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Summary

This thesis examines how the configuration and the quality of contacts between hosts shape the
course of epidemics. Being able to evaluate the relevance of such contact characteristics is highly
relevant for constructing adequate mathematical or computer models of disease spread, which
are nowadays one of the main techniques for assessing the effectiveness of interventions
against epidemics of infectious diseases. Nonetheless, many modelers still apply the random
mixing assumption which assumes contacts to be completely random and transient without

scrutinizing the adequacy of this assumption for the respective infectious disease.

For treating the above mentioned research question, this thesis takes an interdisciplinary per-
spective that is rooted in system theoretic thinking: We understand and treat the spread of an
infectious disease as the result of the dynamics of a coupled transmission system, comprising
the host species, the pathogen(s) and environmental factors and their various interactions. This
thinking in transmission systems forms the basis of all four contributions which build the main

body of this thesis:

The first contribution gives answers to the question when contact repetition and clustering
should be included in models of epidemics. This assessment is done by comparing the outcomes
of models including repetitive and clustered contacts between hosts with models assuming ran-
domly mixed and transient contacts. The differences between both model types are systema-
tically tested for a multidimensional parameter space of social and biological influence factors.
One of our findings is that the relevance of contact structure for the model outcome depends
highly on the pathogen biology: Highly infectious and easily transmissible pathogens can be
adequately modeled under the random mixing assumption; models of diseases that need close
physical interaction for transmission should include more details about the actual contact struc-

ture.

The second contribution highlights the role of contact quality by investigating how the duration
and the intensity of contacts affect the pathogen transmission probabilities. A model is presen-
ted that allows for calculating the probability that a specific infected host infects a specific sus-
ceptible host based on the duration and the intensity of their interaction. With the help of
empirical contact data and this model, it is also shown that a large number of different contact
partners is not sufficient for qualifying as a super-spreader inducing disproportionate amounts
of secondary cases. Super-spreading events can only be explained when also the pathogen

shedding rate of the infector is disproportionately high.

The third contribution is about contacts between Swiss poultry farms, which presumably play a

role in avian influenza spread. One of the main findings of this empirical work is that non-



commercial farms are more important parts of the network of poultry farms than assumed by
previous work which focused on contacts of commercial farms. For instance, non-commercial
farms also have long-distance contacts that are crucial for disease control. Further, they are
functionally connected with the commercial farms. As a result, non-commercial poultry farms

must be included in models of avian influenza spread.

Finally, the fourth contribution presents a reconstruction of the 2003/2004 H3NZ2 influenza epi-
demic in Switzerland with an individual-based model. Successfully reconstructing past influenza
outbreaks is presented as a strategy for validating epidemic models which shall be used for
investigating hypothetical, future pandemics. We were able to reproduce spatial, temporal and
age patterns of a past seasonal influenza epidemic with a detailed individual-based model

integrating social and biological factors.

The four contributions give new insights of how contact characteristics shape the spread of
infectious diseases. Moreover, this thesis shows that an interdisciplinary, systemic thinking in
infection transmission systems is needed for understanding the spread of infectious diseases.
We conclude that future research in this field should not only generate new knowledge about
the relevance of the different factors that govern disease spread. Rather, knowledge integration
and systematization is also needed for guiding field researchers when to investigate which

specific elements of a certain transmission system.



Zusammenfassung

Diese Doktorarbeit untersucht, wie die Anordnung und die Eigenschaften von Kontakten zwischen
Wirtsorganismen den Verlauf von Epidemien prdgen. Die mathematische oder computerge-
stitzte Modellierung von Epidemien ist heutzutage die Standardmethode, um die Effektivitat
von Interventionsmassnahmen gegen Epidemien zu bewerten. Um hinreichend gute Krank-
heitsausbreitungsmodelle entwerfen zu kdnnen, muss man in der Lage sein die Relevanz der
oben genannten Kontaktcharakteristiken (Anordnung und Eigenschaften) einschatzen zu kon-
nen. Gleichwohl nehmen viele Modellierer an, dass sich eine Wirtspopulation homogen mischt
und dass Kontakte stets kurzlebig sind — ohne zu testen, ob diese Annahme flir die Modellierung

der betreffenden Infektionskrankheit angemessen ist.

Fur die Bearbeitung der genannten Forschungsfrage wahlen wir eine interdisziplinare Perspek-
tive, welche auf systemtheoretischem Denken griindet: Wir verstehen und behandeln die Aus-
breitung von Infektionskrankheiten als das Ergebnis eines Wechselspiels innerhalb eines Infek-
tionsubertragungssystems. Ein solches System besteht dabei aus der oder den Wirtsspezies,
dem Krankheitserreger, Umweltfaktoren sowie deren vielfaltigen Wechselwirkungen. Dieses
Denken in Infektionslibertragungssystemen ist die Basis aller vier Beitrage, die den Hauptteil

dieser Doktorarbeit bilden.

Der erste Beitrag gibt Antworten auf die Frage, wann das wiederholte Treffen bestimmter Kon-
taktpersonen sowie die Ausbildung von Gruppen (,clustering”) in Krankheitsausbreitungsmodellen
berticksichtigt werden sollten. Dazu vergleichen wir Simulationsergebnisse von Modellen, welche
diese Kontaktcharakteristiken aufweisen, mit solchen, die homogen gemischte, kurzlebige Kon-
takte annehmen. Die Unterschiede beider Modelltypen werden systematisch fur einen mehr-
dimensionalen Parameterraum bestehend aus sozialen und biologischen Einflussfaktoren ge-
testet. Ein Ergebnis ist dabei, dass die Relevanz der Kontaktstruktur fir die Simulationsergeb-
nisse zu einem hohen Mass von der Erregerbiologie abhangt: Hochinfektiose Erreger kdnnen gut
mit der Annahme homogener Durchmischung modelliert werden; Ausbreitungsmodelle fur
Erreger, die durch engen, physischen Kontakt libertragen werden, sollten hingegen die tatsach-

liche Kontaktstruktur der Wirtspopulation beruicksichtigen.

Der zweite Beitrag beleuchtet die Rolle der Kontakteigenschaften. Es wird darin untersucht, wie
die Dauer und die Intensitat eines Kontakts die individuelle Ubertragungswahrscheinlichkeit be-
einflusst. Es wird ein Modell eingefiihrt, mit dem sich die Ubertragungswahrscheinlichkeit fiir
ein bestimmtes Wirtspaar anhand der Dauer und der Intensitat ihrer Interaktion berechnen
lasst. Mit Hilfe empirischer Kontaktdaten und dem Modell kénnen wir zeigen, dass eine grosse

Zahl unterschiedlicher Kontaktpartner nicht ausreicht, um als sogenannter ,Superspreader”



eine Vielzahl von Sekundarfillen zu initiieren. Vielmehr kénnen solche ,super-spreading”
Ereignisse nur mit einer gleichzeitig Uberdurchschnittlich starken Ausscheidung von Erregern

erklart werden.

Der dritte Beitrag beleuchtet die Kontakte zwischen Schweizerischen Gefliigelhaltungen: Von
diesen wird angenommen, dass sie im Falle einer avidren Influenzaepidemie eine wichtige Rolle
flr deren Ausbreitung spielen. Eines der Hauptergebnisse dieser empirischen Arbeit ist, dass
nicht-kommerzielle Haltungen ein wichtigerer Bestandteil des Netzwerks Schweizerischer
Gefligelhaltungen ist, als in vorangegangenen Arbeiten angenommen wurde. So verfligen
beispielsweise auch nicht-kommerzielle Haltungen Uber weit entfernte Kontaktpartner — ein
Faktor, der fur die Einddmmung einer Infektionskrankheit eine bedeutende Rolle spielt. Dartber
hinaus sind kommerzielle und nicht-kommerzielle Haltungen Uber verschiedene Kontaktpfade
miteinander verbunden. Demzufolge sollten auch Freizeithaltungen in Ausbreitungsmodellen

flr die aviare Influenza berticksichtigt werden.

Der vierte Beitrag rekonstruiert die H3N2 Influenzaepidemie der Saison 2003/2004 in der Schweiz
mit Hilfe eines Individuen-basierten Modells. Wir begreifen die erfolgreiche Rekonstruktion
vergangener Influenzaepidemien als eine Strategie zur Validierung von Ausbreitungsmodellen,
die auch fur hypothetische Szenarien kunftiger Influenzapandemien angewendet werden
sollen. Wir konnten empirisch gemessene Muster bezliglich Raum, Zeit und Alter der Infizierten
anhand eines detaillierten Individuen-basierten Modells reproduzieren. Dieses Modell integriert

dabei sowohl soziale als auch biologische Einflussfaktoren.

Alle vier Beitrage bieten neue Erkenntnisse dartiber, wie Kontaktcharakteristiken die Ausbrei-
tung von Infektionskrankheiten beeinflussen. Daruber hinaus zeigt diese Doktorarbeit, dass eine
interdisziplinare, systemische Denkweise notwendig ist, um die Ausbreitung von Infektions-
krankheiten verstehen zu konnen. Wir schlussfolgern, dass kiinftige Forschung nicht nur neues
Wissen Uber die Relevanz verschiedener Einflussfaktoren auf den Verlauf von Epidemien
schaffen sollte. Vielmehr sollte auch bestehendes Wissen geordnet und verflochten werden, um
empirisch arbeitenden Forschen eine Orientierung bieten zu kénnen, welche spezifischen Ele-

mente eines bestimmten Infektionstubertragungssystems erhoben werden sollten.



Some remarks

This thesis is a cumulative thesis. Most of the papers that build the main body of thesis were
written by several authors and use, thus, the first-person plural “we” as personal pronoun. For
achieving a consistent style throughout the thesis, | will use consistently the pluralis auctoris

also in those parts, which were authored solely by me.

For the same reason, we adapt slightly the style and some other minor details (e.g. the numbe-
ring of the figures, equations and tables) of the four papers. However, the content is identical
with the published versions. A complete list of all references is given at the end of the thesis
(Chapter 8), but not after each contribution individually. Accordingly, the numbering of the refe-

rences is not identical with the numbering in the published articles.

In Chapter 1, we use several figures, which are taken from publications of other authors or from
a publication from the author of this thesis that is not part of this thesis. The copyright status of

these Figures is described subsequently:

Figure 1.2 has been taken from Calvin Schwabe’s book “Veterinary medicine and human health”.
This book was originally published by Kluwer, but Kluwer sold the copyright to Mosby, which is
now part of Elsevier Health. Meanwhile, the title has gone out-of-print and Elsevier has reverted
the rights to the author. Calvin Schwabe died in 2006 and we do not know who the heirs are.

Consequently, the copyright status of Figure 1.2 remains unclear.

Figure 1.4 has been taken from the paper “Appropriate models for the management of infectious
diseases” by Wearing, Rohani and Keeling. Permission to do so is granted by the CCAL license,
which explicitly allows to copy, to modify and to distribute papers and parts of papers under this

license.

Figure 1.5 has been taken from the conference paper “Social patterns and communicable disea-
ses: What epidemiology (still) can learn from SNA” by Fiebig, Smieszek and Zinsstag. The figure
has been created by the author of this thesis and the authors of this conference paper are the

copyright holders.
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1 Introduction

Infectious diseases were a major scourge of mankind from time immemorial [154] and continue
to be a main reason for death, malaise and economic losses [173, 225, 289, 366]. Probably more
than ten million deaths per year can be directly attributed to infections with pathogens and four
out of the ten most important causes of death are infectious diseases (Table 1.1). Thus, under-
standing the spread of infectious diseases (and how it can be influenced) is not only a fascina-

ting scientific exercise, but also a challenge of enormous practical relevance.

In light of that, our knowledge about many infectious diseases is rather fragmented: We have
extensive and detailed knowledge of many aspects of diseases, but only unreliable or even
missing information on many other, crucial aspects. For example, thousands of human
influenza genomes with millions of nucleotides have been completely sequenced allowing
insights into the evolutionary dynamics of influenza [130, 273], but the relative importance of
different transmission pathways — crucial knowledge for effective public health measures — is

still highly controversial for influenza [15, 47, 200, 330].

Important factors that shape the spread of infectious diseases are the configuration and the
quality of potentially contagious contacts between potential hosts. For a long time, the role of
contact structure was almost ignored by epidemiological research and by modelers in particular.
Instead, the attention was mainly on the biological factors of disease spread [231]. This situation
has changed vastly during the last thirty years and a growing body of literature has emerged,

which deals with the impact of contact structure on the patterns of disease spread [232].

Nevertheless, often models of epidemics are published that do not adequately reflect the appro-
priateness of their underlying model assumptions with respect to contact structure [122, 248,
277, 308]. And still, host contact structure continues to be inconsiderately approximated with
the random mixing assumption, which deems contact between hosts to be completely random
and transient. Random mixing models are well-proven and provided valuable insights into
disease dynamics [22], but there are also many cases where there are clear indicators that
random mixing models might lead to vastly biased model outcomes (cf, e.g., the review of

Morris [231]).

This thesis investigates and discusses how several contact characteristics can be included in
computer models of epidemics, in which way this affects the model outcomes, and what this
means for health policy. In particular, we provide answers to the two following general ques-

tions:



1) Under which conditions is the inclusion of the concrete configuration of contacts (i.e, how
contacts are arranged between hosts) into models of epidemics necessary and when might the

simplifying random mixing assumption be adequate?

2) What role does the quality of contacts (i.e. how long, intense, and frequent contact events are

between hosts) play for model outcomes?

Furthermore, we will examine two concrete cases: avian influenza preparedness for Swiss poul-
try farms and human seasonal influenza spread in Switzerland. Thereby, we will give answers to

the following questions:

3) How might the concrete configuration of contacts between farms affect the risk of avian

influenza transmission on the farm and national levels?

4) Is it possible to reconstruct measured characteristics of seasonal influenza spread with a
detailed computer model incorporating details on human travel, contact characteristics, and the

biology of hosts and pathogens?

Cause of death Deaths 1/1000f  Cause of death Deaths  1/100 of
(10%) deaths (10%) deaths

World Low-income countries

Ischaemic heart disease 72 122 Lower respiratory infections 2.9 1.2
Cerebrovascular disease 5.7 9.7 Ischaemic heart disease 2.5 9.4
Lower respiratory infections 4.2 7.1 Diarrhoeal diseases 1.8 6.9
COPD 3.0 5.1 HIV/AIDS 15 5.7
Diarrhoeal diseases 2.2 3.7 Cerebrovascular disease 15 5.6
HIV/AIDS 2.0 3.5 COPD 0.9 3.6
Tuberculosis 15 2.5 Tuberculosis 0.9 3.5
Trachea, bronchus, lung cancers 13 2.3 Neonatal infections 0.9 3.4
Road traffic accidents 13 2.2 Malaria 0.9 33
Prematurity / low birth weight 1.2 2.0  Prematurity / low birth weight 0.8 3.2
Middle-income countries High-income countries

Cerebrovascular disease 3.5 14.2  Ischaemic heart disease 13 16.3
Ischaemic heart disease 3.4 13.9  Cerebrovascular disease 0.8 93
COPD 1.8 7.4 Trachea, bronchus, lung cancers 0.5 5.9
Lower respiratory infections 0.9 3.8 Lower respiratory infections 03 3.8
Trachea, bronchus, lung cancers 0.7 2.8 COPD 0.3 3.5
Road traffic accidents 0.7 2.8  Alzheimer and other dementias 03 3.4
Hypertensive heart disease 0.6 2.5 Colon and rectum cancers 03 3.3
Stomach cancer 0.5 2.2 Diabetes mellitus 0.2 2.8
Tuberculosis 0.5 2.2 Breastcancer 0.2 2.0
Diabetes mellitus 0.5 21 Stomach cancer 0.1 1.8

Table 1.1: Leading causes of death by income group, 2004. Adapted from [366], p. 12. Low income

was defined as $825 or less; high income as $10066 or more.




We believe that neither the concentration on the biological factors of infection risk nor the one-
sided focus on the configuration of contacts between hosts can lead to an adequate understan-
ding of the spread of infectious diseases. Even though this thesis highlights the role of contact
characteristics, we understand that this should not and cannot be done without considering the
context composed of the biology of both host and pathogen as well as of parameters of the
physical environment. An example supporting our believe is that one has to know the possible
and the likely pathways of transmission to know what kind of contacts are relevant and have to

be surveyed in epidemiological contact studies.

The indicated need for integrating knowledge belonging to different classical disciplines like
biology, mathematics or sociology demonstrates that interdisciplinary work is necessary to
tackle problems in the field of disease spread. In fact, we believe that the borders of classical dis-
ciplines like medicine, biology, or sociology are often too dysfunctional to adequately answer
scientific questions on infectious disease spread. Instead, we suggest conceptualizing the
spread of infectious diseases in an interdisciplinary, system theoretical framework, which inte-

grates relevant mechanisms and elements belonging to different disciplinary realms.

To prepare the paradigmatic ground for the research work, we first review in Section 1.1 different
concepts of scientific inquiry and describe schools of thought that all go beyond classical
disciplines and that all incorporate system theoretical considerations. We then synthesize this

review work and define the position underlying this thesis.

The integration of the various factors governing disease spread and the investigation of the dy-
namics of transmission systems are usually done with the help of mathematical or computer
models. There are different views in philosophy of sciences about (i) what models are; (ii) what
we can learn from models; and (iii) what makes a model a good model. To embed our own
modeling work, these three questions will be discussed briefly and the viewpoint taken in this

thesis will be clarified in Section 1.2.

Sections 1.3 and 1.4 contain brief reviews about transmission models on the level of individuals
and models of epidemic spread on the level of populations. As we will see, the history of mixing
concepts in epidemiology is tightly bound to the development of certain modeling approaches
and their specific limitations. For assessing the role of contact characteristics in disease spread,
it is helpful to understand where often-used concepts and metaphors of mixing come from.
Hence, Section 1.4 provides some background knowledge on the co-evolution of mixing concepts
and modeling approaches and helps to put the guiding questions of this thesis in context.
Section 1.3 lays the broader foundation for the integration of biological processes and host

behavior needed to answer the second question outlined above.



Then, the final section of this chapter, Section 1.5, introduces the four contributions that build
the research core of this thesis. These contributions correspond (in order) with the four guiding

questions and are titled:
1) Models of epidemics: When contact repetition and clustering should be included. (Chapter 2)

2) A mechanistic model of infection: Why duration and intensity of contacts should be included

in models of disease spread. (Chapter 3)

3) Contacts between poultry farms, their spatial dimension and their relevance for avian

influenza preparedness. (Chapter 4)

4) Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially

explicit, individual-based model. (Chapter 5)

Finally, Chapter 6 will provide an overall conclusion about the findings elaborated in the pre-
ceding chapters of this thesis. Furthermore, further research needs which are tied in with out

work and findings will be presented.

1.1 Interdisciplinary and system theoretical thinking in science and
medicine

We already stated that there is a need for systemic approaches going beyond the borders of
classical disciplines for understanding the spread of infectious diseases. This section reviews
interdisciplinary thinking in general and with respect to disease spread. In the first subsection,
we will provide a short view on the interdisciplinarity debate in the sciences in general. The
second subsection reviews four related concepts and schools of thought that contribute to a
better understanding of disease spread. Namely, we will discuss the one-medicine concept, con-
servation medicine, the human-environment systems framework, and transmission systems
analysis. In the final section, we will describe the specific framework underlying the research

work of this thesis.

111 Going beyond classical disciplines in science

Higher education in the ancient and medieval world was founded on the study of the artes
liberales’ [186] in order to grant a comprehensive, encyclopedic knowledge to the “freeman”.
During the Late Middle Ages the term discipline appeared in the university system to distinguish

three branches of (professional) training: theology and the arts in Paris, law in Bologna, and

'Grammar, rhetoric, logic, arithmetic, geometry, music, astronomy



medicine in Salerno [276]. These early professional specializations mirrored a societal need, i.e.,
were external to educational institutions, whereas later subdivisions were often stimulated by
intra-scientific processes [324]. By the 19" century, research and education were entirely on a

reductionist track: Reality became decomposed into more and more granular parts.

Reductionism is a mode of scientific inquiry that aims at understanding “the whole of some-
thing by examining its parts” (p. 379) [172]. Reductionism in general has been overly successful
and has led to the wealth of knowledge and multitude of comfortable technologies modern
societies enjoy today. However, reductionism also has faced several inherent limits, which led to
claims for a re-unification of science or — at least — a synergistic co-operation between the
sciences to overcome those limitations. The origins of the concept of interdisciplinarity are
highly disputed [186], but we think that one can distinguish two different observations that

have led to calls for research beyond the classical disciplines:

1) The observation that there are striking analogies in the concepts, mechanisms, and structures

postulated in different disciplines.

2) The observation that disciplinary boundaries are often dysfunctional for understanding and

solving real-world problems.

Observation 1; analogy of concepts, mechanisms and structures in various disciplines: We can
observe that there are disciplines and professions that seem to be “useful” for problem solving
regardless of which disciplinary realm the problem belongs to. This holds particularly true for
applied mathematics and statistics. Leslie Kish, in those days the president of the American

Statistical Association, emphasized in his 1978 presidential address:

“Statistics is a peculiar kind of enterprise of contradictory character because it is
at the same time so special and so general. Statistics exists only at the interfaces of
chance and empirical data. But it exists at every such interface, which | propose to

be both necessary and sufficient for an activity to be properly called statistics.” (p. 1)

[184]

While other disciplinary researchers focus necessarily on a more or less well-defined part of the
world, statisticians apply their knowledge to all kinds of problems and data. The same is true for
applied mathematics: According to Hersh, universality, i.e. that the “mathematic we know is the
only mathematics there can be” (p. 37) [159], is one of the generally accepted myths of mathe-
matics. At latest with Newton’s Philosophiae Naturalis Principia Mathematica the mathematical

approach to science was well-established and until today it proved to be a powerful way of



deriving insightful scientific conclusions without direct reference to the material reality [360] -

be it in physics, biology, chemistry, or the social sciences.

Since the 1950s several concepts, schools, sciences, and paradigms emerged, which aim at iden-
tifying general principles overarching the established scientific disciplines and which can be

subsumed under the label theories of systems. One of the most prominent is von Bertalanffy’s

General System Theory, which he defines as a Environment

“new discipline” with “the formulation and de-
Unity ——
rivation of those principles which are valid for
Relationship —
‘systems’ [cf. Figure 1.1, TS] in general.” (p. 76) oart \

ar

[340] as subject matter. He starts with the

observation that some “similar general view-

points and conceptions” (p. 75) like organiza- Figure 1.1: General scheme of a system: A
tion, wholeness, and dynamic interaction have  system is composed of its parts or ele-
emerged in otherwise independent disciplines ~ ments and the relationships between

[340]. As a core of General System Theory von these parts. A system is an indivisible unit

) (any change would lead to a different
Bertalanffy postulates (i) that there are struc- o )
functioning). Any part, which does not be-

tural similarities or even isomorphies (cf. Sub- long to it, is part of its environment.
section 1.2.1) between different realms of the

world; (ii) that (self-)organization, (self-)regulation, and directiveness are characteristics of
systems of interest; and (iii) that those structural similarities go beyond the character of weak or

narrative analogies.

Further approaches, to which General System Theory is closely knit, are: (i) cybernetics [14, 357,
i.e., the study of the structure of regulatory systems. Cybernetics deals with circular relation-
ships (feedback loops), which allow systems to regulate their internal dynamics and to adapt to
external disturbances and forces; (ii) the theory of information [309], which relates informa-
tional content to the notion of entropy and has proven useful for understanding diverse
communication processes ranging from human conversation to the transmission of heritable
information via DNA or RNA [186]; (iii) structuralism, which perceives reality as a complex system
of interrelated parts and seeks “the underlying formal structures, the deep structures” [222]; (iv)
recent concepts including complex adaptive systems, complex systems science, and network theo-
ry [23, 99, 292, 360]. They form a broad field of diverse but similar concepts that try to explain
complex macro-behaviors by micro-interaction independent of the disciplinary realm the case

example might belong to.



Observation 2; dysfunctionality of disciplines for solving real-world problems: The second observa-
tion is that many problems humankind faces today cannot sufficiently be tackled by the classi-
cal disciplines through which research is predominantly organized [48, 172, 186, 207]. The
ongoing fragmentation of knowledge leads to a situation where no single “expert” can tackle
realistic problems adequately [48] and where an integral assessment can only be done with
great difficulty as the “parts can no longer be put together easily” (p. 379) [172]. Integrating the
different parts fails often (i) because there is no interface between the different realms of
knowledge; (ii) because there are different cultures and frames of reference between different
disciplines; (iii) because they use different languages; and (iv) because various disciplines utilize

different methods of scientific inquiry [48].

Environmental problems are classical examples of problems that cannot be tackled with purely
disciplinary inquiry [186, 324]. There is a vast body of examples where disciplinary knowledge
offered “solutions” for problems that — after an initial improvement — engendered secondary
problems often more severe than the original ones. To mention three of them: The pesticide
dichlorodiphenyltrichloroethane (DDT) was widely used as a means against the vectors of
Typhus [356] and Malaria [310]. However, it not only lost effectiveness in vector control, but was
also found to be harmful to man and wildlife [310]. Other pesticides, if applied on acid soils, are
proven to contribute to carcinogenic nitrosamines, which, when ingested via comestibles, were
found to cause harm to man [211]. As a final example, chlorofluorocarbons (CFCs) were investi-
gated and promoted in the late 19205 as a refrigerant to replace the common but toxic
ammonia, chloromethane, and sulfur dioxide [61]. From an engineering point of view, CFCs were
thought to be safe and environmental-friendly substances as they are generally non-reactive
(consequently also non-flammable) and nontoxic [105]. It took until the 1970s to finally recog-
nize that CFCs are inert enough to reach the stratosphere, but that an ozone-depleting chain
reaction would be initiated by photolysis of the CFCs [224] resulting in the holes in the ozone

layer we experience today

How observations 1 and 2 are interlinked: Both observations disclose a need for scientific inquiry
beyond the classical disciplines, but seen from a different angle: The first observation highlights
communalities of the sciences and demonstrates that an idea like the unity of science is still a
partly realistic utopia. The second observation makes it clear that there are complex real-world
problems that cannot be tackled successfully by scientific disciplines that were defined
following other logics than those of the problems to be solved. Although both observations look
at the disciplinarity-interdisciplinarity question form the opposite angle, they are complemen-
tary when the shortcomings described should be overcome: Karlqvist states that one “seek[s] a

kind of metaknowledge” (p. 379) [172], when science wants to contribute to the solution of real-



world problems with scientific approaches. According to Karlqvist, credible interdisciplinary
research requires an adequate understanding of the disciplines, but one also has to know how
to connect this knowledge. To achieve knowledge integration, the communalities of the diffe-
rent realms of life and the gap-bridging tools of mathematics, statistics, and computer-based

modeling can and must be employed.

1.1.2  Four problem-oriented concepts for understanding disease spread

Subsequently, four selected concepts, all of which can be applied for conceptualizing disease
spread, will be introduced. All of them are rooted in the observations 1 and 2 described in the
previous Subsection 1.1.1. This subsection starts with the one medicine concept, which originates
from the observation that the split between human and veterinary medicine is dysfunctional.
Then, we lead over to the more general concept of conservation medicine. Finally, two concepts
- the human-environment systems framework and transmission system analysis — will be pre-

sented which both come from a system theoretic background.

One medicine concept

The one medicine concept is based on the belief that the split of medicine into human and
animal subdisciplines is unnatural, arbitrary, and not useful. Integrative thinking in health
professions is quite old as the origins of healing in all parts of the world made no systematic
differentiation between humans and animals [301]. Today, traditional, integrated healing is still
practiced, e.g, by African pastoralists [328]. Part of the explanation for the divide between
human and veterinary medicine goes back to a religious motivation as many Christian schools
of thought believe(d) in the uniqueness of man, separating him from fauna [301]. But also
earlier sources distinguish human and veterinary medicine. Although science and education
were and are dominated by distinct human and animal health disciplines, integrative thinking
was constantly present in the discourse: it was a component of the foundation of universities in
Europe [288] and medical pioneers like Rudolf Virchow held that “between animal and human
medicine there is no dividing line—nor should there be” (p. 2) [301]. Finally, it was Calvin
Schwabe, who coined the term one medicine denoting a concept of integrated human and

animal health research [301].

The links between human and veterinary medicine founding the one medicine concept are
manifold and depicted in Figure 1.2. Amongst one medicine’s various components, comparative
medicine, i.e, the study of human disease by comparison with corresponding diseases of
animals, is the most obvious. For instance, ethical concerns and regulations often do not allow
studying the course of human disease in an unaltered way, as patients have to be treated if a

treatment is available for a disease. Comparative medicine offers the opportunity to study



diseases under natural conditions and to thereby gain insights that a researcher of ethically

bound human medicine could never offer [301].

Schwabe further emphasizes that veterinary medicine has a focus on population or herd
medicine [7, 301]. In contrast to that, he sees human medicine often focused on the “reduc-
tionistic methods” (p. 9) [301] of diagnosing and treating individuals isolated from their context.
In his opinion, veterinary practice could contribute to human public health because veterinary

medicine was more familiar with epidemiological thinking than human medicine [301].
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Figure 1.2: Links between veterinary medicine, (human) medical sciences, and agricultural

sciences. Figure has been taken from [301]. Copyright status is discussed in the remarks.

Animals can be used as sentinels for natural or xenobiotic toxic substances [57], as well as for
infectious agents [270]. Advantages of using animals as sentinels for infectious agents can be:
(i) certain animals could be more sensitive than humans to a particular infectious agent; (ii)
animals could have shorter incubation periods; or (iii) animals could be more exposed [271]. A
conjoint, systemic view on human and animal cases can help to successfully investigate and
mitigate outbreaks. For example, an Anthrax outbreak in the USSR could only be attributed to a
the release of spores from a military facility because not only human cases, but also patterns in
sheep were investigated. Furthermore, the West Nile Virus in the New York City area could have
been detected earlier if medical doctors and veterinarians would have worked together more

closely [271].



The importance of a more systemic view of infectious disease transmission becomes evident
when looking at the quantitative and qualitative importance of zoonotic diseases: Schwabe
estimates that four-fifths of all infectious diseases occurring in humans also occur in other
vertebrates [301]. According to Molyneux et al., approximately three-fourths (132 of 175) of all
emerging infectious diseases in humans have first been observed in other organisms [226]. Both
understanding and fighting old and emerging human infectious diseases with animal hosts
thus require a systemic view that maps the intra-human or intra-animal flows and patterns of

disease spread, as well as the cross-species transmission.

Conservation medicine

As with one medicine, there are various similar concepts that are used almost synonymous for
conservation medicine (e.g. ecosystem health [275]). The boundaries between these similar con-
cepts are fuzzy — even Schwabe’s [301] work on one medicine already includes some ideas
belonging to conservation medicine. In the following, we concentrate on conservation medicine,
which we understand as a health discipline including the relationship between human health,
environmental health, and environmental conditions [352], while being focused on the well-

being of humans or animals.

One part of this field is to identify and utilize analogies regarding phenomena and methods in
medicine and ecosystem research [275] (cf. observation 1, Subsection 1.1.1). Rapport found, for
instance, that both (i) try to measure the vital signs of their respective system; (ii) try to under-
stand their systems capacity to deal with stress; and (iii) try to identify factors of disease and
malfunction [274]. However, for understanding the spread of infectious diseases, we are mainly
interested in those parts of conservation medicine that deal with host-parasite ecology and,

thus, link both fields’.

Following Daszak et al. [78, cf. also 300] the key factor for the formation of most emerging
infectious diseases (EID) is a change in host-parasite ecology. Their (not exhaustive) listing of
causes for EID encompasses, amongst other things, changes (i) in the international travel and
commerce; (i) in population demographics and host behavior [84, 124]; (iii) in agriculture and
food processing; (iv) in the global climate system; (v) in technology; or (vi) in the interaction
patterns with wildlife [78]. Accordingly, there are environmental processes and elements beyond
the individual host, the host population and the pathogen, which influence the spread of

infectious diseases.

* As described in the paragraph “How observation 1and 2 are interlinked”, Subsection 1.1.1
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One environmental factor that may lead to new infectious diseases in humans or change the
patterns of the spread of existing diseases might be the occurrence of toxic substances in the
environment. We know that there are xenobiotic substances like some pesticides (e.g., y -hexa-
chlorocyclohexane) or flame retardants (e.g., hexabromobenzene or decabromodiphenyl ether)
that bio-accumulate along the food chain [239]. As a consequence, predators are most prone to
becoming poisoned by toxic anthropogenic substances. The selective poisoning of predators
may lead to an increase in parasite abundance as, for instance, small invertebrates feed on
trematode cercariae (a larval form of these parasitic flatworms) [299] and other predators eat
snails that are an intermediate host of trematodes [28]. Removal of predators may, thus, in-

crease the risk of infections because an important regulatory feedback loop has been disturbed.

Another impact factor possibly altering the risk of disease transmission is changes in the global
nutrient cycles. In their review on this issue McKenzie and Townsend [218] describe two
mechanisms by which nutrient pollution can increase the risk of the transmission of infectious
diseases: (i) there can be an increase in the resources for intermediate hosts or vectors (e.g., in
case of malaria or dengue fever) or (ii) the additional nutrients are a directly exploitable resource
for pathogens (e.g., cholera). McKenzie and Townsend reviewed studies on the relationship
between parasites or pathogens and nutrients and found for 55 case examples only four cases in
which the burden of disease was likely to decrease as a response to additional nutrient supply

[218].

Changes in the built environment and land use — like new roads or changes in watercourses —
can also alter infection transmission systems (cf. transmission system analysis, pp. 14). Changes
in the water system, such as new irrigation schemes or dams, have been a source for increased
infection risk worldwide. A positive association between the malarial incidence and the irrigated
area was found for the two Indian states of Nagaland and Punjab [179]. The construction of a
dam at Diama - 40 km upriver from the estuary of the Senegal River —to prevent the intrusion
of salty water into the river lead to the appearance of intestinal schistosomiasis: The altered
ecology ameliorated the conditions for Biomphalaria pfeifferi, which is an intermediate host for
the parasite Schistosoma mansoni. Before the dam was built, the predominant snail species was
Bulinus globosus, a snail which copes with brackish water during the dry season and is not a host

for Schistosoma mansoni [318].

A final example of the benefits of conservation medicine approaches to disease spread is the
impact of global climate change on disease transmission. Several infectious agents and hosts
are known to be sensitive to climatic conditions [262, 280]. Seasonal influenza, for instance,
appears only in epidemic extent during the cold season [85, 374] (cf. Chapter 5). Salmonella and

cholera bacteria replicate more rapidly at higher temperatures [147]. Several recent studies
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showed that there is a relationship between short-term changes in the mesoclimate and the
occurrence of infectious diseases [129]: In Asia and South America a correlation between the
prevalence of malaria prevalence and the El Nifio-Southern Oscillation cycles could be observed
[44-46]. El Nifio / La Nifia events further seem to have triggered dengue fever outbreaks in Asia
[148, 149, 167]. Finally, variations in the climatic conditions appear to have affected Ross River

virus outbreaks in Australia [333, 361].

Human-environment systems framework

As previously became apparent, the spread of infectious diseases through (human) populations
can be conceptualized as a coupled human-environment system. Scholz [297] introduced seven
postulates within his human-environment systems framework to “conceptualize the structure
and dynamics of human-environment interactions” for “coping with the complexity of most
relationships within and between human and environmental systems” (p. 549) (cf. Table 1.2).
Like the one medicine concept, conservation medicine or ecosystem health, Scholz’ human-
environment systems framework is a paradigmatic’ approach as all of them deal to a varying
extent with the following questions: (i) What is to be observed and which questions have to be
asked? (ii) How should research be structured to answer these questions? (iii) How should the

results of such scientific enquiry be interpreted?

In the following, we briefly discuss the postulates applied to infectious diseases.

Label Contents

Complementarity Human and environmental systems are complementary.

Hierarchy Human systems can be investigated according to hierarchies within and among them.
Interference Different levels of human system, from the micro to the macro level, interact.

Feedback There are different types of feedback loops within and between human and environment systems.
Decision Human systems can be conceived of as decision makers that have goals and strategies to strive for.
Awareness Human systems have different types of environmental awareness

Environment first ~ After problem definition, the analysis of a human-environment system should be based on an
adequate analysis of the environment.

Table 1.2: Postulates of the human-environment system framework. Table adapted from

Scholz [297].

Complementarity, the first postulate, distinguishes two kinds of complementary subsystems: a
human and an environmental one, both of which have different rationales, but both of which
are coupled. Investigating them in isolation is often dysfunctional for understanding human-

environmental problems. This distinction is purely definitional: One could consider both parts as

*in the etymological meaning of paradigm as pattern, example, model
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unity [297], but splitting the universe in two coupled subsystems is a pragmatic decision that

makes conceptualizing human-environment problems easier.

The definition of what is part of the human sub-system and what is part of the complementary
environment depends on the hierarchical level (cf. hierarchy postulate) from which the entire
system is looked at: If one takes the angle of an individual human, the relevant material environ-
ment consists of other individuals that can transmit pathogens either directly (by interaction
between two individuals) or indirectly (e.g., by contaminating the inanimate environment with
causative agents). The social environment of an individual includes, inter alia, the societal rules
defined by the institutions of the respective society (including curfews, school closures, face

mask obligation, sexual norms).

Relevant hierarchical levels of the human sub-system with respect to infectious diseases are, for
example: (i) the individuals’ tissues and cells, which are targets for pathogens and parasites as
sites of and instruments for replication; (ii) the individuals themselves as potential hosts of a
pathogen or parasite; (i) organizations, e.g., pharmaceutical companies that develop and
provide vaccines, antibiotic or antiviral drugs, or non-governmental organizations (NGOs) such
as patient movements; (iv) national or sub-national institutions, which are commissioned to
mitigate epidemics and pandemics, such as the health care systems, universities, and research
institutions, or the national centers for disease control; (v) international entities — the World
Health Organization (WHO) being one among others — that organize coordinated action and

decision-making beyond the nation states.

All of these different hierarchical levels have their own rationales, which might be in accordance
with each other or in opposition. That means the various hierarchical levels can interfere with
one another (interference postulate). One example of such interference is that national health
care systems often prioritize certain groups for vaccination and treatment such that the highest
possible total number of lives saved or DALYs* averted can be achieved [265]. In contrast to that,
many concerned individuals want to receive the best possible treatment regardless of what the

“optimal” solution for the entire population might be.

An important and integral part of understanding complex human-environment systems and,
thus, of infectious disease spread as a particular case example of a human-environment system
is the idea of feedback loops (feedback postulate). The human-environmental systems frame-

work [297] distinguishes between primary and secondary feedback loops: Primary feedback in a

“ Disability-adjusted life years
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human-environment system can be understood as simple and instantaneous cause-effect rela-
tionships observed in a system. One example of primary feedback in infectious disease spread is
the immediate reaction of the system to a change in behavior — for instance, that influenza
infection rates decrease during school vacation [65]. Secondary feedback refers to changes in
the system’s composition or dynamics itself, which can mean changes in the environmental
dynamics or in the human system by reflected learning processes [297]. One example of such a
secondary feedback loop in infectious disease spread is that changing mobility patterns with
increasing frequency of remote journeys [295] increase the likelihood that highly virulent
infectious agents evolve. It has been shown theoretically [41] and empirically [40] that a loss of

locality in contact patterns leads to the evolution of more virulent strains of infectious agents.

Finally, the human-environment systems framework is rooted in a decision theoretic tradition
besides its recourse to system theory: The decision and the awareness postulate (i) state that
human systems are intentional systems whose rationales have to be understood for an accurate
understanding of the functioning of the system and (ii) emphasize the role of human perception
and cognition (which build up environmental awareness) for human behavior. The importance of
knowing the problem awareness and goals of key actors for anticipating the behavior of a
transmission system is apparent for the evaluation of intervention measures. When models of
epidemics are used to test the effect of social distancing measures like school closures, this is
usually done under the ceteris paribus assumption, but we do not know whether children really
confine themselves at home when schools are closed. Furthermore, we have learned from
various studies that even health care workers can have alarmingly little knowledge about
influenza transmission and countermeasures [233, 306, 322], what might lead to counter-
productive behavior in case of a pandemic. There are various historical and literary records of
how people adapting their behavior when faced with a perceived risk of infection [35, 58], but an
adequate understanding of human behavior in the face of potentially lethal diseases is still

lacking [109].

Transmission system analysis

The term “transmission system analysis” was coined by Koopman and co-authors in several
publications [189-191, 201]. Koopman defines infection transmission systems as systems that
“circulate infection through complex contact patterns related to both contact patterns and
patterns of factors that affect the risk of transmission given contact” (p. S3; all subsequent
quotes in this paragraph refer also to p. S3) [191]. The transmission systems thinking as
presented by Koopman distinguishes between “transmission system components” and “trans-
mission system processes”. As system components he mentions the “infectious agents, hosts,

the [physical, TS] space in which hosts move, and environments affecting how infectious agents
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reproduce or survive outside of hosts”. As system processes he mentions “those that generate
the natural history of infection and contagiousness, mechanisms by which agents leave hosts,
all the modes of transmission that enable agents to survive as they transmit form one host to
another, the processes that lead to contact between hosts, and the evolutionary mechanisms of

the agent and hosts”.

As with all the other approaches presented before, transmission system analysis is a problem-
oriented concept. The aim of research efforts in this field is to ameliorate the living conditions of
humankind through better (and better informed) infectious disease control [191]. In that sense,

transmission system analysis aims to answer questions like the following:

“Should control be sought with interventions directed to the entire population or
will contact tracing and quarantine be more productive? What symptoms and
circumstances should lead to isolation of sick individuals? Which types of contact
with which kinds of individuals should lead to quarantine of healthy individuals?
Which populations or places deserve concentrated intensive surveillance or control
efforts like quarantine, chemoprophylaxis, symptomatic treatment, vaccination, or
decontamination? When should whole groups of people like those living in an
apartment complex be quarantined? When should we close contact venues like
schools, or cancel sporting events and concerts? Which kind of hygiene or barrier
precautions should be instituted? Which studies should we undertake to support
those entrusted to make difficult decisions, such as restricting the freedom of

individuals?” (pp. 303) [190]

The school of thought represented by Koopman is rooted in a clear system theoretic tradition, as
he clearly defines what is part of the system and what lies beyond the system’s boundaries and
as he distinguishes between system elements or components and system processes (i.e., rela-
tions between the components; cf. Figure 1.1). As in the human-environment system framework
presented before, clearly the human parts (No.1and 4 in Figure 1.3) and environmental parts (No.
2 and 3 in Figure 1.3) of the entire system are distinguished. The host-internal dynamics (No. 5)

are partly driven by the human component and partly by the infectious agent.

Further, the idea of hierarchy plays a role in Koopman'’s concept of transmission system analysis
(e.g. reflected in the links to multilevel analysis [83, 120]); seen from a granular, sub-individual
perspective, transmission systems are driven by the interaction between intra-host replication
of pathogens and the counteracting immune forces of the host (No. 5 in Figure 1.3). If an
individual is immunosuppressed (be it due to HIV [194], immunosuppressive drugs [115], or

simply stress [269]), this individual might become ill due to an otherwise harmless micro-

15



organism that would be eliminated effectively by the immune system under normal conditions.
On the other side, people acquire or “learn” specific immunity whenever they are challenged
with a specific infectious agent and are usually capable of suppressing or — at least — allaying
secondary infections afterwards [116, 293]. On an individual level, infection is triggered by the
actual condition of and interaction(s) with the social (No. 4 in Figure 1.3) and inanimate environ-
ments (No. 3 of Figure 1.3) of an individual. If no pathogen-shedding individual is around or if the
physical environment is not contaminated with pathogens, there is no risk of infection. Finally,
on a supra-individual level, the population-wide arrangements of contacts as well as the

biological, chemical and physical properties of different venues determine the actual patterns

A
OM

/

and dynamics of disease spread in a system.

Figure 1.3: Scheme of an infection transmission system. The system includes individual hosts
(1), specific pathogens (2), and the inanimate environment of hosts and pathogens (3). There
can be epidemiologically relevant interaction (contact) between two hosts (4). Another
relevant component of infection transmission systems is the internal dynamics in an infected
host ().

From a disciplinary perspective, Koopman sees transmission system analysis at the brink of
becoming a new “science”, i.e., a new discipline within the existing canon of scientific disci-
plines. For forming this new “transmission science” he calls for inter- and transdisciplinary
knowledge integration (e.g., on p. 57 of [191]). We see three clusters of classical disciplines that
the transmission system analysis concept makes use of: (1) natural science disciplines like

medicine, biology, physics, and (partly) chemistry provide the foundation for understanding
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intra-host dynamics, interference between different strains [189] and the environmental condi-
tions that modulate the risk of transmission given exposure [201]; (2) social science disciplines
provide insights into the contact patterns of humans and the determinants of risky behavior
[189-191]; and (3) overarching disciplines like mathematics, statistics, or computer science allow
the integration of processes and mechanisms uncovered by the previous two clusters [189-191]

(cf. Subsection 1.1.1).

It is explicitly not the aim of transmission system analysis to include every detail of a specific
transmission process in a model. Also this school of thought emphasizes the necessity and
advantages of simplification. However, Koopman claims that transmission system approaches
allow better identification which details have to be included and which details are omissible
than classical disciplinary approaches [191]. They allow determination of which role different
properties of a transmission system (e.g., heterogeneity in contact structure or different modes
of transmission) play for the spread of infectious disease and under which conditions they have
to be included in an appropriate analysis to understand transmission [190]. One way of doing so
is robustness analysis, i.e., testing whether (and if so, under which conditions) the conclusions of

a transmission system analysis changes if certain details are taken out of the analysis [189].

1.1.3  Synthesis and perspective taken in this thesis

All concepts and schools of thought presented in the previous subsection have in common that
they are problem-oriented instead of discipline-oriented. They all recognize that understanding
infectious disease in humans or animals can neither be understood by concentrating on the
single individual, nor by focusing on the pathogen, nor by solely observing populations. Instead,
all concepts take to varying extent a system theoretical stance. For a brief synoptic synthesis of

the four approaches, see Table 1.3.

Here, we also take a problem-oriented perspective. The aim of the research presented is to
contribute to the understanding of infectious disease spread and of the various consequences
of different human disease management options. Therefore, we utilize theories, methods and
concepts coming from various disciplines. Further, this thesis also stands in a system theoretical
tradition. Instead of defining the boundaries of the analyses along disciplines, we try to identify
the relevant elements and processes that drive the dynamics of the phenomena we are

interested in.
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Concept

One medicine

Conservation medicine

Human-environment systems

Transmission system analysis

Focus

The rationale behind the one medicine concept is to show the analogies of human
and veterinary medicine. Hence, one major focus is on the dysfunctionality of
their specific disciplinary boundaries. According to representatives of this concept,
both veterinary and human medicine could learn from each other as both have
peculiar strengths. Systemic thinking particularly occurs with respect to common
human and animal diseases: Both understanding zoonoses und using animals as
sentinels for human outbreaks are conceptualized as coupled human-animal
systems.

Conservation medicine can be understood as an enhancement of the one medi-
cine concept. While one medicine emphasizes the benefits from a merger of hu-
man and veterinary medicine, conservation medicine wants to integrate the me-
dicines and ecosystem research. Conservation medicine acknowledges that the
coupling between human hosts and animal hosts (as already mentioned in the
one medicine concept) is not static. Instead, one has to understand changes in an
ecosystem’s composition and dynamics as well as human-ecosystem interactions
to explain, e.g., emerging infectious diseases.

The human-environment systems framework is a general framework for organi-
zing research at the interface of human and environment systems. It is not bound
to a specific domain like infectious disease spread, but can be applied to it. While
the one medicine and the conservation medicine concept rather elaborate on the
benefit of specific interdisciplinary cooperation (but stay within the idea of disci-
plines), the human-environment systems framework takes a rigid system theore-
tical perspective beyond the disciplinary view. It offers seven postulates to struc-
ture research on human-environment systems for a better understanding of their
dynamics. Amongst other things, it proposes structuring such systems along the
human system / environment system divide and along hierarchical levels.
Feedback loops play a central role, be it short-term reactions of the system or
long-term changes in the entire system’s composition. The system theoretic view
is complemented by decision theoretical parts, which reflect the role of human
decision making for the dynamics of human-environment systems.

The concepts of transmission system analysis and human-environment systems
have strong similarities. Transmission system analysis is also grounded in a strong
system theoretical tradition and it also has been emancipated from the tight
boundaries of the classical disciplines. However, while “human-environment
systems” is a broad framework applicable to all such systems, transmission
system analysis focuses purely on infectious diseases. Another difference
between the two concepts is that transmission system analysis does not explicitly
demand research on human decision making: Human behavior explicitly plays a
role (e.g. in form of the configuration of contacts), but questions like compliance
with intervention measures and what triggers certain behavior are not explicitly
addressed.

Table 1.3: Synoptic comparison of the foci of the four concepts presented in Subsection 1.1.2.

We want to understand how contact characteristics shape the spread of infectious disease. As

we concentrate on single epidemics, the research presented within this thesis has a short-term

perspective. Consequently, we do not explicitly model the co-evolution of pathogens and hosts

(however, this plays a role as a constraint in Chapter 5). We further analyze both human and ani-

mal systems (Chapters 5 and 4). However, for the spatial setting (Switzerland) and time scale

(one influenza season) of our analyses, the disease transmission between the human and the
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animal systems appears to be rather irrelevant. Therefore, we concentrate on one host species
per analysis. Existing and known links between the human subsystem and other host species
are not included in the various models presented in this thesis. Finally, also the concrete decision
making processes of human systems (cf. the decision and awareness postulates in Table 1.2) are
ignored in this thesis, although we acknowledge their relevance during actual epidemic out-

breaks of diseases.

We explicitly investigate processes on various hierarchical levels and discuss how these levels
are linked: Chapters 2, 4, and 5 focus mainly on population level dynamics driven by the behavior
of individuals (cf. Section 1.4); Chapter 3 presents an individual level model of disease trans-
mission (cf. Section 1.3), which reflects the processes that lead to transmission. This is done with
a higher resolution than is usually applied in population level models. To do so, we also utilize
knowledge coming from various disciplinary contexts: Measures of contact patterns are closest
to the realm of sociology (used in Chapters 2, 3, 4, and 5); models of individual infection risks
originate from microbiology (used in Chapter 3); population-wide patterns of immunity have
been researched in epidemiology (used in Chapter 5). Knowledge integration is done to a large

extent with modeling (cf. Subsection 1.1.1; used in Chapters 3 and 5).

1.2 The role of models in science

The terms model and modeling play a central role in all parts of this thesis. Therefore, it is utile
for the understanding of this thesis to clarify our stance towards three fundamental questions

in the philosophy of science regarding models:

1) What are models?
2) What can we learn from models?

3) What are good models?

The following subsections shall elucidate these questions in a pragmatic way. We do not claim
completeness regarding the portrayal of the past and ongoing discourses in philosophy. Rather,

the subsequent answers shall guide us in setting the presented research in context.

1.2.1  What are models?

Thinking in models is as old as humankind [241]. Defining what the term model means belongs
to the competence of semantics, i.e., the study of meaning; to the competence of ontology, i.e.,
the study of the nature of being; and to epistemology, i.e., the study of knowledge. A very broad
definition of the term model is given by Haag [144], who defines it as a



“material or ideal (re-) production of an object by means of analogies realized by

a cognitive subject” (p. 4).

This definition includes material representations like miniatures of buildings and constructions
in architecture [257] or hydrodynamically similar models in engineering [281], model organisms
in biological and medical research [114], or the calotte models of molecules in chemistry [73], as
well as abstract representations like the Lotka-Volterra model of a predator-prey system [209,
339], threshold models of riots [138], and Ising-like models of behavioral pattern formation [303]
in social sciences or the model of black-body radiation in physics [266]. When we use the term

model in this thesis, we always refer to abstract, not to material models.

Models can further be static or dynamic. Architectural models are typical examples of static mo-
dels, whereas abstract, mathematical models applied in biology, epidemiology, physics, or social
sciences are typically dynamical models. Some authors distinguish between the terms model
and simulation according to the dynamic aspect of the respective representation of reality: they
name a model simulation, if and only if the model is a dynamic model with a specific and
concrete purpose for application [128, 235]. Our understanding of a model of epidemics is always
a dynamic one. The dynamics of disease transmission systems are modeled (represented) by

equations or rules. We use the term simulation as concrete realizations of an abstract model.

Haag's definition of model requires a model to be an analogous reproduction of an object. More
or less strict requirements of similarity are the common ground of most model definitions [131,
329]. There is the restrictive claim that reality and model must be isomorphic [335] or — at least —
partly isomorphic [76] to each other. Ashby defines isomorphism as two systems’® (here model
and ‘reality’) differing just in the type of their elements, but not in their number or relations [14].
In its stricter sense, the concept of isomorphism would allow no simplification or idealization in
models: Neither Aristotelian (i.e., leaving out “irrelevant” properties of the system [119]) nor
Galilean (deliberate distortions that make a system more tractable [119]) idealizations would be

accepted as models of reality. In its less strict sense, Aristotelian idealizations would be

*Here, a system shall be defined by its elements (inclusive definition from a set theoretic
definition), the relations between these elements and its boundaries (exclusive definition; the

complement in set theory). See also Figure 1.1.
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accepted, but not Galilean®. Thus, many statistical and phenomenological models would not be

accepted as models under this concept.

Constructivism and (neo-)pragmatism stand in opposition to this restrictive claim [241, 319]. Al-
ready physicist Ernst Mach reasoned that models were not images of reality but constructs. He
called theories and models ‘auxiliary notions’ (“Hulfsvorstellungen”) for the representation of
matters of fact [241]. Constructing a model requires making decisions about how to represent
reality, what to include in the model, and how to parameterize it [351, 355]. It further implies that
models come into existence by the synthesis of formerly unconnected, observed elements and

that their relation to reality emerges by using them [235, 241].

With respect to the requirement of similarity or analogy, constructivism also implies that it
must be specified which aspects of model and ‘reality” must be similar and to what extent [131].
A radical constructivist would argue that trying to compare ‘reality’ with models, which are pro-
ducts of human thought, is absurd, as the idea of reality itself is a human construct. A moderate
constructivist would accept such an attempt, as human senses at least perceive signals of the
external world. From a moderate constructivist stance, such a decision has no underlying ob-
jective truth and cannot be made purely on the basis of philosophy of science [329] — it rather
“depends on the problem at hand and the larger scientific context”, as Frigg and Hartmann [119]

point out.

Pragmatic model definitions further take a functional perspective: Relevance and interest are
major drivers of model construction and, at the same time, are an explanation for the fact that
the same subject matter can be represented in diverse ways [119]. Taking the neo-pragmatic
stance, models are constructed by and for specific “cognitive subjects” in order to meet the
specific modeling goals of these subjects [319]. This focus on function also means — in contrast
to the claim for isomorphism — that both a priori models (i.e., mechanistic models aiming for a
reproduction of the ‘real’” processes behind a phenomenon) and a posteriori models (i.e., data-
driven, statistical models) are acceptable models as long as they fulfill the tasks for which they

were defined (cf. Subsection 1.2.2).

In this thesis, we take a moderate constructivist and pragmatic stance: We believe that reality
exists independently from the observer and that we can approach reality through scientific

inquiry. One way of integrating the various signals we receive from the world to achieve a

® This less strict definition of isomorphism (allowing for Aristotelian, but not Galilean

idealizations) equals Ashby’s definition of homomorphism [14].
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representation of reality is modeling (cf. the discussion on functional validity in Subsection 1.2.3).
Furthermore, we see modeling as a purposeful operation that aims to explain or predict future
states of specific phenomena of interest. We see modeling as a partly objective and partly
artistic task with a certain inherent arbitrariness: partly objective, because certain quality
criteria can be defined that measure how well a model fulfills its function — partly artistic (cf.
[230]) as both the exact definition of the model function as well as certain structural decisions

are acts of volition, which are not tractable in terms of right or wrong.

1.2.2 What can we learn from models?

The question of what we can learn from models belongs to the realm of epistemology, i.e., the
study of “the nature, sources and limits of knowledge” [213]. In the previous subsection we
introduced the distinction between a priori and a posteriori models. Here we describe how they
can be distinguished from an epistemological perspective. In philosophy, these two terms are

usually employed to disclose the origin of propositions. Baehr [17] distinguishes them as follows:

“A given proposition is knowable a priori if it can be known independent of any
experience other than the experience of learning the language in which the
proposition is expressed, whereas a proposition that is knowable a posteriori is

known on the basis of experience.”

The division between a priori and a posteriori knowledge goes back to the controversy between
rationalism (= Descartes, Spinoza, Leibniz, Wolff) and empiricism (= Bacon, Hume, Locke) in
epistemology. A radical rationalism postulates concepts and ideas to be eternal and existing
since the dawn of time (and new ideas only to come into existence by combining previous ideas
or deducing them from previous ideas, respectively [213]), while a strict empiricism solely
accepts experience as a source of insight and as the criterion for the verification or falsification

of ideas [156].

Immanuel Kant “reinvented” epistemology and, by cutting his own path, reconciled both bran-
ches, the rationalism and the empiricism: Kant “advocated a ‘transcendental’ form of justifi-
cation” [17], which believes in rational insight, but accepts that every concept is directly or indi-

rectly connected to empirical experience [17, 156, 171].

Without going deeply into the details of the philosophical discourse on the origins of know-
ledge, we take a position in this thesis that stands in a Kantian tradition. We accept that (i)
concepts and ideas are entities of their own and that (ii) new concepts can be derived from
existing concepts (for instance, but not solely following the system of rules of mathematics).

However, we also take up the positions that (i) all knowledge is related directly or indirectly to
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experience and that (ii) concepts that do not correlate with observations may exist, but are

dysfunctional.

In this thesis we use the term a priori model as a synonym for mechanistic model. An a priori
model is a model that starts from theory. A priori models use an (pre-existing) understanding of
the mechanisms driving the phenomena we want to investigate, describe, or predict. For
example, with the mathematical representation of the three laws forming classical mechanics,
all movements of the macroscopic world can be described based on this a priori knowledge. In
contrast to that, we use a posteriori models for data-driven models (typically statistical models).
Such models often have an explorative character or are grounded in rather general theories; i.e.,
theories that postulate an interrelation between two entities without describing the underlying

mechanisms exactly.

Both a priori and a posteriori models have a certain epistemological value. However, they differ
in what we can learn from them: Oftentimes, a posteriori models outdo a priori models with
respect to predictive power. However, they can become invalid when their underlying deter-
minants (“hidden variables”) change (see, e.g., Section 3.2 or [313]) or when they are used beyond
the interval for which they were calculated’. A priori or mechanistic models aim at incorporating
the mechanisms that drive a certain system’s dynamics. Therefore, their intended space of
application is larger; the number of case scenarios and the data interval for which they can be
used is larger. On the other side, such mechanistic models — particularly when social processes

are involved! — often show poor predictive power compared to well-fitted a posteriori models.

This epistemic distinction is closely tied to a functional classification of models: We distinguish
models for understanding and models for prediction. With the former, researchers attempt to
gain insight into a system’s dynamics. Non-linear phenomena (e.g., the occurrence of thres-
holds) of complex systems can be investigated by means of such models. They can be used for
theory building and falsification. In contrast, models for prediction can be completely wrong in
terms of isomorphism / homomorphism, but are still good models when they fulfill their

function by correctly predicting system states. Ideally, a model can fulfill both functions: helping

"There are several examples for phenomena that are non-linear, but can be approximated with
a linear model for certain intervals. In Subsection 3.3.1, for instance, we introduce a model to
describe the probability that contact between an infector and a susceptible host leads to
infection. The assumed interrelation between the duration of such contact and the probability
of infection is non-linear. For only slightly infectious diseases and/or low exposure, a linear

approximation results in similar predictions.
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to understand the dynamics of a system and providing good predictions. Nonetheless, very
often a trade-off between these two functions has to be made, which is then a pragmatic

decision of the researcher (cf. Subsection 1.2.1).

Modeling can be seen as a third approach of scientific inquiry apart from formal theory building
and empirical studies [302]. Modeling can have epistemological components of each of the
other approaches: As in theory building, the modeler has to translate observed or assumed
processes from the sphere of ‘reality’ into relations between abstract entities (here mostly
variables; cf. Figure 1.1). This can be understood as an encoding process [144]. On the other side,
deductions derived from the formal model system are decoded [144] to ‘reality’ again for gaining
understanding or for predicting its behavior. In that respect, model computations are like
(physical) experiments: given “appropriate numerical tools” or simulation capacities, “a

researcher can explore the behavior of physical [or other, TS] systems, as predicted by a set of

governing equations, and look for interesting new effects” [359] (cf. Chapter 2).

1.2.3 What are good models?

In scientific discussion the term validity (lat. validus = strong, robust, or powerful) and the
underlying concepts are frequently used for determining the quality of a model. In general,
validity stands for the argumentative power of a proposition, theory, or investigation. The
meaning of this word is closely related to the discussions about the nature and origins of

knowledge introduced above.

Validity is an ambiguous term that is used for different, but similar concepts by different disci-
plines and schools in science [e.g, 4, 62, 298, 320]. Even within subfields of disciplines and for
specific approaches, there is often no clear consensus on what validity means exactly or how it
can be measured. For the field of modeling and simulation Kleindorfer et al. [187] exemplify this

plurality as follows:

“If one culls out the sections on validation from any sample of simulation papers,
one is immediately struck by the wide variation to be found. There will be
descriptions about model behavior, success in application, reservations and
restrictions, personal experiences, descriptions of success in the field or lab—in
short anything that the experimenter deems relevant to the experience of
formulating and applying the model. This diversity, it seems to us, is an indication
that at a fundamental level there is still confusion about what “validation” involves

or in some cases if it is even feasible to talk about it.” (p. 1088)
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In agreement with our prior positioning, we query that it is possible to identify something like a
“satisfactory model” that is “absolutely true” by means of any validation procedure [187]. Instead
we agree with Oreskes et al. [255] that in “practice, few (if any) models are entirely confirmed by
observational data, and few are entirely refuted” (p. 643). Following Barlas and Carpenter [25],
validation “(confirmation) is inevitably relative. It is a matter of social conversation rather than
objective confrontation” (p. 163). However, we explicitly do not take a radical relativist position
that any model is as good as any other model and that there are no (partly) objective criteria
with which model quality could be assessed [108, 187]. There is an intended space of applications
for every model and a model has to perform relatively well with respect to the function it is

intended to fulfill in order to be a good model.

From a functionalist perspective, it first has to be defined what the exact purpose of a specific
model shall be. In the case of a model for prediction, for instance, it is important that the model
is able to predict (usually for a more or less clearly defined case and a clearly defined parameter
range) the outcome more or less correctly. Indicators have been defined in statistics to distin-
guish between good and bad models regarding prediction accuracy, e.g., by analyzing whether a
model up with significantly better results than random guesses or by calculating the relative
proportion of the variance explained by the model. In the case of a model for understanding, we
usually judge qualitatively whether the model can reproduce empirically observable behavior or
patterns. The actual purpose of a model has to be communicated by research and appropriate
criteria on how to evaluate the validity of the model with respect to the purpose have to be
discussed in the community. Thereby, such criteria can be algorithmic, but it will not always be

possible to entirely define algorithmic criteria.

We see an analogy between (i) functionalism in the perception of the environment by a single
human being and (ii) model / theory validation by a single researcher or within the scientific
community. Our understanding of validity comprises both the deliberate choice of the model’s
function and the accuracy with which the model fulfills this function. This kind of validity is
called “functional validity” (p. 346) by Scholz et al. [298] and is related to the understanding of
human perception in psychology. As in Brunswik’s lens model of perception [50], every complex
model is based upon and further receives empirical cues about the reality it tries to reflect. The
information upon which a complex model is based is often not consistent; it lacks “univocality”
(p- 37) [298]. In practice, nobody will reject a model when it has failed once, but at the same
time, nobody will trust a model that only delivers accurate outcomes from time to time. There-
fore, we believe validation to be an evolutionary, probabilistic approach (similar to the idea of

vicarious mediation by Brunswik [50, 51]) in which, in the long run, ongoing scientific dispute
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and new supporting as well as contradicting empirical information can be used to figure out

whether a model is “valid” or not (this idea is underlying the work presented in Chapter 5).

A further often-required quality criterion is simplicity or parsimony (often labeled as “Ockham’s
Razor”)’. In the subsequent paragraphs, we will develop a position towards parsimony. Where
not stated differently, we refer to Baker [18] throughout these paragraphs, as he provides a
comprehensive review on the definition(s), the history, the relevance and various justifications
of simplicity in science. Particularly for a deeper understanding of the justifications, we refer to

Baker’s work.

Although a vast majority of modelers and philosophers agree that models should be simple, the
actual meaning of simplicity is as vague as that of validity, and the term has been used in
various ways throughout the history of science. The most common formulation of Ockham’s

Razor is:
“Entities are not the be multiplied beyond necessity.” [18]
A common reinterpretation in contemporary philosophy of science is the following formulation:

“Other things being equal, if T1 is more [..] parsimonious than T2 then it is

rational to prefer T1to T2.” [18]

Parsimony can, thereby, be interpreted as an epistemic (the simpler the theory, the more likely it
is true) or as a methodological (it is pragmatic to choose the simpler or two successful theories)
principle. Neither formulation demands to always choose the simpler of two hypotheses,
models, or theories. Instead, they restrict the principle with the words “necessity” and “other
things being equal”. That means they ask implicitly for a trade-off between simplicity and
validity. Therefore, both formulations are of limited practical value, because “cases where

competing hypotheses explain a phenomenon equally well are comparatively rare” (p. 145) [166].

Under different research paradigms various ways have been defined to weigh simplicity against
validity: Baccini and Bader [16] suggested a quality measure for models, which is based on the
reciprocal value of the sum of the number of model parameters and the deviation between
model and measured data. For multiple regression analysis, several tests have been developed

to distinguish predictor variables with a significant contribution to the prediction from variables

® However, one should be aware that there is also a minority position within the philosophy of
science and various scientific communities, who actually take the opposite position and ask for

principles of plentitude!
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with an insignificant contribution (e.g., test for significance of beta-weights, cf. p. 436 in Bortz
[43]). For curve-fitting there is also a rich variety of approaches weighing parsimony (as a

measure against overfitting) against goodness-of-fit (seen as an indicator for validity) [126].

Kuhn [195] emphasized that the decision on the relative importance of particular scientific
virtues, like simplicity or validity, was only a matter of personal or community preference. As
with other decisions in modeling, there was no underlying objective truth with regard to the
relative weight of simplicity versus accuracy. In line with that, we take the position that -
analogous to the problem of validation — the question of parsimony has to be discussed and

agreed upon individually for each specific model.

1.3 Individual level models of disease transmission

As stated earlier, one must have a sufficient understanding of the interaction between
pathogen biology, host biology, environmental conditions, and the hosts’ behavior, to be able to
formulate adequate models of disease spread (cf. Subsection 1.1.3). In order to know, what kind
of host contacts have the potential to transmit disease, a sound analysis of the host and the
pathogen biology as well as the conditions of the physical environment have to come first (cf.

the environment first postulate 7in Table 1.2).

Host-pathogen interactions are multifaceted, reflecting the enormous variety of pathogens (for
details on pathogen classification and characterization see Haas et al. [146], pp. 19-29). Modeling
the risk of infection on an individual level therefore requires the integration of (i) a specific expo-
sure model, which describes the amount of pathogens the host is exposed to, and (ii) a specific
dose-response model, which describes the host’s reaction to a certain exposure [146]. For the
former, one has to consider the possible pathways of transmission, i.e., how the pathogen leaves
the infector, how it distributes in the environment and how it enters the host (see Table 1.4). For
the latter, an understanding of the host-pathogen interactions is needed. In the following, we
will introduce some basic considerations for exposure and dose-response modeling with the

help of the example of airborne diseases.

Exposure analysis always begins with the shedding of pathogens. In the case of airborne trans-
mission, an infector sheds infectious material by talking, sneezing, coughing, or even breathing
[261]. In an indoor setting, such an infector contaminates the indoor air and all susceptible
persons who are in the same room are exposed to pathogens. If we assume — what is usually
done [282, 287] — that one or more infectors generate aerosolized pathogens at a constant rate

q [5‘1] and if we know the supply of outdoor air O [m3 -s“], we can calculate the steady-state
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concentration of pathogens in the well-mixed indoor air as C =q/Q°. If the infection situation is

not overly complicated, non-steady-state concentrations can also be derived analytically®. As
soon as other — more complex — transmission pathways than the airborne route are involved,
exposure models can become arbitrarily complicated [cf, e.g., 245]. Heterogeneities in shedding
[64], environmental factors (mainly temperature or humidity) that inactivate pathogens [327], or

settling [89] can further complicate aerosol transmission.

The prevailing and most parsimonious (cf. Subsection 1.2.3) theory of infection is that pathogens
act independently (cf. Subsection 3.3.1). Thus, to become infected, a host must ingest at least one
pathogen. Then, such an ingested pathogen must remain infectious and may not be removed
before it reaches its target site in the host’s body [145]. Thereby, the expected ingested dose d is
a function of the exposure (in our example, the pathogen concentration in the indoor air C ) and
the consumption per exposure (in our example, the breathing rate p). If exposure and
consumption are independent, the expected ingested dose d can be computed as the product

of the means (cf. p. 162 of [146]):
d=Cp (1.1)

The actually ingested dose is usually assumed to follow a Poisson distribution with parameter

d [98]

Dose-response relations are usually modeled as stochastic processes (exemptions are determi-
nistic threshold models as, e.g., used by Eubank [102]). As mentioned, there is evidence that one
single pathogen is in principle sufficient to cause infection [220, 286, 354], but invading patho-
gens are continuously removed by the host’s immune system or inactivated by environmental
conditions. Riley et al. [282] were the first to formulate a probabilistic model of the airborne

transmission of measles based on earlier observations of Wells [354]. They found that the

’ VZ—i:q—Q-C; v [mg] is the volume of the room; the steady-state condition is Z—i:o.

" After the infector enters the room, the pathogen concentration is CT(t):%P_EXP(_%tH; t

[s] isthe time since the infector entered the room. When she/he leaves the room again, the

pathogen concentration follows Ci(t)z{%[1—exp(—%t*ﬂ}-exp{—%(t—f*)}; t" [s] is the

point in time when the infector left the room (relative to the time, when the infector entered

the room).
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exposure-time-dependent probability that a fully susceptible individual gets infected in a
steady-state indoor air setting can be described as

P:1—exp[—%j (12)

with | being the number of infectors in the indoor space; p being the volume inhaled per time
unit; g being the quantum” generation rate; t stands for the exposure time and Q is the

(already mentioned) fresh air supply.

Transmission pathway Description

Droplet In this thesis, droplet transmission means transmission only via large droplets. As such
droplets fall out quickly, transmission can only take place up to a distance of max. two
meters from the infector. Droplets are expelled by talking, sneezing, coughing, etc.
Uptake is usually via the respiratory path. Deposition and subsequent contact
transmission can play a role. [47, 89, 146, 330]

Airborne / aerosol Airborne or aerosol transmission differs from what we call droplet transmission by the
size of droplets and, thus, by the physical behavior of these droplets. Aerosol particles are
small enough to remain suspended in the air for a long time due to their low settling
velocities. Such small particles are known to be generated by the same mechanisms as
larger droplets. Furthermore, activities like breathing, but also vomiting or flushing the
toilet can lead to aerosolized pathogens. Uptake is via the respiratory path. [47, 89, 146,
261,330, 354]

Direct / indirect contact ~ Surfaces like hands, doorknobs or items of clothing can be contaminated with pathogen-
ic organisms (see also droplet transmission) or patients can have purulent lesions /
affected mucous membranes. Transmission takes place when contaminated surfaces
and afterwards locations of entry are touched. Depending on the pathogen, relevant
locations of entry can be specific mucous membranes or the skin. [146]

Sexual intercourse Transmission takes place via the surfaces in contact (typically bacteria) or from secre-
tions that carry infectious agents (typically viruses). Transmission can be penile-vaginal,
penile-oral, penile-anal or vaginal-oral.

Fecal-oral In the fecal-oral route, pathogen-laden feces contaminate drinking water or food that
will be ingested or surfaces that might be touched. Uptake is via the mouth. The airborne
route can also play a role in transmission of such pathogens (e.g., when flushing the
toilet). [146]

latrogenic latrogenic transmission includes all infections caused by medical treatment. Typically
pathogens enter the host during surgeries (hygiene) or with transplants or
contaminated infusions. [146]

Vector-borne Transmission via intermediate hosts of other species, often insects. The typical route of

entry is via bites or stings.

Table 1.4: Selected transmission pathways and their definitions.

" A quantum is a dummy measure that was introduced by Wells. It is defined as the amount of
infectious material “infecting 63.2 per cent of homogeneously exposed hosts” (p. 123) [354]. The

quantum generation rate is the amount of quanta generated per time unit.
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Of course, host responses are much more complex than represented in the described Wells-Riley
model of airborne transmission. Exposure can result in more different states than captured by
the binary distinction between the infected and non-infected. Epidemiologists often distinguish
between (i) exposure without colonization, (ii) infection without clinical symptoms, and (jii)
clinical cases. The last group is often differentiated into mild, moderate, severe and fatal cases
(cf. p. 32 of [146]; see also Chapter 5). The susceptibility of a host is affected by various factors
including age, alcoholism, chronic disease, double infection, pre-exposure serological status,
nutritional status [146]. Furthermore, it is a naive assumption that the risk of infection would
depend solely on the total dose ingested. In fact, the risk also depends on the temporal patterns

with which the pathogens are ingested (see Chapter 3).

Nonetheless, more or less complex models of transmission risk can complement population
level analysis of disease spread. The kind of analysis presented in this section can help to identify
relevant kinds of contact between hosts, which then can be incorporated in population level mo-
dels. Additionally, models of transmission probabilities allow weighing different kinds of poten-
tially contagious contacts, which otherwise are usually treated all the same in models of epide-
mics. In the following section, we will review population level models of disease spread and

indicate how the individual-based insights can be integrated on a population level.

1.4 Population level models of disease spread

Mathematical modeling of infectious disease spread is quite old and goes — at least — back to the
18" century. In the 1760’s Daniel Bernoulli, for instance, used an actuarial approach to investi-
gate the excess morbidity and mortality caused by smallpox. He further described the
emergence of (partial) immunity after infection and calculated the benefit, if people would be
variolated (i.e., purposefully infected with pox) as a means of immunization [30]. Since then,
manifold approaches to describe disease propagation on a population level have been
developed, be it simple mathematical descriptions as in Hamer [150], early compartmental
approaches like that of Kermack and McKendrick [180] or modern, sophisticated, individual-

based models [102].

In the following subsections we will introduce three commonly used model types used for
modeling disease spread and describe their advantages and shortcomings from a transmission
system perspective: deterministic compartmental models, network models and individual-based

models.
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1.4.1 Deterministic compartmental models

Compartmental models are composed of a number of variables (€ R) that represent compart-
ments or partitions of a system (cf. Figure 1.1). Dynamics are governed by flows between the
compartments and flows from or to the environment, which are described by means of
differential equations [134]. In general, compartmental models with n compartments are

mathematically expressed as follows [cf. 291]:

dxi n n
W:ffo +szj _ijf —Joi
j=1 Jj=1
t>o (13)
X;(0)= X,
i=12,..,n

Thereby x; is the value (e.g, number of individuals, concentration of a substance, amount of

material, money in an account, etc.) attributed to compartment i; x_; is the initial value of

compartment i; f, denotes the flow from the environment o to compartment 7; f; stands

I

for the flow from compartment j to compartment 7; f, gives the flow from compartment i

to compartment j; finally, f_ is the flow from compartment i to the environment.

As Godfrey [134] points out, the “fact that many [...] differential equations are compartmental
without necessarily being described as such makes tracing the exact origins of compartmental
models rather difficult” (p. 6). Compartmental models are widely used in various thematic fields
such as the global carbon cycle or phosphorus concentrations in lakes [168], the flow of
radioactive tracers in the environment [376], the distribution of xenobiotic chemicals [240] and
nanomaterials [135] in the environment, material flows in the anthroposphere [16], species
relations in ecology [253], or in pharmacokinetics [331]. In the context of epidemiological
questions, the use of compartmental models can be traced back approximately one century. The
history of compartmental models for describing disease spread is closely linked to the idea of
mass action coming from chemical kinetics. Therefore, we will subsequently discuss the mass
action principle and its implications for modeling disease spread, before going back to the
advantages and shortcomings of deterministic compartmental models for disease spread in

general.
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The mass action principle and compartmental models

The mass action principle applied in chemistry describes the reaction rate v of a chemical
reaction. If two kinds of reactants are involved in the reaction, the corresponding mathematical

equation reads

v=k-[A][B] (1.4)

under the condition that the reactants A and B are well-stirred. Then k is the rate constant

and [A] and [B] are the concentrations of the respective reactants.

According to Heesterbeek [155] the analogy between collisions of chemical substances (leading
to a chemical reaction) and the meeting of individuals (leading to infection) was first formu-
lated simultaneously by Ross and McKendrick. The mass action metaphor underlying most
compartmental models assumes that (i) individuals mix homogeneously (“well-stirred”), (ii) that
there are only two kinds of individuals which drive the dynamics of on outbreak — susceptible
ones and infectors — which don’t differ in their other characteristics, and (iii) that contacts are
transient and that there is no path dependence or memory (i.e., there are no stable relations
between individuals). Of McKendrick it is known that he looked intensively into chemical kine-
tics (cf. p. 93 of [155]) and that he explicitly made metaphorical reference to the idea of two gas

molecules colliding when he introduced his formalism to describe infectious disease:

“The rate at which this epidemic will spread depends obviously in the number of
infected animals, and also on the number of animals which remain to be infec-
ted—in other words the occurrence of a new infection depends on a collision

[italicized by TS] between an infected and an uninfected animal.” (p. 54) [217]

Analogue to reaction kinetics, the rate of new infections is proportional either to the number,
the density, or the proportion (this depends on the definition of mass action, cf. [175]) of infec-

tious and susceptible individuals.
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Most deterministic compartmental models of disease spread rely on the mass action assump-

tion to describe the mixing between the various groups of individuals. Applied to the common

SIR"-model of disease spread (with demography) the resulting system of equations reads [8, 178]
das
dt
pral (.5)
ﬁ_ﬂ—ﬂ’?

dt
S+/+R=1

= pu= Sl =5

with S, I, R beingthe proportions of susceptible, infectious, and recovered individuals. g is the
product of contact rate and per-contact transmission probability. ux is the natural mortality
(note that the total population in Equations 1.5 is constant as g — uS— gl — uR=0). y stands for
the recovery rate. As can be seen, the SIR-model assumes lifelong immunity after recovery,
because there is no flow from the recovered compartment back to the susceptible compartment
nor to the infectious compartment. Analogous definitions exist for host-pathogen con-
stellations in which infection confers no immunity (SIS-models) or in which an intermediate
“exposed” or “latency” state is assumed between the susceptible and infectious compartments

(SEIR-models).

Advantages and disadvantages of compartmental models

The advantages of these classical compartmental models are manifold: (i) The analogy between
molecules colliding in a gas and reacting to build another molecule and individuals meeting in
space and infecting each other makes intuitively sense as a very rough approximation to reality.
At least we have with the mass action principle a more or less plausible, mechanistic model of
infection that can be captured with simple mathematical expressions. (ii) Due to their mathe-
matical simplicity, these compartmental models can be studied analytically, whicht makes
them, on the one hand, easily manageable and, on the other hand, interesting for scientific
theorizing. Some of the most important indices in epidemiology (e.g. the basic reproduction
number, for Equations 1.5 R, = B/(y + 1), which is the number of secondary cases induced by
one infector introduced in a fully susceptible population) were defined and derived on the basis
of these simple models (for further examples refer to [178]). (iii) From a parsimony perspective
(cf. Subsection 1.2.3), these classical, simple compartmental models are also “good” models,
because they incorporate no more details than needed to reproduce and explain observed

behavior (in fact, they reflect too few mechanisms —we will discuss this subsequently).

" S=susceptible, I=infectious, R=recovered
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However, from a transmission system perspective (cf. Subsection 1.1.3), compartmental models
of disease spread also show vast disadvantages. As early as 1929 it was Soper [316], who stated
that it is, “perhaps, a false analogy between infection in disease and the mechanism understood
under the name of chemical mass action” (p. 54). He points to the fact that — in contrast to the
optimal and controlled conditions in a chemical reactor — societies exhibit “imperfect mixture”.
In fact, all mixing assumptions underlying mass action do not hold in societal reality: Everyday
experience and a plentitude of scientific studies [94, 95, 203, 204, 221, 237, 278, 313] show us (i)
that contacts between humans are not made randomly; (ii) that there are transient contacts,
but also very stable long-term relations (such as stable sexual partnerships or family relations);
and (iii) that there is intra- and inter-individual variability in the number of contact partners

people have.

Furthermore, not only is the social component of mixing represented with questionable
assumptions in classical compartmental models —biological qualities are also represented in a
simplified manner. One of the implicit assumptions of the classical SIR-, SIS-, or SEIR-models is
that there are only two kinds of compartments essentially driving disease spread dynamics: the
compartment representing the group of infectors and the compartment representing the
susceptible group. In contrast to that, reality is often far more complex: For instance, in the case
of influenza we observe complex patterns of pre-existing immunity (making the “group” of
susceptible individuals heterogeneous) and different levels of viral shedding (consequently,
infectors differ in their infectiousness) — for details see Subsections 5.3.5-5.3.7. £, the product of
contact rate and per-contact transmission probability, is the parameter in Equations 1.5 deter-
mining how severe an outbreak will be. In Chapter 3 we will see that not only contact patterns
differ inter-individually — also the per-contact transmission probability is highly variable.
Another unrealistic biological feature of the classical compartmental models is the
exponentially distributed infectious period (1/y ), which conflicts with the knowledge that the
infectious period has a strong central tendency for most diseases and gamma distributed

infectious periods would be much more appropriate (cf. Subsection 2.4.4 and [349]).

Two further shortcomings of deterministic compartmental models lie in their mathematical
structure: As they are mathematically nothing else than a set of ordinary differential equations,
such models are inherently continuous and non-stochastic. The non-discrete nature of compart-
mental models leads to some peculiarities, which are hard to interpret (e.g.,, non-integer values
for the number of infectors). Along with this is the fact that a disease never dies out completely
in a model as described with Equations 1.5. The compartment / can become arbitrarily small, but
never approaches zero. The fact that classical compartmental models are deterministic does not

play a negative role when the proportion of infectors | is not close to zero and the
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infectiousness and the contact rate are sufficiently high (i.e., 8>>y+ u). If, however, a disease
is only slightly contagious or if an epidemic is still in its very beginning, stochastic effects

dominate the further fate of the outbreak (cf. to Chapters 2 and 5).

Most of the disadvantages described above can be addressed to a certain degree within the
framework of deterministic compartmental models — however, not without cost and not per-
fectly. Two shortcomings, the lacking heterogeneity in social contact patterns as well as the

unrealistic infectious period, can be tackled with more fine-grained compartmentalization:

1) Contact heterogeneity can be introduced into compartmental models by dividing all existing
compartments (i.e,, the susceptible, the infectious and the recovered compartment in the case
of an SIR-model) into sub-compartments. Typical sub-divisions are according to age, risk
behavior, or spatial entities. Age-dependent differences regarding contact rate and transmission
probability can be treated by dividing the population into n age classes. The model then can be
parameterized by means of an nxn transmission rate matrix replacing g, which is usually
called the WAIFW® matrix (cf. pp. 175 & 675 of [8]). A typical example for a sub-compart-
mentalization along risk groups is the model of gonorrhea transmission by Hethcote and Yorke
[160]. They differentiate in their model two groups of individuals of which the “core group” is
ten times as sexually active as the other group. Spatial heterogeneity is typically implemented
by so-called metapopulation models [e.g., 141, 142, 206]. Metapopulation models make sense
whenever mixing is sufficiently patchy for sub-compartmentalizing the population in a

reasonable manner [175, 178]. Usually,

human populations are divided along

municipal, state, or national borders.

2) The assumption of exponentially dis-
tributed infectious periods can be easily
relaxed by dividing the infectious class
into n subclasses, which are passed in

sequential order [349]. For n=1 we have

the classical SIR model with expo-

Time (weeks)

nentially distributed infectious periods
as given in Equations 1.5. For n—>o we  Figure 1.4: Distribution of the infectious period

approach a fixed infectious period. All n versus the number of subcompartments n. Figure

has been taken from [349] under the CCAL license.
in between those two extremes lead to

" WAIFW=Who Acquires Infection From Whom
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gamma-distributed infectious periods of various shapes (as can be seen in Figure 1.4), which are

deemed to be more realistic than the two extremes (cf. Subsection 2.4.4, as well as [205, 349]).

Although sub-compartmentalization offers the possibility to relax some of the most unrealistic
assumptions of deterministic compartmental models, several drawbacks persist and new ones
emerge in further compartmentalization. As Koopman points out, even highly partitioned com-
partmental models “retain an essential core of mass-action” (p. 147) [192], as at the most granu-
lar level, mixing still follows the mathematics of mass action. That means, contacts are still
random and transient and subpopulations still behave homogeneously. Furthermore, metapo-
pulation models partitioning populations into various spatial patches may lead to asynchrony
between the patches, but for t > they are homogeneous [175]. That means spatial steady-
state heterogeneity (which can be observed in other model classes) still does not occur. Finally,
the most important drawback of highly partitioned compartmental models is that their major
advantage of simplicity vanishes (cf. Subsection 1.2.3): Every additional property, along which the
population is further partitioned, vastly increases the total number of compartments and flows
to describe. The InfluSim pandemic influenza model developed by Eichner et al. [96], which is
based on far more than 1000 differential equations without being spatially explicit, might serve

as an example.

1.4.2 Network models

As pointed out in the previous section, compartmental models fail to adequately represent
certain properties of social structure relevant for disease spread. However granular the
compartmentalization might be — on the most detailed level, random mixing persists. Network
models offer a way to elegantly include many kinds of contact heterogeneity in models of
disease spread, which cannot be represented in compartmental models. Network represen-
tations proved to be helpful for describing and understanding particular properties of the world
wide web, the Internet (hardware), collaborations of scientists and movie actors, human sexual
contacts, interactions between cells in organisms, predator-prey relations, language, power
grids, the brain of nematodes, and protein folding [5]. As with other exchangeable entities (pro-
ducts, ideas, norms, information, money, etc.), social relations serve as “channels” for infectious

diseases by which pathogens “move” through society [231].

Network models go back to graph theory [38]. In their simplest form, they consist of nodes and
links, which connect nodes. Attributes of the nodes are called composition variables, whereas
attributes of the links are structural variables. Depending on the scientific community in which
network models are applied, the terminology can differ. In the field of infectious disease spread,

nodes usually stand for hosts and links are contacts between hosts, which are, in principle,
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sufficient to transmit a certain infectious disease. In the case of droplet-transmitted diseases,
there is usually only one host type included in the model. The corresponding network represen-
tation is called a one-mode network (cf. p. 29 [347]). There are also examples with a bipartite
population: In a heterosexual population, for instance, nodes can only be linked to nodes of the
other sex [244]. As we have two types of nodes, we call such a network representation a two-
mode network (also p. 29 [347]). Finally, there is the case in which infectors do not transmit
infection directly to susceptible hosts, but contaminate parts of the inanimate environment.
Such indirect transmission is best represented in dffiliation networks (p. 30 [347]) that relate

individuals to places. Networks are often represented in the form of adjacency matrices X, in

which the (usually binary) value of the matrix element X;; signals whether node 7 is linked to

node ;.
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Figure 1.5: Number of infectors versus time for four different network archetypes. Besides the
contact structure, all simulation parameters were equal. In each subfigure, every grey line
shows one out of 5o simulation runs. The black line gives the arithmetic mean of all 5o runs.
The figure has been taken from [113]; the copyright holder is the author of this thesis.

The difference contact heterogeneity makes can be seen in Figure 1.5. This figure shows the
results of SIR-type simulations that were computed for four different archetypical network
structures. All four examples were parameterized identically: the population size was set to 500;
every node had in average six contact partners (i.e., 1500 links were distributed over the entire
network); the infectious period was fixed to three days; the probability that a contact between

an infector and a susceptible host leads to transmission during one day was set to 0.11. The only
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difference between all four examples was the actual configuration of the contacts. In Figure 1.5
it is evident that the infection dynamics differ greatly depending on the social structure.
Subsequently, we will introduce all four network archetypes and discuss the differences and

peculiarities observed in Figure 1.5.

Infectious disease spread in four network archetypes

Regular lattices and random networks (see below) are the simplest network structures. The basic
characteristic of regular lattices is that the nodes are connected only to their nearest neighbor-
hood in a regular manner. Often-used schemes to connect nodes for generating regular lattices
are the von Neumann neighborhood, the Moore neighborhood, and hexagonal neighborhoods
(for details refer to [3]). Hence, the structure underlying cellular automata is nothing more than

a regular lattice network representations [175, 231].

In Figure 1.5, we observe for the regular ring lattice (for details see the paragraphs about small-
world networks and [348]) under the given parameterization that the epidemic is rather mild
compared to those of the other network structures. This can be explained with the locality and
the one-dimensional character of this archetypical contact structure: In a regular lattice, disease
spreads in wave-like patterns with a clear front line. In contrast to a two-dimensional lattice, in a

one-dimensional lattice the outbreak can only move along the line of nodes in two directions.

A two-dimensional regular lattice can be seen as an exceedingly idealized representation of the
contact structure of pre-industrialized human populations, because these populations only had
very slow means of transportation and, consequently, very small daily cruising radii. The spread
patterns generated with two-dimensional regular lattice models resemble those described for
the bubonic plague in medieval Europe [69, 154, 375]. Disease spread in wild animals has some
similarities with simulated spread in regular lattices, too: In the mid-twentieth century, rabies
spread in wave-like patterns through Europe [258], a phenomenon that was also captured with

two-dimensional cellular automatons [307].

In random networks, nodes are linked in a random manner: Each pair of nodes has an equal
chance to be connected. Although contacts are not transient as under the mass-action
assumption, random networks are the network representation conceptually closest to compart-
mental models and they also behave similarly [24]. Random networks show interesting
properties such as a phase transition when the average number of contacts per nodes is

increased™ [100] and are — like mass action models — accessible to analytical treatment. The

" A giant component of interconnected nodes emerges at an average of one contact per node.
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shape of the curve shown in Figure 1.5 resembles that of a compartmental SIR-model with a

fixed infectious period.

Within the model class of small-world networks, the Watts-Strogatz model [348] is the particular
type most often referred to. The Watts-Strogatz model can be defined as a blend of a regular
ring lattice model and a random network. To generate such models, one starts with a regular (in
this case ring) lattice and re-wires the existing links with a defined probability P,, . The two
extremes of the Watts-Strogatz model are a pure regular ring lattice (P, =0) and a pure
random network (P, =1). Consequently, if small-world networks are used in simulations of
disease spread, they also show a mixture of the characteristics of both underlying network
extremes. In two-dimensional space, we observe diffusive spread with clear front lines (coming
from the lattice component), which are ruptured by new sources of infection popping up at
remote places of the social space. In time, we observe small-world models to be retarded
compared to random mixing models and to be accelerated compared to cellular automata. With
an increasing number of remote contacts, there is a transition from independent outbreaks in

different parts of the network to one synchronized outbreak [197].

Similarities between observed patterns of disease spread and characteristics of a two-dimensio-
nal small-world epidemic model are, for example, given in the case of the 1918/19 influenza pan-
demic in the USA. The pandemic seems to have started at the two coasts of the USA and moved
towards the interior in a wave-like manner. However, before the front line reached the central
parts of the country, several local epidemics broke out and established new centers of a regional
wave-like spread of the disease (cf. spread map on p. 65 in [75]). Also, in some animal societies
like whales, small-world-like contact patterns have been described that caused concern over

how vulnerable such societies might be against severe infectious disease epidemics [143].

Finally, scale-free networks, here represented by the Barabasi-Albert model [5], exhibit epide-
miological dynamics that are mainly driven by the dispersion of the links per node. Scale-free
networks assume a power-law distribution of the nodal degree (= number of links), which
results in many nodes having only a few contacts and few nodes having many contacts. Those

highly connected individuals are often referred to as “hubs”.

In our concrete simulation runs, the epidemic either did not take off at all or accelerated greatly.
This can be explained by the interplay of initial conditions and the structural properties of the
Barabasi-Albert model: If the initially infected cases are rather isolated individuals, there is a
considerable chance that the disease will die out before a substantial outbreak occurs; if the
chain of infections, however, reaches such a hub, this hub then acts as a super-spreader and has

the chance to generate plenty of secondary cases.
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In a network structure, hubs play a central role in accelerating the velocity with which a disease
spreads and they stabilize outbreaks to that effects that it becomes less likely that a disease will
die out just by chance. In fact, Pastor-Satorras and Vespignani were able to prove
mathematically, that in the case of an infinite scale-free network, a disease can persist “at
whatever spreading rate the epidemic agents possess” (p. 3200) [263]. Liljeros et al. were able to
show for Sweden that the distribution of the number of sexual partners follows a power-law
[203]. In light of such findings, scale-free networks are mostly discussed in the context of

sexually-transmitted diseases.

The archetypical, idealized network models described above do not capture all the epidemiolo-
gically relevant properties of contact structure observed in the real world. If the factors that
classify an interaction between two hosts as potentially contagious contact are known, one can,
in principle, measure contact networks empirically. A book edited by Morris [232], for instance,
gives plenty of guidance for survey designs and data collection in the field of network epidemio-
logy. In various fields of network research, helpful indicators for characterizing such complex
networks have been developed. Several of these indicators can be re-interpreted in a meaningful
way for epidemiological applications. The following paragraphs will offer some insights as to
what kind of indices and measures network analysis can offer to better understand disease

transmission systems.

Epidemiologically relevant network indices

One important factor that affects the individual risk of becoming infected is the centrality of the
individual. Several centrality indices have been defined, all of which measure how central the
position of a node is in the entire network. Here, we discuss degree centrality, closeness centrality

and betweenness centrality.

The degree centrality is nothing more than the degree of a node®. In social network analysis the
term degree refers to the number of links a node has (i.e., for epidemiological applications, the
number of potentially infectious contacts a host has). It is obvious that a high degree centrality
corresponds to an increased risk of becoming infected (more contact partners, all of which are

potential infectors) as well as to more secondary cases on average. We know from several

N CD(n,.):d(n,):Zx,j with X being the matrix elements of the adjacency matrix X, n,
J

denoting a specific node i, and i and j being indices pointing at specific nodes. The degree

centrality can be standardized by dividing C,,(n, ) by the amount of other nodes in the network.

For details see pp. 178-179 in [347]
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studies that a high dispersion in degree centrality decreases the epidemic threshold on the
population level [22]. That means that only slightly infectious pathogens can be sustained in
such a host population and that such pathogens are even capable of causing major outbreaks

(see the paragraphs on scale-free networks).

The rationale underlying closeness centrality is similar to that of degree centrality: Both measure
how well a node can be reached by other nodes. The difference lies in the shift from the indivi-
dual (egocentric) to the network perspective. While degree centrality focuses on the individual
and its direct alters, closeness centrality measures how close a node is to all other nodes in the
network. The most common version of closeness centrality has been provided by Sabidussi
[290], who defined it as the inverse of the sum of the lengths of all shortest distances between a
certain node and all other nodes”. If a node is rather distant to all other nodes, the value of the
closeness centrality will be small. If all other parts can be reached with only few intermediate
nodes, the closeness centrality index will have a high value. In disease spread network models,
individuals with a high closeness centrality are likely to be infected early, as they can be reached
from all parts of the network within a short time. Further, it will be difficult to encapsulate an

outbreak locally if central individuals are involved.

Betweenness centrality measures a completely different aspect of centrality than degree and
closeness centrality. To our knowledge, Bavelas [27] and Shimbel [311] were the first to express

what is meant by betweenness centrality. Shimbel wrote:

“Suppose that in order for site i [i.e., node, TS] to contact site j, site k must be used
as an intermediate station. Site k in such a network has a certain “responsibility” to

sitesiandj.

If we count all of the minimum paths which pass through site k, then we have a

measure of the “stress” which site k must undergo during the activity of the net-

work.” (p. 507) [311]

-1
N CC(ni):[zd(”i'”j)] with d(n,.,nj) being the shortest distance between node i and node j
J

(p.184-186 in [347] and [290]). The shortest distance between two nodes is defined as the

minimal number of links that have to be passed to come from one node to another.
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Freeman [118] quantified betweenness centrality by defining it as the sum of the proportion of
all shortest paths between all pairs of nodes that go through the node of interest”. Conse-
quently, all nodes with a high betweenness centrality act as “bridges” between different “is-
lands” of the network. For epidemiological applications, betweenness centrality can help to
identify individuals, which are effective targets for interventions: When, for example, an
individual with a high betweenness centrality gets vaccinated, the distances between many

other individuals will increase greatly.

All different indices of centrality have been proven to be strong predictors for the risk of acqui-

ring infectious diseases, particularly in studies of sexually transmitted infections [70, 129].

Another index relevant for the dynamics of infectious disease spread is clustering. Clustering
basically describes the degree to which “friends of my friends are also my friends”. One common
mathematical definition of the clustering coefficient CC is the ratio between the number of
triangular loops and the total number of possible triplets [175, 348]. In disease transmission

systems, clusters fulfill two functions:

1) If one or a few individuals belonging to a certain cluster are infectors, it is rather likely that all
or —at least —a major part of the other individuals belonging to this cluster will also be infected.
Clustering generates redundancy: In a dense cluster of mutually interconnected people, there
will be many short paths between any given pair of individuals belonging to this cluster. Conse-
quently, it makes sense, e.g., in case of sexually transmitted diseases, to identify and target en-

tire clusters instead of single individuals and their alters.

2) On a population level, clustering acts as a “break” [314]. As mentioned, clustering increases the
probability that individuals within a highly clustered environment become infected if one
individual within the cluster in infected. The same mechanism, however, leads to an increase in
locality of resources, i.e, susceptible individuals available for infection. Under the random
mixing assumption, the probability that an infector “collides” with a susceptible individual is
proportional to the density of susceptible individuals in the whole population. In a network
model, clustering can lead to a situation where in the local neighborhood of an infector almost
no susceptible individual is left although, on a population level, this group still constitutes a

large proportion of the entire population.

2 \N.

K CB(n,):Zgjk—(/) with 9 being the number of all shortest paths between nodes j and k
Tk Yk

and gjk(n,.) being all shortest paths between nodes j and k going through node i (p.190-191

in [347] and [118]).
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Advantages and disadvantages of network models

Despite all the advantages of network models compared to compartmental models, there are
several properties of network models that can turn out to be problematic for models of disease
spread. Two of them will be discussed here: 1) the neglected quality of contacts and 2) the lack of

manageable dynamic network approaches.

1) Quality of contacts: Usually, adjacency matrices representing (epidemic) contact networks are
binary. Thus, such network models ignore — like most compartmental models — that contacts
between hosts can differ in type (e.g., direct vs. indirect), duration, intensity, and other relevant
manners. However, transmission probabilities and, thus, the epidemiological relevance of
certain contacts can depend on such characteristics. The dependency between duration,
intensity, and transmission probability in the case of droplet transmitted diseases will be shown
in depth in Chapter 3. In principle, this drawback could be overcome by weighing the links
connecting the nodes directly by their individual transmission probabilities. Nonetheless,
contacts are not equally intensive and of the same duration every day, so a dynamic
representation of contact quality allowing for varying daily transmission probabilities would be
needed (see below). Furthermore, Pujol et al. [268] showed that even the transmission
probabilities within one day are inherently governed by the concrete dynamics of the infection
situation. A prolonged but non-intensive contact is not the same as a short, but very intensive
contact — even if the same amount of infectious material is exchanged in both situations.
Dealing with these time-dependent properties of contacts adequately within the network

paradigm appears to be impossible.

2) Dynamic networks: The second disadvantage of the network paradigm with respect to models
of epidemics is the static character of the common network models. In that sense, network
models are the complementary extreme to mass action models, as the latter assume constantly
changing contacts while the former assume an entirely stable structure. Both extremes are
unrealistic representations of reality as humans have both stable relations which result in high
frequencies of potentially contagious events as well as transient encounters, which never will
never be repeated. In Chapter 2 we will see that both extremes can be dysfunctional for

adequately understanding or predicting the spread of infectious diseases.

There are several approaches — within the field of disease spread and in general — to make the
network paradigm dynamic [278, 315, 358]. Nonetheless, most of the indicators described for
network analysis are only defined for static networks. For instance, the concept of clustering (p.
42) needs a static structure to be calculated (cf. to Chapter 2). Also the centrality measures
described above and other valuable concepts like reachability matrices [347] are not defined for

constantly changing contact configurations.
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1.4.3 Individual-based models

The last category of models applicable in the field of infectious disease spread that we want to
discuss here are individual-based models — nowadays widely used to simulate the spread of
infectious diseases [e.g., 22, 41, 63, 65, 72, 77, 102, 110, 111]. Individual-based models are the most

flexible type of models, overcoming all the disadvantages mentioned for the other two model

types.

As indicated by their name, the unit of operation in an individual-based model is the individual.
All individual-based models are built upon a community of simulated individuals that are
situated in an environment. Thereby, every individual has its role and interacts with its environ-
ment [132, 353]. This focus on the individual makes them predestined for epidemic models: As in
models of evolution, where “individuals are the unit of selection” (p. 11) [170] individuals are the
entities, that take up pathogens with their behavior and are the carriers of pathogens and
transmit disease by setting pathogens free. For this reason, individual-based models are also
said to be better and more intuitively understandable for empiricists than matrix algebra (for
social network analysis) or differential equations (in compartmental models) [170]. Also, for the
communication with decision-makers, stakeholders in general or the public, this intuitive

comprehensibility of individual-based models is advantageous.

Compared to compartmental models or network models, it is not so easy to define the bounda-
ries of the model class of individual-based models. There is also a fuzziness in terminology. In
principle, network models can be seen as a special case of individual-based models. This
becomes clear when looking at the regular lattice model / cellular automaton relation: Cellular
automata belong — without any doubt — to the class of individual-based models as their unit of
operation are the cells of the lattice representing individual entities. At the same time “cellular
automata models are a narrow class of networks in which only nearest-neighbour individuals

are connected” (p.120) [175].

There are several terms often used for similar kinds of modeling approaches that have indivi-
duals as units of operation, e.g.,, individual-based model, individual-based simulation, micro-
simulation, multi-agent model, multi-agent system, etc. Differences between the various con-
cepts can be found in the literature, but mutual discriminations remain fuzzy as there are no
universally accepted definitions of the various terms (cf, e.g.,, to Wooldridge [362]). Besides the
focus on individuals as units of operation, we see two further characteristics that are distinctive

for individual-based models (cf. Holland [164]):
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1) Parallelism: All dynamics of individual-based models are generated by the interaction of their
individuals acting in parallel. All individuals act on their respective simulated environment
(which usually includes parts or sometimes all of the other individuals) simultaneously, and all
individuals are affected by the state of their simulated environment (i.e., the actions of the other

individuals) at the same time.

2) Conditional action: Changes in the model behavior of an individual in an individual-based
model usually depends on the signals it receives from its environment. The reaction to the speci-
fic environment of an individual can be entirely deterministic or can include stochastic ele-
ments. Typically, such reactions are implemented in a rule-based manner (IF-THEN operations).
For models of disease spread, such a rule can be IF the individual is susceptible and if there was
a contact with an infector, THEN switch the own status from susceptible to infectious with a

certain probability p (cf. Figure 2.1 and Section 5.3).

Another characteristic often mentioned in this context (e.g., by Holland [164] as a characteriza-
tion of complex adaptive systems) is adaptation, learning or evolution. We use this model fea-
ture to distinguish individual-based models in general from agent-based models, which we see
as a subset of individual-based models. Agent-based models in our understanding are tightly
bound to the concept and meaning of agency (Merriam-Webster defines agency as “the
capacity, condition, or state of acting or of exerting power” [2]), which is often associated with

intelligence, learning [169], or flexibility [362].

In most cases, individual-based models of epidemics are not agent-based according to this
distinction, as they involve no learning processes. Usually, individual-based models of epidemics
incorporate rules, how individuals make contact or react to illness (e.g., by home confinement),
but do not allow for adaptive changes of these rules. However, in a broader transmission system
context (cf. Section 1.1.2), including evolutionary or learning process can be insightful. Boots and
Sasaki were, for instance, able to simulate the interdependence of host contact patterns and
pathogen evolution by including evolutionary processes in their individual-bases model [41].
Furthermore, optimal rules regarding quarantine can be identified by building adaptive

transmission models applying genetic algorithms [370].

Advantages and disadvantages of individual-based models

The advantages of individual-based models are obvious: They are an intuitively comprehensible
and flexible tool that fits — due to its flexibility — almost any modeling problem in the broader
field of infection transmission systems. They offer a distinct explanatory power over previous
approaches, “in that observed phenomena emerge from interactions, rather than being im-

posed by the modeling framework” [343]. Thereby, they also avoid the fallacy of aggregation, i.e.,
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the erroneous belief that occurs “when we aggregate purely individual relationships and
assume that collectives will behave accordingly” (p. 8) [26]. Another advantage of individual-
based models is that they allow for including naturalistic mechanisms for every desired aspect
of the model reality (cf. the discussion on a priori and a posteriori model on p. 23). They can
mirror individual considerations of activity and location choice (see Chapter 5), model explicitly
the mechanisms that lead to potentially contagious contacts between individuals [192], or

include complex biological mechanisms (cf. p. 269 [178], see also Chapter 3).

However, all these advantages of individual-based models come at the cost of a reduced mana-
geability exhibited by many individual-based models. Rather often researchers face the situa-
tion where they feel confident about the relevant mechanisms to be included in an epidemic
model, but the empirical data to parameterize the model are lacking (cf. [178], see also Chapter
5). Furthermore, complicated and detailed models are always difficult to test [170]. As individual-
based models of epidemics often include more mechanisms and more detailed information
than the other two types of models presented before, sensitivity analyses are more laborious
than, e.g,, in case of a compartmental model. But it is not only the level of details, which makes
individual-based models often hard to test. Due to their often stochastic nature and the fact
that they cannot be treated analytically, sensitivity analysis builds upon a multitude of simu-
lation runs for which high numbers of parameter combinations have to be simulated repeatedly
to achieve stable insights into the model’s sensitivity. This is costly in terms of computing time

and storage space — compared to the easily done sensitivity analyses for compartmental models.

Finally, there is the problem of adequate communication of the model structure and the under-
lying assumptions. Models have to be communicated to the scientific community to make them
available for criticism. Usually this is done by means of papers in scientific journals. Compart-
mental models are usually easily presented by a figure and or a small set of differential
equations (however, with some detailed compartmental models, one also reaches the limits to
do so; cf,, e.g., to [96]). For individual-based models, the computer code can be quite long [170].
This makes it difficult to effectively communicate the model even when a journal offers the

option of online supplementary material.
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1.5 Structure of the research and contributions to science

This doctoral thesis addresses the role of contact characteristics in shaping the spread of infec-
tious diseases. Particularly, we want to elaborate how the configuration of contacts, i.e., the
arrangement of links between individuals in the social and physical space, and the quality of
contacts, i.e., their duration, frequency, and intensity, affect the actual course of an epidemic and

corresponding mitigation options in the context of host and pathogen biology.

The main part of this thesis consists of three peer-reviewed papers and one manuscript to be

submitted to a peer-review journal.

The first two papers are contributions which aim at uncovering rather general mechanisms and
laws in the field of disease spread. They are neither pathogen nor case-specific. The aim of these
two papers is to elaborate (i) under what conditions the random mixing assumption in epide-
miological models might fail, and (ii) how the differing quality of contacts could be included in
such models and in what respect this differs from the common assumption of equally infectious

contacts.

The other two contributions focus, in contrast, on two different case examples and answer
specific questions. The third contribution investigates the contact structure of the poultry sector
in Switzerland, the fourth aims at reconstructing a seasonal influenza epidemic that occurred in

Switzerland.

Contribution 1:
Models of epidemics: When contact repetition and clustering should be
included

Focus and design of the study

The aim of the first paper is to better understand when (i) repeated contact with the same part-
ners and (ii) the clustering of contact partners (i.e,, a static, structured network, cf. Subsection
1.4.2) lead to significantly different model outcomes when compared to random mixing. We
tested the influence of these structural parameters under the condition of varying context
parameters, i.e., we systematically varied the levels of (i) the per-contact transmission proba-
bility, (ii) the infectious period, (iii) the number of different contact partners per day, (iv) contact
clustering, and (v) the ratio of repeating and transient contacts. The main outcome variable we
used for our comparisons is the total outbreak size (i.e., the sum of all new cases over the entire
simulation time); however, in the supplementary material, peak size and the time to peak are

also provided. The focus is on droplet and contact transmitted diseases of the SIR-type. Never-
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theless, some of the inferences made can also cautiously be generalized to SIS- and SEIR-

settings and to airborne diseases.
Contributions to the field

The effects of clustering, of contact repetition and of the number of contact partners on the
spread of infectious disease all have been investigated previously, but in isolation. The paper
offers a systematic view on the effect of one parameter on disease spread in the context of the
other parameters. This allows grasping not only the effects of the parameters in isolation, but
also of their interaction. In particular, we show that the relative importance of the social

parameters clustering and repetition depends on the specific pathogen biology (cf. Section 1.1).

Furthermore, for various concrete infectious diseases we identify corresponding parameter
combinations and make statements about whether the simplifying random mixing assumption
might be applicable for them. This allows field researchers to estimate to what extent the
contact structure has to be surveyed and included in modeling work in order to understand and

adequately reproduce specific disease spread patterns.

Contribution 2:
A mechanistic model of infection: Why duration and intensity of contacts

should be included in models of disease spread

Focus and design of the study

While the first paper focuses on the configuration of contacts, the second paper highlights how
the variability in the quality of contacts affects disease spread. To do so, we introduce a mecha-
nistic model of infection for diseases transmitted by droplets or close contact (cf. Section 1.3).
This model incorporates the duration and the intensity of contacts as model parameters. We
calculated individual-based transmission probabilities for an empirical data set of conversa-
tional and physical contacts. These results are compared with calculations under the common
assumption of constant per-contact transmission probabilities (cf. Subsections 1.4.1 and 1.4.2).
This allows us to estimate to what extent the simplifying assumption of equal transmission

probabilities biases model outcomes.
Contributions to the field

For the first time, we propose a mechanistic approach to quantify the transmission risks of
droplet and contact transmitted diseases. Furthermore, we are able to show with empirical data
that transmission risks of contacts are systematically linked with the number of contact
partners of an individual. Hence, concentrating on the configuration of contacts and ignoring

their quality might result in misleading inferences. Particularly, we find that super-nodes, i.e.,
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highly connected individuals, are not necessarily super-spreaders as suggested by previous

research (cf. Subsection 1.4.2 and [185, 263]).

Contribution 3:
Contacts between poultry farms, their spatial dimension and their relevance for

avian influenza preparedness

Focus and design of the study

For this paper, we measured contacts between poultry farms in Switzerland since contacts
between farms are deemed to be relevant for avian influenza spread in poultry (particularly in
light of Contribution 1). Accordingly, we shift the focus from contacts between individual crea-
tures to groups of creatures defined by the organizational structure of this sector. Furthermore,
we compare the difference between an individual-based and a farm-based perspective
regarding spatial density: We assume bird density to be an indicator for infection pressure in
case of an outbreak. Farm density, on the other side, gives an indication of how likely accidental,

contagious contacts within the immediate vicinity of a farm might be.

We particularly focus on the structural importance and interconnectedness of small, non-
commercial poultry farms, as their role in the poultry farm network was controversial in pre-
vious publications. We elaborate answers to the questions of whether non-commercial farms
truly act rather locally and whether they are really completely separated from the commercial

production, as suggested in other work.
Contributions to the field

First, we are able to show that there are areas with a low bird density, which nevertheless have a
high farm density. This has implications for disease surveillance and control as every single farm
has to be instructed and controlled. Further, we find that — against the prevailing assumption —
small, non-commercial farms are highly involved in long-range poultry movement and that the
assumed functional division between commercial and non-commercial poultry farming does
not entirely hold true for Switzerland. Consequently, we conclude that non-commercial farming
should be included in surveillance systems and in models of avian influenza spread. Further-
more, we advocate one of the various competing, published modeling strategies for avian

influenza spread based on the empirical findings of our study.
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Contribution 4:
Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a

spatially explicit, individual-based model

Focus and design of the study

With the fourth contribution, we aim at reconstructing the 2003/2004 H3N2 influenza epidemic
in Switzerland using an individual-based modeling approach. The core of this contribution is a
validation strategy for models of epidemics, which helps to gain confidence that a certain
modeling approach is reasonable and meaningful. As described in Subsection 1.2.3, we see
validation not as a purely algorithmic task. Instead, validation is a matter of argumentation. In
this sense, we propose a multi-criteria-based validation strategy and argue that if model and
measured data are in good agreement for multiple criteria and if the mechanisms behind the
model are based on plausible theories on how influenza spreads in reality, we can be relatively
sure that the model is valid (cf. also to p. 25). Based on a detailed and spatially explicit model of
host-host contacts and detailed information on host and pathogen biology (cf. Subsections 1.1.2 -
1.1.3), we aimed at reconstructing (i) the shape of the epidemic curve, overall infection rate, and
reproduction number; (ii) age-dependent infection rates and time of infection; (iii) spatial

patterns.
Contributions to the field

We present a simulation model that is able to reproduce main characteristics of the 2003/2004
H3N2 epidemic in Switzerland and seasonal influenza in general. Our chosen combination of
biological and social mechanisms allows us to reproduce typical age dependencies and spatial
patterns of seasonal influenza in Switzerland shown with the example of the 2003/2004 H3N2
epidemic. This gives us hints that the presented model would also produce realistic results if

applied to future pandemic scenarios.

Nonetheless, we disclose that for an accurate reproduction of epidemic outbreaks, additional
empirical data is needed. As a complement to the sentinel data based on reports of general
practitioners, representative pre- and post-season serological data would be highly beneficial to

get a better grip on the actual infection rates.
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2 Models of epidemics: When contact repetition and

clustering should be included

Smieszek T, Fiebig L, Scholz RW. Theor Biol Med Model 2009, 6:11

2.1 Abstract

Background

The spread of infectious disease is determined by biological factors, e.g. the duration of the
infectious period, and social factors, e.g. the arrangement of potentially contagious contacts.
Repetitiveness and clustering of contacts are known to be relevant factors influencing the
transmission of droplet or contact transmitted diseases. However, we do not yet completely
know under what conditions repetitiveness and clustering should be included for realistically

modelling disease spread.

Methods

We compare two different types of individual-based models: One assumes random mixing
without repetition of contacts, whereas the other assumes that the same contacts repeat day-
by-day. The latter exists in two variants, with and without clustering. We systematically test and
compare how the total size of an outbreak differs between these model types depending on the
key parameters transmission probability, number of contacts per day, duration of the infectious

period, different levels of clustering and varying proportions of repetitive contacts.

Results

The simulation runs under different parameter constellations provide the following results: The
difference between both model types is highest for low numbers of contacts per day and low
transmission probabilities. The number of contacts and the transmission probability have a
higher influence on this difference than the duration of the infectious period. Even when only
minor parts of the daily contacts are repetitive and clustered can there be relevant differences

compared to a purely random mixing model.
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Conclusions

We show that random mixing models provide acceptable estimates of the total outbreak size if
the number of contacts per day is high or if the per-contact transmission probability is high, as
seen in typical childhood diseases such as measles. In the case of very short infectious periods,
for instance, as in Norovirus, models assuming repeating contacts will also behave similarly as
random mixing models. If the number of daily contacts or the transmission probability is low, as
assumed for MRSA or Ebola, particular consideration should be given to the actual structure of

potentially contagious contacts when designing the model.

2.2 Background

The spread of infectious disease is determined by an interplay of biological and social factors
[191]. Biological factors are, among others, the virulence of an infectious agent, pre-existing
immunity and the pathways of transmission. A major social factor influencing disease spread is
the arrangement of potentially contagious contacts between hosts. For instance, the
distribution of contacts among the members of a population (degree distribution) strongly
impacts population spread patterns: Highly connected individuals become infected very early in
the course of an epidemic, while those that are nearly isolated become infected very late, if at all
[8, 160]. For a high dispersion of the degree distribution, the transmission probability above
which diseases spread is lower than for a low dispersion [8, 87, 160]. If the degree distribution

follows a power law, the transmission probability necessary to sustain a disease even tends to

zero [57-59].

Another important structural property influencing the spread of diseases is the clustering of
contacts. Clustering deals with how many of an individual’s contacts also have contact among
each other. High clustering of contacts means more local spread (within cliques) and thus a
rapid local depletion of susceptible individuals. In extreme cases, infections get trapped within
highly cohesive clusters. Random mixing is known to overestimate the size of an outbreak [373],
whereas the local depletion caused by clustering remarkably lowers the rates of disease spread
[61, 62]: Clustering results in polynomial instead of exponential growth, which can be expected

for unclustered contact structures [325].

For most of the diseases transmitted by droplet particles or through close physical contact, the
number of contacts that can be realistically made within the infectious period has a clear upper
limit. The mean value of potentially contagious contacts can be interpreted in a meaningful
way, since the distribution of daily contacts is unimodal with a clear “typical” number of

contacts [31, 95, 221, 237]. Potentially dominant properties of the underlying contact structure are
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the clustering of such contacts and their repetitiveness, i.e. whether contacts repeat within the

infectious period or not.

A recent study combining a survey and modelling showed that the repetition of contacts plays a
relevant role in the spread of diseases transmitted via close physical contact. Contrarily, the
impact of repetitiveness seems to be negligible in case of conversational contacts [278].
However, the generality of these findings is limited, as they are based on a small,
unrepresentative sample and as the specific patterns of such contacts vary depending on the
national and cultural context [237]. A more theoretical work showed that the dampening effect
of contact repetition is further increased by contact clustering and is more pronounced if the

number of contacts per day is low [90].

The aim of this paper is to better understand the conditions under which the inclusion of
contact repetition and clustering is relevant in models of disease spread compared to a
reference case assuming random mixing. This is pertinent, as many researchers still use the
random mixing assumption without thoroughly discussing its adequacy for the respective case
study [122, 243, 248, 277, 308]. In particular, we test and discuss the influence of transmission
probability, number of contacts per day, duration of the infectious period, clustering and
proportion of repetitive contacts on the total outbreak size of a disease. This helps modellers
and epidemiologists make informed decisions on whether the simplifying random mixing

assumption provides adequate results for a particular public health problem.
2.3 Methods

2.3.1 Stochastic SIR models
We assess the influence of repetitive contacts and clustering on the total outbreak size I,

(number of new infections over simulation time) for a simple SIR structure [8, 180] under which
every individual is either fully susceptible or infectious or recovered (= immune) (cf. Figure
2.1a).We construct two different types of individual-based models: one assuming random
mixing (i.e. contacts are unique and not clustered), the other assuming complete contact
repetitiveness (i.e. the set of contacts of a specific individual is identical for every simulation day)
and allowing for clustering (cf. Figure 2.1b and additional file 2.1). Both model types can be
blended in varying proportions. In our models, every infectious individual infects susceptible
contacts at a daily probability g, which is equal for all infectious-susceptible pairs. Individuals
remain infectious for an infectious period z, which is exactly defined and not stochastic in its
duration. Infectious individuals turn into the recovered state as soon as the infectious period
passed by. We assume that infection confers full immunity for the time scale of the simulation.

Hence, recovered individuals cannot be reinfected by further contacts with infectious persons.

53



There are no birth or death processes: Hence, the population size is constant. All possible state

transitions are delineated in Figure 2.1a.

current state probability of transition future state
per time step
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Figure 2.1: State transitions and contact structures. Subfigure a: Two transitions are allowed
between three different states an individual can take: (S)usceptible to (I)nfectious and
()nfectious to (R)ecovered. B denotes the transmission probability of one susceptible-
infectious pair per time step. i stands for the number of infectious contacts that a specific
susceptible individual has at the current time step. t gives the current simulation time,
whereas t . gives the time step at which the individual was infected. z is the infectious

period. Subfigure b: We compare two model types: the contacts in the first type change daily
while those in the second type are constant over time. The second model type assuming
repetitive contacts exists in the two variants 2a and 2b.

Under the random mixing assumption (in mathematical terms denoted by index ran), n
contacts are randomly chosen out of the whole population (including susceptible, infectious and
recovered individuals) for every individual and every day. There is neither contact repetition nor

clustering, as our algorithm ensures, that no contact partner is picked twice by the same

individual.
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In fact, clustering is neither properly defined nor is it a reasonable concept under the random
mixing assumption for theoretical and practical reasons: In this paper we refer to the common
definition that the clustering coefficient CC is the ratio of closed triplets to possible triplets
[348], where a closed triplet is defined as three individuals with mutual contact. This definition
is based on static networks. As in random mixing models contacts change daily, different
clustering coefficients could be calculated for every single simulation time step. However, no
epidemiologically relevant effect of such clusters could be observed, because any new infection
comes into effect only in the following time step when contacts are already rearranged. As a
consequence, there is no local depletion of susceptible individuals observable under this
definition, even for high clustering coefficients. If clustering would be defined for an extended
time interval (e.g, the infectious period), an enormous amount of closed triplets would be
necessary to attain only slight clustering coefficients as the total number of contacts over such a
long time is very high. For such huge cliques, there is no meaningful interpretation and no

analogy in the real world.

Repetitive contacts (in mathematical terms denoted by index rep) are implemented by
generating a static network with n links for every individual. The links of this network represent
stable, mutual, daily contacts between individuals. As mentioned, the model type assuming
repetitive contacts exists in two variants. For the variant without clustering, individuals are
linked completely at random. Nonetheless, for repetitive contacts, clustering is a meaningful
concept as contacts are static and as clusters correspond to observable entities in the real world:
Family or work contacts, for instance, are usually clustered and tend to be highly repetitive. In
this paper, predefined average clustering coefficients are achieved by alternately generating
random links and triplet closures, as suggested by Eames [90], until the clustering aim is
achieved in average for the whole population. When the target value of closed triplets is

reached, the network is filled up with random contacts until all individuals have n contacts.

This paper compares most parameter settings for a model assuming either full random mixing
or perfect repetitiveness of contacts. This comparison allows for estimating the maximal
possible difference between both antipodal simplifications of reality. However, real world
dynamics of networks are far more complicated; therein some contacts are repeated daily,
others on certain days of the week and others only once in a while. In order to investigate the

effect of different proportions of repetitive contacts, we vary the fractions of repetitive contacts.
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2.3.2 Parameter space to be tested

In the following section, we describe some important factors in the spread of infectious diseases
that will be systematically tested for their influence on the difference between the random

mixing model and the model assuming repetitiveness (with and without clustering).

Important biological factors influencing the spread of infectious diseases are the duration of the

infectious period 7z and the per-contact transmission probability .

The infectious period r stands for the number of days (simulation time steps) a newly infected
individual will remain infectious. The effect of repetitive contacts is tested for diseases with 7

values between 2 and 14 days (see 7 values given for various diseases in Table 2.1).

The transmission probability f is defined as the probability that an infectious-susceptible pair
results in disease transmission within one single time step of the simulation. g is equal for
every infectious-susceptible pair. The effect of £ on the impact of repetitive contacts compared

to the reference case (without repetitive contacts) is analyzed via systematic variation.

In the results section, we show all results for g-n-z values instead of pure £ values to assure
comparability of the outcomes: fB-n-r equals the basic reproduction number R, for the
random mixing model and thus models with the same g-n-z result in a similar total outbreak
size. Referringto f-n-t values assures that model comparisons are always made for a relevant
range of f. The effect of repetitive contacts is tested for f-n-7 values between 1.2 and 4.0 in
increments of 0.2. The epidemic threshold of random mixing models is f-n-z=1.0. As we are
only interested in diseases that can cause an epidemic, we set the lower boundary to 1.2. The

upper boundary is chosen arbitrarily.

Social factors considered in this paper are the number of contacts per day n, the proportion of

repetitive contacts and the clustering coefficient.

For every single simulation run, the number of contacts per day n is constant and equal for all
individuals. n counts every contact an individual has within one simulation step, regardless of
the alter’s infection status (susceptible, infectious or recovered) and regardless of whether the
contact is repetitive. The effect of repetitive contacts on the simulation outcome is tested for n
values between 4 and 20 with a step width of 2 (mean values for conversational contacts lie in

this range [237]).

In order to investigate the effect of varying fractions of repetitive contacts, we simulate the total
outbreak size for 0%, 25%, 50%, 75% and 100% repetitive contacts. Thereby, 25% repetitive
contacts means that one fourth of all contacts on a given day repeat daily but that three fourth

of the contacts on a given day are unique.
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In the case of repetitive contacts, clustering coefficients between CC=0.0 and 0.6 with a step

width of 0.2 are accounted for. This span covers a wide range of existing transmission systems

from highly infectious diseases with a high number of contacts per day and with clustering

coefficients close to zero to highly structured settings with a considerable proportion of

clustered contacts like in hospitals [204].

Disease [d] Ro 7 [d] Transmission pathways [162]
Chickenpox 7-12 [8] 10-11 [8] Direct contact, airborne, droplet, contact with infectious
(Varicella) material
Ebola 134 [67] 14 [112] Direct contact, contact with infectious material,
1.79 [112] monkey-to-person
183 [67]"
213 [112]~
3.07 [112]”
Influenza 1.3;1.8;3.1 [308]" 2-3[8] Direct contact, airborne, droplet [47]
139 [121] 2.27 [349]
1.58;2.52;3.41[247]°  3-7[79]
1.7-2.0 [110]
2-3[223]'
3.77 [349]
Measles 5-18 [8] 6-7 (8] Direct contact, airborne, droplet, contact with infectious
7.17-45.41 [344]" secretions
7.7[238]
15-17 [162]
16.32 [344)°
MRSA' 1.2 [42] As long as puru- Direct contact, contact with infectious material [267]
lent lesions con-
tinue to drain
[267]
Mumps 7-14.[8] 4-8 [8] Direct contact, airborne, droplet, contact with infectious
4.4[93]" secretions
10-12 [162]
Norovirus 3.74 [337] 1.8 [337] Direct contact, droplet (vomiting), contaminated food
[88,103]"
SARS ¢ 143 [12] 4 [345] Close direct contact
1.5 [112]" 5 [112]
1.6 [219]
2.2-3.7[283]
>2.37[345]
Whooping cough 10-18 [8] 7-10 8] Direct contact, airborne, droplet, contact with infectious
(Pertussis) 15-17 [162] secretion

Table 2.1: Key transmission parameters of selected diseases. Abbreviations, data sources and
methods for the calculation of R, as far as known: ° outbreak Uganda 2000 [259]; ® outbreak
Congo 1995 [182]; < regression estimates; ¢ 1918 pandemic data from an institutional setting in
New Zealand [308]; © 1918 pandemic data from Prussia; assuming serial intervals of 1,3 and 5
days [247]; " 1918 pandemic data from 45 cities of the United States [223]; ¢ data from six
Western European countries [344]; " age structured homogenous mixing model; ' MRSA,
Methicillin-Resistant Staphylococcus Aureus; ' hospital outbreaks; “ SARS, Severe Acute
Respiratory Syndrome; ' outbreak Singapore 2003 [364]; " outbreak Hong Kong 2003 [364].
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For all runs of the simulation model, the total population N was fixed to 20000 individuals. As
initial seed 15 randomly chosen individuals are set to infectious every simulation run. For each
combination of model parameters 350 runs were performed to achieve stable mean values of

the outcome variables. A simulation run was terminated when no infectious individual was left.

2.3.3 Overview on performed analyses

We test the influence of the abovementioned parameters on the difference between the model

typed in three distinct analyses. First, we show how strongly the total outbreak sizes /., ., ~and

/tot'rep differ depending on 7, n and S . In the second analysis we vary n and £ and the
clustering coefficient CC for the case of repetitive contacts. Thirdly, we show how the total
outbreak size changes under various n, f and CC, when repetitive and random contacts are

mixed in varying proportions. Details for the three analyses are given in Table 2.2.

In addition to the total outbreak size, we present further epidemiologically relevant indicators in
the additional files. Epidemic curves can be found in additional file 2.2, findings on the model
differences regarding the average peak size of the outbreaks and the average time to peak are

given in additional file 2.3.

n 7 [d] pg-n-t cC Proportion repetitive contacts
Analysis 1
a 4-20; 2 2-14;1 1.6 0.0 0.0Vs. 1.0
b 4-20; 2 14 1.2-4.0; 0.2 0.0 0.0Vs. 1.0
C 4 2-14; 1 1.2-4.0; 0.2 0.0 0.0Vs. 1.0
Analysis 2 4-20;2 14 1.2-4.0; 0.2 0.0-0.6; 0.2 0.0 V5. 1.0
Analysis 3 8-20; 4 14 1.2-3.0; 0.6 0.0-0.6; 0.2 0.0-1.0; 0.2§

Table 2.2: Parameter settings of the analyses. Parameter ranges are given before the semi-

colon; the increment is given after the semicolon. Single numbers stand for fixed values.

2.4 Results and Discussion

2.4.1 Analysis 1: The effect of contact repetition depending on 7, nand g

As described in the methods section, =, n and f-n-rhave been varied systematically to
investigate the difference between the mean values of the outbreak sizes 7tot,rep and it ran

under different parameter constellations. Figures 2.2a-c show three contour plots in which the

difference between both model types (7rot,mn —7tot,rep)/N is given for various 7, n and g values.
Figure 2.2a gives (hot,mn —7tot,rep)/N depending on 4<n<20 and 2<r<14 with a fixed
B-n-t=16.The total outbreak size depends strongly on the number of contacts per day n but

only slightly on the infectious period 7. In case of an infectious period between two and four
days, there is a considerable change of (itot an —7tot,rep)/N with Az ; for 4<7<8, slight changes
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are observable; in case of infectious periods over eight days, the difference between both

models depends mainly on n. Figure 2.2b gives (7tot,ran —7tot,rep)/N depending on 4<n<20 and
1.2< B-n-7<4.0 with a fixed 7=14 . It shows that the difference between both models depends

strongly on both parameters, the number of daily contacts n and the transmission probability
B . Differences are large for a small n or small g but negligible for a large n when g is large

at the same time. Figure 2.2c, showing (7tot,mn —7tot,rep)/N for 1.2<8-n-r<4.0, 2<7r<14 and

n=4,is consistent with the observations made for the other two figures.
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Figure 2.2: Model differences depending on 7, n and f. Subfigures a-c show the difference
in the total outbreak size between a pure random mixing model and a model assuming
complete repetitiveness (without clustering) relative to the population size N . Contour plots
are interpolated from a grid of measurement points using Microsoft® Office Excel 2003. (a)
infectious period: 2<7<14, step width (sw): sw=1; daily number of contacts: 4<n<2o0,
sw=2; per-contact transmission probability: B-n-z=16. (b) 1.2<8-n-r<4.0, sw=.2;

4<n<20,sW=2;7=14.(C) 12<-n-7<4.0,sW=.2; 2<7<14, SW=1; N=4.
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Effect of contact number: The increasing difference between ltotrep and ltotran With decreasing

n can be explained by two lines of reasoning.

First, in the case of contact repetition, there is always at least one out of the n contacts per day
that is already infected (and thus not available for new infection): As contacts are stable over
time, the infector of a susceptible individual is included in the subsequent contact list of that
individual even when said individual has changed to the infectious state. Thus, at the least, the
contact that originally transmitted the infection is not susceptible. In contrast, contacts change
in every time step under the random mixing assumption: Hence, the infector is not more likely
to appear in the contact set than any other individual. This difference between ltotrep and ltot ran
is more pronounced for small n because one non-susceptible individual out of a small set of
contacts means a relatively higher decrease in local resources than does one out of a large set of

contacts.

Secondly, any new infection means that the infector will have one susceptible contact less for all
subsequent time steps. This local depletion of resources is more pronounced for small n for the
same reason as in the first argument. Further, stochasticity acts stronger in small local

environments than in large ones [177].

Both effects can also be seen in the Equation 2.1, which gives R as a function of R n and

o,rep o,ran

7 (see also Figure 2.3a; details for Equation 2.1 are given in additional file 2.4):

Ro,rep ;(n_1)'|:1_[1_RO'ﬂJ :l (2.1)
n-t

In this equation the number of susceptible individuals in the local environment is reduced by 1
compared to the random mixing case, as we assume that every contact except the one that
originally transmitted the infection is susceptible. This number of susceptible individuals (n—1)
is multiplied by the probability that such an individual becomes infected during the infectious
period 7. As (n—1) is smaller than n and [1—(1—/3)’] is smaller (or equal for z=1) than gz,
the expected number of secondary cases caused by an infectious individual in a population with

a huge number of susceptible and few infected ones is always smaller in the repetitive case.

Effect of the per-contact transmission probability: The difference between lotrep and lrot ran
decreases rapidly with increasing . The reason is that practically every individual will be
reached and infected in case of large transmission probabilities, regardless of the underlying

contact structure. Differences between both models may appear in the shape of the outbreak

curve (cf. to additional files 2.2 and 2.3), but in terms of /., both models are equivalent. In case

tot

of small transmission probabilities, differences in the effective number of secondary cases
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generated by an infectious individual can become visible, as only a fraction of the whole popu-

lation will be infected under both assumptions.
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Figure 2.3 : Ratio of the basic reproduction numbers. Subfigure a shows the ratio R, ., /R; an

(as defined in equation 1) for 1<n<20 (number of daily contacts) and =14 (infectious
period). Triangles stand for p-n-z=R,,,=2.4, squares for R,,,=18and circles for

Roan =1.2. Subfigure b gives R, , /R depending on the infectious period 7 . Red lines and

o,ran o,ran
symbols are for n=4, and blue lines stand for n=10, whereas green lines represent n=16.

The meaning of the symbols is identical as in subfigure a.
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Effect of the infectious period: As expected, the difference between liotrep and ltotsan increases
with increasing 7. However, the change in difference is largest for Az in a range of low ¢

values, but is almost irrelevant for high values of z. This observation is explained by the 7 -

dependence of R (Equation 2.1, see also Figure 2.3b): The longer the infectious period, the

o,rep
smaller the chances for a specific contact to remain uninfected. However, this increase in

individual infection probability is partly compensated by a lower per-day transmission

probability, which is needed to achieve constant R The interaction of these antagonistic

o,ran -

effects results in a stabilization of R, ., /R foralarge 7.

o,ran

2.4.2 Analysis 2: The effect of contact repetition combined with
clustering depending on n and g
The results presented previously show that (hot,mn ~Ttot rep )/N depends mainlyon n and #.Ina

second step, we investigate how the difference between model type 1 and 2 changes, if
clustering is introduced in the latter. Figures 2.4a-d show the difference between both model
types for clustering coefficients CC between 0.0 and 0.6 when 7 is fixed to 14 days and when
n and p-n-t vary in the ranges mentioned above. As expected, clustering results in an
increased difference between both model assumptions. This increase is most pronounced for

small numbers of contacts per day. The peak of (Ytot,an —7tot_/ep)//\l is constantly at n=4 but

shows a right shift on the g-n-7 axis for increasing CC .

The further dampening of disease spread by clustering can be explained by increased locality of
resources: While repetition limits the number of available susceptible individuals by keeping
previously infected ones in the set of contacts, clustering reduces the number of susceptible
contacts because there is a higher likelihood that contacts of an infector have already become
infected by others during the infectious period, as infections spread rapidly within cliques. The
reason why this effect is more pronounced for small n rather than for large n is the same as in
the case of unclustered, pure contact repetition: Any reduction of susceptible individuals in the
set of contacts weights relatively stronger in the case of few contacts than in the case of many.
The right shift of the peak of (7tot,mn —7tot,rep) can be explained by the increased transmission
probability f needed to pass the epidemic threshold under increased clustering compared to

the constantly low levels of £ necessary under the random mixing assumption [9].
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Figure 2.4: Dampening effect of clustering. Subfigures a-d show the difference in the total
outbreak size between a pure random mixing model and a model assuming complete
repetitiveness (with different levels of clustering) relative to the population size N for
4<n<20, 12<-n-7<4.0 and r=14. Subfigure 4a is identical with subfigure 2b. The

clustering coefficient CC is increased picture-wise in steps of .2.

2.4.3 Analysis 3: Varying proportions of contact repetition, clustering
and g

We simulated the difference between both model assumptions for all possible combinations of
n=8,12,16 and 20, B-n-t=12,1.8,2.4 and 3.0, t=14 and CC=0.0, 0.2, 0.4 and 0.6. The simu-
lation results are shown in Figures 2.5a-p. The relation between the proportion of repetitive
contacts per day and the average difference between this mixed model and a model assuming
purely random mixing is approximately linear in the absence of clustering (for all tested cases,
linear regressions between the proportion of repetitive contacts per day and the deviation of
ltot from the purely random mixing model achieve R* >.98 ). However, the deviation from the
random mixing model increases disproportionately with the fraction of repetitive contacts

when clustering is introduced (cf. to Figures 2.5b-d, 2.5f-h, 2.5j-l and 2.5n-p).
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Figure 2.5: Mixed models. Subfigures a-p show the decrease of the total outbreak size relative

to the size of the total population when the fraction of repetitive and clustered contacts is

increased. 25% rep means that one fourth of all contacts on a given day repeat every day but

that three fourths of the contacts on a given day are unique. Clustering coefficients CC are

only defined and calculated for the repetitive fraction of the contacts. All simulations were

calculated for an infectious period of 14 days. Orange circles stand for f-n-r=1.2, red squares

for f-n-r=18, blue triangles for S-n-r=2.4 and green rhombi for #-n-r=3.0.The number

of daily contacts n increases in steps of 4 per line of the subfigures, beginning with n=8 in

the first line. The first column of the subfigures shows CC=.0, the second column CC=.2,
the third column CC =.4 and the fourth column CC=.6.

One mechanism driving this non-linear relation when clustering is present is the local depletion

of resources. Repetitive contacts of an infector have a much higher chance of becoming infected

than do non-repetitive contacts. Moreover, if these repetitive contacts are also highly clustered,

it is likely that the disease will become trapped in those cohesive social subgroups. However, if
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only a few non-repetitive, non-clustered contacts are added per day, the chances of spreading

the disease between otherwise unrelated regions of the social network greatly increase.

2.4.4 Limitations

This paper systematically investigates a variety of epidemiologically relevant parameters needed
to describe real-world transmission systems of diseases spread by droplet particles or direct
physical contact. However, real-world social and biological processes involved in the
transmission of infectious diseases are far more complex than captured by the archetypical
model structures presented. Conceptual decisions and simplifications which could have

potentially influenced the results are critically discussed in the following:

Model structure: We designed our two model types as SIR models, assuming that every
individual is either susceptible, infectious or immune with respect to a certain disease.
Transitions are only allowed from susceptible to infectious or from infectious to immune. The
SIR structure is a fairly good representation for many diseases which lead to full immunity after
recovery (e.g., measles). However, many diseases require other representations, as relevant
intermediate states need to be covered, e.g., as with a long latency period in SEIR (Susceptible-
Exposed-Infectious-Recovered) models. Another common deviation from the SIR structure
arises, when recovery confers only partial or no immunity. In such cases, SIS (Susceptible-
Infectious-Susceptible) representations are often chosen. In SIR or SEIR models, a total outbreak
size can be defined (because the disease fades out at the end of an epidemic), whereas SIS
models typically achieve an equilibrium /(t) in the long run, but the disease does not die out.
Despite all the differences in model behaviour, we expect the rough picture to be the same for
SIR, SEIR and SIS models, as the mechanisms behind the observed differences for SIR models
that we discussed also apply to SIS and SEIR models. Thus, the general conclusions derived in

this paper should also hold true for these model types.

Degree distribution: The number of daily contacts n is fixed and equal for the entire population
in both modelling approaches presented. This is a reasonable simplification for the purpose of
this paper, as it keeps the investigated number of interactions manageable. However, in real
world systems, the number of daily contacts appears to follow a negative binomial distribution
[221, 237] with some people having a relatively high number of contacts and others being almost
isolated. It is known that the variance of the degree distribution impacts the spread of infectious
disease, for instance, by decreasing the transmission probability needed to cause an epidemic
[22]. Particularly relevant for the difference between random mixing models and models
accounting for contact repetition and clustering are the correlations between the number of

contacts per day and contact repetition and clustering, respectively. It is plausible to assume
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that individuals with many contacts tend to also have many unrepeated contacts, whereas
individuals with few contacts tend to have disproportionately high levels of repetitive contacts.
If the proportion of repetitive contacts and clustering is correlated with the number of contacts,
individuals with few contacts are likely to be dead-end streets for infectious diseases. In
contrast, highly connected individuals could be structurally more important than expected, as

they bridge distinct cliques.

Occasional contact repetition: In our simulations, contacts repeat either daily or never.
Intermediate states between both extremes of complete random mixing and complete contact
repetition have been investigated by combining both models in defined proportions. However,
in reality, specific persons can be met at any frequency between never and daily. It is plausible to
assume that intermediate frequencies reduce the effect of repetitiveness depending on the
duration of the infectious period z: For short infectious periods, those with low contact
frequencies might appear as unrepeated contacts whereas they unfold their full dampening

potential for long infectious periods.

Contact intensity and duration: In our models all contacts between an infector and a susceptible
individual are equally likely to result in the transmission of the infectious disease. This
simplification is not a good representation of the real world: The transmission probability
depends on the amount of infectious material ingested by a susceptible person [146, 354]. The
uptake correlates with contact duration and intensity. Contact duration is long for highly
repetitive contacts, while unrepeated contacts tend to have short duration (unpublished data).
Accordingly, it can be expected that the interaction of clustering, contact repetitiveness and
contact duration leads to a rapid infection of all closely tied clusters (primarily families, then
workgroups and cliques at school and childcare institutions), leaving behind the people

connected via mainly short, unclustered, occasional contacts.

Distribution of infectious period: The infectious period = is fixed in our model, which contrasts to
the design of classical mean-field models assuming exponentially distributed infectious periods
[8, 180]. Keeling and Grenfell argue that R, is smaller for exponential period models than for
fixed period models under otherwise identical conditions, because individuals with a long =
rapidly exhaust the susceptible in their local neighbourhood and, therefore, cannot compensate
for the large majority of individuals with extremely short infectious periods [176, 177]. However,
the often assumed exponential distribution is highly unrealistic, as observed infectious periods
tend to be closely centred around a mean period and are thus less dispersed [205]. Thus,
assuming a fixed infectious period is a reasonable simplification of the reality that is not likely
to have a major influence on ltot as only very few individuals will use up their local susceptible

resources during the infectious period in most cases. Moreover, if the infection probability is
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high enough to exploit almost the entire local environment (such that deviations of = could
affect the individual reproduction ratio), /ot will reach the order of magnitude of the

population size in either the fixed or the exponential case.

2.4.5 Implications for some exemplar diseases

Information on the per-contact transmission rate # and the number of potentially contagious
contacts n is often not easily accessible or available and has to be measured (or fitted) if
included in models of disease spread. However, rough estimates of both variables can be
obtained when R, estimates are available and when the possible pathways of transmission are

known, because £ and n are linked to the basic reproduction number by R, ,, = 8-n-r and the

osan
possible pathways reveal information on the possible number and structure of contacts at risk:
At one extreme there is transmission via close physical contacts, which correlate mostly with
intense social relations and are typically rare, repetitive and highly clustered. The other extreme
is airborne transmission via tiny droplet nuclei that remain suspended indoors for a long time. In
this case, vast numbers of persons can potentially be exposed, and such casual contacts are

neither highly repetitive nor strongly clustered.

Table 2.1 provides information about the infectious period 7, R, estimates and the possible
pathways of transmission for a variety of infectious diseases. The implications of clustering and

contact repetition for models of the diseases listed in this table are discussed below.

Typical childhood diseases like mumps, measles, pertussis (whopping cough) or chickenpox
have comparatively high R, estimates [53, 83-86], which means that one infector generates
many secondary cases if a sufficient number of susceptible contact partners are available. These
diseases are highly communicable — in fact, measles is one of the most highly communicable
diseases in the world [236] — and thus, very short and non-intense contacts have the potential to
confer infection. Accordingly, both the number of contacts per day n and the per-contact
transmission probability g are very high. We further assume that a high proportion of the
contacts are casual contacts, because the threshold for a contact to be potentially contagious is
very low with respect to duration and intensity. Consequently, the levels of repetitiveness and
clustering are low, which means that the contact patterns for such childhood diseases are
structurally similar to random mixing. Considering that high numbers of daily contacts n make
both types of models that we discussed behave similarly and considering that under high
transmission probabilities g almost every individual will be reached, random mixing models
achieve almost the same results as more elaborate models including a certain amount of
contact repetition and clustering. Also in case of Norovirus, the difference (7tot,ran —7tot,rep) is

probably small, as the infectious period of this infectious agent is very short [337] and as at the
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same time the basic reproduction number is comparatively high [337] (because the disease is

easily communicable [88,103]).

On the other side, there are diseases with comparatively low R, estimates and typically low
numbers of contacts that still qualify for potential transmission. Methicillin-resistant
Staphylococcus aureus (MRSA), for instance, is an infectious agent mostly transmitted in health
care and nursing institutions. It needs close physical contact for transmission [267] and R,
estimates given in the literature are close to the epidemic threshold [42]. Accordingly, both g
and n are low. At the same time, health care settings tend to be highly structured regarding
who cares for whom and who shares a room with whom. Hence, high levels of contact
repetitiveness and clustering can be assumed [204]. Modelling MRSA under the random mixing
assumption is likely to overestimate the total number of cases for given n, g and 7. If, in
contrast, a random mixing model is fitted to measured data from an outbreak, either the
infectivity or the number of potentially infectious contacts will be underestimated to meet the
measured outbreak size. A similar argumentation applies to Ebola, which is transmitted via
direct contact with infected blood, secretions, organs or semen (thus, n is rather low) and
seems to be only moderately infectious [67, 112, 182, 259]. As a consequence, random mixing

models of Ebola [199] are of limited validity.

Finally, there are some diseases not easily attributable to one or the other class. Severe Acute
Respiratory Syndrome (SARS) and Influenza, for instance, have a range of R, estimates between
143 and 3.7 [112, 219, 283, 345, 364] and between 1.3 and 3.77 [79, 110, 121, 223, 247, 308, 349],
respectively. No definite consensus has been reached on whether Influenza is transmitted
predominantly by large droplets and close contact or by very small droplets that disseminate
quickly and stay suspended in indoor air for a long time [47]. In the latter case, a large amount of
people would be at risk of infection, so random mixing would be a reasonable approximation of
the real contact patterns. In the case of transmission by close contact and large droplets (that
fall out quickly), the mean number of potentially contagious contacts per day lies between 8 and
18, depending on the national and cultural context [237]. Considering that not all contacts are
equally likely to transmit influenza, but that long and intense contacts (such as household
contacts [111]) are more prone to do so and that such contacts also tend to be more repetitive
and clustered, it is likely that random mixing models also overestimate the outbreak size for
given n, f and r.However, problems will definitely arise when the impact of social distancing
measures (decrease of n) or of antiviral treatment (decrease of B) are estimated under the
random mixing assumption: Both interventions will be much more effective in a more elaborate
model than in a random mixing model when n, # and z are the same for both model types.

This argumentation is consistent with recent findings on the impact of other network
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properties on influenza spread: Heterogeneity in degree distribution does not influence the
outbreak size in case of highly contagious influenza strains, but does so for moderately
contagious strains; however, it does influence the total outbreak size when interventions are

simulated —even in case of highly contagious strains [87].

2.5 Conclusions

Real-world contact patterns are complex. They typically show all kinds of intermediate states
ranging from contacts repeating on a daily basis to and never again. There are various clearly
defined, cohesive groups with typically high intra-group clustering coefficients (e.g. households,
workgroups, peer groups at school) and, at the same time, random contacts, e.g., in a leisure
setting. Moreover, contacts differ in intensity and duration, which further complicates the
dynamics of disease spread in such settings. This paper simplifies these complex patterns to a
manageable model and parameter space that can be investigated systematically. Our research
applies to diseases transmitted via conversational or direct contact, for which a typical number
of contacts per day can be defined. For such diseases, our findings can help modellers judge
whether a specific transmission system consisting of a specific infectious agent and a specific
human system at risk can be represented by a simple random mixing model or if more elaborate

models are necessary.

Random mixing models result in acceptable estimates of the total outbreak size Iwo¢ even if the

real world contacts are highly repetitive and clustered

e ifthe number of potentially infectious contacts per day is high and

e ifthe transmission probability for a single infectious-susceptible pair is high and
e particularly, if the infectious period is just one to three days.

If the number of contacts per day or the transmission probability is low, particular consideration
should be given to the actual structure of potentially contagious contacts in designing the

model.
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3 A mechanistic model of infection: Why duration and
intensity of contacts should be included in models of

disease spread

Smieszek T. Theor Biol Med Model 2009, 6:25

3.1 Abstract

Background

Mathematical models and simulations of disease spread often assume a constant per-contact
transmission probability. This assumption ignores the heterogeneity in transmission
probabilities, e.g. due to the varying intensity and duration of potentially contagious contacts.
Ignoring such heterogeneities might lead to erroneous conclusions from simulation results. In
this paper, we show how a mechanistic model of disease transmission differs from this

commonly used assumption of a constant per-contact transmission probability.

Methods

We present an exposure-based, mechanistic model of disease transmission that reflects
heterogeneities in contact duration and intensity. Based on empirical contact data, we calculate
the expected number of secondary cases induced by an infector (i) for the mechanistic model
and (ii) under the classical assumption of a constant per-contact transmission probability. The

results of both approaches are compared for different basic reproduction numbers R, .

Results

The outcomes of the mechanistic model differ significantly from those of the assumption of a
constant per-contact transmission probability. In particular, cases with many different contacts
have much lower expected numbers of secondary cases when using the mechanistic model
instead of the common assumption. This is due to the fact that the proportion of long, intensive

contacts decreases in the contact dataset with an increasing total number of contacts.
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Conclusions

The importance of highly connected individuals, so-called super-spreaders, for disease spread
seems to be overestimated when a constant per-contact transmission probability is assumed.
This holds particularly for diseases with low basic reproduction numbers. Simulations of disease

spread should weight contacts by duration and intensity.

3.2 Background

Research has shown that the arrangement of potentially contagious contacts among the
individuals of a society is a determining factor of disease spread: Both the repetition and the
clustering of contacts diminish the size of an outbreak compared to a random mixing model
[90, 174, 314]. Further, the epidemic threshold is low if the degree distribution shows a high
dispersion [8, 160]. In contrast to the vast body of literature that exists on the importance of
network structure, only little emphasis has been put on the quality of such potentially
contagious contacts, i.e. how long they last and how intensive they are. In fact, mathematical
models and computer simulations of disease propagation often assume a constant per-contact
transmission probability [cf. 8, 178, 180, 242, e.g.: 308, 377]. This approach ignores that, for
instance, a short random encounter of two persons on a public bus is less likely to transmit a

certain communicable disease than a rendezvous that lasted several hours.

Treating all contacts equally may lead to an overestimation of the individual transmission
probability in cases of short, non-intense contacts and an underestimation in cases of intense,
prolonged contacts. Allowing for heterogeneous transmission probabilities may then affect the
model behaviour in various ways (e.g., altering the shape of the epidemic curves or changing the
predictions of the effectiveness of intervention measures). In particular, the valuation of certain
“risk groups,” such as so-called super-spreaders defined as highly connected individuals [178],

may change.

Several authors have already introduced heterogeneous transmission probabilities in their
models . To do so, field data was typically analysed statistically to extract differences due to age,
the susceptible individuals’ immune responses, the levels of infectiousness of the infectors, and
different contact situations [116-119]. For instance, in their model for Ebola epidemics, Legrand et
al. differentiated the infection potential of hospital, funeral, and community settings [199],
while Ferguson et al. distinguished household and non-household contacts in their model for an
influenza pandemic [110]. The disadvantage of such a posteriori statistical models is that they
become invalid when their underlying determinants (e.g., how individuals interact with other

individuals) change.
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Only few epidemic simulations model infection processes mechanistically (i.e., based on an a
priori model instead of purely statistical analysis) to determine the transmission probability of
differing contact situations: Alexandersen et al. [6] and Sgrensen et al. [317], for example, show
that basing large scale simulation models on quantities, such as intensity and duration of an
exposure to infectious material, is possible and expedient. Existing mechanistic transmission
models applied in simulations of disease propagation focus almost exclusively on aerosol
transmission, but do not cover transmission by droplets and physical contact (“close contact”).
Hence, simple mechanistic models of close contact contagion that can be used in simulations of

disease spread are needed.

This paper is intended to highlight why mechanistic models of disease transmission are needed,
to provide an example of how they can be built, and to show how they differ from the often-
used transmission model that assumes a constant per-contact transmission probability. The
proposed mechanistic approach for including the heterogeneity of transmission probabilities
into disease spread simulations concentrates exclusively on diseases that are transmitted via
close contact between an infector and a susceptible individual. We build on the fundamental
knowledge that the risk of disease transmission is not only a function of the infectivity of the
infectious agent and the quality of the immune response but also of the host’s exposure to a
specific infectious agent [146, 354]. Particularly, we present evidence suggesting that the
common assumption that highly connected individuals act as super-spreaders [56, 57, 112] might

be misleading.

3.3 Methods and Material

In this section, we first describe a formula that models transmission probabilities based on
mechanistic considerations. Then, we introduce and describe an empirical data set of self-
reported contacts qualified to transmit infectious disease. This data set was used to test the
impact of the proposed transmission model. Finally, we introduce the scheme that describes
how the outcome of both transmission models, i.e., the proposed mechanistic model assuming
exposure dependency and the classical model assuming equally weighted contacts, were
compared. Subsequently, we will refer to the first transmission model as the “mechanistic

model” and the second model as the “classical model.”

3.3.1 A mechanistic transmission model

The probability of contracting a disease is closely linked to exposure to infectious organisms. A
susceptible individual can only become infected if she/he is exposed to infectious organisms.
Thereby, the transmission probability increases with an increase in the number of infectious

organisms to which a susceptible individual is exposed. Subsequently, we refer to exposure as
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the cumulative, average amount of infectious medium ingested by a susceptible individual

within a time period of interest due to close contact with an infectious person.

We base our proposed transmission model on the exponential relationship between the
ingested dose and the infection risk as derived in Haas et al. [146] and used in several other
publications [110]. Details describing how the following assumptions 1, 3, and 5 translate into an
exponential dose-response model can be found in Haas et al [146]. As an extension to this
general formulation of an exponential relation between exposure and the risk of infection, we
extrapolate the actual exposure from information about the duration and intensity of a contact
between an infector and a susceptible individual. The proposed mechanistic model is based on

the following underlying assumptions:

1) In principle, one infectious organism is sufficient to cause infectious disease. This hypothesis
has been repeatedly supported by various studies against the alternative hypothesis assuming a

threshold dose of infectious organisms must be passed to cause infection [220, 286, 354].

2) Every ingested infectious organism has a certain probability to survive until it reaches its

target tissue and can initiate infection [12, 146].

3) We assume that this survival probability is a constant, i.e,, factors like the susceptible hosts’
immune responses are assumed to be equally effective for all individuals. This assumption is a
simplification of reality since susceptibility is known to differ between individual hosts [13].
However, for the purpose of this paper, such a simplification that keeps the model and the

interpretation of its results manageable is justified.

4) The average dose of infectious material that is ingested by an individual is a linear function of
the duration and intensity of the contact with an infectious individual. Research has shown that
these measures are good predictors for individual attack rates of SARS [132]. In theory, we
recognize that contact can be any kind of interaction between two individuals that is sufficient
to exchange body fluids that can carry infectious particles. However, for reasons of

manageability and measurability, we concentrate on conversational and physical contacts.

5) The actual amount of infectious organisms ingested by an individual follows a Poisson
probability distribution with the average dose (defined in assumption 4) as parameter [146, 354].
Thereby, we model the total (i.e., cumulative) average dose ingested during an entire simulation
time step. This can lead to biased results in extreme cases [268], but given the fact that this
assumption has proven to work well in the past and considering other uncertainties, utilizing

this simplification is justified.
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Based on this, the probability £, = that individual n becomes infected during simulation time

step t, can be derived as

/
Pn,tX =1- exp[_ ®zqm,tX '[nm,tX 'tnm,tx J (3-1)
m=1

where | is the total number of infectors; g, , [5‘1] is the shedding rate (~ microbial load) of

infector m at simulation time step t,; i

x Tome. [1] s the contact intensity between the infector

and the susceptible individual, which corresponds with the proportion of infectious material
spread by infector m that is actually ingested by n; and tyme, [s] isthetimeindividuals n and
m actually interact during time step t, . Finally, ® is a calibration parameter that accounts for
all relevant factors that are not explicitly represented, such as survival probability of the
infectious agent. Simulation models can be fitted to measured epidemiological data, such as
epidemic curves, or to targeted reproduction rates by means of ®. We used © to achieve

predefined reproduction rates for the contact structure introduced in the following section.

3.3.2 Empirical contact structure

In the subsequently described test setting, empirical contact data is needed to compare the
mechanistic transmission model with the classical one. We rely on contact data reported in a
contact diary study that was conducted in Switzerland. A convenience sample of 54 participants
was asked to report their potentially contagious contacts (as defined below) for 14 different
days. Although a convenience sample is not representative for the whole population, the sample

used here represents a very diverse cross-section of the population as can be seen in Table 3.1.

The design of the diary is similar to that used by Mikolajczyk et al. [221]. A potentially contagious
contact is defined as (1) a mutual conversation of more than 10 words within a short distance
(<2m), (2) physical contact in general, or (3) contact involving kisses. The participants were
asked to categorize their contacts according to these three categories and to estimate how long
they interacted with each reported contact person during an entire day based on six provided
categories. However, for the analysis, we need concrete values instead of categories to calculate
transmission probabilities as defined in Equation 3.1. Therefore, we assume a concrete duration,

the arithmetic mean of the upper and lower bounds, for each category as given in Table 3.2.

One diary had to be revoked due to deficient data quality; three of the remaining 53 participants
provided only information for 5, 7, or 8 days, resulting in a total of 720 different person days with
7145 reported contact partners. In 36 of 7145 records, the information about contact duration
was missing. These missing values were imputed based on probability distributions observed for

the complete records. The processed data is provided in Additional File 1.
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Gender of participants

Female

Male

Age distribution of participants
Mean and standard deviation

Min

27 (50.9%)
26 (491%)

37.48 (SD =16.71)
20

25% percentile 24
50% percentile 29
75% percentile 52.25
Max 76

Occupational status of participants *
Student
Employed

Neither student nor employed

Distribution of contact partners per day

Mean and standard deviation
Min

21(39.6%)
35 (66.0%)
11 (20.8%)

9.92(SD =7.64)

25% percentile 4
50% percentile 8
75% percentile 13
Max 51

Table 3.1: Basic information about the sample and the contact structure. * This does not sum

up to100% because multiple answers were possible.

Category in diary

Time value used for calculations

Less than 5 min 2.5 min
5-15 min 10.0 min
15-60 min 37.5 min
1-2h 90.0 min
2-4h 180.0 min
More than 4 h 360.0 min

Table 3.2: Time categories and translation into concrete values.

3.3.3 Test setting for transmission models

In the results section, we compare how the proposed mechanistic transmission model differs
from the classical model assuming an equal transmission probability for all contacts. Thereby,
both the contact structure and the basic reproduction number R, are fixed for both
transmission models. We use the classical definition of R, as the average number of secondary

cases generated by an infected individual being introduced into a fully susceptible population

[8].
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We first analyse the effect of the observed patterns of contact duration and assume the
intensities 7, to be equal and constant for all contacts. Then, we analyse the impact of
contact intensity in a qualitative way. Information on shedding rates and inter-individual
differences is available for many diseases (e.g., influenza cf. [110]). However, as we are more
interested in exposure differences due to contact structure than in the impact of shedding rate
differences, we also assume g, , to be equal for all infectors m. We further concentrate on
hypothetical diseases with an infectious period of one day and basic reproduction numbers
R, =15, 3.0, 4.5, and 6.0. With these assumptions, the contact intensity and the shedding rate

can be included in a new calibration parameter ® =©-g-i, and Equation 3.1 can be simplified to

|
Pn :1_exp[_®,ztnmJ (32)

m=1

The expected number of secondary cases SC generated by a specific infector m if introduced

into a completely susceptible population can then be calculated as follows:
SCow=D Pn (33)

with S represents the total number of susceptible individuals infector m has contact with

during the day m is infectious. Finally, the equation
1
R, :YZ SC,y (3.4)

reveals the basic reproduction number as defined previously when X includes the total popu-

lation of interest.

The following two analyses are used to contrast the effect of the mechanistic model (Equation

3.2) against the classical model:

1) We illustrate the relationship between the expected number of secondary cases SC and the
number of contacts S by calculating SC for the 720 person days as separate units of obser-
vation. SC is calculated according to Equations 3.2 and 3.3 and based on the contact durations
measured with the contact diaries. We group the SC -values by S and show the so grouped SC -
values in box plots. We do this for different values of ®'; ®" is determined such that R, =15,
3.0, 4.5, and 6.0 for the given test population according to Equation 3.4. The contact intensity i
and the shedding rate g are assumed to be constants. We then compare the number of
secondary cases SC of the simplified mechanistic model with the analogue SC value when the

assumption of a constant per-contact transmission probability is used (also grouped by ).
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2) In the second analysis, we calculate how the contact intensity is related to the duration of a
contact in the empirical data set of potentially contagious contacts. This allows a qualitative
discussion related to how the inclusion of variable contact intensities instead of a constant

might affect the results found in analysis 1.

3.4 Results

Figures 3.1a-d show how the expected number of secondary cases of an infector introduced into
a fully susceptible neighbourhood is related to the number of contacts (following Equation 3.3).
Each subfigure represents another level of infectivity of the hypothetical infectious agent.

Despite all of the random fluctuations, the following trends are quite clear:

1) Unsurprisingly, the expected number of secondary cases SC tends to be higher for highly

connected individuals than for those with only few contacts.

2) For low contact numbers, the median expected number of secondary cases SC and the num-
ber of susceptible contact partners S appear to be linearly related. For high contact numbers,

the gradient SC /5 is less steep than for low contact numbers.

3) As a disease becomes more infectious, the relationship between sC and S seems to come
closer to linearity. In Figure 3.1a (R, =1.5), SC seems to reach a more or less stable plateau for
$>10, while in Figure 3.1d (R, =6.0), fappears to be an almost linear function of S. This
impression is supported by regression analysis: If S is used as independent variable in a linear
regression model to explain SC, the variance explained by this linear model equals 0.249 for
R, =15, 0.339 for R, =3.0, 0.493 for R, =4.5 and 0.696 for R, =6.0 (all four linear regression

analyses refuse the null hypothesis R* =0 on a significance level of p<0.01 using a F-test).

Figure 3.2 shows how the proposed mechanistic model deviates from the classical transmission
model if both are fitted to the same basic reproduction number and have the same underlying
contact structure. Average deviations are shown for the whole range of S and R, . The average
deviations were normalized by the basic reproduction number R,. Figure 3.2 reveals that
individuals with less than 11 contacts have a slightly higher number of expected secondary cases
when the transmission model depends on contact duration as compared to the case of a
constant per-contact transmission probability. At the same time the classical model exceeds the
mechanistic one in reference to highly connected individuals. The slight differences in case of
individuals with less than 11 contacts can compensate for the rather pronounced differences of
highly connected individuals as the majority of the person days reported eight or less contacts

while highly connected individuals are rather seldom.
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Figure 3.1: Expected number of secondary cases versus number of contacts. The boxplots
show the distribution of the expected number of secondary cases that are induced by one
infector that is introduced into a fully susceptible population. The values are grouped by the
number of contact partners of the infectors. The boxes represent the interquartile range
(IOR ) with the median values marked as horizontal line. The whiskers are defined as max.
+1.5-10R . Circles are outliers and asterisks are extreme outliers. The subfigures represent the
following basic reproduction numbers: a) R,=15; b) R,=3.0; ¢) R,=45; d) R,=6.0.
Subfigures a-c are cropped such that one outlier lies outside the displayed range. The
corresponding person day had 28 reported contacts and amounts SC =14.15 for subfigure a,
SC =24.00 for b, and SC =27.76 for c. The rationale for this outlier is presumably a reporting
bias from the participant; i.e,, the participant stated that she or he had close contact lasting
for hours with a large number of persons at a festivity. Interacting closely with a large
number of persons at a festivity over long time is almost impossible when the rigid contact
definition in the diary is used.
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Figure 3.2: Mechanistic versus classical model. The bars show the average difference between
the expected number of secondary cases of the mechanistic model SC_ ., and that of the
classical model SC_,,. when normalized by the basic reproduction number R, and grouped by
the number of contact partners S. The sequence of reproduction numbers R, within each
category S goes from R, =15 on the left (light grey bars) to R, =6.0 on the right (black bars)
in steps of 1.5. The line shows how many person days with exactly S contact partners exist in

the sample.

Figures 3.1a-d and Figure 3.2 are based on Equation 3.2, which accounts for contact duration but
ignores the influence of contact intensity. Figure 3.3 reveals how contact duration and contact
intensity are interrelated, thereby allowing an interpretation of how the consideration of the
contact intensity might alter the findings presented in Figures 3.1a-d and 3.2. Figure 3.3 shows
separately for the three different levels of contact intensity how the reported numbers for the
six duration categories deviate from the expected numbers (i.e., assuming no relation): Far more
contacts of less then 5 minutes were observed than expected within the purely conversational
contacts, while contacts of more than 4 hours are overrepresented in the most intensive contact
category. This finding is also reflected in a positive correlation coefficient between these two
ordinal variables: The non-parametric Kendall rank correlation results in 7=0.388, which is

significantly different from zero at the 0.01 level.
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Figure 3.3: Relationship between contact duration and intensity. This figure shows the rela-
tionship between contact intensity (1, II, Ill) and duration (six categories). The bar charts result
from subtracting the expected values (assuming no relation between intensity and duration
of contacts) from the numbers of observations for each possible combination of duration and
intensity. Hence, a positive value means that there were more observations of a certain
duration-intensity-combination than would be expected if duration and intensity are inde-
pendent. A negative value means that there were less observations than expected. The value
zero means that the expected and observed numbers are the same. Every bar is normalized
by the total number of observations for every time category.

3.5 Discussion

3.5.1 Implications of the results presented

The presented results elucidate the implications of accounting for contact duration and inten-
sity in simulations of disease spread. Figure 3.2 suggests that the importance of highly connec-
ted individuals, so-called super-spreaders, is strongly overestimated when all contacts are
assumed to be equally likely to transmit infectious disease. This finding is particularly important
because some well cited publications have concluded that highly connected individuals are
major drivers of disease spread without accounting for the heterogeneity of the inter-individual
transmission probabilities [185, 263]. The results suggest that in the case of a disease with a low
reproduction number, the expected secondary cases induced by individuals with many contacts
are in the same range as those induced by individuals with medium numbers of contacts. Only

when R, is close to the mean number of contacts S is the expected number of secondary cases
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approximately linearly related to the number of contacts (see Figure 3.1 and the linear

regressions shown in the results section).

This finding can be easily explained by the fact that the marginal total contact time decreases
with every further contact person. In other words, most people have only a small set of persons
(usually at home or at work) with whom they meet and interact for long periods during a day.
Those individuals who meet with far more people than the average spend on average less time
with every single contact person than those persons who have some or only a few contact
partners per day. This can be illustrated with the example of train conductors, flight attendants,
or supermarket cashiers; indeed, all of them have contact with hundreds of people a day, but

they interact with each single contact only for a very short time.

As a consequence, highly connected individuals have more potentially contagious contacts than
others, but these contacts are simultaneously on average less likely to transmit disease. Highly
connected persons can reach their full “super-spreading” potential only if a disease is so
contagious that almost every contact with a susceptible person leads to infection. Similar
findings have been reported for sexually transmitted diseases: Research has shown that
individuals with many different sexual partners per year are less important for disease
propagation than often assumed because they have less sex acts per partner and in total than

individuals with a smaller number of partners [49, 251].

The conclusion that highly connected individuals are overestimated in their importance if a
constant per-contact transmission probability is assumed is further supported by the analysis of
the contact intensity as reported in the contact study. Theoretically, a short interaction between
a susceptible and an infectious person could lead to a comparable amount of ingested
infectious material as that of a long interaction assuming that the short interaction is more
intensive than the long one. However, prolonged contacts tend to be more intensive than short
contacts because they more often involve closer interaction, such as physical contact and kisses.
This finding is plausible because those persons with whom the individuals spend much time are
in most cases their loved ones, thereby indicating the higher likelihood of more intimate
interactions than with casual acquaintances. As a result, the conclusions from the analysis of
the pure contact durations are even further pronounced by taking contact intensities into

account.

Therefore, our results suggest that sole concentration on the connectedness of individuals to
explain super-spreading events is not valid. The explanation for super-spreading events might

lie in a combination of many contacts and high shedding rates (cf. the notion of “super-shedder”

[178]). Extreme numbers of secondary cases can only be achieved when the shedding rate Dot
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of an infector m is much higher than the average shedding rate and only if this infector m has

many susceptible contacts §.

3.5.2 Limitations

We see three limitations in our study. First, the empirical data set used to test the proposed
exposure-based transmission model is rather small and not representative of the population.
Furthermore, the person days used to calculate secondary cases are not statistically inde-
pendent from each other as every person participating in the study contributed diary entries for
several days. Finally, contact patterns are dependent on the cultural background and may look
differently in Italy, Germany, Thailand, or Sudan [237]. Thus, the generalizability of our results
may be questioned. Although this limitation exists, it is not likely to bias the presented results in
a relevant manner. The observed contact patterns are plausible and theoretically grounded. An
increasing number of contact partners per time unit naturally results in a decrease in the time
spent with each single contact partner. Additionally, most people plausibly have only a very
limited set of persons with whom they interact very closely. Additionally, the attributes of our
contact structure are in complete agreement with other empirical studies on potentially

contagious contacts that have also addressed similar attributes [237].

Secondly, the six time categories of the diary study offer rather imprecise information on the
actual time that two persons interacted, and the three intensity categories are too vague to be
translatable into concrete Tnmg, values for use in Equation 3.1. Hence, the results presented have
to be qualified in a quantitative rather than qualitative sense. For every time category, we
defined a precise value (the arithmetic mean of the upper and lower boundaries) that was used
for all calculations. However, a sensitivity analysis that alters the actual duration defined for
every category within the given boundaries does not lead to qualitatively different results (see
Additional File 2). Although the measured intensity indicator is not sufficiently precise to allow

inclusion in a mathematical sense, the analysis clearly indicated that inclusion of contact

intensity would amplify the observed phenomena rather than falsify our conclusions.

Finally, this paper makes statements about the expected number of secondary cases of infected
individuals in a fully susceptible population. In a simulation model of disease spread, the
importance of an individual also depends on her/his position within the contact network
structure; i.e., the network position of every individual determines the likelihood of becoming
infected as well as the susceptibility status of the surrounding individuals. Due to the complex
nature of simulation models of disease spread, complete simulation models must be designed
and tested for sensitivity to the changed transmission model proposed in order to allow precise

statements on the impact of exposure-based transmission models on simulation outcomes.

83



3.6 Conclusions

The goal of this paper was to provide evidence for the need of exposure-dependent
transmission models and to suggest a mechanistic transmission model that can be used in
simulations of disease spread. One remarkable result is that individuals with many contact
partners seem to be less important for the transmission of diseases that are transmitted by
droplets or physical contact than suggested by the classical assumption that all contacts are
equally infectious. Particularly with only slightly infectious diseases, contacts should be

differentiated by their potential to transmit infection when simulating disease spread.

This paper proposes an approach that enables the replacement of the problematic assumption
of equally weighted contacts or purely statistical approaches to differentiate potentially
contagious contacts with a mechanistic model. The proposed transmission model is based on
well-established dose-response models that were developed in microbiology and builds upon
assumptions that are closer to reality and better justifiable than the assumption that all

contacts have the same transmission potential.

The spread of infectious disease is governed by a complex interplay of social and biological
factors and to fully grasp its dynamics, processes on both the individual and the population level
have to be understood [191, 338]. Therefore we suggest including a priory, mechanistic models in
simulations of disease spread and combining them with an a posteriori, statistical approach:
Often data is available that allows fitting a simulation model that includes such mechanistic

elements to empirical data, thereby making use of the advantages of both approaches.
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Additional file 3.2

Sensitivity Analysis. We assumed the arithmetic mean of upper and lower bound as precise
representations of the duration categories. In this additional file we provide an analysis on how
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4 Contacts between poultry farms, their spatial dimension

and their relevance for avian influenza preparedness

Fiebig L., Smieszek T., Saurina J., Hattendorf J,, Zinsstag J. Geospat Health 2009, 4: 79-95

4.1 Abstract

Ongoing economic losses by and exposure of humans to highly pathogenic avian influenza
(HPAI) in poultry flocks across Asia and parts of Africa and Europe motivate also outbreak-free
countries such as Switzerland to invest in preparedness planning. Country specific population
data on between-farm contacts are required to anticipate probable patterns of pathogen
spread. Information is scarce; in particular on how strongly small, non-commercial poultry farms
are involved in between-farm contacts. We aimed to identify between-farm contacts of interest
for HPAI spread at both commercial and non-commercial farms in a non-outbreak situation:
whether or not commercial and non-commercial farms were involved in poultry and person
movements and shared resources by company integration. Focus was on poultry movements for
the purpose of purchase, sale and poultry show visits, their spatial dimension, their frequencies

and the farm types they connected.

This was to inform the discussion on whether at all, and under what circumstances poultry
farms, and non-commercial farms in particular, play a role in the sector’s connectedness and
how they should be considered in the HPAI surveillance system and in pertinent transmission

models.

Of the total 49437 recorded poultry farms in Switzerland, 95% had less than 500 birds. The farm
number resulted in densities of up to 8 poultry farms per square kilometer and a median
number of 47 neighbour farms within a 3 km radius around the farms. Person movements and
shared resources were identified in 78% of the surveyed farms (93% among commercials, 67%
among non-commercials). Poultry trading movements over extensive spatial ranges were stated
at 65% (79% among commercials, 55% among non-commercials). Movement frequencies depen-
ded on farm specialization and were higher for commercial than for non-commercial farms
except for poultry show visits. Estimates however for the entire population revealed 3.5 times

higher chances of a poultry purchase, and 14.6 times higher chances of exhibiting birds at
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poultry shows occurring in a given time by a farm smaller than soo birds (non-commercial

farm) than by a larger (commercial) farm.

These findings indicate that both commercial and non-commercial farms are involved in
neighbourhood and remote between-farm contacts relevant to HPAI spread. It is necessary to
include all poultry farms, irrespective of their size and purpose in both livestock registration and
disease surveillance systems, as well as in transmission models for poultry and zoonotic

diseases.

4.2 Introduction

Highly pathogenic avian influenza (HPAI), has been noted for decades as an animal disease with
high economic impact. Although well documented and reported, HPAI received little public
attention until 1997 when, for the first time, human infections due to the HgN1 HPAI virus strain
were confirmed [80] and caused 262 confirmed fatal human cases to date [367]. Since
December 2003, HPAI viruses, mainly HsN1, have reached poultry populations across Asia, parts
Africa and Europe causing high economic losses [81, 106, 193, 350]. Switzerland has been free
from HPAI in domestic poultry since the 1930’s but in early 2006 34 cases of HsN1 HPAI infected
dead water fowl were identified [163]. Both wild birds [183] and the import of poultry and poultry

products represent a certain risk of HPAI virus introduction into the Swiss poultry sector [153].

HPAI virus transmission to susceptible birds occurs by direct contact with excretions and
secretions from infected birds and indirectly via contaminated water, feed and equipment used
on a farm. Between-farm transmission can occur through direct bird-to-bird contact when
subclinically infected poultry is traded or exhibited at poultry shows. Other animals such as wild
birds, martens, or domestic cats are known to potentially act as vectors [188, 252, 368]. People
can contribute to virus spread by introducing contaminated fomites into a susceptible flock.
Such between-farm contacts are also depending on the organization of the local structure of

poultry industry [60].

It is known from post-outbreak investigations that such potentially contagious contacts, in
particular livestock movements between farms, strongly influence the course of epidemics [312].
The distribution of number of contacts (degree distribution) among the members of a
population (here poultry farms) was shown to be relevant for identifying members with high
probabilities of being infected early in a course of epidemic because of having many incoming
contacts. Members having many outgoing contacts were causing high numbers of secondary
cases [22, 29, 363]. Furthermore, it was shown that high dispersions of degree distributions
lowered the epidemic threshold, and thus were an important factor to consider when predicting

epidemic dynamics [8, 87, 160, 263]. Clustering, describing how many of a member’s contact
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partners have contact amongst one another, and other structural properties such as the
stability of contacts further influence the spread of disease. To assume that all members have
equal numbers of contacts and that they randomly chose contact partners, changing them
continuously as is often done in transmission models, is known to overestimate the size of an

outbreak for many infectious diseases [210, 314, 373].

Only rarely detailed contact information in its spatial context has been systematically
integrated in models for HPAI transmission and used for the planning of preparedness and
control strategies. Boender et al. [36] performed a spatial analysis of the HPAI outbreak occurred
in 2003 in the Netherlands. They modeled HPAI transmission from infected to uninfected farms
as a function of inter-farm distance and farm density. Resulting risk maps help to define areas
where preemptive culling is advisable. Truscott et al. [334] showed that transmission models
taking both density-dependent spatial transmission and periodic network contacts into account
were particularly suitable to reflect HPAI spread within the Great Britain poultry flock. Other
countries, especially those not yet experiencing HPAI outbreaks can draw on these findings in

their own preparedness planning.

Country specific information on the spatial distribution, structural composition, and the
connectedness of the poultry sector is required to develop transmission models properly. In
particular it has to be clarified to what extent non-commercial poultry farms should be
considered. Their role in between-farm transmission is controversial. Often non-commercial
farms were defined by small flock sizes and were assumed to have a small poultry movement
distances. However, Garber et al. [123] investigated destination locations for “birds sold or given
away” by non-commercial farms in the USA and found movements beyond the State and
beyond the USA borders. Capua et al. [59] suggested defining non-commercial backyard poultry
farms not only by small flock size but primarily by the absence of functional connection to
commercial poultry production systems. Such definition would imply that specific information
on the interconnectedness of the poultry sector is available. Boender et al. [36] considered only
commercial flocks in their model. In Great Britain, only farms with 50 or more birds kept have to
be registered, and are thus included in models. Distant contacts were only taken into account
for farms keeping 500 or more birds [334] or 1000 and more birds [81]. This makes it difficult to
judge the actual role of non-commercial poultry husbandries in between-farm transmission

scenarios.

This study was aimed to identify between-farm contacts of interest for HPAI spread at both
commercial and non-commercial farms in a non-outbreak situation. We took advantage of
available data in Switzerland where registration of poultry farms irrespective of size and

purpose has been introduced in 2005 on a communal and cantonal level [304]. We geo-
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referenced the locations of poultry farms to understand where occasional between-farm
contacts within a neighbourhood were most probable. We then identified in a cross-sectional
study whether commercial and non-commercial farms were involved in person movements,
such as employees shared by two farms, and shared resources by company integration
(affiliation to poultry marketing organizations). Of particular interest were poultry movements
for the purpose of purchase, sale and poultry show visits, their spatial dimensions, their

frequencies and the farm types they connected.

This was to inform the discussion on whether at all, and under what circumstances poultry
farms, and non-commercial farms in particular, play a role in the sector’s connectedness and
how they should be considered in the HPAI surveillance system and in pertinent transmission

models.
4.3 Material and methods

4.3.1 Study population and density of poultry farms

The population investigated in this study are the poultry farms of Switzerland. By “poultry farm”
we understand all sites where one or more domestic chicken (Gallus gallus domesticus), turkey
(Meleagris gallopavo), duck (Anas platyrhynchos domesticus or Cairina moschata), goose (Anser
anser), quail (Coturnix coturnix), guinea fowl (Numida meleagris), peafowl (Pavo cristatus),

ostrich (Struthio camelus), and/or pigeon (Columba livia) are kept.

We established a single list of all recorded poultry keepers and farms (data from 2005 to 2007)
in Switzerland out of 23 registers maintained by the 26 Swiss cantons (some cantons cooperate),
and the federal livestock register database “Agrar information system (AGIS)” from 2005 [55].
The AGIS contains only farms receiving direct government subsidy. The cantons recorded either
all their poultry farms or only those not included in AGIS. Therefore data from all sources had to
be merged and duplicates to be eliminated electronically privileging the more recent cantonal
records. This lead to a single list subsequently called “census” containing a total of 49437
countrywide identified poultry keepers. Captured attributes included farm address and total
number of birds kept. Further farm details were provided in the original registers, however not
in a standardized way. Manual checks revealed similar entries of farms under different names.

Thus, the census might still contain some duplicates.

The address data from the census were geo-referenced and read into a base map from
Swisstopo 2008®. An accuracy of exact localization was reached for 78% of the farms. For 6%

and for 15% only precision on the street level and on the postal code level could be achieved,
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respectively. The census was used to investigate the density distributions of poultry farms and

birds kept for the entire country and to depict them in density maps.

4.3.2 Survey design

The investigation of the between-farm contacts and their determinants followed a mixed
methods research design. First a quantitative cross-sectional study among poultry keepers was
conducted. In addition five experts from companies integrating commercial poultry farms

(poultry and egg marketing organizations) were interviewed (qualitative part).

Cross-sectional study among poultry keepers

The census was used as sampling frame of which a random sample of 3978 poultry keepers was
drawn. The poultry keepers’ probability of being selected for the cross-sectional study was
proportional to the square root of the number of birds kept on their farm (farm size), to ensure a

sufficient number of the less numerous larger poultry farms.

A mail-out/mail-back survey among the 3978 selected poultry keepers was conducted between
August and December 2007. As survey instrument a structured questionnaire was developed in
the German language and translated into French and Italian; national languages of Switzerland.
Topics covered between-farm contacts, a self-assessment of the farm type by the respondent, a
section on disease awareness, and one on wild bird observations in the poultry free-range area if

existing. The two latter topics are presented in other manuscripts [294] and unpublished data.

Defining relevant contacts

Between-farm contacts potentially relevant for HPAI transmission were identified based on
available literature [82, 137, 332, 365, 368] and based on consultation with poultry experts. The
investigated contact relations included farm neighbourhood and neighbourhood-related
contacts. Farm neighbourhoods are commonly considered to allow for casual contacts between
the poultry keepers and overlapping movement ranges of potential vectors such as sparrows
and freely moving domestic animals such as cats being potential vectors for HPAI viruses [196,
279]. This is reflected in the implementation of control and surveillance zones with 3 km and 10
km radii as a HPAI control measurement regulated in the Animal Health Act [56] and 1 km bands
for risk zones in other appraisals [152]. Therefore, the number of the participants’ neighbour
farms within all 1, 3, and 10 km radii was based on the addresses given in the poultry farm

census. Contacts surpassing a 10 km radius were defined as remote contacts.

Investigated contact relations beyond neighborhoods included human movements, shared
resources and poultry movements (Table 4.1). Poultry movements for the purpose of “purchase”

and “sale” had one direction, those for “exhibiting birds at poultry shows” were bidirectional.
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The questionnaire allowed specifying of up to six different contact partners for each purchase,
sale and show visits. Date (month/year), site (postal code), and types of contacts (hatchery,
other farm, or abattoir/butcher) or name of poultry show were inquired. The frequency of
poultry trade and show visits was captured in “x times per year” and “less than once a year”
which was coded as 0.5 times per year in the analyses. The term “poultry” included here live

birds of the species described above, one-day chicks and also hatching eggs.

Contact relation Vector Connection through Source of information
Neighborhood
Neighborhood to other Human and animal vectors ~ Proximity Poultry farm census

poultry farms within 1, 3,
and 10 km
Person movements and shared resources

Poultry show (visiting only) ~ Person Co-attending show Questionnaire

Co-working Person, equipment Staff and equipment Questionnaire/interviews

Dead stock collection Person, equipment Co-accessing communal Questionnaire/interviews
dead stock collection point

Company integration Person, equipment Staff and shared resources ~ Questionnaire/interviews

Poultry movements

Poultry purchase Live birds/hatching eggs Transport (unidirectional) Questionnaire/interviews

Poultry sale Live birds/hatching eggs Transport (unidirectional) Questionnaire/interviews

Poultry show (exhibiting  Live birds Co-attending show Questionnaire

birds)

Table 4.1: Overview on contact relations under study.

4.3.3 Data processing and analysis

Data of the returned and completed questionnaires were double-entered into a database,
compared and cleaned. Presented analyses rely on data of 1317 (33%) questionnaires that
contained valid contact information. Spatial data were collected for all poultry movements,
"show visits”, and "co-working” in the form of the postal code of the contact partner or event.
Postal codes were geo-referenced. Maximum air-line distances in km between respondents and
contacts were calculated for each contact relation if the postal code was given. Map
presentations were completed using the maptools and spatstat libraries in R and base maps

from Swisstopo 2008°.

Two participant groups were formed based on the respondents’ self-description in the
questionnaire: “commercial” and “non-commercial” poultry farms. Further information on these

groups is provided in Box 4.1.
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Juveniles/
adults for

Juveniles
Adults for
production

Poultry is kept in different livestock production systems for different purposes and on different
professional levels that is in different farm types. Legal definitions for these farms types differ
between countries or are missing. It is commonly understood that commercial poultry farms (I) add
essentially to earning a living and are operating with more than 500 and up to tens of thousands of
birds. These farms, represented by orange boxes, typically cover only one step in either the table
poultry production line or the egg production line. The arrow indicates the general direction of
production. In Switzerland, parent breeds (F1) are imported from few global companies. Imports of
breeding eggs by hatcheries and of one-day chicks by producers supplement the domestic production.
Hatcheries don not keep live birds and are not considered as farms. Non-commercial poultry farms
(1), represented by blue boxes, comprise all farms with smaller flock-sizes. Birds are kept for sideline
production, subsistence farming and/or leisure. We distinguish between backyard poultry, when the
emphasis is on the production of table poultry and/or eggs for human consumption, and show birds,
when fancy birds or rare species are kept for breeding and preservation.

Box 1

Multinomial models with poultry movement distances as an outcome were used to investigate
the following explanatory variables: number of birds kept (farm size), the respondent’s farm
type, and flock composition. Estimates and confidence intervals for the poultry movement
frequency of the entire poultry sector were constructed using Bootstrap resampling with 2000

replications.

4.3.4 Interviews with experts from poultry industry

For the purpose of data triangulation and complementary information on between-farm
contacts, interviews with experts from the poultry industry were conducted in addition to the
survey. Five companies integrating commercial poultry farms in Switzerland were selected for
interviews. The selection was based on whether the companies were frequently named by the
survey participants and in order to include different areas of the poultry industry, including
broiler and egg production. Company | and Il, integrating about 400 farms each, covered the
entire broiler production line from the hatchery and to the abattoir. Companies Il to V were
involved in egg production; company Ill contracted about 100 farms with laying hens, company

IV regrouped 110 organic farms on different levels. Company V covered around 60 farms levels
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plus one hatchery. All together the experts represented about one-half of the some 2000

commercial poultry farms in Switzerland.

Main topics of the interview were between-farm contacts among the company’s integrated
farms, contacts to outsiders, and shared resources. The experts were asked to describe
production cycles, numbers, and specifics of their integrated farms. An interview guideline was
used to systematically probe on issues not mentioned spontaneously by the experts.
Information on poultry trade and shared resources was depicted by expert and interviewer
together on paper (mapping tool). Here, different colors were used to draw the studied contact
relations (Table 4.1) amongst the company’s farms, and to outsider farms. The interview
protocols including notes from experts and the interviewer were transcribed and underwent

qualitative content analysis according to Mayring [215].
4.4 Results

4.4.1 Poultry farm density and neighborhood

The identified number of poultry farms in Switzerland was 49437 until May 2007. The largest
poultry flock comprised of 47300 birds and the smallest had 1 bird. 95% farms had less than so0o
birds, and 90% had less than 5o birds. The poultry farm density differed amongst regions. High
density areas with more than 8 farms per square km were presented in purple, areas with
moderate farm density in yellow and with very low farm density and no farms in white. Light
areas were congruent with high altitudes in the Alps in Southern Switzerland (Figure 4.1). The
distribution of the number of birds kept per square kilometer resembled roughly the farm
density distribution with low densities in the Alps. Maxima with more than 2500 birds per
square kilometer were, however, more in the west of the country between Berne and Lausanne
reflecting the location of several large commercial farms (Figure 4.2). South of Bellinzona farm
density was at a maximum, but low numbers of birds were kept per square kilometer reflecting

the sparsity of large commercial farms in that area.

In the sample of 1317 poultry farms, 543 were self-described as commercial farms and 783 as
non-commercial farms. Similar group sizes were due to the weighted sampling privileging the
less frequent large farms. The median total number of birds kept was 4500 for commercial
farms and 15 for non-commercial farms (Table 4.2). The threshold between both farm groups
was roughly around 500 birds. 97% of farms had other farms within 1 km of the farm. Equal
median numbers of neighbor farms representing potential contacts were found for both
commercial and non-commercial farms with a median of 11 poultry farms within 1 km, 47 within

3 km, and 283 within 10 km (Table 4.2).
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Figure 4.1: Density distribution of poultry farms in Switzerland (in farms per km®). Locations of

important cities of Switzerland are given for orientation.
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Figure 4.2: Density distribution of birds kept in Switzerland (in farms per km?). Locations of
important cities of Switzerland are given for orientation.
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Potential human and animal vectors (cats) were found on commercial and non-commercial
farms. In both groups a median of 3 people were, on average, present on the farm during a
normal working day. These persons were mostly described as “staff” at commercial farms and as
“residents” and “guests” on non-commercial farms. One or more cats were kept on 65% of the
farms without significant difference between commercial and non-commercial farms

(unpublished data).

Commercial Non-commercial All Extrapolation to CH ©
poultry sector

No. of birds kept per n=534 n=783 n=1317 n=1317
farm
(m*[IQR ")) 4500 [2000-8610] 15 [7-30] 37 [12-3807] 11 [6-23]
Fraction of farms n =532 n =780 n=1312 n=1312
having neighbor
farms in radii of
1km 98% 96% 97% 97%
3 km 100% 99.7% 99.8% 99.4%
10 km 100% 100% 100% 100%

No. of neighbor
farms in radii of

1km (m [IQR]) 11[7-18] 11[6-19] 11[7-19] 11[6-19]
3 km (m [IQR]) 47[29-75.5] 47.5 [25-74.5] 47 [28-75] 46 [25-73]
10 km (m [IQR]) 289 [162.5-402] 279 [142-381] 283 [152-393] 277 [144-386]

Table 4.2: Farm specifics and neighborhood of the commercial and non-commercial farm
group and data extrapolation to the entire Swiss poultry sector. * median; ° inter-quartile

range; - Switzerland.

4.4.2 Person movements and shared resources

At least one incident of human movement and shared resources was present at 78% of the
participating farms (93% for commercial and 67% for non-commercial farms). “Use of dead
stock collection points” was the most frequent response with 75%, “company integration” was
stated by 30%, “poultry shows (visiting only)” by 7%, and “co-working” on other farms by 4% of
the respondents. “Use of dead stock collection points”, “company integration”, and “co-working”
on another poultry farm were more common among commercial farms. Non-commercial farms
were virtually non-integrated into companies and visited more often visited poultry shows
(Table 4.3). Median distances were available for "poultry shows (visiting only)” and "co-working”.
Visited poultry shows were in a median distance of 12 km from the farm, with 27 km for the
commercial and 8 km for non-commercial farms. This difference was explained by the

commercial farm group mostly indicating visits to national agricultural expositions, and the

non-commercial group mostly indicating visits to local shows and markets. "Co-working” on
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other farm was mainly indicated by the commercial farm group (Table 4.3). Between farms
sharing employees a median distance of 2 km was identified. Thus sharing employees happened

within a neighborhood and should not be classified as a remote contact.

Commercial Non-commercial All Extrapolation to CH ©

poultry sector

Poultry show n=518 n =754 n=1272 n=1272

(visiting only) 7% 9% 9% 8%

Co-working n=:534 n =782 n=1316 n=1316
10% 1% 4% 1%

Dead stock collection  n =533 n =782 n =1315 n =1315

points 92% 63% 75% 62%

Company integration n =534 n =783 n=1317 n=1317
73% 0.3% 30% 3%

Fraction of farms n =517 n =752 n=1269 n=1269

having one or more 93% 67% 78% 65%

of above incidents

Distances

Poultry show n=22 n=g1 n=73 n=73

(visiting only)

km (m*[IQR *]) 27[9-37] 8 [5-27] 12 [6-34] 8[6-34]

Co-working n=44 n=g n=49 n=49

km (m [IQR]) 2 [1-4] 3[2-3] 2 [1-4] 2 [2-4]

Table 4.3: Prevalence of contact relations under study among the commercial and non-
commercial farm group and data extrapolation to the entire Swiss poultry sector. * median; °
inter-quartile range; “ Switzerland.

4.4.3 Poultry movements

Poultry movements were identified for 65% of the participating farms, with 79% among
commercial and 55% among non-commercial farms. Purchase of poultry occurred more often
(61%) than sale (25%) and exhibiting birds at poultry shows (3%), with a higher contribution of

commercial farms except for poultry shows (Table 4.4).

Geo-mapping of the air-line distances showed a geographical overlap of all poultry movements
by commercial and non-commercial farms in farm dense areas. [temizing poultry movements by
type of origin and destination contact revealed characteristic patterns. Purchase from
hatcheries (Figure 4.3a) and sale to abattoirs/butchers (Figure 4.5a) by commercial farms was
focused. The foci were the same for farms integrated into the same company, confirmed by the
interviewed experts. Commercial farms were not always affiliated to the company whose
hatchery and abattoir were closest to the farm. Each of the companies had contract farms in up
to 19 of the 26 Swiss cantons. That implies same suppliers, consulters and veterinarians serve
contract farms over large parts of the country. Commercial farms’ purchases from other farms

were mainly identified as laying farms buying laying hens from growers. Non-commercial farms

97




had essentially other farms as contact partners, clear centers in the overall pattern were not

identified (Figures 4.3a-4.6a).

The air-line distances of poultry purchase increased significantly with increasing farm size. For
purchases from hatcheries, the increase was estimated as 0.75 km per farm size increase by
1000 birds (P = 0.026) (Figure 4.3b), for purchases from other farms the increase was 1.80 km (P
<0.0001)) (Figure 4.4b). Sales to abattoirs/butchers (P = 0.378), to other farms (P = 0.718), and
distances to poultry shows where a farm’s own birds were exhibited (P = 0.582) did not depend

on the farm size (Figures 4.5b-4.7b).

Comparison of median distances between participant groups revealed poultry purchase (25.1 km
median distance) being more than twice as distant for commercial farms (40 km) than for non-
commercials (16 km). Median poultry sale distances (20 km) were 25 km for commercial farms
and 10 km for non-commercials, explained by the commercials’ longer journeys to abattoirs (31
km). In contrast to distances for "poultry shows (visiting only)”, distances to poultry shows
where owned birds were exhibited were about equal for commercial (median distance of 28 km)
and non-commercial farms (27 km) (Table 4.4). Within the non-commercial group show
participation was mainly attributed 