
ETH Library

EDT - Eiffel development toolkit

Master Thesis

Author(s):
Ohnsorg, Reto

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-a-006007008

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006007008
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

EDT - Eiffel Development Toolkit

Master Thesis

By: Reto Ohnsorg
Supervised by: Marco Trudel

Prof. Dr. Bertrand Meyer

Student Number: 97-253-108

Contents
1 Abstract..1
2 Introduction..1
3 Existing Eclipse IDEs...2
4 Evaluation..4

4.1 EEDT project..4
5 My Extensions..5

5.1 Project Refactoring...5
5.2 Compiler Integration...6

5.2.1 Code Base..8
5.3 Project File Handler..8

5.3.1 Code Base..9
5.4 Compiler Setting GUI..9

5.4.1 Code Base..10
5.5 Compiler Output Parser..10

5.5.1 Code Base..12
5.6 Run Configuration / Console View..13

5.6.1 Code Base..14
5.7 Abstract Syntax Tree (AST)..14

5.7.1 Results..16
5.7.2 Testing..18
5.7.3 Code Base..18

6 Status...19
7 Conclusion...19
8 Future Work ..20
9 References and Background Material:...22

9.1 Reading list...22
9.2 References:..22

10 Appendix..23
10.1 Project Schedule...23

10.1.1 Intended Schedule..23
10.1.2 Actual schedule...23

10.2 Installation & First Steps..24
10.2.1 Requirements..24
10.2.2 Installation Steps...24
10.2.3 First Steps...24

10.3 Feature List..25
10.4 EEDT CVS Repository..25

1 Abstract

Eclipse is a multi-language software development platform comprising an IDE and a plug-in
system to extend it. It is written primarily in Java and is used to develop applications in this
language. Through plug-ins, Eclipse also allows to develop applications in other languages
like C, C++, Cobol, Python, Perl, PHP among others.
The outcome of this thesis is an Eclipse plug-in which provides basic functionality to write
Eiffel applications which is based on an inactive open source project which had been stopped
in 2005.
This report covers an evaluation of existing solutions for other languages than Eiffel, an
overview on what is available for Eiffel, extensions done to the existing project as well as a
project status, problem section and ideas for future work on this project.

2 Introduction

Eclipse is an open platform. It is designed to be easily and infinitely extensible by third parties.
The Eclipse architecture consists of five main layers as shown below:

PDE: It provides all tools necessary to develop plug-ins. This is the toolkit used to create
plug-ins for Eiffel development. PDE offers a lot of wizards and templates to integrate
the basic functionality needed for an IDE (Editor, console view, search functions,
property pages...)

JDT: This is a complete java IDE and a platform itself. It is the standard IDE that comes
with an Eclipse distribution.

1

PDE
(Plug-in Development Environment)

JDT
(Java Development Tools)

IDE
(Integrated Development

Environment)

Java VM
(Standard Java2 Virtual Machine)

RCP
(Rich Client Platform)

E
C
L
I
P
S
E

IDE: IDE is a tools platform and rich client application. We can build various form of
tooling by using IDE for example Database tooling.

RCP: On the bottom is RCP which provides the architecture and framework to build any rich
client application.

Java VM: The standard Java virtual machine is the very bottom of the Eclipse framework.

Most implementations done during this work are extensions of the PDE framework.

3 Existing Eclipse IDEs.

To get an idea of the look & feel of an Eclipse based IDE as well as the basic functionality
provided by them, several open source products were installed and run.

Plugin Language Version Latest Activity Reference

mmrnmhrm D 0.3.0 October 2008 [1]

Emonic C# 0.3.0 October 2007 [2]

CDT C/C++ 6.0.X November 2009 [3]

ODT OCaml 1.2 February 2009 [4]

Those four plug-ins were used to create a simple “Hello world” application. It has shown that
all of them look & feel familiar to JDT and aim to provide the same features according to its
forum entries & project road map. The most common JDT features are:

− Editor – syntax coloring, code resolving, import assistance, content assistance (auto
completion, quick fix, help & tips)

− Resource explorer view – shows the resources included in a project as a tree view
(projects, classes, libraries, includes...)

− Outline view – shows the structure of a Java compilation unit (class file) including
methods, fields, type hierarchy

− Problem view – lists problems occurred during compilation and links them to the
corresponding resource file

− Console view – displays text output of a console application and redirects text input to
this application

− Refactoring support – method extraction, safe renaming and moving with reference
updates etc.

− Wizards to create new elements – project, package, class, interface, etc.

2

− Search engine – find declarations of and/or references to packages, types, methods,
and fields, scoped to the workspace, a working set or the current selection

− Update site – an easy to use Eclipse specific mechanism to install and update plug-ins
online

The four plug-ins were evaluated with respect to the base features mentioned before and
listed in the following table.

CDT Emonic mmrnmhrm ODT
Language
specific editor

yes yes yes yes

Resource
explorer

yes yes yes yes

Outline view yes yes yes no

Problem view yes yes yes yes

Console view yes yes yes yes

Wizard yes yes yes yes

Refactoring
support

yes yes yes no

Content
Assistance

yes yes yes no

Debugger
integration

yes no no no

Update site yes yes yes yes

Using these plug-ins has shown that CDT is the most elaborated plug-in and offers lots of
features available in JDT. It is the only plug-in that has a fully integrated debugger. The CDT
project is an official Eclipse project (supported by IBM, Nokia, Ericsson among others) and has
a lot of contributors. Not only that the project is mostly in sync with the current Eclipse / JDT
edition, it also comes with a lot of tutorials, help forums and also print media are available.

Mmrnmhrm and Emonic are still in beta release and have by far not as much community
support as CDT. There hasn't been any project activity recently. In case of Mmrnmhrm, the
fact that D is not that widely spread and hence has not a huge community might be a reason.
C# is very commonly used with Microsoft Visual Studio or the MonoDevelop IDE [5] which
might be a reason that the Emonic plug-in has not much support either.

ODT provides neither content assistance (auto completion) nor refactoring features and does
not come with an integrated debugger. There hasn't been much activity the last few months
but the project is still alive and seems to be ongoing.

3

4 Evaluation

The following three open source projects were found while researching on the internet.

Project Name EFE EDT EEDT
Host www.eclipse.audaly.com https://sourceforge.net/proj

ects/edt
https://sourceforge.net/
projects/eedt

Status obsolete inactive inactive

Last release May 2004 December 2004 July 2005

Artifacts available Source code Discussion topics Source code

Features
implemented

- Source Highlighting
- Compile / Build
- Document generation
- Supports SmartEiffel
Compiler

- - Source Highlighting
- Compile / Build
- Cluster Browsing
- Supports SmartEiffel
Compiler

All listed projects are open source projects where there hasn't been any activity for at least
four years. While the EDT project has remained at kind of brainstorming stage (no code,
binaries available), the EFE project provided an implementation for Eclipse 2.0 but is marked
as obsolete and no longer available on the Eclipse plug-in website [6], where it was originally
hosted.
The EEDT project was not active either but a source code base and its binaries were
available on SourceForge [2]. According to its description, some basic features needed for this
project seemed to be already implemented and I considered it as worthy to test them and see
whether they were working and usable for this project.

4.1 EEDT project

Download and installation had shown that the project was not running under Eclipse Galileo
V3.5.1. The EEDT was originally developed using Eclipse 2.1. After some code refactoring, it
was possible though to figure out what features these plug-ins basically provide although most
of them were not working properly.

The following table depicts the status of each feature implemented in EEDT V.0.1.0

Feature Code Status Documentation
Editor (Syntax Highlighting) Runnable code Not available

Refactoring erroneous Not available

Resource browser Runnable code Not available

Project Creation Wizard Not runnable, basic
implementation only

Not available

4

https://sourceforge.net/projects/eedt
https://sourceforge.net/projects/eedt
https://sourceforge.net/projects/edt
https://sourceforge.net/projects/edt
http://www.eclipse.audaly.com/

Class Creation Wizard erroneous Not available

Feature Creation Wizard Not implemented Not available

Compiler Integration* Not runnable, Not available

Debugger Integration* Not runnable Not available
*Support for SmartEiffel compiler [8] & GOBO Libraries [9]

Eclipse provides extensive support to migrate to a current version (wizards, tools, FAQ,
forums). A code walk through as well as reading the migration section of the eclipse
documentation had led to the conclusion to reactivate the existing EEDT project and extend it
with the components needed to provide a running Eiffel IDE.

Pros Cons
Many hours (useful) software development done by
several implementers

No documentation available, code walk-through
takes time to get an overview of the current
code base. Bug-fixing might become hard and
time-consuming.

Editor plug-in works as is Refactoring needed due to framework update
(Eclipse V2.1 to V3.5.1).

Resource browser plug-in works as is

5 My Extensions

5.1 Project Refactoring

For this study, EEDT V 0.1.0 was used as base version to do further implementation.
According to Chapter 4.1, most of the basic features needed were not working properly. To
get a solid code base to work on, a code refactoring had been done first which included the
following tasks:

− Upgrade to JDK 1.5
− Infer generic type arguments where possible and code was reused (Generics were

introduced in JDK 1.5)
− Code removed where no longer needed, mostly compiler integration code since the

EEDT was intended to work with a SmartEiffel [8] compiler
− Project structure updated since the project didn't build anymore with Eclipse 3.5.1 due

to binary cycles
− Plug-in definition file for each sub plug-in adapted to Eclipse 3.5.1 since some

parameters were no longer supported or substituted by other ones.

5

The EEDT plug-in consists of nine Eclipse projects. During the refactoring work done, I had to
browse through each of the projects to fix errors and figure out what is the main purpose of a
project and its packages. The list below gives an overview of these projects:

Project name Purpose Packages Classes TLOC*
ch.ethz.edt.core Contains most of the domain logic

including Eiffel definition, project model,
AST parser, builder, compiler driver,
utilities...

45 417 42806

ch.ethz.edt.ui Contains the user interface dialogs and
views (editor, resource navigator, property
pages, preferences...)

156 624 45217

ch.ethz.edt.debug.core Contains base classes to run and debug
applications. The debug support was
implemented for GOBO Eiffel and is not
reusable.

4 5 124

ch.ethz.debug.ui Contains the user interface to setup and
start a launch configuration.

4 7 397

ch.ethz.edt.runtime Provides runtime dependent functionality
like resource resolving, preferences, etc.

9 19 1158

ch.ethz.edt Contains only text artifacts and help
content (cheat-sheet), no source code.

- - -

ch.ethz.edt-feature Defines the set of plug-ins to be built and
exported to use in Eclipse. No source
code, just XML definitions.

- - -

ch.ethz.edt-update Update site project. Holds an update site
definition and all binaries needed to install
the plug-in.

- - -

ch.ethz.edt.doc Contains artwork, templates, diagrams,
wiki...no source code

- - -

* Total lines of java source code

The metrics were calculated with the 'state of flow' open source metrics plug in [10] for
Eclipse.

5.2 Compiler Integration

One of the main tasks was to integrate the ISE Eiffel compiler into the existing plug-in.
Integration in this context means to start a compiler and provide expected input as well as
reacting on its output e.g. show status messages and errors in Eclipse views.
The expected input of a compiler is usually a single class file, a few command line parameters
and/or a configuration file containing the source files and libraries needed to build an

6

application. Such a configuration file has to be created manually according to the compiler
specification and therefore is not part of the Eclipse framework.
Nevertheless, Eclipse provides classes and mechanisms to keep track on what resources
have changed in a project, by firing events. A potential consumer can subscribe for events like
MOVED, DELETED, REPLACED, PRE_DELETE, etc. and react when they occur.
Getting informed about resource changes allows to decide on what resources have to be
(re)compiled. Since in many applications there is more than a a single compilation step
involved, 'building' is a more general notion. A builder component knows all the details to
transform a project from its source files and libraries to the output needed e.g. binaries,
intermediate code, executables, etc.

The PDE framework supports basically two different build modes:

− Full build
− Incremental build

A full build compiles an entire project from scratch whereas an incremental build calculates a
delta to a previous build and determines all resources to be recompiled. The calculation of this
delta is a tedious task and needs profound knowledge of the compiler used, build order
calculation, dependencies involved, etc. Overcoming these difficulties leads to a reduced
compilation time since only parts of a project have to be rebuilt.

Unlike many compilers which just support simple batch compilation, the ISE Eiffel compiler
has the ability to do incremental compilation on its own and takes care of resource changes.
This feature is known as 'Melting Ice Technology' [11]. Using this ability makes it useless to
implement an incremental builder in Eclipse PDE. A simple builder does the job since the
compiler decides on what files have to be built. One has to provide a configuration file though
to let the compiler know what files and libraries are part of the project to be built.

The three variants presented to integrate an ISE Eiffel compiler are:

A) Implementing a simple builder in Eclipse PDE which allows to do full builds only
B) Implementing an incremental builder in Eclipse PDE
C) Implementing a simple builder and take advantage of the compiler's incremental build

ability

The pros and cons are listed in the table below:

Variant A B C
Pros - simple implementation

- easy to test
- efficient for large scale
 projects
- automatic build
 possible
- fine grained control
 over build process

- incremental
 compilation feature
- significantly less
 development effort
 than variant B
- well-tested since used
 in Eiffel Studio

7

Cons - inefficient
- unusable for large
 scale projects

- high development
 costs
- extensive testing
 needed
- no 'built-in' support for
 files outside Eclipse
 workspace.

- not much control of
 build process →
 harder to integrate
 user feedback like
 error messages,
 markers, etc.

Due to the fact that the Eiffel compiler already has a well-established incremental compilation
mode and a new implementation of such a mechanism would have led to a more time
consuming task, I decided to implement variant C.

5.2.1 Code Base

Package Class Description ToDo
ch.ethz.edt.core.compiler.driver CompilerDriverISE Provides methods to run the

compiler and set the
parameters used

-

ch.ethz.edt.internal.core.build EiffelProjectBuilder_ISE Executes the framework build
commands and sets error and
warning markers

-

5.3 Project File Handler

The ISE Eiffel compiler uses a configuration file to determine what resources are part of a
build process, as well as to read user settings which are not part of the input argument list.
Eiffel project files [12] are formatted in XML notation and have a '.ecf' file extension. The
implemented project file handler is able to create a project file and read and write its settings.
Changes in the project file are done by the compiler setting user interface. The currently
implemented project file handler supports the most important settings to compile an Eiffel
project, but not yet all of them. Adding more settings might be done with ease analogous to
the existing ones.

The following settings are already supported:

− Option warning
− Option syntax level
− Options assertion (supplier-) precondition / postcondition / check / invariant / loop
− Parameter precompile name and location
− Parameter precompile location
− Parameter system name
− Parameter library name and location
− Parameter root class

8

− Parameter root feature
− Parameter cluster name
− Parameter target name
− Setting multithreaded
− Setting console application

The handling of the XML structure was done by using the JDOM [13] API. JDOM is an easy to
use and java based 'document object model' for XML.

5.3.1 Code Base

Package Class Description ToDo
ch.ethz.edt.core.compiler.config
uration

ProjectFileHandler Creates, reads and writes the
compiler configuration file (.ecf)

-

5.4 Compiler Setting GUI

To change the basic project settings like source folder, output folder, application type, libraries
to link etc., a GUI is provided as depicted below

All settings are made persistent in the project file [See Chapter 5.3].

9

5.4.1 Code Base

Package Class Description ToDo
ch.ethz.edt.ui.properties.compiler CompilerPropertyPage Creates the property page GUI. -

5.5 Compiler Output Parser

To react on the compiler output and mark possible errors and warnings in source (class) files,
a parser is needed to process the output stream. Research on the internet has shown that
there is no widely used definition or standard to define how to format errors and warnings, for
example in an XML structure, to make parsing independent of a compiler. This was expected
since most of the compilers provide similar information like error number, error message, file
name, line number, severity and so on. For unknown reason it is not this way and parsing a
compiler output becomes a very specific task.
According to Manuel Stapf from ISE Eiffel, there's no output parser for the current ISE
compiler available and had to be done myself. Also, there is no specification available on how
and what kind of output is generated and how this output is formatted. Many tries have shown
that there are two different kind of errors possible:

− Configuration file error / warning
− Source file error / warning

The following compiler output indicates a source file error:

10

From this output string, we can extract class name, line number, and column number. Since it
is common practice that a source file is named after the class it contains, one can easily
derive the source file name.

Having source file name and line number, it is possible to set an error marker in the Eclipse
view to help a user to find this error.

Although this looks pretty straightforward, problems occurred while using this approach.
While testing the parser with a few different compiler errors, it appeared that the output format
varies depending on the type of error.

11

Although both error output strings contain a line number and class name, they are different to
parse. The currently implemented version is able to recognize both error types. Using the
parser during the last few weeks have shown, that these two types of error messages cover
most of the cases, but there is no guarantee that there are no other cases possible. A
specification of the error output format would have helped to save development time and
make sure that the implementation works for the cases specified.

5.5.1 Code Base

Package Class Description ToDo
ch.ethz.edt.core.compiler.driver CompilerOutput

ParserISE
Parses the output stream of the ISE
Eiffel compiler and creates an event for
each error or warning.

-

12

5.6 Run Configuration / Console View

To run a program from the Eclipse workbench, a run configuration can be created manually by
using the run configuration GUI:

A new run configuration can be created by double clicking on the 'Eiffel Application' icon and
selecting a project on the 'Launch' tab. Once the configuration is created, it appears in the run
menu:

13

Hint: If the 'run' icon is being pressed and no configuration has been defined yet,
a default run configuration named after the project's name will be created
automatically.

5.6.1 Code Base

Package Class Description ToDo
ch.ethz.edt.debug.internal.ui.launch EiffelLaunchShortcut Handles a framework launch

event. Reads data defined in
the launch configuration.

-

ch.ethz.edt.debug.internal.ui.launch EiffelLaunchConfigur
ationTab

Creates the configuration tab
GUI.

-

ch.ethz.edt.debug.core.launch EiffelLaunchConfigur
ationDelegate

Executes the process (defined
in the launch configuration).

-

5.7 Abstract Syntax Tree (AST)

To provide elaborated functionality like method renaming, dynamic auto completion for
features etc., there is a need for an AST to access and change class information in a source
file efficiently. For instance, to write a dynamic auto completion functionality for Eiffel, we're
interested in the public features defined in a class and all base classes derived from. These
features are then presented in a pop up menu from which a user can select one.
PDE comes with an AST parser for Java but not so for any other language. Research on the
internet has led to the conclusion that there is no AST parser for the Eiffel language available,
which is written in Java and provides an API to use within the PDE.
Various lexer/parser frameworks are available which generate a target language specific API
(Java in this case) from a language specific definition (grammar). Such a grammar has to be
defined mostly in BNF notation. The list below is an overview of some products available:

Tool Target language Eiffel Grammar available Open
Source

Yacc/Lex [14] C/C++ yes Yes

ANTLR [15] C / C++ / C# / D, Java,
JavaScript, Phyton , Ruby,
ActionScript

Yes, but outdated (2003 – not
working with current ANTLR since
written for v2 and not compatible
with v3)

Yes

JavaCC [16] Java No Yes

UltraGram [17] C++, Java, C#, VB.Net No No

14

No product was found that supports Java as target language and comes with an Eiffel
grammar. Several ideas came up to get an Eiffel AST for Java:

− Rewriting existing Yacc/Lex grammar for JavaCC
− Updating the existing grammar for ANTLR
− Generating C++ code from an existing Eiffel grammar and rewrite it in Java by hand

The outdated Eiffel grammar for ANTLR was written for version 2.X and is not compatible with
version 3 and above. There is an experimental migration tool (v2v3.exe) in the download
section of the official ANTLR website [15] available. It is supposed to migrate grammars
written in v2 to v3, but all tries to run it with the existing Eiffel grammar have failed and a post
in the ANTLR forum has not been answered so far.

Another aspect to keep in mind is that this AST is used to implement functions like auto
completion and refactoring support, but not to implement a compiler as Yacc/Lex is often used
for. The intended applications of the AST differ from building a compiler in the sense that there
is a need to do changes on the source file parsed e.g. to rename variables, add a feature,
definition body, etc.
ANTLR provides StringTemplate, an engine to change the source file (where the AST was
created from) based on user defined templates. This provides a bidirectional way to parse an
AST from a source file, do changes on it, and save it back as source file. The modified source
file has to be compilable after any refactoring!

I decided to use ANTLR for the following reasons:

− Pure Java solution, but other popular target languages available
− Provides useful features beyond parsing and lexing – the StringTemplate engine.
− Open source
− Widely used, ongoing development activities for 20 years
− Lots of help material online

15

Eiffel Source
File

Lexer /
Parser

S tringTemplate
Framework

AST

5.7.1 Results

The following components are implemented:

− Partial definition of an Eiffel grammar
− Code generation for Java
− Wrapper around generated code to create AST
− Experimental implementation of a feature look-up functionality
− Basic function tests with commonly used classes

Eiffel Grammar:

The Eiffel grammar at this point is able to resolve an Eiffel source file down to feature
declaration. It is not possible to get information about the implementation body within a feature
though. I stopped at this level due to time constraints. The following overview shows what
information can be extracted from the AST implementation:

Group Type Comment Node
Index INDEXING

Class Name CLASS_DEF

Modifier Class modifiers: Deferred,
expanded, frozen

MODIFIER

Creator All creator names

Base Class All base classes inherited
from

SUPERCLASS_DEF

Invariant INVARIANT

Feature Name Feature name FEATURE_DEF

Modifier Feature modifiers: Deferred,
expanded, frozen

MODIFIER

Argument Name ARG_DEF

Argument Type ARG_DEF

Return Type RET_DEF

Precondition clause PRECONDITION

Postcondition clause POSTCONDITION

16

Java AST Interface

The picture below shows all parts of the implemented Eiffel AST:

Basic Auto Completion Function

A first application of the AST described above is a very basic, not to say experimental, auto
completion function. It takes advantage of the facts that

− libraries included in EiffelStudio are distributed with its source files
− Eiffel class files are named after the class they implement

This allows to look-up features in libraries and display them in the Eclipse editor a similar way
Eiffel Studio, Eclipse or Microsoft Visual Studio do.
So far, the AST interface provides only three methods needed to implement the basic auto
completion function:

− String[] getSuperClass()
− String[] getFeatureList()
− createsASTFromFile(String aFileName)

17

+createASTbyFile ()
+createASTbyString ()
+getSuperClass ()
+getFeatureList ()
+printTree()

EiffelAST

+...()

eiffelLexer

+...()

eiffelParser

Eiffel .g

Generator

1 1

1

1

ANTLR

The basic process to get all features is straightforward.

1) Create an AST for the source file currently edited in the editor
2) collect the features defined by calling getFeatureList()
3) call getSuperClass() to get all classes inherited from
4) resolve file name, find file in the library path
5) repeat 1-5 until getSuperClass() returns no more base classes

5.7.2 Testing

It has been shown that creating a new language grammar is quite a tricky and time consuming
task, especially when it comes to testing (Although Eiffel is a straightforward implemented
language and there are not as many legacies to take care of as in other languages).
ANTLR provides ANTLRWorks as a helpful tool to create and test grammars. It includes a
debugger to lex and parse source files step by step, which I used to test my grammar with the
following sources files from the Eiffel base library:

− any.e
− arguments.e
− arguments.e
− bilinear.e
− linear.e
− list.e
− bounded.e
− tree.e
− file.e

− iterator.e
− container.e
− comparable.e
− numeric.e
− exceptions.e
− memory.e
− pointer.e
− hierarchical.e
− rt_extension.e

− disposable.e
− random.e
− primes.e
− c_string.e
− active_list.e
− interactive_list.e

These classes were chosen because they are fundamental in Eiffel applications.
It is completely clear that testing a grammar with a few base classes is not enough at all to
ensure proper functionality. One of the next steps would have been to set up an automated
testing environment to do tests repetitively with ease. ANTLR provides gUnit, a testing
framework analogous to widely spread JUnit.
One approach to test a grammar would include to configure gUnit the way, that any committed
changes in the grammar file yield to a test run of all class files included in the base libraries
that come with EiffelStudio (This includes around 370 commonly used classes).

5.7.3 Code Base

Package Class Description ToDo
ch.ethz.edt.core.model.eiffel.ast EiffelAST Wrapper which provides

access to AST
-

ch.ethz.edt.core.model.eiffel.ast EiffelParser Generated Parser -

ch.ethz.edt.core.model.eiffel.ast EiffelLexer Generated Lexer -

18

ch.ethz.edt.core.model.eiffel.ast Eiffel.g Grammar file - extend testing
- Resolve local
 variables,assignments,
 function calls and
 boolean expressions
 for refactoring support
 like renaming or
 reference finder

6 Status

The following overview shows the intended results and its current status

Priority Task Development status Description
1 Base Plugin (Editing,

Compilation, Run, Browse)
Working EDT plug-in allows to write,

compile and run simple Eiffel
applications. Editor, resource
navigator, console window &
error view are the base
components

2 Installer Working EDT can be easily installed
from an update site

3 Project Wizard Working Creates a new Eiffel project
and a simple application class.

4 Syntax highlighting Working Highlights Eiffel specific syntax

5 Code completion Concept & experimental
implementation

Code completion depends
strongly on the AST/DOM. A
first approach is designed and
implemented, but only on an
experimental level and still
error prone.

6 Refactoring support Concept & experimental
implementation

Renaming is possible on
file/folder level. No other
support is implemented yet.

7 Debugging support Not started -

7 Conclusion

I've collected lots of experiences with Eclipse and the PDE framework while working on this
project. It turned out that using the PDE framework makes sense to implement a new toolkit in
a similar way others have done before. Nevertheless, it needs time to get familiar and become
productive and efficient. Due to the sheer size of the Eclipse project, it is not always obvious

19

what components are already implemented to what extend, and therefore I used a significant
amount of time to read forums, help content, tutorials, etc.
The decision to reactivate a frozen project turned out to be successful in the sense that it was
possible to update it to the latest Eclipse and Java release and add the features needed to
provide a running Eiffel Development Toolkit. It posed some risks though, since it was not
completely clear at the beginning how flexible the existing code base was to implement new
requirements. It has shown that bug-fixing was a tedious task since it took time to get familiar
with the existing code and get a feeling where problems originate from. On the other hand,
time-consuming tasks like implementing an Eiffel editor from scratch became no longer
necessary.
The AST implementation is not at the maturity level I expected at the beginning of the project.
On one hand the initial effort to get a first prototype which shows whether it works at all took
more time than planned, on the other hand some change requests for the GUI came up and
were higher prioritized than the AST component.

8 Future Work

The implemented EEDT V 0.2.0 is useful to create compact Eiffel applications for people who
are already familiar with Eclipse. It is not yet a fully fledged IDE to use in large scale
applications, mainly because debugging support is missing. To integrate a debugger into
Eclipse would be a major task which needs quite a bit of time.
Another task is to continue working on the AST implementation which will enable some more
useful features discussed earlier. The list below gives an overview of open tasks and a time
estimation based on the experiences made during my work on EDT.

Task Description Time estimation
Project Settings The task includes to extract all possible project

settings in EiffelStudio and update the project
handler (Chapter 5.3) as well as the GUI (Chapter
5.4)

1 week

AST / DOM The task includes to set up a test environment to test
the Eiffel grammar (Chapter 5.7) thoroughly.

1 month

Auto completion Extend the experimental implementation which just
extracts class & base class features of the currently
edited class by pressing ctrl + shift.
The finished auto completion function should react
on the function call operator '.', ask the AST for type
information (if available) and get available features
for this class, which is already implemented
(Chapter 5.7).

1 month (depending
on extensions needed
on AST interface)

Reference finder The reference finder allows to determine all
references to a variable or feature in a project.

Depending on AST

Renaming (refactoring) The renaming function allows to rename a class
name, feature name or local variable and updates

Depending on AST

20

all references. This function may base on the
reference finder function.

Outline view An outline view shows the structure of a compilation
unit (class) in a tree view. Precondition, features,
postcondition and invariant would be meaningful
nodes to show.
Again, the AST implementation has to provide the
content for this view. The view part is similar to the
implemented resource browser which displays the
project structure on resource level (files / folder).

2 weeks

Debugger integration Eclipse PDE provides the most common debug
views like variable view, breakpoint view, etc. A
major task is to provide wrappers to connect the
Eclipse UI with the debugger specific interface.

2 month

Bugfix:
Compiler settings

The compiler properties are currently set in the
cluster browser by selecting an Eiffel source file,
clicking right mouse button and selecting properties
→ compiler settings. This is not a proper way since
these settings are valid for the entire project and
therefore have to be moved to the project node. For
unknown reason they are not visible on this level
though. The following forum entry in the Eclipse
community has not lead to success yet but might be
checked in the future to get a helpful hint or solution:

http://www.eclipse.org/forums/index.php?
t=msg&th=156074&start=0&S=d265b9e49675b2fed
b1c53186c19608f

-

To close this chapter, I'd like to spend a few thoughts on the pros and cons on whether it
makes sense to actively push this project forward or leave it to its fate.
Since all open source projects which intended to provide an Eiffel IDE for Eclipse have been
on hold for at least four years, I conclude the interest within the Eiffel community to have such
a tool is moderate. To maintain this project, a lively community that keeps this IDE in sync with
EiffelStudio and provides help, tutorials, FAQ would be necessary. From this point of view,
there's not really a reason to continue working on this project at the moment. Nevertheless,
lots of software engineering students at ETH have programming knowledge in both, Eiffel and
Java, and might contribute to this project as a semester thesis or as part of the Java course at
ETH (...where it was mandatory in the past to contribute to an open source project or start a
new one). This might help to build a community and draw more interest on this project.

21

http://www.eclipse.org/forums/index.php?t=msg&th=156074&start=0&S=d265b9e49675b2fedb1c53186c19608f
http://www.eclipse.org/forums/index.php?t=msg&th=156074&start=0&S=d265b9e49675b2fedb1c53186c19608f
http://www.eclipse.org/forums/index.php?t=msg&th=156074&start=0&S=d265b9e49675b2fedb1c53186c19608f

9 References and Background Material:

9.1 Reading list

Eclipse Plugin Development Environment (PDE) documentation:
http://wiki.eclipse.org/index.php/Eclipse_FAQs#Plug-In_Development_Environment

Eclipse migration documentation:
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/porting/3.0/faq.html

PDE “Hello World” tutorial:
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html

Java & XML using JDOM:
http://www.ibm.com/developerworks/java/library/j-jdom/

ANTLR tutorial:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.7762&rep=rep1&type=pdf

ANTLR AST application:
http://www.antlr.org/wiki/display/ANTLR3/Interfacing+AST+with+Java

9.2 References:

[1] http://www.dsource.org/projects/descent/wiki/Mmrnmhrm
[2] http://emonic.sourceforge.net/
[3] http://www.eclipse.org/cdt/
[4] http://ocamldt.free.fr/
[5] http://monodevelop.com/
[6] http://www.eclipse-plugins.info/
[7] https://sourceforge.net/
[9] http://www.gobosoft.com/
[8] http://smarteiffel.loria.fr/
[10] http://eclipse-metrics.sourceforge.net/
[11] http://dev.eiffel.com/Melting_Ice_Technology
[12] http://dev.eiffel.com/ProposalProjectFiles
[13] http://www.jdom.org/
[14] http://dinosaur.compilertools.net/
[15] http://www.antlr.org/
[16] https://javacc.dev.java.net
[17] http://www.ultragram.com

22

http://www.ultragram.com/
https://javacc.dev.java.net/
http://www.antlr.org/
http://dinosaur.compilertools.net/
http://www.jdom.org/
http://dev.eiffel.com/ProposalProjectFiles
http://dev.eiffel.com/Melting_Ice_Technology
http://eclipse-metrics.sourceforge.net/
http://smarteiffel.loria.fr/
http://www.gobosoft.com/
https://sourceforge.net/
http://www.eclipse-plugins.info/
http://monodevelop.com/
http://ocamldt.free.fr/
http://www.eclipse.org/cdt/
http://emonic.sourceforge.net/
http://www.dsource.org/projects/descent/wiki/Mmrnmhrm
http://www.antlr.org/wiki/display/ANTLR3/Interfacing+AST+with+Java
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.7762&rep=rep1&type=pdf
http://www.ibm.com/developerworks/java/library/j-jdom/
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://wiki.eclipse.org/index.php/Eclipse_FAQs#Plug-In_Development_Environment

10 Appendix

10.1 Project Schedule

10.1.1 Intended Schedule

10.1.2 Actual schedule

23

Task\Week 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1a
1b
1c
2a
2b
2c
2d
2e
2f
3a
3b
3c

1
a) Reading about Eclipse Frameworks, Eiffel Studio, Eiffel compiling...
b) Check for existing projects in this area (OpenSource)
c) Pro / Con's of contributing to existing solutions vs. Starting a new project.

2
a) Implementation & Test Plugin for Project Creation Wizard
b) Implementation & Test Plugin (Incremental/Auto) Compilation Support
c) Implementation & Test Plugin (Incremental/Auto) Debugging Support
d) Implementation & Test Eiffel Editor (Syntax highlighting)
e) Implementation & Test Eiffel Editor (Syntax auto completion)
f) Implementation & Test Refactoring Support

3
a) Documentation Project Report
b) Reserve

Task\Week 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1a
1b
1c
2a
2b
2c
2d
2e
2f
3a
3b

1
a) Reading about Eclipse Frameworks, Eiffel Studio, Eiffel compiling...
b) Check for existing projects in this area (OpenSource)
c) Pro / Con's of contributing to existing solutions vs. Starting a new project.

2

3
a) Documentation Project Report
b) Reserve

a) Implementation & Test Plugin for Project Creation Wizard → Explore EDT code structure, refactor project
b) Implementation & Test Plugin (Incremental/Auto) Compilation → Project Creation Wizard (Projectfile-Handler, Registry-Handler, GUI...)
c) Implementation & Test Plugin (Incremental/Auto) Debugging Support → Compiler integration (Compiler driver, Eiffel builder, output parser, console window)
d) Implementation & Tests Eiffel Editor (Syntax highlighting) → AST, Grammar, autocomplete
e) Implementation & Tests Eiffel Editor (Syntax auto completion) → Bugfixes & Changes according to M.Trudel
f) Implementation & Tests Refactoring Support → Update Site / Project package structure adapted

10.2 Installation & First Steps

10.2.1 Requirements

The following software requirements are mandatory to install and run EEDT Version 0.2.0 :

− Eclipse 3.4 Ganymede or higher
− ISE EiffelStudio 6.4
− Microsoft Windows SDK 2008 (Optional)*

*The EiffelStudio installation is distributed with a GNU compiler to generate C code but
recommends to use the Microsoft C/C++ compiler.

Hint: The plug-in may also run correctly with other ISE EiffelStudio versions, but it was
developed and tested using V 6.4.

10.2.2 Installation Steps

− Install Microsoft Windows SDK first (Optional)
− Install EiffelStudio 6.4
− Install Eclipse 3.4
− Open Eclipse
− Go to Help → Install New Software...
− Press 'Add...' button, enter the EEDT installation site:

http://se.inf.ethz.ch/projects/reto_ohnsorg/edt_plugin

...and confirm with 'OK' button The EEDT plug-in appears in the list box.
− Select EEDT plug-in and press 'Finish' button. A warning appears that this plug-in

contains unsigned content and the authenticity cannot be established.
− Confirm the security warning with 'OK' button
− A dialog appears and ask to restart Eclipse. Confirm by pressing 'Yes' button.
− The EEDT plug-in is now installed and ready to use.

10.2.3 First Steps

The following steps create a simple Eiffel console application with EEDT:

− Open File → New → Project. A wizard dialog opens.
− Choose 'EiffelProject' and press 'Next' button.
− Type a project name and optionally a location for this project.
− Press 'Finish' to confirm project name

24

http://se.inf.ethz.ch/projects/reto_ohnsorg/edt_plugin

The wizard creates a project, a root cluster and an Eiffel root class (application.e). The root
class already contains a root class feature make which is the entry point for this application.
Add a io.putstring(“Hello World”) in the 'TODO' section to create a runnable 'Hello World'
application and save this file. The compilation process starts automatically on file changes but
can be triggered manually as well.
To run the created program, a run configuration is needed an can be created manually the
following way:

− Select menu 'Run → Run Configurations...'. A dialog appears.
− Double click on the 'Eiffel Application' icon. A new run configuration will be created.
− Go to the 'Launch' tab and press the 'Browse...' button. A selection dialog appears
− Select the project created before and press 'OK' button.
− Press 'Run' to save and run the created configuration or 'Close' to save the

configuration without running the application.

As a shortcut, a default run configuration named after the project can be created
automatically, by pressing the 'run' icon instead of creating one manually.
Console applications write its output to a console window. If it is not already visible, one can
open it by selecting Window → Show View → Console.

10.3 Feature List

− Project, Class & Cluster Wizard
− ISE Eiffel support (Full Build, Incremental Build, Finalize, Freeze, Error marking)
− Console Viewer
− Problem Viewer
− Cluster Explorer
− Editor

- Syntax Highlighting
- Content assist for Eiffel code constructs (branch, loop, assertions...)
- Multi-comment/uncomment
- ”TODO” marker support

− Easy installation from update site

10.4 EEDT CVS Repository

The source code for this thesis is hosted at SourceForge. Use the following CVS data:

Host: eedt.cvs.sourceforge.net
Port: Default
Repository Path: /cvsroot/eedt
Branch: ISE_COMPILER
Tag: EDT_ISE_Eiffel_V0_2_0

25

