Block-error performance of root-LDPC codes

Conference Paper

Author(s):
Andriyanova, Iryna; Boutros, Joseph J.; Biglieri, Ezio; Declercq, David

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-a-006001396

Rights / license:
In Copyright - Non-Commercial Use Permitted
Block-Error-Performance of Root-LDPC Codes

Iryna Andriyanova
ETIS group
ENSEA/UCP/CNRS-UMR8051
95014 Cergy-Pontoise, France
iryna.andriyanova@ensea.fr

Joseph J. Boutros
Elec. Eng. Department
Texas A&M University at Qatar
23874, Doha, Qatar
boutros@ieee.org

Ezio Biglieri
WISER S.r.l.
Via Fiume 23
57123 Livorno, Italy
e.biglieri@ieee.org

David Declercq
ETIS group
ENSEA/UCP/CNRS-UMR8051
95014 Cergy-Pontoise, France
declercq@ensea.fr

Abstract—This paper investigates the error rate of root-LDPC (RLDPC) codes. These codes were introduced in [1], as a class of codes achieving full diversity D over a nonergodic block-fading transmission channel, and hence with an error probability decreasing as $\frac{D}{2}$ at high signal-to-noise ratios. As for their structure, root-LDPC codes can be viewed as a special case of multieudge-type LDPC codes [2]. However, RLDPC code optimization for nonergodic channels does not follow the same criteria as those applied for standard ergodic erasure or Gaussian channels. While previous analyses of RLDPC codes were based on their asymptotic bit threshold for information variables under iterative decoding, in this work we investigate asymptotic block threshold. A stability condition is first derived for a given fading realization. Then, in a similar way as for unstructured LDPC codes [3], with the help of Bhattacharyya parameter, we state a sufficient condition for a vanishing block-error probability with the number of decoding iterations.

I. INTRODUCTION AND MOTIVATION OF OUR WORK
When a block of encoded data is sent, after being split into F subblocks, through F independent slow-fading channels, the appropriate channel model is nonergodic. This model may correspond to a parallel (MIMO systems) or to a sequential (HARQ protocols) data-transmission scheme.

It turns out that special design criteria are needed for codes to be used with such a model — in particular, full transmit diversity is sought, which guarantees that, at large signal-to-noise ratios (SNR), the error probability of the transmission scheme scales as $1/\text{SNR}^D$, with D the maximum diversity order achievable. It has been shown in [1] that standard sparse-graph code ensembles allow one to obtain error probabilities decreasing only as 1/\text{SNR}, and hence they are not full-diversity ensembles. Even infinite-length random code ensembles cannot achieve full diversity, as shown via a diversity population evolution technique in [4].

The key idea for codes achieving full diversity is to ensure that each information node is receiving multiple messages affected by independent fading coefficients. This idea has been implemented in RLDPC codes [1] designed for block-fading channels with $F = 2$ by introducing the concept of root checknodes. A root checknode protects a message received from the second subchannel when the variable node is received from the first subchannel. RLDPC codes are full-diversity codes (thus, they are also Maximum Distance Separable in the Singleton-bound sense) and can be devised for any diversity order.

In this paper we focus on rate-1/2, diversity-2 RLDPC codes, and study their stability under iterative decoding. We also derive a sufficient condition for vanishing block-error probability. As expected, since root checknodes occupy a single edge in each information variable, stability and block-error performance of RLDPC codes depend on the fraction of variables with degrees 2 and 3.

II. TRANSMISSION MODEL
Under our assumptions, a block of encoded data (a codeword) is divided into two equal subblocks, each one being transmitted over an independent Rayleigh fading channel with $\text{SNR} = \gamma$ and fading coefficients α_1 and α_2. Therefore, the observation y corresponding to the binary transmitted symbol $x = \pm 1$ received from the i-th channel is $y = \alpha_i x + z$, where $\alpha_i \in [0, +\infty)$, and $z \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = 1/\gamma$.

III. RLDPC CODES: DEFINITION AND DENSITY EVOLUTION

A. Definition
Given an initial (λ, ρ) LDPC ensemble, one defines a (λ, ρ) RLDPC ensemble with diversity 2 through the multimonials $\lambda_{\text{root}}(\mu, \underline{\underline{\mu}})$ and $\rho_{\text{root}}(\mu, \underline{\underline{\mu}})$, with $\mu \approx (\mu_1, \mu_2)$ and $\underline{\underline{\mu}} \approx (x_1, x_2, x_3, x_4, x_5, x_6)$:

$$\lambda_{\text{root}}(\mu, \underline{\underline{\mu}}) \triangleq \frac{1}{2} \sum_i \left(\begin{array}{c} \lambda_i \\ \mu_1 x_1^i + \mu_2 x_2^i + \mu_3 x_3^i \\ \mu_2 x_2^i + \mu_3 x_3^i \\ \mu_1 x_1^i \\ \mu_3 x_3^i \\ \mu_2 x_2^i \end{array} \right),$$

$$\rho_{\text{root}}(\mu, \underline{\underline{\mu}}) \triangleq \frac{1}{2} \sum_i \rho_i \left(\begin{array}{c} f_1 x_1^i g_{e^i} x_5^i x_6^i \\ f_2 x_2^i g_{e^i} x_4^i x_6^i \\ f_3 x_3^i g_{e^i} x_4^i x_5^i \end{array} \right),$$

where the fractions f_i and g_e will be defined in next subsection. In words, the structure of the RLDPC ensemble consists of four types of variable nodes (1i, 1p, 2i, 2p), two sets of check nodes (1c, 2c), and 6 different edge classes (see Fig.1a). Permutations of edges within edge classes are chosen uniformly at random. Variable nodes 1i and 1p correspond to information and redundancy bits, respectively, in a codeword
sent through the first fading subchannel. Similarly, variable nodes 2i and 2p correspond to bits sent through the second subchannel. Note that the information variable nodes ki (k = 1, 2) are connected to check nodes of the same type, kC, through exactly one edge; all other edges are connected to check nodes of the other type. Redundancy variable nodes are always connected to check nodes of different type. In (1)–(2), μ1 and μ2 correspond to two fading subchannels, and the variables x1, x2, ..., x6 to the following edge classes: 1i → 1c, 1i → 2c, 1p → 2c, 2p → 1c, 2i → 1c, and 2i → 2c.

We have thus obtained a code ensemble of rate 1/2. As shown in [1], such a construction guarantees transmit diversity 2, which is the maximum we can obtain with two independent transmission subchannels.

![Fig. 1. Structure of a (λ, ρ) RLDPC code ensemble of diversity 2.](image)

B. Density Evolution

RLDPC codes are decoded, as standard LDPC codes, using an iterative algorithm. An asymptotic analysis of iterative decoding is provided in [1], [4] and we shall summarize it here, after giving some notation. We denote the probability density functions (pdfs) of channel LLR outputs from the two transmission subchannels by μ1(x) and μ2(x), respectively. These are normal pdfs with means xμ1, xμ2 and variances xσ2/μ1 and xσ2/μ2, respectively. Further, we denote by ⊗ the operation of convolution of two pdfs. We also define the following operation:

Definition 1: The R-convolution of two pdfs α(x) and β(x) is

\[α ⊗ β(x) = f(\hat{α}(x) ⊗ \hat{β}(x)), \]

where

\[\hat{α}(x) = \frac{2α(2th^{-1}(x))}{1 - x^2}, \quad \hat{β}(x) = \frac{2β(2th^{-1}(x))}{1 - x^2} \]

and

\[f(x) = \cosh^2\left(\frac{\hat{α} ⊗ \hat{β}(x)}{2}\right) th^{-1}(\hat{α} ⊗ \hat{β}(x)). \]

Note that the R-convolution of pdfs corresponds to the following operation over the corresponding random variables A and B:

\[2th^{-1}(th(A/2) + th(B/2)), \]

which is exactly the operation performed at the check nodes.

Let us denote the average pdfs for 6 edge sets by q1(x), f1(x), g1(x), g2(x), f2(x), and q2(x) as shown in Fig. 1b. Then the evolution of the pdfs at the iteration m + 1 can be described by the following recursions:

\[q_{1m+1}(x) = \mu_1(x) ⊗ \hat{λ}(\hat{q}_{1m}(x), f_2f_{1m}(x) + g_2g_{1m}(x)) \]
\[f_{1m+1}(x) = \mu_1(x) ⊗ \hat{λ}(\hat{q}_{2m}(x), f_2f_{1m}(x) + g_2g_{1m}(x)) \]
\[g_{1m+1}(x) = \mu_1(x) ⊗ \hat{λ}(\hat{g}_{1m}(x), f_2f_{1m}(x) + g_2g_{1m}(x)) \]
\[f_{2m+1}(x) = \mu_2(x) ⊗ \hat{λ}(\hat{q}_{1m}(x), f_2f_{1m}(x) + g_2g_{1m}(x)) \]
\[g_{2m+1}(x) = \mu_2(x) ⊗ \hat{λ}(\hat{q}_{1m}(x), f_2f_{1m}(x) + g_2g_{1m}(x)) \]

where we have borrowed from [4] the following notation:

\[\hat{λ}(x, ρ) = \frac{d_ρ}{d_θ} \sum_{i} \frac{λ_i(i - 1)}{i} x^{ω(i - 2)}; \quad \hat{d}_ρ = \frac{1}{d_θ} \sum_i \frac{ρ_i(i - 1)}{i} \]

Also, we define

\[\hat{ρ}(q, x) = \frac{d_ρ}{d_θ} \sum_{i} \frac{ρ_i(i - 1)}{i} q ⊗ x^{ω(i - 3)}. \]

IV. STABILITY CONDITIONS

We are interested in defining stability conditions for RLDPC codes. The main difficulty here lies in the fact that not all messages need be recovered exactly (or, in LDPC jargon, not all pdfs converge to δ∞). It is not hard to prove that only the pdfs responsible for the convergence of information messages, i.e., f1 and f2, need to converge for exact recovery of the information bits (this condition is also sufficient). The main concept of the proof is that f1 and f2 are strictly “better” than q1 and q2.

In this section we derive the stability condition for RLDPC codes based on the recovery of information bits only. Before starting our derivation, let us first apply the traditional stability condition [2] to RLDPC codes, assuming that all the code bits should be recovered. In such case the RLDPC codes are simply viewed as a multi-edge code ensemble.

A. RLDPCs as Multi-Edge Codes

The stability condition for multi-edge codes consists in ensuring that the spectral radius of a matrix M is < 1, where M ≜ B(μ)ΛP, with B(μ) the vector of Bhattacharyya parameters for all transmission channels, the matrix corresponding to the variable node side of the graph, and P corresponding to
the check node side. Applying the expressions derived in [2], we find that
\begin{equation}
B(\mu) = \begin{pmatrix} B(\mu_1) & B(\mu_1) & B(\mu_2) & B(\mu_2) & B(\mu_2) \end{pmatrix}^T
A = \begin{pmatrix}
\frac{d_1 \lambda_1}{2} & \frac{d_1 \lambda_2}{2} & \lambda_2 & \lambda_2 & \frac{d_2 \lambda_1}{2} \\
\frac{d_2 \lambda_2}{2} & \frac{d_2 \lambda_1}{2} & \lambda_1 & \lambda_1 & \frac{d_2 \lambda_2}{2} \\
\lambda_1 & \lambda_2 & \frac{d_2 \lambda_1}{2} & \frac{d_2 \lambda_2}{2} & \lambda_2 \\
\lambda_2 & \frac{d_1 \lambda_2}{2} & \lambda_1 & \frac{d_1 \lambda_1}{2} & \lambda_2 \\
\frac{d_1 \lambda_1}{2} & \frac{d_1 \lambda_2}{2} & \lambda_1 & \frac{d_1 \lambda_1}{2} & \lambda_2
\end{pmatrix} \cdot I
P = \begin{pmatrix} P_1 & P_2 & P_2 & P_3 & P_3 \end{pmatrix}^T
\end{equation}
with
\begin{align*}
P_1 & \triangleq (0 \ 0 \ 0 \ (\bar{d}_e - 1) g_e \ (\bar{d}_e - 1) f_e \ 0) \\
P_2 & \triangleq (0 \ \tilde{\rho}_1 f_e \ \tilde{\rho}_1 g_e \ 0 \ 0 \ \tilde{\rho}(1)) \\
P_3 & \triangleq (0 \ 0 \ \tilde{\rho}_1 f_e \ \tilde{\rho}_1 g_e \ 0) \\
P_4 & \triangleq (0 \ (\bar{d}_e - 1) f_e \ (\bar{d}_e - 1) g_e \ 0 \ 0 \ 0)
\end{align*}
Note that two eigenvalues of M are already 0.

B. RLDCs as Full-Diversity Codes

By looking at RLDC at as full-diversity codes, we only ask for the convergence of f_1 and f_2 to δ_∞. To derive a stability condition for this case, assume that, at iteration $m - 1$,
\begin{equation}
f^{m-1}_1 = \epsilon_1 \delta_0 + (1 - \epsilon_1) \delta_\infty, \quad f^{m-1}_2 = \epsilon_2 \delta_0 + (1 - \epsilon_2) \delta_\infty.
\end{equation}
and find an approximation of messages f_1 and f_2 at the next iteration which is linear in ϵ.

To do this, let us first find a linear approximation of $\rho(f_e f(x) + g_e g(x))$:
\begin{equation}
\rho(f_e f(x) + g_e g(x)) = \rho(f_e \epsilon_0 f_e + f_e (1 - \epsilon) \delta_\infty + g_e g(x)) = g(x)^{\otimes j - 1} + \sum_{j=1}^J \rho_j \left(\begin{pmatrix} g(x)^{\otimes j - 1} + (j - 1) f_e \epsilon \sum_{k=0}^{j-2} \binom{j-2}{k} f_e^{j-2-k} g_e \cdot g(x)^{\otimes k} \end{pmatrix} \right)
\end{equation}
\begin{equation}
+ c \cdot \delta_\infty = \rho(g(x)) + f_e f_e F(g_e g(x)) + c \cdot \delta_\infty,
\end{equation}
where c is a constant, and $\rho(g_e g(x))$ denotes the first term in the sum, while $F(g_e g(x))$ denotes the second one. Over the binary erasure channel, $\rho(g_e g(x))$ and $F(g_e g(x))$ can be computed explicitly, while, in the general case, the two functions should be computed by running the density evolution iterations. Also note that one can bound the pdf of $g(x)$ by the initial pdf corresponding to the channel estimate. If the transmission channel is bad, the bound will be quite tight.

Next, $\tilde{\rho}(q_2(x), f_e f(x) + g_e g(x))$ is given by
\begin{equation}
\tilde{\rho}(q_2(x), f_e f(x) + g_e g(x)) = \sum_j \rho_j (\tilde{q}_2(x) \otimes (g(x)^{\otimes j - 2})
+ \sum_{j=2}^J \rho_j (j - 2) f_e \epsilon \sum_{k=0}^{j-3} \binom{j-3}{k} f_e^{j-3-k} g_e \cdot q_2(x) \otimes g(x)^{\otimes k})
\end{equation}
\begin{equation}
+ c \cdot \delta_\infty = \tilde{\rho}(q_2(x), g_e g(x)) + f_e F(q_2(x), g_e g(x)) + c \cdot \delta_\infty.
\end{equation}
Further calculations yield
\begin{equation}
\tilde{\rho}(q_2(x), f_e f(x) + g_e g(x)) =
\tilde{\lambda}_1 + \tilde{\lambda}_2 (\tilde{q}_2(x), g_e g(x)) + f_e F(q_2(x), g_e g(x)) + c \cdot \delta_\infty.
\end{equation}

Finally, the approximation of f_1 linear in ϵ is obtained as
\begin{equation}
f_1 = \mu_1(x) \otimes \left(\tilde{\lambda}_1 + \tilde{\lambda}_2 \tilde{q}(q_2(x), g_e g(x)) + \tilde{\lambda}_2 f_2 F(q_2(x), g_e g(x)) \right)
\end{equation}
\begin{equation}
\otimes (\rho(g_e g(x)) + c f_e F(q_2(x), g_e g(x)) + \text{const} \cdot \delta_\infty,
\end{equation}
where
\begin{equation}
\mu_1(x) \otimes \left(\tilde{\lambda}_1 + \tilde{\lambda}_2 \tilde{q}(q_2(x), g_e g(x)) \right) \otimes \rho(g_e g(x))
\end{equation}
\begin{equation}
+ c f_2 F(q_2(x), g_e g(x)) + \tilde{\lambda}_2 f_2 F(q_2(x), g_e g(x)) + \text{const} \cdot \delta_\infty,
\end{equation}
where
\begin{equation}
\mu_0(x) \otimes \left(\tilde{\lambda}_1 + \tilde{\lambda}_2 \tilde{q}(q_2(x), g_e g(x)) \right) \otimes \rho(g_e g(x))
\end{equation}
\begin{equation}
+ c f_2 F(q_2(x), g_e g(x)) + \tilde{\lambda}_2 f_2 F(q_2(x), g_e g(x)) + \text{const} \cdot \delta_\infty.
\end{equation}

Similarly,
\begin{equation}
f_2 = \mu_2(x) \otimes \left(\tilde{C}_1(x) + \epsilon_2 f_2 \tilde{C}_2(x) \right) + c \cdot \delta_\infty,
\end{equation}
with
\begin{equation}
\mu_0(x) \otimes \left(\tilde{C}_1(x) + \epsilon_2 f_2 \tilde{C}_2(x) \right)
\end{equation}
\begin{equation}
+ c \cdot \delta_\infty,
\end{equation}
\begin{equation}
\tilde{C}_0(x) = \tilde{\lambda}_1 + \tilde{\lambda}_2 \tilde{q}(q_1(x), g_e g(x)) \otimes \rho(g_e g(x))
\end{equation}
\begin{equation}
\tilde{C}_1(x) = \tilde{\lambda}_1 + \tilde{\lambda}_2 \tilde{q}(q_1(x), g_e g(x)) \otimes \rho(g_e g(x))
\end{equation}
\begin{equation}
\tilde{C}_2(x) = \tilde{\lambda}_1 + \tilde{\lambda}_2 \tilde{q}(q_1(x), g_e g(x)) \otimes \rho(g_e g(x))
\end{equation}
\begin{equation}
\text{where}
\end{equation}
\begin{equation}
\delta_\infty \text{ is the Bhattacharyya parameter related to the pdf } f,
\end{equation}
\begin{equation}
B(f) = \int_R e^{-x/2} f(x) dx.
\end{equation}
B is closely related to the bit error probability P_b corresponding to $f(x)$, and it has been shown in [5] that $P_b \to 0 \Leftrightarrow B(f) \to 0$. Knowing this, and taking into account the properties of convolution and of R-convolution, we obtain that
\begin{equation}
\left(\frac{B(f_1^n)}{B(f_2^n)} \right) \leq \left[C + f_e B(A) \right] \left(\frac{\epsilon_1}{\epsilon_2} \right),
\end{equation}
where
\begin{equation}
C = \left(\frac{0}{B(\mu_1) \times 2 \epsilon_2 \rho(g_e)} \right).
\end{equation}
Note that we simplified the expressions by bounding $1 - B(q_1) \leq 1 - B(q_1)$ and $1 - B(q_2) \leq 1 - B(q_2)$, and further bounding $C_0(x)$ and $C_0(x)$.

Define next $D \triangleq C + f_e B(A)$. Then the following recurrence relation can be obtained:
\begin{equation}
\left(\frac{B(f_1^{n+1})}{B(f_2^{n+1})} \right) \leq D \cdot \left(\frac{B(f_1^{n-1})}{B(f_2^{n-1})} \right),
\end{equation}

96
and hence, if we perform m iterations of density evolution, we obtain that
\[
\left(\frac{B(f_{2}^{m})}{B(f_{1}^{m})} \right) \leq D^{m} \cdot \left(\frac{B(f_{2}^{0})}{B(f_{1}^{0})} \right),
\]
where we assume that the messages q and g for any iteration are bounded by q^{0} and g^{0}. We are interested in the case of $B(f_{1}^{\infty})$ decreasing to 0.

Taking all the above into account, we have the following sufficient stability condition for full-diversity codes:

\textit{Theorem 1 (Sufficiency part of the stability condition):}
The bit error probability P_{e} for a full-diversity RLDPC ensemble converges to 0 if all the absolute values of the eigenvalues of D are < 1.

Notice that the usual stability condition mentioned in Section IV-A depends on λ_{2}, while the stability condition derived here depends on both λ_{2} and λ_{3}, “hidden” in λ_{1} and λ_{2}.

V. BLOCK-ERROR RATE OF RLDPC CODES

The main result of this paper is the study of the block-error probability P_{B} of RLDPC codes. Using the sufficient part of the stability condition derived above, we can link P_{B} to the bit-error probability P_{e}, and show in which cases $P_{B} \rightarrow 0$ implies $P_{e} \rightarrow 0$.

Using a union bound at some iteration m, we obtain
\[
P_{B}^{m} \leq \frac{n}{4} P_{1}^{m}(1i) + \frac{n}{4} P_{1}^{m}(2i) + \frac{1}{4} (\text{max } M_{1}(1i))^{6^{-s}} P_{1}^{m}(1i) + \frac{1}{4} (\text{max } M_{1}(2i))^{6^{-s}} P_{1}^{m}(2i),
\]
where n is the code length, and $\text{max } M_{1}(1i)$ ($\text{max } M_{1}(2i)$) is the maximum number of variable nodes in a computation tree of a variable node from the set $1i$ ($2i$) in the bipartite graph, after m iterations. The second inequality follows from the same reasoning used in [3, Section II], to which we refer the reader desiring a detailed proof. Now, to ensure that, as $m \rightarrow \infty$, P_{B} decreases to 0 while $P_{B}^{m} \rightarrow 0$, one has to ensure that P_{B}^{m} decreases with m faster than the maximum number of variable nodes in the computation tree.

A. Case of $\lambda_{2} = \lambda_{3} = 0$

Let us consider the simple case of both λ_{2} and λ_{3} being 0. This is similar to the case of standard LDPC codes with $\lambda_{2} = 0$. Repeating the calculations of [3, Section VI.A], we obtain
\[
P_{B}(m + k) \leq \frac{1}{4} (d_{v}^{\max} d_{e}^{\max})^{6(1+\varepsilon)(m+k)} [B(f_{2}^{m})^{3/2}k] + B(f_{1}^{m})^{(3/2)k}],
\]
which decreases to 0 as $k \rightarrow \infty$.

B. General case

Given that
\[
B(\text{output}) = \Pi_{i} B(\text{input}_{i})
\]
for variable nodes and
\[
1 - B(\text{output}) \geq \Pi_{i} (1 - B(\text{input}_{i}))
\]
for check nodes, and since $B(q^{m})$ and $B(g^{m})$ for any m, q, and g are no greater than the corresponding $B(\mu)$, one can bound
\[
B(C_{1}) \leq \lambda_{2} g \rho(g_{e}) B(\mu_{1}) \max \{B(\mu_{1}), B(\mu_{2})\}
\]
\[
B(C_{2}) \leq (\lambda_{1} + \lambda_{2} \rho(g_{e})) g_{e} B(\mu_{2})
\]
\[
B(C_{2}) \leq (\lambda_{1} + \lambda_{2} \rho(g_{e})) g_{e} B(\mu_{1}) \max \{B(\mu_{1}), B(\mu_{2})\}
\]
and obtain
\[
B(f_{1}^{m}) \leq B(\mu_{2}) (w_{1} B(f_{1}^{m-1}) + w_{2} B(f_{2}^{m-1}))
\]
\[
B(f_{2}^{m}) \leq B(\mu_{1}) (w_{1} B(f_{1}^{m-1}) + w_{2} B(f_{2}^{m-1}))
\]
with $w_{1} \triangleq f_{2} \lambda_{2} \rho(g_{e})$ and $w_{2} \triangleq f_{2} (\lambda_{1} + \lambda_{2} \rho(g_{e})) + \frac{\lambda_{2} g_{e}}{2} \rho(g_{e})$. Thus, with a linear approximation,
\[
B(f_{1}^{m+2k}) \leq B(\mu_{2}) w_{1} B(f_{1}^{m}) + B(\mu_{2}) B(\mu_{2}) w_{1} B(\mu_{2}) \frac{1}{2} B(f_{1}^{m})
\]
\[
B(f_{2}^{m+2k}) \leq B(\mu_{1}) w_{1} B(f_{1}^{m}) + B(\mu_{1}) B(\mu_{2}) \frac{1}{2} B(f_{1}^{m})
\]
Consequently, the block error probability
\[
P_{B}(m + k) \leq \frac{1}{4} (d_{v}^{\max} d_{e}^{\max})^{6(1+\varepsilon)(m+k)} [B(\mu_{2})^{2k} w_{1} B(f_{1}^{m}) + B(\mu_{2})^{2k} B(\mu_{2})] \frac{1}{2} B(f_{1}^{m}) + B(\mu_{1}) w_{2} \frac{1}{2} B(f_{1}^{m}) + B(\mu_{1}) w_{2} \frac{1}{2} B(f_{2}^{m})]
\]
\[
B(\mu_{2}) w_{1} \leq (d_{v}^{\max} d_{e}^{\max})^{-3},
\]
\[
B(\mu_{1}) w_{2} \leq (d_{v}^{\max} d_{e}^{\max})^{-3}.
\]

VI. CONCLUSION

In this paper we have derived the conditions under which the block-error rate of a RLDPC code ensemble decreases to 0 as the bit-error rate does the same. The interest of our findings lies in the fact that results existing in the literature deal with errors related to all the of code bits, while for RLDPC only errors affecting information bits should be considered.

REFERENCES