Block-Error Performance of Root-LDPC Codes

Iryna Andriyanova
Joseph J. Boutros
Ezio Biglieri
David Declercq

ETIS group
Elec. Eng. Department
WISER S.r.l.
ETIS group
ENSEA/UPC/CNRS-UMR8051
Texas A&M University at Qatar
Via Fiume 23
95014 Cergy-Pontoise, France

E-mail: iryna.andriyanova@ensea.fr
boutros@ieee.org
e.biglieri@ieee.org
deleclercq@ensea.fr

Abstract—This paper investigates the error rate of root-LDPC (RLDPC) codes. These codes were introduced in [1], as a class of codes achieving full diversity D over a nonergodic block-fading transmission channel, and hence with an error probability decreasing as SNR \(D \) at high signal-to-noise ratios. As for their structure, root-LDPC codes can be viewed as a special case of multie electrode-type LDPC codes [2]. However, RLDPC code optimization for nonergodic channels does not follow the same criteria as those applied for standard ergodic erasure or Gaussian channels. While previous analyses of RLDPC codes were based on their asymptotic bit threshold for information variables under iterative decoding, in this work we investigate asymptotic block threshold. A stability condition is first derived for a given fading channel realization. Then, in a similar way as for unstructured LDPC codes [3], with the help of Bhattacharyya parameter, we state a sufficient condition for a vanishing block-error probability with the number of decoding iterations.

I. INTRODUCTION AND MOTIVATION OF OUR WORK
When a block of encoded data is sent, after being split into F subblocks, through F independent slow-fading channels, the appropriate channel model is nonergodic. This model may correspond to a parallel (MIMO systems) or to a sequential (HARQ protocols) data-transmission scheme.

It turns out that special design criteria are needed for codes to be used with such a model — in particular, full transmit diversity is sought, which guarantees that, at large signal-to-noise ratios (SNR), the error probability of the transmission is decreasing as SNR \(D \), with \(D \) the maximum diversity order achievable. It has been shown in [1] that standard sparse graph code ensembles allow one to obtain error probabilities decreasing only as 1/SNR, and hence they are not full-diversity ensembles. Even infinite-length random code ensembles cannot achieve full diversity, as shown via a diversity population evolution technique in [4].

The key idea for codes achieving full diversity is to ensure that each information node is receiving multiple messages affected by independent fading coefficients. This idea has been implemented in RLDPC codes [1] designed for block-fading channels with \(F = 2 \) by introducing the concept of root checknodes. A root checknode protects a message received from the second subchannel when the variable node is received from the first subchannel. RLDPC codes are full-diversity codes (thus, they are also Maximum Distance Separable in the Singleton-bound sense) and can be devised for any diversity order.

In this paper we focus on rate-1/2, diversity-2 RLDPC codes, and study their stability under iterative decoding. We also derive a sufficient condition for vanishing block-error probability. As expected, since root checknodes occupy a single edge in each information variable, stability and block-error performance of RLDPC codes depend on the fraction of variables with degrees 2 and 3.

II. TRANSMISSION MODEL
Under our assumptions, a block of encoded data (a codeword) is divided into two equal subblocks, each one being transmitted over an independent Rayleigh fading channel with SNR \(\gamma \) and fading coefficients \(\alpha_i \) and \(\omega_i \). Therefore, the observation of the transmitted symbol \(x = \pm 1 \) received from the \(i \)-th channel is

\[
y = \alpha_i x + \omega_i,
\]

where \(\alpha_i \in [0, +\infty) \), and \(z \sim \mathcal{N}(0, \sigma^2) \) with \(\sigma^2 = 1/\gamma \).

III. RLDPC CODES: DEFINITION AND DENSITY EVOLUTION
A. Definition
Given an initial \((\lambda, \rho)\) LDPC ensemble, one defines a \((\lambda, \rho)\) RLDPC ensemble with diversity 2 through the multinomials \(\lambda_{\text{root}}(\mu, \xi) \) and \(\rho_{\text{root}}(\mu, \xi) \), with \(\mu = (\mu_1, \mu_2) \) and \(\xi = (x_1, x_2, x_3, x_4, x_5, x_6) \):

\[
\lambda_{\text{root}}(\mu, \xi) \triangleq \frac{1}{2} \sum_i \left(\lambda_i \mu_1 x_i^1 + \frac{(i-1)\lambda_i}{i} \mu_1 x_i^2 + \lambda_i \mu_1 x_i^4 + \frac{(i-1)\lambda_i}{i} \mu_2 x_i^5 + \frac{\lambda_i}{i} \mu_2 x_i^6 \right), \quad (1)
\]

\[
\rho_{\text{root}}(\mu, \xi) \triangleq \frac{1}{2} \sum_i \rho_i \left(x_1 \sum_j \left(f_{1j} x_j^1 g_{e^1} x_j^4 + x_6 \sum_k \left(f_{k+1} x_j^1 g_{e^1} x_j^4 \right) \right) \right), \quad (2)
\]

where the fractions \(f_e \) and \(g_e \) will be defined in next subsection. In words, the structure of the RLDPC ensemble consists of four types of variable nodes \((1i, 1p, 2i, 2p) \), two sets of check nodes \((1c, 2c) \), and 6 different edge classes (see Fig.1a). Permutations of edges within edge classes are chosen uniformly at random. Variable nodes \(1i \) and \(1p \) correspond to information and redundancy bits, respectively, in a codeword

\[\]
sent through the first fading subchannel. Similarly, variable
nodes $2i$ and $2p$ correspond to bits sent through the sec-
dond subchannel. Note that the information variable nodes ki
($k = 1, 2$) are connected to check nodes of the same type,
k_c, through exactly one edge; all other edges are connected
to check nodes of the other type. Redundancy variable nodes
are always connected to check nodes of different type. In (1) -
(2), μ_1 and μ_2 correspond to two fading subchannels,
and the variables x_1, x_2, \ldots, x_6 to the following edge classes:
$1i \rightarrow 1c$, $1i \rightarrow 2c$, $1p \rightarrow 2c$, $2p \rightarrow 1c$, $2i \rightarrow 1c$, and $2i \rightarrow 2c$.
We have thus obtained a code ensemble of rate $1/2$. As
shown in [1], such a construction guarantees transmit diversity
2, which is the maximum we can obtain with two independent
transmission subchannels.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Structure of a (λ, ρ) RLDPC code ensemble of diversity 2.}
\end{figure}

\section*{B. Density Evolution}

RLDPC codes are decoded, as standard LDPC codes, using
an iterative algorithm. An asymptotic analysis of iterative
decoding is provided in [1], [4] and we shall summarize it
here, after giving some notation. We denote the probability
density functions (pdfs) of channel LLR outputs from the two
transmission subchannels by $\mu_1(x)$ and $\mu_2(x)$, respectively.
These are normal pdfs with means $2\alpha_2^2/\gamma$ and $2\alpha_2^2/\gamma$
and variances $4\alpha_2^2/\gamma$ and $4\alpha_2^2/\gamma$, respectively. Further, we denote by \(\odot\) the operation of convolution of two pdfs. We also define the following operation:

Definition 1. The R-convolution of two pdfs $\alpha(x)$ and $\beta(x)$ is

$$\alpha \odot \beta(x) = f(\hat{\alpha}(x) \odot \hat{\beta}(x)),$$

where

$$\hat{\alpha}(x) \triangleq \frac{2\alpha(2th^{-1}(x))}{1 - x^2}, \quad \hat{\beta}(x) \triangleq \frac{2\beta(2th^{-1}(x))}{1 - x^2}$$

and

$$f(x) = \cosh^2 \left(\frac{\hat{\alpha} \odot \hat{\beta}(x)}{2} \right) \frac{\gamma^{-1}(x)}{\gamma^{-1}(\hat{\alpha} \odot \hat{\beta}(x))}.$$

Note that the R-convolution of pdfs corresponds to the following operation over the corresponding random variables A and B:

$$2th^{-1}(\text{th}(A/2) + \text{th}(B/2)),$$

which is exactly the operation performed at the check nodes.

Let us denote the average pdfs for 6 edge sets by $q_1(x)$, $f_1(x)$, $g_1(x)$, $g_2(x), f_2(x)$, and $q_2(x)$ as shown in

\[q_{1}^{m+1}(x) = \mu_1(x) \odot \hat{\lambda}(q_2^m(x), f_2 f_2^m(x) + g_2 g_2^m(x)) \]
\[f_{1}^{m+1}(x) = \mu_1(x) \odot \hat{\lambda}(q_2^m(x), f_2 f_2^m(x) + g_2 g_2^m(x)) \odot \hat{\rho}(f_2 f_2^m(x) + g_2 g_2^m(x)) \]
\[q_{2}^{m+1}(x) = \mu_2(x) \odot \hat{\lambda}(q_1^m(x), f_2 f_2^m(x) + g_2 g_2^m(x)) \odot \hat{\rho}(f_2 f_2^m(x) + g_2 g_2^m(x)) \]

where we have borrowed from [4] the following notation:

$$\hat{\lambda}(x) \triangleq \frac{d_b}{d_b - 1} \sum_i \lambda_i (i - 1) x^{\odot(i - 2)}; \quad \hat{d}_b \triangleq 1/\sum_i \lambda_i / i;$$
$$\hat{\rho}(x) \triangleq \frac{d_c}{d_c - 1} \sum_i \rho_i (i - 1) x^{\odot(i - 2)}; \quad \hat{d}_c \triangleq 1/\sum_i \rho_i / i;$$
$$f_c \triangleq \frac{\sum_i (i - 1) \lambda_i}{\sum_i (i - 1) \lambda_i + 1} = \frac{\hat{d}_b}{2 \hat{d}_b - 1}; \quad g_c \triangleq 1 - f_c;$$

$$\hat{\lambda}(x) \triangleq \frac{d_b}{d_b - 1} \sum_i \lambda_i x^{\odot(i - 1)}; \quad \hat{\rho}(x) \triangleq \frac{d_c}{d_c - 1} \sum_i \rho_i x^{\odot(i - 1)}.$$

Also, we define

$$\hat{\rho}(q, x) \triangleq \frac{d_c}{d_c - 1} \sum_i \rho_i (i - 1) q^{\odot(i - 3)}.$$

\section*{IV. Stability Conditions}

We are interested in defining stability conditions for RLDPC
codes. The main difficulty here lies in the fact that not all
messages need be recovered exactly (or, in LDPC jargon, not
all pdfs converge to δ_{∞}). It is not hard to prove that only the
pdfs responsible for the convergence of information messages,
i.e., f_1 and f_2, need to converge for exact recovery of the
information bits (this condition is also sufficient). The main
concept of the proof is that f_1 and f_2 are strictly “better” than
q_1 and q_2.

In this section we derive the stability condition for RLDPC
codes based on the recovery of information bits only. Before
starting our derivation, let us first apply the traditional stability
condition [2] to RLDPC codes, assuming that all the code bits
should be recovered. In such case the RLDPC codes are simply
viewed as a multi-edge code ensemble.

\subsection*{A. RLDPC as Multi-Edge Codes}

The stability condition for multi-edge codes consists in ensuring that the spectral radius of a matrix M is < 1, where

$$M \triangleq B(\mu) \Lambda P,$$

with $B(\mu)$ the vector of Bhattacharyya parameters
for all transmission channels, the Λ matrix corresponding
to the variable node side of the graph, and P corresponding to
the check node side. Applying the expressions derived in [2], we find that

\[B(\mu) = (B(\mu_1) \ B(\mu_1) \ B(\mu_2) \ B(\mu_2) \ B(\mu_2))^T \]

\[\Lambda = \left(\frac{d_\lambda_{\lambda_1}}{2} \ \frac{d_\lambda_{\lambda_2}}{2} \ \frac{d_\lambda_{\lambda_2}}{2} \ \frac{d_\lambda_{\lambda_2}}{2} \ \frac{d_\lambda_{\lambda_2}}{2} \right) \cdot I \]

\[P = \left(P_2 \ P_3 \ P_2 \ P_3 \ P_2 \ \right)^T \]

with

\[P_2 = \left(\begin{array}{ccc} 0 & 0 & 0 & (d_\lambda - 1) g_e & (d_\lambda - 1) f_e \end{array} \right) \]

\[P_2 = \left(\begin{array}{ccc} 0 & 0 \end{array} \right) \]

\[P_2 = \left(\begin{array}{ccc} 0 & 0 \end{array} \right) \]

\[P_2 = \left(\begin{array}{ccc} 0 & 0 \end{array} \right) \]

\[\text{Note that two eigenvalues of } M \text{ are already 0.} \]

\[\text{B. RLDPCs as Full-Diversity Codes} \]

By looking at RLDPC as at full-diversity codes, we only ask for the convergence of \(f_1 \) and \(f_2 \) to \(\delta_\infty \). To derive a stability condition for this case, assume, that, at iteration \(m - 1 \),

\[f_1^{m-1} = \epsilon_1 \delta_0 + (1 - \epsilon_1) \delta_\infty, \]

\[f_2^{m-1} = \epsilon_2 \delta_0 + (1 - \epsilon_2) \delta_\infty. \]

and find an approximation of messages \(f_1 \) and \(f_2 \) at the next iteration which is linear in \(\epsilon \).

To do this, let us first find a linear approximation of \(\rho(f, f(x) + g_e g(x)) \):

\[\rho(f, f(x) + g_e g(x)) = \rho(f, \epsilon_1 \delta_0 + f_e (1 - \epsilon_1) \delta_\infty + g_e g(x)) = (x)^{g_e \cdot g(x)} \]

\[= \sum \rho_j \left(g_x^{\epsilon_1 \delta_0 + f_e (1 - \epsilon_1) \delta_\infty} + (j - 1) f_e \sum_{k=0}^{j-2} (j - 2) f_k \cdot g_x^{k \cdot g(x)} \right) \]

\[+ c \cdot \delta_\infty = \rho(g_e g(x)) + f_e F(g_e g(x)) + c \cdot \delta_\infty, \]

where \(c \) is a constant, and \(\rho(g_e g(x)) \) denotes the first term in the sum, while \(F(g_e g(x)) \) denotes the second one. Over the binary erasure channel, \(\rho(g_e g(x)) \) and \(F(g_e g(x)) \) can be computed explicitly, while, in the general case, the two functions should be computed by running the density evolution iterations. Also note that one can bound the pdf of \(g_e \) by the initial pdf corresponding to the channel estimate. If the transmission channel is bad, the bound will be quite tight.

Next, \(\rho(g_q(x), f_e f(x) + g_e g(x)) \) can be computed similarly. Also note that one can bound the pdf of \(q_e \) by the initial pdf corresponding to the channel estimate. If the transmission channel is bad, the bound will be quite tight.

Finally, the approximation of \(\tilde{f}_1 \) linear in \(\epsilon \) is obtained as

\[\tilde{f}_1 = \mu_1(x) \otimes \left(\tilde{\lambda}_1 + \tilde{\lambda}_2 \rho(q_2(x), g_e g(x)) + \tilde{\lambda}_2 \epsilon_1 f_e F(q_2(x), g_e g(x)) \right) \]

\[\otimes (\rho(g_e g(x)) + c_f f_e F(g_e g(x)) + c \cdot \delta_\infty) \]

\[\approx \mu_1(x) \otimes \left(\tilde{\lambda}_1 + \tilde{\lambda}_2 \rho(q_2(x), g_e g(x)) \right) \otimes \rho(g_e g(x)) \]

\[+ c_f \epsilon_1 f_e F(q_2(x), g_e g(x)) + c \cdot \delta_\infty \]

\[= \mu_1(x) \otimes (C_0(x) + \epsilon_1 f_e C_1(x) + c_f f_e C_2(x)) + c \cdot \delta_\infty \]

where

\[C_0(x) = \frac{\tilde{\lambda}_1 + \tilde{\lambda}_2 \rho(q_2(x), g_e g(x)) \otimes \rho(g_e g(x))}{\tilde{\lambda}_2}, \]

\[C_1(x) = \frac{\tilde{\lambda}_2 F(q_2(x), g_e g(x)) \otimes \rho(g_e g(x))}{\tilde{\lambda}_2}, \]

\[C_2(x) = \frac{\tilde{\lambda}_1 \rho(q_2(x), g_e g(x)) \otimes \rho(g_e g(x))}{\tilde{\lambda}_1}. \]

Similarly,

\[f_2 = \mu_2(x) \otimes \left(\tilde{C}_0(x) + \epsilon_1 f_e \tilde{C}_1(x) + c_f f_e \tilde{C}_2(x) \right) + c \cdot \delta_\infty \]

with

\[\tilde{C}_0(x) = \frac{\tilde{\lambda}_1 + \tilde{\lambda}_2 \rho(q_1(x), g_e g(x)) \otimes \rho(g_e g(x))}{\tilde{\lambda}_2}, \]

\[\tilde{C}_1(x) = \frac{\tilde{\lambda}_2 F(q_1(x), g_e g(x)) \otimes \rho(g_e g(x))}{\tilde{\lambda}_2}, \]

\[\tilde{C}_2(x) = \frac{\tilde{\lambda}_1 \rho(q_1(x), g_e g(x)) \otimes \rho(g_e g(x))}{\tilde{\lambda}_1}. \]

Denote now by \(q(f) \) the Bhattacharyya parameter related to the pdf \(f \),

\[B(f) = \int_R e^{-x^2/2} f(x) dx. \]

\(B \) is closely related to the bit error probability \(P_b \) corresponding to \(f(x) \), and it has been shown in [5] that \(P_b \to 0 \Rightarrow B(f) \to 0 \). Knowing this, and taking into account the properties of convolution and of R-convolution, we obtain that

\[\left(\frac{B(f_1^m)}{B(f_2^m)} \right) \leq |C + f_e B(A)| \left(\frac{\epsilon_1}{\epsilon_2} \right), \]

where

\[C = \left(\frac{0}{B(\mu_1) \frac{1}{2} \frac{\lambda_2 g_e}{2} \rho(g_e) \left(B(\mu_2) \frac{1}{2} \right)} \right). \]

Note that we simplified the expressions by bounding \(1 - B(g_1) \leq 1 - B(q_1) \) and \(1 - B(g_2) \leq 1 - B(q_2) \), and further bounding \(C_0(x) \) and \(C_0(x) \).

Define next \(D = C + f_e B(A) \). Then the following recurrence relation can be obtained:

\[\left(\frac{B(f_1^m)}{B(f_2^m)} \right) \leq D \left(\frac{B(f_1^{m-1})}{B(f_2^{m-1})} \right), \]

96
and hence, if we perform m iterations of density evolution, we obtain that
\[
\left(\frac{B(f_1^m)}{B(f_2^m)} \right) \leq D^m \cdot \left(\frac{B(f_1^0)}{B(f_2^0)} \right),
\]
where we assume that the messages q and g for any iteration are bounded by q^0 and g^0. We are interested in the case of $B(f_2^m)$ decreasing to 0.

Taking all the above into account, we have the following sufficient stability condition for full-diversity codes:

Theorem 1 (Sufficiency part of the stability condition):

The bit error probability P_e for a full-diversity RLDPC ensemble converges to 0 if all the absolute values of the eigenvalues of D are < 1.

Notice that the usual stability condition mentioned in Section IV-A depends on λ_2, while the stability condition derived here depends on both λ_2 and λ_3, “hidden” in λ_1 and λ_2.

V. BLOCK-ERROR RATE OF RLDPC CODES

The main result of this paper is the study of the block-error probability P_B of RLDPC codes. Using the sufficient part of the stability condition derived above, we can link P_B to the bit-error probability P_e, and show in which cases $P_B \to 0$ implies $P_e \to 0$.

Using a union bound at some iteration m, we obtain
\[
P_B(m+k) \leq \frac{n}{4} P_B(1i) + \frac{n}{4} P_B(2i)
\]
\[
\leq \frac{1}{4} (\max M_1(1i))^{(1+\epsilon)k} P_B(1i) + \frac{1}{4} (\max M_2(2i))^{(1+\epsilon)k} P_B(2i),
\]
where n is the code length, and $\max M_1(1i)$ ($\max M_2(2i)$) is the maximum number of variable nodes in a computation tree of a variable node from the set $1i$ ($2i$) in the bipartite graph, after m iterations. The second inequality follows from the same reasoning used in [3, Section II], to which we refer the reader desiring a detailed proof. Now, to ensure that, as $m \to \infty$, P_B decreases to 0 while $P_B^m \to 0$, one has to ensure that P_B^m decreases with m faster than the maximum number of variable nodes in the computation tree.

A. Case of $\lambda_2 = \lambda_3 = 0$

Let us consider the simple case of both λ_2 and λ_3 being 0. (This is similar to the case of standard LDPC codes with $\lambda_2 = 0$). Repeating the calculations of [3, Section VI.A], we obtain
\[
P_B(m+k) \leq \frac{1}{4} (d_v^{max} d_c^{max})^{(1+\epsilon)(m+k)} [B(f_1^m)(3/2)^k + B(f_2^m)(3/2)^k],
\]
which decreases to 0 as $k \to \infty$.

B. General case

Given that
\[
B(output) = \Pi_i B(input_i)
\]
for variable nodes and
\[
1 - B(output) \geq \Pi_i (1 - B(input_i))
\]
for check nodes, and since $B(q^m)$ and $B(g^m)$ for any m, q, and g are no greater than the corresponding $B(\mu)$, one can bound
\[
B(C_1) \leq \lambda_2 g e \rho(g) B(\mu_2) \max \{B(\mu_1), B(\mu_2)\}
\]
\[
B(C_2) \leq (\lambda_1 + \lambda_2 \rho(g)) g_B(\mu_2)
\]
\[
B(C_3) \leq (\lambda_1 + \lambda_2 \rho(g)) g_B(\mu_1)
\]
\[
B(C_4) \leq \lambda_2 g e \rho(g) B(\mu_1) \max \{B(\mu_1), B(\mu_2)\}
\]
and obtain
\[
B(f_1^m) \leq B(\mu_2) (w_1 B(f_1^{m-1}) + w_2 B(f_2^{m-1}))
\]
\[
B(f_2^m) \leq B(\mu_1) (w_2 B(f_1^{m-1}) + w_1 B(f_2^{m-1}))
\]
with $w_1 \triangleq f_a(\lambda_1 + \lambda_2 \rho(g_e))$ and $w_2 \triangleq f_a(\lambda_1 + \lambda_2 \rho(g_e)) + \frac{\lambda_2 g e}{2} \rho(g_e)$. Thus, with a linear approximation,
\[
B(f_1^{m+2k}) \leq B(\mu_2) w_1^k B(f_1^m) + B(\mu_2) w_1^k B(\mu_2) w_2^k B(f_2^m)
\]
\[
B(f_2^{m+2k}) \leq B(\mu_1) w_2^k B(f_1^m) + B(\mu_2) w_2^k B(\mu_2) w_2^k B(f_2^m).
\]

Consequently, the block error probability
\[
P_B(m+k) \leq \frac{1}{4} (d_v^{max} d_c^{max})^{(1+\epsilon)(m+k)} [B(\mu_2)^{2k} w_1^k B(f_1^m) + B(\mu_2)^{2k} w_1^k B(f_2^m) + B(\mu_2)^{2k} w_1^k B(\mu_2)^{2k} w_1^k B(f_1^m) + B(\mu_2)^{2k} w_1^k B(f_2^m)]
\]
can be seen to decrease to 0, as $k \to \infty$, if the following conditions are satisfied:
\[
B(\mu_2) w_1 \leq (d_v^{max} d_c^{max})^{-3},
\]
\[
B(\mu_1) w_2 \leq (d_v^{max} d_c^{max})^{-3}.
\]

VI. CONCLUSION

In this paper we have derived the conditions under which the block-error rate of a RLDPC code ensemble decreases to 0 as the bit-error rate does the same. The interest of our findings lies in the fact that results existing in the literature deal with errors related to all the of code bits, while for RLDPC only errors affecting information bits should be considered.

REFERENCES

