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Email: michael.huber@uni-tuebingen.de

Abstract—We establish a construction of optimal authentica-
tion codes achieving perfect multi-fold secrecy by means of com-
binatorial designs. This continues the author’s work (ISIT 2009,
cf. [1]) and answers an open question posed therein. As an
application, we present the first infinite class of optimal codes
that provide two-fold security against spoofing attacks and at the
same time perfect two-fold secrecy.

I. INTRODUCTION

Authentication and secrecy are two crucial concepts in

cryptography and information security. Although independent

in their nature, various scenarios require that both aspects

hold simultaneously. For information-theoretic or uncondi-
tional security (i.e. robustness against an attacker that has

unlimited computational resources), authentication and secrecy

codes have been investigated for quite some time. The initial

construction of authentication codes goes back to Gilbert,

MacWilliams & Sloane [2]. A more general and systematic

theory of authentication was developed by Simmons (e.g., [3],

[4]). Fundamental work on secrecy codes started with Shan-

non [5].

This paper deals with the construction of optimal authen-

tication codes with perfect multi-fold secrecy. It continues

the author’s recent work [1], which naturally extended results

by Stinson [6] on authentication codes with perfect secrecy.

We will answer an important question left open in [1] that

addresses the construction of authentication codes with perfect

multi-fold secrecy for equiprobable source probability distri-

butions. We establish a construction of optimal authentication

codes which are multi-fold secure against spoofing attacks

and simultaneously provide perfect multi-fold secrecy. This

can be achieved by means of combinatorial designs. As an

application, we present the first infinite class of optimal codes

that achieve two-fold security against spoofing as well as

perfect two-fold secrecy.

The paper is organized as follows: Necessary definitions

and concepts from the theory of authentication and secrecy

codes as well as from combinatorial design theory will be

summarized in Section II. Section III gives relevant combina-

torial constructions of optimal authentication codes which bear

no secrecy assumptions. In Section IV, we review Stinson’s

constructions in [6] and recent results from [1]. Section V is

devoted to our new constructions.

II. PRELIMINARIES

A. Authentication and Secrecy Codes

We rely on the information-theoretical or unconditional se-

crecy model developed by Shannon [5], and by Simmons

(e.g., [3], [4]) including authentication. Our notion complies,

for the most part, with that of [6], [7]. In this model of

authentication and secrecy three participants are involved:

a transmitter, a receiver, and an opponent. The transmitter

wants to communicate information to the receiver via a public

communications channel. The receiver in return would like

to be confident that any received information actually came

from the transmitter and not from some opponent (integrity of

information). The transmitter and the receiver are assumed to

trust each other. Sometimes this is also called an A-code.

In what follows, let S denote a set of k source states (or

plaintexts), M a set of v messages (or ciphertexts), and E
a set of b encoding rules (or keys). Using an encoding rule

e ∈ E , the transmitter encrypts a source state s ∈ S to

obtain the message m = e(s) to be sent over the channel.

The encoding rule is an injective function from S to M, and

is communicated to the receiver via a secure channel prior to

any messages being sent. For a given encoding rule e ∈ E , let

M(e) := {e(s) : s ∈ S} denote the set of valid messages. For

an encoding rule e and a set M∗ ⊆M(e) of distinct messages,

we define fe(M
∗) := {s ∈ S : e(s) ∈ M∗}, i.e., the set of

source states that will be encoded under encoding rule e by

a message in M∗. A received message m will be accepted

by the receiver as being authentic if and only if m ∈ M(e).
When this is fulfilled, the receiver decrypts the message m by

applying the decoding rule e−1, where

e−1(m) = s⇔ e(s) = m.

An authentication code can be represented algebraically by a

(b×k)-encoding matrix with the rows indexed by the encoding

rules, the columns indexed by the source states, and the entries

defined by aes := e(s) (1 ≤ e ≤ b, 1 ≤ s ≤ k).

We address the scenario of a spoofing attack of order i
(cf. [7]): Suppose that an opponent observes i ≥ 0 distinct

messages, which are sent through the public channel using the

same encoding rule. The opponent then inserts a new message

m′ (being distinct from the i messages already sent), hoping to

have it accepted by the receiver as authentic. The cases i = 0
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and i = 1 are called impersonation game and substitution
game, respectively. These cases have been studied in detail

in recent years (e.g., [8], [9]), however less is known for the

cases i ≥ 2. In this article, we focus on those cases where

i ≥ 2.

For any i, we assume that there is some probability dis-

tribution on the set of i-subsets of source states, so that any

set of i source states has a non-zero probability of occurring.

For simplification, we ignore the order in which the i source

states occur, and assume that no source state occurs more

than once. Given this probability distribution pS on S , the

receiver and transmitter choose a probability distribution pE
on E (called encoding strategy) with associated independent

random variables S and E, respectively. These distributions

are known to all participants and induce a third distribution,

pM , on M with associated random variable M . The deception
probability Pdi

is the probability that the opponent can deceive

the receiver with a spoofing attack of order i. The following

theorem (cf. [7]) provides combinatorial lower bounds.

Theorem 1: [Massey] In an authentication code with k
source states and v messages, the deception probabilities are

bounded below by

Pdi
≥ k − i

v − i
.

An authentication code is called tA-fold secure against
spoofing if Pdi = (k − i)/(v − i) for all 0 ≤ i ≤ tA.

Moreover, we consider the concept of perfect multi-fold

secrecy which has been introduced by Stinson [6] and general-

izes Shannon’s fundamental idea of perfect (one-fold) secrecy

(cf. [5]). We say that an authentication code has perfect tS-
fold secrecy if, for every positive integer t∗ ≤ tS , for every

set M∗ of t∗ messages observed in the channel, and for every

set S∗ of t∗ source states, we have

pS(S
∗|M∗) = pS(S

∗).

That is, the a posteriori probability distribution on the t∗

source states, given that a set of t∗ messages is observed,

is identical to the a priori probability distribution on the t∗

source states.

When clear from the context, we often only write t instead

of tA resp. tS .

B. Combinatorial Designs

We recall the definition of a combinatorial t-design. For

positive integers t ≤ k ≤ v and λ, a t-(v, k, λ) design D
is a pair (X,B), satisfying the following properties:

(i) X is a set of v elements, called points,

(ii) B is a family of k-subsets of X , called blocks,

(iii) every t-subset of X is contained in exactly λ blocks.

We denote points by lower-case and blocks by upper-case

Latin letters. Via convention, let b := |B| denote the number

of blocks. Throughout this article, ‘repeated blocks’ are not

allowed, that is, the same k-subset of points may not occur

twice as a block. If t < k < v holds, then we speak of a

non-trivial t-design. For historical reasons, a t-(v, k, λ) design

with λ = 1 is called a Steiner t-design (sometimes also a

Steiner system). The special case of a Steiner design with

parameters t = 2 and k = 3 is called a Steiner triple system
STS(v) of order v. A Steiner design with parameters t = 3 and

k = 4 is called a Steiner quadruple system SQS(v) of order v.

Specifically, we are interested in Steiner quadruple systems in

this paper. As a simple example, the vector space Zd
2 (d ≥ 3)

with the set B of blocks taken to be the set of all subsets of

four distinct elements of Zd
2 whose vector sum is zero, is a

non-trivial boolean Steiner quadruple system SQS(2d). More

geometrically, these SQS(2d) consist of the points and planes

of the d-dimensional binary affine space AG(d, 2).

Fig. 1. Illustration of the unique SQS(8), with three types of blocks:
faces, opposite edges, and inscribed regular tetrahedra.

For the existence of t-designs, basic necessary conditions

can be obtained via elementary counting arguments (see, for

instance, [10]):

Lemma 1: Let D = (X,B) be a t-(v, k, λ) design, and for

a positive integer s ≤ t, let S ⊆ X with |S| = s. Then the

number of blocks containing each element of S is given by

λs = λ

(
v−s
t−s

)(
k−s
t−s

) .
In particular, for t ≥ 2, a t-(v, k, λ) design is also an

s-(v, k, λs) design.

It is customary to set r := λ1 denoting the number of blocks

containing a given point. It follows

Lemma 2: Let D = (X,B) be a t-(v, k, λ) design. Then

the following holds:

(a) bk = vr.

(b)

(
v

t

)
λ = b

(
k

t

)
.

(c) r(k − 1) = λ2(v − 1) for t ≥ 2.

For encyclopedic accounts of key results in design theory,

we refer to [10], [11]. Various connections of designs with

coding and information theory can be found in a recent

survey [12] (with many additional references therein).

III. OPTIMAL AUTHENTICATION CODES

For our further purposes, we summarize the state-of-the-art

for authentication codes which bear no secrecy assumptions.

The following theorem (cf. [7], [13]) gives a combinatorial

lower bound on the number of encoding rules.

Theorem 2: [Massey–Schöbi] If an authentication code is

(t − 1)-fold against spoofing, then the number of encoding

rules is bounded below by

b ≥
(
v
t

)(
k
t

) .
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TABLE I
OPTIMAL AUTHENTICATION CODES WITH PERFECT SECRECY:

INFINITE CLASSES

tA tS k v b Ref.

1 1 q + 1 qd+1−1
q−1

v(v−1)
k(k−1)

[6]

q prime power d ≥ 2 even

1 1 3 v ≡ 1 (mod 6)
v(v−1)

6
[1]

1 1 4 v ≡ 1 (mod 12)
v(v−1)

12
[1]

1 1 5 v ≡ 1 (mod 20)
v(v−1)

20
[1]

2 1 q + 1 qd + 1
v(v−1)(v−2)
k(k−1)(k−2)

[1]

q prime power d ≥ 2 even

2 1 4 v ≡ 2, 10 (mod 24)
v(v−1)(v−2)

24
[1]

An authentication code is called optimal if the number of

encoding rules meets the lower bound with equality. When the

source states are known to be independent and equiprobable,

optimal authentication codes which are (t − 1)-fold secure

against spoofing can be constructed via t-designs (cf. [6], [13],

[14]).

Theorem 3: [DeSoete–Schöbi–Stinson] Suppose there is a

t-(v, k, λ) design. Then there is an authentication code for k
equiprobable source states, having v messages and λ ·

(
v
t

)
/
(
k
t

)
encoding rules, that is (t − 1)-fold secure against spoofing.

Conversely, if there is an authentication code for k equiprob-

able source states, having v messages and
(
v
t

)
/
(
k
t

)
encoding

rules, that is (t − 1)-fold secure against spoofing, then there

is a Steiner t-(v, k, 1) design.

IV. STINSON’S CONSTRUCTIONS & RECENT RESULTS

Using the notation introduced in Section II-A, we review

in Tables I and II previous constructions from [6], [1] for

equiprobable source probability distributions. This lists all

presently known optimal authentication codes with perfect

secrecy.

V. NEW CONSTRUCTIONS

Starting from the condition of perfect t-fold secrecy, we

obtain via Bayes’ Theorem that

pS(S
∗|M∗) =

pM (M∗|S∗)pS(S∗)
pM (M∗)

=

∑
{e∈E:S∗=fe(M∗)} pE(e)pS(S

∗)∑
{e∈E:M∗⊆M(e)} pE(e)pS(fe(M∗))

= pS(S
∗).

It follows

Lemma 3: An authentication code has perfect t-fold secrecy

if and only if, for every positive integer t∗ ≤ t, for every set

M∗ of t∗ messages observed in the channel and for every set

S∗ of t∗ source states, we have∑
{e∈E:S∗=fe(M∗)}

pE(e) =
∑

{e∈E:M∗⊆M(e)}
pE(e)pS(fe(M

∗)).

Hence, if the encoding rules in a code are used with equal

probability, then for every t∗ ≤ t, a given set of t∗ messages

TABLE II
OPTIMAL AUTHENTICATION CODES WITH PERFECT SECRECY:

FURTHER EXAMPLES

tA tS k v b Ref.

2 1 5 26 260 [1]

5 11 66 [1]

7 23 253 [1]

5 23 1.771 [1]

5 47 35.673 [1]

3 1 5 83 367.524 [1]

5 71 194.327 [1]

5 107 1.032.122 [1]

5 131 2.343.328 [1]

5 167 6.251.311 [1]

5 243 28.344.492 [1]

6 12 132 [1]

4 1 6 84 5.145.336 [1]

6 244 1.152.676.008 [1]

occurs with the same frequency in each t∗ columns of the

encoding matrix.

We can now establish an extension of the main theorem

in [1]. Our construction yields optimal authentication codes

which are multi-fold secure against spoofing and provide

perfect multi-fold secrecy.

Theorem 4: Suppose there is a Steiner t-(v, k, 1) design,

where
(
v
t∗
)

divides the number of blocks b for every positive

integer t∗ ≤ t − 1. Then there is an optimal authentication

code for k equiprobable source states, having v messages

and
(
v
t

)
/
(
k
t

)
encoding rules, that is (t− 1)-fold secure against

spoofing and simultaneously provides perfect (t− 1)-fold se-

crecy.

Proof: Let D = (X,B) be a Steiner t-(v, k, 1) design,

where
(
v
t∗
)

divides b for every positive integer t∗ ≤ t− 1. By

Theorem 3, the authentication code has (t− 1)-fold security

against spoofing attacks. Hence, it remains to prove that

the code also achieves perfect (t− 1)-fold secrecy under

the assumption that the encoding rules are used with equal

probability. With respect to Lemma 3, we have to show that,

for every t∗ ≤ t − 1, a given set of t∗ messages occurs

with the same frequency in each t∗ columns of the resulting

encoding matrix. This can be accomplished by ordering, for

each t∗ ≤ t − 1, every block of D in such a way that every

t∗-subset of X occurs in each possible choice in precisely

b/
(
v
t∗
)

blocks. Since every t∗-subset of X occurs in exactly

λt∗ =
(
v−t∗

t−t∗
)
/
(
k−t∗

t−t∗
)

blocks due to Lemma 1, necessarily
(
k
t∗
)

must divide λt∗ . By Lemma 2 (b), this is equivalent to saying

that
(
v
t∗
)

divides b. To show that the condition is also sufficient,

we consider the bipartite (t∗-subset, block) incidence graph of

D with vertex set
(
X
t∗
)
∪ B, where ({xi}t

∗
i=1, B) is an edge

if and only if xi ∈ B (1 ≤ i ≤ t∗) for {xi}t
∗
i=1 ∈

(
X
t∗
)

and

B ∈ B. An ordering on each block of D can be obtained via

an edge-coloring of this graph using
(
k
t∗
)

colors in such a way

that each vertex B ∈ B is adjacent to one edge of each color,
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and each vertex {xi}t
∗
i=1 ∈

(
X
t∗
)

is adjacent to b/
(
k
t∗
)

edges of

each color. Specifically, this can be done by first splitting up

each vertex {xi}t
∗
i=1 into b/

(
k
t∗
)

copies, each having degree(
k
t∗
)
, and then by finding an appropriate edge-coloring of the

resulting
(
k
t∗
)
-regular bipartite graph using

(
k
t∗
)

colors. The

claim follows now by taking the ordered blocks as encoding

rules, each used with equal probability.

Remark 1: It follows from the proof that we may obtain

optimal authentication codes that provide (t− 1)-fold security

against spoofing and at the same time perfect (t′ − 1)-fold

secrecy for t′ ≤ t, when the assumption of the above theorem

holds with
(
v
t∗
)

divides b for every positive integer t∗ ≤ t′−1.

As an application, we give an infinite class of optimal codes

which are two-fold secure against spoofing and achieve perfect

two-fold secrecy. This appears to be the first infinite class of

authentication and secrecy codes with these properties.

Theorem 5: For all positive integers v ≡ 2 (mod 24), there

is an optimal authentication code for k = 4 equiprobable

source states, having v messages, and v(v − 1)(v − 2)/24
encoding rules, that is two-fold secure against spoofing and

provides perfect two-fold secrecy.

Proof: We will make use of Steiner quadruple systems

(cf. Section II-A). Hanani [15] showed that a necessary and

sufficient condition for the existence of a SQS(v) is that v ≡ 2
or 4 (mod 6) (v ≥ 4). Hence, the condition v | b is fulfilled

when v ≡ 2 or 10 (mod 24) and the condition
(
v
2

)
| b when

v ≡ 2 (mod 12) in view Lemma 2 (b). Therefore, if we assume

that v ≡ 2 (mod 24), then we can apply Theorem 4 to establish

the claim.

We present the smallest example:

Example 1: An optimal authentication code for k = 4
equiprobable source states, having v = 26 messages, and

b = 650 encoding rules, that is two-fold secure against spoof-

ing and provides perfect two-fold secrecy can be constructed

from a Steiner quadruple system SQS(26). Each encoding rule

is used with probability 1/650.

Remark 2: For v = 26, the first SQS(v) was constructed by

Fitting [16], admitting a v-cycle as an automorphism (cyclic
SQS(v)). We generally remark that the number N(v) of

non-isomorphic SQS(v) is only known for v = 8, 10, 14, 16
with N(8) = N(10) = 1, N(14) = 4, and N(16) =
1,054,163 (cf. [17]). Lenz [18] proved that for the admissi-

ble values of v, the number N(v) grows exponentially, i.e.

lim infv→∞
logN(v)

v3 > 0. For comprehensive survey articles

on Steiner quadruple systems, we refer the reader to [19],

[20]. For classifications of specific classes of highly regular

Steiner quadruple systems and Steiner designs, see, e.g., [21],

[22].
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