohibitive computational
complexity. In order to reduce this complexity, several algorithms
to approximate (2.23) with low computational complexity have been
proposed in the literature. One low-complexity approach is described
below. More sophisticated SISO detection algorithms are treated
in Chapter 3 and Chapter 4.

Linear Soft-Output MMSE Detection

One of the best-known low-complexity approach to approximate (2.23)
is referred to as linear soft-output MMSE detection [68,69]. The main
idea underlying this algorithm is to decompose the exact APP LLR
computation inMT single-input single-output detection problems and
to assume that these detection problems can be solved independently.
This approach is able to significantly lower the computational com-
plexity compared to that of (2.23) and it leads to an acceptable (error-
rate) performance.

The result of the effective channel after (unbiased) MMSE equal-

9We refer to [41] for more details on extrinsic and intrinsic LLRs.
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ization (2.10) is a sufficient statistic and hence, (2.22) is equal to

Li,b = log

(
P[xi,b = +1 | ŷ,H]
P[xi,b = −1 | ŷ,H]

)
(2.28)

where we set ŷ = ŷMMSE = s + ñ of (2.10) for the sake of simplicity
of exposition. The assumption that ŷi = si + ñi is statistically inde-
pendent of xj,b (for j 6= i, ∀b), i.e., the layers i and j 6= i are assumed
to be statistically independent, leads to the approximation

Li,b ≈ log

(
P[xi,b = +1 | ŷi,H]
P[xi,b = −1 | ŷi,H]

)
. (2.29)

Bayes’s theorem applied to the probabilities in (2.29) yields

P[xi,b = x | ŷi,H] =
1

p(ŷi)

∑

a∈Z
(x)

b

p(ŷi | si = a,H) P[si = a] (2.30)

for x ∈ {+1,−1}. The sets Z(+1)
b , Z(−1)

b in (2.30) denote the subsets
of O, where the bth bit corresponds to +1 and −1, respectively. Since
the exact PDF of p(ŷi | si = a,H) is difficult to treat analytically, the
(MMSE-equalized) symbols ŷi are assumed to be complex Gaussian
distributed according to [68,69]

pG(ŷi | si = a) =
1
πν̃2
i

exp

(
− |ŷi − a|

2

ν̃2
i

)
. (2.31)

with E[ŷi] = a and Var[ŷi] = E

[
|ñi|2

]
= ν̃2

i . The intrinsic LLRs

in (2.29) can be approximated further using the Gaussian assump-
tion (2.31) leading to

Li,b ≈ log




∑

a∈Z
(+1)

b

exp

(
− |ŷi − a|

2

ν̃2
i

− log P[si = a]

)



− log




∑

a∈Z
(−1)

b

exp

(
− |ŷi − a|

2

ν̃2
i

− log P[si = a]

)

 . (2.32)
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It is important to note that (2.32) only requires to evaluate |O| terms
per LLR-value, which significantly reduces the computational com-
plexity compared to that of exact APP computation in (2.23). How-
ever, the resulting LLRs are no longer optimal and hence, linear soft-
output MMSE detection entails a performance loss compared to exact
APP detection. Corresponding performance results are given below.

Performance Comparison

In order to characterize the performance of the described SISO detec-
tion algorithms, numerical simulations are performed. Unless explic-
itly stated otherwise, all simulation results presented in the remainder
of this thesis are for a convolutionally encoded (rate 1/2, generator
polynomials [133o 171o], and constraint length 7) iterative MIMO-
OFDM system (as depicted in Figure 2.1) using MT = MR = 4,
16-QAM symbol constellation with Gray labeling as defined in IEEE
802.11n [2], 64 OFDM tones, and a TGn type C channel model [12].
SISO channel decoding is performed using the (sum-product) Bahl,
Cocke, Jelinek, and Raviv (BCJR) algorithm [34]. One frame consists
of 1024 randomly interleaved (across space and frequency) bits corre-
sponding to one (spatial) OFDM symbol. The number of iterations I
corresponds to using the soft-input soft-output MIMO detector (and
the SISO channel decoder) once. All error-rate performance simula-
tions are averaged over 640’000 channel realizations. For each channel
realization a single noise realization has been generated.

Outage Lower-Bound The performance of iterative MIMO detec-
tion using large block-lengths and i.i.d. Rayleigh-fading channels has
been compared to the ergodic channel capacity in [19]. Since most
practical systems employ coding over relatively small block-lengths
(e.g., over one OFDM symbol) and real-world channels usually show
correlation across OFDM tones and spatial streams, the outage capac-
ity characterizes the underlying performance limits more accurately.
We define the ε-outage capacity Cout,ǫ as [9, 70]

P[I (SNR,H) < Cout,ε] = ε (2.33)
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where H =
{

H[1], . . . ,H[N ]
}

contains theMR×MT channel matrices
for the N = 64 OFDM tones and [71]

I(SNR,H) =
1
N

N∑

ℓ=1

log2 det

(
IMR

+
SNR

MT
HH [ℓ]H[ℓ]

)
.

The FER of the system under consideration is lower-bounded by the
outage probability in (2.33) according to [72]

P[I (SNR,H) < RMTQ] ≤ FER(SNR) (2.34)

where RMTQ is the information rate per OFDM tone. Note that the
outage capacity in (2.33) depends on the joint distribution of H, i.e.,
it is determined by the statistics of the channel model. We emphasize
that analytical expressions for (2.34) are often difficult to obtain and
hence, simulations are used to compute the outage lower-bound (OLB)
in (2.34).

Numerical Performance Results Figure 2.3 compares the per-
formance of hard-output ML detection, linear soft-output MMSE de-
tection, and exact APP detection. Furthermore, the OLB in (2.34) is
shown as a reference.

This simulation shows that hard-output ML detection realizes sim-
ilar performance compared to that of linear soft-output MMSE detec-
tion (for I = 1). We emphasize that exact soft-output APP detection
(i.e., I = 1) attains more than 3 dB SNR (at FER=1 %) performance
improvement compared to that of hard-output ML detection. It can
be seen that the linear soft-output MMSE detection is not suited for
iterative MIMO detection, i.e., no significant performance improve-
ments can be observed by increasing the number of iterations. In
contrast, increasing the number of iterations (to I = 4) for the exact
APP detector yields a performance gain of more than 7.5 dB SNR (at
1 % FER) compared to hard-output ML performance. Note that exact
APP detection is able to approach the OLB by approximately 2.5 dB
SNR, which demonstrates that near outage-capacity can be achieved
with iterative MIMO detection. We draw the following conclusions:

• MIMO detection in coded systems attains significantly better
performance than that of uncoded systems (cf. Figure 2.2), since
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I=1,4
I=1

I=1I=2
I=4

Hard-output ML

Soft-output MMSE

Figure 2.3: Numerical performance results of hard-output ML detec-
tion, linear soft-output MMSE detection, and exact APP detection
compared to the outage lower-bound (OLB).

the channel code is able to further mitigate the impact of fading
and the additive Gaussian noise.

• Surprisingly, the performance of hard-output ML detection is
similar to that of linear soft-output MMSE detection in this
scenario. Hence, low-complexity soft-output MIMO detection
can outperform hard-output schemes that require high computa-
tional complexity. In coded systems, it can therefore be more im-
portant to compute soft-outputs with a low-complexity MIMO
detection scheme, instead of using a (computationally complex)
hard-output detector that achieves full diversity. Note that op-
timum performance is still achieved by a MIMO detector that
computes high-quality soft-outputs and achieves full diversity,
such as exact APP for example.10

10These observations are in accordance with the results of [13]; therein it was
shown that linear soft-output MMSE detection is able to outperform hard-output
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• Linear soft-output MMSE detection is one of the most promis-
ing solutions for low-complexity detection in coded MIMO sys-
tems [47]. However, this algorithm is not suited for iterative
MIMO decoding.

Summarizing these observations enables us to conclude that iterative
MIMO decoding is able to substantially improve the performance of
coded MIMO systems and is even able to approach the OLB up to
a few dB. However, optimal soft-input soft-output MIMO detection
according to (2.23) entails prohibitive computational complexity.

In the next two chapters, we focus on soft-input soft-output MIMO
detection schemes that require low computational complexity, but
achieve near-optimal SISO detection performance in iterative MIMO
systems.

ML detection (in terms of information transfer characteristics) for low-rate codes.



Chapter 3

SISO MMSE Parallel
Interference
Cancellation

The soft-input soft-output MIMO detection algorithm described in
this chapter is based on the algorithm developed by Wang and Poor in
1999 [20]. In Section 3.2, we review the SISO MMSE parallel interfer-
ence cancellation (PIC) algorithm and employ various optimizations
on algorithmic level in order to obtain low computational complexity.
In Section 3.3, we describe a corresponding VLSI architecture. Perfor-
mance results of the resulting ASIC implementation in 90 nm comple-
mentary metal-oxide semiconductor (CMOS) technology prove that
the optimized SISO MMSE PIC detection algorithm enables high-
performance iterative MIMO decoding in practical systems.

3.1 Algorithm

The SISO MMSE PIC detection algorithm has initially been devel-
oped by Wang and Poor in 1999 [20] for iterative decoding in MU-
CDMA systems using binary phase-shift keying (BPSK) constella-
tions. In 2002, Tüchler, Singer, and Kötter [42] extended the SISO

39
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MMSE PIC algorithm to more general phase-shift keying (PSK) sym-
bol alphabets and proposed first approaches to reduce the computa-
tional complexity. In the same year, additional methods to reduce
complexity or to improve the performance of the algorithm have been
proposed by Dejonghe and Vandendorpe [73] and Witzke et al. [43].
In 2006, Tomasoni et al. [74] proposed further methods for complex-
ity reduction. The first FPGA implementation of a SISO MMSE PIC
detector was proposed in 2008 by Boher et al. [75], which, however,
employs a sub-optimal MMSE filter in combination with STBCs to
achieve satisfying performance.

In the remainder of this section we review the SISO MMSE PIC
algorithm as proposed in [20,42], i.e., without employing methods for
complexity reduction.

3.1.1 The SISO MMSE PIC Algorithm

The main idea underlying the SISO MMSE PIC algorithm is to com-
pute estimates of the transmitted symbols based on the a priori LLRs
obtained from the SISO channel decoder. These estimates are used to
cancel interference (caused by the MIMO channel) in the received vec-
tor. The remaining noise-plus-(self)-interference (NPI) term is then
equalized using a MMSE filter, followed by computation of per-stream
a posteriori LLRs. As detailed in the following, the SISO MMSE
PIC algorithm performs soft-input soft-output MIMO detection in
five steps.

Computation of Soft-Symbols

In the first step, estimates of the transmitted symbols —referred to
as “soft-symbols” in the following— are computed with the aid of the
a priori information obtained from the SISO channel decoder. The
soft-symbols ŝi (i = 1, . . . ,MT) are computed according to [20,42]

ŝi = E[si] =
∑

a∈O

P[si = a] a (3.1)

where expectation in (3.1) is on the basis of a priori information and
P[si = a] corresponds to the a priori probability of the symbol a ∈ O.
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The error between the transmitted symbol si and the soft-symbol ŝi
is defined as

ei = si − ŝi. (3.2)

The reliability of each soft-symbol ŝi is given by the variance of the
error in (3.2), i.e.,

Ei = Var[si] = E

[
|ei|2

]
. (3.3)

The a priori probabilities involved in the computation of the soft-
symbols (3.1) and their variances (3.3) are calculated from the a priori
LLRs (2.24) delivered by the channel decoder. From (2.25) and (2.26)
follows that the probability of the transmitted bit xi,b corresponds
to [41]

P[xi,b = x] =
exp

(
1
2xL

A
i,b

)

exp
(

+ 1
2L

A
i,b

)
+ exp

(
− 1

2L
A
i,b

) (3.4)

for x = {+1,−1}. Since we assume BICM, the bits resulting from
the channel code are independent among spatial streams i and bits b.
Hence, the a priori probabilities in (3.1) can be computed as

P[si = a] =
Q∏

b=1

P[xi,b = [a]b] , ∀i (3.5)

using (3.4) and [a]b refers to the bth bit of the symbol a ∈ O (see (2.1)).

Parallel Interference Cancellation

The second step in the SISO MMSE PIC algorithm amounts to cancel
interference in the received vector y (see Eq. 2.2) with the aid of the
soft-symbols (3.1). To this end, the PIC process considers the ith
stream and cancels interference of all other streams (i.e., j 6= i) using
the results of (3.1); this leads to the ith interference-canceled received
vector

ŷi, y−
∑

j 6=i

hj ŝj = hisi + ñ, ∀i (3.6)
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where
∑
j 6=i in (3.6) refers to summation over j = 1, . . . ,MT for which

j 6= i. The noise-plus-(remaining)-interference (NPI) vector ñ in (3.6)
corresponds to

ñ =
∑

j 6=i

hjej + n. (3.7)

It is important to note that PIC in (3.6) has been used to transform
the MIMO input-output relation (2.2) into a SIMO system with a
NPI-vector that is no longer circularly symmetric complex Gaussian
distributed.

MMSE Equalization

The third step amounts to suppressing the NPI (3.7) in the interference-
canceled vector (3.6) using a MMSE filter. Similarly to (2.8), the
MMSE filter vectors are computed according to

w̃Hi , arg min
w̃H∈C1×MT

E

[∣∣w̃H ŷi − si
∣∣2
]
, i = 1, . . . ,MT (3.8)

which leads to the MMSE filter vectors w̃Hi minimizing the mean-
square error (MSE) between the filtered (and interference-canceled)
vector ŷi and the transmitted symbol on the ith stream. As derived
in Appendix A.1, the MMSE filter vectors satisfying (3.8) correspond
to [42]

w̃Hi = Esh
H
i

(
HΛ̃iH

H +NoIMR

)−1

(3.9)

with the real-valued MT ×MT diagonal matrix Λ̃i such that

Λ̃j,j =

{
Ej , j 6= i
Es, j = i

where the variances Ej are defined in (3.3). We emphasize that com-
putation of (3.9) requires a MR ×MR-dimensional matrix inversion
and needs to be carried out for each stream (i.e., MT times) for each
received vector and each iteration. In order to substantially reduce
this computational burden, we propose a low-complexity method to
compute the MMSE filter vectors w̃Hi in (3.9) in Section 3.2.
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MMSE Filtering

The MMSE filter vectors in (3.9) are used to equalize the NPI vector
from the corresponding interference-canceled received vectors in (3.6).
The ith result of this filtering process is

z̃i, w̃Hi ŷi = w̃Hi hisi + w̃Hi ñ (3.10)

which consists of an (equalized) signal part and a filtered NPI part.
In order to compute a posteriori LLRs from (3.10), the noise vector
w̃Hi ñ is assumed to be Gaussian distributed with mean

E[z̃i] = w̃Hi hisi = µ̃isi (3.11)

and variance (of the NPI term in (3.7)) according to

ν̃2
i = Var[zi] = w̃Hi


∑

j 6=i

Ejhjh
H
j +NoIMR


 w̃i (3.12)

i.e., we have z̃i ∼ CN
(
µ̃isi, ν̃

2
i

)
for i = 1, . . . ,MT.

A Posteriori LLR Computation

With PIC, the MIMO input-output relation (2.2) has been trans-
formed into MT single-input single-output systems (cf. (3.10)). By
assuming that these MT single-stream systems are independent, we
can approximate the intrinsic a posteriori LLRs in (2.22) as follows

Li,b ≈ log

(
P[xi,b = +1|z̃i]
P[xi,b = −1|z̃i]

)
, ∀i, b (3.13)

using z̃i in (3.10). Bayes’s rule applied to the conditional probabilities
P[xi,b = ±1 | z̃i] in (3.13) leads to

P[xi,b = x | z̃i] =
1

p(z̃i)

∑

a∈Z
(x)

b

p(z̃i | si = a) P[si = a] (3.14)

where Z(+1)
b and Z(−1)

b refer to the subsets of O, where the bth bit
corresponds to +1 and −1, respectively (see (2.30)). Inserting (3.14)
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into the approximated intrinsic a posteriori LLRs in (3.13) yields

Li,b ≈ log

( ∑
a∈Z

(+1)

b

p(z̃i | si = a) P[si = a]
∑
a∈Z

(−1)

b

p(z̃i | si = a) P[si = ai]

)
. (3.15)

In order to simplify (3.15), the PDF p(z̃i | si = a) is approximated
(analogous to (2.31)) by the Gaussian PDF of z̃i given the transmit
symbol a ∈ O, i.e.

pG(z̃i | si = a) =
1
πν̃2
i

exp

(
− |z̃i − µ̃ia|

2

ν̃2
i

)
(3.16)

where the mean µ̃i and variance ν̃i are defined in (3.11) and (3.12),
respectively. Using the results of (3.4) yields

P[si = ai] =
Q∏

b=1

P[xi,b = [ai]b] =
1
ci

Q∏

b=1

exp

(
1
2

[ai]bL
A
i,b

)

with ci =
∏Q
b=1

(
exp(+ 1

2L
A
i,b) + exp(− 1

2L
A
i,b)
)
. The Gaussian approx-

imation in (3.16) enables to write the (approximated) intrinsic a pos-
teriori LLRs in (3.15) as [42]

L̃D
i,b, log




∑

a∈Z
(+1)

b

exp

(
−|z̃i − µ̃ia|

2

ν̃2
i

+
Q∑

b=1

[a]b
2
LA
i,b

)


− log




∑

a∈Z
(−1)

b

exp

(
−|z̃i − µ̃ia|

2

ν̃2
i

+
Q∑

b=1

[a]b
2
LA
i,b

)
 . (3.17)

The extrinsic a posteriori LLRs of the SISO MMSE PIC are finally
obtained by computing L̃E

i,b = L̃D
i,b − LA

i,b as done in (2.27).
It is important to note that the estimates produced by the MMSE

filter vectors in (3.9) are biased. However, since we account for the fact
that w̃Hi hi is not necessarily equal to one, i.e., we use µ̃isi = w̃Hi hisi
in the LLR computation (3.17) instead of si, only the LLRs computed
by the SISO MMSE PIC algorithm are obtained through an unbiased
MMSE estimation process.



3.1. ALGORITHM 45

Figure 3.1: Iterative MIMO decoder using the SISO MMSE PIC de-
tector and a channel decoder that provides extrinsic LE2 and intrin-
sic LD2 (corresponding to the dashed line) a posteriori LLRs [43].

3.1.2 Simulation Results

In order to characterize the performance of the SISO MMSE PIC
algorithm described above, we perform simulations using a slightly
extended (compared to that shown in Figure 2.1) iterative MIMO
decoder as depicted in Figure 3.1; this decoder contains extrinsic and
(additionally) intrinsic LLRs on the feedback path from the SISO
channel decoder to the SISO MMSE PIC detector. The reason for
this additional feedback path will be clarified below.

Intrinsic vs. Extrinsic A Priori Input Witzke et al. [43] real-
ized that using intrinsic a priori LLRs (denoted by LAD1) for soft-
symbol computation leads to a noticeable performance improvement
compared to using extrinsic information instead. Extrinsic a priori
LLRs (denoted by LAE1) are only used in (3.17).

Figure 3.2 shows the performance of iterative MIMO decoding us-
ing the SISO MMSE PIC algorithm and confirms the observation
made in [43]. It can be seen that for a larger number of iterations I,
the SNR gap between intrinsic and extrinsic LLR feedback for soft-
symbol computation increases. The method described in [43] enables
a performance improvement (compared to the first iteration) of more
than 7.5 dB SNR (measured at 1% FER), if performing four iterations.
For a large number of iterations, the performance starts to saturate
and hence, using more than four iterations does not provide significant
improvements.
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I=1
I=2

I=4

intrinsic
extrinsic

Figure 3.2: FER comparison of intrinsic and extrinsic a priori LLRs
for soft-symbol computation in the SISO MMSE PIC algorithm.

We conclude that iterative MIMO decoding based on the SISO
MMSE PIC enables to obtain significant performance gains compared
to that of soft-output-only MIMO detection. If using the SISO MMSE
PIC algorithm, we will only consider intrinsic a priori input for slic-
ing and extrinsic a priori input for the computation of (3.17) in the
remainder of this thesis.

Comparison with Exact APP Figure 3.3 compares the perfor-
mance of the SISO MMSE PIC algorithm to exact APP MIMO de-
tection as described in Section 2.2.2. For a given number of itera-
tions, exact APP performance always outperforms the SISO MMSE
PIC algorithm. However, since i) exact APP detection is —due to the
exceedingly high computational complexity— not suitable for practi-
cal applications and ii) both detector algorithms attain similar perfor-
mance for a large number of iterations, SISO MMSE PIC is one of the
most promising algorithms for low-complexity and high-performance
soft-input soft-output MIMO detection.
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I=1

I=1

I=2

I=2

I=4

I=4

I=8

Figure 3.3: Numerical performance results of the SISO MMSE PIC
algorithm compared to exact APP.

3.2 Algorithmic Optimizations

Straightforward implementation of the SISO MMSE PIC algorithm
as described above entails high computational complexity and hence,
is not well-suited for implementation in practical systems. The com-
plexity of the algorithm is mainly dominated by the need for multiple
matrix inversions per symbol vector and per iteration (required for
computation of the MMSE filter vectors). This fact is further aggra-
vated by the presence of exponential functions (required for compu-
tation of the soft-symbols and a posteriori LLRs), which leads to an
exceedingly large dynamic range and hence, inhibits efficient fixed-
point implementation.

In this section, we deploy a variety of techniques to reduce the
computational complexity of the algorithm, which enables practical
implementation without (noticeably) degrading the error-rate perfor-
mance. The reference VLSI implementation developed in Section 3.3
proves that the resulting low-complexity variant of the SISO MMSE
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PIC algorithm can indeed be implemented efficiently in practical sys-
tems.

3.2.1 Reduction of Algorithmic Complexity

In the following discussion, we describe several techniques to reduce
complexity on algorithmic level. Some of these techniques rest on
the assumption that Gray-mapping is used, while other methods can
be applied for general mappings. In particular, we describe a novel
approach to reduce the number of matrix inversions, i.e., only one
matrix inversion is required for computation of all MT MMSE filter
vectors, while maintaining the performance of the SISO MMSE PIC
algorithm as described in Section 3.1.1. For the sake of simplicity of
exposition, the MIMO channel matrix is assumed to be normalized
according to (MTEs)−

1
2 H in the discussion below.

Efficient Soft-Symbol and Variance Computation

Consider the constellation sets and the Gray-mappings depicted in
Figure 3.4. The real and imaginary part of each constellation symbol
are mapped independently, i.e., some bits are used only for mapping
of the real part and some only for the imaginary part. Note that this
mapping is used in, e.g., the IEEE 802.11n standard [2], and that it
can be exploited to substantially reduce the computational complexity
associated with computation of the soft-symbols and their variances.

Efficient Soft-Symbol Computation We start by rewriting the
bit-probability P[xi,b = [si]b] in (3.4) as

P[xi,b = [si]b] =
1
2

(
1 + x tanh

(
1
2
LA
i,b

))

=
1
2

(
1 + [si]b sign

(
LA
i,b

)
tanh

(
1
2

∣∣LA
i,b

∣∣
))

= pi,b (3.18)

where the hyperbolic tangent function in (3.18) can efficiently be ap-
proximated in hardware by using a look-up table (LUT) for the posi-
tive part only. Computation of pi,b, hence, requires low complexity as
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(a) BPSK (b) 4-QAM

(c) 16-QAM (d) 64-QAM

Figure 3.4: Constellations with Gray-mapping as defined in [2].

it only requires a table look-up (in a small LUT, where only half the
tanh-values need to be stored) and additions/subtractions.

We now rewrite the soft-symbols in (3.1) as

ŝi = a(si) +
√
−1b(si), ∀i (3.19)

where ℜ{ŝi} = a(si) and ℑ{ŝi} = b(si) are both real-valued functions
of the transmitted symbol si. Tomasoni et al. [74] realized that the
functions a(si) and b(si) can be computed efficiently in presence of
Gray mappings that separate the real and imaginary part. Efficient
computation of the soft-symbols in (3.19) is obtained by computing
the functions1 in Table 3.1 and using the probabilities in (3.18).

1Note that the functions shown in Table 3.1 are obtained by explicit computa-
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Table 3.1: Low-complexity computation of soft-symbols according
to [74] for the IEEE 802.11n [2] Gray mapping.

ℜ{ŝi} = a(si)

BPSK (1− 2pi,1)
4-QAM (1− 2pi,1)
16-QAM (1− 2pi,1)(1 + 2pi,2)
64-QAM (1− 2pi,1)(4pi,2pi,3 + 2pi,2 − 2pi,3 + 3)

ℑ{ŝi} = b(si)

BPSK 0
4-QAM (1− 2pi,2)
16-QAM (1− 2pi,3)(1 + 2pi,4)
64-QAM (1− 2pi,4)(4pi,5pi,6 + 2pi,5 − 2pi,6 + 3)

Efficient Variance Computation The variances of the soft-
symbol can be computed in a similar fashion. We start by rewrit-
ing (3.3) as

Ei = E

[
|si|2

]
−
∣∣E[si]

∣∣2 = E

[
|si|2

]
− |ŝi|2 , ∀i (3.20)

where |ŝi|2 = a2(si)+b2(si) can be computed from the soft-symbol ŝi.
Similarly to (3.19), the remaining term in (3.20) can be decomposed
into

E

[
|si|2

]
= c(si) + d(si) (3.21)

where c(si) and d(si) only depend on the real and imaginary part
of si, respectively [74]. Both functions in (3.21) can efficiently be
computed (in a similar manner as it has been done above) using the
results provided in Table 3.2. We emphasize that efficient soft-symbol
computation according to (3.19) and variance computation as shown
in (3.20) provide exact results (i.e., no approximations are involved).

tion of the expectation operation in (3.1) followed by algebraic simplifications.
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Table 3.2: Low-complexity variance computation according to [74] for
the IEEE 802.11n [2] Gray mapping.

c(si)

BPSK 1
4-QAM 2
16-QAM (1 + 8pi,2)
64-QAM (32pi,2pi,3 + 16pi,2 − 8pi,3 + 9)

d(si)

BPSK 0
4-QAM 0
16-QAM (1 + 8pi,4)
64-QAM (32pi,5pi,6 + 16pi,5 − 8pi,6 + 9)

Low-Complexity MMSE Filter Computation

Computation of the MT MMSE filter vectors in (3.9) requires MT

matrix inversions. The matrices to be inverted are of dimension
MR ×MR, which is sub-optimal (in terms of computational complex-
ity) for more receive than transmit antennas. We emphasize that ma-
trix inversion is a computational complex task, posing significant chal-
lenges for VLSI implementation (see, e.g., [15]). Several approaches
have been proposed in the literature in order to reduce the complexity
associated with the MMSE filter vector computation in (3.9). Tüchler
et al., for example, proposed an approach based on rank-1 updates in
order to avoid the recalculation of (full) matrix inversions [42]. Toma-
soni et al. [74] described an approach that requires to compute MT

matrices, but only one row of the MT inverses needs to be computed.
However, both methods still require prohibitively high computational
complexity in practice.

In order to significantly reduce the computational complexity as-
sociated with matrix inversion, we propose a novel approach that only
requires to compute one matrix inversion (of dimension MT ×MT)
to compute all MT MMSE filter vectors at once. We emphasize that
the proposed approach yields the same results as if using the MMSE
filter vectors described in (3.9). The derivation of our low-complexity
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approach is detailed in Appendix A.2 and amounts to computing

WH =
(
HHHΛ +NoIMT

)−1
HH (3.22)

where Λ is a MT ×MT diagonal matrix with Λi,i = Ei from (3.3) for
i = 1, . . . ,MT. The rows of WH correspond to the MT MMSE filter
vectors, i.e.,

WH = [ w1 · · · wMT
]H .

It is important to note that the MMSE filter vectors wHi (∀i) obtained
through computation of (3.22) correspond to scaled (by a real-valued
constant) versions of w̃Hi given in (3.9). We emphasize that constant
factors do not affect the resulting a posteriori LLRs. A detailed proof
for this property is given in Appendix A.2.1. We emphasize that the
computation according to (3.22) can be performed in a numerical sta-
ble way (corresponding results are shown in Section 3.2.2) and hence,
is suitable for hardware implementation.

The low-complexity MMSE filter in (3.22) allows additional insight
to the performance of the SISO MMSE PIC algorithm:

• Consider the case where LA
i,b = 0 (∀i, b). In this case, all soft-

estimates are equal to zero and their variances are equal to

Ei = E

[
|si|2

]
= Es. Hence, the resulting MMSE filter vectors

correspond to

WH =
(
HHHEs +NoIMT

)−1
HH

which is a scaled version of the MMSE estimator matrix given
in (2.9), i.e., WH = EsM. Hence, if no a priori information is
available (e.g., for I = 1), the SISO MMSE PIC algorithm per-
forms the same computations as the linear soft-output MMSE
detector and hence, both detectors achieve the same perfor-
mance.

• If perfect a priori information is available, i.e., if LA
i,b = xi,b · ∞

(∀i, b), then Ei = 0 (∀i); additionally, the soft-symbols corre-
spond to the transmitted symbols (i.e., ŝi = si, ∀i). Hence, the
result of the PIC process is

ŷi = hisi + n, ∀i
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which corresponds to a SIMO system with MR receive antennas
and n ∼ CN

(
0, NoIMR

)
. Since the filter vectors correspond to

scaled versions of the matched filter, i.e., NoWH = HH , the
SISO MMSE PIC algorithm performs optimal detection in this
case.

We conclude that the SISO MMSE PIC algorithm attains a perfor-
mance ranging from soft-output MMSE detection to optimum soft-
output MIMO detection [42]; this behavior can also be seen in the
information transfer characteristic simulation shown in Section 4.6.6.

Efficient A Posteriori LLR Computation

In the following paragraphs, we combine several methods for complex-
ity reduction in the a posteriori LLR computation using the results
of [73,74,76].

Efficient Distance-Term Calculation To reduce the complexity
of a posteriori LLR computation, we start by defining an unbiased
version of the MMSE filter in (3.10) such that

zi =
z̃i
µ̃i

=
wHi ŷi
wHi hi

, ∀i (3.23)

which enables to rewrite (3.17) as follows:

L̃D
i,b = log




∑

a∈Z
(+1)

b

exp

(
−µ

2
i |zi − a|2
ν2
i

+
Q∑

b=1

[a]b
2
LA
i,b

)


− log




∑

a∈Z
(−1)

b

exp

(
−µ

2
i |zi − a|2
ν2
i

+
Q∑

b=1

[a]b
2
LA
i,b

)
 (3.24)

where µi and ν2
i result from (3.11) and (3.12), respectively. Note that

we are using the (low-complexity) MMSE filter vectors wHi instead of
w̃Hi in the sequel.

The result of the derivation shown in Appendix A.3 enables to
compute the variances ν2

i (∀i) based on (3.12) in a more efficient
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manner, i.e.,

ν2
i = wHi hi − Ei

(
wHi hi

)2

and, with µi = wHi hi, we can state the post-equalization signal-to-
noise-and-interference ratio (SINR) on the ith stream as

ρi =
µ2
i

ν2
i

=

(
wHi hi

)2

wHi hi − Ei
(
wHi hi

)2 =
µi

1− Eiµi
. (3.25)

It is important to note that the post-equalization SINR obtained
in (3.25) can be used to simplify the a posteriori LLR computation
given in (3.24) to

L̃D
i,b = log




∑

a∈Z
(+1)

b

exp

(
−ρi |zi − a|2 +

Q∑

b=1

[a]b
2
LA
i,b

)


− log




∑

a∈Z
(−1)

b

exp

(
−ρi |zi − a|2 +

Q∑

b=1

[a]b
2
LA
i,b

)
 (3.26)

which, with zi = µ−1
i wHi ŷi from (3.23) and (3.25), requires signifi-

cantly less computational complexity compared to the initial formu-
lation given in (3.17), while leading to the same performance.

Max-Log Approximation So far, all techniques to reduce the
computational complexity of the SISO MMSE PIC algorithm did not
have any influence on the error-rate performance. Now, we apply the
max-log approximation [77]

log

(
∑

i

exp(di)

)
≈ max

i
{di}. (3.27)

which additionally reduces computational complexity with a generally
negligible performance loss. In particular, application of the max-log
approximation (3.27) to the a posteriori LLRs in (3.26) helps to avoid
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I=8

Figure 3.5: Impact on performance of the max-log approximation and
of neglecting the priors in the a posteriori LLR computation.

computation of exponential functions, i.e.,

L̃D
i,b ≈ min

a∈Z
(−1)

b

{
ρi |zi − a|2 −

Q∑

b=1

[a]b
2
LA
i,b

}

− min
a∈Z

(+1)

b

{
ρi |zi − a|2 −

Q∑

b=1

[a]b
2
LA
i,b

}
(3.28)

which renders it suitable for hardware implementation. We emphasize
that using the max-log approximation in (3.28) entails a performance
loss (except if using BPSK constellations). However, the associated
performance loss is negligible if Gray-mapping is used (corresponding
simulation results are shown in Figure 3.5).

Avoiding Priors during LLR Computation It is important to
realize that (3.28) yields strong similarities to SISO detection in single-
antenna systems. As it has been demonstrated in [78] using extrinsic
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information transfer (EXIT) chart analysis, the improvement in terms
of mutual information at the output of a single-antenna SISO detector
is low if Gray mapping is used. Moreover, it was shown in [79] that
neglecting the priors in (3.28) does not entail a performance loss for
BPSK and 4-QAM constellations for Gray-mapping. Hence, we con-
clude that, in general, computation of (3.28) without using the priors
does not lead to a severe degradation in terms of error-rate perfor-
mance; this claim is supported by the simulation results shown in
Figure 3.5. Hence, the resulting a posteriori LLRs (3.28) correspond
to

L̃E
i,b, ρi

(
min
a∈Z

(−1)

b

|zi − a|2 − min
a∈Z

(+1)

b

|zi − a|2
)
. (3.29)

Note that we defined the result of (3.29) as an extrinsic LLR. The
reason for this definition is to explicitly state that computation ac-
cording to (2.27) is no longer required (i.e., the L̃E

i,b (∀i, b) are directly
fed to the channel decoder). In addition, priors do not directly affect
the a posteriori LLR computation. It is, however, important to note
that the priors still influence computation of soft-symbols and their
variances. We emphasize that (3.29) does no longer require to feed
back extrinsic a priori LLRs to the SISO MMSE PIC; this leads to
an additional simplification of the iterative MIMO decoder structure
depicted in Figure 3.1.

Low-Complexity LLR Computation Neglecting the priors in
the LLR computation enables to use an elegant low-complexity method
developed by Collings et al. [76] for computation of (3.29). This
method has been applied to a soft-output MMSE detector implemen-
tation in [47] and it was shown to significantly lower the computational
complexity associated with LLR computation (if a Gray-mapping is
used). The key idea developed in [76] is to rewrite the max-log LLRs
in (3.29) as L̃E

i,b = ρiλb(zi) with

λb(zi) = min
a∈Z

(−1)

b

|zi − a|2 − min
a∈Z

(+1)

b

|zi − a|2

which can be computed efficiently in hardware by using the results
from Table 3.3 for the IEEE 802.11n-mapping [2]. For a detailed
derivation of the results in Table 3.3, we refer to [47,76,79].
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Table 3.3: Low-complexity max-log LLR computation for IEEE
802.11n Gray-mapping according to [76].

b λb(zi) Range

BPSK 1 4ℜ{zi} ∀ℜ{zi}

4-QAM
1 4ℜ{zi} ∀ℜ{zi}
2 4ℑ{zi} ∀ℑ{zi}

16-QAM

1 4ℜ{zi} |ℜ{zi}| ≤ 2
8ℜ{zi} − 8sign(ℜ{zi}) |ℜ{zi}| ≥ 2

2 8− 4 |ℜ{zi}| ∀ℜ{zi}
3 4ℑ{zi} |ℑ{zi}| ≤ 2

8ℑ{zi} − 8sign(ℑ{zi}) |ℑ{zi}| ≥ 2
4 8− 4 |ℑ{zi}| ∀ℑ{zi}

64-QAM

1 4ℜ{zi} |ℜ{zi}| ≤ 2
8ℜ{zi} − 8sign(ℜ{zi}) 2 ≥ |ℜ{zi}| ≤ 4

12ℜ{zi} − 24sign(ℜ{zi}) 4 ≥ |ℜ{zi}| ≤ 6
16ℜ{zi} − 48sign(ℜ{zi}) |ℜ{zi}| ≥ 6

2 24− 8 |ℜ{zi}| |ℜ{zi}| ≤ 2
16− 4 |ℜ{zi}| 2 ≥ |ℜ{zi}| ≤ 6
40− 8 |ℜ{zi}| |ℜ{zi}| ≥ 6

3 4 |ℜ{zi}| − 8 |ℜ{zi}| ≤ 4
24− 4 |ℜ{zi}| |ℜ{zi}| ≥ 4

4 4ℑ{zi} |ℑ{zi}| ≤ 2
8ℑ{zi} − 8sign(ℑ{zi}) 2 ≥ |ℑ{zi}| ≤ 4

12ℑ{zi} − 24sign(ℑ{zi}) 4 ≥ |ℑ{zi}| ≤ 6
16ℑ{zi} − 48sign(ℑ{zi}) |ℑ{zi}| ≥ 6

5 24− 8 |ℑ{zi}| |ℑ{zi}| ≤ 2
16− 4 |ℑ{zi}| 2 ≥ |ℑ{zi}| ≤ 6
40− 8 |ℑ{zi}| |ℑ{zi}| ≥ 6

6 4 |ℑ{zi}| − 8 |ℑ{zi}| ≤ 4
24− 4 |ℑ{zi}| |ℑ{zi}| ≥ 4
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Preprocessing for SISO MMSE PIC

Tomasoni et al. [74] described a method that reduces the amount of re-
current operations in the SISO MMSE PIC algorithm. This technique
is referred to as preprocessing2 and it amounts to computing —prior
to detection— the Gram matrix of the MIMO channel matrix

G = [ g1 · · · gMT
] = HHH

and the matched filter (MF) output

yMF = HHy.

In the remainder of this paragraph, we show how our improved version
of the SISO MMSE PIC algorithm can be performed only based on
G, yMF, the noise variance No, and the priors LA

i,b (i, b).
Instead of performing PIC using the received symbol (3.6), parallel

interference cancellation is now performed on the basis of the MF
output according to

ŷMF
i , yMF −

∑

j 6=i

gj ŝj . (3.30)

Preprocessing does no longer require computation of the MMSE filter
matrix in (3.22); instead, a partial MMSE filter matrix needs to be
computed

A−1 =(GΛ +NoIMT
)−1 (3.31)

where
(
A−1

)H
= [ a1 · · · aMT

]H , i.e., the vector ai corresponds the
ith column of A−1. Using the result of the MF PIC process in (3.30)
and the partial MMSE filter matrix (3.31), the unbiased MMSE esti-
mate in (3.23) can efficiently be computed according to

zi =
aHi ŷMF

i

µi
, i = 1, . . . ,MT (3.32)

where µi = aHi gi (∀i). The post-equalization SINR terms ρi (∀i)
can be computed from µi through (3.25). Finally, the a posteriori

2This preprocessing technique should not be confused with tasks that only need
to be performed once per frame.
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LLRs of the SISO MMSE PIC can be computed according to (3.29).
It is important to note that preprocessing essentially avoids costly
re-computation of scalar products (which involve additions and mul-
tiplications) and hence, the complexity of a corresponding VLSI im-
plementation can be reduced (see Section 3.3).

3.2.2 Efficient Matrix Inversion

The main computational burden of the low-complexity SISO MMSE
PIC algorithm developed in the last two sections, still corresponds
to the complexity of the required matrix-inversion task. In order to
design a hardware-efficient VLSI implementation of the detector, a
suitable matrix-inversion algorithm needs to be found. In this section,
we briefly evaluate potential candidates for efficient matrix inversion
and we identify the LU-decomposition (LUD)-based matrix-inversion
approach to be the most promising one.

Comparison of Existing Matrix-Inversion Algorithms

In the last few years, a variety of matrix inversion algorithms and
corresponding VLSI implementations for linear MIMO detection have
been proposed, e.g., [80–83]. We emphasize that the matrix to be in-
verted for linear (soft-output) MMSE detection (2.9) is Hermitian (or
self-adjoint), which enables to reduce the computational complexity
by exploiting the structure of the matrix. However, the matrix to be
inverted (see (3.31)) is, in general, not Hermitian. Hence, most of the
available inversion algorithms can not be applied to our problem.3

Another prominent approach is QRD-based matrix inversion,
e.g., [81]. The main advantage of this method is that the QR-
decomposition itself can be performed with high numerical stabil-
ity, which renders this approach suitable for fixed-point implementa-
tion [84]. Unfortunately, the QRD requires, in general, a larger num-
ber of arithmetic operations compared to other inversion schemes,
e.g., [15, 85]. In addition, SISO MMSE PIC requires explicit com-
putation of the inverse A−1 in (3.31). Hence, an additional back-
substitution step is needed. In summary, QRD-based matrix inversion

3Inversion algorithms that are able exploit Hermitian structure are, e.g., the
Ricatti recursion [15,80] or divide-and-conquer inversion [82,83].
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Algorithm 1 In-place LU-decomposition [87]
for k = 1, . . . ,MT − 1 do
rk = 1/Ak,k
for i = k + 1, . . . ,MT do
Ai,k = rkAi,k

end for
for i = k + 1, . . . ,MT do

for j = k + 1, . . . ,MT do
Ai,j = Ai,j −Ai,kAk,j

end for
end for

end for
rMT

= 1/AMT,MT

does not seem to be suitable in terms of computational complexity for
our application.

Matrix inversion based on the singular value decomposition (SVD)
has the potential to reduce the amount of recurrent operations if only
the priors change (and hence, Λ). However, computation of a SVD
itself requires high complexity in hardware [86]. It is therefore very
likely that the total complexity (i.e., SVD combined with inversion)
is significantly higher than that of conventional matrix inversion al-
gorithms. Hence, SVD-based matrix inversion algorithms do not offer
an advantage in terms of performance or complexity.

As it has been noted in [15] and [85], LUD-based matrix inver-
sion exhibits —among all popular matrix inversion algorithms— the
lowest number of arithmetic operations. Furthermore, this method
does not require that the matrix to be inverted is Hermitian. These
two advantages (combined with the fact that no VLSI implementa-
tion for MIMO detection of a LUD-based matrix inversion has been
reported in the open literature) led to the decision of using this matrix-
inversion method in SISO MMSE PIC detector architecture described
in the next section.

LUD-based Matrix Inversion

The matrix inversion algorithm for computation of the partial
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MMSE filter matrix in (3.31) used in the following is based on the
LUD algorithm described in [87]. We first compute the LUD

A = LU (3.33)

where A is given in (3.31), L is a MT ×MT-dimensional complex-
valued lower-triangular matrix with Li,i = 1 (i = 1, . . . ,MT) and
the complex-valued matrix U is of dimension MT ×MT and upper-
triangular. To perform the decomposition in (3.33), we use the
in-place LUD algorithm described in [87], which is summarized in
Algorithm 1. The resulting matrix A′ contains the L (without its
main diagonal) and U such that

A′ =




U1,1 U1,1 · · · U1,MT

L2,1 U2,2 · · · U2,MT

...
...

. . .
...

LMT,1 LMT,2 · · · UMT,MT


 .

Note that MT reciprocal operations are required and the resulting
values 1/Ai,i (∀i) in Algorithm 1 (line 1) are stored in a separateMT-
dimensional vector r (for reasons that will be explained below). Note
that the LUD can, in general, be efficiently computed in hardware,
except for the reciprocals ri = 1/Ai,i (i = 1, . . . ,MT). We refer
to Section 3.3.1 for corresponding implementation details.

Straightforward matrix inversion based on the LUD amounts to a
separate inversion of L and U, followed by a matrix multiplication,
i.e., computation of A−1 = U−1L−1. It is important to note that
this approach is not very efficient in terms of the involved number of
arithmetic operations [79]. In order to attain a more efficient matrix-
inversion procedure, we employ forward and backward substitution.
To this end, we write

AX = LUX = IMT
(3.34)

where X = [ x1 · · · xMT
] = A−1 and IMT

= [ e1 · · · eMT
], where ei

denotes the ith unit vector. The main idea underlying our LUD-based
matrix inversion approach corresponds to determine the vectors xi
(∀i) in two steps. The first step amounts to computing the vectors vi
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according to

Lvi = ei, i = 1, . . . ,MT (3.35)

which can be done efficiently using forward substitution [87]. Since
Li,i = 1 (∀i) and L−1 = [ v1 · · · vMT

], forward-substitution (3.35)
enables to compute the inverse of L solely using multiplications and
additions (i.e., no division operation is required). The second step of
inversion corresponds to solve

Uxi = vi, i = 1, . . . ,MT (3.36)

through back-substitution. The resulting vectors xi (∀i) correspond
to the columns of the inverse A−1 in (3.34). Since the diagonal entries
of U are, in general, not equal to one, the back-substitution in (3.36)
requires division operations [87]. However, as the reciprocal values of
U−1
i,i = ri (∀i) in Algorithm 1 have been computed and stored previ-

ously (i.e., during the LUD), back-substitution can be performed with
multiplications and additions only. This approach ultimately leads to
a hardware-friendly and low-complexity matrix-inversion solution for
the low-complexity SISO MMSE PIC algorithm.

3.3 VLSI Implementation

This section describes the first VLSI architecture for the SISO MMSE
PIC algorithm for iterative MIMO decoding together with correspond-
ing reference ASIC implementation results.

3.3.1 VLSI Architecture

The SISO MMSE PIC algorithm described in the previous sections re-
quires matrix inversion at symbol-rate and per iteration, which is chal-
lenging for practical implementation. To this end, various techniques
on architectural level have been applied to obtain a hardware-efficient
VLSI implementation. The following paragraphs describe the VLSI
architecture and provide details for the most critical (with respect to
throughput and numerical precision) computation units.
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Figure 3.6: VLSI architecture of the SISO MMSE PIC detector.
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Architectural Overview

Figure 3.6 shows the high-level VLSI architecture of the SISO MMSE
PIC detector. The architectural principle is referred to as systolic net-
work of dedicated processing units (PUs). The main idea underlying
the proposed VLSI architecture is to decompose the SISO MMSE PIC
algorithm into eight PUs. Each PU performs one (or part of a) task
of the reduced-complexity SISO MMSE PIC algorithm:

• The preprocessing unit computes the output of the matched-
filter and the Gram matrix as described in Section 3.2.1.

• The unit “soft-symbol, variance, A” computes the soft-symbols
and their variances as described in Section 3.2.1. In addition,
the matrix A = GΛ +NoIMT

in (3.31) is computed.

• The two PUs, namely PIC 1 and PIC 2, perform PIC based on
the MF-vector yMF as described in Section 3.2.1.

• The unit labeled by “LUD and forward” performs the LUD of
the matrix A followed by forward substitution (i.e., computation
of L−1) as described in Section 3.2.2.

• The backward-substitution PU performs the remaining steps of
matrix inversion as described in Section 3.2.2.

• The MMSE filtering unit computes the unbiased MMSE esti-
mates zi according to (3.32) and the post-equalization SINRs ρi
for ∀i (see Section 3.2.1).

• The LLR computation unit (LCU) computes the a posteriori
LLRs L̃E

i,b (∀i, b) as described in Section 3.2.1.

We emphasize that using this architectural principle enables to design,
optimize, and verify each of the PUs separately.

Architecture of Processing Units

As mentioned above, computation of the SISO MMSE PIC algorithm
is performed in the eight PUs. All PUs are designed on the basis of
the same processor-like architecture, which is depicted in Figure 3.7.
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Figure 3.7: Architectural principle underlying each PU.

Each PU consists of several arithmetic units (AUs), which perform all
required computations in a time-shared fashion.4

Each PE requires 18 clock cycles to complete its computation (rea-
sons for this number are given below). In the 18th clock cycle, data
is passed to the next PU and new data is obtained from the previous
PU, resembling to the operational principle of a systolic array [14].
During the 18th clock cycle, some data elements are computed and
directly passed to the next PU. Since 18 clock cycles are required to
load a new channel matrix, a new received vector, a new set of a
priori LLRs, and a noise variance into the SISO MMSE PIC architec-
ture, the throughput (in terms of LLRs per second) of the architecture
corresponds to

Θ =
MTQ

18
fclk (3.37)

4Note that the PEs are not reprogrammable or configurable and that they
contain a hard-coded finite-state machine (FSM).
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where fclk is the clock frequency of the implementation. The latency
of this architecture corresponds to 6 · 18 = 108 clock cycles.

Arithmetic Units Each PU contains one or more AU. Similar to a
processor-based architecture, the AUs perform basic arithmetic op-
erations, e.g., complex-valued multiplication, addition/subtraction,
arithmetic right/left shifts, table lookups, and reciprocal computa-
tion. The AUs used depend on the task to be computed. The critical
path of the SISO MMSE PIC architecture is through an AU (con-
taining a complex-valued multiplier) and the interconnection network
(see Figure 3.7). The maximum clock frequency of the SISO MMSE
PIC is, therefore, mainly determined by a complex-valued multiplier.

Data Memories Data, such as intermediate values, vectors, and
matrices, are stored in the data memory of each PUs, i.e., no central
storage unit is employed. For high throughput, a large memory band-
width is required. Since the access to the data elements in the memo-
ries is almost random, the data memory is built from flip-flops instead
of using on-chip static random access memory (SRAM) macro-cells.
Flip-flop arrays require a larger area (compared to that of on-chip
SRAMs), but enable highly parallel and random data access, which is
difficult to realize efficiently by using off-the-shelf SRAM macro-cell
memories.

Improvements for Numerical Stability

Matrix inversion for MIMO detection requires high arithmetic preci-
sion, e.g., [15]. In this architecture, two techniques have been applied
in order to improve the numerical stability of fixed-point matrix in-
version. These techniques are described in the following paragraphs.

Limitation of the Noise Variance As it was shown in [15] for
linear soft-output MMSE detection, it is essential to perform inversion
of a regularized matrix if fixed-point arithmetic is employed. For
high SNR, the noise variance in A = (GΛ + NoIMT

) of (3.31) can
get arbitrarily small, and No can no longer been represented using a
finite number of bits. In this case, No might become zero and the
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matrix to be inverted is no longer regularized; this causes problems
with numerical stability of the inversion (especially if the matrix GΛ
is ill-conditioned). In order to avoid the noise variance No being zero,
its minimum value has been limited to 2−12, i.e.,

Ño = max
{
No, 2

−12
}

(3.38)

is used instead of No in the computation of A. The advantages
of (3.38) are i) matrix inversion can be performed in a more stable
manner at high SNRs and ii) the number of fraction bits to represent
A does only need to be slightly larger that 12 bit. Note that limitation
of No to 2−12 causes an error floor at approximately 36 dB SNR [15],
which is sufficiently large for a rate-5/6 coded 4 × 4 MIMO system
employing 64-QAM.

Scaling of the A-Matrix In order to additionally improve numeri-
cal stability of fixed-point matrix inversion, a quasi-floating-point ap-
proach has been used, i.e., the most critical fixed-point values (the
ones with the largest dynamic range) have been associated with an
exponent. The key idea is to undo the effect of this exponent at the
latest possible stage in the sequence of computations. This technique
enables to improve the precision of fixed-point calculations, while lead-
ing to a low hardware overhead (see [15,84,85]).

Since the entries of Λ can get close to zero5, the entries of the
inverse A−1 might become very large (especially in the high-SNR
regime). In order to reduce the dynamic range of the inverse and the
number of required bits in hardware, the matrix A in (3.31) is scaled
(in the “soft-symbol, variance, and A” PU). To this end, the matrix
A is right-multiplied by Γ according to

Ã = (GΛ +NoIMT
)Γ (3.39)

where Γ is a real-valued MT ×MT diagonal matrix with Γi,i = 2−γi

for i = 1, . . . ,MT and

γi =
⌊
log2

(
Ai,i

)⌋
+ 1, ∀i.

5This happens, for example, after a few iterations, i.e., where the magnitudes
of the a priori LLRs get large (see the discussion in Section 3.2.1).
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We note that Ai,i ∈ R is non-negative. The scaling ensures that the di-
agonal entries of the scaled matrix Ã satisfy 0.5 ≤ Ãi,i < 1 (∀i). Since
γi ∈ Z (∀i), multiplication by 2−γi and the ⌊log2(x)⌋-function can
efficiently be computed in hardware using arithmetic shifts and iden-
tification of the leading-one in the binary-valued representation of x,
respectively. After the inversion of Ã, the effect of scaling in (3.39) is
compensated by right-multiplication of the results by Γ, i.e.,

ΓÃ−1 = ΓΓ−1(GΛ +NoIMT
)−1 = A−1.

As mentioned above, it is beneficial (in terms of numerical stability)
to undo the effect of scaling in (3.39) at the last possible stage of the
SISO MMSE PIC algorithm. Hence, re-scaling (possibly followed by
clipping) is performed during computation of the unbiased MMSE es-
timates (3.32) and during computation of the post-equalization SINRs
in (3.25).

Real-Valued Reciprocal Unit

LU-decomposition, post-equalization SINR (3.25) computation, and
MMSE filtering in (3.32) require division operations. In general, di-
vision is not well-suited for fixed-point hardware implementation. In
our case, the real-valued reciprocal rk = 1/Ak,k in the LUD (see
Algorithm 1, line 2) is the throughput bottleneck of the SISO MMSE
PIC architecture, caused by data-dependencies in the LUD. In par-
ticular, the result rk is required immediately in the LUD-process (see
Algorithm 1 on lines 3-5). To achieve a high throughput, a low num-
ber of clock cycles per reciprocal computation and a short critical path
is of paramount importance.

Newton-Raphson Iteration For high numeric precision and high
throughput, we compute the reciprocals (i.e., 1/x) using a custom
hardware unit, instead of off-the-shelf division circuitry. Division can
then be performed using a multiplication with the reciprocal. Anal-
ogous to the quasi-floating point approach described above, we first
scale input value x ∈ R such that

x̃ = 2−αx, with α = ⌊log2(x)⌋+ 1 (3.40)
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which ensures that 0.5 ≤ x̃ < 1, leading to improved numerical sta-
bility of the reciprocal-based division since 1 < 1/x̃ ≤ 2. The re-
ciprocal 1/x̃ is then computed iteratively using the Newton-Raphson
method [88]

xk+1 = xk −
f(xk)
f ′(xk)

, k = 1, . . . ,K (3.41)

where f(xk) is a suitably chosen function that satisfies f(1/x̃) = 0;
the initial value is denoted by x1, f ′(x) = df(x)

dx , and K stands for the
maximum number of iterations. Choosing f(xk) = x̃− 1/xk in (3.41)
leads to the iteration [89–92]

xk+1 = 2xk − x̃x2
k, k = 1, . . . ,K (3.42)

which converges6 to 1/x̃ if the initial value satisfies 0 < x1 < 2/x̃ [88].
We emphasize that the scaling in (3.40) can be compensated accord-
ing to 1/x = (1/x̃)2α. Numerically stable division a/x is obtained in
hardware by computing 1/x̃ using (3.41) and performing the multi-
plication a(1/x̃), followed by re-scaling using the factor 2α, which can
efficiently be performed using arithmetic right- or left-shifts.

Architectures for Reciprocal Computation Various VLSI im-
plementations for computation of reciprocals —ranging from high pre-
cision [90,91] to high throughput [92]— have been described in the lit-
erature. Almost all corresponding architectures consist of two parts:
A look-up table (LUT), which generates the initial value of the it-
eration, and arithmetic circuitry that performs the Newton-Raphson
iteration (3.42), e.g., [89]. In our case, the LUT considers the first
bbit of x̃ in order to produce a fairly accurate initial estimate of 1/x̃,
i.e., x1 ≈ 1/x̃ satisfying 1 < x1 < 2/x̃. Then, a small number of
Newton-Raphson iterations (3.42) are performed, in order to improve
the accuracy of the result. Note that better approximations of 1/x̃
require larger LUTs, but require fewer iterations to achieve a certain
precision. Hence, for a given precision, there exists a tradeoff be-
tween area (influenced by the LUT) and throughput (depending on
the number of iterations K).

6This fixed point iteration yields quadratic convergence to 1/x̃ [89].
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Figure 3.8: Two architectures for computation or reciprocals. Left:
iterative architecture; right: pipelined architecture.

In order perform the LUD in 18 clock cycles, we decided to allow
at most three clock cycles per reciprocal-value computation. Fixed-
point simulation results have shown that 15 bit precision is sufficient
for the results of the reciprocal unit. Hence, our reciprocal unit must
be able to deliver reciprocals with 15 bit precision in three clock cy-
cles. Figure 3.8 shows two different architectures that meet the given
constraints. Note that both designs perform an initial shift according
to (3.40) and use a LUT to compute the initial value of the iteration.

• The first architecture employs a 4 bit table look-up followed by
two Newton-Raphson iterations and is referred to as the “iter-
ative architecture.” Within three clock cycles, two data items
can be processed. The critical path passes through a squaring
unit, one multiplier, one adder, and a multiplexer.

• The second architecture is pipelined and performs only one it-
eration, which requires a larger LUT to attain the required pre-
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Figure 3.9: AT trade-off of division unit and two different reciprocal
units in 130 nm (1P/8M) CMOS technology.

cision (i.e., we use the first 8 bit of x̃ to generate the initial
estimate x1). Note that the pipelined architecture is able to
process one data item per clock cycle and has a shorter critical
path than the iterative variant. Hence, the pipelined reciprocal
unit achieves a higher throughput (compared to the iterative
architecture).

Comparison of Reciprocal Units Figure 3.9 compares synthesis
results of the two reciprocal units described above with an off-the-shelf
divider.7 Note that the divider unit performs a full division, whereas
the two reciprocal units require an additional multiplication to obtain
the same functionality. Nevertheless, the two reciprocal units have a

7A sequential divider using three clock cycles for 15 bit precision from Synopsys
DesignWare is used. In order to enable comparability of the results, the circuitry
required for scaling (see Figure 3.8) has been added.
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Figure 3.10: ASIC micrograph of the SISO MMSE PIC detector in
90 nm (1P/9M) CMOS technology.

much shorter critical path than the division unit. In addition, both
reciprocal units are twice as efficient in terms of the area-delay (AT)
product. The pipelined version attains a slightly higher maximum
clock frequency than the iterative variant, but is slightly less efficient
in terms of the AT-product. Since the key goal of our SISO MMSE
PIC architecture was high throughput, we opted for the pipelined
reciprocal unit, which offers a higher maximum clock frequency and
processes one data item per clock cycle.

3.3.2 Implementation Results

Figure 3.10 shows the ASIC picture of the SISO MMSE PIC algorithm
implementation in 90 nm (1P/9M) CMOS technology. The architec-
ture has been designed to be compliant with the IEEE 802.11n [2]
WLAN standard. The implementation supports MIMO systems with
four spatial streams and BPSK, 4-QAM, 16-QAM, and 64-QAM con-
stellation alphabets.
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Table 3.4: ASIC implementation results of the SISO MMSE PIC al-
gorithm in 90 nm (1P/9M) CMOS technology.

Core area [mm2] 1.29
Cell area [kGEa] 410
Maximum clock frequency [MHz] 620
Maximum throughputb [MLps] 826
Latency [ns] 174
Hardware-efficiencyc [kGE/MLps/it] 0.50

aOne GE corresponds to a two-input drive-one NAND gate of size 3.136 µm2.
bThe throughput is given by million LLRs per second [MLps].
cHardware-efficiency is normalized to the number of iterations (it).

VLSI Implementation Results Reference implementation results
of the SISO MMSE PIC implementation are given in Table 3.4. The
decoder requires a total area of 410 kGE and achieves a maximum
clock frequency of 620 MHz, which, according to (3.37), leads to a
maximum throughput of 826 million LLRs per second. Note that
IEEE 802.11n specifies a peak throughput of 600 Mbps for four-stream
transmission, 64-QAM, and using a rate-5/6 code [2]. The proposed
detector implementation attains 826 · 5/6 = 688.3 Mbps if using one
iteration, which is sufficient to meet the requirements of the stan-
dard. In order to perform more than one iteration (i.e., to obtain
gains through iterative MIMO decoding) either more instances of the
SISO MMSE PIC are required or iterations can only be performed for
modulation and coding schemes which require lower throughput (e.g.,
the ones in 20 MHz mode of IEEE 802.11n).

Area Breakdown A detailed area breakdown of the SISO MMSE
PIC implementation is given in Table 3.5. Note that almost a third
of the architecture is occupied by the MMSE filtering unit. The LUD
(including forward and backward substitution) requires another third
of the detector’s area. All remaining processing units and the in-
put/output interface occupy the remaining third of the total circuit
area.
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I=1

I=1

I=2

I=4

I=2

I=4

Figure 3.11: Fixed-point performance results for 64-QAM and 16-
QAM of the SISO MMSE PIC implementation. Dashed lines corre-
spond to the fixed-point hardware (HW) performance.

Fixed-Point Error-Rate Performance Thanks to using the tech-
niques described in Section 3.3.1 for improving numerical stability,
the internal precision of the SISO MMSE PIC architecture ranges be-
tween 12 bit to 29 bit8, without a significant degradation in terms of
error-rate performance. The fixed-point performance of the hardware
implementation is shown in Figure 3.11 for 64-QAM and 16-QAM
modulation. Note that a max-log BCJR algorithm has been used for
SISO channel decoding. We emphasize that the implementation loss
is remarkably small, i.e., lower than 0.35 dB SNR (at 1% FER) for
64-QAM in the first iteration (I = 1), and is negligible for 16-QAM.
Hence, our implementation is able to achieve close-to floating-point
performance.

8The maximum precision of 29 bit is required during LUD. The other units
employ (often significantly) less bits.
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Table 3.5: Area breakdown of the SISO MMSE PIC detector ASIC in
90 nm (1P/9M) CMOS technology.

Unit mm2 kGE %

Preprocessing 0.16 50.4 12.3
Soft-symbol, variance, A 0.11 34.4 8.4
PIC 1 and PIC 2 0.12 38.4 9.4
LUD, forward substitution 0.21 68.1 16.6
Backward substitution 0.22 70.2 17.1
MMSE filtering 0.35 112.4 27.4
LLR computation unit 0.03 10.3 2.5
Miscellaneousa 0.09 26.0 6.3
Total 1.29 410.2 100

aDenotes logic used for the input/output-interface of the ASIC.

Table 3.6: VLSI Implementation comparison of hard-output k-best,
linear soft-output MMSE, and SISO MMSE PIC detection.

This work
Burg Shabany and

et al. [16] Gulak [93]

Detection algorithm
SISO soft-output hard-output

MMSE PIC MMSE k-best
Technology [nm] 90 130 130
Clock freq. [MHz] 620 320 282
Preprocessing [kGE]

410a 251 n.a.
Detection [kGE] 67 114
Throughputb [Mbps] 826 1386 950
Eff. [kGE/Mbps] 0.50 0.23 n.a.

aPreprocessing is contained in the SISO MMSE PIC algorithm.
bCorresponds to the throughput (in terms of million LLR-values) per second.

The throughput of the two 130 nm implementations has been up-scaled by a factor
of 1.45 to account for technology scaling (see Section 6.1.2).
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Comparison with the State-of-the-Art Since no VLSI imple-
mentation of a soft-input soft-output detector for MIMO systems ex-
ists in the open literature, we compare our results to the soft-output
MMSE detector described in [16] (we include the preprocessing stage
but exclude all memories). In addition, a comparison with the hard-
output k-best MIMO detector reported in [93] is given. The k-best
implementation does not report any preprocessing complexity (which
requires significant amount of circuit area).

Table 3.6 compares the three architectures. The SISO MMSE PIC
implementation achieves the highest clock frequency, mainly due to
its technology advantage. The (technology-scaled) throughput of the
soft-output MMSE detector [16] is 68% higher compared to that of the
SISO MMSE PIC. The hard-output k-best detector reported in [93]
attains a 15% higher throughput compared to that of our implemen-
tation. The soft-output MMSE detector is approximately two times
more efficient (in terms of kGE/Mbps) than our SISO MMSE PIC
implementation. Due to the lack of a preprocessing unit in [93], it is
difficult to calculate the hardware-efficiency of the k-best implemen-
tation in a fair manner. If assuming that the QRD preprocessing unit
of [16] is used for the k-best implementation, one obtains a total area
of 365 kGE, leading to an efficiency of 0.38 kGE/Mbps, which is 28%
better than that of the SISO MMSE PIC implementation.

Conclusion We conclude that the proposed SISO MMSE PIC im-
plementation is approximately two times less efficient compared to
state-of-the-art hard-output or soft-output MIMO detector implemen-
tations. However, the SISO MMSE PIC implementation is —to the
best of our knowledge— the only SISO detector for iterative MIMO
decoding and hence, is the only detector that is able to obtain the
tremendous performance gains offered by iterative MIMO decoding.



Chapter 4

Soft-Input Soft-Output
Sphere Decoding

In the previous chapter, we studied a sub-optimum SISO detection
algorithm for iterative MIMO decoding. In this chapter, we describe
a novel high-performance SISO detection algorithm based on sphere
decoding (SD), which is able to achieve near-optimum SISO detection
performance.

In Section 4.1, we introduce the basics of SD and describe its ex-
tension to soft-input soft-output MIMO detection. The novel SD-
based SISO detection algorithm, referred to as SISO single tree-search
(STS) SD algorithm, is introduced in Section 4.2. In the Sections 4.3,
4.4, and 4.5, we describe a variety of techniques to further reduce
the computational complexity or improve the performance of the al-
gorithm. Simulation results are shown in Section 4.6. In Section 4.7,
we provide VLSI implementation results for the soft-output STS-SD
algorithm and compare the performance to related MIMO detection
algorithms.

4.1 SISO Sphere Decoding

This section introduces the basics of (hard-output) SD and then, re-
views well-established SD algorithms for detection in MIMO systems.

77
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4.1.1 The Basics of Sphere Decoding

The detection algorithm known as sphere decoding (SD) was initially
developed by Pohst in 1981 [94] for computation of minimal-length
lattice vectors and has been refined by Fincke and Pohst in 1985 [95].
The first application of SD in communication theory was described
in Mow’s Master’s Thesis in 1991 [96]; therein SD was used for ML
sequence estimation in ISI channels. A corresponding conference pub-
lication appeared in 1992 [97]. Viterbo and Biglieri applied the Pohst
algorithm to lattice decoding in 1993 [98], which sparked tremendous
research activities on SD. In 1994, Schnorr and Euchner (SE) [99] pre-
sented an improvement to the algorithm, which leads to lower com-
putational complexity than the Pohst variant. In 1999, Viterbo and
Boutros used the Pohst algorithm for lattice decoding in fading chan-
nels [100] and in 2000, Damen et al. [101] applied Schnorr-Euchner
sphere decoding (SESD) to detection of space-time codes. An exten-
sive summary on SD and its applications has been published by Agrell
et al. in 2002 [102]. The first soft-input soft-output MIMO detector
based on SD was described in 2003 by Hochwald and ten Brink [19],
where it was shown that the proposed SISO SD algorithm in combi-
nation with iterative MIMO decoding allows to achieve near-capacity
in MIMO systems. The first VLSI implementation of the SD algo-
rithm was described by Burg et al. in 2004 [103], where it has been
demonstrated that SD is suitable for high-performance hard-output
MIMO detection in practical systems.

In the following, we describe the basics of the complex-valued1

SESD algorithm and briefly outline some of the most prominent (op-
timal and sub-optimal) MIMO detection algorithms that are related
to SD.

1In some publications, a real-valued variant of SD is employed, e.g., [104]. This
variant is obtained by decomposing the components of (2.2) into

ȳ =

[
ℜ{y}
ℑ{y}

]
, H̄ =

[
ℜ{H} −ℑ{H}
ℑ{H} ℜ{H}

]
, and s̄ =

[
ℜ{s}
ℑ{s}

]

leading to the equivalent real-valued input-output relation ȳ = H̄s̄ + n̄, where
the noise is n̄ ∼ N (0, 1

2
NoI2MR

). The real-valued decomposition is, for example,

essential for decoding of linear STBCs using the SD techniques. In this case, Ḡs̄

is the transmitted vector, where Ḡ corresponds to a (real-valued) matrix that
represents the employed STBC (see [105] for more details).
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Schnorr-Euchner SD with Radius Reduction

The main idea underlying SD is to transform ML detection (2.6) into a
tree-search problem, which can then be solved more efficiently by the
means of pruning. To this end, the channel matrix H of (2.2) is first
QR-decomposed according to H = QR, where the MR ×MT matrix
Q is unitary, and the MT ×MT upper-triangular matrix R has real-
valued non-negative entries on its main diagonal. Left-multiplying
(2.2) by QH leads to the modified input-output relation

ỹ = Rs + QHn (4.1)

with ỹ = QHy. Since QHn has the same statistics as n, an equivalent
formulation of the ML detection problem in (2.6) corresponds to

ŝML = arg min
s∈OMT

‖ỹ−Rs‖2. (4.2)

We next define the partial symbol vectors (PSVs) s(i) = [ si · · · sMT ]T

and note that they can be arranged in a tree that has its root just
above level i = MT and leaves, on level i = 1, which correspond to
symbol vectors s. In the following, the bit-label associated with s(i)

is denoted by x(i). The Euclidean distance

d(s) = ‖ỹ−Rs‖2 (4.3)

in (4.2) can be computed recursively by defining d
(
s(i)
)

= di with the
partial Euclidean distances (PEDs)

di = di+1 + |ei|2 , i =MT, . . . , 1 , (4.4)

the initialization dMT+1 = 0, and the distance increments (DIs)

|ei|2 =

∣∣∣∣ỹi −
MT∑

j=i

Ri,jsj

∣∣∣∣
2

. (4.5)

Since the dependence of the PED di on the symbol vector s is only
through the PSV s(i), the ML detection problem has been trans-
formed into a weighted tree-search problem: PSVs and PEDs are
associated with nodes and branches correspond to DIs. The resulting
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Figure 4.1: Example of the weighted tree for a MIMO system with
MT = 3 and BPSK modulation.

tree-structure is illustrated in Figure 4.1. For brevity, we shall often
say “the node s(i)” to refer to the node corresponding to the PSV
s(i). We shall furthermore use d

(
s(i)
)

and d
(
x(i)
)

interchangeably to
denote di. Each path from the root down to a leaf corresponds to
a symbol vector s ∈ OMT . The solution of (4.2) corresponds to the
path from the root to the leaf associated with the smallest metric.

Schnorr-Euchner Sphere Decoding The basic building block
underlying SESD with radius reduction [33, 99, 102] is briefly sum-
marized as follows: The search in the tree is constrained to nodes
which lie within a radius r around ỹ and tree traversal is performed
depth-first, visiting the children of a given node in ascending order
of their PEDs. A node s(i) with PED di can be pruned (along with
the entire subtree originating from this node) whenever the sphere
constraint (SC)

d
(

s(i)
)
< r2

is violated. Figure 4.2 illustrates the SC.
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Figure 4.2: Left: the sphere constraint bounds the search to lattice
points that are within a radius r around the received vector ỹ (the
transmitted symbol vector is denoted by s′). Right: Extrinsic LLR
clipping bounds the search for the MAP solution and all counter-
hypotheses to rmax =

√
λMAP + Lmax.

Radius Reduction The radius r has to be chosen sufficiently large
such that the SD algorithm finds at least the ML solution. Choosing r
too large, leads to high complexity as a large number of nodes will
satisfy the sphere constraint—a too low choice of the radius might in-
hibit the decoder to find any solution. In order to avoid the problem of
choosing a suitable radius r altogether, we employ a technique known
as radius reduction [102], which consists of initializing the algorithm
with r =∞, and performing the update r2 ← d(s) whenever a valid
leaf node s has been found. This approach maintains ML-optimality
and still leads to efficient pruning of the tree.

Complexity Measure The complexity measure for SD employed
in the remainder of this chapter corresponds to the number of nodes
visited by the decoder including the leaf nodes, but excluding the root.
This measure was shown in [33] to be representative of the hardware
complexity of a VLSI implementation for hard-output SESD.

Other Tree-Search-Based Detection Schemes

In order to attain low computational complexity using tree-search
based MIMO detection, a plethora of optimal and sub-optimal algo-
rithms have been proposed in the literature. The most prominent
detection algorithms are briefly outlined below.
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Successive interference cancellation (SIC) has already been de-
scribed in Section 2.2.1 and is one of simplest MIMO detection algo-
rithm that can be associated to a tree-search problem. A better per-
forming (but still sub-optimal) MIMO detection method is the k-best
algorithm [106], which attains a fixed-complexity while only searching
for a small sub-set of nodes in the tree. Corresponding VLSI imple-
mentation results show that the k-best algorithm is well-suited for
practical implementation of sub-optimal hard-output MIMO detec-
tion, e.g., [22,93,107,108]. Other tree-search-based detection methods
that are related to the k-best algorithm are the M-algorithm [109] and
smart candidate adding [110], which also exhibit a fixed-complexity.

The fixed sphere decoder (FSD) [111] is one of the best-performing
sub-optimal MIMO detection schemes and was shown to achieve full
diversity and a vanishing SNR performance loss for SNR→ 0 [112];
this is achieved by employing layer-sorting followed by multiple
SIC stages. Implementations on field-programmable gate array
(FPGA) [113] and ASIC [114] prove that the FSD is suitable for prac-
tical implementation. Note, however, that it is difficult to obtain
high-quality soft-outputs from this algorithm (possible approaches to
soft-output detection are described in [115]).

Dĳkstra’s algorithm [116] applied to MIMO detection [117] was
shown to visit the minimum number of nodes among all2 SD al-
gorithms, while offering ML performance [119]. Unfortunately, the
number of required comparisons is (often significantly) larger than
that of the SESD and the memory requirements grow exponentially
with the number of transmit antennas [120], which inhibits efficient
implementation in practical systems.

Another decoding method —initially designed for low-complexity
channel decoding— is the stack algorithm [121], which, in contrast to
Dĳkstra’s algorithm, employs a limited amount of memory and hence,
attains sub-optimal performance. The list-sequential (LISS) detec-
tor [30, 122] builds upon the stack algorithm and was shown to be
suitable for low-complexity (but sub-optimal) soft-output MIMO de-
tection. Sequential decoding [123] was shown to yield low-complexity
performance for MIMO detection. To the best of our knowledge, no

2This statement is only valid if no lower-bounds are used to speed-up the tree-
search stage, see, e.g., [118].
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corresponding soft-output MIMO detection algorithm has been de-
scribed in the open literature.

In the remainder of this chapter, we only focus on SESD-related
MIMO detection algorithms that are able to attain optimum SISO
performance.

4.1.2 List Sphere Decoding

We first review the max-log approximation to exact LLRs, which is
key to employ SD for computation of LLRs. Then, we briefly describe
the SISO detection algorithm for iterative MIMO systems developed
by Hochwald and ten Brink in 2003 [19], which is known as list sphere
decoding (LSD) in the literature.

Computation of the Max-Log LLRs

In order to employ SD for computation of the intrinsic LLRs (2.23),
the QRD of the channel matrix (as shown in Section 4.1.1 for the
SESD) is used; this leads to an equivalent formulation of intrinsic
LLRs

Li,b = log




∑

s∈X
(+1)

i,b

p(ỹ | s′ = s,R) P[s′ = s]




− log




∑

s∈X
(−1)

i,b

p(ỹ | s′ = s,R) P[s′ = s]


 (4.6)

where P[s′ = s] corresponds to the prior and

p(y | s′ = s,R) =
1

(πNo)MT
exp

(
− ‖y−Rs‖2

No

)
.

Straightforward evaluation of (4.6) requires the computation of |O|MT

Euclidean distances per LLR value, which leads to prohibitively high
computational complexity (see Section 2.2.2).
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Figure 4.3: Iterative MIMO decoder. The SISO STS-SD algorithm
(corresponding to the dashed box) directly computes extrinsic LLRs.

Key to enable SD (and hence, to obtain low complexity) for
LLR computation is to apply the standard max-log approximation3

to (4.6), which allows us to reformulate LLR computation as a
weighted tree-search problem that can be solved efficiently using SD
techniques [48,94–96,98–100,124–126]. In the remainder of this chap-
ter, we consider an iterative MIMO decoder as depicted in Figure 4.3.
The soft-input soft-output MIMO detector computes intrinsic max-
log LLRs according to [19]

LD
i,b, min

s∈X
(−1)

i,b

{
1
No

∥∥ỹ−Rs
∥∥2 − log P[s]

}

− min
s∈X

(+1)

i,b

{
1
No
‖ỹ−Rs‖2 − log P[s]

}
. (4.7)

where the prior P[s′ = s] is, for example, delivered by an outer channel
decoder in the form of a priori LLRs

LA
i,b, log

(
P[xi,b = +1]
P[xi,b = −1]

)
, ∀i, b.

Based on the intrinsic LLRs in (4.7), the detector computes the ex-
trinsic LLRs using

LE
i,b,L

D
i,b − LA

i,b, ∀i, b, (4.8)

3The max-log approximation (cf. Section 3.2.1) results from the Jacobian log-

arithm [77] and corresponds to log
(∑

k
exp(ak)

)
≈ maxk{ak}. This approxima-

tion entails a small error-rate performance loss compared to exact LLRs in (2.23).
Corresponding simulation results are shown in Section 4.6.1.
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that are passed to a subsequent SISO channel decoder. We emphasize
that evaluation of the two terms in (4.7) can be performed using
SD techniques, which requires (often significantly) less computational
complexity than computation of exact LLRs in (2.23). Note that we
neglected the additive constant in each of the two minima in (4.7) that
results from the part of the noise n that is orthogonal to the range-
space of H. This is possible as the constant in question is independent
of s and, hence, cancels out upon taking the difference in (4.7).

The List Sphere Decoding Algorithm

The main idea underlying the LSD algorithm [19] is to constrain the
max-log LLR computation in (4.7) to a small subset of all candidate
vectors in OMT such that

LD
i,b ≈ min

s∈
{
S∩X

(−1)

i,b

}
{

1
No

∥∥ỹ−Rs
∥∥2 − log P[s]

}

− min
s∈
{
S∩X

(+1)

i,b

}
{

1
No
‖ỹ−Rs‖2 − log P[s]

}
(4.9)

where the subset S ⊂ OMT is referred to as the list and S = |S|
denotes the list size. Since∣∣∣S ∩ X (x)

i,b

∣∣∣ ≤
∣∣∣X (x)
i,b

∣∣∣ for x ∈ {+1,−1}, ∀i, b

evaluation of (4.9) can lead to lower computational complexity than
that of (4.7) if S is significantly smaller than |O|MT . In order to obtain
a good approximation of (4.7) using (4.9), it is important that the list
S contains candidate vectors with small Euclidean distance. To this
end, the LSD builds the list such that it contains those candidate
vectors corresponding to the S smallest Euclidean distances (4.3).

The list is constructed using SD, which requires to extend the
algorithm with list administration and a modified version of radius
reduction. List administration corresponds to replacing the candidate
vector in S associated with the largest Euclidean distance, whenever
the LSD reaches a leaf. After list administration has been carried out,
a new search radius can be obtained as follows

r2 ← max
s∈S
d(s) (4.10)
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which ensures that no candidate vector is being found having a larger
Euclidean distance than the worst one (in terms of Euclidean distance)
in the list. Note that the Euclidean distances can be stored in a
separate list to avoid costly re-computations. List administration and
radius reduction (4.10) ensure that the list contains exactly the S-best
candidates after the tree-search procedure, i.e.,

max
s∈S
d(s) ≤ min

s′∈{OMT\S}
d
(
s′
)
.

The VLSI implementation of a soft-output LSD in [127] demon-
strates that LSD can be implemented in practical systems, but suffers
from the following disadvantages:

• Evaluation of (4.9) requires high computational complexity if
the list-size is large. Additionally, list administration (i.e., search-
ing and replacing of the worst candidate vector in the list) can
quickly lead to prohibitive VLSI implementation complexity.
Hence, LSD implementations are, in general, only efficient for
small list-sizes [127].

• In the case where no transmit vector with the xi,bth bit equal

to a is contained in S (i.e., S ∩X (a)
i,b = ∅), no LLR-value can be

computed for this particular bit. In [19] it has been suggested to
set the corresponding LLR value to the ML solution xML

i,b with
magnitude 8, which, however, leads to a noticeable performance
loss, especially for small lists.

In summary, LSD requires a large list to obtain near (max-log) optimal
performance, which leads to high computational complexity in the list
administration procedure.

Two algorithms related to the LSD exist in the literature. The
SISO detector proposed in [31] first computes the ML-estimate using
SD and then, generates a list of candidate vectors around the ML
solution during a second SD run. The algorithm described in [32]
considers the priors during list computation (cf. Section 4.1.3). Note,
however, that both detectors have the main disadvantage that the list
needs to be re-built for each iteration, which leads to a (often signifi-
cant) complexity increase compared to the LSD algorithm in [19].
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4.1.3 Max-Log LLR Computation as a Tree-Search

In order to avoid the drawbacks of LSD, more sophisticated tree-
search methods need to be considered. To this end, we first show how
intrinsic max-log LLRs can be computed exactly using SD techniques
and then, we briefly review the repeated tree-search (RTS) algorithm
developed by Wang and Giannakis in 2004 [125], which builds upon
the described method.

Transformation to a Tree-Search Problem

To enable exact computation of max-log LLRs in (4.7) using a tree
search, it is important to realize that one of the two minima in (4.7)
corresponds to

λMAP ,
1
No

∥∥∥ỹ−RsMAP
∥∥∥

2

− log P
[
sMAP

]
(4.11)

which is associated with the MAP solution of the MIMO detection
problem given in (2.5)

sMAP = arg min
s∈OMT

{
1
No

∥∥ỹ−Rs
∥∥2 − log P[s]

}
. (4.12)

The other minimum in (4.7) can be computed as

λMAP
i,b , min

s∈X

(
xMAP
i,b

)
i,b

{
1
No

∥∥ỹ−Rs
∥∥2 − log P[s]

}
(4.13)

where xMAP
i,b is the (bit-wise) counter-hypothesis to the MAP hypothe-

sis. With the definitions (4.11) and (4.13), the intrinsic max-log LLRs
in (4.7) can be written (∀i, b) in compact form as

LD
i,b =

{
λMAP
i,b − λMAP , xMAP

i,b = +1

λMAP − λMAP
i,b , x

MAP
i,b = −1.

(4.14)

We can therefore conclude that efficient max-log optimal soft-input
soft-output MIMO detection reduces to efficiently identifying sMAP,
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λMAP, and all metrics associated with the counter-hypotheses λMAP
i,b

(∀i, b).
Using the same procedure as done for hard-output SESD described

in Section 4.1.1, we use the notion of PSVs and note that they can be
arranged in a tree that has its root just above level i =MT and leaves,
on level i = 1, which correspond to symbol vectors s. The distances

d(s) =
1
No

∥∥ỹ−Rs
∥∥2 − log P[s] (4.15)

in (4.11) and (4.13) can be computed recursively if the following fac-
torization holds:

P[s] =
MT∏

i=1

P
[
s(i)
]
, (4.16)

which is assumed from now on. Note that in practice, the sym-
bols si (i = 1, . . . ,MT) are often statistically independent across spa-
tial streams; this satisfies (4.16) trivially with P[s] =

∏MT

i=1 P[si]. We
can now rewrite (4.15) as

d(s) =
MT∑

i=1

(
1
No

∣∣∣∣ỹi −
MT∑

j=i

Ri,jsj

∣∣∣∣
2

− log P
[
s(i)
])

which can be evaluated recursively as d(s) = d1, with the partial
distances (PDs)

di = di+1 + |ei|, i =MT, . . . , 1,

the initialization dMT+1 = 0, and the DIs

|ei| =
1
No

∣∣∣∣∣ỹi −
MT∑

j=i

Ri,jsj

∣∣∣∣∣

2

− log P
[
s(i)
]
. (4.17)

Note that the DIs are non-negative since the prior terms satisfy
− log P

[
s(i)
]
≥ 0. The dependence of the PD di on the symbol vector s

is, thanks to the upper triangularity of R and the assumption (4.16),
only through the PSV s(i) (similarly to SESD). Thus, the MAP de-
tection problem and the computation of the intrinsic max-log LLRs
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has been transformed into a tree-search problem: PSVs and PDs are
associated with nodes, branches correspond to DIs. For brevity, we
shall often say “the node s(i)” to refer to the node corresponding
to the PSV s(i). We shall furthermore use d

(
s(i)
)

and d
(
x(i)
)

inter-
changeably to denote di. Each path from the root node down to a leaf
node corresponds to a symbol vector s ∈ OMT . The result in (4.11)
and (4.13) corresponds to the leaf associated with the smallest metric

in OMT and X
(
xMAP
i,b

)
i,b , respectively. The SISO STS-SD algorithm uses

elements of SESD [99,102], briefly summarized as follows: The search
in the weighted tree is constrained to nodes which lie within a radius4

r around ỹ and tree traversal is performed depth-first, visiting the
children of a given node in ascending order of their PDs. A node s(i)

with PD di can be pruned (along with the entire subtree originating
from this node) whenever the tree-pruning criterion

di ≥ r2 (4.18)

is satisfied. In the remainder of this chapter, (4.18) is referred to as
the “standard pruning criterion.”

Computing the max-log LLRs in (4.7) requires to determine the

metrics λMAP
i,b , which, for given i, b, is accomplished by traversing only

those parts of the tree that have leaves in X
(
xMAP
i,b

)
i,b . Since this com-

putation has to be carried out for every bit, it is immediately obvious
that LLR computation results in an order of magnitude increase in
computational complexity compared to hard-output SD. The situa-
tion is further exacerbated by the fact that forcing the SE sphere
decoder into subtrees, when computing the minima in (4.13) leads to
significantly less efficient tree pruning behavior, which finally results
in an overall complexity increase (compared to that of hard-output
SESD) of two orders of magnitude.

The Repeated Tree Search Algorithm

In the following, we briefly describe the RTS algorithm [125]. This
method starts by solving (2.5) using SD (as described above) and

4Note that r only corresponds to the radius of a hypersphere if the prior is
constant P[s] = c, ∀s .



90 CHAPTER 4. SISO SPHERE DECODING

Figure 4.4: Example of the prepruning procedure (BPSK constella-
tion, MT = 3) of the RTS algorithm [125]. Counter-hypotheses to the
MAP solution are found by forcing SD through the dashed branches.

to rerun the decoder to solve (4.13) for each bit in the symbol vector
(i.e., QMT times). When rerunning the SESD algorithm to determine

λMAP
i,b in (4.13), the search tree is prepruned by forcing the decoder

to exclude all nodes from the search for which xi,b = xMAP
i,b . This

prepruning procedure is illustrated in Figure 4.4. Following the pro-
posal in [125] and initializing the sphere decoder with r =∞ in each

of the QMT runs required to obtain λMAP
i,b , will lead to significant

computational complexity. It is, therefore, important to realize that
(without compromising max-log optimality) the search radius ri,b can
be initialized by setting it to the minimum value of ‖ỹ −Rs‖2 over

all s ∈ X
(
xMAP
i,b

)
i,b found during preceding tree traversals.

The RTS algorithm suffers from the following disadvantages:

i) the repeated traversal of large parts of the tree, which entails a
large number of redundant computations;

ii) significantly less efficient pruning behavior when computing the

λMAP
i,b , which is caused by the need to minimize over the sub-
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sets X
(
xMAP
i,b

)
i,b . The underlying reason is that pruning efficiency

decreases significantly when forcing the sphere decoder through
specific branches at levels further down the tree.

As noted in [110], the problem in ii) can partly be mitigated by chang-
ing the detection order in each run. The resulting need for multiple
QR decompositions, however, leads to an overall increase in terms of
hardware complexity.

4.1.4 Tightening of the Tree-Pruning Criterion

Tightening of the tree-pruning criterion (4.18), i.e., reduction of the
right-hand side (RHS) of (4.18), without sacrificing (max-log) opti-
mality is highly desirable as it reduces the (tree-search) complexity.
Such a reduction can be accomplished, for example, through tech-
niques based on semi-definite relaxation and H∞-estimation theory as
proposed in [128]. Unfortunately, these approaches often entail high
computational complexity and are, hence, not well-suited for practical
(VLSI) implementation.

The Basic Idea

In the following, we propose an alternative approach which relies on
the observation that the DIs (4.17) contain a —generally non-zero—
bias given by

|bi|, min
s(i)∈OMT+1−i

|ei| , i = 1, . . . ,MT. (4.19)

Consider the case where the detector stands at node s(i) on level i
with corresponding PD di. All leaf-level PDs d1 that can be reached
from the node s(i) satisfy

d1 ≥ di +
i−1∑

j=1

|bj |. (4.20)
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At level i, we can therefore prune every node that satisfies a tightened
version of the tree-pruning criterion in (4.18), namely

di ≥ r2 −
i−1∑

j=1

|bj |. (4.21)

Computation of the bias term (4.19) requires enumeration of |ei|
over all s(i) ∈ OMT+1−i, which leads to prohibitive computational
complexity. The major portion of this complexity is caused by the
computation of the Euclidean distance-term 1

No

∣∣ỹi −
∑MT

j=i Ri,jsj
∣∣2

in (4.17), whose contribution to the bias (4.19), as it turns out (corre-
sponding simulation results are shown in Section 4.6.2), is negligible.
Hence, we only consider the contribution to |bi| caused by the prior
term − log P

[
s(i)
]

and we define accordingly

|pi| = min
s(i)∈OMT+1−i

{
− log P

[
s(i)
]}
. (4.22)

The corresponding tightened tree-pruning criterion is then given by

di ≥ r2 −
i−1∑

j=1

|pj |. (4.23)

For the case of the individual symbols si (i = 1, . . . ,MT) being sta-
tistically independent, i.e., P[s] =

∏MT

i=1 P[si], we have

|pi| = min
si∈O

{
− log P[si]

}

so that computation of the RHS of (4.22) results in significantly
smaller complexity than that required to compute the RHS of (4.19).

We emphasize that the tightened tree-pruning criterion (4.23) pre-
serves max-log optimality and leads, in general, to significant complex-
ity savings, when compared to the standard pruning criterion (4.18),
which is widely adopted in the literature [28–32]. To see this, con-
sider the case where all constellation points are equally likely5, i.e.,

5This, for example, is the case when no a priori information is available and all
transmitted bits are equally likely.
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P[si] = |O|−1 for all si ∈ O and i = 1, . . . ,MT. The corresponding
total bias from level i down to the leaf level is given by

i−1∑

j=1

|pj | = (i− 1) log |O|

which can be large, especially for nodes close to the root. Since prun-
ing at and close to the root level, has significant impact on the number
of nodes visited in the tree search, the tightened tree-pruning crite-
rion (4.23) can lead to a major complexity reduction. Corresponding
simulation results are provided in Section 4.6.2.

Tree Search in the Case of Statistically Independent Bits

We have seen above that statistical independence among individual
symbols enables us to tighten the tree-pruning criterion at low addi-
tional computational complexity. For bit-interleaved coded modula-
tion [44], the bits xi,b (i = 1, . . . ,MT, b = 1, . . . , Q) are assumed to be
statistically independent. As shown next, this independence on the
bit-level can be exploited to get further reductions in computational
complexity. To see this, consider the case where the MIMO detector
obtains a priori LLRs LA

i,b (∀i, b) from an external device, e.g., a SISO
channel decoder as depicted in Figure 4.3. We then have [41]

P[si] =
∏

b:xi,b=+1

exp
(
LA
i,b

)

1 + exp
(
LA
i,b

)
∏

b:xi,b=−1

1

1 + exp
(
LA
i,b

)

which can be reformulated in more compact form as

P[si] =
Q∏

b=1

exp
(

1
2

(
1 + xi,b

)
LA
i,b

)

1 + exp
(
LA
i,b

) . (4.24)

The contribution of the a priori LLRs to the prior term in the DIs in
(4.17) can then be obtained from (4.24) as

− log P[si] = K̃i −
Q∑

b=1

1
2
xi,bL

A
i,b (4.25)
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where the constants

K̃i =
Q∑

b=1

(
1
2

∣∣LA
i,b

∣∣+ log
(

1 + exp
(
− |LA

i,b|
)))

(4.26)

are independent of the binary-valued variables xi,b and K̃i > 0 for
i = 1, . . . ,MT. Because of − log P[si] ≥ 0, we can trivially infer
from (4.25) that K̃i−

∑Q
b=1

1
2xi,bL

A
i,b ≥ 0. From (4.14) it follows that

constant terms (i.e., terms that are independent of the variables xi,b
and hence of s) in (4.11) and (4.13) cancel out in the computation
of the intrinsic LLRs LD

i,b (∀i, b) and can therefore be neglected. A
straightforward method to avoid the hardware-inefficient task of com-
puting transcendental functions in (4.26) is to set K̃i = 0 in the com-
putation of (4.25). This can, however, lead to branch metrics that
are not necessarily non-negative, which would inhibit pruning of the
search tree. On the other hand, modifying the DIs in (4.17) by setting

|ei|,
1
No

∣∣∣∣∣ỹi −
MT∑

j=i

Ri,jsj

∣∣∣∣∣

2

+Ki −
Q∑

b=1

1
2
xi,bL

A
i,b (4.27)

with Ki =
∑Q
b=1

1
2

∣∣LA
i,b

∣∣ also avoids computing transcendental func-
tions while guaranteeing that, thanks to

∣∣LA
i,b

∣∣− xi,bLA
i,b ≥ 0 (∀i, b),

the so obtained branch metrics are non-negative. Furthermore, as
K̃i ≥ Ki, using the modified DIs (often significantly) reduces the (tree-
search) complexity compared to that implied by (4.17) using (4.25)
and, thanks to (4.14), still yields max-log-optimal LLRs. The reason
for complexity reduction when using the modified DIs (4.27) lies in
the modified prior term being bias-free, i.e.,

min
si∈O

{
Ki −

Q∑

b=1

1
2
xi,bL

A
i,b

}
= 0, ∀i, (4.28)

which directly leads to tight tree pruning using the standard pruning
criterion in (4.18) and hence, avoids explicit evaluation of (4.22).

Note that in [30, Eq. 9], the prior term (4.25) was approximated
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for
∣∣LA
i,b

∣∣ > 2 (b = 1, . . . , Q) as

− log P[si] ≈
Q∑

b=1

1
2

(∣∣LA
i,b

∣∣− xi,bLA
i,b

)

which corresponds exactly to what was done here in order to arrive
at (4.27). It is important, though, to realize that using the modified
DIs (4.27) does not lead to an approximation of (4.14), as only differ-
ences are considered in the intrinsic max-log LLR computation and
the neglected log(·)-term does not depend on xi,b.

4.2 Single Tree-Search Sphere Decoding

Computing the intrinsic max-log LLRs in (4.14) requires to de-

termine λMAP and the metrics λMAP
i,b associated with the counter-

hypotheses. For given i and b, λMAP
i,b , is obtained by traversing only

those parts of the search tree that have leaves in X
(
xMAP
i,b

)
i,b . The quan-

tities λMAP and λMAP
i,b can, in principle, be computed using the sphere

decoder based on the repeated tree-search (RTS) approach described
in [125]. The RTS strategy results, however, in redundant computa-
tions as (often significant) parts of the search tree are revisited during

the RTS steps required to determine λMAP
i,b for all i, b. Following the

STS paradigm, we note that efficient computation of LD
i,b (∀i, b) re-

quires that every node in the tree be visited at most once. This
can be achieved by searching for the MAP solution and computing
the metrics λMAP

i,b (∀i, b) concurrently while ensuring that the sub-
tree originating from a given node in the tree is pruned if searching
that subtree can not lead to an update of either λMAP or at least one
of the λMAP

i,b . The main idea underlying SISO STS-SD presented in
this chapter is to directly compute the extrinsic LLRs LE

i,b through
a tree search, rather than computing LD

i,b first and then evaluating
LE
i,b = LD

i,b − LA
i,b (∀i, b).

Due to the large dynamic range of LLRs, fixed-point detector im-
plementations need to constrain the magnitude of the LLR values.
Evidently, clipping of the LLR magnitude leads to a performance
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degradation in terms of error rate. It was noted in [129] that in-
corporating LLR clipping into the RTS algorithm is effective in terms
of reducing the complexity. Hence, we incorporate LLR clipping into
the tree-search procedure of the SISO STS-SD, which will allow us
to tune the MIMO detection algorithm in terms of complexity versus
performance by adjusting the clipping parameter. In the SISO case,
we are ultimately interested in the extrinsic LLRs LE

i,b and clipping
should therefore ensure that

∣∣LE
i,b

∣∣ ≤ Lmax (∀i, b), where Lmax is the
LLR clipping parameter. It is therefore sensible to ask whether clip-
ping of the extrinsic LLRs can be built directly into the tree search.
The answer is in the affirmative and the corresponding solution is
described below. We start by writing the extrinsic LLRs as

LE
i,b =

{
ΛMAP
i,b − λMAP , xMAP

i,b = +1

λMAP − ΛMAP
i,b , x

MAP
i,b = −1

(4.29)

where the quantities

ΛMAP
i,b =

{
λMAP
i,b − LA

i,b , x
MAP
i,b = +1

λMAP
i,b + LA

i,b , x
MAP
i,b = −1

(4.30)

will be referred to as the extrinsic metrics. For the following develop-
ments it will be convenient to define the function f(·) that transforms
an intrinsic metric λ with associated a priori LLR LA and binary
label x to an extrinsic metric Λ according to

Λ = f
(
λ,LA, x

)
=

{
λ− LA , x = +1
λ+ LA , x = −1.

(4.31)

With this notation, we can rewrite (4.30) more compactly as

ΛMAP
i,b = f

(
λMAP
i,b , L

A
i,b, x

MAP
i,b

)
.

The inverse function of (4.31) transforms an extrinsic metric Λ to an
intrinsic metric λ and is given by

λ = f−1
(
Λ, LA, x

)
=

{
Λ + LA , x = +1
Λ− LA , x = −1.

(4.32)

We emphasize that the tree-search algorithm described in the follow-
ing produces the extrinsic LLRs LE

i,b (∀i, b) in (4.29) rather than the
intrinsic ones in (4.14).
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4.2.1 List Administration

The main idea of the SISO-STS paradigm is to search the subtree
originating from a given node only if the result can lead to an update
of either λMAP or of at least one of the ΛMAP

i,b . To this end, the SD
algorithm needs to maintain a list containing the current MAP hy-
pothesis xMAP, the corresponding metric λMAP, and allQMT extrinsic
metrics ΛMAP

i,b . The algorithm is initialized with λMAP = ΛMAP
i,b =∞

and xMAP
i,b = 1 (∀i, b). Whenever a leaf node with corresponding label

x has been reached, the detector distinguishes between two cases:

i) MAP hypothesis update If d(x) < λMAP, a new MAP hy-

pothesis has been found. First, all extrinsic metrics ΛMAP
i,b for which

xi,b = xMAP
i,b are updated according to

ΛMAP
i,b ← f

(
λMAP, LA

i,b, x
MAP
i,b

)

followed by the updates λMAP ← d(x) and xMAP ← x. In other
words, for each bit in the MAP hypothesis that is changed in the up-
date process, the metric associated with the former MAP hypothesis
becomes the extrinsic metric of the new counter-hypothesis.

ii) Extrinsic metric update In the case where d(x) > λMAP,
only extrinsic metrics corresponding to counter-hypotheses might be
updated. For each i = 1, . . . ,MT, b = 1, . . . , Q with xi,b = xMAP

i,b and

f
(
d(x), LA

i,b, x
MAP
i,b

)
< ΛMAP

i,b , the SISO STS-SD algorithm performs

the update

ΛMAP
i,b ← f

(
d(x), LA

i,b, x
MAP
i,b

)
. (4.33)

4.2.2 Extrinsic LLR Clipping

In order to ensure that the extrinsic LLRs delivered by the algorithm
indeed satisfy

∣∣LEi,b
∣∣ ≤ Lmax (∀i, b), the following update rule

ΛMAP
i,b ← min

{
ΛMAP
i,b , λ

MAP + Lmax

}
, ∀i, b (4.34)
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has to be applied after carrying out the steps in Case i) of the list
administration procedure described in Section 4.2.1. Figure 4.2 illus-
trates the principle of extrinsic LLR clipping. The search for counter-
hypotheses associated with extrinsic metrics is constrained to a hy-
persphere of radius r =

√
λMAP + Lmax around the (transformed)

received signal vector ỹ. In Section 4.6.3, it will be demonstrated
numerically that incorporating the constraint |LE

i,b| ≤ Lmax directly
into the tree search significantly reduces complexity. We emphasize
that for Lmax = ∞, the detector attains max-log optimal SISO per-
formance, whereas for Lmax = 0, the LLRs satisfy LE

i,b = 0 and the
hard-output MAP solution (4.12) is obtained.

4.2.3 The Tree-Pruning Criterion

Consider the node s(i) on level i corresponding to the label bits xj,b
(j = i, . . . ,MT, b = 1, . . . , Q). Assume that the subtree origi-
nating from this node and corresponding to the label bits xj,b
(j = 1, . . . , i− 1, b = 1, . . . , Q) has not been expanded yet. The tree-
pruning criterion for the node s(i) along with its subtree is compiled
from two sets, defined as follows:

1) The bits in the partial label x(i) (corresponding to the node s(i))
are compared with the corresponding bits in the label of the
current MAP hypothesis. All extrinsic metrics ΛMAP

i,b with

xi,b = xMAP
i,b found in this comparison, may be affected when

searching the subtree originating from s(i). As d
(
x(i)
)

is an in-

trinsic metric, the extrinsic metrics ΛMAP
i,b need to be mapped

to intrinsic metrics according to (4.32). The resulting set of in-
trinsic metrics, which may be affected by an update, is given
by

A1

(
x(i)
)

=
{
f−1

(
ΛMAP
j,b , L

A
j,b, x

MAP
j,b

) ∣∣∣
(
j ≥ i,∀b

)

∧
(
xj,b = xMAP

j,b

)}
.

2) The extrinsic metrics ΛMAP
j,b for j = 1, . . . , i − 1, b = 1, . . . , Q

corresponding to the counter-hypotheses in the subtree of s(i)

may be affected as well. Correspondingly, we define
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A2

(
x(i)
)

=
{
f−1

(
ΛMAP
j,b , L

A
j,b, x

MAP
j,b

) ∣∣∣ j < i,∀b
}
.

The set of intrinsic metrics which may be affected during the search
in the subtree originating from node s(i) is given by

A
(
x(i)
)

= {al} = A1

(
x(i)
)
∪ A2

(
x(i)
)
.

The node s(i) along with its subtree is pruned if the corresponding
PD d

(
x(i)
)

satisfies the tree-pruning criterion

d
(
x(i)
)
> max
al∈A

(
x(i)
) al.

This tree-pruning criterion ensures that a given node and the entire
subtree originating from that node are explored only if this could
lead to an update of either λMAP or of at least one of the extrinsic
metrics ΛMAP

i,b . Note that λMAP does not appear in the set A
(
x(i)
)
,

as the update criteria given in Section 4.2.1 ensure that λMAP is al-
ways smaller than or equal to all intrinsic metrics associated with the
counter-hypotheses.

4.3 Channel Matrix Preprocessing

In this section, we describe how performing the QR-decomposition
(QRD) on a column-sorted and regularized version of the channel
matrix H in combination with compensation of self-interference in the
LLRs —caused by channel-matrix regularization— carried out directly
in the SISO STS-SD, can result in a significant complexity reduction
at negligible performance loss.

4.3.1 Column-Sorting and Regularization of the
Channel Matrix

Methods for column-sorting and regularization of the channel ma-
trix H performed on the basis of the received symbol vector y have
been discussed in, e.g., [130, 131]. Unfortunately, such techniques re-
quire QRD on symbol-vector rate, which leads to a significant compu-
tational burden. In contrast, column-sorting and regularization based
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solely on the channel matrix H (and possibly on the noise variance)
require QRDs only when the channel state changes, which entails a
significantly smaller computational burden.

Column-Sorting

The complexity of SD can be reduced (often significantly) by per-
forming the QRD on a column-sorted version of H rather than on H
directly, i.e., by computing HP = QR, where P is an MT ×MT per-
mutation matrix [22]. Reduction in terms of complexity is obtained if
levels closer to the root correspond to main-diagonal entries of R with
larger magnitude, or equivalently, to spatial streams with higher ef-
fective SNR. A corresponding computationally efficient heuristic was
proposed in [54] and is referred to as sorted QRD (SQRD) in the
following.

Regularization

A further reduction in terms of complexity —at the cost of slightly
reduced performance— can be obtained by performing the tree search
on a Tikhonov-regularized (and column-sorted) version of H according
to [132]

[
H
αIMT

]

︸ ︷︷ ︸
, H

P =

[
Qa Qc
Qb Qd

]

︸ ︷︷ ︸
, Q

[
R̃

0MR×MT

]

︸ ︷︷ ︸
, R

(4.35)

where α ∈ R is a suitably chosen regularization parameter. Here, R
and Q are partitioned such that R̃, Qa, Qb, Qc, and Qd are of dimen-
sionMT×MT,MR×MT,MT×MT,MR×MR, andMT×MR, respec-
tively. The computational complexity for regularized SQRD as com-
pared to non-regularized SQRD is approximately 50% higher [133].
However, the QRD needs to be performed only if the channel matrix
H changes, as opposed to the tree-search itself, which needs to be
carried out at symbol-vector rate.

LLR computation (and MAP detection) based on regularized
SQRD corresponds to replacing the modified input-output relation
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in (4.1) by

ŷ = R̃s̃ + ñ (4.36)

where ŷ = QHa y, s̃ = PT s, and ñ = −αQHb s+QHa n. The correspond-
ing intrinsic (max-log) LLRs in (4.7) are obtained by pretending that
the resulting noise ñ has the same statistics as n, which leads to

L̃D
i,b, min

s̃∈X
(−1)

i,b

{
1
No

∥∥ŷ− R̃s̃
∥∥2 − log P[s̃]

}

− min
s̃∈X

(+1)

i,b

{
1
No
‖ŷ− R̃s̃‖2 − log P[s̃]

}
(4.37)

where P[s̃] = P[s]. The intrinsic LLRs L̃D
i,b in (4.37) will, in general,

only be approximations to the intrinsic max-log LLRs LD
i,b in (4.7).

This is a consequence of ñ no longer being i.i.d. circularly symmetric
complex Gaussian distributed with variance No per complex entry,
as it contains self-interference (i.e., it depends on s) and Qa is, in
general, not unitary. Nevertheless, computing the covariance matrix
of ñ, by averaging over n and s, allows to identify good choices for
the regularization parameter α. By noting that E[ssH ] = EsIMT

,
straightforward manipulations reveal that

K = E
[
ññH

]
=
(

RRH
)−1

α2
(
Esα

2 −No

)
+NoIMT

.

Setting α =
√
No/Es, corresponds to MMSE regularization [55], re-

sults in K = NoIMT
, and yields a good performance/complexity trade-

off. We emphasize, however, that setting α =
√
No/Es will not render

the effective NPI vector ñ Gaussian. In the remainder of the chapter,
we denote the QR-decomposition in (4.35) with α =

√
No/Es MMSE-

SQRD and regularization will always refer to using MMSE-SQRD.
Finally, we note that the LLRs in (4.37) need to be reordered after
the detection stage to account for the permutation induced by P.

4.3.2 Compensation of Self-Interference

Using the approximate (max-log) LLRs in (4.37) with α 6= 0 instead of
the exact max-log LLRs in (4.7) results in a performance loss. In order
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to recover part of this performance loss, a method for the compensa-
tion of self-interference was developed in [134] for list-based MIMO
detectors. The approach described in [134] can not be applied directly
to SISO STS-SD. It turns out, however, that compensation of self-
interference can be incorporated directly into the tree-search proce-
dure. This leads to a noticeable performance improvement compared
to using (4.37), while the corresponding increase in complexity is neg-
ligible (corresponding simulation results are shown in Section 4.6.3).

Compensation of Self-Interference

As shown in [134], the squared Euclidean distance
∥∥y−Hs

∥∥2
with

y =
[

yT 01×MT

]T
can be expanded in two different ways according

to

∥∥y−Hs
∥∥2

= ‖y−Hs‖2 + α2‖s‖2 (4.38)
∥∥y−Hs

∥∥2
=
∥∥QHy−RPT s

∥∥2
=
∥∥ŷ− R̃s̃

∥∥2
+
∥∥QHc y

∥∥2
(4.39)

where (4.39) is obtained by using (4.35). Equating the RHS terms
of (4.38) and (4.39) and using ‖s‖2 = ‖s̃‖2 yields

‖y−Hs‖2 =
∥∥ŷ− R̃s̃

∥∥2
+
∥∥QHc y

∥∥2 − α2‖s̃‖2 (4.40)

which allows us to conclude that the metric ‖y−Hs‖2 contains a con-
tribution that is independent of the symbol vectors, namely ‖QHc y‖2,
and a term caused by self-interference given by −α2‖s̃‖2. Since we

use
∥∥ŷ − R̃s̃

∥∥2
(instead of the left-hand side of (4.40)) in the LLR

computation (4.37), the two remaining RHS-terms in (4.40) must be
compensated. As already observed in Section 4.1.4, constant terms
(i.e., terms that are independent of s) cancel out in the LLR com-
putation (4.14) and can therefore be neglected without affecting the
resulting LLRs, whereas the term −α2‖s̃‖2 does depend on s and
therefore needs to be compensated. This is accomplished by comput-
ing the self-interference free (SIF) intrinsic max-log LLRs according
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to [134]

L̄D
i,b, min

s̃∈X
(−1)

i,b

{
1

No

∥∥ŷ− R̃s̃
∥∥2 − α

2

No
‖s̃‖2 − log P[s̃]

}

− min
s̃∈X

(+1)

i,b

{
1

No
‖ŷ− R̃s̃‖2 − α

2

No
‖s̃‖2 − log P[s̃]

}
. (4.41)

We emphasize, however, that (4.41) remains an approximation to (4.7)
as the noise term ñ resulting from (4.36) is not i.i.d. circularly sym-
metric Gaussian distributed with variance No per complex entry.

Compensation in the SISO STS-SD Algorithm

In [134] it was suggested to compensate self-interference after the
tree-search. For the SISO STS-SD algorithm described in Section 4.2,
extrinsic LLRs are computed only on the basis of the MAP hypothe-
sis xMAP, its metric λMAP, and extrinsic metrics ΛMAP

i,b (see (4.29)).
Compensation of self-interference according to (4.41) after carrying
out the SISO STS-SD algorithm, would additionally require explicit

knowledge of the symbol vectors s ∈ X
(
xMAP
i,b

)
i,b , which is not available.

Inspection of (4.41) suggests, however, that self-interference compen-
sation may be incorporated into the tree-search procedure. Straight-
forward modification of the DIs in (4.27) to accomplish this would
lead to the modified DIs

|ẽi| = |ei| −
α2

No
|s̃i|2

which are, however, no longer guaranteed to be strictly non-negative.
As in the tightening of the tree-pruning criterion described previously
in Section 4.1.4, we recognize that symbol-vector-independent terms
can be added to the DIs without loss of (max-log) optimality. There-
fore, setting the DIs to

|ēi|, |ei|+m(s̃i) (4.42)

with the non-negative term

m(s̃i) =
α2

No

(
max
s∈O
|s|2 − |s̃i|2

)
(4.43)
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leads to the smallest possible non-negative DIs that compensate self-
interference directly in the tree search. Note that adding non-negative
terms to the DIs as done in (4.42) increases, in general, the (tree-
search) complexity. Recall, however, that channel-matrix regular-
ization itself almost always significantly reduces complexity [23], so
that this increase, which is shown numerically in Section 4.6.3 to be
marginal, is tolerable. In addition, it turns out that self-interference
compensation recovers the performance loss due to channel-matrix
regularization to a point where near-max-log optimal performance is
achieved (see Section 4.6.3). In the case of constant-modulus symbol
alphabets (e.g., BPSK or 4-QAM) we have m(s̃i) = 0 (i = 1, . . . ,MT)
and compensation of self-interference in the tree-search is not required
(and hence, does not increase the complexity). We conclude by noting
that the quantities maxsi∈O |si|2 can be pre-computed and hence, the
additional computational complexity required to incorporate compen-
sation of self-interference into the tree-search procedure is very small.

4.4 Run-Time Constraints

The complexity of the SISO STS-SD algorithm depends critically
on the noise realization n, the channel-matrix realization H, the
transmit-vector s, and the a priori LLRs LA

i,b. As it will be discussed
below, the often prohibitively high worst-case complexity of SD con-
stitutes a problem in many practical application scenarios, as it in-
hibits realizing the throughput requirements of many of the available
communication standards.

4.4.1 Issues with SD Complexity

As it was shown in [126, 135], the average complexity of ℓ2-norm SD
and ℓ∞-norm SD grows exponentially in the number of transmit an-
tennas. Moreover, if SNR→ 0, the (hard-output) SESD visits at least
all nodes down to and including the level just above the leaves, which
corresponds (for R = IMT

) to

C =
|O|MT − 1

|O| − 1
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visited nodes [25]. High complexity is caused by the fact that the
noise can shift the transmit vector arbitrarily far away from the finite
lattice that causes the minimum radius of SESD (corresponding to the
Euclidean distance between the received vector and the ML solution)
to get arbitrarily large. Hence, the complexity of SD can get very
high, especially in the low-SNR regime.

Recently, it was shown in [136] for the Pohst-SD algorithm oper-
ating on the infinite-lattice [94,95], that the complexity tail-behavior
in i.i.d. Gaussian lattices is of Pareto-type, i.e.,

P[C ≥ L] ≈ L−(MR−MT+1), L→∞

where C stands for the complexity in number of visited nodes. Hence,
the SD complexity is large with high probability. Simulation re-
sults have shown that the tail-complexity of SESD has a similar tail-
complexity behavior to that in the infinite-lattice (but is not neces-
sarily of Pareto-type).

4.4.2 Early-Termination and Scheduling

Due to the prohibitive worst-case complexity of SD, is of paramount
importance that the SD algorithm’s maximum complexity must be
constrained to meet the practically important requirement of high
throughput. This, in turn, leads to a constraint on the maximum
detection effort or, equivalently, a constraint on the maximum number
of nodes SD is allowed to visit. Clearly, this will prevent the detector
from achieving MAP or max-log optimal SISO APP performance, in
general. It is therefore important to find a way of imposing run-
time constraints while keeping the resulting performance degradation
at a minimum. In practice, it is highly desirable to have a smooth
performance degradation as the run-time constraint becomes more
stringent. In the following, we present corresponding solutions for the
SISO STS-SD algorithm.

Maximum-First Scheduling

A straightforward way of enforcing a run-time constraint is to ter-
minate the search, on a symbol vector by symbol vector basis, after
a maximum number of visited nodes. The SISO STS-SD algorithm
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then returns the best solution found so far, i.e., the current MAP
hypothesis and the current extrinsic metrics. A better solution is to
impose an aggregate run-time constraint of NDavg visited nodes for
an entire block of N symbol vectors [21].6 The maximum number of
visited nodes allocated to the detection of the kth symbol vector can
be chosen according to the maximum-first (MF) scheduling strategy
as [21,22]

Dmax(k) = NDavg −
k−1∑

i=1

D(i)− (N − k)M (4.44)

for k = 1, . . . , N , where D(i) denotes the actual number of visited
nodes for the ith symbol vector and M is a safety margin.

The main idea realized by the policy (4.44) is that detection of the
kth symbol vector is allowed to use up all of the remaining complexity
budget within the block of N symbol vectors up to (N − k)M nodes,
i.e., the parameterM determines that in decoding the remainingN−k
symbol vectors, we can afford a budget of at leastM nodes per symbol
vector. Setting M = MT and choosing Davg ≥ MT (what is used in
the remainder of this thesis), ensures that for each of the remaining
N − k symbol vectors at least the hard-output successive interference
cancellation (SIC) solution is found. We emphasize that, under run-
time constraints and no LLR clipping (i.e., Lmax =∞), there may be
LLRs at the end of the decoding process that have not been updated
from their initial value of ∞ and hence need to be set to Lmax. The
performance of MF scheduling in combination with SISO STS-SD is
shown in Section 4.6.5.

FIFO Scheduling

In many practical receiver implementations, the receive-vectors y are
stored in a memory, which is able to deliver the receive-vectors to the
MIMO detector at a certain maximum rate (limited by the memory
bandwidth). The scheduling method described below will be referred
to as FIFO scheduling and extends the method described in [21].

The principle of FIFO scheduling is illustrated in Figure 4.5 and
consists of a first-in first-out (FIFO) unit (with F entries), a distri-

6In a MIMO-OFDM system, N would be the number of OFDM tones.
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Figure 4.5: FIFO scheduling with K parallel SD-cores.

bution unit (D), K parallel operating SD units (e.g., SISO STS-SD
units), a collector unit (C), and a re-ordering buffer. We assume that
the K parallel SD units follow the one-node-per-cycle paradigm [33],
i.e., the number of clock cycles required to detect a symbol vector
equals the complexity. We furthermore consider the scenario where
for every Davg clock cycle, a new receive-vector arrives at the FIFO
(the arrival rate is 1/Davg receive-vectors per clock cycle).

The FIFO scheduling algorithm is as follows. Consider the case
when the FIFO is empty and a receive-vector y arrives at the FIFO.
In this situation, the distribution unit passes this vector immediately
to an idle SD unit. If all of the K units are busy with detection, the
receive-vector is stored in the FIFO. In the case where the FIFO is
full7, the SD unit that used up the maximum complexity so far is
terminated early. This strategy enables to immediately decode a new
receive-vector in the terminated SD unit. Moreover, it ensures that
the arrived receive-vector can be stored in the FIFO and does not need
to be discarded. If a SD unit completes detection, the collector stores
the produced LLRs in a memory. Since it may happen that the order-
of-arrival (at the FIFO) is not equal that the order of completion,
re-ordering of the LLRs is required (and performed in the collector).

The presented FIFO scheduling approach ensures that each receive-
vector can be decoded with at least DavgK visited nodes, i.e., increas-
ing the number of parallel SD instances also increases the minimum
available complexity available for each detection task. The FIFO-size
F determines the amount of “averaging” that can be exploited, i.e.,

7This many happen if the complexity of all K tasks is much larger than Davg.
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Figure 4.6: LLR correction post-processes the LLRs resulting from
the effective channel using side information Z.

if F is large it will be less likely that the FIFO gets full (for the case
when the arrival rate is less than the service rate) and hence, the
amount of early-terminated SD runs decreases. However, the worst-
case latency increases in this situation. Hence, the overall performance
of SD using FIFO scheduling depends critically on the number of par-
allel SD units as well as on F .

4.5 LLR Correction

The max-log approximation, channel-matrix regularization, and other
complexity-reducing mechanisms, such as early termination of the
tree-search, lead to LLRs that are approximations to the true LLRs
in (2.22). However, channel decoders rely on exact LLRs in order to
achieve optimum performance. In the following, we present a post-
processing method for correcting approximate LLRs resulting from
sub-optimal detectors. This method is based on ideas developed
in [137, 138] and is able to (often significantly) improve the perfor-
mance in (iterative) MIMO decoders while requiring low additional
computational complexity.

4.5.1 The Basic Idea

We start by defining (or recalling the definitions of) the following
objects (see Figure 4.6):
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• the effective channel with the binary-valued inputs xi,b and the
associated a priori LLRs LA

i,b and outputs given by the (possibly
approximated) extrinsic LLRs LE

i,b.

• the physical MIMO channel with input s and output y.

• the soft-input soft-output MIMO detector with inputs y and LA
i,b

and outputs LE
i,b.

• the LLR correction unit (see Figure 4.6) computes corrected ex-
trinsic LLRs LC

i,b based on (approximated) extrinsic LLRs LE
i,b

and on side information Z, by applying an LLR correction func-
tion

LC
i,b = g

(
LE
i,b,Z

)
. (4.45)

• the side information Z is, for example, obtained from the (in-
stantaneous) receive SNR, the singular values of the channel
matrix H, and from knowledge of whether the soft-input soft-
output MIMO detector was terminated prematurely [23].

For the LLR correction function to yield valid LLRs, we define

g
(
LE
i,b,Z

)
= log




P
[
xi,b = +1 |LE

i,b,Z
]

P
[
xi,b = −1 |LE

i,b,Z
]


 . (4.46)

Just like the LLRs in (2.22) are computed based on the received vec-
tor y and the channel state H, the corrected LLRs are computed
based on the (approximated) extrinsic LLRs LE

i,b and the side infor-
mation Z. The formulation (4.45) and (4.46) entails that LC

i,b depends
only on LE

i,b (and Z) rather than on all extrinsic (approximated) LLR
values LE

i,b (for all i, b). Making the correction function depend on
other LLR values (besides the one to be corrected) would certainly
improve the correction performance, but at the same time also dra-
matically increase the computational effort for LLR correction, as it
will become clear in the discussion of the numerical procedure for LLR
correction proposed below.



110 CHAPTER 4. SISO SPHERE DECODING

The main idea is now —depending on the mechanisms used to
approximate the extrinsic LLRs (e.g., the max-log approximation,
channel-matrix regularization, early termination of the tree-search)—
to extract suitable side information Z. To see that this is non-trivial
and the problem is multi-faceted, simply note that the set of all pos-
sible channel matrices H is a continuum of MR×MT complex-valued
matrices. This continuum will be absorbed in Z through, e.g., the
singular values or the rank of H. We emphasize that in practice, LLR
correction requires that the set Z be finite. In addition, the individual
entries of Z must have finite cardinality as well. Hence, continuous-
valued quantities, such as, e.g., the SNR or singular values, must be
suitably quantized. The total number of different instances of the side
information Z is denoted by Z in the following.

4.5.2 Computation of LLR Correction Functions

Once we have chosen Z, the LLR correction function in (4.46)
is (in principle) obtained from the conditional probabilities

P
[
xi,b = ±1 |LE

i,b,Z
]
. Analytical expressions for correction functions

seem very hard to obtain (even for simple examples such as for Ha-
genauer’s approximation to the box function [137]). We next propose
an approach for numerically computing (approximations to) the LLR
correction function in (4.46).

First, the range of the LLRs to be corrected needs to be con-
strained (motivated, e.g., by the use of LLR clipping) to

LE
i,b ∈ [−Lmax,+Lmax].

This interval is then divided into K equally-sized bins such that
the kth bin corresponds to

Bk =

[
−Lmax + k

2Lmax

K
,−Lmax + (k + 1)

2Lmax

K

)

for k = 0, . . . ,K − 1. Then, the histogram

pk(Z) = P
[
xi,b = +1 |LE

i,b ∈ Bk,Z
]
, k = 0, . . . ,K − 1 (4.47)

can be computed by performing Monte-Carlo simulations (averaged
over noise and channel realizations) with randomly generated bits xi,b.
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For each LE
i,b and a given instance of Z, the (approximated) LLR

correction function is obtained by linear interpolation between the
base points

(
− Lmax +

(
k +

1

2

)
2Lmax

K
, log

(
pk(Z)

1− pk(Z)

))
. (4.48)

We emphasize that for each instance of Z, in general, a different
LLR correction function is be obtained. Note that the LLRs result-
ing from (4.48) may have a magnitude that is larger than Lmax (see
Section 4.6.5). The corrected LLRs can be clipped again to satisfy
|LC
i,b| ≤ Lmax,c, where Lmax,c ≥ Lmax, thereby limiting the dynamic

range of LLRs (rather than performing LLR clipping for complexity
reduction and tuning of the detector as done so far).

The computational complexity needed to compute the histogram
in (4.47) and the corresponding storage requirements depend criti-
cally on the number of bins K and on the total number of different
instances of the side information Z given by Z. In particular, ZK
histogram values need to be stored and hence, it is important to keep
both Z and K small. Application of the LLR correction function itself
amounts to simple table look-up operations followed by linear interpo-
lation, which can be performed at very low computational complexity.

4.5.3 An Example

We next discuss an example that illustrates the impact (and impor-
tance) of LLR correction. Consider the case where early termination
with MF scheduling is used (see Section 4.4.2). Now, if early termi-

nation happens before the extrinsic metric ΛMAP
i,b was updated from

its initial value ∞, the corresponding LLR satisfies
∣∣LE
i,b

∣∣ = Lmax as
only LLR clipping according to (4.34) was performed. Hence, early
termination may result in LLRs with a higher reliability than they
would actually have if no complexity constraints were imposed. This
calls for LLR correction with the goal of reducing the magnitude of
such LLRs. Consequently, the side information set Z should contain
a binary-valued state variable, which indicates whether early termi-
nation occurred or not (i.e., the magnitude should be reduced if early
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termination happened). Corresponding numerical results are provided
in Section 4.6.5.

4.6 Simulation Results

Unless explicitly stated otherwise, all simulation results are for sim-
ulation environment similar to that described in Section 2.2.2. We
consider a convolutionally encoded (rate R = 1/2, generator poly-
nomials [133o 171o], and constraint length 7) iterative MIMO-OFDM
system withMT =MR = 4, 16-QAM constellation O with Gray label-
ing, 64 OFDM tones, and TGn type C channel model [12]. Channel
decoding is performed using a max-log BCJR algorithm [34]. One
frame consists of 1024 randomly interleaved (across space and fre-
quency) bits corresponding to one (spatial) OFDM symbol and we
assume that the bits xi,b (∀i, b) are statistically independent. The
SNR is per receive antenna and the SNR values specified in the fig-
ures are in decibels (dBs). The number of iterations I is the number of
times the soft-input soft-output MIMO detector (and the SISO chan-
nel decoder) are used, i.e., I = 1 corresponds to soft-output SD. The
LLR clipping parameters shown in the simulation results correspond
to normalized LLR clipping parameters according to Lmax/No.

4.6.1 Impact of the Max-Log Approximation

Figure 4.7 compares the error-rate performance of exact APP detec-
tion in (2.22) to that of the max-log approximation in (4.7) using the
(optimal) sum-product BCJR algorithm for channel decoding. We
can see that the max-log approximation entails a small performance
loss (between 0.2 dB and 0.6 dB SNR for 1% FER), which increases
with growing I. However, the loss associated with the max-log ap-
proximation can be considered to be low, in particular in the light of
the prohibitive computational complexity associated with exact APP
detection.
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Figure 4.7: Performance impact of the max-log approximation to
MIMO APP detection.

4.6.2 Tightening of the Tree-Pruning Criterion

Impact of the Euclidean-Distance Term

The goal of the simulation results shown in Table 4.1 is to quantify
the impact of the Euclidean distance term 1

No

∣∣ỹi −
∑MT

j=i Ri,jsj
∣∣2 in

the bias (4.19) on the complexity reduction obtained by tightening the
tree-pruning criterion according to (4.21). To this end, we set the prior
term to zero, i.e., log P[s] = 0, and compare the complexity resulting
from the tightened tree-pruning criterion to that of the standard tree-
pruning criterion (denoted by “std.” in Table 4.1) given in (4.18). We
observe that the complexity reduction obtained by tightening of the
tree-pruning criterion based on the Euclidean distance-term only, is
marginal, in particular in the light of the prohibitive effort required
to compute (4.19).
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Table 4.1: Average complexity reduction obtained by tightening of the
tree-pruning criterion based on the Euclidean-distance term only.

SNR Lmax std. [nodes] tight [nodes] reduction

10 dB
0.0125 34.9 34.4 1.4%
∞ 328.3 327.8 0.2%

20 dB
0.0125 11.0 10.8 1.8%
∞ 227.2 227.0 0.1%

Table 4.2: Average complexity reduction obtained by tightening of the
tree-pruning criterion based on the prior term only.

SNR I Lmax std. [nodes] tight [nodes] reduction

10 dB
1

0.0125 1890.4 34.9 98.2%
∞ 2440.2 328.3 86.5%

2
0.0125 1630.6 43.4 97.3%
∞ 2148.4 406.6 81.1%

20 dB
1

0.0125 1914.7 11.0 99.4%
∞ 2397.0 227.2 90.5%

2
0.0125 1228.7 6.2 99.5%
∞ 361.9 132.4 65.9%

Impact of the Prior Term

Next, we start with uniform priors, i.e., LA
i,b = 0 (∀i, b) for the first it-

eration, and perform tightening of the tree-pruning criterion according
to (4.23). Table 4.2 shows that removing the bias |pi| in (4.22) leads
to a dramatic reduction in terms of complexity, ranging from 65.9%
to 99.5%. Furthermore, we can see that the impact on complexity
reduction in the second iteration (I = 2) is less pronounced (but still
significant) than in the first iteration. This behavior can be explained
by noting that for I = 1 the priors satisfy LAi,b = 0, which leads to
the largest possible values for |pi|, i = 1, . . . ,MT. We note that, in
general, the impact on complexity reduction is further reduced with
increasing I.

We can now conclude that removing the Euclidean-distance com-
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ponent of the bias term (4.19) is not worth the effort. In contrast,
tightening of the tree-pruning criterion based on the prior only (4.23)
leads to a significant complexity reduction and requires no additional
computational complexity if the individual bits xi,b (∀i, b) are statis-
tically independent (see (4.28) in Section 4.1.4). In the remainder of
this thesis, we always employ tightening of the tree-pruning criterion
according to (4.23).

4.6.3 Performance/Complexity Tradeoffs

The performance/complexity tradeoffs discussed next and quantified
in Figs. 4.8 – 4.11, 4.13, and 4.14 refer to the cumulative (tree-search)
complexity in terms of the total number of nodes visited (averaged
over independent channel, noise, and data realizations) for SISO de-
tection over I iterations, designated as “average complexity” from now
on. The computational complexity incurred by channel decoding is
ignored in the following. The minimum SNR required to achieve a
given frame error rate (FER) is referred to as the “SNR operating
point” for that FER in the remainder of this thesis.

Impact of LLR clipping

From Figure 4.8, we can conclude that LLR clipping allows for a
smooth performance/complexity tradeoff, adjustable through a single
parameter, namely the LLR clipping parameter Lmax. Note that for a
fixed SNR operating point, the minimum complexity is not necessarily
achieved by maximizing the number of iterations. The performance
corresponding to the case where clipping of the extrinsic LLRs is per-
formed after the tree search, i.e., LLR clipping is not incorporated
into the tree search, is that obtained for Lmax =∞. We can therefore
conclude that incorporating LLR clipping into the tree search is of
paramount importance as it reduces the complexity substantially and
renders the detector easily adjustable in terms of performance versus
complexity.
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SNR operating point for 1% FER

Figure 4.8: Performance/complexity tradeoff of SISO STS-SD with
SQRD. The numbers next to the curves correspond to normalized
LLR clipping parameters.

Column-Sorting and Regularization

We next examine the impact of column-sorting and regularization of
the channel matrix on the performance/complexity tradeoff. It can
be seen in Figure 4.9 that in the low-complexity regime, the Pareto-
optimal tradeoff curve is achieved by MMSE-SQRD. In the high-
complexity regime, the performance loss incurred by regularization
renders MMSE-SQRD inferior to un-regularized SQRD. This obser-
vation has already been made for the soft-output-only case in [23],
but is also valid for I > 1 using SISO STS-SD.

Self-Interference Free LLRs

Figure 4.9 additionally quantifies the impact of compensating self-
interference —according to Section 4.3.2— on the performance and
complexity of the SISO STS-SD. We observe that compensation of
self-interference results in a performance improvement in terms of
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SNR operating point of 0.3 dB to 0.5 dB in almost all regions. In the
high-complexity regime un-regularized SQRD outperforms channel-
matrix regularization and has an SNR operating point that is 0.15 dB
below that obtained in the SIF case.

4.6.4 Comparison with RTS and LSD

Comparison with Repeated Tree Search

Figure 4.10 compares the performance/complexity achieved by the
RTS-SD algorithm proposed in [125]. In addition, we employ LLR
clipping for the RTS-SD. To this end, ri,b is initialized as described in
Section 4.1.3 followed by an immediate update according to

ri,b ← min{ri,b, λMAP + Lmax} (4.49)

which ensures that |LE
i,b| ≤ Lmax is satisfied. Note that as a conse-

quence of (4.49), metrics associated with counter-hypotheses for which
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Figure 4.10: Performance/complexity tradeoff of RTS-SD and STS-
SD, both using SQRD. The numbers next to the curves correspond
to normalized LLR clipping parameters.

no valid lattice point is found equal λMAP + Lmax. We can see from
Figure 4.10, that the RTS-SD algorithm has a significantly higher
complexity —ranging between 3 to 8 times more than SISO STS-SD—
for a given SNR operating point. We conclude that the RTS strategy
has a worse performance/complexity tradeoff profile than that of the
SISO STS-SD algorithm, which is caused by redundant computations
of the RTS-SD during the tree-search.

Comparison with List Sphere Decoding

Figure 4.11 compares the performance/complexity tradeoff achieved
by list sphere decoding (LSD) as proposed in [19] to that obtained
through SISO STS-SD. For the LSD algorithm, we take the complex-
ity to equal the number of nodes visited when building the initial
candidate list. The (often significant) computational burden incurred
by list administration in LSD is neglected, leading to a complexity
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Figure 4.11: Performance/complexity tradeoff of LSD [19] and SISO
STS-SD, both using SQRD. The numbers next to the curves corre-
spond to the list size for LSD and to normalized LLR clipping param-
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measure that favors the LSD algorithm. We can draw the following
conclusions from Figure 4.11:

i) SISO STS-SD outperforms LSD for all SNR operating points.

ii) LSD requires relatively large list sizes and hence a large amount
of memory to approach (max-log) optimum SISO performance.8

The underlying reason is that LSD obtains extrinsic LLRs from
a candidate list that has been computed around the maximum-
likelihood solution, i.e., in the absence of a priori information. In
contrast, SISO STS-SD requires memory mainly for the extrin-
sic metrics, which are obtained through a search that is concen-
trated around the MAP solution. Consequently, SISO STS-SD

8In addition to the memory requirements, the search-and-replace operations
required in the LSD algorithm’s list administration, quickly lead to prohibitively
high VLSI-implementation complexity when the list size grows (see Section 4.1.2).
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tends to require (often significantly) less memory than LSD.

Besides LSD, various other SISO detection algorithms for MIMO
systems have been developed, see e.g., [30–32, 42, 67, 122]. The al-
gorithms described in [31] and [32] are related to LSD but require
rebuilding the candidate list in each iteration; this can lead to a sub-
stantial complexity increase compared to LSD. For the SISO MMSE
PIC described in Chapter 3 and the algorithm described in [67], is-
sues indicating potentially high computational complexity include the
requirement for matrix inversion for each symbol vector in each itera-
tion. In contrast, the QRD required for SD has to be computed only
when the channel state changes. A detailed complexity comparison
(based on VLSI implementation results) between the SISO MMSE
PIC and the SISO STS-SD is provided in Chapter 6. The computa-
tional complexity of the list-sequential (LISS) algorithm in [30, 122]
seems difficult to relate to the complexity measure employed in this
thesis. However, due to the need for sorting of candidate vectors and
the structural similarity of the LISS algorithm to LSD, we expect the
performance/complexity tradeoff realized by the LISS algorithm to be
comparable to that of the LSD algorithm.

4.6.5 Impact of LLR Correction

Figure 4.12 shows examples for LLR correction functions of SISO
STS-SD obtained by linear interpolation using K = 31 bins and side
information given by

Z =
{
Lmax,Davg,SNR, T

}
(4.50)

where Lmax = 0.2, Davg ∈ {16,∞}, SNR = 16 dB, and T ∈ {0, 1}
indicates whether early termination occurred (T = 1) or not (T = 0).
Here, the number of instances of Z is given by Z = 4. Note that in
practice, the parameters Lmax, Davg, and SNR in Z remain constant
as long as the channel state remains constant, whereas T may change
at symbol-vector rate, i.e., depending on T , different LLR correction
functions need to be applied to the extrinsic LLRs LE

i,b. We compare
the LLR correction functions corresponding to SISO STS-SD using
column-sorting (SQRD), regularization and column-sorting (MMSE-
SQRD), and compensation of self-interference in combination with
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Figure 4.12: Different LLR correction functions for I = 1 at SNR =
16 dB using Z =

{
Lmax,Davg,SNR, T

}
.

MMSE-SQRD, all having unconstrained maximum complexity (i.e.,
Davg = ∞ and, hence, T = 0). We furthermore show the correc-
tion function of SIF (MMSE-SQRD) LLRs in combination with MF
scheduling for Davg = 16 (denoted by “MF16” in Figure 4.12) and
T = 1. The following observations can be made:

i) For unconstrained complexity, i.e.,Davg =∞, LLRs correspond-
ing to ±Lmax are corrected to LLRs with larger magnitude; this
is a result of clipping LLRs with magnitude larger than Lmax

to ±Lmax. We note that since the LLR correction functions are
obtained by binning and linear interpolation, LLR-values that
have slightly smaller (mandated by the bin-width) magnitude
than Lmax are also corrected to values larger than Lmax.

ii) For early termination with MF-scheduling (i.e., Davg = 16 and
T = 1), LLRs with magnitude close to Lmax are corrected to
LLRs with smaller magnitude (i.e., their reliability is reduced).
LLRs corresponding to LE

i,b = ±Lmax are, as already mentioned
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in Section 4.5.3, often caused by early termination and hence,
are corrected to less reliable LLR-values.

iii) The LLR correction function associated with column-sorting
(SQRD) only is almost a linear function with slope one, i.e.,
LC
i,b = LE

i,b, which indicates that little correction is performed.
The reason for this behavior is that column-sorting maintains
(max-log) optimality and the impact of the max-log approxima-
tion on performance is small, in general (see Section 4.6.1). The
correction functions associated with channel-matrix regulariza-
tion show a stronger deviation from LC

i,b = LE
i,b (cf. the zoom

in Figure 4.12), indicating that more correction is required, since
regularization leads to an approximation of the max-log LLRs
(see Section 4.3.1).

Performance/Complexity Tradeoff with Early Termination

Figure 4.13 shows the performance/complexity tradeoff for early-
termination based on MF scheduling with and without LLR correc-
tion. The side information was chosen according to (4.50) and the
LLR correction function was computed based on K = 31 bins with
linear interpolation.

Depending on the average run-time constraint, LLR correction
can reduce (i.e., improve) the SNR operating point by up to 3 dB.
As expected, the performance gains resulting from LLR correction
are more pronounced for larger clipping parameters as in these cases
performance is dominated by the run-time constraint and early ter-
mination happens more often. Note that LLR correction also yields
slight performance gains for small LLR clipping levels, where the run-
time constraints do not affect performance. This indicates that LLR
correction can also correct —at least partly— the errors induced by
LLR clipping and by channel-matrix regularization.

In summary, we can conclude that LLR correction is able to sig-
nificantly improve the SNR operating point. Moreover, we note that
for a given run-time constraint, there exists an optimum LLR clipping
level, in the sense of minimizing the SNR operating point. It is there-
fore important to choose the LLR clipping level in accordance with
the average run-time constraint.
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Figure 4.13: Impact of LLR correction. The solid lines correspond to
the performance obtained with LLR correction, whereas the dotted
lines pertain to un-corrected LLRs. Both variants employ early ter-
mination with MF scheduling and compensation of self-interference in
the LLRs in combination with MMSE-SQRD.
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Figure 4.14: Performance/complexity tradeoff of SISO STS-SD
with SQRD (without regularization). Comparison between parallel-
concatenated turbo codes (PCTCs) and convolutional codes (CCs).

Performance/Complexity Tradeoff for Turbo Codes

The next simulation result is aimed at understanding which of the
conclusions drawn so far change in the presence of more sophisticated
channel codes. To this end, we evaluated the performance/complexity
tradeoff for a parallel-concatenated turbo code (PCTC) of rate 1/2
(punctured, memory 2, and generator polynomial [7o 5o], where 7o
pertains to the feedback path) with eight iterations in the turbo de-
coder. We use the interleaver specified in the 3GPP standard [139]
with 508 information bits. One code-block corresponds to 1024 coded
bits including two times four bits for termination of the trellises. For
aggressive LLR clipping, simulation results have shown that using the
sum-product algorithm within the turbo decoder requires precise (and
hence, corrected) LLRs to yield satisfactory results, whereas max-log-
based decoders seem to be more robust to effects incurred by LLR
clipping. Since we employ the sum-product BCJR algorithm [34] for
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decoding of the PCTCs, LLR correction is used.
The results in Figure 4.14 indicate that the performance and com-

plexity achieved by the PCTC in the first iteration is significantly bet-
ter than that obtained for the convolutional code (CC) used in the pre-
vious simulations. In the second iteration, the performance/complexity
tradeoff is almost identical for both codes. For I > 2, the CC slightly
outperforms the PCTC, which could be due to the fact that we use
a turbo code with very short block length and a channel model that
exhibits correlation across frequency and space (see, e.g., [140]).

4.6.6 Information Transfer Characteristics

In order to characterize the performance of soft-input soft-output
MIMO detectors independently of the channel code and channel de-
coder, we compute information transfer characteristics (ICTs) using
an i.i.d. (across space and OFDM tones) Rayleigh multi-path fading
channel model and assuming a Gaussian model for the a priori LLRs
according to [141]

LA
i,b =

2

σ2

(
xi,b + n

)

where n is a real-valued Gaussian RV with zero mean and variance σ2.
The a priori information content is determined by σ2 and character-
ized by the mutual information between the transmitted bits xi,b and
the a priori input of the SISO detector, i.e., IA = I

(
xi,b;L

A
i,b

)
(in bits

per binary symbol) where 0 ≤ IA ≤ 1. Note that large and small val-
ues of σ2, reduce and increase the mutual information IA, respectively.
The extrinsic information at the output of the detector (averaged over
all transmit antennas and bits) is defined as

IE =
1

MTQ

MT∑

i=1

Q∑

b=1

I
(
xi,b;L

E
i,b

)

in bits per binary symbol where 0 ≤ IE ≤ 1. Note that LA
i,b = 0

implies IA = 0 and corresponds to soft-output-only MIMO detec-
tion. The information transfer characteristic (ITC) corresponds to
the function IE = h(IA), for a given SNR, and enables us to assess
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Figure 4.15: ITCs of SISO STS-SD, SISO MMSE PIC, and hard-
output MAP detection for 10 dB and 14 dB SNR.

the performance of soft-input soft-output MIMO detectors in a fun-
damental way. Note that the application of ITCs as described here
was originally proposed in [4, Chapter 16].

SISO MMSE PIC vs. SISO STS-SD

Figure 4.15 compares the ITC of the low-complexity SISO MMSE PIC
described in Section 3.2 with the SISO STS-SD (using Lmax =∞) and
the hard-output MAP detector (2.4) for 10 dB and 14 dB SNR. We
can see that for IA = 0, the SISO STS-SD outperforms the SISO
MMSE PIC algorithm and hard-output MAP detection. Remarkably,
the SISO MMSE PIC algorithm attains the same information transfer
as the SISO STS-SD, if perfect a priori information is available (i.e.,
for IA = 1). Note that for 0 < IA < 1, the SISO MMSE PIC yields
poor performance and is even outperformed by the hard-output MAP
at 14 dB SNR if IA is close-to 0.5 bits per binary symbol. We can
therefore conclude that the SISO STS-SD has the overall better ITC
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Figure 4.16: ITC of SISO STS-SD at SNR = 12 dB for different (nor-
malized) LLR clipping parameters.

compared to that of the SISO MMSE PIC.

Impact of LLR clipping

Figure 4.16 shows that a normalized LLR clipping parameter of
Lmax = 0.4 achieves almost the same ITC as max-log optimal SISO
STS-SD with Lmax =∞. Hence, increasing the LLR clipping param-
eter to a value above 0.4 does not further improve performance of the
detector and only leads to an increase in complexity. We note that the
same observation was made in the performance/complexity tradeoff
simulations in Figure 4.8.

Performance comparison with LSD

Figure 4.17 compares the ITC of SISO STS-SD to that of LSD [19].
For IA close to 1, LSD requires large list-sizes to yield a performance
close to that of the max-log-optimal SISO STS-SD algorithm. Note
that even hard-output MAP detection (which corresponds to SISO
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log) optimal SISO STS-SD performance at SNR = 12 dB.

STS-SD with Lmax = 0) can outperform LSD —in terms of ITCs— if
IA is close to 1 and the list-size is small. We therefore conclude that
SISO STS-SD has a fundamental performance advantage over LSD,
which is in agreement with the observations made in Section 4.6.4

4.6.7 Approaching Outage-Capacity with
SISO STS Sphere Decoding

We finally compare the performance obtained with SISO STS-SD to
the outage capacity given in (2.33). The performance comparison con-
sists of setting the outage probability and the FER to 1% and iden-
tifying the corresponding SNR operating points. Figure 4.18 shows
the corresponding results for SISO STS-SD with different modulation
schemes for I = 1 and I = 8. Note that the LLR clipping param-
eters are chosen so as to minimize complexity while retaining near-
max-log optimal performance at 1% FER (i.e., we used Lmax = 0.1,
Lmax = 0.4, Lmax = 2.0, and Lmax = 6.0 for 64-QAM, 16-QAM,
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QPSK, and BPSK, respectively). We can see that SISO STS-SD op-
erates between 1.5 dB (for 4-QAM) and 5.3 dB SNR (for 64-QAM)
away from outage capacity.

4.7 VLSI Implementation of Soft-Output
Single Tree-Search Sphere Decoding

The first VLSI implementation for hard-output SESD has been de-
scribed in 2004 by Burg et al. [103], which was the proof-of-concept
that ML detection for MIMO systems is feasible in practical systems.
Further complexity reduction on algorithmic and hardware level led
to the highly-efficient one-node-per-cycle (ONPC) SESD architecture
described in [33]. Up till now, a variety of SD architectures for hard-
output SD have been proposed in the literature, e.g., [138, 142, 143].
The VLSI implementation described by Cerato et al. in 2008 [105]
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demonstrates that SD suitable for efficient decoding of STBCs in prac-
tice as well. The first soft-output detector for MIMO systems based on
list sphere-decoding (LSD) developed in [19] was described by Wenk
et al. in 2006 [127]. The number of recent SD implementations avail-
able in the literature indicates that VLSI implementation for SD is
still an active research area.

In this section, we describe the first VLSI implementation of the
soft-output (SO) STS-SD algorithm developed above. We start by
briefly reviewing the hard-output SESD architecture developed in [33],
which is the basis of our proposed VLSI implementation. Then, al-
gorithmic modifications of the soft-output STS-SD algorithm are pre-
sented, in order to enable economic implementation in practical sys-
tems. Finally, we describe a VLSI architecture for soft-output STS-SD
and show corresponding implementation results.

4.7.1 VLSI Architecture

Since the proposed soft-output STS-SD VLSI implementation is based
on the one-node-per-cycle (ONPC) VLSI architecture developed in [33]
for hard-output SD, we start our discussion by briefly reviewing rele-
vant aspects of [33].

A Brief Review of the ONPC Architecture in [33]

The VLSI architecture proposed in [33] employs two functional units:

Metric Computation Unit (MCU) The MCU handles the for-
ward iteration in the search tree by identifying the starting-point for
the SE enumeration (i.e., the current node’s child that has the small-
est PED) using the direct-QAM enumeration algorithm initially pro-
posed in [19] and slightly modified in [33].9 The basic idea behind
this enumeration method for QAM constellations is as follows: The
QAM constellation is first decomposed into subsets of constellation
points that have the same modulus, referred to as phase-shift keying

9Recently, an approximation to SE enumeration has been proposed for hard-
output SD in [143], which enables to reduce the circuit complexity required for
enumeration and shortens the critical path. Initial simulation results indicate that
this approximation is also well-suited for SISO STS-SD.
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(PSK) subsets. Within each of these PSK subsets, the child asso-
ciated with the smallest PED can be identified based on the phase
of bi = ỹi −

∑MT
j=i+1Ri,jsj only. The corresponding minimum PEDs

(one for each subset) are then computed and compared. The min-
imum PED across subsets identifies the starting point for the SE
enumeration. If the resulting child neither corresponds to a leaf nor
qualifies for pruning, the decoder proceeds in forward direction by
declaring this child as the next parent node to be examined by the
MCU (cf. ¬ in Figure 4.19).

Metric Enumeration Unit (MEU) The MEU maintains a list of
preferred children, one for each node between the root and the parent
of the node whose children are currently under examination by the
MCU. To this end, the MEU follows the MCU on its path through
the tree with one cycle delay. While the MCU visits a node, the
MEU considers this node’s siblings and identifies the one that should
be visited next according to the SE criterion. This sibling is found
by applying the direct-QAM enumeration principle described above,
where within each PSK subset the next (according to the SE criterion)
candidate follows immediately by zig-zag enumeration along the circle.
The decision on the preferred child across subsets must again be made
by explicit computation and comparison of the smallest PEDs of the
individual PSK subsets.

When the forward iteration stalls, either because the child iden-
tified by the MCU corresponds to a leaf or must be pruned, the
MEU provides a new parent node to the MCU in the next clock cy-
cle (cf. ­ in Figure 4.19). This parent node is chosen by the MEU,
following the depth-first paradigm, from those members of the list of
preferred children which do not qualify for pruning.

VLSI Architecture for Soft-Output STS-SD

The block diagram of the proposed soft-output STS-SD VLSI im-
plementation is shown in Figure 4.19. Compared to the architecture
for hard-output SD described in [33], changes are made in the MCU
and two additional units are required, one for list administration as
described in Section 4.2.1 and one for the implementation of the prun-
ing criterion as described in Section 4.2.3. We shall next describe the



132 CHAPTER 4. SISO SPHERE DECODING

specifics of these changes. Note that we assume soft-output MIMO
detection in the following, i.e., we consider the case where LA

i,b = 0
(∀i, b).

Architectural Changes in the MCU From a high-level architec-
tural perspective, there is one fundamental difference between tree-
traversal for hard-output SD and for soft-output STS-SD algorithm:
When the node currently examined by the MCU is on the level just
above the leaves (i.e., on level i = 2), hard-output SD only considers
one child, namely the one associated with the smallest PED. In con-
trast, the metrics which may be affected during SO STS-SD procedure
in the subtree emanating from the node s(i) are given by the set

A
(

x(i)
)

= {al} =
{
λML
j,b

∣∣ (j ≥ i,∀b
)
∧ (xj,b = xML

j,b )
}

∪
{
λML
j,b

∣∣ j < i,∀b
}

(4.51)

where the superscript ML refers to the ML solution. The node s(i)

along with its subtree is pruned if its PED d
(

s(i)
)

satisfies

d
(

s(i)
)
> max
al∈A

(
x(i)
) al . (4.52)

Note that (4.51) and the tree-pruning criterion (4.52) correspond to
that of the SISO STS-SD (see Section 4.2.3) if no a priori information
is available, i.e., for LA

i,b = 0 (∀i, b). The soft-output STS-SD algo-
rithm has to compute the PEDs of all children that do not qualify
for pruning according to the criterion since these children may lead
to updates of the metrics λML

i,b . To perform this leaf enumeration pro-
cedure, the STS decoder must revisit the current node at level i = 2,
which requires additional clock cycles and a leaf enumeration unit
shown in Figure 4.19. This unit does, however, not require an addi-
tional arithmetic unit for the PED computation as it can reuse the
PED computation unit in the MCU (cf. ® in Figure 4.19).

List Administration and Tree Pruning In addition to the mod-
ifications in the MCU described above, the SO STS-SD algorithm
requires the following two additional units:
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Figure 4.19: Block diagram of the VLSI architecture for soft-output
STS-SD. Additional units, compared to the hard-output SD described
in [33], are highlighted.
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List-administration unit (LAU): The LAU is responsible for main-

taining and updating the list containing xML, λML, and the λML
i,b .

The corresponding unit is active during the leaf-enumeration process
described above. Since the update rules implemented by the LAU re-
quire only a small number of logic operations, the silicon area of this
unit is small (see Table 4.4) and is dominated by the storage space

required for the metrics λML and λML
i,b .

Pruning criterion unit (PCU): The PCU is responsible for com-
puting the reference metrics, i.e., the RHS of (4.52), required to im-
plement the corresponding pruning criterion. From a VLSI imple-
mentation perspective, the reference metric on level i depending on
the partial label x(i) constitutes a major problem. More specifically,
this dependence causes the criterion for pruning the child of a parent
node on level i + 1 to depend on the partial label x(i) of that child.
This, in turn, implies that enumeration of the children on level i in
ascending order of their PEDs according to the SE criterion can, in
general, not be applied, which results in the need for exhaustive-search
enumeration and is thus ill-suited for VLSI implementation [33]. An
adjustment of the pruning criterion in (4.51) and (4.52) solves this
problem. To this end, we define

B
(

x(i+1)
)

= {bl} =
{
λML
j,b

∣∣ (j > i,∀b
)
∧ (xj,b = xML

j,b )
}

∪
{
λML
j,b

∣∣ j ≤ i,∀b
}

and prune the node s(i) along with its subtree if d
(

s(i)
)

satisfies

d
(

s(i)
)
> max
bl∈B(x(i+1))

bl . (4.53)

Note that the RHS of the modified pruning criterion (4.53) depends
on the partial label x(i+1) rather than on x(i). Consequently, the
enumeration of the children of a node on level i+ 1 can be carried out
using the SE criterion.

Complexity Impact of List Administration and Tree Pruning

We argued throughout the paper that, for a ONPC architecture, the
number of visited nodes is equal to the number of clock cycles required
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for decoding, thus reflecting the true silicon complexity of the algo-
rithm. However, for the proposed soft-output STS-SD architecture
the number of clock cycles will be larger than the number of visited
nodes shown in the numerical results in Section 4.7.2, for two reasons:
First, modifying the pruning criterion (4.18) to result in (4.53) leads
to less efficient pruning as

max
bl∈B(x(i+1))

bl ≥ max
al∈A

(
x(i)
) al.

The corresponding increase in complexity is, however, significantly
smaller than what would be incurred if exhaustive search enumera-
tion on (4.18) would be applied. The second reason for the number
of clock cycles being higher than the number of visited nodes is that
every time the leaf-enumeration process is performed, one additional
cycle is consumed to detect the end of the enumeration process. Con-
sequently, the proposed VLSI architecture no longer strictly follows
the ONPC paradigm. The performance/complexity trade-off curves
in Figure 4.20 show, however, that the impact of both effects (dis-
cussed above) leads to the number of clock cycles being only slightly
higher than the number of visited nodes.

4.7.2 Implementation Results

In order to assess the true silicon complexity (in terms of circuit
area and maximum achievable clock frequency) of the proposed soft-
output STS sphere decoder, we implemented the VLSI architecture
described in the previous section in 250 nm (1P/5M) CMOS technol-
ogy for a MIMO system with MT =MR = 4 using 16-QAM modula-
tion. The resulting ASIC layout is shown in Figure 4.21. The design
parameters of the decoder are summarized in Table 4.3 which, for
reference, also contains the design parameters of an ℓ2-norm hard-
output SESD —following the design principles employed for the ℓ∞-
norm hard-output SESD described in [33]— and implementation re-
sults of the pipelined soft-output LSD architecture described in [127].
We emphasize that the implementation of the LSD maintains a list
with four candidate vectors and employs pipeline-interleaving, which
improves the overall hardware-efficiency (in terms of kGE per clock
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Figure 4.20: Average complexity of the soft-output STS-SD algorithm
compared with the average number of clock cycles of the correspond-
ing VLSI implementation (with MMSE-SQRD preprocessing). The
numbers next to the curves correspond to normalized LLR clipping
levels.

frequency), e.g., [15, 138, 143]. Note that pipeline-interleaving can —
due to structural similarities between all three architectures— also be
applied for hard-output SESD (as demonstrated in [138]) and SO STS-
SD, which would lead to dramatic improvements in terms of hardware-
efficiency for such architectures as well. Hence, the advantage of the
LSD implementation over the SO STS-SD implementation in terms of
hardware-efficiency is due to architectural optimization and not due
to an advantage on algorithmic level.

Detailed Area Breakdown We can see from Table 4.3 that the
chip area required by soft-output STS-SD is only 58% higher than
that required by a corresponding ℓ2-norm hard-output sphere decoder.
The detailed area breakdown in Table 4.4 shows that most of the
area increase results from the LAU, the PCU, and the arithmetic unit
that computes the LLRs. Further area increase is due to the need
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Table 4.3: Implementation results of hard-output SESD [33], soft-
output LSD [127], and soft-output STS-SD ASICs in 250 nm CMOS
(1P/5M) technology.

Hard-output Soft-output Soft-output
SESD [33] LSDa [127] STS-SD

Cell area [kGEb] 34.4 127 56.8
Core area [mm2] 1.2 n.a. 1.9
Clock freq. [MHz] 73 170 71
Efficiency [kGE/MHz] 0.47 0.74 0.80

aThe LSD implementation with list-size 4 and α = 2 from [127] has been used.
bOne GE corresponds to the area of a two-input drive-one NAND gate of size

23.76 µm2.

to store the LLRs in the output buffer of the ASIC. The additional
SE enumeration unit in the MCU required for leaf enumeration adds
only 1.9 kGE to the overall area. The SO STS-SD ASIC shows only
slightly lower maximum clock frequency than the corresponding hard-
output sphere decoder. The reason underlying this only negligible
reduction in maximum clock frequency is that most of the additional
logic required by the STS-SD ASIC can be kept off the critical path
and has thus little influence on the maximum clock frequency.

Throughput Figure 4.22 shows the performance/throughput trade-
off of the reference ℓ2-norm hard-output sphere decoder and the soft-
output STS-SD ASIC described in Section 4.7.1, where the average
throughput corresponds to

Θ =
RQMT
E[C]

fclk [bit/s] (4.54)

and is measured in information-bits per second as a function of the
minimum required SNR to achieve a 1% FER. Here, fclk is the maxi-
mum clock frequency of the circuit under consideration and E[C] de-
notes the average (over channel and noise realizations) number of clock
cycles required to detect a symbol vector. Note that the dedicated
hard-output SD implementation achieves a slightly higher throughput
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Figure 4.21: Layout of the soft-output STS-SD ASIC in 250 nm CMOS
(1P/5M) technology.

than that of the soft-output STS-SD implementation with10 Lmax = 0,
which is a result of the slightly higher maximum clock frequency of
the corresponding hard-output SD implementation (see Table 4.3).
We conclude that the circuit complexity of SO STS-SD is only 58%
higher than that of the reference hard-output SESD VLSI implemen-
tation [33] and enables to deliver exact max-log soft-outputs.

10Recall that for Lmax = 0, the (error rate) performance of the STS-SD algo-
rithm corresponds to that of a hard-output sphere decoder.
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Table 4.4: Area breakdown of the different units of the hard-output
SD [33] and the SO STS-SD implementation.

Hard-output SD Soft-output STS-SD
Area [kGE] Area [%] Area [kGE] Area [%]

Mem. (y,R) 4.6 13.4 4.5 7.9
MCU 16.6 48.3 18.5 32.6
MEU 11.9 34.6 10.9 19.2
Output buffer 0.8 2.3 5.0 8.8
Control logic 0.5 1.6 0.5 0.9
LAU

- -
8.4 14.7

PCU 6.4 11.3
LLR Comp. 2.6 4.6

Total 34.4 100 56.8 100
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Figure 4.22: Throughput characteristics of the soft-output STS-SD
and the reference hard-output SE VLSI implementation both using
MMSE-SQRD preprocessing in 250 nm CMOS technology.





Chapter 5

Soft-Input Soft-Output
Channel Decoding

Channel codes that provide excellent error-correction capabilities are
of paramount importance in wireless communication systems. In it-
erative MIMO systems, reliability information is exchanged between
the soft-input soft-output MIMO detector and the channel decoder.
Hence, channel decoders must not only produce estimates of the trans-
mitted bits, but also be able to compute soft-outputs. The design
of channel codes and algorithms for SISO channel decoding is a well-
studied topic in the literature, e.g., [144]. However, not much is known
about the performance and VLSI-implementation complexity of SISO
channel decoders for iterative MIMO decoding.

In this chapter, we compare the performance and VLSI implemen-
tation complexity of SISO decoders for three different channel codes,
in view of iterative MIMO decoding. In Section 5.1, we develop ar-
chitectures and VLSI implementations for high-throughput SISO de-
coding of convolutional codes (CCs). Architectures and VLSI imple-
mentations of SISO decoding for low-density parity check (LDPC)
codes and parallel-concatenated turbo codes (PCTCs) is studied in
Section 5.2 and Section 5.3, respectively. A detailed performance and
VLSI-implementation complexity analysis is provided in Section 5.4.

141
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5.1 Convolutional Codes

In 1955, CCs have been proposed by Elias [145] for forward error-
correction in discrete memory-less channels. Thanks to the Viterbi
algorithm [146], high-throughput (hard-output) decoding of CCs is
feasible in practice at low hardware complexity. Hence, CCs are nowa-
days considered in many modern (high-throughput) wireless commu-
nication standards, such as IEEE 802.11n [2] IEEE 802.16e [10], or
3GPP LTE [11].

In the remainder of this section, we compare the performance and
hardware complexity associated with SISO decoding of CCs. To this
end, CCs are briefly reviewed and a corresponding high-throughput
SISO decoding architecture, based on the algorithm developed by Bahl
et al. in 1974 [34], is provided. Finally, we show measurement results
for 4-, 8-, 16-, 32-, and 64-state SISO channel decoder implementa-
tions.

Encoding of Convolutional Codes

In the sequel, we only consider CCs of rate R = 1/N without feed-
back.1 CCs are generated by feeding binary-valued information bits
xk ∈ {+1,−1} (for k = 1, . . . , L, where L denotes the number of in-
formation bits) into a shift-register of length ν. The coded bits are
denoted by ck,b ∈ {+1,−1} (∀k and b = 1, . . . , N) and generated by
summations in GF(2) of well-defined values contained in the shift-
registers. CCs are uniquely described by the constraint length K =
ν + 1 and the code generator p = [ g1 . . . gN ], e.g., [147, 148]. The
constraint length K denotes the maximum number of information bits
that contribute to the outputs of the encoder. Each entry in p de-
termines the connections to the N GF(2) adders. Figure 5.1 shows
the rate R = 1/2 CC with K = 3 and generator p = [ 5o 7o ] =
[ 101b 111b ], where the subscripts o and b denote the octal and binary
number format, respectively. Whenever the ith bit in pn is equal to 1,
a connection from the ith shift-register signal to the nth GF(2) adder
associated with the nth output is made, whereas for 0 no connection
is made.

1Other rates (such as, e.g., 2/3 or 5/6) can easily be obtained from R = 1/2
codes by the use of puncturing [147] as it is used in IEEE 802.11n [2], for example.
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Figure 5.1: Left: convolutional encoder of the R = 1/2, K = 3,
p = [ 101b 111b ] CC. Right: corresponding trellis representation.

Trellis Representation

Figure 5.1 shows the trellis representation of a CCs with K = 3. A
trellis consists of states and branches. States correspond to the state
of the shift-registers, denoted by s ∈ Sk, where Sk contains all states
at trellis step k. The maximum number of states is given by S = 2ν =
2K−1. Branches correspond to state tuples (s′, s), where s′ ∈ Sk−1 and
s ∈ Sk. Each branch is associated with the tuple (xk|ck,1 · · · ck,N ),
i.e., with the information bit xk and N generated code-bits at step k =
L. In order to reach a well-defined state at the end of each code-block
(i.e., at step k = L), the last ν information bits k = L− ν + 1, . . . , L
are used to force the encoder into a well-defined state. In Figure 5.1,
for example, the code has been forced in the zero state at k = L.

Maximum Free-Distance Codes

In order to optimize the error-rate performance of CCs, it is im-
portant to choose a code that maximizes the minimum free (Ham-
ming) distance between the all-zero codeword and any other code-
word [147]. The minimum free distance of CCs is determined by
the code generator p, the code rate R, and the constraint length K.
Table 5.1 shows maximum free distance code generators for R = 1/2
and K ∈ {3, 4, 5, 6, 7}. Increasing the constraint length or decreas-
ing the code rate can improve the (error-rate) performance of CCs.
However, as it will be shown in the remainder of this section, the
hardware-complexity grows exponentially with K and hence, decod-
ing of codes with large constraint length quickly becomes prohibitive.
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Table 5.1: Maximum free-distance R = 1/2 codes [147].

K S dmin Generator p

3 4 5 [ 5o 7o ]
4 8 6 [ 15o 17o ]
5 16 7 [ 23o 35o ]
6 32 8 [ 53o 75o ]
7 64 10 [ 133o 171o ]

5.1.1 The BCJR Algorithm

CCs are usually decoded by the Viterbi algorithm (VA) [146], which
efficiently2 computes the most-likely input sequence (i.e., performs
hard-output detection). For iterative MIMO systems, however, SISO
decoding is required. Prominent SISO decoding algorithms for CCs
providing different performance/complexity tradeoffs are the soft-
output Viterbi algorithm (SOVA) [150], the LISS algorithm [151],
soft-output stack algorithms, e.g., [152], or the decoding algorithm
of Bahl, Cocke, Jelinek, and Raviv (BCJR) [34]. It is important
to note that the SOVA, the LISS algorithm, and stack algorithms
achieve, in general, sub-optimal soft-output performance, whereas the
the BCJR algorithm achieves optimum soft-output performance, while
being well-suited for hardware implementation. Thus, we consider the
BCJR algorithm in the following.

SISO Channel Decoding

For iterative MIMO detection, the SISO decoder obtains extrinsic
LLRs from the MIMO detector (see Figure 2.1) and computes new
extrinsic LLRs for each coded bit. Since we only focus on SISO chan-
nel decoding, we neglect the superscript 2 (shown in Figure 2.1) to
denote a priori, intrinsic, and extrinsic LLRs in the remainder of this
chapter. The SISO channel decoder computes intrinsic a posteriori

2Note that for large K (e.g., K > 10) the VA becomes inefficient and sequential
decoding [149] or the stack algorithm [121] can be used, for example.
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LLRs

LD
k,b, log

(
P[ck,b = +1,L]

P[ck,b = −1,L]

)
(5.1)

for each coded bit ck,b, followed by computation of the extrinsic LLRs
according to

LE
k,b = LD

k,b − LA
k,b, ∀k, b (5.2)

where L =
[
LA

1,b · · · LA
L,b

]
, ∀b contains all (extrinsic) LLRs computed

by the soft-input soft-output MIMO detector. In the last iteration, the
SISO channel decoder additionally computes hard-output estimates
for all information bits xk. To this end, the intrinsic LLR LD

k of the
information bit xk is computed in a similar fashion as in (5.1), followed
by slicing to {+1,−1} using x̂k = sign

(
LD
k

)
.

The BCJR Algorithm

For the sake of simplicity of exposition, we assume R = 1/2 in the
remainder of this section. The BCJR algorithm starts by computing
the probabilities required in (5.1) from the trellis-branch probabilities

P[ck,b = ±1,L] =
∑

(s′,s)∈B
(±1)
ck,b

P[Sk−1 = s′, Sk = s,L] (5.3)

where B(v)
ck,b denotes all trellis branches associated with the state tuple

s′ ∈ Sk−1 and s ∈ Sk that correspond to the branch (xk|ck,1ck,2) with
ck,b = v. The branch probabilities in (5.3) can be rewritten as [34]

P[Sk−1 = s′, Sk = s,L] = Ak−1(s′)Ck(s
′, s)Bk(s) (5.4)

where the factors3 on the right-hand side (RHS) correspond to

Ak−1(s′) = P
[
Sk−1 = s′,L(1,k−1)

]
(5.5)

Ck(s
′, s) = P

[
Sk = s,L(k,k)

∣∣Sk−1 = s′
]

(5.6)

Bk(s) = P
[
L(k+1,L)

∣∣Sk = s
]
. (5.7)

3These factors are also termed as “messages” in the context of message-passing
in factor graphs [153].
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and L(i,j) stands for L(i,j) =
[
LA
i,b · · · LA

j,b

]
(∀b). Note that the fac-

tor Ck(s′, s) corresponds to the probability that the encoder is in
state s ∈ Sk while observing L(k,k) = LA

k,b (∀b), given the encoder was
in state s′ ∈ Sk−1 at step k−1. Since each branch (s′, s) is associated
with a triplet (xk|ck,1ck,2), the probability (5.6) can be computed with
the aid of the a priori LLRs delivered by the MIMO detector according
to

Ck(s
′, s) =

2∏

b=1

exp
(

1
2 (1 + ck,b)L

A
k,b

)

1 + exp
(
LA
k,b

) . (5.8)

If no state transition between s′ ∈ Sk−1 and s ∈ Sk exists, the branch
probability is zero and we set Ck(s′, s) = 0.

The key idea of the BCJR algorithm [34] is to compute the for-
ward (5.5) and backward messages (5.7) recursively, i.e.,

Ak(s) =
∑

s′∈Sk−1

Ak−1(s′)Ck(s
′, s) (5.9)

Bk(s) =
∑

s′∈Sk+1

Bk+1(s′)Ck+1(s, s′). (5.10)

In order to reduce the computational complexity associated with com-
putation of (5.9) and (5.10), only those branches (c′, c) need to be
considered for which Ck(s′, s) 6= 0. Assuming that the code has been
terminated in the zero-state (at k = 0 and k = L), the initial values
of the recursion in (5.9) and (5.10) are given by

A0(s) = BL(s) =

{
1, s = 0
0, otherwise.

The BCJR algorithm performs SISO channel decoding in two phases
as summarized in the following. In the first phase, all forward mes-
sages Ak(s) (for all s ∈ Sk) are computed from k = 1, . . . , L using (5.9)
and (5.8) and stored a memory. In the second phase, all backward
messages Bk(s) (for all s ∈ Sk) are computed from k = L, . . . , 1 ac-
cording to (5.9). Concurrently, the output probabilities in (5.3) are
computed according to (5.4) and (5.3), using Bk(s), Ck(s′, s), and
the Ak(s) stored before.
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The Max-Log Approximation

Due to the presence of transcendental functions in (5.8), straightfor-
ward computation of (5.4) would lead to prohibitive computational
complexity in practical applications. A common approach to avoid
computation of transcendental function is to define

αk−1(s′) = log
(
Ak−1(s′)

)

γk(s
′, s) = log

(
Ck(s

′, s)
)

βk(s) = log
(
Bk(s)

)

and to apply the max-log approximation (see Section 4.1.2 for more
details) to (5.9) and (5.10) such that

αk(s) ≈ max
s′∈Sk−1

{
αk−1(s′) + γk(s

′, s)
}

(5.11)

βk(s) ≈ max
s′∈Sk+1

{
βk+1(s′) + γk+1(s, s′)

}
. (5.12)

Note that (5.8) can be written as

γk(s
′, s) =

2∑

ck,b=1

(
ck,b

1

2
LA
k,b + ob

)
(5.13)

where the offset ob = 1
2L

A
k,b − log

(
1 + exp

(
LA
k,b

))
does not depend

on ck,b. It is important to note that ob can safely be omitted dur-
ing decoding, as only differences are considered in the computation of
intrinsic a posteriori LLRs. Hence, the LLRs in (5.1) can be approxi-
mated as

LD
k,b ≈ max

(s′,s)∈B
(+1)
ck,b

σk(s
′, s)− max

(s′,s)∈B
(−1)
ck,b

σk(s
′, s) (5.14)

with

σk(s
′, s) ,αk−1(s′) + γk(s

′, s) + βk(s). (5.15)

Application of the max-log approximation in the BCJR algorithm
avoids the computation of transcendental function and multiplica-
tions, which significantly reduces the complexity of a correspond-
ing VLSI implementation. Note that the max-log approximation en-
tails a small performance loss, which can be be mitigated partially
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Figure 5.2: Left: illustration of the M-BCJR algorithm using M = 2.
Right: scheduling of α, β′, β, and σ message computation.

by multiplying the extrinsic a posteriori LLRs (5.2) by a factor of
about 0.7 [137,154].

Windowed BCJR (M-BCJR) Algorithm

The major drawback of the BCJR algorithm is the fact that during
the first phase, all |S|L forward messages (5.11) need to be stored,
which leads to a large amount of memory requirements in most prac-
tical applications. A promising solution to counter this problem is to
consider a window of 0 < M ≪ L trellis steps to compute the soft
outputs, which yields —if M is chosen sufficiently large— near max-
log-optimal performance.4 This approach is known as the M-BCJR
algorithm (or windowed BCJR) in the literature, e.g., [155].

The M-BCJR algorithm divides the trellis inW = ⌈L/M⌉ windows
of lengthM and computes the LLRs as follows. The forward messages
are only computed for k = i, . . . , i +M − 1 (where i = 0,M, 2M, . . .
denotes the start index of the window), which only requires |S| ·M
messages to be stored. Then, the backward messages are computed in
two steps as shown in Figure 5.2. In the first step, temporary back-
ward messages, denoted by β′k′(s), are initialized by neutral initial
states5 according to β′i+2M−1(s) = −∞ (∀s) and computed backwards

4Considering only the previous M ≈ 5K trellis-steps to compute hard-outputs
(known as the traceback length), was shown to yield a negligible performance
degradation for decoding based on the VA [147].

5Except for those cases, where the encoder is forced into certain states.



5.1. CONVOLUTIONAL CODES 149

in the window i+ 1 (i.e., recursively for k′ = i+ 2M − 1, . . . , i+M).
Then, the backward messages βk′(s) are initialized with the temporary
messages βi+M−1(s) = β′i+M−1(s), ∀s, and computed recursively in
the ith window. Concurrently to backward-message computation, the
corresponding output values (5.15) and intrinsic LLRs LD

k,b are com-
puted according to (5.14) with the aid of the stored forward messages.
Finally, the M-BCJR algorithm proceeds to the next window i+1. In
contrast to the backward messages, the forward messages do not need
to be re-initialized and are, therefore, optimal. It is important to note
that α, β′, and β′ (combined with σ) can be computed concurrently
in hardware, i.e., by using the schedule illustrated in Figure 5.2.

5.1.2 VLSI Architecture

The high-throughput VLSI architectures for SISO convolutional de-
coding described below bases on the 8-state radix-2 max-log M-BCJR
architecture described in [36], which was initially designed for low-
power decoding of turbo codes. In the following, we optimize this
architecture for high-throughput SISO decoding of CCs.

Architecture Overview

Figure 5.3 shows the high-level architecture of the high-throughput
max-log M-BCJR decoder. The decoder consists of two input memo-
ries (denoted by γ-memory 1 and 2), three message computation units
(the α-unit, β-unit, and β′-unit), a α-message memory, and a LLR
computation unit (LCU).

Input Memories The input memories serve as an temporary buffer
of the incoming LLRs and are realized by two-port SRAM macro-cells.
Since the decoder operates concurrently (within three windows) on the
trellis (see Figure 5.2), the LLRs for the α-unit and the β-unit need
to be stored, whereas the LLRs required in the β′-unit are directly
taken from the input of the decoder (see Figure 5.2).

The α-, β-, and β′-Units The α-unit computes the forward recur-
sion in (5.11) for a window of lengthM and stores theM ·|S| computed
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Figure 5.3: Overview of the M-BCJR architecture (the critical path
is highlighted).

state-metrics into the α-memory (realized by two-port SRAM macro-
cells). The β′-unit and the β-unit perform the temporary backward
recursion and the backward recursion according to (5.12), respectively.

LLR Computation Unit The LLR computation unit (LCU) com-
putes the estimated output bits as well as the intrinsic or extrinsic
max-log LLRs (depending on the operation mode) according to (5.14),
based on the forward messages stored in the α-memory and the actual
state metrics of the β-unit. In order to shorten the critical path, the
computation in the LCU is performed in a pipelined fashion such that
the critical path of the resulting architecture is in the add-compare-
select (ACS) units.

Add-Compare-Select Units

The forward and backward recursions in (5.11) and (5.12) are per-
formed in the α-, β′-, and β-units of the max-log M-BCJR archi-
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Figure 5.4: Left: architecture of a 4-state radix-2 α–ACS unit. Right:
architecture of a radix-2 ACS unit modulo normalization [36].

tecture, respectively. In order to attain high throughput, each unit
contains S parallel ACS computation blocks that are connected ac-
cording to the code generator (see Section 5.1). Figure 5.4 shows the
α-ACS unit for the K = 3 code in Table 5.1. Note that this paral-
lel architecture enables to compute one trellis step per clock cycle,
which leads to a sustained decoding throughput (in terms of informa-
tion bit per second) that corresponds to the clock frequency of the
circuit, i.e., ΘBCJR = fclk information bits per second. It is there-
fore key to reduce the critical path within the ACS unit in order to
maximize the throughput of the decoder. Techniques to further im-
prove the throughput of max-log-based M-BCJR decoders are studied
in Section 5.3.2, but lead to reduced hardware-efficiency, in general.

The critical path is highlighted in Figure 5.3 and starts from a
multiplexer’s control (ctrl) input and ends in a state-metric register.
Note that the control inputs of the multiplexers are stored in flip-flops
in order to minimize detrimental (in terms of timing) fan-out effects.

Modulo Normalization The forward or backward messages in
trellis-based decoders grow during the recursions (5.11) and (5.12),
which causes problems for fixed-point implementations (especially for
large block-lengths L). In order to avoid a large dynamic range in
hardware or costly re-normalization operations —both eventually re-
sult in a large critical path of the ACS unit and increased circuit
area— a technique known as modulo-normalization [156] is used. This
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(a) Initial maximum tree (b) Result of PMS

Figure 5.5: Partial maximum sharing (PMS) applied to the LLR com-
putation tree of a 4-state max-log M-BCJR decoder.

method exploits the fact that the difference between any two state-
metrics at a given time instant k is upper-bounded if the branch
metrics in (5.8) are bounded as well. By employing two’s comple-
ment numerical representation of the state metrics and by choosing
sufficiently large word-lengths in the ACS, one can exploit the wrap-
ping property of two’s complement numbers [156]. Note that modulo-
normalization requires minor modifications in the compare-select cir-
cuitry (see in Figure 5.4) and remains optimum in a sense that the
only performance loss is caused due to quantization of the branch
metrics (5.13).

LLR Computation Unit

Computation of the LLRs in (5.14) as well as computation of the esti-
mated bits, requires multiple maximization operations. This compu-
tation can be performed in a tree-like fashion in order to minimize the
critical path and to reduce the circuit area. Such a straightforward ap-
proach requires, however, (|S| − 1) · 6 two-input maximization units.



5.1. CONVOLUTIONAL CODES 153

Table 5.2: Impact of PMS to the number of 2-input maximum oper-
ations in the LCU of various max-log M-BCJR architectures.

K Initial PMS Reduction

3 18 14 22.2%
4 42 22 47.6%
5 90 38 57.7%
6 186 70 62.4%
7 378 134 64.6%

In order to reduce the number of maximizations, a novel technique
referred to as partial-maximum sharing (PMS) has been employed.
PMS reduces the amount of maximization units (and hence, the cir-
cuit area) while not enlarging the critical path of the corresponding
circuit.6 The key idea of PMS is to exploit the structure of the LCU’s
maximization trees by re-using partial maximization results.7

PMS is illustrated in Figure 5.5 for a 4-state max-log M-BCJR
decoder. All inputs correspond to branch metrics σk(s′, s) as shown
in (5.15). The outputs 1 and 2 are required to compute the binary-
valued estimates of the transmitted bits, whereas the outputs 3 to 6
are required to compute the extrinsic or intrinsic LLRs. In this ex-
ample, the initial maximization tree requires 18 two-input maximum
units, whereas PMS only requires 14 units. Table 5.2 demonstrates
the benefit of PMS applied to 4- up to 64-state max-log M-BCJR
decoders. It can be observed that the benefit of PMS increases for
large constraint lengths K and is able to yield a reduction up to 64.6%
for the 64-state BCJR implementation compared to a straightforward
implementation. Hence, PMS offers a significant reduction in terms
of circuit area, while not lowering the critical path of the LCU.

5.1.3 Implementation Results

All techniques described above led to a high-throughput VLSI ar-
chitecture. In order to assess the VLSI implementation complexity

6The fan-out of the circuit slightly increases, but synthesis results have not
shown any detrimental impact on the critical path.

7This approach is related to partial-product sharing [157,158].
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Figure 5.6: ASIC photographs of high-throughput radix-2 max-log
M-BCJR decoders in 180 nm (1P/6M) CMOS technology.

associated with the max-log M-BCJR algorithm, five different archi-
tectures for the maximum free-distance codes in Table 5.1 have been
designed and implemented in 180 nm (1P/6M) CMOS technology.
Figure 5.6 shows the two resulting ASICs. The first ASIC contains
the 4- to 32-state radix-2 max-log M-BCJR implementations, whereas
the second ASIC contains the 64-state M-BCJR decoder only. We em-
phasize that the 64-state variant is compliant with IEEE 802.11n [2]
and —to the best of our knowledge— the first of its kind reported in
the literature.

Implementation Results

The implementation results are summarized in Table 5.3. In order
to enable comparison, an equal target clock frequency has been used
for all implementations.8 Additionally, the window size has been set
to M = 32 for all cores, which is favors the results of the 64-state
M-BCJR implementation, since smaller window sizes could be used

8Note that the implementations with less than 64-states require lower ACS
word-lengths and would, hence, be able to achieve higher clock frequencies.
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Table 5.3: Implementation results of max-log M-BCJR decoders
(radix-2, M = 32) for 180 nm (1P/6M) CMOS technology.

States 4 8 16 32 64

Cell areaa [kGE] 23.1 37.3 60.0 123.8 243.5
Core area [mm2] 0.22 0.36 0.58 1.20 2.36
Clock freq. [MHz] 375 375 375 375 375
Throughput [Mbps] 375 375 375 375 375
Word-widthb [bit] 8 9 9 10 10
α–Memory [kbit] 1 2.25 4.5 10 20
Efficiency [kGE/Mbps] 0.06 0.10 0.16 0.33 0.64
E per bitc [nJ/bit] 0.35 0.57 0.99 1.96 3.65

aOne gate equivalent corresponds to the size of a two-input drive-one NAND
gate of size 9.7 µm2.

bCorresponds to the number of bits required in the ACS units to enable modulo-
normalization [156].

cEnergy (E) per information bit at 1.8 V core supply with a clock frequency
of 150 MHz. The input LLRs are generated from an AWGN channel using BPSK
modulation operating at 3 dB SNR.

for all implementations with a lower number of states.9 The maxi-
mum achievable throughput (obtained from post place-and-route tim-
ing constraints) corresponds to 375 Mbps.

As it can be seen in Table 5.3, the cell area increases proportionally
to the number of decoder states, since the decoder area is dominated
by the ACS units and the α-memory (see Section 5.1.2). Note that the
same behavior is observed for AT -efficiency (in kGE/Mbps) as well
as for the energy-efficiency (measured in nJ per information bit), i.e.,
twice the number of states results in about twice the AT -product and
twice the energy required per bit. Hence, high-throughput max-log M-
BCJR implementations for codes with large constraint length quickly
become prohibitive in terms of circuit area and power consumption.

9Note that M ≈ 5K has been shown to be sufficient for near-optimum (error-
rate) performance, e.g., [147].
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Table 5.4: Measured energy per information bit [nJ/bit] for max-log
M-BCJR decoders with different number of states.

S ACS Units α–Memory LCU Total

4 0.20 (57.2%) 0.09 (26.4%) 0.06 (16.4%) 0.35 (100%)
8 0.30 (52.2%) 0.17 (30.2%) 0.10 (17.6%) 0.57 (100%)
16 0.47 (47.0%) 0.32 (32.2%) 0.21 (20.8%) 0.99 (100%)
32 0.91 (46.4%) 0.71 (36.3%) 0.34 (17.3%) 1.96 (100%)
64 1.72 (46.9%) 1.33 (36.3%) 0.62 (16.8%) 3.66 (100%)

Energy-Efficiency

Table 5.4 shows energy-efficiency measurement results associated with
each max-log M-BCJR decoder in Table 5.3 separately for the main
computation units. All measurements have been conducted using
clock-gating in the LCU and in the α-memory. The LLRs are gen-
erated from a additive white Gaussian noise (AWGN) channel using
BPSK modulation at 3 dB SNR.

We can see that the ACS units consume approximately half of
the total energy. Moreover, increasing number of states leads to a
dramatic energy-efficiency reduction in the α-memory, which is caused
by the fact that the memory area scales with the number of states and
with the number of bits required for modulo-normalization in the ACS
units.10

Comparison with Hard-Output Viterbi Decoding

Table 5.5 compares the complexity of the proposed 64-state M-BCJR
(cf. Table 5.3) with a reference 64-state radix-4 Viterbi decoder de-
scribed in [16]. Both decoders are compliant to IEEE 802.11n [2].
We can see that the M-BCJR implementation is 2.2× less efficient
(in terms of kGE/Mbps) compared to that of a Viterbi decoder; this
observation enables us to conclude that SISO capability entails about
a two-fold increase in terms of silicon complexity (for a given through-
put) compared to that of hard-output decoding of CCs.

10As it has been mentioned above, the word-length in the presence of modulo
normalization also depends on the constraint length of the code.
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Table 5.5: Comparison of the proposed 64-state radix-2 M-BCJR im-
plementation with a 64-state radix-4 Viterbi decoder.

Algorithm M-BCJR Viterbi [16]

CMOS process [nm] 180 130
Cell area [kGE] 243.5 68
Clock frequency [MHz] 375 160
Throughput [Mbps] 375 320
Efficiency [kGE/Mbps] 0.64 0.29a

aIn order to account for differences in process technology, the hardware effi-
ciency has been scaled by a factor of 180/130.

5.2 Low-Density Parity Check Codes

Low-density parity check LDPC codes have been developed by Gal-
lager in 1962 [159] and are able to attain excellent error-correction
performance. However, decoding of LDPC codes was not feasible in
practice at this time. In 1999, LDPC codes have been rediscovered by
MacKay [160] and Richardson et al. [161] and since then, belong to
the most promising error-correcting codes. In particular, quasi-cyclic
(QC) LDPC codes [162,163] offer excellent error-correction capability
while enabling high decoding throughput at low implementation com-
plexity, e.g., [164–166]. Hence, QC-LDPC codes have been considered
many modern wireless communication standards, e.g., DVB-S2 [167],
IEEE 802.16 [10], and IEEE 802.11n [2].

In the remainder of this section, we describe a configurable high-
throughput architecture for SISO decoding of QC-LDPC codes. The
architecture has been optimized for IEEE 802.11n [2] and integrated
in 180 nm CMOS technology. Performance and complexity measure-
ments and comparison with existing decoders conclude this section.

5.2.1 Quasi-Cyclic LDPC Codes and Decoding

LDPC codes are linear block codes satisfying

Hx = 0M×1 (5.16)
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in GF(2), where x is the N -dimensional binary-valued code vector,
0M×1 denotes an M -dimensional all-zero vector, and H is a sparse
binary-valued M ×N parity check matrix [159]. QC-LDPC codes are
defined by a Mp ×Np LDPC matrix prototype Hp. The parity check
matrix H in (5.16) is constructed from the LDPC matrix prototype
by replacing each entry in Hp by a Z × Z cyclic-shift matrix Pc

(i.e.,M =MpZ and N = NpZ), where c is equal to the corresponding
entries in Hp. The cyclic-shift matrices are defined as Pc =

∏c
i=1 P1

(for c > 0) with

[
P1
]
i,j

=

{
1, (i mod Z) + 1 = j
0, otherwise

P0 = IZ , and P− = 0Z×Z . The entries of Hp satisfy [Hp]m,n < Z
(∀m,n). For example, the rate-5/6, Z = 81 QC-LDPC matrix proto-
type of the IEEE 802.11n standard [2] is defined as

.

The parity check in (5.16) can be represented as a bipartite graph
consisting of N variable nodes (denoted by v) and M check nodes
(denoted by c). Variable nodes are associated with the LLRs of the
transmitted bits Ln = L(xn), n = 1, 2, . . . , N , and check nodes with
parity checks, i.e., the mth parity check node is connected to the nth
variable node if [H]m,n = 1.

Layered Decoding of LDPC Codes

LDPC decoding can be represented as message passing (MP) on the
bipartite graph [153]. The “standard” MP schedule consists of two
phases (known as flooding MP [168]). In the first phase, all messages,
from the variable to the check nodes (denoted by Qv,c) are computed.
In the second phase, all messages from check to variable nodes (de-
noted by Rc,v) are computed. Then, the intrinsic output LLRs LD

v

(∀v) can be computed and the process is repeated until the algorithm
converges to a valid code-word or until a maximum number of repe-
titions have been performed. Flooding MP is frequently used in the
literature, e.g., [169,170], but has three major disadvantages: i) both
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phases require a different set of arithmetic operations, ii) both mes-
sage types (Qv,c and Rc,v) as well as the a priori LLRs need to be
stored, and iii) the convergence behavior is rather slow [168].

Layered LDPC decoding [168,171] avoids the drawbacks of flooding
MP. The algorithm only requires to storeRc,v messages andQv-values.
The latter are initialized by Qv = LA

v (∀v), which avoids separate
storage for the LLRs. Layered MP computes [168,171]

Rnew
c,v = 2 tanh−1


 ∏

v′∈V(c)\v

tanh

(
Qv −Rc,v′

2

)
 (5.17)

where the set V(v) contains all variable nodes that are connected with
the check node c. Then, the Qv-values are being updated according
to

Qnew
v = Qv −Rc,v +Rnew

c,v . (5.18)

This procedure is repeated until a valid codeword has been found (by
checking whether the hard-output estimates x̂v = sign(Qnew

v ) satisfy
the parity check in (5.16)) or a maximum number of iterations has
been performed. In order to avoid computation of transcendental
functions in hardware, the update rule (5.17) can be simplified using
min-sum MP [153]

|Rnew
c,v | = min

v′∈V(v)\v
|Qv −Rc,v′ | (5.19)

sign
(
Rnew
c,v

)
=

∏

v′∈V(v)\v

sign(Qv −Rc,v′)

which can further be improved by refining (5.19) according to the
offset min-sum (OMS) MP rule [172]

Rnew
c,v ← max

{
Rnew
c,v − β, 0

}
· sign(Qv −Rc,v′) . (5.20)

Setting the offset parameter to β = 0.15 in (5.20) has shown to yield
a near-optimum performance for the codes used in IEEE 802.11n [2],
for example.
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Algorithm 2 Layered-OMS QC-LDPC Decoder

1: r0
m,n ← 0Z×1, n = 1, 2, . . . , Nb, m = 1, 2, . . . ,Mb

2: q0
n ←

[
L(x(n−1)Z+1) L(x(n−1)Z+2) · · · L(xnZ)

]T
, ∀n

3: for i = 1, 2, . . . , I do
4: for m = 1, 2, . . . ,Mb do
5: m1 ←∞ · IZ×1, m2 ←∞ · IZ×1, s← IZ×1

6: for n ∈ Nm do
7: c =

[
Hp
]
m,n

, tn ← Pcqi−1
n − ri−1

m,n

8: [m1,x,v]← min
{

m1, |tn|
}

9: m2 ← min{m2,x}
10: s← s · sign(t)
11: end for
12: for n ∈ Nm do
13: c =

[
Hp
]
m,n

, tn ← Pcqi−1
n − ri−1

m,n

14: m← sel(m1,m2,v, n)
15: rim,n ← clip

(
s · sign(tn) ·max

{
m− β, 0

}
, tn
)

16: qin ← Pc
′(

tn + rim,n
)
, c′ = Z −

[
Hp
]
m,n

17: end for
18: end for
19: end for

Decoding Algorithm for QC-LDPC codes

The algorithm employed in the VLSI architecture exploits the value-
reuse properties of OMS as described in [165,166] and employs a novel
technique called message clipping (MC), which allows to trade mem-
ory requirements for performance. The decoding algorithm is sum-
marized in Algorithm 2. The memory requirements corresponds to
the Z-dimensional vectors qin (i.e., containing all Qv-values) and the
Rc,v-messages from check to variable nodes rim,n. All vector opera-
tions in Algorithm 2 are performed element-wise, except for the cyclic
shifts.

Initialization On lines 1-2 of Algorithm 2, the q0
n (∀n) values are

initialized by the a priori LLRs (where L(x(n−1)Z+1) denotes the LLR
associated with the bit x(n−1)Z+1) and all messages r0

m,n (∀m,n) ini-
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tialized with zero. The algorithm performs up to I iterations (lines
3-19) and operates row-wise (for each row m of Hp). Message com-
putation is then performed iteratively for the columns n ∈ Nm of Hp
for which

[
Hp
]
m,n
6= ′−′ (see line 6 and 12 Algorithm 2), i.e.,

Nm =
{
n ∈ Z |

[
Hp
]
m,n
6= ′−′

}
. (5.21)

Message computation of layered MP can be divided into two phases:
the first is called MIN phase (lines 6-11) and the second is called SEL
phase (lines 12-17).

MIN Phase The ri−1
m,n-message is subtracted from a cyclically-

shifted version (by c =
[
Hp
]
m,n

) of qi−1
n and stored in a tempo-

rary vector tn (cf. line 6). OMS [172] and its value-reuse proper-
ties [165,166] only require to compute the minimum m1 and the sec-
ond minimum m2 for each entry of tn (∀n). Both minima are being
computed iteratively as shown on lines 8 and 9, where the minimum
on line 8 returns the minimum of m1 or tn, a temporary vector x
which contains the values not corresponding to the minimum (i.e.,
the second-lowest values), and an index vector where [v]k is set to the
current index n if a new minimum (i.e., corresponding to [tn]k) has
been found. The vector s contains Z signs, which are used later in
the SEL phase.

SEL Phase The new Q and R messages are computed iter-
atively for n = 1, . . . , Nb. To this end, the temporary vector
tn = Pcqk−1

n − rk−1
m,n is computed first (line 14). Then, the sel-function

(line 14) compares each of the Z indices [v]k (for k = 1, . . . , Z) with n
and yields the corresponding entry of [m1]k if vk = n and [m2]k
otherwise. The new rim,n-vector is computed by using OMS MP [172]
(cf. line 15) with the vector β = β ·IZ×1, where only one offset value β
is used for all Z entries. The new qim,n vector is computed on line
17 and cyclically shifted using the inverse rotation c′ = Z − c, such
that PcPc

′

= IZ×Z .
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Figure 5.7: QC-LDPC decoder architecture overview.

Message Clipping

Since layered LDPC decoding performs updates of the qim,n-vector us-
ing the results of the previous iteration (cf. line 16) according to (5.18),
the dynamic range of the Qv-messages can get very large, in general.
In order to reduce the amount of bits required to store all qim,n-vectors
(∀n,m), the maximum magnitude of the Qv-messages can be clipped.
Unfortunately, such a straightforward approach yields poor error-rate
performance. In order to combat this problem, a novel approach, re-
ferred to as MC, is described below. Instead of clipping the Qv-values,
the Rc,v-messages are clipped (on line 15) according to

clip(r, t) = max
{

min
{

r, Qmax − t
}
,−Qmax − t

}

which ensures that that
∣∣[qin]k

∣∣ ≤ Qmax (∀n, k) and Qmax denotes the
MC parameter; this offers to trade-off memory consumption (to store
the Qv-messages) for error-rate performance (corresponding simula-
tion results are shown in Section 5.2.2).

5.2.2 VLSI Architecture

Figure 5.7 outlines the architecture of the QC-LDPC decoder. The
decoder consists of two memories, i.e., one for the Qv-values and one



5.2. LOW-DENSITY PARITY CHECK CODES 163

for the Rc,v-messages, a cyclic shifter (CS), and a pool of node compu-
tation units (NCUs). To enable reconfigurability for different LDPC
matrix prototypes, the architecture contains a configurable control
unit and a sequence (SEQ) memory.

In order to achieve high throughput, the decoder operates on Z
rows of H in a parallel manner (using Z NCUs). The architecture com-
putes one entry of Hp per clock cycle, so that at most Nb clock cycles
are required per row of the LDPC matrix prototype. The through-
put is further increased by parallel computation of the MIN and SEL
phases (line 6-12 and 12-17, respectively) of Algorithm 2. This paral-
lel computation requires that the MIN and SEL phases do not access
the same data at the same time. To avoid memory access contention,
the MIN phase is performed on row m+1, whereas the SEL phase op-
erates on row m. Furthermore, the SEL phase never accesses the nth
column before it will be used in the MIN phase, to maintain conver-
gence of layered LDPC decoding. These memory access constraints
are enforced by the control unit (see Section 5.2.2).

Node Computation Units

In order to enable parallel computation of the SEL and MIN phases,
each of the Z NCUs are divided into a SEL unit and MIN unit by an
intermediate pipeline stage as shown in Figure 5.8.

MIN Unit The kth MIN unit (k = 1, . . . , Z) iteratively computes
[m1]k, [m2]k, [v]k, and [s]k for all n ∈ Nm+1 on row m + 1 (cf. lines
5-11 of Algorithm 2) by using the inputs

[
ri−1
m+1,n

]
k

and
[
Pcqi−1

n

]
k
.

When the MIN phase of row m+1 has finished, both minima (i.e., m1

and m2), the index vector v, and the sign-vector s are passed from
the MIN to the SEL units.

SEL Unit The SEL unit iteratively computes the new clipped out-
put messages rim,n and t+rim,n as shown on lines 12-17 of Algorithm 2
using m1, m2, v, and s from the MIN unit and ri−1

m+1,n as well as
Pcqi−1

n from the R- and Q-memory, respectively.
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Partial Parity Check During computation of the new Qv-values
and Rc,v-messages, each SEL unit performs a partial parity check
(PPC) of (5.16), i.e., checks whether hTm′ x̂ = 0, where hTm′ stands for
the m′th row (for m′ = 1, 2, . . . ,M) of H in (5.16) and x̂ corresponds
to the binary-valued estimates obtained from the sign-bits of qin. Af-
ter processing all m′ rows of H, the decoding procedure is terminated
prematurely if all PPCs are satisfied. It is important to note that com-
bining all PPCs does, in general, not correspond to the parity check
in (5.16), since the evaluation of the PPCs are done sequentially and
some estimates might change during computation of all rows (since
they result from the qin-values). We emphasize, however, that the
proposed approach never terminates the decoder if (5.16) is not satis-
fied. However, situations occur, where (5.16) is satisfied but all PPCs
are not. Hence, the presented approach is slightly sub-optimal (in
terms of the number of performed iterations), but the average num-
ber of iterations is still reduced significantly for medium to high SNRs.
Hence, the PPC approach still leads to an improvement in terms of
energy-efficiency at high SNR (corresponding measurement results are
provided in Section 5.2.3).

Cyclic Shifter

Cyclic shifts according to the entries of Hp are required when the
MIN and SEL units read data from the Q-memory and when the
SEL unit writes new data to the Q-memory (see Figure 5.8). These
cyclic shifts are performed in the CS. Since Z ≤ Zmax (where Zmax

denotes the maximum sub-block size supported by the architecture)
can be different for each LDPC matrix prototype (i.e., depending on
the code-block size) a flexible unit is required that is able to perform
an arbitrary cyclic shift 0 ≤ c < Z. Several architectures that perform
cyclic shifts of a subset of Zmax have been described in the literature.
A corresponding survey can be found in [173]. However, most of the
proposed architectures lead to either irregular structures, result in
large circuit and interconnection area, or are only suited for a small
number of different Z-values.

In order to maintain reconfigurability, we propose a simple but
highly-efficient subset cyclic shifter (SCS), which is able to perform
shifts for any subset of Zmax by an arbitrary shift amount 0 ≤ c < Z.
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Figure 5.8: Architectural details and decoding schedule of the QC-
LDPC decoder for Z = 2 and Nb =Mb = 2.

The SCS architecture is depicted in Figure 5.9 and consists of a shifter
control (SC) unit, two barrel rotators (denoted by BR 1 and BR 2),
and an output multiplexer stage. The first barrel rotator (BR 1) per-
forms a cyclic left-shift by c1 = Zmax − Z + c, while BR 2 left-shifts
the input by c2 = c. The shift amounts c1 and c2 are computed in the
SC unit. The output multiplexer stage selects the outputs 1, . . . , Z−c
from BR 2 and the outputs Z − c+ 1, . . . , Z from BR 1.

The key advantages of the proposed SCS are i) the low circuit area
and ii) its fast operation. The total number of 2-to-1 multiplexers
required in each SCS corresponds to

Bq
(
2Zmax⌈log2(Zmax)⌉+ Zmax

)

where Bq denotes the number of bits required for each entry of q.
Furthermore, each SCS only consists of ⌈log2(Zmax)⌉+ 1 multiplexer
stages, which, thanks to its regular structure, enables pipelining and
hence allows to achieve high throughput.
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Figure 5.9: Subset cyclic shifter architecture: a) overview, b) barrel
rotator, and c) operation principle for Zmax = 8, Z = 6, and c = 1.

Memories for Q- and R-Messages

Since the Q-memory and the R-memory require two write operations
and one read operation per clock cycle for all Z messages, the mem-
ories have been designed such that one (read or write) address corre-
sponds to Zmax messages. To increase the memory bandwidth without
(noticeably) increasing the area, we used a double-clocking strategy,
i.e., both memories operate at twice the clock frequency of the remain-
ing logic, i.e., fmem = 2fclk, which is illustrated in Figure 5.8. Since
the timing characteristics of the available memories were sufficiently
fast, double-clocking offers a two-fold increase in terms of memory
bandwidth without leading to a significant area overhead.

Configurable Control Unit

The control unit consists of the SEQ memory and a simple controller,
which generates all control signals for the decoder architecture. Dur-
ing the initialization phase of the LDPC decoder, the control unit
can be configured with the OMS scaling parameter β, the sub-block
size Z, and the maximum number of iterations I. Additionally, a
control sequence needs to be loaded into the sequence (SEQ) mem-



5.2. LOW-DENSITY PARITY CHECK CODES 167

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

F
E

R

SPA (float)

OMS (float)

OMS MC=7bit

OMS MC=5bit

Figure 5.10: Frame error rate (FER) comparison using the R = 1/2,
Z = 81 code [2] in an AWGN channel using BPSK modulation.

ory prior to decoding. This control sequence contains all necessary
information on Hp in combination with the decoding schedule (i.e.,
required memory addresses, cyclic shifts etc.). During operation, the
control words are being translated to corresponding signals and ad-
dresses. The key advantages of the proposed approach is that the
decoder remains fully configurable, i.e., all possible QC-LDPC ma-
trices that fit into the allocated memories can be processed, and the
complexity of the control unit remains low.

Architectural Optimizations for IEEE 802.11n

The architecture described above has been optimized for IEEE
802.11n [2] in order to determine the design parameters for the ASIC
implementation shown in Section 5.2.3.

Architectural Optimizations The decoder has been designed to
support at least all QC-LDPC matrix prototypes of IEEE 802.11n [2]
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while achieving a decoding throughput higher than 600 Mbit/s. Since
the standard only requires Z ∈ {27, 54, 81}, 81 NCUs have been in-
stantiated. To reduce the power consumption, the NCU pool has been
divided in three blocks consisting of 27 NCUs. Each of the three NCU
blocks can be switched off using clock gating, which is used to reduce
the power consumption for the modes Z ∈ {27, 54}.

Numeric Precision Optimization Since IEEE 802.11n supports
many different modulation and coding schemes, the numeric preci-
sion requirements have been evaluated using frame error rate (FER)
simulations in an AWGN channel. Figure 5.10 compares the FER of
layered message passing using the floating-point (fp) sum-product al-
gorithm (SPA) with layered OMS (β = 0.15). Note that OMS only
loses approximately 0.2 dB to the SPA. The impact of MC is shown
by using 7 bits and 5 bits. Note that both OMS simulations include
early termination based on the PPCs described in Section 5.2.2. MC
to 5 bits leads to a 0.45 dB SNR loss compared to MC using 7 bits
(at 10−3 FER) but reduces the amount of bits required in the Q-
memory by 28%. Thus, we decided to limit the Q-values to Bq = 5 bit.
The R-messages require Br = 5 bit and the input LLRs have been
quantized to 5 bit according to [172]. The curve associated with OMS
5 bit in Figure 5.10 corresponds to the FER performance of the final
implementation.

Q- and R-Memory Design IEEE 802.11n requires at most 24 ·81
Qv-values and the R-memory requires at most 88 · 81 Rc,v-messages,
where 88 corresponds to the maximum number of sub-blocks not equal
to ’-’ in IEEE 802.11n [2]. Therefore, we instantiated eight 64 × 102
single-port SRAM modules (total 52’224 bit) for the R-memory and
three 32× 135 two-port SRAMs (total 12’960 bit) for the Q-memory.
The number of bits per sequence word is Bs = 42 bit and memory for
a maximum of 128 sequence words has been allocated.

5.2.3 Implementation Results

Figure 5.11 shows a ASIC photo of the fabricated QC-LDPC decoder
in 180 nm (1P/6M) CMOS technology. The key figures of the QC-
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Figure 5.11: ASIC photo of the QC-LDPC decoder in 180 nm CMOS
technology (there is unused circuit area on both sides of the ASIC).

LDPC decoder implementation are summarized in Table 5.9. The im-
plementation requires 3.39 mm2 core area and achieves 208 MHz and
416 MHz for the slow logic-clock and the fast memory-clock, respec-
tively. Table 5.6 shows a detailed area breakdown of the QC-LDPC
decoder. It can clearly be observed that most of the circuit area is
occupied by the Q- and R-memories. The NCU Pool and the cyclic
shifter require approximately a third of the decoder’s area and the
circuit complexity of the configurable control unit is low.

Table 5.7 shows the sequence lengths for all possible codes in IEEE
802.11n as well as the resulting throughput for fclk = 208 MHz using a
maximum number of five iterations. The throughput can be computed
according to

Θ =
Z ·Nb ·R
L · I + 32

fclk

where 32 additional clock cycles are required to load and flush the
pipeline. The maximum achievable throughput for theR = 5/6, Z = 81
code corresponds to 780 Mbit/s and exceeds the throughput require-
ments of IEEE 802.11n.
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Table 5.6: Detailed area breakdown of the QC-LDPC decoder imple-
mentation in 180 nm (1P/6M) CMOS technology.

Unit mm2 kGEa %

Control unit 0.10 10.3 3.0
NCU pool 0.59 60.8 17.4
Q memory 0.83 85.6 24.5
R memory 1.16 119.6 34.2
Cyclic shifter 0.45 46.4 13.3
Miscellaneousb 0.26 26.8 7.6
Total 3.39 349.5 100

aOne gate equivalent (GE) corresponds to the area of a two-input drive-one
NAND gate of size 9.7 µm2.

bDenotes remaining logic, i.e., pipeline registers, logic required for the in-
put/output interface, etc.

Energy-Efficiency

Table 5.8 shows energy-efficiency measurement results of the imple-
mented ASIC. The impact of early-termination using PPC, as well
as the impact of clock gating is shown at different SNRs for differ-
ent R = 1/2 codes [2]. For higher SNRs, the energy-efficiency im-
proves significantly, since it becomes more likely that the PPCs are
satisfied and the decoder can be terminated early. For small code
blocks (i.e., Z = 27), the power consumption can be dramatically re-
duced if clock gating is used, since part of the NCUs can be disabled
during decoding of the smaller block-sizes (i.e., for Z = {27, 54}).
Note that for Z = 27, clock-gating combined with PPC improves the
energy-efficiency up to 63% at high SNRs, whereas in the low-SNR
regime up to 48% improvement can be achieved.

Comparison

Table 5.9 compares the proposed implementation with dedicated QC-
LDPC decoders for IEEE 802.11n. Due to differences in process tech-
nologies, fair area, speed, and power comparisons are difficult to state.
However, the area of all four designs is comparable when considering
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Table 5.7: Sequence length L and throughput Θ for all QC-LDPC
codes of IEEE 802.11n.

Z Rate L Θ [Mbps]

27

1/2 94 134
2/3 88 190
3/4 89 212
5/6 95 222

54

1/2 88 286
2/3 90 373
3/4 90 419
5/6 89 471

81

1/2 91 415
2/3 89 565
3/4 86 656
5/6 80 780

technology scaling. Note that the implementation described above
achieves the lowest clock frequency, which is mainly due to the pro-
cess technology and the detrimental input/output timing of the off-
chip drivers. Nevertheless, our implementation achieves a throughput
of up to 780 Mbps, which is sufficient to fulfill the requirements of
the standard. Additionally, the achieved throughput is comparable to
that of [164] and even higher than that of [174].

5.3 Turbo Codes

In 1993, Berrou et al. [175,176] first described turbo codes which rep-
resented a breakthrough in channel coding due to the capability to
achieve near-Shannon-capacity with practical encoding and decoding
schemes. So far, turbo codes have been adopted in various wireless
communication standards such as, for example, the high-speed down-
link packet access (HSDPA) standard [139] by the 3GPP consortium
and also in the upcoming LTE standard [139], which bases on MIMO
technology.

Most of the turbo decoders proposed in the literature have been



172 CHAPTER 5. SISO CHANNEL DECODING

Table 5.8: Energy-efficiency for rate-1/2 QC-LDPC codes.

Z SNR
no power save clk–gate clk–gate & PPC
nJ/bit % nJ/bit % nJ/bit %

27
1 11.5 100 6.0 52 6.0 52
3 11.9 100 6.2 52 5.6 47
7 11.6 100 6.1 53 3.1 27

54
1 5.6 100 4.4 79 4.4 79
3 5.8 100 4.5 79 4.2 73
7 5.6 100 4.4 79 2.2 40

81
1 3.8 100 3.8 100 3.8 100
3 4.0 100 4.0 100 3.7 92
7 3.9 100 3.9 100 1.9 49

Table 5.9: Comparison of QC-LDPC Decoders for IEEE 802.11n.

This work [166] [164]a [174]b

Technology [nm] 180 130 130 65
Core area [mm2] 3.39 1.85 1.9 0.74
Memory area [mm2] 1.99 1.04 n.a. 0.26
Cell area [kGE] 144.3c 99.9 195 217
Max. clock freq. [MHz] 208 500 400 240
Max. throughput [Mbps] 780 1618 1000d 410

aCorresponding to the pipelined version in [164].
bCorresponding to the K = 4, Nc2v = 5, and NSO = 8 decoder in [174].
cThe memory area has been excluded (cf. Table 5.6).
dThe maximum throughput is given for 2.2 dB SNR.
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Figure 5.12: Left: turbo encoder consisting of two recursive convolu-
tional codes (RCCs) and an interleaver (denoted by Π). Right: turbo
decoder principle (de-interleaving is denoted by Π−1).

designed for mobile and low-rate applications and hence, achieve a
throughput in the order of several ten Mbps, e.g., [36,37]. MIMO sys-
tems usually require a throughput ranging from several hundred Mbps
up to Gbps. Interleaving it is known to be one of the main bottlenecks
for high-throughput turbo decoding, since parallel and interleaved ac-
cess to memories is difficult, in general. Recently, the concept of
contention-free interleavers has been proposed, e.g., [177, 178], which
aims at alleviating the interleaver bottleneck by enabling parallel ac-
cess to interleaved data. Therefore, contention-free interleavers are
key to enable high-throughput turbo decoding in practical systems.

In this section, we briefly review the basics of turbo decoding and
describe a high-throughput turbo decoder architecture for the 3GPP
LTE standard. The proposed turbo decoder has been implemented in
130 nm CMOS technology and is compared to reference implementa-
tions in terms of throughput and hardware-efficiency.

5.3.1 Decoding of Turbo Codes

Systematic parallel-concatenated turbo codes (PCTCs) are usually
generated from two recursive CCs (RCC) and an interleaver (see
Section 5.1). The binary-valued data bits xk (for k = 1, . . . , N) are
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directly fed to the output (referred to as systematic bits) as well as
into the first RCC which generates parity bits ck,1 (∀k). The sec-
ond RCC is fed by an interleaved version of xk and generates parity
bits ck,2, ∀k. Note that systematic PCTCs naturally have rate 1/3;
higher rates can be derived by the use of puncturing [147]. The encod-
ing procedure is shown in Figure 5.12. In the ensuing discussion, we
focus on the 8-state code with feed-forward generator pff = 15o and
feedback generator pfb = 13o as defined in 3GPP LTE standard [11].

The Principle of Turbo Decoding

Decoding of PCTC corresponds to iteratively exchanging extrinsic
LLRs between two SISO decoders [175]. SISO decoding is usually
performed using the BCJR algorithm (see Section 5.1.1). The decod-
ing procedure is shown in Figure 5.12 and corresponds to repeatedly
performing half-iterations. In the first half-iteration, the first BCJR
unit (denoted by BCJR 1) computes extrinsic LLRs LE1(xk) based on
the a priori LLRs of the systematic bits LA(xk), the parity bits result-
ing from the first RCC LA(ck,1), and a de-interleaved version of the
extrinsic LLRs generated by the second decoder (in the previous half
iteration) denoted by LE2(xπ−1(k)). The function k = π(k′) performs
a bĳective mapping between k′ and k according to the interleaver
used in the turbo code. Note that in the first iteration LE2(xk) = 0
(∀k). The branch metrics of the first max-log BCJR decoder (5.13)
correspond to [175]

γk(s
′, s) =

1

2

(
xk
(
LA(xk) + LE2(xπ−1(k))

)
+ ck,1L

A(ck,1)
)
.

During the next-half iteration, the second SISO decoder (i.e., BCJR 2)
computes new extrinsic LLRs LE2(xk), based on LA(ck,2) and on in-
terleaved versions of the systematic bits LA(xπ(k)) and extrinsic LLRs
computed by BCJR 1, i.e., LE1(xπ(k)). Hence, the branch metrics of
BCJR 2 correspond to

γk(s
′, s) =

1

2

(
xk
(
LA(xπ(k)) + LE1(xπ(k))

)
+ ck,1L

A(ck,2)
)
.

The turbo decoder now continues to perform iterations between the
first and second SISO decoder until a maximum number of IPCTC
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Figure 5.13: Example of high-throughput convolutional decoding us-
ing K ′ M-BCJR decoders operating in parallel.

iterations (corresponding to 2·IPCTC half-iterations) has been reached.
During the last half-iteration, the used component decoder computes
intrinsic LLRs instead of extrinsic ones, which are used to obtain
estimates of the transmitted bits.11

Parallel Trellis Decoding

The decoding throughput of turbo decoders depends on the maxi-
mum number of iterations IPCTC as well as the time that is required
to perform one half-iteration. Since IPCTC determines the error-rate
performance of turbo decoding, the only possibility to increase the
throughput is to reduce the decoding time per half-iteration. One
approach is to unroll the loop in Figure 5.12, which, unfortunately,
requires multiple copies of the a priori LLRs and the extrinsic mem-
ories, which quickly becomes inefficient in practice.

A promising alternative is to replicate the M-BCJR decoders and
to perform parallel decoding on the trellis. Figure 5.13 illustrates this
approach using K ′ parallel M-BCJR decoder cores. Note that paral-
lel decoding leads to an almost K ′-fold increase in terms of through-
put.12 The key problem of this approach is the increased memory
bandwidth, which gets further aggravated due to the presence of an
interleaver. This bottleneck is inherently present for most of the avail-

11If the decoding process is stopped during an even half-iteration, the intrinsic
LLRs need to be de-interleaved first.

12The latency of M-BCJR architectures inhibits perfect linear (in the number
of instances K′) scaling of the decoding throughput.
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Figure 5.14: Left: generalized hardware structure of contention-free
interleavers. Right: implementation of the interleaver based on a
master/slave (M/S) Batcher network (with K ′ = 4).

able interleaver-types (e.g., the interleaver used in the HSDPA stan-
dard [139]) and hence, inhibits to achieve high throughput for most
turbo decoders.

Contention-Free Interleaving from a Hardware Perspective

The interleaver bottleneck can be alleviated by choosing an appropri-
ate interleaver rule and designing a corresponding interleaver architec-
ture. Contention-free interleavers are able to alleviate the interleaver
bottleneck [178]. In the following discussion, we describe a general
structure for contention-free interleavers. The corresponding struc-
ture is depicted in Figure 5.14.

The interleaver memory of a contention-free interleaver with block-
length N consists of N ′ = N/K ′ words (i.e., K ′ and N ′ must be
an integer factor of the block-length N), each of it containing K ′

LLR-values (or bits). The interleaver memory is initialized column-
wise. An address generator computes theK ′ trellis positions that need
to be accessed concurrently according to ai = π(xi), i = 1, . . . ,K ′,
where xi corresponds to the current non-interleaved trellis step of the
ith decoder, i.e., the first M-BCJR decoder reads from trellis posi-
tion a1, the second from a2 etc., and π(·) denotes the interleaving
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operation. The key idea of contention-free interleavers is the follow-
ing: If each M-BCJR unit can be separated by N ′, i.e., xi = xj +N ′k
(k ∈ Z), all trellis steps to be accessed reside on the same row in the
N ′×K ′-dimensional interleaver memory, i.e., all interleaved addresses
satisfy ai = aj + N ′k with k ∈ Z. Note, however, the K ′ values on
each row are not necessarily in the right order.

Interleaving is now performed in two steps (see Figure 5.14). The
first step corresponds to selecting the word in the memory, which is
associated to the smallest address, i.e., amin = mini=1,...,K′{ai}. The
second step corresponds to extracting the assignment of memory con-
tents to the BCJR decoders. This assignment is obtained through
all generated addresses a = [ a1 · · · aK′ ], i.e., by sorting the address
vector a and by storing the corresponding permutation in a vector p.
Now, all the K ′ values at address amin simply need to be permuted
with p. For example, if the ith M-BCJR accesses the lowest address
ai = amin and unit j accesses the second lowest, unit i needs to access
the first of the K ′ words and unit j the second one. If the memory
content needs to be accessed in a non-interleaved fashion, the word
addresses simply correspond to ai = xi (∀i) and no permutation is
performed, i.e., p = [ 1 · · · K ′ ]. We emphasize that this two-step
interleaving process allows us to read out K ′ (interleaved) values at
once, without leading to any contentions in the interleaver memory.

Quadratic Polynomial Permutation (QPP) Interleaver

A promising choice for high-throughput turbo decoding are quadratic
polynomial permutation (QPP) interleavers [178, 179]. The QPP in-
terleaver rule is defined according to

π(x) =
(
f1x+ f2x

2
)

mod N (5.22)

where N denotes the block-length and f1 and f2 are suitably chosen
interleaver parameters (also depending on N). It has been shown that
QPP interleavers exhibit good interleaving properties, e.g., [178,179],
and enable (for any two N ′,K ∈ Z such that N ′K ′ = N) contention-
free access to K ′ entries in the interleaver’s memory. Hence, up to K ′

parallel M-BCJR decoder instances can be employed, which renders
this interleaver well-suited for high-throughput turbo decoding. Turbo
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codes based on QPP interleaving are, for example, considered in the
3GPP LTE standard [11] and support contention-free memory access
for up to K ′ = 8 units for all block-sizes.

In practical applications, it is often desirable to have the inter-
leaved addresses π(x) in a certain well-defined order, such as, e.g.,
for x = 0, 1, . . . , N − 1. As it has been noted in [180], address gen-
eration for QPP interleaving according to (5.22) can efficiently be
performed in recursive manner, i.e.,

π(x+ 1) =
(
π(x) + δ(x)

)
mod N

δ(x+ 1) =
(
δ(x) + b

)
mod N

with π(0) = 0, δ(0) = f1 + f2, and b = 2f2. Note that this recursion
can efficiently been performed in hardware as it only requires additions
and modulo operations; the latter can be carried out with simple
compare-select circuits. In addition, it is possible to write a recursion
for other increments (i.e., are smaller than N and positive), which
essentially leads to different δ(0) and b values.

5.3.2 VLSI Architecture

The high-throughput turbo decoder architecture for the 3GPP LTE
standard [11] presented below, bases on the low-power architecture for
HSDPA described in [36]. In order to achieve high-throughput, the
max-log M-BCJR architecture described in Section 5.1.2 has been op-
timized for higher throughput and eight parallel instances are used.
In addition, a high-throughput architecture for contention-free inter-
leavers has been designed in order to keep the critical path within the
M-BCJR units.

Turbo Decoder Architecture Overview

The turbo decoder architecture is shown in Figure 5.15 and consists
of a systematic LLR memory followed by an interleaver, a memory
containing the LLRs associated with the parity bits 1 and 2, and
an extrinsic LLR memory, which is able to perform (de-)interleaving
at the input as well as at the output. Each half-iteration is being
decoded in a parallel fashion using eight throughput-optimized M-
BCJR instances.
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Figure 5.15: High-throughput turbo decoder architecture for 3GPP
LTE employing eight radix-4 max-log M-BCJR decoders.

Radix-4 M-BCJR Architecture

Prominent approaches to increase the throughput of trellis-based de-
tectors, such as Viterbi decoders or BCJR algorithms, are pipeline-
interleaving of the ACS unit, e.g., [14, 47], or employing higher-radix
ACS units [181]. Pipeline interleaving can be used to decode two
or more separate codes in a single unit by inserting pipeline registers
within the ACS unit. It was shown in [47] that pipeline-interleaving is
a solution for high-throughput implementation on FPGAs [47]. How-
ever, pipeline-interleaving tends to very high clock frequencies when
implemented on ASICs, which renders it difficult to keep the critical
path within the ACS units. In contrary, higher-order radix ACS units
perform multiple trellis steps per clock cycle, e.g., two trellis steps
in a radix-4 architecture, which potentially lower the clock frequency,
while achieving approximately twice the throughput compared to a
radix-2 architecture. Hence, employing radix-4 ACS units for the
high-throughput turbo decoder seems to be advantageous.

Figure 5.3 shows three different ACS architectures. The radix-2
architecture performs one trellis step per clock cycle and requires two
adders and one compare-select (CS) unit. A straightforward (slow)



180 CHAPTER 5. SISO CHANNEL DECODING

Figure 5.16: Left: radix-2 ACS. Middle: slow radix-4 ACS. Right:
fast radix-4 ACS. The critical paths are indicated with dashed lines.

radix-4 implementation consists of four adders and three CS units.
Compared to the radix-2 ACS, the critical path is enlarged by one
CS unit ultimately resulting in a lower clock frequency. Comparison
between all adder outputs using parallel comparison units and employ-
ing an evaluation logic in order to determine the maximum element
of all four inputs only slightly increases the critical path compared to
a radix-2 ACS implementation. The fast radix-4 ACS leads —thanks
to performing two trellis steps per clock cycle— to a much higher
throughput (see, e.g., [47]). Figure 5.17 compares all three ACS vari-
ants using the β-unit of a 8-state BCJR decoder (see Section 5.1.2),
i.e., including eight ACS units and the required LLR-to-branch-metric
computation logic. Note that the radix-4 implementation achieves
higher throughput while being less efficient in terms of area divided
by the time per bit (approximately 56% for the fast and 90% for the
slow implementation). With high-throughput in mind, the slightly
degraded hardware-efficiency was found to be acceptable.

Table 5.3 compares implementation results of a high-throughput
8-state radix-4 max-log M-BCJR and the radix-2 implementation de-
scribed in Section 5.1.3. Note that the maximum achievable clock
frequency of the radix-4 implementation is only 7.1% lower compared
to that of the radix-2 counterpart, which ultimately leads to a 86%
higher throughput. Even though the radix-4 ACS requires one bit
more than a radix-2 ACS (since two branch metrics are being added
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Figure 5.17: Area-time tradeoff comparison of radix-2 and radix-4 β-
unit ACS in 180 nm CMOS technology. The dashed lines represent
constant area-time (AT)-product.

for radix-4), the α-memory is considerably smaller as only the forward
state-metrics for every second trellis step need to be stored. However,
in summary the radix-4 max-log M-BCJR implementation is approx-
imately 20% less efficient in terms of hardware-efficiency compared to
that of the radix-2 M-BCJR implementation.

QPP Interleaver Architecture

Since eight M-BCJR instances are used, data for eight M-BCJR de-
coders need to be read out at once from the interleaver memory per
clock cycle. Due to the presence of a radix-4 M-BCJR implementa-
tion (which performs two trellis steps per clock cycle) each M-BCJR
decoder additionally requires data for the even and the odd trellis
steps. Hence, up to 16 interleaved values need to be read from the
systematic and extrinsic memories per clock cycle.

To this end, an address generator computes all 16 interleaved
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addresses per clock cycle using the recursive formulation outlined
in Section 5.3.1. Then, all eight addresses that belong to the even
trellis steps shown for K ′ = 4 in Figure 5.14.13 are being fed into
a Batcher sorting network [182] Since the smallest of all eight (in-
terleaved) addresses does not exceed N ′, it can directly be used as
the word address amin of the interleaver’s memory. Sorting and per-
mutation, as described in Section 5.3.1, is performed within a unit
referred to as master/slave (M/S) Batcher network (see Figure 5.14).
The master Batcher network mainly performs sorting of the input
addresses (in ascending order) with the aid of two-input sort units
(denoted as “sort” in Figure 5.14). These two-input sorting units
additionally produce a control signal whether the inputs have been
swapped or not. Using these control signals, the sort-order computed
in the master network can now be applied to the LLR-values within
the slave network, which only consists of two-input switches (denoted
by “SW”). We emphasize that this architecture enables concurrent
and hardware-efficient sorting of all K ′ inputs and enables pipelin-
ing, which is essential for a high-throughput implementation of con-
tention free interleavers. For more details on the architecture, we refer
to [183].

5.3.3 Implementation Results

The high-throughput turbo decoder for 3GPP LTE described above
has been implemented in 130 nm (1P/8M) CMOS technology. The
ASIC layout is shown in Figure 5.18.

Area Breakdown

Table 5.11 provides a detailed area breakdown of the turbo decoder
implementation. The total circuit area corresponds to 3.57 mm2,
which corresponds to 697 kGE (including all memories). More than
65% of area is occupied by the eight radix-4 max-log M-BCJR units.
Note that the M-BCJR units have not been pushed to their perfor-
mance limits (in terms of the critical path) and hence, are slightly
smaller than the implementation shown in Table 5.10. The interleaver

13The same procedure has to be performed for the odd trellis steps.
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Table 5.10: Radix-2 max-log M-BCJR compared to a radix-4 imple-
mentation (8-states, M = 32) in 180 nm CMOS technology.

Radix 2 4

Cell area [kGE] 37.3 80.7
Core area [mm2] 0.36 0.76
Max. clock frequency [MHz] 375 350
Throughput [Mbps] 375 700
ACS word-width [bit] 9 10
α-memory [kbit] 2.25 1.25
Efficiency [kGE/Mbps] 0.10 0.12

Table 5.11: Detailed area breakdown of the 3GPP LTE turbo decoder
ASIC in 130 nm (1P/9M) CMOS technology.

Unit mm2 kGEa %

M-BCJR 1 to 8 8×0.29 8×57.3 65.7
– α-unit 0.037 7.23
– β-unit 0.042 8.15
– β′-unit 0.037 7.22
– LCU 0.080 15.6
– α-memory 0.045 8.8
– miscellaneousb 0.049 10.3
Interleaver 0.87 170 24.3
– extrinsic memory 0.28 55.4
– systematic memory 0.14 27.1
– address generator 0.32 63.4
– M/S batcher network 0.03 6.17
– miscellaneousc 0.10 17.9
Parity memory 0.31 61.5 8.8
Miscellaneous 0.07 7.1 1.2

Total 3.57 697 100

aOne GE corresponds to a two-input drive-one NAND gate of size 5.12 µm2.
bContains γ-memories, the FSM, and other top-level logic.
cContains the FSM and top-level logic (e.g., buffers and pipeline registers).
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Figure 5.18: ASIC micrograph of the high-throughput LTE turbo
decoder in 130 nm (1P/8M) CMOS technology.

(consisting of memories, address generators, and the M/S batcher net-
work) only requires 24%. Hence, we conclude that the circuit area and
the critical path of the turbo decoder implementation is dominated
by the area and the critical path of the M-BCJR units, respectively
Hence, it is essential to optimize the max-log M-BCJR units in order
to attain a hardware-efficient turbo decoder implementation.

Implementation Results and Comparison

Table 5.12 provides post-layout implementation results of the 3GPP-
LTE turbo decoder and compares its performance to two reference
implementations for the HSDPA standard, namely the low-power im-
plementation by Benkeser et al. [36] and the high-throughput radix-4
implementation of Bickerstaff et al. [37].

The high-throughput 3GPP LTE implementation presented in this
section requires 126 kbit of memory14 and a core area of 3.57 mm2.

14This figure excludes the memories required in the M-BCJR units, since they
have been realized with latch-arrays instead of using SRAM macro-cells
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Table 5.12: Post-layout implementation results of the LTE turbo de-
coder and comparison with turbo decoders for HSDPA.

This work
Benkeser Bickerstaff
et al. [36] et al. [37]

Standard LTE HSDPA HSDPA
Technology [nm] 130 130 180
Radix/parallelism 4/8 2/1 4/1
Core area [mm2] 3.57 1.2 14.5
Total memory [kbit] 129.1 120 450
Cell area [kGE] 553a 44.1 410
Max. clock freq. [MHz] 400 246 145
Max. throughputb [Mbps] 520 (5.5) 20.2 (5.5) 33.4c (6)
Efficiencyd [kGE/Mbps/it] 0.19 0.40 2.05

aCorresponding to the area without systematic, parity, and extrinsic memories.
bThe number within the braces correspond to the number of full iterations.
cThe throughput has been scaled by 1.39 to consider technology scaling from

180 nm to 130 nm CMOS technology.
dThe hardware-efficiency is normalized to the number of iterations (it).
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The throughput of the decoder is approximately15 given by

Θ ≈ 2N(
3M ′ +N/K ′

)
2IPCTC

fclk

million bits per second (Mbps), where K ′ = 8 corresponds to the
number of M-BCJR units and M ′ = 15 denotes the number of cycles
required per window. Note that the maximum block-length of the
3GPP LTE standard corresponds to N = 6144, which leads to a max-
imum throughput of 520 Mbps if using 5.5 iterations and running it at
the maximum clock frequency of 400 MHz. From Table 5.12 one can
observe that the LTE decoder attains a 25 times higher throughput
than that of the reference HSDPA implementation [36] and is twice
more efficient in terms of kGE per Mbps per iteration. We emphasize
that such a high throughput and good hardware-efficiency can only
be achieved by alleviating the interleaver bottleneck using the master-
slave Batcher network, in combination with eight highly-optimized
radix-4 max-log M-BCJR units.

5.4 Performance/Complexity Tradeoff
for SISO Channel Decoding

The presented SISO channel decoders exhibit either excellent error-
correction capability or low implementation complexity. It is therefore
essential to compare both, the (error-rate) performance and the com-
plexity in order to identify which channel code/decoder-pairs exhibit
a better tradeoff.

In this section, we compare the performance/complexity tradeoff
associated with the SISO channel decoders described in this chapter.
The tradeoff comparison below bases on VLSI implementation results
and only considers their error-correcting capabilities. The soft-input
soft-output performance is characterized in Section 6 jointly with the
MIMO detector.

15The exact number of clock cycles per half-iteration slightly depends on the
block-length N , which has been neglected in throughput computation.
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5.4.1 Performance and Complexity Measures

In order to enable a fair comparison in terms of performance and
hardware-complexity, several assumptions have been made. For all
considered SISO channel decoders, a similar code-block length of ap-
proximately 1000 information bits is used. Note that the exact number
of bits depends, for example, on the code, the decoder implementa-
tion, and the required tail-bits. All codes use rate R = 1/2 (i.e.,
resulting in approximately 2000 coded bits). In order to account for
technology scaling [184,185], all VLSI implementation results are nor-
malized to 180 nm CMOS technology, i.e., we scale the throughput of
the 130 nm CMOS implementations by a factor of 130/180.

In the following, all assumptions and modifications for each con-
sidered SISO channel decoder are listed in detail.

• The 4-, 8-, 16-, 32-, and 64-state radix-2 max-log M-BCJR im-
plementations described in Section 5.1 are used. In order to
consider the interleaver and the associated LLR memory for
1952 coded bits (including tail bits), we add the circuit area
of two single-port macro-cell memories with capacity for 976
LLRs (each consisting of 5 bit) requiring a total area of 16 kGE.
In addition, we include 3 kGE, which corresponds to the area of
two QPP-interleaver address generators (see Section 5.3.1).

• For the 8-state radix-4 max-log M-BCJR decoder described in
Section 5.3.2, we note that twice the memory bandwidth (com-
pared to a radix-2 implementation) is required. Hence, we con-
sider four QPP address generators (6 kGE) and four memories
(each consisting of 488×5 bit) of 26 kGE total area.

• As a reference, we consider the hard-output Viterbi decoder de-
scribed in [16], which has been implemented in 130 nm CMOS
technology. This implementation requires 136 kGE and consists
of two parallel radix-4 Viterbi cores, each achieving 320 Mbps.
The 180 nm-equivalent throughput corresponds to 462 Mbps. As
it has been done for the radix-4 M-BCJR, we include the area
of four QPP address generators and four memories.

• The QC-LDPC decoder implementation described in Section 5.2
is used in the comparison. Since the decoder is already designed
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for 1944 coded bits no special assumptions are made. We use
the IEEE 802.11n QC-LDPC code with rate 1/2 and Z = 81
(see Table 5.7).

• The memory area of the high-throughput 3GPP LTE turbo de-
coder in Section 5.3 is reduced to account for a block length of
976 information bits (resulting in 1964 coded and tail bits). To
this end, we subtract the area of systematic, parity, and extrin-
sic memories (equivalent to 144 kGE) the decoder’s total area
and replace it with the area corresponding to memories (with
equivalent functionality) for the target block-length of 1964 bits
(total area: 51.5 kGE). Since the implementation is for 130 nm
CMOS technology, the throughput is reduced by 130/180 to ac-
count for technology scaling. In order to attain a code rate of
1/2, the coded bit stream is punctured appropriately.

Complexity Measure Complexity is measured in terms of kGE
per throughput (in million bits per second), which indicates the hard-
ware resources (in Mbps) spent to achieve a certain throughput. This
measure corresponds to the area-time (AT) product in [14].

Performance Measure Performance is characterized by the SNR
operating point, i.e., the minimum SNR required to achieve a target
bit error rate (BER) of 10−5. The error-rate has been simulated in
a single-input single-output OFDM system (MT = MR = 1) with
an i.i.d. (across tones) Rayleigh fading channel model using BPSK
modulation. The decoders are assumed to perform all computations
in floating-point, i.e., fixed-point precision effects have been neglected
in this comparison. Note that approximations on algorithmic level
(such as, e.g., the max-log approximation or OMS message passing)
have been employed.

5.4.2 Tradeoff Comparison and Conclusions

Figure 5.19 summarizes the results of this chapter by showing the
performance/VLSI implementation complexity tradeoff for the radix-
2 and radix-4 M-BCJR decoders, the Viterbi decoder, the QC-LDPC
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SNR operating point for BER=10

Figure 5.19: Hardware-based performance/complexity tradeoff for
SISO channel decoders. The numbers next to the M-BCJR decoder
corresponds to the constraint length. The numbers next to the QC-
LDPC and LTE turbo decoder denote the number of iterations.

decoder, and the LTE turbo decoder. We can draw the following
conclusions:

• In the low-complexity (i.e., hardware-efficient region), the M-
BCJR decoders with small constraint length (i.e., K = 3, 4, 5)
are Pareto-optimal in terms of the performance/complexity
tradeoff. However, the M-BCJR algorithm scales badly with
the constraint-length and hence, to achieve a low SNR operat-
ing point quickly leads to an inefficient decoding architecture.
For example, the the 64-state (k = 7) M-BCJR implementation
is approximately twice less efficient than its 32-state counter-
part, while the improvement in terms of SNR operating point is
rather low.

• The 8-state radix-4 M-BCJR detector attains the same perfor-
mance as its radix-2 counterpart, but is slightly less efficient
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(due to the less efficient ACS units and the increased memory
bandwidth, see Table 5.10).

• The reference hard-output Viterbi detector of [16] achieves the
same performance as the 64-state M-BCJR decoder, but is ap-
proximately two times less complex. Hence, if no SISO-decoding
capability is required, implementation of the Viterbi algorithm
for detection of convolutional codes is preferable.

• In the medium-to-low-SNR regime, the QC-LDPC decoder and
the LTE turbo decoder attain a similar performance/complexity
tradeoff. Thus, no clear advantage for either of the two decoders
can be identified. Note that important advantages of the QC-
LDPC decoder implementation (which can not be seen from
Figure 5.19) are the fact that it offers high degree of flexibility
(e.g., in terms of reconfigurability for various block-lengths and
codes), covers a large tradeoff region by adjusting the number of
iterations, and its architecture offers scalability for even higher
throughput.

• At very-low SNR, the LTE turbo decoder slightly outperforms
the QC-LDPC decoder. Thus, if a system needs to operate reli-
ably at very low-SNRs, the LTE turbo decoder seems to be the
best choice (among the considered codes and decoders). Note,
however, that the performance gap to the QC-LDPC decoder is
very small (and the proposed turbo decoder architecture is less
flexible than the QC-LDPC decoder).

In summary, Viterbi decoding is well-suited for low-complexity hard-
output decoding of CCs. If SISO-capability is required, the M-BCJR
algorithm is suitable for decoding of CCs having small constraint
length. QC-LDPC codes and turbo codes seem to be well-suited for
medium to low SNR operating points, where QC-LDPC decoders can
be designed to achieve a significantly higher degree of flexibility than
turbo decoders. We therefore believe that the flexibility and scaling
advantages render QC-LDPC codes to be the most promising scheme
for future high-performance (wireless) communication standards.



Chapter 6

Performance/Complexity
Tradeoffs

The goal of this chapter is to analyze the performance and VLSI im-
plementation complexity of iterative MIMO decoding. To this end, we
consider the performance/complexity tradeoffs associated with (soft-
input) soft-output MIMO detection in combination with SISO channel
decoding. The tradeoff analysis bases on numerical (error-rate) perfor-
mance simulations and on the VLSI implementation results provided
in Chapters 3–5.

We start in Section 6.1 by introducing the performance and com-
plexity measures. In Section 6.2, we show corresponding perfor-
mance/complexity tradeoff results and finally discuss our findings.

6.1 Performance and Complexity Measures

In order to enable a fair comparison in terms of performance and com-
plexity, the choice of the right performance measures is of paramount
importance. Moreover, assumptions on the system model that accu-
rately reflect real-world aspects need to be made. In the remainder
of this section, we describe the MIMO system model and detail the
assumptions that have been used in the subsequent tradeoff analysis.

191
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6.1.1 Performance Measure

The performance measure employed in the remainder of this chapter
corresponds to the SNR operating point (cf. Section 4.6.3), i.e., the
minimum required SNR to achieve a target FER of 1%.

The SNR operating points are simulated in a coded MIMO-OFDM
system that is similar to the 40 MHz bandwidth mode of the IEEE
802.11n standard [2]. We use MT = MR = 4, 16-QAM symbol con-
stellation with Gray labeling as defined in [2], 122 OFDM tones, and
assume a TGn type C channel model [12]. All codes used in the ensu-
ing discussion have rate 1/2. One frame consists of approximately
1000 information bits, which leads to about twice the number of
coded bits for each (spatial) OFDM symbol.1 All (error-rate) per-
formance simulations are averaged over 640’000 channel realizations
and for each channel realization a single noise realization has been
generated. Since fixed-point simulations of iterative MIMO decoding
are time-consuming and all implementations show a small implemen-
tation loss, the simulations results base on floating-point arithmetic
(i.e., fixed-point effects have been neglected). Note, however, that all
approximations performed on algorithmic level (such as the max-log
approximation) have been considered in our simulations.

6.1.2 Throughput and Area Measures

Throughput is given in million information bits per second (Mbps).
In order to account for the different process technologies, all through-
put figures have been normalized to 90 nm CMOS technology using
technology scaling rules. In particular, we assume that the throughout
scales linearly with the maximum clock frequency of the circuit, where
the maximum clock frequency scales approximately inversely propor-
tional with the process technology [184, 185].2 Hence, the through-
put for 90 nm CMOS technology (denoted by Θ90) is assumed to be
Θ90 = s

90 Θs where s stands for the technology node (in nm) of the
implementation to be scaled (with corresponding throughput Θs).

1The exact number of information/code bits depends on the employed code.
2Note that this assumption was shown to be (approximately) valid for CMOS

technologies down to 90 nm [186]. In addition, based on implementation results
of various MIMO circuits, it was demonstrated in [187] that technology scaling is
surprisingly accurate for CMOS technologies ranging from 250 nm to 130 nm.
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Figure 6.1: Iterative MIMO decoder with area and throughput figures.

A natural throughput measure for SISO detectors for iterative
MIMO systems and SISO channel decoders is million LLR-values per
second. Since R = 1/2 is considered in the remainder of this chapter,
two LLR values are generated per information bit. Hence, we divide
the throughput (in terms of LLRs per second) by two and provide the
information rate in terms of Mbps instead.

Circuit Area is given in terms of gate equivalents (GEs), where one
GE refers to a two-input drive-one NAND gate in the corresponding
technology.

6.1.3 Efficiency and Complexity Measures

An iterative MIMO decoder (see Figure 6.1) consists, in general, of a
preprocessing unit, a SISO detector for MIMO systems, and a SISO
channel decoder. The corresponding hardware-efficiency is denoted
by AT (where A and T refer to the circuit area and the time per data
item, respectively), which corresponds to the size-time product [14].
This measure indicates the amount of resources (in terms of circuit
area) that are required to attain a given throughput.

In the following, we consider an iterative MIMO decoding sched-
ule, where the soft-input soft-output MIMO detector and the SISO
channel decoder are always active. This can, for example, be achieved
by processing two OFDM symbols concurrently and in an interleaved
fashion, i.e., the MIMO detector performs detection of even OFDM
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symbols, while the channel decoder operates with odd OFDM sym-
bols. After completion, both units exchange their data. Note that the
slower unit determines the time instant where data is exchanged. We
emphasize that the considered schedule is rather optimistic since, for
example, latency constraints (present in practical systems) can lead
to the case where not enough data can be delivered to the decoder in a
given time interval. Nevertheless, we compute the hardware-efficiency
associated to this schedule and the system depicted in Figure 6.1 ac-
cording to

AT ,
App + (Am + Ac)I

min
{

Θm,Θc

} (6.1)

where the subscripts pp, m, and c, refer to preprocessing, to the
soft-input soft-output MIMO decoder, and to the SISO channel de-
coder, respectively. The definition in (6.1) results from the fact that
the smaller throughput limits the overall system throughput and the
larger the number of iterations I is, the more circuit area is required
(for MIMO detection and channel decoding) in order to achieve a cer-
tain throughput. Note that in (6.1), it has been assumed that the
preprocessing unit is neither throughput-critical nor affected by the
number of iterations.3

Throughput Matching

Since we are comparing VLSI implementation results from differ-
ent CMOS processes, the technology-scaled throughput figures of the
MIMO detector and the channel decoder do not necessarily match.
This mismatch evidently leads to poor overall hardware-efficiency, as
it can be seen from (6.1). In practice, however, the two units are
designed such that both meet the target throughput of the MIMO de-
coder; this can —up to a certain extent— be achieved by application
of architectural transformations. Hence, we assume that the through-
put of the MIMO detector and the channel decoder are both matched
to the target throughput Θ, by the use of architectural transforma-
tions that yield constant AT -product (e.g., using replication or time

3The latency associated with preprocessing is critical in many wireless commu-
nication standards, such as in, e.g., IEEE 802.11n [2]. However, latency aspects
are not considered in this thesis for the sake of simplicity.
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sharing [14]). In particular, we derive area and throughput figures
associated with new (hypothetical) architectures (denoted by the su-
perscript ′) according to

A′m , Am
Θ

Θm
I, Θ′m , Θ (6.2)

A′c , Ac
Θ

Θc
I, Θ′c , Θ. (6.3)

which preserve the hardware-efficiency, i.e., AT ′m = ATm and
AT ′c = AT c, where ATm = Am/Θm and AT c = Ac/Θc correspond
to the hardware-efficiencies of the initial MIMO detector and chan-
nel decoder, respectively. With (6.2) and (6.2), we can now compute
the hardware-efficiency of the throughput-matched iterative MIMO
decoder AT ′ according to (6.1)

AT ′,
App

Θ
+ (AT m + AT c)I. (6.4)

Note that if the target throughput Θ is low, the preprocessing area
dominates the overall hardware-efficiency AT ′, whereas for large val-
ues of Θ or a large number of iterations I, preprocessing complexity
becomes negligible.

We emphasize that throughput matching and hence, the resulting
hardware-efficiency in (6.4) can only be justified for circuits, which
allow to trade throughput for circuit area (by means of architectural
transformations) over a large region and in fine steps. In the remainder
of this thesis, we assume that these properties apply to the considered
MIMO detectors and channel decoders circuits.

Silicon Complexity

The hardware-efficiency expression obtained by using throughput
matching can be used to estimate the total area A′ required to im-
plement an iterative MIMO decoder for a given target throughput Θ
and number of iterations I. This area-estimate corresponds to

A′, AT ′Θ = App + (ATm + AT c)IΘ (6.5)

gate equivalents and will be referred to as “silicon complexity” in the
remainder of this chapter. We can see from (6.5) that increasing the
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number of iterations I leads to a linear increase in terms of circuit
area. Hence, in order to achieve low silicon complexity, a small number
of iterations I is necessary. In the ensuing discussion, we will assume a
target throughput of Θ = 250 Mbps.4 Note that memories for storage
of channel matrices and of received vectors are not included in these
estimates.

Symbol-Rate Efficiency

Some tasks in an iterative MIMO decoder are executed at symbol-
rate, i.e., need to be carried out for each received vector and each
iteration. Preprocessing comprises those tasks that only need to be
computed when the channel state changes. In WLAN systems, the
channel state often remains constant over a long period (e.g., as the
Doppler spread is small) and hence, preprocessing needs to be exe-
cuted rarely. Hence, the tradeoff analysis shown in the remainder of
this chapter will also compare the hardware-efficiency associated with
the symbol-rate tasks, i.e.,

AT s ,(ATm + AT c)I. (6.6)

This measure is referred to as “symbol-rate efficiency” in the sequel.
Note that (6.6) corresponds to the size-time product of the symbol-
rate tasks of an iterative MIMO decoder performing I iterations and
indicates the amount of GEs required to perform all symbol-rate tasks
for a certain throughput.

6.2 Performance/Complexity Tradeoffs

This section provides performance/complexity tradeoff results for it-
erative MIMO decoding based on the MIMO detectors and channel
decoders described in Chapters 3 to 5. In Section 6.2.1, we analyze the
tradeoffs associated with the SISO MMSE PIC detector and different
channel codes. In Section 6.2.2, we compare the tradeoffs realized by
the SISO MMSE PIC algorithm and soft-output STS SD.

4The throughput achieved in IEEE 802.11n [2] for MR = MT = 4, 16-QAM,
rate 1/2, 108 OFDM tones, 40 MHz bandwidth, and 400 ns guard interval (which
is similar to the considered system model) corresponds to 240 Mbps.
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We emphasize that the results provided in the following corre-
spond to a snapshot for the considered system parameters and the
implementations provided in the previous chapters. In addition, the
silicon-complexity measure in (6.5) only provides optimistic estimates
of the true silicon complexity required for iterative MIMO decoding.
For real-world MIMO systems, the results will differ. However, we be-
lieve that the results shown in the following enable to draw conclusions
that are valid for real-world MIMO systems as well.

6.2.1 Impact of Channel Codes to
Performance/Complexity Tradeoff

Impact of Convolutional Codes

Figure 6.2(a) and Figure 6.2(b) compare the performance/symbol-
rate efficiency tradeoff and the performance/silicon complexity trade-
off, respectively. The numbers given in the legend correspond to the
constraint length of the CC. The numbers next to the curves corre-
spond to the number of iterations I.

Performance vs. Symbol-Rate Efficiency Figure 6.2(a) shows
that for I = 1, soft-output MMSE detection in combination with
the Viterbi decoder in [16] outperforms SISO MMSE PIC using the
K = 7 M-BCJR decoder (in terms of symbol-rate efficiency) by a
factor of six; this is due to the fact that preprocessing needs to be
performed at symbol-rate for the SISO MMSE PIC algorithm, whereas
preprocessing for linear SO MMSE detection is not contained in this
measure (since it is not a symbol-rate task). We can furthermore see
that for I = 1, the constraint length of CCs has a strong impact on
the SNR operating point of the MIMO system.

By increasing the number of iterations, the SNR operating point
of the MIMO system is reduced significantly, i.e., from the first to
the second iteration, performance improvements from 6 dB to 9 dB
(depending on the constraint-length) can be observed. For I > 4, the
performance starts to saturate. Hence, using an even larger number
of iterations does not seem to be efficient. In addition, for I > 2
the impact of the channel code on the performance is small. Hence,
smaller constraint-lengths may lead to the same performance as more
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(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.2: Performance/complexity tradeoffs for SISO MMSE PIC
with M-BCJR decoding compared to linear soft-output MMSE detec-
tion with Viterbi decoding.
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sophisticated CCs, while being more efficient. This implies that CCs
with low constraint-length can be beneficial in terms of the symbol-
rate efficiency.

Performance/Silicon Complexity Tradeoff Figure 6.2(b) shows
that the silicon complexity (in MGE) of linear SO MMSE detec-
tion in combination with a Viterbi decoder is similar (i.e., only 1.4
times lower) to that of SISO MMSE PIC with M-BCJR decoding (for
K = 7). The reason for this is that the preprocessing area given in [16]
is included in the area estimate of linear SO MIMO detection.

Increasing the number of iterations increases the silicon complex-
ity of iterative MIMO decoding (of SISO MMSE PIC with M-BCJR
decoding). Performing two iterations, for example, requires approxi-
mately 750 MGE to 950 MGE. We, therefore, conclude that achieving
the gains offered by iterative MIMO decoding comes at the cost of
(often significantly) increased silicon complexity. Further increasing
the number of iterations (i.e., I > 2) leads to smaller performance
gains and becomes less efficient.

Impact of LDPC Codes

Figure 6.3 illustrates the tradeoffs of iterative MIMO decoding using
SISO MMSE PIC with the QC-LDPC decoder described in Section 5.2.
The rate-1/2, Z = 81 LDPC code from [2] is used and the numbers
given in the legend correspond to the number of iterations performed
in the LDPC-decoder (ILDPC).

Performance vs. Symbol-Rate Efficiency From Figure 6.3(a),
we see that the performance in the first iteration heavily depends
on the number of LDPC-internal iterations ILDPC. Increasing ILDPC

above 6 iterations does not substantially improve the performance.
By increasing I, the performance improves, but starts to saturate
at approximately 15 dB SNR (for I > 2). Since, the symbol-rate
efficiency substantially degrades for I > 1, we conclude that LDPC
codes seem to be better suited for soft-output-only MIMO decoding.

Performance/Silicon Complexity Tradeoff Figure 6.3(b) shows
that the linear soft-output MMSE detector from [16] outperforms
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(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.3: Performance/complexity tradeoffs for SISO MMSE PIC
and linear soft-output MMSE detection (both with LDPC codes).
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the SISO MMSE PIC implementation (using M-BCJR decoding) for
I = 1 and requires approximately 20% less silicon complexity. It-
erative MIMO decoding with I = 2 requires approximately 1 MGE.
Further increasing I does not significantly improve the performance.

Impact of Turbo Codes

Figure 6.4 shows the tradeoff results using PCTCs. The numbers in
the legend correspond to the number of (full) iterations in the turbo-
decoder (denoted by IPCTC). We are using the turbo code from the
3GPP LTE standard [11] with 976 information bits per code-block
(cf. Section 5.3) and employ puncturing to obtain rate 1/2.

Performance vs. Symbol-Rate Efficiency The tradeoff-curves
shown in Figure 6.4(a) are similar to that realized by QC-LDPC
codes (see Figure 6.3(a)). Linear soft-output MMSE detection us-
ing IPCTC = 4 performs well and approaches 18 dB SNR. Increasing
the number of iterations I > 1 (and using the SISO MMSE PIC
algorithm) quickly degrades the symbol-rate efficiency, while the per-
formance improvements are rather low. Hence, using even a small
number of iterations is inefficient in this scenario.

Performance/Silicon Complexity Tradeoff In Figure 6.4(b), we
observe that non-iterative MIMO decoding using I = 1 based on turbo
codes requires approximately 400 kGE to 600 kGE and the perfor-
mance ranges between 18 dB to 23.5 dB SNR (depending on IPCTC).
It seems to be better (in terms of the performance/complexity trade-
off) to use a larger number of iterations within the turbo decoder (i.e.,
IPCTC) than increasing I. In particular, performing more than one
iteration substantially increases the silicon complexity of the iterative
MIMO decoder and requires more than 2 MGE for I = 4. We there-
fore conclude that PCTCs are better suited for non-iterative MIMO
decoding (e.g., using linear soft-output MMSE detection).

Summary

Figure 6.5 summarizes the tradeoff results realized by the SISO MMSE
PIC and soft-output linear MMSE detection in combination with
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(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.4: Performance/complexity trade-offs for SISO MMSE PIC
and linear soft-output MMSE detection (both using PCTCs.)



6.2. PERFORMANCE/COMPLEXITY TRADEOFFS 203

(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.5: Tradeoff summary for SISO MMSE PIC and linear soft-
output MMSE detection using different channel decoders.
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(SISO) decoding of CCs, LDPC codes, and PCTCs.
In Figures 6.5(a) and 6.5(b), we can see that linear soft-output

MMSE detection in combination with Viterbi decoding is Pareto-
optimal to an SNR operating point of about 21.5 dB. In order to
achieve better performance with non-iterative MIMO decoding, LDPC
or turbo codes need to be employed. Note that for a given silicon com-
plexity (or symbol-rate efficiency) the performance of LDPC codes is
slightly worse than that of turbo codes (i.e., approximately 0.5 dB).

Iterative MIMO decoding is required to further improve the perfor-
mance. Surprisingly, convolutional codes outperform (in terms of per-
formance and complexity) turbo codes and LDPC codes. The reason
for a lower SNR operating point can be addressed to using small block-
lengths and correlation among frequency and space (see, e.g., [140]).
In addition, our simulation results also indicate that the performance
strongly depends on the employed channel code; we observed that
the inter-play between MIMO detector and channel code seems to be
important for the performance of iterative MIMO decoding.5

Conclusions

It was shown that iterative MIMO decoding is able to improve the
performance by more than 8 dB SNR, while increasing the silicon com-
plexity by approximately 1.5 MGE. Hence, iterative MIMO decoding
is able to offer tremendous performance improvements in practical
systems (compared to that of non-iterative MIMO decoding) at the
cost of approximately two to four times higher silicon area. For the
considered scenario, CCs are better suited than LDPC or turbo codes.
For non-iterative decoding, LDPC and turbo codes yield superior per-
formance and complexity than CCs.

6.2.2 SISO MMSE PIC vs. Soft-Output STS-SD

In this section, we compare the tradeoffs realized by SISO MMSE PIC
and soft-output (SO) STS-SD for different channel codes. For the

5Recall, e.g., the observation made in [78]. Therein it was shown that anti-Gray
mapping leads to better performance than Gray mapping, if iterative detection and
decoding is performed in AWGN channels using 16-QAM. Hence, simply replacing
a component in iterative systems with better (non-iterative) performance does not
necessarily lead to better overall performance.
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SISO MMSE PIC algorithm, the same parameters as in the previous
section have been used. For the SO STS-SD algorithm, the following
assumptions have been made.

SO STS-SD Complexity Since the SO STS-SD algorithm de-
scribed in Section 4.7 has a variable complexity, we employ early
termination with MF scheduling (see Section 4.4.2). Hence, we con-
sider —in contrast to the average throughput shown in (4.54)— the
guaranteed throughput of the SO STS-SD implementation

ΘSTS =
RQMT
Davg

f̃clk [bit/s]

with the average run-time constraint Davg (using a margin of M =
MT) and f̃clk corresponds to the technology-scaled clock frequency
of the SO STS-SD implementation in 90 nm CMOS technology. The
hardware-efficiency of SO STS-SD is ATSTS = ASTSΘSTS, where the
VLSI implementation results from Table 4.3 are used, i.e., ASTS =
56.8 kGE and the technology-scaled clock frequency is f̃clk = 250

90 fclk =
200 MHz in a 90 nm CMOS process (72 MHz for 250 nm CMOS). The
preprocessing area corresponds to that of the MMSE-QRD implemen-
tation described in [16] and corresponds to App = 251 kGE.

SO STS-SD Performance In order to optimize the SNR oper-
ating point of the SO STS-SD, the LLR clipping parameter Lmax is
chosen in accordance with the average run-time constraint Davg (see
Section 4.6.5). Further improvements in terms of the SNR operating
point has been achieved by employing column-sorting, channel-matrix
regularization (MMSE-SQRD), and LLR correction. The LLR cor-
rection approach used here corresponds to using two different LLR
correction curves: The extrinsic LLRs are divided by a factor of two
if the detector has been terminated early and no scaling is performed
otherwise. Simulations have shown that this simple LLR correction
scheme substantially improves the overall performance.

Tradeoff for Convolutional Codes

Figure 6.6 compares the tradeoffs for CCs using constraint length 7.
For linear soft-output MMSE detection and SO STS-SD, Viterbi de-
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(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.6: Tradeoffs: SISO MMSE PIC, SO STS-SD, and linear soft-
output MMSE detection for convolutional codes.
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coding has been considered. To this end, the implementation results
described in [16] have been used for the Viterbi decoder. For the
SISO MMSE-PIC algorithm, we considered the 64-state M-BCJR im-
plementation described in Section 5.1.3. The numbers next to the
curve of SISO MMSE PIC corresponds to the number of iterations I.

Both trade-off figures show that the SO STS-SD is able to cover
a large tradeoff region, which is parametrized by Davg and Lmax.
The linear SO MMSE detector requires slightly less silicon-complexity
compared to that of SO STS-SD (at the same SNR operating point).
The SISO MMSE PIC detector is the least efficient detector in the
first iteration (caused by the fact that an M-BCJR decoder is used
and preprocessing is performed at symbol rate). However, the SISO
MMSE PIC is able to attain significantly better performance for I > 1.

Tradeoff for LDPC Codes

Figure 6.7 compares the tradeoff results for QC-LDPC codes with
ILDPC = 5. The SO STS-SD allows to cover a large tradeoff region and
is even able to attain similar performance and complexity as the SISO
MMSE PIC detector with I = 2. Hence, iterative MIMO decoding
with the SISO MMSE PIC algorithm seems to be only beneficial if
using more than two iterations.

Tradeoff for Turbo Codes

The results in Figure 6.8 show the tradeoff curves for turbo codes
(using IPCTC = 5). Note that the behavior is similar to that of LDPC
codes. The SISO MMSE PIC algorithm seems to be only beneficial
for I > 2. Hence, we conclude that for more sophisticated channel
codes (such as LDPC and turbo codes), iterative MIMO decoding
requires a larger number of iterations in order to outperform the SO
STS-SD and entails an (often significant) overhead in terms of silicon
complexity.

Summary and Conclusions

From the tradeoff results provided in Figures 6.6, 6.7, and 6.8, we see
that the SO STS-SD algorithm enables to cover a large tradeoff region
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(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.7: Tradeoffs: SISO MMSE PIC, SO STS-SD, and linear soft-
output MMSE detection for LDPC codes.
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(a) Performance vs. symbol-rate efficiency.

(b) Performance vs. silicon complexity.

Figure 6.8: Tradeoffs: SISO MMSE PIC, SO STS-SD, and linear soft-
output MMSE detection for turbo codes.
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by tuning of the LLR clipping parameter and the (average) run-time
constraint. In particular, the SO STS-SD covers a performance range
of approximately 5 dB SNR and in combination with sophisticated
channel codes (such as QC-LDPC or turbo codes) can even outper-
form iterative MIMO decoding with SISO MMSE PIC and I = 2. If
CCs are used and more than one iteration can be afforded, iterative
MIMO decoding using the SISO MMSE PIC algorithm yields better
performance than soft-output detection using the STS-SD. This im-
provement, however, entails an (often significant) increase in terms
of circuit area, i.e., the required circuit area grows linearly with the
number of iterations.



Chapter 7

Summary, Conclusion,
and Outlook

7.1 Summary

Iterative MIMO decoding was shown to be key to approach the fun-
damental performance limits of MIMO wireless communication sys-
tems. However, practical implementations of iterative MIMO de-
coding is —due to the high signal processing complexity required for
soft-input soft-output MIMO detection— extremely challenging, even
when targeting state-of-the-art process technology nodes. It is, there-
fore, of paramount importance to jointly optimize algorithm- and
VLSI implementation-aspects in order to enable iterative MIMO de-
coding in practical systems.

Previous work on implementation aspects of MIMO decoding
mainly focused on techniques that require low implementation com-
plexity and hence, achieve rather poor performance. In this thesis,
we investigated efficient MIMO decoding schemes that are able to
approach optimum performance. To this end, we developed and op-
timized key algorithms for iterative MIMO decoding (for soft-input
soft-output MIMO detection and for SISO channel decoding) and
proposed corresponding VLSI architectures. ASIC implementation
results and analysis of the associated performance/complexity trade-
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offs are used to demonstrate that iterative MIMO decoding is feasible
in practical systems.

Soft-Input Soft-Output MMSE PIC

The soft-input soft-output minimum mean-square error (MMSE) par-
allel interference cancellation (PIC) algorithm developed by Wang and
Poor in 1999 [20] has been studied. In order to enable implementation
of SISO detection in practical systems, we proposed a novel method
on algorithmic level that substantially reduces the number of required
matrix inversions. This method was shown to be key for economic
hardware implementation. In order to further reduce the complexity
of the algorithm, various existing techniques have been applied, which
ultimately led to a low-complexity high-performance SISO detection
algorithm. The performance of the resulting algorithm was shown
to be able to approach the (error-rate) performance of the optimum
SISO detector in systems employing iterative MIMO decoding.

In order to evaluate the performance and complexity based on im-
plementation results, a reference VLSI architecture has been designed.
To this end, a systolic network of dedicated processing units has been
developed, which is able to perform the required tasks efficiently in
hardware. Matrix inversion has been identified as the most critical
component of the decoder. Thus, a custom high-performance ma-
trix inversion unit based on the LU-decomposition has been designed.
The resulting architecture is able to perform high-throughput SISO
MMSE PIC in MIMO systems using four spatial streams and supports
modulation schemes ranging from BPSK to 64-QAM, while achieving
close-to floating-point performance.

The architecture has been implemented in 90 nm CMOS technol-
ogy and corresponding ASIC implementation results demonstrate that
SISO detection based on the proposed SISO MMSE PIC algorithm is
able to achieve more than 820 Mbps per iteration at only 410 kGE
(including the complexity of preprocessing). Moreover, comparison
with state-of-the-art hard-output and soft-output MIMO detection
schemes has shown that SISO capability entails a twofold reduction
in hardware efficiency, but enables to obtain tremendous performance
gains in practical systems. Based on these results, it was demon-
strated that low-complexity and high-performance SISO detection for
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iterative MIMO decoding is feasible in practical systems.

SISO Single Tree-Search Sphere Decoding

A novel soft-input soft-output MIMO detector based on single tree-
search sphere decoding (STS-SD) has been proposed. Key for low
complexity of the proposed algorithm are tightening of the tree-
pruning criterion, clipping of the extrinsic LLRs built into the tree
search, and a novel method for incorporating compensation of self-
interference in LLRs —caused by channel-matrix regularization— into
the tree search. Finally, we proposed an LLR correction method,
which was demonstrated to achieve substantial performance improve-
ments at low additional computational complexity. Our simulation
results showed that the SISO STS-SD algorithm offers a wide range
of performance/complexity tradeoffs and clearly outperforms state-
of-the-art SISO detectors for MIMO systems. In addition, SISO
STS-SD achieves close-to-optimal —in the sense of outage capacity—
performance. The algorithm is able to realize an entire family of
detectors with (error-rate) performance ranging from exact max-log
SISO performance to low-complexity successive interference cancella-
tion, which renders the detector interesting for practical applications.

In addition, we described an architecture of the soft-output (SO)
STS-SD. Corresponding VLSI implementation results demonstrate
that the proposed soft-output STS-SD algorithm is only 58% larger
than that of a reference hard-output sphere decoder implementation;
this enables us to conclude that SO STS-SD is well-suited for near-
optimal soft-output MIMO detection in practical systems.

Soft-Input Soft-Output Channel Decoding

In order to complete the picture of iterative MIMO decoding, we ana-
lyzed the performance and implementation complexity associated with
SISO channel decoding. To this end, VLSI architectures for SISO de-
coding of convolutional codes (CCs), quasi-cyclic (QC) low-density
parity check (LDPC) codes, and the turbo codes described in the
3GPP LTE standard [11] have been developed.
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Convolutional Codes The BCJR algorithm [34] has been con-
sidered for SISO decoding of convolutional codes (CCs). A high-
throughput VLSI architecture for a windowed variant of the BCJR al-
gorithm, known as the M-BCJR algorithm, has been designed. The ar-
chitecture bases on the design developed in [36] and was optimized for
hardware-efficiency and throughput. In order to evaluate the perfor-
mance/complexity tradeoff with SISO decoding of CCs, decoders sup-
porting 4-, 8-, 16-, 32-, and 64-trellis-states have been implemented.
Corresponding ASIC implementation results in 180 nm CMOS tech-
nology demonstrate that SISO decoding of CCs with the M-BCJR
algorithm is able to achieve 375 Mbps with circuit area ranging from
23.1 kGE to 243.5 kGE (depending on the number of trellis-states).
Comparison with a reference Viterbi decoder [16] has shown that
SISO capability entails a twofold increase in terms of circuit com-
plexity. The 64-state M-BCJR decoder is the first of its kind and
compliant to the IEEE 802.11n standard [2].

QC-LDPC Codes For SISO decoding of QC-LDPC codes, a fully
reconfigurable VLSI architecture has been designed, which is able to
decode virtually any QC-LDPC code that fits into the allocated mem-
ories. To this end, a novel cyclic shifter has been developed and
memory requirements have been significantly reduced by clipping of
the decoder-internal messages. The QC-LDPC decoder has been op-
timized for the codes proposed in IEEE 802.11n [2] and fabricated
in 180 nm CMOS technology. Measurement results and comparison
with dedicated (not reconfigurable) LDPC decoders for IEEE 802.11n
demonstrate that flexibility of the architecture does not lead to a
performance penalty in terms of area, throughput, and power. The
decoder is compliant to IEEE 802.11n and achieves up to 780 Mbps
while requiring only 349.5 kGE. The decoder is able to compute soft-
outputs and hence, suitable for iterative MIMO decoding.

Turbo Codes A high-throughput turbo decoder for the 3GPP LTE
standard [11] has been developed. The codes specified in this standard
enable contention-free access to the memories, which substantially al-
leviates the interleaver bottleneck. In order to achieve high through-
put, we proposed a suitable high-performance interleaver architecture.



7.1. SUMMARY 215

Decoding is performed by a high-throughput radix-4 M-BCJR archi-
tecture. The turbo decoder employs eight M-BCJR instances, has
been implemented in 130 nm CMOS technology, and achieves up to
520 Mbps. Comparison to reference designs shows that the proposed
architecture is more efficient (in terms of area per throughput) and
achieves the highest turbo-decoding throughput reported in the liter-
ature. This design demonstrates that iterative MIMO decoding based
on turbo codes is feasible in practice.

Performance/Complexity Tradeoff The tradeoffs underlying the
implemented SISO channel decoders have been investigated.

• It was shown that M-BCJR algorithm achieves high throughput
in practice and is suitable for low-complexity SISO decoding
in systems where rather weak coding is required. For stronger
CCs, the associated VLSI implementation complexity quickly
gets prohibitive in terms of silicon area, which asks for more so-
phisticated coding schemes with corresponding efficient channel
decoders.

• QC-LDPC codes offer a excellent error-correction performance,
while supporting a high degree of flexibility in terms of achiev-
able throughput, code-rate, and block-lengths. Implementation
results demonstrate that the performance is, in general, slightly
better than that of the M-BCJR algorithm (for a given com-
plexity).

• Turbo codes based on contention-free interleavers provide excel-
lent error-rate performance as well. The associated implementa-
tion complexity is, in general, higher than that of the M-BCJR
algorithm or QC-LDPC decoders for the same throughput.

In summary, a clear advantage for one of the three coding/decoding
schemes could not be identified. This observation implies that system
designers need to decide which of the above mentioned properties
apply for the problem at hand.
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Performance/Complexity Tradeoffs

In order to compare the performance and VLSI-implementation com-
plexity of iterative MIMO decoding, two complexity measures have
been introduced. The first measure indicates the hardware-efficiency
of all tasks that need to be executed at symbol-rate. The second
measure estimates the silicon complexity required for iterative MIMO
decoding to meet a given target throughput; this measure shows that
the circuit area of iterative MIMO decoding scales linearly in the num-
ber of iterations.

Impact of Channel Code If soft-output (i.e., non-iterative)
MIMO detection is considered, linear SO MMSE detection in com-
bination with Viterbi decoding was shown to be the best choice to
achieve low complexity. For improved performance, LDPC and turbo
codes were shown to outperform CCs by approximately 2 dB to 3 dB
SNR, while requiring 20% to 60% more circuit area (compared to
Viterbi decoding).

Tradeoff comparisons based on SISO MMSE PIC with the M-
BCJR algorithm have shown that iterative MIMO decoding (for more
than one iteration) outperform non-iterative schemes. We finally ob-
served that iterative MIMO decoding is able to improve the perfor-
mance (compared to hard-output Viterbi decoding) by 5 dB to 8 dB
SNR, while the circuit area increases (approximately) by a factor of
2.5 to 5, respectively.

SISO MMSE PIC vs. SO STS-SD We compared the perfor-
mance and complexity of the SISO MMSE PIC (using iterative MIMO
decoding) with the SO STS-SD. Thanks to the tunability offered by
the SO STS-SD, a large tradeoff region can be achieved with this al-
gorithm. In combination with more sophisticated channel codes (such
as LDPC or turbo codes), the SO STS-SD is even able to (slightly)
outperform the SISO MMSE PIC if using two iterations. The SISO
MMSE PIC with iterative MIMO decoding is, however, able to out-
perform the SO STS-SD for more than two iterations.
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7.2 Conclusion

Based on the provided results, it was demonstrated that iterative
MIMO decoding is feasible in practical systems. For an IEEE 802.11n-
like MIMO system, iterative MIMO detection and channel decoding
entails a complexity which ranges (approximately) between 0.5 MGE
and 2 MGE for two iterations. The improvements in terms of SNR
operating point are substantial, i.e., the SNR operating point can be
improved by more than 8 dB SNR in some situations. Hence, itera-
tive MIMO decoding is a viable solution for improved link reliability,
longer range, and higher throughput in practical MIMO systems.

A clear advantage for either the SISO MMSE PIC detector or the
SO STS-SD algorithm could not be identified. The SO STS-SD is
tunable, provides max-log optimal performance or low-computational
complexity, and can be extended with max-log optimal soft-input ca-
pability. The SISO MMSE PIC is not tunable, but offers —in combi-
nation with a SISO channel decoder and iterative MIMO decoding—
significant performance improvements. In summary, if the complex-
ity associated with iterative MIMO decoding is tolerable (e.g., if the
resulting silicon complexity, latency, power consumption etc. is tol-
erable), the SISO MMSE PIC algorithm is a viable competitor to
the SO STS-SD algorithm. However, if optimal (soft-output) perfor-
mance and tunability of the algorithm to different performance and
complexity requirements are the key requirements, the SO STS-SD is
the better choice.

7.3 Outlook

In view of the obtained results throughout this thesis, we briefly out-
line remaining research topics for iterative MIMO decoding in the
following two paragraphs.

Theory and Algorithms

• Radio-frequency (RF) impairments, such as, I/Q imbalance,
phase-noise, power amplifier non-linearities etc., were recently
shown to pose significant problems for SD-based MIMO de-
tection algorithms [188]. Detailed analysis of the impact on



218 CHAPTER 7. SUMMARY, CONCLUSION, AND OUTLOOK

performance of iterative MIMO decoding in the presence of
RF-impairments is an open research topic that is of practical
relevance. Furthermore, low-complexity techniques to mitigate
detrimental effects should be investigated as well.

• Analytical tools to characterize the complexity distribution of
hard-output SD have recently become available [136]. So far,
not much is known about the complexity distribution of soft-
output SD or SISO STS-SD. A detailed complexity analysis of
those algorithms remains an open topic.

• Throughout this thesis, no special assumptions on the structure
of the channel matrix has been made. Channel matrices of ISI
channels, for example, exhibit a well-defined (Toeplitz) struc-
ture. Intuitively, exploitation of this structure in tree-search-
based detection algorithms should be able to reduce the com-
plexity. Interesting results in this direction have recently become
available for fast decoding of STBCs, e.g., [46].

VLSI Implementation Aspects

• Since no VLSI implementation of the SISO STD-SD algorithm
has been designed, soft-input extension of the SO STS-SD archi-
tecture is still an open problem. Schnorr-Euchner enumeration
in the presence of priors is one of the most challenging aspects.

• No complete iterative MIMO decoder has been integrated in this
thesis (i.e., we provided implementation results for the most crit-
ical components). Hence, the design of an iterative MIMO de-
coder and integration into a physical layer of a MIMO transceiver
is certainly an interesting and challenging engineering task.

• Power-consumption-aspects have not been considered in this
thesis. However, portable wireless devices require energy-efficient
implementations to maximize battery lifetime. Hence, all con-
sidered algorithms and implementations have potential to be
optimized with respect to energy-efficiency.
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Mathematical
Derivations for SISO
MMSE PIC

A.1 The MMSE Filter Vector

The MMSE filter vector for interference suppression on the ith stream
(after parallel interference cancellation) satisfies

w̃Hi = arg min
w̃H∈C1×MT

E

[∣∣w̃H ŷi − si
∣∣2
]
. (A.1)

Setting ∂
∂w̃H
i

E

[∣∣w̃Hi ŷi − si
∣∣2
]

= 0 leads to the well-known orthogonal-

ity principle [42]

E

[
ŷi
(
w̃Hi ŷi − si

)∗]
= 0MR×1 (A.2)

where expectation is over the noise n, the soft-symbol estimation er-
rors ej (∀j) of (3.2), and the transmit symbols sj (∀j). By noting
that (A.2) can be rewritten to E

[
ŷiŷ
H
i

]
wi = E[ŷis

∗
i ] and using the

definition of the interference-canceled received vector in (3.6) we ob-
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tain [73]
(
Eshih

H
i +

∑

j 6=i

Ejhjh
H
j +NoIMR

)
w̃i = Aw̃i = Eshi (A.3)

Left-multiplication of (A.3) with A−1 followed by conjugate transpo-
sition, leads to the MMSE filter vector

w̃Hi = Esh
H
i

(
Eshih

H
i +

∑

j 6=i

Ejhjh
H
j +NoIMR

)−1

which can be written more compactly as [42]

w̃Hi = Esh
H
i

(
HΛ̃iH

H +NoIMR

)−1

(A.4)

with Λ̃i being a MT ×MT real-valued diagonal matrix

Λ̃j,j =

{
Ej , j 6= i
Es, j = i

where the variances Ej are defined in (3.3).

A.2 Efficient MMSE Filter Computation

A.2.1 Single Matrix Inversion

To reduce the number of matrix inversions required to compute the
MT MMSE filter vectors, we reformulate the “standard” MMSE filter
formulation [42] given in (3.9)

w̃Hi = Esh
H
i

(
HΛ̃iH

H +NoIMR

)−1

= Esh
H
i A−1

i (A.5)

where the matrix Ai depends on the stream index i through Λ̃i. In
order to avoid dependence on the ith stream in the matrix that needs
to be inverted, we define a new filter vector

wHi = hHi

(
HΛHH +NoIMR

)−1

= hHi A−1 (A.6)
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with Λ being a MT ×MT real-valued diagonal matrix with entries
Λi,i = Ei (∀i). We emphasize that the matrix A to be inverted
in (A.6) is no longer dependent on i. Note that if this new filter (A.6)
can be used for MMSE equalization, all MT MMSE filter vectors can
be computed from a single matrix inversion. In the remainder of the
discussion, we show that the new MMSE filter vector wHi in (A.6) is
simply a scaled version of w̃Hi in (A.5). Then, we prove that scaling
of the filter vectors by a constant does not affect the performance of
the SISO MMSE PIC algorithm.

We start by using the matrix inversion lemma [87]

(
Ai + uvH

)−1

= A−1
i −

A−1
i uvHA−1

i

1 + vHA−1
i u
. (A.7)

and set uvH = hi(Ei − Es)h
H
i where u = hi. It is important to

realize that the left-hand side (LHS) of (A.7) corresponds to A−1

defined in (A.6). Using (A.7), we can write

wHi = hHi

(
Ai + uvH

)−1

= hHi A−1
i −

hHi A−1
i hi(Ei − Es)h

H
i A−1

i

1 + (Ei − Es)hHi A−1
i hi

(A.8)

and use the definition given in (A.5) to rewrite (A.8) according to

wHi = Es
−1w̃Hi −

Es
−1w̃Hi hi(Ei − Es)Es

−1w̃Hi
1 + (Ei − Es)Es

−1w̃Hi hi

= Es
−1w̃Hi

(
1 + (Ei − Es)Es

−1w̃Hi hi − (Ei − Es)Es
−1hHi w̃i

1 + (Ei − Es)Es
−1w̃Hi hi

)
.

From (A.4) follows that w̃Hi hi = hHi w̃i and hence, both terms are
real-valued; this property enables to establish the following relation
between the two MMSE filter vectors in (A.5) and (A.5)

wHi = w̃Hi

(
1

Es + (Ei − Es)w̃Hi hi

)
= w̃Hi ci (A.9)

where the constants ci ∈ R (∀i) only depend on the ith stream.
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Now, we show that scaling of the MMSE filter vectors does not
affect the a posteriori LLRs resulting from the SISO MMSE PIC al-
gorithm. The only terms in (3.17) that depend on the MMSE fil-
ter vector and influence a posteriori LLR computation correspond to
zi = w̃Hi ŷi in (3.10), µi = w̃Hi hi in (3.11), and

ν2
i = w̃Hi


∑

j 6=i

Ejhjh
H
j +NoI


 w̃i

of (3.12). Using wHi = w̃Hi ci instead of w̃Hi in (3.17) leads to
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H
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w̃i

and hence the constant ci cancels out in the LLR computation, i.e.,
the output of the SISO MMSE PIC algorithm remains unchanged if
a scaled version of the MMSE filter vector is used. Thus, the low-
complexity MMSE filter vectors obtained in (A.6) are equivalent to
the ones in (A.5).

The final step to attain low computational complexity corresponds
to realizing that (A.6) can be used to compute all MT MMSE filter
vectors concurrently as follows

WH = HH
(

HΛHH +NoIMR

)−1

(A.10)

where the column hHi has been replaced with HH = [ h1 · · · hMT
]H .

Hence, WH = [ w1 · · · wMT
]H contains all MMSE filter vectors on

its rows and requires to compute only a single matrix inversion.



A.2. EFFICIENT MMSE FILTER COMPUTATION 223

A.2.2 Further Methods for Complexity Reduction

The key drawback of computing (A.10) is that —if more receive than
transmit antennas are used— it requires to invert aMR×MR matrix,
i.e., HΛHH +NoIMR

is of dimension MR ×MR. In this paragraph,
we show how the MMSE filter matrix (A.10) can be computed by
inverting a matrix of dimensionMT×MT. We start the simplification
by defining

H̃ = HΛ
1
2 .

where Λ
1
2 is a real-valued MT×MT diagonal matrix with Λ

1
2
i,i =

√
Ei

for i = 1, . . . ,MT and Λ
1
2 Λ

1
2 = Λ. The MMSE filter matrix in (A.10)

can now be rewritten as

WH = Λ−
1
2 H̃H

(
H̃H̃H +NoIMR

)−1

. (A.11)

The derivation shown in the following bases on the singular value de-
composition (SVD) H̃ = UΣVH , where U is of dimension MR ×MT

and UUH = IMR
, Σ is an MT × MT-dimensional diagonal matrix

which contains the singular values σi (i = 1, . . . ,MT) of H̃ on its
main diagonal, i.e., Σi,i = σi (∀i), and V is of dimension MT ×MT

and unitary, i.e., VVH = IMT
[189]. Application of the SVD to the

RHS of (A.11) and omitting the matrix Λ−
1
2 leads to

H̃H
(

H̃H̃H +NoIMR

)−1

= H̃H
(
UΣΣHUH +NoUUH

)−1

= H̃HU
(
ΣΣH +NoIMT

)−1
UH . (A.12)

Note that the matrix in (A.12) to be inverted is now of dimension
MT ×MT. Further manipulations yield

H̃HU
(
ΣΣH +NoIMT

)−1
UH = VΣH

(
ΣΣH +NoIMT

)−1
UH .

Since ΣH and
(
ΣΣH +NoIMT

)−1
are diagonal matrices, we can ex-

ploit commutativity and write

VΣH
(
ΣΣH +NoIMT

)−1
UH = V

(
ΣΣH +NoIMT

)−1
ΣHUH .
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This expression can now be simplified to

V
(
ΣΣH +NoIMT

)−1
ΣHUH = V

(
ΣΣH +NoIMT

)−1
VHVΣHUH

= V
(
ΣΣH +NoIMT

)−1
VHH̃H

=
(
VΣΣHVH +NoIMT

)−1
H̃H =

=
(

H̃HH̃ +NoIMT

)−1

H̃H .

By replacing H̃ by HΛ
1
2 and by using

(
Λ

1
2

)H
= Λ

1
2 , the following

algebraic transformations lead to a more efficient formulation of the
MMSE filter matrix
(

H̃HH̃ +NoIMT

)−1

H̃H =
(

Λ
1
2 HHHΛ

1
2 +NoIMT

)−1

Λ
1
2 HH

=
(

Λ
1
2

(
HHH +NoΛ−1

)
Λ

1
2

)−1

Λ
1
2 HH

= Λ−
1
2

(
HHH +NoΛ−1

)−1
HH .

Finally, the MMSE filter representation in (A.11) can be written in
more compact form as

WH = Λ−1
(
HHH +NoΛ−1

)−1
HH (A.13)

which only requires to invert a MT ×MT-dimensional matrix instead
of MR ×MR matrices when using the representation in (A.10).

Unfortunately, the MMSE filter matrix representation in (A.13)
poses significant problems in practice due to poor numerical stability.
Consider the case where near-perfect a priori information is available,
i.e., all variances are very small Ei ≈ 0 (∀i). In this case, the entries
of the matrix Λ−1 can get arbitrarily large and hence, computation of
the MMSE filter matrix would require a prohibitively large dynamic
range. In order to reduce numerical problems, we rewrite (A.13) as

WH = Λ−1
(
HHH +NoΛ−1

)−1
HH

=
(
HHHΛ +NoIMT

)−1
HH . (A.14)

Thus, computation of allMT MMSE filter vectors according to (A.14)
requires less computational complexity than (A.5) and can, in general,
be computed with high numerical stability.
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A.3 Efficient NPI-Variance Computation

Computation of the NPI-variance in (3.12) requires high computa-
tional complexity. Dejonghe and Vandendorpe [73] proposed a method
to efficiently compute the corresponding variances. In the following
discussion, we combine this idea with our low-complexity MMSE filter
vectors given in Appendix A.2.

To this end, we start by writing the variances in (3.12) using the
(low-complexity) MMSE filter vectors wHi (∀i) as

ν2
i = wHi


∑

j 6=i

Ejhjh
H
j +NoIMR


wi. (A.15)

Using the definition of the matrix Λ in (A.6), we can rewrite the
variance in (A.15) to

ν2
i = wHi

(
HΛHH − EihihHi +NoIMR

)
wi

= wHi
(
HΛHH +NoIMR

)
wi − Ei

(
wHi hi)

2 (A.16)

where wHi hi ∈ R due to the fact that ciw̃Hi hi is real-valued as well
(see Eq. A.9). From (A.6) it can be seen that

wHi
(
HΛHH +NoIMR

)
= hHi

and hence, we can rewrite (A.16) to

ν2
i = hHi wi − Ei

(
wHi hi)

2 = wHi hi − Ei
(
wHi hi)

2 (A.17)

where the second equality follows from the fact that hHi wi is real-
valued. We emphasize that computation of (A.17) requires signifi-
cantly less complexity than computing (A.15).
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