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And how wonderful it is!
In the limitless ocean of Myself,
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Summary

Most of life’s diversity arises from genetic differences between species, and between
individuals within a species. However, diversity also arises on the phenotypic level,
e.g. through the diversification of a genetically uniform cell population into mul-
tiple stable, distinct and co–existing phenotypes. Our general understanding of
phenotypic diversification is still in its infancy, yet this phenomenon is medically
relevant as it has been linked to, for instance, HIV–1 latency and the resistance of
pathogenic bacteria to antimicrobial agents.

Therefore, the fundamental research presented in this thesis aims at advancing
our understanding of the general principles surrounding and generating pheno-
typic diversification of genetically uniform cell populations. Following up on a
substantiated hypothesis derived from a chance observation, this thesis identifies
such general principles using as model system the adaptation of Escherichia coli ’s
central carbon metabolism from glucose to acetate growth.

As phenotypic diversification is an emergent property of multiple molecular in-
teractions, the identification of the generating mechanism amidst the molecular
complexity is not straight–forward and requires the help of mechanistic models.
However, the development of such models is severely hampered by uncertain val-
ues for the many parameters appearing in such models. To be able to nonetheless
construct and analyze such a model, a novel approach to obtain a sound system
understanding despite non–identifiable parameter values is presented in Chapter 2.
This so–termed divide–and–conquer approach draws on steady state -omics mea-
surement data and exploits a decomposition of the global parameter estimation
problem into independent subproblems. The solutions to these subproblems are
joined to the complete space of global optima, which can be easily analyzed. The
conditions at which the decomposition occurs are mathematically derived, and
practical strategies to fulfill these conditions are outlined. The approach is demon-
strated with a toy model.

In Chapter 3, using the divide–and–conquer approach, a large–scale differential
equation model of E. coli ’s central metabolism and its enzymatic and genetic reg-
ulation is constructed. With this model, the system–wide adaptations of metabolic
operation between glycolytic and gluconeogenic carbon sources (such as glucose
and acetate), which are on the molecular level not yet understood, are investigated
in mechanistic detail. First, it is shown that these adaptations can emerge from
the interplay of already known interactions and thus do not require e.g. a hith-
erto not identified transmembrane sensor for acetate. Second, it is shown that the
successful in silico adaptations follow the here proposed general mechanism of in-
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Summary

direct carbon source recognition via distributed sensing of intracellular metabolic
fluxes. This mechanism uses two distinct general motifs, termed pathway usage
and flux direction, to establish flux–signalling metabolites, whose bindings to tar-
get transcription factors form molecular sensors for intracellular metabolic flux.
These sensors are embedded in global feedback loop architectures that orchestrate
the regulatory adjustments to recognized changes in carbon source availability. By
connecting system-level understanding to molecular-level knowledge, these gen-
eral principles improve our understanding of bacterial metabolism’s operation in
environments with fluctuating carbon sources.

In Chapter 4, using measurement techniques with single–cell resolution, it is ex-
perimentally proven that a genetically uniform E. coli population diversifies into
two stable phenotypic subpopulations following a carbon source shift from glucose
to gluconeogenic substrates such as acetate. This population–level strategy differs
from the known diversification strategy of stochastic switching and is introduced
as responsive diversification. It is further shown that the molecular mechanism
responsible for generating the phenotypic subpopulations resides at the core of
central metabolism, is a subcircuit of the regulatory circuitry modeled in Chap-
ter 3, is centered on a there proposed flux sensor, and comprises two intertwined
feedback and feedforward loops on the levels of metabolic and genetic regulation.
This circuit ensures that only the cells most capable of gluconeogenic growth are
allowed to grow, and consequently encodes the novel function of performance–based
selection of phenotypes. These results show that within metabolism, phenotypic
multistability, which has so far only been observed in certain substrate uptake
pathways that feed into central metabolism, generalizes to central metabolism
and can thus be viewed as an inherent feature of its design.

The observation of responsive diversification within central metabolism natu-
rally raises the question why such diversification has evolved. Therefore, the op-
timality of this adaptation strategy is investigated in Chapter 5 with the help of
evolutionary game theory. By means of a mathematical model, it is shown that
in certain stochastic environments, population growth is not maximized by maxi-
mization of each cell’s growth rate but by responsive diversification of phenotypes.
Further, it is shown that this behavior ’resolves’ an apparent tragedy of the com-
mons dilemma, where selfish behavior of individuals is suboptimal to the whole
population, through the adaptation strategy of bet–hedging, where different cells
place different bets on the uncertain future. This population–level study is con-
nected to the intracellular level by arguing that the two phenotypes specialize
in opposing extremes of two molecular trade–offs; one of these trade–offs rests
on the principle of performance–based selection proposed in Chapter 4 and is as
such conceptually novel. When taken together, these results show that responsive
diversification of phenotypes upon carbon source fluctuations can simultaneously
optimize two intracellular trade–offs, increase the robustness of the total popula-
tion to stresses, and maximize the size of the total population in the absence of
stresses.

The general principles proposed by the here presented fundamental research,

iv



along with the discovery of phenotypic bistability within central metabolism, may
guide systematic disease research in finding ways to force cells trapped in sick
phenotypes back to healthy phenotypes without introducing mutations.
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Zusammenfassung

Die Vielfalt des Lebens beruht grösstenteils auf genetischen Unterschieden zwi-
schen den Arten sowie zwischen den Individuen innerhalb einer Art. Zusätzlich
entsteht diese Vielfalt aber auch auf phänotypischer Ebene, zum Beispiel durch
die Diversifizierung einer genetisch identischen Zellpopulation in mehrere stabile,
unterschiedliche und koexistierende Phänotypen. Unser Grundlagenverständnis
der phänotypischen Diversifizierung steckt noch in den Kinderschuhen, jedoch ist
dieses Phänomen medizinisch bedeutsam da es zum Beispiel mit der Latenz des
HIV–1 Virus und der Resistenz pathogener Bakterien gegenüber antimikrobiellen
Wirkstoffen in Verbindung gebracht wird.

Daher zielt die in dieser Arbeit vorgelegte Grundlagenforschung auf eine
Vertiefung unseres Verständnisses der allgemeingültigen Grundsätze ab, welche
phänotypische Diversifizierung erzeugen und sie umgeben. Diese Arbeit identi-
fiziert solche allgemeingültigen Grundsätze durch das Folgen einer fundierten Hy-
pothese, welche aus einer zufälligen Beobachtung abgeleitetet wurde. Als Modell-
system dient Escherichia colis Anpassung des Zentralstoffwechsels von Glucose–
zu Acetat–Wachstum.

Da phänotypische Diversifizierung aus dem Zusammenspiel vieler molekularer
Interaktionen emergiert, ist die Identifikation des sie erzeugenden Mechanismus
inmitten der molekularen Komplexität nicht trivial und erfordert die Hilfe mecha-
nistischer Modelle. Allerdings wird die Entwicklung solcher Modelle dadurch stark
behindert, dass die meisten Werte für die zahlreichen, in solchen Modellen vor-
kommenden Parameter unsicher sind. Um dennoch solche Modelle zu entwickeln
und zu analysieren, wird in Kapitel 2 ein neuartiger Ansatz präsentiert, der es
erlaubt, ein solides Systemverständnis trotz Parameterunsicherheiten zu erhalten.
Dieser hier so benannte Teile–und–Erobere Ansatz stützt sich auf im stationären
Zustand gewonnene -Omik Messdaten und basiert auf einer Zergliederung des
globalen Parameterschätz-Problems in unabhängige Teilprobleme. Die Lösungen
dieser Teilprobleme werden zum gesamten Lösungsraum der globalen Optima
zusammengefügt, welcher leicht analysiert werden kann. Die Bedingungen für das
Auftreten einer solchen Zergliederung werden mathematisch hergeleitet, und es
werden praktisch anwendbare Strategien erläutert um diese Bedingungen her-
beifzuführen. Der Ansatz wird anhand eines kleinen Beispiel-Modells demonstriert.

In Kapitel 3 wird der Teile–und–Erobere Ansatz angewandt um ein umfang-
reiches Differentialgleichungsmodell von E. colis Zentralstoffwechsel und seiner
enzymatischen und genetischen Regulation zu entwickeln. Mit diesem Modell wer-
den die systemweiten Stoffwechsel-Anpassungen zwischen Wachstum auf glyko-
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Zusammenfassung

lytischen und gluconeogenesischen Kohlenstoff–Quellen (wie Glukose und Ace-
tat), welche auf molekularer Ebene noch nicht verstanden sind, in mechanis-
tischem Detail untersucht. Zunächst wird gezeigt, dass diese Anpassungen aus
dem Zusammenspiel bereits bekannter Wechselwirkungen hervortreten können
und somit zum Beispiel ein bisher nicht identifizierter Transmembran-Sensor
für Acetat nicht erforderlich ist. Darüber hinaus wird gezeigt, dass den erfolg-
reichen Anpassungen im Modell der hier vorgestellte, allgemeingültige Mecha-
nismus der indirekten Substraterkennung durch verteilte Messung intrazellulärer
metabolischer Flüsse zugrunde liegt. Dieser Mechanismus verwendet zwei unter-
schiedliche allgemeingültige Motive, benannt Pfadnutzung und Flussrichtung, um
Fluss–signalisierende Metabolite zu erzeugen, deren Bindungen an Transkriptions-
faktoren molekulare Sensoren für intrazelluläre metabolische Flüsse erzeugt. Diese
Sensoren sind in globale Rückkopplungsarchitekturen eingebettet, welche die regula-
torischen Anpassungen an erkannte Substrat–Schwankungen aufeinander abstim-
men. Diese allgemeinen Grundsätze verbinden globales Systemverständnis mit de-
tailliertem biochemischen Wissen und vertiefen dadurch unserer Verständnis über
die Funktionsweise des bakteriellen Stoffwechsels in Umgebungen mit schwank-
enden Kohlenstoff-Quellen.

Mittels Messtechniken mit Einzelzell-Auflösung wird in Kapitel 4 experimentell
nachgewiesen, dass sich eine genetisch identische E. coli Population in zwei stabile
phänotypische Subpopulationen diversifiziert sobald sie mit einem Substratwech-
sel von Glukose zu einem glukoneogenesischen Substrat wie Acetat konfrontiert
wird. Diese Adaptationsstrategie auf Populationsebene unterscheidet sich von der
bekannten Strategie der Diversifizierung durch stochastisches Umstellen und wird
hier als responsive Diversifizierung benannt. Ausserdem wird gezeigt, dass sich der
für die Erzeugung der phänotypischen Subpopulationen verantwortliche moleku-
lare Mechanismus im Zentrum des zentralen Stoffwechsels befindet. Dieser Regu-
lationsmechanismus ist ein Teil der in Kapitel 3 modellierten Regulation, basiert
auf einem dort identifizierten Fluss–Sensor, und besteht aus zwei ineinander ge-
flochtenen Feedback und Feedforward–Regulationen auf den Ebenen der metabo-
lischen und genetischen Regulation. Dieser Mechanismus stellt sicher, dass nur
die Zellen wachsen dürfen welche besonders gut auf gluconeogenesisches Wachs-
tum eingestellt sind. Damit ermöglicht dieser Mechanismus die konzeptionell neue
Funktion der leistungsbasierten Selektion von Phänotypen. Diese Ergebnisse zeigen,
dass innerhalb des Stoffwechsels phänotypische Multistabilität nicht nur wie bisher
vermutet in vereinzelten Substrat–Aufnahmepfaden auftritt, sondern auch im Zen-
tralstoffwechsel erzeugt wird und daher als ein grundlegendes Designprinzip des
Zentralstoffwechsels betrachtet werden kann.

Die Beobachtung responsiver Diversifizierung innerhalb des Zentralstoffwech-
sels geht einher mit die Frage weshalb eine solche Diversifizierung evolviert ist.
Daher wird die Optimalität dieser Anpassungsstrategie in Kapitel 5 mit Hilfe
der evolutionären Spieltheorie untersucht. Mittels eines mathematischen Modells
wird gezeigt, dass in bestimmten stochastischen Umgebungen das Wachstum einer
Zellpopulation nicht durch die Maximierung des Wachstums jeder einzelnen Zelle
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maximiert wird, sondern durch responsive Diversifizierung in phänotypische Sub-
populationen. Darüber hinaus wird gezeigt, dass dieses Verhalten mittels der
Strategie der Absicherung von Wetten, bei der verschiedene Zellen verschiedene
Wetten auf die unbekannte Zukunft abschliessen, ein augenscheinliches Tragik der
Allmende Dilemma ’löst’, bei dem egoistisches Verhalten von Individuen subop-
timal für die Gesamtpopulation ist. Diese Adaptationsstrategie auf Populations-
ebene wird mittels der Argumentation, dass sich die beiden Phänotypen in ent-
gegengesetzte Extreme zweier molekularer Kompromisse spezialisieren, mit der
intrazellulären Ebene verknüpft. Einer dieser molekularen Kompromisse beruht
auf dem Prinzip der in Kapitel 4 vorgeschlagenen leistungsbasierten Selektion und
ist daher konzeptionell neu. Zusammengenommen zeigen diese Resultate, dass die
responsive Diversifizierung von Phänotypen nach Substratwechseln gleichzeitig die
Robustheit der Gesamtpopulation gegenüber Stress und die Grösse der Gesamtpo-
pulation in Abwesenheit von Stress erhöhen sowie zwei molekulare Kompromisse
optimieren kann.

Die aus der hier vorgelegten Grundlagenforschung hervorgegangenen allgemein-
gültigen Grundsätze sowie der Nachweis phänotypischer Bistabilität im Zentral-
stoffwechsel können der systematischen Krankheitsforschung als Leitfaden dienen,
um in einem krankhaften Phänotyp gefangene Zellen ohne zusätzliche Mutationen
auf einen gesunden Phänotyp zurückzuzwingen.
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Introduction

1.1 Relevance of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Complexity in the microbial world . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Complexity on the intracellular level . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Stochastic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Phenotypic multistability . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Computational systems biology . . . . . . . . . . . . . . . . . . . . . 8

1.3.4.1 Interaction–based models . . . . . . . . . . . . . . . . . . . 9

1.3.4.2 Constraint–based models . . . . . . . . . . . . . . . . . . . 10

1.3.4.3 Mechanism–based models . . . . . . . . . . . . . . . . . . 10

1.4 Complexity on the population level . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Evolutionary game theory . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Bet–hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Relevance of this thesis

Most of life’s diversity arises from genetic differences between species, and between
individuals within a species. However, the diversity of life is not limited to genetic
differences between individual organisms or cells. A second, epigenetic layer of di-
versity is added in the process of ’translating’ the genetic information into actual
cellular functioning. Such diversity, which is generated on the phenotypic level,
becomes apparent when organisms or cells with identical genomes differ from each
other. For instance, the fingerprints of genetically identical human twins can be
easily distinguished [82], and genetically identical cats display different coat pat-
terns and personalities [192].

Unfortunately, natural selection eventually resulting from such multi–layered
diversification becomes threatening when this selection concerns diseases. For in-
stance, tumors are long known to consist of a highly diversified cancer cell popula-
tion [59]. A small fraction of these cells often survives therapeutic treatment and
rapidly proliferates into a new tumor; furthermore, having emerged out of natural
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selection in treatment conditions, the newly emerged tumor is often more resistant
to future treatment [59]. Similarly, a small fraction of a pathogenic bacterial popu-
lation often survives antibiotic treatment and continues to proliferate thereafter in
the infected host. For instance, the opportunistic pathogen Staphylococcus aureus
is one of the major causes of community–acquired diseases ranging from superficial
skin infections to life–threatening systemic infections and very effectively resists
treatment with antimicrobial agents [120]. A last prominent example is given by
the exceptionally rapid diversification of the virus HIV, making drug discovery a
very challenging task [173, 174].

To find cures for such diseases, a general understanding of the diversification–
generating molecular processes is invaluable [97, 99]. A significant part of the
diversification occurs on the genetic layer, e.g. through the increased mutation
rates of cancer cells. However, phenotypic diversification of genetically identical
cells is also known to significantly contribute to the diversification of diseases. For
instance, in an isogenic population of bacteria, resistance to antimicrobial agents
is transiently acquired by a phenotypic subpopulation [12]. Also, HIV–1 expresses
two phenotypic subpopulations that correspond to latent and productive HIV–1
infection [27, 224]. Whereas the fundamentals of genotypic diversification have
been studied for decades, phenotypic diversification has only recently received
community–wide attention (for instance, see the reviews [166, 168, 193]), which
is why our understanding of phenotypic diversification is still in its infancy [161].
Hence, there is a pressing need for fundamental research on phenotypic diversifi-
cation.

The aim of the fundamental research presented in this thesis is to advance our
understanding of the general principles surrounding and generating phenotypic
diversification of isogenic cell populations. Because such general principles can be
easier identified when the cellular background is comparatively simple, this thesis
investigates the model bacterium Escherichia coli. More specifically, because me-
tabolism is known to be closely connected to several major diseases (for instance,
see [126, 135, 222]), and the central metabolism of E. coli is an exceptionally
well–studied and well–characterized system, this thesis focuses on the emergence
of phenotypic multistability in E. coli ’s central metabolism.

This introduction is structured as follows. First, as this thesis identifies general
principles using a microbe, the complexity of the microbial world and the general
approaches followed by this thesis to address this complexity are briefly classified.
This classification is followed by brief reviews of several fields that are of relevance
to this thesis. The first of these reviews concerns the emergence of phenotypic mul-
tistability from nonlinear interactions and stochastic events, the second the general
modeling approaches in computational systems biology, and the third evolutionary
game theory. These reviews are followed by an outline of this thesis.
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1.2 Complexity in the microbial world

1.2 Complexity in the microbial world

In the microbial world, complexity has multiple sources, is of different types, and
occurs on different layers. To obtain a comprehensive understanding of microbial
complexity, these different aspects of complexity need to be appreciated in con-
junction [96]. This section classifies the types of microbial complexity investigated
in this thesis.

A popular notion of complex systems is that very large numbers of simple and
identical elements interact with each other to produce complex behaviors [95].
On the intracellular level, however, complexity does not arise from interactions
between a large number of identical elements. Rather, intracellular complexity
arises from selective interactions between a large number of functionally special-
ized elements, most prominently proteins. The behavior of cells arising out of such
complex interaction patterns is probably best described through the term ’coher-
ent’ [95]. We thus need to understand how coherent behavior arises out of selective
interactions between functionally specialized elements. It has long been known that
the behavior of a complex system depends at least as much on the interactions
between the system’s components as on the properties of the components them-
selves [227]. Hence, we need to understand the properties of individual genes and
proteins and also understand the structure, function and dynamics of the system
that is formed through interactions between these elements [96]. This aspect of mi-
crobial complexity, which is further introduced in Sections 1.3.1, 1.3.2 and 1.3.3,
is researched by the scientific discipline of systems biology. The systems biology
approach of this thesis is classified in Section 1.3.4 and applied in Chapters 2, 3
and 4 of this thesis.

On the population level, the emergence of complexity does follow the popular
notion of arising from interactions between many identical elements — complex-
ity arises from the interplay of genotypic and phenotypic (sub)populations, each
comprising large numbers of almost identical individuals, with each other and the
environment. It has long been noted that this type of complexity can lead to
counter–intuitive and complex phenomena [218], giving rise to the scientific disci-
pline of game theory with applications mostly in the social sciences. Traditional
game theory has been merged with population biology to the field of evolution-
ary game theory, which aims at understanding the phenomena that emerge when
a large number of almost identical cells interact with each other and the envi-
ronment [129]. This aspect of microbial complexity, along with a brief review of
the scientific discipline of evolutionary game theory, is further introduced in Sec-
tion 1.4. Population–level complexity is the topic of Chapter 5 of this thesis.

1.3 Complexity on the intracellular level

The specific aspect of intracellular complexity investigated by this thesis is the
emergence of multiple stable, distinct, and co–existing phenotypes within an iso-
genic cell population. Such phenotypic diversification, leading to phenotypic multi-
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Chapter 1 Introduction

stability, arises from the interplay of nonlinear molecular interactions and stochas-
tic events [166, 168, 193]. In the following sections, intracellular nonlinearity and
stochasticity are first separately reviewed in Sections 1.3.1 and 1.3.2, respectively.
Then, the emergence of phenotypic multistability from the interplay of intracellular
nonlinearity and stochasticity is reviewed in Section 1.3.3.

1.3.1 Nonlinearity

If the dependency of an entity y on another entity x is linear, it can be math-
ematically described through the linear model y = a x + b, with parameters a
and b quantifying the dependency. Such perfect linearity exist only in the world
of mathematics, not in real nature. However, in certain situations, linear models
are sufficient to capture the dominant behavior of a natural process. For instance,
when the concentration of an intracellular compound x is sufficiently large and the
cellular cytosol is sufficiently well–mixed, the diffusion rate r of an intracellular
compound x due to the cell’s growth rate µ follows approximately r = µ x; if the
compound is also subject to degradation, the combined diffusion and degradation
rate rd is approximately given by rd = (µ + kd) x, with kd the first–order rate
constant of the degradation. Another example is provided by an enzyme whose
catalyzed reaction rate r can be approximated (i) over the whole range of its sub-
strate concentration S with a nonlinear kinetics, e.g. of Michaelis–Menten type
r = vmax S/(S + KS) with vmax the maximal reaction rate and KS the affinity
constant for the substrate, and (ii) for the range of small substrate concentra-
tions with the linear model r = vmax S/KS . Because linear systems behave in a
straight–forward and easily predictable manner, linearizations are in the field of
engineering extensively applied to reduce the complexity of mathematical models
and to thus facilitate the construction of man–made systems.

Whereas the possible behavior of linear systems is simple and limited, even
small nonlinear systems can exhibit astoundingly complex behavior. For instance,
depending on the choice of parameters, a simple predator–prey model exhibits
oscillations and chaotic behavior [216]. The dynamic behavior of nonlinear intra-
cellular systems is with success (for instance, see [144]) investigated by the field of
biochemical system theory, using among other tools phase–plane plots and bifurca-
tion analyses [183]. The method of bifurcation analysis is also applied in Chapter 4
of this thesis.

The analysis of nonlinear processes within living cells has led to a quantitative
understanding of many, partly counter–intuitive phenomena. One example of such
a counter–intuitive phenomenon is provided by the branch point effect [109]. This
effect combines two simple Michaelis–Menten–type enzymes catalyzing the first di-
verging reactions after a branch point of metabolic pathways into an ultrasensitive
switch, which can abruptly change the flux distribution through the two diverging
pathways. The effect occurs for instance at the branch point of the TCA and the
glyoxylate shunt in E. coli, where the Hill coefficient of the equivalent sigmoidal
switch has been quantified as 8 or higher (a Hill–coefficients of 2 is already quite
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high). It was later shown that such ultrasensitivity can also occur in converging
as well as in linear pathways [49]. The branch point effect appears in Chapter 3 of
this thesis.

Another characteristic of nonlinear systems that is not exhibited by linear sys-
tems is the capability for multiple steady states. In the context of cellular opera-
tion, multiple stable steady states correspond to multiple stable protein concentra-
tions, which translate into multiple stable and distinct phenotypes among which
a particular cell may ’choose’. The mechanism that generates a bistable protein
concentration is illustrated in Figure 1.1 and rests on the existence of three in-
tersections between the protein’s concentration–dependent curves of production
and combined protein dilution & degradation rates. Whereas protein dilution and
degradation rates naturally depend on the protein concentration (see above), a
protein production rate depends on the protein concentration only if these two
entities mutually affect each other, requiring them to be involved in some form
of feedback loop architecture. To enable three intersections between the two rate
curves, the feedback architectures must be of a certain type, for instance positive
or double–negative [193]. Further, the production rate curve must be of a certain
shape and is most prominently S–shaped, i.e. sigmoidal [193]. Such a sigmoidal
shape arises from cooperative binding events, which usually occur during the pro-
cess of gene expression [193]. In Chapter 4 of this thesis, it will be shown that a
sigmoidal shape of the protein production curve can also result from propagation
of cooperative effects introduced by allosteric enzyme regulation on the metabolic
layer.

1.3.2 Stochastic events

All events inside a biological cell ultimately depend on probabilistic collisions be-
tween molecules [147]. From such basic physical principles, it has long been pre-
dicted [186] that the concentrations of intracellular molecules are to a potentially
large degree statistically uncertain, or ’noisy’. Such intracellular randomness has
also long been experimentally observed [20, 125, 137, 197] and theoretically ana-
lyzed [21].

The advent of new measurement techniques with single–cell resolution, most
notably fluorescence microscopy and flow cytometry [32] in conjunction with fluo-
rescent protein reporters [195, 207], together with a renewed interest in the theoret-
ical implications of molecular noise [5, 130, 131], encouraged the first quantitative
studies of intracellular randomness [18, 28, 50, 116, 143]. These studies focused on
random events in the central dogma of molecular biology, meaning in replication,
gene activation, transcription, and translation; they showed that autorepression
of replication and transcription suppresses noise, and that there are differences
between the noise statistics of prokaryotes and eukaryotes. It has further been
shown that noise levels increase with decreasing molecular abundances [14]. Taken
together, these studies point to low–copy mRNAs as the primary source of cellular
randomness, a view that has been adopted by the community [166, 168, 193].
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Figure 1.1: Generation of phenotypic multistability. Two simultaneously available stable
steady states (filled circles), with convergence regions separated by an unstable steady
state (empty circle), the watershed, arise where the rates of protein production and com-
bined degradation & dilution intersect and are thus equal. The arrows in the bottom bar
point into the direction of system dynamics; when protein production exceeds dilution &
degradation, the concentration increases, and vice versa. A diversification of phenotypes
with bistable protein concentrations occurs when intracellular randomness causes some
cells to reside in the low and others in the high stable steady state.

However, it has been noted [147] that despite of these findings, low copy mRNA
may in fact not be the primary source of intracellular randomness, and that the fo-
cus of the community on genes, RNAs and proteins may very well turn out to be a
purely sociological choice, reflecting how attention is rather given to simplified car-
toons of the promoter activation, transcription and translation processes than to
the actual physical properties. This objection is supported by several findings. For
instance, the instantaneous events assumed by simplified cartoons contrast reality,
where each birth or death of a macromolecule involves several small steps and cre-
ates a memory between individual events. Accordingly, it has been shown [151] that
gestation and senescence periods, which are in the case of mRNA of considerable
length due to the elongation phases of transcription and translation, significantly
reduce the generated noise without requiring higher molecule abundances. Further,
it is known that the anabolic nature of protein synthesis, where smaller subunits
are joined together, generates enormous fluctuations in the levels of charged tR-
NAs [234]. Noisy protein concentrations may thus be a propagated effect of noisy
levels of charged tRNA, not mRNA [147]. Lastly, it has been shown [16] that the
chromosomal positioning of a gene can have a larger influence on noise statistics
than the copy number of transcribed mRNA.
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Whereas the primary origin of intracellular randomness remains unclear [148],
a unified theory exists for the propagation of noise through the cellular regulatory
network [146]. This theory is complemented with experimental studies on noise
propagation [6, 18, 76, 132, 150, 152, 182], which show that intracellular noise can
be extensively manipulated, such as low–pass filtered or suppressed, by various
regulatory architectures.

Propagation of noise through the cellular network can have drastic consequences
on network operation. On a detailed level, for instance, molecular noise can sig-
nificantly increase the sensitivity of intracellular regulation [149]; however, it sig-
nificantly decreases the ultrasensitivity of the branch point effect [22]. Therefore,
stochastic fluctuations must be carefully considered when sensitive cellular pro-
cesses are investigated. On a global level, for instance, there is increasing evidence
that aging may be surprisingly dependent on the effects of intracellular random-
ness [11, 136, 160, 170]. Another important effect of noise propagation is the phe-
nomenon of phenotypic multistability, which is reviewed in the next section.

1.3.3 Phenotypic multistability

The phenomenon of phenotypic multistability, meaning the co–existence of mul-
tiple, distinct phenotypes within an isogenic cell population, has long been ob-
served [137, 197]. Although the mechanism for the generation of phenotypic multi-
stability has already been proposed as early as 1961 [134], phenotypic multistabil-
ity has only recently received widespread attention in the wake of the re–emerging
stochasticity field (see Section 1.3.2). Phenotypic multistability emerges when in-
tracellular noise (see Section 1.3.2) causes different cells of an isogenic population
to assume different, simultaneously available steady states, or phenotypes (see
Figure 1.1 and Section 1.3.1).

Phenotypic multistability has first been discovered in the lac operon of
E. coli [137]. Research on the lac operon has continued ever since, and the system
is now well characterized through a combination of experiments and system the-
ory analysis [144]. Another classic example of phenotypic bistability is the lysis or
lysogeny of bacteriophage λ [65, 156], a virus that infects E. coli and, soon after
infection, either reproduces quickly, thereby killing the host and releasing phage
particles (lytic pathway), or integrates in the genome of the host and remains dor-
mant (lysogenic pathway). The developmental programme that controls the type
of infection has become a paradigm for developmental switches [193].

Further examples of phenotypic multistability in the microbial world abound
and are by far not limited to the swarming motility [89], the sporulation [212] and
the competence for DNA uptake from the environment [202] in Bacillus subtilis, the
acquisition of antibiotic resistance [12] in Escherichia coli, fruiting body formation
in Myxococcus xanthus [176], flagellin phase variation in Salmonella enterica [232],
and galactose utilization in Saccharomyces cerevisiae [1].

Within metabolism, phenotypic bistability has so far been observed in the sub-
strate utilization pathways of lactose [137, 144] and galactose [1]. As these bistable
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substrate utilization pathways are of a peripheral nature, the core of central meta-
bolism into which these pathways feed is still believed to operate homogeneously
throughout an isogenic cell population. This traditional view is challenged in Chap-
ter 4 of this thesis.

1.3.4 Computational systems biology

To investigate the aspects of intracellular complexity reviewed in Sections 1.3.1,
1.3.2 and 1.3.3, a computational systems biology approach is followed in Chap-
ters 2, 3 and 4 of this thesis. Therefore, the here chosen computational systems
biology approach and the here used types of computational models are briefly
reviewed and classified next.

In general, systems biology aims at obtaining a system–level understanding
grounded in molecular–level knowledge [96]. To obtain this understanding, sys-
tems biology approaches follow an iterative cycle between computational predic-
tion and experimental testing [43]. Computational predictions are generated by the
field of computational systems biology, which has two distinct and complementary
branches [96]. The first branch generates hypotheses through data–mining, using
statistical analyses to extract hidden patterns from huge quantities of experimental
data. The second branch generates hypotheses through simulation–based analyses
of in silico models. The contributions of Chapters 2, 3 and 4 of this thesis belong
to this second branch of computational systems biology.

Simulation–based approaches can be used to understand how very specific molec-
ular interactions work together to accomplish a very specific function. For instance,
a comprehensive in silico model has been developed to deconvolve and quantify the
contributions of multiple cellular processes on the phosphorylation level of a spe-
cific regulatory molecule [24]. However, simulation–based approaches can also be
used to uncover general design principles, which increase our general understand-
ing of cellular operation. Of particular interest for this thesis are general regulatory
motifs, which are defined as small, repeated, perhaps evolutionarily conserved reg-
ulatory subnetworks, classifiable on the basis of function, architecture, dynamics,
or biochemical process [45, 69, 164, 228]. Examples of general regulatory motifs
include the regulatory motifs of simple switches [17, 62], dual–time switches [31],
oscillators [63], memory [5], bandpass frequency filters [194], noise filters [180],
and noise amplifiers [5].

Novel general regulatory motifs are proposed in Chapters 3 and 4 of this thesis.
These motifs are derived with the help of computational models, which are essen-
tial to understand the complexity of biological systems [95]. Based on the chosen
level of detail, computational models of cellular systems have been classified as
interaction–based, constraint–based and mechanism–based [198]. This classifica-
tion is used also here to place the mechanistic modeling approach of this thesis
into a wider framework.
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1.3 Complexity on the intracellular level

1.3.4.1 Interaction–based models

The least complex type of models are interaction–based models. These models only
cover the interactions between components, not the stoichiometry or the rates of
these interactions, are static, and do not contain any parameters. Examples of
interaction–based models include networks of metabolic reactions [86], protein–
protein interaction networks [217], and the yeast genetic interaction network [206].

Interaction–based models are primarily used to analyze network topology, mean-
ing the web of interactions between components, using methods from graph the-
ory [15]. The principle aim of such analyses is to uncover the design principles
that underlie network topology. One such design principle is the general organiza-
tion of metabolic networks into many small, highly connected topological modules
that combine in a hierarchical manner into larger, less cohesive units. Within Es-
cherichia coli, this hierarchical modularity closely overlaps with known metabolic
functions [169]. Modularity is a welcome property for the researcher, as it in-
creases the autonomy of cellular sub–systems and thus allows for their detailed
study in isolation of the remainder of the cell [69, 140]. This important finding of
interaction–based model analyses, cellular modularity, is exploited in Chapter 3 of
this thesis.

Further research has revealed that cellular networks are not only composed
of topological modules, but also of few motifs, which are small, elementary func-
tional units of few interactions that are statistically overrepresented and conserved
throughout the whole network. For instance, it has been determined [190] that the
transcriptional regulation network of Escherichia coli harbors three distinct, gen-
eral motifs. Another study [111] showed that the transcriptional regulation network
of Saccharomyces cerevisiae contains the same three motifs, and three more. Us-
ing a more refined detection method, subsequent studies detected even more such
motifs in the transcriptional regulation network of Escherichia coli [121, 122].

As the architecture of a network constricts its function and reflects its evolu-
tion, topological analyses have also attempted to discover general functional or
evolutionary principles. Most notably, it was proposed that cellular networks are
’scale–free’ [86, 220], meaning that few highly connected hubs hold many less con-
nected components together. It was further proposed that this property might have
evolved because it conferred topological, functional and dynamical robustness to
the cell [15]. However, later studies [4, 23] have cast severe doubts on these find-
ings and their interpretations. It was concluded that analyses of network topology
are restricted to studying the general principles of cellular organization but fail
to predict network function and evolution [198]. To overcome these limitations
of interaction–based models and, for instance, further examine the modules and
motifs uncovered by topological analyses, more sophisticated modeling approaches
are required.
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1.3.4.2 Constraint–based models

Like interaction–based models, constraint–based models are static, do not con-
tain any parameters, and describe the topology of a network. However, in ad-
dition to topological constraints on network behavior, constraint–based models
also constrain the network’s behavior through considering the stoichiometry of
interactions, which includes reaction directions [198]. Because the stoichiometry
of metabolic reaction networks is generally well–known, constraint–based mod-
els lend themselves especially to the study of metabolic networks. Examples of
contraint–based models include those of the metabolic networks of Escherichia
coli [172], Saccharomyces cerevisiae [55], and the opportunistic pathogen Staphy-
lococcus aureus N315 [71].

Unlike interaction–based models, constraint–based models are capable to gen-
erate predictions on network function and evolutionary optimality. For instance,
constraint–based models can be used to predict the viability of knockout mutants
with a success rate of approximately 80% in yeast [53]. The prediction of metabolic
flux distributions is possible through flux balance analyses [211]. Further, a com-
bined experimental and in silico study revealed that E. coli adaptively evolves to
attain the growth capacity predicted by the constraint–based model [78]. When
combined with metabolome data, constraint–based models can be used to pre-
dict active regulatory sites [105], as is done in Chapter 3 of this thesis. When
combined with transcriptome data obtained from comparative microarray anal-
yses, constraint–based models can further be used to reveal those metabolites
around which the most significant transcriptional changes occur [145]. This ap-
proach was used by the author of this thesis to compare the transcriptome of a
clinical Staphylococcus aureus N315 strain with a normal phenotype to that of its
isogenic mutant with a stable small–colony–variant phenotype. This side project,
which is not included in this thesis, yielded new insights into the pathogenesis of
S. aureus [77, 188].

However, the usability of constraint–based models is limited. Because these mod-
els are static, they cannot capture dynamic processes and therefore cannot generate
detailed, quantitative predictions on cellular dynamics.

1.3.4.3 Mechanism–based models

Unlike interaction–based and constraint–based models, which are static,
mechanism–based models are dynamic and can be used to generate detailed,
quantitative predictions on the dynamics of cellular processes [198]. By analyz-
ing specific cellular subsystems in mechanistic detail, mechanism–based models
exploit the modularity of cellular interaction networks (see Section 1.3.4.1). Ex-
amples of mechanism–based models of cellular subsystems include models of gly-
colysis [24, 36] and the lac operon [144] in E. coli, bacterial chemotaxis in E. coli
and in B. subtilits [165], the target–of–rapamycin (TOR) signalling pathway in S.
cerevisiae [104], the circadan rhythm in Drosophila melanogaster [209], and the
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epidermal growth factor (EGF) signal–transduction cascade in humans [185].

In conjunction with experiments, mechanism–based modeling approaches can
elucidate the function of known cellular interactions (for instance, see [102, 144]),
reveal novel interactions and operating principles of specific systems (for instance,
see [104]), and extract general design principles out of small model systems (for in-
stance, see [144]). However, unlike interaction–based and constraint–based models,
mechanism–based models usually contain many parameters whose values need to
be estimated from experimental data [85]. Because the availability of measurement
data is often limited [210], the parameter estimation problem is usually underde-
termined and remains a major bottleneck in the development of useful mechanistic
models. This problem is addressed in Chapter 2 of this thesis, where a method is
developed to analyze mechanistic models with unidentifiable parameter values.

Hampered by unidentifiable parameter values and uncertain model structures,
most mechanism–based approaches have so far been limited to the study of rela-
tively small cellular subsystems [95]. Two notable exceptions are a model of the
human EGF signal transduction cascade [185], which contains over 100 equations
and kinetic parameters, and a model of E. coli ’s glycolysis [24], which comprises
38 enzymatic reactions, more than 50 metabolites, and the expression of 17 en-
zymes. In Chapter 3 of this thesis, a novel, large–scale model of E. coli ’s central
carbon metabolism is presented. To the author’s best knowledge, the presented
model is the third large–scale mechanistic model of intracellular processes so far.

What sets the large–scale mechanistic model presented in this thesis apart from
the other two such models is the primary focus on general principles rather than
on investigating specific molecular phenomena: The main result of one of the two
above mentioned studies is the identification of the parameter that most sensitively
determines the signal efficacy of the EGF–induced response [185]; the main result
of the other study is the quantification of the contributions of multiple cellular
processes on the phosphorylation level of a specific regulatory molecule [24]. In
contrast, the main result of Chapter 3 of this thesis is the identification of the
general principle of distributed sensing of intracellular metabolic fluxes, which,
importantly, requires the here investigated high level of complexity to emerge.

1.4 Complexity on the population level

On the population–level, complexity arises from the interplay of genotypic and
phenotypic (sub)populations, each comprising large numbers of almost identical
individuals, with each other and the environment 1.2. This type of complexity is
investigated by the scientific discipline of evolutionary game theory, which is briefly
reviewed in this section and applied in Chapter 5 of this thesis to investigate the
population–level consequences of responsive phenotypic diversification, a general
principle introduced in Chapter 4 of this thesis.
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1.4.1 Evolutionary game theory

As a cell constantly interacts with other cells and its environment, complex interac-
tion patterns can emerge on the population–level. Therefore, even if the molecular
complexity inside a biological cell is understood through its reduction to basic
design principles, it may remain unclear which network components and architec-
tural features exist to ensure survival in a particular environment — the identified
features may provide a fundamental function, lead to competition, mutualism,
commensalism, or parasitism, or may simply be byproducts of evolution without
significantly contributing to survival [228].

The field of evolutionary game theory [129], which is a combination of tra-
ditional game theory and population biology, aims to understand the emerg-
ing complexity on the population–level; it is becoming an increasingly popular
tool [9, 47, 64, 123, 124, 219, 229] to explain observed patterns of phenotype
expression and the compositional dynamics of viral and bacterial populations.
In evolutionary games, different microbial strains compete with each other, us-
ing strategies whose payoffs (Darwinian fitness, or average reproductive success)
depend on the strategies of other microbial strains. Evolutionary game theory pre-
dicts phenotype–expression patterns as evolutionary stable strategies in a game
pitting microbe against microbe, and microbe against nature [228].

For instance, through an evolutionary game theory study combined with tar-
geted experiments, it has been explained why certain competitive communities
of bacteria coexist. Remarkably, such coexistence occurs because these communi-
ties play a game of rock–paper–scissors, where rock crushes scissors, scissors cuts
paper, and paper covers rock [91]. This game, which is also a poison–antidote
game [139], arises from a pairwise competition of (i) the expensive and aggres-
sive strategy ’Produce both a toxin and its antidote’ (rock), (ii) the cheaper and
defensive strategy ’Produce the antidote but not the toxin’ (paper), and (iii) the
cheapest but risky strategy ’Produce neither toxin nor antidote’ (scissors). The
payoffs of these three strategies are, in terms of average reproductive success, in
the microbial game equivalent to the winning rules of the children’s game. This
study also highlights the importance of considering localized interactions between
cells. Such localized interactions are the focus of spatial games, which have also
received much attention in recent years [124, 138].

Another remarkable, experimentally verified application of evolutionary game
theory explains the steady-state coexistence of two Saccharomyces cerevisiae–
strains in a well-mixed culture [64]. The coexistence has been shown to follow
the rules of a snowdrift game, which arises because the performance of either of
the two competing strains increases when it becomes rare.

Among the many possible playing strategies known to game theory, two are
of particular importance for this thesis. These two strategies, bet–hedging and
cooperation, are introduced in the following two sections.
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1.4.2 Cooperation

Mutual cooperation is the globally optimal strategy of the prisoner’s dilemma
game, in which selfish behavior of the two competing parties leads to a suboptimal
solution. The dilemma arises because defection of one party has potentially dis-
astrous consequences for the ’nice but stupid’ party that chose to cooperate. The
prisoner’s dilemma game occurs frequently in nature; in the microbial world, exam-
ples include the lowered fitness of an RNA virus at high rates of co–infection [208],
the suboptimal proliferation dynamics of an E. coli mutant [219], and the cooper-
ation between tumor cells [8].

When the prisoner’s dilemma game is played by more than two parties, it
becomes a social goods game [68], and the arising dilemma, which has already
been conceptualized in 1833 [115], is since 1968 known as the tragedy of the com-
mons [67]. The tragedy lies in the access of self–interested individuals to a common
resource that can be exploited either rapidly or efficiently [112, 123]. It has been
convincingly argued [67] that unless the access to the common resource is regulated
through the imposition of higher–level incentives, selfish behavior of individuals
depletes the resource rapidly and inefficiently, with potentially disastrous conse-
quences for the resource, and thus for the population as a whole.

For instance, when human society is confronted with a tragedy of the com-
mons dilemma, which occurs e.g. when the common resource ’clean air’ is selfishly
polluted e.g. as a consequence of cost reduction, the arising tragedy, ’depletion’
of clean air, can only be averted through the imposition of laws that penalize
excessive emissions. In biology, the tragedy of the commons dilemma has been ap-
plied to numerous, recently reviewed scenarios and has been classified into three
types [163]:

• Type 1: A pre–existing, extrinsic resource over which individuals in a group
or population compete. For instance, competition of phages within the host
leads to a suboptimal virulence [90].

• Type 2a: A social good formed by cooperating individuals (cooperative en-
vironment). For instance, competition between genetic lineages within an
individual leads to lower individual fitness [56].

• Type 2b: A social good formed by cooperating individuals restraining from
conflict (non-competitive environment). For instance, restraint from plant
competition for light enables all plants to allocate more resources to repro-
duction unless individuals forgo the noncompetitive environment created by
abstaining from growing taller [225].

Additionally, biological tragedy of the commons have been classified into two
classes [163]:

• Collapsing: A situation in which selfish individual behavior results in the
entire resource vanishing. For instance, when Cape honey bee workers cease
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to help the colony and instead invest in their own selfish reproduction, very
few individuals become workers, and in turn, the colony collapses [127].

• Component: A situation in which selfish individual behavior results in a
lower average fitness for the group, but the group is still able to persist on
the resource in question (Type 1) or benefit to some degree from the social
good (Types 2a and 2b); the resource has not disappeared completely. The
above examples provided to illustrate the three types of tragedies are all
component tragedies.

The tragedy of the commons dilemma is especially widespread in microbial
populations [159]. However, it arises only if there are no direct benefits to re-
straint [67]. Therefore, apparently resolved tragedies might, upon close examina-
tion, turn out not to be tragedies in the first place [163]. For instance, sentinel
behavior in meerkats has the direct personal advantage from being watchful [40];
thus, sentinel behavior is not a cooperative but a selfish bet–hedging strategy (see
next section), with the sentinel betting on the presence of nearby predators. Care
must therefore be taken when distinguishing cooperative from selfish behavior,
as is demonstrated in Chapter 5 of this thesis through close examination of an
apparent tragedy in the microbial world.

1.4.3 Bet–hedging

Facing an uncertain future, microbial populations are known to diversify into mul-
tiple phenotypes such that after unexpected environmental changes, at least one of
the phenotypes will be well–adapted [41]. Such diversification has been shown, both
theoretically [106, 107, 205] and experimentally [2], to be the optimal response in
certain stochastic environments. Importantly, it was found that phenotypic varia-
tion is an evolvable trait, with interphenotype switching rates, like those between
the two stable states of gene expression in a bistable system, being tuned to the
frequency of environmental changes [2].

However, although phenotypic diversification does in these environments max-
imize the representation of the genotype in future generations, this strategy is
selfish and as such fundamentally different from cooperation: Individuals indepen-
dently place their own (selfish) bets on the uncertain future; as different individuals
place different bets, the whole population effectively spreads its risks, or ’hedges its
bets’ [187]. In recent years, bet–hedging has received much interest as a strategy
of microbes against novel and hostile environments [7, 201, 229].

One example of bet–hedging in microbes is the sporulation of B. subtilis. Under
conditions of nutrient starvation, an isogenic B. subtilis population splits into two
phenotypic subpopulations. One subpopulation sporulates, and the other utilizes
alternative metabolites to continue growth [214]. As benefit, sporulating cells har-
vest resistance to various environmental conditions; these cells ensure the preser-
vation of the clonal lineage. The two benefits of cells that delay or avoid sporu-
lation are (i) slow proliferation on nutrients released from lysis of other cells, a
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behavior termed cannibalism or fratricide [39], and (ii) the capability for rapid
resumption of growth in the event of returning nutrient conditions. In contrast,
cells that have sporulated are committed to a long-term process of spore formation
and subsequent germination. Therefore, each of the two phenotypes is a form of
specialization that increases efficiency in one area at the expense of the other [213].

The classic example of microbial bet–hedging, however, is given by persister
cells [113]. Persister cells are in a stochastically acquired [12], transient, growth–
impaired state that confers resistance to antibiotics. Somewhat analogous to the
bet–hedging strategy of sporulation, persistence is a form of bet–hedging that
ensures survival during catastrophes [107]. Importantly, although bet–hedging is
primarily a strategy to anticipate unexpected changes in environmental conditions,
it is also a strategy of a social goods game — persistence of a phenotypic subpop-
ulation can benefit another, actively metabolizing subpopulation as persister cells
do not compete for limited resources [61]. Such a conclusion also holds true for
B. subtilis spores. In Chapter 5 of this thesis, a situation is investigated where
bet–hedging has a similar social component.

1.5 Outline of this thesis

This thesis aims at advancing our understanding of the general principles sur-
rounding and generating phenotypic diversification of isogenic cell populations.
The model system used to identify such principles is the central carbon meta-
bolism of the bacterium Escherichia coli. The research presented in this thesis
originated from the chance observation that following a carbon source shift from
glucose to acetate, certain E. coli mutant strains do not visibly grow for a re-
producible 5 days before resuming exponential growth fairly suddenly. This and
other early observations led to the substantiated hypothesis that such a prolonged
’lag time’ is due to diversification of the total population into a growing and a
non–growing phenotypic subpopulation. A prolonged ’lag time’ would arise if the
growing cells were initially so small in number that their growth, obscured by the
majority of non–growing cells, needs 4–5 days before it visibly affects the size of
the total cell population (see Figure 4.1). As phenotypic diversification has not
yet been identified in central metabolism, its discovery in this cellular core pro-
cess, along with the identification of the generating molecular mechanism and the
underlying adaptation strategy on the population level, would be a significant
finding.

As phenotypic multistability is an emergent property of nonlinear interactions
and stochastic processes, requiring feedback loop architectures and cooperative
binding events (see Section 1.3), its identification amidst the molecular complex-
ity of central metabolism is not straight–forward. To examine and understand
the dynamics arising from such cellular complexity, mechanistic models are es-
sential [95]. However, a translation of our current knowledge of E. coli ’s central
metabolism into mechanistic models is severely hampered by uncertain values for
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the many parameters appearing in such models. To be able to nonetheless con-
struct and analyze such a model, a novel approach to deal with underdetermined
biochemical models is presented in Chapter 2.

In Chapter 3, the novel approach developed in Chapter 2 is used to construct a
large–scale mechanistic model of E. coli ’s central metabolism and its regulation.
This model demonstrates that from the interplay of known, local interactions in
E. coli ’s central metabolism, the system-wide adaptations of metabolic operation
between glycolytic and gluconeogenic carbon sources (such as glucose and acetate)
can emerge. The model further demonstrates that these adaptations are centered
on a new regulatory motif, which establishes molecular sensors for intracellular
metabolic flux.

In Chapter 4, experimental proof is provided for the diversification of an iso-
genic E. coli population into two stable phenotypic subpopulations following a
carbon source shift from glucose to acetate. It is further shown that the mecha-
nism responsible for generating the phenotypic subpopulations is a subcircuit of
the regulatory circuitry modeled in Chapter 3 and is centered on a there proposed
flux sensor. These results show that phenotypic diversification generalizes to cen-
tral metabolism and can thus be viewed as an inherent feature of its design. Among
the new, general principles derived from these results is the novel population–level
adaptation strategy of responsive diversification.

The occurrence of multiple stable phenotypes in the here studied model sys-
tem naturally raises the question why such phenotypic diversification has evolved.
Therefore, the optimality of the population–level adaptation strategy introduced
in Chapter 4, responsive diversification, is investigated in Chapter 5 with the help
of evolutionary game theory.
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2.1 Summary

To obtain meaningful predictions from dynamic computational models, their un-
certain parameter values need to be estimated from experimental data. Due to the
usually large number of parameters compared to the available measurement data,
these estimation problems are often underdetermined meaning that the solution is
a multidimensional space. In this case, the challenge is yet to obtain a sound system
understanding despite non–identifiable parameter values, e.g. through identifying
those parameters that most sensitively determine the model’s behavior. Here, we
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present the so–called divide–and–conquer approach — a strategy to analyze un-
derdetermined biochemical models. The approach draws on steady state -omics
measurement data and exploits a decomposition of the global estimation problem
into independent subproblems. The solutions to these subproblems are joined to
the complete space of global optima, which can be easily analyzed. We derive the
conditions at which the decomposition occurs, outline strategies to fulfill these
conditions, and — using an example model — illustrate how the approach un-
covers the most important parameters and suggests targeted experiments without
knowing the exact parameter values.

2.2 Introduction

Mathematical models are capable to reproduce and predict complex cellular re-
sponses, and are as such invaluable in advancing our understanding of living
cells [95]. A common type of mathematical models are differential equation mod-
els, which are especially suited to investigate the dynamic behavior arising from
molecular interactions. Such models often contain many parameters whose values
are uncertain but affect the simulated responses [79]. Therefore, these parameters
are usually either directly measured or collectively estimated from experimental
data, a process which most commonly involves the maximization of the maxi-
mum likelihood, often in the form of the minimization of a least squares distance
between the simulation and the data, and the proper pre- and post-estimation
diagnostics [85].

Because differential equation models of biochemical systems typically contain
many uncertain parameters whereas the availability of measurement data is often
limited [210], the parameter estimation problem is often underdetermined and re-
mains a major bottleneck in the development of useful models. However, recent
research suggests that the knowledge of all parameter values may not be necessary
to obtain good predictions. First, the model structure can tightly constrain the
possible responses such that astonishingly accurate predictions are possible even
without estimating the parameters [34]. Second, ’sloppiness’ seems to be a univer-
sal property of systems biology models, meaning that most parameter values are
unimportant because the system response is sensitively determined by the combi-
nation of only few parameter values [66]. These observations lead to a question:
’If I do not have enough measurement data to identify my parameter values, can I
still obtain a sound system understanding and derive good predictions despite of
my problem being underdetermined?’

In this chapter, we present an approach that is capable to achieve exactly this,
given that certain conditions on the underdetermined parameter estimation prob-
lem can be fulfilled. This so–called divide–and–conquer approach exploits a division
of the estimation problem (not the model itself) into many independent subprob-
lems of smaller dimension. The decomposition yields the complete solution space
of the underdetermined estimation problem in a structured form, which facilitates
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a subsequent, systematic analysis of that solution space. The analysis can reveal
the possible responses within the solution space and identify which parameters
most sensitively determine these, and what effect a variation of these parameter
values has on the response.

This chapter is structured as follows. First, we derive the necessary and suffi-
cient conditions to trigger a decomposition into subproblems. Next, we show how
this decomposition can be exploited through the divide–and–conquer approach,
and discuss its application to real-world problems in systems biology. Then, to
demonstrate the approach, we establish and analyze the complete solution space
of an underdetermined model that overarches the metabolic and transcriptional
regulation levels.

2.3 Method

In this section, we first present the mathematical foundation of the divide–and–
conquer approach and then the method itself.

2.3.1 Mathematical foundation

The divide–and–conquer approach exploits a decomposition of the global parame-
ter estimation problem into smaller subproblems. This decomposition occurs only
when certain conditions are fulfilled. To derive these conditions, we successively
specialize the general formulation of the global estimation problem to a formula-
tion composed of independent subproblems. The conditions imposed during this
specialization are the necessary and sufficient conditions to trigger the decompo-
sition.

The general parameter estimation problem is stated as finding the set of pa-
rameters p within upper and lower bounds, pU and pL, that minimizes a scalar
cost function J . The cost function measures the goodness of the model prediction
y(p, t) with respect to an experimentally measured data set ymsd(t), and may
include a diagonal scaling matrix W(t) with non–negative elements. The model
prediction y, which is calculated from the differential state variables x with the
predictor function k, is constrained by the system dynamics f , which governs the
time progression of x. The problem can also include a set of parameters q that are
not estimated. The mathematical formulation of this problem is:

Find p to minimize the sum of squared errors

J =

Z tf

t0

(ymsd(t)− y(p, t))TW(t)(ymsd(t)− y(p, t))dt (2.1)
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subject to the constraints

dx

dt
− f (x,p,q, t) = 0 (2.2)

y − k (x,p,q, t) = 0 (2.3)

x(t0) = x0 (2.4)

pL ≤ p ≤ pU . (2.5)

Mathematically, this is a nonlinear optimization problem with differential–
algebraic constraints, which is commonly solved using a suitable optimizer (see
Fig. 2.1a).

Before we specialize Equations 2.1–2.5 to a formulation composed of independent
subproblems, we take all the summands appearing in f and list them in a rate
vector v. We define a stoichiometric matrix S such that f = S · v, and rewrite
Eq. 2.2 to

dx

dt
− S · v (x,p,q, t) = 0. (2.6)

As most biological measurements are taken at discrete time points, we limit our
investigation to cost functions of the form

J =

mX
i=1

(ymsd(ti)− y(p, ti))
TW(ti)(ymsd(ti)− y(p, ti)) (2.7)

where ti is the i–th of m measurement time points.
Next, we specialize the general formulation given by Equations 2.3–2.7 through

imposing a condition on the measurement data set.
Condition 1: At all measurement time points ti, the measurement data set

must consist of all differential state variables x and all rates v, such that

yTmsd =
“
xTmsd vTmsd

”
, (2.8)

which implies

kT =
“
xT vT

”
. (2.9)

In a later section, we comment on how these conditions can be fulfilled in real–
world problems. We continue with including a condition on the model structure.

Condition 2: The model structure must allow for an exact fit to all measure-
ment data points, such that

J =
Pm
i=1

„
xmsd(ti)− x(p, ti)
vmsd(ti)− v(p, ti)

«T
W(ti)

„
xmsd(ti)− x(p, ti)
vmsd(ti)− v(p, ti)

«
= 0. (2.10)

As the sum–of–squares J is strictly non–negative, a parameter set leading to J = 0
must be a global optimum. In practice, this condition requires an underdetermined
estimation problem.

20



2.3 Method
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Figure 2.1: Comparison of the divide–and–conquer approach with the conventional pa-
rameter estimation strategy. a, the conventional strategy. The optimizer (dotted box) uses
the output y of a model simulation to optimize the parameters p with respect to the ex-
perimental data ymsd. b, the divide–and–conquer approach. Given certain conditions, the
estimation problem decomposes into multiple independent subproblems (dotted boxes),
for which the complete analytical solution spaces can be derived by solving a system of
algebraic equations.

With these conditions fulfilled, the global estimation problem reduces to finding
a solution p, pL ≤ p ≤ pU , that satisfies

vj (xmsd(ti),p,q, ti)− vmsd,j(ti) = 0 (2.11)

for i = 1 . . .m and j = 1 . . . r, where r is the number of components in v. Thus,
Eq. 2.11 comprises m · r equations. As p is the only unknown, this in practice
underdetermined equation system can be solved to derive the complete solution
space of p. Because these equations are coupled solely through p, this poten-
tially very large–dimensional solution space can be decomposed into many smaller–
dimensional subspaces by removing the coupling through a further condition on
the model structure.

Condition 3: The parameters to be estimated, p, consist of 1 ≤ s ≤ r disjunct
sets

pT = (pT1 pT2 . . . pTs ) (2.12)

such that each set (pk,q) fully parameterizes a subset of the rate equations. If
disjunct subsets do not exist (s = 1), then the complete solution space can be
derived through Eq. 2.11 but not decomposed into smaller–dimensional subspaces.
If each pj appears in only one rate equation (s = r), then the solution space can
be maximally decomposed into pairwise independent subspaces.

The parameter estimation problem is thus reduced to finding pk such that

vj (xmsd(ti),pk,q, ti)− vmsd,j(ti) = 0 (2.13)

for i = 1 . . .m, j = 1 . . . r and k = 1 . . . s.
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As Eq. 2.13 comprises m · r algebraic equations in s decoupled sets, the
global problem has been successfully decomposed into independent subproblems
of smaller dimension. Eq. 2.13 states that a parameter set p is a global optimum
if all its subsets pk parameterize the rate equations vj in which they appear such
that the measured rates are reproduced exactly for the measured states, as illus-
trated in Fig. 2.1b. Note that a verbose description of this section can be found in
Section 2.6.1.

2.3.2 The divide–and–conquer approach

The divide–and–conquer approach is the consistent exploitation of the decom-
position of the global estimation problem into independent subproblems. This
approach encompasses both the derivation of the complete solution space of an
underdetermined problem, and the efficient analysis of that space.

The derivation of the complete solution space can be structured into three steps.
In the first step, complete sets of state and rate data are obtained to fulfill Con-
dition 1. In the second step, the degree of decomposition is chosen according to
Condition 3. In the third step, the complete solution space of the underdetermined
problem is derived by fulfilling Condition 2. Here, it is important to understand
that the divide–and–conquer approach does not give the solution to the estimation
problem as upper and lower bounds on single parameters values, but as an analytic
description of the parameter subspaces that together form the complete solution
space.

Once the complete solution space is analytically known, it can be quickly and
systematically analyzed to obtain a sound understanding of the possible system
responses within this parameter space. It is also important to note that the divide–
and–conquer approach first neglects the noisy nature of biochemical measurements,
then derives insights based on the assumed ’perfect’ data set, and finally assesses
the robustness of the derived insights with respect to data noise.

The following three sections discuss the derivation of the complete solution space
in detail. After that, we illustrate the systematic analysis of that solution space
with an example model, and show how the robustness of the obtained insights
with respect to data noise can be assessed.

2.3.2.1 Step 1: Obtaining complete steady state data sets

Recent developments in high–throughput experimental methods provide us with
ever more comprehensive measurement data sets in steady state conditions, e.g.
of the cell’s proteome and metabolome [81]. However, such data sets, whether as-
sembled from literature and/or own measurements, are to date often incomplete.
To fulfill Condition 1, which requires complete data sets, we therefore propose to
extend incomplete measurement data sets to larger sets of observed data. Depend-
ing on the problem, these data sets of observables can be complete and therefore
applicable for the subsequent parameter estimation, as previously suggested [60].
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To obtain a complete set of observables, the unmeasured data can be inferred
from the measured data with the help of models, simple or sophisticated, that
are based on biological knowledge. For instance, a computational model can be
used to observe metabolic reaction rates from measured 13C–labeling patterns of
amino acids. Similarly, an incomplete set of measured metabolite concentrations
can be extended to a complete set of observed metabolite concentrations by using
network–embedded thermodynamic (NET) analysis [105], which is capable to infer
unmeasured metabolite concentrations within certain limits.

To observe missing rates, the consistency condition

dx/dt = v+ − v− = 0, (2.14)

can be exploited, which states that in steady state, the sum of all compound
production rates v+ must equal the sum of all compound consumption, dilution,
and degradation rates, v−. If one of the rates in v− or v+ is unknown, then Eq. 2.14
can be applied to determine the missing rate from the known rates. This equation
underlies flux balance analysis, which is capable to observe metabolic reaction
rates from physiological data using a stoichiometric metabolic network model. On
a smaller scale, Eq. 2.14 can be used to, for instance, observe a steady state protein
production rate from known protein degradation and dilution rates.

If more than one of the rates in v− or v+ is unknown, then some of the miss-
ing rates can be observed with simple linear models. For instance, a compound
dilution rate can be observed through vdil,x = µ · x with x and the growth rate
µ known, or a compound degradation rate through vdegr,x = kdegr · x with x and
the degradation rate constant kdegr known. Note that if these simple linear models
contain parameters of the dynamic computational model (e.g. µ and kdegr), then
these parameter values are already fixed and may not appear in the estimation
problem of the divide–and–conquer approach (i.e. these parameters are included
in q, not p).

In the unlikely case that all of the rates in Eq. 2.14 are measured, then these
measurements will most likely not add up to zero due to measurement errors, im-
plying that the model cannot reproduce the steady state exactly (Condition 2 is
violated). Therefore, these measurement errors must be ’corrected’, e.g. by mini-
mally adjusting the data to fulfill Eq. 2.14. Note that at a later stage, it can be
assessed if such data ’correction’ and the neglected measurement noise sensitively
affect the insights obtained with the assumed ’perfect’ data set.

Lastly, data sets such as transcriptome data are often acquired only as relative
measures. Fortunately, relative data of a compound concentration x is sufficient if
in the model x appears always paired with a multiplicative parameter p. Then, rate
equations of x are of the form r = f(p · x), and the parameter estimation of p can
correct for an arbitrarily chosen absolute concentration of x. Such situations occur,
for instance, with x as an enzyme or mRNA concentration, p as the respective rate
constants, and r as metabolic reaction rate or translation rate, respectively.
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2.3.2.2 Step 2: Choosing the degree of decomposition

To increase the degree of decomposition, and thereby the transparency of the later
solution space to the modeler, the parameters are divided into three disjunct sets,
pA, pB, and q, such that pA contains those parameters that appear in only one
equation vj , pB contains those that appear in more than one equation vj , and
q contains the parameters that are not subject to the estimation. In biochemical
models, parameters typically have a specific mechanistic meaning and as such
tend to appear in only one equation vj . Therefore, pB usually contains only few
parameters but is not necessarily empty.

The maximal degree of decomposition (s = r) is reached when pB = ∅. If
pB 6= ∅, then the degree of decomposition can be increased by excluding a param-
eter p ∈ pB from the estimation, which moves this parameter from pB into q. For
instance, if p is known to be poorly identifiable, which is probable as p appears in
multiple underdetermined equations, then assuming a literature value for p may be
the better alternative anyway. If this is not justified, then all equations containing
p form one subproblem.

2.3.2.3 Step 3: Determining the complete solution space

To obtain the complete parameter space that reproduces the data exactly, the com-
plete data sets from step 1 are plugged into the kinetic model equations. These
equations thus become algebraic functions of the parameters. Due to the decom-
position of the parameter space performed in step 2, this set of functions consists
of independent subsets. Each of these independent subsets comprises a system of
equations with αj unknowns (the number of parameters to be estimated in the sub-
set) and βj constraints (the number of equations derived from plugging the data
into the subset’s kinetic model equations). The estimation problem is thus decom-
posed into independent subproblems, which correspond to solving each subset’s
system of algebraic equations. These subproblems can be either overdetermined,
exactly determined, or underdetermined:

• If βj > αj , then the j-th subproblem is overdetermined, which prohibits an
exact fit to the data and therefore the application of the divide–and–conquer
approach. However, this case is unlikely to occur, as complete steady state
data sets are usually obtained for only few conditions, whereas rate equations
typically contain multiple uncertain parameters. An exception to this rule
are first-order kinetics, which usually either approximate higher–dimensional
kinetics and can be substituted by those, or do not contain any parameters
to be estimated, such as a linear dilution rate equation with known growth
rate µ.

• If βj = αj , then the j-th subproblem is exactly determined. If a solution
exists, it is unique — the data constrains the αj-dimensional parameter
space to a single point.
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• If βj < αj , then the j-th subproblem is underdetermined. If a solution exists,
the data reduces the αj–dimensional parameter space to a solution space of
dimension αj − βj .

If for any subproblem j, an exact fit to the data cannot be achieved and the
subproblem is not overdetermined, then a discrepancy between the model structure
and the available data has been identified and localized. The discrepancy can be
removed either by changing the model structure, e.g. to a rate law that reproduces
the data, or, if there is reason to doubt the quality of the data, by resorting to
another set of measurements.

When all discrepancies between the model structure and the data are removed,
then Condition 2 is fulfilled. The solutions to the subproblems are then joined to
the global solution Ω of the parent parameter estimation problem. If all subprob-
lems are exactly determined, the solution is a single point. In most cases, however,
at least one of the subproblems is underdetermined, and the solution is therefore
a multidimensional space. A significant advantage of the divide–and–conquer ap-
proach is that it yields the complete solution space of the parameters in the form
of analytically known manifolds on which all global solutions are located. Using
an example, we next illustrate how this analytically known solution space can be
efficiently and thoroughly analyzed to derive a sound system understanding.

2.4 Example

We illustrate the application of the divide–and–conquer approach by deriving
and analyzing the complete solution space of the small model system depicted in
Fig. 2.2a. This model describes a core section of E. coli ’s central metabolism and
covers allosteric and transcriptional regulation. It simulates the reversal of carbon
flow through the Emden–Meyerhoff–Pathway, which is required to switch between
growth on glucolytic and gluconeogenic substrates, e.g. glucose and acetate.

The model consists of five enzymes (Ei), one transcription factor (Cra),
four genes (ei), and two metabolites (phosphoenylpyruvate, PEP, and fructose-
bisphosphate, FBP). It contains 16 rates: 4 enzyme production rates, 6 compound
dilution and degradation rates, 5 metabolic reaction rates, and 1 transcription
factor–metabolite binding rate (of Cra to FBP). It further includes a simplified
representation of the phosphotransferase system (PTS), which couples the uptake
and phosphorylation of extracellular glucose to the conversion of PEP to pyruvate.
The model is centered on the transcription factor Cra, whose activity controls the
expression of four of the modeled enzymes and is itself controlled by the metabolite
FBP. For the model equations 2.15–2.24, refer to Section 2.6.2.

2.4.1 Derivation of the complete solution space

To estimate the parameters of the kinetic equations and to analyze the complete
solution space with the divide–and–conquer approach, we apply the steps presented
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Figure 2.2: The example model. a, The topology of the example model. Metabolites
and metabolic reactions are black; genes (ei), proteins (Cra,Ei), and protein production
and degradation rates are gray; regulatory interactions are dotted. b, Decomposition
of the kinetic equations into six independent subproblems. Subproblem 1 (according to
Table 2.1), regular black lines. 2, dotted black lines. 3, dashed black lines. 4, regular gray
lines. 5, dotted gray lines. 6, dashed gray line.

in the previous section.
Step 1 is fulfilled with the complete state and rate measurement data sets listed

in Table 2.2, which were obtained from literature for balanced growth on either
the glucolytic substrate glucose or the gluconeogenic substrate acetate.

In step 2, the degree of decomposition is chosen. Overall, the system com-
prises 39 parameters. Of these, the growth rate µ and the concentrations of
the carbon sources Glucose and Acetate are directly measured, literature values
are assumed for ρ and kdegr, and nEi (the number of subunits in the quater-
nary structure of an enzyme) is set to 4 for all tetrameric enzymes. Therefore,
q = [µ, Glucose, Acetate, ρ, kdegr, nE1 , nE3 , nE4 , nE5 ]. Of the 30 parameters in
p, only KCra,FBP and nCra, which describe the binding of FBP to Cra, appear
in more than one rate equation. Therefore, all rate equations containing these two
parameters are merged to a composite subproblem. Table 2.1 and Fig. 2.2b sum-
marize the resulting six independent subproblems into which the global estimation
problem decomposes.

In step 3, the parameters of the six subproblems are constrained by a system
of algebraic equations. Each of these equations reduces a subproblem’s degree of
freedom by one, and can be rearranged such that one of the subproblem’s pa-
rameters becomes dependent on the others. This process is described in detail in
Section 2.6.4, with Table 2.1 summarizing the resulting (arbitrary) division into
free and dependent parameters. The complete space of global solutions Ω com-
prises all parameter vectors within admissible bounds pL ≤ p ≤ pU that solve the
obtained system of algebraic equations (Equations 2.27–2.33), i.e. are located on
the solution manifolds. Because of the division into free and dependent parameters,
a global solution can be easily generated by choosing a combination of free param-
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Table 2.1: Decomposition of the global estimation problem into six independent subprob-
lems, and the division of the parameters into free and dependent parameters. α, number
of parameters. β, number of constraints. α− β, degrees of freedom.

Sub- α β α− β Free Dependent
problem parameters parameters

1 10 8 2 KCra,FBP ve1,max ve3,max
nCra ve4,max ve5,max

Ke1,CraA Ke3,CraA

Ke4,CraA Ke5,CraA

2 4 1 3 LE1 KE1,PEP kcat,E1

KE1,Acetate

3 4 1 3 LE5 KE5,FBP kcat,E5

KE5,Glucose

4 4 2 2 LE3 KE3,FBP kcat,E3 KE3,PEP

5 4 2 2 LE4 KE4,PEP kcat,E4 KE4,FBP

6 4 2 2 KE2,PEP vE2,f

KE2,FBP vE2,r

eter values and calculating the dependent parameters with Equations 2.27–2.33.
Note that the identification of these parameter dependencies is an active research
area by itself [74, 114].

2.4.2 Analysis of the model behavior

To analyze the model behavior, we exploit the decomposition of the solution space
into independent and analytically known manifolds.

First, we verify that the solution space was correctly determined and that
the two measured steady states exist and are stable. To do so, we ran-
domly generated 1,000 global solutions within admissible parameter bounds
(0.1 ≤ nCra ≤ 4, 0.1 ≤ Ki ≤ 10, 1 ≤ Li ≤ 107) by assigning random values to the
free parameters and calculating the dependent parameters with Equations 2.27–
2.33. We then simulated the model with initial conditions equal to the two mea-
sured conditions. As expected, we obtained perfectly level lines for both conditions
and all compound concentrations (not shown). Therefore, as all of the sampled pa-
rameter vectors reproduce the steady state measurement data exactly, the solution
space has been correctly determined. Furthermore, because the simulations remain
in the steady states indefinitely, we can conclude that both steady states exist and
are stable (at least for these 1,000 samples).

Next, we obtain a general overview of the possible system responses to a se-
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quence of perturbations. This is necessary because although all global solutions
reproduce the stationary measurement data exactly, different parameter combina-
tions may lead to very distinct dynamic responses. As our example model describes
the reversal of carbon flow through a metabolic pathway, we are interested in a
complete picture of the possible dynamics during such flux reversals. Therefore,
we chose to perturb the system by switching the carbon source from acetate to
glucose at t = 0 h, and back to acetate at t = 35 h.

Figure 2.3a shows the simulated responses of the FBP concentration to these
perturbations (with the previously sampled parameters). While all simulations
successfully adapt from glucose to acetate, the dynamic behavior of the adapta-
tion from acetate to glucose varies widely and can be categorized into two response
families: Responses of family A converge to the measured steady state on glucose
at 6.6 µmol/gDW, and responses of family B converge to a second steady state on
glucose with a parameter–dependent concentration below 4.5 µmol/gDW. There-
fore, when adapting from the measured steady state on acetate, the measured
steady state on glucose — although it has been verified to exist and be stable —
is only attractive for the parameter subset belonging to family A. In this context,
note that the existence of the second steady state on glucose was identified by a
sampling strategy and could have remained unnoticed if merely a point solution
had been determined.

Next, we exploit the division into two response families to identify those param-
eters that most sensitively shape the dynamic response. If a parameter sensitively
shapes the response, its value should determine the response family. We there-
fore compared the parameters’ distributions in the two response families using

Figure 2.3 (preceding page): Analysis of the solution space. a, Simulated responses of the
FBP concentration to carbon source shifts from acetate to glucose (at 0 h) and back to
acetate (at 35 h). A random sampling of 1,000 parameter vectors ∈ Ω reveals that the
possible system responses vary widely. The responses can be classified into two response
families: 63% of the simulations converge (on different trajectories) to the measured steady
state on glucose at 6.6 µmol/gDW (black lines, family A). The remaining 37% converge
(on different trajectories) to a second steady state at a parameter–dependent concentra-
tion below 4.5 µmol/gDW (gray lines, family B). b, The manifold from subproblem 1
shows a dependent parameter as a function of the two free parameters. Black dots denote
the sampled parameters that lead to responses in family A, whereas gray dots denote
those that belong to family B. The locations of both the black and gray dots are evenly
distributed across the entire manifold. c, On this manifold from subproblem 6, the gray
dots cluster in a region with low values of both KE2,FBP and vE2,f . d, The system
response is sensitively determined by the value of a single free parameter, KE2,FBP .
A randomization of all free parameters except KE2,FBP = 10 only marginally affects
the trajectories (1,000 red lines), whereas a stepwise reduction of only this parameter
(KE2,FBP = 10; 4; 3; 2; 1.5; 1.4; 1.3; 1.2; 1.1; 1.0; 0.9; 0.8; 0.7; 0.5; 0.3; 0.1) with all other free
parameters constant sensitively shapes the response. e, The value of the free parameter
KE2,FBP remains the decisive factor in determining the shape of the trajectories even in
the presence of 10% measurement noise (KE2,FBP=10; 3; 1; 0.1 for the red, black, green
and blue curve sets, respectively).
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the student’s t–test. The parameters’ p–values (see Table 2.3) span many orders of
magnitude, with KE2,FBP and vE2,f exhibiting extremely low p–values. Therefore,
the distribution of these two parameters is significantly different between the two
response families. Using the derived solution manifolds, this result can be graph-
ically illustrated. In most cases, as in Fig. 2.3b, the parameter values of either
response family are evenly distributed across the manifold. However, in the case
of KE2,FBP and vE2,f (Fig. 2.3c and Fig. 2.4), the parameter values of response
family B are clustered in a particular region of the manifold. We therefore suspect
that these two parameters dominantly shape the response.

To test if KE2,FBP and vE2,f indeed sensitively determine the system response,
we first set the free parameter KE2,FBP to its maximal admissible value and ran-
domized all other free parameters as before. By fixing only this free parameter, we
were able to constrain the possible responses tightly: All trajectories rapidly con-
verge to the measured steady state on glucose, i.e. belong to family A (Fig. 2.3d).
We then arbitrarily selected one of these trajectories and kept its parameters
constant with the exception of KE2,FBP , which we decreased stepwise across its
entire admissible range. By varying only this free parameter (and the two depen-
dent parameters vE2,f and vE2,r with it), i.e. by moving the parameter vector
in the direction of the negative KE2,FBP –axis of the solution manifold shown in
Fig. 2.3c, we were able to move the trajectory across the entire range of the pos-
sible responses (Fig. 2.3d). Thus, in addition to having identified the two most
important parameters, we also understand how their variation affects the system
response.

Next, we assessed if these two important parameters retain their dominant role in
determining the response in the presence of 10% measurement noise. We generated
four sets of trajectories with KE2,FBP (and thereby vE2,f ) at different levels and
all other free parameters and the measurement data randomized. Fig. 2.3e shows
that despite of these sources of variation, KE2,FBP still largely determines the
response: Only for the green curve set with KE2,FBP = 1, which is in the transition
region between the response families A and B (see Fig. 2.3d), do these sources of
variation have a considerable impact on the trajectories. Therefore, the obtained
understanding of how the system response is dominantly shaped by KE2,FBP (and
vE2,f ) is reasonably robust with respect to measurement noise. Note that instead
of assuming a flat noise magnitude of e.g. 10%, more detailed information about
the uncertainties of individual data points can be used, if available.

To conclude, by exploiting the solution manifolds derived with the divide–and–
conquer approach, we were capable to obtain a profound system understanding
even though the parameter values were not identifiable due to limited and noisy
measurement data. In general, the discovery of the most important parameter
values suggests targeted experiments to measure these values and may already
provide a valuable insight by itself. Before drawing biological conclusions from
this particular example system, however, its predictive power should be tested, or
alternatively, it should be ensured that the observed effect extends to other model
variants and is thus not specific to the chosen model structure, which is merely one
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among many possible mathematical representations of the available biochemical
knowledge. During this process, which has already been demonstrated by previous
studies [102, 104], the divide–and–conquer approach can be repeatedly applied.

2.5 Discussion

In this chapter, we presented the divide–and–conquer approach for the analysis
of underdetermined biochemical models. This approach exploits a ’trivial point’
at which the complete solution space of the global parameter estimation problem
can be derived analytically. Using an example system, we have demonstrated how
the complete solution space can be derived and subsequently analyzed. This strat-
egy resulted in a sound system understanding and the identification of targeted
experiments.

The main difficulty in applying this approach is to move a real–world estima-
tion problem onto that ’trivial point’, i.e. to fulfill Conditions 1 and 2. This can
be achieved by various means. First, an incomplete measurement data set can be
extended to a complete set of observables by incorporating additional biological
knowledge. Second, the measurement noise can be initially neglected and the ro-
bustness of the derived insights with respect to measurement noise assessed at a
later stage. Third, additional, possibly time–course measurement data that does
not belong to a complete steady state data set can also be included in the divide–
and–conquer approach. This can be achieved by providing a global optimizer with
the derived equality and inequality constraints on the parameters (Equations 2.27–
2.33). Then, the optimizer can determine that parameter combination on the so-
lution manifolds which best reproduces the additional measurements in addition
to exactly reproducing the complete steady state data sets.

To enable analytical solution spaces of large–dimensional parameter estimation
problems, the divide–and–conquer approach decomposes the whole solution space
via Condition 3 into independent subspaces, for which analytical solutions are
feasible. This decomposition occurs automatically when few parameters, whose
number in our experience increases only slightly with model size, are fixed at lit-
erature values and thereby excluded from the anyway underdetermined parameter
estimation problem. The proposed analytical approach is thus well scalable to the
often large sizes of realistic models.

Although this approach is not confined to any specific type of model, it is best
suited for application areas where models are typically underdetermined, yet –
omics data sets are available. Due to the many parameters of enzyme kinetics and
the availability of metabolomics and fluxomics data, this approach is especially
suited for models of metabolism.

The key advantage of the divide–and–conquer approach is that the global so-
lution space of the parameters can be structured in manageable subspaces, which
are known completely and analytically. This greatly facilitates the analysis of the
possible system responses within the solution space. Of particular interest is the
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identification of those few [66] parameter combinations that most sensitively shape
the system response — in fact, this task is one of the major problems raised in sys-
tems biology [96]. Therefore, by focusing directly on the system responses and not
on the parameter values, the divide–and–conquer approach is a practical strategy
to extract valuable insights from underdetermined biochemical models.

2.6 Method details

2.6.1 Verbose derivation of the conditions triggering decomposition

The derivation of Conditions 1–3, i.e. Equations 2.8, 2.10 and 2.12, is fairly con-
densed in Section 2.3.1. Therefore, we here provide a more verbose derivation of
these conditions, which when fulfilled decompose the global parameter estimation
problem into smaller subproblems.

In Section 2.3.1, we depart from a general formulation of the global estimation
problem, presented in Equations 2.1–2.5, and successively specialize this general
formulation to a formulation composed of independent subproblems, Eq. 2.13. The
conditions imposed during this specialization are Conditions 1–3, the necessary and
sufficient conditions to trigger the decomposition.

The first thing done in Section 2.3.1 is the rewriting of Eq. 2.2 to Eq. 2.6 be-
cause the latter equation explicitly contains the observable rates v. Then, to get
rid of the integral in Eq. 2.1, we take advantage of the discrete nature of bio-
chemical measurements and replace the integral with a sum over the measurement
time points, resulting in Eq. 2.7. The general formulation of the global estimation
problem that we next specialize is thus given by Equations 2.3–2.7.

The first condition we impose to specialize the general formulation is to demand
that at all measurement time points ti, the measurement data set must consist of
all differential state variables x and all rates v. Therefore, yTmsd =

`
xTmsd vTmsd

´
(Eq. 2.8). To be able to calculate the difference between measurement and model
prediction, ymsd(ti)−y(ti), which appears in the cost function (Eq. 2.7), the model
must also predict all differential state variables x and all rates v at all measurement
time points ti. Therefore, the predictor function must be kT =

`
xT vT

´
(Eq. 2.9).

Because of Eq. 2.3, this predictor function leads to the required model prediction
y =

`
xT vT

´
.

Next, we plug Equations 2.8 and 2.9 into the cost function, Eq. 2.7. Therefore, in

Eq. 2.7, ymsd becomes
`
xTmsd vTmsd

´T
and y becomes

`
xT vT

´T
. This formulation

of the cost function J appears in Eq. 2.10. We next make the argument that
J = 0 must be a global optimum because the cost function J is by definition non–
negative. J ≥ 0 must hold because J is a sum–of–squares, which is obviously non–
negative, weighted by the scaling matrix W, which cannot introduce a sign change
due to being diagonal with non–negative elements. For J = 0 to occur, the model
structure must allow for an exact fit to the data, which in turn essentially requires
an underdetermined problem. The second condition we impose is to demand that
J = 0 does indeed occur, as stated in Eq. 2.10.
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We next exploit the fact that a sum–of–squares can only vanish when all the indi-
vidual summands vanish. Because of this, Eq. 2.10 can only hold if xmsd(ti) = x(ti)
and vmsd(ti) = v(ti) for all ti , i = 1 . . .m. From Eq. 2.6, we also know that v is a
function of (x,p,q, t). Therefore, we know that v (x,p,q, ti) = v(ti)msd. Because
of xmsd(ti) = x(ti), as stated above, we arrive at v (xmsd(ti),p,q, ti) = vmsd(ti),
which is the vector formulation of Eq. 2.11.

With r the number of rates or components in v, Eq. 2.11 comprises m · r equa-
tions. The only unknown in Eq. 2.11 is p. Therefore, Eq. 2.11 is a system of m · r
algebraic equations, which is in practice underdetermined and can be solved to
obtain the complete solution space of p. However, depending on the model size,
the derived solution space can be very large–dimensional, and therefore nontrans-
parent to the modeler. To understand the solution space better, it would be of
tremendous help if the solution space consisted of pairwise independent, smaller–
dimensional subspaces. To trigger such a decomposition of the solution space, we
next exploit the fact that parameters in biochemical models tend to have a specific
mechanistic meaning and as such appear only in one rate equation. We thus im-
pose the third condition (Eq. 2.12), which demands that the parameter set consists
of disjunct subsets such that each of these subsets fully parameterizes a subset of
the rate equations. The desired extreme of this condition is that each parameter
indeed appears in only one rate equation, which leads to a maximal decomposition
of the solution space. The undesired extreme is that such disjunct sets do not exist
at all, which does not allow for a decomposition of the solution space.

Because of the decomposition of the parameter vector p, which is the sole un-
known in the equation system of Eq. 2.11, this equation system is also decomposed
into s pairwise independent subsets (Eq. 2.13). Therefore, Eq. 2.13 is a formulation
of the global estimation problem that consists of s independent subproblems in
the form of algebraic equation systems, which can be solved independently to ob-
tain the complete solution spaces of the parameter vectors pk associated with the
subproblems. The aggregate of these solution subspaces is the complete space of
global solutions to the parameter estimation problem of Equations 2.3–2.7, given
that the three imposed conditions hold.

2.6.2 Model equations

This section presents the model equations of the example system illustrated in
Figure 2.2a.

The system comprises the six dynamic state variables

x = [E1 E3 E4 E5 PEP FBP ]T , (2.15)

which model the four enzyme and the two metabolite concentrations.
These compounds are interconverted by the 15 rates

v = [vex,e1 vex,e3 vex,e4 vex,e5 vd,E1 vd,E3 vd,E4 vd,E5

vd,PEP vd,FBP vr,E1 vr,E2 vr,E3 vr,E4 vr,E5 ]T ,
(2.16)
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where the subscripts ex denote expression rates, d denote combined dilution and
degradation rates, r denote metabolic reaction rates, and ei denote the genes
encoding for the modeled enzymes.

Note that we have simplified the binding process of FBP and Cra such that the
binding state of Cra directly tracks the concentration of its effector metabolite
FBP. Therefore,

CraA =
CraT

1 +
“

FBP
KCra,F BP

”nCra
, (2.17)

where CraA is the active concentration of Cra that is not bound to FBP , CraT
is the total Cra concentration and KCra,FBP the FBP concentration required for
half–saturation of Cra with FBP .

With these definitions, the time progression of these state variables is

dEi
dt

= vex,ei − vd,Ei

dPEP
dt

= vr,E1 + vr,E2 − vr,E4 − vr,E5 − vd,PEP
dFBP
dt

= −0.5 · vr,E2 + vr,E5 − vr,E3 − vd,FBP .
(2.18)

In the remainder of this section, we present the algebraic equations for all the
rates vi appearing in Eq. 2.18.

If the transcription factor Cra acts as activator on the expression of an enzyme
E from its gene e, the expression rate is given

vex,e = ρ µ ve,max
CraA

CraA +Ke,CraA

, (2.19)

and if Cra acts as repressor, the expression rate is given by

vex,e = ρ µ ve,max

„
1− CraA

CraA +Ke,CraA

«
. (2.20)

In these equations, µ is the growth rate, ve,max the maximal expression rate,
and Ke,CraA the active Cra concentration required for half–maximal expression.
ρ parameterizes the linear influence that µ exerts on the efficiency of the gene
expression machinery. ρ is set to 1, because its value is anyhow later corrected
with the optimization of the multiplicative parameters ve,max.

The combined dilution and degradation rates of a compound x are given by

vd,x = (µ+ kdegr) x, (2.21)

with a degradation rate of kdegr = 0 in the case of metabolites, and
kdegr = 2.8 · 10−5s−1 in the case of proteins [51].

The enzymes E3 and E4 are activated in a cooperative manner by PEP and
FBP , respectively, and are modeled using a Monod-Wyman-Changeux (MWC)
kinetics, such that

vr,Ei =
kcat,Ei Ei

S
KEi,S

“
1 + S

KEi,S

”nEi
−1

“
S

KEi,S

”nEi
+ LEi /

“
1 + M

KEi,M

”nEi
. (2.22)
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The enzymes E1 and E5 are inhibited in a cooperative manner by FBP and PEP ,
respectively, and are also modeled with a MWC kinetics, such that

vr,Ei =
kcat,Ei Ei

S
KEi,S

“
1 + S

KEi,S

”nEi
−1

“
S

KEi,S

”nEi
+ LEi

“
1 + M

KEi,M

”nEi
. (2.23)

In these equations, kcat,Ei denote the maximal turnover capacities, KEi,S and
KEi,M the required respective concentrations of substrate and effector for half–
saturation, nEi the number of monomers in the active enzyme complex, and LEi

parameterizes the ligand binding. The enzyme E2 is modeled with a reversible
Michaelis–Menten kinetics, such that

vr,E2 =
vE2,f E2

FBP
KE2,F BP

− vE2,r E2
PEP

KE2,P EP

1 + FBP
KE2,F BP

+ PEP
KE2,P EP

, (2.24)

where vE2,f and vE2,r are the maximal reaction rates in the forward and reverse
direction, respectively, and KE2,FBP and KE2,PEP the substrate concentrations
required for half–saturation. Note that this enzyme’s concentration is assumed to
be constant.

2.6.3 Measurement data set

Table 2.2 lists the measurement data [57, 119, 142, 233] that were used to optimize
the parameters. The relative enzyme concentrations listed therein were derived
from DNA microarray data, thereby assuming that enzyme concentrations scale
with their mRNA concentrations.

2.6.4 Derivation of the equality constraints on the parameters

This section supplements the exemplary application of the divide–and–conquer
approach to obtain the complete solution space of the model defined in Equa-
tions 2.15–2.24. In the following, we derive the equality constraints on the pa-
rameters from the measurement data shown in Table 2.2, and show how these
constraints divide the parameter set p into free and dependent parameters. The
equality constraints are derived independently for each of the six subproblems into
which the global optimization problem decomposes (the six subproblems are sum-
marized in Table 2.1 and Figure 2.2b). In the following, the subscripts Glc and Act

refer to measurement data points in the glucose and acetate data sets, respectively.

First, we optimize the parameters of subproblem 1, which contains the four gene
expression rates and the binding of the transcription factor Cra to the metabolite
FBP . Each of the four gene expression rates vex,ei with i = 1, 3, 4, 5 contains two
parameters, vei,max and Kei,CraA . With the two measurement data sets, these
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Table 2.2: Measurement data obtained for balanced growth on glucose and acetate. Ex-

tracellular metabolites in [ g
l
]. Growth rate in [ 1

h
]. Intracellular metabolites in [ µmol

gDW
].

Enzyme levels in [AU]. Metabolic fluxes in [ µmol
gDW s

].

Condition Acetate Glucose µ PEP FBP

Acetate 5 0 0.20 0.59 0.28
Glucose 0 5 0.64 0.21 6.6

Condition E1 E2 E3 E4 E5

Acetate 10.65 1 3.3 0.61 0.59
Glucose 1 1 1 1 1

Condition JE1 JE2 JE3 JE4 JE5

Acetate 0.198 -0.188 0.094 0.01 0
Glucose 0 3.871 0.06 1.874 1.997

parameters can be determined exactly as a function of the two parameters de-
scribing the transcription factor–metabolite binding, KCra,FBP and nCra. With
CraA from Eq. 2.15 and vd,x from Eq. 2.21, the explicit solutions are for i = 1, 3

Kei,CraA = (ν CraA,Glc − CraA,Act)(1− ν)−1

vei,max = vd,Ei,Glc (CraA,Glc +Kei,CraA)(ρµGlc CraA,Glc)
−1 (2.25)

with

ν = CraA,Act µAct vd,Ei,Glc (CraA,Glc µGlc vd,Ei,Act)
−1 , (2.26)

and for i = 4, 5

Kei,CraA = (ν CraA,Glc − CraA,Act)(1− ν)−1

vei,max = vd,Ei,Glc

ˆ
ρµGlc

`
1− CraA,Glc(CraA,Glc +Kei,CraA)−1

´˜−1

(2.27)
with

ν = µAct vd,Ei,Glc (µGlc vd,Ei,Act)
−1 . (2.28)

These equations reduce the ten–dimensional parameter space to a two–
dimensional solution space.

Next, we optimize the parameters of the five enzyme kinetics. The kinetic equa-
tions for both uptake enzymes E1 (subproblem 2) and E5 (subproblem 3) each
contain four uncertain parameters, with only one constraining measurement each.
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We chose to express vEi with i = 1, 5 as a function of the remaining parameters,
such that:

vE1 =
JE1,Act KE1,Acetate

Acetate ·E1,Act

(1+Acetate/KE1,Acetate)n1+LE1(1+PEPAct/KE1,P EP )
(1+Acetate/KE1,Acetate)n1−1

vE5 =
JE5,Glc KE5,Glucose

Glucose ·E5,Glc

(1+Glucose/KE5,Glucose)n5+LE5(1+FBPGlc/KE5,F BP )
(1+Glucose/KE5,Glucose)n5−1

(2.29)

These equations reduce the four–dimensional parameter spaces to three–
dimensional solution spaces.

The kinetic equations for the enzymes E3 (subproblem 4) and E4 (subproblem
5) each contain four uncertain parameters, with two measurements to constrain
them. With i = 3, 4, we chose to express vEi and the KEi,S-values of the respective
substrates, KE3,PEP and KE4,FBP , as a function of the remaining parameters.
This gives two functions,

f1 =
JEi,Glc[(1+SGlc/KEi,S)ni+Li/((1+AGlc/KEi,A)ni ]

Ei,Glc SGlc/KEi,S(1+SGlc/KEi,S)ni−1

f2 =
JEi,Act[(1+SAct/KEi,S)ni+Li/((1+AAct/KEi,A)ni ]

Ei,Act SAct/KEi,S(1+SAct/KEi,S)ni−1 ,
(2.30)

with substrate S = PEP and activator A = FBP for i = 3, and substrate
S = FBP and activator A = PEP for i = 4. Then, KEi,S is given implicitly by

KEi,S : 0 = f1 − f2 , (2.31)

and vEi is given by

vEi = f1 . (2.32)

These equations reduce the four–dimensional parameter spaces to two–dimensional
solution spaces.

Finally, the kinetic equation for the enzyme E2 (subproblem 6) contains four
uncertain parameters, with two measurements to constrain them. We chose to
express vE2,f and vE2,r as functions of KE2,PEP and KE2,FBP , such that

vE2,f =
h
E2,Act PEPAct

E2,Glc PEPGlc
JE2,Glc

“
1 + FBPGlc

KE2,F BP
+ PEPGlc

KE2,P EP

”
+JE2,Act

“
1 + FBPAct

KE2,F BP
+ PEPAct

KE2,P EP

”i
h

E2,Act

KE2,F BP

“
PEPAct FBPGlc

PEPGlc
− FBPAct

”i−1

vE2,r =
KE2,P EP

PEPGlc

h
vE2,f

FBPGlc
KE2,F BP

− JE2,Glc

E2,Glc

“
1 + FBPGlc

KE2,F BP
+ PEPGlc

KE2,P EP

”i
.

(2.33)
These equations reduce the four–dimensional parameter space to a two–
dimensional solution space.

37



Chapter 2 A divide–and–conquer approach

2.6.5 Statistical analysis of the solution space

In this section, we discuss the statistical analysis we used to identify the parameters
that most critically determine the system response. To identify these parameters,
we take advantage of the two response families introduced in Section 2.4.2 and
compare the parameter combinations that belong to response family A with those
that belong to response family B. If a parameter does not critically determine the
system response, its value should be equally distributed in both response families.
To test whether a parameter is equally distributed in both response families, we
compare the distribution of the sampled parameter values between the two fami-
lies using the two–tailed student’s t-test with equal variances. This test results in
one p–value per parameter. The p–value is the probability, under the null hypoth-
esis that both parameter sets A and B are drawn from the same distribution, of
observing a value as extreme or more extreme of the test statistic

t =
ā b̄q
σ
na

+ σ
nb

, (2.34)

with ā and b̄ the means of the sampled parameter values in both response families,
σ the pooled standard deviation, and na and nb the sample sizes. The lower a
parameter’s p–value is, the more statistically different is the distribution of the
sampled parameter values between the two response families A and B.

Table 2.3 lists the p–values of all parameters. Most parameters exhibit a high
p–value and are therefore not suspected to critically shape the system response.
Only few parameters exhibit low p–values, and among these, the free parame-
ter KE2,FBP and the dependent parameter vE2,f exhibit extremely low p–values.
Therefore, the values of these two parameters critically determine to which re-
sponse family a parameter combination belongs.

In addition, Table 2.3 lists the mean and standard deviations for each parame-
ter. Most parameters, such as LEi , exhibit large standard deviations, which implies
that these parameter values are only poorly determined. However, some parame-
ters, such as vE3 , vE4 and kcat,E3 exhibit very narrow standard deviations, which
implies that the values of these parameters are fairly well determined. The distri-
butions of the parameters with low p–values are significantly different between the
two response families.
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Table 2.3: Statistical data (mean values, standard deviations, and p–values) of the distri-
butions of the sampled parameter values in response families A and B.

Free mean±std mean±std p–value
parameter family A family B

nCra 1.37±0.84 1.43±0.96 0.55
KCra,FBP 2.87±0.75 3.00±0.76 0.17
LE1 5·105±2·106 8·105±2·106 0.28
KE1,PEP 5.09±2.90 5.18±3.18 0.82
KE1,Acetate 5.14±2.84 4.77±2.70 0.30
LE5 6·105±2·106 6·105±2·106 0.88
KE5,PEP 7.07±1.68 6.13±1.49 1·10−5

KE5,Glucose 5.11±2.90 5.18±2.84 0.86
LE3 7·104±2·105 8·104±2·105 0.72
KE3,PEP 5.09±2.79 4.73±2.72 0.32
LE4 2·106±2·106 2·106±2·106 0.52
KE4,FBP 0.61±0.26 0.69±0.25 0.01
KE2,PEP 4.91±2.85 5.62±2.65 0.05
KE2,FBP 5.48±2.59 0.85±0.56 3·10−145

Dependent mean±std A mean±std B p–value
parameter family A family B

vE1 52.5±133 53.2±126 0.96
vE3 5.43±0.50 5.42±0.51 0.93
vE4 1.16±7·10−3 1.16±8·10−3 0.88
vE5 1.17±9·10−3 1.17±9·10−3 0.88
KE1,Cra 2.17±8.18 2.23±7.67 0.96
KE3,Cra 0.09±0.10 0.09±0.10 0.95
KE4,Cra 3.25±0.80 3.12±1.01 0.22
KE5,Cra 2.79±0.69 2.68±0.87 0.22
kcat,E1 2·104±2·105 1·104±6·104 0.95
kcat,E5 3·105±1·105 2·105±7·105 0.70
kcat,E3 0.06±9·10−4 0.06±9·10−4 0.65
KE3,PEP 0.11±0.10 0.11±0.10 0.65
kcat,E4 184±677 254±626 0.41
KE4,PEP 0.30±0.15 0.32±0.14 0.20
vE2,f 7.59±1.85 4.48±0.36 3·10−151

vE2,r 5.86±4.61 24.2±22.1 3·10−9
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2.6.6 Further graphical illustration of the results of the statistical
analysis

Figure 2.4 shows Fig. 2.3c viewed along the KE2,PEP –axis. From this perspective,
it can be seen that a combination of roughly KE2,FBP < 3 and vE2,f < 6 is
necessary for the emergence of an attractive second steady state (gray dots).
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Figure 2.4: This figure plots the sampled parameters shown in Fig. 2.3c viewed along
the KE2,PEP –axis. Black dots denote parameter combinations that belong to response
family A; gray dots denote those that belong to response family B. The emergence of an
attractive second steady state, i.e. a response belonging to family B, is only possible if
the parameters KE2,FBP and vE2,f lie within a region that is roughly delimited with
dashed lines.
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Chapter 3 Distributed sensing of metabolic fluxes

3.1 Summary

The recognition of carbon sources and the adaptation to recognized changes are of
particular importance for bacterial survival in fluctuating environments. Despite
a thorough knowledge base of E. coli ’s central metabolism and its regulation,
fundamental aspects of the employed sensing and adaptation mechanisms remain
unclear. For instance, for many of E. coli ’s substrates such as acetate, no sens-
ing mechanism has as yet been identified. Also, it remains on the molecular level
unclear how the known local regulations work together to accomplish the par-
ticularly complex, system-wide adaptations between glucose and acetate. In this
chapter, we present a differential equation model of E. coli ’s central metabolism
that includes molecular regulation on both enzymatic and genetic layers. With
this model, we show that the interplay of the known interactions in E. coli ’s cen-
tral metabolism explains in molecular-level detail the system-wide adaptations of
metabolic operation between glycolytic and gluconeogenic carbon sources (such as
glucose and acetate). We show that these adaptations are enabled by an indirect
recognition of carbon sources through a mechanism we termed distributed sensing
of intracellular metabolic fluxes. This mechanism uses two distinct general mo-
tifs to establish flux-signalling metabolites, whose bindings to target transcription
factors form flux sensors. These sensors are embedded in global feedback loop ar-
chitectures that orchestrate the regulatory adjustments to recognized changes in
carbon source availability. By connecting system-level understanding to molecular-
level knowledge, these general principles improve our understanding of bacterial
metabolism’s operation in environments with fluctuating carbon sources.

3.2 Introduction

Adaptations to fluctuating carbon sources are of particular importance for bacte-
ria. These adaptations are realized by molecular systems, which (i) recognize car-
bon sources and (ii) regulate the adjustment of metabolic operation — on both en-
zymatic and genetic regulatory layers — to the recognized changes. To understand
system behavior, molecular knowledge alone is often not sufficient [96]. Instead,
it needs to be understood how a system’s behavior emerges from the interactions
between the characterized molecules [95]. To attain such a system understanding
of bacterial adaptations to carbon sources, the coupling between the recognition
and regulation aspects and between the enzymatic and genetic regulatory layers
must be understood.

Recent studies in E. coli have focused on these couplings to improve our un-
derstanding of such adaptations in terms of general, topological motifs [13, 84,
103, 128, 171, 189, 226]. However, these studies do not link these topological mo-
tifs to the molecular-level details of specific adaptations; therefore, the molecular-
level interplay of enzymatic and genetic regulation is to date only understood for
comparatively simple carbon source adaptations, such as the adaptation to lac-
tose [42, 144]. For more complex adaptations involving many operons, such as
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the adaptations between the glycolytic substrate glucose and the gluconeogenic
substrate acetate that require an extensive remodeling of central metabolism, it
remains unclear how recognition and regulation function in molecular-level detail,
and how these processes are coupled to a coordinated adaptation.

Bacteria typically employ two major means to recognize carbon sources. Some
sugars (e.g. fructose, galactitol, mannitol, mannose, sorbitol) are recognized via the
phosphotransferase sugar uptake system (PTS) (e.g. [25, 26, 83, 155, 184]); other
sugars (e.g. arabinose, glycerol, galactose, lactose, maltose, melibiose, fucose) are
recognized intracellularly via regulatory proteins (transcription factors, in short
TFs) (e.g. [42, 128, 144, 189]). However, for organic acids such as succinate, malate
or the frequently encountered acetate as well as for many other carbon sources,
neither transmembrane sensors nor regulatory proteins with sensing function have
been identified. It thus remains unclear how these carbon sources are recognized.

Concerning the regulated adjustment of metabolic operation between growth
on glycolytic and gluconeogenic carbon sources, only local aspects are understood
in molecular-level detail. Examples of such local aspects are the branch point
effect at the diversion of carbon flux through the glyoxylate shunt [109], the PEP-
pyruvate-oxaloacetate node as the switch point for carbon flux distribution [181],
or the regulation of cAMP levels by the PTS [25]. What remains unclear is how
these local regulations work together to accomplish a coordinated adaptation on
the systems level.

In this chapter, we show that (i) the interplay of the known interactions in
E. coli ’s central metabolism is capable to indirectly recognize carbon sources
through a mechanism we termed distributed sensing of intracellular metabolic
fluxes, and that (ii) these molecular-level interactions can regulate E. coli ’s ad-
justment of metabolic operation between growth on glycolytic and gluconeogenic
carbon sources, and that (iii) this adaptation is governed by general principles.
We derived these results with a simulation-based approach that rests on a differ-
ential equation model of E. coli ’s central metabolism covering both enzymatic and
transcriptional regulation.

3.3 Model

When we screened the available molecular knowledge of central metabolism to
understand E. coli ’s adaptations from growth on glucose to acetate and vice versa,
we noted that:

• Four TFs have been identified that regulate the expression of central
metabolic enzymes and whose activities are modulated by binding of central
metabolites:

– Cra–fructose-1,6-bisphosphate (Cra-FBP) [162]

– Crp–cyclic AMP (Crp-cAMP) [30]

– IclR–glyoxylate (IclR-GLX) and IclR–pyruvate (IclR-PYR) [118]

43



Chapter 3 Distributed sensing of metabolic fluxes

– PdhR–pyruvate (PdhR-PYR) [157].

• Each of the four involved metabolites assumes distinct levels during gly-
colytic and gluconeogenic growth across available published experimental
datasets [19, 25, 30, 119].

• The levels of enzymes in central metabolic pathways regulated by these
TFs is markedly distinct for growth on glycolytic and gluconeogenic carbon
sources [142].

• The directions into which these enzyme levels change are consistent with
their transcriptional regulation by the four TFs, assuming that these TF
activities are distinct during glycolytic and gluconeogenic growth due to
distinct levels of their activating/inhibiting effectors [92].

The fact that this set of differentially expressed pathways covers most of cen-
tral metabolism, and the promising results of previous work on the role of TF-
metabolite interactions in cellular recognition and regulation [128, 171, 189] let
us to hypothesize that the current knowledge of E. coli ’s metabolism can already
explain the molecular adaptations between glycolytic and gluconeogenic carbon
sources. Specifically, we hypothesized that these adaptations are accomplished by
a system-wide regulation architecture that emerges when the known enzymatic
and transcriptional regulations become coupled through TF-metabolite interac-
tions. To (i) assess whether the such coupled molecular interactions can indeed
work together to adapt metabolic operation, and if yes, (ii) to understand this
system-level adaptation in molecular-level detail, we constructed a comprehensive
differential equation model that is centered on the coupling of enzymatic and tran-
scriptional regulation, which is accomplished by the above listed TF-metabolite
interactions.

3.3.1 Model topology

The model topology, shown in Figure 3.6, comprises the Embden-Meyerhoff path-
way, the tricarboxylic acid (TCA) cycle, the glyoxylate shunt, the anaplerotic
reactions, the diversion of carbon flux to the glyoxylate shunt through phospho-
rylation of isocitrate dehydrogenase, the uptake of glucose through phosphoryla-
tion of PTS proteins, the uptake and excretion of acetate, the allosteric regula-
tion of enzymes in the mentioned pathways and their transcriptional regulation
by the above listed TFs, and the regulation of these TFs’ activities through the
above listed TF-metabolite interactions. Overall, the model comprises two com-
partments, the cell and its environment. The cellular compartment contains twelve
metabolites, 22 enzymes and two PTS proteins, four TFs, 17 transcriptional reg-
ulations, 28 enzymatic regulations, 26 metabolic reactions, two kinase and two
phosphatase reactions, five TF-metabolite interactions, the expression of 16 genes
and the degradation of the produced proteins as well as their dilution due to cell
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growth. The environmental compartment contains two carbon sources. The cell
and the environment are coupled through three exchange reactions.

This model topology is centered on the above listed TF-metabolite-interactions,
as illustrated in Figure 3.1, and includes the known molecular interactions in E.
coli ’s central metabolism, retrieved from the EcoCyc database [92]. The followed
strategy for the systematic assembly of these interactions (see Section 3.6.1.1)
(i) ensures the inclusion of all known interactions between modeled compounds,
and (ii) minimizes the number of omitted interactions across the system boundary,
which occur, for instance, when a modeled reaction is regulated by a metabolite
outside the system boundary. The two measures establish a system boundary that
cuts out the studied adaptation mechanism from the rest of the cell. To reduce
complexity, we did not model energy, cofactor, oxygen, and proton balances.

‘emp’
pfkAfdp

ppsA pykF
eno

icd

pckA acs
pdh gltA

aceBAK
‘akg2mal’

mdh

acetyl-CoA (ACoA)

isocitrate (ICT)

‘α-ketoglutarate’ (AKG)
glyoxylate (GLX)

malate (MAL)

oxaloacetate (OAA)

fructose-1,6-bisphosphate (FBP)

phosphoenolpyruvate (PEP)

3-phosphoglycerate (PG3)

glucose-6-phosphate (G6P)

‘Emp’

PfkA
–PEP

Fdp
+PEP

PpsA
–PEP

PykF
+FBP

Eno
EIIA

EIIA-P

Icd Icd-P

Ppc
+FBP

PckA
–PEP

‘Acoa2act’
+PYR

Acs

Pdh
–GLX

–PYR GltA
–AKG

AceA
–AKG

–PEP
–PG3

AceB‘Akg2mal’

Mdh

MaeAB
–ACoA

–cAMP
AceKkinase

–many

PTS

PTS
cyclic AMP (cAMP)

Ø
Cya

+EIIA-P

‘Campdegr’
Ø

pyruvate (PYR)

IclRPdhR
CraCrp

M
et

ab
ol

ite
-T

F
in

te
ra

ct
io

ns

tran
scr.

 fac
tors

gen
es

metab
olism

acetyl-CoA (ACoA)

isocitrate (ICT)

‘α-ketoglutarate’ (AKG)
glyoxylate (GLX)

malate (MAL)

oxaloacetate (OAA)

fructose-1,6-bisphosphate (FBP)

phosphoenolpyruvate (PEP)

3-phosphoglycerate (PG3)

glucose-6-phosphate (G6P)

‘Emp’

PfkA
–PEP

Fdp
+PEP

PpsA
–PEP

PykF
+FBP

Eno
EIIA

EIIA-P

Icd Icd-P

Ppc
+FBP

PckA
–PEP

‘Acoa2act’
+PYR

Acs

Pdh
–GLX

–PYR GltA
–AKG

AceA
–AKG

–PEP
–PG3

AceB‘Akg2mal’

Mdh

MaeAB
–ACoA

–cAMP
AceKkinase

–many

PTS

PTS
cyclic AMP (cAMP)

Ø
Cya

+EIIA-P

‘Campdegr’
Ø

pyruvate (PYR)

(changing) carbon
sources

metab
olism

Flux-si
gnallin

g

metab
olites

Tr
an

sc
rip

tio
na

l
re

gu
la

tio
n

Pr
ot

ei
n

pr
od

uc
tio

n

AceKphosphatase
+many

AceKphosphatase
+many

Metabolic master regulation

Figure 3.1: The model topology is centered around the known TF-metabolite interactions
and establishes a feedback loop from the metabolic layer via the transcriptional regulatory
layer and the gene expression layer back to the metabolic layer. The metabolic layer
is directly upstream of the transcriptional regulatory layer, enabling it to perform the
coordinating function of metabolic master regulation.

3.3.2 Kinetic equations

We translated the topology into differential equations by assigning the most ap-
propriate rate law to each interaction (see Tables 3.1 and 3.2). To formulate the
rate equation for the biomass-generating reaction, we back-calculated the require-
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ments for metabolites outside the system boundary to their respective precursors
inside the system boundary. We included the growth-rate dependency of the gene
expression rates due to growth rate-dependent levels of DNA polymerases and
ribosomes [33].

The resulting 47 ordinary differential equations contain 193 parameters and are
of the form

ẋ = S · f(x,p)

with x the vector of dynamic state variables (the concentrations of intracellular
compounds and extracellular carbon sources), f the vector of kinetic rate equations,
p the vector of parameters, and S the stoichiometric matrix. Refer to Section 3.6.1
for the full model equations.

Parameter values for the rate equations were estimated through application
of the ’divide-and-conquer approach’ [101] on published experimental steady state
-omics data sets for balanced growth on either glucose or acetate (see Section 3.6.2).

3.4 Results

Table 3.5 lists the values of a single parameter vector that excellently reproduces
the steady state data (see Tables 3.3 and 3.4) for balanced growth on either glucose
or acetate with the coefficient of determination R2 ≈ 0.999, and with the sensi-
tivities shown in Figure 3.8. These parameter values are used for all simulations
presented in this chapter.

3.4.1 Reproduction of known physiological behavior

To test if the model is indeed capable to adapt to changing carbon sources, we
subjected it to a sequence of three consecutive environments. The first environment
contains glucose as the sole carbon source and is ’inoculated’ with glucose-adapted
in silico cells, meaning that the initial conditions of the in silico cells were set to
the steady state values of glucose growth. Figure 3.2 shows that the in silico
cells grow on glucose, produce acetate from glucose, and after glucose depletion
commence their adaptation to acetate, which they re-consume until it is depleted.
The in silico cells are then ’transferred’ to a second environment that contains
acetate as the sole carbon source, which the cells consume to successfully complete
their adaptation to the acetate-adapted steady state. Finally, the in silico cells
are ’transferred’ to a third environment that contains both glucose and acetate
as carbon sources. Although at this point the cells are adapted to the present
acetate, they quickly adapt to glucose instead, produce acetate from glucose, and
then re-adapt to acetate following glucose depletion.

These simulations show that the model reproduces E.coli ’s known physiological
behavior of glucose repression, which is the preferential uptake of glucose over
acetate, and of an overflow metabolism, which is the production of acetate from
glucose. Figures 3.9–3.13 show that (i) throughout the transitions, all intracellular
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Figure 3.2: The model reproduces E. coli ’s known physiological behaviors of preferential
glucose uptake and of acetate production from glucose.

metabolite and enzyme levels remain within physiologically reasonable bounds and
(ii) all compound levels and reaction rates approach their measured steady state
values for balanced growth.

Whereas the measured steady states and the physiological behavior are cor-
rectly reproduced, the simulated trajectories of the intracellular compound levels
during the transitions from one of the two steady states to the other are uncer-
tain. The uncertainty of the simulated trajectories arises from (i) uncertainty in
the parameter values, (ii) uncertainty in the model structure due to ambiguity in
the selection of rate laws, and (iii) possible effects of not modeled cellular regula-
tions, i.e. those ensuring the here omitted energy, cofactor etc. balances, onto the
simulated trajectories. It is important to note, however, that despite of the time
profiles during transitions being uncertain, the model is capable to successfully
adapt between growth on glucose and acetate. This capability can only arise if it
is supported by the model structure — which in systems biology models tightly
constrains the possible responses [34, 66]. We can thus use the model as a tool to
derive hypotheses for the emergence of the studied adaptations from the interplay
of the modeled, molecular-level interactions.

3.4.2 Recognition of extracellular carbon sources

As the in silico cells successfully adapt to fluctuating levels of glucose and acetate,
they must have a mechanism to recognize these carbon sources. But how does an
in silico cells recognize acetate without a transmembrane sensor for extracellular
acetate or a TF binding to intracellular acetate? Further, is the regulation of Crp
activity by the glucose transporter the exclusive mechanism to recognize glucose,
or is this sensing function of the PTS integrated into a larger sensing architecture?

Because a sensing mechanism translates environmental information into TF ac-
tivity, either through phosphorylation or effector binding, the sensing mechanism
of the in silico cell is identified once it is understood how an extracellular car-
bon source affects intracellular TF activities. Since the TFs Cra, Crp, IclR and
PdhR are not phosphorylated, the in silico cell can only modulate its TF activities
by modulating the concentrations of the TFs’ effectors. Our model simulations
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revealed that the TFs’ effectors indeed respond to changes in the availability of
extracellular carbon sources with a concentration change that modulates the TFs’
activities (see Figure 3.14). But what links the levels of the intracellular effectors
to the presence of extracellular carbon sources? The only entity capable to provide
this missing link is metabolic flux, which must therefore form an integral part of
the sensing mechanism. With this constraint, we deduced the following tripartite
sensing mechanism.

First, the cell needs to ensure at least a basal uptake of the recognized carbon
source, e.g. through a basal expression of the relevant transporter. Hence, when
that carbon source enters the cell’s environment, it is taken up at least at a basal
rate. In the in silico cell, such basal uptake is realized by a constitutive expres-
sion of the glucose-transporting PTS, and by a basal expression of the acetate-
transporting ’super-enzyme’ Acs, which in the model lumps the acetate transport
reaction and the subsequent conversion to acetyl-CoA (note that on glucose, ac-
etate is both produced and re-consumed at a lower rate). Because the uptake of
a carbon source propagates as intracellular flux through downstream metabolic
pathways, the ensured uptake of a carbon source whenever present implies that
these fluxes are affected by the presence of this carbon source.

Second, the allosteric enzyme regulation in pathways affected by the uptake flux
is such that a metabolic intermediate in these pathways responds to the uptake
flux in a defined way. The in silico cell uses two distinct motifs to establish such
flux-signalling metabolites.

1. The motif pathway usage, illustrated in the left column of Figure 3.3, places
the flux-signalling metabolite in a pathway that is only used in one growth
condition but not in the other; hence, synthesis of the metabolite, i.e. a
high metabolite concentration, signals pathway usage. The in silico cell uses
this motif to establish distinct levels of cyclic AMP (cAMP) and glyoxylate
(GLX). In both cases, the differential pathway induction is realized through
fast changes in protein phosphorylation states. The phosphorylation of the
PTS protein EIIA, which induces the formation of cAMP, is directly cou-
pled to glucose uptake; the coupling of acetate uptake to flux through the
glyoxylate shunt is achieved by the regulation of the phosphorylation of isoci-
trate dehydrogenase, which diverts flux from the TCA cycle to the glyoxylate
shunt.

2. The motif flux direction, illustrated in the right column of Figure 3.3, places
the flux-signalling metabolite in a reversible pathway that is operated in
different directions depending on the growth condition. Since different flux
directions mean that different enzymes ’consume’ the metabolite, these en-
zymes’ kinetics can have different ’flux resistances’ such that the metabo-
lite assumes high levels for one flux direction and low levels for the other;
hence, the metabolite level signals flux direction. The in silico cell uses this
motif to create distinct levels of the flux-signalling metabolites fructose-1,6-
bisphosphate (FBP) and pyruvate (PYR).
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Figure 3.3: Two general motifs to establish flux-signalling metabolites. The first motif,
pathway usage, places the flux-signalling metabolite in a pathway that is used in one
growth condition but not in the other. The second motif, flux direction, places the flux-
signalling metabolite in a reversible pathway that is used in different directions depending
on the growth conditions.

Third, the cell senses the signal provided by the flux-signalling metabolites
through interactions of these metabolites with target TFs. These interactions re-
alize sensors for intracellular metabolic flux. The in silico cell is equipped with four
such flux sensors. Three of these sensors ultimately measure at different positions
the flux direction (and possibly its magnitude) through the Embden-Meyerhoff
pathway (EMP). Cra-FBP measures the flux through the upper EMP where FBP
is located. On glucose, PdhR-PYR measures the lower glycolytic flux that is fed
into the TCA cycle via PYR, whereas on acetate, PdhR-PYR measures the flux
through the malic enzymes that is fed into the lower EMP. When glucose is taken
up, the PTS-coupled Crp-cAMP sensor reports the glucose uptake and thus the
glycolytic flux into the upper EMP; on acetate, the PTS-coupled cAMP level equi-
librates with the PEP/PYR ratio that results from gluconeogenic flux into the
lower EMP. The fourth of these flux sensors, IclR-GLX, senses the flux through
the glyoxylate shunt and is further modulated by the PYR signal (through IclR-
PYR).

Figure 3.4 shows that the levels of the in silico cell’s four flux-signalling metabo-
lites as well as the activities of the four target TFs are distinct not only for balanced
growth on either glucose or acetate, but also for lower uptake rates of these sub-
strates. Thus, the property of distinct TF activities is robust to changes in the
substrate uptake rates, which may arise e.g. from fluctuating concentrations of
the carbon sources. Because of this robustness, the TFs reliably sense the pres-
ence of extracellular glucose and acetate through binding ’endogeneous’ [128, 189]
metabolite signals. Note that in some cases (e.g. Cra-FBP on glucose, see the
fourth column in Figure 3.4), the gradual differences in TF activity resulting from
variations in substrate uptake rates vary sensitively and monotonously with the
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magnitude of the sensed flux, which conceptually enables the sensing of intracel-
lular flux magnitudes.
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Figure 3.4: The four flux sensors of the in silico cell. The four flux-signalling metabolites are
established through regulatory circuits that realize the motifs ’pathway usage’ and ’flux
direction’. The simulated dependencies of the flux-signalling metabolites on the fluxes they
measure show that these metabolites exhibit markedly distinct levels not only for balanced
growth (filled dots), but also for up to 80% lower glucose (regular lines) or acetate (dashed
lines) uptake rates. The levels of these metabolites thus report extracellular glucose and
acetate. These distinct metabolite levels propagate into distinct activities of their target
TFs, which adjusts the transcriptional regulation exerted by these TFs to the present
carbon sources.

Because the in silico cell establishes sensors for several intracellular fluxes, the
overall sensing architecture infers the present carbon sources from a pattern of
intracellular fluxes and is as such of a distributed nature. We therefore termed
this architecture distributed sensing of intracellular metabolic fluxes. The core of
this sensing architecture is formed not by transmembrane sensors but by the four
circuits shown in Figure 3.4, which establish flux-signalling metabolites according
to the two presented general motifs. These circuits employ intracellular metabolic
flux as a mediator to couple the presence of extracellular carbon sources to the
levels of intracellular metabolites. The recognition of glucose through the PTS
transmembrane complex is embedded as one circuit in this distributed sensing
architecture; the other three circuits function without the help of transmembrane
complexes.

3.4.3 Coupling of recognition and regulation

Having identified the sensing mechanism, it still needs to be understood how the
recognition is coupled to the regulation such that the in silico cell responds to
recognized changes in carbon source availability with a regulated adjustment of
metabolic operation.
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The in silico cell achieves the coupling between recognition and regulation
through its TFs, whose activities respond to the available carbon sources and
at the same time regulate the expression of target genes. This combined recogni-
tion and regulation function of the four TFs closes four global feedback loops that
overarch the metabolic and genetic layers as illustrated in Figure 3.5. The first half
of these four loops forms the recognition function and is established by the flux-
signalling metabolites binding to their target TFs, creating flux sensors (the four
columns in Figure 3.4, and the upper of the three layers of arrows in Figure 3.1).
The second half of these four loops forms the regulation function and is established
by (i) the transcriptional regulation of the four flux-sensing TFs (the middle layer
of arrows in Figure 3.1), which causes the regulated enzymes to approach their
measured steady state values, and by (ii) the impact of this transcriptional reg-
ulation on metabolic operation (the lower layer of arrows in Figure 3.1), which,
together with allosteric enzyme regulation, adjusts the carried metabolic fluxes to
produce biomass precursors from the present carbon sources.

carbon
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enzyme
concentrations

metabolic fluxes growth

binding of TF
to promoters

metabolite
concentrations

protein production

uptake
biomass

generation

binding of
metabolites to TF

TF activity

catalyzed
reactions

enzyme
kinetics

promoter activity

global
feedback

architecture

regulation recognition

Figure 3.5: Global feedback loop architecture. This architecture, which overarches the
metabolic and genetic layers, ties the recognition of carbon sources and the regulation of
the adjustments to the recognized changes together.

To sum up, the adaptation of the in silico cell arises from the global feedback
loop-embedded, flux sensor-adjusted transcriptional regulation of their four TFs,
with each TF performing one part of the overall adaptation. This adaptation incor-
porates both the influence of the metabolic on the genetic layer, achieved through
TF-metabolite interactions, and of the genetic on the metabolic layer, achieved
through the impact of adjusted enzyme levels on metabolic fluxes. Remarkably,
the thus formed global feedback loop follows the general logic of the recently pro-
posed consumer motif, which has been suggested to be ideal for the regulation of
carbon source uptake [103].
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3.4.4 Metabolic master regulation

We have shown that the transcriptional adaptation of the in silico cell is realized
by four global feedback loops. As the four involved TFs are not regulated by a
common transcriptional master regulator, the question arises how the regulatory
actions of these TFs are coordinated to a coherent overall response.

Because the in silico cell can modulate its four TF activities only through the
levels of the TFs’ effectors, a coordination of the TF activities requires a coordi-
nation of the levels of the (flux-signalling) effectors. This coordination must occur
on the metabolic layer, which is one step upstream of the TF regulatory layer (see
Figure 3.1). We identified two means that contribute to such metabolic master
regulation.

First, flux-signalling metabolite levels are coupled because the metabolic fluxes
to which they respond are connected to each other through the flux balances
at network nodes. Therefore, when the local flux signalled by one of the flux-
signalling metabolites (and thus this metabolite’s level) changes, then the local
fluxes signalled by the other metabolites (and thus these metabolites’ levels) are
also likely to change.

Second, flux-signalling metabolite levels are also coupled because they mutually
regulate each other’s adjacent enzymes. Therefore, a change in one metabolite
levels propagates into changes of the regulated levels. In detail:

• The levels of cAMP, PYR, PEP and the phosphorylation state of the
EIIA protein are coupled through the phosphorylations of the PTS trans-
porter [25].

• The levels of FBP and PEP are coupled through a dual-time switch, a motif
that has been shown to be rapidly inducible yet robust to noise [31]. This
switch ensures a high level of FBP and a low level of the downstream PEP
on glucose, and the reverse behavior on acetate. The fast switch is formed by
PEP and FBP mutually activating each other’s consuming enzymes (Fdp,
PykF, Ppc) through feed-forward loops, a motif that enables a high level
of the upstream metabolite to lower the level of the downstream metabo-
lite [102]. The slow switch amplifies this coupling through the transcriptional
regulation of FBP-inhibited Cra on the expression of these metabolites’ pro-
ducing and consuming enzymes Fdp, PfkA, PckA, PykF and PpsA.

• The levels of PYR and GLX are coupled through GLX acting as inhibitor
of the PYR-consuming Pdh reaction, and PYR acting as corepressor of the
glyoxylate shunt operon aceBAK and as effector regulating the phoshoryla-
tion of isocitrate dehydrogenase (which diverts flux from the TCA through
the glyoxylate shunt).

These two means endow the metabolic layer with the function of metabolic
master regulation, which coordinates the transcriptional regulations of the four
TFs to a coherent overall response.
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3.5 Discussion

In this chapter, we presented a differential equation model of E. coli ’s central
metabolism. This model includes transcriptional, posttranslational and enzymatic
regulation and is centered on the coupling of the genetic and metabolic layers,
which is accomplished by TF-metabolite interactions. The model offers a con-
sistent explanation of how a multitude of known molecular interactions fit into
a coherent systems picture; the interactions work together like gear wheels that
mesh with one another to adapt central metabolism between growth on the gly-
colytic substrate glucose and the gluconeogenic substrate acetate. Although the
experimental validation of the here computationally derived principles is challeng-
ing and certainly beyond the scope of this work, two facts strongly suggest that
these principles do operate in vivo.

First, the extent and simplicity to which the studied systems-level adaptation is
explained through the known molecular interactions is stunning: E. coli ’s known
enzymatic and transcriptional regulation, when coupled through the bindings of
effectors to only four TFs, can explain the recognition of glycolytic and gluco-
neogenic carbon sources and the regulated adjustments of the Embden-Meyerhoff
pathway, of the glyoxylate shunt, of the anaplerotic reactions and of the pyruvate
dehydrogenase reaction between growth on glucose and acetate, incorporating the
branch point effect through phosphorylation of isocitrate dehydrogenase, the up-
take of glucose through PTS protein phosphorylations, the uptake and excretion
of acetate, while reproducing the preferential uptake of glucose and the production
of acetate from glucose.

Second, the general principles deduced from the presented model also describe
the well-studied (and not modelled) adaptation of E. coli from glucose to lac-
tose [42, 144]. In detail, the basal uptake of extracellular lactose is ensured through
a basal expression of the lactose transporter LacI. Intracellular lactose is a flux-
signalling metabolite for lactose uptake flux, established through the motif of
pathway usage. A flux sensor is created through the binding of this flux signal
to the lactose repressor protein LacI. A ’global’ feedback loop is closed by the
LacI-regulated induction of the lac operon. Hence, the here deduced distributed
adaptation mechanism reduces to correctly describe the (not distributed) adapta-
tion of one operon by one TF. As E. coli ’s adaptation between glucose and acetate
and its adaptation to lactose can both be explained by the general principles de-
duced in this chapter, these adaptations may differ only in complexity but not in
their nature of functioning according to the here presented principles.

The general principles presented in this chapter fall under the umbrella of
distributed flux sensing, which is realized through the binding of flux-signalling
metabolites to target TFs, created through the motifs signalling of pathway usage
and signalling of flux direction, embedded in global feedback loop architectures, and
coordinated by metabolic master regulation. These principles arise from the cou-
pling of recognition and regulation as well as of enzymatic and genetic regulation;
they provide the missing link to understand system-level adaptations to carbon
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sources in molecular-level detail. A fascinating implication of these principles is
that they place metabolism on the top of the cellular regulatory hierarchy — a
position recently argued for in higher cells [93, 191].

3.6 Model details

3.6.1 Model structure

This section presents in detail the mechanistic model of E. coli ’s central carbon
metabolism and its regulation.

3.6.1.1 Strategy for the derivation of the model topology

The topology of the model is shown in Figure 3.6. This topology comprises two
compartments. The first compartment represents the cells’ closed environment (as
in batch experiments). The environment contains a population of identical cells and
the two carbon sources glucose and acetate. The second compartment represents
the cells.

The topology of the cellular compartment is centered on the five known tran-
scription factor (TF)-metabolite interactions in E. coli ’s central metabolism (Cra-
fructose-1,6-bisphosphate, Crp-cyclic AMP, IclR-glyoxylate, IclR-pyruvate, and
PdhR-pyruvate). The topology was derived with the following strategy:

1. The topology is seeded with the five TF-metabolite-interactions and the two
carbon sources glucose and acetate.

2. The seeded metabolites are connected to each other through the inclusion of
metabolic pathways.

3. The enzymes catalyzing the metabolic reactions are added. In the case of
isozymes, only the dominant enzyme is chosen.

4. Regulations of enzyme activity through metabolites appearing in the model,
and through phosphorylations, are added.

5. The expression of the modeled enzymes is added, along with their known
transcriptional regulations by the four TFs. The concentrations of the TFs
themselves and of the phosphotransferase system (PTS) proteins are modeled
as constant. The intermediate mRNA is ignored.

6. The model is simplified by merging linear pathways to single reactions when-
ever the eliminated metabolic intermediates do not appear as effectors else-
where in the model, and the merged enzymes are unregulated or co-regulated
by the same TF.

7. The production of biomass from the precursor metabolites and the calcula-
tion of the growth rate are added.
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Figure 3.6: Topology of the model. The model comprises two compartments, the cell and
its environment. Bold metabolite names are biomass precursors and as such substrates
for first-order reactions to void. Regulation of enzyme activity through small molecule
effectors is indicated below the enzyme name, transcriptional regulation above the protein-
producing reaction.
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3.6.1.2 Overview of the model structure

When translated into mathematical equations, the model comprises 47 state vari-
ables x, 193 parameters p, and 109 rate equations f(x,p). Given an initial condi-
tion x(t = 0), the progression of the state variables over the independent variable,
the time t, is given by ẋ = S · f(x,p), with S the constant stoichiometric matrix
of dimension 47 x 109. Hence, S · f calculates the differential change of the state
variables from the rates occurring in the system. The model is thus fully described
by (x, p, f , S).

The 47 state variables, arranged in the vector x, are shown in Table 3.3. This
table lists the full names of the molecular compounds represented by the 47 state
variables xabbrv, with abbrv the abbreviations for the represented compounds. Ta-
ble 3.3 also lists the measured or derived values during balanced growth on glucose
and acetate, which were used for parameter estimation (see Section 3.6.2) and as
initial conditions for the simulations.

The 109 rates, arranged in the vector f , are shown in Table 3.4. This table lists
the full names of the molecular rates represented by the 109 rates fabbrv, with

abbrv the abbreviations for the represented rates. Table 3.4 also lists the measured
or derived values during balanced growth on glucose and acetate, which are used
for parameter estimation (see Section 3.6.2).

The 193 parameters, which appear in the rate equations f(x,p), are arranged
in the vector p and shown in Table 3.5. This table lists the mechanistic meaning
of the parameters and their estimated values (see Section 3.6.2).

The stoichiometric matrix S is mostly zero, except at few entries. Rather than
presenting this sparse 47 x 109 matrix directly, it is far more informative to present
the 47 equations that arise when S·f is multiplied out (see next Section). If needed,
the stoichiometric matrix S can be deduced from these equations.

3.6.1.3 Balance equations

The 47 differential equations, which describe the time progression of the 47 state
variables over time as a function of the system’s rates, balance the

• biomass of the cell population

• concentrations of extracellular carbon sources

• concentrations of metabolites

• concentrations and phosphorylation states of enzymes and PTS proteins

• binding states of transcription factors.

The balance equations are:
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Biomass

ẋOD = fENV,growth

Extracellular carbon sources

ẋACT = fENV,ACTex − fENV,ACTup
ẋGLC = −fENV,GLCup

Metabolites

ẋACoA = fE,Acs + fE,Pdh − fE,Acoa2act − fE,GltA − fE,AceB
− fD,ACoA − fBM,ACoA

ẋAKG = fE,AceA + fE,Icd − fE,Akg2mal − fD,AKG − fBM,AKG
ẋcAMP = fE,Cya − fE,CAMPdegr − fD,cAMP

ẋFBP = fE,PfkA − 0.5 · fE,Emp − fE,Fdp − fD,FBP
ẋG6P = fE,Fdp − fE,PfkA + fPTS,r4 − fD,FBP − fBM,FBP
ẋGLX = fE,AceA − fE,AceB − fD,GLX
ẋICT = fE,GltA − fE,AceA − fE,Icd − fD,ICT
ẋMAL = fE,AceB + fE,Akg2mal − fE,MaeAB − fE,Mdh − fD,MAL

ẋOAA = fE,Ppc + fE,Mdh − fE,PckA − fE,GltA − fD,OAA − fBM,OAA
ẋPEP = fE,PckA + fE,PpsA + fE,Eno − fE,Ppc − fE,PykF − fPTS,r1

− fD,PEP − fBM,PEP
ẋPG3 = fE,Emp − fE,Eno − fD,PG3 − fBM,PG3

ẋPY R = fE,MaeAB + fE,PykF − fE,Pdh − fE,PpsA + fPTS,r1

− fD,PY R − fBM,PY R

Enzymes and PTS proteins

ẋAceA = fG,aceA − fD,AceA
ẋAceB = fG,aceB − fD,AceB
ẋAceK = fG,aceK − fD,AceK

ẋAcoa2act = fG,acoa2act − fD,Acoa2act
ẋAcs = fG,acs − fD,Acs

ẋAkg2mal = fG,akg2mal − fD,Akg2mal
ẋCAMPdegr = fG,campdegr − fD,CAMPdegr

ẋCya = fG,cya − fD,Cya
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ẋEmp = fG,emp − fD,Emp
ẋEno = fG,eno − fD,Eno
ẋFdp = fG,fdp − fD,Fdp
ẋGltA = fG,gltA − fD,GltA
ẋIcd = fG,icd − fD,Icd − fE,AceK−Ki + fE,AceK−Ph

ẋIcd−P = −fD,Icd−P + fE,AceK−Ki − fE,AceK−Ph
ẋMdh = fG,mdh − fD,Mdh

ẋMaeAB = fG,maeAB − fD,MaeAB

ẋPckA = fG,pckA − fD,PckA
ẋPdh = fG,pdh − fD,Pdh
ẋPfkA = fG,pfkA − fD,PfkA
ẋPpc = fG,ppc − fD,Ppc
ẋPpsA = fG,ppsA − fD,PpsA
ẋPykF = fG,pykF − fD,PykF
ẋEIIA = fG,eiia − fD,EIIA − fPTS,r1 + fPTS,r4

ẋEIIA−P = −fD,EIIA−P + fPTS,r1 − fPTS,r4
ẋEIICB = fG,eiicb − fD,EIICB

Transcription factors

ẋCra = fG,cra − fD,Cra − fTF,Cra
ẋCraFBP = −fD,CraFBP + fTF,Cra

ẋCrp = fG,crp − fD,Crp − fTF,Crp
ẋCrpcAMP = −fD,CrpcAMP + fTF,Crp

ẋIclR = fG,iclR − fD,IclR
ẋPdhR = fG,pdhR − fD,PdhR − fTF,PdhR

ẋPdhRPY R = −fD,PdhRPY R + fTF,PdhR

The 109 individual rates f(x,p) that appear in these differential equations are
structured in the six units

1. Cell growth and carbon source dynamics

2. Metabolic reactions and protein phosphorylations

3. Transcription factor- metabolite bindings

4. Gene expression
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5. Dilution and degradation of compounds

6. Biomass generation and growth rate calculation.

The following six sections describe in detail the modeling of these units and
present the mechanistic rate equations f(x,p) belonging to these units.

3.6.1.4 Cell growth and carbon source dynamics

The closed environment is fully described by the extracellular concentrations of
the two carbon sources glucose (xGLC) and acetate (xACT ), both of the unit g l−1.
The size of the E. coli cell population within this environment is given by its
biomass concentration (xOD).

To model the interaction of the E. coli cells with their environment, the sub-
strate exchange rates between the two compartments need to be quantified. Rates
in the compartment containing the intracellular processes are normalized to cell
dry weight and are of the unit µmol (gDW s)−1 ; rates in the compartment contain-
ing the environment scale with the biomass concentration of the cell population
and are of the unit gSUBSTRATE (l · s)−1 . Therefore, to quantify the substrate
exchange rates of the whole cell population, the substrate exchange rates of dry
weight-normalized cells, calculated in Section 3.6.1.5, need to be scaled with the
biomass concentration and converted to the proper units. The parameters needed
to quantify this conversion are the molar mass of glucose pENV,MGLC , the mo-
lar mass of acetate pENV,MACT , and the remaining unit conversions subsumed in
pENV,UC .

The rate equations describing cell growth and the production and consumption
of environmental carbon sources are:

fENV,growth = µxOD

fENV,GLCup = pENV,MGLC pENV,UC xOD fPTS,r4

fENV,ACTup = pENV,MACT pENV,UC xOD fE,Acs

fENV,ACTex = pENV,MACT pENV,UC xOD fE,Acoa2act

3.6.1.5 Metabolic reactions and protein phosphorylations

All metabolic reactions occurring in the model are catalyzed by enzymes. Also, the
phosphorylation and dephosphorylation of the enzyme Icd is catalyzed by the two
enzymatic reactions of the enzyme AceK. Further, the uptake and phosphorylation
of glucose is achieved with the help of the protein phosphorylations occurring in
the phosphotransferase system (PTS). Table 3.1 lists the chosen types of kinetic
equations describing these reactions. The full equations follow this table.

The metabolic reactions that produce biomass from the seven modeled precursor
metabolites are presented in Section 3.6.1.9.
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Table 3.1: Overview of the chosen types of kinetic rate equations for the metabolic reac-
tions and protein phosphorylation processes. The following abbreviations are used: MM
– Michaelis-Menten kinetics, revMM – reversible Michaelis-Menten kinetics, 2S-MM –
Two-substrate Michaelis-Menten kinetics, MWC – Monod-Wyman-Changeux kinetics,
rev2S-1st – Reversible two-substrate first order kinetics, (A) – Activator, (I) – Inhibitor.

Rate Type Substrate(s) Effectors

fE,AceA MWC ICT AKG (I), PEP (I), PG3 (I)
fE,AceB 2S-MM GLX, ACoA —
fE,AceK−Ki MWC Icd AKG (I), GLX (I), ICT (I),

OAA (I), PEP(I), PG3 (I),
PYR (I)

fE,AceK−Ph MWC Icd-P AKG (A), OAA (A),
PEP (A), PG3 (A),
PYR (A)

fE,Acoa2act MWC ACoA PYR (A)
fE,Acs MM ACT —
fE,Akg2mal MM AKG —
fE,CAMPdegr MM cAMP —
fE,Cya MM EIIA-P * — *
fE,Emp revMM FBP, PG3 —
fE,Eno revMM PG3, PEP —
fE,Fdp MWC FBP PEP (A)
fE,GltA 2S-MM ACoA, OAA AKG (I, competitive)
fE,Icd MWC ICT PEP (I)
fE,MaeAB MWC MAL ACoA (I), cAMP (I)
fE,Mdh Hill MAL —
fE,PckA MM OAA PEP (I, competitive)
fE,Pdh MWC PYR GLX (I), PYR (I)
fE,PfkA MWC G6P PEP (I)
fE,Ppc MWC PEP FBP (A)
fE,PpsA MWC PYR PEP (I)
fE,PykF MWC PEP FBP (A)
fPTS,r1 rev2S-1st PEP, EIIA; —

PYR, EIIA-P
fPTS,r4 MM EIIA-P, GLC —

* The Cya reaction is activated by EIIA-P and produces cAMP from void. Because

’void’ cannot be a substrate in a mechanistic equation, the Cya reaction is modeled

with the activator EIIA-P as substrate. This approach follows the one chosen by [24].
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+
“

1 +
xAKG

pGltA,KAKG

”
pGltA,KOAA xACoA + xOAA xACoA

i−1

fE,Icd =
xIcd pIcd,kcat

xICT
pIcd,KICT

“
1 + xICT

pIcd,KICT

”pIcd,n−1

“
1 + xICT

pIcd,KICT

”pIcd,n

+ pIcd,L
“

1 + xP EP
pIcd,KP EP

”pIcd,n

fE,MaeAB = xMaeAB pMaeAB,kcat

xMAL

pMaeAB,KMAL“
1 +

xMAL

pMaeAB,KMAL

”pMaeAB,n−1

h“
1 +

xMAL

pMaeAB,KMAL

”pMaeAB,n

+ pMaeAB,L“
1 +

xACoA
pMaeAB,KACoA

+
xcAMP

pMaeAB,KcAMP

”pMaeAB,n
i−1

fE,Mdh =
xMdh pMdh,kcat xMAL

pMdh,n

xMAL
pMdh,n + pMdh,KMAL

pMdh,n

fE,PckA =
xPckA pPckA,kcat xOAA

xOAA + pPckA,KOAA

“
1 + xP EP

pP ckA,KP EP

”
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fE,Pdh = xPdh pPdh,kcat

xPY R
pPdh,KP Y R

“
1 +

xPY R
pPdh,KP Y R

”pP dh,n−1

h“
1 +

xPY R
pPdh,KP Y R

”pP dh,n

+ pPdh,L
“

1 +
xGLX

pPdh,KGLX

+
xPY R

pPdh,KI,P Y R

”pP dh,n
i−1

fE,PfkA = xPfkA pPfkA,kcat

xG6P

pPfkA,KG6P

“
1 +

xG6P

pPfkA,KG6P

”pP fkA,n−1

h“
1 +

xG6P

pPfkA,KG6P

”pP fkA,n

+ pPfkA,L
“

1 +
xPEP

pPfkA,KP EP

”pP fkA,n
i−1

fE,Ppc =
xPpc pPpc,kcat

xP EP
pP pc,KP EP

“
1 + xP EP

pP pc,KP EP

”pP pc,n−1

“
1 + xP EP

pP pc,KP EP

”pP pc,n

+ pPpc,L
“

1 + xF BP
pP pc,KF BP

”−pP pc,n

fE,PpsA = xPpsA pPpsA,kcat

xPY R
pPpsA,KP Y R

“
1 +

xPY R
pPpsA,KP Y R

”pP psA,n−1

h“
1 +

xPY R
pPpsA,KP Y R

”pP psA,n

+ pPpsA,L
“

1 +
xPEP

pPpsA,KP EP

”pP psA,n
i−1

fE,PykF = xPykF pPykF,kcat

xPEP
pPykF,KP EP

“
1 +

xPEP
pPykF,KP EP

”pP ykF,n−1

h“
1 +

xPEP
pPykF,KP EP

”pP ykF,n

+ pPykF,L
“

1 +
xFBP

pPykF,KF BP

”−pP ykF,n
i−1

fPTS,r1 = pPTS,k1 xPEP xEIIA − pPTS,km1 xPY R xEIIA−P

fPTS,r4 =
pPTS,k4 xEIICB xEIIAP xGLC

(pPTS,KEIIA + xEIIA−P ) (pPTS,KGLC + xGLC)

3.6.1.6 Transcription factor–metabolite interactions

The interactions of the transcription factors Cra, Crp and PdhR with the respec-
tive metabolites FBP, cAMP, and PYR are modeled with single rate equations
each, which combine the association and dissociation rates into one rate. A posi-
tive net rate results when the association rate is higher than the dissociation rate,
a negative net rate when the reverse is the case. The net rate can be determined by
first calculating the association and dissociation rates separately and then joining
them to the net rate. This is essentially what the following equation do; however,
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the calculation of the net rate in these equations is rearranged such that the net
rate is determined through scaling (and unit conversion of) the deviation of the
actual binding state from the steady state level. The resulting rate equations are:

fTF,Cra = pCra,scale

"
(xCra + xCraFBP )xFBP

pCra,n

xFBP pCra,n + pCra,KF BP
pCra,n

− xCraFBP

#

fTF,Crp = pCrp,scale

"
(xCrp + xCrpcAMP )xcAMP

pCrp,n

xcAMP
pCrp,n + pCrp,KcAMP

pCrp,n
− xCrpcAMP

#

fTF,PdhR = pPdhR,scale

"
(xPdhR + xPdhRPY R)xPY R

pP dhR,n

xPY R pP dhR,n + pPdhR,KP Y R
pP dhR,n

− xPdhRPY R

#
.

The binding of Cra to FBP is assumed to be cooperative with degree n = 2,
because Cra is structurally similar to LacI (both proteins belong to the GalR/LacI
family of transcriptional regulators), which binds to lactose with n ≈ 2 [231]. The
bindings of the other two interactions are assumed to be non-cooperative (n = 1),
reducing their Hill-type kinetics to Michaelis-Menten-type.

The binding of the transcription factor IclR to the metabolites GLX and PYR
is modeled jointly with the binding of IclR to the promoter region of the aceBAK
operon, and is presented in Section 3.6.1.7. This modeling avoids the introduction
of three additional states (IclR bound to either GLX or PYR or both) and the
rates between these, and is straightforward because IclR represses only that one
operon.

3.6.1.7 Gene expression

This section first describes the modeling of regulated gene expression, and then
of unregulated gene expression. It continues with explaining how the growth rate
dependency of gene expression was modeled, and, finally, lists the resulting rate
equations.

Expression of regulated genes The production rates of most modeled proteins
are regulated by at least one of the four modeled transcription factors (known tran-
scriptional regulations exerted by other transcription factors have been ignored,
because these are outside the chosen system boundary, see Section 3.6.1.1).

With two exceptions, the expression of a gene is regulated by only one tran-
scription factor. In this case, the impact of transcriptional regulation on the pro-
tein production rate is modeled as a weighed sum of two production rates. These
two production rates are quantified by the parameters p<gene>,v<T F >,unbound and
p<gene>,v<T F >,bound , respectively. The parameter p<gene>,v<T F >,unbound quanti-
fies the production rate when the promoter is not occupied by the regulating tran-
scription factor; the parameter p<gene>,v<T F >,bound quantifies the production rate
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when the promoter is occupied by the regulating transcription factor (’bound’).
These two production rates are weighed by the occupancy of the promoter with the
regulating transcription factor. To calculate the occupancy and thus the weighting
factor, either a Michaelis-Menten or a Hill kinetics was used, with the regulating
transcription factor’s active form, i.e. Cra, Crp-cAMP, or PdhR (as opposed to
their inactive forms Cra-FBP, Crp, and PdhR-PYR), as substrate. A Michaelis-
Menten kinetics was preferred unless it was unable to reproduce the steady state
rates on glucose and acetate; in these cases, we chose a Hill kinetics instead.

One of the two promoters regulated by more than one TF is that of the super-
enzyme ’Emp’. The production of this enzyme, which represents the section of the
Emden-Meyerhoff pathway between FBP and PG3, is transcriptionally activated
by Crp and repressed by Cra. The contributions of these two transcriptions factors
to the overall expression rate are modeled as additive (as opposed to multiplica-
tive).

The second promoter regulated by more than one TF is that of the aceBAK
operon, which controls the production of the three enzymes AceA, AceB and AceK.
The ratio of these three enzymes’ production rates fG,aceA : fG,aceB : fG,aceK is
approximately equal to 1 : 0.3 : 0.03 [38]. In the model, this ratio is ensured by first
calculating the gene expression rate of aceA, and then scaling that rate with 0.3
and 0.03 to obtain the expression rates of the aceB and aceK genes, respectively.
The expression of the aceA gene is jointly regulated by the three transcription
factors Cra, Crp and IclR. The impact of these three individual regulations on
the overall expression of the aceA gene is modeled as additive (as opposed to
multiplicative).

The third of the three additive contributions to the overall expression rate of
the aceA gene is its repression by the transcription factor IclR. The two ligands
recognized by IclR act as corepressor (PYR) or activator (GLX) on the transcrip-
tion of the aceBAK operon [118], in the manner depicted in Figure 3.7. Thus, if
one monitors the binding of DNA to the tetramer (T) in the absence and presence
of pyruvate (P), which is opposed by glyoxylate (G), which binds to the dimer
(D), the observed response Y is

Y =
X
h

[DNA]
KDNA

“
1 + [P ]

KP

”i
(1 + 1

L

h
[G]
KG

“
1 + [G]

KG

”i
+ [DNA]

KDNA
+ [P ]

KP
+ [DNA][P ]

KDNAK
′
P

,

with X the maximum response and the equilibria defined in the caption of Fig-
ure 3.7.

Unlike the interaction of the other transcription factors with their respective
ligands (see Section 3.6.1.6), the mechanistic description of IclR activity is directly
incorporated into the expression rate equation of the aceA gene.

Expression of unregulated genes Constitutively expressed enzymes, PTS pro-
teins and transcription factors are, with two exceptions, modeled with a constant
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Figure 3.7: Graphical representation of the interactions described by [118], from which the
kinetic equation describing these interactions is derived. IcIR, as dimer (D) or tetramer
(T), is being titrated by DNA, glyoxylate (G), and/or pyruvate (P). The equilibria

needed for the derivation are KDNA =
[T ][DNA]
[T−DNA]

, KP =
[T ][P ]
[T−P ]

, K′P =
[T−DNA][P ]
[T−P−DNA]

,

KG =
[G][D]
[G−D]

and L =
[T ]

[D]2
. As only three out of the four equilibria around a cycle are

needed to define it, the remaining equilibrium K′DNA =
[T−P ][DNA]
[T−P−DNA]

is not needed for

the derivation of the kinetic equation.

concentration. The production (see the Equations below), dilution and degrada-
tion rates (see Section 3.6.1.8) of these proteins are set to zero; therefore, the
constant protein concentrations are determined by the initial conditions.

The two exceptions are the enzymes Ppc and MaeAB (which lumps the two
isoenzymes MaeA and MaeB). Neither of the genes ppc, maeA nor maeB is known
to be regulated [92], yet, the respective mRNA concentrations were found to be
markedly distinct for growth on glucose and acetate [142]. As it has been observed
that protein and mRNA abundances in E. coli cells are significantly correlated [80],
the respective protein concentrations are very likely also markedly distinct. Ac-
cordingly, the measured steady state fluxes on glucose and acetate could not be
simultaneously reproduced with constant Ppc and MaeAB concentrations.

Therefore, we set up the model equations in such a way that the differences
in the Ppc and MaeAB concentrations on glucose and acetate are proportional
to the measured differences in the respective mRNA concentrations. To realize
such concentration changes as a response to changes in the availability of glucose
and acetate, we chose the following implementation. First, for each of the two
enzymes Ppc and MaeAB, the model calculates the sum of dilution and degrada-
tion rates that would occur if the Ppc and MaeAB concentrations were in steady
state (for the calculation of the carbon source-dependent steady state concentra-
tions SSPpc and SSMaeAB of Ppc and MaeAB, respectively, see Section 3.6.1.9).
Then, the actual production rates of Ppc and MaeAB are set to equal their steady
state degradation+dilution rates. The effect of this modeling is that the actual,
possibly out-of-steady state protein concentrations xMaeAB and xPpc approach
their calculated, carbon source-dependent steady state concentrations. With this
workaround, the model is capable to reproduce the measured steady state fluxes
for growth on glucose and acetate.
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Growth rate–dependency of gene expression Gene expression is growth rate–
dependent due to growth-rate dependent concentrations of DNA polymerases and
ribosomes [33]. The growth-rate dependent efficiency of the gene expression ma-
chinery is modeled as a linear function of the growth rate (pBM,kexpr · µ), and the
expression rates of all regulated genes are multiplied by this function.

We found that when this growth rate-dependency is neglected, the measured
steady state concentrations of the proteins cannot be reproduced on both glu-
cose and acetate simultaneously. The reason for such failed reproduction is that
to reproduce the measured steady states where the protein production and dilu-
tion+degradation rates are equal, the production rates must be capable to balance
the dilution rates for both high and low growth rates. However, the model covers
a wide range of growth rates (the growth rate on glucose is approximately three
times higher than the growth rate on acetate); therefore, the inherently growth-
rate dependent dilution rates can vary over a wide range. To make the production
rates capable to balance the dilution rates for both high and low growth rates, the
growth-rate dependency of gene expression must be considered as well.

Rate equations for gene expression Table 3.2 lists the chosen types of rate equa-
tions to describe the process of gene expression. The full equations follow this
table.

Table 3.2: Overview of the chosen types of rate equations to describe the process of gene
expression. The following abbreviations are used: MM – Michaelis-Menten kinetics plus
basal expression term, Hill – Hill kinetics plus basal expression term, (A) – transcriptional
activator, (R) – transcriptional repressor.

Rate Type Regulators

fG,aceA special, see text Cra (A), Crp-cAMP (R), IclR (R)
fG,aceB = 0.3 ·fG,aceA —
fG,aceK = 0.03 ·fG,aceA —
fG,acoa2act = 0 —
fG,acs Hill Crp-cAMP (A)
fG,akg2mal Hill Crp-cAMP (A)
fG,campdegr = 0 —
fG,cra = 0 —
fG,crp = 0 —
fG,cya = 0 —
fG,emp MM Cra (R), Crp-cAMP (A)
fG,eno MM Cra (R)
fG,fdp MM Cra (A)
fG,gltA Hill Crp-cAMP (A)
fG,icd MM Cra (A)

continued on the next page . . .
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. . . Table 3.2 continued.

Rate Type Regulators

fG,iclr = 0 —
fG,maeAB special, see text —
fG,mdh MM Crp-cAMP (A)
fG,pckA MM Cra (A)
fG,pdh MM PdhR (R)
fG,pdhr = 0 —
fG,pfkA MM Cra (R)
fG,ppc special, see text —
fG,ppsA MM Cra (A)
fG,pykF MM Cra (R)
fG,EIIA = 0 —
fG,EIICB = 0 —

fG,aceA = µ pBM,kexpr

( 
1− xCra

xCra + paceBAK,KCra

!
paceBAK,vCra,unbound

+
xCra

xCra + paceBAK,KCra

paceBAK,vCra,bound

+

 
1− xCrpcAMP

xCrpcAMP + paceBAK,KCrp

!
paceBAK,vCrp,unbound

+
xCrpcAMP

xCrpcAMP + paceBAK,KCrp

paceBAK,vCrp,bound

+

"
1− paceBAK,DNA

paceBAK,KDNA

 
1 +

xPY R
paceBAK,KP Y Rprime

!
 

1 +
1

L

 
xGLX

paceBAK,KGLX

! 
1 +

xGLX
paceBAK,KGLX

!
+

paceBAK,DNA
paceBAK,KDNA

+
xPY R

paceBAK,KP Y R

+
paceBAK,DNA
paceBAK,KDNA

xPY R
paceBAK,KP Y Rprime

!−1 #
paceBAK,kcat,IclR xIclR

)
fG,aceB = paceBAK,aceBfactor fG,aceA

fG,aceK = paceBAK,aceKfactor fG,aceA

fG,acoa2act = 0
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fG,acs = µ pBM,kexpr

" 
1− xCrpcAMP

pacs,n

xCrpcAMP
pacs,n + pacs,KCrp

pacs,n

!
pacs,vCrp,unbound

+
xCrpcAMP

pacs,n

xCrpcAMP
pacs,n + pacs,KCrp

pacs,n
pacs,vCrp,bound

#
fG,akg2mal = µ pBM,kexpr

n
pakg2mal,vCrp,unbound

h
1− xCrpcAMP

pakg2mal,n“
xCrpcAMP

pakg2mal,n + pakg2mal,KCrp

pakg2mal,n

”−1i
+

xCrpcAMP
pakg2mal,n

xCrpcAMP
pakg2mal,n + pakg2mal,KCrp

pakg2mal,n

pakg2mal,vCrp,bound

o
fG,campdegr = 0

fG,cra = 0

fG,crp = 0

fG,cya = 0

fG,emp = µ pBM,kexpr

" 
1− xCra

xCra + pemp,KCra

!
pemp,vCra,unbound

+
xCra

xCra + pemp,KCra

pemp,vCra,bound

+

 
1− xCrpcAMP

xCrpcAMP + pemp,KCrp

!
pemp,vCrp,unbound

+
xCrpcAMP

xCrpcAMP + pemp,KCrp

pemp,vCrp,bound

#

fG,eno = µ pBM,kexpr

" 
1− xCra

xCra + peno,KCra

!
peno,vCra,unbound

+
xCra

xCra + peno,KCra

peno,vCra,bound

#

fG,fdp = µ pBM,kexpr

" 
1− xCra

xCra + pfdp,KCra

!
pfdp,vCra,unbound

+
xCra

xCra + pfdp,KCra

pfdp,vCra,bound

#
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fG,gltA = µ pBM,kexpr

" 
1− xCrpcAMP

pgltA,n

xCrpcAMP
pgltA,n + pgltA,KCrp

pgltA,n

!
pgltA,vCrp,unbound

+
xCrpcAMP

pgltA,n

xCrpcAMP
pgltA,n + pgltA,KCrp

pgltA,n
pgltA,vCrp,bound

#

fG,icd = µ pBM,kexpr

" 
1− xCra

xCra + picd,KCra

!
picd,vCra,unbound

+
xCra

xCra + picd,KCra

picd,vCra,bound

#
fG,iclr = 0

fG,maeAB = (µ+ pD,kdegr )SSxMaeAB

fG,mdh = µ pBM,kexpr

" 
1− xCrpcAMP

xCrpcAMP + pmdh,KCrp

!
pmdh,vCrp,unbound

+
xCrpcAMP

xCrpcAMP + pmdh,KCrp

pmdh,vCrp,bound

#

fG,pckA = µ pBM,kexpr

" 
1− xCra

xCra + ppckA,KCra

!
ppckA,vCra,unbound

+
xCra

xCra + ppckA,KCra

ppckA,vCra,bound

#

fG,pdh = µ pBM,kexpr

" 
1− xPdhR

xPdhR + ppdh,KP dhR

!
ppdh,vP dhR,unbound

+
xPdhR

xPdhR + ppdh,KP dhR

ppdh,vP dhR,bound

#
fG,pdhr = 0

fG,pfkA = µ pBM,kexpr

" 
1− xCra

xCra + ppfkA,KCra

!
ppfkA,vCra,unbound

+
xCra

xCra + ppfkA,KCra

ppfkA,vCra,bound

#
fG,ppc = (µ+ pD,kdegr )SSxP pc

fG,ppsA = µ pBM,kexpr

" 
1− xCra

xCra + pppsA,KCra

!
pppsA,vCra,unbound

70



3.6 Model details

+
xCra

xCra + pppsA,KCra

pppsA,vCra,bound

#

fG,pykF = µ pBM,kexpr

" 
1− xCra

xCra + ppykF,KCra

!
ppykF,vCra,unbound

+
xCra

xCra + ppykF,KCra

ppykF,vCra,bound

#
fG,EIIA = 0

fG,EIICB = 0

3.6.1.8 Dilution and degradation of compounds

All metabolites dilute with the growth rate due to the expanding volume of the
cell. Similarly, proteins dilute in the same manner, and additionally degrade with
a here assumed ’universal’ protein degradation rate kdegr. The concentrations of
some proteins such as the transcription factors, however, are assumed as constant;
these proteins are in the model neither produced (see Section 3.6.1.7), nor diluted
or degraded.

Metabolite dilution

fD,ACoA = µxACoA

fD,cAMP = µxcAMP

fD,FBP = µxFBP

fD,G6P = µxG6P

fD,GLX = µxGLX

fD,ICT = µxICT

fD,MAL = µxMAL

fD,OAA = µxOAA

fD,PEP = µxPEP

fD,PG3 = µxPG3

fD,PY R = µxPY R

fD,AKG = µxAKG

Protein degradation and dilution

fD,AceA = (µ+ pD,kdegr )xAceA

fD,AceB = (µ+ pD,kdegr )xAceB

fD,AceK = (µ+ pD,kdegr )xAceK
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fD,Acoa2act = 0

fD,Acs = (µ+ pD,kdegr )xAcs

fD,CAMPdegr = 0

fD,Cra = 0

fD,CraFBP = 0

fD,Crp = 0

fD,CrpcAMP = 0

fD,Cya = 0

fD,Emp = (µ+ pD,kdegr )xEmp

fD,Eno = (µ+ pD,kdegr )xEno

fD,Fdp = (µ+ pD,kdegr )xFdp

fD,GltA = (µ+ pD,kdegr )xGltA

fD,Icd = (µ+ pD,kdegr )xIcd

fD,Icd−P = (µ+ pD,kdegr )xIcd−P

fD,IclR = 0

fD,MaeAB = (µ+ pD,kdegr )xMaeAB

fD,Mdh = (µ+ pD,kdegr )xMdh

fD,PckA = (µ+ pD,kdegr )xPckA

fD,Pdh = (µ+ pD,kdegr )xPdh

fD,PdhR = 0

fD,PdhRPY R = 0

fD,PfkA = (µ+ pD,kdegr )xPfkA

fD,Ppc = (µ+ pD,kdegr )xPpc

fD,PpsA = (µ+ pD,kdegr )xPpsA

fD,PykF = (µ+ pD,kdegr )xPykF

fD,Akg2mal = (µ+ pD,kdegr )xAkg2mal

fD,EIIA = 0

fD,EIIAP = 0

fD,EIICB = 0
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3.6.1.9 Biomass production rates and growth rate calculation

Calculation of growth rates from simulated intracellular concentrations and re-
action rates (such as of the biomass–producing metabolic reactions) is still an
unresolved problem in the field of kinetic models. A previous study was unable
to find a function that reproduces the measured growth rates from the simulated
compound concentrations and reaction rates [24]. Instead, the authors of this work
used the measured time course of the growth rate as input to the model. The same
group has later established a correlation between the growth rate on glycolytic sub-
strates and the phosphorylation of a PTS protein [25], which the here presented
model unfortunately cannot exploit since this correlation only holds for glycolytic
growth but not for growth on the gluconeogenic substrate acetate.

In this study, we chose a different approach to calculate the growth rate. Instead
of calculating the growth rate as a function of the intracellular states and rates,
we exploited the fact that the growth rate is determined by the quality of the
growth medium [204] and calculated the growth rate as a function of the available
carbon sources. This function uses two weights that depend on the available carbon
sources to interpolate between the steady state growth rates on either glucose or
acetate as the sole carbon sources.

The two weights used to calculate the carbon source-dependent growth rate are
defined as

αGLC =
xGLC

xGLC + pPTS,KGLC

αACT =
xACT

xACT + pAcs,KACT

(1− αGLC) ,

with pPTS,KGLC the Monod constant for glucose and pAcs,KACT the Monod con-
stant for acetate. With this definition, αGLC vanishes when glucose is absent and
approaches 1 for increasing glucose concentrations, αACT vanishes when acetate is
absent and approaches 1 for increasing acetate concentrations only when glucose
is absent, and 0 ≤ αGLC+αACT < 1. These two weigths are then used to calculate
the growth rate from the available carbon sources through

µ = αGLC pBM,µGLC + αACT pBM,µACT , (3.1)

which interpolates between the known growth rates on glucose (pBM,µGLC ) and
acetate (pBM,µACT ).

The two weights αGLC and αACT are further used to calculate the carbon source-
dependent steady state concentrations SSxP pc and SSxMaeAB of the enzymes Ppc
and MaeAB (see Section 3.6.1.7) through

SSxMaeAB = αGLC · 1.00 · 10−3 gProt
gDW

+ αACT · 3.40 · 10−3 gProt
gDW

SSxP pc = αGLC · 1.00 · 10−3 gProt
gDW

+ αACT · 2.80 · 10−4 gProt
gDW

,
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which interpolate between the steady state data on glucose and acetate.
The reactions for the production of biomass from the seven precursor metabo-

lites ACoA, AKG, G6P, OAA, PEP, PG3 and PYR are modeled with first order
kinetics,

fBM,ACoA = kBM,ACoA xACoA

fBM,AKG = kBM,AKG xAKG

fBM,G6P = kBM,G6P xG6P

fBM,OAA = kBM,OAA xOAA

fBM,PEP = kBM,PEP xPEP

fBM,PG3 = kBM,PG3 xPG3

fBM,PY R = kBM,PY R xPY R ,

with kBM,M the seven first order reaction rate constants. These rate constants
were determined as follows. At steady state, the seven biomass production rates
fBM,M,SS and the seven metabolite concentrations xM,SS are known for growth
on either glucose or acetate (see Section 3.6.2). Thus, the carbon source-dependent
first order rate constants are given by kBM,M = fBM,M,SS/xM,SS . As these rate
constants differ for growth on glucose or acetate, their actual values depend on
the available carbon sources and are determined through

kBM,ACoA = αGLC pBM,GLCACoA + αACT pBM,ACTACoA

kBM,AKG = αGLC pBM,GLCAKG + αACT pBM,ACTAKG

kBM,G6P = αGLC pBM,GLCG6P + αACT pBM,ACTG6P

kBM,OAA = αGLC pBM,GLCOAA + αACT pBM,ACTOAA

kBM,PEP = αGLC pBM,GLCP EP + αACT pBM,ACTP EP

kBM,PG3 = αGLC pBM,GLCP G3 + αACT pBM,ACTP G3

kBM,PY R = αGLC pBM,GLCP Y R + αACT pBM,ACTP Y R ,

which interpolate between the carbon source-dependent first order rate constants
on glucose pBM,GLCM and acetate pBM,ACTM .

3.6.2 Parameter estimation

This section first outlines the followed parameter estimation strategy. Then, it
describes the derivation of complete state and rate data sets, which need to be
determined in order to apply the chosen parameter estimation strategy. Finally, it
lists the values of the estimated parameters.

3.6.2.1 Application of the divide–and–conquer approach

We applied the divide–and–conquer approach [101] to determine the parameters
of the presented model from experimental data. This approach decomposes the
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global estimation problem into multiple independent subproblems of much smaller
dimension. This property effectively removes the burden of providing a global
optimizer with sufficiently good initial guesses of the parameter values, which is a
significant relief given the size of this estimation problem.

In the first step of the divide–and–conquer approach, complete steady state -
omics data sets of all the model’s states and rates must be obtained. However,
the available -omics measurement data sets are still incomplete. Therefore, we
needed to incorporate additional biological knowledge in order to ’extrapolate’
these incomplete measurement data sets to complete data sets of observables.
Based on published measurement data, we derived two complete data sets for
balanced growth on glucose and acetate, respectively. For details on this derivation,
refer to Sections 3.6.2.2 and 3.6.2.3. The two complete data sets comprise 153 data
points each, or 306 in total — 2 x 44 data points of states (see Table 3.3), and
2 x 109 data points of rates (see Table 3.4).

The second step in the application of the divide–and–conquer approach is the
decomposition of the global estimation problem into multiple independent sub-
problems of smaller dimension. The degree of this decomposition, and thus the
advantage of using the approach, can be increased by ensuring that each estimated
parameter appears in exactly one rate equation. In the model, all parameters ap-
pear in exactly one rate equation, with the exception of two: The universal protein
degradation rate pD,kdegr appears in all dynamic protein degradation rate equa-
tions, and the scaling factor of the growth-rate dependent efficiency of the gene
expression machinery pBM,kexpr appears in all dynamic gene expression rate equa-
tions. If these two parameters are excluded from the estimation problem, then the
estimation problems of all rates become independent of each other. In order to trig-
ger such a decomposition, we excluded these two parameter from the estimation
problem. Instead, we used a literature value for the universal protein degradation
rate pD,kdegr and arbitrarily set the scaling factor of the growth-rate dependent
efficiency of the gene expression machinery pD,kdegr to 1. This arbitrary value is
justified because in the model, pD,kdegr is always multiplied with parameters that
describe the maximal gene expression rates, such that the later estimation of these
maximal gene expression rates can correct for the arbitrary value of pD,kdegr . With
the exclusion of these two parameters from the estimation problem, the estimation
problems of the individual rate equations are decoupled from each other and can
thus be solved independently.

The third and final fourth steps of the divide–and–conquer approach concern
the derivation of the complete, analytical solution spaces of the exactly deter-
mined or underdetermined parameter estimation subproblems, and the systematic
analysis of these spaces to obtain a sound system understanding in the face of
non-identifiable parameter values [101]. When an estimation subproblem was un-
derdetermined, we screened the literature and two previous models [24, 36] for
values of parameters that appear in the underdetermined subproblem. The solu-
tions to the small dimensional estimation subproblems were then joined to the
solution of the original parent estimation problem. The resulting parameter values
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are listed in Table 3.5.

3.6.2.2 Derivation of complete data sets of state variables

Table 3.3 contains the steady state values of the state variables x on glucose
and acetate. These values are either experimental data, or, where experimental
data was not available, estimated from experimental data through the inclusion of
additional biological knowledge. Specifically, to obtain two complete metabolomes,
we used NET analysis [105] to integrate and consolidate quantitative metabolite
measurements from multiple sources [36, 44, 48, 52, 119, 153, 158] measured during
growth on either glucose or acetate, into two thermodynamically consistent data
sets. To complete these data sets, we again used NET analysis to infer unknown
metabolite concentrations from measured concentrations.

To obtain a complete proteome for balanced growth on glucose, we used mea-
sured concentrations where available [3, 80] and set all unmeasured protein con-
centrations to the arbitrary value 1.0 · 10−3gProt/gDW . These arbitrary protein
concentrations on glucose are justified because in the model, a protein concentra-
tion always appears paired with a multiplicative parameter kcat such that the later
estimation of this parameter value can correct for an arbitrarily chosen absolute
concentration of the protein. Unfortunately, we could not find any published pro-
teome data for growth on acetate. However, it has been observed that protein and
mRNA abundances in E. coli cells are significantly correlated [80]. Therefore, we
used the data of a microarray study that determined the ratios of mRNA concen-
trations between growth on glucose and acetate [141, 142] to estimate the protein
concentrations on acetate from those on glucose.

In five cases (EIIA, Icd, Cra, Crp, and PdhR), the concentration of a physical
compound is distributed over two state variables. In these cases, the total concen-
tration of the physical compound is the sum of these two state variables. Two of
these cases arise because the PTS protein EIIA and the enzyme Icd both exist in a
phosphorylated and an unphosphorylated form. As the degree of phosphorylation
ρ with 0 ≤ ρ ≤ 1 of these compounds is known for balanced growth on glucose
and acetate [24, 221], the steady state concentrations of the phosphorylated and
unphosphorylated forms, xp and xu respectively, can be calculated from the total
protein concentrations xtot through xp = ρ xtot and xu = (1−ρ)xtot. The remain-
ing three cases arise because the TFs Cra, Crp, and PdhR appear either bound or
unbound to their respective metabolite effectors FBP, cAMP, and PYR. Because
the concentrations of the metabolite-bound and free forms on glucose and acetate
are unknown, we needed a rationale to set these concentrations. As the activity of
these TFs is believed to be markedly distinct during glycolytic and gluconeogenic
growth, and the TF activities are modulated by their small molecule effectors, we
chose the parameters quantifying the TF-metabolite bindings such that the differ-
ence between the TFs’ metabolite-bound concentrations on glucose and acetate is
maximized.
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Table 3.3: Comprehensive list of the dynamic state variables x, the full names of the
represented compounds, and the steady state values on glucose and acetate, which are

based on experimental data. The units of the states are g l−1 for carbon sources, µmol
gDW

for metabolites, gP rot
gDW

for proteins, and [OD] for the biomass concentration.

Name of Description Data on Data on
state glucose acetate

xOD Biomass concentration - -
xACT Extracellular acetate - -
xGLC Extracellular glucose - -
xACoA Acetyl-CoA 0.35 1.9
xAKG α-Ketoglutarate 0.2 1.1
xcAMP Cyclic AMP 0.2 4
xFBP Fructose-1,6-bisphosphate 6.6 0.28
xG6P Glucose-6-phosphate 1.85 1.17
xGLX Glyoxylate 1.00E-08 1.35
xICT Isocitrate 1.35E-03 1.54
xMAL Malate 3.6 6.65
xOAA Oxaloacetate 0.05 0.07
xPEP Phosphoenolpyruvate 0.21 0.59
xPG3 3-Phosphoglycerate 5.75 1.35
xPY R Pyruvate 0.9 0.03
xAceA Isocitrate lyase 4.68E-03 1.03E-01
xAceB Malate synthase A 1.40E-03 3.09E-02
xAceK Isocitrate dehydrogenase 1.40E-04 3.09E-03

phosphatase/kinase
xAcoa2act Enzyme for the reaction 1.00E-03 3.00E-04

from ACoA to ACT
xAcs Acetyl-CoA synthetase 3.62E-05 3.35E-04
xAkg2mal Enzyme for the reaction 1.00E-03 2.10E-03

from AKG to MAL
xCAMPdegr Degradation of cAMP 1.00E-03 1.00E-03
xCya Adenylate cyclase 1.00E-03 1.00E-03
xEmp Enzyme for the reversible reaction 1.14E-02 9.64E-03

between FBP and PG3
xEno Enolase 1.14E-02 6.21E-03
xFdp Fructose-1,6-bisphosphatase I 7.48E-05 2.44E-04
xGltA Citrate synthase 2.93E-04 1.01E-03
xIcd Unphosphorylated isocitrate 4.28E-03 2.47E-03

dehydrogenase
xIcd−P Phosphorylated isocitrate 1.78E-04 7.41E-03

continued on the next page . . .
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. . . Table 3.3 continued.

Name of Description Data on Data on
state glucose acetate

dehydrogenase
xMaeAB Malic enzymes MaeAB 1.00E-03 3.40E-03
xMdh Malate dehydrogenase 4.91E-04 1.56E-03
xPckA Phosphoenolpyruvate carboxykinase 3.37E-04 2.78E-03
xPdh Pyruvate dehydrogenase 1.00E-03 3.79E-04
xPfkA 6-phosphofructokinase I 2.42E-04 1.50E-04
xPpc Phosphoenolpyruvate carboxylase 3.78E-04 1.06E-04
xPpsA Phosphoenolpyruvate synthase 1.00E-03 1.30E-02
xPykF Pyruvate kinase I 2.50E-03 5.47E-04
xEIIA Unphosphorylated PTS protein EIIA 9.65E-02 1.99E-03
xEIIA−P Phosphorylated PTS protein EIIA 3.48E-03 9.80E-02
xEIICB PTS protein EIICB 3.00E-03 3.00E-03
xCra Free Cra 2.97E-04 6.99E-03
xCraFBP Cra bound to fructose-1,6- 6.99E-03 2.97E-04

bisphosphate
xCrp Free Crp 5.96E-03 1.33E-03
xCrpcAMP Crp bound to cyclic AMP 1.33E-03 5.96E-03
xIclR IclR 7.29E-03 7.29E-03
xPdhR free PdhR 1.13E-03 6.17E-03
xPdhRPY R PdhR bound to pyruvate 6.17E-03 1.13E-03

3.6.2.3 Derivation of complete data sets of rates

Table 3.4 lists the values of the steady state rates f on glucose and acetate. These
values are either experimental data, or, where experimental data was not available,
estimated from experimental data through the inclusion of additional biological
knowledge.

Two complete sets of metabolic reaction rates (covering the rates fE, fPTS and
fBM) were provided by the results of 13C tracer experiments on glucose [57] and
acetate [233].

To obtain two complete data sets of dilution rates fdil of the compounds x
due to cell growth, we used the model fdil = µx to calculate the dilution rates
from the steady state concentrations of the proteins and metabolites on glucose
and acetate, and from the known growth rate µ on these substrates. Similarly,
to obtain two complete data sets of degradation rates fdegr of the proteins x, we
used the model fdegr = pD,kdegr x to calculate the degradation rates from the
steady state protein concentrations on glucose and acetate, assuming the same
degradation rate pD,kdegr for all proteins. The protein dilution and degradation
rates, together with the steady state assumption fG = fdil + fdegr, are used to
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calculate the steady state gene expression rates fG on glucose and acetate.
The concentrations of the proteins EIIA and Icd are distributed over two state

variables; one of these variables denotes the phosphorylated form, and the other
the unphosphorylated form. Because the degrees of phosphorylation of the proteins
EIIA and Icd have been determined experimentally [24, 221], the ratio of the these
proteins’ steady state phosphorylation and dephosphorylation rates between growth
on glucose and acetate is also known. However, the magnitudes of these rates are
uncertain. We observed in preliminary simulations that the phosphorylation and
dephosphorylation rates need to be sufficiently fast to not introduce oscillations
into the metabolic network. Therefore, we set the steady state phosphorylation
and desphosphorylation rates of the proteins EIIA and Icd to sufficiently high
magnitudes in order to avoid such oscillations.

Similarly, as the steady state concentrations of the effector-bound and free
forms of the transcription factors Cra, Crp, and PdhR have been estimated in
Section 3.6.2.2, the ratios of these two forms’ concentrations between growth on
glucose and acetate are also known. Therefore, the ratios of both the association
and dissociation rates between growth on glucose and acetate are known; however,
the magnitudes of these rates are uncertain. In order to allow the binding states
of the transcription factors to track the metabolite concentrations, the ratio of
association and dissociation rates was scaled to the metabolic time scale, which is
significantly faster than the slow time scale on which the TF’s regulation of gene
expression operates.

Table 3.4: Comprehensive list of the steady state rates f . The units of the rates are h−1 for
the growth rates; g

l·s for the substrate uptake and excretion rates of the cell population;
µmol
gDW ·s

for the enzymatic reaction rates fE,· (except the AceK kinase and phosphatase

reactions), for the PTS reactions fPTS,·, for the dilution rates of metabolites fD,·, for the
association and dissociation rates of transcription factors to metabolites fTF,·, and for the
biomass production rates fBM,·;

gP rot
gDW ·s

for the AceK kinase and phosphatase reactions,

for the gene expression rates fG,· and for the protein dilution+degradation rates fD,· .

Name of Description Data on Data on
rate glucose acetate

fENV,growth Growth rate 0.64 0.20
fENV,GLCup Glucose uptake rate - -

of the population
fENV,ACTup Acetate uptake rate - -

of the population
fENV,ACTex Acetate excretion rate - -

of the population
fE,AceA Metabolic flux through AceA 3.52E-04 0.666
fE,AceB Metabolic flux through AceB 3.52E-04 0.666

continued on the next page . . .

79



Chapter 3 Distributed sensing of metabolic fluxes

. . . Table 3.4 continued.

Name of Description Data on Data on
state glucose acetate

fE,AceK−Ki Rate of the AceK-kinase reaction 6.61E-04 1.91E-02
fE,AceK−Ph Rate of the AceK-phosphatase 6.61E-04 1.91E-02

reaction
fE,Acoa2act Metabolic flux through Acoa2act, 1.33 0.25

Cell dry weight-normalized
acetate excretion rate

fE,Acs Metabolic flux through Acs, 0 3.45
Cell dry weight-normalized
acetate uptake rate

fE,Akg2mal Conversion rate of AKG to MAL 0.443 2.32
fE,CAMPdegr Degradation rate of cAMP 0.667 0.976
fE,Cya Production rate of cAMP 0.667 0.976
fE,Emp Conversion rate 3.87 -0.188

between FBP and PG3
fE,Eno Metabolic flux through Eno 3.59 -0.277
fE,Fdp Metabolic flux through Fdp 3.00E-02 9.89E-02
fE,GltA Metabolic flux through GltA 0.570 2.38
fE,Icd Metabolic flux through Icd 0.569 1.717
fE,MaeAB Metabolic flux through MaeAB 6.88E-02 0.227
fE,Mdh Metabolic flux through Mdh 0.443 2.76
fE,PckA Metabolic flux through PckA 2.58E-02 0.282
fE,Pdh Metabolic flux through Pdh 2.484 5.50E-02
fE,PfkA Metabolic flux through PfkA 1.966 1.00E-02
fE,Ppc Metabolic flux through Ppc 0.610 3.20E-03
fE,PpsA Metabolic flux through PpsA 1.30E-03 1.61E-02
fE,PykF Metabolic flux through PykF 0.695 1.00E-04
fPTS,r1 Metabolic flux through

the PTS reaction r1 2.22 0
fPTS,r4 Metabolic flux through

the PTS reaction r4, 2.22 0
Cell dry weight-normalized
glucose uptake rate

fTF,Cra Combined association & 0 0
dissociation rates
between Cra and FBP

fTF,Crp Combined association & 0 0
dissociation rates
between Crp and cAMP

continued on the next page . . .
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. . . Table 3.4 continued.

Name of Description Data on Data on
state glucose acetate

fTF,PdhR Combined association & 0 0
dissociation rates
between PdhR and PYR

fG,aceA aceA expression rate 9.63E-07 8.61E-06
fG,aceB aceB expression rate 2.89E-07 2.58E-06
fG,aceK aceK expression rate 2.89E-08 2.58E-07
fG,acoa2act acoa2act expression rate 0 0
fG,acs acs expression rate 7.53E-09 2.81E-08
fG,akg2mal akg2mal expression rate 2.06E-07 1.75E-07
fG,campdegr campdegr expression rate 0 0
fG,cra cra expression rate 0 0
fG,crp crp axpression rate 0 0
fG,cya cya expression rate 0 0
fG,EIIA eiia expression rate 0 0
fG,EIICB eiicb expression rate 0 0
fG,emp emp expression rate 2.37E-06 8.10E-07
fG,eno eno expression rate 2.37E-06 5.22E-07
fG,fdp fdp expression rate 1.56E-08 2.05E-08
fG,gltA gltA expression rate 6.09E-08 8.45E-08
fG,icd icd expression rate 9.17E-07 8.26E-07
fG,maeAB maeAB expression rate 2.06E-07 2.84E-07
fG,iclr iclr expression rate 0 0
fG,mdh mdh expression rate 1.02E-07 1.31E-07
fG,pckA pckA expression rate 7.01E-08 2.34E-07
fG,pdh pdh expression rate 2.08E-07 3.18E-08
fG,pdhr pdhR expression rate 0 0
fG,pfkA pfkA expression rate 5.04E-08 1.26E-08
fG,ppc ppc expression rate 7.86E-08 8.89E-09
fG,ppsA ppsA expression rate 2.06E-07 1.09E-06
fG,pykF pykF expression rate 5.20E-07 4.59E-08
fD,ACoA Dilution rate of ACoA 6.22E-05 1.06E-04
fD,AKG Dilution rate of AKG 3.56E-05 6.11E-05
fD,cAMP Dilution rate of cAMP 3.56E-05 2.22E-04
fD,FBP Dilution rate of FBP 1.17E-03 1.56E-05
fD,G6P Dilution rate of G6P 3.29E-04 6.50E-05
fD,GLX Dilution rate of GLX 1.78E-12 7.50E-05
fD,ICT Dilution rate of ICT 2.40E-07 8.56E-05
fD,MAL Dilution rate of MAL 6.40E-04 3.69E-04

continued on the next page . . .
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. . . Table 3.4 continued.

Name of Description Data on Data on
state glucose acetate

fD,OAA Dilution rate of OAA 8.89E-06 3.89E-06
fD,PEP Dilution rate of PEP 3.73E-05 3.28E-05
fD,PG3 Dilution rate of PG3 1.02E-03 7.50E-05
fD,PY R Dilution rate of PYR 1.60E-04 1.67E-06
fD,AceA Degr.&dilution rate of AceA 9.63E-07 8.61E-06
fD,AceB Degr.&dilution rate of AceB 2.89E-07 2.58E-06
fD,AceK Degr.&dilution rate of AceK 2.89E-08 2.58E-07
fD,Acoa2act Degr.&dilution rate of Acoa2act 0 0
fD,Acs Degr.&dilution rate of Acs 7.53E-09 2.81E-08
fD,Akg2mal Degr.&dilution rate of Akg2mal 2.06E-07 1.75E-07
fD,CAMPdegr Degr.&dilution rate of CAMPdegr 0 0
fD,Cra Degr.&dilution rate of Cra 0 0
fD,CraFBP Degr.&dilution rate of CraFBP 0 0
fD,Crp Degr.&dilution rate of Crp 0 0
fD,CrpcAMP Degr.&dilution rate of CrpcAMP 0 0
fD,Cya Degr.&dilution rate of Cya 0 0
fD,EIIA Degr.&dilution rate of EIIA 0 0
fD,EIIA−P Degr.&dilution rate of EIIA-P 0 0
fD,EIICB Degr.&dilution rate of EIICB 0 0
fD,Emp Degr.&dilution rate of Emp 2.37E-06 8.10E-07
fD,Eno Degr.&dilution rate of Eno 2.37E-06 5.22E-07
fD,Fdp Degr.&dilution rate of Fdp 1.56E-08 2.05E-08
fD,GltA Degr.&dilution rate of GltA 6.09E-08 8.45E-08
fD,Icd Degr.&dilution rate of Icd 8.80E-07 2.06E-07
fD,Icd−P Degr.&dilution rate of Icd-P 3.67E-08 6.19E-07
fD,IclR Degr.&dilution rate of IclR 0 0
fD,MaeAB Degr.&dilution rate of MaeAB 2.06E-07 2.84E-07
fD,Mdh Degr.&dilution rate of Mdh 1.02E-07 1.31E-07
fD,PckA Degr.&dilution rate of PckA 7.01E-08 2.34E-07
fD,Pdh Degr.&dilution rate of Pdh 2.08E-07 3.18E-08
fD,PdhR Degr.&dilution rate of PdhR 0 0
fD,PdhRPY R Degr.&dilution rate of PdhRPYR 0 0
fD,PfkA Degr.&dilution rate of PfkA 5.04E-08 1.26E-08
fD,Ppc Degr.&dilution rate of Ppc 7.86E-08 8.89E-09
fD,PpsA Degr.&dilution rate of PpsA 2.06E-07 1.09E-06
fD,PykF Degr.&dilution rate of PykF 5.20E-07 4.59E-08
fBM,ACoA Biomass flux from ACoA 0.658 0.206
fBM,AKG Biomass flux from AKG 0.196 6.11E-02

continued on the next page . . .

82



3.6 Model details

. . . Table 3.4 continued.

Name of Description Data on Data on
state glucose acetate

fBM,G6P Biomass flux from G6P 0.284 8.89E-02
fBM,OAA Biomass flux from OAA 0.320 0.100
fBM,PEP Biomass flux from PEP 8.89E-02 2.78E-02
fBM,PG3 Biomass flux from PG3 0.284 8.89E-02
fBM,PY R Biomass flux from PYR 0.498 0.156

3.6.2.4 Parameter values

This section contains Table 3.5, which lists the parameter values determined
through application of the divide–and–conquer approach, described in Sec-
tion 3.6.2.1, on the derived data sets, presented in Sections 3.6.2.2 and 3.6.2.3.

Table 3.5: Comprehensive list of the parameters p, their mechanistic meanings, and their
values as determined by the divide–and–conquer approach (see Section 3.6.2) on the data
presented in Tables 3.3 and 3.4.

Parameter Description Value

pENV,MACT Molar mass of acetate 180.2 gACT mol
−1

pENV,MGLC Molar mass of glucose 60 gGLC mol
−1

pENV,UC Unit conversion 9.5E-07 gDW (µ[OD])−1

pAceA,kcat Specific activity 1.03E+04 µmol (gProt s)
−1

pAceA,n Number of subunits 4
pAceA,L Allosteric constant 5.01E+04
pAceA,KICT Affinity constant 0.022 µmol gDW

−1

pAceA,KP EP Affinity constant 0.055 µmol gDW
−1

pAceA,KP G3 Affinity constant 0.72 µmol gDW
−1

pAceA,KAKG Affinity constant 0.827 µmol gDW
−1

pAceB,kcat Specific activity 47.8 µmol (gProt s)
−1

pAceB,KGLX Affinity constant 0.95 µmol gDW
−1

pAceB,KACoA Affinity constant 0.755 µmol gDW
−1

pAceB,KGLXACoA Affinity constant 0.719 µmol gDW
−1

pAceK,kcat,ki Specific activity 3.4E+12 s−1

pAceK,kcat,ph Specific activity 1.7E+09 s−1

pAceK,n Number of subunits 2
pAceK,L Allosteric constant 1.0E+08
pAceK,KIcd Affinity constant 0.043 gProt gDW

−1

pAceK,KIcd−P Affinity constant 0.643 gProt gDW
−1

continued on the next page . . .
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. . . Table 3.5 continued.

Parameter Description Value

pAceK,KP EP Affinity constant 0.539 µmol gDW
−1

pAceK,KP Y R Affinity constant 0.038 µmol gDW
−1

pAceK,KOAA Affinity constant 0.173 µmol gDW
−1

pAceK,KGLX Affinity constant 0.866 µmol gDW
−1

pAceK,KAKG Affinity constant 0.82 µmol gDW
−1

pAceK,KP G3 Affinity constant 1.57 µmol gDW
−1

pAceK,KICT Affinity constant 0.137 µmol gDW
−1

pAcoa2act,kcat Specific activity 3079 µmol (gProt s)
−1

pAcoa2act,n Number of subunits 2
pAcoa2act,L Allosteric constant 6.39E+05
pAcoa2act,KACoA Affinity constant 0.022 µmol gDW

−1

pAcoa2act,KP Y R Affinity constant 0.022 µmol gDW
−1

pAcs,kcat Specific activity 340 µmol (gProt s)
−1

pAcs,KACT Affinity constant 1.0E-03 gACT l
−1

pAkg2mal,kcat Specific activity 1530 µmol (gProt s)
−1

pAkg2mal,KAKG Affinity constant 0.548 µmol gDW
−1

pCAMPdegr,kcat Specific activity 1 µmol (gProt s)
−1

pCAMPdegr,KcAMP Affinity constant 0.1 µmol gDW
−1

pCya,kcat Specific activity 993 µmol (gProt s)
−1

pCya,KEIIA−P Affinity constant 1.7E-03 gProt gDW
−1

pEmp,kcat,f Specific activity 1011 µmol (gProt s)
−1

of forward reaction
pEmp,kcat,r Specific activity of 857 µmol (gProt s)

−1

of reverse reaction
pEmp,KF BP Affinity constant 5.92 µmol gDW

−1

pEmp,KP G3 Affinity constant 16.6 µmol gDW
−1

pEno,kcat,f Specific activity 705 µmol (gProt s)
−1

of forward reaction
pEno,kcat,r Specific activity 530 µmol (gProt s)

−1

of reverse reaction
pEno,KP G3 Affinity constant 4.76 µmol gDW

−1

pEno,KP EP Affinity constant 1.11 µmol gDW
−1

pFdp,kcat Specific activity 5676 µmol (gProt s)
−1

pFdp,n Number of subunits 4
pFdp,L Allosteric constant 4.0E+06
pFdp,KF BP Affinity constant 3.0E-03 µmol gDW

−1

pFdp,KP EP Affinity constant 0.3 µmol gDW
−1

pGltA,kcat Specific activity 1614 µmol (gProt s)
−1

pGltA,KOAA Affinity constant 0.029 µmol gDW
−1

continued on the next page . . .
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. . . Table 3.5 continued.

Parameter Description Value

pGltA,KACoA Affinity constant 0.212 µmol gDW
−1

pGltA,KOAAACoA Affinity constant 0.029 µmol gDW
−1

pGltA,KAKG Affinity constant 0.63 µmol gDW
−1

pIcd,kcat Specific activity 695 µmol (gProt s)
−1

pIcd,n Number of subunits 2
pIcd,L Allosteric constant 127
pIcd,KICT Affinity constant 1.6E-04 µmol gDW

−1

pIcd,KP EP Affinity constant 0.334 µmol gDW
−1

pMaeAB,kcat Specific activity 1879 µmol (gProt s)
−1

pMaeAB,n Number of subunits 1.33
pMaeAB,L Allosteric constant 1.04E+05
pMaeAB,KMAL Affinity constant 6.24E-03 µmol gDW

−1

pMaeAB,KACoA Affinity constant 3.64 µmol gDW
−1

pMaeAB,KcAMP Affinity constant 6.54 µmol gDW
−1

pMdh,kcat Specific activity 5437 µmol (gProt s)
−1

pMdh,n Hill coefficient 1.7
pMdh,KMAL Affinity constant 10.1 µmol gDW

−1

pPckA,kcat Specific activity 377 µmol (gProt s)
−1

pPckA,KOAA Affinity constant 0.184 µmol gDW
−1

pPckA,KP EP Affinity constant 1000 µmol gDW
−1

pPdh,kcat Specific activity 5479 µmol (gProt s)
−1

pPdh,n Number of subunits 2.65
pPdh,L Allosteric constant 3.4
pPdh,KP Y R Affinity constant 0.128 µmol gDW

−1

pPdh,KI,P Y R Affinity constant 0.231 µmol gDW
−1

pPdh,KGLX Affinity constant 0.218 µmol gDW
−1

pPfkA,kcat Specific activity 5.39E+05 µmol (gProt s)
−1

pPfkA,n Number of subunits 4
pPfkA,L Allosteric constant 9.5E+07
pPfkA,KG6P Affinity constant 0.022 µmol gDW

−1

pPfkA,KP EP Affinity constant 0.138 µmol gDW
−1

pPpc,kcat Specific activity 1.49E+04 µmol (gProt s)
−1

pPpc,n Number of subunits 3
pPpc,L Allosteric constant 5.2E+06
pPpc,KP EP Affinity constant 0.048 µmol gDW

−1

pPpc,KF BP Affinity constant 0.408 µmol gDW
−1

pPpsA,kcat Specific activity 1.32 µmol (gProt s)
−1

pPpsA,n Number of subunits 2
pPpsA,L Allosteric constant 1.0E-79

continued on the next page . . .
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. . . Table 3.5 continued.

Parameter Description Value

pPpsA,KP Y R Affinity constant 1.77E-03 µmol gDW
−1

pPpsA,KP EP Affinity constant 1.0E-03 µmol gDW
−1

pPykF,kcat Specific activity 1.37E+04 µmol (gProt s)
−1

pPykF,n Number of subunits 4
pPykF,L Allosteric constant 1.0E+05
pPykF,KP EP Affinity constant 5 µmol gDW

−1

pPykF,KF BP Affinity constant 0.413 µmol gDW
−1

pPTS,k1 Specific activity 116 gDW (gProt s)
−1

pPTS,km1 Specific activity 46.3 gDW (gProt s)
−1

pPTS,k4 Specific activity 2520 µmol (gProt s)
−1

pPTS,KEIIA Affinity constant 8.5E-03 gProt gDW
−1

pPTS,KGLC Affinity constant 1.2E-03 gGLC l
−1

pCra,scale Specific activity 100 gProt (µmol s)−1

pCra,KF BP Affinity constant 1.36 µmol gDW
−1

pCra,n Hill coefficient 2
pCrp,scale Specific activity 1.0E+08 gProt (µmol s)−1

pCrp,KcAMP Affinity constant 0.895 µmol gDW
−1

pCrp,n Hill coefficient 1
pPdhR,scale Specific activity 100 gProt (µmol s)−1

pPdhR,KP Y R Affinity constant 0.164 µmol gDW
−1

pPdhR,n Hill coefficient 1
paceBAK,aceBfactor Scaling factor 0.3
paceBAK,aceKfactor Scaling factor 0.03
paceBAK,kcat,IclR Specific activity 9.3E-04 s−1

paceBAK,KDNA Affinity constant 2.19 [AU ] gDW
−1

paceBAK,DNA DNA concentration 1 [AU ] gDW
−1

paceBAK,KP Y R Affinity constant 0.897 µmol gDW
−1

paceBAK,KP Y Rprime Affinity constant 3.01E-03 µmol gDW
−1

paceBAK,KGLX Affinity constant 4.88E-03 µmol gDW
−1

paceBAK,L Allosteric constant 923
paceBAK,vCra,unbound Basal expression rate 1.9E-09 gProt(gDW s)−1

paceBAK,vCra,bound Max. expression rate 2.0E-06 gProt(gDW s)−1

paceBAK,KCra Affinity constant 3.65E-03 gProt gDW
−1

paceBAK,vCrp,unbound Max. expression rate 2.0E-08 gProt(gDW s)−1

paceBAK,vCrp,bound Basal expression rate 2.3E-10 gProt(gDW s)−1

paceBAK,KCrp Affinity constant 0.341 gProt gDW
−1

pacs,vCrp,unbound Basal expression rate 0 gProt(gDW s)−1

pacs,vCrp,bound Max. expression rate 4.0E-08 gProt(gDW s)−1

pacs,n Hill coefficient 2.31

continued on the next page . . .
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Parameter Description Value

pacs,KCrp Affinity constant 4.7E-03 gProt gDW
−1

pakg2mal,vCrp,unbound Basal expression rate 0 gProt(gDW s)−1

pakg2mal,vCrp,bound Max. expression rate 1.4E-06 gProt(gDW s)−1

pakg2mal,KCrp Affinity constant 0.091 gProt gDW
−1

pakg2mal,n Hill coefficient 0.74
pemp,vCra,unbound Max. expression rate 6.1 E-07 gProt(gDW s)−1

pemp,vCra,bound Basal expression rate 0 gProt(gDW s)−1

pemp,KCra Affinity constant 0.09 gProt gDW
−1

pemp,vCrp,unbound Basal expression rate 0 gProt(gDW s)−1

pemp,vCrp,bound Max. expression rate 4.7 E-07 gProt(gDW s)−1

pemp,KCrp Affinity constant 0.012 gProt gDW
−1

peno,vCra,unbound Max. expression rate 6.7 E-07 gProt(gDW s)−1

peno,vCra,bound Basal expression rate 0 gProt(gDW s)−1

peno,KCra Affinity constant 0.016 gProt gDW
−1

pfdp,vCra,unbound Basal expression rate 0 gProt(gDW s)−1

pfdp,vCra,bound Max. expression rate 2.1E-08 gProt(gDW s)−1

pfdp,KCra Affinity constant 1.18E-03 gProt gDW
−1

pgltA,vCrp,unbound Basal expression rate 0 gProt(gDW s)−1

pgltA,vCrp,bound Max. expression rate 6.5E-07 gProt(gDW s)−1

pgltA,KCrp Affinity constant 0.04 gProt gDW
−1

pgltA,n Hill coefficient 1.07
picd,vCra,unbound Basal expression rate 1.1E-07 gProt(gDW s)−1

picd,vCra,bound Max. expression rate 8.5E-07gProt(gDW s)−1

picd,KCra Affinity constant 1.17E-03 gProt gDW
−1

pmdh,vCrp,unbound Basal expression rate 0 gProt(gDW s)−1

pmdh,vCrp,bound Max. expression rate 1.3 E-06 gProt(gDW s)−1

pmdh,KCrp Affinity constant 0.06 gProt gDW
−1

ppckA,vCra,unbound Basal expression rate 0 gProt(gDW s)−1

ppckA,vCra,bound Max. expression rate 3.7 E-07 gProt(gDW s)−1

ppckA,KCra Affinity constant 5.35E-03 gProt gDW
−1

ppdh,vP dhR,unbound Max. expression rate 7.7 E-08 gProt(gDW s)−1

ppdh,vP dhR,bound Basal expression rate 2.8 E-10 gProt(gDW s)−1

ppdh,KP dhR Affinity constant 3.4E-03 gProt gDW
−1

ppfkA,vCra,unbound Max. expression rate 1.4 E-06 gProt(gDW s)−1

ppfkA,vCra,bound Basal expression rate 1.1 E-08 gProt(gDW s)−1

ppfkA,KCra Affinity constant 6.3E-07 gProt gDW
−1

pppsA,vCra,unbound Basal expression rate 0 gProt(gDW s)−1

pppsA,vCra,bound Max. expression rate 3.3E-06 gProt(gDW s)−1

continued on the next page . . .
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Parameter Description Value

pppsA,KCra Affinity constant 0.017 gProt gDW
−1

ppykF,vCra,unbound Max. expression rate 1.6 E-07 gProt(gDW s)−1

ppykF,vCra,bound Basal expression rate 8.8 E-10 gProt(gDW s)−1

ppykF,KCra Affinity constant 2.3E-03 gProt gDW
−1

pD,kdegr Universal protein 2.8E-05 s−1

degradation rate
pBM,kexpr Gene expression rate 2.0E+04 s

constant
pBM,µACT Growth rate on acetate 5.6E-05 s−1

pBM,µGLC Growth rate on glucose 1.8E-04 s−1

pBM,GLCACoA 1st order rate constant 1.88 s−1

pBM,GLCAKG 1st order rate constant 0.978 s−1

pBM,GLCG6P 1st order rate constant 0.154 s−1

pBM,GLCOAA 1st order rate constant 6.4 s−1

pBM,GLCP EP 1st order rate constant 0.423 s−1

pBM,GLCP G3 1st order rate constant 0.049 s−1

pBM,GLCP Y R 1st order rate constant 0.553 s−1

pBM,ACTACoA 1st order rate constant 0.108 s−1

pBM,ACTAKG 1st order rate constant 0.056 s−1

pBM,ACTG6P 1st order rate constant 0.076 s−1

pBM,ACTOAA 1st order rate constant 1.43 s−1

pBM,ACTP EP 1st order rate constant 0.047 s−1

pBM,ACTP G3 1st order rate constant 0.066 s−1

pBM,ACTP Y R 1st order rate constant 5.185 s−1

3.6.3 Sensitivity analysis

The sensitivities of each of the two reproduced steady states with respect to small
parameter perturbations were approximated through

Si,j =
∆xi/xi
∆pj/pj

≈ (x+
i − x

−
i )/xi

(1.01 pj − 0.99 pj)/pj
=
x+
i − x

−
i

0.02xi
,

with xi the nominal steady state value and x+
i and x−i the values resulting from a

1% increase or decrease, respectively, of the parameter value pj . As a heatmap of
the resulting 47x193 sensitivity matrix S is too large for convenient inspection, we
reduced the size of S by grouping the sensitivities of those parameters that appear
in the same rate equation fk. For this grouping, we used the size-independent
overall variability
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Figure 3.8: Sensitivity statistics of the steady states with respect to 1% parameter per-
turbations. The used statistics condenses the sensitivities of all parameters appearing in
the same rate equation to a single value.

Si,k =
1

nk

X
j | pj∈fk

S 2
i,j

as sensitivity statistics, with nk the number of parameters appearing in fk. The
results of these local sensitivity analyses, one for each of the two steady states, are
plotted in Figure 3.8.

This figure reveals that in general, protein and metabolite concentrations re-
spond differently to parameter perturbations. Protein concentrations are most
significantly affected by perturbations of the parameters describing their gene’s
expression but are rather marginally affected by other parameter perturbations,
causing the red diagonal line of high protein sensitivities in Figure 3.8. In con-
trast, the sensitivities of the metabolite concentrations do not form such a line.
Therefore, contrary to what might have been expected, the sensitivities of metabo-
lite concentrations to parameter variations of their topological enzyme neighbors
and to more distant perturbation are about the same. We suspect that this prop-
erty of the metabolites’ sensitivities is due to the model’s densely interconnected
enzymatic regulation.

A further observation is that sensitivities that are high on glucose are often low
on acetate and vice versa, probably because many reactions are very active in one
condition but much less so in the other.
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3.6.4 Simulation results

In this section, we present the simulated time profiles of the intracellular metabo-
lites (Figure 3.9), enzymes (Figure 3.10), rates (Figures 3.11 and 3.12), the phos-
phorylation state of the proteins EIIA and Icd, and the TF activities (Figure 3.13).
Figure 3.14 contains a subset of these time profiles to illustrate the connection
between the available extracellular carbon sources, the concentrations of the in-
tracellular signal metabolites, and the activities of their target TFs. These time
profiles are based on the parameter vector listed in Table 3.5. Note that due to
the uncertainty in the parameter values, the ambiguity in the selection of rate
laws, and possible effects of not modeled cellular regulations, i.e. those ensuring
the here omitted energy, cofactor etc. balances, onto the simulated trajectories,
these profiles cannot be considered a quantitatively accurate reproduction of the
in vivo time profiles. Instead, these profiles are meant to demonstrate that with
the chosen parameters, (i) all compound concentrations and rates approach the
proper steady state levels and (ii) remain within physiologically reasonable bounds
throughout the transitions.

An aspect worth noting is the spiking of some metabolite concentrations fol-
lowing environmental changes. These spikes are in the order of seconds and thus
elude experimental detection with current measurement technology. In some cases
such as OAA, these spikes might be an artifact of the modeling, caused by the
fast change of the used first order rate constants upon a change in environmental
conditions (see Section 3.6.1.9). In other cases, however, the spikes arise from the
interplay of the mechanistically modeled interactions. For instance, PEP and PYR
spike because they are coupled to glucose uptake via the PTS system. These spikes
propagate through the system: G6P’s small upward spike following the change from
glucose to acetate is a consequence of the large upward PEP spike quickly inhibit-
ing the G6P–consuming reaction (in the model, PfkA) while quickly activating
the G6P–producing (back-)reaction from FBP (in the model, Fdp); G6P’s steady
state convergence after that small, initial spike is slow because G6P is immediately
formed by the uptake of glucose but needs many reaction steps to be synthesized
from acetate.

Another aspect worth mentioning is that the duration of the transition period
between balanced growth on either substrate is primarily determined by the growth
rates and is therefore robust to the inherent uncertainty in the model. The reason
for this is that the speed of steady state convergence is given by the slowest signif-
icant rates of the model, which are the enzyme dilution rates due to growth. This
observation suggests that with µ the growth rate on the condition adapting to,
a lower bound (that neglects active protein degradation) for the transcriptional
adaptation time of bacteria could be quantified, e.g. in the form of a ’minimal
half-adaptation time’ T1/2 = µ−1ln(2).
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Figure 3.9: Simulated intracellular metabolite concentrations. The vertical gray lines indi-
cate the time instants of external changes to the available carbon sources (see Figure 3.14
or Section 3.4.1). The concentrations approach the measured steady state values listed in
Table 3.3.
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Figure 3.10: Simulated enzyme concentrations. The vertical gray lines indicate the time in-
stants of external changes to the available carbon sources (see Figure 3.14 or Section 3.4.1).
The concentrations approach the measured steady state values listed in Table 3.3.
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Figure 3.11: Simulated enzymatic reaction rates. The vertical gray lines indicate the time
instants of external changes to the available carbon sources (see Figure 3.14 or Sec-
tion 3.4.1). The rates approach the measured steady state values listed in Table 3.4.
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Figure 3.12: Simulated biomass reaction rates. The vertical gray lines indicate the time in-
stants of external changes to the available carbon sources (see Figure 3.14 or Section 3.4.1).
The rates approach the measured steady state values listed in Table 3.4.
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4.1 Summary

Stochastic gene expression causes fluctuations in the abundances of intracellu-
lar molecules [28, 35, 50, 143, 146, 151, 167, 203]. Certain regulation architec-
tures can exploit this cell–to–cell variation to create multiple distinct and co-
existent phenotypes even among isogenic cells exposed to the same environ-
ment [12, 37, 76, 87, 137, 152, 197]. Experimental [2] and complementary the-
oretical studies [107, 205] suggest that stochasticity–driven systems can prevail
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over deterministic designs to confer high population adaptability. Although meta-
bolism continuously adapts to unpredictable environmental changes, and certain
substrate uptake pathways were found to exhibit phenotypic bistability [1, 144],
central carbon metabolism as a whole is thought to operate deterministically. Here
we report that a regulation architecture at the core of central carbon metabolism
in Escherichia coli splits an isogenic cell population into two phenotypic subpop-
ulations. We found that after a shift from glucose to a gluconeogenic substrate,
only a relatively small fraction of cells grows, whereas most cells unexpectedly
refrains from growing on the available substrate. We identified the underlying
subpopulation–generating mechanism, which comprises two intertwined feedback
and feedforward loops on the levels of metabolic and genetic regulation. This circuit
’chooses’ between two alternative phenotypes based on measured carbon uptake
performance and as such realizes a performance-based phenotype selection, assign-
ing only the cells most capable of gluconeogenic growth to the growing phenotype.
These results suggest that phenotypic bistability generalizes to central metabo-
lism, and can thus be viewed as an inherent design feature. Metabolic regulation
does not ensure the growth of individual cells on a gluconeogenic substrate, but
instead uses the strategy of responsive diversification to diversify the population
once glucose is depleted.

4.2 Introduction

Since the earliest bacterial physiology studies, it has been known that inoculation
of a bacterial population into a new medium results in a period of no apparent
growth prior to growth on the new carbon source [133]. This ’lag time’ is classically
attributed to the duration of necessary biochemical adaptation processes within
individual cells, which are thought to switch homogeneously and responsively to
the new substrate (responsive switching, see Figure 4.1).

However, biochemical processes are inherently stochastic and cause molecule
abundances to fluctuate. These fluctuations are usually suppressed but can also
be amplified and used to generate distinct phenotypes [12, 37, 76, 87, 137, 152, 197].
The possible emergence of multiple coexisting phenotypes within an isogenic cell
population creates the alternative and hitherto untested hypothesis that the ap-
parent ’lag time’ is caused by the exclusive growth of an initially small phenotypic
subpopulation (see Figure 4.1).

A growing phenotypic subpopulation could be generated in two ways. First, the
cells could ’anticipate’ the environmental change by stochastically switching their
phenotype at any time, in which case the adaptation to the new carbon source is
a passive process accomplished by the presence of pre–adapted cells prior to the
environmental change [2, 107, 205] (see Figure 4.1). This mechanism of adaptation,
termed stochastic switching [107], resembles that of type II persister cells [12].
Second, an initially homogeneous population could actively respond to the sensed
environmental change with a diversification of its phenotype, meaning that only
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a stochastically generated subset of the cells quickly adapts to growth on the new
conditions. This mechanism of adaptation, here termed responsive diversification,
resembles that of type I persister cells, which acquire antibiotic resistance as a
response to an environmental trigger [12].

Here, we investigated which of these three adaptation strategies — responsive
switching, responsive diversification, or stochastic switching — is used by Es-
cherichia coli to adapt from glycolytic to gluconeogenic growth. On the molecular
level, this adaptation requires comprehensive redirections of central carbon flow,
which E.coli realizes by repressing glycolytic enzymes and inducing gluconeogenic
enzymes, particularly those of the acetate uptake pathway (acs), the glyoxylate
shunt (aceBAK ), the anaplerotic reactions (pckA,maeB,sfcA), and the Embden-
Meyerhoff pathway [92].

stochastic switchingresponsive diversi�cation
one phenotype before change

responsive switching
one phenotype before change two phenotypes before change

Population-level adaptation strategies to an environmental change

heterogeneous
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one phenotype after change
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Figure 4.1: Three alternative hypotheses to explain the lag time in the population’s growth
curve after an environmental change. According to the classical hypothesis, the population
responds with a homogeneous adaptation, which takes considerable time before growth is
resumed. According to the here presented heterogeneous subpopulation hypothesis, only
an initially small subpopulation resumes growth. This phenotypic diversification is either
generated from a homogeneous population as a response to the environmental change, or
exists already before the environmental change due to stochastically switching cells.

99



Chapter 4 Phenotypic bistability

4.3 Results

4.3.1 Phenotypic bistability in central metabolism

To discriminate whether the adaptation of E. coli ’s central metabolism from gly-
colytic to gluconeogenic growth involves one or two phenotypes, we conducted
substrate shift experiments where we stained the cellular membranes with a red
fluorescent, membrane-intercalating dye before changing the carbon source from
glucose to different concentrations of acetate (see Figure 4.2a). Hence, a cell’s flu-
orescent intensity is halved with every cell division in the new environment. At
multiple time points after the shift to acetate, we determined the populations’ flu-
orescence intensity distributions (see Figure 4.2b). For all acetate concentrations,
we do not observe unimodal fluorescence intensity distributions with exponentially
decreasing mean values following an initial period of adaptation, which would val-
idate the classic hypothesis (Figure 4.1). Instead, upon the substrate shift to ac-
etate, two subpopulations become visible; cells of the first subpopulation retain a
high fluorescence level and therefore do not grow, cells of the second subpopula-
tion lose their fluorescence with a rate approaching the total population’s growth
rate and therefore do grow (dye toxicity as a possible cause for the non–growing
phenotype has been excluded, see dissertation of Benjamin Volkmer). The cause
for the two phenotypic subpopulations is not genetic; if the experiment is repeated
with cells derived from the growing subpopulation, again two distinct growth phe-
notypes emerge (see dissertation of Benjamin Volkmer). Therefore, the adaptation
from glucose to acetate involves two distinct growth phenotypes, and thus the
adaptation strategy cannot be responsive switching.

Next, we discriminated between the remaining two adaptation strategies to
determine whether the two phenotypes arise from a passive process (stochastic
switching) or an active response (responsive diversification). We thus grew E. coli
on both glucose and 13C–labelled acetate and measured the intracellular amino
acids’ 13C enrichment patterns. These patterns (see Section 4.5.1) show that if
an acetate–adapted subpopulation with dysfunctional catabolite repression exists
at all in the presence of glucose, its size is much too small to generate the grow-
ing subpopulation observed in our substrate shift experiment; thus, stochastic
switching on glucose can at best generate a small fraction of the growing subpop-
ulation on acetate. Further, we found no experimental evidence for the occurrence
of stochastic switching on acetate (see dissertation of Benjamin Volkmer). Hence,
the dominant mechanism of adaptation must be responsive diversification: When
faced with a shift from glucose to acetate, central metabolism responds with di-
versifying a homogeneous cell population such that only a subpopulation adapts
to growth on the new substrate.

The stability of the two phenotypes allowed us to quantify the subpopulation
proportions generated by responsive diversification following the substrate shift.
For multiple acetate concentrations, estimates for the fractions of acetate–adapting
cells at the time instant of the substrate shift, α, and their growth rates µg were
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Figure 4.2: Substrate shift experiments from glucose to acetate. a, Outline of the exper-
imental procedure. b, Measured cell counts of the total population (gray dots) after the
substrate shift from glucose to acetate, and deduced growth curves of the total popu-
lation (regular line) and constituent ’growing’ (dashed line) and ’non–growing’ (dotted
line) subpopulations. Dots with a black circumference indicate the time points for flow
cytometry analysis. c, Fluorescence intensity distributions at multiple time points after
the substrate shift. A Bigaussian fit (dashed gray line, ’growing’ subpopulation; dotted
gray line, ’non–growing’ subpopulation; regular gray line, total population) excellently re-
produces the experimental data (black curve). d, The fraction of acetate–adapting cells,
α, increases with the acetate concentration. e,The dependency of the ’growing’ subpop-
ulation’s growth rate µg on the acetate concentration is hyperbolic, with the maximal
growth rate vmax = 0.34h−1 and the Monod constant KAcetate = 0.5gl−1.
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determined through deconvolution of the two phenotypes’ Gaussian contributions
to the time progression of the total populations’ fluorescence intensity distribu-
tions (see Section 4.6.2). We found that the value of α increases with increasing
acetate concentration (excluding acidic shock survival as a possible cause for the
subpopulations) and levels off at α ≈ 0.5 (see Figure 4.2d), meaning that for small
acetate concentrations, most cells refrain from growing on the present acetate.
The value of µg follows a hyperbolic dependency on the acetate concentration (see
Figure 4.2e), with the maximal growth rate µmax = 0.34h−1 and the Monod con-
stant KAcetate = 0.5gl−1, agreeing with an earlier published value [230]. Therefore,
rather then being attributable to biochemical adaptation processes within individ-
ual cells, the duration of the apparent ’lag time’ of total population growth is a
combined effect of the values of α and µg.

4.3.2 Molecular mechanism generating bistable phenotypes

4.3.2.1 Phenotypic differences on the molecular level

Towards identifying the molecular mechanism generating the responsive diversifi-
cation, we asked how the two phenotypes differ on the molecular level. One of the
necessary regulatory adjustments to adapt from glucose to acetate is performed by
the transcription factor Cra, which regulates the reversal of carbon flow through
the Embden-Meyerhoff-pathway [178].

To determine if Cra is involved in the generating the responsive diversification,
we modulated the Cra abundance through expression from an inducible plasmid
in a cra− background (without this plasmid, cra− is not viable on acetate, see
Figure 4.3e). We found that following the substrate shift to acetate, the total pop-
ulation’s growth curve exhibits a markedly prolonged ’lag time’ compared to the
wild–type when the plasmid is uninduced, whereas growth with the fully induced
plasmid reproduces wild–type physiology. When we analyzed this behavior on the
single cell level, we found that the variation in ’lag time’ arises from a variation of
α, not µg (see Figure 4.3e). These results show that the abundance of Cra mod-
ulates the subpopulation proportions, and therefore strongly suggest that Cra is
involved in the molecular mechanism generating the responsive diversification.

4.3.2.2 Identification of a candidate mechanism

Next, bistability theory states that if Cra is involved in generating bistable pheno-
types, then it must be an element of a feedback architecture involving cooperative
binding events [76, 87, 152, 193]. We therefore screened the known molecular inter-
actions for such a feedback architecture. Since Cra is not known to be transcrip-
tionally regulated, a transcriptional feedback on Cra expression is unlikely. How-
ever, Cra activity is next to the Cra abundance also affected by the concentration
of Cra’s strong inhibitor, the metabolite fructose-1,6-bisphosphate (FBP) [162].
With this interaction, we identified a candidate mechanism for the generation of
responsive diversification.
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This candidate mechanism, illustrated in Figure 4.3a, comprises a feedback in-
tertwined with a feedforward loop and overarches the metabolic and genetic layers.
The isolated feedback of FBP via Cra on the expression of enzymes subsumed into
a super–enzyme E1 is negative; the sign of the closed loop is turned positive by the
strong feedforward activation of the enzyme fructose-1,6-bisphosphatase I (Fbp) by
phosphoenolpyruvate (PEP) [75], which causes the FBP-producing and consum-
ing reactions to compete for PEP such that FBP decreases with increasing PEP
and gluconeogenic flux (see Section 4.7.2 and Figure 4.8). The super–enzyme E1

catalyzes the interconversion of acetate to PEP via the TCA cycle, the glyoxylate
shunt, and the anaplerotic reactions.

A bifurcation analysis on a differential equation model of this system confirmed
that this candidate mechanism is capable of generating responsive diversification
(see 4.7.2). The bifurcation diagram shows two stable acetate uptake fluxes (Fig-
ure 4.3b), which can be interpreted as the ’growing’ and ’non–growing’ pheno-
types, and which are separated by a watershed. If, upon the substrate shift, a
particular cell immediately realizes an acetate uptake flux above the watershed, it
approaches the high steady state and adopts the ’growing’ phenotype; otherwise,
it approaches the low steady state and adopts the ’non–growing’ phenotype. If
intracellular randomness causes the relative positions of acetate uptake flux and
watershed to vary throughout the population, bistable phenotypes result, and the
responsive diversification is generated.

Notably, this mechanism establishes a dependency of FBP on the gluconeogenic
flux and propagates the flux information to the genetic layer through binding
of FBP to Cra. This process has been analyzed in Chapter 3 and constitutes
a flux measurement realized by the Cra–FBP flux sensor. Remarkably, this flux
measurement realizes a performance–based selection of the growing phenotype,
which is adopted only by cells with a sufficiently high (above-watershed) acetate
uptake flux.

4.3.2.3 Validation of the candidate mechanism

The differential equation model’s system properties are consistent with the above
presented experimental observations. First, higher acetate concentrations in the
range of its Monod constant increase the cells’ acetate uptake fluxes and poten-
tially lift these above the watershed, increasing α as observed in Figure 4.2d.
Second, overexpression of E1’s transcriptional activator Cra potentially raises the
production rate of E1, which increases α by lowering the watershed (the level of
the watershed is given by the production rate of E1, see Section 4.7.2). Third, a
knockout of Cra reduces α by raising the watershed. Fourth, the required capacity
for immediate acetate uptake upon glucose removal is strongly suggested by the
results of our 13C experiment (see Section 4.5.1), which show that acetate is taken
up already prior to glucose removal — following glucose removal, cessation of gly-
colytic flux allows the carbon flux derived from acetate, so far cycling through the
TCA, to enter the Embden–Meyerhoff pathway as gluconeogenic flux.
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Further observations yield additional confidence in the candidate mechanism.
First, we determined the population–averaged Cra abundance to be in the range of
50–100 molecules/cell. This abundance, which is very low compared to most other
TF abundances [175], encourages noticeable cell–to–cell variation [14]. Second, the
gradual convergence to the two stable acetate uptake fluxes in the bifurcation dia-
gram agrees with an experimentally observed initial, gradual increase or decrease
of the two phenotypes’ growth rates upon the substrate shift (see dissertation of
Benjamin Volkmer).

Next, we challenged the candidate mechanism through experimental validation
of predicted perturbation effects. First, a knockout of isoenzymes (acnA, acnB)
or parallel pathways (maeBsfcA, ppsA, pckA) located within E1 (see Figure 4.3d)
may (i) reduce the overall production rate of E1 through the introduction of ’gene
expression bottlenecks’, which reduce α by raising the level of the watershed (see
Figure 4.3 and Section 4.7.2), and/or (ii) reduce the acetate uptake flux through
the introduction of ’metabolic flux bottlenecks’, which certainly decrease α and
possibly also µg. Hence, these mutations have either no effect or reduce α more
significantly than µg. This prediction is confirmed by the results of substrate shift
experiments with these mutants (see Figure 4.3e).

Second, if the growth behavior of these mutants differs from that of the wild-

Figure 4.3 (preceding page): The bistability–generating mechanism. a, Bistability–
generating circuit. Ei denote super–enzymes catalyzing lumped reactions. PEP (phos-
phoenolpyruvate) allosterically activates the enzyme Fbp (fructose-1,6-bisphosphatase).
Fructose-1,6-biphosphate (FBP) represses E1 production by modulating the activity of
the transcription factor Cra. b, Bifurcation diagram of metabolic steady state fluxes J as
a function of extracellular acetate concentration. The system is capable of expressing two
stable steady state fluxes (bold lines) and one unstable steady state flux (dashed line)
that acts as a watershed separating the convergence regions of the high (’growing’ pheno-
type) and low (’non-growing’ phenotype) stable steady states. Arrows show the direction
of system dynamics. c, A set of bifurcation diagrams for different E1 production rates.
Arrows indicate the direction of decreasing E1 production rates with which the conver-
gence region of the ’growing’ phenotype gradually decreases and that of the ’non–growing’
phenotype increases (i.e. α decreases), and the steady state flux J (i.e. the growth rate)
of the ’growing’ phenotype stays nearly unchanged. d, The reactions catalyzed by the
super–enzyme E1. Bold arrows indicate the route of major carbon flux from acetate to
PEP, thin arrows complete the TCA cycle. Gray arrows highlight isoenzymes and parallel
pathways that are knockout targets for experimentally decreasing the E1 production rate.
e, Experimentally derived values for the ’growing’ subpopulation fraction α and its growth
rate µg for different strains. Unless otherwise stated, the initial acetate concentration is
2g/l. In the wild–type, both α and µg increase with increasing acetate concentration.
Also shown are the behaviors of the cra knockout mutant without plasmid (not viable on
acetate), with plasmid pCra+ not induced (marked decrease of α but not µg), and with
plasmid pCra+ induced using an IPTG concentration of 0.1mM (α and µg are reverted
to wild–type behavior). Further shown are the behaviors of knockout mutants that po-
tentially have a lower E1 production rate than the wild–type. In the acnB, ppsA, and
maeBsfcA mutant strains, the dominant effect is a reduction of α. The acnA and pckA
mutant strains exhibit near–wild–type behavior.
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type, the wild-type behavior should be restored through overexpression of the
alternative isoenzyme or parallel pathway. Figure 4.3e shows that the ppsA−,
maeBsfcA− and acnB− strains exhibit markedly reduced values of α. Experiments
confirm that ppsA− is fully reverted to wild-type behavior through overexpression
of pckA [88], and that the extensive apparent ’lag times’ of maeBsfcA− and acnB−

are markedly reduced through overexpression of ppsA [88] and acnA (see disser-
tation of Benjamin Volkmer), respectively.

Third, because merging of the reactions from other gluconeogenic substrates
such as succinate, malate, and fumarate to PEP into super–enzymes E∗1 leads
to the same topology, the model predicts that responsive diversification also oc-
curs upon shifts to these substrates. The results of the corresponding substrate
shift experiments, plotted in Figure 4.7 of Section 4.5.2, confirm this prediction.
These results also show that responsive diversification is not an acetate–specific
phenomenon and is therefore of a more general nature.

We conclude that upon shifts from glucose to multiple gluconeogenic substrates,
responsive diversification is generated at the core of central metabolism. Therefore,
phenotypic bistability generalizes to central metabolism and can thus be viewed
as an inherent feature of its design.

4.4 Discussion

In this chapter, we have shown that an isogenic E. coli population responsively
diversifies into two phenotypic subpopulations following shifts from glucose to mul-
tiple gluconeogenic substrates. As ’lag time’ has here been shown to be caused by
the exclusive growth of an initially small phenotypic subpopulation, other occur-
rences of ’lag time’ may arise from multiple phenotypes as well.

The molecular mechanism generating the responsive diversification resides at
the core of central metabolism and comprises a feedback architecture overarching
the metabolic and genetic layers. This mechanism realizes a performance–based
selection of phenotypes through flux measurements. Hence, metabolic flux is a
control factor that regulates gene expression, a function that has so far only been
demonstrated synthetically [58].

The main result of this chapter is that phenotypic bistability generalizes to
central metabolism and can thus be viewed as an inherent feature of its design.

4.5 Supporting results

This section presents experimental results supporting the conclusions of this chap-
ter. Specifically, the exclusion of stochastic switching as the dominant adaptation
strategy and the behavior of the wild–type upon shifts to gluconeogenic substrates
other than acetate are presented. Refer to the dissertation of Benjamin Volkmer
for further supporting results, including

• the effect of culture evaporation on cell count concentration,
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• the effect of dye bleaching on fluorescence intensity,

• the validation that membrane staining has no effect on growth behavior and
hence the ’non–growing’ subpopulation is not a result of dye toxicity,

• the validation that the two phenotypic subpopulations are indeed isogenic
and hence the subpopulations do not arise from genetic mutations occurring
during the experiment,

• the validation that stochastic switching between the ’growing’ and ’non–
growing’ phenotypes does not occur to a noticeable degree on acetate, and

• the validation that the fraction of cells adapting to growth on acetate, α, is
independent of the amount of acetate present in the second consecutive ’glu-
cose’ culture; hence, the presence of gluconeogenic substrates (most promi-
nently acetate) in the ’glucose’ culture prior to the substrate shift does not
prime the cells for the later consumption of these carbon sources.

4.5.1 Exclusion of stochastic switching as the dominant adaptation
strategy

This section investigates whether or not an acetate–adapted phenotypic subpopu-
lation exists in the presence of glucose, prior to the substrate switch to acetate, with
a size large enough to account for the α values observed in Figure 4.2. The answer to
this question allows for a discrimination between the two possible population–level
adaptation strategies of passive stochastic switching and active responsive diver-
sification (see Section 4.3.1). From a textbook point of view, the acetate–adapted
phenotype is not expected because in E. coli and several other bacteria, the usage
of alternative carbon sources in the presence of glucose is blocked through a phe-
nomenon known as carbon catabolite repression [200]. Thus, if a phenotype existed
that grows on acetate but not on glucose, then in those cells carbon catabolite re-
pression would not be active. Further note that such pre–adaptation to acetate
during glucose growth is not expected because the value of the initial acetate–
adapted population fraction, α, depends on the acetate concentration after the
glucose growth phase (see Figure 4.2).

If a phenotypic subpopulation adapted to gluconeogenic growth nonetheless ex-
isted during the glucose growth phase in our standard transition experiments, we
would expect it to be of a detectable size (and not in the range of one cell in few
thousands): First, the presence mostly of acetate but also of other gluconeogenic
substrates in the glucose culture (see Figure 4.4) would allow this phenotype to
grow. Second, if the population–level adaptation strategy was sole passive stochas-
tic switching, then this strategy alone would have to account for the significant
population fraction α (see Figure 4.2) that ’decides’ to grow on acetate when
glucose is removed.
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Figure 4.4: Physiological data for diauxic growth on glucose. The population size, mea-
sured as the culture’s optical density, the pH, and the concentrations of extracellular
carbon sources are shown. The dashed gray lines indicate the time instant at which cells
are in standard substrate shift experiments transferred to a new medium with a gluco-
neogenic carbon source. At this time instant, several gluconeogenic carbon sources are
already present in the glucose culture, allowing a hypothetical phenotypic subpopulation
adapted to these substrates to grow. The solid vertical gray lines indicate the time instant
of glucose depletion and the onset of net consumption of at least acetate.
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To identify whether or not an acetate–adapted phenotypic subpopulation exists
in the glucose growth phase, cells were grown in a M9 glucose medium preculture,
transferred to an M9 glucose (5 g/L) medium main culture supplemented with
1 g/L either unlabeled (naturally) or fully 13C–labeled acetate. If a phenotype
existed that grows on acetate, then that phenotype would take up 13C labelled ac-
etate and we would find 13C label in, for example, the intracellular amino acids. We
took samples (triplicates) from the two main cultures at different optical densities:

• the ’actual sample’ at an OD of 1.2 (glucose growth phase) from the culture
with the added 1 g/L labeled acetate. This OD roughly represents the OD,
at which we usually harvest the cells to inoculate the acetate medium in our
standard transition experiments (OD 0.5).

• the ’negative control sample’ at an OD of 1.2 (glucose growth phase) from
the culture grown with the added 1 g/L unlabeled acetate.

• the ’positive control sample’ at an OD of 3.3 from the culture with the added
1 g/L labeled acetate. At this OD the cells have consumed both available
substrates, the glucose and the available acetate, consisting of the produced
acetate and the added 13C–labeled acetate, and have therefore entered sta-
tionary phase.

The measured mass distribution vectors of the amino acids, shown in Figure 4.5,
reveal a natural labeling pattern for seven amino acids, and a 13C–enriched label-
ing pattern for eight amino acids. Therefore, the cells do take up the acetate, but
incorporate the carbon derived from the acetate only in a subset of the amino
acids. As we know from Figure 4.4 that the cells excrete acetate at the same time,
the acetate uptake and excretion must occur simultaneously. This is thermody-
namically possible due to the existence of two separate pathways, with the uptake
most likely performed by the enzyme Acs, and the excretion by the linear pathway
formed by the enzymes Pta and AckAB.

As amino acids are derived from precursor metabolites in central carbon meta-
bolism, we mapped the amino acids to their respective precursor metabolites in
central carbon metabolism (see Figure 4.6). The 13C–enrichment occurs only in
those amino acids that are derived from metabolites below PEP, but not in those
amino acids that are derived from glycolytic intermediates above PEP. There-
fore, the carbon derived from acetate is merely cycled through the TCA cycle but
does not enter the Embden–Meyerhoff pathway in the gluconeogenic direction. As
a phenotypic subpopulation growing on acetate but not on glucose would require
gluconeogenesis to synthesize essential biomass precursors (such as the amino acids
derived from glycolytic intermediates above PEP), we can conclude that a notice-
able phenotypic subpopulation growing exclusively on acetate does not exist in the
presence of glucose (as is expected due to the phenomenon of carbon catabolite
repression [200]).

Note that due to the 10% uncertainty of the mass spectrometry measurements,
we cannot detect an acetate–adapted phenotype comprising less than 10% of the
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Figure 4.5: Mass distribution vectors (MDV’s) of the amino acids. The index i = 0, 1, 2, 3

of a MDV indicates the number of the isotope’s 13C atoms. White columns, theoretical
values of the natural labeling pattern. Light gray columns, negative controls. Dark gray
columns, actual samples. Black columns, positive controls. Seven amino acids exhibit a
natural labeling pattern — their MDV’s are close to the theoretical values and negative
controls. Eight amino acids exhibit a 13C–enriched labeling pattern — their MDV’s are
close to the positive control.
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Figure 4.6: Mapping of the amino acids to their respective precursor metabolites in central

carbon metabolism. White boxes, naturally labeled compounds. Gray boxes, 13C–enriched
compounds. Black box, fully 13C–labeled compound. Boxes with a radial grayscale gradi-
ent, compounds with unknown isotopomer distribution. A 13C–enrichment occurs only in
those amino acids (gray boxes) that are derived from metabolites below PEP. A natural
labeling pattern is exhibited by those amino acids (white boxes) that are derived from
metabolites above PEP.
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total population. Hence, we cannot exclude that few cells switch their pheno-
type stochastically. However, as the acetate–adapted population fraction after the
substrate switch to acetate is markedly above 10% for acetate concentrations of
at least 0.75 g/l (see Figure 4.2d), the larger fraction of these acetate–adapted
cells must be generated by active response to the substrate switch; this active re-
sponse, among other adjustments, reverses the direction of carbon flow through the
Embden–Meyerhoff pathway. Therefore, the dominant adaptation strategy must
be responsive diversification following the substrate switch from glucose to acetate.

4.5.2 General nature of responsive diversification

The central location of the bistability–generating circuit depicted in Figure 4.3a
implies that phenotypic subpopulations should be generated not only upon sub-
strate shifts from glucose to acetate but also to other gluconeogenic substrates
as well. Therefore, substrate shift experiments were conducted from glucose to
0.75 g/l of either succinate, fumarate, or malate. From these experiments, the
fraction of cells adapting to gluconeogenic growth, α, and their growth rates µg
were determined. The results, plotted in Figure 4.7, reveal that responsive di-
versification into two phenotypic subpopulations occurs after substrate shifts to
succinate, fumarate, and malate. Because responsive diversification is not acetate–
specific, responsive diversification is of a general nature, occurring upon substrate
shifts from glucose to gluconeogenic substrates.
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Figure 4.7: Experimentally derived values for the ’growing’ subpopulation fraction α and
its growth rate µg following substrate shifts from glucose to 0.75 g/l of either of the glu-
coneogenic substrates acetate, succinate, fumarate, or malate. Responsive diversification
occurs in all cases and is thus of a general nature.
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4.6 Methods Summary

4.6.1 Experimental procedures

This section contains a summary of the experimental methods used in this chapter.
Most of these experiments were performed by Benjamin Volkmer. For more details
on these methods, refer to the dissertation of Benjamin Volkmer.

Bacterial strains and plasmids The Escherichia coli K–12 BW25113 strain is
designated as wild–type throughout this chapter. Single knockout mutant strains
were taken from the Keio collection [10]. Cra was overexpressed from the plasmid
pCra+, which carries the cra gene behind an IPTG–inducible promoter and is
derived from pNT3, which was introduced in [179].

Growth media and cultivation protocol Standard M9 medium was used, supple-
mented with either 5 g/l glucose, 0.5 g/l, 0.75 g/l, 1 g/l, 2 g/l or 4 g/l acetate,
0.75 g/l succinate, 0.75 g/l malate, or 0.75 g/l fumarate as the sole carbon source.
The media were adjusted to pH 7. A single colony was picked from an LB plate,
inoculated into a shake flask with 50 ml glucose–M9 medium, grown at 37 ◦C until
an OD of 0.5, and subcultured once. Cells were harvested during mid–exponential
growth at an OD of 0.5, washed twice with M9 medium to remove excess glucose,
and used to inoculate another carbon source–M9 medium shake flask. All exper-
iments were performed in triplicate, except experiments for which no error bars
are shown, which were performed once.

Membrane staining and flow cytometry In some experiments, cells were stained
with a red–fluorescent, membrane-intercalating dye (PKH26, Sigma-Aldrich) be-
fore transfer into a new carbon source. 3 ml of culture was taken at an OD of 0.5
and centrifuged for 4 min at 4 ◦C at 4000 rpm in an Eppendorf 5804 R centrifuge.
The supernatant was removed and the cells resuspended in 500 µl dilution buffer C.
A freshly prepared mixture of 8 µl PKH26 staining and 500 µl dilution buffer C
was added. After 3 min at room temperature, 4 ml of cold, carbon source–free
M9 minimal media containing 1% BSA was added. The cells were washed twice
through centrifugation and resuspension first in 5 ml cold, carbon source–free me-
dia, then in 1 ml cold, carbon–source free media. For flow cytometry, 1 ml of
culture was taken at different time points and analyzed using a BD FACS Calibur
flow cytometer.

13C cultivation and mass spectrometry Cells were grown in glucose–M9 medium
and subcultured once, then grown in M9 medium supplemented with 5 g/l glucose
and 1 g/l either naturally or fully 13C–labeled acetate. Taken samples were fast–
centrifuged and shock–freezed in liquid nitrogen. Proteinogenic amino acids were
extracted in 60:40 EtOH:H2O solution with 10 mM NH4

+CH3COO– at 78 ◦C,
dried in a Kühner RVC 2-33 SpeedVac at 0.12mbar, and derivatized. The mass
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isotopomers were analyzed using an Agilent 6890N gas chromatograph coupled to
an Agilent 5973 mass spectrometer.

Measurements of protein abundance The population–averaged Cra abundances
were measured with selected–reaction monitoring (SRM) as described in [108, 154].

Physiological measurements Cells were taken from the second consecutive
glucose–M9 medium culture. Extracellular metabolites were quantified with a
high–performance liquid chromatography (HPLC) system (Agilent HP1100),
equipped with a polymer column (Aminex HPX-87H from Bio-Rad), as described
in [70].

4.6.2 Bigaussian model fit to experimental data

Throughout this chapter, the presented values for the population fractions adapt-
ing to gluconeogenic growth, α, and their growth rates µg are determined by fitting
a Bigaussian model (with α and µg as parameters) to the measured time progres-
sions of the total populations’ fluorescence intensity distributions. A representative
such fit is shown in Figure 4.2c. The employed fitting strategy does not involve
independent fits of two Gaussians to the fluorescence intensity distributions at in-
dividual time points but jointly considers the fluorescence intensity distributions
(and the cell count concentrations) measured at multiple time points. Specifically,
the determination of α and µg requires (i) the cell count concentration and the
fluorescence intensity distribution of the total population measured immediately
after the substrate shift at t = t0, designated c(t0) and D(t0), respectively, and
(ii) a sequence of k cell count concentrations and fluorescence intensity distribu-
tions measured at time instants t = ti , i = 1 . . . k within the observation window
[t1, tk], designated c(ti) and D(ti) with i = 1 . . . k.

To obtain the k+ 1 cell count concentrations c and fluorescence intensity distri-
butions D, the raw data provided by flow cytometry measurements was processed
by

1. smoothing the fluorescence data with a 3–point moving average filter,

2. discarding the lowest 200 of in total 1024 fluorescence intensity bins due to
unacceptably low signal–to–noise ratios,

3. correcting the fluorescence intensities for background noise by subtracting a
noise distribution–approximating, decaying exponential from the total signal.

4. correcting the measured cell count concentrations with the culture’s evapo-
ration rate of 0.142 ml/h, and

5. scaling the smoothed and noise–corrected fluorescence intensity distributions
with the evaporation–corrected cell count concentrations.
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The measured, time–dependent, total population’s fluorescence intensity distri-
bution data D(t) is approximated with a model, M(t). In the model, the time–
dependent, total population’s fluorescence intensity distributions are given as the
sum of the two time–dependent distributions Mg(t) and Mn(t) of the ’growing’
and ’non–growing’ subpopulations, respectively. Hence,

M(t) =Mg(t) +Mn(t) . (4.1)

Both Mg(t) and Mn(t) are modeled as Gaussian distributions N (m,σ)
with time–dependent mean intensities mg(t) and mn(t), respectively, and time–
invariant standard deviations σg and σn, respectively. The areas of the Gaussians
grow with the subpopulations’ growth rates µg and µn, respectively, and are for
theMg(t1) andMn(t1)–distributions given by cg,1 and cn,1 , respectively. Hence,
the time progressions of Mg(t) and Mn(t) within the observation window [t1, tk]
are given by

Mg(t) = cg,1 eµg(t−t1) N (mg(t), σg)[256 log10(·)]
Mn(t) = cn,1 eµn(t−t1) N (mn(t), σn)[256 log10(·)] , (4.2)

with the argument [256 log10(·)] accounting for the exponentially increasing width
of the 1024 fluorescence intensity–bins into which the flow cytometry data is dis-
cretized. Therefore, Mg(t) and Mn(t) are symmetric on a log–scale and skewed
on a linear scale.

At t = t1, the mean fluorescence intensities mg(t) and mn(t) are given by the
parameters mg,1 and mn,1, respectively. At all times, the mean fluorescence in-
tensities mg(t) and mn(t) have two contributions, (i) the natural fluorescence of
the cells, FN , and (ii) the fluorescence conferred by the dye. The natural fluores-
cence remains constant, whereas the fluorescence conferred by the dye decreases
over time with the cells’ constant growth rates µg and µn, respectively, and with
the degradation rate of the dye, δ = 0.015h−1. Hence, the time progressions of
the mean fluorescence intensities mg(t) and mn(t) within the observation window
[t1, tk] are given by

mg(t) = FN + (mg,1 − FN ) e−(µg+δ)(t−t1)

mn(t) = FN + (mn,1 − FN ) e−(µn+δ)(t−t1) .
(4.3)

With the growth rate of the non–growing subpopulation experimentally deter-
mined as µn = 0.03h−1, the optimal values popt of the remaining eight parameters

p = [µg σg σn cg,1 cn,1 mg,1 mn,1 FN ] (4.4)

are determined by cell count–weighted minimization of the sum–of–squares dis-
tance between the model (Equations 4.1, 4.2, and 4.3) and the data within the
observation window; hence, the optimal values popt for the eight parameters p are
determined by

popt = min
p

kX
i=1

c(ti)
−1 (M(ti)−D(ti))

T (M(ti)−D(ti)) . (4.5)
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The model fit in the observation window [t1, tk] is used to calculate α, the
fraction of cells adapting to growth on gluconeogenic substrates upon the substrate
shift at t0. This calculation is based on the definition of α,

α =
Ag(t0)

A(t0)
, (4.6)

with Ag(t0) the areal contribution of those cells that are about to assume the
growing phenotype to A(t0), the total area of the total population’s fluorescence
intensity distribution at t0. Because the area of any N (m,σ)–distribution is unity,
A(t0) is given by the measured cell count concentration at t0; hence,

A(t0) = c(t0) . (4.7)

Given d(t), the number of cell divisions of the growing phenotype between t0 and
t ∈ [t1, tk], the area Ag(t0) can be back–calculated from any area Ag(t) within the
observation window [t1, tk] via

Ag(t0) =
Ag(t)

2d(t)
. (4.8)

Within the observation window [t1, tk], Ag(t), the areal contribution of the growing
subpopulation to the total population’s fluorescence intensity distribution at time
t, is given by

Ag(t) = cg,1 eµg(t−t1) . (4.9)

The number of cell divisions of the growing phenotype between t0 and t ∈ [t1, tk],
d(t), is inferred from the loss of fluorescence intensity in this time period via

d(t) = log
1

2
log

mg(t0)− FN
mg(t)− FN

, (4.10)

with mg(t0) the mean fluorescence intensity of the growing phenotype at t0. Be-
cause t0 occurs immediately after the cells are stained, at t0, the mean fluorescence
intensity of the growing subpopulation, mg(t0), equals m0, the mean fluorescence
intensity of the total population; hence,

mg(t0) = m0 . (4.11)

The mean fluorescence intensity of the total population at t0, m0, is determined
through the minimization of the sum–of–squares distance between D(t0) and the
single Gaussian model

M(t0) = c(t0) · N (m0, σ0)[256 log10(·)] , (4.12)

with σ0 the standard deviation of the total population’s fluorescence intensity
distribution at t0.
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The beauty of this approach is that the determined values for α and µg are
independent of the population’s growth behavior between the shift to the glu-
coneogenic substrate at t0 and the start of the observation window at t1. This
property is important because the quantification of the growth behavior within
the early time period [t0, t1] is highly uncertain due to, for instance, possible re-
ductive cell divisions of the ’non–growing’ phenotype and the early, gradual growth
rate–acceleration of the ’growing’ phenotype (see dissertation of Benjamin Volk-
mer).

4.6.3 Model of the bistability–generating circuit

To investigate if the identified regulatory circuit (see Figure 4.3a) can generate the
experimentally observed subpopulations, we described the molecular interactions
with a mathematical model (see Section 4.7 for details), resulting in:

dE1

dt
= f(E1, FBPSS) = ve1,max

 
1− FBP

ne1
SS

FBP
ne1
SS + (Ke1,FBP )ne1

!
−d ·E1 (4.13)

FBPSS(J) : 0 = J −
vFbp,max

FBPSS
KF bp,F BP

“
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KF bp,F BP
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“
1 + FBPSS

KF bp,F BP

”4

+ LFbp
“

1 +
J·KE2,P EP

KF bp,P EP ·(vE2,max−J)

”−4

(4.14)

J(E1, acetate) =
kE1,cat · E1 · acetate
acetate+KE1,acetate

(4.15)

Equation 4.13 combines the regulation of E1 production through Cra activity
and the regulation of Cra activity through FBP . ve1,max, Ke1,FBP and ne1 param-
eterise the Hill–type kinetics of E1 production, and d represents the combined E1

degradation and dilution rate due to cell growth. Equation 4.14 yields the steady
state concentration of FBP as an implicit function of the metabolic flux J (see
Figure 4.8a). vE2,max and KE2,PEP parameterise the Michaelis–Menten kinetics
of E2, and vFbp,max, KFbp,FBP , KFbp,PEP and LFbp parameterise the Monod–
Wyman–Changeux kinetics of the tetrameric enzyme Fbp. Equation 4.15 gives J
established through the Michaelis–Menten kinetics of E1, parameterised by kE1,cat

and KE1,acetate.

We found that the model structure tightly constrains the possible responses.
This enabled us to focus on qualitative predictions without knowing the exact
values of the poorly identifiable parameters. Of the parameter sets that lead to
biologically meaningful behaviour (stable E1 dynamics, E1 ≥ 0, PEPSS ≥ 0,
FBPSS ≥ 0, J ≥ 0), some create a monostable and others a bistable E1 concen-
tration. The parameters leading to bistability are realistic enough for the biological
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system to potentially operate within this regime, and the model behavior reason-
ably robust to variations of the model structure (see Section 4.7.2 for a detailed
analysis).

4.7 Model details

In this section, we present the development and analysis of the mathematical model
of the bistability–generating circuit shown in Figure 4.3a. First, we describe in
detail the derivation of the model’s differential and algebraic equations. After that,
we present the bifurcation analysis of the model underlying Figures 4.3b and 4.3c.
Finally, we show that the inclusion of additional known molecular interactions only
modulates, but does not fundamentally change, the circuit’s bifurcation properties.

4.7.1 Model development

We here derive the differential and algebraic equations that model the regulatory
architecture shown in Figure 4.3a.

A ’super–enzyme’ E1 subsumes the entire pathway from acetate uptake to phos-
phoenolpyruvate (PEP ) and is modeled with a Michaelis-Menten kinetic,

vE1(acetate, E1) =
kE1,cat · E1 · acetate
acetate+KE1,acetate

, (4.16)

where acetate is the extracellular acetate concentration, kE1,cat is E1’s maximal
turnover rate, and KE1,acetate is the Michaelis–Menten constant.

In E. coli, the production of many enzymes in this pathway (i.e., AceA, AceB,
AcnA, PckA, PpsA) is activated by the transcription factor Cra [177]. Fructose-
1,6-biphosphate (FBP ) inactivates Cra by binding to it, forming Cra-FBP [177].
The inhibition that FBP thus exerts on E1 production involves binding events —
FBP to Cra, and Cra to the promoter region of the e1 gene — both of which may
or may not involve cooperativity. The effect of FBP on e1 expression is lumped
into the Hill-type function

f1(FBP ) = ve1,max

 
1− FBPne1

FBPne1 +K
ne1
e1,FBP

!
, (4.17)

where ve1,max is the maximal e1 expression rate, ne1 is the degree of cooperativity,
and Ke1,FBP is the FBP concentration required for 50% expression. For ne1 = 1,
the lumped binding processes do not contain cooperative binding events so that
FBP exerts a parabolic influence on E1 production. For ne1 > 1, these processes
contain positively cooperative binding events, such that FBP exerts a sigmoidal
influence on e1 expression.

With E1 degradation and dilution due to cell growth modelled as a linear func-
tion of E1 itself with slope d, the differential equation for E1 becomes

dE1

dt
= f1(FBP )− d · E1. (4.18)
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The dilution of E1 due to cell growth depends on the growth rate µ, therefore
d increases with µ. Also, the concentrations of ribosome and DNA polymerase
complexes, which affect the rate of E1 synthesis, f1, increase with µ. We assumed
that these contributions cancel each other out and did not model the dependencies
of d and f1 on µ. Although this simplification may introduce an error, it is still more
desirable than the alternative, which would be the introduction of a high degree
of error–prone structural uncertainty and complexity in an attempt to reduce the
original error. Note that the dependency of f1 on ribosomes and DNA polymerases
levels, and the dependencies of these levels on µ, are unclear. Further, µ itself
would have to be modelled as a dependent variable. The structure of this function
remains unclear, and previous attempts to identify it have failed even in much
more detailed kinetic models of metabolism [24].

The enzyme E2 subsumes the entire gluconeogenic pathway from PEP to FBP
and is also modeled with a Michaelis-Menten kinetic,

vE2(PEP ) =
vE2,max · PEP
PEP +KE2,PEP

, (4.19)

where vE2,max is the maximal turnover rate, and KE2,PEP is the Michaelis–Menten
constant.
Fbp represents the tetrameric enzyme fructose-1,6-bisphosphatase (Fbp), which

converts FBP to fructose-6-phosphate. As PEP is a strong allosteric activator of
Fbp [75], Fbp is modelled with a Monod-Wyman-Changeux (MWC) kinetic with
n = 4:

vFbp(PEP, FBP ) =
vFbp,max

FBP
KF bp,F BP

“
1 + FBP

KF bp,F BP

”3

“
1 + FBP

KF bp,F BP

”4

+ LFbp
“

1 + PEP
KF bp,P EP

”−4 , (4.20)

where vFbp,max is the maximal turnover rate, and LFbp, KFbp,PEP and KFbp,FBP

are shape parameters of the MWC kinetic.

4.7.2 Bifurcation analysis

In this section, we perform a bifurcation analysis on the model equations derived
in the previous section. This analysis results in Figures 4.3b and 4.3c.

The steady state assumption on the fluxes

vE1 = vE2 = vFbp = J (4.21)

allows the calculation of the steady state metabolite concentrations as function of
J . With Equation 4.21, Equation 4.19 is rearranged to give PEPSS , the steady
state concentration of PEP :

PEPSS(J) =
J ·KE2,PEP

vE2,max − J
. (4.22)
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Then, Equations 4.20, 4.21 and 4.22 are combined to yield an implicit equation
for FBPSS , the steady state concentration of FBP :

FBPSS(J) : 0 = J −
vFbp,max

FBPSS
KF bp,F BP

“
1 + FBPSS

KF bp,F BP

”3

“
1 + FBPSS

KF bp,F BP

”4

+ LFbp
“

1 +
J·KE2,P EP

KF bp,P EP ·(vE2,max−J)

”−4 .

(4.23)
Through empirically probing the parameter space, we found that the model

structure tightly constrains the possible responses. This enabled us to focus on
qualitative predictions without knowing the exact values of the poorly identifiable
parameters. Of the possible system responses, many are biologically not meaning-
ful. For instance, if E1 realizes the flux J and vE2,max < J , then E2 cannot realize
J , and Equation 4.22 has no positive steady state solution for PEPSS(J) because
the metabolite accumulates indefinitely. By ’educated trial and error’, we found
parameter sets that lead to a stable E1 dynamics with E1 > 0, positive steady
state metabolite concentrations (FBPSS(J), PEPSS(J) > 0), and an uptake of
acetate (J > 0). These constraints resemble the system’s biological function.

Of the parameter sets that lead to such biologically meaningful behaviour, we
were specifically interested in those that enable two stable steady states, because
a bistable acetate uptake rate can be interpreted as the experimentally observed
’growing’ and ’non–growing’ phenotypes. We found that such parameter sets exist,
although it was harder to find these sets than it was to find sets that produce only
one stable steady state. This suggests that the bistable region in parameter space
is smaller compared to the monostable region.

However, the bistable region is not unrealistically small for the system to op-
erate within this regime: First, we were able to find the bistable region within
the 12–dimensional parameter space using only empiric means. Second, parameter
values of a parameter set within the bistable region can be varied to a comfortable
extent without leaving the bistable region. Third, parameter values that lead to
bistable behaviour seem to be realistic. For instance, the parameters determining
a substrate or effector concentration required for 50% activation are in the range
of the respective compound concentrations. Further, we found that a high value
of LFbp is essential to move the system to the bistable region. LFbp is a shape
parameter of the MWC kinetics describing the tetrameric enzyme Fbp, which is
substantially activated by PEP . Although a value for LFbp is not available in
literature, another study [24] experimentally fitted the shape parameter L of the
MWC kinetics describing the tetrameric enzyme PykF , which is substantially ac-
tivated by FBP , and obtained a similarly high value. This provides confidence
that high values of L are realistic for tetrameric enzymes that are substantially
activated by a metabolite.

In the following, we report on our investigation of the system’s operation in
the bistable region. With parameters according to Table 4.1, Figure 4.8a shows
the steady state metabolite concentrations (Equations 4.22 and 4.23) with vary-
ing steady state flux J . Note that PEPSS monotonically increases with increasing
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J , whereas FBPSS initially sharply increases, then gradually decreases, and fi-
nally increases again. The shape of the FBPSS curve can be explained as follows.
For small metabolic fluxes J , the PEPSS concentration is too low to noticeably
activate the enzyme Fbp. Therefore, Fbp can only provide the flux J if its sub-
strate concentration FBPSS is relatively high. When J is increased further, then
the enzyme E2 can only provide a higher flux if it increases its substrate concen-
tration PEPSS . This increase in PEPSS significantly activates Fbp so that this
enzyme can provide the increased flux J with a relatively low substrate concen-
tration FBPSS . The activation effect of PEPSS on Fbp however saturates with
increasing PEPSS . Therefore, if J and thereby PEPSS are raised even further,
then Fbp can only provide the flux J if the concentration of its substrate FBPSS
is increased again.

It is important to note that the thus established inverse dependence of FBPSS
on J within a wide range of J changes the sign of the closed feedback loop on E1

production from negative to positive. As a single positive feedback is capable of
generating two stable steady states, but a single negative feedback loop is not, this
change of sign is essential for the generation of two subpopulations.

Table 4.1: Parameters used in the simulations. ∗This notation means that the parameter
was increased from 0.7 to 1.3, in steps of 0.1.

Parameter Value in Value in Value in Value in Value in
Fig. 4.8a Fig. 4.8b(c) Fig. 4.8d(e) Fig. 4.3b Fig. 4.3c

kE1,cat - 1 1 1 1
KE1,acetate - - 0.02 (0.1) 0.1 0.1
vE2,max 1 1 1 1 1
KE2,PEP 0.3 0.3 0.3 0.3 0.3
vFbp,max 1 1 1 1 1
KFbp,PEP 0.1 0.1 0.1 0.1 0.1
KFbp,FBP 0.1 0.1 0.1 0.1 0.1
LFbp 4 · 106 4 · 106 4 · 106 4 · 106 4 · 106

d - 0.18 (0.25) 0.18 (0.25) 0.35 0.35
ve1,max - 1.1 1.1 1 0.7:0.1:1.3∗

ne1 - 1 (2) 1 (2) 2 2
Ke1,FBP - 0.1 (0.45) 0.1 (0.45) 0.45 0.45

In a next step, we investigated how such a flux–dependent, S–shaped concen-
tration profile of the metabolite FBP controls the expression of the enzyme E1.
With the parameters listed in Table 4.1, Figure 4.8b reveals that the E1 produc-
tion and degradation/dilution curves (the two terms in Equation 4.18) intersect
at three points for both parabolic and sigmoidal regulation of E1 production. Of
these three steady states, the middle one is unstable whereas the outer two are
stable. Therefore, the system is capable of expressing bistable E1 concentrations.
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Figure 4.8: a. Steady state PEP (solid line) and FBP (dotted line) metabolite concen-
trations over steady state flux, which are identical for both parabolic (ne1 = 1) and
sigmoidal (ne1 = 2) influence of FBP on E1 production. b,c. E1 production (solid line)
and degradation/dilution (dotted line) curves for parabolic and sigmoidal regulation of
E1 production by FBP , respectively. These two figures were generated assuming satu-
ration of the enzyme E1 with its substrate acetate (acetate � KE1,acetate), such that
vE1 = kE1,cat · E1. d,e. Bifurcation diagrams showing stable (solid lines) and unstable
(dotted lines) steady states for parabolic and sigmoidal regulation of E1 production by
FBP , respectively.
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The S–shaped form of the E1 production curve stems mainly from the S–shape
of the FBP concentration curve (Figure 4.8a), which in turn is the result of coop-
erative allosteric activation of Fbp through PEP , as described previously. Hence,
allosteric regulation of enzyme activity can be sufficient to generate bistability
in gene expression if the allosterically introduced effect of cooperativity on the
metabolic level is propagated to the gene expression level via transcription factor–
metabolite binding. Introduction of additional cooperativity in the process of prop-
agating the FBP concentration to promoter activity pronounces the characteristic
shape of the E1 production curve (Figure 4.8c), thereby making it ’easier’ for the
production and degradation/dilution curves to have three intersections. Thus, ad-
ditional cooperativity widens the region of bistability.

Figures 4.8d and e show the steady state fluxes J through the pathway as a
function of the acetate concentration in the medium. Qualitatively, the same curve
shapes are observed for both the parabolic and sigmoidal case, with a wider region
of bistability for the latter. For low acetate concentrations, only one stable steady
state flux exists at a low level. When the acetate concentration is increased, then,
at a critical concentration, a second stable steady state flux at a high level is cre-
ated along with an unstable steady state flux through a saddle-node bifurcation.
Further increase of the acetate concentration through the region of bistability can
lead to a second saddle-node bifurcation where the unstable and the lower stable
steady state fluxes collide and annihilate each other. For acetate concentrations
above this bifurcation point, only one stable steady state flux on a high level
would remain. However, although extracellular acetate concentrations can reach
arbitrarily high levels, the capacity to take up acetate is limited due to substrate
saturation of the enzyme E1. This saturation can cause the second saddle–node
bifurcation to be unreachable, such that two stable steady state fluxes persist for
arbitrarily high acetate concentrations. Such behaviour resembles our experimen-
tally observed bistable phenotypes, which we observed for arbitrarily high acetate
concentrations. These conditions lead to the bifurcation diagrams shown in Fig-
ures 4.3b and 4.3c.

4.7.3 Inclusion of further interactions into the model

As we have seen, the presented and analyzed core model, depicted in Figure 4.3a,
is capable of reproducing the bistable phenotypes even at high acetate concen-
trations. However, the core model includes only a subset of all known regulatory
interactions between the modelled components. On the metabolic level, all known
enzymatic regulations between the modelled components are accounted for with the
activation of Fbp by PEP . On the genetic level, two known regulatory actions of
Cra on modelled components were not included in the core model: The activation
of Fbp production, and the repression of E2 production.

In the following sections, we show that inclusion of these additional molecu-
lar interactions only modulates, but not fundamentally changes, the core model’s
characteristic behaviour. Thereby we show that our mathematical results are not
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due to the system boundary of the core model, but due to the dynamics of the
known molecular interactions.

4.7.3.1 Activation of Fbp production by Cra

In E. coli, the transcription factor Cra, whose activity is modulated through FBP ,
also activates the production of fructose-1,6-bisphosphatase I (Fbp). In our model,
this regulation corresponds to a repression of Fbp production by FBP . To examine
the influence of this additional regulation on the system behaviour, we included
this additional interaction and then analyzed the extended model.

The extended model equations include the algebraic reaction rate equations for
the enzymes E1 and E2 (Equations 4.16 and 4.19) as well as the differential equa-
tion for the concentration of E1 (Equation 4.18). A second differential equation
for the concentration of the enzyme Fbp needs to be introduced in analogy to
Equation 4.18:

dFbp

dt
= fFbp(FBP )− d · Fbp, (4.24)

with

ffbp(FBP ) = vfbp,max

„
1− FBPnfbp

FBPnfbp + (Kfbp,FBP )nfbp

«
, (4.25)

where vfbp,max is the maximal production rate of the gene fbp, nfbp is the degree
of cooperativity involved in the activation of the gene fbp by FBP , and Kfbp,FBP

is a shape parameter. Further, the earlier formulated algebraic equation for the
reaction rate of the enzyme Fbp (Equation 4.20) needs to be adapted to account
for a dynamic Fbp concentration:

vFbp(PEP, FBP ) =
kFbp,cat · Fbp · FBP

KF bp,F BP

“
1 + FBP

KF bp,F BP

”3

“
1 + FBP

KF bp,F BP

”4

+ LFbp
“

1 + PEP
KF bp,P EP

”−4 , (4.26)

where kFbp,cat is the enzyme’s maximal turnover rate.
To analyze the extended model, we again make the steady state assumption

according to Equation 4.21. Then, PEPSS , the steady state concentration of PEP ,
is given by Equation 4.22. To obtain an implicit equation for the steady state
concentration of the metabolite FBP (FBPSS), the steady state concentration of
the enzyme Fbp,

FbpSS =
fFbp(FBP )

d
, (4.27)

is plugged into Equation 4.26, considering Equations 4.21 and 4.22:

FBPSS(J) : 0 = J −
kFbp,cat ·

fF bp(FBP )

d
· FBPSS
KF bp,F BP

“
1 + FBPSS

KF bp,F BP

”3

“
1 + FBPSS

KF bp,F BP

”4

+ LFbp
“

1 +
J·KE2,P EP

KF bp,P EP ·(vE2,max−J)

”−4 .

(4.28)
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Table 4.2: Parameter values used in the simulations.

Parameter Value in Fig. 4.9a Value in
parabolic (sigmoidal) case Fig. 4.9b (c)

kE1,cat - 1
KE1,acetate - -
vE2,max 1 1
KE2,PEP 0.3 0.3
kFbp,cat 20 20
KFbp,PEP 0.1 0.1
KFbp,FBP 0.1 0.1
LFbp 1 · 106 1 · 106

d 0.4 0.4
ve1,max - 0.39
ne1 - 1 (2)

Ke1,FBP - 0.2 (0.3)
vfbp,max 0.5 0.5
nfbp 1 (2) 1 (2)

Kfbp,FBP 0.2 (0.3) 0.2 (0.3)

With model parameters according to Table 4.2, Figure 4.9a shows the steady
state metabolite concentrations when the steady state flux J is varied. Compare
Figure 4.8a and Figure 4.9a. The PEPSS curve remains unchanged. The FBPSS
curve, however, does change: At high fluxes J , FBPSS rises in the core model,
but not in the here considered extended model. This missing rise of FBPSS in the
extended model can be easily explained: When FBPSS decreases with increasing
J , then the production of the enzyme Fbp gets activated. Because of the resulting
increase in the concentration of Fbp, there is no need to also increase the concen-
tration of its substrate FBP in order to realize a high flux J . This is in contrast
to the core model, where the concentration of the enzyme Fbp is constant, so that
the only way for Fbp to realize a flux J close to the enzyme’s maximal turnover
rate is to increase the concentration of its substrate FBP .

Does the observed change in the concentration profile of FBPSS only modulate,
or does it fundamentally change, the model’s bifurcation properties? As can be
seen from a comparison of Figure 4.8b with Figure 4.9b and Figure 4.8c with 4.9c,
the profiles of the E1 production curves differ between the core model and the here
considered extended model. These differences arise because the different profiles of
the FBPSS curves propagate into the E1 production curves. In particular, in the
extended model, the flattening of the FBPSS curve at high fluxes J propagates
into a leveling off of the E1 production curve at high E1 concentrations, whereas
in the core model, the rise of the FBPSS curve at high fluxes J propagates into a
drop of the E1 production curve at high E1 concentrations.
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Figure 4.9: a. Steady state PEP (solid line) and FBP (dashed line: parabolic, dotted line:
sigmoidal regulation of E1 production) metabolite concentrations over steady state flux.
b,c. E1 production (solid line) and degradation/dilution (dotted line) curves for parabolic
and sigmoidal regulation of E1 production, respectively. These two figures were generated
assuming saturation of the enzyme E1 with its substrate acetate (acetate� KE1,acetate),
such that vE1 = kE1,cat · E1.

The important point is that regardless of whether the E1 production curve
drops or levels off at high E1 concentrations, the resulting production curve pro-
file can still intersect with the linear degradation/dilution curve at three points,
and thereby establish two stable phenotypes. Thus, inclusion of the activation of
Fbp production by Cra does not fundamentally change the core model’s bifurca-
tion properties. However, inclusion of this additional regulation does modulate the
characteristic bifurcation properties of the core model. Since the E1 production
curve levels off (as opposed to drop) at high E1 concentrations while the degrada-
tion/dilution curve remains unchanged, the third intersection point, and thereby
the high steady state flux, is inevitably shifted towards higher E1 concentrations.
Therefore, the effect of the activation of Fbp production by Cra is a further sep-
aration of the stable steady states from each other. Thus, this interaction only
modulates (i.e. strengthens) the expression of the bistable phenotypes and is not
part of the generating mechanism.

4.7.3.2 Repression of E2 production by Cra

In E. coli, the gluconeogenic pathway from PEP to FBP comprises five reactions.
Of the five catalyzing enzymes, the first (which follows PEP consumption) and the
last three (which precede FBP formation) are repressed by Cra. These additional
regulations are not included in the core model.

To include these additional regulations in the model, the model must be ex-
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tended through inclusion of Cra repression on the production rate of E2, which
would be modeled as activation of E2 production by FBP. Instead of extending
the model and performing a subsequent model analysis, we argue that the result
of such a model analysis can be foreseen by reasoning and is somewhat analogous
to the result obtained by analyzing the additional activation of Fbp production by
Cra (see Section 4.7.3.1).

It is important to note here that provided a given flux J , the concentration
of a metabolite is governed solely by the kinetic equation of its consuming en-
zyme (including possible enzyme and effector concentrations that appear therein).
Hence, provided an influx J to PEP, initially only the PEP concentration is af-
fected through introduction of E2 repression by Cra. Next, the PEP concentration
affects the rates of both the FBP–producing (where PEP acts as substrate) and
FBP– consuming (where PEP acts as activator) reactions; hence these two re-
actions compete for PEP. As E2 production is repressed by Cra, this additional
interaction modulates the competition of the FBP–producing and FBP–consuming
reactions for PEP in favor for the FBP–consuming reaction: The PEP concentra-
tion rises because with its activity repressed, E2 can only match the given flux
J through increasing the concentration of its substrate. As PEP activates the
FBP–consuming reaction, a higher PEP concentration leads to a lower FBP con-
centration (the FBP–consuming enzyme can match the given flux J with a lower
concentration of its substrate). A lower FBP concentration in turn reduces the
FBP–mediated repression of E2 and thus counters the here described effect; hence
the process approaches a steady state. However, compared to the core model, the
added repression of E2 must lead to higher PEP and lower FBP steady state con-
centrations. Therefore, the inverse dependency of FBP on PEP, which has been
shown in Section 4.7.2 to be essential for the generation of multiple steady states,
is strengthened through inclusion of this additional regulation.

Therefore, the effect of the repression of E2 production by Cra is a further
separation of the stable steady states from each other. Thus, this interaction only
modulates (i.e. strengthens) the expression of the bistable phenotypes and is not
part of the generating mechanism.
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5.1 Summary

Isogenic populations of bacteria are known to diversify into phenotypic subpopu-
lations in order to anticipate future environmental changes, an adaptation strat-
egy known as bet–hedging. The generation of phenotypic diversity through the
mechanism of stochastic switching has been shown to maximize population size
in certain stochastic environments. However, the optimality of another adaptation
mechanism, responsive diversification, has not yet been investigated. Therefore, in
this study, we investigate the optimality of responsive phenotypic diversification
in stochastic environments where the nutrient concentrations are subject not only
to external fluctuations but also to the growth behavior of the cell population.
By means of a mathematical model, we show that in certain such environments,
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population growth is not maximized by maximization of each cell’s growth rate
but by responsive diversification of phenotypes. We show that in such environ-
ments, bet–hedging ’resolves’ an apparent tragedy of the commons dilemma and
has therefore a social component attached. We connect the bet–hedging strategy
to two molecular trade–offs imposing limitations on the behavior of individual
cells. The trade–off between self–preservation and nutritional capability has been
introduced earlier, the trade–off between fast growth and nutritional flexibility is
conceptually novel and introduced in this study. We argue that the genotype deals
with these trade–offs on the population level through the expression of phenotypic
subpopulations that specialize in either of the trade–offs’ extremes. Remarkably,
responsive diversification of phenotypes upon carbon source fluctuations can simul-
taneously deal with the two molecular trade–offs on the population level, maximize
population size in the absence of stresses, and increase the robustness of the total
population to stresses.

5.2 Introduction

To anticipate environmental changes, isogenic bacterial populations are known to
diversify into multiple distinct and coexisting phenotypic subpopulations. Exam-
ples of such phenotypic multistability, which is generated through propagation of
stochastic events during gene expression (for instance, see [50, 100, 146, 168]),
include the swarming motility [89], the sporulation [212] and the competence for
DNA uptake from the environment [202] of Bacillus subtilis, the acquisition of
antibiotic resistance [12, 106] and the reversal of central carbon flow (see Chap-
ter 4) in Escherichia coli, and flagellin phase variation in Salmonella enterica [232].
The employed adaptation strategy is known as bet–hedging [187, 213]: Multiple
phenotypes increase the chances that at least some cells will be well–adapted in
an uncertain future environment [41]. In recent years, this microbial adaptation
strategy has received much interest [7, 201, 229] and has been shown to be an
evolvable trait [2].

Intriguingly, the benefits of bet–hedging strategies are surprisingly multifaceted.
For instance, the benefits for a sporulating B. subtilis subpopulation [214] are re-
sistances to various stresses, whereas the benefits for cells that delay or avoid
sporulation are (i) slow proliferation on nutrients released from lysis of other cells,
a behavior termed cannibalism or fratricide [39], and (ii) the capability for rapid
resumption of growth in the event of returning nutrient conditions (cells that have
sporulated are committed to a long-term process of spore formation and sub-
sequent germination) [213]. Additionally, non–growing cells can indirectly benefit
actively metabolizing cells by not competing for limited resources; hence, in certain
circumstances, selfish bet–hedging has been proposed to have social components
attached [61]. Further, if bet–hedging through spontaneous stochastic phenotype
switching makes sensing and quick response mechanisms otherwise required to
adapt to extracellular conditions obsolete, and the saved costs of these mechanisms
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exceed the incurred costs of not having all individuals well–adapted, bet–hedging
maximizes the size of the total isogenic cell population [107, 205].

In Chapter 4 of this thesis, it has been shown that following a carbon source
shift from glucose to gluconeogenic substrates such as acetate, an isogenic E. coli
population diversifies into two phenotypic subpopulations. One of these subpopu-
lations grows on the gluconeogenic substrate, whereas the other, surprisingly large
subpopulation refrains from growth and, as strongly suggested by the morphology
of its cells, enters the protective state of stationary phase rest. It is still unclear why
E. coli employs the bet–hedging strategy of responsive phenotypic diversification
to adapt to this type of environmental change — whereas stochastic phenotype
switching has been shown to maximize population size in certain stochastic envi-
ronments [2, 107, 205], the optimality of responsive phenotypic diversification has
not yet been investigated.

Hence, this study investigates the multifaceted benefits of bet–hedging through
responsive phenotypic diversification following shifts from rich (glycolytic) to lim-
ited concentrations of poor (gluconeogenic) carbon sources. By means of a math-
ematical model, we show that for certain such substrate shifts, (i) population
growth is counter–intuitively not maximized by maximization of each cell’s growth
rate but by responsive phenotypic diversification, and that in such environments,
(ii) bet–hedging has an attached social component by ’resolving’ an apparent
tragedy of the commons dilemma [67, 123, 163]. We connect the population–level
study to the molecular level and argue that the two distinct phenotypes, which
are a form of specialization [213], are a strategy of the genotype to cope with
limitations of individual cells imposed by two molecular trade–offs. One of these
trade–offs has been proposed earlier [94], the other rests on the results of Chapter 4
and is conceptually novel.

This chapter is structured as follows. First, we present a mathematical model
that describes the growth of an isogenic cell population in and its impact on a
stochastic environment. Then, we analyze the model and discuss the identified
social component of the bet–hedging strategy. Next, we review one and introduce
another molecular trade–off and argue that the genotype deals with these trade–
offs on the population level through phenotypic specialization in either of the
trade–offs’ extremes. Finally, we combine these results into a coherent explanation
for the optimality of responsive diversification upon carbon source fluctuations.

5.3 Model

To analyze if following a substrate shift from a rich to a poor carbon source, the
bet–hedging strategy of responsive phenotypic diversification has attached social
components, we developed a differential equation model.

First, we give an overview of the model. Then, we describe the model in detail
and present the model equations.
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5.3.1 Overview

The model describes the growth of an isogenic cell population in an environment
with two carbon sources. One of these carbon sources is richer than the other, so
the growth rate on the rich substrate, µR, is greater than the growth rate on the
poor substrate, µP . It is not possible for the cells to grow on both substrates at
the same time (this occurs, for instance, when the rich carbon source is glycolytic
and the poor carbon source gluconeogenic [178]). The cells preferentially adapt to
the rich substrate, meaning that whenever the rich carbon source is present, the
poor substrate is ignored (this is realized, for instance, through the mechanism
of catabolite repression). Presence of the rich carbon source resembles feast con-
ditions. When the rich substrate is absent, the cells can either grow on the poor
substrate if it is available, or they can enter the protective state of stationary phase
rest [73]. Such an environment resembles famine conditions.

Intuitively, one would expect that upon depletion of the rich substrate, all cells
adapt to growth on the poor substrate until (i) the rich substrate returns to the
environment, causing immediate re–adaptation to the rich substrate, or (ii) the
poor substrate becomes depleted, in which case no substrates are available and
the cells enter stationary phase rest. However, in the case of an isogenic E. coli
population, glucose as the rich substrate (µR = 0.64h−1), and acetate as the
poor substrate (µA = 0.20h−1), a recent experimental observation (see Chapter 4)
contradicts this intuitive reasoning: When glucose becomes depleted but acetate
is still available, only a phenotypic subpopulation adapts to growth on acetate.
The other subpopulation refrains from growth and, as strongly suggested by the
morphology of its cells, enters the state of stationary phase rest.

We set up a differential equation model to investigate the effect of such counter-
intuitive behavior on long–term growth of an isogenic cell population in an en-
vironment with fluctuating carbon sources. The model subjects an isogenic cell
population to a period of famine conditions between two periods of feast condi-
tions to compare the adaptation strategies of responsive switching (all cells respond
in the same way to changes in carbon source availability) and responsive diver-
sification (different cells respond in different ways to changes in carbon source
availability) with each other. The comparison is made by means of a cost–benefit
analysis yielding the optimal adaptation strategy that maximizes the size of the
total population. The model includes subpopulation dynamics during famine con-
ditions, consumption of the poor substrate by competitors as well as transition
times and costs between the different phenotypes.

5.3.2 Model equations

The differential equation model describes how an initially homogeneous popula-
tion, which is still adapted to the rich carbon source, splits into two phenotypic sub-
populations upon the transition from feast to famine conditions (see Figure 5.1).
Certain cells directly enter the state of stationary phase rest, other cells adapt to

132



5.3 Model

Growth

Stationary phase rest

GrowthGrowth

τ Time

cG cG

cS cS

Feast FeastFamine

Environmental conditions:

Cell population:

α

1

0

b

Figure 5.1: Illustration of the cost–benefit model analysis. The model confronts a cell
population with a single period of famine conditions, lasting for the duration τ , between
two periods of feast conditions. By varying α between 0 (all cells enter stationary phase
rest) and 1 (all cells grow on the poor carbon source), the model allows for a compar-
ison between the adaptation strategies of responsive switching (α = 1) and responsive
diversification (0 < α < 1). b, growth benefit of metabolically active cells due to shorter
adaptation time. cS , transition costs incurred when adapting between growth on different
substrates. cS , transition costs incurred when entering or leaving stationary phase rest.

the poor substrate and grow until (i) the rich substrate returns, or (ii) the poor
substrate becomes depleted, whereupon these cells join the stationary subpopula-
tion. To determine the adaptation strategy that maximizes the size of the total
population after completed re–adaptation to feast conditions, this final population
size is maximized through variation of the initial subpopulation proportions. Of
these processes,

1. the adaptation from feast to famine conditions is described by a function of
the phenotypic split ratio, yielding the initial conditions of the state variables,

2. the population behavior during famine conditions is described by differential
equations,

3. the adaptation from famine back to feast conditions and the calculation of
final population size is described by a function of the differential equations’
terminal state values.

Refer to Table 5.1 for an overview of the model’s nomenclature.
The first process described by the model is the transition from feast to famine

conditions. Upon depletion of the rich substrate at time t = 0, a homogeneous
population of size P0, which is still adapted to the rich carbon source, splits into
two phenotypic subpopulations, PS and PP . The subpopulation PS directly enters
stationary phase rest, incurring transition costs cS . The subpopulation PP adapts
to growth on the poor substrate, incurring transition costs cG. The ratio of this
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phenotypic split is quantified by the parameter α, which describes the fraction of
the P0–population that ’decides’ to adapt to the poor substrate; thus, 0 ≤ α ≤ 1.
The concentration of the poor substrate, SP , is at t = 0 given by SP,0. The
transition from feast to famine conditions is modeled through the calculation of
the initial conditions of the model’s three state variables PS , PP and SP , according
to

PS(0) = P0 cS (1− α)
PP (0) = P0 cG α
SP (0) = SP,0 .

(5.1)

The second process described by the model covers the subpopulation dynamics
during the period of famine conditions, which lasts for τ hours. During this period,
the subpopulation PS , in stationary phase rest, grows with a nonpositive rate of
µS . The other subpopulation, PP , grows on the poor substrate with the rate µA,
a function of the substrate concentration SP . When the poor substrate becomes
depleted (SP = 0), cells of the subpopulation PP enter stationary phase rest and
thus join the subpopulation PS ; the transition from the PP to the PS subpopulation
is modeled with the SP -dependent rate ρ and incurs transition costs cS . Growth
of the subpopulation PP reduces the concentration of the poor substrate SP by
converting SP to biomass with yield Y . The poor substrate SP is further drained
from the environment with rate δ, reflecting the consumption of SP by competitors.
The subpopulation dynamics during the period of famine conditions (t ∈ [0, τ ])
are given by

ṖS = µS PS + ρPP cS
ṖP = (µP − ρ)PP
ṠP = −Y −1 µP PP .

(5.2)

The growth rate µP is given by

µP =
µP,max SP
SP +KP

, (5.3)

with µP,max the maximal growth rate and KP the Monod constant for growth of
PP on the poor substrate SP .

The SP -dependent switching rate ρ of cells from the PP to the PS subpopulation
is given by

ρ = ρmax (µP,max − µP ), (5.4)

with ρmax the maximal switching rate.
The third and final process covered by the model is the transition from famine

back to feast conditions. This transition is triggered by the return of the rich
substrate to the environment at time t = τ . Both subpopulations immediately
adapt to growth on the rich substrate, incurring transition costs of cS for PS cells,
and of cG for PP cells. This transition is described by a function of the model’s
terminal states, i.e. the values of the state variables at time t = τ . This function,

PF = PP (τ) cG b+ PS(τ) cS , (5.5)
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Table 5.1: Nomenclature of the model.

Symbol Classification Meaning

b parameter relative growth benefit
cG parameter transition cost of switching between

growth on either substrate
cS parameter transition cost of entering or leaving

stationary phase rest
KP parameter Monod constant for the poor substrate
PP variable size of the (sub)population adapted to the

poor substrate
P0 parameter initial size of the (total) population, adapted

to the rich substrate
PF function final size of the (total) population, adapted

to the rich substrate
PS variable size of the (sub)population in stationary

phase rest
SP variable concentration of the poor substrate
SP,0 parameter initial concentration of the poor substrate
Y parameter yield coefficient
α parameter population fraction adapting to growth on the

poor carbon source
δ parameter fierceness of competition
µP function growth rate on the poor substrate
µP,max parameter maximal growth rate on the poor substrate
µS parameter growth rate in stationary phase rest
ρ function switching rate to stationary phase rest
ρmax parameter maximal switching rate to stationary phase

rest
τ parameter duration of famine conditions
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calculates PF , the size of the total, homogeneous population after completed re-
adaptation of cells from both subpopulations to growth on the rich substrate. In
addition to the terminal states and transition costs, PF also depends on the param-
eter b. This parameter quantifies the relative growth benefit of cells adapting from
the metabolically active (former) subpopulation, PP , compared to cells adapting
from the subpopulation in stationary phase rest, PS .

Cells adapting from the PP –subpopulation harvest this relative growth benefit
because they adapt to the rich substrate faster than cells adapting from the PS–
subpoulation (see Figure 5.1). The faster adaptation of PP –cells arises from the
fact that these cells are already metabolically active whereas the PS–cells need
to slowly undo the complex physiological and morphological changes they built
up as they entered stationary phase rest [73]. Therefore, when the former PS-cells
have completed their adaptation to the rich substrate, the former PP cells were
already growing on the rich substrate with the fast rate µG for a certain period
of time. As Equation 5.5 calculates the total population size after completed re-
adaptation of both subpopulations to the rich substrate, which occurs a certain
period of time after the return of the rich substrate to the environment at t = τ ,
the relative growth benefit b due to faster adaptation of formerly PP –cells must
be accounted for. Note that in the context of the sporulation of B. subtilis, the
capability for rapid resumption of growth in the event of returning nutrient con-
ditions has already been proposed as a benefit of actively metabolizing cells over
spores [213].

Three assumptions underlie the presented model. First, entering and leaving
stationary phase rest is assumed to be energetically more expensive than adapting
from one carbon source to another; thus, cS > cG. Second, cells growing on the
poor carbon source are assumed to adapt to growth on the rich carbon source
faster than cells adapting from stationary phase rest; thus, b ≥ 0. Third, the
error made by not considering the adaptation time from feast to famine conditions
is negligible. This error is probably indeed negligible because (i) the result of our
13C–experiment presented in Chapter 4 strongly suggests that the adaptation from
the rich substrate glucose to the poor substrate acetate is very quick, and (ii) the
non–positive ’growth rate’ of cells in stationary phase rest, µS , is probably only
slightly below zero and therefore, the error incurred from too early ’growth’ of
stationary phase–cells on the poor carbon source is probably very small (if µS is
zero, no error is made at all).

5.4 Results

5.4.1 Maximization of population size in the presence of stresses

Previous studies [2, 107, 205] have shown that in certain stochastic environ-
ments, multiple specialized phenotypic subpopulations can maximize the long–
term growth rate of an isogenic cell population. For these results to hold for the
here studied case, each of the here investigated two phenotypes must have a higher
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growth rate than the other in one of two available environments. As this study
analyses the optimal strategy to bridge periods of famine conditions characterized
by the absence of the rich carbon source, in the context of this section, the two
available environments are A: the poor carbon source is available, and B: the poor
carbon source is not available.

In environment A, the growth rate of the growing phenotype is obviously higher
than the growth rate of the non–growing phenotype. But what happens in environ-
ment B? The morphology of E. coli cells expressing the non–growing phenotype
during famine conditions strongly suggests that these cells have entered the state
of stationary phase rest. Although not considered differentiated, E. coli cells in
stationary phase rest have many properties in common with the spores into which
some gram–positive bacteria such as B. subtilis differentiate [212]. For instance,
both B. subtilis spores and E. coli cells in stationary phase rest have a strong
multiple–stress resistance and can survive prolonged periods of starvation [73].

Therefore, if environment B poses environmental threats to the cells, then the
stationary, ’non–growing’ phenotype has a higher (less negative) growth rate than
the not stress–resistant phenotype adapted to the (not present) poor carbon source.
For this case, the above mentioned studies [2, 107, 205] have shown that multiple
phenotypes can maximize population size by saving the costs for the sensing and
quick response mechanisms otherwise required to counter environmental threats.

5.4.2 Maximization of population size in the absence of stresses

Can responsive phenotypic diversification maximize population size in environ-
ments where the non–growing, stationary phenotype does not harvest any benefits
from growth restraint? This question is addressed by the analysis of the model
presented in Section 5.3 — environmental stresses during famine conditions do
not occur in this model.

5.4.2.1 Optimal adaptation to specific carbon source fluctuations

With the presented model, we determined the optimal strategy (in terms of the
maximization of total population size) for a cell population to bridge single peri-
ods of famine conditions between two periods of feast conditions. Mathematically,
the optimal adaptation strategy αopt is determined by maximizing PF , the final
population size after completed re-adaptation to feast conditions, over α, the ratio
of the initial phenotypic split upon the transition from feast to famine conditions.
Therefore, a function of the terminal states (Equation 5.5) is maximized by vari-
ation of the state’s initial conditions. Therefore, the task

αopt = max
α

PF (5.6)

is a small–scale dynamic optimization problem, which we solved with a brute force
approach.
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To investigate how the optimal adaptation strategy depends on the character-
istics of the famine condition to be bridged, we solved the optimization problem
for many different periods of famine conditions, which we generated by varying

• the duration of the famine conditions, τ ,

• the initial concentration of the poor substrate, SP,0, and

• the fierceness of competition, δ.

Table 5.2 lists the parameter values used in the optimization. As this study inves-
tigates a general effect and specific units only introduce a scaling factor that can
be countered by inverse scaling of the parameter values, all parameters units were
kept arbitrary.

Table 5.2: Used parameter values. All units are arbitrary. N (m,σ) denotes the normal
distribution with mean m and standard deviation σ.

Parameter Used value or distribution

b 4
cG 0.9999
cS 0.66
KP 0.02
P0 1
SP,0 In Section 5.4.2.1 (Figure 5.2): varies from 0 to 15

In Section 5.4.2.2 (Figure 5.3): N (7,3)–distribution
Y 0.4
α subject to optimization
δ In Section 5.4.2.1 (Figure 5.2): 0.1

In Section 5.4.2.2 (Figure 5.3): varies from 0 to 2
µP,max 0.24
µS 0
ρmax 4
τ In Section 5.4.2.1 (Figure 5.2): varies from 0 to 20

In Section 5.4.2.2 (Figure 5.3): N (9,3)–distribution

The dependency of the optimal phenotypic split ratio, αopt, on the duration of
famine conditions, τ , and the initial concentration of the poor carbon source, SP,0,
is shown in Figure 5.2. This dependency establishes three distinct regions in the
τ -SP,0 plane.

• In Region 1, SP,0 is so high that there is more poor substrate available than
the cell population and its competitors can consume before the rich substrate
returns. Therefore, the population size is maximized by a uniform adaptation
to growth on the poor substrate (responsive switching, αopt = 1).
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• In Region 2, SP,0 is low enough to become a limited resource. By restricting
growth to only a subpopulation, the total population stretches the available
substrate over time. It thereby maintains an actively metabolizing subpop-
ulation until the rich substrate returns. The actively metabolizing subpop-
ulation saves costly transitions into and out of stationary phase rest, and
benefits from a faster and cheaper adaptation to feast conditions. Therefore,
the optimal adaptation strategy is responsive diversification, 0 < α < 1.

• In Region 3, τ is so high that maintaining an actively metabolizing subpop-
ulation becomes impossible in the presence of defecting competitors growing
on the common, poor substrate as fast as possible. Therefore, the optimal
strategy is an aggressive competition for the common substrate through a
uniform adaptation to growth in famine conditions (responsive switching,
αopt = 1). The size of Region 3 depends on the fierceness of competitors for
the common substrate, δ. Region 3 is nonexistent for δ = 0; with increasing
δ, Region 3 gradually takes over Region 2 until Region 2 becomes extinct
and responsive switching is globally optimal.
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Figure 5.2: The optimal population response αopt to a single carbon source fluctuation de-
pends on the duration of the famine condition, τ , the initial concentration of the poor car-
bon source SP,0, and the fierceness of competition, δ. The dependency on these three pa-
rameters subdivides the τ–SP,0 plane into three regions. A uniform adaptation to growth
on the poor substrate (responsive switching; red) is optimal in Regions 1 and 3, whereas
a diversification response (responsive diversification; other colors) is optimal in Region 2.
Region 3 is nonexistent for δ = 0; with increasing δ, Region 3 gradually takes over Region 2
until Region 2 becomes extinct and responsive switching is globally optimal.

To conclude, the optimal strategy to bridge a single period of famine conditions
between two periods of feast conditions depends on the duration of the famine
condition, the available amount of the poor carbon source, and the fierceness
of competitors for the common substrate. Depending on these parameters, the
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optimal strategy is either responsive switching or responsive diversification into
two subpopulations.

5.4.2.2 Optimal adaptation in a stochastic environment

Obviously, the cell population cannot anticipate the optimal adaptation strategy
αopt to bridge a particular, upcoming period of famine conditions. However, cells
live in an environment that repeatedly alternates between feast and famine con-
ditions. Therefore, the cell population can respond to each period of famine con-
ditions with the constant, evolutionary optimal phenotypic split ratio α?opt that
maximizes the long–term population size in an environment with alternating feast
and famine conditions. An alternating sequence of feast and famine conditions can
be described by distributions over τ , SP,0 and δ.

To determine the optimal adaptation strategy in such stochastic environments,
we imposed normal distributions over τ and SP0 (see Table 5.2) and set δ to a
constant value. We then generated many such environments that share the same
distributions over τ and SP0 but differ in the constant value of δ. Therefore, cells
in each such environment are faced with an infinite sequence of feast and famine
conditions, with different, single periods of famine conditions having different du-
rations and substrate concentrations but the same fierceness of competition. Fig-
ure 5.3 shows that the optimal adaptation strategy in such stochastic environments
depends strongly on the constant value for the fierceness of competition, δ. The
weaker the competition is, the smaller is the optimal size of the growing subpopu-
lation on the poor carbon source, α?opt, and the larger is the accomplished gain in
population size of the optimal response over the uniform response. With increas-
ing competition, the optimal response α?opt first approaches and then becomes the
uniform response.

The exact value of the constant, evolutionary optimal adaptation strategy α?opt
depends strongly on the choice of the distributions over τ , SP,0 and δ. In essence,
responsive diversification (0 < α?opt < 1) maximizes the long–term population size
if the environment comprises sufficient diversification–favoring periods of famine
conditions (which lie in Region 2 of Figure 5.2). A diversification strategy with
a constant, evolutionary optimal α?opt can only be optimal if the competition for
the poor carbon source is sufficiently weak. The reason for this is that the pru-
dent resource usage of the diversification strategy only pays off if the population’s
growth behavior influences the environmental substrate concentration to a suffi-
cient degree. With increasing fierceness of competitors, the scope of the popula-
tion’s control over the environmental substrate pool decreases continuously, and
thus responsive diversification becomes ever less beneficial to the total population
in terms of maximizing its size.

To conclude, responsive diversification can increase the size of the total popula-
tion not only by saving the costs of sensing and quick response mechanisms (see
Section 5.4.1), but additionally by utilizing the poor carbon source prudently. It is
important to understand that these two contributions do not exclude each other
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Figure 5.3: In stochastic environments characterized by normal distributions over τ and
SP,0, the constant, evolutionary optimal phenotypic split ratio α?opt strongly depends on

the constant fierceness of competitors, δ. The weaker the competition is, the smaller is the
optimal phenotypic split ratio α?opt (solid black line). The optimal response α?opt becomes

the homogeneous response (α = 1, dashed black line) for sufficiently fierce competition δ.
When the fierceness of competition is weak enough, the optimal response yields a higher
population size (solid gray line) than the uniform response (dashed gray line).

— sensing and response cost savings increase population size for a certain range
of environmental switching rates [107], whereas prudent resource usage increases
population size if the famine conditions fall in Region 2 of Figure 5.2.

5.4.2.3 Social component of responsive diversification

Having understood in detail how responsive phenotypic diversification can max-
imize the size of the total population in certain stochastic environments, in this
section, we zoom out and assume a game–theory perspective. This perspective is
suited to understand the optimality of responsive diversification in generic terms
and allows for a classification of the seemingly cooperative behavior of the phe-
notypic subpopulations suggested by the model analysis. A game in the context
of game theory means any situation in which an individual’s success in making
choices depends on the choices of others. In the here studied scenario of responsive
diversification, individual cell of the population play a game because maximization
of each cell’s individual growth does not maximize the growth of the total popu-
lation. More specifically, responsive diversification in the here studied context is
a strategy of a so–called social goods game, or N–person prisoners dilemma game
(for example, see [68]).

Such a game is played whenever individuals have access to a common resource
that can be exploited either rapidly or efficiently [112, 123]. This dilemma was
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first noted by [115], is since [67] known as the tragedy of the commons, and has
already been identified in biological systems (for instance, see [90]). The here
present tragedy of the commons dilemma can be classified as a Type 1 tragedy,
which arises from the competition of individuals over an extrinsic resource [163],
in our case over the poor carbon source. The dilemma can be further classified as
a collapsing tragedy, which arises when selfish behavior of individuals, in our case
a uniform population response in a diversification–favoring environment, results
in the entire resource vanishing [163].

It has been convincingly argued [67] that unless the access to the common re-
source is regulated, selfish behavior of individuals depletes the resource rapidly
and inefficiently, with potentially disastrous consequences for the population as a
whole. For instance, when human society is confronted with a collapsing Type 1
tragedy of the commons dilemma, which occurs e.g. when overfishing threatens
to drive the fish population extinct, the tragedy can only be averted through the
imposition of fishing laws. As the tragedy can only be avoided through higher–level
regulation [67], and natural selection acts at the level of the gene [46], the here
present tragedy can only be resolved if such higher–level regulation is provided by
the genotype of the isogenic cell population in the form of cooperative behavior. In
the model, cells of the non–growing subpopulation PS even act altruistically in or-
der to benefit the cells of the growing subpopulation PP . The cooperative behavior
is also reflected in the fact that cooperation can be easily exploited by cheating
defectors (see for instance [215]), and the optimality of the here investigated di-
versification response is lost in the presence of sufficiently fierce competitors (see
Figure 5.3).

To conclude, in the absence of environmental stresses, the expression of two
phenotypic subpopulations during famine conditions maximizes the genotype’s
representation in future generations by resolving a collapsing Type 1 tragedy of
the commons dilemma cooperatively. This cooperative behavior contrasts the by
definition selfish nature of bet–hedging (where each cell places its own individual
bet on the uncertain future) and implies that in friendly environments, responsive
diversification has an attached social component. However, in the presence of en-
vironmental stresses, the increase in population size achieved by prudent resource
usage is not altruistic because the non–growing, stationary phenotype harvests
the benefit of stress resistance from growth restraint and as such acts primarily
selfish (it has merely placed a different individual bet on future conditions). In
these cases, the tragedy of the commons dilemma is only an apparent dilemma
(which are quite common in biology [163]).

5.4.3 Population–level solution to molecular–level trade–offs

In this section, we review one and introduce another molecular trade–off that
impose limitations on the behavior of individual cells. We argue the genotype deal
with these limitations of individual cells on the population level by expressing
phenotypic subpopulations that specialize in the trade–offs’ opposing extremes.
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5.4.3.1 Self–preservation or nutritional capability

We have argued in Section 5.4.1 that the increased stress resistance of the non–
growing subpopulation confers a benefit to growth restraint. In this context, a
conceptual trade–off between self–preservation and nutritional capability has been
observed [94]. This trade–off is connected to the concentration of the sigma fac-
tor σS (or RpoS) [196], which is responsible for the general stress response of
E. coli [72, 117, 223]. The trade–off is manifested in the fact that strains with high
σS concentrations are more resistant to stress but grow more slowly and on fewer
nutrients under a variety of conditions [54].

The existence of this trade–off means that an individual cell cannot specialize
in both self–preservation and nutritional capability. However, the genotype of an
isogenic cell population may deal with this limitation on the population level by
expressing phenotypic subpopulations that specialize in the trade–off’s opposing
extremes.

5.4.3.2 Fast growth or nutritional flexibility

In this section, we propose the conceptually novel trade–off between fast growth
on rich glycolytic carbon sources and nutritional flexibility, meaning the capability
to adapt to poor gluconeogenic carbon sources after depletion of glycolytic carbon
sources.

The here proposed novel trade–off between nutritional flexibility and fast growth
is predicted by the results presented in Chapter 4 of this thesis. In that chapter,
we identified the molecular mechanism responsible for the generation of two phe-
notypic subpopulations upon glucose–to–acetate substrate shifts in E. coli (see
Figure 4.3a). We showed that the magnitude of the gluconeogenic flux realized
immediately after glucose depletion must be sufficiently high in order to adapt
from the glycolytic substrate glucose to the gluconeogenic substrate acetate. Be-
cause a strong expression of glycolytic genes implies a strong repression of gluco-
neogenic genes, glycolytic and gluconeogenic growth are mutually exclusive [178].
Therefore, the more a cell expresses its glycolytic genes, the more it represses its
gluconeogenic genes, and the more difficult it should be for the cell, upon depletion
of glycolytic substrates, to achieve an immediate gluconeogenic flux above the wa-
tershed required for gluconeogenic growth (see Figure 4.3b). Therefore, the results
of Chapter 4 predict that the more a cell dedicates itself to growth on glycolytic
carbon sources, the more difficult its adaptation to gluconeogenic carbon sources
should become.

This model–derived prediction is strongly supported by the results of an evolu-
tion experiment in a seasonal environment containing glucose and acetate [110].
The authors of that study observed a genetic diversification of an initially isogenic
E. coli population into two coexisting strains. One of these strains exhibited a
strong expression of genes in the acetate excretion pathway and grew fast on glu-
cose but had severe difficulties to adapt to acetate after glucose depletion; the other
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strain exhibited a strong expression of the acetate uptake pathway and grew slower
on glucose but was capable to quickly adapt to acetate. Although the authors of
that study focus on the genetic diversification and the coexistence of these two
strains in the seasonal environment, the growth behavior and gene expression pat-
terns of the two evolved strains strongly suggest the existence of the here proposed
trade–off between fast growth and nutritional flexibility.

The existence of this trade–off means that an individual cell cannot specialize in
both fast growth and nutritional flexibility. However, the genotype of an isogenic
cell population may deal with this limitation on the population level by expressing
phenotypic subpopulations that specialize in the trade–off’s opposing extremes.

5.5 Discussion

In this chapter, a mathematical model was presented to investigate population
growth in stochastic environments with nutrient concentrations subject not only to
external fluctuations but also to the growth behavior of an isogenic cell population.
From the model analysis, it was concluded that in certain stochastic environments,
the expression of phenotypic subpopulations is the evolutionary optimal adapta-
tion strategy maximizing the size of the total population. The counter–intuitive,
population size–increasing effect was classified as a solution to a collapsing Type 1
tragedy of the commons dilemma, which reduces to an apparent dilemma in the
presence of environmental stresses. It was argued that this effect can be cumula-
tive to the increase in population size achieved by saving the costs for not required
sensing and quick response mechanisms.

In a next step, the population–level study was connected to two molecular trade–
offs, which impose limitations in individual cells. The trade–off between between
nutritional capability and self–preservation has been studied thoroughly and is
connected to the RpoS concentration [54, 94]; the trade–off between nutritional
flexibility and fast growth is conceptually novel, rests on a recent experimental
observation [110] and on the results presented in Chapter 4 of this thesis, and
is connected to the competition between glycolytic and gluconeogenic gene ex-
pression. We have argued that the genotype deals with these trade–offs on the
population level through phenotypic specialization in either of these trade–offs’
extremes.

The combined results of this chapter provide a coherent picture for the optimal-
ity of responsive phenotypic diversification upon carbon source fluctuations. When
taken together, the results of this chapter suggest that although the two pheno-
typic subpopulations become manifest after depletion of the rich carbon source,
they may be determined already well before the transition from feast to famine
conditions through hedging of bets:

1. A cell can ’decide’ to refrain from growing on the rich substrate as fast as
possible to be able to adapt to growth on the poor substrate later. Hence, the
cell bets that the duration of feast conditions will be short, that the amount
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of available poor substrate will be large, and that the protective measures
provided by the state of stationary phase rest will not be required as long
as the poor substrate will be available. With regard to its two molecular
trade–offs, the cell bets on nutritional flexibility instead of fast growth on
the rich substrate, and on nutritional capability instead of self–preservation
on the poor substrate.

2. A cell can also ’decide’ to grow on the rich carbon source with such a fast
rate that it won’t be able to adapt to the poor carbon source later; when the
rich substrate will be depleted, the cell enters the state of stationary phase
rest instead. Hence, the cell bets that the duration of feast conditions will
be long, that the duration of famine conditions will be short, and that the
protective measures provided by the state of stationary phase will be required
while the poor substrate is available. With regard to its two molecular trade–
offs, the cell bets on fast growth instead of nutritional flexibility on the rich
substrate, and on self–preservation instead of nutritional capability on the
poor substrate.

Therefore, the expression of phenotypic subpopulations that specialize in the
extremes — either nutritional capability and nutritional flexibility or fast growth
on the rich substrate and self–preservation on the poor substrate — might be a
population–level strategy to cope with both molecular trade–offs jointly. Note that
we do not explicitly show that phenotypic specialization is more optimal to the
stress resistance of the genotype than a homogeneous population balanced in be-
tween the two extremes. However, because multiple phenotypes generally increase
the robustness of the population to stresses [29, 98, 199], phenotypic specializa-
tion is very likely the optimal solution to the trade–off between self–preservation
and nutritional capability. Next, if this trade–off is best solved through respon-
sive diversification of phenotypes, then the optimality of phenotypic specialization
to solve the molecular trade–off between fast growth and nutritional flexibility
inevitably follows because there is no reason for the later non–growing subpopu-
lation to not grow as fast as possible on the rich carbon source as long as it is
available.

To conclude, in this chapter, we have shown that responsive phenotypic di-
versification upon carbon source fluctuations is a bet–hedging strategy that can
simultaneously

1. increase the robustness of the total population to stresses because of the
mere fact of having multiple phenotypes expressed [29],

2. deal with the molecular trade–off between nutritional capability and self–
preservation on the population level through phenotypic specialization in
the opposing extremes,

3. deal with the molecular trade–off between nutritional flexibility and fast

145



Chapter 5 Optimality of responsive diversification

growth on the population level through phenotypic specialization in the op-
posing extremes, and

4. maximize the representation of the genotype in future generations through
prudent usage of the limited, poor carbon source during famine conditions.

If stresses are absent from the environment, the employed bet–hedging strategy has
social traits attached. As recent studies have already proposed a cooperative role of
persister cells [61] and spores [213], and this study has identified a cooperative role
of a stationary phase rest—subpopulation, bet–hedging strategies that involve the
expression of a protective but growth–impaired phenotype might thus in general
carry a social component.

5.6 Outlook

In its present form, this chapter is a purely computational study. The scientific con-
tribution of this chapter can be improved by combining the presented theoretical
work with experiments. The following specific experiments are suggested.

As experimental model system linked to the computational study, the glucose
to acetate shift of an isogenic E. coli population is suggested. Note that usage of
this model system requires adjusted parameter values and thus a repetition of the
model analysis leading to Figures 5.2 and 5.3. In particular, the Monod constant
for the poor carbon source, KP , should be set to the literature value for acetate,
which is in the 7 to 10 mM range [230]. A literature study might further reveal
an E. coli–specific estimate for the transition costs cG and cS . The value b for the
relative growth benefit of metabolically active cells over those in stationary phase
rest could be determined experimentally. To determine this parameter, shake flask
cell cultures growing exponentially on acetate as well as cultures that have been in
stationary phase rest for different amounts of time could be inoculated into fresh
glucose medium. Once all of these cultures have reached exponential growth on
glucose, the biomass concentration of the culture that was metabolically active on
acetate is expected to be greater than the biomass concentrations of the cultures
that were in stationary phase rest. The value of b is given by the difference of
these biomass concentrations. If cultures that have been in stationary phase rest
for different amounts of time exhibit different biomass concentrations on glucose,
then the value of b is not constant but depends on the time the cells have spent
in stationary phase rest; if this is the case, the mathematical model should be
extended to include this dependency.

Using shake flasks, substrate shift experiments from e.g. 5 gl−1 glucose to 2
gl−1 acetate and back to 5 gl−1 glucose can be performed to experimentally vali-
date that growth restraint of a phenotypic subpopulation can maximize the size of
the total population upon completed re–adaptation to glucose. To obtain different
ratios of the phenotypic split upon the glucose to acetate substrate change, two
parallel experiments with two strains exhibiting different phenotypic split ratios α
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are suggested. For instance, E. coli wild–type could be used to obtain a split–ratio
of ≈ 0.5, and the E. coli maeBsfcA mutant strain could be used to obtain a split
ratio of ≈ 0.017 (see Chapter 4). Then, the duration of growth on acetate is chosen
such that the biomass concentration of the still exponentially growing maeBsfcA
culture, which exhibits a longer apparent lag phase than the wild–type, exceeds
the biomass concentration of the wild–type culture, which has already entered
stationary phase rest because it has consumed the acetate in its medium. At such
a time point, an equal volume of both cultures is transferred to new shake flasks
that contain glucose as the carbon source. After both cultures have reached expo-
nential growth, the biomass concentration of the maeBsfcA culture (which grows
on glucose almost with wild–type rate) should exceed the biomass concentration
of the wild–type culture. The important expected result of this experiment is that
the expression of less acetate–consuming cells in the second shake flask culture
increases the size of the total population in the third shake flask culture. This
result validates the computational results derived in Section 5.4.2.1.

Further, a variant of the suggested glucose–acetate–glucose substrate shift ex-
periment could be additionally performed. This additional experiment would be
identical to the above suggested experiment except that both the wild–type and the
maeBsfcA culture are inoculated into the same shake flask. Therefore, these strains
compete for the available acetate. It is expected that the wild–type outgrows the
maeBsfcA mutant strain because it has more acetate–adapted cells that grow on
the common substrate. Ideally, but perhaps not necessarily, the composition of
the mixed culture is determined at multiple time points e.g. through insertion of
green fluorescent markers in one strain but not in the other and a microscopic
analysis of samples. Whereas the above suggested substrate shift experiment is
expected to show that the maeBsfcA strain performs better than the wild–type
in separate cultures, the expected result of the substrate shift experiment with a
mixed culture is that the wild–type performs better than the maeBsfcA mutant.
Because the benefits derived from cooperativity are known to diminish in the pres-
ence of competitors, this expected result would corroborate the notion that the
two expressed phenotypic subpopulation are apparently cooperative.
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Chapter 6

Conclusions

To advance our understanding of the general principles surrounding and generat-
ing phenotypic diversification of isogenic cell populations, this thesis investigated
the emergence of multiple phenotypes in the central carbon metabolism of the
bacterium Escherichia coli.

The take–home message of this thesis is that phenotypic multistability, which
has already been identified in diverse cellular processes, generalizes to central me-
tabolism and can thus be viewed as an inherent feature of its design. Because
metabolism plays a vital role in diseases such as cancer, and diversification of such
diseases severely hinders their successful treatment, the discovery of phenotypic
diversification within central metabolism may have significant impact beyond fun-
damental research. Most notably, sick cells have been interpreted as being ’trapped’
in a disease–conferring stable steady state (or phenotype) of cellular operation that
is in a healthy cell suppressed [98]. For this reason, systematic research on how to
control cellular states without triggering mutations has been proposed as a cru-
cial component of future cancer–therapy research [97, 99]. The general principles
proposed in this thesis further our fundamental understanding of how multiple
simultaneously available stable steady states are generated and how individual
cells ’choose’ between the available phenotypes. This understanding may guide
systematic disease research in finding ways to manipulate the expression of mul-
tiple phenotypes such that cells trapped in a sick state of cellular operation are
forced back to a healthy state.

In detail, the novel general principles proposed in this thesis are

• two motifs that establish flux–signalling metabolites, whose levels indicate
the presence of extracellular carbon sources (see Chapter 3),

• molecular sensors for intracellular metabolic flux (see Chapter 3),

• the sensing of extracellular carbon sources through distributed sensing of
metabolic fluxes (see Chapter 3),

• the population–level adaptation strategy of responsive diversification (see
Chapter 4),

• performance–based selection of one phenotype over another (see Chapter 4),

• flux sensor–centered generation of multiple phenotypes (see Chapter 4), and
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• the molecular trade–off between fast growth and nutritional flexibility (see
Chapter 5).

This thesis has further shown that

• the interplay of known interactions in E. coli ’s central metabolism can ex-
plain in molecular-level detail the system-wide adaptations of metabolic op-
eration between glycolytic and gluconeogenic carbon sources (such as glucose
and acetate, see Chapter 3),

• metabolic flux is a control factor that regulates gene expression in vivo (see
Chapter 4), a function that has so far only been demonstrated synthetically
[58].

• lag time upon environmental perturbations can indicate the existence of
phenotypic subpopulations (see Chapter 4), and

• the population–level adaptation strategy underlying responsive diversifica-
tion is bet–hedging with possible social components that ’resolve’ an appar-
ent tragedy of the commons dilemma (see Chapter 5).

The principles proposed in Chapter 4 are experimentally validated whereas those
proposed in Chapter 3 stem from a model–based analysis and therefore still re-
quires direct experimental validation. Nevertheless, a flux–sensor that was pro-
posed by the model–based analysis in Chapter 3 has been in Chapter 4 experimen-
tally validated to generate bistable phenotypes based on the measured metabolic
flux. Therefore, the experimental results presented in Chapter 4 do provide in-
direct experimental evidence for the principles proposed in Chapter 3. Similarly,
the molecular trade–off proposed in Chapter 5 rests on the experimentally val-
idated function of performance–based selection (see Chapter 4). However, such
cross–chapter evidence does not cover the model–derived mechanism of distributed
flux sensing (the higher–level working together of multiple flux sensors), whose
experimental verification is difficult precisely because its nature is distributed.
Hence, although distributed flux sensing provides a consistent explanation of how
a multitude of known molecular interactions fits into a coherent systems picture,
it remains to be seen whether this explanation withstands future observations or
whether a refined explanation will be required.

The explanation of distributed flux sensing has been derived through a modeling
approach that puts system behavior before parameter values. This approach, when
carefully applied as in Chapter 2, can predict new functions that emerge from the
modeled complexity. The approach can but in general does not need to be assisted
by the method developed in Chapter 2. It will be interesting to see if the here
chosen focus on system behavior instead of on parameter values will influence the
future modeling of biochemical systems.
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til, R. A., Dollé, M. E. T., Calder, R. B., Chisholm, G. B., Pollock,
B. H., Klein, C. A., and Vijg, J. Increased cell-to-cell variation in gene
expression in ageing mouse heart. Nature 441, 7096 (2006), 1011–4.

12. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., and Leibler,
S. Bacterial persistence as a phenotypic switch. Science 305, 5690 (2004),
1622–5.

13. Balázsi, G., Barabási, A.-L., and Oltvai, Z. N. Topological units of
environmental signal processing in the transcriptional regulatory network of
Escherichia coli. Proc Natl Acad Sci U S A 102, 22 (2005), 7841–6.

14. Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E.,
Pilpel, Y., and Barkai, N. Noise in protein expression scales with natural
protein abundance. Nat Genet 38, 6 (2006), 636–43.

15. Barabási, A.-L., and Oltvai, Z. N. Network biology: understanding the
cell’s functional organization. Nat Rev Genet 5, 2 (2004), 101–13.

16. Becskei, A., Kaufmann, B. B., and van Oudenaarden, A. Contribu-
tions of low molecule number and chromosomal positioning to stochastic gene
expression. Nat Genet 37, 9 (2005), 937–44.
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R. Curtiss III, J. Kaper, P. D. Karp, F. C. Neidhardt, T. Nyström, J. M.
Slauch, C. L. Squires, and D. Ussery, Eds. ASM Press, Washington, DC,
2008, ch. 97.

34. Brown, K. S., Hill, C. C., Calero, G. A., Myers, C. R., Lee, K. H.,
Sethna, J. P., and Cerione, R. A. The statistical mechanics of complex
signaling networks: nerve growth factor signaling. Phys Biol 1, 3-4 (2004),
184–95.

153



References

35. Cai, L., Friedman, N., and Xie, X. S. Stochastic protein expression in
individual cells at the single molecule level. Nature 440, 7082 (2006), 358–62.

36. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K.,
and Reuss, M. Dynamic modeling of the central carbon metabolism of
Escherichia coli. Biotechnol Bioeng 79, 1 (2002), 53–73.

37. Choi, P. J., Cai, L., Frieda, K., and Xie, X. S. A stochastic single-
molecule event triggers phenotype switching of a bacterial cell. Science 322,
5900 (2008), 442–6.

38. Chung, T., Resnik, E., Stueland, C., and LaPorte, D. C. Relative
expression of the products of glyoxylate bypass operon: contributions of tran-
scription and translation. J Bacteriol 175, 14 (1993), 4572–5.
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. . . Sandra Lövenich and Sarah–Maria Fendt for being wonderful friends.

. . . many more wonderful friends across the world for enriching my life.

. . . my family for their unconditional love and support.

. . . Miriam Bauer — without you, where would I be?

171





List of Publications

Kotte, O., Ackermann, M., and Heinemann, M. On the optimality of
responsive phenotypic diversification. In preparation.

Kotte, O., Volkmer, B., Panke, S., and Heinemann, M. Phenotypic
bistability in Escherichia coli ’s central carbon metabolism. Submitted.

Kotte, O., Zaugg, J.B., and Heinemann, M. Bacterial adaptation through
distributed sensing of metabolic fluxes. Submitted.

Kotte, O., and Heinemann, M. A divide–and–conquer approach to ana-
lyze underdetermined biochemical models. Bioinformatics 25, 4 (2009), 51925.
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