
Diss. ETH No. 18596

Accelerated Nonrigid Image
Registration

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Sciences ETH Zurich

presented by
JONATHAN ROHRER

M.Sc. ETH in Electrical Engineering and Information
Technology

born 16 July 1980
citizen of Sachseln OW

accepted on the recommendation of
Prof. Dr. Gábor Székely, examiner

Prof. Dr. Gerhard Tröster, co-examiner
Dr. Ton Engbersen, co-examiner

2009



ii



Abstract

Many tasks in medical image analysis require the fusion of two images,
for example to combine information provided by different image acquisi-
tion devices or monitor disease progression over time. Image registration
is the process of aligning two images, such that corresponding points can
be related. For this purpose, one image is deformed to match the other
one. Rigid registration techniques try to achieve an alignment by scaling,
rotating and translating one of the images. Rigid registration is only ad-
equate for special cases because usually the anatomical structures in the
images are not rigid and therefore more complex nonrigid transformation
models are required. A problem with nonrigid registration methods is their
high computational cost yielding registration times in the order of hours for
typical 3D images. While this is inconvenient for some applications, it is
prohibitive for others, especially in the context of intraoperative scenarios.

This dissertation presents a nonrigid registration algorithm and imple-
mentation achieving sub-minute runtimes on a system based on two Cel-
l/B.E. processors. This processor contains multiple processor cores on one
chip and is designed for computationally intensive workloads. A speedup of
more than 2500× was achieved compared to a sequential open-source im-
plementation running on a general-purpose processor. Although optimized
for the Cell/B.E. architecture, the presented algorithm also achieves a high
efficiency on more recent general-purpose multicore architectures. A scala-
bility analysis shows that the algorithm has the potential to exploit future
architectures with more cores.

The algorithm bases on the B-spline transformation model, which has
been applied successfully to a wide range of nonrigid registration prob-
lems. Furthermore, it uses mutual information, which is probably the most
common similarity metric for multimodal image registration. Mutual in-
formation allows registration of images which were obtained from different
acquisition devices.



iv Abstract



Zusammenfassung

Für viele Anwendungen im Bereich der medizinischen Bildanalyse müssen
zwei Bilder zusammengeführt werden, zum Beispiel um Information aus zwei
verschiedenen bildgebenden Verfahren zu kombinieren oder um die Entwick-
lung einer Krankheit über eine gewisse Zeitspanne zu überwachen. Bildre-
gistrierung versucht eines der Bilder so zu deformieren, dass entsprechende
Punkte zusammenfallen, wenn die Bilder übereinander gelegt werden. Ri-
gide Registrierungs-Techniken versuchen mittels Rotation, Translation und
Skalierung eine Übereinstimmung zu erreichen. Dies ist nur in Spezialfällen
möglich, da die meisten Strukturen in den Bildern aus weichen Geweben
bestehen. Darum werden im Allgemeinen komplexere Modelle benötigt. Ein
Problem sogenannter elastischer Methoden ist deren hoher Rechenaufwand,
der für typische 3D Bilder zu Registrierungszeiten von mehreren Stunden
führen kann. Für einige Anwendungen ist dies störend, andere verunmöglicht
es, vor allem im intraoperativen Bereich.

Diese Dissertation präsentiert einen elastischen Registrierungsalgorith-
mus, welcher für die Registrierung auf einem System mit zwei Cell/B.E.
Prozessoren weniger als eine Minute benötigt. Dieser Prozessor vereinigt
mehrere Prozessorkerne auf einem Chip und ist für rechenintensive Anwen-
dungen ausgelegt. Im Vergleich zu einer sequenziellen open-source Imple-
mentierung wurde eine mehr als 2500-fache Beschleunigung erzielt. Ob-
wohl der präsentierte Algorithmus für die Cell/B.E. Architektur optimiert
wurde, erreicht er auch auf Standard-Mehrkernprozessoren eine hohe Ef-
fizienz. Eine Skalierbarkeitsanalyse zeigt, dass auch das Potential von Prozes-
soren mit mehr Kernen ausgenützt werden kann.

Der Algorithmus basiert auf dem B-spline Transformationsmodell, wel-
ches schon erfolgreich auf verschiedenste elastische Registrierungsprobleme
angewandt wurde. Die Ähnlichkeit wird mit der Transinformation gemessen,
dem wahrscheinlich verbreitetsten Ähnlichkeitsmass für Bilder von verschie-
denen bildgebenden Verfahren.



vi Zusammenfassung



Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Nonrigid Image Registration 5
2.1 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Physics-Based Approaches . . . . . . . . . . . . . . . . . . . 8
2.3 Demons Algorithm . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 B-Spline Model . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Piecewise Rigid Registration . . . . . . . . . . . . . . . . . . 12

3 Accelerating Nonrigid Image Registration 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Multiprocessors . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Shared-Memory Architectures . . . . . . . . . . . . . 14
3.2.2 Message-Passing Architectures . . . . . . . . . . . . . 17
3.2.3 Programming Models . . . . . . . . . . . . . . . . . . 17
3.2.4 Early Nonrigid Registration Work . . . . . . . . . . . 20
3.2.5 Biomechanical Models . . . . . . . . . . . . . . . . . 20
3.2.6 Demons Algorithm . . . . . . . . . . . . . . . . . . . 22
3.2.7 B-spline Algorithms . . . . . . . . . . . . . . . . . . . 22
3.2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Trends in Processor Development . . . . . . . . . . . . . . . 24



viii Contents

3.3.1 Instruction-Level Parallelism . . . . . . . . . . . . . . 24

3.3.2 Multicore Processors . . . . . . . . . . . . . . . . . . 26

3.3.3 Asymmetric Processors . . . . . . . . . . . . . . . . . 26

3.3.4 Accelerators . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.5 Memory . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.6 Programming . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Cell/B.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Processor Architecture . . . . . . . . . . . . . . . . . 29

3.4.3 PPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.4 SPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.5 On-Chip Communication . . . . . . . . . . . . . . . . 32

3.4.6 System Architecture . . . . . . . . . . . . . . . . . . 32

3.4.7 Programming Models . . . . . . . . . . . . . . . . . . 34

3.4.8 Rigid Registration . . . . . . . . . . . . . . . . . . . 36

3.5 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 System Architecture . . . . . . . . . . . . . . . . . . 38

3.5.3 Processor Architecture . . . . . . . . . . . . . . . . . 38

3.5.4 Programming Model . . . . . . . . . . . . . . . . . . 40

3.5.5 Early Nonrigid Registration Work . . . . . . . . . . . 41

3.5.6 Gradient Flow Algorithms . . . . . . . . . . . . . . . 41

3.5.7 Demons Algorithm . . . . . . . . . . . . . . . . . . . 42

3.5.8 Finite Element Algorithm . . . . . . . . . . . . . . . 44

3.5.9 Multimodal Registration . . . . . . . . . . . . . . . . 44

3.5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 Volume-Subdivision Algorithm . . . . . . . . . . . . . 46

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Implemented Registration Algorithm 49

4.1 Basic Features . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 B-Spline Transformation Model . . . . . . . . . . . . . . . . 50

4.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Moving Image Model . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . 55



Contents ix

5 Parallel Algorithm Design 59
5.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . 59
5.1.2 Performance Bottlenecks . . . . . . . . . . . . . . . . 60

5.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 B-Spline Interpolation . . . . . . . . . . . . . . . . . 61
5.2.2 Use of Lookup Tables . . . . . . . . . . . . . . . . . . 62
5.2.3 Vectorized B-Spline Interpolation . . . . . . . . . . . 62
5.2.4 Optimized Transformation Field Evaluation . . . . . 64
5.2.5 Optimized Image Interpolation . . . . . . . . . . . . 64
5.2.6 Gradient Calculation . . . . . . . . . . . . . . . . . . 66
5.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Parallelization Platform . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Theoretical Limitations . . . . . . . . . . . . . . . . . 70
5.3.3 Limitations for GPUs . . . . . . . . . . . . . . . . . . 70
5.3.4 Target Platform for Parallelization . . . . . . . . . . 71
5.3.5 Master-Worker Programming Model . . . . . . . . . 72
5.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Data Locality . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Producer-Consumer Locality . . . . . . . . . . . . . . 73
5.4.2 Spatial Locality . . . . . . . . . . . . . . . . . . . . . 75
5.4.3 Storing Intermediate Results for Reuse . . . . . . . . 77

5.5 Parallelism 1: Multiple SPEs . . . . . . . . . . . . . . . . . . 78
5.5.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . 78
5.5.2 Compute Kernels . . . . . . . . . . . . . . . . . . . . 78
5.5.3 Synchronization and Coherency . . . . . . . . . . . . 79
5.5.4 Communication . . . . . . . . . . . . . . . . . . . . . 80
5.5.5 Model Overview . . . . . . . . . . . . . . . . . . . . . 80

5.6 Data Transfers . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.1 Double Buffering . . . . . . . . . . . . . . . . . . . . 81
5.6.2 Caching of Data . . . . . . . . . . . . . . . . . . . . . 82
5.6.3 Probabilistic Prefetching of Moving Image Data . . . 83
5.6.4 Data Replication . . . . . . . . . . . . . . . . . . . . 84

5.7 Parallelism 2: Multiple Cell/B.E. Processors . . . . . . . . . 85
5.7.1 The Parallelized Phases . . . . . . . . . . . . . . . . 85
5.7.2 The Communication Phases . . . . . . . . . . . . . . 86
5.7.3 The Sequential Phases . . . . . . . . . . . . . . . . . 88



x Contents

5.7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 88

6 Performance Analysis 91

6.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.2 Results Overview . . . . . . . . . . . . . . . . . . . . 93

6.1.3 Code and Data Structures . . . . . . . . . . . . . . . 94

6.1.4 Re-use of the Transformed Image and its Gradient . . 95

6.1.5 Grouping . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.6 Manual Vectorization . . . . . . . . . . . . . . . . . . 98

6.1.7 Vector Alignment . . . . . . . . . . . . . . . . . . . . 99

6.1.8 Double Buffering . . . . . . . . . . . . . . . . . . . . 100

6.1.9 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Modeling the Runtime . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Measuring Runtime . . . . . . . . . . . . . . . . . . . 102

6.2.2 Parallelized Functions . . . . . . . . . . . . . . . . . 103

6.2.3 Communication Overhead . . . . . . . . . . . . . . . 104

6.2.4 The Sequential Part . . . . . . . . . . . . . . . . . . 106

6.3 Scalability 1: Many-Core . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Fixed Problem Size . . . . . . . . . . . . . . . . . . . 109

6.3.2 Reducing Gradient Collection Overhead . . . . . . . 110

6.3.3 Reducing Histogram Collection Overhead . . . . . . . 114

6.3.4 Scaling Problem Size . . . . . . . . . . . . . . . . . . 119

6.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Memory Considerations . . . . . . . . . . . . . . . . . . . . 122

6.4.1 The Memory Wall . . . . . . . . . . . . . . . . . . . 122

6.4.2 Bandwidth Requirements . . . . . . . . . . . . . . . . 122

6.4.3 Prefetching . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.4 Cache Miss Penalty . . . . . . . . . . . . . . . . . . . 126

6.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Scalability 2: Cell/B.E. Cluster . . . . . . . . . . . . . . . . 129

6.5.1 Communication Cost on a QS21 Cluster . . . . . . . 129

6.5.2 Extending the Model . . . . . . . . . . . . . . . . . . 133

6.5.3 Measurements on the QS21 Cluster . . . . . . . . . . 136



Contents xi

7 Experiments 137
7.1 Simulated MR Images . . . . . . . . . . . . . . . . . . . . . 137
7.2 CT Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3 Comparison with Other Algorithms . . . . . . . . . . . . . . 141

8 Conclusions and Outlook 143

A List of abbreviations 147

Curriculum Vitae 161



xii Contents



List of Figures

2.1 Simulated MR images of the brain . . . . . . . . . . . . . . . 6
2.2 Joint histograms . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Cache coherency problem . . . . . . . . . . . . . . . . . . . . 15
3.2 Thread synchronization problem . . . . . . . . . . . . . . . . 16
3.3 Cell/B.E. processor . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Cell/B.E. blade . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Porting applications to the Cell/B.E. architecture . . . . . . 34
3.6 Cell/B.E. programming models . . . . . . . . . . . . . . . . 35
3.7 System architecture with GPU. . . . . . . . . . . . . . . . . 38
3.8 Graphics pipeline . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Speedup comparison . . . . . . . . . . . . . . . . . . . . . . 47

4.1 2D cubic B-spline base function . . . . . . . . . . . . . . . . 51
4.2 B-spline transformation model . . . . . . . . . . . . . . . . . 52

5.1 Producer-consumer diagram . . . . . . . . . . . . . . . . . . 61
5.2 Vectorized B-spline interpolation . . . . . . . . . . . . . . . 63
5.3 Optimized image interpolation . . . . . . . . . . . . . . . . . 65
5.4 Producer-consumer diagram after pipelining . . . . . . . . . 73
5.5 Mapping images to memory . . . . . . . . . . . . . . . . . . 76
5.6 Producer-consumer model with temporary buffering . . . . . 77
5.7 Parallelization scheme . . . . . . . . . . . . . . . . . . . . . 81
5.8 Producer-consumer diagram with double buffering . . . . . . 82
5.9 Probabilistic prefetching . . . . . . . . . . . . . . . . . . . . 83
5.10 Moving image data replication . . . . . . . . . . . . . . . . . 85

6.1 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Rigid transformation with varying block width . . . . . . . . 97
6.3 Nonrigid transformation with varying block width . . . . . . 98



xiv List of Figures

6.4 Model of tB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5 Model of tB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Model of thsync . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7 Model of tgsync . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.8 Model of tmi . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.9 Model of tgd . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.10 Scalability for fixed problem size . . . . . . . . . . . . . . . . 109
6.11 Efficiency for fixed problem size . . . . . . . . . . . . . . . . 110
6.12 Parallel reduce operation: gradient . . . . . . . . . . . . . . 112
6.13 The reduce operation for large arrays is memory bound . . . 112
6.14 Scalability with improved gradient synchronization . . . . . 115
6.15 Collective communication of SPEs . . . . . . . . . . . . . . . 116
6.16 Collective reduce operation: histogram . . . . . . . . . . . . 117
6.17 Parallel reduce operation: histogram . . . . . . . . . . . . . 118
6.18 Scalability with improved synchronization . . . . . . . . . . 119
6.19 Efficiency with improved synchronization . . . . . . . . . . . 120
6.20 Isoefficiency curve . . . . . . . . . . . . . . . . . . . . . . . . 120
6.21 Bandwidth requirements: phase B1 . . . . . . . . . . . . . . 122
6.22 Bandwidth requirements: phase B2 . . . . . . . . . . . . . . 123
6.23 Memory traffic depending on prefetch threshold . . . . . . . 125
6.24 Block fetches depending on prefetch threshold . . . . . . . . 125
6.25 Duration of a DMA transfer . . . . . . . . . . . . . . . . . . 127
6.26 Duration of a reduce operation on the QS21 cluster . . . . . 129
6.27 Bandwidth of a reduce operation on the QS21 cluster . . . . 130
6.28 Start-up time on the QS21 cluster . . . . . . . . . . . . . . . 131
6.29 Asymptotic bandwidth on the QS21 cluster . . . . . . . . . 132
6.30 Model of the runtime of a reduce operation . . . . . . . . . . 133
6.31 Scalability on the cluster: One processor per node . . . . . . 134
6.32 Efficiency on the cluster: One processor per node . . . . . . 135
6.33 Measured runtime on the cluster . . . . . . . . . . . . . . . . 135

7.1 Deformed BrainWeb images . . . . . . . . . . . . . . . . . . 138
7.2 Registered BrainWeb images . . . . . . . . . . . . . . . . . . 140
7.3 Rigid and nonrigid registration of abdominal CT images . . 141



List of Tables

5.1 Algorithm profiling . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Runtime on different platforms . . . . . . . . . . . . . . . . 93
6.2 Parameters of the runtime model . . . . . . . . . . . . . . . 101
6.3 Phases of the algorithm . . . . . . . . . . . . . . . . . . . . . 102

7.1 Registration runtime: BrainWeb images . . . . . . . . . . . . 139
7.2 Registration runtime: abdominal CT images . . . . . . . . . 142



xvi List of Tables



1
Introduction

1.1 Image Registration

Assume that we have two images, a fixed1 image and a moving2 image.
These images show the same or a similar “scene” but are not identical.
Image registration is the process of bringing the two images into geometric
alignment by finding the corresponding points in the two images. Possible
reasons for a misalignment are

• The images were acquired from different viewpoints.

• The images are from different acquisition devices. This case is very
common in medical imaging, where different modalities like CT (com-
puter tomography), MRI (magnetic resonance imaging) and ultra-
sound are used. Solving such problems is called multimodal or inter-
modal registration.

• The images were acquired at different times and certain objects in the
image may have changed their position or shape.

1The fixed image sometimes is also called static, target, reference, study or baseline
image.

2Other names for the moving image are source, floating, template, or repeat image.



2 Introduction

• The image of a scene is registered to a model of the scene.

The output of the registration is a transformation function T , which
maps points xfix in the fixed image to their corresponding points xmov =
T (xfix) in the moving image.

There are various articles reviewing registration techniques and their
applications in general, for example by Brown [15] or Zitová and Flusser
[109]. This dissertation is about medical image registration. In the next
section, a small number of example applications will be discussed.

1.2 Applications

An early motivation behind medical image registration was the desire to fuse
information about one patient obtained from different imaging modalities.
It became common for patients to be imaged with different tomographic
modalities during treatment planning or diagnosis. Image registration com-
pensated for differences in image resolution and the position of the patient
in the image.

Another application arises when patients are imaged multiple times, for
example for monitoring the growth of a tumor. Usually it is not possible
to reposition the patient perfectly on subsequent visits. Image registration
enables alignment of such images. Furthermore, many structures of the
human body change their shape over time. Therefore, the images may also
be affected by soft-tissue deformations, for example because of respiratory
motion.

In a third possible application, image registration can establish corre-
spondence between a patient image and an atlas image. The atlas image
can be a model or the image of a typical subject. It is annotated, mean-
ing that a segmentation of anatomical structures in the atlas is available.
Detecting and labeling these structures is a time consuming and subjective
task. A successful registration enables an automatic transfer of the labels
from the atlas to the patient image, such that only one or a small number
of atlases need to be segmented manually.

Furthermore, it is possible to acquire images in the operating room dur-
ing surgery, which also opens new applications of image registration. These
images can provide guidance to the surgeon, for example by providing im-
proved contrast between healthy and diseased tissue. They also expose
information about tissue below the surface. However, the constraints of an



1.3 Classification 3

operating room allow less flexibility in the choice of the imaging modality
than diagnostic acquisitions. With the goal of augmenting the information
provided to the surgeon, image registration allows fusion of intraoperative
with preoperative images of higher spatial resolution, higher signal to noise
ratio or different modalities.

1.3 Classification

The large number of applications of image registration and their diversity
has triggered the emergence of many registration methods. These can be
classified based on their choices for four different properties [15]: feature
space, search space, search strategy, and similarity metric.

The chosen feature space defines what information is extracted from
the images. This can simply be the image intensity at a given pixel (or
voxel in 3D), but other choices are possible. For example, the images can
be transformed using Fourier or wavelet transformations. Salient points
or objects, such as edges, surfaces, corners, and line intersections, can be
extracted manually or preferably automatically.

The search space is determined by the model for the transformation
function T . Its choice usually depends on the expected distortions. A dis-
tinction is made between rigid and nonrigid3 mapping. For 3D images, rigid
or affine transformations are expressed by between six (three translations
and three rotations) and twelve (additionally three scalings and possibly
three shears) parameters. These are global transformations, which means
that the same parameters apply to the entire image. Nonrigid transforma-
tions can also be local (each point is allowed to move freely) or semi-local
(based on a number of parameters with local influence).

A search strategy has to be chosen to find the parameters of the trans-
formation model yielding the “best” mapping between fixed and moving
image. In many cases, a multidimensional optimization problem needs to
be solved. Standard optimization techniques, such as Powell’s method or
gradient descent, can be applied.

A similarity metric is required to judge if a certain mapping function is
better than another one. The choice typically depends on the modalities of
the two images. The simplest similarity metric is the sum of squared differ-
ences, which usually can be applied in the case of intramodal registration,

3Other terms used for nonrigid are nonlinear, elastic, deformable, and curved



4 Introduction

where one assumes that corresponding points have the same intensity. How-
ever, usually more complex metrics are required in the case of intermodal
registration.

1.4 Organization

Spatial alignment of clinical images can seldomly be approximated with
rigid transformations and much of the most challenging work today is in
the field of nonrigid registration. Such methods face two major obstacles
for their widespread adoption in clinical environments: computational cost
and difficulty in validating the results [25].

This dissertation addresses the computational efficiency of nonrigid reg-
istration. Workstation PCs (personal computers) typically require hours to
(nonrigidly) register two images, which is not acceptable for many applica-
tions. Most of the faster solutions are restricted to expensive supercomput-
ing systems, which limits their availability.

First, nonrigid registration methods are briefly discussed in chapter 2. In
chapter 3, trends in processor development and emerging architectures are
discussed along with accelerated nonrigid registration algorithms running
on these platforms.

The main contribution of this dissertation is a multimodal nonrigid reg-
istration method which achieves runtimes below a minute on relatively low-
cost platforms. The implemented algorithm is described in chapter 4. Its
optimization and parallelization is discussed in chapter 5.

In chapter 6, performance and scalability of the algorithm are addressed.
It includes an analysis of the consequences of the trends in processor devel-
opment. Experimental results follow in chapter 7.



2
Nonrigid Image Registration

There are many articles summarizing image registration in general [15, 109],
medical image registration [41, 65], mutual-information based image reg-
istration [81] and nonrigid image registration [25]. In this chapter, the
most important similarity metrics and transformation models are briefly
described.

2.1 Similarity Metrics

Similarity metrics are criteria to judge the similarity of two images. These
metrics are usually calculated directly or indirectly from the gray-scale in-
tensity values of the images. Such intensity-based approaches assume that
the correct registration yields the highest similarity of the fixed and the
transformed moving image. Geometric approaches on the other hand rely
on the identification of corresponding anatomical elements in both images,
typically surfaces, curves or point landmarks. This step can either be man-
ual or automatic. The correspondence for the rest of the image is established
by interpolation.

Geometric and intensity approaches may also be combined, for example
by providing a robust initial transformation based on landmarks and refining
it with intensity-based methods. Some of the most frequently used similarity



6 Nonrigid Image Registration

metrics are briefly presented throughout the rest of this section. A more
detailed discussion can be found in [41].

Sum of squared differences (SSD) is one of the simplest similarity met-
rics. The square of the difference of the fixed image intensity and the respec-
tive moving image intensity is accumulated over all fixed image voxels. The
registered images are assumed to be identical, except for Gaussian noise.
This means that SSD is not suitable for multimodal registration, where this
assumption usually is violated. Different modalities usually result in differ-
ent intensities for one specific structure. There are also intramodal scenarios
where SSD is not an optimal choice, for example if contrast agents are used
in one image to highlight certain structures.

The correlation coefficient is an intramodal similarity metric making less
strict assumptions than SSD. It is optimal if there is a linear relationship
between corresponding image intensities. It can be seen as a normalization
of the cross-correlation. Intensities are normalized by subtraction of the
mean intensity followed by a division by the standard deviation.

Fig. 2.1: Slices of simulated T1 (left panel) and T2 (right panel) MR images.
The volumes are perfectly aligned, which is possible because they are
simulated. T1 and T2 can be considered two different modalities.

Mutual information is a similarity metric based on information theory,
which was first proposed for image registration independently by Viola and
Wells [103], and Maes et al. [64]. The mutual information I of two images
A and B can be defined in different ways. The definition

I(A, B) = H(B)−H(B|A) (2.1)

bases on the Shannon entropy H. Entropy can be interpreted as a mea-
sure of uncertainty. Given events e1, e2, . . . en occurring with probabilities



2.1 Similarity Metrics 7

Fig. 2.2: The joint histograms for the intramodal case (two T1 images, top) and
the intermodal case (T1 and T2 image, bottom) without deformation
(first column), a translation by 2mm (second column) and a translation
by 5mm (third column) demonstrate that misalignment results in a dis-
persion or blurring of the joint probability density function. The mapping
of the intensities is linear in the intramodal case but not for the inter-
modal case. In the joint histogram images, the x-axis is the intensity in
one image and the y-axis the intensity in the other image. A bright point
stands for a high probability of the respective intensity pair, while a dark
point implies a low probability.



8 Nonrigid Image Registration

p1, p2, . . . pn, the entropy is calculated as

H =
n∑

i=1

pi log
1

pi

. (2.2)

If all the pi are equal, the entropy or uncertainty is highest. In our case, the
events are the image intensities, and the interpretation of (2.1) is that the
mutual information is the uncertainty about the image intensity in image B
minus the uncertainty about the image intensity in image B if the intensity
in image A is known. If the latter uncertainty is low, the mutual information
is high and the images have a high similarity.

Another definition, based on the Kullback-Leibler distance for two dis-
tributions, is

I(A, B) =
∑
ia,ib

pab(ia, ib) log
pab(ia, ib)

pa(ia)pb(ib)
, (2.3)

where pa is the distribution of gray values ia in image A and pb the distri-
bution of gray values ib in image B. In this case, the distance between the
joint distribution of the gray values pab and the joint distribution in case
of independence (pa · pb) is calculated. The joint distribution is obtained
through normalization of the joint histogram. Figure 2.2 shows the joint
histogram of aligned and misaligned BrainWeb [22] MR images (Figure 2.1).
Under misalignment, the joint histogram becomes more blurred. Intuitively,
mutual information is maximized if the joint histogram is “sharp”. Often,
the registration problem is expressed as the minimization of the negative
mutual information instead of the maximization of the mutual information.

While SSD and cross-correlation are popular metrics for intramodal reg-
istration, mutual information allows multimodal registration. This means
that the similarity metric is an important design choice, because it can limit
the applicability of the registration algorithm. Another important choice is
the transformation model. A few of the most important ones are discussed
in the following sections.

2.2 Physics-Based Approaches

The earliest reported nonrigid registration techniques base on physical mod-
els. An algorithm presented in 1989 by Bajcsy and Kovačič treats the mov-
ing image as a linear elastic solid [10]. It is deformed using forces derived



2.2 Physics-Based Approaches 9

from a similarity metric or landmark correspondences. These external forces
are opposed by internal forces trying to prevent deformation of the mov-
ing image. The internal forces are derived from the elastic model. For the
solution of the registration problem, internal and external forces reach an
equilibrium. Because the internal forces increase proportionally with the
deformation, this model makes it difficult to recover large deformations.
Christensen et al. proposed a viscous fluid model [19], which allows large
deformations but may also result in misregistrations due to the higher flex-
ibility. More sophisticated models subdivide the image into cells and assign
them local physical descriptions depending on the properties of the modeled
structures [30, 38]. While soft tissue will have elastic properties, bone can
be modeled as a rigid structure.

These models typically yield partial differential equations (PDEs). Ei-
ther the finite element method (FEM) or the finite difference method is
usually applied to solve them. For the finite element approach, a mesh
(typically tetrahedral in 3D) is used to subdivide the continuous domain
into a set of subdomains and approximate the solution. The deformation is
defined at the nodes of the mesh and interpolated between the nodes. The
discretization allows to replace the partial differentials with difference quo-
tients (e.g. f ′ (x) ≈ (f (x + h)− f (x)) /h). This yields an equation system
which needs to be solved. Due to the size of the equation system, direct
computation of its solution may not be feasible and iterative techniques
may be required. An advantage of the finite element method is that the
precision of the model can be varied, typically by selecting a finer mesh in
“critical” regions and a coarser mesh otherwise.

For the finite difference method, a regular grid is placed over the con-
tinuous domain and the partial differentials are replaced with difference
quotients (like for the finite element method). Starting from an initial esti-
mate, the solution is found iteratively over discrete time-steps. The problem
can either be solved using the explicit method or the implicit method. With
the explicit method, the value at a certain grid point and time ti+1 is cal-
culated directly from the values of the neighboring grid points at time ti.
With the implicit method, a system of linear equations of the values at the
grid points at times ti and ti+1 needs to be solved on each time step. The
implicit method is usually more expensive but for the explicit method, step
size and grid spacing need to fulfill certain constraints to converge.

Speed and robustness of these methods can typically be increased by
means of a multiresolution strategy. For this purpose, the registration is first



10 Nonrigid Image Registration

carried out with downsampled images (and coarser transformation models).
The resulting transformation is upsampled to correspond to the resolution
of the original images and used to initialize the transformation for the reg-
istration at this resolution. Multiple hierarchical levels are possible.

If the model is a good representation of the physical phenomenon that
caused the image deformation, it may be the ideal approach to solve the
nonrigid registration problem. However, in practice it may be very difficult
to specify an accurate model. Furthermore, it yields a very problem-specific
solution. Another issue is the computational power required for the regis-
tration. In 1996, Christensen et al. [18] reported registration to take up
to more than a week on a single-processor system for a 128 × 128 × 100
voxel image. Although processor performance has increased considerably
since 1996, so have image resolutions and therefore the complexity of regis-
tration problems. For these reasons, other image registration methods were
proposed, of which some are discussed in the following sections.

2.3 Demons Algorithm

Thirion presented a method, which he illustrated by an analogy with Max-
well’s demons [98, 99]. He describes the registration process as the diffusion
of the moving image through the contours of the objects in the fixed image.
The final transformation is found through iterative optimization, starting
with an identity transformation. Maybe the most common variant of the
demons algorithm (Demons 1 in [99]) selects all pixels of the fixed image
to be demons. It uses a free-form transformation, meaning that the dis-
placement is stored individually for each voxel of the fixed image. The
corresponding moving image coordinate is the coordinate of the fixed im-
age voxel plus the displacement vector. The displacement field is updated
during each iteration based on the diffusion process. To get a smooth dis-
placement field, it is regularized by applying a Gaussian filter with a given
width σ after each iteration. A multiresolution strategy is adopted in order
to improve speed and robustness of the algorithm.

The demons algorithm is reported to be very fast compared to the
viscous fluid approaches described in the preceding section (20 minutes
for 256 × 256 × 128 voxel images on a workstation PC). Bro-Nielsen and
Gramkow [14] observe similarities to the viscous fluid registration, but with
the Gaussian filter being a heuristic-based approximation of the physical



2.4 B-Spline Model 11

model. They suspect problems in terms of topology and stability of the
fluid model.

The demons algorithm assumes corresponding points in the two images
to have the same intensity, which makes it unsuitable for multimodal regis-
tration. However, the underlying transformation model, which allows each
point to move freely and imposes continuity by a smoothing filter, can also
be combined with other similarity metrics. Guimond et al. propose an
algorithm inspired by the demons algorithm, which optimizes mutual infor-
mation [35].

2.4 B-Spline Model

In contrast to the fully local transformation model of the demons algorithm,
B-spline transformations are semi-local. They are defined by a regular grid
of control points, which are allowed to move freely. The dense transforma-
tion field (between the control points) is obtained by B-spline interpolation.
The degrees of freedom of the transformation model (number of knots of
the grid times the number of dimensions) depends on the grid spacing and
the image size. The choice of the grid spacing is mainly an empirical one.
B-spline transformations are smooth in general, but a finer grid allows more
local transformations. The parameters of the model are the B-spline coeffi-
cients, located at the control points.

B-splines have a limited support: modifying one parameter only changes
the transformation field in the vicinity of the respective control point. This
property enables the efficient computation of the transformation function
at arbitrary points, independent of the total number of parameters of the
model. There are B-splines of different degrees. A higher degree yields
a smoother function but also a more complex model because the B-spline
functions have a larger support. Usually cubic B-splines are used, which
evaluate to nonzero values in the range ] − 2; 2[. This means that the
transformation at a specific point is defined by a neighborhood of 4N control
points, where N is the number of dimensions.

This transformation model has been used in conjunction with different
similarity metrics, for example SSD [57, 95] or mutual information [67, 86].
Usually, the parameters are initialized to zero and iterative optimization
algorithms are applied to find a set of parameters yielding the highest simi-
larity. Similar to previously discussed algorithms, a multiresolution strategy



12 Nonrigid Image Registration

may provide better robustness and speed. The coarse-to-fine strategy can
be applied both to image resolution and control-point spacing.

2.5 Piecewise Rigid Registration

Other approaches consider the globally nonrigid registration problem as a
number of semi-local rigid registration problems. Little et al. [61] proposed a
transformation model, where a number of selected structures in the body are
deformed rigidly, each one with an independent transformation. A smooth
transformation field based on landmarks is used to transform the points
outside of the rigid structures. An approach by Maintz et al. [66] divides
the moving image into small “windows” after a global rigid registration.
Small translations for each window are searched in order to compensate local
deformations. This scheme was extended by Likar and Pernuš [60]. In their
approach called volume-subdivision strategy, the images are progressively
subdivided into smaller images, which are registered rigidly. For example,
after rigid registration of the entire 2D images, they are split into four
rectangular subimages of half the width and height of the original images
and so forth. A continuous, smooth transformation function is obtained by a
thin-plate spline interpolation using the centers of corresponding subimages
as landmarks.

This scheme allows to use local image statistics to compute the mutual
information (other approaches usually compute the global metric). This
may be beneficial if there is no global relationship between the image inten-
sities, for example in the presence of a bias field yielding smoothly varying
intensity values in regions of MR images which should be homogeneous,
shadowing (a structure covering the ones behind it) in ultrasound or shading
effects due to varying slice thickness in microscopy. However, the subimages
possibly need to be relatively large in order to provide sufficient samples for
the estimation of the joint probability density function [8]. This can prohibit
deformations on a very small scale.



3
Accelerating Nonrigid Image

Registration

3.1 Overview

In this section, implementations of nonrigid registration algorithms designed
to reach low runtimes are presented. Acceleration usually was achieved by
exploiting parallelism. Traditionally, high-performance computing systems,
such as clusters and shared-memory multiprocessors, have been exploitet for
this purpose. These approaches are addressed in a first section of this chap-
ter. During the work on this dissertation, research started to increasingly
focus on systems providing better performance-per-cost ratios, especially
GPUs (graphics processor units). This is due to certain trends in processor
development, which are addressed in a next section. The remaining sections
give an overview of a number of such platforms and registration algorithms
running on them.

Speedup and efficiency are two important means for the discussion of the
performance of parallel algorithms. The speedup when using p processors,

Sp =
T1

Tp

, (3.1)



14 Accelerating Nonrigid Image Registration

depends on the runtime when using one processor (T1) and the runtime
when using p processors (Tp). Ideally Sp is equal to p. The efficiency

Ep =
Sp

p
=

T1

pTp

(3.2)

ideally is equal to 1. Typically, algorithms do not scale linearly and the
efficiency decreases for higher p.

3.2 Multiprocessors

Multiprocessing, where two or more central processing units (CPUs) are
used within one computer system, is a common parallel computing ap-
proach. Multiprocessor systems fall into two categories: shared-memory
and message-passing architectures. In this section, a brief overview is given.
The interested reader is referred to [26].

3.2.1 Shared-Memory Architectures

Although there is a wide variety of shared-memory architectures, they have
one important feature in common: All the processors can access the entire
memory as a global address space. The processors in the system can operate
independently but share data structures in memory. This communication
model provides a programmer-friendly environment. No explicit data ex-
change is necessary. Since all communication and local computations gen-
erate memory accesses, the key architectural high-level design decision is
the organization of the memory hierarchy.

The bus-based shared memory approach is an example of an UMA (uni-
form memory access) architecture. UMA means that all of main memory
is equally far away from all processors. The processor interconnect is a
shared bus between the processors’ private caches and the shared main
memory. This architecture has been widely used for relatively small num-
bers of processors (up to 20 or 30). Further scaling is primarily limited by
the bandwidth of the interconnect and the memory system.

An approach intended to be more scalable is the NUMA (non-uniform
memory access) architecture. An interconnect is placed between the pro-
cessing nodes. Each processing node has its own portion of the global
memory. Access to memory “owned” by other processors go through the



3.2 Multiprocessors 15

interconnect and therefore is slower than access to directly connected mem-
ory.

While NUMA architectures overcome some of the scalability issues of
UMA architectures, a problem inherent to all shared-memory architectures
is the cache coherency. Furthermore, synchronization is required in the case
of concurrent data accesses by different threads.

Coherency

contents for location X
Time Event Cache P1 Cache P2 Memory

0 1
1 P1 reads X 1 1
2 P2 reads X 1 1 1
3 P1 stores 0 to X 0 1 0

Fig. 3.1: The cache coherence problem for a memory location X shared by two pro-
cessors P1 and P2. Initially, neither cache contains the value of X. After
the value of X has been written by P1, its cache and the memory both
contain the updated value (assuming a write-through cache). However,
if P2 reads X again, it will receive the outdated value from its cache.

Processors replicate shared data in their caches for faster access. Because
each processor sees global memory through its individual cache, two different
processors can have two different values for the same memory locations (see
figure 3.1). There are hardware solutions that allow maintaining coherent
caches, called cache coherence protocols [40]. A write-invalidate protocol
invalidates copies in other caches on a write by a processor. The alternative
to invalidating is updating all the cached copies. This type of protocol is
called a write-update protocol. With increasing number of processors, the
traffic associated to the cache coherency protocol grows, which limits the
scalability of such systems.

Synchronization

Although the shared-memory communication model is relatively convenient
for the programmer, it requires synchronization. On multiprocessors, mul-



16 Accelerating Nonrigid Image Registration

tiple threads1 are running in parallel on the different processors, possibly
with different speeds. When different threads work on shared data, syn-
chronization operations may be required to enforce the order of accesses
by different threads. There are two basic types of synchronization, mutual
exclusion and events.

t Op P1 Op P2 X

0 load X 0
1 X = X+1 0
2 store X 1
3 load X 1
4 X = X+1 1
5 store X 2

t Op P1 Op P2 X

0 load X 0
1 X = X+1 0
2 load X 0
3 store X 1
4 X = X+1 1
5 store X 1

Fig. 3.2: If two threads want to increment a shared variable, the result depends on
the order, with which the load and store operations are executed. While
the programmer may expect the result in the left panel, incorrect synchro-
nization may yield the result shown in the right panel. Synchronization
of the threads is necessary to ensure correct behavior.

Mutual exclusion ensures that only one thread modifies certain data at
a time. If, for example, two threads share a counter X, which each thread
wants to increment, the result can depend on the order, with which the
operations are executed (Figure 3.2). The code which modifies the counter
is called the critical section. Only one thread is allowed to be in the critical
section of the program at a time. Mutual exclusion operations tend to
serialize the execution of processes and therefore limit the possible speedup
of parallelization.

Parallel programs are usually a series of (sequential and parallel) stages.
Before the next stage can be entered, all threads have to finish the previ-
ous stage. Events are the synchronization mechanism used to inform other
threads that a certain point in the program has been reached. When par-
allelizing an algorithm, one has to distribute the workload evenly among
the threads, which is not always easy. Load imbalances result in threads
waiting for others to finish before the next program stage can be entered.

Synchronization operations typically base on an interplay of hardware

1A thread is a sequence of instruction. Multithreading means that multiple threads
are executed in parallel.



3.2 Multiprocessors 17

and software. Higher level synchronization mechanisms can be implemented
in software based on atomic read-modify-write operations. Typically, a pro-
grammer wants to use such high level mechanisms without caring about
their internal implementation. There are many software libraries and APIs
(application programming interfaces) providing synchronization and a se-
lection will be presented in section 3.2.3.

3.2.2 Message-Passing Architectures

An alternative to having one shared-memory space is organizing the memory
as multiple private address spaces. A processor cannot directly access the
memory of a remote processor. The processor-memory modules can even
be separate computers, connected by a network. Such clusters built from
off-the-shelf computers can offer very cost-effective parallel programming
environments. Communication occurs by explicitly sending and receiving
messages across the network. On clusters, processors are coupled more
loosely than on shared-memory architectures. They are usually connected
using the I/O bus. This bus usually has a lower bandwidth and a higher
latency than the memory bus, which is the typical interconnect for shared-
memory architectures.

Hybrid architectures are also possible, for example by connecting mul-
tiple shared-memory systems over a network. Such setups become more
and more popular as nowadays even normal workstation PCs are typically
equipped with multicore processors.

3.2.3 Programming Models

Grama et al. [32] wrote a comprehensive introduction to parallel program-
ming. Among the available parallel programming APIs, POSIX (Portable
Operating System Interface) threads and OpenMP (open multiprocessing)
for shared-memory architectures and MPI (message passing interface) for
message-passing architectures will be presented in this section.

POSIX Threads

POSIX threads (or Pthreads) is a standard, which defines an API for creat-
ing, modifying and synchronizing threads on a shared-memory architecture.
This API is common on Unix-like operating systems, like Linux, but also



18 Accelerating Nonrigid Image Registration

available for Microsoft Windows. The Pthreads API defines a set of types
and functions for the C programming language.

Listing 3.1: Pthreads Example

1 #include <stdio.h>
2 #include <pthread.h>
3

4 void *func(void *arg) {
5 printf("Hello world!\n");
6 }
7

8 int main() {
9 pthread_t thread;

10 pthread_create (&thread , NULL , func , NULL);
11 pthread_join(thread , NULL);
12 }

Listing 3.1 shows a Pthreads example program. The function pthread -

create spawns an independent thread, which executes the function func

and then terminates. The main program waits for the thread to finish
(pthread join) and exits.

Furthermore, functions to create and manipulate mutexes (mutual exclu-
sions) are defined in order to allow mutual exclusion within critical sections
of the program. Mutexes work like locks. Only one thread can lock (or
own) a mutex at a time.

Condition variables allow event synchronization of threads. If one thread
T1 needs to wait for a result from another thread T2, T1 can wait on a
condition variable defined for this purpose. The thread is “sleeping” while
it is waiting and thus not consuming resources. When the result is ready,
T2 can signal on the condition variable, which causes T1 to wake up and
continue working.

OpenMP

Use of Pthreads is mostly restricted to system programmers because it is
considered low-level. OpenMP is a higher level API for shared-memory
architectures. It frees the application programmer of the low-level thread
administration, such as spawning and joining of threads and explicit setup
of mutexes and condition variables. It is based on #pragma directives. The
program consists of sequential and parallel stages. As soon as the beginning



3.2 Multiprocessors 19

of a parallel stage is reached, indicated by a #pragma omp parallel line
in the code, a number of threads, which can be specified, is spawned. The
sequential thread becomes the master thread and the new threads its slaves.
The master thread joins the slaves at the end of the parallel stage and
continues with the next sequential stage.

Listing 3.2: OpenMP Example

1 #pragma omp parallel {
2 #pragma omp for schedule(static)
3 for (i = 0; i < N; i++) {
4 ... //do work

5 }
6 }

In the example in listing 3.2, a loop of N iterations is parallelized. The
schedule(static) statement indicates that each of the threads should pro-
cess an equal share of the N iterations, which makes especially sense if all
the iterations take about the same time. If this is not the case, dynamic
scheduling is preferable to balance the load efficiently among the threads.
However, the programmer still has to declare which variables are private
(each thread has its own copy) and which ones are shared. Furthermore,
in the previous example he has to make sure that each iteration of the for

loop is independent of the others.

MPI

MPI (message passing interface) is a communication API for architectures
without a shared address space. The threads exchange data and synchronize
by sending messages over the interconnect. The functions MPI Send allows
a thread to send data to another thread. The destination thread has to call
the function MPI Recv to receive the data.

MPI also defines more complex communication patterns, such as MPI -

Barrier, MPI Broadcast and MPI Reduce. The MPI Barrier function al-
lows to synchronize a group of threads. It causes all the threads in the
group to wait until each one has reached the call of the barrier function.
The MPI Broadcast function allows one thread to send data to a group of
threads.

The MPI Reduce function is a combination of communication and com-
putation. It allows to efficiently combine data from all the threads in the



20 Accelerating Nonrigid Image Registration

group. The threads collectively exchange data and perform a operation on
it, for example calculating the sum of a variable, where each processor has
its own private copy.

3.2.4 Early Nonrigid Registration Work

Multiprocessors were used for for nonrigid registration as early as 1996 by
Christensen et al. [18]. Their massively parallel implementation is used to
map a brain atlas to patient 3D MRI data. It uses a viscous fluid model in
conjunction with the SSD similarity metric. The resulting partial differen-
tial equation is solved iteratively using finite differences. For 128×128×100
voxel images, the authors measured a sequential runtime of 1.4 days to more
than 7 days, depending on the processor (MIPS R8000 and MIPS R4400
respectively) . On the processor requiring 1.4 days, 6.4 hours of the runtime
are attributed to computations related to the SSD similarity metric. The
larger part, 1.1 days, are attributed to the regularization term based on the
viscous fluid model.

To reduce registration time, the algorithm was implemented on MasPar,
a SIMD (single instruction multiple data) system with 16384 processor ele-
ments arranged on a quadratic grid. All the processor elements execute the
same operation, but on different data. Only neighboring processor elements
can communicate efficiently. Computation of the regularization term can
be mapped very efficiently on this architecture. This stage of the algorithm
is accelerated by 57× compared to the sequential implementation and its
runtime is reduced to 28 minutes. The computation of the similarity metric
requires the transformation of the atlas image. For large transformations,
this can result in much more complex communication patterns than for the
regularization term and its computation on the parallel system is not very
efficient. Therefore, this stage is only accelerated by a factor 5× and still
takes 1.3 hours on the parallel system.

3.2.5 Biomechanical Models

More recently, image guided neurosurgery has triggered numerous research
projects in the field of parallel image registration. Preoperative images are
fused with intraoperative images to augment the information provided to
the surgeon. The preoperative images may have a higher spatial resolution
or a better signal-to-noise ratio. Furthermore, they may be of a different



3.2 Multiprocessors 21

modality and therefore provide different information. In such an environ-
ment, fast registration is crucial because the results need to be available
within a reasonable time.

Warfield et al. [104] establish correspondence based on an explicit rep-
resentation of the surface of the brain and the ventricles. For this purpose,
a manual segmentation of these structures in both images is required. Then
a tetrahedral mesh covering these structures is generated. The surfaces of
the brain and the ventricles from the preoperative image are deformed itera-
tively until they match the surfaces from the current image. The position of
the surface nodes of the tetrahedral mesh are set according to this deforma-
tion. The deformation within the volume is found by deforming the mesh
under constraints of an elastic body model. Solving the resulting equation
system is identified as the most time consuming task. It is parallelized using
the Portable, Extensible Toolkit for Scientific Computation package, which
itself bases on different other packages, such as MPI for the message passing
communication. The solution time for a mesh with 43584 nodes (or 214035
tetrahedral elements) is reduced from 57 to 15 seconds on a shared mem-
ory architecture with 12 UltraSPARC-III processors. However, the total
runtime of the method is bound by the segmentation step, which can take
several minutes. Workload balancing is a major problem for the efficiency of
the parallel implementation. The authors expect that a mesh with a more
regular connectivity pattern would allow better scaling.

Sermesant et al. address the same problem using a similar mesh struc-
ture with a biomechanical model of the brain [88]. Instead of surface ex-
traction, they propose to use 3D block matching around the vertices of the
mesh. Block matching tries to find for a block of the fixed image (here the
neighborhood of a vertex of the mesh) the most similar block in the mov-
ing image [76]. The correlation coefficient is used as the similarity metric.
Establishing correspondence for all the vertices of the mesh allows to esti-
mate more complex deformations inside the model, which are not limited
to interpolation of the surface deformation. For parallelization, each vertex
is assigned to a processor, such that communication cost is minimized. A
scalability analysis using the BrainWeb images [22] (181×217×181 voxels)
and a mesh with around 2000 vertices is carried out on a cluster consisting
of 14 processors interconnected by Gigabit Ethernet. The speedup of almost
6× when using eight processors improves only to around 7× when using all
the 14 processors. The 14 processor setup yields a registration time below
three minutes. The authors attribute the rapid decrease in efficiency to the



22 Accelerating Nonrigid Image Registration

relatively coarse mesh used in this study.

Chrisochoides et al. implement a similar algorithm and identify the block
matching phase as the main bottleneck [17]. This phase is parallelized on
a heterogeneous system with 240 processors, which results from connecting
multiple smaller clusters. On each cluster, there is a master thread. The
master threads use TCP (Transmission Control Protocol) for communica-
tion. Intra-cluster communication is provided by MPI. Load balancing is
a main issue because it limits the scalability of the block matching phase.
Problems are the different performance of the processors and the fact that
certain machines may be used by other users. Therefore, a dynamic load
balancing method is implemented, which allowed to reduce the runtime of
the block-matching stage to around 30 seconds. But including the sequen-
tial pre- and postprocessing steps, such as the finite element solver, the
overall runtime is still in the range of 160 to 200 seconds.

3.2.6 Demons Algorithm

Stefanescu et al. implemented the demons algorithm on a Gigabit-Ethernet
cluster of 15 PCs [92]. With respect to the runtime, one of the main parts
of this algorithm is the Gaussian filtering of the dense transformation field,
which has to be executed during each iteration of the algorithm. The au-
thors approximate this step by a separable, recursive filter. For paralleliza-
tion, the image is distributed slice-wise to the processors. At the borders of
the slices, communication between processors is required during recursive
filtering. Two implementations are proposed. For the first one, a small
number of large data blocks have to be exchanged. The size of the blocks
increases with the standard deviation of the Gaussian. This implementa-
tion is efficient for small standard deviations and high-latency networks.
For the second implementation, many small blocks of data need to be ex-
changed. The communication scheme is independent of the standard devi-
ation of the filter, but has drawbacks on high-latency networks. For a pair
of 256 × 256 × 120 MR images, a reduction of the registration time by a
factor of 11× from 40 minutes on one processor to 3.5 minutes is measured.

3.2.7 B-spline Algorithms

A parallel implementation of a B-splines based registration algorithm is
presented by Rohlfing et al. [85]. It runs on shared-memory platforms and



3.2 Multiprocessors 23

bases on Pthreads. Mutual information is the similarity metric. For the
performance analysis, the algorithm was applied to three different registra-
tion problems: intraoperative brain deformation analysis, motion correction
in contrast-enhanced MR mammography and intersubject brain atlas gen-
eration. For 512× 512× 60 voxel images, a sequential runtime of around 3
hours is reported. For 16 processors, the runtime is reduced to 13.5 minutes
(13.8× speedup). Using 64 processors of an SGI Origin 3800, 4.7 minutes
were measured (39× speedup). The sequential part was estimated to be
around two minutes, yielding a maximum possible speedup of 89×.

Not much later, Ino et al. presented an MPI based implementation
of a very similar algorithm [47], running on a 2 Gbit/s Myrinet cluster
of 64 off-the-shelf dual-processor (Pentium III) workstations. Using all 128
processors, the registration time for a 512×512×159 voxel image is reduced
from 12 hours to eight minutes (90× speedup).

3.2.8 Conclusions

Multiprocessor systems achieve runtimes in the order of a few minutes for
different nonrigid registration algorithms. Typically, the performance of the
parallel algorithm is assessed by comparison to the runtime of the same al-
gorithm running on a single processor. It is difficult to compare the different
implementations. First, it is virtually impossible to compare the quality of
the results. Iterative methods may have a parameter defining an upper limit
to the number of iterations. Because the runtime is usually proportional to
the number of iterations, it can be limited by this parameter, at the price
of a possible loss of accuracy. Some algorithms use one or more criteria
to detect convergence of the iterative optimization process. However, how
convergence is defined again has an influence on accuracy and runtime.

For intensity based approaches, the runtime also depends heavily on the
image size. Because their images are more than 2.5× larger, it is not so
surprising that Ino et al. report a higher registration time than Rohlfing et
al. although they use a larger system. We can also observe that Ino et al.
achieve an efficiency of 0.75 for 128 processors, while Rohlfing et al. report
efficiencies of 0.86 for 16 processors and 0.61 for 64 processors. Because two
different sequential implementations are used as the baseline, the algorithm
that has the higher efficiency is not necessarily faster in absolute terms.

However, the discussed multiprocessor solutions generally base on sys-
tems which are relatively expensive in acquisition and maintenance. In the



24 Accelerating Nonrigid Image Registration

next section, we will discuss trends in processor architecture. There are a
number of emerging architectures providing a considerable computational
performance at a much lower price.

3.3 Trends in Processor Development

Historically, CMOS (complementary metal-oxide-semiconductor) transistor
density has doubled every 18 months. Thus, each new generation also al-
lowed to build more powerful processors, on the one hand by ramping up
the clock frequency and on the other hand by increasing the complexity
of the processors. For example, more and more inherent instruction-level
parallelism was exploited.

3.3.1 Instruction-Level Parallelism

Since about 1985, all processors use pipelining to overlap the execution of
instructions, a key technique to make fast processors. For this purpose, ex-
ecution of an instruction is subdivided into multiple stages. A simple RISC
(Reduced Instruction Set Computing) architecture could use the following
five stages, each one executed in one processor cycle [40].

1. Instruction fetch cycle: Fetch the current instruction from memory
and increment the program counter.

2. Instruction decode/register fetch cycle: Decode the instruction and
read the registers corresponding to the register sources from the reg-
ister file.

3. Execution cycle: The ALU (arithmetic logic unit) operates on the
operands prepared in the preceding cycle.

4. Memory access cycle: Load or store data from/to memory.

5. Write-back cycle: The result (from an ALU operation or a memory
load) is written to the register file.

Executing the entire instruction still takes around the same time, except
for some overhead due to unbalanced pipeline stages and additional latches.
However, the processor can issue a new instruction every cycle. When
the first instruction is handed over to the second pipeline stage, a new



3.3 Trends in Processor Development 25

instruction can enter the first stage. Instruction-level parallelism increases
with pipeline depth. Deeper pipelines are only beneficial as long as the gain
in number of instructions one can issue in an amount of time exceeds the
time lost due to penalties associated to a pipelined design [91].

In addition to the penalties already mentioned earlier, there are situa-
tions, called hazards, that prevent the next instruction from being issued.
Structural hazards are resource conflicts that can occur if the hardware does
not support all possible combinations of overlapping instructions. Data haz-
ards occur if an instruction depends on a result by a preceding instruction,
which has not yet finished. A load instruction, for example, can take hun-
dreds of cycles to complete if the data to be loaded is not cached. Control
hazards are related to pipelining of branches and other instructions that
change the program flow. It is not clear which instruction will be the next
one to be placed into the pipeline until the branch instruction finishes.

During the evolution of processors, pipelines became increasingly deep
and additional hardware was added in order to control penalties. Branch
prediction and dynamic reordering of independent instructions are exam-
ples. Pipelining combined with these techniques yields an ideal CPI (cycles
per instruction) of one. The goal of multi-issue processors is to further re-
duce CPI below one. The basic multi-issue processors are superscalar pro-
cessors and VLIW (very long instruction word) processors. Superscalar pro-
cessors issue varying numbers of instructions to different pipelines. VLIW
processors issue a fixed number of instructions formatted as one large in-
struction.

Because of the added complexity associated to increased instruction-
level parallelism, doubling the transistors typically only meant an (integer)
performance benefit of around 1.5× [83]. Furthermore, some of these tech-
niques provide diminishing returns [44].

At some point it became clear that sustaining the historical performance
growth rate was not possible based on aforementioned techniques only [13].
The limiting factor shifted from manufacturability to power consumption,
which today has surpassed 100W for some processors. Considering the
small size of processor chips, it becomes increasingly difficult to supply the
required power and control the temperature of the chip. Power consump-
tion could be reduced by reducing supply voltage, clock frequency or die size
(and thus transistor count). All of these approaches reduce performance,
therefore one has to trade off performance to reduce power consumption.
In order to consider the relation between computational performance and



26 Accelerating Nonrigid Image Registration

power during the processor design process, new design goals for micropro-
cessor architectures were proposed [43]. These goals changed the direction
of microprocessor development.

3.3.2 Multicore Processors

If between two processor generations the number of transistors doubles, an-
other way to use the additional transistors is to place multiple identical
processor cores on one chip. Depending on the workload, this can almost
double the performance of the processor and thus is a potentially more
efficient approach than the traditional ones. However, the application pro-
grammer needs to explicitly parallelize the software in order to exploit the
potential of multicore processors. In early 2009, quad-core processors al-
ready have been on the market for a while, and different six and eight core
processors are on the horizon. A consequence of adopting multicore proces-
sor designs is that single-thread performance cannot be expected to increase
much from one generation to the next, because the individual cores do not
get much more powerful any more.

As a matter of fact, some designs try to reclaim power efficiency more
aggressively. By returning again to simpler in-order cores, it is possible to
pack even more of those onto one chip and further increase overall compu-
tational throughput. Intel presented a manycore architecture code-named
Larrabee [87]. It targets visual computing and bases on in-order x86 proces-
sors with a simple pipeline and a wide vector-processing unit. Researchers
are already investigating architectures and programming models for many-
core processors with hundreds of cores [39].

While manycore architectures certainly present many challenges to the
programmer, there are also opportunities. On-chip buses for the intercore
communication provide lower latencies and higher bandwidths than the in-
terconnects used in multiprocessor systems.

3.3.3 Asymmetric Processors

As a consequence of the simpler cores, many-core processors will have lower
single-thread performance. This hampers performance of legacy applica-
tions that are not parallelized, but possibly also has an impact on perfor-
mance of parallelized software. Parallel algorithms usually still have a more
or less small sequential fraction. To allow a trade off between sequential peak



3.3 Trends in Processor Development 27

performance and total throughput, asymmetric architectures consisting of
multiple cores of different sizes are possible. Hill and Marty [42] show that
for a potential 256 core processor, sacrificing some of the small cores and
replacing them with a powerful superscalar core can boost the performance
even for applications with relatively small sequential parts. However, they
do not consider power consumption in their models. Woo and Lee [105]
come to the conclusion that an asymmetric processor with many small,
energy-efficient cores combined with a full-blown processor also delivers the
best energy efficiency.

3.3.4 Accelerators

Special-purpose hardware units, customized for a certain task, are another
way to increase power efficiency (and area efficiency). Commercially suc-
cessful accelerator chips are available for domains like graphics, gaming,
network processing (for example TCP offloading, encryption, deep packet
inspection and XML (extensible markup language) processing), and video
encoding [79]. While these accelerators traditionally were implemented as
separate chips attached to the CPU, it becomes more common to couple
them more tightly to the processor by placing them on the same die. Like
this, the accelerator can be seen as a heterogeneous extension to the base
platform. Depending on the nature of the accelerator, this approach may
be similar to the asymmetric processors with cores of different sizes.

3.3.5 Memory

Semiconductor computer memory also benefits from advances in silicon
technology. Its capacity grows rapidly, similar to the computational per-
formance of multicore processors. However, commodity DRAM (dynamic
random-access memory) performance, measured in bandwidth (amount of
data transferred per time) or latency (time between a data request and avail-
ability of the data), grows at lower rates. Bandwidth improves by about
25% per year, latency only by 5% [77]. This difference in growth rate makes
it necessary to constantly rethink assumptions behind processor and system
design.

For example, latency tolerance will become more and more important.
Latency tolerance means limiting the time the processing units stall while
latency to memory grows. Another goal is the reduction of off-chip commu-



28 Accelerating Nonrigid Image Registration

nication by only fetching and storing really global data and keeping local
data in the caches. Therefore, larger caches can also reduce bandwidth
requirements.

3.3.6 Programming

The trend toward multicore and many-core processors means a shift in com-
plexity from hardware to software. While hardware used to extract instruc-
tion-level parallelism from sequential programs, application programmers
are expected to explicitly parallelize their software using similar program-
ming models as discussed in the preceding sections about high-performance
computing on multiprocessors. Otherwise, they cannot benefit from the new
architectures [94]. The programming effort may be reduced by implicit par-
allel programming, where a sequential program with additional hints about
dependencies is provided to the compiler [46]. However, these techniques are
not yet mature and are not expected to efficiently parallelize legacy code.
The programmer is still expected to recognize if an equivalent, more parallel
algorithm is available for a certain problem. He may also understand the
trade-offs necessary to choose a more parallel but not exactly equivalent
algorithm.

The platforms presented in the following sections are related to the
discussed topics. The Cell Broadband Engine (Cell/B.E.) [48] chip is an
asymmetric (or heterogeneous) multicore processor consisting of one gen-
eral purpose processor (the PPE — Power Processor Element) and eight
SPEs (Synergistic Processor Elements). The SPEs are simpler cores, which
are for example not capable to run an operating system. Therefore, they
can also be seen as on-chip accelerators. GPUs (Graphics Processing Unit)
traditionally were very specific accelerators, mainly optimized for rendering
a 3D scenery to a 2D image. Because of their increasing applicability for
broader tasks, they can also be considered off-chip accelerators. Finally,
FPGAs (Field Programmable Gate Arrays) are reconfigurable devices, suit-
able to implement a wide range of accelerator units. They can be coupled
more or less tightly to the CPU.



3.4 Cell/B.E. 29

3.4 Cell/B.E.

3.4.1 Overview

The Cell/B.E. processor was designed with the objective to maximize com-
putational performance per Watt. It was intended to especially excel at
applications in gaming and multimedia [48]. Sony, Toshiba and IBM devel-
oped it collaboratively to drive Sony’s PlayStation3 gaming console. But
from the beginning, other application areas were targeted as well. The de-
sign is general enough for many workloads requiring heavy number crunch-
ing. An open software development kit (SDK) based on Linux and the
GNU compiler collection (GCC) was provided to the software development
community in order to foster optimization of numerous applications for this
platform. After the first incarnation of the Cell/B.E. processor, which was
released in 2005 in 90nm technology, a revised variant in 65nm technology
called PowerXCell 8i was released in 2008. The main difference was the im-
proved double-precision floating point performance, which was a weakness
of the original processor.

3.4.2 Processor Architecture

The Cell/B.E. processor is a heterogeneous multicore processor, combining
one PPE (Power Processor Element) and eight SPEs (Synergistic Processor
Elements) on one chip (Figure 3.3). The on-chip element interconnect bus
(EIB) connects the processor elements. The on-chip memory controller
and I/O bus interface controller are also attached to the EIB. The memory
bandwidth is 25.6 GByte/s. Peak I/O bandwidths are 35 GByte/s outbound
and 25 GByte/s inbound. The I/O interface is configurable as two separate
logical interfaces, for example one providing 30 GByte/s outbound and 20
GByte/s inbound and another one 5 GByte/s outbound and inbound.

3.4.3 PPE

The PPE is a processor based on the IBM PowerPC Architecture. Programs
compiling for this architecture also run directly on the Cell/B.E. processor.
However, to exploit the full potential of the chip, parts of the program need
to be moved to the SPEs. In typical programs, the PPE is responsible for
overall control and management of the SPEs as well as execution of tasks,
which are not performance critical or difficult to parallelize.



30 Accelerating Nonrigid Image Registration

S
P

E
0

PPE MIC BIC

S
P

E
1

S
P

E
2

S
P

E
3

S
P

E
4

S
P

E
5

S
P

E
6

S
P

E
7

EIB

Cell/B.E.

SPU

LS

MFC

S
P

U

Element Interconnect Bus

MFC

LS

SPU

MFC

LS

SPU

MFC

LS

SPU

MFC

LS

SPU

MFC

LS

SPU

MFC

LS

SPU

MFC

LS

SPU

MFC

LS

SPU

SPE

L2 L1 Memory
Controller

Bus Interface
Controller

PPUPPE

Fig. 3.3: Cell/B.E. processor. The Power processor element (PPE) is a general
purpose processor. It has 32 kByte first-level (L1) instruction and data
caches and a 512 kByte second-level (L2) cache. Each of the eight
synergistic processor elements (SPEs) contains a synergistic processor
unit (SPU), a 256 kByte local store (LS) and a memory flow controller
(MFC).

Compared to other superscalar processors of the same generation, some
features were omitted in the PPE. It is a dual-issue design compared to
available four-issue designs. Furthermore, it is not an out-of-order processor.
However, there is a separate, decoupled pipeline for floating-point and vector
instructions. This allows reordering of instructions in one pipeline with
respect to instructions in the other pipeline, if there are no dependencies.
To optimize the use of the issue slots, two threads can be processed in an
interleaved fashion.

The PPE is equipped with vector multimedia extensions (VMX) for 128-
bit SIMD with variable element width. (e.g. 4 × 32-bit, 8 × 16-bit, . . . ).
For both threads, there is a 32-entry by 128-bit vector register file.

A conventional cache hierarchy with 32 kByte L1 (level 1) instruction
and data caches and a 512 kByte L2 (level 2) cache is used.

3.4.4 SPE

The other type of processor element, the SPE, comprises an SPU (syn-
ergistic processor unit), a 256 kByte local store (LS) and a memory flow



3.4 Cell/B.E. 31

controller (MFC). It was designed with the goal to optimize computational
performance per Watt (and area). Although more complex cores could pro-
vide more performance, this would mean that fewer cores could be placed
on one chip due to the larger size.

The SPU is organized entirely around a 128-bit data path [34]. Vector
and scalar data are handled in this data path. The overhead of having sepa-
rate pipelines and issue slots for scalar and vector instructions was removed.
As a consequence, the SPU is especially strong at running vectorized code.
Instructions on scalar data occupy an entire issue slot, which could other-
wise be used for a “more productive” vector operation. Data is loaded and
stored in 128-bit granularity and at 128-bit aligned addresses. A penalty is
associated to working on unaligned vector data. A large 128-entry 128-bit
unified register file is shared for all types of data (scalar, vector, float, inte-
ger, . . . ). The size of the register file should facilitate efficient instruction
scheduling by the compiler and enable loop unrolling.

There is no hardware support for branch prediction, but the programmer
(or compiler) can provide branch hints. Upon notification of an upcoming
branch, the hardware prefetches at least 17 instructions starting at the
branch target address.

There is a single program running at a time on the SPU (no multi-
threading support). It only has direct access to the LS, which therefore
has to accommodate program instructions and data. The LS is not part
of the cache-coherence domain. Data are transferred between LS and sys-
tem memory by explicit DMA (direct memory access) commands, issued by
the program running on the SPU or the PPE and executed by the MFC.
Typically, data are loaded by DMA, processed, and returned again to main
memory by DMA. Addresses can be exchanged between PPE and SPEs be-
cause the same address translation mechanisms are used. The LS is mapped
into global memory space in order to allow local-store-to-local-store trans-
fers.

The MFC can work in parallel to the SPU. Once the transfer is set up,
the SPU can continue working and polling (blocking or nonblocking) for
transfer completion. Each SPE supports up to 16 outstanding DMA trans-
fers, helping to avoid latency-induced bandwidth limitations. Supporting
only a limited number of outstanding transfers means that preceding trans-
fers need to finish before new ones can be issued. If the number of transfers
in flight is low and each transfer carries little data, only a fraction of the
actual bandwidth can be used.



32 Accelerating Nonrigid Image Registration

3.4.5 On-Chip Communication

The PPE and the SPEs are connected by the element interconnect bus.
Furthermore, the memory controller and I/O bus interface controller are
also attached to the EIB, which enables communication among all these
components [52]. It consists of four 16-byte wide data rings, two running
clockwise and two counterclockwise. The EIB arbiter processes transfer
requests and assigns a ring, such that the transfer does not need to go more
than halfway around the ring.

One form of communication are the DMA transfers mentioned in the
preceding section. The MFC supports naturally aligned2 transfers of 1, 2,
4, or 8 bytes, or 16-byte aligned transfers with a length from 16 Bytes to
16 kBytes. Both source and destination address need to be aligned.

Other means of communication are signal notification and mailboxes.
Each SPE has two incoming 32-bit signal notification channels. The other
SPEs and the PPE can write to these channels using memory-mapped ad-
dresses. This is a very simple and fast way of communication. These reg-
isters can be configured in OR mode, meaning that the result of a write
operation is a bit-wise OR of the original content of the register and the
written value. This allows collective communication involving multiple pro-
cessing elements. Messages from different SPUs or the PPE can be received
in the signal notification register, if the affected bits do not overlap. Used
this way, the order with which signals are received does not matter.

Each SPE also has two four-entry outbound mailboxes and one four-
entry incoming mailbox. They are suitable for point-to-point communica-
tion, as in master-slave or producer-consumer models and are slower than
signal notification. If an incoming mailbox is full, the SPE or PPE that
wants to write to it has to wait until the owning SPE frees a slot by reading
an entry. Similarly, the owning SPE cannot write to a full outgoing mailbox
until a consumer frees a slot by reading a message.

3.4.6 System Architecture

While the PlayStation3 gaming console is the first commercial application
based on the Cell/B.E. processor, there are alternative devices and systems.
Mercury Systems offers an accelerator board, which can be attached to a

2A data block is called naturally aligned if its address is aligned to its size, for example
a 8 byte data structure located at an address being a multiple of 8.



3.4 Cell/B.E. 33

standard PC by a PCIe (peripheral component interconnect express) link.
The board is equipped with four GByte of memory. The largest Cell/B.E.
based system, the Roadrunner supercomputer, is also leading the list of the
TOP500 supercomputer sites3 [71]. It consists of 3060 nodes, each featuring
four PowerXCell 8i processors and two AMD Opteron dual-core processors
[11]. These nodes, the triblades, are interconnected using InfiniBand4. A
triblade consists of three blades, one for the Opteron processors and two
equipped with two PowerXCell 8i processors each. Blades are computer
systems equipped with all the necessary components but with a physical
design minimizing the required space. Multiple blades can be mounted in
one enclosure (or chassis), which can provide services like power supply,
cooling, storage, and networking.

South Bridge

Memory

Cell/B.E.

South Bridge

Memory

Cell/B.E.

Fig. 3.4: A Cell/B.E. blade is equipped with two processors, connected directly
by a coherent interface. Memory is directly connected to each processor.
I/O functionality is provided by a separate chip, called South Bridge or
I/O controller hub.

The Cell/B.E. blades used for Roadrunner are commodity systems, which
can also be used stand-alone. They are another example of a Cell/B.E.
based system [73]. The two Cell/B.E. processors are connected gluelessly
(without any additional switch chips) by a coherent interface to form a
shared-memory multiprocessor (Figure 3.4). For this purpose, one of the
I/O interfaces of the Bus Interface Controller is reconfigured to serve as
processor interconnect. The bandwidth is 20 GByte/s in each direction.
Although the memory is shared by the two processors, each one has faster

3June 2009 revision — the latest at the time of the writing
4InfiniBand is a communication link mainly used in high-performance computing.



34 Accelerating Nonrigid Image Registration

access to its own memory, meaning that the Cell/B.E. blades are shared-
memory NUMA systems.

System software bases on a 64bit PowerPC SMP-enabled (symmetric
multiprocessing) Linux kernel with additional patches to support the SPEs.
The operating system schedules the applications on the two processor and
decides on which physical SPE to run an SPE kernel. However, a PPE ap-
plication can use the SPEs on the other processor transparently and spawn
up to 16 SPE threads.

3.4.7 Programming Models

Porting to PPE

Profiling
(find hotspots)

Offload to SPEs
(parallelization)

Tune SPE code
(vectorize)

Tune transfers and
synchronization

Performance OK

Other Hotspot

No

Yes

No

Yes

Fig. 3.5: Porting an algorithm to the Cell/B.E. architecture typically is an iterative
process.

Porting an algorithm to the Cell/B.E. architecture typically follows the
scheme in figure 3.5 [9]. First, it is ported to run (sequentially) on the PPE.
Then, by runtime profiling, the hotspots (or bottlenecks) of the algorithm
are detected, i.e. the parts of the algorithm consuming most of the runtime.
Each hotspot is parallelized and offloaded to the SPEs individually. The
tuning of the SPE code, the synchronization and the data transfers follows.

To offload a function to the SPEs, it needs to be parallelizable. For this
purpose, the workload usually is subdivided into smaller pieces, which can
be processed independently. Sometimes this requires reorganizing the data
structures if the original code was written without parallelization in mind. If



3.4 Cell/B.E. 35

data belonging to the same piece are located in contiguous memory regions,
they can be transferred more efficiently between the local store and system
memory. Furthermore, as usual in parallelization, one has to distinguish
between shared data and private data. In the case of shared data, access
by different threads needs to be synchronized.

In 0

In 3

Out 2

Out 3

In 1

In 2

Out 0

Out 1

SPE 0 SPE N

System Memory

...

In 0

In N Out N

Out 0

SPE 0 SPE N

System Memory

...
... ...

... ...
......

Fig. 3.6: The SPEs can be used in pipelined mode (left) or streaming mode (right).

The SPEs can either be used in pipelined or streaming mode (Figure 3.6).
In pipelined mode, the offloaded function is split into pipeline stages. Each
SPE executes a different kernel, corresponding to one pipeline stage. SPE0
processes the first piece and when finished hands it to SPE1 and starts
working on the next piece. A piece is moved through the pipeline and the
final result is stored to system memory by the last SPE in the chain. SPE-
to-SPE DMA transfers can be used between the pipeline stages instead of
storing the temporary results to system memory and loading them again.
This is more efficient because the on-chip EIB has a much higher bandwidth
and a much lower latency than external memory. Load balancing can be an
issue if the time required for the different stages varies considerably.

In streaming mode, all the SPEs execute the same kernel on different
data. The distribution of the pieces to the SPEs can be static. This is
especially efficient if all the pieces take more or less the same time for pro-
cessing. Otherwise, load imbalance can hamper performance and dynamic
scheduling may be necessary, either managed by the PPE or by the SPEs
collaboratively.

Regardless of the programming model, the main thread is running on a
PPE. This thread creates subthreads running on the SPEs. This is similar to



36 Accelerating Nonrigid Image Registration

shared-memory programming with Pthreads. The libspe2 library, which is
part of the Cell/B.E. SDK, provides functions for SPE management. First,
a context data structure needs to be created with the spe context create

function. A context is a logical representation of an SPE and contains all
its persistent data. The spe program load function loads an SPE program
to the context. The SPE program is a separate program, having its own
main function.

The spe context run function causes the loaded program to be exe-
cuted. It is a synchronous function, meaning that it blocks the PPE thread
calling it until the SPE thread returns. Therefore, the main PPE thread
typically spawns one Pthread (running on the PPE) per SPE. This Pthread
then takes care of the management of one SPE. When a context is not used
any more, it can be destroyed with the spe context destroy function.

3.4.8 Rigid Registration

While not much is known about nonrigid registration on the Cell/B.E. plat-
form, Ohara et al. [75] implemented a rigid registration algorithm for this
processor. On a dual processor Cell/B.E. blade, they achieved a 11× per-
formance improvement compared to a sequential ITK (Insight Toolkit, a
open source collection of registration and segmentation algorithms) imple-
mentation running on a Xeon processor. Mutual information is used as the
similarity metric. The algorithm uses subsampling, a common technique to
accelerate rigid registration algorithms. It uses only 1% of the fixed image
voxels, which is mainly possible because of the much smaller number of pa-
rameters compared to a nonrigid transformation model. The subset of fixed
image voxels does not change between the iterations of the optimizer. In the
first iteration, scattered (and thus inefficient) memory accesses are required
to fetch the 2× 2× 2 neighborhood required to interpolate the moving im-
age at the mapped coordinates. After the first iteration, these voxels are
stored together, such that they can be fetched again as a group in the next
iteration, which is more efficient. For each fixed image voxel used for mu-
tual information computation, there is one moving image group. However,
if during the iterative optimization the transformation parameters change
much, different moving image voxels may be required than in the first iter-
ation. If this is the case, a scattered fetch of the new group is required and
it is stored as a group again. To reduce these scattered fetches, a group of
voxels is also used for extrapolation if the mapped coordinates are slightly



3.5 GPU 37

outside of the region defined by this group.

3.5 GPU

3.5.1 Overview

Graphics processing units (GPUs) are another specialized platform. Maybe
they offer the best computational power per price ratio nowadays. Although
originally designed specifically for accelerating 3D graphics rendering, GPUs
receive a growing attention outside of this domain. Researchers and devel-
opers are interested in harnessing the computation power of GPUs for other
applications. As the GPGPU community (General-Purpose computation on
Graphics Processing Units) is growing, GPUs are used to accelerate com-
putation for more and more applications. A survey by Owens et al. [78]
summarizes the principal hardware and software developments in the field
of GPGPU.

While computational performance of CPUs grows at a rate of roughly
1.4 per year, the typical performance metrics for GPUs improve at higher
rates between 1.7 and 2.3 yearly. Thus, GPUs are not only faster for certain
applications already today, but their advantage compared to CPUs can even
be expected to increase in the future. Both platforms base on the same
manufacturing technology, which consequentially improves at the same rate
for both. The computational performance of GPUs has always been based
on data-level parallelism. Graphics processors have a large number of highly
specialized processing units.

However, GPUs also have become more flexible over time. While early
GPUs had fixed-function pipelines and the output was limited to 8-bit values
per color-channel, modern GPUs feature programmable execution units and
support single-precision floating-point data. New features are added to
every major new generation of GPUs. But the power of GPUs still results
from a highly specialized architecture and while they can be used today
for many applications outside the originally narrow field for which they
were designed, there remains a large class of applications for which they are
not suitable and probably never will be. For example, GPUs lack efficient
scatter operations. Writing a value to an indexed position of an array is not
straightforward.



38 Accelerating Nonrigid Image Registration

3.5.2 System Architecture

GPU

CPU

North Bridge

South Bridge

System Memory

Device Memory

Other peripheral devices

Fig. 3.7: System architecture with GPU.

In typical PC systems with GPUs, the CPU is connected to the main
memory and the GPU by the North Bridge, or memory-controller hub-chip.
On recent systems, a PCIe bus connects the North Bridge and the GPU.
The GPU has access to some dedicated device memory. The bandwidth to
device memory usually is much larger than the one of the PCIe bus. Data
has to be transferred from system memory to device memory in order to
provide fast access to programs running on the GPU. Typically, there is
less device memory than system memory and when working with large data
sets, it may not be possible to keep all the required data in device memory.
If this is the case, the relatively slow PCIe bus may become a bottleneck
because more data is moved between system and device memory.

3.5.3 Processor Architecture

The basic task of a 3D graphics system is to synthesize, or render, an image
from a description of a scene described with triangles. More complicated
shapes, like curved surfaces, are approximated with triangular patches. The
input data provided to the GPU are the vertices of the scenery and texture,
which is image data that is “draped” over the geometry.

Modern GPUs, except the very latest ones (discussed later), all have
a similar structure (Figure 3.8). Kilgariff and Fernando give a detailed
description of the GeForce 6 Series GPU architecture [51]. The processing
is organized in a pipelined fashion. The pipeline stages have become more



3.5 GPU 39

R
a
s
te

ri
z
e

r

V
e

rt
e

x
 P

ro
c
e

s
s
o

r

V
e

rt
e

x
 B

u
ff

e
r 

Fr
a
g

m
e

n
t 

Pr
o

c
e

s
s
o

r

Fr
a
m

e
 B

u
ff

e
r 

Texture Buffer 

Fig. 3.8: The graphics pipeline of a modern GPU. The vertex and the fragment
processor are programmable. Data is read from vertex and texture buffers.
The result is written to the frame buffer. It it is an intermediate result, it
may be necessary to copy the output to an input buffer (vertex or texture
buffer) for further processing.

flexible over time, which has enabled more and more applications for which
GPUs were originally not designed.

The vertex processor, or vertex shader, fetches data from the vertex
buffer. It allows to apply per-vertex operations to each vertex in an ob-
ject. After passing the vertex processor, vertices are grouped into primitives
(points, lines or triangles). In more recent GPUs, the vertex processor can
also access texture data.

For each primitive, the rasterizer calculates which pixels it covers. It
outputs fragments, which can be interpreted as “candidate pixels”. Further
down the pipeline, fragments that are not visible, for example because they
are occluded by other fragments, are discarded. Fragments that are not
discarded will carry color information for the corresponding pixel. This
color information is written to the render target, for example the frame
buffer.

The fragment processor, or pixel shader, applies a shader program to
each fragment independently. Its texture unit can work on texture data.
Texture data can be seen as 2D or 3D arrays, which can be read at arbi-
trary coordinates, for example based on bi-linear or tri-linear interpolation.
The fragment processor is the second programmable stage of the graphics
pipeline.

GPUs draw their performance from multiple vertex processors and frag-
ment processors working in parallel. The NVIDIA Geforce 7950 GX2, for
example, has 16 vertex shaders and 48 pixel shaders.

Workload balancing is a possible problem associated with this pipeline



40 Accelerating Nonrigid Image Registration

design. If, for example, a simple scenery consisting of huge triangles is
rendered, the vertex processors are almost idling, while the fragment pro-
cessors are the bottleneck. On the other hand, if a very detailed scenery is
rendered, the vertex processors become the bottleneck.

The introduction of unified shaders is a very recent step in the evolution
of GPUs from highly specialized, hardwired processors to more and more
flexible general purpose devices [63]. They were first available on the chip
for the Xbox 360 gaming console and then brought to the PC market with
the GeForce 8800 chip. These unified shaders are allocated in a grid and
general enough to handle any of the shader workloads. Thus, vertices and
fragments circulate through the grid instead of flowing through a pipeline
with a fixed width per stage. The GeForce 8800 processors have up to 128
of these unified shaders, called stream processors.

3.5.4 Programming Model

As discussed in the preceding section, GPUs exploit parallelism to achieve
their high performance. Furthermore, the architecture differs in many as-
pects from CPUs. Therefore, they require a different programming ap-
proach.

There are the traditional graphics APIs, such as the cross-platform
OpenGL (Open Graphics Library) or Direct3D for Microsoft Windows plat-
forms. High-level shading languages like Cg (or C for graphics) with its
C-like syntax and GLSL (OpenGL Shading Language) also stick tightly to
the GPU hardware design.

The general GPU programming approach is that the programmer identi-
fies the data-parallel stages of the application and writes a shader kernel for
each of these stages. To invoke the kernel, (vertex) input data are provided
to the GPU. After a pass through the pipeline, the result data per fragment
are written to texture memory, unless the final result has been generated.
Complex algorithms may require dozens of passes through the pipeline.

For general purpose GPU programming, the graphic-centric nature of
this programming model often is often a burden, especially if the application
has nothing to do with rendering geometric primitives. GPGPU program-
ming languages usually abstract the graphics specific terminology and see
the GPU more as a streaming processor. Such programming environments
include Close to metal by AMD/ATI (later called Stream SDK), CUDA
(compute unified device architecture) by Nvidia and Stanford University’s



3.5 GPU 41

BrookGPU. Especially CUDA boosted research and development in the
GPGPU environment. OpenCL (open computing language) is an emerg-
ing framework for heterogeneous platforms consisting of CPUs, GPUs and
possibly other processors. It defines a C-like language for writing kernels
for OpenCL devices and APIs to set up and coordinate the heterogeneous
platform.

3.5.5 Early Nonrigid Registration Work

The work of Soza et al. [90] presents early research on GPU-based ac-
celeration of nonrigid registration. They use a transformation function,
parametrized by displacement vectors located on a 5 × 5 × 5 grid. The
dense transformation field is obtained using Bézier functions. The multi-
dimensional optimization problem is addressed with Powell’s direction set
method. Only one parameter is optimized at a time. The quality of the fit
is assessed by a mutual-information-based similarity metric. The GPU is
used to accelerate the transformation of the moving image, i.e. computing
the dense transformation function and interpolating the moving image at
the transformed coordinates. The algorithm is used to compensate brain
shift between pre- and intraoperative MR images. The original images have
a resolution of 256×256×112 voxels. However, they are downsampled prior
to registration in order to further speed up the process. On a commodity
system with an AMD Athlon 1.2 GHz processor and a GeForce3 64MB
graphics card, average runtimes around six to seven minutes are achieved.

3.5.6 Gradient Flow Algorithms

A fully GPU-based nonrigid registration algorithm was presented by Str-
zodka et al. [93] in 2004. A gradient flow registration algorithm [20] was
implemented for the DirectX 9 graphics pipeline. This algorithm minimizes
the SSD criterion. Similar to the Demons algorithm, the dense transforma-
tion field is updated iteratively by following a gradient descent step. For
regularization, a smoothing filter is applied to the gradient before the step
(in contrast to the Demons algorithm, were the smoothing filter is applied
afterwards). The two dimensional fixed and moving images are represented
as 2D textures. They are transferred to the graphics memory at the begin-
ning. When the registration finishes, the result is sent directly from graphics
memory to the screen. No further passing of image data between main and



42 Accelerating Nonrigid Image Registration

graphics memory are necessary. A C++ program running on the CPU con-
figures the graphics pipeline for the different stages of the algorithm. It
controls which vertex and fragment processor kernels to use and sets the
pointers to the input data. For each part of the algorithm, a different ker-
nel is required. These kernels are programmed in the high level graphics
programming language Cg.

In this multi-iteration algorithm, result images from one step are the
input of the next step. To pass these images from one iteration to the next
one, a technique called “render to texture” is used. Specifically, Strzodka
et al. use pbuffers for this purpose. They observed when switching the
output buffer. They expect a significant performance improvement once a
more efficient way to render to texture is supported by GPUs.

Registration time of approximately 3 seconds for 2572 images and up
to 10 seconds for 5132 images is achieved. An NVIDIA GeForceFX 5800
Ultra chip is used for the experiments. This was a high-end GPU released
in 2003. A pure CPU implementation is reported to be four times slower.

In 2006, Köhn et al. [53] extended the work by Strzodka et al. to three
dimensions. Furthermore, they added a rigid transformation that precedes
the nonrigid registration. The GPU is programmed in the OpenGL language
GLSL. The pbuffers used by Strzodka et al. were replaced by Framebuffer
objects, which are a faster alternative supported by the OpenGL 2.0 spec-
ification. On a GeForce 6800 GT graphics processor, the runtime of 2D
nonrigid registration for an 2562 image is reduced to 200 ms, which is more
than 20× faster than on a CPU.

However, for 3D registration, a new bottleneck appeared. Rendering
to a slice of a 3D volume is not supported directly and the output of the
graphics pipeline needs to be copied before it can be used as an input for
the next pass. Köhn et al. estimate that the resulting overhead amounts
to 80%-90% of the total computation time in the 3D case. They report a
runtime of 62.5 seconds for a 256× 256× 128 image, expecting this number
to drop to 9.2 seconds once the copy bottleneck is overcome.

3.5.7 Demons Algorithm

Several research groups worked independently on GPU implementations
of the Demons algorithm and published their work in 2007 and 2008. In
order to get an overall smooth mapping, the transformation field is regu-
larized using a Gaussian smoothing filter after each iteration. This filtering



3.5 GPU 43

step is computationally expensive. The different Demons algorithm imple-
mentations mainly differ on the smoothing method and the programming
environments.

Sharp et al. [89] use the Brook programming language to implement
their “streaming version” of the Demons algorithm. Separable Gaussian
filters, implemented as convolution kernels, are used for the smoothing step.
The algorithm is validated using CT data of a swine lung, which is warped
by a known deformation. The performance of the GPU implementation,
running on an NVIDIA 8800 GTS GPU, is compared to the sequential
implementation running on an 2.8 GHz Intel Duo-Core processor. For 100
iterations with an 424 × 180 × 150 image, a runtime of 13.41 seconds is
achieved, which corresponds to a speedup of 45.51× compared to their CPU
implementation.

Courty and Hellier [24] present Cg-like code fragments of their imple-
mentation. They map the volumetric image data to 2D textures, which they
call flat 3D textures. This allows them to process the entire volume in one
rendering pass. Furthermore, the GPU does not need to support render-to-
3D-texture extensions. The Gaussian filtering is implemented as a separable
recursive filter. It is approximated with 4th order cosine-exponential func-
tions. Two passes are required per direction, one for the causal part of the
filter and another one for the anticausal part. To handle the causal and the
anticausal part at the same time, two copies of the flat 3D texture, decom-
posed in positive and negative direction of the respective axis, are stored
in the red and the green channel of the 2D texture. After each pass of the
recursive filter, the image has to be reoriented to allow a sweep in the next
direction. An advantage their algorithm is that its runtime does not depend
on the standard deviation parameter σ.

For the verification of the algorithm, it was applied to 3D brain MR
images on a system consisting of an Athlon XP 2500+ CPU and a Quadro
FX 1400 graphics card. The original images were downsampled to 1283

voxels because of the limited size (256 MB) of the GPU device memory. A
runtime of 2.2 seconds per iteration was measured.

Muyan-Özçelik et al. [72] use the same approach to Gaussian smoothing
as Sharp et al. do. However, their implementation is written in CUDA and
they claim a 10% performance improvement on the same hardware com-
pared to the Brook-based implementation. They state that CUDA specif-
ically targets newer NVIDIA cards, such as the one used by Sharp et al.,
while Brook lacks support for some of the latest features. On an Nvidia



44 Accelerating Nonrigid Image Registration

8800 GTS GPU, a runtime of 12.46 seconds was achieved for 100 itera-
tions with an 424 × 180 × 150 image. A large part of the speedup was
provided by coalescing of the global memory accesses, which resulted in a
3.9× speedup. Simultaneous memory reads from multiple threads can be
coalesced into a single memory transaction if certain alignment conditions
are fulfilled [74]. They also compare their GPU implementation to a CPU
implementation and observe a 55× speedup compared to a single-threaded
and 35× compared to a multi-threaded implementation.

3.5.8 Finite Element Algorithm

Li et al. [59] present an OpenGL-based implementation of a finite element
nonrigid registration algorithm. It is limited to 2D images and applied to
motion tracking in cardiac MRI. The transformation function bases on a
finite element model and interpolation with bi-cubic Bézier basis functions.
SSD (sum of squared differences) is applied as similarity metric. The GPU is
used to compute the transformed moving image. The gradient of the metric
with respect to the parameters as well as the Hessian matrix5 are calcu-
lated on the GPU and transferred to the CPU. A Levenberg-Marquardt6

optimizer, running on the CPU, is applied to iteratively optimize the pa-
rameters of the finite element model. The authors plan to migrate to CUDA
in the future. They expect that this would yield further performance im-
provements by allowing them to offload the optimizer to the GPU.

On an NVIDIA 7950 GTX graphics processor, registration of a region of
interest (ROI) of 1282 pixels takes 0.46 seconds. The same task is reported
to take 2.12 seconds on an Intel dual-core 2.0 GHz processor, corresponding
to a speedup of 4.6×.

3.5.9 Multimodal Registration

The nonrigid registration algorithms for GPUs discussed so far all target
monomodal registration. An exception is the early work by Soza et al.,
but their implementation only offloads the transformation of the moving

5The Hessian matrix is the square matrix of the second order partial derivatives of a
function (in this case the metric).

6The Levenberg-Marquardt algorithm iteratively solves the problem of minimizing a
function. It requires the computation of the gradient and the Hessian matrix of this
function.



3.5 GPU 45

image to the GPU. An implementation published by Vetter et al. in 2007
[102] uses mutual information as the similarity metric and therefore allows
multimodal registration. However, the implementation is limited to 2D im-
ages. The GPU is programmed with OpenGL and GLSL. The similarity
metric has two terms in addition to mutual information. It also calcu-
lates the Kullback-Leibler divergence between a learned and the observed
joint probability density function. The Kullback-Leibler divergence is a
measure for the difference between two probability density functions. For
the registration algorithm, this means that transformations yielding a joint
probability density function similar to the learned one are preferred. This
method provides context-specific information, which is missing when using
mutual information alone. Furthermore, a regularization term is used to
favor smooth transformation fields. The optimal solution is searched with
a gradient descent optimizer.

The authors report a speedup of 5.9× compared to a CPU implemen-
tation. For a 5122 pixel image, the runtime per iteration is reduced from
22.95 to 3.9 seconds.

3.5.10 Conclusions

GPUs are receiving more and more attention as cost-efficient high-perfor-
mance platforms for parallelizable algorithms. Recently, this has resulted in
a number of publications on GPU implementations of nonrigid registration
algorithms. Some research groups even reported registration times in the
order of seconds. However, most implementations only support monomodal
registration. The only multimodal nonrigid registration algorithm available
for GPUs is limited to 2D images. Although the authors do not mention
the number of iterations typically required to solve a registration problem,
the fact that an iteration takes 3.9 seconds for an 5122 pixel image suggests
a total registration time in the order of one to a few minutes.

Algorithms usually have to be re-designed to be mapped to the special-
ized processing flow of GPUs. Programming complex algorithms for these
architectures is challenging, which may be a reason for the limitations of the
available methods. However, emerging higher level programming languages
have recently improved the programmability of graphics processors. Fur-
thermore, new generations of GPUs usually also have additional features,
increasing their capabilities for general purpose processing. These trends
may enable the implementation of a broader spectrum of algorithms on



46 Accelerating Nonrigid Image Registration

GPUs, which would be desirable considering the pace with which computa-
tional capabilities of graphics processors grow.

3.6 FPGA

3.6.1 Architecture

The Cell/B.E. processor and GPUs are processor architectures specialized
on computationally intensive tasks. A different platform which continues to
attract researchers in the accelerator environment are field programmable
gate arrays (FPGAs). They are reconfigurable devices intending to fill the
gap between software-programmed microprocessors and hardwired Appli-
cation Specific Integrated Circuits (ASICs) [23]. While ASICs are designed
to do one specific task with a very high performance, microprocessors can
be applied to a broad range of tasks, but possibly with lower performance
than a specialized chip. FPGAs contain a large number of computational el-
ements (or logic blocks). Their functionality is programmed through config-
uration bits. Furthermore, the connections between the logic blocks are also
programmable. This allows to map custom digital circuits to the FPGA.

There are different ways to attach an FPGA accelerator to a host pro-
cessor. There are FPGA boards, which are usually connected to the host
processor through a PCI (Peripheral Component Interconnect) bus. Like
GPUs, the FPGA typically also has its own device memory. More recently,
some FPGA accelerators can also be plugged directly into a normal proces-
sor socket, which allows to couple processor and accelerator more tightly.
The accelerators include an on-chip memory controller, which enables com-
munication through shared memory [107].

3.6.2 Volume-Subdivision Algorithm

An FPGA-based implementation of a volume-subdivision registration algo-
rithm was reported to outperform a (single-threaded) software implementa-
tion by a factor 30× [27]. The registration time for 2563 images is reduced
to around 6 minutes. The iterative optimizer running on the host CPU pro-
vides candidate transformations to the accelerator, which is implemented on
a PCI attached prototyping board with dedicated memory. The accelerator
calculates a mutual-information-based similarity metric and provides it to



3.7 Conclusions 47

the optimizer. This step requires the calculation of the (rigid) transforma-
tion within the subvolume, partial volume interpolation at the transformed
coordinates and updating the joint histogram of the two images. Finally, the
entropies and then the mutual information are calculated. The necessary
calculation of logarithms is implemented using lookup tables.

3.7 Conclusions

2D 2D, MI 3D 3D, MI
0

10

20

30

40

50

60

70

80

90

100

s
p
e
e
d
u
p
 [
1
]

 

 

Multiprocessor

GPU

FPGA

Fig. 3.9: Speedup comparison of different nonrigid registration algorithms. They
are categorized with respect to the number of image dimensions (two or
three) and similarity metric. MI means mutual-information-based. The
other algorithms are not suited for multimodal registration.

In figure 3.9 we plot the speedup of the nonrigid registration algorithms
discussed in the preceding section where the authors provide this infor-
mation. Typically, the speedup is relative to a sequential version of the
respective algorithm running on one CPU. We see that for 3D registration
higher speedups are achieved than for 2D. This may well be because accel-
eration of 3D registration provides more incentive. 2D registration times of
sequential algorithms are already relatively low at least for the image sizes
used in the cited studies. The highest speedups are achieved for 3D mutual-
information-based registration, but the utilized multiprocessor systems are



48 Accelerating Nonrigid Image Registration

relatively large and expensive. There is a much smaller FPGA-based so-
lution providing significant speedups for the same class of algorithms. For
monomodal registration, GPUs seem to be a cost-efficient platform provid-
ing very good performance.



4
Implemented Registration Algorithm

4.1 Basic Features

In the preceding chapters, different registration techniques and accelerated
registration algorithms were discussed. Many of the fastest implementations
use an intensity-based similarity metric (rather than to geometric features,
such as landmarks) and a generic transformation model (in contrast to a
problem-specific model of the anatomy). The choice of the similarity metric
and the transformation model may be the most important design decision.
Our goal is a fast 3D nonrigid registration algorithm on a relatively low-cost
platform. The performance is achieved by exploitation of parallelism. Fur-
thermore, the algorithm should be suitable for a broad range of applications,
including multimodal problems.

Mutual information is chosen as the similarity metric because it is gen-
erally applicable. Numerous clinical applications have been reported. Al-
though first introduced for the purpose of multimodal registration, it was
also successfully applied to monomodal problems [81]. It usually can be
used without preprocessing the images or user interactions, such as param-
eter tuning or initialization.

The nonrigid transformation will be modeled with B-splines, a technique
which has been applied to a variety of anatomical regions, such as the brain



50 Implemented Registration Algorithm

[45], the chest [67], the heart [31, 70, 58], the liver [84] and the breast [86].
It uses a relatively compact representation of the transformation function:
the B-spline coefficients located at the transformation grid knots. This may
result in less communication overhead than the direct use of a dense trans-
formation field like for the Demons algorithm. Moreover, the computation
of the transformation at an arbitrary point is efficient. It does not depend
on the complexity of the model because only a fixed number of B-spline co-
efficients adjacent to the point are required to compute the transformation
function.

4.2 B-Spline Transformation Model

The goal of image registration is to find the transformation function T ,
which maps points with coordinates xfix in the fixed image to their corre-
sponding point xmov in the moving image:

xmov = T (xfix |µ) , (4.1)

where µ is a set of transformation parameters. This allows warping of the
moving image fmov,

f ′mov (x) = fmov (T (x |µ)) , (4.2)

such that the points (i.e., pixels for 2D and voxels for 3D images) of the
transformed moving image f ′mov should be comparable (if not identical) to
the points at the same coordinates in the fixed image ffix.

We use a well-known transformation model, which is composed of a rigid
(or global) and a nonrigid (or local) part [86].

T (x) = t + Ax + Tnonrigid (x) (4.3)

The rigid transformation is defined by a translation vector t and a matrix
A. The nonrigid transformation Tnonrigid is based on B-splines. Usually, the
parameters of the rigid transformation are found prior to nonrigid registra-
tion. Rigid registration is less time consuming than nonrigid registration
and very fast implementations exist (e.g. by Ohara et al. [75]). Therefore,
we assume that the parameters of the rigid transformation were already
found and treat them as constants throughout the nonrigid registration.
Alternatively, the parameters can be initialized, for example to centrically
align the images and compensate differences in the sampling rate.



4.2 B-Spline Transformation Model 51

−2

−1

0

1

2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

Fig. 4.1: 2D cubic B-spline base function

The cubic B-spline base function is

β3 (x) =


0 2 ≤ |x|
1
6
(2− |x|)3 1 ≤ |x| < 2

1
6

(
4− 6x2 + 3 |x|3

)
0 ≤ |x| < 1

(4.4)

For N dimensions, β3 (x) is a product of N 1D cubic B-spline functions.

β3 (x) =
N∏

k=1

β3 (xk) (4.5)

Figure 4.1 shows the two-dimensional cubic B-spline base function. The
nonrigid mapping is modeled by a number of shifted and scaled cubic B-
splines, which are centered on the knots of a regular grid. The function is
defined as

Tnonrigid (x) =
∑

j

cjβ3

(x

h
− j
)

(4.6)

where j are the grid indices for the parameters c (the B-spline coefficients,
for an N dimensional field, cj has N components) and h specifies the grid
spacing, which is not necessarily the same in all directions.



52 Implemented Registration Algorithm

Fig. 4.2: A mesh of control points is laid over the fixed image. The transformation
is modeled with B-spline coefficients. They define the scaling of cubic
B-spline base functions placed at the control points. In the 2D case, a
neighborhood of 4×4 control points has influence on the transformation
function at a specific point.

In order to evaluate (4.6) at an arbitrary coordinate x, only 4N indices j
result in nonzero weights β3

(
x
h
− j
)
. This is because the cubic B-spline func-

tion evaluates to nonzero values only in the range ]− 2; 2[. Therefore, only
the respective coefficients cj are required for the calculation (Figure 4.2).

The entire set of parameters is therefore µ = {t,A, c}, but as mentioned
earlier, the translation vector t and the matrix A are obtained from a linear
registration and are treated as constants.

4.3 Mutual Information

The negative mutual information between the fixed and the transformed
moving image (with transformation parameters µ) can be computed like

S (µ) = −
∑

ι

∑
κ

p (ι, κ; µ) log

(
p (ι, κ; µ)

pfix (ι; µ) pmov (κ; µ)

)
, (4.7)



4.3 Mutual Information 53

with fixed image intensities ι and moving image intensities κ. This re-
quires estimates of the (marginal) probability density functions pfix (ι; µ)
and pmov (κ; µ) and of the joint probability density function p (ι, κ; µ) in
the overlapping region of the fixed and the transformed moving image. A
straightforward approach is the computation of the joint and marginal his-
tograms of intensities. Normalization of the histograms yields the respective
probability density functions. Usually, there is not one histogram bin per
possible intensity value but a range of intensity values corresponds to one
single histogram bin. If Lfix and Lmov are uniformly sized bins with sizes lfix

and lmov, intensities are linearly scaled to fall into a valid bin. The numbers
of bins Lfix and Lmov are parameters of the algorithm and the respective
bin sizes are computed from the ranges of intensities [ifix,min; ifix,max] and
[imov,min; imov,max], and the values of Lfix and Lmov like

lfix =
ifix,max − ifix,min

Lfix

(4.8)

lmov =
imov,max − imov,min

Lmov

. (4.9)

The bins are indexed by integer values ι(0 ≤ ι < Lfix) and κ(0 ≤ κ < Lmov).
The fixed image intensity ffix (x) is mapped to the bin

ι =

⌊
ffix (x)− ifix,min

lfix

⌋
. (4.10)

Parzen windowing is an alternative approach used for probability den-
sity function estimation [96]. It also uses binning, but generates continuous
functions. Choosing an appropriate Parzen window function provides dif-
ferentiable probability density function estimates, which will prove to be an
advantage. As proposed by Mattes et al. [67], we choose a cubic B-spline
for the moving image intensities and a zero-order B-spline

β0 (x) =

{
1 0 ≤ x < 1

0 otherwise
(4.11)

for the fixed image intensities. This yields the joint histogram estimation

p (ι, κ |µ) =α
∑
x∈V

β0

(
ι− ffix (x)− ifix,min

lfix

)
× β3

(
κ− fmov (T (x |µ))− imov,min

lmov

)
. (4.12)



54 Implemented Registration Algorithm

The set V is the overlap region of the fixed and the transformed moving im-
age and α is the normalization factor, such that

∑
ι,κ p (ι, κ |µ) = 1. Because

of the limited support of the Parzen window functions, one x contributes
to four bins of the histogram.

The marginal probability density functions can be obtained like

pfix (ι) =
∑

κ

p (ι, κ |µ) (4.13)

and

pmov (κ) =
∑

ι

p (ι, κ |µ) . (4.14)

4.4 Moving Image Model

The evaluation of (4.12) requires interpolation of the moving image at ar-
bitrary coordinates: fmov (T (x |µ)). Different interpolation schemes are
possible and the choice is usually a trade-off between accuracy and speed.
Like Thévenaz and Unser [97], and Mattes et al. [67], we choose cubic B-
splines for this task and the moving image intensity at arbitrary coordinates
is interpolated like

fmov (x) =
∑

j

bjβ3 (x− j). (4.15)

The B-spline coefficients bj are obtained by recursive filtering of the mov-
ing image samples [100, 101]. They are located on a regular mesh, which
coincides with the position of the moving image voxels. Again, the cubic B-
spline weights only evaluate to nonzero values in a neighborhood of control
points.

The choice of the interpolation method is related to the chosen optimiza-
tion strategy (see following section), which requires the computation of the
gradient of the moving image. The additional complexity of cubic B-spline
interpolation (for example compared to trilinear interpolation) is justified
by the advantages in achieving better registration accuracy and converging
in fewer iterations because of the better estimation of the image gradient
[56]. Pluim et al. [81] and Hill et al. [41] compare different interpolation
methods and associated problems.



4.5 Optimization Strategy 55

4.5 Optimization Strategy

The optimal transformation parameters are found as

c∗ = argmin
c

S (t,A, c) . (4.16)

We can write the parameters c (the B-spline coefficients of the transforma-
tion) as a sequential array (c1, c2, . . . cn). In 3D, there are three coefficients
per grid knot. We apply a gradient descent optimizer with feedback step
adjustment [57] to iteratively solve the minimization problem. In each it-
eration, a new set of coefficients cn+1 is calculated based on the old set cn

according to
cn+1 = cn + λ∇S. (4.17)

This optimizer requires the calculation of the gradient of the metric with
respect to the transformation coefficients, which is given as

∇S =

[
∂S

∂c1

,
∂S

∂c2

, . . . ,
∂S

∂cn

]
(4.18)

The step size λ is updated after each gradient descent step, depending on
the success of the step. A step is successful if the condition S(cn+1) ≤ S(cn)
is met. After a successful step, λ is doubled. After an unsuccessful step, λ
is divided by ten and the new set of parameters is discarded (cn+1 = cn).

The chosen representations of the transformation, the probability den-
sity functions and the moving image, allow computing the gradient in closed
form. The derivative of S with respect to a transformation coefficient ci is

∂S(c)

∂ci

= −
∑

ι

∑
κ

∂p (ι, κ; c)

∂ci

log

(
p (ι, κ; c)

pmov (κ; c)

)
. (4.19)

This step is described in detail in [97] and bases on the assumption that the
marginal probability density function of the fixed image pfix is independent
of the transformation parameters (the fixed image is not deformed). The
joint probability density function is calculated over the region of overlap V
in (4.12) and V may change with c. This and the fact that pfix is calculated
from p in (4.13) seems to imply that pfix depends on c. However, due to
the discrete nature of V , an infinitesimal change of a parameter ci does not
result in an infinitesimal change of the overlap region. Therefore dV/dci is
zero almost everywhere.



56 Implemented Registration Algorithm

The derivative of the joint probability density function with respect to
the parameter ci is obtained by multiple application of the chain rule:

∂p (ι, κ; c)

∂ci

=α
∑
x∈V

β0

(
ι− ffix (x)− ifix,min

lfix

)
× β3 (τ)

∂τ

∣∣∣∣
τ=κ−

fmov(T (x|c ))−imov,min
lmov

×

(
−dfmov(ξ)

dξ

∣∣∣∣
ξ=T (x;c)

)T

· ∂

∂ci

T (x; c) , (4.20)

where (
dfmov(ξ)

dξ

∣∣∣∣
ξ=T (x;c)

)T

(4.21)

is the gradient of the moving image, which is continuous due to the high
order interpolation. The term

∂

∂ci

T (x; c) (4.22)

depends on geometry only. It is the variation of the transformation function
depending on the variation of the parameter ci. Because of the limited
support of the B-spline basis function, (4.22) results in a vector with all
components zero for x which are not in the neighborhood Nci

of the grid
knot corresponding to ci. Within the support region, the resulting vector
has exactly one nonzero component.

The sum in (4.20) can be calculated over a subset of V . If we combine
(4.19) and (4.20) after reordering, we get

∂S(c)

∂ci

=α
∑

x∈Nci

∑
ι

∑
κ

log

(
p (ι, κ; c)

pmov (κ; c)

)

β0

(
ι− ffix (x)− ifix,min

lfix

)
× β3 (τ)

∂τ

∣∣∣∣
τ=κ−

fmov(T (x|c ))−imov,min
lmov

×

(
dfmov(ξ)

dξ

∣∣∣∣
ξ=T (x;c)

)T

· ∂

∂ci

T (x; c) . (4.23)



4.5 Optimization Strategy 57

For each x, the term

β0

(
ι− ffix (x)− ifix,min

lfix

)
(4.24)

is nonzero for exactly one ι only. For this ι0 (x), it evaluates to 1. Further-
more, the term

β3 (τ)

∂τ

∣∣∣∣
τ=κ−

fmov(T (x|c ))−imov,min
lmov

(4.25)

is nonzero only for four adjacent κ, starting with κ0 (x). Therefore, (4.23)
can be written as

∂S(c)

∂ci

=α
∑

x∈Nci

κ0(x)+3∑
κ=κ0(x)

log

(
p (ι0 (x) , κ; c)

pmov (κ; c)

)

× β3 (τ)

∂τ

∣∣∣∣
τ=κ−

fmov(T (x|c ))−imov,min
lmov

×

(
dfmov(ξ)

dξ

∣∣∣∣
ξ=T (x;c)

)T

· ∂

∂ci

T (x; c) , (4.26)

The values

log

(
p (ι, κ; c)

pmov (κ; c)

)
(4.27)

can be precomputed.
A multiresolution approach may increase robustness and speed [57],

meaning that the original images are first downsampled and pyramids of
the images of decreasing resolutions are built. The registration starts at
the lowest image resolution and then successively moves down the pyramid
until the desired resolution has been reached. The grid of control points
gets refined at transitions between pyramid levels and initialized with the
transformation found in the preceding level.



58 Implemented Registration Algorithm



5
Parallel Algorithm Design

5.1 Problem Analysis

5.1.1 The Algorithm

The sequential nonrigid registration algorithm described in the preceding
chapter follows the steps listed in listing 5.1.

Listing 5.1: Algorithm pseudo-code

1 for each iteration of the gradient descent
optimizer

2 i t erate over all fixed image points // loop A1

3 evaluate transformation function
4 i t erate over all fixed image points // loop A2

5 interpolate moving image intensity at
respective coordinates

6 i t erate over all fixed image points // loop A3

7 get fixed image intensity
8 get moving image intensity
9 add entry to joint histogram

10 calculate joint and marginal probability density
functions



60 Parallel Algorithm Design

11 calculate the mutual information
12 precompute pdf ratios
13 i t erate over all fixed image points // loop A4

14 evaluate transformation function
15 i t erate over all fixed image points // loop A5

16 interpolate moving image intensity and its
gradient

17 i t erate over all transformation grid knots //

loop A6

18 i t erate over all points in the neighborhood
19 get fixed image intensity
20 get moving image intensity and its gradient
21 get respective pdf ratio
22 calculate the gradient of the metric at this

point and add it to the total gradient of
the respective grid knot

23 calculate the new set of coefficients //

gradient descent (gd)

In line 11, the mutual information is calculated. If we are not in the
first iteration and the metric calculated during the preceding iteration was
better, this means that the preceding gradient descent step (line 23) resulted
in an inferior set of coefficients. This set is discarded and the last successful
set is reloaded. Therefore, the gradient does not have to be recalculated
(loops A4 to A6) but the old gradient can be used again with a different
step size of the gradient descent optimizer. The pdf ratios in line 12 are the
values (4.27), which are precomputed.

Figure 5.1 shows a producer-consumer diagram, which indicates which
phases of the algorithm produce what data and where these data are con-
sumed. Our goal is to accelerate this algorithm. In a first step, optimiza-
tions of the (sequential) algorithm are discussed and remaining bottlenecks
identified. In a second step, the algorithm is parallelized.

5.1.2 Performance Bottlenecks

In order to identify the performance bottlenecks, we profiled 30 iterations of
the sequential registration algorithm on a standard processor using images
with 181×217×181 voxels (isotropic spacing of 1 mm) and a transformation
grid spacing of 16 mm. Before we start looking into the parallelization of
the algorithm, we try to find ways to optimize the sequential algorithm.



5.2 Optimizations 61

Fig. 5.1: The producer-consumer diagram shows in which phases (blobs at the
bottom) of the algorithm data structures (rows) are read or written. It
shows, from left to right, the flow during one iteration. In phase A1, for
example, the coefficients (c) are read and the dense transformation field
is written (trafo field). The other important data structures are the fixed
image (fix img), the interpolation coefficients of the moving image (mov
img), the histogram (histo), the gradient of the metric with respect to
the transformation coefficients (grad c), the transformed moving image
(trafo img) and the gradient of the transformed moving image (trafo
img grad). The phase “mi” combines lines 10 to 12 of the pseudo-code.
Based on the histogram it calculates the mutual information and stores
the pdf ratios (4.27) to the histogram data structure. These values are
used in phase A6.

With a system profiler (Oprofile, see [4, 21]), it is possible to measure how
much CPU time is attributed to each line of source code. For our workload,
it reveals that more than 70% are spent with B-spline computations of the
form

f = cβxβyβz, (5.1)

and computation of the sums of these products of B-spline coefficients c and
weights β.

5.2 Optimizations

5.2.1 B-Spline Interpolation

We have seen that a large part of the computation time stems from the
evaluation of the cubic B-spline weights and their multiplication with the
B-spline coefficients when computing the transformation and moving-image
interpolation. Because of the limited support of the cubic B-splines, the
evaluation in the 1D case is a weighted sum of four coefficients. In the



62 Parallel Algorithm Design

3D case we need to work on a 4 × 4 × 4 neighborhood of x to evaluate
Tnonrigid (x) or fmov (x). The basic 3D B-spline formula is

f (x) =
∑

i,j,k=0..3

ci,j,kβx,iβy,jβz,k, (5.2)

where f is one component of the transformation function or the moving
image intensity, ci,j,k are the coefficients with nonzero weight and the β are
the B-spline weights.

The computation of each of the three components of the transformation
vector is carried out independently, using the same weights β but different
coefficients. The computation of the gradient (4.26) also involves multipli-
cation with B-spline weights, because of its last factor ∂

∂c
T (x).

5.2.2 Use of Lookup Tables

In the case of the transformation function, we constrained the grid point
spacing to be an integer multiple of the voxel spacing. As shown by Ky-
bic and Unser [57], this allows the use of a lookup table for the B-spline
weights instead of their explicit calculation at runtime without any loss of
accuracy. Therefore, all the calculations of B-spline weights β are related
to the moving image interpolation. Instead of using the exactly mapped co-
ordinates for this interpolation, we can round the coordinates to a subgrid,
for example with a spacing of 1/64 of the voxel size. A lookup table of the
B-spline weights at the subgrid control points can then be calculated off-line
and used during the registration. Such lookup tables are relatively small:
an image subgrid table as defined before has 64 entries each containing four
single-precision float coefficients {βx,0, βx,1, βx,2, βx,3} (βx,0 = βy,0 = βz,0, . . .)
and therefore occupies 1kByte.

5.2.3 Vectorized B-Spline Interpolation

Many processor architectures feature some sort of SIMD (single instruction
multiple data) extension. This technique, also called vector processing,
provides data level parallelism by allowing to perform an instruction, for
example a multiplication, on multiple data values at the same time. SSE
(Streaming SIMD Extensions) for x86 processors or AltiVec for the Power
architecture work on 128-bit registers, allowing for example to multiply in
one operation two vectors consisting of four single precision float values



5.2 Optimizations 63

each. The vector size is possibly a good match for cubic B-splines, which
work on a 4× 4× 4 neighborhood.

When rearranging (5.2), we get

f (x) =
∑

i=0..3

βx,i

∑
j=0..3

βy,j

∑
k=0..3

ci,j,kβz,k (5.3)

A scheme to vectorize this calculation is illustrated in figure 5.2. We have
16 vectors of four B-spline coefficients each (arranged like the blue lines).
We multiply each of the vectors with the correct βz value (they are arranged
as vectors in the lookup table) and added in groups of four based on their y
index yielding four vectors (green). They are multiplied with the βy weights
and added to obtain the orange vector. The scalar result is found as the
sum of the four components of the product of the orange vector with the
βx weights.

4
x
4
 m

u
ltip

ly
-a

d
d

k=2

k=3

k=1

k=0

i=0..3

        4x
multiply-addj=0..3

multiply and
sum of elements

Fig. 5.2: Vectorized B-spline interpolation. Each colored line represents a SIMD
vector containing four B-spline coefficients. For the vectorized spline
evaluation, each of the 16 blue vectors is first multiplied with a vector
containing the corresponding weights βz. The results are added in groups
of four to obtain the four green vectors. Vectors containing coefficients
at the same y coordinate are in the same group. The green vectors are
then multiplied with the corresponding weights βy and added to obtain
the orange vector. This vector is multiplied with the weights βx and the
four components of the result are added to obtain the final result of the
interpolation.



64 Parallel Algorithm Design

5.2.4 Optimized Transformation Field Evaluation

Let us assume that the transformation grid spacing is 16 voxel units in all
directions. It is efficient to calculate Tnonrigid (x) together for groups of fixed
image points that depend on the same B-spline coefficients, in our example
163 = 4096 points. All the points of this group with the same z-coordinate
(sub-groups of 162 = 256 points) share the first step of the computation,
the reduction from 16 blue to four green vectors, because the same weights
βz are used. If they additionally have the same y-coordinates (sub-groups
of 16 points), they even share both the first and second step up to the
reduction to one orange vector. If each point is processed individually,
163× (16 + 4 + 1) = 86016 vector multiplications are required for the entire
group. With grouping, the number of vector multiplications is reduced to
only 16× 16 + 162 × 4 + 163 × 1 = 5376.

A common overhead of SIMD parallelism is that the data has to be
loaded to the vector processing registers. In the case of the Cell/B.E. pro-
cessor, for example, the vector data can only be loaded efficiently from
memory if the elements are stored at continuous memory locations, starting
at a 16-Byte-aligned address. If the vector data are scattered in memory
or not properly aligned, they have to be loaded using multiple load oper-
ations and further processing is required to assemble the vectors from the
loaded data. We will see in section 6.1.7 that this can severely impact per-
formance. While the weights in the lookup tables can be stored as aligned
vectors, this is not possible for the transformation coefficients. However,
if the fixed image points are processed group-wise, the coefficients have to
be loaded and assembled only once for the entire group, which makes this
overhead negligible compared to the actual computation.

5.2.5 Optimized Image Interpolation

For the moving image interpolation, a similar grouping is impossible be-
cause it is sampled irregularly (the transformed fixed image coordinates are
not on a regular grid) and also not many points depend on the same moving
image coefficients. But we can efficiently combine the calculation of the im-
age intensity and its gradient (which has three components). The gradient
in x-direction, for example, is obtained by using different weights β′x instead
of βx in (5.3): the derivatives of the B-spline base function at the subgrid
positions, which are also stored in a lookup table. For a combined calcula-
tion of intensity and gradient, we reduce the 16 vectors once by applying the



5.2 Optimizations 65

x

z'z

y y' y

x' x x

f df/dx df/dy df/dz

2x4x4 multiply-add

3x4 multiply-add

4x1 multiply and
sum of elements

Fig. 5.3: Optimized image interpolation. Each colored line represents a SIMD vec-
tor containing four B-spline coefficients. For the concurrent evaluation of
the image and its gradient at one coordinate, each of the 16 blue vectors
is first multiplied with a vector containing the corresponding weights βz.
The results are added in groups of four to obtain the first set of four
green vectors. Vectors containing coefficients at the same y coordinate
are in the same group. A second set of four green vectors is obtained by
repeating the previous steps with weights β′z instead of βz. Three dif-
ferent orange vectors are obtained by multiplying and adding the green
vectors with weights βy or β′y respectively. The value f as well as its
three derivatives can each be computed from the product of an orange
vector with the corresponding βy or β′y by addition of its components.



66 Parallel Algorithm Design

weights βz and another time using the weights β′z in the first step, yielding
two sets of the green vectors (Figure 5.3). The βz-set is again reduced using
both βy and β′y and the other set is reduced using βy only. This yields three
different versions of the orange vector based on different combinations of
weights. To obtain the image intensity we use the vector based on βz and
βy and do the 3rd step with weights βx. The x-component of the gradient
is calculated by applying β′x to the same orange vector. Using weights βx

for the other two orange vectors yields the other two components of the
gradient.

With this optimization, the required vector multiplications are almost
halved from 4 × (16 + 4 + 1) = 84 to 2 × 4 × 4 + 3 × 4 + 4 × 1 = 48 per
point, and the vector load and assemble operations are reduced by a factor
4 if the moving image intensity and its gradient are calculated together.

5.2.6 Gradient Calculation

For the calculation of the derivative of the metric with respect to a coefficient
we have to combine the contributions of all voxels in its support region. This
was equation (4.26), which we repeat here:

∂S(c)

∂ci

=α
∑

x∈Nci

κ0(x)+3∑
κ=κ0(x)

log

(
p (ι0 (x) , κ; c)

pmov (κ; c)

)

× β3 (τ)

∂τ

∣∣∣∣
τ=κ−

fmov(T (x|c ))−imov,min
lmov

×

(
dfmov(ξ)

dξ

∣∣∣∣
ξ=T (x;c)

)T

· ∂

∂ci

T (x; c) , (5.4)

The corresponding part of the pseudo-code is in listing 5.2.

Listing 5.2: Pseudo-code loop A6

1 i t erate over all transformation grid knots //

loop A6

2 i t erate over all points in the neighborhood
3 get fixed image intensity
4 get moving image intensity and its gradient
5 get probability density function derivative



5.2 Optimizations 67

6 calculate the gradient of the metric at this
point and add it to the total gradient at
this grid knot

The outer loop is over all the knots of the transformation grid; the inner
loop is over all the fixed image points in the neighborhood of that point.
Each fixed image point is in the neighborhood of 4× 4× 4 grid knots. For
the respective computation of (4.26) at different grid knots, only the last
factor

∂

∂ci

T (x; c) (5.5)

varies. This is the geometry-dependent part of the gradient. For the B-
spline transformation model, it results in

∂

∂cî,ĵ,k̂

T (x) =
∂

∂cî,ĵ,k̂

∑
i,j,k=0..3

ci,j,kβx,iβy,jβz,k = βx,̂iβy,ĵβz,k̂ (5.6)

with the same weights β as for the computation of the transformation.

Reordering allows a more efficient processing. We move the loop over
the image points outwards to get

Listing 5.3: Pseudo-code loop A6

1 i t erate over all points of the fixed image
2 i t erate over all transformation grid knots in

the neighborhood
3 get fixed image intensity
4 get moving image intensity and its gradient
5 get probability density function derivative
6 calculate the gradient of the metric at this

point and add it to the total gradient at
this grid knot



68 Parallel Algorithm Design

As a first consequence, we can reuse the computation of the geometry-
independent part of the computations in (5.4) related to one x

κ0(x)+3∑
κ=κ0(x)

log

(
p (ι0 (x) , κ; c)

pmov (κ; c)

)

× β3 (τ)

∂τ

∣∣∣∣
τ=κ−

fmov(T (x|c ))−imov,min
lmov

×

(
dfmov(ξ)

dξ

∣∣∣∣
ξ=T (x;c)

)T

(5.7)

to calculate the contribution of this x to all coefficients in its neighborhood.
Furthermore, the fact that the loop over the voxels now is the outermost
one allows a similar grouping like before. In contrast to the evaluation of
the transformation function at one point, this operation is not a reduction
of the 64 coefficients to a scalar value but the spreading of scalars (the
geometry independent part (5.7)) to the 64 nonzero gradient entries in its
neighborhood with different weights, meaning that the path in figure 5.2 is
followed in opposite direction. This is reflected in the geometry-dependent
part (5.6), where certain multiplications of B-spline weights are shared by
multiple knots. First, we generate a vector for each point in the group.
For instance, if we want to compute the gradient in x direction, we set all
the elements of such a vector to the x-component of the image gradient at
the corresponding point. This yields 163 = 4096 vectors for a transforma-
tion grid spacing of 16 voxel units. After multiplying each vector with its
corresponding weights βx, sub-groups of 16 resulting vectors belonging to
points with the same y and z coordinates can be added to obtain one vector,
yielding a total of 162 vectors. After multiplying each of these vectors with
weights βy,0,βy,1,βy,2 and βy,3 and collecting the sums for corresponding co-
ordinates z, 4×16 vectors are obtained. The final step is multiplication and
collection for weights βz to obtain the 16 gradient vectors for this block.
This again significantly reduces the multiply and multiply-add operations.

Moreover, the 16 gradient vectors have to be read and written back once
for the entire group instead of once per fixed image point.



5.3 Parallelization Platform 69

5.2.7 Conclusions

A large part of the algorithm runtime is spent with B-spline computations.
In this section, some optimizations regarding these computations were in-
troduced. These apply to the sequential nonrigid registration algorithm,
but will also be beneficial for the parallelization. A detailed analysis of the
impact on performance will follow in the next chapter.

5.3 Parallelization Platform

5.3.1 Profiling

We repeat the experiment from section 5.1.2 with the optimized sequential
registration algorithm. This time we measure the time spent in each block
of the pseudo-code in listing 5.1 (with restructured A6). The results in
table 5.1 show that most of the processing time is distributed over loops A1
to A6. The gradient descent optimizer and the computation of the metric
are only minor contributors to the total runtime. Although loops A1 and A4
do the same computation, A1 has a larger share of the total runtime. This is
because loops A4 to A6 do not have to be executed for every iteration. If the
preceding gradient descent step was unsuccessful, these loops are skipped
because the gradient from the preceding iteration can be used.

task % of iteration

loop A1 6.55
loop A2 37.30
loop A3 10.56
mi (lines 10 to 12) 0.006
loop A4 4.67
loop A5 26.00
loop A6 14.91
gd (line 23) 0.003

Tab. 5.1: The percentage of the time spent for each sub-task of the algorithm



70 Parallel Algorithm Design

5.3.2 Theoretical Limitations

Assuming that the problem size is fixed and P is the proportion of the algo-
rithm which can be parallelized, Amdahl’s law [7] implies that the maximum
speedup using N processors is

SN =
1

(1− P ) + P
N

. (5.8)

The upper bound to the speedup can be calculated as

S∞ = lim
N→∞

1

(1− P ) + P
N

=
1

(1− P )
. (5.9)

The loops A1 to A6 account for 99.991% of the runtime. If they are
all parallelized, the upper bound of the possible speedup is S∞ ≈ 10000.
Because P usually depends on the problem size, this bound is only valid for
the image size used for the measurements. But the numbers qualitatively
show that good speedups can be achieved if all the loops are parallelized.

However, if just one loop cannot be parallelized, the predictions imme-
diately become less optimistic. If, for example, A3 remains sequential, P
becomes 0.8943 and S∞ ≈ 10.

5.3.3 Limitations for GPUs

Histogram computation (loop A3) is a task for which GPUs were known to
be not suitable. The problem is that the calculation of the histogram re-
quires per point-pair a data dependent memory read-modify-write operation
of the form

hist[fixed img intensity][floating img intensity]+ = c, (5.10)

where the value in one histogram bin is incremented by c. For our Parzen
window approach, even four such operations are required per point pair.
While this is a simple task for a CPU, it is difficult to map it to the GPU
architecture.

As discussed in section 3.5, traditional GPUs read data from the device
memory (vertices, textures), pass them through the graphics pipeline and
write the result to the render target in device memory. In this scheme, the
write accesses are deterministic: the result (the color of the pixel in the



5.3 Parallelization Platform 71

render target) depends on the computations in the graphics pipeline, but
not the location to which it is written (target pixel coordinates). However,
for the histogram computation, random (data-dependent) write access is
required.

Another issue is that the device memory is external DRAM and thus has
a relatively high latency. There are on-chip caches, but they are read-only.
Therefore, the histogram needs to be accommodated in external memory.
A further complication is that the histogram is at the same time input and
output of the increment function.

An implementation by Green [33] required one pass over the entire image
per histogram bin. All the values which are not in the respective bin of the
pass are masked out. The number of values which are not masked out
are accumulated and the result is written to the corresponding bin. For a
histogram with 322 bins, a prohibitively high number of 1024 passes would
be required. Khamene et al. [50] came to the conclusion that mutual
information cannot be implemented on GPUs.

During the work on this dissertation, GPUs have evolved. The latest
GPUs have an on-chip shared memory, which is writable and enables more
efficient histogram implementations for small bin counts [82]. However, the
relatively large joint histograms used by the algorithm do not entirely fit into
the shared memory, which prohibits a single-pass solution. Moreover, as its
name says, the shared memory is shared by a group of threads. Therefore,
write accesses have to be synchronized, which imposes an additional over-
head. However, with the trend toward more general purpose architectures,
future GPUs may very well overcome these limitations.

5.3.4 Target Platform for Parallelization

GPUs and the Cell/B.E. processor have a high potential for number-crunch-
ing applications. They are also relatively cheap, compared to large multi-
processor systems for example. To exploit these architectures, algorithms
need to be parallelizable and mappable to the memory hierarchy of these
architectures. GPUs are even more specialized than the SPEs on the Cel-
l/B.E. processor. In the preceding section, we have seen that the memory
model of GPUs is not suitable for the computation of the mutual infor-
mation. However, the profiling of the algorithm showed that loop A3, the
computation of the mutual information, has a significant share of the total
runtime and therefore the maximum speedup achievable by parallelization



72 Parallel Algorithm Design

is not very high if loop A3 remains sequential.
Because of current limitations of GPUs, the Cell/B.E. architecture was

chosen as the target platform for the parallel nonrigid registration algorithm.
Furthermore, small clusters of this architecture shall be considered.

5.3.5 Master-Worker Programming Model

A suitable programming model to implement such algorithms on the Cel-
l/B.E. architecture is having a master thread running on the PPE and a
group of worker threads running on the SPEs. If a sequential implementa-
tion of the algorithm is available, it can directly be compiled for the PPE,
which is a general purpose processor core. The computationally intensive
parts of the algorithm are partitioned and offloaded to the worker threads.
The master thread runs on the PPE and takes care of the remaining se-
quential part and the synchronization of the worker threads. The number
of worker threads is equal to the number of SPEs. The size of an SPE’s
local store (LS) is limited and has to accommodate instructions and data.
Worker threads therefore tend to be relatively simple compute kernels.

This programming model can also be applied to systems with GPUs,
which usually consist of a general purpose processor and an attached GPU.
The master thread would run on the general purpose processor and the
worker threads on the GPU. If future generations of GPUs allow to effi-
ciently compute the joint histogram, the same parallelization scheme could
be used.

General purpose multicore architectures also support the master-worker
programming model. Because the master thread usually does not work in
parallel with the worker threads, on a chip with four cores a master thread
and up to four worker threads would be instantiated with the operating
system taking care of the thread scheduling.

5.3.6 Conclusions

The six loops A1 to A6 together account for 99.991% of the runtime of the
iterative optimization process. This makes them candidate functions for
parallelization. They should be offloaded to parallel worker threads. Target
platforms for the implementation of the algorithm will be the Cell/B.E.,
which provides a very high computational performance compared to stan-
dard CPUs. GPUs are not considered for implementation because of known



5.4 Data Locality 73

limitations for mutual information computation.

5.4 Data Locality

On the Cell/B.E. processor, data transfers between the SPE’s local store
and main memory are managed explicitly by the program and not by a
hardware cache hierarchy. This means that complexity is removed from
hardware and added to software. The advantage is that software is provided
with the full flexibility to manage data locality and to control data-transfer
granularity. Producer-consumer locality can also be exploited in order to
avoid redundant write-backs of temporary results to main memory.

5.4.1 Producer-Consumer Locality

Fig. 5.4: Producer-consumer relationship for the different data structures. In loop
A1, for example, the dense transformation field is computed based on
the transformation coefficients. This field is then used in loop A2 to
transform the moving image. Block-wise processing allows to keep the
temporary result, the transformation field, in the local store in spite of
its limited size.

In sections 5.2.4 and 5.2.6, we have seen that it is efficient to process
groups of points of the fixed image together, if the computation of the
transformation function for these points depends on the same B-spline co-
efficients. These coefficients are located on a regular grid. Therefore, the
groups are cuboids of the fixed image, or cubes in the case of a uniform
grid.



74 Parallel Algorithm Design

In the producer-consumer diagram (Figure 5.1), we see that in phase A1
the dense transformation field is calculated and written to main memory
and then used in phase A2. Although these two loops will be offloaded
to the SPEs, these temporary data have to be written to main memory
because they are too large to be kept in the local store (or cache in the case
of a general purpose processor). However, if we only process a subset of the
image at a time, such that the temporary results fit into the local store,
we can execute A2 after A1 without transferring the dense transformation
field to main memory and back to local store. Memory transfers are further
reduced by keeping the transformed moving image between phase A2 and A3
in the local store. Similar optimizations also apply between stages A4 and
A5, as well as A5 and A6. For A6, this is possible because we restructured
this block in section 5.2.6, such that the outermost loop iterates over all
fixed image points. Figure 5.4 shows how the data structures are distributed
between local stores of the SPE and global system memory. For now, we
assume that loops A1 to A6 run on one single SPE and the phases “mi”
and “gd” on the PPE. The phases are executed one after another. There is
no thread-level parallelism.

We decide to process sub-blocks of 8 × 8 × 8 voxels of the fixed image
at a time. Furthermore, the transformation grid spacing is restricted to be
a multiple of the image-block width or vice versa. Possible grid spacings
are therefore 1, 2, 4, 8, 16, 24, 32, etc. voxel units. These restrictions
allow to implement the optimized field and gradient computations within
an image-block. However, the grid does not necessarily have to be isotropic.
For example, a spacing of 16 voxel units in x- and y-direction and a spacing
of 8 in z-direction is possible.

Choosing a power of two value as the block width allows to efficiently
convert integer voxel coordinates to block coordinates. Instead of an integer
division or multiplication, a shift operation can be used. For a block width
of 8, the voxel coordinates have to be shifted 3 bits to the right to obtain
the block coordinates.

To temporarily store the dense transformation field for a block as single
precision float vectors, 8 kByte are required. Although a larger block size
possibly allows better optimized computation (e.g. in the case of a grid
spacing of 16), the local store would be too small. For a block width of 16,
64 kByte would be required to hold the temporary dense transformation
field. Because the 256-kByte local-store also has to accommodate other
data, for example image data and the instructions of the program, it is too



5.4 Data Locality 75

small for a larger block size.
The entire histogram data structure is kept in the local store of the SPE

during the block-wise processing of the loops A1 to A3. We restrict its size
to a maximum of 64 × 67 = 4288 bins (67 bins because of the additional
three bins for the padding for the moving image Parzen window). After
processing the last block, the histogram is transferred to main memory to
be used on the PPE.

5.4.2 Spatial Locality

During the processing of the (cubic) groups of fixed image points, we also
have to fetch the fixed image intensities (e.g. for phase A3) and the mov-
ing image coefficients (e.g. for phase A2) for the entire group. This works
especially efficient if the required data are located at neighboring memory
locations. Hardware cache-mechanisms try to exploit the principle of lo-
cality of reference. If a particular memory location is accessed at a point
in time, they expect neighboring memory locations to be accessed shortly
afterwards. On the Cell/B.E., the SPEs load data by DMA transfers of vari-
able length. However, a few large transfers are more efficient than many
small ones [52]. Thus, on both platforms it is beneficial if a block of image
data has a high spatial locality instead of being scattered in memory.

The fixed and the moving image are large 3D arrays of data. There are
different ways how to store them in the one-dimensional memory address
space. Row-major mapping means that the elements of the 2D array

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

 (5.11)

are stored like 0, 1, 2, . . . , 23 to linear memory. By block-2 mapping, we
mean that the array is stored block-wise row-major, with a block width of 2.
Thus, the same array would be mapped to memory in the following order:
0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 10, 11, 12, 13, 18, 19, 14, 15, 20, 21, 16, 17, 22, 23.

In the context of 3D images, we assume that row-major means that if
the image data are traversed linearly in memory, the x-coordinate changes
fastest and the z-coordinate slowest. We choose to store fixed and moving
image data in block-8 mapping because it improves spatial locality compared
to row-major and also yields moderate block-sizes, such that multiple image



76 Parallel Algorithm Design

0 5 10 100
0

...

5

10

..
.

100

0 5 10 100
0

...

5

10

..
.

100

0x0000

0x0200

0x0400

0x0600

0x0800

0x1000

0x1200

0x1400

block-8 mapping row-major mapping

block-8 mapping row-major mapping

0x0000

0x0200

0x0400

0x0600

0x0800

0x1000

0x1200

0x1400

0x0000

0x0200

0x0400

0x0600

0x0800

0x1000

0x1200

0x1400

0x0000

0x0200

0x0400

0x0600

0x0800

0x1000

0x1200

0x1400

Fig. 5.5: This figure compares block-8 and row-major mapping for a 1002 pixel
2D image. A fixed image block aligned like in the highlighted region in
the upper part of the figure is required per pass of phase A3. While this
leads to scattered memory accesses in the case of row-major mapping,
all the required data are in a continuous memory block in the case of
block-8 mapping. The moving image is accessed within the transformed
fixed image region, which corresponds, for example, to the highlighted
region in the lower part of the figure. Although the perfect alignment for
these memory reads is lost, block-8 mapping still provides better locality
than row-major mapping if we assume coarse-grained memory accesses
of one line each.



5.4 Data Locality 77

blocks easily fit into the local store. If the image size in any dimension is
not a multiple of 8, the image is padded so that all the blocks have the
same size. Figure 5.5 shows the block-8 and row-major memory mapping
of image blocks for the 2D case.

5.4.3 Storing Intermediate Results for Reuse

Fig. 5.6: Phases A4 and A5 can be removed if we compute the transformed moving
image and its gradient in phase A2 and keep the results in main memory
for use in phase A6.

There are redundant computations in the algorithm. In the producer-
consumer diagram (Figure 5.4), phases A1 and A4 do identical computa-
tions. Furthermore, the transformed moving image is computed in phases
A2 and A5. In phase A5, the gradient of the transformed moving image
is computed additionally. As discussed in section 5.2.5, calculation of the
transformed image and its gradient are done most efficiently together. We
therefore do both computations already in phase A2 (now called A2’) and
temporarily store them in main memory for re-use in phase A6, which al-
lows skipping of phases A4 and A5 (Figure 5.6). Phase A3 can still use the
transformed moving image data directly from local store. We will see later
that the transfer of temporary data to main memory can be hidden using
double buffering and therefore does not impose any significant overhead.
However, additional memory for the temporary data is required.



78 Parallel Algorithm Design

5.5 Parallelism 1: Multiple SPEs

5.5.1 Parallelization

After profiling, loops A1 to A6 were identified as the phases of the algorithm
to be parallelized. For these parts, the data points in the fixed image
are processed block-wise. This does not only improve the locality of data
accesses, but it also allows to process one block of data independently from
the others throughout A1 to A3 and then A4 to A6 (or just A6 if the
temporary results are stored for re-use). For a relatively small image with
1283 voxels, we get 163 = 4096 blocks. If NWB is the number of (work-
)blocks and NT the number of threads, NWB � NT will be assumed. This
allows to distribute the workload block-wise among the SPEs. Each block
gets assigned to one SPE and the SPEs can work on their blocks in parallel.

In the next chapter, a performance analysis of the parallel registration
algorithm will follow. This analysis bases on model functions for the runtime
of each of the phases of the algorithm. In this analysis, the first group of
parallelized loops (A1 to A3) are called “phase B1”. A4 and A5 are not
executed (temporary buffering is activated). For consistency, loop A6 is
called “phase B2”. The runtimes of these two phases are modeled using the
functions

tB1 (NP , NI , NT ) = cB1
NP NI

NT

(5.12)

tB2 (NP , NI , NT ) = cB2
NP NI

NT

(5.13)

with constants cB1 and cB2 to be determined. NP is the number of points in
the fixed image; the runtime is expected to grow linearly with the image size.
The runtime should also depend linearly on NI , the number of iterations of
the algorithm. A higher number of parallel threads NT reduces the workload
per thread. Thus, an inverse proportionality of the runtime can be assumed.

5.5.2 Compute Kernels

The functions that are offloaded to the SPEs are relatively simple and addi-
tionally they share multiple sub-functions related to B-spline computations.
This allows us to implement one program capable of executing all these func-
tions. At the start of the registration application, this program is loaded
to each SPE, where it is continuously running. It receives messages from



5.5 Parallelism 1: Multiple SPEs 79

the master thread, for example “execute loop A6 on assigned work blocks”.
After finishing, it sends a completion message back to the master thread,
which waits until it received all completion messages. Having one single
program running on the SPEs removes the overhead of loading a separate
program each time a function is called. The assignment of work blocks
to worker threads is static and defined at startup. All work blocks take
roughly the same time for processing. Thus, not much can be gained by a
dynamic load-balancing. There is less communication overhead for static
assignment than, for example, in the case of a work queue. In such a setup,
the master thread would add work blocks to a queue and the worker threads
dynamically fetch the first element of the queue to process until the queue
is empty. This requires communication between an SPE and the PPE for
each work block.

5.5.3 Synchronization and Coherency

When multiple threads work on the same data structures in parallel, care
has to be taken when data are modified, similar to shared-memory multi-
processor systems.

The fixed and moving image data are not modified throughout the reg-
istration, therefore no synchronization or coherency problems occur related
to these two data structures. The transformation coefficients are only mod-
ified during “gd”. This phase runs exclusively on the PPE and therefore no
synchronization is necessary. However, the SPEs cache these coefficients in
the local store. To avoid coherency issues, cached coefficient data have to
be invalidated at the start of every iteration.

Although the worker threads write to the temporary data (transformed
moving image and its gradient), no synchronization is necessary because no
two threads will write to the same location.

However, all the threads write to the histogram and the gradient of
the metric. These are both relatively small data structures compared to,
for example, the fixed image data. To avoid thread synchronization over-
head, these arrays are replicated. Each thread has its private copy in main
memory and writes the histogram of its subset of the image to its private
histogram array. It also does so for the gradient of the metric.



80 Parallel Algorithm Design

5.5.4 Communication

This data replication imposes some additional overhead before phases “mi”
and “gd”. The master thread has to collect the partial results from the
worker threads. In the case of the histogram, the master thread sends
a message to each worker thread, instructing them to transfer their his-
togram array from the local store to main memory. When these transfers
are finished, the master thread computes the sum of the partial results. The
runtime of this function will be modeled as

thsync (NB, NI , NT ) =

(chsync,1 + chsync,2NT + (chsync,3 + chsync,4NT ) NB) NI , (5.14)

with NI being the number of iterations, NB the number of histogram bins
and NT the number of worker threads. The parameters chsync,1, chsync,2,
chsync,3 and chsync,4 are to be determined. chsync,1 and chsync,2 are related to
the latency of messages and data transfers. chsync,3 and chsync,4 address the
operations which do depend on the number of histogram bins, such as data
transfers (additionally to their latency) and especially the computations.

Similar synchronization is necessary to collect the partial gradients and
therefore we will model its runtime as

tgsync (NK , NI , NT ) =

(cgsync,1 + cgsync,2NT + (cgsync,3 + cgsync,4NT ) NK) NI , (5.15)

with NK being the number of knots of the transformation grid.

5.5.5 Model Overview

In the preceding sections, we described the parallel stages of the algorithm
and defined model functions for their runtime with parameters that we
will have to determine later. Similar model functions were derived for the
following communication phases. With the remaining sequential phases of
the algorithm, the overall flow of one iteration consists of six phases 5.7.

To complete the introduced model, we define functions for the runtime of
the sequential stages. The time required for the computation of the metric

tmi (NB, NI) = cmiNBNI (5.16)

is proportional to the number of histogram bins and the number of itera-
tions.



5.6 Data Transfers 81

Fig. 5.7: One iteration of the parallel nonrigid registration algorithm has six stages.
Two parallel computation stages (B1 and B2), each one followed by com-
munication phases (hsync and gsync). The two sequential parts are “mi”,
computation of the mutual information metric and related calculations
(lines 10 to 12 in listing 5.1), and “gd”, the gradient descent optimizer.

The coefficients are updated per gradient entry and thus we estimate
the runtime to be proportional to the number of knots NK and the number
of iterations NI .

tgd (NK , NI) = cgdNKNI (5.17)

5.6 Data Transfers

5.6.1 Double Buffering

Data to be processed by the SPE and results to be stored back are trans-
ferred between system memory and local store by DMA transfers. Data
transfers are controlled by the MFC and can be in parallel to computations
on the SPUs. Figure 5.8 illustrates how all data transfers can be in parallel
to computations during phase B1.

Double buffering is also possible for phase B2 in a similar manner if no
temporary data are stored. Otherwise we load all the data required to pro-
cess a block (fixed image data and temporary data) during the computations
of the preceding block.

Data accesses have to be predictable to enable prefetching. For most
data, this predictability is given because of the static assignment of work
blocks to worker threads. Each thread knows which block it processes next.
What is not trivial to predict is the access pattern of the moving image data.
The required moving image data are known only after completing the com-



82 Parallel Algorithm Design

Fig. 5.8: Interleaved data transfers. During computations of A1, the moving image
data required in A2’ is transferred to local store. During phase A2’, the
fixed image data required in A3 is loaded. During A3, the temporary
results, which were computed in A2’, are written to main memory for
later re-use. Also, the transformation coefficients required during phase
A1 of the next block to be processes are prefetched.

putation of the mapped coordinates, but we would like these calculations
and transfers to be done in parallel. Therefore, we will introduce a proba-
bilistic approach to prefetching the moving image data in section 5.6.3. But
first, we will discuss the layout of the data cache in the local store.

5.6.2 Caching of Data

The fixed image is processed in groups of 83 voxels, which is the granularity
with which fixed and moving image data are stored. Thus, the image data
caches in the local store are administered with this granularity as well.

The local-store cache layout during phase B1 has one slot for the fixed
image, which contains the currently processed image block. If the voxel sizes
of the fixed and the floating image are similar, we can expect a fixed image
block to overlap with up to 33 = 27 moving image blocks. The moving
image cache is direct mapped1 and has 27 slots. The moving image block
with coordinates {Bx, By, Bz} is mapped to the cache index

i = 9× (Bz mod 3) + 3× (By mod 3) + (Bx mod 3) (5.18)

There is also one additional slot to store vector data (first the dense trans-
formation field for one block, then the gradient of the transformed moving

1For a direct mapped cache, a cache line (in our case an image block) can be placed
just in one specific slot of the cache. A fully associative cache, for example, would allow
any cache line to be mapped anywhere in the cache



5.6 Data Transfers 83

image of this block) and one slot to store scalar data (the transformed mov-
ing image).

In phase B2 (with storing of temporary data), no moving image cache
is required. Part of the local store assigned to this cache can be used
for the double buffering of fixed image and temproary data. To overlap
computations and data transfers of two consecutive blocks, two slots for
each fixed image, temporary scalar and temporary vector data are required.

The amount of transformation coefficient data required to process one
block is much smaller than the amount of image data. Thus, we do not
expect a serious performance impact if these data structures are managed
at a much smaller granularity. For the 43 knots in a neighborhood, the
values associated with adjacent knots in one direction can be placed to
adjacent memory locations. Therefore, these data are moved by 16 DMA
transfers of 64 Byte each (a 16 Byte vector of coefficients per knot).

5.6.3 Probabilistic Prefetching of Moving Image Data

S
P
U

LS

Beginning of A1
T(c)

P
h

ase
 A

2'

P
h

ase
 A

1

Computations in
parallel to DMA

Fixed image Moving image

Fig. 5.9: During phase A1 (evaluation of the transformation field), the moving
image blocks in a neighborhood of the mapped center of the currently
processed fixed image block are prefetched. During phase A2’ (interpo-
lation of the moving image and its gradient), the fixed image data are
prefetched. They will be used in phase A3 to update the joint histogram.

The moving image data are stored in a cache with 27 slots. It is the only
data structure, to which accesses are not exactly predictable. In a typical
cache, this would mean that as soon as an access to moving image data not
available in the cache is detected, the block containing this data is fetched.



84 Parallel Algorithm Design

This causes a cache-miss penalty because the program has to wait until the
data are available.

To detect if the data are available, the program has to first find out in
which slot they would be stored (using 5.18). Each cache slot also has a tag
field, which contains the coordinates of the block currently stored in this
slot. Thus, the program has to compare this tag to the block coordinates
it tries to access. If they are not equal, the data are fetched and the tag is
updated.

To reduce the number of cache misses, moving image blocks which will
be used in A2’ with a high probability are prefetched already during A1.
To decide which blocks of the moving image to fetch, we first calculate the
mapping of the point in the center of the fixed image block, c′ = T (c) (Fig-
ure 5.9). The block containing c′ and its 26 neighbors are prefetched. This
should include all the required moving image data to process the current
fixed image block, assuming that the voxel size in both images is the same
and that the transformation T does not distort too extremely into any par-
ticular direction. If we process neighboring fixed image blocks one after an-
other, the probability that a large part of the required moving image blocks
for the current fixed image block were already fetched when processing the
preceding fixed image block is high and we do not have to re-fetch them.
However, with this approach it is also possible that we fetch blocks that
are not needed and thus we unnecessarily stress the memory bandwidth.
To ensure that our implementation does not become memory bound due to
excessive prefetching, we introduce the threshold parameter dthr and only
fetch blocks with a center point ĉ meeting the condition ‖ĉ− c′‖ < dthr. A
lower threshold results in fewer moving image blocks being prefetched. If
the threshold is set too low, cache misses can occur in phase A3. In this
case, the SPU stalls while waiting for the missing moving image data to be
transferred into the local store.

5.6.4 Data Replication

To interpolate the moving image at arbitrary coordinates, the image coef-
ficients within a 43 neighborhood are required. Because the moving image
data are stored block-wise, this data may be distributed over up to eight
moving image blocks. The performance analysis in the next chapter shows
that the loading of these moving image coefficients to the vector register-file
of the SPEs can impose a significant overhead if not implemented efficiently.



5.7 Parallelism 2: Multiple Cell/B.E. Processors 85

Fig. 5.10: The moving image data (the coefficients represented as circles) are
stored in overlapping blocks. To evaluate the moving image at arbitrary
coordinates within the solid rectangle, the coefficients within the dark-
gray rectangle are possibly required and thus stored in one block. The
light-gray stripes are the overlap-regions, which can be found in multiple
blocks.

One condition for an efficient implementation is that we can easily locate the
required coefficients in memory. If the neighborhood crosses block bound-
aries, computation of the memory addresses of the coefficients becomes more
complicated. This problem can be avoided by replicating moving image coef-
ficients (Figure 5.10). Doing this, all the coefficients required to interpolate
the moving image at one coordinate can be found within one moving image
block. Thus, the block size increases from 8× 8× 8 to 11× 11× 11, or by
a factor of almost 2.6. If the implementation is memory bound, this trade
hardly would make sense. However, the performance analysis will show
that a significant speedup can be achieved by optimizing the load function.
Furthermore, it will show that memory bandwidth is no issue on current
architectures.

5.7 Parallelism 2: Multiple Cell/B.E. Pro-

cessors

5.7.1 The Parallelized Phases

On a small cluster of QS21 Cell/B.E. blades (the nodes), each featuring two
processors, the parallelization scheme is similar to the one discussed in the
preceding sections. On each node, there is one master thread controlling its



86 Parallel Algorithm Design

up to 16 worker threads. If we have four blades, this results in a total of
up to 64 worker threads sharing the workload of phases B1 and B2. The
assignment of work blocks to worker threads is still static.

5.7.2 The Communication Phases

The reduced workload per thread should result in a speedup of phases B1
and B2. However, additional communication is required to keep the blades
in sync. The fixed and moving image data structures are not modified
throughout the registration and we load them to main memory of each
node during the startup of the algorithm.

After each master thread has collected the partial histograms of its
worker threads, the master threads exchange these intermediate results such
that each one obtains the full histogram and can continue with the compu-
tation of the mutual information. MPI is a popular API for communication
on clusters, where the nodes cannot access a shared memory space but have
to exchange data by message passing. The MPI Allreduce function, which
is defined by the MPI API, implements the communication pattern which
we need for this synchronization. It collects data from all the nodes, per-
forms an operation on them and distributes the results back to all nodes.
Various operations would be supported, but in this case an addition is re-
quired. After collecting the partial gradients of the metric from their worker
threads, the master threads also have to synchronize these arrays with an
MPI Allreduce operation.

Because the assignment of work blocks is static, the temporarly stored
values are re-used by the same worker thread that produced them. Thus, no
additional communication between the nodes is required because this data
do not have to be exchanged. This is possible because in section 5.2.6 we
restructured phase A6, such that the outer loop goes over all fixed image
points. Without this reorganization, the outermost loop would go over all
transformation grid knots. For parallelization, each knot would be assigned
to a worker thread and thus to a node. Neighboring knots depend on over-
lapping image regions for their computations. Knots assigned to different
nodes would require the same transformed moving-image data (and their
gradient). Either computations in these overlap regions would have to be
carried out on multiple nodes or the nodes would have to exchange their
results. Because these data structures are much larger than the gradient of
the metric, the chosen workload distribution is more efficient.



5.7 Parallelism 2: Multiple Cell/B.E. Processors 87

The Allreduce Operation

MPI Allreduce is a combination of a reduce operation, where the result
is available on one master node, and a broadcast operation to distribute
this result. Such all-to-all communication is one of the most common com-
munication patterns in high performance computing. There are different
MPI Allreduce methods and the right choice of the algorithm and its pa-
rameters can have a significant impact on performance. The decision does
not only depend on the application, but also on the system. Important
system parameters include the ratio between the network and the processor
speeds, the switch design, the amount of buffer memory in switches, and the
network topology [29]. A discussion of these topics goes beyond the scope
of this dissertation. We will use OpenMPI [3] to handle the inter-node
communication.

Modeling the Cost of the Allreduce Operation

Hockney’s model for point-to-point communication performance depending
on the message length m

t(m) = t0 +
m

r∞
(5.19)

was extended for collective communication in multiprocessor systems by Xu
et al. [108] by making the startup time t0 and the asymptotic bandwidth
r∞ dependent on the number of compute nodes n.

t(n, m) = t0 (n) +
m

r∞ (n)
. (5.20)

t is the time required for the communication operation. The asymptotic
bandwidth is the maximal bandwidth achievable when the message length
approaches infinity. While t0 is dominating for small message sizes, the
performance is mostly depending on r∞ for large messages. In experiments
on an IBM SP2 system, they modeled

t0 (n) = c log2 n + d, (5.21)

where c is the additional time required for the reduce operation with very
small messages when the number of nodes is doubled. The asymptotic
bandwidth for the reduction was not measured. Formulae were derived by
Gunawan et al. for Myrinet based systems [36] and by Chou et al. [16] for
Gigabit Ethernet based clusters. Chou et al. also observed a logarithmic



88 Parallel Algorithm Design

behavior for the reduce operation. They model the total communication
time as

t (n, m) = c log2 n + d + (e log2 n + f) m (5.22)

Building the interconnect based on Ethernet is attractive because of
its availability and low cost, but traditionally has a major drawback com-
pared with typical cluster interconnects like InfiniBand or Myrinet, which
is its much higher latency. This is because of the overhead of the TCP/IP
software stack, which is used for MPI over Ethernet. For InfiniBand, the
corresponding communication protocol layers are implemented in hardware.

Changes to the Model

In addition to the intra-node synchronization of the partial results, we have
inter-node communication, which is modeled like

tAllreduce (n, m) = (c log2 n + d) +

(e log2 n + f) m (5.23)

with n being the number of nodes, m the size of the data structure and c,
d, e, f system parameters to be determined. The functions for thsync (5.14)
and tgsync (5.15) need to be adapted. If NT,l is the number of local threads
per node and NN is the number of nodes (NT = NT,l×NN), we use the two
model functions

thsync,cluster = thsync (NB, NI , NT,l) + tAllreduce (NN , NB × 4Byte) (5.24)

tgsync,cluster = tgsync (NK , NI , NT,l) + tAllreduce (NN , NK × 16Byte) (5.25)

for our Cell/B.E. cluster.

5.7.3 The Sequential Phases

When entering the two sequential phases of the algorithm, all the data struc-
tures on the different nodes are in sync. Each master thread can calculate
the metric or do the gradient descent step independently of the other nodes.

5.7.4 Conclusions

The Cell/B.E. cluster offers 64 processing units by only connecting four
QS21 nodes. This allows to speed up the computational stages of the al-
gorithm, but the synchronization overhead will also increase. In contrast



5.7 Parallelism 2: Multiple Cell/B.E. Processors 89

to the (shared-memory) multicore parallelization, communication over the
network is required. This communication will be implemented with MPI
functions. Because the algorithm was restructured such that all parallelized
stages are loops over the fixed image points, rather than the transforma-
tion coefficients, only the relatively small histogram and the gradient of the
metric need to be synchronized. No transformed moving image data need
to be exchanged by the nodes.



90 Parallel Algorithm Design



6
Performance Analysis

This chapter is dedicated to an analysis of the performance and scalability
of the parallel nonrigid registration algorithm. This algorithm was designed
for the Cell/B.E. processor, which was mainly competing with single-core
x86 processors when it first came to the market in 2005. Although tech-
nology has advanced in the meantime and possible transistor densities have
increased considerably, no Cell/B.E. architecture with increased number of
cores has been released. However, in the meantime x86 processors also
have started to evolve into multicore processors with increasing number of
cores. The chosen programming model allows to port the algorithm with
little effort to x86 multicore processors. The main difference is that the
explicit DMA commands need to be removed and the data can be accessed
transparently in main memory.

In the first section, the performance of the algorithm on the Cell/B.E.
processor and on two different x86 architectures is compared. The first x86
processor is from the same generation as the Cell/B.E., while the second
one is a more recent processor. Furthermore, the impact of the different
optimizations discussed in the preceding chapter is analyzed. In the sec-
ond section a detailed analysis of the scalability on the Cell/B.E. processor
follows. It bases on the model functions for the runtimes of each phase of
the algorithm, which were defined in the preceding chapter. The following



92 Performance Analysis

estimation of the performance on future processor generations beyond eight
cores is based on the performance models derived for the scalability analy-
sis. The goal is to identify possible performance bottlenecks on many-core
processors. The communication model and the memory bandwidth require-
ments come under scrutiny. Finally, scalability on systems consisting of
multiple Cell/B.E. processors is analyzed. A Gigabit Ethernet cluster of
four QS21 blades, each containing two Cell/B.E. chips, is used for these
experiments.

6.1 Benchmark

6.1.1 Setup

The implemented method will be called the streaming algorithm because it
bases on the streaming programming model of the Cell/B.E. processor. To
compare different processors and the effect of the optimizations discussed in
the preceding section, the runtime of the streaming algorithm for 22 image
pairs was measured. The smallest fixed image had a size of 256× 256× 30
voxels, the largest one 512 × 512 × 124 voxels. The runtime was divided
by the number of voxels and the number of iterations (30) and the mean of
this value over all the 22 experiments was calculated. Multiresolution was
disabled.

To evaluate the Cell/B.E. architectural characteristics, its performance
is first compared to an Intel Xeon processor of the same generation (90 nm
technology). To see how x86 processors have evolved in the meantime and
to see if the Cell/B.E. processor is still competitive, a more recent Intel
Core2 Extreme quad-core processor is also included in the benchmark. We
use a single-chip system in case of the Core2 processor. For the other two
architectures, a dual-processor system with a shared memory space is used.
For our communication model, it does not matter if two threads are running
on two different cores of the same chip or on two different chips. Therefore,
the algorithm also runs on such shared memory multiprocessor systems.

We also compare the streaming registration to an algorithm based on
ITK (Insight Toolkit) [2]. ITK is an open source toolkit for image registra-
tion and segmentation. It provides building blocks that can be combined
to form a complete registration algorithm. The ITK algorithm used in these
experiments bases on the components corresponding to the features of the
streaming algorithm: mutual information (using all sample points to calcu-



6.1 Benchmark 93

Description Xeon 3.6 GHz Core2 3.2 GHz Cell/B.E.
ITK 62678.5 28698.1 -
Restructuring 3326.3 1067.6 -
Temp buffering 2552.6 813.6 -
Field grouping 2075.5 642.5 -
Gradient grouping 1259.8 407.9 -
Image LUT 1083.4 351.0 1806.3
Manual vectorization 789.9 243.5 669.5
Optimized load - - 333.8
Parallelism 1 Chip - 63.3 43.5
Parallelism 2 Chips 401.4 - 23.14
Double Buffering - - 23.11

Tab. 6.1: Runtime per voxel and iteration in nanoseconds depending on optimiza-
tions and platform. The Intel Xeon processor was manufactured in 90
nm technology like the Cell/B.E. processor. The Core2 is a more recent
x86 processor of the 45 nm generation.

late the histogram), a cubic B-spline transformation model, cubic B-spline
image interpolation and a gradient descent optimizer.

6.1.2 Results Overview

Table 6.1 shows an overview of the algorithm runtime per voxel and iteration
on the three systems for different optimization levels. The largest part of
the speedup — almost 80× — is attained by efficient implementation (Fig-
ure 6.1). The effects of parallelism and differences in processor architecture
are smaller. For one specific image of size 512 × 512 × 98 and including
all the optimizations, the registration on 1 Cell/B.E. processor takes 34.5
seconds. Using the two processors, the runtime is reduced to 18.1 seconds.
On the Xeon machine, the same registration problem takes 8 minutes and
20 seconds when using one CPU, and 4 minutes and 14 seconds when using
both. On the Core2 using four threads it finishes after 42.8 seconds. The
runtime below a minute on the Core2 and the Cell/B.E. processor stands in
contrast to the 6 hours and 8 minutes required to register the same image
pair with the ITK algorithm on the Core2 machine. In the following sections,
we analyze the impact of the different optimizations on performance.



94 Performance Analysis

dual CBE CBE Core2 Xeon ITK (Xeon)
10

1

10
2

10
3

10
4

10
5

n
o
rm

a
liz

e
d
 r

u
n
ti
m

e
 [
n
s
]

79.3x

12.5x

1.46x
1.88x

Fig. 6.1: The normalized runtime for different setups. More efficient programming
yields a speedup of almost 80×. This is a large improvement compared
to the factor 12.5 between the Xeon and the quad-core Core2. The dif-
ference between Cell/B.E. processor (CBE) and Core2 is relatively small.

6.1.3 Code and Data Structures

The code and data structure reorganizations that are necessary for the im-
plementation on the Cell/B.E. architecture can also be beneficial for the
x86 implementation (Table 6.1, first two rows). A first factor is the over-
head of the ITK algorithm coming from its modular and flexible design. A
second factor is the increased locality of the data structures. Removing ITK

overhead and redundant computations accounts for a large part of the total
speedup of almost 27× on the Core2 processor, but a non-negligible factor
also comes from the more efficient data access patterns. While the ITK im-
plementations stalls during 17.21% of the cycles1, this fraction is only 2.86%
for the restructured algorithm. In other words, just the stall time of the
ITK implementation is more than 4.5 times higher than the total runtime of
the streaming implementation. High stall ratios are often a result of a large
number of cache misses. A cache miss is a failed attempt to read (or write)
data in the cache, resulting in an access to main memory (or a higher level

1The number of cycles in which no micro operations were dispatched from the reser-
vation stations was measured.



6.1 Benchmark 95

cache) with a higher latency. Execution of instructions depending on this
data is delayed. For the ITK implementation, we could observe 119× more
L1 cache misses2 than for the streaming algorithm.

More efficient hardware prefetching is one possible explanation for the
lower cache miss rate. The Intel Core2 processor implements multiple hard-
ware prefetch mechanisms [28]. One of these mechanisms, for example,
observes the distance in address space of memory accesses. It detects se-
quences of accesses that follow a regular stride and prefetches data along this
stride, hiding the latency to main memory. Intuitively, this may be very
efficient when traversing multi-dimensional regular grids, like 3D images,
where neighbors along all but one coordinate axis are not stored in adja-
cent memory regions but are separated by a constant distance. However,
the prefetch unit has difficulties to detect very large strides. One possible
explanation for the lower cache miss ratio of the streaming algorithm is
a more efficient prefetching because of the blocked image data structures,
where neighbors within a same block are also closer in memory and there-
fore the strides are smaller when traversing a block. But when the hardware
prefetch mechanisms are disabled, the total runtime only increases by 0.5%
(ITK) and 1.5% respectively and also the number of cache misses only rises
by a few percent.

For both algorithms, the cache miss rate and also the runtime do not
change significantly if hardware prefetching is disabled. Therefore, the lower
cache miss ratio can be attributed to the better locality of the data access
patterns.

6.1.4 Re-use of the Transformed Image and its Gra-
dient

If the size of main memory permits, storing the transformed floating image
and its gradient during histogram calculation brings a significant improve-
ment. When disabling this feature on the Cell/B.E. processor, the runtime
per voxel and iteration increases from 23.11 ns to 34.12 ns. The runtime of
the first parallelized phase, tB1, decreases from 18.53 ns to 16.96 ns, because
the gradient of the transformed moving image is not calculated any more.
The small difference in runtime shows that the combined calculation of the
image and its gradient is efficient (see section 5.2.5). Because the temporary

2The number of retired load operations that missed the L1 data cache was measured.



96 Performance Analysis

data is not stored and therefore needs to be computed again, the runtime
of the second parallelized phase, tB2, increases from 3.76 ns to 16.62 ns.

6.1.5 Grouping

The group-wise computation of the dense transformation field (see sec-
tion 5.2.4) and the gradient (see section 5.2.6) together account for a speedup
of about 2×. The group size was 8 × 8 × 8 voxels, which is the size of a
work block and thus cannot be further increased. However, the transforma-
tion grid spacing of 16 × 16 × 16 voxel units would allow to process larger
groups if more local store would be available. Although the block size can-
not be increased on the Cell/B.E. processor, the impact of the block size on
performance can be analyzed on the x86 platform.

Image Block Size

When increasing the block size, two opposing effects can be expected. On
the one hand, larger groups of points can be processed under the condition
that the transformation grid is at least as coarse as the image block size,
which possibly reduces the runtime. On the other hand, the positive effect
of increased locality may be lost.

In an experiment, we measure the time required to transform the moving
image of size 2563 depending on the block size for different transformations.
The transformation is rigid: it is a rotation around an axis parallel to the y-
axis through the center of the image and all the B-spline coefficients are set
to zero. The B-spline grid spacing is equal to the image block width. Thus,
a larger block size should result in more efficient grouping. In figure 6.2, we
see that the runtime indeed decreases for larger block sizes. A block width
of four yields roughly 1.4× larger runtimes than a block width of eight.
This effect also applies for block widths of 16 and 32. However, for larger
block sizes the runtime starts to rise again due to the decreased locality.
While the runtime is almost independent of the rotation angle for small
block sizes, large rotations yield significantly slower transformations for a
block size width of 128.

In another experiment, nonrigid transformations with a grid spacing of
16 are applied to an image. Random Gaussian blobs are used to initialize
the B-spline coefficients. The runtime of the transformation of the image
for different amplitudes of the blobs is measured. In figure 6.3, we can



6.1 Benchmark 97

0 pi/8 pi/4 3 pi/8 pi/2
0.9

1

1.1

1.2

1.3

1.4

1.5

angle [1]

re
la

ti
v
e
 r

u
n
ti
m

e
 [
1
]

 

 
4

8

16

32

64

128

Fig. 6.2: The time required to calculate the transformed moving image depending
on the transformation function. The runtimes are normalized using the
fastest runtime for a block width of eight voxels. In this experiment, a
transformation grid spacing equal to the image block size was chosen and
all the B-spline coefficients were set to zero. There was only a rotation
around an axis parallel to the y-axis through the center point of the image.
The runtime does not depend on the rotation angle for small block sizes.
For a block width of 128 voxel units, the performance decreases as the
rotation angle grows.

observe similar effects as in the preceding experiment. First, the runtime
decreases with increasing block size due to more efficient grouping. For too
large block sizes, it increases again because the locality benefit is lost.

For these experiments, the Intel Core2 Extreme processor with four
worker threads was used. For this setup, a block width of 32 yields slightly
improved performance compared to a block width of eight voxel units. How-
ever, what was not considered in this experiment is that for larger block
sizes, a balanced load distribution to the worker threads may become more
complicated. Therefore, the relatively small performance benefit may not
justify an increased block size, and a block width of 8 seems reasonable.



98 Performance Analysis

0 5 10 15 20
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

max. amplitude [voxel units]

re
la

ti
v
e
 r

u
n
ti
m

e
 [
1
]

 

 
4

8

16

32

64

128

Fig. 6.3: The time required to calculate the transformed moving image depending
on the transformation function. The runtimes are normalized using the
fastest runtime for a block width of eight voxels. In this experiment, a
transformation grid spacing of 16 voxel was chosen and the parameters
were set using Gaussian blobs with varying maximum amplitude (x-axis).
Larger transformations can result in longer runtimes. In the experiment
with a block size of 128, the runtime is especially sensitive to the ampli-
tude of the transformation.

6.1.6 Manual Vectorization

The GNU Compiler Collection (GCC) [1] was used to compile the algo-
rithm for both x86 and the Cell/B.E. processors. Although this compiler
tries to automatically make use of the vector processing capabilities of both
platforms, significant improvements were achieved by manual fine-tuning
of the vector operations. For example, the calculation of the sum of two
vectors with four elements is written as a loop

int i;

float a[4], b[4], c[4];

...

for (i = 0; i < 4; i++) c[i] = a[i] + b[i];

in sequential C code. Instead, we can use vector data structures and intrin-
sics on the SPU:



6.1 Benchmark 99

vector float a, b, c;

...

c = spu_add(b, c);

and on the x86:

__m128 a, b, c;

...

c = _mm_add_ps(b, c);

More complex intrinsics exist, for example to rearrange the elements of a
vector. On the Cell/B.E., the performance benefit was 2.70×. The SPU was
designed to be especially efficient for vectorized code; it is not optimized to
work on scalar or non-aligned data. On the x86, manual vectorization still
resulted in a speedup of 1.44×.

6.1.7 Vector Alignment

On the SPEs, vector data can only be loaded from the local store to the
register file if its address in the local store is 16-Byte aligned. The same
condition applies to storing vector data from the register file to the local
store. Otherwise the vectors have to be assembled explicitly, for example
with the spu insert intrinsic, which allows to set a particular element of
a vector. Unaligned loads, however, can be much more expensive than
aligned ones. Without data replication, the transformation coefficients and
the gradient cannot be stored such that only aligned accesses are necessary,
but the performance impact of the unaligned accesses is relatively small
because the transformation coefficients and gradient entries only have to be
transferred once between local store and register file per group and not per
point (sections 5.2.4 and 5.2.6). However, the floating image coefficients
have to be loaded per-point and alignment cannot be guaranteed either.

An improved function to load a vector from an unaligned address src -

addr into the register file uses two aligned loads and assembles the result
vector from these two vectors using a shuffle operation (si shufb)

qword offset = si_andi(src_addr, 0x0f);

qword src_lo = si_lqd(src_addr, 0x00);

qword src_hi = si_lqd(src_addr, 0x10);

qword shift_by_bytes = si_shufb(offset, offset, vec_0x03);

qword shuffle_pattern = si_a(shift_by_bytes, vector_bytenr);

qword result = si_shufb(src_lo, src_hi, shuffle_pattern);



100 Performance Analysis

where vector bytenr is a char vector with each element set to its index
(0x00, 0x01, 0x02, ...) and vec 0x03 is a char vector with each el-
ement set to 0x03. By loading the floating image coefficients with this
function, an overall improvement from 44.07 ns to 23.14 ns per voxel and
iteration was achieved.

6.1.8 Double Buffering

Double buffering, which can be an efficient technique to improve perfor-
mance by hiding memory latency, has virtually no impact on the perfor-
mance of the algorithm. There are two possible reasons for this surprising
behavior: either the double buffering does not successfully hide memory la-
tency because the computations that are in parallel to the memory transfers
take much less time than the transfers or the memory latencies are not an
important factor for the performance. In section 6.4.4, we will see that the
latter is the case.

6.1.9 Parallelism

Two important performance metrics in parallel computing are the speedup

Sp =
T1

Tp

(6.1)

and the efficiency

Ep =
Sp

p
=

T1

pTp

, (6.2)

where p is the number of threads, T1 the runtime for one thread and Tp the
runtime for p threads. Algorithms with linear scalability have an efficiency
of 1 (and a speedup of p). For the Cell/B.E., we get S8 = 7.68 and E8 =
0.96. For the Core2 processor, we get S4 = 3.84 and E4 = 0.96 and for the
dual Xeon system E2 = 0.98. This confirms that the chosen parallelization
strategy is efficient for the Cell/B.E. as well as x86 processors. A detailed
analysis of the scalability follows.

6.1.10 Conclusions

While the Cell/B.E. processor outperforms the same-generation x86 by more
than an order of magnitude, more recent general purpose processor gener-
ations have almost closed this gap again. However, the basic streaming



6.2 Modeling the Runtime 101

Parameter Description
NP Number of point pairs
NI Number of iterations
NK Number of transformation grid knots
NB Number of histogram bins
NT Number of worker threads

Tab. 6.2: Parameters of the runtime model

algorithm outperforms an ITK implementation by almost 27× (comparing
the first two rows in table 6.1). Including the optimizations applying to
the x86 platform, the speedup is 118× even without parallelism. Although
many of the optimizations were inspired by properties of the specialized
Cell/B.E. hardware, they are equally beneficial for x86 processors.

Compared to this, the speedup attributed to parallelism, which comes
close to the number of processor cores, is relatively low. Therefore, an
in-depth understanding of the algorithm, allowing an efficient (sequential)
implementation, remains very important. The Cell/B.E. architecture used
to have an advantage because of its relatively high number of cores. As
the number of cores on standard CPUs grows, this advantage vanishes.
Parallelism undoubtedly becomes an increasingly important factor. In the
following sections, the scalability of the streaming algorithm will be analyzed
in order to verify that in the future it can benefit from processors providing
more parallelism.

6.2 Modeling the Runtime

In the preceding section we have seen that the algorithm efficiently uses the
eight SPEs available on one Cell/B.E. processor and the experiments using
the dual processor system show that it continues to scale well. Considering
the trends in processor architecture development, we can expect processors
with more cores to be available in the future. By attempting to extrapolate
performance on larger systems based on measurements on similar, smaller
systems, one can draw very misleading conclusions if no scalability analysis
is performed [54]. In order to be able to estimate the behavior of the algo-
rithm on future multicore processors, we break it down into different stages
and express the runtime of each stage as a function of the parameters in
table 6.2.



102 Performance Analysis

Stage Description
tB1 Phase B1 as defined in section 5.5.1
thsync Collecting the partial histograms from the worker threads
tmi Histogram normalization and calculation of the metric
tB2 Phase B2 as defined in section 5.5.1
tgsync Collecting the partial gradients from the worker threads
tgd Updating the coefficients using the gradient descent optimizer
trest All the other processing

Tab. 6.3: The stages of the algorithm. Phases B1 and B2 are the computationally
intensive parts that were offloaded to the worker threads. The synchro-
nization of the threads takes place in thsync and tgsync. tmi, tgd and
trest are the parts of the algorithm that were not parallelized.

In the preceding chapter, we defined model functions for the runtime of
each stage of the algorithm (see also table 6.3). Based on measurements with
22 image pairs of different sizes, the parameters of these model functions are
estimated. NP was between 2’097’152 and 33’554’432 point pairs. The basic
settings were NI = 30 and NB = 32 × 35 = 1225 (32 bins for the range of
fixed image intensities, 32 plus 3 additional padding bins due to the Parzen
window width for moving image intensities). The size of the transformation
grid (NK) was chosen depending on the image size with a default B-spline
knot spacing of 16 voxel units. Each image pair was registered 20 times and
the geometric mean of the 20 measured runtime values was used.

6.2.1 Measuring Runtime

To measure the time spent in each stage, the time when the master thread
enters and leaves a stage was recorded and the difference was calculated.
Because each stage usually is passed multiple times, the total time spent
in each stage is accumulated. For these measurements, the MPI Wtime()3

function with a granularity of 1µs is sufficiently accurate. For some of the
more detailed experiments in the later sections, a better time resolution
is required. In these cases, the PPE time base register with its granular-
ity of 37.5 ns is used. It can be read using the mftb() intrinsic. For
measurements on the SPEs, the decrementer register is used. The value in

3The MPI Wtime function returns the elapsed time on the calling processors. It is
defined by the MPI API



6.2 Modeling the Runtime 103

this register decrements at 26.667 MHz on the QS21 and therefore again
a granularity of 37.5 ns can be achieved. It is accessed with the read and
write channel intrinsics: spu writech(SPU WrDec, 0x7fffffff) sets the
decrementer to the value 0x7fffffff and spu readch(SPU RdDec) reads
its content.

6.2.2 Parallelized Functions

B1

hsync

mi

B2

gsync

gd

...

...

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

threads [1]

t 
[n

s
]

 

 

model

measured

Fig. 6.4: tB1 per point pair and iteration for different NT

B1

hsync

mi

B2

gsync

gd

...

...

1 2 3 4 5 6 7 8
0

10

20

30

40

50

threads [1]

t 
[n

s
]

 

 

model

measured

Fig. 6.5: tB2 per point pair and iteration for different NT

First, we estimate the parameters of the model functions for the paral-
lelized stages. These model functions were defined in section 5.5.1. Based



104 Performance Analysis

on the measurements, the expressions

tB1 (NP , NI , NT ) = 276.3
NP NI

NT

ns (6.3)

tB2 (NP , NI , NT ) = 47.5
NP NI

NT

ns (6.4)

were derived using least-squares fitting. Figures 6.4 and 6.5 show the mea-
surements and the model functions for tB1 and tB2.

An important condition for these model functions to hold is that with in-
creasing NT enough memory bandwidth is provided such that the threads do
not suffer from starvation. Otherwise these stages become memory bound.
The memory bandwidth requirements will be discussed in section 6.4. We
will see that these stages of the algorithm are compute bound on the Cel-
l/B.E. processor and that the performance is not limited by the memory
bandwidth.

In these two stages, there is almost no synchronization or communication
overhead. The only communication that takes place is a start message sent
by the PPE to each SPE and a completion message sent back. Latency of
such messages is in the order of microseconds [5] and was not detectable in
the measurements. Because NP is in the order of millions, tB1 (equation 6.3)
and tB2 (equation 6.4) are in the order of tens to hundreds of milliseconds.

Moreover, additional experiments with different knot spacings, 8 and 32
voxel units respectively, showed that NK has no significant impact on tB1

and tB2 as long as we assume that the knot spacing is greater than the image
block width. Otherwise, the grouping-based code optimizations become less
efficient.

6.2.3 Communication Overhead

The parallel algorithm introduces some additional overhead related to the
collection of the partial results of the accelerator cores. After the execution
of phase B1, the sum of all partial histograms is calculated. We defined the
model function

thsync (NB, NI , NT ) =

(chsync,1 + chsync,2NT + (chsync,3 + chsync,4NT ) NB) NI , (6.5)



6.2 Modeling the Runtime 105

B1

hsync

mi

B2

gsync

gd

...

...

10
0

10
1

10
−5

10
−4

10
−3

threads [1]

t 
[s

]

 

 

64

32

16

Fig. 6.6: Comparing measurements (marks) and the model function (lines) for
thsync for different histogram sizes (16× 19, 32× 35 and 64× 67 bins).

B1

hsync

mi

B2

gsync

gd

...

...

10
0

10
1

10
−5

10
−4

10
−3

10
−2

threads [1]

t 
[s

]

 

 

33768

9800

1824

Fig. 6.7: Comparing measurements (marks) and the model function (lines) for
tgsync for different grid sizes (1824, 9800 and 33768 knots).



106 Performance Analysis

for this communication phase. When estimating the parameters for the
model function using the measurements, the formula becomes

thsync (NB, NI , NT ) =(
8.63 · 103 + 5.37NT + (−4.04 + 11.23NT ) NB

)
NI ns. (6.6)

The processing of the histogram of the first SPE is cheaper because it only
has to be transferred to main memory, while all the others have to be
transferred and then added. This is reflected by the negative parameter
chsync,3.

The runtime of tgsync is modeled by a similar function. However, the
signaling overhead is smaller because the partial gradient results are al-
ready in main memory at the start of this phase. Unlike for the histogram
synchronization, no message command from the PPE to all SPEs to initi-
ate the transfer from local store to main memory is required. The size of
the gradient data structure is generally larger than the histogram. There-
fore, the message-length independent term cgsync,1 + cgsync,2NT is expected
to be relatively small compared to the message-length dependent term
(cgsync,3 + cgsync,4NT ) NK . The model is therefore simplified by omitting
the message-length independent term. Estimating the parameters based on
the measurements with the 22 datasets gives

tgsync (NK , NI , NT ) = (−15.95 + 37.03NT ) NKNI ns. (6.7)

Figures 6.6 and 6.7 show model predictions and measurements for thsync

and tgsync for different histogram and transformation grid sizes respectively.
The values for cgsync,3 and cgsync,4 are roughly four times larger than the

ones for chsync,3 and chsync,4 because the gradient contains a vector for each
knot, while the histogram stores one scalar value per bin.

6.2.4 The Sequential Part

There are two sequential phases of the algorithm, running exclusively on
the PPE. One is the computation of the joint and marginal pdfs and the
mutual information based on the joint histogram. The total runtime is
approximately proportional to the bin count.

tmi (NB, NI) = 505.38NBNI ns (6.8)

Figure 6.8 shows model and measurements of tmi for different histogram
sizes and NT . Especially for low bin counts, the model is not very accurate,



6.2 Modeling the Runtime 107

probably because there is a small sequential part, which is not proportional
to NB. The model for tgd derived from the measurements is

tgd (NK , NI) = 123.91NKNI ns. (6.9)

The runtime is proportional to NK and independent of NT . Figure 6.9
shows model and measurements. For small NK the measured time can be
significantly lower than the estimate possibly due to cache effects, which
compromises the accuracy of the model. The gradient descent optimizer
uses the gradient array, which is written in the preceding stage. Therefore,
the cache hit ratio may be high especially in the case where the gradient
array is smaller than the cache size of the PPE.

These two functions are not inherently sequential. It would be possible
to parallelize them, but it was a design decision based on the performance
measurements of the sequential algorithm to not offload them to the worker
threads because the possible performance benefit is minimal.

Finally there are the parts of the algorithm that are not assigned to any
of the other stages. They consume around 130 microseconds per iteration.

B1

hsync

mi

B2

gsync

gd

...

...

10
0

10
1

10
−4

10
−3

10
−2

threads [1]

t 
[s

]

 

 

64

32

16

Fig. 6.8: Comparing measurements (marks) and the model function for tmi per
iteration for different histogram sizes (16× 19, 32× 35, 64× 67 bins)



108 Performance Analysis

B1

hsync

mi

B2

gsync

gd

...

...

10
0

10
1

10
−4

10
−3

10
−2

threads [1]

t 
[s

]

 

 

33768

9800

1824

Fig. 6.9: Comparing measurements (marks) and the model function for tgd per
iteration for different grid sizes (1824, 9800 and 33768 knots).



6.3 Scalability 1: Many-Core 109

6.3 Scalability 1: Many-Core

Based on the model established in the previous section, the performance
of the parallel algorithm on a next generation Cell/B.E. with more SPEs
or on a similar architecture with many cores can be estimated and possible
problems can be identified. Subject of interest in this section is the overhead
due to thread synchronization (tgsync and thsync). Another important issue,
the memory bandwidth requirements of the calculation parts B1 and B2
will be discussed in the next section.

6.3.1 Fixed Problem Size

A way to look at scalability is related to what is known as Amdahl’s law,
which bases on a statement made by Gene Amdahl in 1967 to argue against
the usefulness of massively parallel architectures [7]. He observed that al-
gorithms can be divided into a sequential and a parallelizable part and that
for many problems the sequential part is a considerable fraction of the total
runtime and can already dominate the algorithm performance for moderate
levels of parallelism.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

threads [1]

t 
[s

]

 

 

total

gradient sync

histogram sync

sequential

Fig. 6.10: Scalability for a fixed problem size. For large NT , the overhead in-
duced by the collection of the partial results of the threads becomes the
bottleneck



110 Performance Analysis

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

threads [1]

e
ff
ic

ie
n
c
y
 [
1
]

Fig. 6.11: The efficiency decreases for large NT . For NT ≥ 43 it is lower than 0.9

In our case, Amdahl’s law suggests that beyond a certain NT , adding
more cores does not result in significant performance gain. We look at the
dependence of the runtime on NT for an image size of 512×512×100 voxels,
a grid point spacing of 16 voxels, 32× 35 histogram bins and NI = 30.

The lowest runtime reached for these settings is 3.8s for NT = 135
(Figure 6.10). This corresponds to a speedup of 66×. For greater NT , the
runtime even starts to increase again. For NT ≥ 43, the efficiency is below
0.9 (Figure 6.11).

The reason why the algorithm does not scale beyond 135 worker threads
is not a dominating sequential part but an increasing overhead for the collec-
tion of the partial results of the worker threads: tgsync (and thsync) increase
linearly with NT . While this is no problem on one Cell/B.E. processor,
where tgsync is about 0.3% of the total runtime, it possibly becomes the
bottleneck on future systems with many processor cores. On such systems,
the way how the global histogram and gradient are obtained from the par-
tial results calculated by the worker threads has to be reconsidered. In the
following sections, ways to efficiently implement these tasks for large NT

will be discussed.

6.3.2 Reducing Gradient Collection Overhead

We recall that tgsync increases linearly with NT because the master thread
(on the PPE) has to calculate the sum of the NT partial gradients pro-
duced by the worker threads. The reason why each thread has its private
copy of the gradient is that it allows to avoid locking overhead if multiple



6.3 Scalability 1: Many-Core 111

threads possibly write to the same location of the gradient. This strategy
may be sufficiently efficient for small NT but for large NT it is too expen-
sive and a different solution is needed. The availability of efficient atomic
update functions, for example, could eliminate this problem, but we will
focus on adaptations of the current scheme for large NT . Atomic functions
allow to perform a read-modify-write operation atomically, eliminating the
possibility of interference with another thread.

Parallelization

An approach to reducing tgsync is to parallelize this stage and offload it to
the worker threads. If NK ≥ NT , we can partition the transformation grid
into NT domains and assign each domain to a worker thread, which then
collects the partial results within this domain. Such parallelization ideally
results in an additional factor 1

NT
in (6.7), yielding

tgsync,2 (NK , NI , NT ) =
1

NT

(−15.95 + 37.03NT ) NKNIns. (6.10)

and an asymptotic behavior like

lim
NT→∞

tgsync,2 (NK , NI , NT ) = 37.03NKNIns, (6.11)

meaning that tgsync,2 becomes independent of NT .
In reality, the SPE implementation performs even better because manual

vectorization and double-buffering were implemented. For arrays with 216

entries, which is roughly the size of the gradient for the chosen problem size,
a significant reduction of tgsync can be achieved (Figure 6.12). However,
the parallelization is not ideal, since we can still observe a dependency
on the number of threads. This is at least partially related to memory
bandwidth. This operation is likely to be memory bound because it does
little computation on a relatively large amount of data. The aggregate
bandwidth saturates just above 20 GByte/s (Figure 6.13), which is close
to the theoretical 25.6 GByte/s bandwidth cap to external memory. It is
difficult to predict the behavior on a future system because it will heavily
depend on the memory bandwidth. However, by replacing (6.7) with

tgsync =
(NT + 1) NK × 16Byte

BW
, (6.12)



112 Performance Analysis

B1

hsync

mi

B2

gsync

gd

...

...

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

threads [1]

t 
[µ

s
]

 

 

PPE

SPEs

Fig. 6.12: Time required to calculate the sum of NT arrays with 216 entries.
For NT = 8, a reduction from 5353µs to 127.5µs can be achieved
by offloading this task to the SPEs. This is more than 8× because
vectorization and double buffering were implemented for the SPE.

B1

hsync

mi

B2

gsync

gd

...

...

1 2 3 4 5 6 7 8 9
13

14

15

16

17

18

19

20

21

a
g
g
re

g
a
te

 b
a
n
d
w

id
th

 [
G

B
y
te

/s
]

threads [1]

Fig. 6.13: The time required to calculate the sum of large arrays on the SPEs
is memory bound. Saturation is reached at roughly 20 GByte/s for 5
SPEs with an array size of 222



6.3 Scalability 1: Many-Core 113

where BW is the aggregate bandwidth to memory, the memory boundness
of the operation is taken into account. There is a factor NT +1 because NT

arrays are read and one array is written.

Gradient Sharing

Although the solution discussed in the preceding section partially allevi-
ates the problem, there is still room for improvement regarding memory
bandwidth requirements. Because the domain decomposition is based on
the fixed image space, neighboring domains will overlap with respect to the
transformation grid knots in their sphere of influence. With increasing NT ,
the domains become smaller and there are more and more domains without
overlap. Threads associated to domains without overlap can work on the
same copy of the gradient without requiring locking mechanisms because
they will never try to modify the same data. Sharing a copy of the gradient
among multiple threads results in a total number of gradient copies NPG

less than NT and instead of (6.12), we get

tgsync =
(NPG + 1) NK × 16Byte

BW
×NI . (6.13)

The problem of finding NPG can be expressed as a graph-coloring prob-
lem, where the threads are the nodes of the graph and nodes are connected
by edges if there is at least one grid point which is modified by both threads.
NPG is the chromatic number of the graph-coloring problem. Finding the
exact chromatic number is an NP-complete problem [49] and finding the
best coloring may be too time consuming. In practice, heuristics are of-
ten used to find a sufficiently good solution for NP-complete problems in
a reasonable time. For the chosen problem size, the number of copies of
the gradient can be reduced significantly with a simple greedy heuristic.
This heuristic creates a gradient copy for the first thread. For each of the
following threads it checks the available gradient copies one after another
for overlaps with its assigned threads. If a gradient copy with no conflicts is
found, the current thread is assigned to it, otherwise a new gradient copy is
created for the current thread. For the chosen problem size, this allows to
reduce the number of copies of the gradient to less than 10% for large NT .

The experiments have shown that tB1 and tB2 do not depend on the
knot spacing NK . A conclusion of (6.13) is that this also roughly holds for
tgsync. If we assume an arbitrarily large image, a knot spacing of one image



114 Performance Analysis

block width and one thread per image block, NPG is 4× 4× 4 = 64. If we
double the knot spacing, NPG becomes 8×8×8 = 512. When neglecting the
effects caused by the B-spline padding, NK gets reduced by the same factor
as NPG increases. Therefore, the product (NPG + 1)NK in (6.13) remains
approximately constant. A finer transformation grid increases the size of
the gradient array, but it reduces overlaps and makes sharing among threads
easier. A coarser grid yields smaller gradient arrays but makes sharing more
difficult because the overlaps become bigger.

Prediction

Because tgsync is bandwidth limited, it may be difficult to predict the per-
formance of this stage on future systems. But figure 6.14 shows that the es-
timated tgsync based on (6.13), under the very conservative assumption that
this operation will also saturate at BW = 20 GByte/s on future systems,
ceases to be the bottleneck. However, thsync may now limit performance.

6.3.3 Reducing Histogram Collection Overhead

The time thsync grows linearly with the number of threads NT . An approach
similar to gradient sharing as described previously is not possible because
write access of a thread cannot be restricted to a part of the histogram
only. A parallelized implementation on the SPEs, however, is possible. One
could implement a scheme like for the parallel gradient collection. This
would require two stages. First the PPE has to instruct all the SPEs to
transfer their histograms to main memory. When all transfers are finished,
the PPE sends a command message to the SPEs to start calculating the
sum of the partial results, each SPE taking care of a subset of the bins.

Collective Communication

The fact that the histograms are small and already located in the local
store and not in main memory favors a collective reduce operation. In
this collective communication operation, the cost of collecting the partial
histograms increases logarithmically with NT .

Figure 6.15 shows the collective communication pattern of the histogram
calculation on one Cell/B.E. processor. When SPE1 finishes the calculation
of its partial histogram, it notifies SPE0 of this event. SPE0 after finishing
the calculation of its partial histogram waits for the notification from SPE1



6.3 Scalability 1: Many-Core 115

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

threads [1]

t 
[s

]

 

 

total

gradient sync

histogram sync

sequential

Fig. 6.14: If threads working on non-overlapping domains share their private copy
of the gradient and parallelism is exploited to calculate the sum of the
private copies, tgsync can be reduced significantly even if the memory
bandwidth would be limited to 20 GByte/s on future systems. thsync

now becomes the bottleneck for large NT . We can observe an irregular
behavior of the plot of tgsync. The reason is that for some NT the
heuristic is more successful in reducing the number of gradient copies
than for others.



116 Performance Analysis

Fig. 6.15: The SPEs pair-wise calculate the sum of their partial histograms. The
vertical arrows are computation phases: first the computation the partial
histograms and then the pair-wise calculation of the sum of the partial
histograms. The horizontal arrows stand for pair-wise synchronization
and data transfer. Finally, the histogram is available on SPE0, which
transfers it to main memory and notifies completion to the PPE. The
reduce operation is initiated directly after finishing the calculation of
the partial histograms and does not have to be triggered by the PPE.



6.3 Scalability 1: Many-Core 117

and then initiates an LS-to-LS DMA transfer to fetch the partial histogram
of SPE1 and adds it to its partial histogram. After repeating this notify-
fetch-add pattern with SPE2 and SPE4, the final histogram is in the local
store of SPE0, which then transfers it to main memory and notifies the
PPE.

The model function for this communication pattern is

thsync = (c1 + c2NB + log2 NT × (c3 + c4NB)) NI µs. (6.14)

The first two parameters c1 and c2 account for messages and DMA transfers
between the PPE and the SPEs. The tree structure of the communication
pattern has log2 NT levels. In each level, there are operations independent
of the number of bins NB as well as operations that depend on NB. The
parameters c3 and c4 are used to model the runtime of these per-level tasks.

Because the SPEs only synchronize pair-wise at each level of the reduc-
tion tree, it is, for example, possible that SPE2 sends its notification to SPE0
before SPE1. It therefore makes sense to use signaling notification with the
signal-notification register in OR mode. If SPE2 and SPE1 set a different
bit in the signal-notification register, the order in which the notifications
are received by SPE0 does not matter. SPE-to-SPE signal notification is
faster than PPE-to-SPE message passing.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

threads [1]

t 
[µ

s
]

Fig. 6.16: Time required to calculate the sum of NT histograms of different sizes
(28, 29, 210, 211 and 212 bins). For NT > 8, SPEs on different chips
are involved. This makes the operation more expensive, because the
signals have to cross chip-boundaries.

Figure 6.16 shows thsync per iteration for different NT and NB. The



118 Performance Analysis

model function

thsync =
(
1.50 + 0.24 · 10−3NB + log2 NT ×

(
0.62 + 1.46 · 10−3NB

))
NI µs
(6.15)

was derived ignoring the data measured for NT = 16, which was acquired
using the two processors on a QS21. This data point was included in the
figure to show that there is an additional latency penalty of about 3µs if
SPEs on different chips have to be synchronized. The signals used by the
SPEs to communicate have a higher latency if chip boundaries are crossed.
Therefore, it is again difficult to predict the behavior of future architectures
because they are likely to show asymmetries. Probably, similar to today’s
large-scale distributed computing systems, the choice of the optimal imple-
mentation of the reduce function will depend on the interconnect topology
[29]. High-end many-core chips may even use hardware assists to minimize
the latency of such collective communication operations, as it is common
for today’s high-end distributed systems [6].

B1

hsync

mi

B2

gsync

gd

...

...

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

threads [1]

t 
[µ

s
]

 

 

PPE

SPEs

SPEs (collective)

Fig. 6.17: Time required to calculate the sum of NT arrays with 210 entries. Al-
though offloading to the SPEs alone improves the performance already,
the signaling overhead significantly contributes to the total runtime.
With the collective communication approach, this overhead is reduced
and a logarithmic dependency on NT can be achieved.

Figure 6.17 shows that a parallel implementation similar to the one de-
scribed in section 6.3.2 is already much more efficient than calculation on
the PPE. A collective communication approach increases efficiency further,
as it removes the requirement of having one central point for all the syn-
chronization by having the SPEs exchange messages among themselves.



6.3 Scalability 1: Many-Core 119

Prediction

The updated model predictions (Figure 6.18) demonstrate that the calcu-
lation of the sum of the partial histograms as a collective communication
operation on the SPEs should be sufficiently efficient also on chips with
many cores, such that neither tgsync nor thsync limit the performance of the
algorithm and a good efficiency can be achieved on many-core processors
(Figure 6.19).

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

10
2

10
4

threads [1]

t 
[s

]

 

 

total

gradient sync

histogram sync

sequential

Fig. 6.18: Estimated runtime for a fixed problem size on a hypothetical many-core
chip with optimized gradient and histogram synchronization.

6.3.4 Scaling Problem Size

So far, a fixed problem size with NP = 512 × 512 × 100 was assumed.
As stated by Amdahl’s law, with an increasing number of threads, the
efficiency decreases because the sequential part becomes more dominant
(Figure 6.19). The flaw of this argument is that it assumes a fixed problem
size. John L. Gustafson showed later that massively parallel systems indeed
have their justification because they allow to process larger problems in the
same time as a smaller system would require to process a smaller problem
[37]. He argued that given a more powerful system, the problem generally



120 Performance Analysis

10
0

10
1

10
2

10
3

0.8

1

threads [1]

e
ff
ic

ie
n
c
y
 [
1
]

Fig. 6.19: Estimated efficiency for a fixed problem size on a hypothetical many-core
chip with optimized gradient and histogram synchronization.

10
1

10
2

10
3

10
0

10
1

10
2

10
3

threads [1]

P
o
in

t 
p
a
ir
s
 (

n
o
rm

a
liz

e
d
)

Fig. 6.20: The isoefficiency curve for E = 0.9981 (the efficiency for NP = 512×
512 × 100 = 26’214’400 and NT = 8) is approximately linear and
thus indicates good scalability of the algorithm. The y-axis shows the
problem size NP as a multiple of 26’214’400.



6.3 Scalability 1: Many-Core 121

is expanded to make use of the additional processing power. In our case,
this means that the number of point pairs NP increases because the images
are acquired with a higher resolution. The isoefficiency analysis by Kumar
et al. [55] looks at scalability from this perspective. If the problem size
NP needs to grow as f (NT ) to maintain an efficiency E, f (NT ) is the
isoefficiency function. Figure 6.20 shows the isoefficiency curve for E =
0.9981, the efficiency for NT = 8 and NP = 512 × 512 × 100, based on the
optimized communication schemes discussed in the preceding sections. The
observed linear isoefficiency curve indicates good scalability. An exponential
isoefficiency curve, for example, would mean that it is difficult to utilize
parallelism for this algorithm and architecture combination for large NT

because the required problem sizes become huge.

6.3.5 Conclusions

So far we have discussed the scalability of the algorithm on multicore (or
many-core) systems based on a subdivision in parallel, sequential and com-
munication tasks. The initial communication scheme developed for the Cel-
l/B.E. processor with its 8 SPEs showed limited scalability in the case of
large numbers of cores. Some adaptations were necessary for such systems
and we observed that runtime for some stages is not bound by computation
power any more but by memory bandwidth. In the next section, we will
analyze under what conditions this can also become the case for the main
computation phases, and therefore for tB1 and tB2.



122 Performance Analysis

6.4 Memory Considerations

6.4.1 The Memory Wall

In 1994, Wulf and McKee coined the term “memory wall” [106] for the ob-
servation that as technology evolves, more and more workloads will not be
bound by the peak performance of the microprocessor but how fast it can be
fed with data. There is a gap between the rates with which microprocessor
and memory speed improved in the past. Although both developments are
exponential, in the case of the microprocessor development the exponent is
substantially larger, causing the gap to increase over time. In 2004, Mc-
Kee observed that there are already many applications with a performance
limited by the memory bottleneck, while others keep improving in perfor-
mance with improvements in processor speeds [69]. In this section, we want
to analyze how close the parallel nonrigid registration algorithm is to the
“memory wall”.

6.4.2 Bandwidth Requirements

B1

hsync

mi

B2

gsync

gd

...

...

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

threads [1]

B
a
n
d
w

id
th

 [
G

B
y
te

/s
]

 

 

mean

standard deviation

min−to−max

Fig. 6.21: The bandwidth requirements are problem dependent for the histogram
calculation. The shaded region covers the minimum to the maximum
value over the 22 image pairs. The theoretical peak memory bandwidth
of the Cell/B.E. processor is 25.6 GByte/s.

While some of the data intensive stages of the algorithm are memory
bound already today (section 6.3.2), the two most time consuming ones
are still compute bound. The bandwidth requirements for the histogram
calculation depends on the actual registration problem, as the number of



6.4 Memory Considerations 123

B1

hsync

mi

B2

gsync

gd

...

...

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

threads [1]
B

a
n
d
w

id
th

 [
G

B
y
te

/s
]

 

 

mean

min−to−max

Fig. 6.22: The bandwidth requirements are not problem dependent for the gradient
calculation. The (almost invisible) shaded region covers the minimum
to the maximum value over the 22 image pairs. The theoretical peak
memory bandwidth of the Cell/B.E. processor is 25.6 GByte/s.

moving image blocks that overlap with a given fixed image block changes
with the resulting transformation function and the sampling rate of the
fixed and moving image. This does not apply for the gradient calculation
if temporary results are stored, where bandwidth requirements are prob-
lem independent. Figures 6.21 and 6.22 show the memory traffic on the
Cell/B.E. (without prefetching), which reaches 4 GByte/s during gradient
calculation. It is below the theoretical peak bandwidth of 25.6 GByte/s.
This may change for future processors if available bandwidth keeps lag-
ging behind processor development. General purpose processors generally
have a lower memory bandwidth than the Cell/B.E. architecture. For the
Core2 processor, we measured a copy bandwidth of 5.56 GByte/s using the
STREAM benchmark [68]. There is no probabilistic prefetching in phase
B2. Therefore, we can assume that the amount of data transferred during
this phase is similar on both platforms. Considering that the runtime is
less than 1.5× higher on the Core2, the memory traffic may come close to
3 GByte/s and doubling the number of cores possibly causes the memory
bandwidth to become the bottleneck.



124 Performance Analysis

If computational power is abundant and memory bandwidth BW scarce,
we can reformulate the equations (6.3) and (6.4) to the form

tB1,bw (NP , NI , BW ) = kB1
NP NI

BW
ns (6.16)

tB2,bw (NP , NI , BW ) = kB2
NP NI

BW
ns (6.17)

with constants kB1 and kB2 to be determined. By filling in the the measured
average bandwidths for one worker thread (198 MByte/s for phase B1 and
508 MByte/s for phase B2) and solving tB1,bw = tB1 and tB2,bw = tB2 for
kB1 and kB2, we get

kB1 = 53.41GByte/s (6.18)

kB2 = 23.58GByte/s. (6.19)

These constants can be interpreted as the bandwidth required to process
one point pair per nanosecond in an iteration of the respective phase.

6.4.3 Prefetching

The performance measurements in section 6.1 show that double-buffering
and prefetching of moving image data only have a minor impact on the run-
time of the algorithm. This is surprising considering that double-buffering
is a well-known optimization technique on the Cell/B.E architecture.

First, we want to take a closer look at prefetching. The parameter dthr is
used to control how many moving image blocks are prefetched. Figure 6.23
shows the memory traffic during the histogram calculation as a function
of dthr. Even for large dthr, the bandwidth is well below the theoretical
limit of 25.6 GByte/s. A large dthr therefore has no negative impact on
performance on the Cell/B.E. The goal of prefetching is reducing the miss
rate — optimally to zero — for moving image data reads.

Figure 6.24 shows the dependency of moving image data misses on dthr

for one of the 22 image pairs. For dthr = 0, no moving image blocks are
prefetched. This results in almost 4 moving image blocks per fixed image
block being fetched during the histogram calculation, each of them causing
the SPE to stall until the DMA transfer is finished. When increasing dthr,
moving image blocks start to get prefetched, reducing the miss rate. For
dthr > 1.2, some moving image blocks that are not required start to get
fetched, which increases the total number of fetched blocks. For dthr = 1.5,



6.4 Memory Considerations 125

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

threshold [block width]

b
a
n
d
w

id
th

 [
G

B
y
te

/s
]

Fig. 6.23: The average memory traffic (over all 22 image pairs) during histogram
calculation depends on the prefetch threshold dthr. A larger dthr means
a more aggressive prefetching of moving image blocks and therefore
more memory traffic. The dotted lines indicate the standard deviation.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

threshold [block width]

fe
tc

h
e
s
 [
fl
o
a
t 
b
lo

c
k
s
 /
 f
ix

e
d
 b

lo
c
k
]

 

 

total

prefetch

miss

Fig. 6.24: With increasing dthr the number of fetches caused by cache misses
decreases and the number of prefetched blocks increases. However, the
total number of fetched blocks also increases for larger dthr, meaning
that some of the prefetched blocks are not required.



126 Performance Analysis

the miss rate is reduced to 0 without causing a too excessive overhead.
Thus, 1.5 would be a good value for dthr. By further increasing dthr, more
blocks that are not required get transferred until the curve plateaus between
8 and 9 moving image blocks being fetched per fixed image block.

This shows that prefetching allows to reduce the cache miss ratio without
too much increase in memory traffic. However, in order to understand the
impact on performance, we also need to know the cache miss penalty.

6.4.4 Cache Miss Penalty

The penalty attributed to a stall due to missing moving image data is the
time required to fetch a moving image block. The duration of such a DMA
transfer depends on the transfer size and the physical location of the SPE
on which we measure the latency (Figure 6.25). SPE0 is on the chip to
which the memory containing the data is attached while SPE8 is on the
other chip. The first interesting observation is that fetching one Kilobyte of
data takes about the same time as fetching 16 Bytes and the penalty starts
to rise only for larger blocks. The cache miss penalties are in the order of
hundreds of nanoseconds: 300ns (466ns on SPE8) for a fixed image block
of 2 kByte and about double that in the case of the moving image blocks,
which are larger due to the replicated data.

Loading the transformation field coefficients is a different case. They
have to be fetched in 16 small pieces because only coefficients that are
neighbors in x-direction are stored in adjacent memory locations. However,
these transfers can be in parallel — we can issue the DMA commands one
after another without waiting for the previous one to finish — and it takes
around 1.2µs to fetch the entire set of coefficients related to one fixed image
block.

The time to process one block in the histogram calculation stage is
tB1 (512, 1, 1) = 141.45µs (see eq. 6.3). The time required to fetch a block
of data is much smaller: in the hundreds of nanoseconds. Double buffering
and prefetching have no significant performance impact because only a very
small number of transfers are necessary during the processing of one block
(the fixed image block, around 4 moving image blocks and the transforma-
tion coefficients).



6.4 Memory Considerations 127

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

block size [Byte]

p
e
n
a
lt
y
 [

µ
s
]

 

 

SPE0

SPE8

Fig. 6.25: The duration of a DMA transfer as a function of the amount of data
transferred was measured on a QS21. The data is stored in the memory
attached to the chip containing SPE0, while SPE8 is on the other chip
and therefore sees a higher latency to memory. The operating system
decides where the memory for the moving image data is allocated. For
small block sizes, the time required for the DMA transfer is almost
constant. When the block size becomes larger than about 2 kByte, the
latency starts to rise. In each experiment, only one SPE was active and
the memory bus bandwidth did not saturate.



128 Performance Analysis

6.4.5 Conclusions

The Cell/B.E. processor has a theoretical memory bandwidth limit of 25.6
GByte/s. The main computational stages of the parallel nonrigid registra-
tion algorithm peak at around 4 GByte/s. This suggests that the algorithm
will remain compute bound at least in the near future.

The data required to process one fixed image block is transferred to the
local store with relatively few, large DMA transfers. This small number of
fetches is a result of the restructuring of the algorithm and its data struc-
tures inspired by the Cell/B.E. memory architecture. The explicit manage-
ment of the cache encourages the programmer to maximize data locality and
fetch data in large blocks. While these paradigms are especially important
on streaming processors like the Cell/B.E., they are also beneficial for the
hardware prefetch units of a general purpose processor (see section 6.1).

The double-buffering of data does not have a significant impact on the
performance. However, hiding the memory latency may become more im-
portant in the future. Similar to the disparity observed between processing
power and memory bandwidth, bandwidth improves more rapidly over time
than latency. David A. Patterson gives the rule of thumb: “In the time that
bandwidth doubles, latency improves by no more than a factor of 1.2 to 1.4.”
and notes that it is often easy to improve bandwidth at the expense of la-
tency [80]. Moreover, latencies may increase if ever more cores issue long
DMA transfers on one shared bus.



6.5 Scalability 2: Cell/B.E. Cluster 129

6.5 Scalability 2: Cell/B.E. Cluster

The preceding sections dealt with a performance and scalability analysis on
(future) multicore processors beyond the 8 SPEs on one Cell/B.E. proces-
sor. A system with more SPEs can already be built today by connecting
multiple QS21 Cell/B.E. blades. Each blade contains two processors and a
Gigabit Ethernet adapter. By combining four such nodes, we get a system
with a total of 64 SPEs. On such a system, we have additional communica-
tion overhead (see section 5.7). In the following sections, we first measure
the additional communication overhead, extend the performance model us-
ing the results and repeat the scalability analysis for the updated model.
Finally, the runtime for the 22 image pairs already used earlier is measured
on the Cell/B.E. cluster.

6.5.1 Communication Cost on a QS21 Cluster

As discussed in section 5.7.2, synchronization of the master threads is nec-
essary. An additional MPI Allreduce operation is necessary after each of
the two synchronization stages.

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

m [Byte]

t 
[s

]

 

 

2 nodes

3 nodes

4 nodes

Fig. 6.26: Time required for an MPI Allreduce operation depending on message
size and node count



130 Performance Analysis

10
0

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

m [Byte]

b
a
n
d
w

id
th

 [
M

B
y
te

/s
]

 

 

2 nodes

3 nodes

4 nodes

Fig. 6.27: Bandwidth for an MPI Allreduce operation depending on message size
and node count

On the cluster consisting of four QS21 blades, the performance of an
MPI Allreduce operation for different message sizes and numbers of nodes
using OpenMPI over Ethernet was measured. Figure 6.26 shows the geo-
metric mean values calculated from 25 measurements for each data point
and figure 6.27 the resulting bandwidth. The pseudo code for the function
used to acquire one data point is

Listing 6.1: Measuring the runtime of an MPI Allreduce operation

1 nloop = 1
2 do
3 MPI_Barrier
4 MPI_Allreduce //warm -up

5 start = MPI_Wtime ()
6 for j = 1 to nloop
7 MPI_Allreduce
8 end
9 time = MPI_Wtime () - start

10 nloop *= 2
11 while (time < 1s)
12 nloop /= 2
13 return time/nloop



6.5 Scalability 2: Cell/B.E. Cluster 131

For small message sizes, multiple reductions are carried out sequentially so
that the total time measured is at least one second. We can observe that
the range where t0 (n) dominates (5.20) goes little beyond m = 100 Byte,
while for larger message sizes r∞ (n) becomes dominant. The latency for
n = 2 is 152µs and rises by 139µs to 291µs if n is doubled. The asymptotic
bandwidth is 17.21MByte/s for n = 2. It is reduced to 11.34MByte/s if n is
doubled. These values should not be confused with the latency and band-
width of the network because multiple transfers between different nodes
are necessary during the MPI Allreduce operation. The latency observed
in our system is very high considering that some supercomputing inter-
connects reach sub-10µs point-to-point latencies [62]. This problem was
already observed on similar clusters by Bolten et al. but they demonstrate
that significant improvement is possible by using InfiniBand interconnects
[12]. The bandwidth that we observe, however, is comparable to what Chou
et al. [16] observed for a different Gigabit Ethernet based clusters.

2 4 6 8 10 12 14 16
150

200

250

300

350

400

450

500

550

600

nodes [1]

t0
 [

µ
s
]

 

 

model

measured

Fig. 6.28: Measured and modeled t0 for QS21 Ethernet clusters

If we use the data points for m ≤ 16 Byte to obtain the latency related
parameters c and d and the data points for m ≥ 256kByte to estimate the
bandwidth related parameters e and f of the model function (5.23) defined
in section 5.7.2, we get



132 Performance Analysis

2 4 6 8 10 12 14 16
6

8

10

12

14

16

18

nodes [1]

a
s
y
m

p
to

ti
c
 b

a
n
d
w

id
th

 [
M

B
y
te

/s
]

 

 

model

measured

Fig. 6.29: Measured and modeled asymptotic bandwidth for QS21 Ethernet clus-
ters

tAllreduce (n, m) = (142.71 log2 n + 18.18) µs+

(28.96 log2 n + 27.05)
ns

Byte
m (6.20)

We distinguish between the latency dependent part

tlat,Allreduce (n, m) = (142.71 log2 n + 18.18) µs (6.21)

and the bandwidth dependent part

tbw,Allreduce (n, m) = (28.96 log2 n + 27.05)
ns

Byte
m (6.22)

The predictions and measurements of the asymptotic bandwidth and la-
tency for different node counts are in figures 6.28 and 6.29 respectively.
Measurements and predictions of the cost of an MPI Allreduce operation
with m = 1MByte are shown in figure 6.30.

We recall that for our workload we have to synchronize the histogram
and the gradient in every iteration. A histogram of 32 × 32 bins consist-
ing of single precision floats occupies 4kByte. The gradient on a grid of



6.5 Scalability 2: Cell/B.E. Cluster 133

2 4 6 8 10 12 14 16
0.04

0.06

0.08

0.1

0.12

0.14

0.16

nodes [1]

t 
[s

]

 

 

model

measured

Fig. 6.30: Measured and modeled time for an MPI Allreduce operation depending
on the node count (m = 1 MB)

16× 16× 16 knots occupies 64kByte if the values are stored as single pre-
cision float vectors. Using (6.20), the estimated synchronization cost per
iteration for the histogram is 0.39 ms on a system with two nodes and 1.18
ms on a system with 16 nodes. For the gradient, the estimates are 3.90
ms and 9.33 ms respectively, giving a total overhead of 4.29 ms for 2 nodes
and 10.51 ms for 16 nodes. The major contribution comes from the band-
width dependent part: 4.14 ms and 9.88 ms respectively. For our workload,
the asymptotic bandwidth of the interconnect is therefore the more impor-
tant parameter than the latency. Using a low-latency interconnect is not
expected to increase the performance for our workload significantly.

6.5.2 Extending the Model

With the parameters for the inter-node communication cost derived in the
preceding section, all the parameters of the model functions for the syn-
chronization cost on the Cell/B.E. cluster are known. These functions,
each containing a term for the inter-node and one for the intra-node syn-
chronization, were defined in section 5.7.2 and are repeated here:

thsync,cluster = thsync (NB, NI , NT,l) + tAllreduce (NN , NB × 4Byte) (6.23)



134 Performance Analysis

tgsync,cluster = tgsync (NK , NI , NT,l) + tAllreduce (NN , NK × 16Byte) . (6.24)

Figure 6.31 shows the estimated performance depending on the cluster
size (assuming one processor per node) for a fixed image size of 512× 512×
100 voxels. The x-axis covers a range up to 1024 processors, meaning 128
nodes. This is a very large system considering that the model functions
were derived based on a much smaller system consisting of four nodes and
designing the interconnect network for such a large system may not be
trivial. However, it allows to qualitatively compare the graph with the
many-core model derived earlier (Figure 6.18). As expected, communication
overhead starts to limit the performance already for smaller NT than in the
many-core case. An efficiency greater than 0.9 can be achieved only for
systems with up to four nodes (Figure 6.32) for this problem size. Again,
the problem size would have to be increased to achieve a better efficiency
on a larger system.

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

threads [1]

t 
[s

]

 

 

total

gradient sync

histogram sync

sequential

Fig. 6.31: Scalability on a cluster with 1 Cell/B.E. processor per cluster node for
a fixed image with 512× 512× 100 voxels.



6.5 Scalability 2: Cell/B.E. Cluster 135

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

threads [1]

e
ff
ic

ie
n
c
y
 [
1
]

Fig. 6.32: Efficiency on a cluster with 1 Cell/B.E. processor per cluster node for a
fixed image with 512× 512× 100 voxels.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

threads [1]

t 
[s

]

 

 

8 SPEs per node

16 SPEs per node

Fig. 6.33: The measured runtime for a fixed image size of 512×512×98 voxels for
different numbers of nodes and different numbers of enabled processors
per node.



136 Performance Analysis

6.5.3 Measurements on the QS21 Cluster

The runtime of the registration of the 22 image pairs used for the benchmark
(section 6.1) was measured on the Cell/B.E. cluster. For a sample image
with a size of 512× 512× 98 voxels, the runtime was 5.18s on the Cell/B.E.
cluster (Figure 6.33). The average runtime per voxel and iteration was
6.7164ns. This corresponds to an efficiency of 0.78 compared to the single-
threaded implementation.



7
Experiments

In the preceding chapter, the performance and scalability of the streaming
algorithm were analyzed. For this purpose, a fixed number of iterations was
executed for different image pairs. In the following experiments, automatic
detection of convergence is enabled. If the metric has not improved by
more than a certain threshold value over the last five successful steps of the
gradient descent optimizer, the algorithm stops optimizing.

Furthermore, multiresolution is enabled. The images are scaled by a
factor sl, where l is the image-pyramid level and s is the scale factor between
two levels. The transformation grid is scaled together with the images. The
grid spacing is the same in all levels in terms of voxel units. The result of the
registration at one resolution level is used to initialize the transformation
at the next level, moving towards higher resolutions. For this purpose, the
transformation needs to be resampled. One QS21 Cell/B.E. blade will be
used for the experiments.

7.1 Simulated MR Images

The simulated BrainWeb images, which were already introduced in sec-
tion 2.1, are used for this experiment. Their size is 181× 217× 181 voxels
with a voxel spacing of 1 mm. We generate a smooth transformation based



138 Experiments

(a) (b) (c)

Fig. 7.1: A slice of (a) the warped checkerboard image, (b) IT1,w (red and blue
channel) and IT1 (green channel), and (c) IT1,w (red and blue channel)
and IT2 (green channel).

on thin plate splines1, which yields a maximum displacement of 20mm at
the image center. Figure 7.1a shows a slice of a checkerboard image, to
which the transformation was applied. The two aligned BrainWeb images
of different modalities, IT1 and IT2, are deformed with this transformation
function to obtain the warped images IT1,w and IT2,w. The registration
of IT1 (moving image) to IT1,w (fixed image) is a monomodal registration
problem and the registration of IT2 (moving image) to IT1,w (fixed image)
is a multimodal one. A fusion of the fixed and the moving image shows the
misalignment for the monomodal (Figure 7.1b) and the multimodal case
(Figure 7.1c). In the monomodal case and for perfect alignment, such a
fusion would yield a grayscale image. This is not the case for the mul-
timodal problem because corresponding points generally do not have the
same intensity.

The registration parameters were:

• Transformation grid spacing of 16 voxel units

• 32 fixed and 32 + 3 moving image bins

• Four multiresolution levels (l = 0 . . . 3)

• Scale factor of 0.7 between levels (s = 0.7)

1Thin plate splines are another widely used transformation model. Their name refers
to the physical analogy of bending a thin piece of metal.



7.1 Simulated MR Images 139

runtime [s]
monomodal multimodal

File I/O 0.18 0.17
Image Pyramid 0.97 0.95
Transformation Pyramid 0.05 0.05
Registration 4.65 4.20
Total 5.85 5.36

Tab. 7.1: The runtime of monomodal and multimodal registration on one QS21
is around 5 to 6 seconds. In addition to the actual registration, this
includes the time required to load the files from disk and to construct
the image and transformation pyramids.

In the final level, convergence is reached after 17 iterations for the
monomodal registration and after 15 iterations in the multimodal case. The
total runtimes are around five to six seconds (Table 7.1). Additional to the
actual registration, there is some time required to load the files from disk,
including rearrangement from row-major to block-8 mapping and type cast-
ing. For this example, this takes less than 0.2 seconds. Furthermore, for the
multiresolution pyramid, the images need to be resampled and the B-spline
representations of the moving images needs to be computed. In total, this
takes almost a second in these experiments. Depending on the application,
the pyramid of one of the images may be computed offline, for example
the preoperative image in intraoperative registration or the atlas image in
the case of atlas-based segmentation. Resampling the transformation func-
tion between the pyramid levels takes only little time, around 0.05 seconds
overall in these experiments.

Visual inspection of the warped and registered images shows that both
registrations were successful. Figure 7.2a shows the result of the monomodal
case. It is the result of the registration problem in figure 7.1b. Figure 7.2b
shows the result of the multimodal example. It is the result of the reg-
istration problem in figure 7.1c. Here, the accuracy of the registration is
more difficult to inspect because the corresponding points in the two images
in general do not have the same intensity and therefore the fusion of two
aligned images is not gray. However, fusing the result of the registration
with the warped image IT2,w shows the success of the registration.

We also measured the displacement at all points except the ones belong-
ing to the background (more than 4 million points). Before registration,



140 Experiments

(a) (b) (c)

Fig. 7.2: A slice of (a) IT1,w (red and blue channel) and IT1,r (green channel),
and (b) IT1,w (red and blue channel) and IT2,r (green channel), and (c)
IT2,w (red and blue channel) and IT2,r (green channel). IT1,w was the
fixed image for both registrations. Image (c) shows that the multimodal
registration was indeed successful, which may be difficult to see in image
(b).

the average displacement was 4.53 mm. After registration, it was 0.06 mm
in the monomodal and 0.04 mm in the multimodal case. The voxel size
is one millimeter and thus the registration accuracy is comparable to the
“constantly better than 0.1 pixels” reported by Kybic and Unser [57] for a
similar, monomodal experiment.

7.2 CT Images

In this experiment, two abdominal CT images are registered. They are from
the same patient but were acquired at different times. The fixed and moving
image have 512× 512× 98 and 512× 512× 94 voxels respectively. Prior to
nonrigid registration, the images were rigidly registered (Figure 7.3a) with
the algorithm described by Ohara et al. [75].

The same settings as for the preceding experiments are used for the
nonrigid registration. In the final level, convergence is reached after 23 it-
erations. The total runtime is below 30 seconds (Table 7.2). While the
construction of the image pyramid requires around three seconds, the re-
sampling of the transformation function is very fast compared to the rest
of the algorithm.



7.3 Comparison with Other Algorithms 141

(a) (b)

Fig. 7.3: Fusion of the fixed image (red and blue channel) with the (a) rigidly
registered moving image (green channel) and (b) nonrigidly registered
moving image (green channel).

Registration of abdominal images may be very challenging because of
the large number of structures present and the variation of their shape
and position over time. The spine, for instance, is an articulated body.
In this case, nonrigid registration improved its mapping compared to rigid
registration (Figure 7.3).

7.3 Comparison with Other Algorithms

A truly objective comparison of the runtime of nonrigid registration algo-
rithms is always difficult because of the differences in the algorithms and
the experimental setups. The image size, for example, has a significant im-
pact on the registration time. We use the runtime per voxel to compare our
algorithm to other parallel registration algorithms.

Taking the results from the last section and omitting the time to load the
images, a registration time of 0.96µs/voxel (24.72 s for 512×512×98 voxels)
is achieved. Rohlfing et al. [85] and Ino et al. [47] presented multimodal
nonrigid registration algorithms running on much larger systems. They



142 Experiments

runtime [s]
File I/O 0.75
Image Pyramid 3.15
Transformation Pyramid 0.10
Registration 21.47
Total 25.48

Tab. 7.2: The runtime of the nonrigid registration of the two CT images is below
30 seconds. In addition to the actual registration, this includes the time
required for loading the files from disk and constructing the image and
transformation pyramids.

report a normalized runtime of 17.9µs/voxel (4.7 minutes for 512×512×60
voxels) on a 64 processor system and 11.5µs/voxel (8 minutes for 512 ×
512× 159 voxels) on a 128 processor system respectively.

An FPGA-based multimodal nonrigid registration algorithm by Dan-
dekar et al. [27] requires 21.5µs/voxel (6 minutes for 2563 voxels). We are
not aware of any multimodal 3D nonrigid registration algorithm for GPUs.
The fastest monomodal algorithm we are aware of was presented by Muyan-
Özçelik et al. [72] with a runtime of 1.09µs/voxel (12.46 s for 424×180×150
voxels).



8
Conclusions and Outlook

Nonrigid registration is important for the comparison of biomedical images
which were acquired with different devices, at different times or from differ-
ent patients. It aligns the images and therefore allows their fusion. Nonrigid
registration of two 3D images typically takes several hours, which prohibits
interactive use. This is a major obstacle for a widespread adoption in clinical
environments and faster solutions are especially required in intraoperative
scenarios with their strict time constraints.

There are implementations reaching registration times in the order of
minutes, but they typically base on relatively large multiprocessor archi-
tectures. The cost of acquisition and maintenance of such systems limits
the availability of these solutions. The algorithm presented in this dis-
sertation achieves sub-minute registration on relatively small and low-cost
systems. Compared to an open-source implementation running sequentially
on a general-purpose processor of the same generation as the Cell/B.E.
processor, a speedup of more than 2500× was achieved. Optimizations of
the algorithm and its data structures yielded a speedup of almost 80× and
moving to a Cell/B.E. system with two processors added another 34× im-
provement. The Cell/B.E. processor, which is designed for multimedia and
gaming applications, consists of a general purpose processor and eight accel-
erator cores specialized in single-precision floating-point calculations. The



144 Conclusions and Outlook

algorithm models the nonrigid transformations with B-splines, which is a
widespread approach. The degrees of freedom of the model can be adapted
to the respective registration problem. A mutual-information-based simi-
larity metric is utilized. It enables multimodal registration, but can also be
applied to monomodal registration problems.

Standard CPUs also have become multicore processors and the trend
seems to go towards an increasing number of cores rather than more perfor-
mant individual cores. This strategy enables a higher performance per chip
area (or Watt). Our parallel algorithm and implementation can directly
benefit from current microprocessor development trends. The performance
difference of the used processors is relatively small compared to the speedup
achieved by optimizing and restructuring the algorithm.

A scalability analysis showed that the algorithm can continue to scale
well with an increasing number of cores at least in the near future. An effi-
cient memory access pattern and prefetching help avoiding problems related
to the memory wall and large memory latencies. The analysis was carried
out on the Cell/B.E. platform, which is bandwidth optimized. To achieve
a high throughput, data need to be transferred in large blocks. Standard
processors have a different memory hierarchy and typically a lower memory
bandwidth than the Cell/B.E. architecture. Furthermore, memory perfor-
mance increases slower than computational performance. It remains to be
seen if memory bandwidth will become the limiting factor on general pur-
pose multicore processors. It may become necessary to reconsider certain
design decisions which are increasing memory traffic. For instance, some of
the moving image data at the borders of image blocks were replicated in
order to enable an efficient loading to vector registers. Furthermore, some
intermediate results were stored for reuse in later stages of the algorithm.

Graphics processing units can provide high memory bandwith and ex-
cellent computational performance. The spectrum of applications for which
they are suitable becomes wider, not only because the architectures become
more generic but also due to improvements in the programming environ-
ments. While fast GPU-based monomodal nonrigid registration has already
been demonstrated by a number of groups, the data-dependent histogram
access pattern during multimodal registration still poses a problem to GPUs.
More recent designs include a writable on-chip memory, enabling efficient
histogram computation. However, the size of this memory is still too small
for the relatively large bin count of a typical joint histogram. Nevertheless,
GPU-based acceleration of multimodal nonrigid image registration may be-



145

come feasible in the near future and offer the most cost-effective solution to
this problem. For this, a specific investigation of the performance and bot-
tlenecks, and appropriate algorithmic adjustments will be necessary, analog
to the methods presented in this thesis.



146 Conclusions and Outlook



A
List of abbreviations

ALU Arithmetic Logic Unit
API Application Programming Interface
ASIC Application Specific Integrated Circuit
Cell/B.E. Cell Broadband Engine
Cg C for graphics
CMOS Complementary Metal-Oxide-Semiconductor
CPI Cycles per Instruction
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DMA Direct Memory Access
DRAM Dynamic Random-Access Memory
EIB Element Interconnect Bus
FEM Finite Element Method
FPGA Field Programmable Gate Array
GCC GNU Compiler Collection
GNU GNU’s Not Unix
GPGPU General-Purpose computation on Graphics Processing Units
GPU Graphics Processing Unit
ITK Insight Toolkit
LS Local Store



148 List of abbreviations

LUT Lookup Table
MFC Memory Flow Controller
MPI Message Passing Interface
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
Mutex Mutual Exclusion
NUMA Non-Uniform Memory Access
PC Personal Computer
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PDE Partial Differential Equation
pdf probability density function
POSIX Portable Operating System Interface
PPE Power Processor Element
PPU Power Processor Unit
Pthreads POSIX threads
RISC Reduced Instruction Set Computer
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SMP Symmetric Multiprocessing
SPE Synergistic Processor Element
SPU Synergistic Processor Unit
SSD Sum of Squared Differences
SSE Streaming SIMD Extensions
TCP Transmission Control Protocol
UMA Uniform Memory Access
VLIW Very Long Instruction Word
VMX Vector Multimedia Extensions
XML Extensible Markup Language



Bibliography

[1] GNU Compiler Collection. http://gcc.gnu.org/.

[2] ITK - Segmentation & Registration Toolkit. http://www.itk.org/.

[3] OpenMPI. http://www.open-mpi.org/.

[4] Oprofile. http://oprofile.sourceforge.net/.

[5] J. L. Abellán, J. Fernández, and M. E. Acacio. Characterizing the ba-
sic synchronization and communication operations in dual cell-based
blades. In Proc. ICCS, Part I, pages 456–465, 2008.

[6] G. Almási, G. Dózsa, C. C. Erway, and B. D. Steinmacher-Burow. Effi-
cient implementation of allreduce on BlueGene/L collective network.
In PVM/MPI, volume 3666 of Lecture Notes in Computer Science,
pages 57–66. Springer, 2005.

[7] G. Amdahl. Validity of the single processor approach to achieving
large-scale computing capabilities. In Proc. AFIPS, pages 483–485,
1967.

[8] A. Andronache, P. C. Cattin, and G. Székely. Adaptive subdivision for
hierarchical non-rigid registration of multi-modal images using mutual
information. In Proc. MICCAI, volume 2, pages 976–983, 2005.

[9] A. Arevalo, R. M. Matinata, M. Pandian, E. Peri, K. Ruby,
F. Thomas, and C. Almond. Programming the Cell Broadband Engine
Architecture: Examples and Best Practices. IBM Redbooks. Vervante,
2008.

[10] R. Bajcsy and S. Kovačič. Multiresolution elastic matching. Comput.
Vision Graph. Image Process., 46(1):1–21, 1989.

http://gcc.gnu.org/
http://www.itk.org/
http://www.open-mpi.org/
http://oprofile.sourceforge.net/


150 Bibliography

[11] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,
and J. C. Sancho. Entering the petaflop era: the architecture and
performance of roadrunner. In Proc. SC, pages 1–11, 2008.

[12] M. Bolten, A. Dolfen, N. Eicker, I. Gutheil, W. Homberg, E. Koch,
A. Schiller, G. Sutmann, and L. Yang. JUICE - Jülich initiative Cell
cluster report 2007. Technical report, Jülich Supercomputing Centre,
2007.

[13] S. Borkar. Design challenges of technology scaling. IEEE Micro,
19(4):23–29, 1999.

[14] M. Bro-Nielsen and C. Gramkow. Fast fluid registration of medical
images. In Proc. VBC, pages 267–276, 1996.

[15] L. G. Brown. A survey of image registration techniques. ACM Com-
put. Surv., 24(4):325–376, 1992.

[16] C.-Y. Chou, H.-Y. Chang, S.-T. Wang, and S.-C. Tcheng. Modeling
message-passing overhead on NCHC Formosa PC cluster. In Proc.
GPC, Lecture Notes in Computer Science, pages 299–307, 2006.

[17] N. Chrisochoides, A. Fedorov, A. Kot, N. Archip, P. Black, O. Clatz,
A. Golby, R. Kikinis, and S. Warfield. Toward real-time, image guided
neurosurgery using distributed and grid computing. In SuperComput-
ing06, Tampa, Florida, USA, 2006.

[18] G. E. Christensen, M. I. Miller, M. W. Vannier, and U. Grenander. In-
dividualizing neuroanatomical atlases using a massively parallel com-
puter. Computer, 29(1):32–38, 1996.

[19] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable tem-
plates using large deformation kinematics. IEEE Trans. Image Pro-
cess., 5(10):1435–1447, 1996.

[20] U. Clarenz, M. Droske, and M. Rumpf. Towards fast non-rigid reg-
istration. In Inverse Problems, Image Analysis and Medical Imaging,
AMS Special Session Interaction of Inverse Problems and Image Anal-
ysis, pages 67–84. AMS, 2002.

[21] W. E. Cohen. Tuning programs with OProfile. Wide Open Magazine,
pages 53–62, 2004.



Bibliography 151

[22] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani,
C. J. Holmes, and A. C. Evans. Design and construction of a realistic
digital brain phantom. IEEE Trans. Med. Imag., 17(3):463–468, 1998.

[23] K. Compton and S. Hauck. Reconfigurable computing: a survey of
systems and software. ACM Comput. Surv., 34(2):171–210, 2002.

[24] N. Courty and P. Hellier. Accelerating 3D Non-Rigid Registration us-
ing Graphics Hardware. International Journal of Image and Graphics,
8:1–18, 2008.

[25] W. R. Crum, T. Hartkens, and D. L. Hill. Non-rigid image reg-
istration: theory and practice. The British Journal of Radiology,
77(2):140–153, 2004.

[26] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers, Inc.,
1999.

[27] O. Dandekar and R. Shekhar. FPGA-accelerated deformable image
registration for improved target-delineation during CT-guided inter-
ventions. IEEE Transactions on Biomedical Circuits and Systems,
1(2):116–127, 2007.

[28] J. Doweck. Inside Intel core microarchitecture and smart memory
access. Technical report, Intel Corporation, 2006.

[29] A. Faraj and X. Yuan. An empirical approach for efficient all-to-all
personalized communication on ethernet switched clusters. In Proc.
ICPP, pages 321–328, 2005.

[30] M. Ferrant, A. Nabavi, B. Macq, P. M. Black, F. A. Jolesz, R. Kikinis,
and S. K. Warfield. Serial registration of intraoperative MR images
of the brain. Medical Image Analysis, 6:337–359, 2002.

[31] A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. Niessen. Au-
tomatic construction of multiple-object three-dimensional statistical
shape models: Application to cardiac modeling. IEEE Trans. Med.
Imag., 21(9):1151–1166, 2002.

[32] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to
Parallel Computing. Addison Wesley, second edition, 2003.



152 Bibliography

[33] S. Green. Image processing tricks in OpenGL. In Game Developers’s
Conference 2005, 2005.

[34] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki. Synergistic processing in cell’s multicore architecture.
IEEE Micro, 26(2):10–24, 2006.

[35] A. Guimond, A. Roche, N. Ayache, and J. Meunier. Three-
dimensional multimodal brain warping using the demons algorithm
and adaptive intensity corrections. IEEE Trans. Med. Imag.,
20(1):58–69, 2001.

[36] T. S. Gunawan and W. Cai. Performance analysis of a myrinet-based
cluster. Cluster Computing, 6(4):299–313, 2003.

[37] J. L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM,
31(5):532–533, 1988.

[38] A. Hagemann, K. Rohr, H. Stiehl, U. Spetzger, and J. Gilsbach.
Biomechanical modeling of the human head for physically-based, non-
rigid image registration. IEEE Trans. Med. Imag., 18(10):875–884,
1999.

[39] J. Held, J. Bautista, and S. Koehl. From a few cores to many: A
tera-scale computing research overview. Technical report, Intel Cor-
poration, 2006.

[40] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers, Inc., third edition,
2003.

[41] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical
image registration. Physics in Medicine and Biology, 46(3):R1–R45,
2001.

[42] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era.
Computer, 41(7):33–38, 2008.

[43] H. P. Hofstee. Power-constrained microprocessor design. In Proc.
ICCD, pages 14–16, 2002.



Bibliography 153

[44] H. P. Hofstee. Power efficient processor architecture and the cell pro-
cessor. In HPCA ’05: Proceedings of the 11th International Sym-
posium on High-Performance Computer Architecture, pages 258–262,
2005.

[45] M. Holden, J. Schnabel, and D. Hill. Quantification of small cerebral
ventricular volume changes in treated growth hormone patients using
nonrigid registration. IEEE Trans. Med. Imag., 21(10):1292–1301,
2002.

[46] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm, I. Gelado, S. S. Stone,
R. E. Kidd, S. S. Baghsorkhi, A. A. Mahesri, S. C. Tsao, N. Navarro,
S. S. Lumetta, M. I. Frank, and S. J. Patel. Implicitly parallel pro-
gramming models for thousand-core microprocessors. In Proc. DAC,
pages 754–759, 2007.

[47] F. Ino, K. Ooyama, A. Takeuchi, and K. Hagihara. Design and im-
plementation of parallel nonrigid image registration using off-the-shelf
supercomputers. In Proc. MICCAI, pages 327–334, 2003.

[48] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. Introduction to the Cell multiprocessor. IBM J. Res.
Dev., 49(4/5):589–604, 2005.

[49] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Compu-
tations, pages 85–103. Plenum Press, 1972.

[50] A. Khamene, R. Chisu, W. Wein, N. Navab, and F. Sauer. A novel
projection based approach for medical image registration. In Proc.
WBIR, volume 4057 of Lecture Notes in Computer Science, pages
247–256. Springer, 2006.

[51] E. Kilgariff and R. Fernando. GPU Gems 2, chapter The GeForce
6 Series GPU Architecture, pages 471–492. Addison-Wesley Profes-
sional, 2005.

[52] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor commu-
nication network: Built for speed. IEEE Micro, 26(3):10–23, 2006.



154 Bibliography

[53] A. Köhn, J. Drexl, F. Ritter, M. König, and H. O. Peitgen. Bild-
verarbeitung für die Medizin 2006, chapter GPU Accelerated Image
Registration in Two and Three Dimensions, pages 261–265. Springer,
2006.

[54] V. Kumar and A. Gupta. Analysis of scalability of parallel algorithms
and architectures: a survey. In ICS ’91: Proceedings of the 5th inter-
national conference on Supercomputing, pages 396–405, 1991.

[55] V. Kumar and V. N. Rao. Parallel depth first search. part ii. analysis.
Int. J. Parallel Program., 16(6):501–519, 1987.

[56] J. Kybic, P. Thévenaz, A. Nirkko, and M. Unser. Unwarping of unidi-
rectionally distorted EPI images. IEEE Trans. Med. Imag., 19(2):80–
93, 2000.

[57] J. Kybic and M. Unser. Fast parametric elastic image registration.
IEEE Trans. Image Process., 12(11):1427–1442, 2003.

[58] M. Ledesma-Carbayo, J. Kybic, M. Desco, A. Santos, M. Sühling,
P. Hunziker, and M. Unser. Spatio-Temporal Nonrigid Registration
for Ultrasound Cardiac Motion Estimation. IEEE Trans. Med. Imag.,
24(9):1113–1126, 2005.

[59] B. Li, A. A. Young, and B. R. Cowan. GPU accelerated non-rigid
registration for the evaluation of cardiac function. In Proc. MICCAI
(2), pages 880–887, 2008.

[60] B. Likar and F. Pernuš. A hierarchical approach to elastic registration
based on mutual information. Image and Vision Computing, 19:33–44,
2001.

[61] J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations incorpo-
rating rigid structures. Comput. Vis. Image Underst., 66(2):223–232,
1997.

[62] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D. K.
Panda, and P. Wyckoff. Microbenchmark performance comparison of
high-speed cluster interconnects. IEEE Micro, 24(1):42–51, 2004.

[63] D. Luebke and G. Humphreys. How GPUs work. Computer, 40(2):96–
100, 2007.



Bibliography 155

[64] F. Maes, A. Collignong, D. Vandermeulen, G. Marchal, and
P. Suetens. Multimodality image registration by maximization of mu-
tual information. IEEE Trans. Med. Imag., 16(2):187–198, 1997.

[65] J. Maintz and M. Viergever. A survey of medical image registration.
Medical Image Analysis, 2(1):1–36, 1998.

[66] J. B. A. Maintz, E. H. W. Meijering, and M. A. Viergever. General
multimodal elastic registration based on mutual information. In Image
Processing, pages 144–154. SPIE Press, 1998.

[67] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank.
PET-CT image registration in the chest using free-form deformations.
IEEE Trans. Med. Imag., 22(1):120–128, 2003.

[68] J. D. McCalpin. Memory bandwidth and machine balance in cur-
rent high performance computers. IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, pages 19–
25, 1995.

[69] S. A. McKee. Reflections on the memory wall. In CF ’04: Proceedings
of the 1st conference on Computing frontiers, pages 162–167, 2004.

[70] K. McLeish, D. Hill, D. Atkinson, J. Blackall, and R. Razavi. A study
of the motion and deformation of the heart due to respiration. IEEE
Trans. Med. Imag., 21(9):1142–1150, September 2002.

[71] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top500 super-
computing sites. http://www.top500.org/.

[72] P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant. Fast
deformable registration on the GPU: A CUDA implementation of
demons. In ICCSA ’08: Proceedings of the 2008 International Confer-
ence on Computational Sciences and Its Applications, pages 223–233,
2008.

[73] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day,
B. D. D’Amora, and S. Kesavarapu. Cell/B.E. blades: Building blocks
for scalable, real-time, interactive, and digital media servers. IBM J.
Res. Dev., 51(5):573–582, 2007.

[74] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008.

http://www.top500.org/


156 Bibliography

[75] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Ko-
matsu, V. Sheinin, S. Daijavad, and B. Erickson. Real-time mutual-
information-based linear registration on the Cell Broadband Engine
processor. In Proc. ISBI, pages 33–36, 2007.

[76] S. Ourselin, A. Roche, S. Prima, and N. Ayache. Block matching:
A general framework to improve robustness of rigid registration of
medical images. In Proc. MICCAI, pages 557–566, 2000.

[77] J. Owens. GPU Gems 2, chapter Streaming Architectures and Tech-
nology Trends, pages 457–470. Addison-Wesley Professional, 2005.

[78] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, and T. J. Purcell. A survey of general-purpose computation
on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[79] S. Patel and W.-m. W. Hwu. Accelerator architectures. IEEE Micro,
28(4):4–12, 2008.

[80] D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–
75, 2004.

[81] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual infor-
mation based registration of medical images: A survey. IEEE Trans.
Med. Imaging, 22(8):986–1004, 2003.

[82] V. Podlozhnyuk. Histogram calculation in CUDA. Technical report,
NVIDIA, 2007.

[83] F. J. Pollack. New microarchitecture challenges in the coming genera-
tions of CMOS process technologies (keynote address)(abstract only).
In MICRO 32: Proceedings of the 32nd annual ACM/IEEE interna-
tional symposium on Microarchitecture, page 2, 1999.

[84] T. Rohlfing, C. R. Maurer, Jr., W. G. O’Dell, and J. Zhong. Mod-
eling liver motion and deformation during the respiratory cycle using
intensity-based free-form registration of gated MR images. Medical
Physics, 31(3):427–432, 2004.

[85] T. Rohlfing and C. R. Maurer Jr. Nonrigid image registration
in shared-memory multiprocessor environments with application to



Bibliography 157

brains, breasts, and bees. IEEE Trans. Inf. Technol. Biomed., 7(1):16–
25, 2003.

[86] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes.
Nonrigid registration using free-form deformations: Application to
breast MR images. IEEE Trans. Med. Imag., 18(8):712–721, 1999.

[87] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan. Larrabee: a many-core x86
architecture for visual computing. ACM Trans. Graph., 27(3):1–15,
2008.

[88] M. Sermesant, O. Clatz, Z. Li, S. Lanteri, H. Delingette, and N. Ay-
ache. A parallel implementation of non-rigid registration using a vol-
umetric biomechanical model. In Proc. WBIR’03, volume 2717 of
Lecture Notes in Computer Science, pages 398–407. Springer-Verlag,
2003.

[89] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert. GPU-
based streaming architectures for fast cone-beam CT image recon-
struction and demons deformable registration. J. Phys. Med. Biol.,
52(19):5771–5783, 2007.

[90] G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, and G. Greiner. Non-
rigid registration with use of hardware-based 3D Bézier functions. In
Proc. MICCAI, pages 549–556, 2002.

[91] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N.
Strenski, and P. G. Emma. Optimizing pipelines for power and per-
formance. In MICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pages 333–344, 2002.

[92] R. Stefanescu, X. Pennec, and N. Ayache. Grid-enabled non-rigid
registration of medical images. Parallel Processing Letters, 14(2):197–
216, 2004.

[93] R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regu-
larized gradient flow — a streaming implementation in DX9 graphics
hardware. Computing, 73(4):373–389, 2004.



158 Bibliography

[94] H. Sutter and J. Larus. Software and the concurrency revolution.
Queue, 3(7):54–62, 2005.

[95] R. Szeliski and J. Coughlan. Spline-based image registration. Int. J.
Comput. Vision, 22(3):199–218, 1997.

[96] P. Thévenaz and M. Unser. Spline pyramids for inter-modal image
registration using mutual information. In Proc. SPIE, volume 3169,
pages 236–247, 1997.

[97] P. Thévenaz and M. Unser. Optimization of mutual information
for multiresolution image registration. IEEE Trans. Image Process.,
9(12):2083–2099, 2000.

[98] J.-P. Thirion. Non-rigid matching using demons. In Proc. CVPR,
pages 245–251, 1996.

[99] J.-P. Thirion. Image matching as a diffusion process: An analogy with
Maxwell’s demons. Medical Image Analysis, 2(3):243–260, 1998.

[100] M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part
I—Theory. IEEE Trans. Signal Process., 41(2):821–833, February
1993.

[101] M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part
II—Efficient design and applications. IEEE Trans. Signal Process.,
41(2):834–848, 1993.

[102] C. Vetter, C. Guetter, C. Xu, and R. Westermann. Non-rigid multi-
modal registration on the GPU. In Proc. SPIE, volume 6512, 2007.

[103] P. Viola and W. M. Wells III. Alignment by maximization of mutual
information. Int. J. Comput. Vision, 24(2):137–154, 1997.

[104] S. Warfield, F. Talos, A. Tei, A. Bharatha, A. Nabavi, M. Ferrant,
P. Black, F. Jolesz, and R. Kikinis. Real-time registration of volu-
metric brain mri by biomechanical simulation of deformation during
image guided neurosurgery. Computing and Visualization in Science,
5(1):3–11, 2002.

[105] D. H. Woo and H.-H. S. Lee. Extending Amdahl’s law for energy-
efficient computing in the many-core era. Computer, 41(12):24–31,
2008.



Bibliography 159

[106] W. Wulf and S. A. McKee. Hitting the memory wall: Implications of
the obvious. Technical report, University of Virginia, 1994.

[107] XtremeData. FPGA acceleration in HPC: A case study in financial
analytics. Technical report, 2006.

[108] Z. Xu and K. Hwang. Modeling communication overhead: MPI and
MPL performance on the IBM SP2. IEEE Parallel Distrib. Technol.,
4(1):9–23, 1996.

[109] B. Zitová and J. Flusser. Image registration methods: a survey. Image
and Vision Computing, 21(11):977–1000, 2003.



160 Bibliography



Curriculum Vitae

Personal Data

Name Jonathan Rohrer
Date of birth July 16, 1980
Citizenship Swiss

Jonathan Rohrer is member of the Hardware Acceleration Technologies
group in the Systems Department at the IBM Zurich Research Labora-
tory. He received an M.S. degree in Electrical Engineering and Information
Technology from the Swiss Federal Institute of Technology (ETH) Zurich
in 2006. He subsequently joined IBM, where he works on programmable
hardware accelerator units for different applications such as regular expres-
sion matching and protocol processing. Related to the PhD studies he is
pursuing at the Computer Vision Laboratory at ETH Zurich, he works on
nonrigid image registration and its acceleration. He is author or co-author of
various papers and inventor or co-inventor of four filed patent applications.

Education and Degrees

2006 – 2009 PhD student
Swiss Federal Institute of Technology (ETH)
PreDoc
IBM Zurich Research Laboratory

2000 – 2006 Master of Science in Electrical Engineering
and Information Technology
Swiss Federal Institute of Technology (ETH)

1993 – 2000 Matura Type C (Mathematics and Sciences)
Kantonsschule Zug



162 Curriculum Vitae

Journals, Conferences and Workshops

J. Rohrer, J. van Lunteren, K. Atasu, and C. Hagleitner. Memory-
Efficient Distribution of Regular Expressions for Fast Deep Packet
Inspection. In Proc. CODES+ISSS, pages 147–154, 2009.

J. Rohrer and L. Gong. Accelerating 3D nonrigid registration using
the Cell/B.E. processor. IBM J. Res. Dev., 53(5):12:1–12:10, 2009.

J. van Lunteren, J. Rohrer, K. Atasu, and C. Hagleitner. Regular
expression acceleration at multiple tens of Gb/s. In 1st Workshop
on Accelerators for High-performance Architectures in conjunction
with ICS, 2009.

J. Rohrer, L. Gong, and G. Székely. Parallel mutual information
based 3D non-rigid registration on a multi-core platform. In HP-
MICCAI workshop in conjunction with MICCAI, 2008.

J. Rohrer and L. Gong. Focused atlas-based image registration for
recognition. In Proc. ICIP, pages 1808–1811, 2008.

L. Gong, J. Rohrer, G. Iyengar, B. Butler, and A. Lumsden.
Anatomical object recognition and labeling by atlas-based focused
non-rigid registration and region-growing. In Proc. ICALIP, pages
1354–1358, 2008.

L. Gong, J. Rohrer, G. Iyengar, B. Butler, A. Lumsden, and
P. Sovelius. Automatic labeling of blood vessels in CT abdominal
images by progressive atlas-based registration and region-growing.
Int J CARS, 3:S386–S387, 2008.

J. Rohrer and L. Gong. Accelerating mutual information based 3D
non-rigid registration using the Cell/B.E. processor. In Workshop
on Cell Systems and Applications in conjunction with ISCA, 2008.

J. Rohrer. Elastic Image Registration. In Cell/B.E. on CNGrid
Symposium, Beijing, 2007.


	Abstract
	Zusammenfassung
	Introduction
	Image Registration
	Applications
	Classification
	Organization

	Nonrigid Image Registration
	Similarity Metrics
	Physics-Based Approaches
	Demons Algorithm
	B-Spline Model
	Piecewise Rigid Registration

	Accelerating Nonrigid Image Registration
	Overview
	Multiprocessors
	Shared-Memory Architectures
	Message-Passing Architectures
	Programming Models
	Early Nonrigid Registration Work
	Biomechanical Models
	Demons Algorithm
	B-spline Algorithms
	Conclusions

	Trends in Processor Development
	Instruction-Level Parallelism
	Multicore Processors
	Asymmetric Processors
	Accelerators
	Memory
	Programming

	Cell/B.E.
	Overview
	Processor Architecture
	PPE
	SPE
	On-Chip Communication
	System Architecture
	Programming Models
	Rigid Registration

	GPU
	Overview
	System Architecture
	Processor Architecture
	Programming Model
	Early Nonrigid Registration Work
	Gradient Flow Algorithms
	Demons Algorithm
	Finite Element Algorithm
	Multimodal Registration
	Conclusions

	FPGA
	Architecture
	Volume-Subdivision Algorithm

	Conclusions

	Implemented Registration Algorithm
	Basic Features
	B-Spline Transformation Model
	Mutual Information
	Moving Image Model
	Optimization Strategy

	Parallel Algorithm Design
	Problem Analysis
	The Algorithm
	Performance Bottlenecks

	Optimizations
	B-Spline Interpolation
	Use of Lookup Tables
	Vectorized B-Spline Interpolation
	Optimized Transformation Field Evaluation
	Optimized Image Interpolation
	Gradient Calculation
	Conclusions

	Parallelization Platform
	Profiling
	Theoretical Limitations
	Limitations for GPUs
	Target Platform for Parallelization
	Master-Worker Programming Model
	Conclusions

	Data Locality
	Producer-Consumer Locality
	Spatial Locality
	Storing Intermediate Results for Reuse

	Parallelism 1: Multiple SPEs
	Parallelization
	Compute Kernels
	Synchronization and Coherency
	Communication
	Model Overview

	Data Transfers
	Double Buffering
	Caching of Data
	Probabilistic Prefetching of Moving Image Data
	Data Replication

	Parallelism 2: Multiple Cell/B.E. Processors
	The Parallelized Phases
	The Communication Phases
	The Sequential Phases
	Conclusions


	Performance Analysis
	Benchmark
	Setup
	Results Overview
	Code and Data Structures
	Re-use of the Transformed Image and its Gradient
	Grouping
	Manual Vectorization
	Vector Alignment
	Double Buffering
	Parallelism
	Conclusions

	Modeling the Runtime
	Measuring Runtime
	Parallelized Functions
	Communication Overhead
	The Sequential Part

	Scalability 1: Many-Core
	Fixed Problem Size
	Reducing Gradient Collection Overhead
	Reducing Histogram Collection Overhead
	Scaling Problem Size
	Conclusions

	Memory Considerations
	The Memory Wall
	Bandwidth Requirements
	Prefetching
	Cache Miss Penalty
	Conclusions

	Scalability 2: Cell/B.E. Cluster
	Communication Cost on a QS21 Cluster
	Extending the Model
	Measurements on the QS21 Cluster


	Experiments
	Simulated MR Images
	CT Images
	Comparison with Other Algorithms

	Conclusions and Outlook
	List of abbreviations
	Curriculum Vitae

