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Multi-Terminal Source Coding: Can Zero-rate Encoders Enlarge the Rate Region?

Badri N. Vellambi and Roy Timo
Institute for Telecommunications Research
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Email: {badri.vellambi, roy.timo}@unisa.edu.au

Abstract—Consider the multi-terminal source coding (MSC)
problem wherein l discrete memoryless sources are compressed
by l physically separate encoders, and a decoder is required to
reconstruct the sources within certain distortion constraints. This
paper focuses on the following question: Does the removal of
a zero-rate link change the rate region? Though the question
seems simple, its complication lies in the limiting nature of
the rate region definition. Although intuition suggests that the
answer should be no, resolving this question appears to be
difficult for at least three reasons: (1) there is no known single-
letter characterization of the MSC rate region; (2) there is no
known elementary argument for rate-transfer from a zero-rate
encoder to others; and (3) there is no known exponentially strong
converse, whose existence would otherwise answer the question.
In this paper, we answer the question for a number of special
cases of the general MSC problem. Our proof techniques use
a “super-code” style analysis along with new results from the
helper problem. We note, however, that these techniques appear
to fall short of answering the question in general.

I. INTRODUCTION

One of the primary goals of information theory is the
explicit characterization of rate regions for transmitting data
over a network meeting certain requirements. The require-
ments are either lossless reconstructions of sources or lossy
reconstructions certified by a prescribed distortion measure [1].
Such network rate regions are usually defined using sequences
of block codes [2] and have a form as follows.

R(D) =
⋂
ε>0

⋃
n∈N

R(D, n, ε) = lim
ε↓0

( ⋃
n∈N

R(D, n, ε)
)
. (1)

Here, R(D) represents the rate region for demands D, and
R(D, n, ε) represents the set of rates at which there exists
a block code of length n meeting the demands within a
failure probability of ε. While properties such as convexity and
closedness of the rate regions are straightforward to verify [1],
continuity of rate regions w.r.t. the source statistics and the
demands is harder to establish. Gu et al. have established the
continuity of rate regions w.r.t. demands and source distribu-
tion for general classes of network problems [3]–[5]. Note
that when a single-letter characterization of the rate region
of a problem is known, it is almost trivial to ascertain the
verity of such properties. However, multi-terminal information
theory is fraught with simple problems such as the partial side-
information (PSI) problem [6], multiple descriptions (MD)
problem [7], and the multi-terminal source coding (MSC)
problem [8] that remain unsolved.

In this work, we focus on one question: Is the rate region
of a network with zero rate on a link, the same as that
of the network with that link deleted? Though the question

seems simple, its complication lies in the limiting nature
of the definition of rate regions. When the sources in the
network emit non-i.i.d. symbols, several examples can be
designed to show that asymptotically zero-rate links can alter
the region (see Example 1 of Sec. IV-B). However, when the
sources emit i.i.d. symbols, and when the demands are lossy
(within a required distortion) and/or lossless reconstructions,
the answer to this question (in cases where it is known) has
always affirmed that zero-rate links do not alter the region.
In a majority of network cases where the answer is known,
an explicit description of the rate region is also known. In
some cases, even if the rate region is unknown, the existence
of an exponentially strong converse suffices to answer this
question [5], [9]. However, the existence of such suitably
strong converses is a hard information-theoretic problem in
itself. Here, we attempt to answer this question for the multi-
terminal source coding problem that is formalized in Sec. III.
Note that for this problem in its generality, neither is the rate
region, nor is the existence of a strong converse known.

We have been able to use standard information-theoretic
tools in a constructive fashion to show that under many settings
of the MSC problem, the rate region with zero rate on a
link is the same that when the link is absent. In specific,
we establish that in both PSI and MSC problems with two
discrete memoryless sources (DMSs), zero-rate links can be
deleted without altering the rate region. However, for more
than two correlated sources, this result is established only
when a certain Markov property holds for the source joint
distribution and for specific distortion requirements.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the notations employed throughout this
paper. Section III presents the formulation of the PSI and
MSC problems and various terminologies associated with the
definition of the rate region. Section IV presents the results
and proofs and Section VI concludes the paper.

II. NOTATIONS

Throughout the paper, the following notations are em-
ployed. For n1, n2 ∈ N, n1 ≤ n2, [n1] � {1, . . . , n1} and
[n1 ∼ n2] � {n1, . . . , n2}. 0k represents the 1 × k all-zero
vector. Uppercase letters (e.g., X , Y ) are reserved for random
variables (RVs) and the respective script versions (e.g., X ,
Y ) correspond to their alphabets. The realizations of RVs are
usually denoted by lowercase letter (e.g., x, y). Subscripts are
used for components of vectors, i.e., x[n] denotes a vector of
length n and xi represents the ith component of x[n]. We let
Sε
n(P ) to denote the set of all ε-strongly P -typical sequences
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of length n [1]. When the underlying probability distribution
is clear, H and I refers to the entropy and mutual information
functionals. The Hamming distortion measure on a set X is
denoted by ∂X

H , and lastly, E denotes the expectation operator.

III. PROBLEM DEFINITION

Given a DMS emitting (X
(1)
i , . . . , X

(l)
i )i∈N in an i.i.d.

fashion with each symbol l-tuple having a joint distribution
pX(1)···X(l) , the multi-terminal source coding (MSC) problem
aims to identify rates at which encoders have to separately
encode sequences {x(k)i }i∈N, k ∈ [l], using l encoders so that
l suitably distorted reconstructions can be constructed at the
joint decoder (see Fig. 1).

X
(1)
[n]

X
(2)
[n]

X
(l)
[n]

X̂
(1)
[n]

X̂
(2)
[n]

X̂
(l)
[n]

M (1)

M (2)

M (l)

φ
(1)
[n]

φ
(2)
[n]

φ
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[n]

ψ
(1
)
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]
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··
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(l
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[n
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Fig. 1. The multi-terminal source coding problem

For k ∈ [l], the reconstruction (X̂
(k)
i )i∈N is a sequence of

elements from the reconstruction alphabet X̂ (k) and the ac-
ceptability of the reconstruction is evaluated by a distortion cri-
terion using the distortion measure ∂(k) : X (k)×X̂ (k) → R+.
A rate-distortion pair (R,Δ) � (R1, . . . , Rl,Δ1, . . . ,Δl) is
said to be achievable if for each ε > 0, there exists an ε-
achievable block code (φ

(1)
[n] , . . . , φ

(l)
[n], ψ

(1)
[n] , . . . , ψ

(l)
[n]). That is,

∀ ε > 0, ∃n ∈ N, s. t. ∀ k ∈ [l], there exist encoders
φ
(k)
[n] : X

(k)
[n] → M (k) and decoders ψ

(k)
[n] : M (1) × · · · ×

M (l) → X̂
(k)
[n] satisfying:

A1. 1
n

∑n
i=1 E ∂(k)(X

(k)
i , X̂

(k)
i ) ≤ Δk + ε, where

X̂
(k)
[n] � ψ

(k)
[n]

(
φ
(1)
[n] (X

(1)
[n] ), . . . , φ

(l)
[n](X

(l)
[n])
)
, and

A2. |M (k)| ≤ 2n(Rk+ε).
Given Δ ≥ 0, we say a rate vector R is achievable

if (R,Δ) is achievable in the aforementioned sense, and
denote RMSC(Δ)[pX(1)···X(l) ] to be the set of achievable
rate vectors. This set, known as the rate region, is con-
vex and closed [1]. For each distortion measure, we let
∂
(k)
max � min

x̂∈X̂ (k)

∑
x∈X (k) pX(k)(x)∂(k)(x, x̂). Note that

when Δk ≥ ∂
(k)
max, the kth encoder can even operate at zero

rate. However, any message from this encoder can help de-
coders to obtain less-distorted reconstructions of other sources.
Given distortions Δ, we set H(Δ) � {k ∈ [l] : Δk ≥ ∂

(k)
max}

to be the set of helper sources.
As a special case, the MSC problem with l = 2 and Δ2 ≥

∂
(2)
max is called as the partial side-information (PSI) problem. In

this case, the rate region is independent of the actual value of
Δ2 and is denoted by RPSI(Δ1)[pX(1)X(2) ]. Lastly, when clear,
we drop the reference to the underlying source distribution in
rate region notations.

IV. THE RESULTS

In this section, we present the results and proofs. First, the
invariance of the rate region under the deletion of zero-rate
links is established for the PSI problem. The invariance is then
proved for the MSC problem with two sources followed by a
direct extension to multiple sources. Although the invariance
result for the MSC problem subsumes that of the PSI problem,
the proof techniques for the two cases are very different. While
the proof for the MSC problem exploits the knowledge of the
rate region for the common helper problem (See Appendix A),
that of the PSI problem is self-contained and constructive in
nature. Finally, the invariance for the MSC problem when
l > 2 is established for a class of sources that have certain
Markovian property.

A. The Partial Side-information Problem

Theorem 1: Let RX(1) be the rate-distortion function for a
DMS with distribution pX(1) under the distortion measure ∂(1).
Then,

inf
{
R : (R, 0) ∈ RPSI(Δ1)[pX(1)X(2) ]

}
= RX(1)(Δ1) (2)

Proof: Since R ≥ RX(1)(Δ1) ⇒ (R, 0) ∈ RPSI(Δ1),
we only need to show the reverse implication. Let ε > 0

and (R, 0) ∈ RPSI(Δ1). Let (φ
(1)
[n] , φ

(2)
[n] , ψ

(1)
[n] , ψ

(2)
[n] ) be an

ε-achievable code for this rate-distortion tuple. Set U �
φ
(1)
[n] (X

(1)
[n] ) and V � φ

(2)
[n] (X

(2)
[n] ) and let U ,V be their

alphabets, respectively. Notating qn � p
UX

(1)

[n]
V

, we have

∑
u∈U ,v∈V

x[n]∈X
(1)

[n]

qn(u, x[n], v)

n

n∑
j=1

∂(1)((ψ
(1)
[n] (u, v))j , xj) ≤ Δ1 + ε.

Now, choose m ∈ N and a code Cm of 2
m(I(UX

(1)

[n]
;V )+ε)

codewords from V[m] (with each component of each codeword
selected independently and identically using PV ) such that

B1. Pr[(X[n])[m] ∈ Sε
m(PX[n]

)] ≥ 1− ε.

B2. Pr
[{(

u[m], (x[n])[m]
)
∈ U[m] × (X[n])[m] : ∃ c ∈

Cm s.t. (u[m], (x[n])[m], c) ∈ Sε
m(qn)

}]
≥ 1− ε.

Consider the scheme where the X(2) encoder sends a con-
stant message and X(1) encoder sends the index of a v ∈ Cm

that is jointly typical with (U[m], (X
(1)
[n] )[m]) in addition to

U[m] � (φ
(1)
[n] (X

(1)
[n] )), . . . , φ

(1)
[n] (X

(1)
[nm−n+1∼nm])). Note that

by B2, for almost all source realizations, at least one such v
exists. If no such typical vector exists, the first codeword is
transmitted by default. This scheme can be effected with a rate

R̃1 = R1 +
1

n
I(UX

(1)
[n] ;V ) + ε

(a)

≤ R1 + 2ε, (3)

where (a) follows because the data processing inequality for
UX

(1)
[n] � X

(2)
[n] � V ensures I(UX

(1)
[n] ;V ) ≤ I(X

(2)
[n] ;V ) ≤

log2 |V | ≤ nε. The decoder uses the indices to generate
X̂
(1)
[ln+1∼(l+1)n] = ψ

(1)
[n] (Ul+1, Vl+1), l = 0, . . . ,m − 1. By

construction, we guarantee an average distortion of no more
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than (Δ1+ ε)(1+ ε)(1−2ε)+2ε∂
(1)
max < Δ1+ ε(1+2∂

(1)
max).

Since ε is arbitrary, we see that if (R1, 0) ∈ RPSI(Δ1), then the
rate R1 suffices to construct a rate-distortion code for pX(1)

meeting a distortion of Δ1 under ∂(1).

B. Multi-terminal Source Coding Problem with Two Sources

We first present an example that shows that the i.i.d. nature
of the source is important for zero-rate links to play an
insignificant role in shaping rate regions.
Example 1: Consider the MSC problem for the

{X(1)
i , X

(2)
i }i∈N, where {X(1)

i } are i.i.d. with each index
X
(1)
i having a distribution pX(1) , and X

(2)
i = (X

(1)
i , A),

where A is a discrete RV over A with distribution pA that:
(1) is statistically independent of each X

(1)
[s] for s ∈ N,

and (2) meets H(A) > 0. Then, for ∂(1) = ∂X (1)

H and
∂(2) = ∂X (2)

H and Δ = 02, (H(X), 0) is achievable, since
one can use a good compression scheme for the X(1) side
and convey A using �log2 |A |� bits from the X(2) side.
However, by deleting the link from the X(2) encoder, one
cannot reconstruct the X(2) with zero distortion.

The following result shows such an event cannot occur for
i.i.d. sources.
Theorem 2: Let RH, RPRD denote the rate region for the

common helper problem and the rate-distortion function for
the partially-blind rate-distortion problem (see Appendix A),
respectively. Then, the following are equivalent.
C1. (R, 0) ∈ RH(Δ1,Δ2)[pX(1)X(2) ].
C2. (R, 0) ∈ RMSC(Δ1,Δ2)[pX(1)X(2) ].
C3. R ≥ RPRD(Δ1,Δ2)[pX(1)X(2) ].

Proof: It is straightforward to see that C3 ⇒ C2 and
C2 ⇒ C1. To show C1 ⇒ C3, let (R, 0) ∈ RH(Δ1,Δ2).
Then, from the rate region for the common helper problem
(Appendix A), we have pU∗V ∗X(1)X(2) ∈ PH(Δ1,Δ2), such
that R2 = I(X(1)X(2);V ∗|U∗) = 0. This functional being
zero in conjunction with the chain U∗

�X(1)
�X(2) establish

V ∗
� U∗

� X(1)
� X(2). Now, for j = 1, 2, let fj denote

functions that map U ∗ × V ∗ to the respective reconstruction
alphabets X (j), such that fj(U∗, V ∗) meets required distor-
tion constraint of Δj under ∂(j). Define for j = 1, 2, functions
hj : U ∗ → V ∗, f̃j : U ∗ → X̂ (j) by

hj(u)�arg min
v∈V ∗

∑
x∈X (j)

pX(j)|U∗(x|u)∂(j)(x, fj(u, v)). (4)

f̃j(u)� fj(u, hj(u)). (5)

Observe that by construction, for j = 1, 2,

E ∂(j)(X(j), f̃j(U
∗)) ≤ E ∂x(X

(j), fj(U
∗, V ∗)) ≤ Δj . (6)

Thus, there exists a distribution pU∗X(1)X(2) with (1) |U ∗| ≤
|X (1)||X (2)| + 4; (2) U∗

� X(1)
� X(2); and (3) functions

f̃j that provide reconstructions X̂(j) from U∗ meeting the
required distortions. Therefore, pU∗X(1)X(2) ∈ P PRD(Δ1,Δ2)
(possibly after altering the definition of RPRD to include auxil-
iary RVs with alphabet sizes up to |X (1)||X (2)|+ 4, which
does not alter the PRD rate region). Therefore, we have
(R, 0) ∈ RH(Δ1,Δ2)⇒ R ≥ RPRD(Δ1,Δ2).

At this point, we would like to remark that the inner bound
RMSC

in (Δ1,Δ2) by Berger and Tung [10] and the outer bound
RMSC

out(Δ1,Δ2) obtained from traditional converse techniques
(that replaces the chain U � X(1)

� X(2)
� V in the inner

bound with U �X(1)
�X(2) and X(1)

�X(2)
�V ) also agree

on the R2 = 0 plane. That is,

(R, 0) ∈ RMSC
in (Δ1,Δ2)⇔ (R, 0) ∈ RMSC

out(Δ1,Δ2) (7)

⇔ R ≥ RPRD(Δ1,Δ2), (8)

thereby providing an alternate proof of the invariance result
for the MSC problem when l = 2. Further, Theorem 2 can be
extended for the l > 2 setting to show that zero-rate encoders
cannot help when there is only one link carrying positive rate.
Theorem 3: For l > 2 and Δ ≥ 0

(R,0l−1) ∈ RMSC(Δ)[pX(1)···X(l) ]⇔ R ≥ RPRD(Δ)[pX(1)···X(l) ].

Proof: Note that

(R,0l−1) ∈ RMSC(Δ)[pX(1)···X(l) ]⇒ (R, 0) ∈ RMSC(Δ)[pX(1)Y ],

where Y = (X(2) · · ·X(l)). Notice here that the distortions
∂(k) for k > 1 can be equivalently seen as distortion measures
for the Y -source. However, from Theorem 2, we notice that

(R, 0) ∈ RMSC(Δ)[pX(1)Y ]⇒ R ≥ RPRD(Δ)[pX(1)Y ]. (9)

However, since RPRD(Δ)[pX(1)Y ] = RPRD(Δ)[pX(1)···X(l) ], the
proof is complete because R ≥ RPRD(Δ)[pX(1)···X(l) ] is achiev-
able for the MSC problem.

C. Multi-terminal Source Coding Problem for l > 2 sources

Here, we show that for a class of sources and under certain
distortions Δ, the MSC rate region with zero rates on certain
links is the same as that of the MSC problem with the same
constraints and with the zero-rate links deleted.
Theorem 4: Suppose ∃S ⊂ [l], i ∈ [l]\S, such that X(S)

�

X(i)
� X((S∪{i})c). Additionally, if S ⊆ H(Δ), then all rate

vectors in RMSC(Δ)∩{Rj = 0 : j ∈ S} are achievable even if
the encoders encoding X(j), j ∈ S send a constant message.

Proof: Since the proof is a simple multi-source adaptation
of that of Theorem 1 that establishes a rate-transfer argument,
we present only an outline of the proof. Given an ε-achievable
code C with l encoders, construct a block supercode C′ with a
bigger block length, wherein the encoders corresponding to the
indices of S transmit constant messages, and the ith encoder
constructs a codebook that will transmit along with its usual
message, additional message that corresponds to a typical
realization of the messages that would be originally sent over
the |S| zero-rate links, i.e., from the encoders encoding X(j),
j ∈ S. In doing so, the rate from the encoders encoding
{Xj : j ∈ S} is transferred to that of i. Note that this
additional rate incurred is bounded above by |S|ε. The proof
is complete by noting that ε is arbitrary.

Note that the above result is different from that of l = 2
case, since for l > 2, the rate regions of suitable sub-networks
may be unknown. For example, consider the MSC problem

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

23



for a DMS with distribution pX1X2X3 s. t. X1 � X2 � X3.
Theorem 4 guarantees

RMSC(Δ1,Δ2, ∂
(3)
max) ∩{R3=0}∼=RPSI(Δ1,Δ2)[pX(1)X(2) ],

RMSC(∂(1)max,Δ2,Δ3) ∩{R1=0}∼=RPSI(Δ2,Δ3)[pX(2)X(3) ],

where ∼= signifies that the right-hand region is the appropriate
projection of the one on the left. Note that this result is
previously unknown, since the rate region for the PSI problem
remains open. Additionally, ∀Δ ≥ 03, Theorem 3 guarantees

(0, R2, 0) ∈ RMSC(Δ)⇒ R2 ≥ RPRD(Δ)[pX(1)X(2)X(3) ].
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VI. CONCLUSIONS

The invariance of the MSC rate region under the deletion of
zero-rate links was studied. Though the question of invariance
remains open in general, it was shown that the rate region
remains unaltered if zero-rate links are deleted from the PSI
and MSC problems with two correlated DMSs. When more
than two correlated DMSs are present, it was established that
the deletion of zero-rate links from some helper encoders do
not alter the MSC rate region provided the source distribution
has a certain Markov structure.

APPENDIX A
ALLIED PROBLEMS AND THEIR RATE REGIONS

Problem 1: (The partially-blind rate-distortion problem)
Given a discrete source emitting (X

(1)
i , . . . , X

(l)
i )i∈N in an

i.i.d. fashion with each symbol l-tuple having the joint dis-
tribution pX(1)···X(l) . The problem aims to identify the rates
at which the X(1) sequence can be encoded so that suitably
“noisy” reconstruction (X̂k

i )i∈N for each k ∈ [l] is constructed
by the block decoder. The acceptability of the reconstructions
are determined by distortion criteria using distortion measures
∂(k) : X (k) × X̂ (k) → R+. A pair (R1,Δ) is said to be
achievable if for each ε > 0, ∃n ∈ N, φ(1)[n] : X[n] → M (1)

and ψ[n] : M (1) → X̂
(1)
[n] × · · · × X̂

(l)
[n] s. t.:

D1. 1
n

∑n
i=1 E ∂(k)(X

(k)
i , X̂

(k)
i ) ≤ Δk + ε, ∀k ∈ [l], and

D2. |M (1)| ≤ 2n(R1+ε).

The infimum of achievable rates RPRD(Δ)[pX(1)···X(l) ] can be
shown to be as follows.

RPRD(Δ) = inf
p
UX(1)···X(l)∈PPRD(Δ)

I(X(1);U),

where P PRD(Δ) is the set of distributions pUX(1)···X(l) s. t.:

E1. U � X(1)
� (X(2) · · ·X(l)), |U | ≤ |X (1)|+ l, and

E2. ∀ k∈ [l], ∃ f (k): U→X̂ (k),E ∂(k)(X(k), f (k)(U))≤Δk .

Problem 2: (The common helper problem) Given a discrete
source emitting (X

(1)
i , X

(2)
i )i∈N in an i.i.d. fashion with each

pair having the joint distribution pX(1)X(2) . The problem aims
to identify the rates at which information must be sent by

encoders so that suitably “noisy” versions (X̂
(1)
i )i∈N and

(X̂
(2)
i )i∈N are constructed by a joint block decoder. Here,

the first encoder (the helper encoder) has access to the X(1)-
sequence, whereas the second one has access to both X(1)- and
X(2)-sequences. As before. the acceptability of reconstructions
are evaluated by distortion criteria using distortion measures
∂(1) : X (1) × X̂ (1) → R+ and ∂(2) : X (2) × X̂ (2) → R+.
A quadruplet (R1, R12,Δ1,Δ2) is said to be achievable if
for each ε > 0, ∃n ∈ N, φ

(1)
[n] : X

(1)
[n] → M (1), φ

(12)
[n] :

X
(1)
[n] ×X

(2)
[n] → M (12), ψ(1)[n] : M (1) ×M (12) → X̂

(1)
[n] and

ψ
(2)
[n] : M (1) ×M (12) → X̂

(2)
[n] s. t.

F1. 1
n

∑n
i=1 E ∂(j)

(
X
(j)
i , X̂

(j)
i

)
≤ Δj + ε, j = 1, 2, where

X̂
(j)
[n] � ψ

(j)
[n]

(
φ
(1)
[n] (X

(1)
[n] ), φ

(12)
[n] (X

(1)
[n] , X

(2)
[n] )

)
, and

F2. |Mt| ≤ 2n(Rt+ε), t = 1, 12.

Even though the problem defines two separate encoders,
allowing the X(1) encoder to send its encoded message to the
X(1)X(2) encoder does not alter the rate region. This setting
is the more readily seen as the common helper setup [11]. The
set RH(Δ1,Δ2) of achievable rates is given by

RH(Δ) =

{
R1 ≥ I(X(1);U)

R12 ≥ I(X(1)X(2);V |U)
: pX(1)X(2)UV ∈ PH(Δ)

}
,

where PH(Δ) is the set of distributions PUV X(1)X(2) s. t.:

G1. U � X(1)
� X(2), |U | ≤ |X (1)||X (2)|+ 4.

G2. |V | ≤ (|X (1)||X (2)|+ 2)2 − 2.
G3. ∃ f1 : U × V → X̂ (1), E ∂(1)(X(1), f1(U, V )) ≤ Δ1.
G4. ∃ f2 : U × V → X̂ (2), E ∂(2)(X(2), f2(U, V )) ≤ Δ2.
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