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Proof of convergence conditions for the paper “Predictive

power dispatch through negotiated locational pricing”

J. C. Warrington

31st August, 2010

1 Introduction

This document gives further analysis and proofs of the results presented in the paper “Predictive

power dispatch through negotiated locational pricing” presented at the IEEE PES Innovative

Smart Grid Technologies Europe conference in October 2010 [4]. In section IV of that paper,

results are given concerning convergence of a negotiation mechanism for determining short-term

electricity prices. The notation used in this document is the same as that from the paper, except

where stated otherwise.

The assumptions required for the proof are first clarified, and then a formal mathematical

description of the algorithm is given. The case where allocations are shared equally is described,

leading to the results given in the paper. Then comment is made on the more general case,

where the allocation algorithm generates differing allocations φ.

2 Assumptions

A1. For notational clarity, it is assumed that one price-elastic unit and one price-inelastic unit

is present on each of the n nodes of the network, although it can easily be shown that the

analysis applies equally well when me elastic and mi inelastic units are present, as in the

paper.

A2. Multiple elastic generators, each with a cost function of the form in equation (2a) of the

paper, with no time coupling (αi = 0), satisfy the load.

A3. Each generator has a strictly convex quadratic cost function Ji(pi) = ai + bipi +
1
2cip

2
i .

ai, bi, ci > 0 ∀i.

A4. There is no congestion on the network, so no price feedback on line flows is used.

A5. No generator violates its power output constraints, so that the optimal output of generator

i for a given price at negotiation stage j, λij , is p
⋆
i (λij) =

λij−bi
ci

.
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A6. It is assumed that power outputs stay positive (λij ≥ bi), and that the sum of loads is

positive.

A7. Storage is not considered here, and is assumed not to be present on the network.

Under assumption A2, each time step over the horizon can be considered independently,

which means that proving convergence to a power match for one time step, as shown below, is

equivalent to proving convergence for all steps over the horizon. Therefore the k-subscripts from

the paper, which indicate the time step, are not used here.

3 Price update algorithm

In the paper, a general price update rule of the following form was defined:

λj+1 = λj − κL(p
⋆(λj), ℓ,Σ)− κE(p

⋆(λj), ℓ,Σ, P ) (1)

λj := [λ1j · · ·λnj ]
T ∈ R

n is the planned vector of nodal prices at negotiation round j;

p⋆(λj) := [p⋆1(λ1j) · · · p⋆n(λnj)]
T ∈ R

n
+ is the vector of power outputs given by the rule in A5;

ℓ ∈ R
n
+ is the vector of fixed loads for the time slot considered, ℓ := [p̂1t · · · p̂nt]T using the

notation from the paper;

Σ ∈ R
n×n
+ is the susceptance matrix that implicitly defines the network topology;

P ∈ R
n×n
+ is the matrix of line limits;

κL : Rn
+ ×R

n
+ ×R

n×n
+ → R

n is the function mapping power mismatches at loads to a change in

price;

κE : Rn
+×R

n
+×R

n×n
+ ×R

n×n
+ → R

n is the function mapping line congestions to a change in price.

Under A4, congestion feedback is not considered here, so we set κE(·, ·, ·, ·) := 0 and consider

only κL. Under A5, the optimal power output vector for a given price vector λj can be written

p⋆(λj) = C−1λj − b, where C := diag(c1, . . . , cn) and b := [ b1
c1

· · · bn
cn
]T.

We choose a form for κL(·, ·, ·) which gives a feedback proportional to the global power

mismatch:

κL(p
⋆(λj), ℓ,Σ) := k1T(p⋆(λj)− ℓ)φ(p⋆(λj), ℓ,Σ). (2)

φ : Rn
+ × R

n
+ × R

n×n
+ → [0, 1]n, with 1Tφ = 1, is a ‘blame’ function which controls how price

changes are weighted across the nodes. Here for clarity we simply call the feedback constant

k rather than the KL in the paper. Define p̂ := 1Tℓ, the total to be satisfied by the inelastic

generation combined. Substituting (2) into (1), we get a shared feedback scaled by the size of

the power mismatch (1T(C−1λj − b)− p̂) and a gain k:

λj+1 = λj − k(1T(C−1λj − b)− p̂)φ(p⋆(λj), ℓ,Σ) (3)

To test for convergence to optimal and feasible prices, we should find the final price vector.

When no congestion is present, examination of the KKT conditions shows that the price should
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be the same for all nodes at optimality. Then the only value of λ = λ⋆1 which gives a power

match is given by

1T(C−1λ⋆1− b) = p̂

1TC−1λ⋆1 = p̂+ 1Tb

⇒ λ⋆ =
p̂+ 1Tb

1TC−11
∈ R

Since there is only one feasible solution for the price vector, it is also optimal. We define

a new price vector λ̃j := λj − λ⋆1, and substitute into the price update rule (3). the offset b

disappears and we end up with the following update relationship:

λ̃j+1 = (I − kφ1TC−1)λ̃j (4)

3.1 Constant-φ price updates

Consider the feedback rule φ = 1
n
1. Then equation (4) becomes:

λ̃j+1 = (I − k
n
11TC−1)λ̃j

This is a discrete-time state space representation, and the desired convergence λ̃j → 0 as

j → ∞ depends on the eigenvalues of the matrix A := I − k
n
1TC. We wish to find necessary

and sufficient conditions on the feedback scaling factor k for such convergence. A can be written

out as follows:

A = I − k

n
11TC−1 =













1− k
nc1

− k
nc2

· · · − k
ncn

− k
nc1

1− k
nc2

· · · − k
ncn

...
...

. . .
...

− k
nc1

− k
nc2

· · · 1− k
ncn













. (5)

The eigenvalues are the values of s satisfying

det(sI − (I − k

n
11TC−1)) = 0. (6)

Defining s̃ := s− 1 an equivalent statement to (6) is

det(s̃I +
k

n
11TC−1) = det













s̃+ k
nc1

k
nc2

· · · k
ncn

k
nc1

s̃+ k
nc2

· · · k
ncn

...
...

. . .
...

k
nc1

k
nc2

· · · s̃+ k
ncn













= 0. (7)

This is clearly satisfied when s̃ = 0, since then we have a matrix with n identical rows. Since

the nullspace of this matrix has dimension n−1, there are n−1 linearly independent eigenvectors

with corresponding eigenvalue s = s̃+1 = 1. The last eigenvalue is given by the rule Trace(A) =
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∑n

i=1 µi where µi is the ith eigenvalue of A. By inspection of (5), µ1 = µ2 = . . . = µn−1 = 1,

and µn = 1− k
n

∑n

i=1
1
ci
.

The nth eigenvector un satisfies Aun = µnun, or equivalently (µnI − A)un = 0. Writing

this out we see that this is satisfied iff all elements of un are equal. We can therefore define

the normalized eigenvector un = 1√
n
1, and arbitrarily define the first n − 1 eigenvectors to be

orthonormal vectors satisfying ui ⊥ un, i = 1, . . . , n− 1.

Since the eigenvectors of A span the whole of R
n, we can write any price vector λ̃j as

λ̃j = θ1ju1+ . . .+ θnjun. A can be diagonalized in the form A = UΛU−1, where U := [u1 · · ·un]

and Λ := diag(µ1, . . . , µn). Since the eigenvectors can be chosen to be an orthonormal set,

U−1 = UT. From these statements we obtain, after defining γ := k
n

∑n

i
1
ci
:

λ̃j = UΛUTλ̃j−1

= UΛjUTλ̃0

=
[

u1 u2 · · ·un−1
1√
n
1
]

















1

1
. . .

1

(1− β)j



































uT
1

uT
2

...

uT
n−1
1√
n
1T



















λ̃0

⇒ λ̃j = θ10u1 + θ20u2 + . . .+ θ[n−1]0un−1 + θn0(1− β)j1.

In other words, an initial price vector λ0 will therefore only be regulated to the optimum when

it starts parallel to un, i.e. all the nodal prices are the same. In this case we have:

λ̃j =
θn0√
n
(1− β)j1 = (1− β)j λ̃0 ⇒ λj = λ⋆1+ (1− β)j(λ0 − λ⋆1). (8)

For convergence we therefore need to choose |1−γ| < 1 ⇔ 0 < γ < 2. Therefore the feedback

gain k must be chosen according to

0 < k < 2n

[

n
∑

i=1

1

ci

]−1

⇔ 0 < k <
2n

1TC−11
. (9)

Using the notation of the paper and substituting me as explained before, we have the same

condition as given in the paper. Clearly if we knew the parameter ci of each generator we

would be able to set γ = 1 and we would have convergence in one step to a power match.

Deviation from this ideal in practice is not desired, but at least choosing a very small k would

give convergence.
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Convergence rate

Rearranging equation (8), we have:

λj − λ⋆1 = (1− β)j(λ0 − λ⋆1)

From A5 we can write this in terms of power mismatches ǫj :=
∥

∥C−1(λj − λ⋆1)
∥

∥, where ‖·‖ is

any desired norm:

C−1(λj − λ⋆1) = (1− β)jC−1(λ0 − λ⋆1)

ǫj =
∣

∣(1− β)j
∣

∣ ǫ0

Rearranging this, we have:

ǫj
ǫ0

=
∣

∣(1− β)j
∣

∣

ln (ǫj/ǫ0) = j ln |1− β|

Therefore for a desired accuracy ǫ, Nconv steps are required, as given by:

Nconv =

⌈

ln (ǫ/ǫ0)

ln |1− β|

⌉

,

where the ceiling operator reflects the fact that Nconv must be an integer.

Comparison with Jokić’s result

The KKT controller of [3] used separate control of two price components to obtain a feasible and

optimal solution to the power flow problem. Firstly a controller for the common base price “λ0”

was used to bring about a power match globally (via an assumption on how a power mismatch

would affect frequencies separately at nodes), and then congestion prices “∆λ” were used to add

price differences that bring about flows that relieve line congestion.

Here the behaviour of the “simple” φ = 1
n
1 rule is very similar in effect to the part of

that continuous-time controller for the base price, except that the stability criteria are different

because we operate in discrete time and under slightly different assumptions ([3] gave no closed-

form stability conditions on the controller gains, but gave a means of using an LMI solver to

check for stability for any given set of gains).

5



3.2 Variable-φ price updates

Consider again the proportional update rule (2):

κL(p
⋆(λj), ℓ,Σ) := k(1Tp⋆(λj)− p̂)φ(p⋆(λj), ℓ,Σ)

We now consider the case where φ is chosen in response to the state of the network. Bialek

[2] presented an algorithm for assigning flows on electricity lines and supply to loads to the

generators on the network. Conversely it is possible to trace line flows and generator outputs to

the loads present using essentially the same procedure. We use such an algorithm to choose φ

for the price updates.

Since analysis of this method is very difficult (some complicated analytic results for φ as a

function of the generators and loads were only given this year [1], 14 years after the original

paper), here is an alternative strategy based on Lyapunov functions.

Given a price evolution λ̃j+1 = A(φj)λ̃j , where A(φj) := I − kφj1
TC from (4), we take a

Lyapunov function V (λ̃j) := λ̃T
j λ̃j . Since such a function fulfils the other required properties

of a Lyapunov function, convergence to an optimal set of prices (λ̃j = 0) can be guaranteed by

taking φj at each step and ensuring that:

V (λ̃j)− V (λ̃j) < 0

⇔ (A(φj)λ̃j)
T(A(φj)λ̃j)− λ̃T

j λ̃j < 0

⇔ λ̃T
j (I −A(φj)

TA(φj))λ̃j > 0 ∀λ̃j ∈ R
n (10)

This last condition is equivalent to requiring that Q(φj) := I − A(φj)
TA(φj) is positive

definite. Since Q is also a function of the feedback gain k, we can find bounds on k in terms of

φj such that Q remains positive definite and the negotiation always converges.1

It turns out that element qij of Q is given simply by:

qij =
k

ci
φj +

k

cj
φi −

k2

cicj
φTφ

Now a necessary condition for Q(φ) to be positive definite, and therefore for V (λ̃j) := λ̃T
j λ̃j

to qualify as a Lyapunov function, is that qii > 0 for i = 1, . . . , n. This is the case if

0 < k <
2ciφi

φTφ
, i = 1, . . . , n

so given a vector φ resulting from the allocation algorithm, we have a necessary condition

for having found a successful Lyapunov function that looks similar to the constant-φ result (9).

Just as before though, we don’t know the coefficients ci, and because we only found a necessary

condition for a sufficient one to hold, we didn’t guarantee anything.

Since Q is symmetric, another approach may be to find a full-rank matrix M such that

Q(φ) = M(φ)TM(φ). If such an M(φ) exists, then Q(φ) is positive definite.

1Note that k could be chosen more elaborately (e.g. a weighted diagonal marix) but this would be analytically

more difficult and not fair - the φ vector is already supposed to be weighting the price changes.
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Another approach is to find the eigenvalues of Q. Since Q is symmetric, it is enough to show

that all eigenvalues are strictly positive for Q to be positive definite. Since from (3.2) we have

Trace(Q) =

n
∑

i=1

qii =

n
∑

i=1

(

2k

ci
φi −

k2

c2i
φTφ

)

which is equal to the sum of Q’s eigenvalues, we could claim using a symmetry argument (not

checked yet) that the eigenvalues of Q are simply the qii. In this case we have

qii > 0 ⇔ 0 < k <
2ciφi

φTφ

which is the same condition as before. It seems possible that this could be a sufficient condition

for V (λ̃j) to be a Lyapunov function for the price evolution. In this case, we can simply set k

in response to the φ vector obtained from Bialek’s algorithm.
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