
ETH Library

Generalizing the transfer in
iterative error correction
dissection decoding

Conference Paper

Author(s):
Sorger, Ulrich; Heim, Axel

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-a-006001389

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006001389
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Generalizing the Transfer in Iterative Error
Correction: Dissection Decoding

Ulrich Sorger
Computer Science and Communications,

University of Luxembourg,

Luxembourg

Email: ulrich.sorger@uni.lu

Axel Heim
Institute of Telecommunications and

Applied Information Theory

Ulm University, Germany

Email: axel.heim@uni-ulm.de

Abstract—Iterative decoding with message-passing is consid-
ered. The message format is generalized from the classical, single
probability value for each code symbol to a probability distribu-
tion by introducing an additional logarithmic probability mea-
sure. Thereby, the representation of the probability distributions
underlying the constituent code constraints by the messages is
improved in terms of the Kullback-Leibler divergence. Simulation
shows that this improvement can transfer to the error correcting
performance.

I. INTRODUCTION

PEARL’s belief propagation algorithm (BPA) [1], [2] has

attracted major attention in the communication community

when it was applied to parallel concatenated convolutional

codes (PCCCs) by BERROU et al. [3] in the early 90’s.

Using the BCJR algorithm [4] to efficiently compute symbol

probabilities in the trellises of the constituent codes, the

iterative exchange of so-called extrinsic information between

the constituent decoders allows for error correcting perfor-

mance close to the SHANNON limit [5] while maintaining low

computational complexity. The field of application was quickly

extended to other code constructions like serial concatenations

[6] or low-density parity-check codes [7]. The basic principle

of the decoding scheme, however, has remained the same ever

since.

After recalling the abstract class of intersection codes in

Section II, Section III-A emphasizes an observation made

in [8]: The symbol probabilities computed in the constituent

decoders minimize the KULLBACK-LEIBLER divergence be-

tween a) the probability distribution of the code words given

the input beliefs and the code constraint, and b) the uncoded

distribution given the objective variables. By replacing the

latter distribution by a new one with a larger parameter space

in Section III-B, this optimization is improved. Simulation in

Section IV shows that this improvement can also transfer to

the error correcting performance.

II. INTERSECTION CODES

The class of intersection (IS) codes [9] is equivalent to the

class of embedding codes [10] or trellis-constrained codes.

Every code can be expressed as the intersection of two (or

more) super-codes, and hence as an IS code.

Definition 1 (Intersection Code): Let C(1) and C(2) be lin-

ear block codes of length n. An intersection code C(∩) is

defined as the intersection

C(∩) = C(1) ∩ C(2) (1)

of the constituent codes (super codes) C(1) and C(2).

The parity check matrix of an intersection code is obtained

by stacking the h(l) × n parity check matrices H(l), l = 1, 2
of its constituent codes C(l). I.e., for c = [c1 c2 . . . cn] being

a binary vector, Equation (1) is equivalent to

C(∩) =
{
c : H(∩) · cT = 0

}
with H(∩) =

[
H(1)

H(2)

]
,

with

C(∩) ⊆ C(l) ⊆ S, l = 1, 2,

where S denotes the n-dimensional binary space.

Example 1 (Turbo Codes): Let

GCC =
[
I G(p)

]
denote the generator matrix of the two identical systematic

convolutional encoders of a PCCC [3], where I is the identity

matrix and G(p) generates the parity part of the convolu-

tional code words, including termination bits from both the

systematic and the parity output. Let Π denote the Turbo code

permutation matrix. The generator matrix of the PCCC then

is given by

G(∩) =
[
I G(p) ΠG(p)

]
.

For interpretation as constituent codes C(l) of an IS code, the

codes defined by GCC require uncoded extension, i.e.

C(1) =
{[

u uG(p) v
]
: u ∈ Fk

2 ,v ∈ Fk+2κ
2

}
C(2) =

{[
uΠ v uΠG(p)

]
: u ∈ Fk

2 ,v ∈ Fk+2κ
2

}
,

where k is the dimension of the PCCC, κ is the encoder

memory and Fk
2 denotes the binary space of dimension k.

In the following we will implicitly use binary vectors and

code words with bipolar values using the mapping

{0, 1} "→ {+1,−1}.
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III. ITERATIVE DECODING

In general, an iterative decoder is a device consisting of two

(or more) constituent decoders D(l), l = 1, 2 corresponding to

the constituent codes C(l), which output a set of probabilities.

For decoding, the noisy received word r is input to the

first constituent decoder D(1) which computes conditional

probabilities given r and the constraint of C(1). Together with

r these probabilities are input to decoder D(2). D(2) then

computes probabilities under the constraint of C(2) which are

passed back to D(1) and so forth until some stopping criterion

is fulfilled.
We consider transmission over the additive white GAUSSian

noise (AWGN) channel. Code words are transmitted with

equal probability. Let

r =
1

σ2 log(2)
· (c+ η) (2)

be the scaled, noisy version of a code word c ∈ C(∩), where

η is the noise vector, σ2 is the noise variance,

pR|S (r|s) = 1(√
2πσ

)n · exp
(
−‖(c+ η)− s‖2

2σ2

)
∝ 2rs

T

is the probability of r given s ∈ S, and R and S denote the

corresponding random variables, respectively.
Let C(l), l = 1, 2 denote the random variable for the words

of the codes C(l), respectively, and Si the random variable for

the i-th bit of a binary vector. Denote by

PC(l)|R (s|r) ∝ pR|S (r|s) ·
〈
s ∈ C(l)

〉
, l = 1, 2 (3)

the probability of s given r and the constraint of code C(l),

where∑
s∈S

PC(l)|R (s|r) = 1 and 〈b〉 :=
{
1 if b is true

0 else

denotes the IVERSON bracket. Further, let

PSi|R
(
x|r,C(l)

)
=

∑
s∈S:si=x

PC(l)|R (s|r) , x ∈ {±1}

define the probability for Si = x given r and the constituent

code constraint C(l), and

L
(l)
i (r) :=

1

2
· log2

PSi|R
(
+1|r,C(l)

)
PSi|R

(
−1|r,C(l)

) (4)

the corresponding logarithmic likelihood ratio (LLR). The

probabilities PS |R (s|r), PSi|R (x|r,S) and Li(r) without a

code constraint, i.e. s ∈ S, are defined accordingly.
In the following, subscripts may be neglected when clear

from the context.

A. Belief Propagation
In belief propagation (BP), the messages passed between

the decoders are given by a vector of extrinsic LLRs denoted

by
(
d(l) −m(l)

)
. This vector is defined by the decoder input

m(l) = r +
(
d(h) −m(h)

)
and the decoder output LLRs

d
(l)
i =

1

2
· log2

PSi|R
(
+1|m(l),C(l)

)
PSi|R

(
−1|m(l),C(l)

) , i = 1, . . . , n (5)

Algorithm 1 The Belief Propagation Algorithm

1) initialize
• set l = 1, h = 2
• set m(h) = d(h) = 0

2) iterate
while (stopping criterion not fulfilled)

• D(l) :
(
m(l) = r + d(h) −m(h)

)
"→ d(l), cf. (5)

• swap l↔ h

end
3) output ĉ = sgn

(
d(h)

)

given the constraint of code C(l). This is summarized in

Algorithm 1.

The computation (5) can be motivated as follows. For

simplicity we consider one constituent decoder and disregard

the indices l, h. Let d be a vector of n independent LLRs

di =
1

2
· log2

PSi|R (+1|d,S)
PSi|R (−1|d,S) , i = 1, . . . , n,

where we deliberately choose R as the corresponding ran-

dom variable. Hence d is considered as being obtained from

the same channel as the received word, i.e. pR|S(d|s) ∝
exp2(ds

T ). The following lemma shows that the cross entropy

between PC|R(s|r) and PS|R(s|d) is an objective function

whose minimization with respect to d yields Equation (5).

Lemma 1 (Cross Entropy [8]): Minimizing the cross en-

tropy

HR||R(C|r||S|d) := −
∑
s∈S

PC|R(s|r) · log2 PS|R(s|d) (6)

between the distributions PC|R(s|r) and PS|R(s|d) with

respect to the vector d of LLRs yields the logarithmic symbol

probability ratios

di = arg min
vi∈R

HR||R(C|r||S|v) = 1

2
log2

PSi|R (+1|r,C)

PSi|R (−1|r,C)

where R denotes the set of real numbers.1

The KULLBACK-LEIBLER divergence (KLD) is an infor-

mation theoretic measure for the similarity between two dis-

tributions over the same probability space. It directly relates

to the cross entropy by

DKL (C|r||S|d) := HR||R(C|r||S|d)
+
∑
s∈S

PC|R (s|r) · log2 PC|R (s|r)

and its minimum value is 0 for two identical distributions.

The observation that for belief propagation the computation

within the constituent decoders corresponds to the optimiza-

tion of (6) – or, equivalently, the minimization of the KLD –

is essential for the concept of Dissection Decoding below.

1When extrinsic information from another decoder is available, r is
replaced by the appropriate input m.
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B. Dissection Decoding

In belief propagation the transfer message can be written as

a vector of LLRs. We now increase the transfer complexity

by introducing a new dimension to these messages. This new

dimension is spanned by the discrete random variable U whose

realizations

u(s) := HS|R (s|d) (7)

are given by the conditional word uncertainties

HS|R (s|d) := − log2 (P (s|d)) = − log2

n∏
i=1

2sidi

2di + 2−di

of s, given a dissector d. For now, d is assumed to be constant

and is disregarded in the notation for better readability. The

finite probability space of U is denoted by U. Its size is

determined by d. Rather than a transfer vector of length n,

we employ a matrix m = [m1[u], . . . ,mn[u]] of size |U|×n.

We also introduce a new transfer vector q of length |U|. Let

PS|M ,Q(s|m, q) ∝ q[u(s)] · PS|R(s|m[u(s)]) (8)

= q[u(s)] ·
n∏

i=1

2si·mi[u(s)]

2mi[u(s)] + 2−mi[u(s)]

with ∑
s∈S

PS|M ,Q(s|m, q) = 1

denote the symbol-based probability of s given m and q.

Further define

PSi,C,U |R (x, s, u|r) := PC|R (s|r) · 〈Si = x〉 · 〈H(s|d) = u〉
from which we obtain probabilities such as

PSi,U |R (x, u|r,C) =
∑
s∈S

PSi,C,U |R (x, s, u|r)

by marginalization.

Akin to Lemma 1, the following theorem defines the opti-

mum pair (m, q) for representing the distribution PC |R (s|r)
in terms of the (uncoded) distribution PS|M ,Q(s|m, q).

Theorem 1: Minimizing the cross entropy

HR||M ,Q (C|r||S|m, q) :=
∑
s∈S

PC |R (s|r)·HS |M ,Q (s|m, q)

= −
∑
s∈S

PC |R (s|r) · log2
(
PS |M ,Q (s|m, q)

)
(9)

with respect to m and q yields

q[u] ∝ PU |R(u|r,C )

PU |R(u|m[u],S)
, (10)

and m is given by the implicit solution

PSi|R,U (x|m[u], u,S) = PSi|R,U (x|r, u,C ), i = 1, ..., n.
(11)

We observe that for d = 0, i.e. |U| = 1 it follows from

Theorem 1 that

mi[u] =
1

2
· log2

PSi|R,U (+1|r, u,C )

PSi|R,U (−1|r, u,C )
(12)

are the symbol beliefs given r and the code C, and q[u] is

a constant, i.e. the computation is as for the BPA. Moreover,

due to the larger parameter space of the objective function

(9) for |U| > 1 the cross entropy can only decrease. Closer

investigation shows that in this case (12) is a near optimum

approximation of (11).

We have thus found a (near) optimum pair (m, q) with

respect to the objective function (9) and a given dissector d.

From Theorem 1 it does not directly follow how to apply

the transfer message (m, q) in iterative decoding. We now

reintroduce superscripts to indicate constituent codes or the

decoder where variables originate from. Given a message pair

(m(h), q(h)) from decoder D(h) we first need a new dissector

d(l) from which then a new message (m(l), q(l)) can be

computed in D(l), where l, h = 1, 2, l 
= h. Define by

HM ,Q||R (C|m, q||S|d) :=
−
∑
s∈S

PC |M ,Q (s|m, q) · log2
(
PS |R (s|d)

)
the cross entropy between the uncoded distribution of s given

d and the distribution of s ∈ C given the message pair (m, q).
A possible optimization rule for the dissectors d(l) is given in

the following.

Proposal 1: Find the dissectors d(1), d(2) minimizing

(d(1),d(2)) = arg min
(v(1),v(2))

HM ,Q||R(C(1)|m(2), q(2)||S|v(1))

+HM ,Q||R(C(2)|m(1), q(1)||S|v(2)) (13)

with (m(l), q(l)), l = 1, 2 chosen to minimize

HR||M ,Q

(
C(l)|r||S|m(l), q(l)

)
given d(l) according to Theorem 1.

To derive an algorithm from this proposal, compute the

partial derivatives of the entropy terms in (13). We obtain

∂

∂d
(l)
i

HM ,Q||R(C(l)|m(h), q(h)||S|d(l))

=
∑
s∈S

PC(l)|M ,Q(s|m(h), q(h)) ·
(
tanh2(d

(l)
i )− si

)
, (14)

and the derivative of the second term is approximately zero.

Hence we set (14) equal to zero and obtain

d
(l)
i =

1

2
· log2

PSi|M ,Q(+1|m(h), q(h),C(l))

PSi|M ,Q(−1|m(h), q(h),C(l))
(15)

which is a calculation rule. Note that, though not explicitly

stated in the formula, the computation (15) requires knowledge

of d(h) as m(h) and q(h) are functions of u.

The results in (12) and (15) motivate the Dissection Decod-

ing Algorithm 2 for the decoding of a noisy IS code word.

In the beginning, nothing is known about either constituent

code and thus d(2) = 0, m(2) = 0 and q(2) = 1 are

initialized as all-zero and all-one, respectively, which directly

results in d(1) = 0 when assuming equiprobable code sym-

bols. ‘Normal’ symbol beliefs m(1)[u] are computed in D(1)
according to (12) and passed to D(2). There the dissector d(2)
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Algorithm 2 Dissection Decoding

1) initialize
• set l = 1, h = 2, d(2) = 0, m(2) = 0, q(2) = 1

2) iterate
while (stopping criterion not fulfilled)

• D(l) : (m(h), q(h),d(h)) "→ d(l) cf. (15)

d(l) "→ (m(l), q(l)) cf. (10), (12)
• swap l↔ h

end
3) output ĉ = sgn

(
d(h)

)

is computed according to (15). Up to this point the algorithm is

identical to the BPA and all computations can be accomplished

with the BCJR algorithm. But rather than computing extrinsic

symbol beliefs, d(2) is taken to dissect (hence the name) the

code space C(2) and to compute the message pair (m(2), q(2))
according to (10) and (12) with which the iterative procedure

continues in D(1).

IV. IMPLEMENTATION AND SIMULATION

For a dissector d with non-zero real-valued elements di,
the set size or resolution |U| is very large. The result would

be a maximum likelihood (ML) decoder with huge matrices

m and thus impracticable decoding complexity. Therefore we

uniformly quantize the elements of d with a granularity Δ, and

limit their magnitude to |di| ≤ dmax. Thus the set of possible

word uncertainties is reduced to the values

HS|R(s|d) ∈ {umin, umin + 2 ·Δ, umin + 4 ·Δ, . . . }

where
umin =

n∑
i=1

(
log2(2

di + 2−di)− |di|
)

is the minimum possible word uncertainty given d. We further

limit the resolution |U| by setting

u(s) =

{
HS|R(s|d) : HS|R(s|d) ≤ umax

umax : else

with umax = umin + (|U| − 1) · 2 ·Δ.

The computations of the distributions in the matrices m are

accomplished in the constituent code trellises, cf. [11].

For easy comparison with the BPA we consider a Turbo

code according to [3] with dimension k = 20 and terminated

rate R = 1
2 constituent codes with the generator polynomial

G(D) = [1 1+D+D2

1+D2 ]. The choice of the rather small code

dimension is on purpose as the BPA is known to not perform

well for short codes, thus leaving room for improvement,

and to keep the requirements for the resolution |U| small

which grow with the code length. On the latter account,

the dissector d is allowed to take non-zero values only for

the k systematic positions of the code. Figure 1 shows the

simulation results for Δ = 0.1, dmax = 4, 8 decoding

iterations and |U| = 50, 75, 100. We observe that the error

correcting performance is superior to Turbo decoding with the

Eb/N0[dB]

B
E
R

Belief Propagation

Dissection Decoding, |U| = 50

Dissection Decoding, |U| = 75

Dissection Decoding, |U| = 100

ML decoding

2 2.5 3 3.5 4
10−4

10−3

10−2

Figure 1. Error Correcting Performance for Turbo Code

BPA, and that it increases with |U| towards the maximum-

likelihood (ML) bound. The gain compared to the BPA is up

to 0.3 dB for |U| = 100.

V. DISCUSSION & CONCLUSIONS

The proposed algorithm shows a distinct error correcting

performance gain compared to belief propagation. However,

the requirements for the set size |U| grow approximately

proportional to the dissector length – and thus the code length

– n. Taking into account the computation of two-dimensional

functions over u ∈ U in the trellis of length n, the overall

decoding complexity is O(n3). Ongoing work focuses on

GAUSSian approximation of the distributions over u [11],

leading to O(n) as for the belief propagation algorithm.
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