Doctoral Thesis

Pincher-generated Nogo-A signalosomes mediate growth cone collapse and retrograde transport

Author(s):
Joset, Armela

Publication Date:
2009

Permanent Link:
https://doi.org/10.3929/ethz-a-005960506

Rights / License:
In Copyright - Non-Commercial Use Permitted
Pincher-generated Nogo-A signalosomes mediate growth cone collapse and retrograde transport

A dissertation submitted to
ETH ZURICH

For the degree of
Doctor of Sciences

presented by

ARMELA JOSET
Dipl. Biochem., University of Zurich
Born May 22, 1979
Citizen of Croatia

Accepted on the recommendation of

Prof. Dr. Martin E. Schwab, examiner
Prof. Dr. Peter Sonderegger, co-examiner
Prof. Dr. Lucas Pelkmans, co-examiner

2009
"Open Sesame"
Table of Contents

Summary

Zusammenfassung

Chapter 1: Introduction

Nogo-A as a myelin-associated neurite growth inhibitor

The Nogo/Reticulon family

The role of Nogo-A beyond the inhibition of CNS nerve fiber regeneration

Nogo-A downstream signaling

Endocytosis

Clathrin-dependent pathway

Caveolin-dependent pathway

GPI-enriched endosomal compartments (GEEC) pathway

Flotillin-dependent pathway

Macropinocytosis

Pincher-dependent endocytosis

Endocytosis and Signaling

Retrograde Axonal Transport

Context and Aim of the Thesis

Chapter 2: Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde transport

Abstract

Introduction

Results

Discussion

Materials and Methods
Table of Contents

Chapter 3: Neurotrophins and Nogo-A: Antagonistic Regulators of neurite outgrowth?…63
Overview …64
Implications and future directions …65
 Identification of NogoΔ20 mediated transcriptional changes …65
 Characterization of NogoΔ20 signalosome …66
 Nogo-A fragmentation …66
 Possible Role of NogoΔ20 signalosomes in the adult normal CNS …67
 Retrograde axonal transport in the injured CNS …67
 Possible antagonistic effects of Nogo-A and neurotrophins during development …68
Final Conclusion …70

Abbreviations …71

Bibliography …74

Curriculum Vitae …90

Acknowledgements …91
Summary

The ability of adult CNS neurons to successfully regenerate their axons upon injuries such as stroke and spinal cord injury is very limited. Over the last two decades researches have focused on the challenging question of how to overcome this regenerative failure. The identification of the myelin associated neurite outgrowth inhibitor Nogo-A shed light on the inhibitory nature, compared to the PNS, of CNS myelin. Subsequent Nogo-A neutralization experiments led to successful CNS regeneration in animal models of spinal cord injury. The first part of Chapter 1 summarizes important findings regarding Nogo-A function as a neurite outgrowth inhibitor and gives insight into emerging roles of Nogo-A during development and disease.

Nogo-A contains two inhibitory regions for neurite outgrowth inhibition: the Nogo66 region, also common to Nogo-B and Nogo-C, and the Nogo-A specific region, NogoΔ20. Whereas the signaling mechanisms of the Nogo66 region are well characterized, comparatively little is known about the signaling complex of NogoΔ20. Since blocking of the Nogo66 receptor complex does not completely abolish myelin inhibition of neurite outgrowth, it is of great importance to elucidate the Nogo66 receptor independent mechanism of Nogo-A signaling.

Over the last few years it has become clear that endocytosis plays an active role during cellular communication. A number of surface ligand-receptor complexes are known to internalize into cells and signal from endosomes. The second part of Chapter 1 introduces endocytosis as a possible mechanism for NogoΔ20 signaling and reviews the known endocytic pathways.

In Chapter 2 we find that the soluble, active NogoΔ20 fragment is internalized into neuronal cells. The internalization into early endosomes does not follow a conventional clathrin-and dynamin dependent route, it rather depends on the Pincher protein and the small GTPase Rac. This Pincher-mediated macroendocytosis of NogoΔ20 results in the formation of NogoΔ20 signalosomes that direct RhoA activation and growth cone collapse. In compartmentalized chamber cultures, NogoΔ20 is endocytosed into neurites and retrogradely transported to the cell bodies of DRG neurons, triggering RhoA activation en route and decreasing pCREB levels in
cell bodies. The decrease of pCREB points towards an antagonistic regulation of the growth machinery by Nogo-A and neurotrophins. Taken together, the findings of the present thesis suggest that Pincher-dependent macroendocytosis may lead to the formation of a Nogo-A signaling endosome that is retrogradely transported from the axons to the cell body thus suppressing the neuronal growth program.
Zusammenfassung

Einige Ligand-Rezeptor Komplexe werden von der Zelloberfläche internalisiert und übermitteln auf diese Weise die Signale von Aussen ins Zellinnere. Der zweite Teils von Kapitel 1 führt die Endozytose als möglichen Mechanismus für die NogoΔ20 Signalübermittlung ein and erläutert die verschiedenen endozytotischen Wege.

In Kapitel 2 zeigen wir, dass das aktive Nogo-A Fragment, NogoΔ20, in die neuronalen Zellen internalisiert wird. Die Internalisierung in die frühen Endosomen folgt nicht über den konventionellen Clathrin- und Dynamin-abhängigen Weg, sondern über das Pincher Protein und die kleine GTPase Rac. Diese Pincher Protein-abhängige Makroendozytose von NogoΔ20 führt
Zusammenfassung

Chapter 1

“The art and science of asking questions is the source of all knowledge.”

Thomas Berger
Introduction

Overview

The introduction of the present thesis gives an overview of two topics. The first part reviews the current knowledge about the myelin-associated neurite growth inhibitor Nogo-A. The second part summarizes the known endocytic pathways and the possible role of endocytosis for Nogo-A signaling.

1.1 Nogo-A as a myelin-associated neurite growth inhibitor in the CNS

The ability of the adult mammalian central nervous system (CNS) to undergo functional and anatomical recovery following large injuries is very limited. Although spontaneous plastic rearrangements of neuronal circuits can occur, the functional recovery of CNS compared to the PNS is very poor (Bareyre et al., 2004; Edgerton et al., 2004; Payne and Lomber, 2001; Raineteau and Schwab, 2001; Sanes and Donoghue, 2000). This difference in repair between CNS and PNS was for a long time attributed to the absence of growth factors in CNS. However, the discovery of brain-derived neurotrophic factor (BDNF) (Barde et al., 1982; Leibrock et al., 1989), neurotrophin NT-3 (Hohn et al., 1990; Rosenthal et al., 1990) and NT-4/5 (Berkemeier et al., 1991) in adult CNS changed this view. The demonstration that CNS myelin in contrast to PNS myelin is inhibitory for axonal growth and the characterization of the inhibitory CNS white matter components NI 35 and NI 250 (Caroni and Schwab, 1988a; Caroni and Schwab, 1988b) led to a new picture, in which the presence of growth inhibitory molecules specifically localized in CNS white matter prevent successful regeneration (Schwab and Thoenen, 1985). This view was further supported by studies showing functional recovery and axonal regeneration after spinal cord injury by the neutralization of NI 250 with the IN-1 antibody (Bregman et al., 1995; Schnell and Schwab, 1990; Thallmair et al., 1998). Shortly after, NI 250 has been identified and renamed Nogo-A, a 1163 amino acids large transmembrane protein (Chen et al., 2000; GrandPre et al., 2000; Prinjha et al., 2000; Spillmann et al., 1998). In the last decade, numerous studies have shown that the suppression of Nogo-A signaling by either Nogo-A neutralization or blocking of the Nogo receptor (NgR) components or inhibition of the known downstream signaling machinery such as Rho-A and Rho-A kinase (ROCK) leads to enhanced regeneration.
and compensatory nerve fibre growth resulting in increased functional recovery of adult mammalian CNS after traumatic or stroke injuries (Cafferty and Strittmatter, 2006; Schwab, 2004; Yiu and He, 2003). Over the past years, several other growth inhibitory molecules have been identified: some of them in myelin such as MAG (myelin-associated glycoprotein), OMgp (oligodendrocyte myelin glycoprotein), and members of the ephrin, semaphorin and netrin families, others in the astroglial scar such as CSPGs (chondroitin sulphate proteoglycans) (Carulli et al., 2005; Low et al., 2008; Maier and Schwab, 2006; Pasterkamp and Verhaagen, 2006; Schwab, 2004; Yiu and He, 2006). However, Nogo-A has attracted the most interest. In the following sub-chapters I highlight functional roles of Nogo-A, its family and the signaling components.

The Nogo/Reticulon family

Nogo-A belongs to the reticulon (RTN) protein family and is also known as RTN-4A. RTNs are a class of integral membrane proteins enriched in the endoplasmatic reticulum (ER). They are ubiquitously expressed in all eukaryotes and characterized by a RHD (reticulon homology domain) consisting of two transmembrane domains flanking a hydrophilic loop. In mammalian cells, four RTN genes are present and several splice variants for each of them have been identified. In humans, the nogo/rtn 4 gene encodes three distinct proteins (Nogo-A, Nogo-B and Nogo-C), which arise by alternative splicing (Nogo-A, -B) or alternative promoter usage (Nogo-C) (Figure 1) (Oertle and Schwab, 2003).

![Figure 1: Schematic representation of the mammalian nogo gene adapted from Oertle and Schwab, 2003](image-url)
In recent years RTNs have been linked to the formation and maintenance of the highly curved tubular ER (De Craene et al., 2006; Hu et al., 2008; Shibata et al., 2008). Their over-expression generates long, unbranched and bundled tubules, and their deletion leads to disruption of peripheral tubular ER (Voeltz et al., 2006). In addition, it has been demonstrated that lack of RTNs blocks nuclear pore complex (NPC) formation suggesting a role for RTNs in NPC assembly (Dawson et al., 2009). A number of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins i.e. syntaxin 1, syntaxin 7, syntaxin 13 and VAMP2 but also Sec6p (Voeltz et al., 2006) were found to interact with RTNs suggesting their role in vesicle trafficking events, including exocytosis (Steiner et al., 2004). The over-expression of RTN3 has been directly implicated in ER-Golgi transport (Wakana et al., 2005). In response to ER stress RTN were also linked to apoptosis (Kuang et al., 2005; Teng and Tang, 2008).

Very little is known about the membrane topology and the native tertiary structure of Nogo-A. A few studies suggest that Nogo-A exhibits an unusual membrane topology having the N-terminal part and the Nogo66 loop exposed to the cell surface (GrandPre et al., 2000; Oertle et al., 2003; Voeltz et al., 2006). Circular dichroism (CD) and nuclear magnetic resonance (NMR) studies have addressed the tertiary structure of Nogo-A. So far, only parts of the Nogo-A protein have been characterized. The Nogo66 fragment adopts a helical conformation consisting of three alpha helices (Li et al., 2008; Li et al., 2006; Zander et al., 2007) The N-terminal part, however, is mostly unstructured and exhibits a small content of beta sheet (Zander et al., 2007). The presence of structural disulfide bridges supports an extracellular location of the N terminal Nogo-A fragment (Zander et al., 2007).
The role of Nogo-A beyond the inhibition of CNS nerve fiber regeneration

Besides its role in the injured CNS, Nogo-A has been also described as a general suppressor of growth and plasticity in the intact CNS. Nogo-A neutralization, in adult rats using monoclonal antibodies, induces a transitory growth response (Bareyre et al., 2002; Buffo et al., 2000; Zagrebelsky et al., 1998). In addition, genetic ablation of Nogo-A results in an enhanced expression of the neuronal growth related proteins, which in turn leads to enhanced growth cone motility by regulation of the actin cytoskeleton through modulation of the LIM kinase/cofilin pathway (Montani et al., 2009). Further, it has been shown that the plasticity of the visual cortex ocular dominance columns is extended beyond the normal post-natal critical period in mice lacking the Nogo66 receptor NgR or Nogo-A/B (McGee et al., 2005).

Another role of Nogo-A, although less explored, is found during CNS and PNS development. Mignorance-Le Meur and co-workers have suggested that Nogo-A may play a role during corticogenesis by modulating tangential neuronal migration, and neurite formation and maturation (Mingorance-Le Meur et al., 2007). Similarly, zebrafish embryos lacking orthologues of Nogo and Nogo receptor show severe defects in axon path finding during PNS development. Their peripheral nerves are significantly shorter, defasciculated, and project into inappropriate target areas (Brosamle and Halpern, 2009).

Nogo-A is also implicated in several neurological diseases. For instance, increased Nogo-A and Nogo-B levels have been found in the skeletal muscles of patients with amyotrophic lateral sclerosis (ALS), a motor neuron disease leading to progressive skeletal muscle atrophy (Dupuis et al., 2002; Jokic et al., 2005). The genetic ablation of Nogo-A reduces muscle denervation and prolongs survival in a mouse model of ALS whereas the over-expression of Nogo-A promotes denervation and destabilizes motor nerve terminals (Jokic et al., 2006). In addition, soluble Nogo-A fragments have been detected in cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS), an autoimmune inflammatory disease characterized by the demyelination of CNS axons. Neutralization of Nogo-A by either an active or passive vaccination as well as genetic ablation resulted in reduced axonal damage and fewer overall inflammatory lesions in EAE, a
Introduction

mouse model of MS (Karnezis et al., 2004). Accumulation of Nogo-A has further been found in β-amyloid plaques of Alzheimer’s disease (AD) brains (Gil et al., 2006). The association of Nogo-A with BACE, β-amyloid precursor protein cleavage enzyme, supports the possible role of Nogo-A in AD (Wojcik et al., 2007). However, it is unclear whether in AD Nogo-A plays a more protective or a degenerative role. Another disease, in which Nogo-A may be involved is schizophrenia. In the cortex of schizophrenic patients, Nogo-A levels have been shown to be elevated (Novak et al., 2002).

Nogo-A downstream signaling

Nogo-A is predominantly found in the innermost, adaxonal as well as in the outermost myelin membrane in oligodendrocytes (Huber et al., 2002; Wang et al., 2002b). The neuronal expression is highest during development but is maintained in particular neuronal populations in adults (Huber et al., 2002; Wang et al., 2002a). Nogo-A is a large membrane protein of 1163 amino acids two main inhibitory regions for neurite growth (GrandPre et al., 2000; Oertle et al., 2003; Prinjha et al., 2000). The 66 amino acid region in the C-terminal domain (Nogo66), also common to other Nogo splice variants, i.e. Nogo B and C, binds to the Nogo66 receptor NgR (Barton et al., 2003; Fournier et al., 2001; He et al., 2003). The Nogo66 signaling complex involves NgR, p75/Troy, LINGO-1 and, in some types of neurons, PirB (Atwal et al., 2008; Fournier et al., 2001; Mi et al., 2004; Wong et al., 2002). This signaling complex can also be activated by other myelin inhibitory proteins such as myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) (David and Lacroix, 2003; Filbin, 2003; Yiu and He, 2003). The known signaling components are summarized in the Figure 2.
Figure 2: Nogo-A downstream signals, adapted from Schwab 2004
However, blocking NgR does not completely abolish myelin inhibition of neurite outgrowth suggesting the existence of an NgR independent mechanism. A 181 amino acid region in the central region of the Nogo-A (AA 544-725) protein called NogoΔ20 is Nogo-A specific and is highly inhibitory for spreading and outgrowth of neurons and fibroblasts even in the absence of NgR (Oertle et al., 2003). The in vivo application of the monoclonal antibody 11C7, which is directed against this region and blocks NogoΔ20 function, leads to enhanced growth and regenerative sprouting of spinal axons following spinal cord lesion in rats and monkeys (Freund et al., 2006; Liebscher et al., 2005). In vitro, NogoΔ20 induces growth cone collapse and activates the small GTPase Rho-A (Fournier et al., 2003; Niederost et al., 2002; Oertle et al., 2003). The molecular nature of the NogoΔ20 high affinity binding component is currently under investigation.
1.2 Endocytosis

The plasma membrane is the interface between the extracellular and the intracellular milieu of a cell. The entry and exit of small and large molecules is highly regulated. Whereas small molecules cross the plasma membrane through channels and membrane pumps, macromolecules are transported in membrane-bound vesicles derived by invagination and pinching-off of the plasma membrane, a process termed endocytosis. Endocytosis can occur via various mechanisms, which can be divided into two main categories, phagocytosis also termed "cell eating" and pinocytosis also termed "cell drinking." Phagocytosis is restricted to specialized mammalian cells like macrophages, neutrophils or dendritic cells, whereas pinocytosis is common to all cells. Pinocytosis can occur by different pathways: macropinocytosis, clathrin-dependent, caveolae-dependent and clathrin-and caveolae-independent pathways (Le Roy and Wrana, 2005; Mayor and Pagano, 2007). The known endocytic pathways are schematically shown in Figure 3.

Figure 3: Schematic representation of different endocytic pathways with their intermediates: clathrin-coated vesicles, caveosomes, CLathrin-Independent Carriers (CLIC), and GPI-enriched endosomal compartments (GEEC) (Mayor and Pagano, 2007).
The evolutionary beginnings of the first primitive endocytic events are believed to have occurred during prokaryote-to-eukaryote transition. De Duve suggested that as early cells moved from the concentrated "primordial soup" to more dilute environment of nascent oceans, the existing strategy of external nutrient digestion with secreted exoenzymes became inadequate. Thus, the early cells had to convert from extracellular digestion to intracellular digestion by taking up extracellular materials and secreting digestive enzymes into these internalized vesicles. De Duve referred to this transition as "the beginning of cellular emancipation": "Until then, in order to benefit of their exoenzymes, the cells had to rely on extracellular digestion. Unless they had other means of subsistence, they were practically condemned to reside inside their food supply, like maggots in a chunk of cheese. Henceforth, they would be free to roam the world and to pursue their prey actively, living on phagocytized bacteria or on other engulfed materials. This development could well have heralded the beginning of cellular emancipation." (De Duve R, 1991). The mechanisms of endocytosis have diversified considerably since the beginning of this "cellular emancipation". The number of molecules involved in the endocytic machinery is still growing. This complexity allows the cell to highly regulate its cellular trafficking thereby controlling crucial cellular events such as development, immune response, neurotransmission and signal transduction.

The most efficient uptake of macromolecules is during receptor-mediated endocytosis. Upon binding of ligands to their cell surface receptors, receptor-ligand complexes are recruited into coated pits. The process begins by assembling plasma membrane proteins and lipids through interactions with cytosolic adaptors and accessory proteins. As the endocytic vesicle forms, the plasma membrane with the associated proteins is pulled into the cytosol. Upon scission the coated vesicle is released into the cytoplasm (Figure 4). In the cytoplasm, the endocytic vesicles become uncoated and fuse with specialized membrane organelles known as early endosomes. The early endosomal compartment acts as the main sorting station in the endocytic pathway. Internalized receptor-ligand complexes can undergo different fates. Most ligands dissociate from their receptors in the acidic environment of the early endosomes. The receptors can either be
recycled back to the plasma membrane or directed to the lysosomal compartment, where they will be degraded (Alberts et al., 2002).

Figure 4: Vesicle formation observed by electron microscopy (McMahon and Gallop, 2005).
Clathrin-dependent pathway

Clathrin-coated vesicles are the best characterized endocytic vesicles (Figure 6). As the name indicates, the main component of the coat is clathrin. It has a three-legged structure, called a triskelion, consisting of three large and three small polypeptide chains (Figure 5) (Nathke et al., 1992). The adaptor proteins (AP) such as AP2 (Kirchhausen, 1999), epsin (Chen et al., 1998) and AP180 (Ford et al., 2001) bind to clathrin and stimulate its polymerization into pentagons and hexagons.

Other accessory proteins such as endophilin and amphipysin assist by membrane deformation. Both proteins form amphipathic helices, which may intercalate into one leaflet of the bilayer thereby increasing the membrane curvature (Itoh and De Camilli, 2006). The GTPase dynamin act as mechanochemical molecular spring by catalyzing the fission of nascent clathrin-coated vesicles from the plasma membrane (Stowell et al., 1999). Clathrin-mediated endocytosis occurs in all mammalian cells and is implicated in the continuous uptake of essential nutrients, such as cholesterol in the form of low-density lipoprotein (LDL) and iron bound to transferrin.
Introduction

Figure 6 Accessory proteins during clathrin coat formation and scission (Hurley and Wendland, 2002)

Caveolin-dependent pathway

The plasma membrane of most cells has flask-shaped invaginations enriched in cholesterol and sphingolipids called caveolae (Rothberg et al., 1992). The best characterized component of caveolae is caveolin, a dimeric protein that binds cholesterol (Rothberg et al., 1992). Three caveolin proteins exist in mammals but their expression varies considerably between tissues. The highest levels of caveolin-1 are found in adipocytes, endothelia, pneumocytes and smooth muscle cells. Caveolin-2 is co-localized and co-expressed with caveolin-1. However, caveolin-3 is mainly expressed in muscle cells (Williams and Lisanti, 2004). The polymerase 1 transcript release factor (PTRF), also known as cavin-1 has been identified as an additional caveolar component required for caveola formation (Aboulaich et al., 2004; Hill et al., 2008; Liu et al., 2008; Liu and Pilch, 2008). Recently, a third protein, serum deprivation protein response (SDPR), also known as cavin-2, has been implicated in the formation of caveolar invagination. SDPR binds to PTRF and promotes its recruitment to caveolae (Hansen et al., 2009). However, how SDPR, PTRF and caveolin induce membrane curvature remains still unknown (Hansen et
al., 2009). Additionally, another PTRF homologue, SRBC, also known as cavin-3, has also been shown to regulate caveolae endocytosis (McMahon et al., 2009). Since numerous signaling molecules are associated with caveolae, it is believed that caveolin-dependent endocytosis has a role in regulation of specific signaling cascades (Anderson, 1998; Razani et al., 2002).

Studies with simian virus 40 (SV 40) as a marker for caveolin-dependent uptake led to characterization of caveolin-1 positive endosomes, called caveosomes (Pelkmans et al., 2001). This internalization requires cholesterol, dynamin, Src-family kinases and local actin polymerization (Pelkmans et al., 2002; Sverdlov et al., 2007).

GPI-enriched endosomal compartments (GEEC) pathway

Caveolae represent just one type of cholesterol-rich microdomains. Glycosyl-phosphatidylinositol (GPI) anchored proteins (GPI-APs), e.g. are also organized in cholesterol rich microdomains at the cell surface (Varma and Mayor, 1998). GPI-APs can be internalized into CLathrin-Independent Carriers (CLICs; Figure 1.3,1.7) which fuse to form tubular early endosomal compartment called GPI-AP-Enriched early Endosomal Compartments (GEECs) (Kirkham et al., 2005; Sabharanjak et al., 2002). Current knowledge about the molecular mechanisms underlying the GEEC pathway is very limited. Recently, the protein GTPase Regulator Associated with Focal adhesion kinase-1 (GRAF1) has been identified as the first specific component of CLICs and is thought to be involved in the membrane deformation and scission (Lundmark et al., 2008). In addition, it has been shown that CLIC formation is dynamin-independent and requires cholesterol-sensitive Cdc42 activation (Chadda et al., 2007; Sabharanjak et al., 2002). The activity of Cdc42 is controlled by an Arf1-dependent recruitment of RhoGAP domain-containing protein, ARHGAP10 (Kumari and Mayor, 2008).

Flotillin-dependent pathway

Another type of clathrin-independent endocytosis involving caveolar structures is the flotillin-dependent endocytosis (Figure 7). Flotillin, also called Reggie proteins, are considered to belong to the SPFH (Stomatin/ Prohibitin/ Flotillin/ Hflk/C) protein superfamily. Two flotillin proteins exist: flottilin-1 (= reggie 2) and flotillin-2 (= Reggie 1) (Langhorst et al., 2005). They can associate to form homo- and heterooligomers (Frick et al., 2007). Flotillin microdomains form endocytic structures that are involved in the uptake of GPI-anchored proteins and glycosphingolipids (Blanchet et al., 2008; Frick et al., 2007; Glebov et al., 2006) similar to the caveolin-dependent and GEEC pathway. However, flotillin microdomains are believed to be separated from regions of the plasma membrane involved in the previously mentioned endocytic mechanism (Blanchet et al., 2008; Frick et al., 2007; Glebov et al., 2006). Flotillin internalization from the plasma membrane is controlled by the Fyn kinase, a Src-family kinase. Flotilins have been associated with many physiological processes such as phagocytosis, T-cell signaling, cell adhesion, regulation of actin cytoskeleton, and also with neurite growth and regeneration (Babuke and Tikkanen, 2007; Munderloh et al., 2009).

Macropinocytosis

Macropinocytosis refers to the generation of large endocytic vesicles (up to 5 μm in diameter) and is accompanied by the formation of actin-dependent membrane ruffles (Figure 7). This process is induced in many cell types upon strong stimulation by growth factors such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) and is driven by Rac1 and Src kinases (Liberali et al., 2008; Ridley, 2001; Swanson and Watts, 1995). Internalization of major histocompatibility complex (MHC) proteins in dendritic cells runs via such a formation of large endosomal structures (Falcone et al., 2006; Garrett et al., 2000). Fission of nascent macropinosomes does not involve dynamin. As an alternative to dynamin, C-terminal binding protein 1 [CtBP1; also called brefeldin A-dependent ADP-ribosylation substrate (BARS)] (Corda et al., 2006; Weigert et al., 1999) has been proposed to function during membrane fission (Bonazzi et al., 2005; Hidalgo Carcedo et al., 2004). It has been shown that endocytosis of
human adenovirus requires CtBP1 (Amstutz et al., 2008). CtBP1 is locally recruited to the closure site of a macropinocytic cup where it is phosphorylated by p21-activated kinase-1 (PAK1) (Bokoch, 2003; Liberali et al., 2008). PAK1 itself was shown to be activated by small GTPases Rac1 and Cdc42 (Dharmawardhane et al., 1997; Zhang et al., 1995) and required for the uptake of the picornavirus echovirus 1 (Karjalainen et al., 2008). Therefore macropinocytosis can be described as a clathrin-and dynamin-independent but PAK1- and CtBP1-dependent endocytic process.

Figure 7: Morphological structure of different endocytic vesicles (Hansen and Nichols, 2009)

Pincher-dependent macroendocytosis

Pincher-dependent endocytosis involves generation of large endosomal structures, which are characterized by the presence of the the PINocytic CHapERon (Pincher) protein. Pincher belongs to the family of Eps15 homology (EH)-domain-containing proteins (EHDs/RME-1) which have been implicated in recycling from endosomes (Caplan et al., 2002; Grant et al., 2001). Pincher-dependent macroendocytosis has been shown to mediate internalization of Trks (tropomyosin-
related kinases), the neurotrophin receptors, into neurons. This process depends on Rac but not on clathrin. The formation of Trk containing vesicles is required for proper retrograde signaling in both peripheral and central neurons (Shao et al., 2002; Valdez et al., 2007). Pincher has recently been classified as a member of the dynamin superfamily and as an ATPase which may play a role during vesicle fission (Daumke et al., 2007).

Endocytosis and Signaling

For a long time it has been believed that endocytosis serves only for signal termination by down-regulation of the cell surface receptors. This view was challenged with the observation that the endosomes containing internalized epidermal growth factor receptor (EGFR) also contained downstream signaling factors such as SHC (SH2-domain-containing transforming protein), Grb2, mSOS (mammalian son-of-sevenless) and MAPK (mitogen-activated protein kinase) (Di Guglielmo et al., 1994; Vieira et al., 1996). Subsequent experiments showed that signals from EGFR-containing endosomes are sufficient to promote MAPK activation and cell survival (Wang et al., 2002c). This concept of endosomal signaling can generally be applied to other receptor tyrosine kinases (RTKs). The activation of PDGF (platelet-derived growth factor) receptors in the endosomal compartments can initiate recruitment of downstream signaling components and promote cell survival by up to 50% (Wang et al., 2004). Similar results have been obtained for TrkB upon stimulation with BDNF and for TrkA upon stimulation with NGF. Inhibition of TrkA and TrkB endocytosis leads to enhanced neuronal cell death (Heerssen et al., 2004; Ye et al., 2003). In addition TrkB endocytosis is also required for directed cell migration (Zhou et al., 2007).

Another important role of endocytosis has been shown during development. The internalization of the Notch receptor and its ligands and the subsequent endosomal sorting is required for asymmetric cell division (Coumailleau et al., 2009; Le Borgne et al., 2005; Seugnet et al., 1997). Endocytic trafficking of cell adhesion molecules such as E-cadherin regulates epithelial polarity and cell migration (Emery and Knoblich, 2006; Lu and Bilder, 2005; Ulrich et al., 2005).
Inhibition of ephrin-eph endocytosis leads to abnormal retinogeniculate axonal projections during development (Cowan et al., 2005).

Retrograde Axonal Transport

In the nervous system, endocytosis plays a crucial role for long-range communication within neurons. Neurons send their axons over long distances to contact post-synaptic targets. In the human nervous system these distances can be more than 1 meter. Signals generated at the axon terminals have to be transmitted from the nerve terminal to the cell bodies to activate gene transcription, a mechanism termed retrograde signaling (Howe and Mobley, 2005; Ibanez, 2007; Keshishian and Kim, 2004). For short distances retrograde signals are transmitted by the propagation of the Ca\(^{2+}\) waves. Application of Slit-2 to the leading tip of a migrating cerebellar granule neuron e.g., evokes a Ca\(^{2+}\) wave, which is propagated from the growth cone to the soma leading to growth cone collapse and reversal of neuronal migration (Guan et al., 2007).

One possible way of long distance retrograde signaling is the axonal retrograde transport of the ligand-receptor complexes or second messenger complexes. This has been extensively studied for the neutrophins such as BDNF and NGF (Campenot and MacInnis, 2004; Howe and Mobley, 2005; Huang and Reichardt, 2001; Wu et al., 2009). NGF was discovered as the first growth factor required for the survival of the peripheral neurons (Cohen and Levi-Montalcini, 1956). It is secreted by target tissues such as skin, muscle, glands or neurons (Levi-Montalcini, 1987; Thoenen, 1991). Upon the release it binds to the TrkA receptor on the axonal terminals. The activation of the TrkA receptor leads to the recruitment of downstream signaling components such as phospho-ERK5, phospho MEK1, phospho-MAPK p38, B-Raf, Gab2 and Rap1 into EEA-1 and Rab-5 positive endosomes (Delcroix et al., 2003). The NGF signaling endosome, also called NGF signalosome then associates with dynein and is retrogradely transported in a microtubule-dependent manner (Yano et al., 2001). Upon arrival in the cell bodies NGF signalosomes activate CREB-dependent (Cox et al., 2008; Riccio et al., 1997; Watson et al.,
Introduction

1999) and SRF-dependent (Wickramasinghe et al., 2008) gene transcription (Figure 8). The generation of NGF signalosome is mediated by the Pincher protein (Valdez et al., 2005).

Figure 8: Retrograde axonal transport of the NGF signalosome (Howe, 2005)
Context and Aim of the Thesis

In the past years, the role of Nogo-A as a potent inhibitor of axon growth and plasticity in both, injured and intact adult mammalian CNS has been well documented. In addition, novel roles for Nogo-A as a regulator of fasciculation, axon pathfinding and migration in both the PNS and CNS are emerging. Whereas the signaling mechanisms of the C-terminal inhibitory domain of Nogo-A, the Nogo66 region, are well characterized, comparatively little is known about the signaling complex of the Nogo-A specific N-terminal inhibitory region, NogoΔ20. Since blocking of the NgR complex does not completely abolish myelin inhibition of neurite outgrowth, it is of great importance to elucidate the NgR independent mechanism of Nogo-A signaling. The following chapter aimed to characterize cellular and molecular events evoked after NogoΔ20 addition to the cell surface of responsive cells. Many surface ligand-receptor complexes are known to internalize into cells and signal from endosomes. The endosomal signaling has been well studied in the context of the neutrophic factors such as NGF. The formation of NGF signalosomes is necessary for survival of peripheral neurons. Not only growth cone attracting molecules such as NGF, also growth cone repulsive molecules such as ephrins have been shown to depend on internalization for their signaling. Inhibition of ephrin endocytosis abolishes ephrin-induced growth cone collapse and leads to abnormal retinogeniculate projections. Therefore, we addressed whether endocytosis contributes to NogoΔ20 signaling in the neuronal cells. Similar to the neutrophic factors, Nogo-A provokes short-term effects locally at the growth cone, but also long-term effects by inducing persistent axon outgrowth effects. Since the members of the neutrophin family induce changes in gene transcription in the cell body upon retrograde axonal transport leading to cell survival, we asked whether NogoΔ20 also induces formation of signaling endosomes, which are retrogradely transported in order to activate a neurite outgrowth inhibition response in the cell body. Although the receptor for NogoΔ20 has not yet been identified, the findings presented in the next chapter should shed more light on the NogoΔ20 specific mechanism.
All truths are easy to understand once they are discovered; the point is to discover them.

Gallileo Gallilei
Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde signaling

Armela Joset, Dana A. Dodd, Simon Haledoua, Martin E. Schwab

This chapter will be published in January 2010 in The Journal of Cell Biology.
Contributions as author: I have designed and performed all the experiments, analyzed the data, and written the manuscript.
Abstract

Nogo-A is one of the most potent myelin-associated inhibitors for axonal growth, regeneration and plasticity in the adult central nervous system. The Nogo-A specific fragment NogoΔ20 shows the most potent inhibitory effect on growth cone collapse, neurite outgrowth and cell spreading by activating RhoA. Here we show that NogoΔ20 is internalized into neuronal cells by a Pincher- and rac-dependent, but clathrin- and dynamin-independent mechanism. Pincher-mediated macroendocytosis results in the formation of NogoΔ20 signalosomes that direct RhoA activation and growth cone collapse. In compartmentalized chamber cultures, NogoΔ20 is endocytosed into neurites and retrogradely transported to the cell bodies of DRG neurons, triggering RhoA activation en route and decreasing pCREB levels in cell bodies. Thus, Pincher-dependent macroendocytosis may lead to the formation of a Nogo-A signaling endosome, which acts both within growth cones and after retrograde transport in the cell body to regulate the neuronal growth program.
Introduction

One of the most potent neurite growth inhibitors of the adult central nervous system (CNS) is the transmembrane protein Nogo-A (Cafferty and Strittmatter, 2006; Schwab, 2004; Yiu and He, 2006). The suppression of Nogo-A signaling by either Nogo-A neutralization or blockade of the Nogo66 receptor (NgR) components or inhibition of downstream signaling components such as Rho-A and Rho-A kinase (ROCK) leads to enhanced regeneration and nerve fibre growth associated with increased functional recovery in the adult CNS after injury (Cafferty and Strittmatter, 2006; Schwab, 2004; Yiu and He, 2006). Besides its role in the injured mammalian CNS, Nogo-A acts as a regulator of neuronal growth and plasticity in the intact CNS. For instance, the plasticity of the visual cortex is extended beyond the normal postnatal critical period in mice lacking NgR or Nogo-A/B (McGee et al., 2005). In the intact adult spinal cord and cortex genetic ablation of Nogo-A resulted in an enhanced expression of many proteins involved in neuronal growth and cytoskeletal organization in the neurons and growth cones (Montani et al., 2009).

Nogo-A is a large membrane protein of 1163 amino acids containing two main inhibitory regions for neurite growth (GrandPre et al., 2000; Oertle et al., 2003; Prinjha et al., 2000). The 66 amino acids region in the C-terminal domain (Nogo66), also common to other Nogo splice variants, i.e. Nogo B and C, binds to the Nogo66 receptor NgR (Barton et al., 2003; Fournier et al., 2001; He et al., 2003). The Nogo66 signaling complex involves NgR, p75/Troy, LINGO-1 and, at least in some types of neurons, PirB (Atwal et al., 2008; Fournier et al., 2001; Mi et al., 2004; Wong et al., 2002). This signaling complex can also be activated by other myelin inhibitory proteins like myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) (David and Lacroix, 2003; Filbin, 2003; Yiu and He, 2003). However, blocking NgR does not completely abolish myelin inhibition of neurite outgrowth suggesting the existence of an NgR independent mechanism (Kim et al., 2004). A 181 amino acid region in the central region of the Nogo-A protein called NogoΔ20 is Nogo-A specific and is highly inhibitory for spreading and outgrowth of neurons and fibroblast even in the absence of NgR (Oertle et al., 2003). The in vivo
application of the monoclonal antibody 11C7, which is directed against this region and blocks NogoΔ20 function, leads to enhanced regrowth and regenerative sprouting of spinal axons following spinal cord lesion in rats and monkeys (Freund et al., 2006; Liebscher et al., 2005). *In vitro*, NogoΔ20 induces growth cone collapse and activates the small GTPase Rho-A (Fournier et al., 2003; Niederost et al., 2002; Oertle et al., 2003). However, the molecular mechanisms underlying NogoΔ20 signaling remain mostly unknown.

Similar to the neurotrophic factors including nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurophin 3 or 4 (NT-3 and NT-4) (Campenot and MacInnis, 2004; Huang and Reichardt, 2001; Wu et al., 2009), Nogo-A acts locally, at the growth cone. In addition, the members of neurophin family induce changes in gene transcription in the cell body upon retrograde axonal transport (Ginty and Segal, 2002; Howe and Mobley, 2005). Detailed analysis of NGF retrograde signaling led to the characterization of a so called NGF "signalosome", a signaling endosome containing endocytosed ligand-receptor complexes and downstream effectors (Campenot and MacInnis, 2004; Ginty and Segal, 2002; Howe and Mobley, 2005). Up to now, the possible role of endocytic signaling as a mechanism for Nogo-A action, both locally and at the level of cell body has not been investigated.

Here, we show that NogoΔ20 actions on growth cone collapse require signaling from endosomes that contain activated Rho. Internalization into the signaling endosomes is clathrin-independent and occurs by Pincher-dependent endocytosis. The retrograde axonal transport of NogoΔ20 in DRG neurons results in increased Rho-GTP and decreased levels of pCREB in the soma.
Results

The Nogo-A active fragment NogoΔ20 is rapidly internalized into neurons

To examine whether the Nogo-A active fragment NogoΔ20 is internalized into Nogo-A responsive cells, PC12 neuron-like cells were incubated with 300 nM T7-tagged NogoΔ20 fragment (Oertle et al., 2003). As control, we used 300 nM NogoΔ21-T7, a Nogo-A fragment without inhibitory activity at this concentration (Oertle et al., 2003). First, we incubated PC12 cells with Nogo fragments for 1h at 4°C, a temperature which prevents endocytosis and vesicular trafficking. PC12 cells immunostained for the T7 tag and analyzed by confocal microscopy displayed patchy staining at the cell surface (Figure 1A). When the PC12 cells were incubated with the NogoΔ20 fragment for 15 (Figure 1B) or 30 min (Figure 1C) at 37°C, the tagged protein was massively endocytosed in small cytosolic vesicles. The control fragment NogoΔ21-T7 could not be detected, either on the cell surface or intracellularly after incubation of PC12 cells (data not shown). The early endosomal antigen EEA-1, a marker of the early endosome (Mu et al., 1995), co-localized with 40.57 ± 2.65 % (n = 47 cells) of NogoΔ20-T7 positive vesicles after 15 min (Figure 1B; 1F) and with 57.87 ± 3.99 % (n = 42 cells) after 30 min (Figure 1C, 1F). The internalization of NogoΔ20 was further characterized by subcellular fractionation. PC12 cells were incubated with 300 nM NogoΔ20 for 30 min at 37°C, lysed and subjected to a 8-40.6% sucrose step gradient centrifugation. NogoΔ20 was detected in the fractions with lower sucrose concentration, F1 (8-25%) and F2 (25-35%), which contained early endosomes as indicated by EEA1 (Figure 1D). In contrast, NogoΔ20 was absent from the nuclear fraction (NF; containing nucleoporin p62 and from fraction F3 containing mostly endoplasmatic reticulum and Golgi membranes (high sucrose concentration of 35-40.6%; Figure 1D).

The fate of the growth inhibitory Nogo-A fragment NogoΔ20 was also studied in hippocampal neurons dissected from E19 rats, cultured for 4 days. Incubation with 300 nM NogoΔ20-T7 for 30 min at 37°C resulted in many small fluorescent vesicles spread throughout the cytoplasm of cell bodies and neurites (Figure 1E). These findings show that upon surface binding NogoΔ20 is rapidly internalized into neuronal endosomes.
Pincher-generated Nogo-A endosomes

1h at 4°C
A NogoΔ20

15 min at 37°C
B NogoΔ20 + EEA1

30 min at 37°C
C NogoΔ20 + EEA1

D
191
NF F1 F2 F3
EEA-1

64
nucleoporin 62

39
NogoΔ20

F
% of overlap with EEA-1

15 min 30 min

E
hippocampal neurons

E'
β3 tubulin + NogoΔ20

F
% of overlap with EEA-1

15 min 30 min

Figure 1. **Surface binding and internalization of NogoΔ20 in neuronal cells** (A) – (C): Representative confocal immunofluorescence optical sections of PC12 cells which were incubated with 300 nM NogoΔ20-T7 for 1 hour at 4°C (A) or for 15 min (B) or 30 min (C) at 37°C. Cells were stained with anti-T7 mAb for NogoΔ20 (green) and with anti-EEA-1 as an early endosomal marker (red) and analyzed by confocal microscopy. Arrows indicate colocalization of NogoΔ20 with EEA-1. Scale bar, 10 μm. (D) Subcellular fractionation of PC12 cells after internalization of NogoΔ20-T7 for 30 min at 37°C. Cell were homogenized and centrifuged to separate nuclei (nuclear fraction NF) from the postnuclear supernatant, which was loaded on a 8-40.6% sucrose step gradient to separate different organelles. Following centrifugation, different fractions: F1 (8-25% sucrose), F2 (25-35% sucrose) and F3 (35-40.6% sucrose) were collected and immunoblotted for EEA-1 (top panel), nucleoporin p62 (middle panel) and NogoΔ20-T7 (bottom). A representative blot from 3 experiments is shown. (E) Dissociated hippocampal neurons cultured for 4 days were incubated with 300 nM NogoΔ20-T7 for 30 min at 37°C. NogoΔ20 (red) appears in vesicular structures in the cell body and neurites of the neurons (β3 tubulin, green). Scale bar, 10 μm. (F) Quantification of co-localization of NogoΔ20 with EEA-1 after indicated time points. Values are given as the mean from three independent experiments ± SEM (***P < 0.001, Student's t test).

To investigate a possible contribution of the Nogo66 receptor subunit NgR to the NogoΔ20 internalization, PC12 cells were treated with phosphatidylinositol-specific phospholipase C (PI-PLC) to remove GPI-anchored proteins including NgR from the cell surface (Fournier et al., 2001) or alternatively, with the peptide, NEP1–40, an NgR antagonist (GrandPre et al., 2002). Neither PI-PLC (Supplementary Figure 1A, 1D) nor NEP1–40 (Supplementary Figure 1B, 1D) treatment affected NogoΔ20 internalization. In addition, we also observed NogoΔ20 internalization into 3T3 cells a cell line which does not express NgR (Fournier et al., 2001; Oertle et al., 2003) (Supplementary Figure 1C, 1D). These data demonstrate that NogoΔ20 internalization is not dependent on the Nogo66 receptor NgR.
Supplementary Figure 1. **NogoΔ20 internalization does not depend on NgR**

(A),(B): Representative confocal immunofluorescence optical sections of PC12 cells which were pretreated with PI-PLC (A) or NEP1-40 (B) one hour prior to incubation with 300 nM NogoΔ20-T7 for 30 min at 37°C. NogoΔ20 positive vesicles (green) were observed. (C) NogoΔ20 (green) is internalized into 3T3 cells after 30 min incubation time. Scale bar, 10 μm. (D) (Quantification of NogoΔ20 uptake after various cell treatments. The percentage of cells with internalized protein is given as the mean from three independent experiments ± SEM.
NogoΔ20 internalization does not follow the conventional endocytic routes

To test whether NogoΔ20-T7 is internalized via one of the classical endocytic routes mediated by clathrin, caveolin or cholesterol, pharmacological inhibitors and dominant negative (dn) constructs were used (Figure 2A). Eps15 is crucial for clathrin-coated pit assembly; overexpression of dominant negative eps15 blocks clathrin-dependent internalization (Benmerah et al., 1998). Transfection of PC12 cells with the dominant negative Eps15 EΔ95/295 did not inhibit internalization of NogoΔ20-T7 (94.58 ± 5.84 vs. 99.93 ± 7.61 in control, n = 294 vs. 323 cells) (Figure 2B, 2E). In contrast to NogoΔ20, internalization of transferrin, a well established marker for clathrin-mediated uptake (Dautry-Varsat et al., 1983; Hopkins, 1983), was dramatically reduced (9.44% ± 2.33 vs. 99.88 ± 5.75 % in control, n = 279 vs. 216 cells, ***P < 0.001) (Figure 2B, 2E). These results show that eps15-mediated clathrin assembly is not essential for NogoΔ20-T7 endocytosis.

The small GTPase Dynamin II is involved in the formation of both clathrin-coated and caveolar vesicles (De Camilli et al., 1995; Oh et al., 1998; Pelkmans et al., 2002). Surprisingly, the expression of a dominant negative dynamin II mutant, dynaminK44A (Fish et al., 2000), in PC-12 cells did not affect the internalization of NogoΔ20-T7 (90.12 ± 2.95 % vs. 99.93 ± 7.61 % in control, n = 303 vs. 323 in control) (Figure 2C, 2E). The internalization of transferrin, however, was almost completely inhibited (4.86 ± 1.67 % vs. 99.88 ± 5.75 % in control, n = 332 vs. 216, ***P < 0.001) (Figure 2C, 2E).
Figure 2
Figure 2. **Internalization of Nogo\(\Delta 20\)** occurs independently of Epsin15, Dynamin II and cholesterol. (A) Schematic representation of different endocytic pathways and their blockers. (B, C) PC12 cells were transfected with GFP tagged Eps15 \(\Delta(95-295)\) (green; B), or GFP-dynIIK44A (green; C). 24 hours later, cells were incubated with 300 nM Nogo\(\Delta 20\)-T7 (red) or 100 nM Transferrin-biotin (red) for 30 min at 37°C. In Eps15\(\Delta(95-295)\) and dynIIK44A transfected cells Transferrin uptake was blocked, but not uptake of Nogo\(\Delta 20\). (D) PC12 cells were either left untreated or were pretreated with nystatin and progesterone over night and were then incubated with Transferrin, Choleratoxin or Nogo\(\Delta 20\)-T7 for 30 min at 37°C in absence or presence of drugs. Whereas the internalization of Choleratoxin was inhibited (red), the internalization of Transferrin (red) and Nogo\(\Delta 20\) (red) was not affected. Representative optical sections from three independent experiments are shown. Scale bar, 10 \(\mu\)m. (E) Quantification of protein uptake after various cell treatments. The percentage of cells with internalized protein is given as the mean ± SEM (*\(P < 0.05\), **\(P < 0.001\), Student\(t\) test).

Internalization via caveolae is cholesterol-dependent. The cholera toxin \(\beta\) subunit (CTx\(\beta\)) has been reported to be predominantly internalized through the cholesterol-sensitive pathway (Kirkham et al., 2005). To test the possibility that Nogo\(\Delta 20\)-T7 internalization might depend on cholesterol, we pretreated PC12 cells with nystatin and progesterone. Combined cholesterol depletion by nystatin and inhibition of cholesterol synthesis by progesterone resulted in a significant inhibition of the uptake of cholera toxin \(\beta\) (30.33 ± 5.81 % vs. 99.40 ± 5.48 in control, \(n = 478\) vs. 366, **\(P < 0.001\)) (Figure 2D, 2E) whereas Nogo\(\Delta 20\)-T7 endocytosis remained unaffected (85.32 ± 4.32 % vs. 99.93 ± 7.61 % in control, \(n = 487\) vs. 323) (Figure 2D, 2E). Taken together these data provide strong evidence that internalization of Nogo\(\Delta 20\)-T7 does not follow the conventional endocytic routes. Neither clathrin nor caveolin nor cholesterol were required for the internalization of Nogo\(\Delta 20\)-T7 into the PC12 cells.
NogoΔ20 endocytosis is mediated by Pincher-dependent macroendocytosis

The PINocytic CHapERon protein Pincher belongs to the family of Eps15 homology (EH)-domain-containing proteins (EHDs/RME-1) which have been implicated in clathrin-independent endocytosis (Shao et al., 2002; Valdez et al., 2007) and recycling from endosomes (Caplan et al., 2002; Grant et al., 2001). Overexpression of a dominant negative form of Pincher (PincherG68E) has been shown to prevent NGF-induced internalization of TrkA (Shao et al., 2002). To assess a possible role of Pincher for NogoΔ20-T7 endocytosis, we overexpressed dn HA-PincherG68E in PC12 cells. In agreement with previous observations (Shao et al., 2002), HA-PincherG68E was associated with the plasma membrane in PC12 cells. Interestingly, the expression of dominant-negative Pincher dramatically reduced the endocytosis of NogoΔ20 (15.31 ± 3.68 % vs. 99.46 ± 5.49 % in control, n = 47 cells, ***P < 0.001) (Figure 3A, 3F). Confocal analysis revealed that NogoΔ20-T7 localization remained restricted to the plasma membrane and 73.37 ± 2.91 % of NogoΔ20-T7 co-localized with PincherG68E (Figure 3B, 3E). In contrast, transferrin was internalized and appeared in a punctate pattern in the cytoplasm of the PC12 cells, consistent with previous results showing that PincherG68E does not interfere with clathrin-mediated endocytosis (Shao et al., 2002). Accordingly, we observed only 9.74 ± 2.02 % of transferrin overlap with PincherG68E (Figure 3B, 3E). These results indicate that Pincher function is essential for NogoΔ20 endocytosis.

The small GTPase Rac has been shown to drive the formation of membrane ruffles during macroendocytosis and thus to be required for Pincher-mediated NGF-TrkA internalization (Valdez et al., 2007). To test whether Rac is involved in NogoΔ20 internalization, we transfected PC12 cells with either wild-type Rac or the dominant-negative RacN17. The overexpression of RacN17 significantly blocked the internalization of NogoΔ20 (26.08 ± 4.45 % vs. 99.46 ± 5.49 % in control, n = 47 cells, ***P < 0.001). As shown by confocal microscopy, NogoΔ20 remained at the plasma membrane of PC12 cells expressing RacN17 (Figure 3D, 3F). The overexpression of Rac1 had only a minor effect on the uptake of NogoΔ20 (77.64 ± 5.12 % vs. 99.46 ± 5.49 % in control, n = 47 cells, *P < 0.05) (Figure 3D, 3F). These findings strongly suggest that NogoΔ20 endocytosis is mediated by a macroendocytic process that depends on both Pincher and Rac proteins.
Pincher-generated Nogo-A endosomes
Figure 3. **Internalization of NogoΔ20 occurs by macroendocytosis and is Pincher and Rac1 dependent.** (A) PC12 cells were transfected with HA tagged dn PincherG68E (red). 24 hours after transfection cells were incubated with 300 nM NogoΔ20-T7 (green) for 30 min at 37°C. NogoΔ20 remained on the cell surface; no internalized NogoΔ20 vesicles are seen. (B) Transferrin (green) uptake is unaffected by overexpression of dn PincherG86E (red). (C, D) PC12 cells were transfected with T7 tagged wild-type Rac1 (red, C) or dominant negative Rac1N17 (red, D) prior to incubation with 300 nM Fc tagged NogoΔ20 (green). After 30 min at 37°C NogoΔ20 appeared a large number of endosomal vesicles and cisterns inside the wt Rac1 cells (arrowhead), but the internalized proportion was reduced in the dn RacN17 transfected cells (arrow). Scale bar, 5 µm. (E) Quantification of NogoΔ20 and transferrin co-localization with dn PincherG86E. Values are given as the mean of three independent experiments ± SEM. (F) Quantification of internalization revealed that the uptake of NogoΔ20 was reduced by 84% upon overexpression of dn PincherG86E and by 73% upon overexpression of dn Rac1N17. Values are given as the mean from three independent experiments ± SEM (*P < 0.05, ***P < 0.001, Student’s t test).
Pincher-mediated Nogo\(\Delta_{20}\) endocytosis is required in Nogo\(\Delta_{20}\) induced growth cone collapse

Nogo\(\Delta_{20}\) is a very potent inducer of growth cone collapse that often leads to withdrawal of neurites (Niederost et al., 2002; Oertle et al., 2003). To determine the importance of Nogo\(\Delta_{20}\) endocytosis for the growth cone collapse, we examined the growth cone response of hippocampal neurons after blocking Nogo\(\Delta_{20}\) endocytosis. Dissociated E19 hippocampal neurons were infected with recombinant adenoviruses containing either HA-Pincher or HA-PincherG68E (Valdez et al., 2005). Growth cone collapse was assessed at 4 DIV, i.e. 48 hours after viral infection by adding 300 nM of Nogo\(\Delta_{20}\) to the medium for 30 min. The neurons were fixed and the morphology of the growth cones was visualized by staining for F-actin with Phalloidin-Alexa488 (Figure 4A and 4B). The infected neurons were identified by visualization of the HA tag (Figure 4C). Nogo\(\Delta_{21}\) does not stimulate growth cone collapse at 300 nM, we thus used this fragment as a negative control. Three independent experiments (n=109 neurons) showed that Nogo\(\Delta_{20}\) treatment induced collapse of 69.85 ± 2.55 % of the growth cones as compared to 25.11± 1.59 % observed after the Nogo\(\Delta_{21}\) control treatment (Figure 4D). A very similar proportion of growth cones, 67.23 ± 2.67%, collapsed if Nogo\(\Delta_{20}\) was added to the neurons overexpressing the Pincher protein (Figure 4E). In contrast, growth cone collapse induced by Nogo\(\Delta_{20}\) was fully abolished when PincherG68E was overexpressed. In this case, only 27.33 ± 1.79 of the growth cones showed a collapsed morphology (Figure 4E).

To exclude possible nonspecific effects of PincherG68E, we assessed the growth cone collapse response to a well known collapse inducing protein, Semaphorin 3A (He and Tessier-Lavigne, 1997; Kolodkin et al., 1997; Luo et al., 1993; Tamagnone et al., 1999). More than 70% of the growth cones collapsed after the addition of Semaphorin 3A in Pincher as well as in PincherG68E overexpressing hippocampal neurons; there was no significant difference (75.48 ± 2.54 % and 70.06 ± 1.77%, respectively; Figure 4F) between the two treatments. These data strongly suggest that Pincher-dependent endocytosis is a crucial step in the chain of events that induce Nogo\(\Delta_{20}\) specific growth cone collapse.
Figure 4. Endocytosis of NogoΔ20 is required for NogoΔ20 induced growth cone collapse in hippocampal neurons. Morphology of (A) non-collapsed (arrow) and (B) collapsed growth cones (arrow head) of E19 hippocampal neurons at DIV4 was visualized by staining of F-actin with Phalloidin-Alexa488 (green). (C) Hippocampal neurons infected with immunodeficient recombinant adenovirus containing HA tagged dn PincherG68E (red) were treated for 30 min with 300 nM NogoΔ20; most growth cones remained uncollapsed (Phalloidin staining, Scale bars, 10 μm. (D) Quantification of the proportion of collapsed growth cones after incubation with 300 nM NogoΔ20 (black bars) or with 300 nM NogoΔ21 (open bars). (E,F) Growth cone collapse of hippocampal neurons overexpressing either wt HA-Pincher protein (black bars) or mutant HA-PincherG68E protein (open bars) after incubation with 300 nM NogoΔ20 (E) or 40 nM Semaphorin 3A for 30 min. Data represent the mean of three (Semaphorin 3A) or four (NogoΔ20) independent experiments ± SEM (number of neurons per group and experiment = 90). Asterisk marks highly significant difference between wt and dn Pincher infected hippocampal neurons (***P < 0.001, Student’s t test).
Inhibition of Pincher-dependent NogoΔ20 internalization reduces Rho activation

The Rho family of small GTPases, which includes Rho, Rac and Cdc42, has important roles in regulating actin cytoskeletal dynamics. NogoΔ20 activates RhoA, thus leading to disassembly of the actin cytoskeleton during growth cone collapse and growth inhibition (Niederost et al., 2002; Schwab, 2004). We investigated whether Rho activation could be dependent on NogoΔ20 internalization. In order to measure activated Rho, we used GST-Rhotekin-RBD, which has been described to selectively bind to the active GTP-bound Rho proteins (Aspenstrom, 1999; Ren et al., 1999). NogoΔ20 (300 nM) was added to PC12 cells for 30 min. Cells were then fixed, incubated with GST-Rhotekin-RBD, immunostained for GST and quantified by densitometry.

The comparison of the activated Rho levels of non-treated (Figure 5A) vs. NogoΔ20 treated (Figure 5B) cells revealed a dramatic increase of Rho activation upon NogoΔ20 addition (1.49 ± 0.03 vs. 1.00 ± 0.02 in control, n = 149 vs. 137 cells, ***P < 0.001) (Figure 5C). However, when the macroendocytosis was blocked by the overexpression of dn PincherG68E, activation of Rho in PC12 cells remained at background levels after addition of NogoΔ20 (1.12 ± 0.04 vs. 1.00 ± 0.02 in control, n = 98 vs. 137 cells) (Figure 5C). Reduced RhoA activation (23.12 ± 4.63 % of control, n = three independent experiments) in cells overexpressing dn PincherG68E was confirmed in the Rho-A pull down assay (Figure 5D).

This finding that inhibition of NogoΔ20 internalization interferes with Rho activation suggests that NogoΔ20 containing vesicles may function as signalosomes, as described e.g. for NGF (Delcroix et al., 2003; Howe et al., 2001). To test this hypothesis, endosomal fractions were isolated from PC12 cells with and without prior addition of NogoΔ20 and analyzed for their active RhoA content. Endosomal fractions from NogoΔ20-treated cells exhibited higher RhoA activation compared to endosomal fractions from naive PC12 cells (Figure 7I). These data suggest that NogoΔ20 may initiate the recruitment and assembly of specific signaling components including the small GTPase RhoA into so called "signalosomes".
Figure 5. **NogoΔ20 induced Rho activation depends on internalization.** Rho activation levels were examined in either (A) untreated (control) or (B) NogoΔ20 (300 nM) treated PC12 cells for 30 min at 37°C. Active GTP-bound Rho was detected by incubation with GST tagged Rhotekin-RBD and immunostaining. Scale bar, 20 µm. (C) Densitometric quantification of staining from three independent experiments. Data are normalized to the mean of the untreated group; asterisk marks highly significant differences between untreated, NogoΔ20 treated or NogoΔ20 and dn PincherG68E treated cells (three experiments; 30-50 cells per experiment; Student's t test, ***P < 0.001). (D) PC12 cells were either left untreated or transfected with dn PincherG68E construct. All cells were then incubated with 300 nM NogoΔ20 for 30 min at 37°C. Extracted proteins were precipitated with Rhotekin-RBD beads. Precipitates were immunoblotted for RhoA (top panel). Total RhoA levels were determined from whole cell lysates as shown in the bottom panel.
Pincher-generated Nogo-A endosomes

Internalized NogoΔ20 is retrogradely transported from neurites to cell bodies

To further test the role of Nogo-Δ20 endosomes, we examined whether NogoΔ20 could be retrogradely transported from the axons to the cell bodies. Dissociated dorsal root ganglion (DRG) cells from E19 rats were cultured in compartmentalized chambers (Campenot, 1977) as indicated in Figure 6A. Within 7 days, fascicles of neurites grew under the Teflon ring and Silicon grease seals into the two side chambers and established a dense neuritic plexus. NogoΔ20-T7 (300 nM) was then added to the side chambers. After 30 min or 6 hours, NogoΔ20 was visualized by confocal microscopy. After 30 min of incubation, NogoΔ20 fluorescence appeared in vesicular structures in the neurites of the distal compartments (Figure 6B, 6C) but was not detectable in proximal neurites and the cell bodies (Figure 6D, 6E). In contrast, after 6 hours of incubation, a large number of NogoΔ20 containing vesicles appeared in proximal neurites and the cytoplasm of DRG cell bodies (Figure 6F, 6G), indicating the retrograde movement of endocytosed NogoΔ20 from the neurites in the side chambers to the cell bodies in the centre chamber of the culture. Although majority of the cell bodies was positive for NogoΔ20 (62.18 ± 6.74 %, n = four independent experiments), some of the DRG cell bodies remained unlabeled (37.82 ± 3.36 %), showing that the fluorescent signals did not derive from leakage and direct uptake by cell bodies.
Figure 6. Upon internalization Nogo\textsubscript{Δ20} is retrogradely transported from the neurites to the cell bodies of dissociated DRG neurons. (A) Schematic representation of a compartmentalized chamber. (B)–(G): Representative immunofluorescence images of retrogradely transported Nogo\textsubscript{Δ20} (300 nM) at indicated time points in dissociated DRG neurons which were cultured in compartmentalized Campenot chambers. (B) Uptake of Nogo\textsubscript{Δ20} (green) in the distal neurites at 30 min incubation. Scale bar, 20 μm. (C) Nogo\textsubscript{Δ20} positive vesicles (green, arrow head) in the distal neurites. Scale bar, 10 μm. (D) Nogo\textsubscript{Δ20} could not be observed in the cell body compartment 30 min after Nogo\textsubscript{Δ20} addition. (E) Cell bodies were stained with DAPI (blue). Scale bar, 40 μm. Nogo\textsubscript{Δ20} positive distal neurites (F) and cell bodies (G) 6 hours upon addition of Nogo\textsubscript{Δ20} to the distal compartment. Arrowhead indicates Nogo\textsubscript{Δ20} positive vesicles in the cell body. Scale bars, 20 μm.
Importantly, the blockade of retrograde transport with colchicine (Kreutzberg, 1969) completely abolished NogoΔ20 detection in the DRG cell bodies, showing the involvement of active microtubule-dependent transport during NogoΔ20 trafficking from the axons to the cell bodies (Supplementary Figure 2A-2C).

As Pincher plays a crucial role in NogoΔ20 endocytosis in PC12 cells, we analyzed the requirement of Pincher function on uptake and retrograde transport of NogoΔ20 in DRG neurons. No NogoΔ20 could be detected in the cell bodies of those DRG neurons overexpressing PincherG68E (Supplementary Figure 2D, 2E). The overexpression of PincherG68E completely abolished the retrograde trafficking of NogoΔ20, confirming that the Pincher protein is required for neuronal Nogo-A uptake and trafficking.

Supplementary Figure 2. **Retrograde transport of NogoΔ20 is microtubule and Pincher dependent**
(A-C): Retrograde transport of NogoΔ20 in presence of colchicine. Cell bodies of DRG neurons cultured in Camenot chambers were pretreated with colchicine for one hour prior to the addition of NogoΔ20-T7. 6 hours after NogoΔ20 addition, NogoΔ20 (green) was found in the distal compartment (A) but was absent from the cell body compartment (B). Cell bodies were detected with DAPI (C, blue) Scale bars, 40 μm. (D) The cell body compartment of dissociated DRG neurons was infected with immunodeficient adenovirus containing the dn HA-PincherG68E at DIV5. At DIV7 NogoΔ20 was added to the distal neurite compartment and after 6 hours neurons were immunostained for Pincher (red) and NogoΔ20 (green). No retrogradely transported NogoΔ20 could be observed in the cell body compartment. Scale bar, 20 μm.
Retrogradely transported NogoΔ20 activates RhoA en route and decreases pCREB levels in the DRG cell bodies

Next, we asked if Rho activation can be observed in DRG neurites and cell bodies after internalization of NogoΔ20. Active Rho was measured with GST-Rhotekin-RBD protein as described earlier in the distal neurites or cell bodies of the compartmentalized DRG cultures, 30 min and 6 hours after addition of 300 nM NogoΔ20 to the distal neurite compartments. We found Rho activation in the neurite compartments 30 min after NogoΔ20 addition. Interestingly, active Rho was precisely co-localized with NogoΔ20 positive vesicles in the neurites (Figure 7A-C; 86.58 ± 14.48 % of overlap, n = 26 neurites). In the cell body compartment, the Rho activation was not seen at 30 min (Figure 7D, 7E) but was prominent at 6 hours after NogoΔ20 addition (Figure 7G). Thus, the temporal activation of Rho-A reflects the retrograde transport of NogoΔ20 suggesting the formation of NogoΔ20/RhoA signalosomes.

The activation of the cAMP response element binding protein CREB, e.g. by neutrophins, can overcome inhibitory effects of myelin-associated neurite outgrowth inhibitors (Gao et al., 2004). To test whether NogoΔ20 influences CREB signaling, we determined the levels of phosphorylated CREB (pCREB) upon NogoΔ20 addition. The low basal level of pCREB in DRG cell bodies makes these neurons highly responsive to increases in pCREB, which occurs after application of neutrophins to the axons (Watson et al., 1999). Since our DRG neurons are cultured in compartmentalized chambers in presence of NGF, we detected high basal levels of pCREB (Figure 7J). Addition of NogoΔ20 to the distal compartments for 6 hours resulted in a dramatic decrease (22.39 ± 4.47 % of control, n = three experiments) of pCREB in the cell body compartment (Figure 7J).
Pincher-generated Nogo-A endosomes
Figure 7. NogoΔ20 triggers Rho activation en route to DRG cell bodies

Active GTP bound Rho was visualized in the distal neurites and the cell body compartment of Campenot chambers upon addition of NogoΔ20 (300 nM) to the distal compartment for either 30 min or 6 hours. (A)-(C) 30 min after NogoΔ20 addition activated Rho (red) co-localizes with NogoΔ20 positive vesicles in the neurites of the distal compartment of the Campenot chambers. Cell bodies stained with (D) DAPI (Blue) were negative for activated Rho (E; red). (F)-(H) 6 hours upon NogoΔ20 (green) addition activated Rho (red) was also observed in the cell body compartment. Scale bars, 10 µm. (I) Early endosome containing F1 sucrose density fractions of untreated (control) or NogoΔ20 treated (30 min at 37°C) PC12 cells were reacted with Rhotekin-RBD beads. The bound proteins were immunoblotted with an anti-Rho A monoclonal antibody (bottom panel). (J) Cell bodies from DRG neurons cultured in Chambers were collected 6 hours after NogoΔ20 addition and immunoblotted for pCREB. Addition of NogoΔ20 decreased the pCREB levels.
Discussion

Many studies on endocytosis and retrograde transport of ligand-receptor complexes in neurons have focused the factors promoting survival and plasticity, in particular the neutrophins (Campenot and MacInnis, 2004; Ginty and Segal, 2002; Howe and Mobley, 2005). However, during development, in the adult nervous system and after injury axons are also exposed to growth inhibitory signals, a prominent one being Nogo-A. Up to now, nothing was known about whether the myelin-associated neurite growth inhibitor Nogo-A can signal through endosomes, which may also be retrogradely transported in neurons. We used NogoΔ20, the most potent fragment of Nogo-A that mediates growth cone collapse through a receptor other than NgR, to examine the role and mechanism of endocytosis. We find that NogoΔ20 is endocytosed in a non-conventional manner, using Pincher- and Rac-mediated macroendocytosis. Our study indicates that endocytosis of NogoΔ20 is essential to mediate growth cone collapse. The inhibition of Pincher-mediated NogoΔ20 endocytosis prevented NogoΔ20 induced, but not Semaphorin 3A induced growth cone collapse and diminished NogoΔ20-triggered RhoA activation. Furthermore, NogoΔ20 is taken up by DRG neurites and retrogradely transported to the cell bodies where it activated Rho and reduced pCREB levels. NogoΔ20 positive endosomal vesicles were positive for activated Rho in the neurites, suggesting that NogoΔ20 signalosomes transmit growth-inhibitory signals to the soma.

Most cell surface proteins and receptor-bound ligands are internalized through the clathrin coated vesicle or the caveolin pathways (Le Roy and Wrana, 2005; Mayor and Pagano, 2007). We found that NogoΔ20 internalization does not depend on the Nogo66 receptor NgR as shown by pharmacological blockage of NgR with PI-PLC or NEP1-40. Surprisingly, by overexpression of the dominant negative constructs eps15 EΔ95/295 and dynamin K44A which interfere with the clathrin and caveolin endocytosis machinery, we found that neither of the two pathways mediates NogoΔ20 endocytosis. In contrast, overexpression of a mutant form of the Pincher protein in which the P-loop ATP binding site is destroyed by mutation G68E (Shao et al., 2002) almost completely blocked the internalization of NogoΔ20, indicating a requirement of Pincher ATPase activity for this process. Pincher protein has been implicated in the clathrin-independent, Rac
mediated and pinocytosis-like uptake of the activated neurotrophin receptor complex (Shao et al., 2002). The requirement of Pincher protein and the small GTPase Rac for NogoΔ20 internalization leads to conclusion that NogoΔ20 is similarly macroendocytosed. Given that Pincher has recently been classified as a member of the dynamin superfamily, in this case it may replace dynamin in mediating macroendocytosis (Daumke et al., 2007). Macroendocytic signaling may have more general implications in growth inhibition, because EphrinB-EphB containing vesicles, which do not co-localize with the known markers of the clathrin and caveolin endocytic pathways (Marston et al., 2003), may also be internalized via Rac-dependent macroendocytosis (Marston et al., 2003).

Using growth cone collapse as a functional readout, we addressed the question whether NogoΔ20 internalization is necessary for NogoΔ20 signaling. Blockade of NogoΔ20 endocytosis by dominant negative PincherG68E prevented NogoΔ20 induced growth cone collapse of hippocampal neurons. Under the same conditions Semaphorin 3A induced growth cone collapse was not affected. Importantly, the NogoΔ20 induced growth cone collapse is known to occur with a slower time course than the collapse elicited by Semaphorin 3A (Oertle et al., 2003), suggesting different signaling cascades evoked by the two proteins. For Nogo-A, the first morphological changes can be observed after 90 s and the collapse is complete after 20-40 min (Bandtlow et al., 1993; Oertle et al., 2003). Interestingly, this time course matches that of NogoΔ20 endocytosis: first NogoΔ20 containing vesicles appeared after 2 min of exposure to NogoΔ20 (data not shown), and a large number of NogoΔ20 endosomes with early endosome marker accumulated intracellularly after 30 min. This slow time course of endocytic processing is similar to that found for neurotrophin, as opposed to epidermal growth factor receptor (EGFR) endocytic signaling, and may be a general feature of Pincher-mediated endocytic signaling (Valdez et al., 2007). Importantly, members of another repulsive protein family, the Ephrins were also shown to depend on endocytosis for growth cone collapse: In the absence of Vav proteins, ephrin-Eph endocytosis was blocked, resulting in defects in growth collapse in vitro and significant defects in retinogeniculate axon guidance in vivo (Cowan et al., 2005).
Our finding that prevention of NogoΔ20 internalization also blocked the activation of Rho proteins in PC12 cells and DRG neurons provides a second line of evidence that NogoΔ20 internalization is required for NogoΔ20 signal propagation. Accordingly, subcellular fractionation revealed that NogoΔ20 containing early endosomes contain activated RhoA-GTPase, indicating that NogoΔ20 signals after internalization. Consistent with this, we find that NogoΔ20 containing vesicles were transported retrogradely from the neurites to the cell bodies of DRG neurons cultured in compartmentalized chambers. Activated Rho co-localized with NogoΔ20 positive vesicles in these DRG neurites. As high Rho activity in the DRG cell bodies was not observed after 30 min but prominently after 6 hours of NogoΔ20 addition, we conclude that NogoΔ20 vesicles activate Rho also en route in the cell bodies. Taken together, these data strongly indicate the formation of NogoΔ20 signaling endosomes which are retrogradely transported along the axons.

Nogo-A is predominantly found in the innermost, adaxonal membranes around axons in intact CNS (Huber et al., 2002; Wang et al., 2002b). One question which arises from this study is whether myelin-associated full length Nogo-A is transcytosed from the myelin into the axons or whether Nogo-A undergoes protease-dependent cleavage to release NogoΔ20 fragments which are taken up by surrounding axons. The existence of soluble Nogo-A fragments in cerebrospinal fluid from patients with multiple sclerosis (Jurewicz et al., 2007) and the cleavage of Nogo-A upon optic nerve injury (Ahmed et al., 2006) speak in favor of the second mechanism. However, we can not exclude that full-length transmembrane Nogo-A may be transcytosed as it has been described for EphB-ephrinB complexes (Zimmer et al., 2003).

Given our finding that Nogo-A signals retrogradely and the constant contact of Nogo-A with the axon, it is tempting to speculate that in the intact CNS Nogo-A signals originating along the axons tonically suppress axonal growth. Once the axon has reached its target and myelination starts, Nogo-A starts retrogradely communicate to the cell body that the growth machinery is not needed any longer. Transitory growth responses of Purkinje axons and the corticospinal tract in intact rats upon Nogo-A neutralization support this concept (Bareyre et al., 2002; Buffo et al., 2000; Gianola et al., 2003).
In many respects Nogo-A seems to counteract the effect of neutrophic factor signaling. While e.g. NGF promotes neurite outgrowth and attracts growth cones, Nogo-A inhibits outgrowth and induces growth cone collapse. Retrograde trafficking of NGF signaling endosomes is associated with an increase in pCREB in cell bodies (Cox et al., 2008; Riccio et al., 1997). In contrast, we find that retrograde trafficking of NogoΔ20 is associated with a decrease of pCREB levels. It seems that both proteins use a similar endocytic machinery to achieve opposing cellular responses, suggesting that different endosome-based signals are integrated in the soma after retrograde transport. In the future, characterization of the ligand-receptor complexes and of retrogradely activated genes and more precise analysis of local and distal effects induced by Nogo-A in neurons may help us understanding the dualistic roles of NGF and Nogo-A.
Pincher-generated Nogo-A endosomes

Materials and Methods

Cell Culture

PC12 cells were grown in DMEM media (Gibco) supplemented with 6% new born calf serum and 6% horse serum. Cells were transfected with Lipofectamin2000 (Invitrogen) in OptiMEM (Gibco).

Primary hippocampal neurons derived from rat embryos were cultured as described previously (Kaech and Banker, 2006). In brief, the hippocampi of E19 rats were dissected, digested (0.05% papain; Sigma) and washed in PBS. Cells were then dissociated and 6,000-8,000 cells were plated onto poly-L-lysine and laminin coated 18-mm glass coverslips in 12 well cell culture plates containing glial feeder layer in neurobasal/B27 medium (Gibco/Invitrogen).

Dissociated DRG neurons derived from E19 rats were cultured in Campenot Chambers as described previously (Campenot, 1977). Briefly, E19 dissociated DRG neurons were plated in the cell body compartment in neurobasal/B27 medium supplemented with 100 ng/ml NGF and 250 µM cytosine arabinoside (1-β-D-arabinofuranosylcytosine) to inhibit glial growth. At DIV4 media was changed and compartments were checked for bulk leakage. Cultures from leaking chambers were excluded from further study. Retrograde transport experiments were performed at DIV7, when neurites had crossed the divide into the distal neurite compartment.

DNA and viral constructs

Dynamin II K44A-GFP construct was obtained from M. McNiven (Mayo Clinic, Rochester, USA), Eps15Δ(95-295)-GFP construct was obtained from A. Benmerah and A. Dautry-Varsat (Institut Pasteur, Paris, France) and Rac1-T7 (wt and N17 mutant) constructs were obtained from D. Bar-Sagi, (New York University, New York, USA).
Defective adenoviruses containing Pincher-HA (Shao et al., 2002) constructs were used. For efficient infection 50 MOI (multiple of infection) were used. Hippocampal neurons were infected at DIV2 and analyzed at DIV4. The cell body compartments of dissociated DRG neurons were infected at DIV5 and the cultures were grown for further 2 DIV to achieve high level of protein overexpression.

Drug treatments

Cells were preincubated for 60 min at 37°C in serum-free DMEM containing 1U/ml PI-PLC (Invitrogen) or 1 µM NEP1-40 (Alpha Diagnostics). Preincubation with 25 µg/ml nystatin (Sigma-Aldrich) plus 10 µg/ml progesterone (Sigma-Aldrich) was performed over night. The drugs were present throughout the experiments. Cell bodies of DRG neurons were preincubated with 125 µM colchicine (Sigma-Aldrich) 1 hour prior to addition of NogoΔ20.

Growth cone collapse

The response of neuronal growth cones was quantified on three independent experiments (n=90 neurons per group from each experiment). At DIV4 hippocampal neurons were incubated with either 300 nM NogoΔ21 (control) or 300 nM NogoΔ20 or 40 nM Semaphorin 3A for 30 min at 37°C, fixed and stained for F-actin with Phalloidin-Alexa 488 to visualize the growth cone morphology. The collapsed growth cones of each neuron, which were defined as those with no lamellipodia and not more than two filopodia (Kapfhammer et al., 2007), were counted and expressed as percentage of the total growth cones of the belonging neuron. The infection with defective adenoviruses containing HA-Pincher constructs was performed at DIV2 with 50 MOI. After 1 h medium containing adenoviruses was removed and the cells were cultured for another 2DIV prior to collapse experiment. Only HA-Pincher positive neurons which were detected with anti-HA immunostaining were analyzed in the growth cone collapse experiment.
Internalization assay and immunofluorescent microscopy

For internalization assays PC12 cells were serum starved 3 hours prior to addition of proteins for 30 min at 37°C. Proteins were used at following concentrations: Nogo\(\Delta20\) and Nogo\(\Delta21\) at 300 nM, transferrin-biotin (Invitrogen) at 1\(\mu\)g/ml and cholera toxin \(\beta\)-A594 (Invitrogen) at 1 ng/ml. Cells were then fixed with 4% paraformaldehyde for 15 min and subsequently permeabilized with 0.1% Triton X-100 for 30 min at RT. After blocking cells were incubated first with primary antibodies for 30 min, washed 3 times for 5 min and then incubated with secondary antibodies for 30 min.

Coverslips were mounted with Dako (Dako Cytochrom). Images were acquired on a Leica type DM RE microscope using a confocal scanning system SP2 or SP5 from Leica equipped with 40x/1.25, 63x/1.4 and 100x Planchromat objectives. The thickness of all confocal slices varied between 0.2 and 0.8 \(\mu\)m.

Images were processed with the use of Photoshop (Adobe Inc., Mountain View, CA). Co-localizations were analyzed with the colocalization module of Imaris (Bitplane, Zurich, Switzerland). Data were given as the mean value \(\pm\) SEM. Data analysis was performed by Prism 4.0 (GraphPad software) using independent Student’s \(t\) test.

The following primary antibodies were used: rabbit anti-EEA-1 (Abcam) 1:250, mouse anti-T7 (Novagen) 1:1000, rabbit anti-Pincher (Shao et al., 2002) 1:1000, rat anti-HA (Roche) 1:250. Secondary antibodies: Alexa-488, Alexa-594, Avidin-Rhodamin and Avidin-FITC were from Molecular Probes. All immunostaining experiments were repeated at least three times.
Recombinant fusion proteins

Recombinant fusion proteins NogoΔ20-T7 and NogoΔ21-T7 were purified as described previously (Oertle et al., 2003). In brief, *Escherichia coli* BL21/DE3 were transformed with the bacterial expression vectors pET28 and grown in 2x YT medium (Invitrogen). Expression of the fusion proteins was induced by addition of 1 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG) to log phase culture at 30°C for 4 hours. The highly expressed fusion proteins were purified using the Co²⁺-Talon Metal Affinity Resin (Clontech). Upon elution with 250 mM imidazole proteins were extensively dialyzed against PBS, pH 7.4. The purity of the recombinant proteins was confirmed by SDS-PAGE and Coomassie Brilliant Blue® staining. The protein concentration was determined with BCA protein assay kit (Pierce) using bovine serum albumin as a standard. In addition, Fc-tagged NogoΔ20 fragment was used (R&D systems).

RhoA pull down assay and immunostaining

PC12 cells were homogenized in RIPA buffer (50 mM Tris, pH 7.2, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 500 mM NaCl, 10 mM MgCl₂, protease inhibitor cocktail (Complete Mini; Roche Diagnostics), 1 mM PMSF). After centrifugation for 20 min at 13 000g at 4°C homogenates (0.5 mg/ml) were incubated for 1 hour at 4°C with 60 μg GST-Rhotekin RBD beads (Cytoskeleton, Inc.). The beads were then washed twice and eluated in sample buffer. GTP-bound RhoA and total RhoA present in the cell lysates were immunoblotted with mouse anti-Rho-A antibody (Santa Cruz Biotechnology, Inc) 1:200.

Activated Rho was detected by probing cells with the Rho-binding domain from the Rho-GTP-interacting protein rhotekin-RBD tagged with GST (Cytoskeleton, Inc.) 20μg/ml for 1 hour at 37°C. Rabbit anti GST (Abcam) 1:400 was subsequently used.
Pincher-generated Nogo-A endosomes

Subcellular fractionation

PC12 cells were cultured on 15 cm plates, serum starved (DMEM/BSA) for 3 h and either left untreated or treated with NogoΔ20-T7 for 30 min. Next, cells were homogenized in a detergent-free manner with a 22-G needle in the homogenization buffer (250 mM sucrose, 3 mM imidazole, 1 mM EDTA, protease inhibitor cocktail (Complete Mini; Roche Diagnostics), and 0.03 mM cycloheximide, pH 7.4). Subsequently, a post-nuclear supernatant (PNS) was prepared according to standard techniques (Bomsel et al., 1990). The PNS was adjusted to 40.6 % sucrose, loaded at the bottom of an SW60 centrifuge tube (Beckman), and overlaid sequentially with 1.5 volumes of 35% and 1 volume of 25% sucrose solutions in 3 mM imidazole, 1mM EDTA, pH 7.4. The rest of the tube was filled up with homogenization buffer. The gradient was then centrifuged at 210 000g at 4°C for 90 min using an SW60 rotor (Beckman). After centrifugation, different interfaces and sucrose cushions were collected from top to bottom of the tube. The protein concentration of each fraction was determined with BCA protein assay kit (Pierce) using bovine serum albumin as a standard. Equal amounts of protein from each fraction were loaded on SDS-PAGE, followed by immunoblotting with mouse anti-EEA1 (BD Transduction Labs) 1:500, mouse anti-nucleoporin p62 (BD Transduction Labs) 1:1000, mouse anti-T7 (Novagen) 1:5000 and mouse anti-RhoA (Santa Cruz Biotechnology, Inc.) 1:200. This experiment was repeated three times with similar results.

Western Blot Analysis

Proteins (25–100 µg) were separated by electrophoresis on a 4%–12% polyacrylamide gel and transferred to nitrocellulose membranes. Blots were preincubated in a blocking solution of 3% Top Block (VWR International) in TBST (0.1 M Tris base, 0.2% Tween 20, pH 7.4) for 1 h at room temperature, incubated with primary antibodies overnight at 4°C and after washing, with a horseradish peroxidase-conjugated anti-rabbit antibody (Pierce Biotechnology) 1:10 000 or 1:15 000. CREB was detected with rabbit anti pCREB (Millipore Bioscience Research) 1:500 and anti-GAPDH (Abcam) 1:10 000. Protein bands were detected by adding SuperSignal West Pico Chemiluminescent Substrate (Pierce) by exposing the blot in a Stella detector (Raytest).
Pincher-generated Nogo-A endosomes

Densitometry analysis was performed with NIH software and by normalizing the band intensities to GAPDH values.
Acknowledgements

We thank Vincent Pernet for helpful discussions and critical reading of the manuscript, Dubravka Göckeritz-Dujmovic for assistance with hippocampal cell culture, Stefan Giger for technical support and Roland Schöb and Eva Hochreutener for graphical work. We would also like to thank the Center for Microscopy and Image Analysis of University of Zurich for providing their confocal microscopes. We further thank M. McNiven (Mayo Clinic, Rochester, USA), A. Benmerah and A. Dautry-Varsat (Institut Pasteur, Paris, France) and D. Bar-Sagi, (New York University, New York, USA) for providing constructs. This work was supported by the EU-Network of Excellence NeuroNE (FP6), the Swiss National Science Foundation SNF (grants 31-63633.00 and 31-122527/1), the National Centre for Competence in Research ëNeural Plasticity & Repairí of the Swiss National Science Foundation, the Spinal Cord Consortium of the Christopher and Dana Reeve Foundation (Springfield, NJ, USA), and the NIH grant NS18218.
The important thing is not to stop questioning. Curiosity has its own reason for existing.

Albert Einstein
Chapter 3

Neurotrophins and Nogo-A: Antagonistic regulators of neurite outgrowth?
3.1 Overview

The study presented in this thesis explored the significance of endocytosis for the function of Nogo-A. The results shown in Chapter 2 clearly illustrate the requirement of NogoΔ20 internalization for Nogo-A signaling. Inhibition of NogoΔ20 internalization prevented growth cone collapse and Rho-A activation. These experiments also demonstrated that the internalization of NogoΔ20 does not follow the conventional clathrin- and dynamin-dependent pathway, but rather depends on the Pincher protein. In addition, these data strengthen the previous findings that NogoΔ20 acts by a specific mechanism which is independent of NgR. Further, these data provide the first evidence that NogoΔ20 induces the formation of signalosomes containing Rho-A, which are retrogradely transported from the axons to the cell bodies where they decrease pCREB levels. The intriguing finding that NogoΔ20 acts on pCREB in the opposite manner to NGF suggests a potential mechanism for NogoΔ20 and NGF to act antagonistically. A schematic representation of the Nogo-A signaling endosome hypothesis is shown in Figure 1.

[Diagram showing the signaling endosome pathway]

Figure 1: Schematic representation of Nogo-A signalosome pathway
(adapted from Howe, 2005)

Upon binding to its receptor, NogoΔ20 induces the formation of signaling endosomes which contain activated RhoA. The signalosomes are then transported via a microtubule dependent mechanism from the axons to the cell bodies where they initiate transcriptional changes leading to neurite outgrowth inhibition.
3.2 Implications and future directions

The role of endocytosis in the nervous system has been demonstrated so far for neurotrophic factors and ephrins (Cowan et al., 2005; Howe and Mobley, 2005; Marston et al., 2003; Zimmer et al., 2003). Internalization of myelin-associated neurite outgrowth inhibitors has not yet been shown. This study reports that the potent, myelin derived growth inhibitor Nogo-A can induce the formation of endosomes and retrograde signaling in neurons. The retrograde transport of the active, inhibitory NogoΔ20 fragments raises interesting questions: (i) what are the transcriptional cell body changes upon retrograde transport of NogoΔ20?, (ii) does the NogoΔ20 signalosome contain other downstream components besides RhoA?, (iii) does a soluble, active NogoΔ20-fragment exist in vivo?, and (iv) under which biological conditions does retrograde signaling take place?

3.2.1 Identification of NogoΔ20 mediated transcriptional changes

The retrograde transport of NGF signalosome leads to transcriptional changes in the cell body of neurons. Among the regulated transcription factors, CREB and SRF are best characterized (Cosker et al., 2008). The activation of CREB dependent genes results in a survival response (Riccio et al., 1997) whereas the activation of SRF dependent genes results in an axonal growth response (Wickramasinghe et al., 2008). The transcriptional changes evoked by Nogo-A are not yet known. A comprehensive gene chip analysis of the cell bodies at different time points upon addition of NogoΔ20 would lead to identification of potential gene candidates which might be involved in the outgrowth inhibition response.

The opposed effects on pCREB levels induced by Nogo-A in comparison to NGF in DRG neurons suggest an antagonistic growth response of the two proteins which might be reflected in the opposing regulation of some genes. An alternative to the gene chip analysis would be the examination of gene candidates which are shown to be regulated by NGF signaling. One promising candidate would be the serum response factor, SRF since it mediates NGF-dependent
Neurotrophins and Nogo-A: Antagonistic Regulators of neurite outgrowth?

Axonal growth, branching, and target innervation by regulating gene expression of cytoskeletal genes such as β-actin and γ-actin but also LIM family regulators such as Ldb2 (Wickramasinghe et al., 2008). Genetic ablation of Nogo-A results in enhanced expression of cytoskeleton related proteins such as actin (β, γ, α), GFAP or neurofilament-68, and in enhanced growth cone motility by regulation of the LIM kinase (LIMK) pathway through cofilin (Montani et al., 2009). It is tempting to speculate that Nogo-A and NGF signaling pathways converge at the level of SRF and thus on the regulation of the LIMK pathway. To verify the involvement of CREB and SRF in the neurite outgrowth, it would be important to test whether the activation of these factors can directly overcome the inhibitory role of NogoΔ20.

3.2.2 Characterization of NogoΔ20 signalosome

In addition to the gene chip approach, a complementary proteomic analysis of the NogoΔ20 signalosome could shed more light on the downstream signaling of the Nogo-A specific receptor. In addition to ligand and receptor, growth factor signalosomes contain several downstream signaling components (Ginty and Segal, 2002). The isolation of Nogo-A specific signalosomes may lead to identification of new signaling components and thus contribute to a better understanding of the inhibitory signals.

3.2.3 Nogo-A fragmentation

Although NogoΔ20 is a highly inhibitory Nogo-A fragment, its existence in vivo has not been shown. The existence of soluble Nogo-A fragments in cerebrospinal fluid from patients with multiple sclerosis (Jurewicz et al., 2007) and the cleavage of Nogo-A upon optic nerve injury (Ahmed et al., 2006) suggest a possible protease-dependent cleavage of Nogo-A. Since the BACE-1 co-localizes with some members of the reticulon family i.e. RTN3 and RTN4B/Nogo-B, it could be possible that it can also cleave Nogo-A. It would be interesting to test whether the
inhibition of BACE might interfere with neurite outgrowth inhibition or growth cone collapse mediated by Nogo-A.

However, we can not exclude that full-length transmembrane Nogo-A may be transcytosed in the form of a pinched-off vesicle from the "donor" to the responsive cell, as it has been described for EphB-ephrinB complexes (Zimmer et al., 2003).

3.2.4 Possible role of NogoΔ20 signalosomes in the adult normal CNS

Given the Nogo-A localization in the innermost, adaxonal myelin membranes around axons in the intact CNS (Huber et al., 2002; Wang et al., 2002b) and their constant contact with the axons, it is tempting to speculate that in the intact CNS Nogo-A signals originating along the axons tonically suppress axonal growth. In agreement with this hypothesis, it has been shown that Nogo-A neutralization results in a transitory growth responses e.g. of Purkinje axons and the corticospinal tract (Bareyre et al., 2002; Buffo et al., 2000; Gianola et al., 2003). The enhanced growth response in mature intact hippocampal slice cultures upon acute Nogo-A neutralization supports this idea (Craveiro et al., 2008). In addition, the plasticity of the visual cortex is extended beyond the normal postnatal critical period in mice lacking NgR or Nogo-A/B (McGee et al., 2005). According to these finding one could imagine the following scenario: once the axon has reached its target and myelination starts, Nogo-A begins to retrogradely communicate to the cell body that the growth machinery is not needed any longer. Whether NogoΔ20 signalosomes exist in the intact CNS axons remains to be shown.

3.2.5 Retrograde axonal transport in the injured CNS

Axonal injury evokes a cell body response which initially includes increase in gene transcription and protein translation (Ambron and Walters, 1996). An elevated expression of the growth associated protein 43 (GAP 43) mRNA has been observed in axotomized neurons. However,
after three week these mRNA levels decline (Verhaagen et al., 1993). One possible explanation for this transitory growth boost would be the lack of retrograde transported Nogo\(_{\Delta 20}\). Upon injury, the contact of Nogo-A with the axons is disrupted and thus the growth inhibitory Nogo\(_{\Delta 20}\) signal abolished. In turn the growth machinery is switched on and the axotomized neurite is looking for new connection. Once the seeking axon encounters myelin, the retrograde transport of Nogo-A endosomes would start again to suppress the neurite growth machinery. To better understand these injury signals, the role of the Pincher protein could be addressed. It would be interesting to know if the inhibition of the retrograde transport of Nogo-A by down-regulation of the Pincher protein would lead to a better recovery upon spinal cord injury. However, an open question remains as to whether full-length Nogo-A or only the Nogo\(_{\Delta 20}\) fragments are transported \textit{in vivo}. Some experimental analysis may help to shed more light on this issue. If Nogo-A would be cleaved, it should be possible to detect the Nogo-A fragmentation by isolating it from the injured nerves.

\textit{3.2.6 Possible antagonistic effects of Nogo-A and neurotrophins during development}

Neurotrophins have been implicated in axon guidance and target innervation during neuronal development (Huang and Reichardt, 2001). The local expression of target-derived neurotrophic factors such as NGF, BDNF and NT-3 in target tissue can influence the extent of terminal arborization within the target region during development (Markus et al., 2002). Transgenic mice over-expression of BDNF in epithelial tissue show an increase in peripheral innervation densities (Albers et al., 1996; Davis et al., 1994). Selective deletion of BDNF receptor TrkB in the pyramidal neurons leads to altered dendritic arborization in cortical layers (Xu et al., 2000). Since local application of Nogo-A leads to growth cone collapse and the zebrafish embryos lacking Nogo orthologues show severe defects in axon pathfinding, it is tempting to speculate that Nogo-A might play a restrictive role in target innervation. One expectation would be that the down-regulation of Nogo-A would result in higher target innervation densities. The mice lacking Nogo-A do not show any serious behavioral defects (Willi et al., 2009). However, absence of Nogo-A induces increased axonal branching of cortical neurons \textit{in vitro} (Mingorance-Le Meur et
Neurotrophins and Nogo-A: Antagonistic Regulators of neurite outgrowth?

al., 2007). It is very possible that the genetic ablation of Nogo-A results in the up-regulation of other proteins which compensate for the role of Nogo-A. To overcome these compensatory effects, it is important to examine the role of Nogo-A in the target innervation by acute neutralization of Nogo-A in vivo. The chicken embryo is an attractive experimental system because of its accessibility during different developmental stages and the possibility of applying functional RNA interference by in ovo electroporation or of injection of Nogo-A neutralizing antibodies. Since Nogo-A is expressed on muscle cells during early development, one would down- or up-regulate Nogo-A in the muscle cells and analyze the muscle innervation. An alternative experimental system for the CNS is the visual system. The retinotopic projections of ganglion cells from distinct positions in the retina to the superior colliculus have been extensively studied with ephrins, a family of repulsive guidance molecules (Luo and O'Leary, 2005). At E 15, during retinocollicular development when the retinal ganglion cell axons arrive at the chiasm, Nogo-A has been shown to be most prominent on radial glia at the optic nerve head and the chiasmatic midline. NgR has been localized on the axons of the optic tract (Wang et al., 2008). These expression patterns suggest an involvement of Nogo-A in the routing of axons in the optic chiasm. For example, Nogo-A might selectively inhibit the NgR expressing retinal axons to cross the midline. Since the mouse embryo is not easily accessible, an inducible gene knock out would be essential.

Another possible role for Nogo-A during development is axon pruning. During nervous system development, over-production of neurons and axons is followed by a regressive phase in which the inappropriate axonal branches are eliminated (Luo and O'Leary, 2005; Raff et al., 2002). Axonal pruning has been studied in vitro by using compartmentalized chambers (Campenot, 1977). NGF depletion from the axonal compartment results in a rapid axonal fragmentation (MacInnis and Campenot, 2005). If Nogo-A would oppose the effects of NGF, one would expect NogoΔ20 to mimic the effects observed upon NGF deprivation, i.e. NogoΔ20 would lead to axonal fragmentation. Recently, two groups have started to identify the molecular mechanisms underlying axonal fragmentation. Mok and colleagues have shown that deprivation of NGF in the axonal compartment activates c-jun dependent gene transcription in the cell bodies (Mok et al., 2009). Nikolaev and colleagues identified death receptor 6 (DR6) signaling involving
Neurotrophins and Nogo-A: Antagonistic Regulators of neurite outgrowth?

caspase 6 as the crucial initiation step for axonal fragmentation. Blocking of DR6 delayed fragmentation of sensory axons in vitro and the pruning of retinocollicular axons in vivo (Nikolaev et al., 2009). Several experimental analyses could be performed to test the role of Nogo-A in axon pruning. As a first step, axonal fragmentation should be analyzed upon NogoΔ20 addition in the presence of NGF. If NogoΔ20 addition causes axonal fragmentation, the involvement of JNK and DR6 receptor should be carefully explored.

3.3 Final Conclusion

The significance of endocytosis for the signaling of the potent neurite growth inhibitory Nogo-A specific region NogoΔ20 that has been demonstrated in this study is just the tip of the iceberg, and unique insights into the NogoΔ20 molecular mechanism can probably be obtained from the studies aiming at characterization of the not yet identified high affinity Nogo-A receptor. The characterization of both, NogoΔ20 signalosome and the transcriptional changes induced by NogoΔ20 endosomes will help to learn more about the antagonistic regulation of neurite growth by neurotrophins and Nogo-A. With the characterization of NogoΔ20 signaling endosomes we have just begun to disclose other systems that induce long-range retrograde signaling similar to neurotrophins. Examination of other proteins such as ephrins will reveal whether Pincher-mediated macroendocytosis is a universal mechanism for mediating retrograde endosomal signaling in neurons.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>amino acis</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>ALS</td>
<td>amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>AP</td>
<td>adaptor protein</td>
</tr>
<tr>
<td>BACE-1</td>
<td>6-amyloid converting enzyme 1</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CLIC</td>
<td>CLathrin-Independent Carriers</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding</td>
</tr>
<tr>
<td>DIV</td>
<td>day in vitro</td>
</tr>
<tr>
<td>dn</td>
<td>dominant negative</td>
</tr>
<tr>
<td>DRG</td>
<td>dorsal root ganglion</td>
</tr>
<tr>
<td>EEA-1</td>
<td>early endosomal antigen-1</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EH</td>
<td>Eps15 homology</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmatic reticulon</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>GEEC</td>
<td>GPI-enriched endosomal compartments</td>
</tr>
<tr>
<td>GPI</td>
<td>glycosyl-phosphatidylinositol</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAF</td>
<td>GTPase regulator associated with focal adhesion kinase</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>LIMK</td>
<td>LIM kinase</td>
</tr>
<tr>
<td>LINGO</td>
<td>Leucine-rich repeats and Ig domain-containing, neurite outgrowth inhibitor (Nogo) receptor-interacting protein-1</td>
</tr>
<tr>
<td>MAG</td>
<td>myelin-associated glycoprotein</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated phosphokinase</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>NgR</td>
<td>Nogo66 receptor</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NPC</td>
<td>nuclear pore complex</td>
</tr>
<tr>
<td>NT-3</td>
<td>neurotrophin-3</td>
</tr>
<tr>
<td>OMgp</td>
<td>Oligodendrocyte myelin glycoprotein</td>
</tr>
<tr>
<td>Pincher</td>
<td>Pinocytic Chaperon</td>
</tr>
<tr>
<td>PI-PLC</td>
<td>phosphatidylinositol-specific phospholipase C</td>
</tr>
<tr>
<td>PirB</td>
<td>paired immunoglobulin-like receptor B</td>
</tr>
<tr>
<td>PNS</td>
<td>peripheral nervous system</td>
</tr>
<tr>
<td>PTRF</td>
<td>polymerase 1 transcript release factor</td>
</tr>
<tr>
<td>RBD</td>
<td>Rho binding domain</td>
</tr>
<tr>
<td>RTK</td>
<td>receptor tyrosine kinase</td>
</tr>
<tr>
<td>RTN</td>
<td>reticulon</td>
</tr>
<tr>
<td>SDPR</td>
<td>serum deprivation protein response</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRF</td>
<td>serum response factor</td>
</tr>
<tr>
<td>Trk</td>
<td>tropomyosin-related kinase</td>
</tr>
<tr>
<td>wt</td>
<td>wild-type</td>
</tr>
</tbody>
</table>

Bibliography

CURRICULUM VITAE

Family name: Hatkic
First name: Armela
Date of birth: May 22nd 1979
Place of birth: Travnik, Bosnia and Herzegovina
Nationality: Croatia

Since June 2005
PhD student at the laboratory of Prof. Martin E. Schwab, Brain Research Institute of the University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland

2004
Degree in biochemistry (Dipl. Biochem.), Univeristy of Zurich, Switzerland

2003 - 2004
Diploma Thesis: Designed Full-consensus Leucine-rich Repeat Proteins\under supervision of Prof. Andreas Plückthun

1999 - 2003
Student of Biochemistry at the University of Zurich, Switzerland

1995 - 1999
Grammar School of Immensee, Switzerland
Graduation in May 1999: Matura type B

1994 - 1995
Grammar School of Innsbruck, Austria

1993 - 1994
Grammar School of Volders, Austria

1985 - 1993
Elementary school of Travnik, Bosnia

PUBLICATIONS

ABSTRACTS

Acknowledgements

The present work would not have been possible without support of many people, colleagues and friends.

In particular I would like to thank:

Most importantly, my supervisor Professor Martin Schwab for excellent supervision, support and his commitment to guiding me through my doctoral research. I am especially grateful that he always found time to listen to my ideas and problems, for the friendly atmosphere he creates in the lab and for his unique talent for encouraging people.

I am very grateful to Prof. Peter Sonderegger and Prof. Lucas Pelkmans for joining my committee.

Dr. Vincent Pernet who was always there for fruitful scientific discussions and Dr. Dana Dodd who introduced to me a broad spectrum of cell biological methods.

Prof. Simon Halegoua for the pleasant, interesting and fruitful collaboration on the Pincher protein.

Dubravka Göckeritz-Dujmovic and Susanne Erb for assistance with cell culture, Stefan Giger for technical support, and Roland Schöb and Eva Hochreutener for graphical work.

The last four years in the lab would have not been exciting as they were without moral support, good advice and fun company from Anissa Kempf, Stella Kramer, Carole Mathis, Roman Willi and many other colleagues and friends inside and outside HIFO.

Meine Familie danke ich für die ihre Unterstützung und Liebe.
Meiner Mutter und meiner Grossmutter danke ich dafür, dass sie es mir ermöglicht haben meinen Träumen nachzugehen und für das Vertrauen schwierige Wege zu beschreiten.

Pascal, ich weiss nicht wie ich es ohne Deine Schulter, Deine Geduld und Deine Liebe geschafft hätte. Danke.