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Abstract
This thesis presents a thorough structure analysis of the four-layer superstructure of
decagonal Co-rich Al-Co-Ni. Due to its ten-fold non-crystallographic symmetry, this
analysis was performed with a higher-dimensional approach. For the first time, a five-
dimensional superstructure model for a four-layer decagonal quasicrystal was proposed
and validated by refinement. In this work, it was proven that the W-phase is a rational
〈3/2, 2/1〉-approximant of the investigated superstructure. Comparison of the actual W-
phase approximant with the generated 〈3/2, 2/1〉-approximant shows good agreement. In
addition, the cluster structures in the W-phase approximant are similar to those observed
in the quasicrystal.

Understanding the formation, stability and physical properties of quasicrystals requires
knowledge of their structures. However, the structures of only a handful of them have yet
been determined due to the intricate complexity of quasicrystal structure analysis. Al-Co-
Ni is an excellent model system for structural investigations of decagonal quasicrystals.
It not only has a broad stability range, but it also shows complex ordering phenomena as
a function of the Co/Ni ratio and/or temperature.

In the course of the current work, single crystals of the Co-rich decagonal Al72.5Co18.5Ni9
phase were successfully grown. The X-ray diffraction pattern of this phase shows sharp
Bragg peaks also in the intermediate layers. This structural modification has an ≈8 Å pe-
riodicity along the ten-fold axis, i.e. a four-layer superstructure. The availability of high-
quality single crystals provided a unique opportunity to carry out a full structure analysis
and to understand the superstructure ordering. Moreover, understanding this complex
structure sheds light on short-range order in related quasicrystal phases.

Initially, a five-dimensional structure model of the two-layer average structure was con-
structed. It was refined in the non-centrosymmetric five-dimensional space group P10m2
with 112 parameters, resulting in values of wR = 0.123 and R = 0.156 for 957 unique
reflections. Based on this structure model, the four-layer superstructure model was de-
rived using the non-centrosymmetric five-dimensional space group P102c complemented
with additional constraints resulting from normal mode analysis. The refinement with 250
parameters resulted in values of wR = 0.039 and R = 0.186 for 1222 unique reflections.
By introducing appropriate linear phason strains a W-phase 〈3/2, 2/1〉-approximant was
reproduced. The close relationship between the structures of the W-phase and the investi-
gated quasicrystal has two important aspects. Firstly, it proves the physical validity of the
proposed structure model. Secondly, it justifies the use of the W-phase for the derivation
of structural principles underlying the formation of Al-based decagonal quasicrystals.
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Zusammenfassung
Diese Doktorarbeit präsentiert eine vollständige Strukturanalyse der vierschichtigen Über-
struktur von dekagonalem Co-reichem Al-Co-Ni. Aufgrund der zehnzähligen, nicht-kristal-
lographischen Symmetrie wurde ein höherdimensionaler Analyseansatz verwendet. Zum
ersten Mal wurde ein fünfdimensionales Überstruktur-Modell eines vierschichtigen dek-
agonalen Quasikristalls entworfen und durch Strukturverfeinerung bestätigt. Die vor-
liegende Arbeit beweist, dass die W-Phase ein 〈3/2, 2/1〉-Approximant der untersuchten
Überstruktur ist. Der Vergleich der echten W-Phase mit dem generierten 〈3/2, 2/1〉-
Approximanten zeigt gute Übereinstimmung. Zudem gleichen die Cluster-Strukturen des
W-Phase Approximanten denjenigen des Quasikristalls.

Wissen über die Struktur von Quasikristallen ist unerlässlich für ein tieferes Verständ-
nis ihrer Entstehung, Stabilität und physikalischen Eigenschaften. Aufgrund der kom-
plexen und anspruchsvollen Strukturanalyse konnten jedoch bislang nur einige wenige
dieser Strukturen bestimmt werden. Das System Al-Co-Ni eignet sich hervorragend für
Untersuchungen von dekagonalen Quasikristallen. Es weist einen grossen Stabilitäts-
bereich auf und zeigt komplexe Ordnungseffekte als Funktion des Co/Ni-Verhältnisses
und/oder der Temperatur.

Für die vorliegende Arbeit wurden Einkristalle der Co-reichen dekagonalen Phase mit
der Zusammensetzung Al72.5Co18.5Ni9 gezüchtet. Beugungsexperimente an Einkristallen
dieser Phase zeigen auch in den Zwischenschichten Bragg-Reflexe. Diese Strukturmod-
ifikation besitzt eine ≈8 Å-Periodizität entlang der zehnzähligen Drehachse, d.h. eine
vierschichtige Überstruktur. Die Verfügbarkeit von hochqualitativen Einkristallen bot die
Gelegenheit, eine vollständige Strukturanalyse durchzuführen und die Ordnung innerhalb
der Überstruktur zu verstehen. Darüber hinaus liefert das Verständnis dieser komplexen
Struktur wichtige Hinweise für Nahordnungen in verwandten quasikristallinen Phasen.

Zunächst wurde ein fünfdimensionales Modell einer zweischichtigen Basisstruktur er-
stellt. Es wurde in der nicht-zentrosymmetrischen fünfdimensionalen Raumgruppe P10m2
verfeinert (112 Parameter, wR = 0.123, R = 0.156, 957 Reflexe). Ausgehend von diesem
Strukturmodell wurde die Überstruktur in der Raumgruppe P102c basierend auf Moden-
Analysen gelöst und verfeinert (250 Parameter, wR = 0.039, R = 0.186, 1222 Reflexe).
Durch die Anwendung geeigneter linearer Phasonverzerrungen wurde daraus ein W-Phase
〈3/2, 2/1〉-Approximant erzeugt. Zwei Aspekte der engen Strukturverwandtschaft von
W-Phase und dem untersuchten Quasikristall sind besonders wichtig. Erstens wird die
physikalische Gültigkeit des vorgeschlagenen Strukturmodells bestätigt. Zweitens recht-
fertigt dies die Verwendung der W-Phase für die Ableitung von Strukturprinzipien, die
der Entstehung von Al-basierten Quasikristallen zugrunde liegen.
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Chapter 1

Introduction

The foundations of the field of crystallography were revolutionized in 1912 by Max von
Laue. Soon after he conducted the first diffraction experiment, William Henry Bragg
and his son William Lawrence Bragg introduced X-ray analysis of crystal structures. It
became clear that X-rays were a form of electromagnetic radiation of short wavelength.
Due to interference within a crystal, the scattering of X-rays in reciprocal space is confined
to distinct points with characteristic intensities. W. L. Bragg was the first to explain
this phenomenon and in honor of this achievement these point-like diffraction spots were
named Bragg peaks.

The following decades brought significant progress and in the 1970s the field of crys-
tallography seemed to be almost complete and fully understood. Lattice periodicity was
considered an essential property of a crystal and hence for observation of sharp Bragg
diffraction spots in reciprocal space. However, in addition to a perfect periodicity, one
should consider discreteness resulting from the requirement for a minimal distance be-
tween atoms. This requirement restricts the possible rotational symmetry of a crystal
to two-, three-, four- and six-fold. As this restriction also applies to reciprocal space,
classical crystallography predicted only diffraction patterns with two-, three-, four- and
six-fold symmetry. Considering all possible periodic arrangements in three-dimensional
space, Fedorov, Schönflies and Barlow classified 230 crystallographic space groups.

Dan Shechtman’s discovery on 1982 April 12th of an icosahedral phase in a rapidly
solidified Al-Mn alloy [SBG84] was a sensation and triggered a drastic change in attitude
concerning the structure of solids. A remarkable peculiarity of the newly discovered phase
was its diffraction pattern. It showed sharp Bragg diffraction spots together with non-
crystallographic symmetry, namely icosahedral point symmetry. The term "quasicrystal",
coined by Dov Levine and Paul Steinhardt [LS84], accounted for the lack of translational
symmetry in three-dimensional space exhibited by this new phase. At this point, it became
obvious that the existing requirement for lattice periodicity was too strict. From a more
generalized perspective, a crystal is defined by its spectral properties in the reciprocal
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space. Namely, a Fourier spectrum of an ideal crystal is essentially discrete, see also
definition of aperiodic crystals by IUCr Ad-interim Commission on Aperiodic Crystals.

Since this pioneering discovery almost three decades ago the field of quasicrystals has
attracted a wide range of research by mathematicians, physicists and material scientists.
The discovery of the first quasicrystal triggered a series of discoveries during which a large
assortment of quasicrystals has been found. In the beginning only very small metastable
quasicrystals were obtained. Nowadays several stable quasicrystals of various sizes and
chemical compositions with different morphologies are known [SD08]. In addition to the
three-dimensional icosahedral quasicrystals, that is to say those with three quasiperiodic
directions, two-dimensional quasicrystals have also been discovered. Two-dimensional
quasicrystals belong to the axial type, having two quasiperiodic directions and one periodic
direction which is parallel to a five-, eight-, ten- or twelve-fold axis. Two-dimensional
quasicrystals with a ten-fold axis, named decagonal quasicrystals, were first identified in
a rapidly solidified Al-Mn alloy by Chattopadhyay [CRST85]. Independently, Bendersky
[B85] came to a similar conclusion and established the Laue symmetry as 10/mmm.

Recently it was reported that quasicrystal structures are not limited to intermetallic
systems. They were also discovered in soft matter, namely superamolecular structures
of organic dendrimers [ZULPDH08] and tri-block copolymers [HDT07]. Later, it was
shown that micrometre-sized colloidal spheres could be arranged into quasicrystalline
arrays by using intense laser beams that create quasi-periodic optical standing-wave pat-
terns [MRHB08], and that colloidal inorganic nanoparticles can self-assemble into binary
aperiodic superlattices [TSBCM09]. Moreover the existence of natural quasicrystals in a
mineral was reported [BS09].

This new class of material does not only show unusual symmetries, but also very pe-
culiar physical properties. Experimental results demonstrate that quasicrystals do not
display the properties of their constituent elements. Despite being intermetallic com-
pounds, they show anomalously high resistivity, which decreases with increasing temper-
ature. For metals this is a very surprising behavior; one would normally expect this only
in semiconductors. In addition, quasicrystals behave more like heat insulators at suffi-
ciently low temperatures. Measurements of the electron transport properties show that
decagonal quasicrystals show normal metallic behavior along their periodic direction and
abnormal metallic behavior along the two quasiperiodic directions, thus they are strongly
anisotropic. Similar measurements reveal that icosahedral quasicrystals exhibit abnormal
behavior in all three quasiperiodic directions. This special behavior of electronic transport
in quasicrystals as a function of temperature must be related to structural properties. In
fact, for several quasicrystalline phases the calculated electronic density of states (DOS)
exhibits a pseudogap at the Fermi level. This gives additional explanation and validity to
the earlier reports regarding the strange electronic properties of quasicrystals. Addition-
ally, at higher temperatures quasicrystals show improved plasticity and stronger magnetic
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CHAPTER 1. INTRODUCTION

properties than conventional crystals. Due to their hardness and deformation resistance
their main commercial application could be in high-strength surface coatings. However
until now, no extensive technological application for quasicrystals have been found. One
of the major reasons for this is because of the difficulty producing quasicrystalline ma-
terials on an industrial scale. Nevertheless on a small scale many stable quasicrystals of
good quality have been found and their physical properties have been rigorously studied.
For example, they serve as model structures for applications in phononics and photonics
[LAB05, FLFS07, BLVA08].

Most quasicrystals have intimately connected crystalline phases with closely related
composition and atomic structure. These crystalline phases are named "approximants",
because the arrangement of atoms within their unit cells is a close approximation of the
local atomic structures of their related quasicrystals. In other words, quasicrystals and
their related approximants contain the same kind of clusters. The similarity of both cor-
responding structures depends on the size of the common fragment in both structures.
Experience shows that quasicrystals and their approximants exhibit similarly anoma-
lous physical properties related to electronic transport. Although there are similarities
between quasicrystals and their approximants, the latter possess three-dimensional peri-
odicity. Hence, large approximants serve as model systems to study physical properties of
quasicrystals. In fact, without using approximants it is questionable whether theoretical
studies of the physical properties of quasicrystals would be possible at all. The reason is
that the Bloch theorem is not applicable in a three-dimensional quasiperiodic systems, on
one hand. On other hand, a higher-dimensional representation of the interatomic forces
is not straightforward. Furthermore, the study of approximants provides invaluable infor-
mation for structure determination of quasicrystalline structures, as well as hints about
the formation and stability of the related quasicrystals, and serves as a good indicator for
the existence of a related quasicrystalline phase in a particular system.

An additional unique physical property of quasicrystals is a type of defects named pha-
sons. Phasons are excitations along internal space which result in atomic rearrangements
in external space. Hence they are strictly related to the higher-dimensional description
of quasiperiodic systems. The term "phason" is derived from the phase change of the
waves describing the position of atoms in a quasicrystal. In the current work they are of
interest for two reasons. Firstly, the presence of random phasons affects the number of
observed weak reflections. In a perfect quasicrystal many very weak reflections and a few
very strong ones are present. Unfortunately, we cannot produce a "perfect quasicrystal",
therefore, in comparison to theoretical predictions, we observe fewer weak reflections due
to the presence of random phasons. Secondly, by introducing appropriate linear phason
strains, a quasiperiodic structure may be transformed into its rational approximant as
will be discussed in Chapter 3.
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One of the most investigated systems is decagonal Al-Co-Ni. It serves as a perfect
playground for structural investigation, since it has a wide variety of structural modifica-
tions. The different modifications have been quite extensively studied by high-resolution
electron microscopy (HRTEM), only a few of them have been examined by X-ray diffrac-
tion. HRTEM images give ’easy’ access to local structural information such as clusters
and their ordering (tiling decoration). Consequently, there already exists a qualitative
picture of some of the ordering phenomena as far as they are observable in structures pro-
jected along the ten-fold axis. The major shortcoming of HRTEM is that only projected
information can be obtained. Since the ordering phenomena in the quasiperiodic atomic
layers are intimately connected with those along the periodic direction, diffraction data
are crucial for a full picture.

Most of the structural modifications in the decagonal Al-Co-Ni system show a period-
icity of ≈8 Å (i.e. four-layer). So far however, only data related to ≈4 Å (i.e. two-layer)
periodicity has been used. The reason is that the reciprocal space layers related to the
two-fold superstructure along the ten-fold axis, i.e. four-layer periodicity, show only dif-
fuse intensities in all cases except basic Co-rich phase. In addition, in this system a
W-phase approximant with ternary composition and a periodicity of 8.158(1) Å has been
reported [HON01, HOSS01]. A closer look at the behavior of a quasicrystal on an atomic
scale may help us to answer several fundamental questions. Firstly, how are these special
solid-state systems stabilized? Secondly, why are the physical properties of quasicrystals
so unique?

The goal of the present research was to synthesize a single-crystal of the decagonal
Al-Co-Ni Co-rich phase and to determine its structure. Single-crystals that show sharp
Bragg peaks in all reciprocal layers, related to a complex quasicrystal superstructure with
four atomic layers along the decagonal axis, have been successfully prepared. Chapter 2
focuses on the experimental details of the sample preparation, and X-ray data collection
and analysis.

Several methods have been applied for the structure determination and these are dis-
cussed in Chapter 3, along with the basic concepts for the higher-dimensional approach.
Initially, the Patterson method was used which has the advantage that it only requires ex-
perimentally obtained intensities as an input. One can check relatively easily the quality
of the experimental data after integration and in addition, get an initial idea about the
quasicrystal structure in higher-dimensional space. However, the complete deconvolution
of the Patterson function of a quasicrystal is very cumbersome so that it is practically
impossible to obtain a detailed structure solution. Two different algorithms, Low Density
Elimination (LDE) and Charge Flipping (CF) have been applied for ab initio phasing of
the experimentally obtained amplitudes. Both methods gave an average structure solu-
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CHAPTER 1. INTRODUCTION

tion, however, both failed in the determination of the superstructure. Additionally, two
different methods for approximant generation from the quasicrystal structure are intro-
duced and complemented by an example. In the final section, a simplified superstructure
model is presented and possible methods for its solution are discussed.

Chapters 4 and 5 contain the core of the results. Chapter 4 presents the average struc-
ture solution whilst in Chapter 5 a full structure analysis of the four-layer superstructure
is discussed. As a final result, a model for the superstructure has been proposed and
validated based on X-ray single-crystal data. In addition, it was shown that the W-phase
approximant can be derived from a parent quasicrystal structure through a geometrical
transformation. The structures of both the existing and generated approximants are very
similar. Moreover, they consist of similar building units "clusters" and possess similar
structural modulations that lead to the superstructure formation. Chapter 6 contains
concluding remarks.
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Chapter 2

Experimental

The focus of this chapter is on the experimental work. After a short introduction into the
system Al-Co-Ni, a detailed description of the sample synthesis will be presented. The
last section concentrates on single-crystal X-ray diffraction data analysis.

2.1 System Al-Co-Ni

The majority of the quasicrystals discovered so far are aluminium-based ternary alloys.
The discovery of thermodynamically stable decagonal Al-Co-Ni by Tsai et al. in 1989
was the trigger for a massive investigation of the Al-Co-Ni phase diagram [TIM89]. Since
then, the system Al-Co-Ni has become one of the most crucial structures investigated.
Later Kek found that the stability region of the decagonal Al-Co-Ni phase is Al74Co26

- Al69Ni31 which he named ’D-(Al-Co-Ni)’ [K91]. Several structural modifications were
found within D-(Al-Co-Ni) region during the last twenty years [EIST92, ETYST94, GU94,
GH96a, GH96b, GH98, GD04, RBNGSL98]. They are characterized by differences in their
diffraction patterns, for example the presence or absence of satellite reflections and differ-
ent periodicities along the ten-fold axis. The known structural modifications are shown
in Fig. 2.1: basic Ni-rich (b-Ni) decagonal phase; basic Co-rich (b-Co); 5f - pentagonal
phase with HT and LT modifications; S1 - superstructure type I with only first-order
superstructure reflections; I - superstructure type-I (S1+ S2); II - superstructure type-
II [EIST92, ETYST94, RBNL95]. On the Ni-richer side the diffraction patterns include
main reflections only that results in a period of ≈4 Å along the ten-fold axis. Therefore
this decagonal quasicrystal modification is named basic Ni-rich decagonal phase. On the
Co-richer side most of the diffraction patterns include satellite reflections, which indicates
the presence of various structural modifications. In addition, they show diffuse interme-
diate layers implying disorder related to the ≈8 Å period. The intensity of the diffuse
reflections is enhanced with increasing Co content and the basic Co-rich phase is a special
case as it has a period of ≈8 Å that corresponds to a well-ordered superstructure along
the ten-fold axis.
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CHAPTER 2. EXPERIMENTAL

Figure 2.1: Temperature against composition section along the composition line Al74Co26

- Al69Ni31 showing the variety of structural modifications within the decagonal phase
stability region [RBNGSL98]. The investigated sample with the composition of the
Al72.5Co18.5Ni9 is marked. For definition of the phases see text.

Thus it is evident that in the decagonal Al-Co-Ni phase a variety of polymorphism is
present. These structural modifications, such as a different period along the ten-fold axis,
different structure arrangements and varying sizes of clusters, result from compositional
variations and/or changes in thermodynamical processes. It is interesting to mention that
the main composition variations occur between the two transition metals (TM), namely
Co and Ni, where the Al content is approximately 70 at% for all the modifications. Though
Ni and Co are nearest neighbors in the periodic table and differ only by one d -electron,
the structures vary significantly when changing the Co/Ni ratio. In the framework of the
current research, due to experimental limitations, Co and Ni cannot be distinguished and
the Al-Co-Ni system is treated as a binary Al-TM system. Moreover, an approximant
structure, the W-phase, has been reported for this system [HON01]. This is the only
stable ternary high rational approximant that has been found in the Al-Co-Ni system and
it has a chemical composition that is very close to the quasicrystal structure studied here.
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2.2. SAMPLE PREPARATION AND ANALYSIS

Figure 2.2: DTA analysis showing heating and cooling plots for an as-cast sample (8.34
mg) carried in the temperature range 500 ◦C-1500 ◦C with a cooling rate of 10 ◦C/min.
A phase transition from a 5f - pentagonal solid solution to its partially melting state is
indicated by an exothermic peak.

2.2 Sample Preparation and Analysis

For sample preparation, compacts with composition Al72.5Co18.5Ni9, weighing 1g each,
were pressed from pulverized Al (Heraeus 99.95 wt.%), Co (Alfa Aesar 99.8 wt.%) and
Ni (Heraeus 99.99 wt.%) in an argon atmosphere (Mbraun glove box 150 B-G, PanGas
Ar 99.998 %). Pre-alloys were prepared by melting the compacts in an arc furnace (DE-
GUSSA VOLi O) with a non-consumable tungsten electrode under Ti-gettered argon.

The as-cast samples were analyzed by differential thermal analysis (DTA) (Perkin
Elmer DTA 7) using Al2O3 crucibles under high-purity argon. Fig. 2.2 shows the DTA
analysis of an 8.34 mg sample carried in the temperature range 500 ◦C - 1500 ◦C using
a cooling rate of 10 ◦C/min. A phase transition from a 5f - pentagonal solid solution to
its partially melting state is indicated by an exothermic peak. This analysis helps to plan
the sample preparation.

Quasicrystal growth and annealing was performed in a high-vacuum resistance furnace
(PVA MOV 64). Therein, an as-cast sample was heated in an Al2O3 crucible to 1350 ◦C
(i.e. above melting temperature), held at this temperature for 20 min, then cooled to
1000 ◦C with a cooling rate of 0.24 ◦C/min before subsequent annealing for 48 hours at
this temperature. Eventually, the sample was quenched by jetting cold argon into the
sample chamber.

A sample that contains single-crystals of the decagonal quasicrystal can be identified by
using an optical microscope. Decagonal phase single-crystals are normally characterized
by boundary plane facets showing a distinct decagonal morphology. However, in the
resulting sample, the decagonal phase often coexists in equilibrium with a second phase.
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CHAPTER 2. EXPERIMENTAL

Figure 2.3: XRD intensities of decagonal Al72.5Co18.5Ni9. Indexing refers to the average
structure.

The easiest way to detect the additional phase is by analyzing the powder patterns and
by observation using scanning electron microscopy (SEM) images.

The powder sample was examined by X-ray powder diffraction (XRPD) (PANalytical
X’Pert Pro diffractometer, standard θ-2θ Bragg-Brentano geometry, Cu Kα1, 10◦ ≤ 2θ
≤ 100◦, 0.02◦ step width). The XRD pattern, presented in Fig. 2.3, shows that only
the decagonal phase is present. The satellite reflections are too weak to be observed in
such an experiment. The diffraction peaks were indexed by comparison to the calculated
diffraction pattern of the Al-Co-Ni basic structure.

For the SEM analysis, several sample fragments were embedded in epoxy powder
(SpeciFast, Struers) pressed under a force of 15 kN at a temperature of 180 ◦C for 5 min.
The resulting sample was then polished with a 1 µm diamond suspension, and finally
subjected to electropolishing. SEM was performed in back-scattering mode at 30 kV
with the resulting imaging, as presented in Fig. 2.4, showing that a homogeneous alloy
was obtained. The composition of the sample carried out by the energy dispersive X-ray
spectroscopy (EDX) analysis with 15-30 kV accelerating voltage on a LEO 1530 analyzer
and using the VOYAGER software. The final composition has been determined to be
Al72.5Co18.5Ni9.
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2.3. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA ANALYSIS

 
Figure 2.4: Scanning electron microscopy (SEM) image of decagonal Al72.5Co18.5Ni9 ob-
tained in back-scattering mode at 30 kV.

2.3 Single-Crystal X-Ray Diffraction Data Analysis

Single-crystal X-ray diffraction data were collected at SNBL/ESRF Grenoble using a
marresearch 345 imaging-plate (IP) scanner (180 frames with an oscillation angle of φ = 1◦

each, wavelength λ = 0.72326 Å). Two data sets were collected, data set 1 with an
exposure time of 4 sec/frame to prevent saturation of strong reflections, and data set 2
with 100 sec/frame in order to collect weak superstructure reflections. The reciprocal
space sections h1h2h3h4h5 with h5 = 0, 1, 2, 3 as well as h1h2h2h1h5 and h1h2h̄2h̄1h5 are
shown in Fig. 2.5. Long exposure times during the X-ray experiment increases the quality
of the counting statistics, since the background becomes smoother. Hence, to collect
reliable information for the weak reflections, it was essential to increase the exposure time.
Since the strongest reflections of these two synchrotron data sets are still oversaturated,
an in-house data set (data set 3 ) was also collected employing a four-cycle diffractometer
equipped with a charge-coupled device (CCD) detector (Oxford Diffraction Xcalibur, 7.5◦

≤ 2θ ≤ 55.5◦, 180 frames with φ = 1◦ each, exposure time 10 sec/frame, 50 kV, 40
mA, graphite monochromatized MoKα radiation). Comparison between reciprocal space
sections reconstructed from the data sets that were collected at SNBL/ESRF Grenoble
(Fig. 2.5) and by the in-house diffractometer (Fig. 1 in Article I) show that the latter
have much lower resolution, mainly due to the divergence of the X-ray beam. For the two
data sets collected at SNBL/ESRF Grenoble a needle-shape sample of ≈30 µm and for
the in-house data set a needle-shape sample of ≈70 µm were used. In all three X-Ray
diffraction data sets the intensities were corrected for Lorentz and polarization factors.
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CHAPTER 2. EXPERIMENTAL

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Reciprocal space sections of decagonal Al72.5Co18.5Ni9 reconstructed from 180
IP-scanner frames each: h1h2h3h4h5 with (a) h5=0, (b) h5=1, (c) h5=2, (d) h5=3 (h5

referring to the four-layer 8.144(2) Å period), (e) h1h2h̄2h̄1h5 and (f) h1h2h2h1h5. The
main (h5=2n) and satellite (h5=2n + 1) reflections are shown in sections (a, c) and (b,
d), respectively. 10000 reflection (Yamamoto setting[Y96]) is marked by an arrow in (a).
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2.3. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA ANALYSIS

In the case of periodic crystals, the direct lattice and unit cell can be uniquely de-
rived from the experimentally accessible reciprocal lattice. For quasicrystals, the relation
between the direct and the reciprocal space is not so evident. Moreover, the presence of
superstructure reflections might introduce additional complexity in the reciprocal space
analysis. In fact, for decagonal quasicrystals the diffraction pattern of a superstructure
will generally appear only rotated and scaled with respect to the average structure.

In contrast to incommensurately modulated crystals, quasicrystals cannot be described
in terms of a modulation of a basic structure or by two or more substructures. The funda-
mental reason for this is that the underlying structure of quasicrystals is itself quasiperi-
odic. The ideal Penrose tiling serves as a basic model for the description of the underlying
quasiperiodic order. In this tiling each vertex is decorated by an atom or an atomic clus-
ter. Because quasicrystals lack a basic periodic structure, their diffraction patterns cannot
be characterized by having subsets of "main" and "satellite" reflections in the same mean-
ing as for incommensurately modulated crystals. However, similar terminology is used for
quasicrystal structures. Their "main reflections" have relatively strong intensities and can
be indexed based on a Z - module of rank five. All additional reflections have much weaker
intensities and appear due to some structural modulations in an underlying quasiperiodic
crystal.

In the case of our decagonal quasicrystal, all reflections in the even layers (h5=2n)
can be indexed with the basis of the Ni-rich decagonal phase. In contrast, for indexing
all reflections in the odd layers (h5=2n + 1) a superstructure basis had to be applied.
These bases are related to each other by a rotoscaling operation: rotation by π/10 and
scaling by a factor of 2cos π/10=1.90211. Hence, all reflections in the even layers are main
reflections and all reflections in the odd layers are satellite reflections (see Fig. 2.5). Since
the reciprocal space of the decagonal phase is invariant under a scaling by τn, no unique
setting notation exists. However, the important settings for decagonal quasicrystals are
those defined by Steurer and Yamamoto (see [S04] and [Y96] respectively). They are
related to each other by a scaling matrix, for more details see [Y96].

Within the Ni-basic basis, the index of the strongest reflection in the zero layer is
13420 in the Yamamoto setting (02210 in the Steurer setting) that is used throughout
this thesis (see Fig. 2.5(a)).

A data reduction performed using the software package CrysAlis (Oxford Diffraction).
According to the observed Laue symmetry 10/mmm, data set 1 has 39,315 reflections
merged into 1,405 unique reflections with Rint=0.174, data set 2 has 41,810 reflections
was merged into 1,434 unique reflections with Rint=0.163 and data set 3 has 899,034
reflections merged into 1,764 unique reflections with Rint=0.098.

Quasicrystals can be seen as real space projections of crystals in a higher-dimensional
space. Accordingly, the number of required dimensions necessary to describe a quasicrystal
depends on its symmetry. Decagonal quasicrystals with five-fold or ten-fold rotational axes
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CHAPTER 2. EXPERIMENTAL

require a five-dimensional space description and their symmetry can be described by five-
dimensional decagonal space groups. Relevant five-dimensional decagonal space groups
should fulfill the condition that their five-dimensional point groups are isomorphous to the
three-dimensional point group describing the diffraction symmetries. Hence, there are only
34 relevant decagonal non-equivalent space groups [Y96], whereas the five-dimensional
decagonal lattices are all primitive ones. Tab. 2.1 summarizes the possible pentagonal
and decagonal point groups.

Essential information about possible space groups can already be obtained from diffrac-
tion experiments. Moreover, it is "more natural" to provide formulations of the space
groups in the language of reciprocal space, since it is more accessible to experiments than
real space. Possible space groups can be determined based on the point group of the
Fourier spectrum (Laue group) and the extinction conditions present. In this state, how-
ever, the space group determination is not unique, since the Fourier spectrum is always
centrosymmetric according to Friedel’s law.

As for three-dimensional crystals, extinction conditions can be classified into two types.
The first type comprises general extinctions; they uniquely define the Bravais type of
the underlying lattice, such as primitive, body-centered or face-centered and concern
all reflections. The other type comprises special extinctions; they are related to the
presence of glide planes or screw axes and concern only a special series of reflections.
Thus the extinction rules carry information about the non-primitive translations and can
be expressed as rules on the allowed values for the h1h2h3h4h5 indices, which is in analogy
to classical crystals. However, in contrary to classical crystals, the choice of the coordinate
system for quasicrystals is not unique and one should know in which coordinate system
the determined extinction conditions were defined.

13



2.3. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA ANALYSIS

Table 2.1: Decagonal point and space groups constructed by analogy with trigonal and
hexagonal point groups as given in [TTT94].

Three-dimensional point group k Five-dimensional space group Extinction condition

10

P10 No condition

P10j 0000h5: jh5 = 10n

20

P 10
m

No condition

P 105

m
0000h5: h5 = 2n

20

P1022 No condition

P10j22 0000h5: jh5 = 10n

20

P10mm No condition

P10cc h1h2h2h1h5: h5= 2n
h1h2h2h1h5: h5= 2n

P105mc h1h2h2h1h5: h5= 2n
P105cm h1h2h2h1h5: h5= 2n

20

P10m2 No condition
P10c2 h1h2h2h1h5: h5= 2n
P102m No condition
P102c h1h2h2h1h5: h5= 2n

40

P 10
m

2
m

2
m

No condition

P 10
m

2
c

2
c

h1h2h2h1h5: h5= 2n
h1h2h2h1h5: h5= 2n

P 105

m
2
m

2
c

h1h2h2h1h5: h5= 2n

P 105

m
2
c

2
m

h1h2h2h1h5: h5= 2n

14



Chapter 3

Structure Determination of
Quasicrystals

The main goal of a structure analysis is to determine atomic positions and their occu-
pancies. These positions are based on the electron density distribution calculated from
the diffraction data while taking into account chemical and physical properties. How-
ever, a reconstruction of a crystal structure from an X-ray diffraction experiment is not a
straightforward process since the experimentally accessible information is incomplete.

In a single-crystal X-ray experiment, the positions and intensities of the Bragg peaks
are measured. The former carry information about the lattice whilst the latter convey
incomplete information on the structure factors which describe the electron distribution
in the unit cell. Structure factors are complex numbers; only their real parts, the ampli-
tudes (square root of intensities), are measured while the imaginary parts, the phases, are
missing. The missing information has to be obtained indirectly. Once it is done in a sat-
isfactory way, a Fourier transform can be used to convert the reciprocal-space diffraction
pattern into a real-space object, the crystal structure.

Structure analysis is one of the most intriguing questions in the field of quasicrystals.
A lack of periodicity in three-dimensional space makes the structure determination pro-
cess a less intuitive and challenging task. On top of this, the quality of X-ray data for a
single-crystal of decagonal quasicrystal suffers from several offsets. The X-ray diffraction
data sets of the decagonal quasicrystals consist of few strong and many weak reflections.
However in comparison to an ideal quasicrystal, the total number of observed weak re-
flections is still relatively low because of the presence of random phason fluctuations. The
occurrence of superstructure reflections can impose additional challenges on the process
of structure determination.

Various experimental methods have been used to determine the structure of qua-
sicrystals as well as to investigate their physical properties directly [SD09]. Methods
such as high-resolution transmission electron microscopy (HRTEM), selected area elec-
tron diffraction (SAED) and high-angle annular detector dark-field scanning transmis-
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sion electron microscopy (HAADF-STEM) have been employed. The electron microscopy
methods, however, provide only local information average averaged over the sample thick-
ness. Whereas, X-ray diffraction provides global information taken modulo the higher-
dimensional unit cell. Still, none of the previously mentioned methods can distinguish
between non-centrosymmetric and centrosymmetric space groups. This only becomes
possible applying convergent beam electron diffraction (CBED).

In the past, two different competing approaches have been developed. One, higher-
dimensional method, relies on numerical structure refinement by applying Patterson,
Fourier and MEM analysis to the intensities obtained by X-ray experiments. As a re-
sult, the structure in higher-dimensional space is obtained. That is to say, the location
of the occupation domains in the higher-dimensional unit cell is determined. By apply-
ing the section method (which will be discussed further), the coordinates of individual
atoms in external space are obtained. The drawback of this approach is that only approx-
imate higher-dimensional structure solution can be obtained. Consequently, it can lead
to unreasonable solutions in physical space.

The other, three-dimensional method, is based on tiling and decoration. One starts
with two or more elementary cells (tiles) which fill the space quasiperiodically. These
tiles are then decorated with atoms or with atomic clusters using appropriate matching
rules and assuming a reasonable atomic packing. Also, a higher-dimensional approach is
applied here, but this time only the coordinates of the tile vertices are determined and
not those of individual atoms. As a result, a variety of structure models for quasicrystals
have been proposed. Most of them are based on different types of tilings [SD09] including
ideal quasiperiodic tilings, random tilings and glass models.

Meanwhile it became clear that to tackle structure determination of quasicrystals
it is important to use all available methods to take into account as much information
as possible. Furthermore, it is evident that the refinement process is a necessary step
in a quantitative structure analysis and should be performed to confirm and improve a
structure model. A possible description of the structure determination process is presented
in Fig. 3.1.

In the current work several methods have been applied to determine the structure of
decagonal Al72.5Co18.5Ni9. The focus of this section is on the basic concepts required for
the structure analysis of quasicrystals. Firstly, the mathematical background required
for a higher-dimensional approach will be given. Then the different tilling methods will
be discussed. Finally an overview of the crystallographic methods that were used for
structure analysis will be presented.
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Figure 3.1: Flowchart for decagonal quasicrystal structure analysis.
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3.1. PERIODICITY IN HIGHER-DIMENSIONAL SPACE

3.1 Periodicity in Higher-Dimensional Space

One of the most important developments in the 1980s was the application of higher-
dimensional crystallography to real structures. Efforts were made to extend the theory of
the basic 230 crystallographic space groups. The most comprehensive studies on crystal-
lography in four-dimensional space were carried out by H. Brown, R. Bülow, J. Neubüser,
H. Wondratschek, and H. Zassenhaus [NWB71, BNW71, WBN71, BBNWZ78]. Further-
more, a study of N -dimensional crystallography was published by Schwarzenberger [S80].

The first extension of classical three-dimensional crystallography accounted for incom-
mensurably modulated structures [dW74, JJ77, dW77, JJ79, JJ80], and later work also
included quasicrystals [B86, J86, CGM88a, CGM88b]. Nowadays, non-crystallographic
point groups are included in the International Tables for Crystallography - Volume A
[ITCA].

In the framework of the higher-dimensional approach (with dimensions >3) fictitious
additional dimensions are used. The higher-dimensional (nD) space is split into two sub-
spaces, orthonormal to each other. These are the three-dimensional (3D) external space
and the (n-3)-dimensional internal space. This introduces additional degrees of freedom
that allows to describe quasicrystals as periodic structures. Hence, this approach enables
the classification of higher-dimensional space groups and the formulation of the extinc-
tion conditions observed in the diffraction patterns. This significantly simplifies structure
analysis and structure description. Moreover the generalization of three-dimensional crys-
tallography to higher dimensions allows well-developed powerful mathematical techniques
from standard crystal structure analysis to be applied to quasicrystal structure analysis.
These techniques include Patterson method, Fourier method, Maximum Entropy Method
(MEM) and Least Square method. All of these methods are implemented in the software
QUASI07_08 by Akiji Yamamoto [Y96, Y08].

A hint for applying a higher-dimensional approach to quasicrystal analysis came from
the analysis of diffraction patterns. It was clear that three integer indices (Miller hkl in-
dices) are insufficient to index all Bragg peaks in diffraction patters that do not obey clas-
sical crystallographic symmetries. That is to say, in the framework of higher-dimensional
crystallography, diffraction spots in external space are considered a projection of the
higher-dimensional reciprocal lattice and their intensities are interpreted as Fourier spec-
tra of a higher-dimensional crystal.

It is important to mention that while the higher-dimensional approach proved to be an
excellent mathematical tool, its application is not straightforward. Therefore there is al-
ways a tendency to seek a simpler way to tackle and visualize quasicrystal structures. An
alternative more general physical space approach has been established by Rokhsar, Wright,
and Mermin [RWM88a, RWM88a] with later contributions by Rabson, Ho, Dräger, and
Lifshitz [L95]. They showed that the Fourier space approach for the conventional symme-
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CHAPTER 3. STRUCTURE DETERMINATION OF QUASICRYSTALS

try classification of crystals can be reformulated by abandoning the traditional reliance
on periodicity. As a result, a unified method in three dimensions has been proposed
for the treatment of aperiodic crystals - modulated crystals, composite crystals and qua-
sicrystals. The method does not rely on projecting higher-dimensional crystallographic
space groups, but on three-dimensional Fourier space. In the framework of this approach
the extinction conditions can be expressed by simple phase relationships. This approach
allows the computation of all crystallographic or quasicrystallographic space groups in
three-dimensional space.

In the particular case of decagonal quasicrystals, diffraction patterns possess a ten-fold
axis. Thus, for indexing all Bragg peaks, five reciprocal basis vectors are needed. Hence,
any scattering vector H can be written as a linear combination as follows:

H =
5∑

j=1

hja∗j with hj ∈ Z (3.1)

where the basis vectors a∗ are given as follows due to orthogonality:

a∗j = a∗(cos(2πj/5), sin(2πj/5), 0), where a∗ =‖ a∗j ‖ for j = 1, . . . , 4

and along the ten-fold axis a∗5 = a∗5(001). (3.2)

The unit vectors that span the reciprocal lattice D∗ in terms of the basis vectors of
the corresponding irreducible representations ai (i = 1, . . . ,4) and a5 are given as:

d∗j =
a∗√

5
[c(j−1)a1 + s(j−1)a2] +

a∗′√
5

[c2(j−1)a3 + s2(j−1)a4]

and d∗5 = c∗a5 = c∗. (3.3)

Expanding or contracting a diffraction pattern of a decagonal quasicrystal by a factor
of τn (τ = 2cos(π/5) = (1+

√
5)/2 and n ∈ Z) yields a diffraction pattern similar to the

original. This interesting property shows that inflation/deflation symmetry is present.
Therefore the choice of the five reciprocal-basis vectors is not unique, since a∗ in external
space cannot be uniquely determined. It is possible to obtain equivalent sets of vectors
by applying the similarity transformation matrix S on the unit vectors d∗j , where S for
the decagonal lattice is given by:

S =




0 1 0 −1 0

0 1 1 −1 0

−1 1 1 0 0

−1 0 1 0 0

0 0 0 0 1



. (3.4)
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3.1. PERIODICITY IN HIGHER-DIMENSIONAL SPACE

Thus, unit vectors related by d∗
′
i =

∑
m
j=1d

∗
j(Sm)ji are equivalent. The determinant of S

should be ±1, since the similarity transformation should preserve the unit cell volume.
The resulting vectors d∗

′
i are parallel to d∗j , but have τm times larger external components

and τ−m times smaller internal components. In the framework of this work transfor-
mations between two bases, the so called Yamamoto basis and Steurer basis are used
frequently. These relevant transformations are as follows:
The transformation matrix from the Steurer basis to the Yamamoto basis is:

Ss→y =




0 1 0 −1 0

0 1 1 −1 0

−1 1 1 0 0

−1 0 1 0 0

0 0 0 0 1



. (3.5)

The transformation matrix from the Yamamoto basis to the Steurer basis is:

Sy→s =




−1 1 0 −1 0

0 0 1 −1 0

−1 1 0 0 0

−1 0 1 −1 0

0 0 0 0 1



. (3.6)

The five vectors that span the five-dimensional direct lattice d are obtained from Eq. 3.3
by using the orthogonal conditions:

dj =
2a√

5
[(cj − 1)a1 + sja2 + (c2j − 1)a3 + s2ja4]

for j = 1, . . . , 4 and d5 = ca5 = c (3.7)

where a∗ = 1/a, c∗ = 1/c and cj = cos(2πj/5), sj = sin(2πj/5), j = 1, . . . , 4. The vectors
a1, a2 and a5 are perp-space unit vectors and a3 and a4 are par-space unit vectors.

The five-dimensional D lattice can be decomposed into two orthogonal subspaces: the
external three-dimensional space VE (physical space) and the internal two-dimensional
space VI (complementary space). This corresponds to the decomposition of D∗ into V∗E
and V∗I . Hence, the D-basis is the crystal reference system and the V-basis is a Cartesian
orthonormal reference system. In reciprocal space, the D∗-basis is the reciprocal lattice
reference system and its orthogonal reference system is given by the V∗-basis.
The unit vectors of decagonal reciprocal and direct lattices in four-dimensional space as
defined in Yamamoto’s settings are shown in Fig. 3.2.

The transformation matrix from an average basis to a superstructure basis in reciprocal
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(a) (b) (c) (d)

Figure 3.2: The projection of the unit vectors of decagonal reciprocal (a, b) and direct (c,
d) lattices in four-dimensional space showing the external components of the unit vectors
(a, c) and the internal space components (b, d).

space is:

Sav→sup =




1 0 1 −1 0

0 1 1 0 0

−1 0 2 0 0

0 −1 1 1 0

0 0 0 0 2



. (3.8)

Consequently, the transformation matrix from a superstructure basis to an average basis
in reciprocal space is:

Ssup→av =




1 0 1 −1 0

0 1 1 0 0

−1 0 2 0 0

0 −1 1 1 0

0 0 0 0 2




−1

= 1/5




2 2 −3 2 0

−1 4 −1 −1 0

1 1 1 1 0

−2 3 −2 −2 0

0 0 0 0 5/2



. (3.9)

In direct space the transformation matrix for the coordinates (i.e. the location of the
occupation domains) is:

Sav→sup =







1 0 1 −1 0

0 1 1 0 0

−1 0 2 0 0

0 −1 1 1 0

0 0 0 0 2




−1



T

= 1/5




2 −1 1 −2 0

2 4 1 3 0

−3 −1 1 −2 0

2 −1 1 −2 0

0 0 0 0 5/2




(3.10)

In the current work, a decagonal quasicrystal will be analyzed using the higher-
dimensional approach. For its periodicity recovery, five-dimensional space is used. The
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periodicity of the higher-dimensional lattice D, allows to determine the higher-dimensional
unit cell and its space group. This corresponds to a classical crystal structure which is
described by a unit cell and a three-dimensional space group. The lattice with three-
dimensional periodicity is decorated with atoms, whereas the higher-dimensional lattice
is decorated with hyperatoms, so called occupation domains or atomic surfaces. For axial
quasicrystals the occupation domains are two-dimensional objects, extended parallel to
the internal space and have no extension along external space.

The Fibonacci Chain is a classical example of a one-dimensional quasicrystal, Fig. 3.3.
This example will be given for didactic reasons, since it can be visualized easily. In
the framework of this example, external (physical) space is one-dimensional, and a two-
dimensional lattice serves as an example of a hyperlattice (higher-dimensional lattice).
The two-dimensional lattice is decorated by line segments (occupation domains), as an
analogy to hyperatoms. The two-dimensional lattice is defined by external space and an
additional space, the so-called internal space (complementary space). In other words, to
recover periodicity of the one-dimensional quasiperiodic lattice, it can be lifted to two-
dimensional space by adding an additional fictitious dimension.

A one-dimensional quasiperiodic tiling can be created by section or projection methods.
Within the section method, a one-dimensional external space cuts the two-dimensional
periodic lattice with an irrational slope, as in Fig. 3.3. As a result, a quasiperiodic pattern
of dots is obtained in external space. By changing the slope of external space relative to
the higher-dimensional lattice, different one-dimensional structures can be obtained. For
example by choosing a rational slope, one obtains so-called rational approximants. An
example of 〈2,1〉-rational approximant is shown by a dashed line.

Within the projection method, a strip ("acceptance domain") with a certain width is
defined parallel to external space. All lattice points present in that strip are projected
onto external space. The projection results in a dense quasiperiodic set of points and the
intensities of the projected points are related to their internal component.

3.2 From Quasiperiodic Tiling to Higher-Dimensional

Modeling

A close correspondence between decagonal quasicrystal structures and Penrose tilings
was found immediately after the discovery of quasicrystals [LS84]. It served as the main
motivation for many scientists as well as artists, designers and others to join this new
field. Tiling theory is a field devoted to the general question of how to fill the plane or
space without gaps. For more details see [GS85].

In the 1970s Sir Roger Penrose [P74] investigated a type of tiling that can be described
as a non-periodic tiling with long-range orientational order and with non-crystallographic
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Figure 3.3: Creation of a Fibonacci chain, a one-dimensional quasiperiodic pattern, by
an irrational cut of the two-dimensional periodic lattice (the section method). A rational
cut, shown by a dashed line, leads to a 〈2,1〉-rational approximant (periodic pattern).

rotational symmetry. These tilings belong to the category of aperiodic tilings and are
today known as Penrose tilings. An original rhombic Penrose tiling is constructed from
two types of rhombi, fat with angels of 2π/5 and 3π/5, and skinny with angles of π/5 and
4π/5. Their edges are decorated, e.g. with arrows or with color. They may be joined only
if their decoration permits, following so-called matching rules. Non-congruent Penrose
tilings are locally isomorphic. That means that every finite pattern of one tiling occurs
also in every other tiling. On the other hand, two tilings are considered to be different
if there is no distance-preserving affine transformation (Euclidean transformation) which
maps one to the other.

The similarity between quasicrystal structures and Penrose tilings has been recognized
based on their diffraction patterns. Since both possess, sharp Bragg reflections and non-
crystallographic symmetries. These special diffraction patterns of Penrose tiling have
been observed already in 1982 by using the optical Fourier transformation, as reported
in [M82]. Presence of Bragg peaks implies an underlying long-range order. In both,
quasicrystal structures and Penrose tilings, the long-range order is related to inflation /
deflation symmetry but not to translation symmetry.

According to a Penrose tiling picture, quasicrystal materials consist of two types of
atomic units which are the building blocks intermixed in a particular ratio. This picture is
less intuitive than that of classical crystals since the latter require only one type of building
units, unit cell, which are energetically favorable. This requirement raises important and
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still ongoing discussions concerning the stabilization of quasicrystals.

For a physically meaningful quasilattice construction a minimal interatomic distance
should be considered. Hence the set of points that forms a quasiperiodic system should
satisfy the Delauney condition, an essentially dense point set with a minimum distance r
between the points. Essentially dense in the meaning that in a radius R around a point a
there is at least one other point b. Based on these considerations, an axial quasicrystal can
be viewed as quasiperiodic atomic layers stacked periodically along the third direction (in
the following only tilings related to decagonal quasicrystals will be considered). Therefore
each quasiperiodic atomic layer of an axial quasicrystal can be described as some two-
dimensional tiling decorated with atoms in an appropriate way. Consequently, a Penrose
tiling can be viewed as an ideal two-dimensional quasicrystal. An example of a Penrose
tiling with vertices decorated by atoms is shown in Fig. 3.6b.

A characteristic property of an ideal Penrose tiling is its scaling (inflation or deflation)
symmetry. For example, a fat rhombus can be subdivided into two fat rhombi and one
skinny rhombus with an edge length scaled by τ ; this process is called inflation. As a
consequence of this property, the crystal basis cannot be uniquely defined for quasiperiodic
structures.

Real quasiperiodic structures may not be obtained by a simple decoration of the vertex
model as they require a more general type of tiling for their description. However, the
vertex model serves as a preliminary structure model for decagonal quasicrystals. Using
the set of fat and skinny rhombi but omitting the matching rules, random tilings can
be constructed. The relation between quasicrystal structures and random tilings was
first presented by Elser in 1985 [EH85]. Later it was shown by Gummelt [G96] that
quasiperiodic tilings can be forced using a single type of decagonal covering with matching
rules. Covering means that the tiles are permitted to overlap.

Several methods are known to generate a quasiperiodic tiling: Inflation/Deflation
Method (IDM), Dual Method or Generalized Dual Method (DM/GDM), Projection Method
(PM) and Section Method (SM). A detailed description of these methods is given in a
variety of previous works [dB81, KN84, SSL85, E85b, E86, KKL85, DK85, ML83]. Here
only a brief overview will be given. In the framework of IDM, a structure consists of a
certain rule for a local transformation of structure elements into patches of a new structure
which is of the same type as the original one, but scaled. Due to its local criteria, IDM
has been used as a model to simulate the growth process of real quasicrystals. It became
clear, however, that applicability of IDM for real quasicrystal structures is rather limited.
Since, quasicrystals almost never correspond to an ideal tiling; some degree of randomness
is always present which can be taken into account by introducing deliberate violations of
rules for a local transformation. To reduce the complexity involved, a covering approach
has been proposed. This is a more intuitive method, since only one type of covering cluster
can be used and the restriction is only on how these clusters overlap. These overlapping
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regions represent overlapping area/volume of clusters in the real structures and include
shared atoms between two clusters. Tiling models are constructed based on diffraction
experiments or on known crystalline structures. Later those models are employed to
interpret the high resolution electron microscope (HRTEM) images.

DM/GDM allow to a large variety of quasiperiodic tilings to be obtained without
limitation on the rotation symmetry and were reported as the most convenient methods
for writing computer algorithms for generating rhombic tilings [WW88].

Neither IDM nor DM/GDM can be used directly in the course of structure determi-
nation, hence more relevant methods for the current research are PM and SM. By using
SM/PM, not only tilings can be generated but also atomic positions of realistic quasicrys-
tal structures; their point density as well as their diffraction patterns can be calculated.
This makes these methods suitable for quantitative structure determination. Here it is
of interest to stress a few additional points related to the tilings generated by SM. More
detailed information concerning known tilings is given in [Y96] and the references therein.

For generating decagonal quasilattices using SM, the minimum number of required
dimensions of the higher-dimensional unit cell is four. Hence the internal space and the
occupation domains are two-dimensional. Another point is that tilings obtained by SM
can be subdivided into two categories. Namely, tilings that are generated from one oc-
cupation domain and tilings that are generated from more than one occupation domain.
The latter can be a superstructure of the former. As an example, the pentagonal Pen-
rose tiling generated from one decagonal occupation domain (Fig. 3.4) is a substructure
of the rhombic Penrose tiling which is generated from four pentagonal occupation do-
main (Fig. 3.5). Understanding these relationships is crucial to a determination of the
superstructure [YW97a, SYS10].

As was stressed before, the application of local matching rules seems to be not appli-
cable for quasicrystal growth. A more suitable model for that is based on random tilings.
In the framework of this method, the space is filled with tiles in a quasiperiodic random
way. According to the thermodynamic law, minimization of the free energy F = E - TS
leads to system stabilization. The configurational entropy (S ) increases with randomness
and cause to the minimization of the free energy, therefore the random tilings approach
is favorable.

As an another example, in Fig. 3.6 four occupation domains have been decorated
with two different types of atoms which results in an atomic decoration of the vertices of
the rhombic Penrose tiling. The structure model in Fig. 3.6 is an example of a perfect
quasiperiodic model. Since they are related to a perfect tiling, they cannot account for
structural defects. It has to be kept in mind that real quasicrystal structures are more
complex, therefore for their description more complex occupation domains should be
used, see Fig. 3.7. In this example an occupation domain is subdivided into smaller
subdomains. Different chemical elements are assigned to each subdomain, as indicated by
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(a) (b)

Figure 3.4: (a) Decagonal occupation domain located at (0,0,0,0,0) in the four-dimensional
unit cell. (b) Corresponding pentagonal Penrose tiling in external space.

A

B

D

C

(a) (b)

Figure 3.5: (a) Four pentagonal occupation domains located at (i,i,i,i,0)/5, i=1,...,4 in the
four-dimensional unit cell. (b) Corresponding rhombic Penrose tiling in external space.
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(a) (b)

Figure 3.6: (a) Four pentagonal occupation domains occupied by two different types of
atoms located at (i,i,i,i,0)/5, i=1,...,4 in the four-dimensional unit cell. (b) Corresponding
rhombic Penrose lattice with vertex decoration for approximating a quasiperiodic atomic
layer.

different colors. The corresponding external space obtained by the irrational cut through
the higher-dimensional space is shown in Fig. 3.7b. Atoms in external and internal spaces
are indicated by corresponding colors.

The structures of decagonal quasicrystals can be described geometrically as a periodic
stacking of quasiperiodic layers. Hence, the additional periodic direction should be taken
into account in a structure analysis of real quasicrystals. Moreover, axial quasicrystals can
be described as a packing of partially overlapping columnar clusters with an orientation
along the periodic axis. Hence the vertices of a tiling should be decorated by atomic
clusters instead of single atoms. An example for such a structure is shown in Fig. 3.8.
This structure model consists of five occupation domains. They are subdivided into
subdomains which are occupied with different chemical elements as indicated by different
colors. Occupation domains A-D are located in special positions (i, i, i, i,x 5)/5 (i =
0, 1, 2, 4; x 5=5/4, 15/4) of a five-dimensional unit cell and possess site symmetry 5m.
Occupation domains A and B are located at x 5=1/4 and C-E at x 5=3/4, where x 5 is
an axis along the periodic direction. As a result from an irrational cut through the
five-dimensional structure two different layers in external space have been obtained at
x 5=1/4 and 3/4 respectively as shown in Fig. 3.8f and g. The tiling was added as a visual
guideline. 20 Å clusters are indicated by decagonal cages surrounded by ten pentagonal
cages. In this structure model, columnar clusters have an atom in the centre, indicated
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(a) (b)

Figure 3.7: Independent occupation domains of the refined model structure of Co-rich
decagonal Al-Co-Ni, located at (a) (0,0,0,0,1/4) in a five-dimensional unit cell. (b) Ex-
ternal space obtained by an irrational cut through the five-dimensional structure. The
atoms derived from the subdomains in (a) are represented by the same color.

by red and generated from a central occupation domain E.

As for any structure refinement, a good starting structure model is needed. Hence, the
first questions that must be answered in the process of quasicrystal structure determina-
tion are: Where are the occupation domains located? What is the size of the occupation
domains? How are the occupation domains shaped?

Originally, HRTEM images show that the structures of decagonal quasicrystals can
be visualized as consisting of overlapping clusters; based on this, a higher-dimensional
structure model can be introduced. This periodic higher-dimensional model describes the
cluster distribution in three-dimensional space.

A frequently used procedure of building a higher-dimensional structure model can be
described as follows. Initially, by using HRTEM images cluster centers as well as their
distribution and size are identified. In the next step, all cluster centers are connected by
an appropriate tiling. This results in a tiling that underlines the distribution of cluster
centers. Next, the coordinates of each tiling vertex is lifted to higher-dimensional space.
To obtain the initial size and shape of the occupation domain, the higher-dimensional
representation is projected onto complementary space. Thus, the shape of the subdomain
in the center of the occupation domain for the structure model is derived from the cluster
arrangements in HRTEM images; the edge length of the tiling gives us an understanding
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(a) (b) (c) (d) (e)

(f) (g)

Figure 3.8: Independent occupation domains of the refined model structure of
Co-rich decagonal Al-Co-Ni, located at (a) (1,1,1,1,5/4)/5, (b) (2,2,2,2,5/4)/5, (c)
(4,4,4,4,15/4)/5, (d) (3,3,3,3,15/4)/5, (e) (0,0,0,0,15/4)/5 in the five-dimensional unit
cell. External space obtained by an irrational cut through a five-dimensional structure
at (f) x 5=3/4 and (g) x 5=1/4. The atoms derived from the subdomains in (a-e) are
represented by the same color. The decagonal clusters are on the vertices of a Penrose
pentagon tiling.
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about the size of the occupation domain.

Model building is one of the most challenging and crucial steps in the structure solution
process [Y96]. However, it is important to notice that from HRTEM images only low res-
olution information in external space is available. How would it be possible to determine
a more detailed atomic distribution? In this step it is essential to complement HRTEM
information by single-crystal X-ray diffraction data which allows the exact location of the
occupation domains to be determine. This can be done by using CF/LDE, since these
methods require only the experimentally obtained intensities, but no structural informa-
tion. In addition, the analysis of the closely related known structures of the quasicrystal
and its approximant can give an initial understanding about the chemical distribution
within the clusters. In the current quasicrystal structure analysis, the W-phase approxi-
mant was found to be a closely related crystal structure. Based on this information, the
occupation domains were subdivided into subdomains. The external space component is
obtained by applying the section method on a higher-dimensional model. Each subdomain
creates atoms with the same local environment in external space. Therefore construction
of complicated occupation domains, consisting of several subdomains, is required to mimic
the structure in external space, see Fig. 3.7 and Fig. 3.8. Small subdomains (stars and
pentagons) accommodate smaller clusters with five-fold symmetry, where decagons ac-
commodate larger clusters with ten-fold symmetry. In this model additional very small
subdomains, rhombi, were needed for the construction of the model that preserves the
closeness conditions (the occupation domains without voids). The occupation domains
should be constructed in such a way that by applying the section method, the observed
cluster arrangement is obtained.

3.3 Patterson Technique, Ab Initio Phasing Methods

and MEM

The Patterson analysis is the most straightforward approach for structure determination
since it uses only experimentally obtained reflection intensities and is also suitable for
the determination of interatomic distances. In the structure analysis of quasicrystals,
Patterson maps give an initial idea about the location of the occupation domains and
serve as a good tool for the initial check of data quality. Moreover, in the analysis of the
superstructure, difference Patterson maps carry invaluable information.

There are several iterative methods for ab initio phasing of structure factors avail-
able. Two methods, Charge Flipping (CF) and Low Density Elimination (LDE), were
extended to higher-dimensional structure analysis. In the current study both methods
have been applied for structure analysis of decagonal Al72.5Co18.5Ni9. The LDE method
is implemented in the LODEM code in a program package QUASI07_08_f90 [Y08]. CF
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and LDE methods are both implemented in the SUPERFLIP code [OS04, OS05, P04].
These methods can provide approximate structure solution which is reconstructed with-
out a priori knowledge of the structure or symmetry. The reconstruction of approximate
electron densities from structure factor amplitudes is an iterative process. The iteration
is initialized by assigning random phases to the experimentally obtained amplitudes of
the structure factors. An electron density distribution function is then calculated by in-
verse Fourier transform on a discrete grid of points. Then, using CF, all grid points with
electron densities below a positive threshold δ are multiplied by -1 (flipped), and new
temporary structure factors are calculated by Fourier transform of these modified den-
sities. The phases of these temporary structure factors are combined with the observed
amplitudes and as such a new set of structure factors enters the next iteration cycle. This
procedure is repeated until a stable solution is found. The LDE method is similar to
CF but the threshold δ is set to zero and all the grid points with density below zero are
eliminated. Therefore, electron density maps obtained by the LDE method are sharper
(contain less noise).

To improve the results after ab initio phasing as well as to sharpen the Fourier maps
after a refinement process, the Maximum Entropy Method (MEM) applied. Traditionally,
MEM is used in data analysis to reconstruct positive distributions such as images and
spectra from imperfect data. Within this language, the positive distribution ought to be
assigned probabilities that are based on the entropy of that distribution. Therefore the
most probable element corresponds to the maximum entropy reconstruction, thereby its
selection leads to entropy maximization. Reconstructing the electron density from the
imperfect crystallographic data is not a trivial task though, since the resulting electron
density is described by a large number of parameters. To reconstruct the electron densi-
ties using MEM the QCMEM code in the program package QUASI07_08_f90 has been
implemented. It allows the reconstruction of electron densities in arbitrary dimensions.
For the calculation we use the Sakata-Sato algorithm, which is an approximate solution
of the MEM equation [SS90]. MEM requires the knowledge of the structure factors and
quite precise information about the F(0) reflection value. MEM helps to eliminate the
noise and to sharpen the peaks on the electron density maps calculated by CF/LDE or
after refinement.

3.4 The Pseudo-Approximant Method

Approximants are periodic structures that are built from structural units, clusters, sim-
ilar to those encountered in quasicrystals. Similar structural fragments in quasicrystals
and their approximants can include various numbers of local environments. The close-
ness of approximants to their quasicrystals is directly proportional to the size of their
similar structural fragments. Moreover, approximant structures can be derived from the
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quasicrystal structure through geometrical transformations. The point symmetries of the
approximants are subgroups of those of their parent quasicrystals [I89]. The Bravais class
of the approximant lattice depends directly on the applied geometrical transformation. In
the framework of the current work, these relationships between approximants and their
parent quasicrystal are of great interest since known approximant structures shed light
on the atomic arrangement in the clusters of quasicrystals.

Several methods are known for generating approximant structures from their parent
quasicrystal structure two of which we applied. The first approach is applied on a higher-
dimensional structure, hence it is called the higher-dimensional approach. It obtains
a quasilattice of a quasicrystal from a higher-dimensional periodic lattice L [J88]. An
approximant structure can be achieved by a deformation of lattice L to lattice L̃, so the
deformed lattice is fully commensurate with the physical space [E85b, H85, I89, N91]. In
other words, by introducing appropriate linear phason strains an approximant structure
can be created from a higher-dimensional structure of a quasicrystal. This approach has
been used to generate the W-phase, a rational 〈3/2, 2/1〉-approximant, as shown in Article
II in Chapter 4.

Here the second approach, the pseudo-approximant method, will be discussed in more
details. A pseudo-approximant is a mathematical construct obtained by transformation of
the quasicrystal in reciprocal space into that of 〈p/q, r/s〉-approximant. Due to that, all
Bragg peaks resulting from the quasicrystal structure are shifted to produce an approxi-
mant structure and the resulting diffraction pattern depends on the applied transformation
matrix. Since these pseudo-approximant structures obey periodicity in three-dimensional
space, their structures can be solved with standard crystallographic methods. After refine-
ment, the phases can be combined with the experimentally obtained amplitudes. Next,
electron density maps for the parent quasicrystal are generated by the Fourier transform.

As an example, a pseudo-approximant was constructed from a data set calculated from
the simplified model of Takakura for a Ni-basic quasicrystal structure [TYSST02]. In this
simplified model only the outer shape of the large occupation domains was considered and
they were occupied with one type of chemical element, Al, as in Fig. 3.9. Four occupation
domains in Fig. 3.9(a-d) were obtained by Fourier transform of the structure factors
calculated from the model, whereas the resulting four occupation domains in Fig. 3.9(e-h)
were obtained by LDE algorithm. Some differences in the electron density distribution
can be observed.

The corresponding external space sections obtained by an irrational cut through the
higher-dimensional structure are shown in Fig. 3.10. Comparison of the electron density
maps reveals almost no differences in both cases.

A quasicrystal diffraction data set was transformed into a 〈3/5〉 pseudo-approximant.
Its space group was identified as Cmcm. The resulting indices of the rational approximant
are:

32



CHAPTER 3. STRUCTURE DETERMINATION OF QUASICRYSTALS

 
(a)

 
(b)

 
(c)

 
(d)

 
(e)

 
(f)

 
(g)

 
(h)

Figure 3.9: Four occupation domains based on Takakura’s model occupied by Al are gen-
erated from a full data set (a-d) by Fourier transform; (e-h) by applying LDE algorithm.

happ1 = −5(h2 + h3) + 2(h1 + h4), happ2 = 8(h1 − h4) + 5(h2 − h3), happ3 = h5 (3.11)

while the resulting lattice parameters are a = 23 Å, b = 31 Åand c = 8.44 Å as calculated
from the relationship:

aapp1 = 2(3− τ)τ 3+2/5a∗, aapp2 = 2
√

(3− τ)τ 5+1/5a∗, aapp3 = 1/a∗5 (3.12)

where a∗ and a∗5 are reciprocal lattice parameters in the reciprocal plane and along the
periodic direction, respectively.

The transformation of quasicrystal diffraction data to the 3/5 pseudo-approximant
leads to reflection overlaps. It is not clear how to treat this kind of reflection, especially if
only experimentally obtained intensities are available. The analysis of the deviation of the
summed intensities from the summed structure factors is shown in Fig. 3.11. Weak reflec-
tions are strongly overestimated due to summation of the intensities of the overlapping
reflections.

Three cases were compared. First, an ideal case was obtained by Fourier transform
of the diffraction data using summed structure factors (Fig. 3.12(a)). In the second case
electron density maps were calculated by the LDE algorithm from the diffraction data
with summed up intensities (Fig. 3.12(b)). In the third case electron maps were calculated
by the LDE algorithm from the diffraction data with intensities merged by the refinement
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: 34 x 34 Å2 parallel-space sections (11000) along the periodic direction (x 3)
of the five-dimensional electron density distribution function of the decagonal structure
based on Takakura’s model occupied by Al only at x 3 = 0.25 (a, d), x 3 = 0.75 (b, e)
and the projected structure (c, f). A full data set was analyzed by applying a Fourier
transform (a-c) and by applying LDE (d-f). All coordinates are given on the V-basis.

program (Fig. 3.12(c)). In all cases a full data set has been used and the results have been
obtained in P1. Surprisingly, better electron density maps were obtained in the third case.
Averaging in the space group Cmcm, applied to the same input data as in the third case,
leads to a drastically improved electron density distribution as shown in Fig. 3.12(d). In
Fig. 3.12(e) the resulting electron density shown in Fig. 3.12(d) has been improved by
MEM. Sharpened peaks and elimination of the weak information were observed.

34



CHAPTER 3. STRUCTURE DETERMINATION OF QUASICRYSTALS

Figure 3.11: Summed up structure factors as a function of summed up intensities on the
logarithmic scale.

(a)

(b) (c) (d) (e)

Figure 3.12: Projected structures along the periodic direction of the pseudo-approximant
(cross section of 23 x 31 Å2) obtained by (a) Fourier transform using structure factors as
an input; (b) and (c) obtained by LDE using intensities as an input. The intensities of
the overlapping reflections were summed (b) and merged (c). Results obtained in P1. (d)
was obtained by LDE by merging the overlapped reflections and averaging in the space
group Cmcm. (e) was obtained by MEM using LDE results.

35



3.5. THEORETICAL SIMPLIFIED SUPERSTRUCTURE MODEL

3.5 Theoretical Simplified Superstructure Model

To obtain a better understanding of possible superstructure origins, a simple model of a
pentagonal cluster has been constructed as an example. To simulate a superstructure with
double periodicity, a cluster model with puckering in some layers has been constructed.
The two-layer average structure has a period of ≈4 Å along the z direction. The stacking
consists of alternating flat and puckered layers and to preserve the two-layer average
structure, atoms that deviate by ±∆z from their ideal in-plane positions have occupancies
of 0.5. This case is illustrated in Fig. 3.13.

To investigate a superstructure with a double periodicity along z, four-layer super-
structure models have been constructed as illustrated in Fig. 3.13(b)-(d). Fig. 3.13(b)
shows a superstructure model with one Al atom shifted down from the plane z = 0.25
and one Al atom shifted up from the plane z = 0.75. Both shifts have the same displace-
ment amplitude. Fig. 3.13(c) shows a superstructure model with two Al atoms displaced
in the same direction and with the same displacement amplitude out of planes at z =
0.25, 0.75. Fig. 3.13(d) shows a superstructure model with two Al atoms displaced in
opposite directions with the same displacement amplitude out of planes at z = 0.25, 0.75.

Single-crystal X-ray diffraction for the average structure and for the superstructure
were calculated and shown in Fig. 3.14 (a) and (b) respectively. Diffraction patterns of the
superstructure models show superstructure reflections, which correspond to a doubling of
the lattice parameter in the z direction, as expected.

The dependence of the superstructure reflections on various atomic displacements
has been analyzed for three superstructure models, Fig. 3.13(b-d). These results are
summarized in Fig. 3.15 where the magnitudes of atomic displacements are given as
a function of ratio of the superstructure reflections from the total intensity. All three
models show similar dependencies. The contribution of superstructure reflections to the
intensity is strongly correlated to the magnitude of the atomic displacements. In the
real superstructure of decagonal Al72.5Co18.5Ni9 the contribution from the superstructure
reflection is 1.4% for the X-ray data sets. To obtain equivalent results from a theoretical
model, the atomic displacements should exceed 0.04 Å.

Accounting only the main reflections, CF and LDE methods gave similar electron
density distributions Fig. 3.16(a). In the resulting electron density a discrepancy between
the real chemical and the calculated intensity distributions is observed. However, already
this ab initio structure solution gives one peak with relatively poor intensity. This peak
with weak intensity indicates puckering (an atomic shift out of the plane).

The resulting electron density distribution obtained by averaging the best 200 runs of
CF/LDE results is shown in Fig. 3.16(b). The calculated result shows a good agreement
with the chemical distribution in the model. It is interesting to notice that as a result
from the averaging the difference between Al atoms at z = 0.25 is eliminated. However,
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(a)

(b) (c) (d)

Figure 3.13: (a) Model of an average structure, side view and top view of each layer
and their projection. Al an Co atoms are indicated by light and dark gray, respectively.
Superstructure models with double periodicity along the z axis with (b) one Al atom
displaced from the atomic plane, (c) two Al atoms displaced from the atomic plane in
the same direction, and (d) two Al atoms displaced from the atomic plane in opposite
directions.

intensity of all the electron density peaks at z = 0.25 is lower than at z = 0. This
observation allows us to conclude that averaging process over several CF/LDE results is
less suitable for a superstructure determination.

The resulting electron distribution after MEM is applied to the CF/LDE results with-
out averaging is shown in Fig. 3.17(a). Also here, the resulting density shows only an
average structure solution; no indication of puckering is observed.

Fig. 3.17(b) shows the electron density calculated by CF for superstructure reflections
only and improved by MEM. This is a surprisingly good result indicating the origin of
the superstructure. The resulting electron density calculated by CF only showed similar,
though less sharp, electron density distribution.

Both the CF and LDE algorithms yield similar results. However, LDE converged more
often than CF. For example for 200 runs, 199 LDE runs converged successfully but only
63 CF runs. Applying MEM to the CF or LDE results sharpens the electron density
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(a) (b)

Figure 3.14: X-ray single-crystal diffraction calculated from the theoretical models of (a)
an average structure, and (b) a superstructure.

 
Figure 3.15: Ratio of the superstructure reflections from the total intensity for various
displacements (in Å) for three different models.

distribution and eliminates artifacts.

38



CHAPTER 3. STRUCTURE DETERMINATION OF QUASICRYSTALS

  (a)   (b)

Figure 3.16: 6.8 x 7.2 Å2 (unit cell) electron density distribution sections along the z
direction of the model obtained by CF for main reflections (a) with one and (b) with 200
computational runs. The resulting projected structure and the layers at z = 0 and z =
0.25 are shown for each case.

(a)   (b)

Figure 3.17: 6.8 x 7.2 Å2 (unit cell) electron density distribution for the model given in
Fig. 3.13(d): (a) the projected structure and of sections at z = 0 and z = 0.25 and (b)
difference electron density distribution along z direction obtained by CF (see text). In
both cases electron density has been improved by MEM.
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Chapter 4

Average Structure of basic Co-Rich
Decagonal Al72.5Co18.5Ni9

This chapter presents the average structure solution for decagonal Al72.5Co18.5Ni9.

4.1 Structure Determination Using Ab Initio Phasing

Methods (Article I)

In the first section, the main results are presented in a reprint of the article:
A. Strutz, and W. Steurer, Structure solution of Co-rich decagonal Al–Co–Ni, Philosoph-
ical Magazine, 87, 2747-2752, (2007).
Additional figures are given in the supplementary section.
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Structure solution of Co-rich decagonal Al-Co-Ni  
 

A. STRUTZ and W. STEURER 
 

ETH Zurich, Laboratory of Crystallography, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland 
 

The structure of Co-rich decagonal Al72.5Co18.5Ni9 has been determined by single crystal X-

ray diffraction methods. This modification is the only one with four-layer periodicity showing 

sharp Bragg reflections in all reciprocal space layers. The quasilattice parameters are 

a1− 4 = 4.464(1)Å  and a5 = 8.137(3)Å , the Laue group is 10/mmm. Structure solution was 

performed by the 5D 'charge-flipping method'. Due to pseudosymmetry only a structure 

model averaged over a two-layer period (4.068 Å) could be obtained.   

 

Keywords: Co-rich decagonal; Structure solution; Al-Co-Ni; Charge-flipping method 

 

 

1. Introduction 

 

A huge amount of work has already been invested into the study of decagonal Al-Co-Ni (see 

[1] and references therein). This phase is an excellent model system for understanding 

decagonal quasicrystals. It not only has a broad stability range over almost 20 at.%, it also 

shows complex ordering phenomena as a function of the Co/Ni ratio and/or the temperature. 

The different modifications have been quite extensively studied by high-resolution electron 

microscopy (HRTEM) and, only a few of them, by X-ray diffraction. HRTEM images give 

'easy' access to local structural information such as clusters and their ordering (tiling 

decoration). Consequently, there already exists a qualitative picture on some of the ordering 

phenomena as far as they are observable in structures projected along the tenfold axis. This is 

the major shortcoming of HRTEM that only projected information can be obtained. Since the 

ordering phenomena in the quasiperiodic atomic layers are intimately connected with those 

along the periodic direction, diffraction data are crucial for the full picture. Up to day, 

however, only data related to ≈4 Å (i.e. two-layer) periodicity have been used. The reason for 

this is that the reciprocal space layers related to the two-fold superstructure along the tenfold 

axis, i.e. the four-layer periodicity, show just diffuse intensities in almost all cases.  We 

succeeded, however, in growing single crystals of the Co-rich decagonal phase that show 

sharp Bragg layers only [2]. 

  

The present work reports the single crystal X-ray diffraction study on decagonal 

Al72.5Co18.5Ni9. Besides the solution of the structure of the Co-rich decagonal phase, the 

CHAPTER 4. AVERAGE STRUCTURE OF BASIC CO-RICH DECAGONAL
AL72.5CO18.5NI9
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potentialities and limits of a new method for higher-dimensional structure analysis, the 

'charge-flipping method', should be tested an iterative algorithm for reconstructions of 

approximate electron densities from structure factor amplitudes [3-5]. Before, it had been 

used only once, for the solution of the decagonal phase, with 8-layer periodicity, in the system 

Al-Ir-Os [6]. For that purpose, the program SUPERFLIP [3] was used.  

 

2. Experimental 

 

For the preparation of the samples, elemental powders of Al (Heraeus 99.95 wt.%), Co (Alfa 

Aesar 99.8 wt.%) and Ni (Heraeus 99.99 wt.%) were used. Compacts with composition 

Al72.5Co18.5Ni9, 1g each, were pressed under argon atmosphere (Mbraun glove box 150 B-G, 

PanGas Ar 99.998). Prealloys were prepared by melting the compacts in an arc furnace 

(DEGUSSA VOLi O) with non-consumable tungsten electrode under Ti-gettered argon. The 

as cast sample was analyzed by differential temperature analysis (DTA) (Perkin Elmer DTA 

7) using Al2O3 crucibles under high purity argon at heating with cooling rates of 10ºC /min. 

Quasicrystal growth and annealing was performed in a high-vacuum resistance furnace (PVA 

MOV 64). An as cast sample was heated in an Al2O3 crucible to 1350ºC (i.e. above melting 

temperature), held at this temperature for 20 min, then cooled to 1000ºC with a cooling rate of 

0.24ºC /min and subsequently annealed for 48 hours at 1000ºC. Eventually, the sample was 

quenched by jetting cold argon into the sample chamber.    

 

The sample was examined by powder X-Ray diffraction (XRD) (PANalytical X’Pert Pro 

diffractometer, standard θ-2θ Bragg-Brentano geometry, Cu Kα1, 10º ≤ 2θ ≤ 100º, 0.02º step 

width). Scanning electron microscopy (SEM) was performed in back-scattering mode at 30 

kV and energy dispersive X-Ray spectroscopy (EDX) analysis was carried out at 15-30 kV 

accelerating voltage on  a LEO 1530 analyzer using the VOYAGER software. Single crystal 

X-ray data collection was performed on a four-cycle diffractometer equipped with charge-

coupled device (CCD) (Oxford Diffraction Xcalibur, 7.5º ≤ 2θ ≤ 55.5º, sample to detector 

distance 160 mm, 1º ϕ-scan per frame, exposure time 10 sec per frame, 50 kV, 40 mA, 

graphite monochromatized MoKα radiation).  

 

3. Results and discussion 

 

The first four reciprocal space layers are shown in figure 1. The X-ray diffraction patterns 

show 10-fold symmetry and reflection planes parallel and perpendicular to it, i.e. Laue group 

10/mmm. No systematic extinctions are observed. It is remarkable that neither 105-screw axis 

4.1. STRUCTURE DETERMINATION USING AB INITIO PHASING METHODS
(ARTICLE I)
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nor c-glide plane pseudosymmetry is present. The reflections of the even layers (related to the 

two-layer average structure) can be indexed on the standard basis [7], i.e. the same basis as 

the Ni-rich decagonal phase.  For indexing both even and odd layers, the reciprocal basis of 

the superstructure type I has to be used. It can be obtained from the reciprocal standard basis 

by rotoscaling, i.e. a rotation by π/10 and a contraction by a factor of 1 3 − τ [8]. This basis 

is related to a1-4 = 4.694(1) Å for the quasilattice parameter, and a5 = 8.137(3) Å for the 

periodic direction. For practical purposes (limited computer memory) we used a setting with a 

being τ3 times smaller then recommended by [8] (τ is the golden mean 2cosπ 5 ). In this 

setting, the indices of the reflection 10000 in the standard setting transform into 01100  

(marked by an arrow in figure 1a).  There are only superstructure reflections in the odd layers, 

and main reflections only in the even layers. The intensities of the superstructure reflections 

are approximately two to three orders of magnitude weaker than those of the main reflections.  

 

 
Figure 1. Reciprocal space sections of decagonal Al72.5Co18.5Ni9  reconstructed from 360 CCD 
frames each: h1h2h3h4h5 with (a) h5=0, (b) h5=1, (c) h5=2, (d) h5=3 (h5 referring to the ≈8 Å 
period). Since a graphite monochromator was used, second harmonics (λ/2) reflections of the 
strongest reflections are visible on the images h5=0, 1, 3. 
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Along the periodic direction (≈8 Å superstructure), there are four quasiperiodic atomic layers, 

A, B, C, D, at x3 = 0, 1/4, 1/2, 3/4. From the distribution of reflection classes we can draw 

some conclusions on their symmetry and structure. First, from the respective zero reciprocal-

space layers we learn that the projected structure, (A + B + C + D), of the Co-rich phase is of 

the basic type while that of the type-I is still a five-fold superstructure. Second, from the 

respective even reciprocal-space layers we can conclude that the two-layer (≈4 Å) average 

structure, containing the averaged layers (A + C) and (B + D), is still of the basic type for the 

Co-rich phase. Only the full four-layer structure of the Co-rich phase shows the five-fold 

superstructure features. 

 

 
Fig. 2: 44 × 44 Å2 parallel-space (11x300) sections of the 5D Fourier function of decagonal 
Al72.5Co18.5Ni9 at (a) x3 = 0, (b) x3 = 1/4 and (c) the projected structure. For comparison, the 
analogous map of decagonal Al70.6Co6.7Ni22.7 [10] is shown in (d). Due to its differently 
oriented basis, the map in (d) is rotated by π/10 relative to the other ones. Characteristic 
structure motifs are outlined as guide for the eye. On the axes, a-units are marked.  
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For the structure analysis, the computer program SUPERFLIP was employed using a data set 

with 2293 unique reflections. The 5D supercell was divided into 42x42x42x42x84 voxels, the 

full data set needed for input was reconstructed based on 10/mmm symmetry. The program 

converged smoothly and quickly with automatic choice of the flip selection threshold δ. The 

resulting electron density maps of the layers A in x3 = 0 and B in x3 = 1/4 in  are shown in 

figure 2. The quality of the maps corresponds to the quality of an in-house diffraction data set, 

i.e. the limited number of reflections leads to a significant background so that not all Al atoms 

are properly resolved or visible, respectively. More disappointing is that the four atomic 

layers, A, B, C, D are not fully resolved. At least three of the four layers have to be different 

to produce a four-layer periodicity. SUPERFLIP, however, shows almost the same density for 

A and C as well as for B and D, respectively. This means, that the weight of the superstructure 

reflections in the odd layers was to small to be accounted for in the calculations. The result is 

an average structure with two different, averaged layers, (A+C) and (B+D) (figure 2). 

Anyway, it gives a first, semi-quantitative, structure model of the different layers of the Co-

rich decagonal Al-Co-Ni phase. A comparison with the corresponding maps of decagonal 

Al70Co15Ni15 [7] and Al70.6Co6.7Ni22.7 [9] , also average structures, shows as most important 

difference the lack of (pseudo)symmetry relationships between the two layers. The main 

difference between the projected structures of the basic Co-rich and the Ni-rich phase is in the 

occurrence of decagonal rings. These are found in the basic Ni-rich structure around large 

decagons alternating with pentagonal stars (figure 2d). In case of the Co-rich phase, rings of 

this type are not observed at the corresponding sites (figure 2c). A more detailed discussion is 

given by Deloudi & Steurer [10]. 

 
4. Conclusion 
 
The (partial) structure solution of the Co-rich decagonal phase is an important contribution to 

the structural database necessary for modeling and understanding formation, stability, 

structure and ordering of the quasicrystals in the system Al-Co-Ni. In the paper by S. Deloudi 

[10] at this conference, this structural information is already used for this purpose. 

The higher-dimensional 'charge-flipping method' seems to be a useful approach for the 

solution of aperiodic crystal structures. In case of pseudosymmetry, the resulting structure 

model is averaged with high probability. Further developments of this method may lead to a 

solution of this problem. Another possibility will be the use of the maximum-entropy method 

(MEM) [11]. 
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4.2 Supplement - Article I

The average structure solution obtained by the CF algorithm is shown in Fig. 2 of the pre-
ceding article. Electron density distribution of the quasiperiodic layers separated by half
a period are indicated by black and gray and superimposed for the comparison, Fig. 4.1.
The results, obtained using the two different methods CF and LDE, are presented in
Fig. 4.1(a, c) and (b, d), respectively, with some of the significant differences indicated
by arrows. Electron density distribution of the quasiperiodic layers separated by half a
period are indicated by black and gray and superimposed for the comparison. A compar-
ison of the electron density distributions calculated by CF and LDE methods does not
reveal which one of the two methods is superior for the current structure investigation.
In general, both methods seem to give a useful initial electron density distribution for the
average structure with ≈4 Å periodicity. In both cases, a comparison between the two
layers reveals some differences in the electron density distribution, however, the density
in both layers is too low. Hence, this structure solution cannot be plausible and informa-
tive enough to find the final differences between these layers that cause the superlattice
ordering. At this point we conclude that CF and LDE methods are comparably good and
for reasons of convenience the LDE method will be used in the rest of this project.

It is clear that obtaining a superstructure solution using the LDE method alone will
be a very challenging task. Furthermore, pseudosymmetry is already present in the av-
erage structure; this fact introduces a difficulty in finding the correct intersection at the
symmetry centers. Therefore many trials were required to obtain an electron density dis-
tribution that is in good agreement with the symmetry elements of the provided space
group. Here, we will concentrate only on the average structure taking into account only
the main reflections of the in-house data set. In the following section a detailed analysis of
the shape and location of the occupation domains will be presented. In the first step, only
168 strong reflections with |F| > 3σF were included. The raw output from LDE is shown
in Fig. 4.2(a-c), where three independent occupation domains can be seen. The LDE
results improved by the application of MEM are shown in Fig. 4.2(d-f). This last step
resolves further details in the occupation domains at (1,1,1,1,1/4)/5, and (2,2,2,2,1/4)/5
(Fig. 4.2(a-b), (d-e)). However, the electron density in the small occupation domain at
(0,0,0,0,1/4) is drastically diminished (Fig. 4.2(c), (f)). The corresponding external space
sections obtained by the irrational cut through the five-dimensional structure are pre-
sented in Fig. 4.3. A similar analysis has been done with 218 reflections with |F| > 2σF .
However, the use of these additional reflections caused only minor changes to the shape
of the occupation domain at (0,0,0,0,1/4). In the external space section, no changes have
been observed. The results after including all 1120 reflections are presented in Fig. 4.4
and Fig. 4.5. The main change occurs in the occupation domain at (2,2,2,2,1/4)/5; its
shape becomes much sharper. Furthermore, additional details could be resolved in the
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(a) (b)

(c) (d)

Figure 4.1: Electron density distribution (40 x 40 Å2) of the quasiperiodic layers at x3

= 0 (black) and x3 =1/2 (gray) (a, b) and at x3 =1/4 (black) and x3 =3/4 (gray) as
indicated respectively by black and blue colors (c, d), obtained by CF (a, c) and LDE (b,
d) algorithms. Some of the significant differences are indicated by arrows.
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external space sections.
1193 unique reflections were used in a combined data set composed of the in-house

and two synchrotron data sets. The resulting sections of the five-dimensional electron
density distribution are shown in Fig. 4.6 and Fig. 4.7.

For the average structure solution, see for comparison the occupation domains obtained
using a non-centrosymmetric space group after LDE Fig. 4.12 and refinement Fig. 4.14.
For the superstructure solution, see Fig. 5.8. The prominent difference between non- and
centrosymmetric cases can be seen in the occupation domain at (1,1,1,1,1/4)/5. This
occupation domain is better defined when a non-centrosymmetric space group is used.
Hence, a non-centrosymmetric space group results in a better structure solution.

After considering only main reflections, superstructure reflections were included in
the analysis. As previously mentioned, the electron density maps obtained directly after
the LDE method do not carry sufficient information about the superstructure ordering.
For that reason, difference electron density maps were calculated using the CF method
and by treating the data as neutron data allowing positive and negative intensities to
be obtained. By definition, the difference electron density is the difference between the
real and average structures. Hence, the positive peaks correspond to areas with more
electron density in the real structure than in the average. Correspondingly, negative
peaks correspond to areas with less electron density in the real structure than in the
average. The distribution of these difference peaks is shown in Fig. 4.8. According to this
result, only two layers show non-zero peaks. Hence, the superstructure originates mainly
due to structural modulations in the layers at x3=1/4 and x3=3/4. However, the obtained
difference electron density maps do not contain sufficient information to fully elucidate
the underlying mechanism of the superstructure formation.

The positions of the atoms defining the cluster were determined from the high electron
density peaks. The resulting four-layer cluster with two flat and two puckered layers is
shown in Fig. 4.9. Based on the information obtained from the difference electron density
and PF maps, the atomic positions that produce the superstructure were identified as
indicated by red and green circles. Already from this initial picture we can conclude that
the superstructure modulations break the five-fold symmetry in the quasiperiodic layers
of the cluster. Whereas, by superimposing these two layers, the five-fold symmetry is
recovered. This cluster model is only a rough approximation for the real structure picture
it cannot be confirmed without a quantitative structure analysis in five-dimensional space.
Nevertheless, it gives us a first idea about the cluster structure in external space.

As a final step to check the correctness of the cluster model, a PF map was calculated,
shown in Fig. 4.10, and compared with the PF map obtained from the experimental
data. Already this rough approximation shows good agreement with the experimentally
obtained PF.
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(a)

 
(b)

 

(c)
 

(d)
 

(e)
 

(f)

Figure 4.2: Occupation domains at (a) (1,1,1,1,1/4)/5, (b) (2,2,2,2,1/4)/5 and (c)
(0,0,0,0,1/4). Occupation domains at (3,3,3,3,1/4)/5 and (4,4,4,4,1/4)/5 are obtained
by the inversion operation from hyperatoms (b) and (a) respectively. Dark gray corre-
sponds to the TM atom distribution and bright gray to the Al atom distribution. 163
unique reflections with |F| > 3σF (in-house data set) were used in the in the LDE analysis
(a-c) and improved by MEM (d-f).

 
(a)   (b)   (c)

  (d)   (e)   (f)

Figure 4.3: Electron density distribution (40 x 40 Å2) of the quasiperiodic layers at x3 =
0 (a, d), x3 =1/2 (b, e), and the projected structure (c ,f). 163 unique reflections with
|F| > 3σF (in-house data set) were used in the in the LDE analysis (a-c) and improved
by MEM (d-f).
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(a)

 
(b)

 

(c)
 

(d)
 

(e)
 

(f)

Figure 4.4: Occupation domains at (a) (1,1,1,1,1/4)/5, (b) (2,2,2,2,1/4)/5 and (c)
(0,0,0,0,1/4). Occupation domains at (3,3,3,3,1/4)/5 and (4,4,4,4,1/4)/5 are obtained
by the inversion operation from hyperatoms (b) and (a) respectively. Dark gray corre-
sponds to the TM atom distribution and bright gray to the Al atom distribution. All
1120 unique reflections (in-house data set) were used in the in the LDE analysis (a-c) and
improved by MEM (d-f).

  (a)   (b)   (c)

  (d)   (e)   (f)

Figure 4.5: Electron density distribution (40 x 40 Å2) of the quasiperiodic layers at x3 =
0 (a, d), x3 =1/2 (b, e), and the projected structure (c ,f). All 1120 unique reflections
(in-house data set) were used in the in the LDE analysis (a-c) and improved by MEM
(d-f).
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(a)

 
(b)

 

(c)
 

(d)
 

(e)
 

(f)

Figure 4.6: Occupation domains at (a) (1,1,1,1,1/4)/5, (b) (2,2,2,2,1/4)/5 and (c)
(0,0,0,0,1/4). Occupation domains at (3,3,3,3,1/4)/5 and (4,4,4,4,1/4)/5 are obtained
by the inversion operation from hyperatoms (b) and (a) respectively. Dark gray corre-
sponds to the TM atom distribution and bright gray to the Al atom distribution. 1193
unique reflections (in-house and synchrotron data sets) were used in the in the LDE
analysis (a-c) and improved by MEM (d-f).

  (a)
 

(b)
 

(c)

  (d)   (e)   (f)

Figure 4.7: Electron density distribution (40 x 40 Å2) of the quasiperiodic layers at x3 = 0
(a, d), x3 =1/2 (b, e), and the projected structure (c ,f). 1193 unique reflections (in-house
and synchrotron data sets) were used in the in the LDE analysis (a-c) and improved by
MEM (d-f).
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(a) (b)

Figure 4.8: Electron density distribution (40 x 40 Å2) of the quasiperiodic layers at (a) x3

= 1/4 and (b) x3 = 3/4 highlighting the peaks that might contribute to the superstructure
modulations as it is results from the difference electron density calculated by the CF.

Figure 4.9: Four layers of a 20 Å cluster model. Atoms that are suspected to produce a
superstructure modification are indicated by red and blue circles.
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Figure 4.10: On the left hand side, the PF map obtained from the experimental data
(black contour map). On the right hand side, this map is superimposed onto the PF map
calculated (colored map) from the four-layer 20 Å cluster model shown in Fig. 4.9.

4.3 Basic Co-Rich Decagonal Al-Co-Ni: Average Struc-

ture (Article II)

In the structure analysis discussed in this part, only main diffraction peaks have been
considered resulting in an average structure solution. The known structure of the W-
phase approximant was of great help in understanding the cluster structure of decagonal
Al72.5Co18.5Ni9. Moreover, the W-phase possesses an ≈8 Å period, hence its structure
solution provides a good starting point in the analysis of the full superstructure of the
decagonal Al72.5Co18.5Ni9 phase. The structure analysis in the current section was done
with FORTRAN coded programs developed by Dr. Akiji Yamamoto and included in the
program package QUASI07_08; more details are given in Appendix A and [W97, Y08].

This section contains a reprint of the article:
A. Strutz, A. Yamamoto and W. Steurer, Basic Co-rich decagonal Al-Co-Ni: Average
structure, Phys. Rev. B 80, 184102 (2009).
Additional figures concerning this article are given in the supplement.
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Basic Co-rich decagonal Al-Co-Ni. Part I: Average structure
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1Laboratory of Crystallography, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland†
2National Institute for Materials Science, Namiki 1, Tsukuba, Ibaraki, 305-0044, Japan‡

(Dated: September 29, 2010)

The two-layer average structure of the high-temperature phase basic Co-rich d(ecagonal)-
Al72.5Co18.5Ni9 was determined based on single-crystal X-ray diffraction data. The five-dimensional
(5D) structure model was refined in the non-centrosymmetric 5D space group P10m2 (112 param-
eters, wR = 0.123 and R = 0.156 for 957 reflections). The close relationship of the model structure
with that of W-Al-Co-Ni, a 〈3/2, 2/1〉-approximant, is shown.

PACS numbers: 61.05.cp,61.44.Br,61.50Ah,61.66.Dk

I. INTRODUCTION

Understanding formation, stability and physical prop-
erties of quasicrystals requires the knowledge of their
structures. Furthermore, some of the structure/property
relationships of quasicrystals, which are mostly inter-
metallic phases, are not only of interest in their own
right, but also, increasingly, for the design of photonic
and phononic crystals1. However, of the more than sev-
enty stable quasicrystals discovered so far, the structures
of only a handful of them have been determined yet
due to the intricate complexity of quasicrystal structure
analysis2,3.

Decagonal quasicrystals, i.e. quasicrystals with dec-
agonal diffraction symmetry, can geometrically be de-
scribed either as periodic stacking of quasiperiodic
atomic layers or as packing of decagonal clusters. From
the viewpoint of chemical bonding, however, decagonal
quasicrystals are by no means layer structures and the
term cluster has to be understood just as a synonym for
structural building unit4,5.

The system Al-Co-Ni is an excellent model system for
the study of the influence of chemical composition on
the formation of different quasicrystal modifications and
approximants6. As a function of the Co/Ni ratio, dif-
ferent superstructures form either in the quasiperiodic
directions or along the periodic tenfold axis7. Though
Co and Ni are next to each other in the periodic table
differing by only one d -electron, the X-ray diffraction pat-
terns of those modifications show significant variations8.
This indicates significant structural changes accompany-
ing Co/Ni ordering with the variation of their ratio. In-
deed, quantum-mechanical model calculations showed lo-
cal rearrangements of coordination polyhedra depending
on the kind of TM atoms present9.

Basic Co-rich d(ecagonal)-Al-Co-Ni, stable above ap-
proximately 900◦, possesses a twofold superstructure
along the tenfold axis, doubling the two-layer periodic-
ity present in the basic Ni-rich modification. This kind
of superstructure is also present in all other d-Al-Co-Ni
modifications as well as in d-Al-Co-Cu. However, only in
the basic Co-rich modification it has the long-range cor-
relation needed for single-crystal X-ray structure analy-

sis. In other words, only in basic Co-rich d-Al-Co-Ni the
superstructure reflections are sharp Bragg reflections, in
all other cases they are diffuse, indicating a correlation
length of a few cluster-diameters only8.

While all modifications have already been investigated
by electron microscopy10, quantitative single-crystal X-
ray diffraction structure analyses have only been per-
formed so far for the basic Ni-rich phase11–13 as well as
for the average structure of the superstructure of type
II14. In a more qualitative manner, basic Co-rich d-Al-
Co-Ni has as well been modeled based on X-ray diffrac-
tion data15,16. Electron microscopy can only provide pro-
jected structural information, therefore it can be highly
valuable for identifying clusters and underlying tilings
but it cannot give a full, quantitative picture of the 3D
structure. This is the domain of single-crystal X-ray
diffraction methods, and this is the goal of our study.

In the following we present the refined 5D model of
the average structure of basic Co-rich d-Al72.5Co18.5Ni9.
This represents the first part of the tedious determination
of its full structure based on single-crystal X-ray diffrac-
tion data. A 5D model17 of d-Al-Fe-Ni with four-layer
periodicity has been used as basis for our 5D starting
model. The good fit between observed and calculated X-
ray diffraction intensities as well as the convincing agree-
ment with the projected structure of the closely related
W-phase, a rational approximant, prove the validity of
the proposed structure solution. Since quasicrystals and
their structurally closely related approximants consist of
the same atomic clusters, the four-layer structure of the
W-phase gives valuable information on the twofold super-
structure of basic Co-rich d-Al72.5Co18.5Ni9, which will
be presented in a follow-up paper.

II. EXPERIMENTAL

For sample preparation, compacts with composition
Al72.5Co18.5Ni9, 1g each, were pressed from pulverized
Al (Heraeus 99.95 wt.%), Co (Alfa Aesar 99.8 wt.%) and
Ni (Heraeus 99.99 wt.%) in argon atmosphere (Mbraun
glove box 150 B-G, PanGas Ar 99.998). Pre-alloys were
prepared by melting the compacts in an arc furnace (DE-
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GUSSA VOLi O) with non-consumable tungsten elec-
trode under Ti-gettered argon. The as-cast samples
were analyzed by differential temperature analysis (DTA)
(Perkin Elmer DTA 7) using Al2O3 crucibles under high
purity argon (cooling rates of 10◦C /min). Quasicrystal
growth and annealing was performed in a high-vacuum
resistance furnace (PVA MOV 64). Therein, an as cast
sample was heated in an Al2O3 crucible to 1350◦C (i.e.
above melting temperature), held at this temperature for
20 min, then cooled to 1000◦C with a cooling rate of
0.24◦C /min and subsequently annealed for 48 hours at
1000◦C. Eventually, the sample was quenched by jetting
cold argon into the sample chamber.

Single crystal X-ray data were collected at
SNBL/ESRF Grenoble, using a marresearch 345
imaging-plate scanner (180 frames with an oscillation
angle of φ = 1◦ each, wavelength λ = 0.72326 Å). Two
data sets were collected, data set 1 with an exposure
time of 4 sec/frame to prevent saturation of strong
reflections, data set 2 with 100 sec/frame in order to
detect a sufficient amount of the rather weak superstruc-
ture reflections. The reciprocal space layers h1h2h3h4h5

with h5 = 0, 1, 2, 3 and the reciprocal space sections
h1h2h2h1h5 and h1h2h̄2h̄1h5, perpendicular to them as
well as to each other and containing the tenfold axis, are
shown in Fig. 1.

Since the strongest reflections of these two synchrotron
data sets are still oversaturated, additionally an in-house
data set (data set 3 ) was collected employing a four-
cycle diffractometer equipped with a charge-coupled de-
vice (CCD) detector (Oxford Diffraction Xcalibur, 7.5◦ ≤
2θ ≤ 55.5◦, 360 frames with φ = 1◦ each, exposure time
10 sec/frame, 50 kV, 40 mA, graphite monochromatized
MoKα radiation).

Data reduction was performed using the software pack-
age CrysAlis (Oxford Diffraction). According to the
observed Laue symmetry 10/mmm, data set 1 with
39,315 reflections was merged into 1,405 unique reflec-
tions with Rint =0.174, data set 2 with 41,810 reflections
was merged into 1,434 unique reflections with Rint=0.163
and data set 3 with 899,034 reflections was merged into
1,764 unique reflections with Rint =0.098. The index of
the strongest reflection in the zero layer is 13420 in the
Yamamoto setting18 (02210 in the Steurer setting6) that
is used throughout the paper (see Fig. 1(a)). The three
data sets were scaled to each other using QCDIFF, a re-
finement program for quasicrystal structures included in
the program package QUASI07 0819.

III. 5D MODEL BUILDING

The reconstructed reciprocal space layers (Fig. 1) show
quite different intensity distributions in even and odd
layers perpendicular to the tenfold axis. The even lay-
ers consist of main reflections only that can be indexed
using the basis of the basic Ni-rich phase. These reflec-
tions contain the information on the two-layer average

(a) (b)

(c) (d)

(e) (f)

FIG. 1: Reciprocal space sections of decagonal
Al72.5Co18.5Ni9 reconstructed from 180 image-plate-scanner
frames each: h1h2h3h4h5 with (a) h5 = 0, (b) h5 = 1, (c)
h5 = 2, (d) h5 = 3 (h5 referring to the four-layer 8.16(4)
Å period), (e) h1h2h̄2h̄1h5 and (f) h1h2h2h1h5. The sections
in (b) and (d) contain superstructure reflections only. The
reflection 10000 (Yamamoto setting18) is marked by an arrow
in (a).

structure. The superstructure reflections, which are only
present in the odd layers and result from some modifica-
tions of the average structure, cannot be indexed on the
same basis. The reciprocal basis of the superstructure of
type I20 can be used as a common basis for both main
and satellite reflections. It can be obtained from that of
the basic structure by rotoscaling, i.e. a rotation by π/10
and scaling by a factor of 1/(2 cos(π/10)) = 0.5257. In
the present analysis of the average structure, however,
only the main reflections are included in the refinements.

With the parameters ao = 2.745(2) Å (defined by the
10000 reflection marked in Fig. 1(a)) and co = 4.072(1)
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Å (along the tenfold axis), we obtain a proper 5D basis
(Yamamoto setting21) for the main reflections:

d∗j =
a∗o√
5
[cja1 + sja2 + c2ja3 + s2ja4]

for j = 1, . . . , 4 and d∗5 = c∗oa5 = c∗o (1)

and, reciprocal to it

dj =
2ao√

5
[(cj − 1)a1 + sja2 + (c2j − 1)a3 + s2ja4]

for j = 1, . . . , 4 and d5 = ca5 = co (2)

where a∗o = 1/ao, c∗o = 1/co, cj = cos(2πj/5), sj =
sin(2πj/5), c2j = cos(4πj/5) and s2j = sin(4πj/5). The
vectors a1, a2 and a5 are external space unit vectors and
a3 and a4 internal space unit vectors.

A symmetry analysis of the full reflection data set re-
veals the Laue symmetry 10/mmm. Neglecting some
weaker reflections, one finds an extinction rule for the
superstructure, h1h2h̄2h̄1h5 with h5 = 2n + 1 indicating
a pseudo 5D c-glide plane for the four-layer superstruc-
ture. Considering the pseudosymmetry as true symme-
try, possible space groups would either be centrosymmet-
ric P105/mmc or non-centrosymmetric P102c, otherwise
P10/mmm or P102m, respectively.

If we take the pseudosymmetry into account, then
the projection of the four-layer superstructure onto the
two-layer average structure changes the symmetry from
P105/mmc to P10/mmm, and from P102c to P102m.
If we consider the true symmetry of the four-layer struc-
ture for the average structure we end up with P10/mmm
or P102m, respectively, as well. For the average struc-
ture described by the basis of the basic Ni-rich phase,
the mirror plain is rotated by π/10 relatively to the su-
perstructure basis. Hence the higher dimensional space
group is P10m2.

The structure of a decagonal quasicrystal can be de-
scribed as an external space cut of a 5D periodic hy-
percrystal structure with basis dj , j = 1, . . . , 5. The
structural information is coded in 2D occupation do-
mains (OD), which are parallel to internal space. A
starting model for the structure refinements has been ob-
tained by the low-density elimination (LDE) method22.
The principle behind this powerful iterative direct-space
approach is that all (electron) density values below
a given threshold value δ are set to zero. The OD
identified in this way are centered at the special po-
sitions (1,1,1,1,5/4)/5, (2,2,2,2,5/4)/5, (4,4,4,4,15/4)/5,
(3,3,3,3,15/4)/5, (0,0,0,0,1/4) and (0,0,0,0,3/4). The two
OD at (0,0,0,0,1/4) and (0,0,0,0,3/4) have an external
space distance of only 2.04 Å. Consequently, they will
generate partially occupied (split) positions with partial
occupancies summing up to at most one.

For the structure refinements the obtained density dis-
tribution has to be properly parameterized by polygonal

subdomains17,18. Due to the similarity between the ob-
served diffraction patterns of basic Co-rich d-Al-Co-Ni
and the simulated diffraction pattern of d-Al-Ni-Fe, this
could be done based on Yamamoto’s model for d-Al-Fe-
Ni17. For that purpose, five internal space basis vectors
are defined

vj =
2ao√

5
[c2ja3 + s2ja4], j = 1, . . . , 5 (3)

with 2ao/
√

5=2.43 Å. Each vector is parallel to one of
the center-to-vertex vectors of a reference pentagon. The
vector v5 is redundant, since it can be expressed as
a linear combination of the other four vectors, v5 =
−(v1 + v2 + v3 + v4). The vectors vj (j = 1, . . . , 4)
are equal to the internal space components of the dec-
agonal lattice vectors dj − v5. Note that d5 is parallel
to the 10-fold axis in external space. By using vj as
unit vectors, the ith corner vector of an OD is written as
ei = (x1, x2, x3, x4, x5).

The number of atoms per unit cell, a hard constraint
for modeling in standard structure analysis, is not avail-
able for quasiperiodic structures. Its role is taken over by
the point density, i.e. the inverse of the average atomic
volume, which can be derived from the mass density of
the quasicrystal. This quantity is convenient for check-
ing the quality of a model also during the refinement
steps, since the point density can be expressed as the
ratio between the total area of the occupation domains
times their individual occupancies and the 5D unit cell
volume.

Lacking CBED (convergent-beam electron diffraction)
information, it was not possible to decide whether or not
the average structure has an inversion center. Therefore,
five independent OD were used. Since the final distri-
bution of the Al and TM atoms strongly deviates from
the centrosymmetric case, we conclude that the 5D space
group is P10m2 indeed. The point density of the model
is ρ′ ≈ 0.073 Å−3.

IV. STRUCTURE REFINEMENT

Since it is hardly possible to distinguish between Co
and Ni based on X-ray diffraction data, the structure has
been refined as a pseudo-binary phase containing just Al
and TM atoms. For the latter atomic scattering factors
of Co were used. It may be possible to comment on
the Co/Ni ordering once the full structure of basic Co-
rich decagonal Al-Co-Ni will have been solved by drawing
conclusions from the ordering in W-Al-Co-Ni. There,
the influence of Co and Ni atoms on their local atomic
coordinations has been studied by quantum-mechanical
calculations9 as well as by neutron diffraction23.

The final model contains 5 OD subdivided into 53 in-
dependent subdomains (Fig. 2) based on the basic poly-
gons listed in Table I. During the refinement process
various modifications were required for the subdivision
of the OD as well as for the chemical occupancies of the
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TABLE I: Basic polygons defining the subdomains partitioning the large OD (Fig. 2). The superscript i refers to the internal
space component. τ=(1+

√
5)/2

Polygon Corner vectors defining the polygonal subdomains

decagon e1=(0, τ−4, -τ−4, 0, 0)i e2=(-τ−4, τ−4, 0, 0, 0)i e3=(-τ−4, 0, 0, 0, τ−4)i

pentagon e1= τ−5(0.4, 0.4, -0.6, -0.4, -0.6)i e2= τ−5(-0.6, 0.4, -0.6, 0.4, 0.4)i e3= τ−5( -0.6, 0.4, 0.4, -0.6, 0.4)i

e4= τ−5( 0.4, -0.6, 0.4, -0.6, 0.4)i e5= τ−5( 0.4, -0.6, 0.4, 0.4, -0.6)i

star e1= τ−5(-0.2, 0.8, -1.2, 0.8, -0.2)i e2= τ−5(0.43, 0.43, -0.43, 0.0, -0.43)i e3= τ−5( 0.8, -0.2, -0.2, 0.8, -1.2)i

rhombus e1=( τ−5, - τ−5, 0, 0, 0)i e2=(2 τ−5, - τ−5, 0.0, 0.0, - τ−5)i e3=( τ−5, 0.0, 0.0, 0.0, - τ−5)i

FIG. 2: Independent OD of the refined model structure
of Co-rich d-Al-Co-Ni, located at (a) (1,1,1,1,5/4)/5, (b)
(2,2,2,2,5/4)/5, (c) (4,4,4,4,15/4)/5, (d) (3,3,3,3,15/4)/5, (e)
(0,0,0,0,3/4). Dark grey indicates TM atoms (Co or Ni) and
light grey Al atoms.

subdomains. The OD in (0 0 0 0 1/4) had to be removed
because its occupancy refined to zero. The final Al/TM
distribution is illustrated in Fig. 2 and Table III.

For each subdomain in the current model, the exter-
nal space displacements u1, u2 from their ideal positions
and Al/TM ratio (mixing parameter s1) were refined.
Overall external space atomic displacement parameters
(ADP, ”Debye-Waller factor”) , B|| within the quasiperi-
odic plane and B⊥ perpendicular to it, were refined for
each OD (B = 8π2 < u2 >, with u the displacement am-
plitude). The refinement of individual ADP from each
subdomain was not possible due to the limited number
of reflections.

The center of a subdomain is displaced by the internal
space vector xi relative to the center x0 of the OD, hence
the actual position of each subdomain is x0+xi. Taking
into consideration symmetry restrictions, we identified
for each subdomain possible external space shift vectors,
xe

1 and xe
2, defined on the basis

uj =
2ao√

5
[cja1 + sja2], (j = 1, . . . , 5), u6 = a3. (4)

The number of shift vectors for the individual subdo-
mains is restricted by site symmetry to maximum two
(Table II). In this case the position of a displaced subdo-
main is given by x = x0 + xi + u1[xe

1/|xe
1|] + u2[xe

2/|xe
2|].

The displacements resulting from the refinements are
listed in Table III.

The refined parameters for each individual subdomain
are summarized in Table III. For each subdomain are
given its relative position xi, external space displace-
ments u1 u2 and partial occupancy factor p. Where all
subdomain are fully occupied. B|| and B⊥ components
of the ADP are given for each OD. The estimated stan-
dard deviation (esd) for each refined parameter is less or
equal 0.01.

Scaling factors and two parameters for the secondary
extinction factor were refined as common parameters for
all subdomains and individually for each diffraction data
set. In addition, a phason displacement parameter (”pha-
son Debye-Waller factor”) was refined to bi = 0.112(2)
Å2 for the synchrotron data with weak reflections.

Three penalty functions were included, PF1 for oc-
cupation probabilities, PF2 for the displacement pa-
rameter and PF3 for the chemical composition. Their
weights were chosen to be 0.5, 0.3 and 0.3 respec-
tively. In the framework of the present structure solu-
tion the final model was refined with a chemical com-
position of Al72.3TM27.7 compared to the actual one of
Al72.5(Co,Ni)27.5. The final R-values are wR = 0.123
and R = 0.156 for 957 unique reflections based on three
data sets. The high quality of the fit is reflected in the
Fobs/Fcalc distribution shown in Fig. 3.

Not all the reflections from the three data sets were
included in the refinement process. Our threshold pa-
rameters are based on σ|Fo|, which is σ|Fo| =

√
σ(F 2

o )/2
for strong reflections and σ|Fo| = σ(F 2

o )/2|Fo| for weak
reflections24. The resulting R-factors of the partial sub-
sets are:
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TABLE II: Symmetry allowed shift vectors of the subdomains shown in Fig. 2. The superscript e indicates that the shifts only
have external space components.

subdomain shift vector xe
1 shift vector xe

2

#1, #13, # 27, #39, #52 - -
#2, #5, #7, #11, #20, #21, #22, #26 (0, -1, 0, 0, 0, 0)e -
#3, #4, #12, #14, #15, #17, #19, #23, #28, #31, #33, #37, #46, #47, #48, #51 (1, 0, 0, 0, 0, 0)e -
#29, #30, #38, #40, #41, #45, #49 (0, 0, 0, 0, -1, 0)e -
#53 (0, 0, 1, 0, 0, 0)e -
#6, #8, #9, #10, #16, #17, #18, #24, #25 (1, 0, 0, 0, 0, 0)e (0, -1, 0, 0, 0, 0)e

#32, #34, #35, #36, #42, #43, #44, #50 (1, 0, 0, 0, 0, 0)e (0, 0, 0, 0, -1, 0)e

FIG. 3: Fobs/Fcalc plot on a logarithmic scale for the final
model of Al72.5Co18.5Ni9 (957 reflections, wR = 0.123 and R
= 0.156).

• wR = 0.040 and R = 0.094 for data set 1 with
strong reflections (|Fo| > 3σ(|Fo|))), 177 unique re-
flections;

• wR = 0.201 and R = 0.241 for data set 2 with weak
reflections (|Fo| > 1σ(|Fo|)), 780 unique reflections;

• wR = 0.057 and R = 0.081 for data set 3 with
strongest reflections (|Fo| > 10σ(|Fo|)), 85 unique
reflections.

The maxima and minima of the residual electron den-
sity according to the difference Fourier maps in external
space are ∆ρe

max = 1.15 eÅ−3 and ∆ρe
min = -0.88 eÅ−3,

respectively. The corresponding values for the maxima
and the minima of the full electron density are ρe

max =
43.54 eÅ−3 and ρe

min = -6.12 eÅ−3, respectively. Elec-
tron density maps calculated by the maximum-entropy
method (MEM) fully agree with the structure derived
from the 5D model.

V. 3D STRUCTURE MODEL AND THE
W-PHASE

A 3D quasiperiodic structure model can be obtained as
a particular irrational cut of the 5D hypercrystal struc-
ture with 3D external space. In Fig. 4, characteristic sec-
tions and a projection of the 3D structure are shown. The
underlying tiling with an edge length of ≈ 4.8 Å marks
the typical columnar clusters with ≈ 20 Å diameter (see
also Fig. 5). One has to keep in mind that the choice of
a fundamental cluster is not unique4,5. In the following,
we will use the same kind of cluster that has been fre-
quently employed for the description of the W-phase27

and the different modifications of d-Al-Co-Ni. However,
the structure could be equally well described by the al-
ternative generic cluster model28.

In our structure model, only one type of cluster can
be identified that is oriented always in the same way as
it is the case for the W-phase26, which is a rational ap-
proximant. The cluster centers decorate the vertices of a
pentagon tiling with ≈ 20 Å edge length (Fig. 4(c)). The
main difference between the current structure and the
model of the d-Al-Co-Ni superstructure of type I (S1)25
is that in the latter the clusters occur in two orientations
and do not feature a central atom.

The structures of basic Co-rich d-Al-Co-Ni and the W-
phase are built from the same fundamental ≈ 20 Å clus-
ter. It consists of a decagon surrounded by ten pen-
tagons. In the layer at x3=3/4, an Al atom is surrounded
by five TM atoms followed by a large Al pentagon and
subsequently by a 15-gon of five TM and ten Al atoms.
The layer at x3= 1/4 is rotated by π/5 relatively to the
former and the innermost atomic shell consists of an Al
pentagon without a central atom.

These two layers are similar to the layers (A plus A′)
and B in the W-phase (see Fig. 6). The Al atoms at
layer x3= 3/4, related to the averaged layers A and A′

in the W-phase, exhibit larger displacements from their
ideal positions. The maximal shifts we observed for the
Al subdomains #44, #46 and #50, reach each ≈ 1 Å,
while those occupied by TM are maximum 0.16 Å.

Since the W-phase27 (space group of Cm, a=39.668(3)
Å, b=8.158(1) Å, c=23.392(1) Å, β = 90.05(1)◦) is a ra-
tional approximant, its structure can be directly obtained
from the 5D structure of basic Co-rich d-Al72.5Co18.5Ni9

CHAPTER 4. AVERAGE STRUCTURE OF BASIC CO-RICH DECAGONAL
AL72.5CO18.5NI9

59



6

TABLE III: Refined parameters: the external space displacements u1, u2; B|| and B⊥ components of the ADP and partial
occupancy factors p for TM and Al. esds of refined parameters are less or equal 0.01. Fixed parameters are indicated by *.

subdomain: xi u1 (Å) u2 (Å) B|| (Å2) B⊥ (Å2) p(TM) p(Al)
OD1: x0 = (0.2, 0.2, 0.2, 0.2, 0.25) 0.73 1.27
1: (0, 0, 0, 0, 0, 0)i - - 0.93 0.07
2: τ−1(0.4, 0.4, 0.4, -0.6, -0.6, 0)i 0.07 - 1.00 0.00
3: τ−1(0.8, -0.2, -0.2, -0.2, -0.2, 0)i -0.01 - 0.84 0.16
4: τ−1(0.4, -0.6, 0.4, 0.4, -0.6, 0)i 0.13 - 0.24 0.76
5: τ−1(0.6, -0.4, 0.6, -0.4, -0.4, 0)i 0.16 - 1.00 0.00
6: τ−1(-0.2, -1.2, 0.8, 0.8, -0.2, 0)i 0.01 0.21 0.32 0.68
7: τ−1(0.8, 0.8, 0.8, -1.2, -1.2, 0)i 0.05 - 0.29 0.71
8: τ−1(1.8, -0.2, -0.2, -1.2, -0.2, 0)i -0.10 -0.22 0.75 0.25
9: τ−1(0, 0, 1, 0, -1, 0)i 0.08 -0.01 0.00 1.00
10: τ−1(1, -1, 0, 0, 0, 0)i 0.09 0.16 0.00 1.00
11: τ−1(1, 0, 1, -1, -1, 0)i 0.24 - 0.00 1.00
12: τ−5(0.4, -0.6, 0.4, 0.4, -0.6, 0)i 0.02 - 1.00 0.00

OD2: x0 = (0.4, 0.4, 0.4, 0.4, 0.25) 0.88 6.54
13: (0, 0, 0, 0, 0, 0)i - - 0.49 0.51
14: τ−1(1.2, 0.2, -0.8, -0.8, 0.2, 0)i 0.07 - 0.41 0.59
15: τ−1(0.8, -0.2, -0.2, -0.2, -0.2, 0)i 0.08 - 0.00* 1.00
16: τ−1(-0.2, -1.2, 0.8, 0.8, -0.2, 0)i 0.06 0.10 0.00* 1.00*
17: τ−1(0.8, -0.2, 0.8, -0.2, -1.2, 0)i 0.02 0.21 0.00* 1.00*
18: τ−1(0.2, -0.8, 1.2, 0.2, -0.8, 0)i 0.10 0.21 0.00* 1.00*
19: τ−1(0.4, -0.6, 0.4, 0.4, -0.6, 0)i 0.16 - 0.42 0.58
20: τ−1(0.4, 0.4, 0.4, -0.6, -0.6, 0)i 0.04 - 0.11 0.89
21: τ−1(0.2, -0.8, 0.2, 0.2, 0.2, 0)i 0.02 - 0.84 0.16
22: τ−1(0.4, -1.6, 0.4, 0.4, 0.4, 0)i 0.55 - 0.16 0.84
23: τ−1(1.8543, 0, 0, 0, 0, 0)i -0.12 - 0.00* 1.00*
24: τ−1(0.4584, -0.6876, 0.4521, 0.3124, -0.5416, 0)i -0.21 -0.14 0.00* 1.00*
25: τ−1(0.3124, -0.5416, 0.4584, 0.3124, -0.5416, 0)i -0.24 0.24 0.00* 1.00*
26: τ−1(0, -1.2362, 0, 0, 0, 0)i -0.57 - 0.00* 1.00*

OD3: x0 = (-0.2, -0.2, -0.2, -0.2, -0.25) 0.90 0.10
27: (0, 0, 0, 0, 0, 0)i - - 1.00 0.00
28: τ−1(-0.4, -0.4, 0.6, 0.6, -0.4, 0)i 0.01 - 1.00 0.00
29: τ−1(0.2, 0.2, 0.2, 0.2,- 0.8, 0)i 0.03 - 1.00 0.00
30: τ−1(0.6, -0.4, -0.4, 0.6, -0.4, 0)i 0.02 - 1.00 0.00
31: τ−1(0.4, -0.6, 0.4, 0.4, -0.6, 0)i 0.14 - 0.76 0.24
32: τ−1(1.2, -0.8, -0.8, 0.2, 0.2, 0)i -0.13 -0.02 1.00 0.00
33: τ−1(-0.8, -0.8, 1.2, 1.2, -0.8, 0)i 0.12 - 1.00 0.00
34: τ−1(0.2, 0.2, 1.2, 0.2, -1.8, 0)i 0.00 0.48 1.00 0.00
35: τ−1(0, -1, 0, 1, 0, 0)i 0.05 -0.01 1.00 0.00
36: τ−1(1, 0, 0, 0, -1, 0)i 0.26 0.05 0.00 1.00
37: τ−1(0, 1, 1, 1, -1, 0)i -0.37 - 0.00 1.00
38: τ−5(0.6, -0.4, -0.4, 0.6,- 0.4, 0)i -0.08 - 1.00 0.00

OD4: x0 = (-0.4, -0.4, -0.4, -0.4, -0.25) 2.10 2.04
39: (0, 0, 0, 0, 0, 0)i - - 0.47 0.53
40: τ−1(-0.2, 0.8, 0.8, -0.2, -1.2, 0)i -0.04 - 0.00* 1.00*
41: τ−1(0.2, 0.2, 0.2, 0.2, -0.8, 0)i 0.02 - 0.00* 1.00*
42: τ−1(1.2, -0.8, -0.8, 0.2, 0.2, 0)i -0.01 - 0.00* 1.00*
43: τ−1(0.2, -0.8, 0.2, 1.2, -0.8, 0)i -0.25 -0.11 0.00* 1.00*
44: τ−1(0.8, -1.2, -0.2, 0.8, -0.2, 0)i 0.70 0.09 0.00* 1.00*
45: τ−1(0.6, -0.4, -0.4, 0.6, -0.4, 0)i -0.09 - 0.10 0.90
46: τ−1(-0.4, -0.4, 0.6, 0.6, -0.4, 0)i -0.94 - 0.00* 1.00*
47: τ−1(0.8, -0.2, -0.2, -0.2, -0.2, 0)i -0.08 - 0.28 0.72
48: τ−1(1.6, -0.4, -0.4, -0.4, -0.4, 0)i 0.34 - 0.00* 1.00*
49: τ−1(0, 0, 0, 0, -1.8543, 0)i 0.65 - 0.00* 1.00*
50: τ−1(0, 0.4584, 0, -0.5055, 0.8763, 0)i -0.69 0.03 0.00* 1.00*
51: τ−1(1.2362, 0, 0, 0, 0, 0)i 0.26 - 0.00* 1.00*

OD5: x0 = (0, 0, 0, 0, -0.25) 0.40 0.40
52: (0, 0, 0, 0, 0, 0)i - - 0.21 0.79
53: τ−1(0.6, -0.4, -0.4, -0.4, 0.6, 0)i 0.10 - 0.30 0.70

4.3. BASIC CO-RICH DECAGONAL AL-CO-NI: AVERAGE STRUCTURE
(ARTICLE II)

60



7

(a)

(b)

(c)

FIG. 4: Atomic layers at (a) x3= 3/4, (b) x3= 1/4 and (c)
projection along the tenfold axis of the average structure of
decagonal Al72.5Co18.5Ni9 (70x70 Å2) . White and black cir-
cles correspond to Al and TM atoms, respectively. In case of
mixed atomic sites, the majority component is indicated.

(a) (b)

FIG. 5: Atomic layers at (a) x3= 3/4 and (b) x3= 1/4 of
the ≈ 20 Å cluster of the average structure with two layer
periodicity. Open and filled circles correspond to Al and TM
atoms, respectively, and grey shaded circles indicate mixed
occupied positions. The shortest interatomic distances are
≈ 2.5 Å

by applying a particular linear phason strain. For this
purpose, we have to use the basis of the four-layer super-
structure embedding since the W-phase has a four layer
structure as well. We have also to take into account, that
a rational approximant of the two-layer average structure
of the d-phase can only give the two-layer average struc-
ture of the W-phase, which has space group Pm and and
only half the lattice parameter in a-direction.

The 5D unit cell of the superstructure is five times
larger than that of the average structure25 (ten times if
we consider the doubling of the period along the tenfold
axis). Therefore, we first have to transform the basis
of the average structure into that of the superstructure.
The reciprocal basis vectors of the superstructure, d∗j
(j = 1, . . . , 5), are related to those of the average struc-
ture, d∗0j by d∗j =

∑
j Tijd∗0j with

T =
1
5




2 −1 1 −2 0
2 4 1 3 0

−3 −1 1 −2 0
2 −1 1 3 0
0 0 0 0 5/2




The resulting quasilattice parameters are a′o= 5.221
Å and c′o = 8.144 Å (along the tenfold axis).

The lattice vectors of the approximant can be
determined29 to aapp = τka′o, capp = τk′

a′o(a1 −
a4) and bapp = c′o along tenfold axis of the qua-
sicrystal. Then aapp = |aapp| = τk|ap

o|, capp =
|capp| = 2 cos(π/10)τk′ |ap

o|, where |ap
o| = 2√

5
|a′o|=4.670

Å. Then, we obtain for the lattice parameters of the
two-layer average structure of the W-phase k = 3 and
k’ = 2, so that aapp = τ3|ap

o|=19.782 Å, capp =
2 cos(π/10)τ2|ap

o|=23.256 Å.
In other terms, it can be written as:

aapp = pa0 + q(a1 + a4) (5)

capp = r(a1 − a4) + s(a2 − a3) (6)
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Substituting in eq. (5) the lattice constants of the ap-
proximant and of the quasicrystal we obtain p = 3 and q
= 2. And for eq. (6) the parameters result to r = 2 and
s = 1. Hence we have a rational 〈3/2, 2/1〉-approximant,
defined by the ratio of two consecutive Fibonacci num-
bers. The Fibonacci series is generated by the recursion
relation: F k+1 = F k + F k−1 where F 0 = 0 and F 1 = 1.
In our case p = F k+1, q = F k, r = F k′+1 and s = F k′ .

Based on these results the required phason strain
matrix can be calculated to H= I + H’ where I is
the unit matrix and the H’ contains coefficients in
the bottom-left 2×2 block. For the current case of
〈F k+1/F k, F k′+1/F k′〉, the non-vanishing matrix coeffi-
cients are δ1 = -(-1/τ2)k = 0.0557 (= τ(qτ -p)/(q+pτ))
and δ2 = (-1/τ)(-1/τ2)k′

= -0.0902 (= (sτ -r)/(s+rτ)).

Taking into consideration the space group of the W-
phase we determined the origin of the section with the
five-dimensional space to be (1 0 1 1 0)i/2. The resulting
structure of the approximant is shown in Fig. 6. Similar
to the average structure of the decagonal Al72.5Co18.5Ni9,
the average structure of the W-phase approximant has
only two different layers along the b axis. Consequently
the layer at z = 3/4 is an average of layers A and A′ in
the real W-phase structure and, consequently, it contains
a number of split positions. The translation period along
the axes aapp and bapp of the created approximant are
half of the original values in the W-phase. Therefore we
have an average structure of the W-phase with the aav

app

= 19.884 Å, bav
app = 4.069 Å and cav

app = 23.375 Å. It is
rotated by π/10 to that of the average structure of the
quasicrystal presented in Fig. 4, since they are defined
by different bases.

VI. CONCLUSIONS

In this first step of the structure solution of basic Co-
rich d-Al72.5Co18.5Ni9, its two-layer average structure
could be successfully determined. As could be antici-
pated from the respective electron micrographs and X-
ray diffraction patterns, it is closely related to the d-Al-
Co-Ni superstructure of type I (S1) and to the structure
of d-Al-Fe-Ni. This allowed to use a modified structure
model, originally proposed for d-Al-Fe-Ni17, as starting
model for the refinements.

An important result of this study is that the aver-
age structure of the W-phase can be directly obtained
as rational approximant of the average structure of ba-
sic Co-rich d-Al72.5Co18.5Ni9. This has the consequence
that we can use the structure of the W-phase in the 5D
embedding to design a starting model for the determina-
tion of the full four-layer structure. This first structure
solution of the full four-layer structure will enhance our
understanding of the complex ordering phenomena in the
system Al-Co-Ni.

(a)

(b)

(c)

(d)

FIG. 6: Layers of the W-phase as derived from basic Co-
rich d-Al72.5Co18.5Ni9 (a,c) compared to its actual structure27

(b,d); x3= 3/4 for (a, b) and x3= 1/4 for (c,d). The layer in
(b) is combined from layers A and A′, related by C-centering,
of the W-phase. The differences between layers at A and at
A′ are indicated by asterisks. Wherever atoms are to close
to each other in this combined layer, these are partially occu-
pied split positions. White and black circles correspond to Al
and TM atoms, respectively, and grey circles indicate mixed
occupied positions.
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4.4. SUPPLEMENT - ARTICLE II

4.4 Supplement - Article II

The atomic structure in external space was generated by an irrational cut through the
refined five-dimensional structure. The resulting atomic layers of the refined structure
are shown in Fig. 4. The atoms in this structure originate from 53 subdomains as shown
in Fig. 2. In Fig. 4.11, the atomic layers are given and their corresponding occupation
domains are shown (numbered).

As was previously mentioned, the shapes and positions of the occupation domains
were determined using the LDE method. In the initial structure solution, six occupation
domains were found as shown in Fig. 4.12. Here we have two small occupation domains at
(0, 0, 0, 0, 1/4) and (0, 0, 0, 0, 3/4). These occupation domains create atoms in the centers
of the decagonal clusters (indicated by a decagonal cage) in the external space. Electron
densities are observed in the centers of the decagonal cages in both layers, Fig. 4.13.
Coexistence of these two occupation domains is impossible, since it creates atoms in
two atomic layers with unphysically short interatomic distances. The electron density
however, in the layer at x3 = 1/4 is significantly lower. This implies that one of the
occupation domains has a lower occupancy probability. In the initial structure model,
two such occupation domains were constructed and their occupancies were set to 0.5.
During the refinement process, the occupation domain at (0,0,0,0,1/4) was eliminated.

The final five occupation domains, improved by MEM, are shown in Fig. 4.14. Their
corresponding profiles, plotted on a relative scale, are useful in illustrating the density
distribution of each occupation domain. The profiles of the occupation domains at (-2,-
2,-2,-2,15/4)/5 and (1,1,1,1,1/4)/5 are two times larger than the profiles of the occupation
domains at (-1,-1,-1,-1,15/4)/5 and (2,2,2,2,1/4)/5. Hence, the former two are occupied
mainly by TM, whereas the latter two are occupied mainly by Al.

The corresponding electron density distribution in external space is shown in Fig. 4.15
as it results from the irrational cut through the refined five-dimensional structure after im-
provement by MEM. The resulting structure in the external space shows electron densities
at the centers of the decagonal clusters only in the layer at x3 = 3/4, as was expected from
the refinement. It is important to stress that the information contained in the Fourier or
MEM maps is of a more general character, since it is based on experimentally obtained
amplitudes.

A comparison of the corresponding layers in Figs. 4.13 and 4.15 reveals that the
electron density distribution has been drastically improved in the layer at x3 = 1/4.
Whereas, even after the refinement, the electron density in the layer at x3 = 3/4 still
contains a lot of so called split positions.

One should keep in mind that this is an average structure solution, therefore each
atomic layer is a superposition of two layers in the real four-layer superstructure. Taking
into account the structure of the W-phase approximant and the electron distribution in
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the layers shown in Fig. 4.15, we can conclude that the layer at x3 = 3/4 is a superposition
of two layers that have in-plane displacements and the layer at x3 = 1/4 is a superposition
of the two puckered (off-plane displacements) layers.

Lets take a closer look at the MEM map corresponding to the layer at x3 = 3/4. The
split atomic position in the pentagonal cage, as indicated by an arrow, corresponds to the
subdomain #47 (Fig. 4.15(a)). Hence, we expect that in the real, four-layer structure,
we will have two different atoms in the two corresponding layers with slightly different
positions. A strange electron density distribution is observed inside of the decagonal cage
as indicated by a rectangle (Fig. 4.15(a)). The atoms at these positions stem from the
outer part of the occupation domain at (-2,-2,-2,-2,15/4)/5, namely from subdomain #43,
which are normally not clearly defined and result in not clearly defined atomic positions
in external space. However, similar shifts are indicated in the W-phase structure, hence
we expect to observe these atomic displacements in the real four-layer structure. In some
pentagonal and decagonal cages, electron density has very low intensity as indicated by
circles. The atoms in the decagonal cages originate again from subdomain #43 and in the
pentagonal cages from subdomains #42 and #51. This is a good indication of partially
occupied atomic sites which is also in agreement with the structure of the W-phase as
shown in Fig. 6(b) in Article II. Moreover, in the present average structure solution,
several split atomic positions (atoms which are separated by interatomic distances that
are too short) are visible. This is an indication of the presence of phason defects in the
system.

The projection of the two layers is given in Fig. 2(c). It is complemented with the pro-
jection given in Fig. 4.16, where atoms in different structure layers are indicated. Addition-
ally, two more comparisons were performed. Firstly, a generated 〈3/2, 2/1〉-approximant
W-phase from the refined five-dimensional model of the decagonal Al72.5Co18.5Ni9 is su-
perimposed onto the HAADF-STEM images of the W-phase [HON01] (Fig. 4.17(a)). Sec-
ondly, a structure-fragment of the refined decagonal Al72.5Co18.5Ni9 phase is superimposed
onto the basic Co-rich structure [HOSS02](Fig. 4.17(b)).

One should keep in mind that this higher-dimensional model is based on an ideal
pentagonal Penrose tiling. Hence, it is not taking into account the presence of random
phasons. The random phasons are higher-dimensional structural defects which result
from various types of defect in the quasiperiodic structures. These include split atomic
positions, changes in a position of cluster centers, microdomain structure and others. For
the structure description including the random phasons, it would be necessary to use a
model based on a random tiling. However, the implementation of such a model is still
not clear. To compensate for this, in the current work a phason Debey-Waller factor
has been calculated. The random phason factor is a relative property of the quasicrystal
structures. To estimate the significance of this parameter, it can be compared with other
phason Debey-Waller factors obtained by the refinement of quasicrystal structures.
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(a)
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(b)

Figure 4.11: 70 x 70 Å2 sections of the atomic layers at (a) x 3 = 3/4, (b) x 3 = 1/4 of the
two-layer average structure decagonal Al72.5Co18.5Ni9 related to Fig. 4 in Article II with
an indicated number for each atom.
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Figure 4.12: Resulting occupation domains of decagonal Al72.5Co18.5Ni9 obtained by LDE
at (0,0,0,0,1/4) and (0,0,0,0,3/4). As was reported in Article II, the occupation domain
at (0,0,0,0,3/4) has been eliminated during the refinement process. Dark gray indicates
TM atoms (Co or Ni) and light gray Al atoms.

(a) (b)

Figure 4.13: Electron density distribution in external space of decagonal Al72.5Co18.5Ni9
(70x70 Å2) calculated by LDE at (a) x 3 = 3/4, (b) x 3 = 1/4.
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0

Figure 4.14: Occupation domains resulting from the refinement and after MEM with
the corresponding profiles of the density distribution at (a, c) ((1,1,1,1,1/4)/5, (b, d)
(2,2,2,2,1/4)/5, (e, g) (-2,-2,-2,-2,15/4)/5, (f, h) (-1,-1,-1,-1,15/4)/5, (i, j) (0,0,0,0,1/4).
Dark gray indicates TM atoms (Co or Ni) and light gray Al atoms.

(a) (b)

Figure 4.15: Electron density distribution in external space after refinement and MEM
calculations at (a) x 3 = 3/4, (b) x 3 = 1/4.
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Figure 4.16: Two projected layers along the ten-fold axis of the average structure of
decagonal Al72.5Co18.5Ni9 (70x70 Å2).

(a) (b)

Figure 4.17: A structure-fragment of refined decagonal Al72.5Co18.5Ni9 in comparison with
HAADF-STEM images of (a) the W-phase, taken with the incident beam parallel to b-
axis [HON01] and (b) the basic Co-rich structure, taken with the incident beam parallel
to the periodic axis [HOSS02]. Al and TM atoms are indicated respectively by green and
blue circles.
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Chapter 5

Superstructure of basic Co-Rich
Decagonal Al72.5Co18.5Ni9

5.1 Basic Co-Rich Decagonal Al-Co-Ni: Superstruc-

ture (Article III)

The first higher-dimensional refinement of a quasicrystal superstructure has been per-
formed. As a result, a five-dimensional model is proposed. The three-dimensional model
shows good agreement with its closely related W-phase approximant. Both structures
have four-atomic layers which are stacked as an alternation of flat and puckered layers. A
comparison of the corresponding layers in these structures reveals remarkable similarities
of the atomic arrangements within their clusters. Moreover, both structures show similar
structural modulations that lead to a superstructure formation. The current section con-
tains a reprint of the article:
A. Strutz, A. Yamamoto and W. Steurer, Basic Co-rich decagonal Al-Co-Ni: Superstruc-
ture, submitted to Phys. Rev. B (2010).
Additional figures concerning this article are given in the supplementary section.
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Abstract

The four-layer superstructure of basic Co-rich decagonal Al72.5Co18.5Ni9 was determined by

single-crystal X-ray diffraction. Based on our previous work [A. Strutz, A. Yamamoto and

W. Steurer, Phys. Rev. B 80, 184102 (2009)], a superstructure model was derived with five-

dimensional (5D) non-centrosymmetric space group symmetry P102c with some additional con-

straints resulting from normal mode analysis. The 5D structure model was refined with 250 pa-

rameters, resulting in values of wR = 0.039 and R = 0.186 for 1222 unique reflections. Its close

relationship with the structure of W-Al-Co-Ni, a 〈3/2, 2/1〉-approximant, proves the physical va-

lidity of our structure model and justifies the use of the W-phase for the derivation of structural

principles underlying the formation of Al-based decagonal quasicrystals.

PACS numbers: 61.05.cp,61.44.Br,61.50.Ah,61.66.Dk
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I. INTRODUCTION

This is part II of our structure analysis of basic Co-rich decagonal Al72.5Co18.5Ni9 (d-Al-

Co-Ni). In part I [1], we described the determination of the two-layer average structure,

while here in part II we present the solution of the actual four-layer superstructure. This

is the first determination of such a superstructure, which is quite common in aluminum-

based decagonal quasicrystals. In the system Al-Co-Ni, the lateral correlation length of

the superstructure decreases with decreasing Co/Ni ratio by approximately two orders of

magnitude while it remains constantly large along the periodic direction. Basic Co-rich

d-Al-Co-Ni is the only decagonal quasicrystal modification that has sharp superstructure

reflections related to the four-layer periodicity, allowing a quantitative structure analysis.

All others show only diffuse scattering phenomena which get weaker and less peaked and

structured with increasing Ni content, being no more observable at all in case of basic Ni-rich

d-Al70.2Co5.4Ni24.4 [2–4].

The formation of a twofold superstructure along the periodic direction stabilizes all low-

temperature modifications of d-Al-Co-Ni and all their approximants with the exception of

the Ni-rich ones [2]. At high temperatures, the entropic contribution, mainly by Co/Ni

disorder and vacancy formation, is sufficient for the stabilization of these phases and all

superstructures disappear. In order to better understand formation, stability and physical

properties of d-Al-Co-Ni full structural information, not only averaged one, is required.

More than 500 papers on these phases and structurally related d-Al-Co-Cu and d-Al-Fe-Ni

testify the broad interest in these model systems justifying the tedious determination of the

superstructure.

One of the main results of the determination of the average structure in part I was that

it allows the direct derivation of the two layer average structure of the W-phase, a high

rational approximant of d-Al-Co-Ni, by a 5D shear operation. And one of the goals of the

determination of the superstructure of d-Al-Co-Ni was to find out whether this is also true

for the full four-layer structure of the W-phase. In this case, the W-phase can be employed as

a periodic model system, suitable for quantum-mechanical calculations, for all modifications

of d-Al-Co-Ni as well as d-Al-Co-Cu and d-Al-Fe-Ni. Furthermore, its fundamental building

clusters can be used for modeling the structures of all modifications of these decagonal

phases. That this works has already been demonstrated [5].
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For the experimental details concerning the single-crystal X-ray diffraction data collection

and reduction see part I. There, we already pointed out that the h5 = 2n reciprocal space

layers, containing main reflections only, resemble those of the basic Ni-rich phase, while

those with h5 = 2n + 1, containing superstructure reflections only, can be only indexed

employing the superstructure basis. Depending on the value of m = (
∑4

i=1 hi) mod 5, we

can distinguish between main reflections (m = 0) and superstructure reflections of first (S1,

|m| = 1) and second order (S2, |m| = 2). The intensities of S1 reflections are systematically

stronger than those of S2 reflections as it is usually the case for first and second order

satellites.

The superstructure basis is identical to that of the superstructure of type I [6], which is

related to that of the basic structure by rotoscaling, i.e. a rotation by π/10 and scaling by

a factor of 1/(2 cos(π/10)) = 0.5257. This leads to the quasilattice parameter as = 5.221(4)

Å and the period cs = 8.144(2) Å along the tenfold axis. According to the determinant of

the transformation matrix [7], basic Co-rich d-Al-Co-Ni is a fivefold superstructure (regard-

ing the volume of the 5D unit cell) of the basic Ni-rich modification in the quasiperiodic

directions and a twofold one along the tenfold axis. Both types of superstructures have been

analyzed in the work presented here.

II. 5D STRUCTURE MODEL BUILDING

For d-Al-Ni-Fe, a similar peculiar distribution of main and superstructure reflections as

in our case has been observed and qualitatively explained by a 5D structure model with

color symmetry [8]. Unfortunately, this approach is not applicable to our case since it

lacks the necessary degrees of freedom for the description of puckered quasiperiodic atomic

layers. We need these degrees of freedom because we know from the structure of the W-

phase that at least two of the four quasiperiodic layers have to be puckered. We also know

from the diffraction pattern that the superstructure reflections do not systematically decay

with increasing values of h5, indicating that the atomic displacements along the tenfold axis

strongly contribute to the intensities of the superstructure reflections.

A hard constraint for our superstructure model is set by symmetry. According to the

superspace group P102c, the OD in the layers separated by one half of the translation

period are related by the c-glide operation cutting them into halves (OD transformed by the

3
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c-glide operation will be marked by primed symbols); OD A and A’ as well as B and B’ are,

additionally, related by reflection on the mirror plane perpendicular to the tenfold direction

and halfway between them (note: 10 = 5/m).

Another hard constraint is that the projection of the actual four-layer structure onto

the two-layer period has to reproduce exactly the average structure determined in part I.

This means that we can neither change the general shapes of the five occupation domains

(OD) A, B, C, D, and E (see part I and Fig. EPAPS-1 [11]) nor those of their small

subdomains. If we denote the OD of the average structure by the subscript AS, we get the

following conditions: AAS=A+A’, BAS=B+B’, CAS=C+C’, DAS=D+D’, EAS=E+E’. This

means that in projection the point symmetry of all OD has to be 10m2. At contrast, in the

actual superstructure the fivefold symmetry of the OD is broken and the point symmetry

is reduced to m for OD C, D, C’ and D’, which are located within mirror planes and are

generating flat atomic layers, and that of OD A, A’, B and B’, generating puckered atomic

layers, is even lowered to 1.

The relationships between the symmetry of the average structure and that of the super-

structure, together with the above mentioned peculiar reciprocal space distribution of main

(even) and superstructure reflections (odd reciprocal space layers), put strong constraints on

the allowed shifts and chemical occupancies of the subdomains. Unfortunately, because of

the very limited number of observable superstructure reflections, not all remaining allowed

parameters can be refined. Therefore, starting from the average structure described in part

I, we constrain in our superstructure model the relevant parameters in the form of shift and

substitutional modes obtained from a symmetry-based normal mode analysis. Four different

shift modes and two substitutional modes, symmetric and antisymmetric ones, were selected

and used simultaneously in the refinements.

The shift modes are realized by different combinations of the external space shifts u1,

u2 and u3 for each subdomain. Shifts u3, i.e. along the periodic axis [0 0 0 0 0 ±1] are

only allowed for OD A and B, which generate the puckered atomic layers. For these OD,

two different shift modes were used as shown in Fig. 1(a,b). Empty circles and crossed

circles identify subdomains with displacement vectors [0 0 0 0 0 +1] (up) and [0 0 0 0 0

-1] (down), respectively. For these OD, the reflection conditions do not allow displacements

parallel to the quasiperiodic layers. The maximal amplitude of ≈0.5 Å was observed for the

subdomains 47, 52-55. These subdomains are fully occupied by Al.

4
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At contrast, OD C and D, located within mirror planes and generating the flat atomic

layers, have displacements within the quasiperiodic layers only. The two different shift modes

employed are shown in Fig. 1(c,d), with external space shift directions indicated by arrows.

Atoms originating from the outermost subdomains 168, 169, 184, 185, 200, 201, 210 - 213

experience large shifts exceeding 1 Å. Therefore their total occupancies were set to one half.

In the external space, these atoms are located in the decagonal cages of the 20 Å clusters.

The comparison with the 20 Å clusters in the W-phase reveals similar atomic relaxations in

the quasiperiodic flat layers, mainly due to the presence of vacancies.

The two substitutional modes are of the same type as shown in Fig. 1(a,b), but only apply

to OD C and D. The symbols mark now plus and minus deviation of the Al/TM occupancy

from equal distribution. The variations in the Al/TM occupancies, in most of the cases,

are coupled with the displacements parallel to the quasiperiodic layers. Analysis of the

changes in R-factors during the refinement shows that the importance of the substitutional

modes in the superstructure formation is less significant in comparison with puckering or

with displacements parallel to the quasiperiodic layers. The maximal amplitude of the total

substitutional modes of ≈50% was observed for the subdomains 160, 161, 190 - 193 related

by a fivefold symmetry.

III. STRUCTURE REFINEMENT

All structure refinements have been performed using the program package QUASI07 08

[9]. In the first step, one scale factor and two parameters for secondary extinction correction

as well as all average structure parameters [1] were refined against the full data set. These

parameters include: for each OD the overall external[13] space atomic displacement parame-

ters (ADP), B|| within the quasiperiodic plane and B⊥ perpendicular to it (B = 8π2 < u2 >,

with u the displacement amplitude); for each subdomain the external space shifts u1, u2 from

the ideal positions as defined by the coordinates of the respective OD and the Al/TM site

occupancy (mixing parameter s1). The limited number of reflections does not allow to refine

individual ADP for each subdomain.

In the next step, the superstructure parameters were successively refined in addition. As

in the superstructure the fivefold symmetry of the OD is broken, the number of symmetrically

independent subdomains is drastically increased from 53 in the average structure to 275.

5
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(a) (b)

(c) (d)

FIG. 1: Different shift modes generating the superstructure. (a,b) Atoms in the puckered layer at

x3=1/8 can be displaced along the periodic direction. Empty (crossed) circles mark shifts into the

[00100], up ([001̄00], down) direction. (c,d) Atoms in the flat layer at x3=3/8 can have shifts only

within the quasiperiodic layer. Note: although the arrows are plotted in the respective subdomains

they denote shifts that are only in external space.

This is more than just 5× 53 = 265, because the subdomains cut by the c-glide plane have

to be split into two parts. In order to keep the number of parameters as small as possible,

all shifts less than their standard deviations were reset to zero and fixed in the further

refinement steps.

In addition, a phason displacement parameter was refined to bi = 0.684(2) Å2. A

penalty function was included in order to constrain the the chemical composition, which

then was refined to Al72.3TM27.7 compared to the actual one of Al72.5TM27.5. Since the

standard deviations of our data were calculated from averaging up to 40 symmetrically

equivalent reflections, they are systematically underestimated with regard to systematic

errors (weak intensity data integration, for instance). For the minimization of the weighted

reliability factor, wR, we used weights directly proportional to the standard deviations [10],

consequently.
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FIG. 2: (a) Fobs/Fcalc plot for the final model of Al72.5Co18.5Ni9. The 858 main and 364 superstruc-

ture reflections are marked as black and gray dots, respectively. (b) Distribution of Fobs/σF on a

double-logarithmic scale for main and superstructure reflections (black and gray dots, respectively).

Weighted, unweighted and expected R-factors (right scale) as a function of the N strongest reflec-

tions (top scale). The expected R-factors, σR, are given as function of the N strongest reflections

with N given at the respective data points.

The refinement of the 250 parameters (therefrom 117 superstructure parameters) against

the 1222 unique reflections with |Fo| > 1σ(|Fo|) converged to wR = 0.039 and R = 0.186.

The reliability factors for the 858 main reflections amount to wR = 0.034, R = 0.150, those

for the 364 satellite reflections to wR = 0.405 and R = 0.364. For a list of the resulting

refined parameters see Table EPAPS-1 [11].

The quality of the least-squares fit is reflected in the Fobs/Fcalc distribution shown in

Fig. 2(a). It clearly shows that the fit of the weak superstructure reflections is of the same

quality as that of the main reflections. The rather high R-factor for the superstructure reflec-

tions can be attributed mainly to their weak intensities leading to large standard deviations

and problems for intensity integration. Multiple diffraction effects may also contribute. The

internal R-factors, resulting from the averaging of symmetrically equivalent reflections, in-

dicate the range where the refinement R-factors are expected to be. In our case, Rint values

of 0.422 and 0.591 have been obtained for superstructure reflections of type S1 and S2,

respectively.
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The distribution of Fobs/σF for main (black dots) and superstructure (gray dots) reflec-

tions (Fig. 2(b)) shows perfect coincidence. This means, that statistical and systematic

errors are equally distributed for both reflection classes. In the same figure, the depen-

dence of reliability factors on the number of reflections used for their calculation is shown in

comparison with the expected R-factor, σR =
∑

σF /
∑ |Fobs|. This reliability factor corre-

sponds to the unweighted R-factor if ∆ = |Fobs| − |Fclc| = σF . Usually, due to systematic

errors, ∆ is significantly larger. The expected R-factors are: for all reflections σR = 0.159,

for main reflections σRmain = 0.135 and for superstructure reflections σRsup = 0.296.

The maxima and minima of the residual electron density according to the difference

Fourier maps in external space are ∆ρe
max = 0.86 eÅ−3 and ∆ρe

min = -0.87 eÅ−3, respectively.

The corresponding values for the maxima and the minima of the full electron density are

ρe
max = 43.54 eÅ−3 and ρe

min = -6.12 eÅ−3, respectively. Electron density maps calculated by

the maximum-entropy method (MEM) agree with the structure derived from the 5D model.

IV. 3D STRUCTURE MODEL AND THE W-PHASE

A 3D structure model in physical space can be obtained by a proper irrational cut of the

refined 5D structure model. Three successive atomic layers are shown in Fig. 3. The most

prominent difference between the superstructure and average structure is the presence of

puckered layers (at x3= 1/8 and 5/8) in the former. The maximum puckering amplitudes

amount to ±0.5 Å, comparable to those in the W-phase. In the flat layers (at x3= 3/8 and

7/8), the shifts for some atoms reach values of up to 1.4 Å. There are no too short distances

resulting between fully occupied atomic positions, only between half-occupied atomic split

sites.

To check the physical relevance of the obtained structure model, we generated its 〈3/2,

2/1〉-approximant with lattice parameters aav
app = 19.884 Å, bav

app = 8.1425 Å and cav
app =

23.375 Åas described in part I. Fig. 4 shows a comparison of three different layers of the

W-phase constructed from the 5D model of the QC with the actual experimentally obtained

structure [12]. With the exception of a few atomic sites, the agreement is surprisingly good.

Surprisingly, because a really existing approximant (W-phase) needs not to be a perfect

rational approximant. To summarize, the four-layer superstructure is mainly caused by a

puckering of every other layer and a relaxation of the flat layers in between. These building
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(a) (b)

(c)

FIG. 3: 70x70 Å2 sections of the atomic layers at (a) x3= -1/8 (flat), (b) x3= 1/8 (puckered) and

(c) x3= 3/8 (flat) of the four-layer superstructure of decagonal Al72.5Co18.5Ni9. The two flat layers,

located on mirror planes, are related by a c-glide plane in the 5D structure. White and black circles

correspond to Al and TM atoms, respectively. The thick (online red) outlined ≈20 Åcluster can be

compared with Fig. 5 in part I. There, the average structure layer at x3 = 3/4 (part I Fig. 5(a))

corresponds to the superposition of the superstructure layers at (a) x3 = 3/8 and (c) x3 = 7/8,

and that at x3 = 1/4 (part I Fig. 5(b)) to the superposition of the superstructure layers at (b)

x3 = 1/8 and x3 = 5/8. The structures are related by a π/10 rotation around [00100].

principles are also found in the other approximants in the system Al-Co-Ni [2].
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V. CONCLUSIONS

Since real quasicrystals are never strictly quasiperiodically ordered, diffraction experi-

ments can only give a kind of globally averaged 5D structure model. In our case of a tenfold

superstructure, the limited observable diffraction data set limits the complexity and infor-

mation content of the resulting structure model. Therefore, we see as the main result of this

first quantitative structure analysis of the four-layer superstructure of d-Al-Co-Ni that the

W-phase is a good rational approximant, indeed. This gives the clue for the modeling of

all the different modifications of aluminum-based decagonal phases with four-layer period,

since the clusters identified in the W-phase can be used as fundamental clusters for this

purpose [5]. Furthermore, the results of the first-principles calculations performed for the

W-phase can be transferred to some extent to the decagonal phase [12]. Then, the ordering

phenomena as a function of the Co/Ni ratio can be related to the TM atomic environments

that significantly differ in the case of Ni and Co atoms, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4: Layers of the W-phase as derived from (a,c,e,g) basic Co-rich d-Al72.5Co18.5Ni9 compared

to its actual structure (b,d,f,h) [12]; (a, b) flat x3= 3/8, (c,d) puckered x3= 1/8, (e,f) flat x3= -1/8

and (g,h) the layer structure shown along x3. Grey and black circles correspond to Al and TM

atoms, respectively.
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5.2. SUPPLEMENT - ARTICLE III

5.2 Supplement - Article III

(a) (b)

(c) (d)

(e)
Fig. 1 Independent OD of the re�ned structure model of basic Co-rich d-Al-Co-Ni, 
located at (a) A (0,2,-1,1,5/8)/5, (b) B (0,4,-2,2,5/8)/5, (c) C (0,-2,1,-1,-5/8)/5, 
(d) D (0,-4,2,-2,-5/8)/5, and (e) E (0,0,0,0,-5/8)/5, (1,1,1,1,-5/8)/5, (2,2,2,2,-5/8)/5, 
(-1,-1,-1,-1,-5/8)/5, and (-2,-2,-2,-2,-5/8)/5. Note: since (0,0,0,0,-1/8) is not a lattice 
point of the superstructure unit cell, the four additional, to E symmetrically equi-
valent, OD will not be generated by the 5D space group symmetry operators and 
have to be given explicitly. Subdomains with TM (Co or Ni), Al and mixed Al/TM 
occupancy are shaded dark, light and intermediate gray, respectively. 
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1

TABLE I: Refined parameters: the external space displacements u1, u2 and u3 (along the periodic
direction); B|| and B⊥ components of the ADP; total and partial occupancy factors p for TM and
Al. esds of refined parameters are less or equal 0.01. Fixed parameters are indicated by *.

subdomain: xi u1 (Å) u2 (Å) u3 (Å) B|| (Å2) B⊥ (Å2) p p(TM) p(Al)
OD1: x0 = (0.0, 0.4, -0.2, 0.2, 0.125) 0.95 0.19
1: τ−4( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
2: τ−3(0.001, 0.6, 0.2,-0.2,-0.6, 0)i -0.02 0* 0.12 1* 1 0
3: τ−3(-0.2,-0.6, 0, 0.6, 0.2, 0)i -0.02 0* 0.15 1* 1 0
4: τ−3( 0.6, 0.2,-0.2,-0.6, 0, 0)i -0.02 0* 0.12 1* 1 0
5: τ−4(-0.2, 0, 0.2, 0.4,-0.4, 0)i -0.07 0* -0.29 1* 0.86 0.14
6: τ−4( 0.4,-0.4,-0.2, 0, 0.2, 0)i -0.07 0* 0.31 1* 0.86 0.14
7: τ−4(0.001, 0.2, 0.4,-0.4,-0.2, 0)i -0.07 0* -0.29 1* 0.86 0.14
8: τ−3( 0.4, 0,-0.4, 0.2,-0.2, 0)i -0.12 0* 0.02 1* 0.22 0.78
9: τ−3( 0.2,-0.2, 0.4, 0,-0.4, 0)i -0.12 0* -0.11 1* 0.22 0.78
10: τ−3(0.001,-0.4, 0.2,-0.2, 0.4, 0)i -0.12 0* 0.02 1* 0.22 0.78
11: τ−4(0.001, 0.4,-0.2, 0.2,-0.4, 0)i -0.17 0* -0.04 1* 1 0
12: τ−4(0.001, 1.2, 0.4,-0.4,-1.2, 0)i -0.1 0* -0.17 1* 0.99 0.01
13: τ−4(0.0876,0.3124,-0.1708, 0.2,-0.4292, 0)i -0.07 -0.37 0.02 1* 0 1
14: τ−4(-0.8, 0.4, 0.6, 0.8, -1, 0)i 0.21 0.31 0.1 1* 0.32 0.68
15: τ−4( 0.2,-0.4, 0, 0.4,-0.2, 0)i -0.17 0* -0.07 1* 1 0
16: τ−4( 0.2, 0.4, 0.6,-0.2, -1, 0)i -0.07 -0.37 0.14 1* 0 1
17: τ−4( 1, 0.2,-0.6,-0.4,-0.2, 0)i -0.07 -0.37 0.14 1* 0 1
18: τ−4(-0.6,-0.4, 0.8, 1,-0.8, 0)i 0.21 0.31 0.12 1* 0.32 0.68
19: τ−4( 0.8, -1,-0.8, 0.4, 0.6, 0)i 0.21 0.31 0.12 1* 0.32 0.68
20: τ−4(-0.4,-1.2, 0, 1.2, 0.4, 0)i -0.1 0* 0.13 1* 0.99 0.11
21: τ−4( 0.4,-0.2, 0.2,-0.4, 0, 0)i -0.17 0* -0.04 1* 1 0
22: τ−4( 0.4, 0.6, 0.8, -1,-0.8, 0)i 0.21 0.31 0.1 1* 0.32 0.68
23: τ−4( 1.2, 0.4,-0.4,-1.2, 0, 0)i -0.1 0* -0.17 1* 0.99 0.01
24: τ−4( 1,-0.8,-0.6,-0.4, 0.8, 0)i 0.21 0.31 0.1 1* 0.32 0.68
25: τ−4(-0.2, -1, 0.2, 0.4, 0.6, 0)i -0.07 -0.37 0.02 1* 0 1
26: τ−4(-0.4,-0.2, 1, 0.2,-0.6, 0)i -0.07 -0.37 0.02 1* 0 1
27: τ−4( 0.6, 0.6,-0.4,-0.4,-0.4, 0)i 0.01 0.07 -0.18 1* 0 1
28: τ−4(-0.4,-0.4, 0.6, 0.6,-0.4, 0)i 0.01 0.07 0.17 1* 0 1
29: τ−4( 0.6,-0.4,-0.4,-0.4, 0.6, 0)i 0.01 0.07 -0.18 1* 0 1
30: τ−4( 0.4,-0.6,-0.6, 0.4, 0.4, 0)i 0.01 0.07 0.17 1* 0 1
31: τ−4( 0.4, 0.4, 0.4,-0.6,-0.6, 0)i 0.01 0.07 -0.18 1* 0 1
32: τ−4(-0.2,-0.2,-0.2, 0.8,-0.2, 0)i -0.03 -0.05 0.38 1* 0.29 0.71
33: τ−4( 0.8,-0.2,-0.2,-0.2,-0.2, 0)i -0.03 -0.05 0.32 1* 0.29 0.71
34: τ−4(-0.2,-0.2, 0.8,-0.2,-0.2, 0)i -0.03 -0.05 0.38 1* 0.29 0.71
35: τ−4( 0.2,-0.8, 0.2, 0.2, 0.2, 0)i -0.03 -0.05 0.38 1* 0.29 0.71
36: τ−4( 0.2, 0.2, 0.2, 0.2,-0.8, 0)i -0.03 -0.05 0.32 1* 0.29 0.71
37: τ−4(0.001, 1, 0, 0, -1, 0)i -0.36 0* -0.05 1* 0.3 0.7
38: τ−4( 1, 0, 0, -1, 0, 0)i -0.36 0* -0.05 1* 0.3 0.7
39: τ−4( 0, -1, 0, 1, 0, 0)i -0.36 0* 0.05 1* 0.3 0.7
218: τ−4(0.0292,-0.0292,0.0584, 0,-0.0584, 0)i -0.19 0* 0* 1* 1 0
219: τ−4( 0,-0.0584,0.0292,-0.0292,0.0584, 0)i -0.19 0* 0* 1* 1 0
220: τ−4(0.0584, 0,-0.0584,0.0292,-0.0292, 0)i -0.19 0* 0* 1* 1 0

OD2: x0 = (0.0, 0.8, -0.4, 0.4, 0.125) 1.22 1.6
40: τ−4( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
41: τ−4(0.001, 0.8, 0.6,-0.6,-0.8, 0)i 0.03 0* 0.43 1* 0.35 0.65
42: τ−4(0.0876,-0.0876,0.0292, 0,-0.0292, 0)i 0.03 0* 0.39 1* 0.35 0.65
43: τ−4(-0.8, 0, 0.8, 0.6,-0.6, 0)i 0.03 0* 0.43 1* 0.35 0.65
44: τ−4(0.001, 0.6, 0.2,-0.2,-0.6, 0)i -0.07 0* 0.12 1* 1 0
45: τ−4(0.001,-0.2,-0.4, 0.4, 0.2, 0)i 0.15 0* 0.12 1* 0 1
46: τ−3( 0.4,-0.4,-0.2, 0, 0.2, 0)i -0.03 0* -0.2 1* 0 1
47: τ−4(0.001,-0.4, 0.2,-0.2, 0.4, 0)i -0.05 0* -0.48 1* 0 1
48: τ−3(-0.4,-0.2, 1, 0.2,-0.6, 0)i 0.03 0* -0.03 1* 0 1
49: τ−3( 0.8, 0, 0.2,-0.6,-0.4, 0)i -0.01 -0.21 -0.12 1* 0 1
50: τ−4(0.002,-0.4,-0.8, 0.8, 0.4, 0)i -0.34 0* 0.09 1* 0 1
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51: τ−4( 0.2, 0, 0.8,-0.4,-0.6, 0)i -0.03 -0.97 0.05 1* 0 1
52: τ−3(0.001, 0.2, 0.4,-0.4,-0.2, 0)i -0.03 0* -0.52 1* 0 1
53: τ−3(-0.2, 0, 0.2, 0.4,-0.4, 0)i -0.03 0* -0.52 1* 0 1
54: τ−4( 0.4, 0,-0.4, 0.2,-0.2, 0)i -0.05 0* -0.48 1* 0 1
55: τ−4( 0.2,-0.2, 0.4, 0,-0.4, 0)i -0.05 0* 0.48 1* 0 1
56: τ−3( 1, 0.2,-0.6,-0.4,-0.2, 0)i 0.03 0* 0.19 1* 0 1
57: τ−3( 0.2,-0.6,-0.4, 0.8, 0, 0)i -0.01 -0.21 -0.05 1* 0 1
58: τ−4(-0.2,-0.6, 0, 0.6, 0.2, 0)i -0.07 0* -0.08 1* 1 0
59: τ−4( 0.6, 0.2,-0.2,-0.6, 0, 0)i -0.07 0* 0.12 1* 1 0
60: τ−4( 0.4, 0.2, 0,-0.2,-0.4, 0)i 0.15 0* -0.12 1* 0 1
61: τ−4(-0.2,-0.4, 0.4, 0.2, 0, 0)i 0.15 0* 0.12 1* 0 1
62: τ−4( 0.8, 0.4, 0,-0.4,-0.8, 0)i -0.34 0* 0* 1* 0 1
63: τ−4(-0.4,-0.8, 0.8, 0.4, 0, 0)i -0.34 0* 0.09 1* 0 1
64: τ−3(-0.2, -1, 0.2, 0.4, 0.6, 0)i 0.03 0* -0.03 1* 0 1
65: τ−3( 0.6,-0.2, 0,-0.8, 0.4, 0)i -0.01 -0.21 -0.12 1* 0 1
66: τ−4( 0.4,-0.8, 0,-0.2, 0.6, 0)i -0.03 -0.97 0.05 1* 0 1
67: τ−4( 0.8,-0.4,-0.6, 0.2, 0, 0)i -0.03 -0.97 -0.09 1* 0 1
68: τ−3( 0.6,-0.2, -1, 0.2, 0.4, 0)i 0.03 0* 0.19 1* 0 1
69: τ−3( 0.2, 0.4, 0.6,-0.2, -1, 0)i 0.03 0* 0.19 1* 0 1
70: τ−3( 0.4, 0.6,-0.2, 0,-0.8, 0)i -0.01 -0.21 -0.12 1* 0 1
71: τ−3( 0,-0.8, 0.4, 0.6,-0.2, 0)i -0.01 -0.21 -0.05 1* 0 1
72: τ−4( 0.6, 0.4,-0.8, 0,-0.2, 0)i -0.03 -0.97 0.05 1* 0 1
73: τ−4( 0,-0.2, 0.6, 0.4,-0.8, 0)i -0.03 -0.97 -0.09 1* 0 1
221: τ−4(0.2292,-0.2292,0.4584, 0,-0.4584, 0)i -0.29 0* 0* 1* 0 1
222: τ−4( 0.2,-0.2584,0.4292,-0.0229,-0.3416, 0)i 0.2 0.41 0* 1* 0.48 0.52
223: τ−4(0.2584,-0.2,0.3416,0.0292,-0.4292, 0)i 0.2 0.41 0* 1* 0.48 0.52
224: τ−4(0.1708,-0.1416, 0.4,-0.0584,-0.3708, 0)i -0.42 0* 0* 1* 0 1
225: τ−4(0.1416,-0.1708,0.3708,0.0584,-0.4, 0)i -0.42 0* 0* 1* 0 1
226: τ−4(0.4292,-0.0292,-0.3416, 0.2,-0.2584, 0)i 0.2 0.41 0* 1* 0.48 0.52
227: τ−4(0.3416,0.0292,-0.4292,0.2584,-0.2, 0)i 0.2 0.41 0* 1* 0.48 0.52
228: τ−4( 0.4,-0.0584,-0.3708,0.1708,-0.1416, 0)i -0.42 0* 0* 1* 0 1
229: τ−4(0.4584, 0,-0.4584,0.2292,-0.2292, 0)i -0.29 0* 0* 1* 0 1
230: τ−4(0.3708,0.0584,-0.4,0.1416,-0.1708, 0)i -0.42 0* 0* 1* 0 1
231: τ−4(0.0292,-0.4292,0.2584,-0.2,0.3416, 0)i 0.2 0.41 0* 1* 0.48 0.52
232: τ−4( 0,-0.4584,0.2292,-0.2292,0.4584, 0)i -0.29 0* 0* 1* 0 1
233: τ−4(0.0584,-0.4,0.1416,-0.1708,0.3708, 0)i -0.42 0* 0* 1* 0 1
264: τ−4(0.4292,0.1416, 0,-0.1416,-0.4292, 0)i -0.98 0* 0* 1* 0.86 0.14
265: τ−4( 0,-0.1416,-0.4292,0.4292,0.1416, 0)i -0.98 0* 0* 1* 0.86 0.14
266: τ−4(-0.1416,-0.4292,0.4292,0.1416, 0, 0)i -0.98 0* 0* 1* 0.86 0.14

OD3: x0 = (0.0, -0.4, 0.2, -0.2, -0.125) 0.97 0.71
74: τ−4( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0.28 0.72
75: τ−3( -0,-0.6,-0.2, 0.2, 0.6, -0)i 0.03 0* 0* 1* 0.95 0.05
76: τ−3( -0,-0.6,-0.2, 0.2, 0.6, -0)i 0.03 0* 0* 1* 0.9 0.1
77: τ−3( 0.2, 0.6, -0,-0.6,-0.2, -0)i 0.03 0* 0* 1* 0.85 0.15
78: τ−3(-0.2, 0.2, 0.6, -0,-0.6, -0)i 0.03 0* 0* 1* 1 0
79: τ−3(-0.6,-0.2, 0.2, 0.6, -0, -0)i 0.03 0* 0* 1* 0.95 0.05
80: τ−3( 0.6, -0,-0.6,-0.2, 0.2, -0)i 0.03 0* 0* 1* 0.9 0.1
81: τ−4( 0.2, -0,-0.2,-0.4, 0.4, -0)i 0.31 0* 0* 1* 0 1
82: τ−4(-0.2,-0.4, 0.4, 0.2, -0, -0)i 0.31 0* 0* 1* 0.85 0.15
83: τ−4(-0.4, 0.4, 0.2, -0,-0.2, -0)i 0.31 0* 0* 1* 0.41 0.59
84: τ−4( 0.4, 0.2, -0,-0.2,-0.4, -0)i 0.31 0* 0* 1* 0.44 0.56
85: τ−4( -0,-0.2,-0.4, 0.4, 0.2, -0)i 0.31 0* 0* 1* 0 1
86: τ−4( -0,-0.2,-0.4, 0.4, 0.2, -0)i 0.31 0* 0* 1* 0.85 0.15
87: τ−3(-0.4, -0, 0.4,-0.2, 0.2, -0)i 0 0* 0* 1* 0.64 0.36
88: τ−3( 0.4,-0.2, 0.2,-0.4, -0, -0)i 0 0* 0* 1* 0.7 0.3
89: τ−3(-0.2, 0.2,-0.4, -0, 0.4, -0)i 0 0* 0* 1* 0.78 0.22
90: τ−3( 0.2,-0.4, -0, 0.4,-0.2, -0)i 0 0* 0* 1* 0.56 0.44
91: τ−3( -0, 0.4,-0.2, 0.2,-0.4, -0)i 0 0* 0* 1* 0.64 0.36
92: τ−3( -0, 0.4,-0.2, 0.2,-0.4, -0)i 0 0* 0* 1* 0.7 0.3
93: τ−4( -0,-0.4, 0.2,-0.2, 0.4, -0)i -0.04 0* 0* 1* 0.5 0.5

5.2. SUPPLEMENT - ARTICLE III

86



3

94: τ−4( -0,-0.4, 0.2,-0.2, 0.4, -0)i -0.04 0* 0* 1* 0.65 0.35
95: τ−4(-0.0292,-0.4,0.2292,-0.2876,0.4876, -0)i -0.28 0.01 0* 1* 0 1
96: τ−4(0.0292,-0.4876,0.2876,-0.2292, 0.4, -0)i 0.2 -0.67 0* 1* 0.26 0.74
97: τ−4( -0,-0.3708,0.1124,-0.1124,0.3708, -0)i -0.17 0* 0* 1* 0.88 0.12
98: τ−4( -0,-0.3708,0.1124,-0.1124,0.3708, -0)i 0.07 0* 0* 1* 0.97 0.03
99: τ−4(-0.0876,-0.3124,0.1708,-0.2,0.4292, -0)i -0.06 0.23 0* 1* 1 0
100: τ−4(0.0876,-0.4292, 0.2,-0.1708,0.3124, -0)i 0.21 0.02 0* 1* 1 0
101: τ−4(-0.2, 0.4, -0,-0.4, 0.2, -0)i -0.04 0* 0* 1* 0.65 0.35
102: τ−4( 0.2,-0.2, 0.4, -0,-0.4, -0)i -0.04 0* 0* 1* 0.5 0.5
103: τ−4(-0.2292, 0.4,0.0292,-0.4876,0.2876, -0)i -0.28 0.01 0* 1* 0 1
104: τ−4(0.2292,-0.2876,0.4876,-0.0292,-0.4, -0)i 0.2 -0.67 0* 1* 0.26 0.74
105: τ−4(-0.1124,0.3708, -0,-0.3708,0.1124, -0)i -0.17 0* 0* 1* 0.85 0.15
106: τ−4(0.1124,-0.1124,0.3708, -0,-0.3708, -0)i 0.07 0* 0* 1* 1 0
107: τ−4(-0.1708,0.3124,0.0876,-0.4292, 0.2, -0)i -0.06 0.23 0* 1* 1 0
108: τ−4(0.1708,-0.2,0.4292,-0.0876,-0.3124, -0)i 0.21 0.02 0* 1* 1 0
109: τ−4(-0.2,0.4292,-0.0876,-0.3124,0.1708, -0)i -0.06 0.23 0* 1* 1 0
110: τ−4( 0.2,-0.1708,0.3124,0.0876,-0.4292, -0)i 0.21 0.02 0* 1* 1 0
111: τ−4(-0.2876,0.4876,-0.0292,-0.4,0.2292, -0)i -0.28 0.01 0* 1* 0 1
112: τ−4(0.2876,-0.2292, 0.4,0.0292,-0.4876, -0)i 0.2 -0.67 0* 1* 0.26 0.74
113: τ−4(-0.4, 0.2,-0.2, 0.4, -0, -0)i -0.04 0* 0* 1* 0.5 0.5
114: τ−4( 0.4, -0,-0.4, 0.2,-0.2, -0)i -0.04 0* 0* 1* 0.65 0.35
115: τ−4(-0.4292, 0.2,-0.1708,0.3124,0.0876, -0)i -0.05 0.1 0* 1* 1 0
116: τ−4(0.4292,-0.0876,-0.3124,0.1708,-0.2, -0)i 0.2 0.15 0* 1* 1 0
117: τ−4(-0.3708,0.1124,-0.1124,0.3708, -0, -0)i -0.08 0* 0* 1* 0.88 0.12
118: τ−4(0.3708, -0,-0.3708,0.1124,-0.1124, -0)i -0.02 0* 0* 1* 0.97 0.03
119: τ−4(-0.3124,0.1708,-0.2,0.4292,-0.0876, -0)i -0.05 0.1 0* 1* 1 0
120: τ−4(0.3124,0.0876,-0.4292, 0.2,-0.1708, -0)i 0.2 0.15 0* 1* 1 0
121: τ−4(-0.4,0.2292,-0.2876,0.4876,-0.0292, -0)i -0.24 -0.08 0* 1* 0 1
122: τ−4( 0.4,0.0292,-0.4876,0.2876,-0.2292, -0)i 0.15 -0.59 0* 1* 0.26 0.74
123: τ−4(-0.4876,0.2876,-0.2292, 0.4,0.0292, -0)i -0.24 -0.08 0* 1* 0 1
124: τ−4(0.4876,-0.0292,-0.4,0.2292,-0.2876, -0)i 0.15 -0.59 0* 1* 0.26 0.74
125: τ−4(-0.6,-0.6, 0.4, 0.4, 0.4, -0)i -0.21 -0.1 0* 1* 1 0
126: τ−4( 0.6,-0.4,-0.4,-0.4, 0.6, -0)i -0.12 -0.31 0* 1* 0.78 0.22
127: τ−4( 0.4, 0.4,-0.6,-0.6, 0.4, -0)i -0.21 -0.1 0* 1* 1 0
128: τ−4(-0.4,-0.4, 0.6, 0.6,-0.4, -0)i -0.12 -0.31 0* 1* 0.78 0.22
129: τ−4(-0.6, 0.4, 0.4, 0.4,-0.6, -0)i -0.24 -0.16 0* 1* 1 0
130: τ−4( 0.6, 0.6,-0.4,-0.4,-0.4, -0)i -0.09 -0.25 0* 1* 0.78 0.22
131: τ−4(-0.4, 0.6, 0.6,-0.4,-0.4, -0)i -0.21 -0.1 0* 1* 1 0
132: τ−4( 0.4, 0.4, 0.4,-0.6,-0.6, -0)i -0.12 -0.31 0* 1* 0.78 0.22
133: τ−4(-0.4,-0.4,-0.4, 0.6, 0.6, -0)i -0.24 -0.16 0* 1* 1 0
134: τ−4( 0.4,-0.6,-0.6, 0.4, 0.4, -0)i -0.09 -0.25 0* 1* 0.78 0.22
135: τ−4( 0.2, 0.2, 0.2,-0.8, 0.2, -0)i -0.95 0.08 0* 0.5* 0.96 0.04
136: τ−4(-0.2,-0.2, 0.8,-0.2,-0.2, -0)i 0.94 1.13 0* 0.5* 0.16 0.84
137: τ−4(-0.8, 0.2, 0.2, 0.2, 0.2, -0)i -0.95 0.08 0* 0.5* 0.81 0.19
138: τ−4( 0.8,-0.2,-0.2,-0.2,-0.2, -0)i 0.94 1.13 0* 0.5* 0.31 0.69
139: τ−4( 0.2, 0.2,-0.8, 0.2, 0.2, -0)i 0.1 1.34 0* 0.5* 0.96 0.04
140: τ−4(-0.2,-0.2,-0.2, 0.8,-0.2, -0)i -0.11 -0.14 0* 0.5* 0.16 0.84
141: τ−4(-0.2, 0.8,-0.2,-0.2,-0.2, -0)i 0.1 1.34 0* 0.5* 0.96 0.04
142: τ−4( 0.2, 0.2, 0.2, 0.2,-0.8, -0)i -0.11 -0.14 0* 0.5* 0.16 0.84
143: τ−4(-0.2,-0.2,-0.2,-0.2, 0.8, -0)i -0.95 0.08 0* 0.5* 0.81 0.19
144: τ−4( 0.2,-0.8, 0.2, 0.2, 0.2, -0)i 0.94 1.13 0* 0.5* 0.31 0.69
145: τ−4( -0, -1, -0, -0, 1, -0)i -1.14 0* 0* 0.5* 0.17 0.83
146: τ−4( -0, -1, -0, -0, 1, -0)i 0.21 0* 0* 0.5* 0.45 0.55
147: τ−4( -0, 1, -0, -1, -0, -0)i -1.14 0* 0* 0.5* 0 1
148: τ−4( -0, -0, 1, -0, -1, -0)i 0.21 0* 0* 0.5* 0.62 0.38
149: τ−4( -1, -0, -0, 1, -0, -0)i -1.14 0* 0* 0.5* 0.17 0.83
150: τ−4( 1, -0, -1, -0, -0, -0)i 0.21 0* 0* 0.5* 0.45 0.55
234: τ−4(-0.0292,0.0292,-0.0584, -0,0.0584, -0)i 0.14 0* 0* 1* 0.89 0.11
235: τ−4(0.0292,-0.0584, -0,0.0584,-0.0292, -0)i 0.14 0* 0* 1* 0.89 0.11
236: τ−4( -0,0.0584,-0.0292,0.0292,-0.0584, -0)i 0.14 0* 0* 1* 0.89 0.11
237: τ−4(-0.0584, -0,0.0584,-0.0292,0.0292, -0)i 0.14 0* 0* 1* 0.89 0.11
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238: τ−4(0.0584,-0.0292,0.0292,-0.0584, -0, -0)i 0.14 0* 0* 1* 0.89 0.11

OD4: x0 = (0.0, -0.8, 0.4, -0.4, -0.125) 0.5 1.28
151: τ−4( -0, -0, -0, -0, -0, -0)i 0* 0* 0* 1* 0 1
152: τ−4(-0.0292, -0,0.0292,-0.0876,0.0876, -0)i 0.29 0* 0* 1* 0 1
153: τ−4(0.0292,-0.0876,0.0876,-0.0292, -0, -0)i -0.33 0* 0* 1* 0.11 0.89
154: τ−4( -0,0.0292,-0.0876,0.0876,-0.0292, -0)i -0.14 0* 0* 1* 0 1
155: τ−4( -0,0.0292,-0.0876,0.0876,-0.0292, -0)i 0.11 0* 0* 1* 0.11 0.89
156: τ−4(-0.0876,0.0876,-0.0292, -0,0.0292, -0)i -0.14 0* 0* 1* 0.11 0.89
157: τ−4(0.0876,-0.0292, -0,0.0292,-0.0876, -0)i 0.11 0* 0* 1* 0 1
158: τ−4( -0,-0.6,-0.2, 0.2, 0.6, -0)i -0.36 0* 0* 1* 0.36 0.64
159: τ−4( -0,-0.6,-0.2, 0.2, 0.6, -0)i 0.54 0* 0* 1* 0 1
160: τ−4( -0, 0.2, 0.4,-0.4,-0.2, -0)i -0.16 0* 0* 1* 0.25 0.75
161: τ−4( -0, 0.2, 0.4,-0.4,-0.2, -0)i 1.37 0* 0* 1* 0.75 0.25
162: τ−3(-0.4, 0.4, 0.2, -0,-0.2, -0)i -0.11 0* 0* 1* 0 1
163: τ−3( 0.4, 0.2, -0,-0.2,-0.4, -0)i 0.02 0* 0* 1* 0 1
164: τ−4( -0, 0.4,-0.2, 0.2,-0.4, -0)i 0 0* 0* 1* 0 1
165: τ−4( -0, 0.4,-0.2, 0.2,-0.4, -0)i 0.28 0* 0* 1* 0 1
166: τ−3( 0.4, 0.2, -1,-0.2, 0.6, -0)i 0.69 0.26 0* 1* 0 1
167: τ−3(-0.4,-0.6, 0.2, 1,-0.2, -0)i -0.45 -0.23 0* 1* 0 1
168: τ−3(-0.8, -0,-0.2, 0.6, 0.4, -0)i -0.82 -0.08 0* 0.5* 0 1
169: τ−3( 0.8,-0.4,-0.6, 0.2, -0, -0)i -1.1 0.4 0* 0.5* 0.15 0.85
170: τ−4( -0, 0.4, 0.8,-0.8,-0.4, -0)i -0.08 0* 0* 1* 0 1
171: τ−4( -0, 0.4, 0.8,-0.8,-0.4, -0)i -0.7 0* 0* 1* 0 1
172: τ−4(-0.2, -0,-0.8, 0.4, 0.6, -0)i -0.06 0.06 0* 1* 0.02 0.98
173: τ−4( 0.2,-0.6,-0.4, 0.8, -0, -0)i 0.32 -0.35 0* 1* 0 1
174: τ−3( -0,-0.2,-0.4, 0.4, 0.2, -0)i -0.11 0* 0* 1* 0 1
175: τ−3( -0,-0.2,-0.4, 0.4, 0.2, -0)i 0.02 0* 0* 1* 0 1
176: τ−3( 0.2, -0,-0.2,-0.4, 0.4, -0)i -0.11 0* 0* 1* 0 1
177: τ−3(-0.2,-0.4, 0.4, 0.2, -0, -0)i 0.02 0* 0* 1* 0 1
178: τ−4(-0.4, -0, 0.4,-0.2, 0.2, -0)i 0.52 0* 0* 1* 0 1
179: τ−4( 0.4,-0.2, 0.2,-0.4, -0, -0)i -0.24 0* 0* 1* 0 1
180: τ−4(-0.2, 0.2,-0.4, -0, 0.4, -0)i 0 0* 0* 1* 0 1
181: τ−4( 0.2,-0.4, -0, 0.4,-0.2, -0)i 0.28 0* 0* 1* 0 1
182: τ−3( -1,-0.2, 0.6, 0.4, 0.2, -0)i 0.13 0.08 0* 1* 0 1
183: τ−3( 1,-0.2,-0.4,-0.6, 0.2, -0)i 0.11 -0.05 0* 1* 0 1
184: τ−3(-0.2, 0.6, 0.4,-0.8, -0, -0)i -1.29 0.4 0* 0.5* 0.15 0.85
185: τ−3( 0.2, -0, 0.8,-0.4,-0.6, -0)i -0.63 -0.08 0* 0.5* 0 1
186: τ−4( 0.2, 0.6, -0,-0.6,-0.2, -0)i -0.36 0* 0* 1* 0 1
187: τ−4(-0.2, 0.2, 0.6, -0,-0.6, -0)i 0.54 0* 0* 1* 0.36 0.64
188: τ−4(-0.6,-0.2, 0.2, 0.6, -0, -0)i -0.36 0* 0* 1* 0.36 0.64
189: τ−4( 0.6, -0,-0.6,-0.2, 0.2, -0)i 0.54 0* 0* 1* 0 1
190: τ−4(-0.4,-0.2, -0, 0.2, 0.4, -0)i -0.16 0* 0* 1* 0 1
191: τ−4( 0.4,-0.4,-0.2, -0, 0.2, -0)i 1.37 0* 0* 1* 1 0
192: τ−4( 0.2, 0.4,-0.4,-0.2, -0, -0)i 1.42 0* 0* 1* 0.25 0.75
193: τ−4(-0.2, -0, 0.2, 0.4,-0.4, -0)i -0.21 0* 0* 1* 0.75 0.25
194: τ−4(-0.8,-0.4, -0, 0.4, 0.8, -0)i -0.08 0* 0* 1* 0 1
195: τ−4( 0.8,-0.8,-0.4, -0, 0.4, -0)i -0.7 0* 0* 1* 0 1
196: τ−4( 0.4, 0.8,-0.8,-0.4, -0, -0)i -0.72 0* 0* 1* 0 1
197: τ−4(-0.4, -0, 0.4, 0.8,-0.8, -0)i -0.06 0* 0* 1* 0 1
198: τ−3( 0.2, 1,-0.2,-0.4,-0.6, -0)i 0.69 0.26 0* 1* 0 1
199: τ−3(-0.2, 0.6, 0.4, 0.2, -1, -0)i -0.45 -0.23 0* 1* 0 1
200: τ−3(-0.6, 0.2, -0, 0.8,-0.4, -0)i -0.82 -0.08 0* 0.5* 0 1
201: τ−3( 0.6, 0.4,-0.8, -0,-0.2, -0)i -1.1 0.4 0* 0.5* 0.15 0.85
202: τ−4(-0.4, 0.8, -0, 0.2,-0.6, -0)i -0.06 0.06 0* 1* 0.02 0.98
203: τ−4( 0.4, 0.6,-0.2, -0,-0.8, -0)i 0.32 -0.35 0* 1* 0 1
204: τ−4(-0.8, 0.4, 0.6,-0.2, -0, -0)i -0.06 0.06 0* 1* 0.02 0.98
205: τ−4( 0.8, -0, 0.2,-0.6,-0.4, -0)i 0.32 -0.35 0* 1* 0 1
206: τ−3(-0.6, 0.2, 1,-0.2,-0.4, -0)i 0.13 0.08 0* 1* 0 1
207: τ−3( 0.6, 0.4, 0.2, -1,-0.2, -0)i 0.11 -0.05 0* 1* 0 1
208: τ−3(-0.2,-0.4,-0.6, 0.2, 1, -0)i 0.13 0.08 0* 1* 0 1
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209: τ−3( 0.2, -1,-0.2, 0.6, 0.4, -0)i 0.11 -0.05 0* 1* 0 1
210: τ−3(-0.4,-0.6, 0.2, -0, 0.8, -0)i -1.29 0.4 0* 0.5* 0 1
211: τ−3( 0.4,-0.8, -0,-0.2, 0.6, -0)i -0.63 -0.08 0* 0.5* 0.15 0.85
212: τ−3( -0, 0.8,-0.4,-0.6, 0.2, -0)i -1.29 0.4 0* 0.5* 0.15 0.85
213: τ−3( -0,-0.2, 0.6, 0.4,-0.8, -0)i -0.63 -0.08 0* 0.5* 0 1
214: τ−4(-0.6,-0.4, 0.8, -0, 0.2, -0)i -0.06 0.06 0* 1* 0.02 0.98
215: τ−4( 0.6,-0.2, -0,-0.8, 0.4, -0)i 0.32 -0.35 0* 1* 0 1
216: τ−4( -0, 0.2,-0.6,-0.4, 0.8, -0)i -0.06 0.06 0* 1* 0.02 0.98
217: τ−4( -0,-0.8, 0.4, 0.6,-0.2, -0)i 0.32 -0.35 0* 1* 0 1
239: τ−4(-0.2292,0.2292,-0.4584, -0,0.4584, -0)i 0.05 0* 0* 1* 1 0
240: τ−4(0.2292,-0.4584, -0,0.4584,-0.2292, -0)i 0.05 0* 0* 1* 1 0
241: τ−4(-0.2,0.2584,-0.4292,0.0229,0.3416, -0)i 0.08 0.06 0* 1* 0 1
242: τ−4( 0.2,-0.3416,-0.0229,0.4292,-0.2584, -0)i 0.08 0.06 0* 1* 0 1
243: τ−4(-0.2584, 0.2,-0.3416,-0.0292,0.4292, -0)i 0.08 0.06 0* 1* 0 1
244: τ−4(0.2584,-0.4292,0.0292,0.3416,-0.2, -0)i 0.08 0.06 0* 1* 0 1
245: τ−4(-0.1708,0.1416,-0.4,0.0584,0.3708, -0)i 0.2 0.21 0* 1* 0 1
246: τ−4(0.1708,-0.3708,-0.0584, 0.4,-0.1416, -0)i 0.2 0.21 0* 1* 0 1
247: τ−4(-0.1416,0.1708,-0.3708,-0.0584, 0.4, -0)i 0.2 0.21 0* 1* 0 1
248: τ−4(0.1416,-0.4,0.0584,0.3708,-0.1708, -0)i 0.2 0.21 0* 1* 0 1
249: τ−4(-0.4292,0.0292,0.3416,-0.2,0.2584, -0)i 0.08 0.06 0* 1* 0 1
250: τ−4(0.4292,-0.2584, 0.2,-0.3416,-0.0292, -0)i 0.08 0.06 0* 1* 0 1
251: τ−4(-0.3416,-0.0292,0.4292,-0.2584, 0.2, -0)i 0.08 0.06 0* 1* 0 1
252: τ−4(0.3416,-0.2,0.2584,-0.4292,0.0292, -0)i 0.08 0.06 0* 1* 0 1
253: τ−4(-0.4,0.0584,0.3708,-0.1708,0.1416, -0)i 0.2 0.21 0* 1* 0 1
254: τ−4( 0.4,-0.1416,0.1708,-0.3708,-0.0584, -0)i 0.2 0.21 0* 1* 0 1
255: τ−4(-0.4584, -0,0.4584,-0.2292,0.2292, -0)i 0.05 0* 0* 1* 1 0
256: τ−4(0.4584,-0.2292,0.2292,-0.4584, -0, -0)i 0.05 0* 0* 1* 1 0
257: τ−4(-0.3708,-0.0584, 0.4,-0.1416,0.1708, -0)i 0.2 0.21 0* 1* 0 1
258: τ−4(0.3708,-0.1708,0.1416,-0.4,0.0584, -0)i 0.2 0.21 0* 1* 0 1
259: τ−4(-0.0292,0.4292,-0.2584, 0.2,-0.3416, -0)i 0.08 0.06 0* 1* 0 1
260: τ−4(0.0292,0.3416,-0.2,0.2584,-0.4292, -0)i 0.08 0.06 0* 1* 0 1
261: τ−4( -0,0.4584,-0.2292,0.2292,-0.4584, -0)i 0.05 0* 0* 1* 1 0
262: τ−4(-0.0584, 0.4,-0.1416,0.1708,-0.3708, -0)i 0.2 0.21 0* 1* 0 1
263: τ−4(0.0584,0.3708,-0.1708,0.1416,-0.4, -0)i 0.2 0.21 0* 1* 0 1
267: τ−4( -0,0.1416,0.4292,-0.4292,-0.1416, -0)i -0.19 0* 0* 1* 0.07 0.93
268: τ−4(0.1416,0.4292,-0.4292,-0.1416, -0, -0)i -0.19 0* 0* 1* 0.07 0.93
269: τ−4(-0.1416, -0,0.1416,0.4292,-0.4292, -0)i -0.19 0* 0* 1* 0.07 0.93
270: τ−4(-0.4292,-0.1416, -0,0.1416,0.4292, -0)i -0.19 0* 0* 1* 0.07 0.93
271: τ−4(0.4292,-0.4292,-0.1416, -0,0.1416, -0)i -0.19 0* 0* 1* 0.07 0.93

OD5: x0 = (0, 0, 0, 0, -0.125) 1.32 3.5
272: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
273: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 1 0
274: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 1 0
275: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 0 1

OD6: x0 = (0.2, 0.2, 0.2, 0.2, -0.125) 1.32 3.5
276: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
277: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 1 0
278: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 1 0
279: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 0 1

OD7: x0 = (0.4, 0.4, 0.4, 0.4, -0.125) 1.32 3.5
280: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
281: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 1 0
282: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 1 0
283: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 0 1

OD8: x0 = (-0.2, -0.2, -0.2, -0.2, -0.125) 1.32 3.5
284: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
285: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 1 0
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286: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 1 0
287: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 0 1

OD9: x0 = (-0.4, -0.4, -0.4, -0.4, -0.125) 1.32 3.5
288: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 0 1
289: τ−3( 0, 0, 0, 0, 0, 0)i 0* 0* 0* 1* 1 0
290: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 1 0
291: τ−4( 0,-0.6,-0.2, 0.2, 0.6, 0)i 0* 0* 0* 1* 0 1

5.2. SUPPLEMENT - ARTICLE III
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In Fig. 5.1, the developments of the R and wR values as a function of the refine-
ment steps for all, main and super reflection data sets are presented. As an initial step,
only three non-structural parameters (scaling, extinction and global phason displacement)
have been refined. In the next step, 52 shift parameters related to an average structure
have been introduced. In steps 4-6, different superstructure shift modulation parameters,
related to a superstructure, have been refined. These parameter are shown in Fig. 1 in
Article III. Next, 10 ADP parameters were included. After that, 19 puckering parameters
(atomic shifts along the periodic direction) were considered. In the next two steps, mixing
parameters that contribute to superstructure chemical modulations were refined. In the
final step, the refinement parameter related to the small rhombic occupation domains
were included. In total, the refinement was done with 250 parameters, where 133 and 117
parameters are respectively related to an average structure and superstructure.

In Fig. 5.2 a statistical analysis is presented. It was important to check the quality
of the refinement and to understand whether the distribution of the weak superstructure
reflections is consistent with the statistics of the main reflections. For this, two different
idealized cases were considered. In the first case, sigmas (standard deviations) of the
observed intensities were calculated using the Poisson distribution, Fig. 5.2 (c). These
results show that the distribution of the weak reflections of our experimental data is
indeed in agreement with the Poisson distribution and follows the distribution of the
main reflections.

In Fig. 5.3, the atomic layers are given and their corresponding occupation domains
are shown (numbered). The projection of the three atomic layers, given in Fig. 3 in
Article III, is shown in Fig. 5.4. Al atoms in the atomic layers at x 3 = -1/8, x 3 = 1/8
and x 3 = 3/8 are indicated by green, pink and gray colors, respectively. Co atoms at
atomic layers at x 3 = -1/8, x 3 = 1/8 and x 3 = 3/8 are indicated by blue, violet and black
colors, respectively. The inner part of the columnar cluster, defined by a decagonal cage
in Fig. 5.4, is shown in Fig. 5.5. Al atoms in the puckered layers are indicated by pink
and in the flat layers by light blue. Co atoms are indicated by dark blue. Two partially
occupied Al atom positions with very short interatomic distances, so called split positions,
are present (Fig. 5.5 (a)).

A comparison of the 20 Å clusters of the average structure and of the superstructure
is shown in Fig. 5.6. In Fig. 5.6 (a) the 20 Å cluster is a fragment of the MEM map calcu-
lated using the refined average structure. The presented atomic layer of the 20 Å cluster
is a superposition of the two layers of the four-layer superstructure. In Fig. 5.6 (b), a pro-
jection of the two layers resulting from the refined model of the four-layer superstructure
is shown; the individual layers are presented in Fig. 5.6 (c-d). This comparison shows
very good agreement and clarifies the origin of the strange electron density distribution
observed in the MEM maps of the average structure.
The resulting Fourier maps after the MEM improvement in external space are shown in
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Fig. 5.7. The electron density distributions for the five different occupation domains are
compared for the cases where all (Fig. 5.8 (b, e, h, k, n)) and only main (Fig. 5.8 (c,
f, i, l, o)) reflections are taken into account. The main differences are observed in the
occupation domains C and D. In these occupation domains, the five-fold symmetry is
clearly broken. One should keep in mind, that the projected structure (average structure)
should preserve the five-fold symmetry. The occupation domains C and D are related
by c-glide occupation domains C’ and D’ located at x 3 = 3/8. Hence, the projection of
the occupation domains C with C’ as well as D with D’ should possess five-fold symmetry.

Figure 5.1: Development of the R and wR values as a function of the refinement steps
for all, main and superstructure reflections. The refinement steps are given with the
corresponding number of the refined parameters in the brackets.
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(a)

(b) (c)

Figure 5.2: Study of Fobs/Fcalc on the logarithmic scale and the corresponding sigma values
influence. Black and gray dots correspond to main and satellite reflections, respectively.
(a) the circle sizes correspond to Fobs/σF; (b) the bar sizes correspond to the sigma values.
(c) Fobs with the calculated sigmas following Poisson distribution.

93



5.2. SUPPLEMENT - ARTICLE III

(a)
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(b)
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(c)

Figure 5.3: 90×90 Å2 sections of the atomic layers at (a) x 3 = -1/8 (flat), (b) x 3 =
1/8 (puckered) and (c) x 3 = 3/8 (flat) of the four-layer superstructure of decagonal
Al72.5Co18.5Ni9 related to Fig. 3 in Article III with an indicated number for each atom.
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Figure 5.4: 90×90 Å2 projection of the three atomic structure layers of decagonal
Al72.5Co18.5Ni9 given in Fig. 3 in Article III.
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(a) (b)

(c)

Figure 5.5: The inner part of the columnar cluster, defined by a decagonal cage in Fig. 5.4.
The cluster is shown in a top view along the (a) [00100], (b) [00-100] and (c) side view.
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(a) (b)

(c) (d)

Figure 5.6: Comparison between clusters (a) obtained by MEM calculations after an
average structure refinement; (b) a projection from two layers that are shown in (c) and
(d) obtained from a refined superstructure model; individual atomic layers at (c) x 3 =
-1/8 and (d) x 3 = 3/8. Al atoms in the atomic layers at x 3 = -1/8 and x 3 = 3/8 are
indicated by green and gray colors, respectively. Co atoms at atomic layers at x 3 = -1/8
and x 3 = 3/8 are indicated by blue and black colors, respectively.
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(a)

(b) (c)

Figure 5.7: Electron density distribution in external space after refinement and MEM
calculations at (a) x 3 = -1/8, (b) x 3 = 1/8 and (c) x 3 = 3/8.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.8: Occupation domains at (a-c) A (0,2,-1,1,5/8)/5, (d-f) B (0,4,-2,2,5/8)/5, (g-i)
C (0,-2,1,-1,-5/8)/5, (j-l) D (0,-4,2,-2,-5/8)/5, and (m-o) E (0,0,0,0,-5/8)/5 (also (1,1,1,1,-
5/8)/5, (2,2,2,2,-5/8)/5, (-1,-1,-1,-1,-5/8)/5, and (-2,-2,-2,-2,-5/8)/5), as obtained from
the refined five-dimensional structure model (a, d, g, j, m) and from Fourier transform
for all (b, e, h, k, n) and for main (c, f, i, l, o) reflection data sets.
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Chapter 6

Concluding Remarks

The diffraction patterns of decagonal quasicrystals show ten-fold symmetry and have one
periodic direction. Decagonal phases in the Al-Co-Ni system show a wide variety of struc-
tural modifications. More precisely, there are several superstructures formed which can
be recognized by the presence of satellite reflections as well as by their period along the
periodic direction. The diffraction pattern of the basic-Ni rich modification consists only
of main reflections and can be regarded as a basic structure. Until now it has not been
clear which structural modulations contribute to satellite reflections. Although several
models that can mimic the observed diffraction patterns have been proposed, their relia-
bility has to be checked by qualitative analysis.

A critical success factor for the current work was that a high-quality single-crystal of
the decagonal phase was grown. Moreover, its X-ray diffraction pattern shows sharp Bragg
peaks in the main layers and also in intermediate layers. This indicates the presence of a
well-ordered four-layer superstructure with a period of ≈8 Å along the periodic direction
and hence, serves as a key compound in the decagonal Al-Co-Ni system. This fact provided
a unique opportunity to make a full structure solution of a four-layer superstructure of
basic Co-rich decagonal Al-Co-Ni.

As is well known, a superstructure of the decagonal phase cannot be determined
directly and has to be obtained based on the average structure solution. In an attempt
to solve the average structure, LDE/CF methods were first applied to obtain a rough
electron density distribution. This resulted in information about the average structure
with a period of≈4 Å along the periodic direction. Based on these results, when combined
with the higher-dimensional model for Al-Fe-Ni proposed by A. Yamamoto, a model for
an average structure of Al72.5Co18.5Ni9 has been constructed. Subsequently, this model
has been improved by a refinement process resulting in wR and R factors of 0.123 and
0.156, respectively.

The average structure solution served as a valuable starting point in the search for
a superstructure model. In contrast to the average structure, the superstructure could
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not be solved using LDE/CF methods. One of the reasons is that LDE/CF methods are
inefficient in assigning correct phases to weak reflections. Hence, only by providing a good
initial superstructure model and improving it by a refinement process, can superstructure
modulations be validated. A crucial factor was to find a superstructure model that will re-
produce the observed satellite reflections with their peculiar extinction conditions. It has
been revealed that chemical modulations alone cannot explain the intensity distribution of
the satellite reflections; it was highly important to account for displacement modulations
(puckering and in-plane atomic displacements) to obtain a realistic picture. Finally, we
succeeded in constructing a five-dimensional structure model that explains the origin of
the satellite reflections. By an irrational cut of the five-dimensional structure, a three-
dimensional structure model can be generated. For the present case, the convergence of
R factors is shown in Fig. 5.1. For the satellite reflections, wR and R-values dropped
from 70% to values below 40%. In spite of this significant drop, there is still room for
improvement. In the present superstructure analysis, it was not possible to obtain better
refinement results for several reasons. Some of the difficulties stem from the nature of the
superstructure of decagonal quasicrystals, others are caused by experimental limitations.
Hence, the reliability of the measured intensities is unsatisfying and as a consequence the
quality of the integrated data is questionable. On top of this, the construction of a super-
structure model for a decagonal quasicrystal that will be able to explain experimentally
acquired results is a very demanding task. This is because satellite reflections are weak
and extremely sensitive to small variations in the structure model. In addition,the exist-
ing extinction conditions cannot be explained by the superspace group. Hence, to explain
the rigorous extinction conditions of the superstructure, additional constraints have to be
used in the refinement.

To vindicate the validity of the refined superstructure, a known approximant struc-
ture, the W-phase, was generated by introducing appropriate linear phason strains to the
five-dimensional quasicrystal model and by cutting it through an appropriate origin. An
important result of this thesis is that the structures of the generated and the actual W-
phase approximants show a good agreement. Moreover, it was proven that the W-phase
is a 〈3/2, 2/1〉-approximant of the four-layer superstructure of decagonal Al-Co-Ni. This
is an excellent foundation for modeling all different modifications of Al-based decagonal
phases with a four-layer period, since the clusters identified in the W-phase can be used
as fundamental clusters for this purpose.

This superstructure solution defines new frontiers in the field of quasicrystal structure
analysis and provides a good starting point for further investigations. For future work, I
would propose to collect a higher quality X-ray diffraction data set corrected for multiple
diffraction which is omnipresent in quasicrystals. In addition, neutron experiments could
be performed in order to determine the distribution of Co and Ni in the structure.
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Appendix

A - Program Package QUASI07_08_f90

The results reported in Chapters 4 and 5 have been carried our by the programs de-
veloped by Dr. Akiji Yamamoto and included in a program package QUASI07_08_f90
[Y08]. Although a good help file with detailed descriptions for each program included in
the package is already given, here additional comments will be given.

All related LDE, MEM and Fourier calculations as well as structure refinement pre-
sented in this thesis have been carried out using programs developed by Dr. Akiji Ya-
mamoto. There programs are based on a symmetry operator in a higher dimension, thus
simplifying a structure analysis of an aperiodic structures. Main convince of these pro-
grams is the reach possibility to check your results after each step. This can be done by
graphical visualization and by detailed information listed in output files after each step
of calculations. I will try to give some more hints and explanations using as an example
case the analyzed structure in this thesis. All the calculations were implemented on MAC
system with intel processor.
All programs are executed from X-terminal:
program_name < file name (including its extension)
1. QCDIFF is a least-squares refinement program for quasicrystals.
2. QCMEM is a higher-dimensional Fourier, Patterson and maximum entropy methods.
3. QCSTRC generates and plots structure projections in all subspaces using the section
method.
4. LODEM is a program for a direct method structure determination based on a Low
Density Elimination algorithm
5. LPHASON is calculating linear phason strains. (After determination of the cut plane,
use QCSTRT to plot the approximant structure)
6. POLYGN generates and plots ODs based on the model input file.
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Here the input files for the refinement of the average model as an example.

.atm file
1 ’co(a)’ 2 2 2 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 0.0 0.0 0.0 0.0 0.0 v=0.0
isyd=1
2 ’co(a)’ 2 30 7 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 0.4 0.4 -0.6 -0.6 0.0 v=0.618
isyd=2
3 ’co(a)’ 2 3 4 1. 0. 0. 0.0902 0.5 0. 0. (smaller pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.8 -0.2 -0.2 -0.2 -0.2 0.0 v=0.618
isyd=1
4 ’al(a)’ 1 1 7 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 -0.6 0.4 0.4 -0.6 0.0 v=0.618
isyd=1
5 ’co(a)’ 2 14 9 1. 0. 0. 0.0902 1. 0. 0. (small star)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.6 -0.4 0.6 -0.4 -0.4 0.0 v=0.618
isyd=1
6 ’al(a)’ 1 3 9 1. 0. 0. 0.0902 1. 0. 0. (small pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 1.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.2 -1.2 0.8 0.8 -0.2 0.0 v=0.618
isyd=1
7 ’co(a)’ 1 3 9 1. 0. 0. 0.0902 1. 0. 0. (small pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.8 0.8 0.8 -1.2 -1.2 0.0 v=0.618
isyd=1 8 ’al(a)’ 2 3 9 1. 0. 0. 0.0902 1.0 0. 0. (small pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 1.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 1.8 -0.2 -0.2 -1.2 -0.2 0.0 v=0.618
isyd=1
9 ’al(a)’ 1 2 6 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 1.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 0.0 1.0 0.0 -1.0 0.0 v=0.618
isyd=1
10 ’al(a)’ 1 2 6 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 1.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 1.0 -1.0 0.0 0.0 0.0 0.0 v=0.618
isyd=1
11 ’al(a)’ 1 2 4 1. 0. 0. 0.0902 0.3 0. 0. (smaller pentagon)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 1.0 0.0 1.0 -1.0 -1.0 0.0 v=0.618
isyd=1
12 ’co(a)’ 2 11 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= 0.2 0.2 0.2 0.2 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 -0.6 0.4 0.4 -0.6 0.0 v=0.0902
isyd=1
13 ’al(a)’ 1 14 9 1. 0. 0. 0.0902 0.7 0. 0. (small star)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 0.0 0.0 0.0 0.0 0.0 v=0.618
isyd=1
14 ’al(a)’ 2 3 9 1. 0. 0. 0.0902 1. 0. 0. (small pentagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0

xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 1.2 0.2 -0.8 -0.8 0.2 0.0 v=0.618
isyd=1
15 ’al(b)’ 1 30 7 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.8 -0.2 -0.2 -0.2 -0.2 0.0 v=0.618
isyd=4
16 ’al(b)’ 1 31 11 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 -1.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.2 -1.2 0.8 0.8 -0.2 0.0 v=0.618
isyd=4
17 ’al(b)’ 1 30 11 1. 0. 0. 0.1459 1.0 0. 0. (larger decagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 -1.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.8 -0.2 0.8 -0.2 -1.2 0.0 v=0.618
isyd=2
18 ’al(b)’ 1 3 6 1. 0. 0. 0.0902 1.0 0. 0. (smaller pentagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 -1.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.2 -0.8 1.2 0.2 -0.8 0.0 v=0.618
isyd= 1
19 ’al(b)’ 1 2 4 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 -0.6 0.4 0.4 -0.6 0.0 v=0.618
isyd=1
20 ’al(b)’ 1 2 4 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 0.4 0.4 -0.6 -0.6 0.0 v=0.618
isyd=1
21 ’al(b)’ 1 3 4 1. 0. 0. 0.0902 1.0 0. 0. (smaller pentagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.2 -0.8 0.2 0.2 0.2 0.0 v=0.618
isyd=1
22 ’al(b)’ 1 2 6 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.2 -0.8 0.2 0.2 0.2 0.0 v=1.236
isyd=1
23 ’co(a)’ 1 11 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4584 -0.6876 0.4584 0.4584 -0.6876 0.0 v=0.618
isyd=1
24 ’co(a)’ 1 11 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 1.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4584 -0.6876 0.452120 0.318680 -0.541600 0.0 v=0.618
isyd=7
25 ’al(a)’ 1 11 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 1.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.312400 -0.541600 0.4584 0.312400 -0.541600 0.0 v=0.618
isyd=3
26 ’al(a)’ 1 25 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= 0.4 0.4 0.4 0.4 0.25 0.0
xe1= 0.0 -1.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.2876 -0.8584 0.2876 0.1416 0.1416 0.0 v=0.618
isyd=7
27 ’co(a)’ 2 16 2 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.2500 0.0
xe1= 0.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
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xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 0.0 0.0 0.0 0.0 0.0 v=0.0
isyd=1
28 ’co(a)’ 2 32 7 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 0.4 -0.6 -0.6 0.4 0.0 v=-0.618
isyd=2
29 ’co(a)’ 2 17 4 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.2 -0.2 -0.2 -0.2 0.8 0.0 v=-0.618
isyd=1
30 ’co(a)’ 2 15 7 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.6 0.4 0.4 -0.6 0.4 0.0 v=-0.618
isyd=1
31 ’co(a)’ 2 28 9 1. 0. 0. 0.0902 1. 0. 0. (small star)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.4 0.6 -0.4 -0.4 0.6 0.0 v=-0.618
isyd=1
32 ’co(a)’ 2 17 9 1. 0. 0. 0.0902 1. 0. 0. (small pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -1.2 0.8 0.8 -0.2 -0.2 0.0 v=-0.618
isyd=1
33 ’co(a)’ 2 17 9 1. 0. 0. 0.0902 1. 0. 0. (small pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.8 0.8 -1.2 -1.2 0.8 0.0 v=-0.618
isyd=1
34 ’al(a)’ 1 17 9 1. 0. 0. 0.0902 0.4 0. 0. (small pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.2 -0.2 -1.2 -0.2 1.8 0.0 v=-0.618
isyd=1
35 ’co(a)’ 2 16 6 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 1.0 0.0 -1.0 0.0 0.0 v=-0.618
isyd=1
36 ’al(a)’ 1 16 6 1. 0. 0. 0.0902 0.4 0. 0. (smaller pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -1.0 0.0 0.0 0.0 1.0 0.0 v=-0.618
isyd=1
37 ’al(a)’ 1 16 4 1. 0. 0. 0.0902 1.0 0. 0. (smaller pentagon)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 1.0 -1.0 -1.0 1.0 0.0 v=-0.618
isyd=1
38 ’co(a)’ 2 25 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= -0.2 -0.2 -0.2 -0.2 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.6 0.4 0.4 -0.6 0.4 0.0 v=-0.0902
isyd=1
39 ’co(a)’ 1 28 9 1. 0. 0. 0.0902 0.4 0. 0. (small star)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.0 0.0 0.0 0.0 0.0 0.0 v=-0.618

isyd=1
40 ’al(a)’ 1 17 9 1. 0. 0. 0.0902 1.0 0. 0. (small pentagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.2 -0.8 -0.8 0.2 1.2 0.0 v=-0.618
isyd=1
41 ’al(b)’ 1 32 7 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.2 -0.2 -0.2 -0.2 0.8 0.0 v=-0.618
isyd=4
42 ’al(b)’ 1 29 11 1. 0. 0. 0.1459 1. 0. 0. (larger decagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -1.2 0.8 0.8 -0.2 -0.2 0.0 v=-0.618
isyd=1
43 ’al(b)’ 1 33 11 1. 0. 0. 0.1459 0.5 0. 0. (larger decagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.2 0.8 -0.2 -1.2 0.8 0.0 v=-0.618
isyd=2
44 ’al(b)’ 1 17 6 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.8 1.2 0.2 -0.8 0.2 0.0 v=-0.618
isyd= 1
45 ’al(b)’ 1 16 4 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.6 0.4 0.4 -0.6 0.4 0.0 v=-0.618
isyd=1
46 ’al(b)’ 1 16 4 1. 0. 0. 0.0902 0.6 0. 0. (smaller pentagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= 0.4 0.4 -0.6 -0.6 0.4 0.0 v=-0.618
isyd=1
47 ’al(b)’ 1 17 4 1. 0. 0. 0.0902 1. 0. 0. (smaller pentagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.8 0.2 0.2 0.2 0.2 0.0 v=-0.618
isyd=1
48 ’al(b)’ 1 16 6 1. 0. 0. 0.0902 1.0 0. 0. (smaller pentagon)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.8 0.2 0.2 0.2 0.2 0.0 v=-1.236
isyd=1
49 ’al(a)’ 1 25 4 1. 0. 0. 0.0902 0.7 0. 0. (rhombus)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 0.0 0.0 0.0 0.0 -1.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.6876 0.4584 0.4584 -0.6876 0.4584 0.0 v=-0.618
isyd=1
50 ’co(a)’ 1 25 4 1. 0. 0. 0.0902 1.0 0. 0. (rhombus)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 -1.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.541600 0.4584 0.312400 -0.541600 0.312400 0.0 v=-0.618
isyd=3
51 ’al(a)’ 1 11 4 1. 0. 0. 0.0902 1. 0. 0. (rhombus)
x= -0.4 -0.4 -0.4 -0.4 -0.25 0.0
xe1= 1.0 0.0 0.0 0.0 0.0 0.0 u1=0.0
xe2= 0.0 0.0 0.0 0.0 0.0 0.0 u2=0.0
xe3= 0.0 0.0 0.0 0.0 0.0 0.0 u3=0.0
xi= -0.8584 0.2876 0.1416 0.1416 0.2876 0.0 v=-0.618
isyd=1
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.pod file
nsymo=2 icent=0 brv=’p’
symmetry operator
t,-x-y-z-t,x,y,-u+1/2,v 10bar
t,z,y,x,u,-v m’(m’)
1 3 1 ’decagon’
ej= 0.0 1.0 -1.0 0.0 0.0 0.0
ej= -1.0 1.0 0.0 0.0 0.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
nth=2 1 2 2 3
10101010100000000000
2 5 2 ’pentagon’ ej= 0.000 0.1 -0.3 0.3 -0.1 0.
ej= 0.4 0.4 -0.6 0.4 -0.6 0.0
ej= -0.6 0.4 -0.6 0.4 0.4 0.0
ej= -0.6 0.4 0.4 -0.6 0.4 0.0
ej= 0.4 -0.6 0.4 -0.6 0.4 0.0
ej= 0.4 -0.6 0.4 0.4 -0.6 0.0
nth=5 1 2 2 3 3 4 4 5 5 1
10000000000000000000
3 5 2 ’pentagon’ ej= 0.000 0.1 -0.3 0.3 -0.1 0.
ej= -0.4 -0.4 0.6 -0.4 0.6 0.0
ej= 0.6 -0.4 0.6 -0.4 -0.4 0.0
ej= 0.6 -0.4 -0.4 0.6 -0.4 0.0
ej= -0.4 0.6 -0.4 0.6 -0.4 0.0
ej= -0.4 0.6 -0.4 -0.4 0.6 0.0
nth=5 1 2 2 3 3 4 4 5 5 1
10000000000000000000
4 4 2 ’truncated star A5’
ej= -0.2 0.8 -1.2 0.8 -0.2 0.0
ej= -0.2 0.8 -1.2 1.8 -1.2 0.0
ej= 0.8 -0.2 -1.2 1.8 -1.2 0.0
ej= 0.8 -0.2 -0.2 0.8 -1.2 0.0
nth=3 1 2 2 3 3 4
10101010100000000000
5 4 2 ’truncated star A5’
ej= 0.2 -0.8 1.2 -0.8 0.2 0.0
ej= 0.2 -0.8 1.2 -1.8 1.2 0.0
ej= -0.8 0.2 1.2 -1.8 1.2 0.0
ej= -0.8 0.2 0.2 -0.8 1.2 0.0
nth=3 1 2 2 3 3 4
10101010100000000000
6 5 2 ’pentagon’ ej= 0.000 0.1 -0.3 0.3 -0.1 0.
ej= -0.4 -0.4 0.6 -0.4 0.6 0.0
ej= 0.6 -0.4 0.6 -0.4 -0.4 0.0
ej= 0.6 -0.4 -0.4 0.6 -0.4 0.0
ej= -0.4 0.6 -0.4 0.6 -0.4 0.0
ej= -0.4 0.6 -0.4 -0.4 0.6 0.0
nth=5 1 2 2 3 3 4 4 5 5 1
10000000000000000000
7 4 2 ’truncated star A5’
ej= 0.2 -0.8 1.2 -0.8 0.2 0.0
ej= 0.2 -0.8 1.2 -1.8 1.2 0.0
ej= -0.8 0.2 1.2 -1.8 1.2 0.0
ej= -0.8 0.2 0.2 -0.8 1.2 0.0
nth=3 1 2 2 3 3 4
10101010100000000000
8 3 1 ’1/10 decagon left -> pinwheeel ’
ej= 0.0 -0.5 1.0 -0.5 0.0 0.0
ej= 0.0 -1.0 1.0 0.0 0.0 0.0
ej= 0.5 -1.0 0.5 0.0 0.0 0.0
nth=2 1 2 2 3
10101010100000000000
9 7 1 ’half decagon right ’
ej= 0.0 -0.5 1.0 -0.5 0.0 0.0
ej= 0.0 0.0 1.0 -1.0 0.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= -1.0 1.0 0.0 0.0 0.0 0.0
ej= 0.0 1.0 -1.0 0.0 0.0 0.0
ej= 0.0 0.5 -1.0 0.5 0.0 0.0
nth=7 1 2 2 3 3 4 4 5 5 6 6 7 7 1
10000000000000000000
10 4 2 ’rhombus for overlapped domain’
ej= -1.0 1.0 0.0 0.0 0.0 0.0
ej= -2.0 1.0 0.0 0.0 1.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= -0.0002 0.0001 0.0 0.0 0.0001 0.0
nth=4 4 1 1 2 2 3 3 4
10000000000000000000
11 4 2 ’rhombus for overlapped domain’
ej= 1.0 -1.0 0.0 0.0 0.0 0.0
ej= 2.000000 -1.0 0.0 0.0 -1.0 0.0
ej= 1.0 0.0 0.0 0.0 -1.0 0.0
ej= 0.0002 -0.0001 0.0 0.0 -0.0001 0.0
nth=4 4 1 1 2 2 3 3 4
10000000000000000000
12 2 2 ’1/10 decagon’
ej= 0.0 0.0 1.0 -1.0 0.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
nth=1 1 2
10101010100000000000
13 2 2 ’1/10 decagon’
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
nth=1 1 2
10101010100000000000
14 3 2 ’pentagon A5’
ej= -0.2 0.8 -1.2 0.8 -0.2 0.0
ej= 0.43 0.43 -0.43 0.0 -0.43 0.0

ej= 0.8 -0.2 -0.2 0.8 -1.2 0.0
nth=2 1 2 2 3
10101010100000000000
15 3 1 ’decagon’
ej=-1.0 1.0 0.0 0.0 0.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
nth=2 1 2 2 3
10101010100000000000
16 5 2 ’pentagon’ ej= -0.1 0.3 -0.3 0.1 0.0 0.
ej=-0.4 0.6 -0.4 0.6 -0.4 0.0
ej= -0.4 0.6 -0.4 -0.4 0.6 0.0
ej= -0.4 -0.4 0.6 -0.4 0.6 0.0
ej=0.6 -0.4 0.6 -0.4 -0.4 0.0
ej=0.6 -0.4 -0.4 0.6 -0.4 0.0
nth=5 1 2 2 3 3 4 4 5 5 1
10000000000000000000
17 5 2 ’pentagon’ ej= 0.000 0.1 -0.3 0.3 -0.1 0.
ej= 0.4 -0.6 0.4 -0.6 0.4 0.0
ej=0.4 -0.6 0.4 0.4 -0.6 0.0
ej=0.4 0.4 -0.6 0.4 -0.6 0.0
ej= -0.6 0.4 -0.6 0.4 0.4 0.0
ej= -0.6 0.4 0.4 -0.6 0.4 0.0
nth=5 1 2 2 3 3 4 4 5 5 1
10000000000000000000
18 4 2 ’truncated star A5’
ej= -0.8 1.2 -0.8 0.2 0.2 0.0
ej= -0.8 1.2 -1.8 1.2 0.2 0.0
ej=0.2 1.2 -1.8 1.2 -0.8 0.0
ej=0.2 0.2 -0.8 1.2 -0.8 0.0
nth=3 1 2 2 3 3 4
10101010100000000000
19 4 2 ’truncated star A5’
ej=0.8 -1.2 0.8 -0.2 -0.2 0.0
ej=0.8 -1.2 1.8 -1.2 -0.2 0.0
ej= 0.2 -1.2 1.8 -1.2 0.8 0.0
ej= 0.2 -0.2 0.8 -1.2 0.8 0.0
nth=3 1 2 2 3 3 4
10101010100000000000
20 5 2 ’pentagon’ ej= 0.000 0.1 -0.3 0.3 -0.1 0.
ej= 0.4 -0.6 0.4 0.6 0.4 0.0
ej=0.4 -0.6 0.4 0.4 0.6 0.0
ej=0.4 0.4 -0.6 0.4 0.6 0.0
ej= -0.6 0.4 -0.6 0.4 0.4 0.0
ej= -0.6 0.4 0.4 0.6 0.4 0.0
nth=5 1 2 2 3 3 4 4 5 5 1
10000000000000000000
21 4 2 ’truncated star A5’
ej=0.8 -1.2 0.8 -0.2 -0.2 0.0
ej=0.8 -1.2 1.8 -1.2 -0.2 0.0
ej= -0.2 -1.2 1.8 -1.2 0.8 0.0
ej= -0.2 -0.2 0.8 -1.2 0.8 0.0
nth=3 1 2 2 3 3 4
10101010100000000000
22 3 1 ’1/10 decagon left -> pinwheeel ’
ej= 0.5 -1.0 0.5 0.0 0.0 0.0
ej= 1.0 -1.0 0.0 0.0 0.0 0.0
ej= 1.0 -0.5 0.0 0.0 -0.5 0.0
nth=2 1 2 2 3
10101010100000000000
23 7 1 ’half decagon right ’
ej=0.5 -1.0 0.5 0.0 0.0 0.0
ej=0.0 -1.0 1.0 0.0 0.0 0.0
ej=0.0 0.0 1.0 -1.0 0.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej=-1.0 1.0 -0.0 0.0 0.0 0.0
ej=-0.5 1.0 -0.5 0.0 0.0 0.0
nth=7 1 2 2 3 3 4 4 5 5 6 6 7 7 1
10000000000000000000
24 4 2 ’rhombus for overlapped domain’
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= -1.0 0.0 0.0 -1.0 2.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej= -0.0001 0.0 0.0 -0.0001 0.0002 0.0
nth=4 4 1 1 2 2 3 3 4
10000000000000000000
25 4 2 ’rhombus for overlapped domain’
ej= 1.0 0.0 0.0 0.0 -1.0 0.0
ej= 1.0 0.0 0.0 1.00 -2.0 0.0
ej= 0.0 0.0 0.0 1.0 -1.0 0.0
ej= 0.0001 0.0 0.0 0.0001 0.0002 0.0
nth=4 4 1 1 2 2 3 3 4
10000000000000000000
26 2 2 ’1/10 decagon’
ej= 0.0 -1.0 1.0 0.0 0.0 0.0
ej= 0.0 0.0 1.0 -1.0 0.0 0.0
nth=1 1 2
10101010100000000000
27 2 2 ’1/10 decagon’
ej=0.0 0.0 1.0 -1.0 0.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
nth=1 1 2
10101010100000000000
28 3 2 ’pentagon A5’
ej= -0.8 1.2 -0.8 0.2 0.2 0.0
ej=-0.43 0.43 -0.0 0.43 -0.43 0.0
ej=0.2 0.2 -0.8 1.2 -0.8 0.0
nth=2 1 2 2 3
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10101010100000000000
29 10 2 ’decagon minus three rhombus’
ej= 1.0 -1.0 0.0 0.0 0.0 0.0
ej= 1.0 0.0 0.0 0.0 -1.0 0.0
ej= 1.0 0.0 -1.0 0.0 0.0 0.0
ej= 0.0 0.0 -1.0 1.0 0.0 0.0
ej= 0.0 1.0 -1.0 0.0 0.0 0.0
ej= 0.0 0.0 -1.0 0.0 1.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej= 0.0 -1.0 0.0 0.0 1.0 0.00
ej= 0.0 -1.0 1.0 0.0 0.0 0.0
nth=10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1
10000000000000000000
30 10 2 ’decagon minus two rhombus’
ej= 1.0 -1.0 0.0 0.0 0.0 0.0
ej= 1.0 0.0 0.0 0.0 -1.0 0.0
ej= 0.0 0.0 0.0 1.0 -1.0 0.0
ej= 0.0 0.0 -1.0 1.0 0.0 0.0
ej= 0.0 1.0 -1.0 0.0 0.0 0.0
ej= 0.0 0.0 -1.0 0.0 1.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej= 0.0 -1.0 0.0 0.0 1.0 0.00
ej= 0.0 -1.0 1.0 0.0 0.0 0.0
nth=10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1
10000000000000000000
31 10 2 ’decagon minus three rhombus’
ej= -1.0 1.0 0.0 0.0 0.0 0.0
ej= -1.0 0.0 0.0 0.0 1.0 0.0
ej= -1.0 0.0 1.0 0.0 0.0 0.0
ej= 0.0 0.0 1.0 -1.0 0.0 0.0
ej= 0.0 -1.0 1.0 0.0 0.0 0.0
ej= 0.0 0.0 1.0 0.0 -1.0 0.0
ej= 1.0 0.0 0.0 0.0 -1.0 0.0
ej= 0.0 0.0 0.0 1.0 -1.0 0.0
ej= 0.0 1.0 0.0 0.0 -1.0 0.00
ej= 0.0 1.0 -1.0 0.0 0.0 0.0
nth=10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1
10000000000000000000
32 10 2 ’decagon minus two rhombus’
ej=1.0 0.0 0.0 0.0 -1.0 0.0
ej=0.0 0.0 0.0 1.0 -1.0 0.0
ej=0.0 0.0 -1.0 1.0 0.0 0.0
ej=0.0 1.0 -1.0 0.0 0.0 0.0
ej=-1.0 1.0 0.0 0.0 0.0 0.0
ej=0.0 1.0 0.0 -1.0 0.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej=0.0 0.0 1.0 -1.0 0.0 0.0
ej=1.0 0.0 0.0 -1.0 0.0 0.00
ej=1.0 -1.0 0.0 0.0 0.0 0.0
nth=10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1
10000000000000000000
33 10 2 ’decagon minus one rhombus’
ej=1.0 0.0 0.0 0.0 -1.0 0.0
ej=0.0 0.0 0.0 1.0 -1.0 0.0
ej=0.0 0.0 -1.0 1.0 0.0 0.0
ej=0.0 1.0 -1.0 0.0 0.0 0.0
ej=-1.0 1.0 0.0 0.0 0.0 0.0
ej=0.0 1.0 0.0 -1.0 0.0 0.0
ej= 0.0 0.0 0.0 -1.0 1.0 0.0
ej=0.0 0.0 1.0 -1.0 0.0 0.0
ej=0.0 -1.0 1.0 0.0 0.0 0.0
ej=1.0 -1.0 0.0 0.0 0.0 0.0
nth=10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1
10000000000000000000
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B - Core Glossary

ADP Atomic Displacement Parameter(s)
CBED Convergent-Beam Electron Diffraction
CF Charge Flipping
DM Dual Method
GDM Generalized Dual Method
HAADF-STEM High Angle Annular Dark Field Scanning Transmission Electron Microscopy
HRTEM High Resolution Electron Microscope
IDM Inflation/Deflation Method
LDE Low Density Elimination
MEM Maximum Entropy Method
PM Projection Method
SM Section Method
PF Patterson Function
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