
ETH Library

An automated formal analysis
of the security of the internet
key exchange (IKE) protocol in
the presence of compromising
adversaries

Master Thesis

Author(s):
Kyburz, Adrian

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-a-006250423

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006250423
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

AN AUTOMATED FORMAL ANALYSIS OF THE SECURITY OF THE

INTERNET KEY EXCHANGE (IKE) PROTOCOL IN THE PRESENCE OF

COMPROMISING ADVERSARIES

MASTER THESIS

DEPARTMENT OF COMPUTER SCIENCE

SWISS FEDERAL INSTITUTE OF TECHNOLOGY (ETH)

ZURICH

Supervision: Dr. Cas Cremers

Adrian Kyburz

November 2010

Abstract

Our dependence on sophisticated security services has largely increased in recent years. To

address this trend, a lot of research effort has been put into the development and usage of

methods for proving security properties of network protocols.

To date, many security protocols have already been analyzed by formal methods, using

either symbolic computation or complexity theory. One important family of protocols which

has only been analyzed in a very limited way is the IKE protocol family. IKE stands for

Internet Key Exchange and is the default protocol suite for key management in the IPSec

standard. Due to the sheer complexity of the IKE protocol specification, only simplified

versions have been subject to formal analysis to date. Previously conducted analyses on

IKE are limited to the individual analysis of some of the (many) subprotocols and many of

them do not investigate more advanced security properties such as Perfect Forward Secrecy,

Key Compromise Impersonation, or the loss of old session keys.

This thesis provides the first automatic security analysis of IKEv1 and IKEv2 in the

presence of compromising adversaries. We scrutinize the protocols with respect to the loss

of session keys, forward secrecy and Key Compromise Impersonation. We describe new

attacks against the protocol suites and establish a security hierarchy among the various

variants of the protocol. Moreover, our results demonstrate that a tool-supported formal

analysis of large-scale security protocols is feasible.

ii

Acknowledgements

This Master’s thesis is the culmination of my studies at the Swiss Federal Institute of

Technology. During the last several years I was given the great opportunity to not only

learn about all the fascinating topics the area of Computer Science has to offer, but also to

meet a myriad of interesting, and open-minded people who greatly enhanced my horizon.

It is thus a pleasure to thank the many people who made this thesis possible. First of

all, I would like to thank Dr. Cas Cremers, my supervisor, for being a vibrant source of

inspiration and guidance. Without his support and great experience in the area of security

protocols and their analysis, this thesis would be very different.

I also would like to thank Prof. David Basin for being my supervising professor at ETH

Zurich.

Although my studies consumed a large portion of my life, it would not have been com-

plete without the hours and hours of sharing, laughing, partying, and traveling with my

friends, most notably Benno Schildknecht, Christian Zeiler, Christof Rissi, Daniel Na-

eff, Dejan Juric, Dominique Kronenberg, Flavio Pfaffhauser, Jan-Filip Zagalak, Luciano

Franceschina, Manuel Hess, Philip Reichen, Serge Gebhardt, Simon Brunner, Tobias Flueck-

iger, Urs Bitterlin, and last but not least, my flatmate Thomas Frei.

A very special word of gratitude goes to my parents, Thomas and Rita Kyburz, for

showing me the light of the world and providing me this great privilege of education. With-

out their loving support I could not have achieved this degree, which I believe is only the

start in a wonderful career.

Last but not least, I also want to thank you, dear reader, for the interest in my work.

Would it not be for you, my effort put into this thesis would be in vain.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Contributions . 2

1.2 Related Work . 3

1.3 Organization . 5

2 IPSec and IKE 6

2.1 An Overview of IPSec . 6

2.1.1 Security Associations . 8

2.1.2 Security Policies . 8

2.1.3 Key Management . 9

2.2 An Overview of IKE . 9

3 Symbolic Security Model 11

3.1 Protocols . 12

3.1.1 Protocol Model . 12

3.1.2 Execution Model . 15

3.2 Adversaries . 17

3.3 Security Properties . 20

3.3.1 Secrecy . 20

3.3.2 Authentication . 20

iv

4 The Internet Key Exchange Protocol 22

4.1 IKE Version 1 . 24

4.1.1 Phase 1 Exchange . 24

4.1.2 Phase 2 Exchanges . 29

4.2 IKE Version 2 . 32

4.2.1 Phase 1 Exchange . 33

4.2.2 Phase 2 Exchanges . 38

5 Modeling Protocols 41

5.1 General Abstractions . 41

5.2 Modular Exponentiation . 42

5.3 Functions, Key Derivation, and Authenticators 43

5.3.1 Key Derivation . 43

5.3.2 Authenticators . 45

5.4 Modeling Security Goals . 46

5.5 IKE Protocol Models . 47

6 Analysis 64

6.1 Approach . 65

6.1.1 Settings . 65

6.1.2 Adversary Models . 66

6.1.3 Analysis . 67

6.2 Automatically Rediscovered Attacks . 68

6.2.1 Reflection Attacks . 68

6.2.2 Proposal Attacks . 71

6.2.3 Penultimate Authentication Flaws 72

6.2.4 Consequences of Penultimate Authentication Flaws 75

6.3 Newly Discovered Attacks . 78

6.3.1 Reflection Attacks . 78

6.3.2 Consequences of Penultimate Authentication Flaws 81

6.3.3 Other Attacks Relying on State Corruption 82

6.3.4 Key Compromise Impersonation . 86

6.4 Other Known Attacks . 86

6.5 Security Hierarchy . 87

v

7 More on Related Work 92

8 Conclusion 94

A Additional Terminology 96

A.1 Perfect Forward Secrecy and Key Compromise Impersonation 96

B Modeling Complex Security Protocols with Scyther 98

B.1 Diffie-Hellman Key Agreement . 98

B.2 Message Complexity . 99

B.3 Protocol Executability . 100

B.4 Pitfalls . 104

vi

List of Tables

5.1 IKEv1 signature authenticated protocol models 60

5.2 IKEv1 public key authenticated protocol models 61

5.3 IKEv1 pre-shared key authenticated protocol models 62

5.4 IKEv2 protocol models . 63

6.1 Adversary-compromise models . 67

6.2 Attacks found against IKEv1 and IKEv2 . 69

vii

List of Figures

2.1 Security services in the OSI model . 7

2.2 Security association . 8

2.3 Security Policy Database . 9

2.4 Evolvement of IKE . 10

3.1 Execution-model rules . 16

3.2 Adversary-compromise rules . 19

4.1 Overview of IKE . 23

4.2 IKEv1 key computation . 25

4.3 IKEv1 MM authenticated with digital signatures and pre-shared keys . . . 28

4.4 IKEv1 MM authenticated with public key encryption 29

4.5 IKEv1 AM exchanges . 30

4.6 IKEv1 QM exchange . 31

4.7 IKEv1 NGM exchange . 32

4.8 IKEv2 phase 1 exchange . 34

4.9 IKEv2 key computation . 35

4.10 IKEv2 Extensible Authentication Protocol 39

4.11 IKEv2 phase 2 exchange . 40

5.1 Model: IKEv1 PK AM . 48

5.2 Model: IKEv1 PK MM . 49

5.3 Model: Revised IKEv1 PK AM . 50

5.4 Model: Revised IKEv1 PK MM . 51

5.5 Model: IKEv1 PSK AM . 52

5.6 Model: IKEv1 PSK MM . 53

viii

5.7 Model: IKEv1 SIG AM . 54

5.8 Model: IKEv1 SIG MM . 55

5.9 Model: IKEv1 QM . 56

5.10 Model: IKEv2 . 57

5.11 Model: IKEv2 EAP . 58

5.12 Model: IKEv2 phase 2 . 59

6.1 Two examples of CR execution traces . 65

6.2 Reflection attack against IKEv1 QM . 71

6.3 Penultimate authentication attack against signature authenticated IKEv1 . 73

6.4 Penultimate authentication attack against IKEv2 74

6.5 Sessionstate Reveal attack against public key authenticated IKEv1 MM . . . 77

6.6 Sessionstate Reveal attack against public key authenticated IKEv1 MM . . . 79

6.7 Reflection attack against public key authenticated IKEv1 MM 80

6.8 Replay attack against IKEv2 phase 2 . 81

6.9 Sessionstate Reveal attack against signature authenticated IKEv2 82

6.10 Sessionstate Reveal attack against public key authenticated IKEv1 AM . . . 84

6.11 Random Reveal attack against signature authenticated IKEv2 85

6.12 KCI attack against MAC authenticated IKEv2 86

6.13 A hierarchy of adversary-compromise models 88

6.14 Security hierarchy w.r.t. session key secrecy 89

6.15 Security hierarchy w.r.t. authentication . 90

ix

Chapter 1

Introduction

In todays networked environment, more and more people rely on key management and re-

lated security protocols to securely communicate with each other or carry out commercial

transactions. Ever since the publication of New Directions in Cryptography by Diffie and

Hellman [18], the development of innovative key management mechanisms has been a hot

topic in the cryptographic research community, and new security protocols arise constantly

to overcome the challenges of the “Internet Society”. In spite of the mission critical ser-

vices security protocols should provide, we rarely have correctness proofs for many of these

relatively simple distributed programs.1

In light of this challenge, a lot of research effort has been put into the development and

usage of methods for proving security properties of network protocols. This area of research

has had two important foundations, one based on logic and symbolic computation, and one

based on computational complexity theory. The symbolic approach, which uses a highly

idealized representation of cryptographic primitives, has been a successful basis for formal

logics and automated tools. Conversely, the computational approach yields more insight

into the strength and vulnerabilities of protocols, but requires a lot more effort and is often

difficult to apply.

To date, many security protocols have been analyzed by formal methods, using either

symbolic computation or complexity theory. One important family of protocols which has

only been analyzed in a very limited way is the IKE protocol family [22, 26]. IKE stands for

Internet Key Exchange and is the default protocol suite for key management in the IPSec

1“Security protocols are three-line programs that people still manage to get wrong”. This famous quote
by the late Roger Needham clearly expresses the difficulty of designing robust and flawless security protocols.

1

CHAPTER 1. INTRODUCTION 2

standard.

1.1 Contributions

IPSec protocols have become of great interest in cryptographic research in recent years and

some previously established provable security results already found its way into the IPSec

RFCs. However, it appears that few design choices therein have been made because of a

firm theoretical basis. Thus, IPSec – and in particular IKE – presents many interesting

challenges and surely deserves a formal analysis.

Due to the sheer complexity of the IKE protocol specification, only simplified versions

have been subject to formal analysis to date [13, 14, 36, 37, 40]. Previously conducted

analyses on IKE are limited to individual subprotocol of IKE and many of them do not

investigate more advanced security properties such as Perfect Forward Secrecy (PFS), Key

Compromise Impersonation (KCI), or the loss of old session keys. But a full treatment of

such properties is necessary because they capture the essence of Murphy’s law; secret infor-

mation stored at a party is potentially vulnerable to break-ins or other forms of leakage and

therefore, in some cases, will be leaked. It is thus important to classify protocols according

to their behavior in the advent of leakage of some form of secret information. Ideally, such

leakage has the least possible effect on the security of other secrets. For example, we want

to guarantee that the leakage of information specific to one session (such as the leakage

of a session key or ephemeral state information) will have no effects on the security of

other sessions (known-key attacks), or that the leakage of crucial long-term secrets (such as

private keys) that are used across multiple sessions will not necessarily compromise secret

information from all past sessions (Perfect Forward Secrecy). Compromising adversaries,

i. e., adversaries which are able to dynamically compromise protocol participants during

protocol execution, are one way to model such behavior.

In this thesis, we analyze the behavior of IKE in the advent of compromising adversaries

and present the following contributions to the security analysis of IKE:

1. We formally describe IKE version 1 (IKEv1) and version 2 (IKEv2) in a symbolic

framework which has recently been developed by Basin and Cremers [7].

2. We use Scyther [15] to perform a fully automated security analysis of IKEv1 and

IKEv2 with respect to the secrecy of session keys and two forms of authentication.

CHAPTER 1. INTRODUCTION 3

By this, we demonstrate that a tool-supported formal analysis of large-scale security

protocols is feasible.

3. We describe new attacks against both protocol suites, some of them previously over-

looked, some of them arising from the more sophisticated adversary model which

comes with the framework.

4. We establish a security hierarchy as proposed in [6] among the numerous variants of

IKEv1 and IKEv2 protocols.

Moreover, we contribute to the further development of both the theory and the verification

tool that support the analysis of complex and practically more relevant real-world security

protocols.

1.2 Related Work

We briefly sketch related work here and we will discuss these works in more detail in

Chapter 6 and 7. Most research has been performed on the initial version of IKE, although

there exist studies on simplified versions of IKEv2. To the best of our knowledge, there

exists no thorough analysis of IKEv2 yet.

Formal Analysis A first formal analysis of IKE has been conducted at the Naval Research

Laboratory (USA). In her work [36], Meadows uses the NRL Protocol Analyzer, a special-

purpose formal methods tool for the verification of cryptographic protocols, to scrutinize

IKEv1 with respect to several security properties, such as secrecy and authentication. Her

analysis uncovers several problems with the IKE specification. Most of these problems were

not so much flaws in the protocol design itself, but rather ambiguities and omissions in the

specification that could lead to insecure or incorrect implementations if the specification was

not correctly understood. Meadows shows that several subprotocols of IKE fail to achieve

a certain form of authentication, called penultimate authentication. She further shows that

quick mode achieves Perfect Forward Secrecy but also finds quick mode vulnerable to a

replay attack if the optional identities are omitted.

Canetti and Krawczyk use computational complexity theory to analyze IKEv1 under

an adversary that is more powerful than a traditional Dolev-Yao attacker [13, 14]. Their

security model, which they call SK-security, allows them to analyze protocol behavior in the

CHAPTER 1. INTRODUCTION 4

presence of compromising adversaries, i. e., adversaries which are capable of compromising

protocol participants at runtime. In a first analysis, Canetti and Krawczyk show that several

subprotocols of IKE are SK-secure in the “pre-specified peer” model, i. e., a model in which

the protocol participants know their peer at the beginning of execution. A second analysis

extends the initial security model ([13]) to the scenario where the identity of the peer is

determined only during protocol execution (“post-specified peer” model). They then give a

full security proof of IKE’s digital signature variant with respect to SK-security within the

relaxed model.

Roy, Datta and Mitchell, in [40], use the Protocol Composition Logic (PCL) to develop

axioms for reasoning about protocols using Diffie-Hellman key exchange. They use the

axiom system to formally prove authentication and secrecy theorems for digital signature

authenticated IKEv2.

Mödersheim and Drielsma use the AVISPA tool [5] to model and verify the signature

authenticated variant of IKEv2. They report [37] a similar authentication flaw as Mead-

ows above and, as a consequence, suggest to slightly adapt the protocol by adding key

confirmation.

Informal Analysis In their Analysis of IKE [39], Perlman and Kaufman suggest several

modifications to improve IKEv1. They argue that both the public signature key main mode

and pre-shared key main mode are vulnerable to an active attacker trying to discover the

initiator’s identity.

Ferguson and Schneier [20] conclude that IKEv1 authenticators are defined unacceptably

weak. They present several reflection attacks against IKEv1 and additionally demonstrate

how an adversary can manipulate IKE exchanges such that the two parties executing the

protocol eventually agree on a security policy which may be considerably weaker than

anticipated by the parties. The same weakness has also been pointed out by Zhou in [41].

Furthermore, Zhou argues that the property of identity concealment cannot be achieved in

the main mode protocol with digital signature authentication, even though the identities

are encrypted.

CHAPTER 1. INTRODUCTION 5

1.3 Organization

In Chapter 2, we present a brief introduction to IPSec and IKE before we introduce the

symbolic security model, which we base this work on, in Chapter 3. In Chapter 4 we describe

the Internet Key Exchange (IKE) protocols IKEv1 and IKEv2 in detail, and highlight the

differences among the two versions. Chapter 5 outlines how we modeled the IKE protocol

family in the formalism of Chapter 3. We present our experiments and the results thereof in

Chapter 6 and discuss them in context of related work. In Chapter 7, we provide additional

information about related topics and conclude the thesis in Chapter 8.

Chapter 2

IPSec and IKE

Originally, the Internet was designed without the specification of security requirements.

Back then, its development was driven by the need of the scientific community for a global

medium that allowed for open communication and resource sharing. However, its de-facto

standardization as a global network, as well as its growth in popularity and commercial use

made it evident that the Internet protocols sooner or later would have to be adapted to

support security.

To date, there exist a number of security services for Internet users, the most popular

ones being IPSec [27] and SSL/TLS [17]. Transport Layer Security (TLS) and its predeces-

sor, Secure Socket Layer (SSL), are cryptographic protocols that build upon the traditional

functionality of TCP to provide confidentiality and integrity. They are layered between

TCP and the applications that use the protocol (e.g. web browsing, electronic mail, In-

ternet faxing, instant messaging and voice-over-IP). IPSec on the other hand operates in

layer 3 and thus is fully transparent to applications. It comprises numerous special-purpose

protocols, one of which is the Internet Key Exchange (IKE) protocol. We describe IPSec

and IKE below.

2.1 An Overview of IPSec

IPSec provides security at the IP network layer of the TCP/IP protocol stack. This means

that all IP packets can be protected, no matter what payloads (of protocols running at

upper layers) they carry. In contrast to TLS, there is no need to modify applications to

take advantage of the security services provided by IPSec. Moreover, IPSec services can be

6

CHAPTER 2. IPSEC AND IKE 7

Layer 1: Physical

Layer 3: Network

Layer 2: Data link

Layer 4: Transport

Layer 5: Session

Layer 6: Presentation

Layer 7: Application

SSL / TLS

IPSec

IKE

Figure 2.1: SSL/TLS, IPSec, and IKE in the OSI model

made fully transparent to end users. For these reasons, IPSec forms the basis of many virtual

private networking (VPN) solutions where it is used to provide security for communications

over an untrusted network such as the Internet.

The set of security services offered by IPSec includes access control, integrity protection,

data origin authentication, replay detection and rejection, and confidentiality. The IPSec

protocols also support automated key management (via ISAKMP, cf. Section 2.1.3), with

key exchange protocols using both symmetric and asymmetric cryptographic techniques.

IPSec can be deployed in two basic modes: tunnel mode and transport mode. In tunnel

mode, cryptographic protection is provided for entire IP packets. In essence, a whole packet

is treated as the new payload of an outer IP packet and encapsulated therein. Tunnel mode

is typically supported by security gateways which are located at e.g. corporate network

borders. The use of gateways has the advantage that hosts inside the network need not be

aware of IPSec. By contrast, in transport mode, the header of the original IP packet itself

is preserved, only enriched by some security fields, and the payload together with some

header fields undergo cryptographic processing. Transport mode is typically used when

end-to-end services are needed. It provides protection mostly for the packet payload. In

either mode, one can think of the IPSec infrastructure as intercepting normal IP packets

and performing cryptographic processing on them before passing them on to the upper or

lower layers, depending on whether inbound or outbound traffic is handled.

CHAPTER 2. IPSEC AND IKE 8

Encrypt using using 3-DES (key k1),
authenticate using HMAC-SHA (key k2)

Encrypt using using 3-DES (key k1),
authenticate using HMAC-MD5 (key k2)

Alice Bob

Figure 2.2: An example of a bidirectional SA between Alice and Bob which supports
encryption and authentication: Alice and Bob both use the same encryption algorithm
(3DES) with the key k1. Alice authenticates herself using HMAC-MD5 with k2, while Bob
uses HMAC-SHA with k2.

2.1.1 Security Associations

Security associations are a central concept in IPSec. They refer to unidirectional “connec-

tions” that offer security services to the traffic carried by them [27, section 4]. Each security

association (SA) can support encryption, authentication, or both. The two peers on either

side of the SA store (amongst other information) the cryptographic keys, encryption al-

gorithms, authentication schemes, and integrity protection mechanisms supported by that

connection, in the SA. Security associations are unidirectional: if Alice wants to setup a

bi-directional secure communication channel with Bob, then at least two SAs are required

(cf. Fig. 2.2). There exist two different types of security associations in IPSec: ISAKMP

SAs and IPSec SAs. While the latter is used to protect IP packets, ISAKMP SAs are used

to protect ISAKMP messages.

2.1.2 Security Policies

The protection offered by IPSec is based on requirements that are stored in a Security

Policy Database (SPD). For every outbound IP packet, IPSec checks the SPD for finding

“instructions” on how the packet is to be processed. If the packet needs protection, the SPD

specifies the SAs to be used. Thus, IP packets are intercepted and compared to the SPD,

each match with an SPD entry identifies a policy and a collection of SAs that implement

the policy, and these SAs are then “applied” to the packets (cf. Fig. 2.3).

CHAPTER 2. IPSEC AND IKE 9

Header
(simplified) Payload

SPI: 42

Outbound IP packet

SPD

idx SA

... ...
42 SA_42
... ...

IPSec gateway

Alice Bob

Router Internet

query

apply

Figure 2.3: Schematic overview of applying a policy from the Security Policy Database to
an outbound IP packet in tunnel mode

2.1.3 Key Management

To establish a SA, Alice and Bob must first agree on the cryptographic algorithms to be

used and second, jointly determine keying material over a possibly insecure channel. Instead

of negotiating keying material, cryptographic keys could also be deployed manually, this

approach however only works well for small-scale deployments. For larger scale and more

robust use of IPSec, an automated method is needed. The Internet Security Association and

Key Management Protocol (ISAKMP) [34] provides methods for both SA negotiation and

associated cryptographic parameter establishment. Although the “P” in its abbreviation

suggests that ISAKMP is a protocol, it merely provides a framework for authentication and

key exchange and is designed to be independent of key exchange protocols.

2.2 An Overview of IKE

An instance of ISAKMP and the default IPSec method for secure key negotiation is the

Internet Key Exchange (IKE) protocol. Other key negotiation protocols may be used, but

IKE is mandatory in all IPSec implementations and is the most common protocol that is

CHAPTER 2. IPSEC AND IKE 10

IKEv2

IKEv1

!!

ISAKMP

""

!!!!!!!!!!

Oakley

##"
"
"
"
"
"
"
"
"

SKEME

$$

#
#

#
#

#
#

#
#

#

STS

%%$
$
$
$
$
$
$
$
$

Figure 2.4: Schematic evolvement of IKE

currently used. Unlike the rest of IPSec, which resides at, or just below the network layer,

IKE is an application-layer protocol (cf. Fig. 2.1).

The aim of the protocol is to dynamically establish shared state for the provision of

security services between two parties in the network, for example between a client and a

server. As such, it does much more than simply distribute keys; it also establishes security

associations which, among other features necessary for secure communication, specify the

protocol format and the cryptographic and hashing algorithms used. Because flexibility

was one of the design goals, IKE supports a number of different authentication schemes, in-

cluding digital signatures, public key encryption, and conventional encryption using shared

keys.

IKE has evolved from a number of different protocols, including ISAKMP [34], Oakley

[38], the Station-to-Station (STS) protocol [19], and SKEME [28]; the last two of which

influenced the development of Oakley. IKE can be thought of as the result of combining the

ISAKMP packet formats with the message exchange modes and key management aspects

defined by the Oakley protocol. The current version of IKE, IKEv2 [26] supersedes the

original version specified in [22]. We examine both versions in Chapter 4.

Chapter 3

Symbolic Security Model

In this chapter we summarize the symbolic framework from [7] which is the basis of our

analysis. We explain how security protocols can be modeled and how their properties can be

expressed within that model. We illustrate how the various security notions from literature

are covered by the framework and give a reason for their existence. Readers familiar with

[7] may skip this chapter.

Notational preliminaries Let f be a function. We write dom(f) and img(f) to denote

f ’s domain and image. We write f [b ← ! a] to denote f ’s update, i.e., the function f ′ where

f ′(x) = b when x = a and f ′(x) = f(x) otherwise. We write f : X "→ Y to denote a partial

function from X to Y . For any set S, P(S) denotes the power set of S and S∗ denotes the

set of finite sequences of elements from S. We write 〈s0, . . . , sn〉 to denote the sequence of

elements s0 to sn, and we omit brackets when no confusion can result. For s a sequence of

length |s| and i < |s|, si denotes the i-th element in the sequence. We write ŝ s′ for the

concatenation of the sequences s and s′. Abusing set notation, we write e ∈ s iff ∃i.si = e.

We write union(s) for
⋃

e∈s e. We define last (〈〉) = ∅ and last(ŝ 〈e〉) = e.

We write [t0, . . . , tn/x0, . . . , xn] ∈ Sub to denote the substitution of ti for xi, for 0 ≤ i ≤

n. We extend the functions dom and img to substitutions. We write σ ∪ σ′ to denote the

union of two substitutions, which is defined when dom(σ)∩ dom(σ′) = ∅, and write σ(t) for

the application of the substitution σ to t. Finally, for R a binary relation, R∗ denotes its

reflexive transitive closure.

11

CHAPTER 3. SYMBOLIC SECURITY MODEL 12

3.1 Protocols and Their Execution

3.1.1 Protocol Model

We use a simple protocol description language to present a protocol as a set of “programs”,

one for each role such as initiator or responder. Each role program is a sequence of protocol

actions, called events, to be executed by an honest participant, referred to as an agent.

Formally, a protocol defines a partial mapping from role names to event sequences, i.e.,

P : Role "→ ProtocolEvent∗, where Role is the (infinite) set of roles and ProtocolEvent

denotes the set of events every protocol participant can engage in. Protocols are performed

by agents who execute role programs, thereby instantiating role names with agent names.

Agents may execute any role multiple times, possibly in parallel. Each instance of a role is

called a thread and is identified by a thread identifier tid.

We assume given the inifinte sets of Agent ,Fresh,Var ,Func , and TID of agent names,

roles, freshly generated terms (nonces, session keys, coin flips, etc.), variables, function

names, and thread identifiers. We assume that TID contains two distinguished thread

identifiers, Test and tidA. These identifiers single out a distinguished “point of view” tread

of an arbitrary agent and and an adversary thread, respectively.

Definition 1 (Protocol events).

ProtocolEvent ::= create(Role,Agent) | send(Term) | recv(Term)

| generate(P(Fresh)) | state(P(Term)) | sessionkeys(P(Term))

The event create(Role,Agent) denotes role instantiation. The next two events are stan-

dard and model role communication. The last three events are used to tag runtime infor-

mation, e.g., the fresh values generated by a thread, the current state of a thread, and the

set of session keys computed by a thread.

Definition 2 (Terms).

Term ::= Agent | Role | Fresh | Fresh"TID | V ar"TID

| (Term, Term) | pk(Term) | sk(Term) | k(Term, Term)

| {|Term |}a
Term | {|Term |}s

Term | Func(Term∗)

For each X,Y ∈ Agent, sk(X) denotes the long-term private key, pk(X) denotes the

CHAPTER 3. SYMBOLIC SECURITY MODEL 13

long-term public key, and k(X,Y) denotes the long-term symmetric key shared between X

and Y . Moreover, {| t1 |}
a
t2

denotes the asymmetric encryption (for public keys) or the digital

signature (for signing keys) of the term t1 with the key t2, and {| t1 |}
s
t2

denotes symmetric

encryption. The set Func is used to model other cryptographic functions, such as hash

functions. Freshly generated terms and variables are assumed to be local to a thread. To

bind a term t to a protocol role instance with thread identifier tid, we write t"tid.

Example 1 (Challenge-Response protocol). Let {I ,R} ⊆ Role,ni ∈ Fresh, and x ∈ V ar.

We define the simple protocol CR as follows.

CR(I) = 〈 generate({ni}), state({ni}), send(I,R, ni),

recv(R, I, {| I, ni |}a
sk(R))〉

CR(R) = 〈 recv(I,R, ni), state({x, {| I, x |}a
sk(R)}),

send({| I, x |}a
sk(R))〉

In this protocol, the initiator generates a nonce and sends it along with the initiator and

responder names to the network. The responder excepts to receive a message of this form

and subsequently computes the signature of the received value and the initiator’s name.

R responds with the computed signature. The additional events mark state information.

The state information is implementation-dependent and marks the parts of the state that

is stored at a protection level lower than the long-term private keys. The state information

in CR corresponds to, e.g., implementations that use a hardware security module (HSM)

for encryption and signing and perform all other computations in ordinary memory.

Depending on the protocol analyzed, the framework assumes that symmetric or asym-

metric long-term keys have been distributed prior to protocol execution. Further, the

existence of an inverse function on terms is assumed, where t−1 denotes the inverse key of

t. We have that pk(X)−1 = sk(X) and sk(X)−1 = pk(X) for all X ∈ Agent, and t−1 = t

for all other terms t.

Inference of terms To denote that the term t can be inferred from the set of terms M

a binary relation - is defined. Let t0, . . . , tn ∈ Term and let f ∈ Func. Then - is the

CHAPTER 3. SYMBOLIC SECURITY MODEL 14

smallest relation satisfying:

t ∈ M ⇒ M - t M - t1 ∧ M - t2 ⇔ M - (t1, t2)

M - {| t1 |}
a
t2
∧ M - t−1

2 ⇒ M - t1 M - t1 ∧ M - t2 ⇔ M - {| t1 |}
a
t2

M - {| t1 |}
s
t2
∧ M - t2 ⇒ M - t1 M - t1 ∧ M - t2 ⇔ M - {| t1 |}

s
t2

∧

0≤i≤n

M - ti ⇒ M - f(to, . . . , tn)

The term t′ is a subterm of t, written t′ 1 t, if t′ is a syntactic subterm of t, e.g.,

t1 1 {| t1 |}
s
t2

. FV (t) denotes the set of free variables in t, where FV (t) = {t′ | t′ 1

t} ∩ (V ar ∪ {v"tid | v ∈ V ar ∧ tid ∈ TID}).

Threads An agent may execute multiple threads in different roles from various protocols.

To distinguish between the fresh terms and variables of each thread, we assign them unique

names, using the framework’s auxiliary function localize : TID → Sub, defined as

localize(tid) =
⋃

cv∈Fresh∪V ar

[cv"tid/cv].

Additionally, the function thread : (ProtocolEvent∗×TID×Sub → ProtocolEvent∗ yields

the sequence of events that may occur in an agent’s thread.

Definition 3 (Thread). Let l be a sequence of events, tid ∈ TID, and let σ be a substitution.

Then thread (l, tid, σ) = σ(localize(tid)(l)).

Example 2. Let {A,B} ⊆ Agent.For a thread t1 ∈ TID performing role I from Example 1,

we have localize(t1)(ni) = ni"t1 and

thread (CR(I), t1, [A,B/I,R]) =

〈generate({ni"t1}), state({ni"t1}), send(A,B, ni"t1),

recv(B,A, {|A,ni"t1 |}
a
sk(B))〉.

Every protocol execution comprises two distinguished threads: the adversary thread,

if present, identified by thread identifier tidA, and the test thread, identified by thread

identifier Test. The test thread is used while verifying security properties. In the compu-

tational setting, this is the thread where the adversary performs the so-called test query.

In the same spirit, [7] calls the thread under consideration the test thread. For the test

CHAPTER 3. SYMBOLIC SECURITY MODEL 15

thread, the substitution of role names by agent names, and all free variables by terms, is

given by σTest and the role is given by RTest. For example, if the test thread is performed

by Alice in the role of the initiator, trying to talk to Bob, we have that RTest = I and

σTest = [Alice,Bob/I,R].

3.1.2 Execution Model

The framework uses a trace-based approach. The set Trace is defined as (TID ×Event∗),

representing possible execution histories. The system-state is a tuple (tr, IK, th, σTest) ∈

Trace × P(Term) × (TID "→ Event∗) × Sub, whose components are a trace tr, the ad-

versary’s knowledge IK, a partial function th mapping the thread identifiers of iniitiated

threads to sequences of events (that have yet to be executed), and the role to agent and

variabele assignments of the test thread. For a protocol P , the set of initial system states

IS(P) is defined as

IS(P) =
⋃

σTest∈T estSubP

{(〈〉, Agent ∪ {pk(a) | a ∈ Agent}, ∅, σTest)}

where T estSubP is the set of ground substitutions σTest such that

dom(σTest = dom(P) ∪ {v"Test | v ∈ V ar} ∧ ∀r ∈ dom(P).σTest(r) ∈ Agent.

In contrast to Dolev-Yao models, the initial adversary knowledge does not contain any long-

term secrets. The adversary may learn these from long-term key reveal events (adversary

capabilities are introduced in Section 3.2). The semantics of protocol P is defined by

a transition system that combines the execution-model rules from Fig. 3.1 with a set of

adversary rules from Fig. 3.2. We first introduce the execution-model rules.

The create rule starts a new instance of a protocol role R. A fresh thread identifier

tid is assigned to the thread, thereby distinguishing it from existing threads, the adversary

thread, and the test thread. The rule takes the protocol P as a parameter. The role names

of P , which can occur in events associated with the role, are repalced by agent names by

the substitution σ. Similarly, the createTest rule starts the test thread. However, instead

of choosing an arbitrary role, it takes an additional parameter RTest, which represents the

test role. Additionally, instead of choosing an arbitrary substitution, the test substitution

σTest is used.

CHAPTER 3. SYMBOLIC SECURITY MODEL 16

R ∈ dom(P) dom(σ) = Role ran(σ) ⊆ Agent tid #∈ (dom(th) ∪ {tidA, Test})

(tr, IK , th, σTest) −→ (trˆ〈(tid, create(R, σ(R)))〉, IK , th[thread(P (R), tid, σ) ←! tid], σTest)
[create]

a = σTest (RTest) Test #∈ dom(th)

(tr, IK , th, σTest) −→ (trˆ〈(Test, create(RTest , a))〉, IK , th[thread(P (RTest), Test, σTest) ←! Test], σTest)
[createTest]

th(tid) = 〈send(m)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, send(m))〉, IK ∪ {m}, th[l ←! tid], σTest)
[send]

th(tid) = 〈recv(pt)〉ˆl IK * σ(pt) dom(σ) = FV (pt)

(tr, IK , th, σTest) −→ (trˆ〈(tid, recv(σ(pt)))〉, IK , th[σ(l) ←! tid], σTest)
[recv]

th(tid) = 〈generate(M)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, generate(M))〉, IK , th[l ←! tid], σTest)
[generate]

th(tid) = 〈state(M)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, state(M))〉, IK , th[l ←! tid], σTest)
[state]

th(tid) = 〈sessionkeys(M)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, sessionkeys(M))〉, IK , th[l ←! tid], σTest)
[sessionkeys]

Figure 3.1: Execution-model rules

The send rule sends a message m to the network. In contrast, the recv rule accepts

messages from the network that match a given pattern pt, where pt is a term and may

contain free variables. The resulting substitution σ is applied to the remainning protocol

steps l.

The last three rules support the framework’s adversary-compromise model, which is

explained shortly. The generate rule marks the fresh terms that have been generated, the

state rule marks the current local state, and the sessionkeys rule marks a set of terms as

session keys.

During protocol execution, the test thread may intentionally share some of its short-term

secrets with other threads, for example a session key. Hence some adversary rules require

distinguishing between the intended partner threads and other threads. The framework

supports the notion of partnering based on matching histories for protocols with two roles.

Before we formally introduce partnering we need to introduce two auxillary operators,↓and

!. For traces, ↓ projects traces on events belonging to a particular thread identifier. For all

tid , tid ′ ∈ TID, and tr ∈ Trace, 〈〉↓tid = 〈〉 and

(

〈(tid′, e)〉̂ tr
)

↓tid =

{

〈e〉̂ (tr↓tid) if tid = tid′, and

tr↓tid otherwise.

CHAPTER 3. SYMBOLIC SECURITY MODEL 17

Similarly, for event sequences,! selects the contents of events of a particular type. For all

evtype ∈ {create, send, recv, generate, state, sessionkeys}, 〈〉!evtype = 〈〉 and

(〈e〉̂ l)!evtype =

{

〈m〉̂ (l!evtype) ife = evtype(e), and

l!evtype otherwise.

Definition 4 (Matching histories). For sequences of events l and l′, we define MH(l, l′)
def
=

(l! recv = l′!send) ∧ (l!send = l′! recv)

The partnering definition of [7] is parameterized over the protocol P and the thest role

RTest.

Definition 5 (Partnering for two-role protocols). Let R be the non-test role,i. e., R ∈

dom(P) and R 5= RTest. For tr a trace,

Partner(tr, σTest) = {tid | tid 5= Test ∧ (∃a. create(R, a) ∈ tr↓tid)

∧ ∃ l.MH(σTest(P (RTest)), (tr↓tid)̂ l)}

A thread tid is a partner iff tid is not Test, tid performs the role different from the test

role, and tid’s history matches the test thread’s (for l = 〈〉) or the thread may be completed

to a matching one (for l 5= 〈〉).

3.2 Adversaries

We explain the capabilities of our adversary in Fig. 3.2. We call each of these capabilities an

adversary-compromise rule. From a theoretical perspective, these rules factor in the various

security definitions from the cryptographic protocol literature along three dimensions of

adversarial compromise: which kind of data is compromised, whose data it is, and when the

compromise occurs. From a practical point of view, the rules describe the not-so-perfect,

but real world of security systems where long-term private keys are lost, session keys are

susceptible to cryptanalysis, random number generators suffer from flaws, and the soft-

and hardware implementing security services contain bugs such as overflowing buffers. For

short, the rules are used to model the behavior of such systems in times of failures.

CHAPTER 3. SYMBOLIC SECURITY MODEL 18

Long-term key compromise Let the long-term keys of an agent a be defined as

LongTermKeys(a) = {sk(a)} ∪
⋃

b∈Agent

{k(a, b), k(b, a)}.

The first four rules model the compromise of agent’s long-term keys, represented by the

trace event LongtermKeyReveal(a). This event models the adversary learning the long-term

keys of agent a, expressed as IK ∪ LongTermKeys(a), and in traditional Dolev-Yao models

implicitly occurs for dishonest agents before the honest agents start their threads.

The LongtermKeyRevealothers rule models standard Dolev-Yao behavior: the adversary

is allowed to corrupt the long-term keys of any number of agents as long as they are not

intended partners of the test thread. Hence, if the test thread is performed by Alice,

communicating with Bob, the adversary can learn, e.g., Dave’s long-term key. This rule

dates back to Lowe’s famous man-in-the-middle attack on the Needham-Schroeder protocol.

The LongtermKeyRevealactor rule allows the adversary to learn the long-term key of the

agent executing the test thread (actor). This rule allows the adversary to perform so-called

Key Compromise Impersonation attacks [23]. We briefly discuss KCI in Appendix A.1.

The LongtermKeyRevealafter and LongtermKeyRevealaftercorrect rules have restrictions on

when the compromise may occur. In particular, they allow the compromise of long-term

keys only after the test thread has finished. If a protocol satisfies secrecy properties with

respect to an adversary that can use LongtermKeyRevealafter, it is said to satisfy Perfect

Forward Secrecy A.1. Both rules are used to model the behavior of the protocol in case of

the corruption of at least one party’s long-term key (break-in, loss, etc.).

The LongtermKeyRevealaftercorrect rule additionally requires that a finished partner thread

must exist for the test thread. If a protocol satisfies secrecy properties with respect to an

adversary that can use LongtermKeyRevealafter , it is said to satisfy weak Perfect Forward Se-

crecy, a notion that stems from [30] and excludes the adversary from inserting fake messages

during protocol execution and learning the key of the involved agents later.

Short-term key compromise The remaining rules model the compromise of short-term

data, i.e., data local to a specific thread. Whereas long-term key compromise is assumed to

reveal all long-term keys of an agent, here it is differentiated between the different kinds of

local data: randomness, session keys, and other local data such as the results of intermediate

computations. The trace events SessionKeyReveal(tid) and SessionstateReveal(tid) indicate

CHAPTER 3. SYMBOLIC SECURITY MODEL 19

a ∈ Agent a #∈ {σTest (R) | R ∈ dom(P)}

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRothers]

a = σTest(RTest) a #∈ {σTest (R) | R ∈ dom(P) \ {RTest}}

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRactor]

a ∈ Agent th(Test) = 〈〉

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRafter]

a ∈ Agent th(Test) = 〈〉 tid ∈ Partner(tr, σTest) th(tid) = 〈〉

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRaftercorrect]

tid #= Test tid #∈ Partner(tr, σTest)

(tr, IK , th, σTest) −→ (trˆ〈(tidA, SessionKeyReveal(tid))〉, IK ∪ union((tr ↓ tid) ! sessionkeys), th, σTest)
[SKR]

tid #= Test tid #∈ Partner(tr, σTest) th(tid) #= 〈〉

(tr, IK , th, σTest) −→ (trˆ〈(tidA, StateReveal(tid))〉, IK ∪ last((tr ↓ tid) ! state), th, σTest)
[SR]

(tr, IK , th, σTest) −→ (trˆ〈(tidA, RandomReveal(tid))〉, IK ∪ union((tr ↓ tid) ! generate), th, σTest)
[RNR]

Figure 3.2: Adversary-compromise rules

that the adversary reveals the session key or, respectively, the local state of the thread tid.

The RandomReveal(tid) trace event indicates that the adversary learns the random numbers

generated in thread tid.

The rules Session Key Reveal and Sessionstate Reveal allow the adversary to corrupt the

session keys and the local state of any thread that is not a partner of the test thread,

respectively. These rules allow to formally model leakage of information on either specific

session keys or on a thread’s virtual memory that may result from events such as break-

ins, cryptanalysis, careless disposal of keys, buffer overflow attacks, etc.. In contrast, the

Random Reveal rule has no such premise. It allows the adversary to gain access to the random

numbers generated by any thread, including the partner threads. This rule provides the

means to account for flawed random number generators.

We call each subset of the set of adversary-compromise rules from Fig. 3.2 an adversary-

compromise model. We introduce the adversary-compromise models from [7] in Chapter 6.

CHAPTER 3. SYMBOLIC SECURITY MODEL 20

3.3 Security Properties

We now provide three security property definitions. We give symbolic definitions for session

key secrecy, aliveness, and weak agreement which, when combined with different adversary-

compromise models, allow us to express different security notions from the literature, e. g.,

Perfect Forward Secrecy, Key Compromise Impersonation, etc. The set RS(P,Adv,RTest)

denotes the set of reachable states as defined in [6, Definition 7].

3.3.1 Secrecy

Definition 6 (Session key secrecy [6]). Let P be a protocol and Adv an adversary model.

We say that P satisfies session-key secrecy with respect to Adv if and only if

∀RTest ∈ dom(P).∀(tr, IK, th, σTest) ∈ RS(P,Adv,RTest).

th(Test) = 〈〉 ⇒ ∀k ∈ union ((tr↓Test)!sessionkeys) .IK ! k.

A session key k is secret if and only if it is impossible for the adversary to infer k in any

of the reachable system states.

3.3.2 Authentication

Later in this thesis, we will analyze IKE with respect to two authentication properties:

aliveness and weak agreement. Both properties were introduced by Lowe in [33]. The weak-

est authentication property specified by Lowe is aliveness. A protocol is said to guarantee

to an agent a in role A aliveness of another agent b if, whenever a completes a run of the

protocol, apparently with b in role B, then b has previously been running the protocol. Note

that this not necessarily means that previously b assumed role B. The following definition

captures the formal definition of aliveness within the framework.

Definition 7 (Aliveness for two-party protocols [6]). Let P be a protocol and Adv an

adversary model. We say that P satisfies aliveness with respect to Adv, if and only if

∀RTest ∈ dom(P).∀(tr, IK, th, σTest) ∈ RS(P,Adv,RTest).

th(Test) = 〈〉 ⇒ ∃RTest, R, tid. (Test, create(RTest, σTest(RTest))) ∈ tr

∧ R 5= RTest ∧ (tid, create(R,σTest(R))) ∈ tr.

CHAPTER 3. SYMBOLIC SECURITY MODEL 21

Another authentication property is weak agreement. A protocol guarantees to an agent

a in role A weak agreement with another agent b if, whenever agent a completes a run of

the protocol, apparently with b in role B, then b has previously been running the protocol,

apparently with a.

Definition 8 (Weak agreement for two party protocols). Let P be a protocol and Adv an

adversary model. We say that P satisfies weak agreement with respect to Adv, if and only

if

∀RTest ∈ dom(P).∀(tr, IK, th, σTest) ∈ RS(P,Adv,RTest).

th(Test) = 〈〉 ⇒ ∃RTest, R, tid. (Test, create(RTest, σTest(RTest))) ∈ tr

∧ R 5= RTest ∧ (tid, create(R,σTest(R))) ∈ tr ∧ σTest(RTest) = σ(RTest).

Chapter 4

The Internet Key Exchange

Protocol

The Internet Key Exchange (IKE) protocol is being developed by the IP Security (IPSec)

Working Group of the Internet Engineering Task Force (IETF); its current version number

is 2. IKE has evolved from a number of key exchange protocols, among them ISAKMP [34]

and Oakley [38]. It unifies the packet formats defined in the ISAKMP standard with the

key management aspects introduced in Oakley.

IKEv2 as well as its predecessor are structured into two consecutive phases. In the first

phase, initiator and responder use pre-established security mechanisms such as pre-shared

keys or public key infrastructures to negotiate security policy and exchange authenticated

keying material. The security policy defines the cryptographic algorithms, hash functions,

etc. to be used during the exchange. Together with the agreed upon keying material it

represents a security association. In the second phase, initiator and responder use the

established security associations to negotiate further SAs which are then handed over to

IPSec to protect subsequent communication channels. We refer to Fig. 4.1 for a high level

overview of IKE.

Notational preliminaries Let G be a multiplicative group of prime order q and let g be

a generator of G. We write α = gxi and β = gxr to denote the initiator’s and responder’s

public Diffie-Hellman (DH) token, respectively. We write Z = αxr = βxr to denote the

ephemeral DH secret shared between initiator and responder. Concatenation of two terms

is denoted as (·).

22

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 23

Pre

IKE

1

3IPSec

2

NGM IEQM

Pre

1

3

negotiate & exchange

compute

authenticate

IPSec2

2

IECHILD

(a) IKEv1 (b) IKEv2

Bidirectional communication channel protected by a SA

Communication channel

AM MM

negotiate & exchange

compute

authenticate

1
(Sub)protocol step

Protocol phase

AM Subprotocol / protocol mode

compute

Pre

IKE

Alice Bob Alice Bob

IKE

IPSec1

Figure 4.1: IKE overview: in phase 1, Alice and Bob use a communication channel, which
is protected by long-term secrets, to negotiate security policy and exchange authenticated
keying material, resulting in the first SA(s), the IKE SA (and, for IKEv2, the first IPSec
SA). In phase 2, both parties use the IKE SA to protect negotiation and exchange of new
cryptographic material (QM, child), resulting in an IPSec SA. Phase 2 can also be used to
renegotiate IKE SA policy (NGM, child), or to exchange other information (IE).

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 24

4.1 IKE Version 1

4.1.1 Phase 1 Exchange

The establishment of an ISAKMP SA (IKE SA) must always be the first step of an IPSec

transaction. The IKE SA may be considered a “control channel” upon which IKE is the

control protocol. As such, it is not required to be present for the lifetime of the SAs that

it helps to create. Several (child) IPSec SAs may be created from a single IKE SA; they

remain active even if the parent has been terminated. Two hosts can maintain more than

one IKE SA concurrently.

Phase 1 uses the well-known Diffie-Hellman exchange to establish initial shared key-

ing material for the protection of the IKE SA. Both parties authenticate one another to

anticipate Man-in-the-Middle attacks. To mitigate the risk of being the target of a Denial-

of-Service (DoS) attack, both parties additionally employ Photuris style anti-clogging tokens

[25], so-called cookies.

Phase 1 offers two modes: main mode (MM) and aggressive mode (AM). Each mode

results in the establishment of an IKE SA but differs in the number of exchanged messages

between initiator and responder. Main mode consists of six messages, three in each direc-

tion. It offers identity protection and considerable flexibility in terms of the parameters and

configurations that can be negotiated. Aggressive mode consists of a three way handshake

between initiator and responder. Its main advantage is speed; this comes at the cost of

slightly less security – the exchange occurs without identity protection, except when public

key encryption is used for authentication – and flexibility. Each mode supports 4 authenti-

cation schemes which influence the derivation of keying material as well as the structure of

the exchange itself.

4.1.1.1 Negotiation

MM is an instantiation of the ISAKMP Identity Protect Exchange [34, section 4.5]. The

first two messages negotiate policy; the next two exchange the Diffie-Hellman tokens and

ancillary data (e. g. nonces) necessary for the exchange; and the last two messages authen-

ticate the Diffie-Hellman exchange. The authentication method negotiated as part of the

initial ISAKMP exchange influences the composition of the payloads but not their purpose.

Similarly, AM is an instantiation of the ISAKMP Aggressive Exchange [34, section 4.7].

The first two messages negotiate policy, exchange Diffie-Hellman public values and ancillary

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 25

compute

KDF

Ni, Nr, Z, CKYi, CKYr

{Kd, Ka, Ke}

negotiate & exchange

compute

authenticate

KDFX

SKEYIDX

Figure 4.2: The computation of IKEv1 keying material is a multi-step process. First, the
initial master secret is derived dependent on the authentication method which is being used.
Second, various keys are computed for different purposes.

data necessary for the exchange, and identities. In addition, the second message authen-

ticates the responder. The third message authenticates the initiator and provides a proof

of participation in the exchange. The final message may be sent either with or without

protection of the IKE SA.1 This allows each party to postpone exponentiation, if desired,

until this exchange is completely negotiated.

4.1.1.2 Key Derivation and Authentication

MM and AM both rely on the same multi-step process of key derivation. The first step for

initiator and responder is to derive the ephemeral Diffie-Hellman secret Z. This initial secret

is then used together with additional randomness to derive SKEY ID, a secret value all

further keying material is derived from. As key derivation function, denoted prf(·), initiator

and responder either use the negotiated pseudo-random function, or, if no pseudo-random

function has been negotiated, the HMAC [8] version of the negotiated hash function.

1Our results indicate that encrypting the last message does not improve the protocol’s security. See
Chapter 6 for more information.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 26

Definition 9 (Key seed). Let Ni, Nr, CKYi, and CKYr be random values. Then,

SKEY IDSIG
def
= prf(Ni · Nr, Z) (4.1)

SKEY IDPK
def
= prf (prf(Ni · Nr), CKYi · CKYr) (4.2)

SKEY IDPSK
def
= prf (k(I,R), Ni · Nr) . (4.3)

The computation of the key seed is parametrized over the authentication method being

used. If the exchange is authenticated using digital signatures, then SKEY IDSIG is used as

key seed. Otherwise, either SKEY IDPK or SKEY IDPSK is used for public key encrypted

or pre-shared key authenticated IKEv1, respectively. Ni and Nr refer to the nonces of

initiator and responder, respectively, and the terms CKYi and CKYr denote their cookies.

Cookies are random values that are used to uniquely identify the security association the

messages belong to, and as an anti-clogging token. The final set of keying material is derived

according to Definition 10.

Definition 10 (Keying material). Let CKYi be the initiator’s and CKYr be the respon-

der’s cookie, let 0, 1, 2 be of type integer, and SKEY ID ∈ {SKEY IDSIG, SKEY IDPK ,

SKEY IDPSK}.

1. The keying material for the derivation2 of non-ISAKMP security associations is de-

fined as

Kd
def
= prf (SKEYID ,Z · CKYi · CKYr · 0). (4.4)

2. The keying material to protect the integrity of ISAKMP/IKE is defined as

Ka
def
= prf (SKEYID ,Kd · Z · CKYi · CKYr · 1). (4.5)

3. The keying material to protect the confidentiality of ISAKMP/IKE is defined as

Ke
def
= prf (SKEYID ,Ka · Z · CKYi · CKYr · 2). (4.6)

To provide authentication for their messages, initiator and responder each compute an

authentication payload, referred to as authenticator.

2Note that Kd is only used to derive more keying material if perfect forward secrecy is not required.
Otherwise, quick mode must be used.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 27

Definition 11 (Authenticators). Let PROPOSALS denotes the list of SA proposals, and

let I and R denote the identities of initiator and responder, respectively.

1. The initiator’s authenticator is defined as

HASHi
def
= prf (Ka , α · β · CKYi · CKYr · PROPOSALS · I). (4.7)

2. The responder’s authenticator is defined as

HASHr
def
= prf (Ka , β · α · CKYr · CKYi · PROPOSALS · R). (4.8)

4.1.1.3 Main Mode

As mentioned above, IKE supports four types of authentication: digital signatures, two

forms of public key encryption, and pre-shared keys. We illustrate them below.

Digital signatures Digital signatures, such as those provided by DSA and RSA, can also

be used for phase 1 authentication. Both of these methods use public/private key pairs.

Initiator and responder both sign their hash values using their long-term private keys. Thus,

SIGi ← {|HASHi |}
a
sk(I) (4.9)

SIGr ← {|HASHr |}
a
sk(R) . (4.10)

The recipient of a signature will use the signer’s public key to decrypt and verify the

signature. It is not required that the entity’s public keys are known by their respective

peers in advance; initiator and responder transmit their identities, along with an optional

certificate, in the last two messages. The exchange is shown in Fig. 4.2(a).

Public key encryption Using encryption for authentication may seem non-standard.

However, public key encryption can also be used to authenticate the participants in a key

exchange. In addition to the cookies and DH tokens in the third message, the initiator

places its identity and nonce, each encrypted with the responder’s public key. This requires

the initiator to already know the responder’s public key, since the responder has not trans-

mitted its identity yet. This implies that the responder’s identity cannot be hidden from

an active adversary. Similarly, the responder replies with its identity and nonce in message

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 28

(a) Digital signatures

Init Resp

HDR,PROPOSALS

HDR,PROPOSAL

HDR, α,Ni

HDR, β,Nr

HDR, {| I , [Certi ,]SIGi |}s
Ke

HDR, {|R, [Certr ,]SIGr |}s
Ke

(b) Pre-shared keys

Init Resp

HDR,PROPOSALS

HDR,PROPOSAL

HDR, α,Ni

HDR, β,Nr

HDR, {| I ,HASHi |}s
Ke

HDR, {|R,HASHr |}s
Ke

Figure 4.3: IKEv1 MM authenticated with digital signatures and pre-shared keys

4, each encrypted with the initiator’s public key. Since the identity of the initiator can be

determined by decrypting the identity field of the previous message, the responder does not

need to know the initiator’s public key ahead of time. Because the intended recipient is the

only one who can decrypt the third message, the initiator knows that the responder is valid

if it receives the proper value of HASHr. Likewise, the converse case applies for authenti-

cation of the initiator. The main disadvantage of this type of exchange is that it requires a

total of four public key operations on each side (two encryptions and two decryptions), each

of which requiring expensive processing. A revised version reduces the amount of public

key operations by introducing a temporary, symmetric shared key kx. Both variants of this

exchange are presented in Figure 4.4.

Pre-shared keys The use of pre-shared keys allows for the simplest form of authentica-

tion. In order for authentication to occur, initiator and responder must have had previously

agreed upon a key, typically using some offline technique, e. g., the company’s network ad-

ministrator distributing passwords to employees. When attempting a key negotiation, the

employee is challenged for the password.

A serious drawback of using pre-shared keys is that since k(I,R) is used to derive the

encryption key Ke, the recipient of an authentication payload will not be able to view

the payload without knowing which pre-shared key to use (see Figure 4.2(b)). The only

information that the recipient can use to look up the proper key is the source IP address

of the packet. This not only puts severe limitations on the practical use of pre-shared keys

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 29

(a) Original version

Init Resp

HDR,PROPOSALS

HDR,PROPOSAL

HDR, α, [hash(Certr),]{| I |}a
pk(R), {|Ni |}a

pk(R)

HDR, β, {|R |}a
pk(I), {|Nr |}a

pk(I)

HDR, {|HASHi |}s
Ke

HDR, {|HASHr |}s
Ke

(b) Revised version

Init Resp

HDR,PROPOSALS

HDR,PROPOSAL

HDR, [hash(Certr),]{|Ni |}a
pk(R), {|α |}

s
ki

, {| I [,Certi] |}s
ki

HDR, {|Nr |}a
pk(I), {|β |}

s
kr

, {|R |}s
kr

HDR, {|HASHi |}s
Ke

HDR, {|HASHr |}s
Ke

Figure 4.4: IKEv1 MM authenticated with public key encryption: the initiator of a public
key authenticated exchange sends the hash of the certificate used for the encryption along
with the initial message.

in environments where no static IP addresses are used (e. g., with DHCP) but also violates

the identity concealment property (please consult [39] for more information on identity

concealment problems).

4.1.1.4 Aggressive Mode

For each authentication scheme there exists an AM exchange that performs key negotiation

and authentication in a three-way handshake (at the cost of slightly less security). Except

for authentication with public key encryption, AM cannot hide the participant’s identities.

Figure 4.5 shows the AM exchanges for all authentication schemes.

4.1.2 Phase 2 Exchanges

IKE phase 2 can be used to either negotiate a non-ISAKMP SAs (quick mode), to negotiate

new security parameters (new group mode), or to send an unacknowledged notification mes-

sage (the latter is not discussed here since it is not directly related to key exchange). Phase

2 negotiations can only occur if there already exists a successfully established ISAKMP SA

(phase 1) as all phase 2 packets will be protected by that SA.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 30

(a) Digital signatures

Init Resp

HDR,PROPOSALS , α,Ni , I

HDR,PROPOSAL, β,Nr ,R, [Certr ,]SIGr

HDR, [Certi ,]SIGi

(b) Pre-shared keys

Init Resp

HDR,PROPOSALS , α,Ni , I

HDR,PROPOSAL, β,Nr ,R,HASHr

HDR,HASHi

(c) Public key encryption (original)

Init RespHDR,PROPOSALS , [hash(Certr),]
α, {| I |}a

pk(R), {|Ni |}a
pk(R)

HDR,PROPOSAL, β, {|R |}a
pk(I), {|Nr |}a

pk(I),HASHr

HDR,HASHi

(d) Public key encryption (revised)

Init RespHDR,PROPOSALS , [hash(Certr),]
{|Ni |}a

pk(R), {|α |}
s
ki

, {| I [,Certi] |}s
ki

HDR,PROPOSAL, {|Nr |}a
pk(I), {|β |}

s
kr

, {|R |}s
kr

,HASHr

HDR,HASHi

Figure 4.5: IKEv1 AM exchanges: the initiator of a public key authenticated exchange
sends the hash of the certificate used for the encryption along with the initial message.

4.1.2.1 Quick Mode

The goal of IKEv1’s quick mode (QM) is to generate a security association with a purpose

outside ISAKMP/IKE, e. g. a standard IPSec SA. If Perfect Forward Secrecy is required,

fresh DH tokens can be exchanged. Multiple QM negotiations may take place simultaneously

between two participants. Since all of these negotiations use the same pair of cookies as in

phase 1, each negotiation must be assigned a unique identifier so that it can be distinguished

from its siblings. This is accomplished through the use of a message identifier, MID, which

is part of the generic ISAKMP header included in all IKE messages.

Figure 4.6 depicts the message exchange for QM. The first message contains the ini-

tiator’s cookies, its IPSec SA offer, and its nonce. If Perfect Forward Secrecy is required,

the message will also contain a DH token, optional group information, and the identities of

initiator and responder. The initiator authenticates the message with the hash H1 which is

computed as

H1 ←

{

prf (Ka,MID · PROPOSALS · N ′
i · α

′ · I · R) , if PFS

prf (Ka,MID · PROPOSALS · N ′
i) , otherwise.

(4.11)

The second message contains the responder’s cookies, its IPSec SA selection, and its nonce.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 31

Init Resp

HDR, {|H1 ,PROPOSALS ,N ′
i [, α

′][, I ,R] |}s
Ke

HDR, {|H2 ,PROPOSAL,N ′
r [, β

′][, I ,R] |}s
Ke

HDR, {|H3 |}s
Ke

Figure 4.6: IKEv1 QM exchange

If PFS is required, the message will also contain a DH token and the identities of initiator

and responder. The responder authenticates the message with the hash H2 computed as

H2 ←

{

prf (Ka,MID · PROPOSAL · N ′
i · N

′
r · β

′ · I · R) , if PFS

prf (Ka,MID · PROPOSALS · N ′
i · N

′
r) , otherwise.

(4.12)

Message 3 contains the hash H3 with which the initiator authenticates the whole transaction

H3 ← prf
(

Ka, 0 · MID · N ′
i · N

′
r

)

. (4.13)

Keying material to protect the newly established IPSec SA is derived according to Defini-

tion 12.

Definition 12. Let N ′
i and N ′

r be random values. Let P be a protocol identifier and let

SPI denote a security parameter index. The keying material for IPSec security association

is derived from Kd as

KEY MAT
def
=

{

prf (Kd, Z ′ · P · SPI · N ′
i · N

′
r) if PFS

prf (Kd, P · SPI · N ′
i · N

′
r) otherwise

(4.14)

where Z ′ = gx′

ix
′

r is the newly derived Diffie-Hellman ephemeral secret.

4.1.2.2 New Group Mode

This mode is used to change the cryptographic group which future negotiations will base

their DH computations on. It does not establish new SAs. Further, new group mode (NGM)

does not replace or preempt QM.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 32

Init Resp

HDR, {|H1 ,PROPOSALS |}Ke

HDR, {|H2 ,PROPOSAL |}Ke

Figure 4.7: IKEv1 NGM exchange

Figure 4.7 depicts the NGM exchange. In the first message, the initiator proposes a new

group with an SA payload. H1 authenticates the message. The second message contains

the responder’s response to the new group proposal. H2 authenticates the message. The

hashes are defined as

H1 ← prf (Ka ,MID · PROPOSALS) (4.15)

H2 ← prf (Ka ,MID · PROPOSAL). (4.16)

4.2 IKE Version 2

Complexity has been a recurring theme in most of the analyses of IKE [4, 20, 36, 39].

Indeed, the initial version of IKE contains no less than eight key establishment protocols

which can be divided into two sets of four, according to whether MM or AM is used (cf.

Section 4.1). The newest incarnation of IKE’s specification addresses these complexity

issues by simplifying the structure of the exchange itself as well as by reducing the degree of

flexibility. Some of the major similarities and differences between IKEv2 and its predecessor

include the following.

IKEv2 replaces IKEv1’s eight different phase 1 exchanges by a single four-message

exchange which is suitable for the majority of IKE negotiations.

IKEv2 primarily supports two authentication schemes (digital signatures and pre-

shared secrets), although a wide range of legacy authentication methods can be inte-

grated by using the Extensible Authentication Protocol (EAP, Section 4.2.1.3).

IKEv2 is more efficient in setting up the first non-IKE SA as this SA can be established

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 33

as part of the initial exchange after four messages, while IKEv1 requires at least six

messages (using three messages in AM followed by three more in QM).

IKEv1 QM is roughly equivalent to IKEv2’s CREATE CHILD SA exchange, though

IKEv2 uses one message less than IKEv1.

A more detailed list of differences between IKEv1 and IKEv2 can be found in [26, Ap-

pendix A].

4.2.1 Phase 1 Exchange

IKEv2’s initial exchange is derived from what was previously known as the ISAKMP Identity

Protect Exchange. It combines the first four messages of the ISAKMP exchange into a single

two-message exchange called IKE SA INIT. The output of the IKE SA INIT exchange is a

(yet unauthenticated) IKE SA representing the shared state for the efficient establishment

of subsequent SAs (child SAs). The next two messages are grouped into IKE AUTH and

authenticate the IKE SA INIT exchange. Additionally, IKE AUTH establishes a second SA,

the first child SA. The output of IKEv2’s phase 1 is therefore a set of two bidirectional

SAs; an IKE SA containing the shared secret keys and a set of cryptographic algorithms

to be used in phase 2 to negotiate supplementary child SAs, and the first child security

association.

While Diffie-Hellman key negotiation remains as a cornerstone in version 2, IKEv2

replaces the 8 individual “protocols”, arising from the combination of two modes with

four different authentication methods, with a single four-message exchange that covers

most scenarios. Exotic situations, e. g., a peer finding itself under a flooding attack, are

covered by the possibility of having extra round trips. Public key encryption as a form of

authentication is no longer supported by IKEv2’s standard four-message exchange.

4.2.1.1 Negotiation

During IKE SA INIT, initiator and responder exchange their Diffie-Hellman tokens α and β

and a pair of nonces Ni and Nr. Additionally, the initiator proposes a set of cryptographic

algorithms (e. g. encryption, authentication, and integrity protection), to be used during

the third and the fourth message exchange, in PROPOSALS. The responder expresses his

corresponding choice in PROPOSAL. The message headers contain the Security Param-

eter Indices (SPI), version numbers and flags of various sorts. The optional CR payload

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 34

Init Resp

HDR,PROPOSALS , α,Ni

HDR,PROPOSAL, β,Nr [,CR]

HDR, {| I , [Certi ,][CR,][R,]AUTH ,PROPOSALS ′,TSi ,TSr |}s
Ke,i ,Ka,i

HDR, {|R, [Certr ,]AUTH ,PROPOSAL′,TSi ,TSr |}s
Ke,r ,Ka,r

Figure 4.8: IKEv2 phase 1 exchange: {|m |}Ke,x,Ka,x
denotes integrity protection of message

m using key Ka,x and encryption using key Ke,x.

denotes the responder’s certificate request; a certificate request provides a means to request

certificates of preferred certification authorities. Note that unlike in IKEv1, the initiator

directly starts with exchanging the DH token. This has two security implications. First,

the initiator must guess the Diffie-Hellman group expected by the responder and second,

the responder must somehow protect itself if it is under a DoS attack. To prevent this kind

of attack, the default exchange can be prefixed by a cookie exchange, resulting in an extra

round trip. Figure 4.8 describes the initial exchange of IKEv2 (without the prefixed cookie

exchange).

Each message in IKE AUTH is integrity protected. This is equivalent to computing the

HMAC of the identity as described in SIGMA protocol [29]. Thus, the protocol exchange,

as presented, is secure against key-misbinding attacks [19]. To protect the protocol against

Man-in-the-Middle attacks inherent to the standard Diffie-Hellman protocol, the initiator

performs the authentication operation on the first message of IKE SA INIT and sends the

result in the AUTH payload. Similarly, the responder authenticates the second message

of the IKE SA INIT exchange. By this, both Diffie-Hellman tokens are authenticated as

described by Diffie et al. [19]. Moreover, an active adversary is no longer able to fool the

peers into agreeing on weaker encryption/authentication algorithms as has been described

for IKEv1 by both Ferguson and Schneier [20], and Zhou [41]. The exact method used

to compute the AUTH payload is based on the authentication algorithm to be used for

the IKE SA and will be discussed in Section 4.2.1.3. Note that by separating the AUTH

payload from the default key exchange algorithm, it is possible for initiator and responder

to authenticate its peer using entirely different authentication schemes.

Unlike IKEv1, IKEv2 establishes the first non-IKE SA during phase 1. Therefore,

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 35

compute

KDF2

Ni, Nr, Z, SPIi, SPIr

{Kd, Ka,i, Ka,r, Ke,i, Ke,r}

negotiate & exchange

compute

authenticate

KDF1

SKEYSEED

Figure 4.9: The computation of IKEv2 keying material is a multi-step process. First, the
initial master secret is derived as a function of the nonces and the ephemeral Diffie-Hellman
secret. Second, a multitude of keys are computed for different purposes.

the IKE AUTH payloads contain the security association algorithms to be used for IPSec

processing (PROPOSALS′, PROPOSAL′). In addition, the message also contains traffic

selectors (TSi, TSr) which allow for fine-grained IPSec policy setting based on IP address

and port.

4.2.1.2 Key Derivation

After completing the IKE SA INIT exchange, both initiator and responder will have enough

information to derive the ephemeral Diffie-Hellman key Z. This key, together with the

previously negotiated pseudo-random function prf(·), is then used for the construction of

keying material for all of the cryptographic algorithms used in both the IKE SA and the

child SAs.

First, both parties compute the value SKEY SEED3 as a function of the nonces and

DH tokens exchanged in IKE SA INIT. SKEY SEED is used to derive seven other secrets:

Kd used for deriving new keys for the child SAs established through this IKE SA; Ka,i

and Ka,r used as a key to the integrity protection algorithm for authenticating subsequent

exchanges; Ke,i and Ke,r used for encrypting (and of course decrypting) all subsequent

exchanges; and Kp,i and Kp,r, which are used for the generation of AUTH payloads.

3Note that IKEv2, unlike IKEv1, no longer derives different key seeds per authentication scheme.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 36

Definition 13 (Key seed). Let Ni, Nr be random values. The secret value SKEY SEED

is defined as

SKEY SEED
def
= prf (Ni · Nr, Z) (4.17)

Definition 14 (Keying material). Let Ni, Nr be random values. Let SPIi denote the ini-

tiator’s and SPIr be the responder’s security parameter index, and let 0, 1, . . . , 7 be of type

integer.

1. The keying material for the derivation of non-ISAKMP security associations is defined

as

Kd
def
= prf (SKEYSEED ,Ni · Nr · SPIi · SPIr · 1). (4.18)

2. The keying material to protect the integrity of ISAKMP/IKE is given as

Ka,i
def
= prf (SKEYSEED ,Kd · Ni · Nr · SPIi · SPIr · 2) (4.19)

Ka,r
def
= prf (SKEYSEED ,Ka,i · Ni · Nr · SPIi · SPIr · 3). (4.20)

3. The keying material to protect the confidentiality of ISAKMP/IKE is defined as

Ke,i
def
= prf (SKEYSEED ,Ka,r · Ni · Nr · SPIi · SPIr · 4) (4.21)

Ke,r
def
= prf (SKEYSEED ,Ke,i · Ni · Nr · SPIi · SPIr · 5). (4.22)

4. Additional keys for authentication purposes are given as

Kp,i
def
= prf (SKEYSEED ,Ke,r · Ni · Nr · SPIi · SPIr · 6) (4.23)

Kp,r
def
= prf (SKEYSEED ,Kp,i · Ni · Nr · SPIi · SPIr · 7) (4.24)

The two directions of traffic flow use different keys. The keys used to protect messages

from the original initiator are Ka,i and Ke,i. The keys used to protect messages in the other

direction are Ka,r and Ke,r.

4.2.1.3 Authentication

The initial message exchange presented in Section 4.2.1.1 supports two authentication meth-

ods; digital signatures and message authentication codes (MAC). Additionally, to cover

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 37

legacy authentication schemes, [26] describes the integration of EAP [3] into IKEv2. We

describe the three mechanisms below.

Note that there is no requirement that initiator and responder authenticate themselves

with the same cryptographic algorithms. The choice of cryptographic algorithms depends

on the type of key each party has. In particular, the initiator may be using a shared key

while the responder may have a public signature key and certificate.

Digital signatures With digital signatures, initiator and responder both compute the

signature of a block of data that includes messages 1 and 2, respectively. For the responder,

the data to be signed contains SPIr (from the header of the second message), the payload of

the second message, the initiator’s nonce, and the value prf (Kp,r, R). Similarly, the initiator

signs the first message, starting with SPIi. Appended to this are the responder’s nonce

and the value prf (Kp,i, I).

Definition 15. Let Ni, Nr, SPIi and SPIr be random values, PROPOSALS be the list of

security association proposals and PROPOSAL be the corresponding choice thereof; and

let I and R denote the identities of initiator and responder.

AUTHi
def
= {| SPIi , 0 ,PROPOSALS , α,Ni ,Nr , prf (Kp,i , I) |}sk(I) (4.25)

AUTHr
def
= {| SPIi ,SPIr ,PROPOSAL, β,Nr ,Ni , prf (Kp,r ,R) |}sk(R) (4.26)

The recipient of a signature will use the signer’s public key to decrypt and verify the

signature. If the public key is unknown, it can be requested through a certificate request

(CR) in the second or the third message, depending on the recipients role in the protocol.

Pre-shared secrets If initiator and responder already posses a shared secret, they can

use a MAC, using the shared secret as the key, to authenticate one another. To authenticate

itself to the responder, the initiator computes the MAC over the first message including SPIi

from the header and the value prf (Kp,i, I). Similarly, the responder computes the MAC

over SPIr, the payload of the second message and the value prf (Kp,r, R) to authenticate

itself to the initiator.

Definition 16. Let Ni, Nr, SPIi and SPIr be random values, PROPOSALS be the list of

security association proposals and PROPOSAL be the corresponding choice thereof; and

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 38

let I and R denote the identities of initiator and responder.

AUTHi
def
= prf(k(I ,R),SPIi , 0 ,PROPOSALS , α,Ni ,Nr , prf (Kp,i , I)) (4.27)

AUTHr
def
= prf(k(R, I),SPIi ,SPIr ,PROPOSAL, β,Nr ,Ni , prf (Kp,r ,R)) (4.28)

Typically, although not required by the specification, the same key is used in both

directions.

Extensible Authentication Protocol (EAP) In addition to authentication using pub-

lic key signatures and shared secrets, IKEv2 supports “Legacy Authentication” through

EAP. Typically, EAP methods are asymmetric (designed for a user authenticating to a

server), and they may not be mutual. These protocols are typically used to authenticate

the initiator to the responder and therefore require public key signature based authentica-

tion of the responder to the initiator.

An initiator indicates a desire to use EAP by leaving out the AUTH payload from

message 3. By including an IDi payload but not an AUTH payload, the initiator has

declared an identity but has not yet proven it. If the responder is willing to use an exten-

sible authentication method, it will place an EAP payload in message 4 and defer sending

PROPOSAL′, TSi, and TSr until initiator authentication is complete. A minimal exten-

sible authentication exchange is described in Figure 4.10.

4.2.2 Phase 2 Exchanges

Similarly to its predecessor, IKEv2 allows for the efficient creation of child SAs and the

rekeying of existing SAs. Furthermore, initiator and responder may convey control mes-

sages to each other regarding errors or notifications of certain events through informational

exchanges that are also protected by the IKE SA. Note that informational exchanges are

not discussed here since they are not directly related to key exchange.

The negotiation of new SAs based on an existing IKE SA is referred to as CREATE CHILD SA,

which is comparable to IKEv1 QM. It consists of a single request/response pair and may

be initiated by either end of the IKE SA after the initial exchanges are completed.

A first child SA is created by the IKE AUTH exchange in phase 1. Additional child SAs

can be negotiated by sending CREATE CHILD SA requests. To enable stronger guarantees

(e. g. PFS), an optional Diffie-Hellman token may be included in the request. The keying

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 39

Init Resp

HDR,PROPOSALS , α,Ni

HDR,PROPOSAL, β,Nr [,CR]

HDR, {| I , [CR,][R,]PROPOSALS ′,TSi ,TSr |}s
Ke,

,Ka,i

HDR, {|R, [Cr ,]AUTHr ,EAP |}s
Ke,r ,Ka,r

HDR, {|EAP |}s
Ke,i ,Ka,i

HDR, {|EAPsuccess |}s
Ke,r ,Ka,r

HDR, {|AUTHi |}s
Ke,i ,Ka,i

HDR, {|AUTHr ,PROPOSAL′,TSi ,TSr |}s
Ke,r ,Ka,r

Figure 4.10: IKEv2 Extensible Authentication Protocol

material for the child SA is a function of Kd established during phase 1, the nonces Ni and

Nr, and Z ′, a fresh Diffie-Hellman secret (if included in the CREATE CHILD SA exchange).

The exchange is depicted in Figure 4.11.

Definition 17 (IPSec keying material). Let N ′
i and N ′

r be fresh nonces and let Z ′ = α′x
′

r =

β′x
′

r denote a fresh DH secret. The keying material for IPSec SAs is defined as

KEY MAT1
def
= prf (Kd, Ni · Nr) , (4.29)

for the security association established in phase 1, and

KEY MATn
def
= prf

(

Kd, [Z
′] · N ′

i · N
′
r

)

, n > 1 (4.30)

for all subsequent SAs (established via CREATE CHILD SA).

The initiator sends SA offer(s) in PROPOSALS, a nonce N ′
i , an optional DH token

α′, and the proposed traffic selectors in TSi and TSr. If this exchange is rekeying an

existing IPSec SA, the leading N denotes the message id and is used to identify the SA

being rekeyed, otherwise it is omitted. The message following the header is encrypted and

the message including the header is integrity protected using the cryptographic algorithms

negotiated for the IKE SA.

CHAPTER 4. THE INTERNET KEY EXCHANGE PROTOCOL 40

Init Resp

HDR, {| I , [N ,]PROPOSALS ,N ′
i , [α

′,][TSi ,TSr] |}s
Ke,i ,Ka,i

HDR, {|PROPOSAL,N ′
r , [β

′,][TSi ,TSr] |}Ke,r ,Ka,r

Figure 4.11: IKEv2 CREATE CHILD SA

The responder replies (using the same message id to respond) with the accepted SA offer

in PROPOSAL, a nonce N ′
r, and a Diffie-Hellman value β′ if such a token was included in

the request.

Chapter 5

Modeling Protocols

Before we present the results of our analysis, we briefly explain how we modeled the IKE

protocols from Chapter 4 in the framework of Chapter 3. The design of protocol models in

a given formalism is always a tradeoff between being precise, i. e., we do not want to deviate

too much from the specification, and being pragmatic, e. g., it makes no sense to model

TCP/IP specific details in a model where protocol participants are identified by just their

name. Moreover, most formal models exhibit certain restrictions. In our case for example,

operations on sets and lists are not supported in the formalism.

The aim of this chapter is to present some of the workarounds and abstractions we had

to perform during the modeling phase, and to facilitate the correct interpretation of our

experiments, which we present in the next chapter. The protocol models (cf. Section 5.5)

can be found online at [1].

5.1 General Abstractions

SA negotiation was greatly abstracted and simplified. Instead of modeling the negotiation

as the responder selecting from a list of proposals sent by the initiator, we modeled it as

a simple nonce exchange, where the nonce created by the initiator (PROPOSALS) rep-

resents the list of security association proposals and the responder’s nonce (PROPOSAL)

represents a choice thereof. This approach bases on the assumption that, although the

initiator can propose numerous security associations, the responder can only pick one, and

still gives enough flexibility to express certain known agreement problems [20]. A drawback

of this solution is the loss of dependency between the proposal and the choice. However, we

41

CHAPTER 5. MODELING PROTOCOLS 42

do not know of any attack that exploits this kind of dependency, i. e., making a responder

choose a proposal which has not been proposed by the initiator.

We did not account for public key certificates since their only purpose is to indicate

which public key should be used for encryption or signature verification and as such are a

technical facilitation without any security relevance. Moreover, we abstracted away from

IKEv2’s traffic selectors. Traffic selectors are used to enrich the security association with

information on what kind of traffic is allowed to be transmitted over the SA, and are

meaningless in our abstracted communication model.

5.2 Modular Exponentiation

Our verification tool works in a free term algebra where equality is defined as syntactic

equality over terms. This poses some problems for modeling, e. g., modular exponentiation.1

Nevertheless, our tool allows the definition of “helper” protocols, which we call oracles.

Oracles can be queried by the adversary at protocol execution to gain certain information

based on information he or she already has. We describe their behavior shortly, for now we

simply state that oracles can be compared to the rewrite rules of Meadows [36]. Oracles allow

us to under-approximate the properties of a key derived by the Diffie-Hellman algorithm.

In the following, we assumed that the derivation of a Diffie-Hellman key (in our model)

involved distinguishable operations for initiator and responder, whereas in reality, they are

both the same.

To capture modular exponentiation, we defined two functions f(x) and h(G, y). The

initiator computes her public Diffie-Hellman token α by computing f(xi) := gxi where xi

represents the initiator’s private exponent and g denotes the agreed upon group generator.

Similarly, the responder derives β. To derive the final Diffie-Hellman key Zi, the initiator

computes h(β, xi) := βxi . Likewise, the responder computes Zr = h(α, xr). Note that

if initiator and responder exchange their DH tokens correctly, they both derive the same

Diffie-Hellman key.

Zi ← h(f(xr), xi) (5.1)

Zr ← h(f(xi), xr) (5.2)

1The extension of the Scyther tool to support modular exponentiation is ongoing work.

CHAPTER 5. MODELING PROTOCOLS 43

To express the equivalence Zi = (gxr)xi ≡ (gxi)xr = Zr in our protocol model, we let the

adversary query predefined oracles at runtime. The oracles were defined with respect to the

protocol specification, i.e. if the initiator sends a message m which is encrypted under a DH

key Zi = h(f(xr), xi), {|m |}Zi
, then the adversary, by querying a “Diffie-Hellman oracle”,

learns {|m |}Zr
where Zr = h(f(xi), xr).

The functions together with the oracles obey some of the algebraic rules associated

with Diffie-Hellman, including the ones necessary for the computation of a Diffie-Hellman

key, but not all of them. Hence any attack we find will remain valid under the full set of

Diffie-Hellman equivalences, but the absence thereof will not prove anything.

5.3 Functions, Key Derivation, and Authenticators

IKEv1 and IKEv2 both make use of cryptographic functions such as (keyed) pseudo-random

functions or cryptographic hashes. In this section we briefly describe how functions are

represented within our model and highlight some of the restrictions we faced while modeling

IKE session keys and authenticators. We give detailed descriptions of how we simplified

the various constructs from the specification and how we modeled, e. g., session keys and

authenticators.

First, we note that apart from encryption, decryption, and tupling, all other function

applications are represented as collision-free hash functions in our model.2 In particular

this means that, in general, the results obtained from function application are irreversible

and we therefore conjecture that repeated application does not increase the security of our

models.

5.3.1 Key Derivation

Key derivation is a multi-step process in both protocols. First, a master secret is agreed

upon, and second, numerous keys are generated as a function of the master secret and

the (already) derived keys themselves (cf. Fig. 4.2 and 4.9). We simplify this process by

providing a suitable key derivation function which, with the exception of f and h from

Section 5.2, contains no nested function applications.

2As implied by Definition 2, hash functions can consume an arbitrary number of input values

CHAPTER 5. MODELING PROTOCOLS 44

IKEv1 As a first step in simplifying the three keys Kd,Ka, and Ke from Definition 10,

we remove the nested application of prf which is caused by SKEY ID. We stress that

we only abstract from the application itself, the arguments remain untouched. We also

replace term concatenation by tupling. For digital signature authenticated IKEv1 where

SKEY ID = prf(Ni · Nr, Z) we obtain:

Kd ← prf ((Ni ,Nr ,Z),Z ,CKYi ,CKYr , 0) (5.3)

Ka ← prf ((Ni ,Nr ,Z),Kd ,Z ,CKYi ,CKYr , 1) (5.4)

Ke ← prf ((Ni ,Nr ,Z),Ka ,Z ,CKYi ,CKYr , 2) (5.5)

Similarly, we delete Kd and Ka from the definitions of Ka and Ke, respectively. Also, we

simplify the definitions such that the arguments to the pseudo-random functions describe

a set instead of a bag.

Kd ← prf (Ni ,Nr ,Z ,CKYi ,CKYr , 0) (5.6)

Ka ← prf (Ni ,Nr ,Z ,CKYi ,CKYr , 1) (5.7)

Ke ← prf (Ni ,Nr ,Z ,CKYi ,CKYr , 2) (5.8)

Because constants do not improve the security of the derivation scheme, we omit them in

our model. We observe that the three keys are now equal (modulo their identifiers). Thus,

we model the three (originally unique keys) as a single session key, with variants for initiator

and responder, respectively.

SKi ← KDF (Ni ,Nr ,Zi ,CKYi ,CKYr) (5.9)

SKr ← KDF (Ni ,Nr ,Zr ,CKYi ,CKYr). (5.10)

KDF is a new function introduced to capture the essentials of the key derivation process.

Due to the way Diffie-Hellman secrets are represented in our model (see Section 5.2), the

two variants are semantically equal.

CHAPTER 5. MODELING PROTOCOLS 45

IKEv2 Instead of three, IKEv2 defines 7 short-term keys in its specification. After ap-

plying the same procedure to these keys as above, we obtain

SKi ← KDF (Ni ,Nr ,Zi ,SPIi ,SPIr) (5.11)

SKr ← KDF (Ni ,Nr ,Zr ,SPIi ,SPIr). (5.12)

By simplifying key derivation we are able to further reduce the complexity of our models:

the specified two-fold encryption with different symmetric keys (Ka,x,Ke,x) is no longer

useful and is omitted in all IKEv2 protocol models.

5.3.2 Authenticators

The representation of authenticators posed similar challenges as key derivation. Below, we

briefly describe the transformation from the authenticators defined in Chapter 4 to the way

we represented them in our models.

IKEv1 The IKE specification defines several authentication payloads, the most promi-

nent ones being HASH and SIG. As the latter is just a signed version of the first, we

concentrate on the transformation of HASH. Other hashes mentioned by the specification

were transformed in a similar fashion and are not covered here.

The initiator’s as well as the responder’s authenticator, as defined in Definition 11, is

obtained from applying a keyed pseudo-random function to a number of exchanged values.

To simplify authentication, we first replace the key Ka by either SKi or SKr, depending

on whose authenticator is being modeled.

HASHi ← prf (SKi , α, β,CKYi ,CKYr ,PROPOSALS , I) (5.13)

HASHr ← prf (SKr , β, α,CKYr ,CKYi ,PROPOSALS ,R) (5.14)

Following the argument of Section 5.3.1, we remove nested function applications and remove

duplicates from the input arguments. Diffie-Hellman tokens of the form gx are substituted

by f(x).

HASHi ← prf (Ni ,Nr ,Zi , f (xi), f (xr),CKYi ,CKYr ,PROPOSALS , I) (5.15)

HASHr ← prf (Ni ,Nr ,Zr , f (xr), f (xi),CKYr ,CKYi ,PROPOSALS ,R) (5.16)

CHAPTER 5. MODELING PROTOCOLS 46

IKEv2 Analogous to the simplifications above, we adapt the digital signature authenti-

cators from Definition 15.

AUTHi ← {|SPIi , 0 ,PROPOSALS , f (xi),Ni ,Nr , prf (SKi , I) |}a
sk(I) (5.17)

AUTHr ← {|SPIi ,SPIr ,PROPOSAL, f (xr),Nr ,Ni , prf (SKr ,R) |}a
sk(R) (5.18)

Similarly, we modify Definition 16.

AUTHi ← prf(k(I ,R),SPIi , 0 ,PROPOSALS , f (xi),Ni ,Nr , prf (SKi , I)) (5.19)

AUTHr ← prf(k(R, I),SPIi ,SPIr ,PROPOSAL, f (xr),Nr ,Ni , prf (SKr ,R)) (5.20)

5.4 Modeling Security Goals

Unfortunately, the specifications of IKEv1 as well as IKEv2 do not clearly state what

security goals the protocols should achieve. The only goal which is explicitly mentioned by

both RFCs is PFS. Further, we could derive that the protocols should achieve confidentiality

and strong entity authentication. IKEv1 should additionally provide anonymity in MM (i. e.,

identities should not be revealed to the adversary) and plausible deniability (i. e., agents

should be able to deny their participation in a given protocol execution) for public key

authenticated exchanges.

Additionally to these somehow informally stated security goals we modeled numerous

desirable attributes of key agreement protocols [10, section 2]. We discuss them below.

1. (Resistance to) known session keys. A protocol should still achieve its goals in the

face of an adversary who has learned session keys that were established in previous

sessions.

2. Perfect Forward Secrecy. The secrecy of short-term keys must not be affected by the

compromise of one or many long-term secrets.

3. (resistance to) unknown key-share. An agent A cannot be coerced into sharing a

session key with agent B without A’s knowledge, i. e., when A believes the key is

shared with agent E 5= B.

4. (Resistance to) Key Compromise Impersonation. The protocol’s ability to prevent

the adversary from impersonating other agents to an agent A if A’s long-term secrets

CHAPTER 5. MODELING PROTOCOLS 47

have been revealed.

5. Loss of information. Compromise of other information that would not ordinarily be

available to the adversary does not affect the security of the protocol.

6. Message independence. Individual flows of a protocol run between two honest agents

are unrelated.

5.5 IKE Protocol Models

So far, we covered general simplifications and abstractions. In this section we describe our

approach to not only master the complexity of large-scale security protocols but also to

describe them as executable models.

Following the strategy of Divide and Conquer we extracted numerous subprotocols from

the specifications of IKEv1 and IKEv2. First, we identified all the obvious candidates from

Chapter 4 such as the different phases, modes, and the various authentication methods.

We came up with 9 subprotocols for IKEv1 (two different modes, each of which support-

ing four authentication schemes, and quick mode) and four subprotocols for IKEv2 (three

authentication methods and IKEv2’s phase 2 exchange). A crucial design choice facilitated

the separate modeling of phase 1 and 2: the keys established during phase 1 are treated as

(independent) pre-shared keys when used in phase 2. This not only allowed us to model

phase 1 and 2 independently but also facilitated the analysis of PFS. Second, whenever

one of the subprotocols specified optional message payload fields, we would create a new

subprotocol which does not include the optional fields (while keeping the original subpro-

tocol unchanged). Finally, we modeled additional subprotocols to cover the parts of the

specification which are open to interpretation. For example, it is not clear whether an im-

plementation of IKEv1’s public key main mode would encrypt the identity together with

the nonce ({|Ni, I |}
a
pk(R)), or separately (({|Ni |}

a
pk(R) , {| I |}a

pk(R))).

In the following, we give graphical descriptions of all the variants we derived from the

specifications. A brief description of their distinctive properties can be found in Tables 5.1-

5.4. We did not model IKEv1’s new group mode because the implications of changing the

Diffie-Hellman group are outside the scope of this thesis. We also excluded the informational

exchanges of both IKEv1 and IKEv2 from the scope because its purpose is unrelated key

exchange.

CHAPTER 5. MODELING PROTOCOLS 48

Role: Init Role: Resp

generate({CKYi , xi ,Ni})

HDR,PROPOSALS , α, {| I |}a
pk(R), {|Ni |}a

pk(R)

generate({CKYr , xr ,Nr})

HDR,PROPOSAL, β, {|R |}a
pk(I), {|Nr |}a

pk(I),HASHr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, [{|]HASHi [|}s
SKi

]

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private decryption key and both roles have the public encryption key of the respective
other role.

Figure 5.1: Protocol model of public key authenticated IKEv1 AM: Note that the initiator
could delay the computation of Zi and SKi if the last message is not encrypted (which is
optional).

Notation For the graphical representation of our protocol models we rely on the syntax

of Mauw and Bos [35]. All models contain two roles, the initiator (Init) and the responder

(Resp). Roles execute threads. Message exchange between the roles is illustrated with

labeled arrows, where the label denotes the message to be transmitted. Role actions, such

as the generation of fresh terms or state manipulation, are marked as boxes within the

thread. Finally, hexagons mark the security properties to be analyzed (cf.. Chapter 3).

Note that due to space constraints, agent names are abbreviated.

CHAPTER 5. MODELING PROTOCOLS 49

Role: Init Role: Resp

HDR,PROPOSALS

HDR,PROPOSAL

generate({CKYi , xi ,Ni})

HDR, α, {| I |}a
pk(R), {|Ni |}a

pk(R)

generate({CKYr , xr ,Nr})

HDR, β, {|R |}a
pk(I), {|Nr |}a

pk(I)

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, {|HASHi |}s
SKi

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

HDR, {|HASHr |}s
SKr

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private decryption key and both roles have the public encryption key of the respective
other role.

Figure 5.2: Protocol model of public key authenticated IKEv1 MM

CHAPTER 5. MODELING PROTOCOLS 50

Role: Init Role: Resp

generate({CKYi , xi ,Ni})
state({ki ← prf(Ni ,CKYi)})

HDR,PROPOSALS , {|Ni |}a
pk(R), {|α |}

s
ki

, {| I |}s
ki

generate({CKYr , xr ,Nr})
state({kr ← prf(Nr ,CKYr)})

HDR,PROPOSAL, {|Nr |}a
pk(I), {|β |}

a
kr

, {|R |}s
kr

,HASHr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, [{|]HASHi [|}s
SKi

]

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private decryption key and both roles have the public encryption key of the respective
other role.

Figure 5.3: Protocol model of the revised version of public key authenticated IKEv1 AM

CHAPTER 5. MODELING PROTOCOLS 51

Role: Init Role: Resp

HDR,PROPOSALS

HDR,PROPOSAL

generate({CKYi , xi ,Ni})
state({ki ← prf(Ni ,CKYi)})

HDR, {|Ni |}a
pk(R), {|α |}

s
ki

, {| I |}s
ki

generate({CKYr , xr ,Nr})
state({kr ← prf(Nr ,CKYr)})

HDR, {|Nr |}a
pk(I), {|β |}

s
kr

, {|R |}s
kr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, {|HASHi |}s
SKi

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

HDR, {|HASHr |}s
SKr

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private decryption key and both roles have the public encryption key of the respective
other role.

Figure 5.4: Protocol model of the revised version of public key authenticated IKEv1 MM

CHAPTER 5. MODELING PROTOCOLS 52

Role: Init Role: Resp

generate({CKYi , xi ,Ni})

HDR,PROPOSALS , α,Ni , I

generate({CKYr , xr ,Nr})

HDR,PROPOSAL, β,Nr ,R,HASHr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, [{|]HASHi [|}SKi]

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Initiator and

responder possess pre-shared keys k(I,R) and k(R, I), respectively.

Figure 5.5: Protocol model of pre-shared key authenticated IKEv1 AM: Note that the
initiator could delay the computation of Zi and SKi if the last message is not encrypted
(which is optional).

CHAPTER 5. MODELING PROTOCOLS 53

Role: Init Role: Resp

HDR,PROPOSALS

HDR,PROPOSAL

generate({CKYi , xi ,Ni})

HDR, α,Ni

generate({CKYr , xr ,Nr})

HDR, β,Nr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, {| I ,HASHi |}s
SKi

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

HDR, {|R,HASHr |}s
SKr

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Initiator and

responder possess pre-shared keys k(I,R) and k(R, I), respectively.

Figure 5.6: Protocol model of pre-shared key authenticated IKEv1 MM

CHAPTER 5. MODELING PROTOCOLS 54

Role: Init Role: Resp

generate({CKYi , xi ,Ni})

HDR,PROPOSALS , α,Ni , I

generate({CKYr , xr ,Nr})

HDR,PROPOSAL, β,Nr ,R,SIGr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, [{|]SIGi [|}s
SKi

]

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private signature key and both roles have the public verification key of the respective
other role.

Figure 5.7: Protocol model of signature authenticated IKEv1 AM: Note that the initiator
could delay the computation of Zi and SKi if the last message is not encrypted (which is
optional).

CHAPTER 5. MODELING PROTOCOLS 55

Role: Init Role: Resp

HDR,PROPOSALS

HDR,PROPOSAL

generate({CKYi , xi ,Ni})

HDR, α,Ni

generate({CKYr , xr ,Nr})

HDR, β,Nr

state({Zi ← βxi ,
SKi ← KDF(Zi , . . .)})

HDR, {| I ,SIGi |}s
SKi

state({Zr ← αxr ,
SKr ← KDF(Zr , . . .)})

HDR, {|R,SIGr |}s
SKr

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private signature key and both roles have the public verification key of the respective
other role.

Figure 5.8: Protocol model of signature authenticated IKEv1 MM

CHAPTER 5. MODELING PROTOCOLS 56

Role: Init Role: Resp

generate({[xi],Ni})

HDR, {|H1 ,PROPOSALS ,Ni [, α][, I ,R] |}s
k(I ,R)

generate({[xr],Nr})

HDR, {|H2 ,PROPOSAL,Nr [, β][, I ,R] |}s
k(R,I)

HDR, {|H3 |}s
k(I ,R)

[state({Zi ← βxi],
SKi ← KDF(k(I ,R), [Zi] . . .)})

[state({Zr ← αxr],
SKr ← KDF(k(R, I), [Zr] . . .)})

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Initiator and

responder possess pre-shared keys k(I,R) and k(R, I), respectively, denoting the keys
established during phase 1.

Figure 5.9: Protocol model of IKEv1 QM

CHAPTER 5. MODELING PROTOCOLS 57

Role: Init Role: Resp

generate({xi ,Ni})

HDR,PROPOSALS , α,Ni

generate({xr ,Nr})

HDR,PROPOSAL, β,Nr

state({Zi ← βxi ,
SKi ← KDF(Zi . . .)})

HDR, {| I , [R,]AUTHi ,PROPOSALS ′ |}s
SKi

state({Zr ← αxr ,
SKr ← KDF(Zr . . .)})

HDR, {|R,AUTHr ,PROPOSAL′ |}s
SKr

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Figure 5.10: Protocol model of IKEv2’s standard exchange

CHAPTER 5. MODELING PROTOCOLS 58

Role: Init Role: Resp

generate({xi ,Ni})

HDR,PROPOSALS , α,Ni

generate({xr ,Nr})

HDR,PROPOSAL, β,Nr

state({Zi ← βxi ,
SKi ← KDF(Zi . . .)})

HDR, {| I ,PROPOSALS ′ |}s
SKi

state({Zr ← αxr ,
SKr ← KDF(Zr . . .)})

HDR, {|R,AUTHr ,EAP |}s
SKr

HDR, {|EAP |}s
SKi

HDR, {|EAPsuccess |}s
SKr

HDR, {|AUTHi |}s
SKi

HDR, {|AUTHr ,PROPOSAL′ |}s
SKr

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Each role has

a private signature key and both roles have the public verification key of the respective
other role.

Figure 5.11: Protocol model of IKEv2’s EAP exchange

CHAPTER 5. MODELING PROTOCOLS 59

Role: Init Role: Resp

generate({[xi ,]Ni})

HDR, {| I ,PROPOSALS ,Ni , [α,] |}s
k(I ,R)

generate({[xr],Nr})

HDR, {|PROPOSAL,N ′
r , [β,] |}s

k(R,I)

[state({Zi ← βxi],
SKi ← KDF(k(I ,R), [Zi] . . .)})

[state({Zr ← αxr],
SKr ← KDF(k(R, I), [Zr] . . .)})

Secure(SKi) Secure(SKr)

Alive Alive

Weakagree Weakagree

Available information Primes p, q, and group generator g of order q in Z∗
p . Initiator and

responder possess pre-shared keys k(I,R) and k(R, I), respectively, denoting the keys
established during phase 1.

Figure 5.12: Protocol model of IKEv2’s CREATE CHILD SA exchange

C
H

A
P

T
E

R
5
.

M
O

D
E

L
IN

G
P

R
O

T
O

C
O

L
S

60

Mode i Pid Encrypt
last msg

Comments

AM 1 ikev1-sig-a1 × -

AM 2 ikev1-sig-a2 " -

AM 3 ikev1-sig-a-perlman1 × Includes a fix suggested by Perlman
and Kaufman to guarantee the initia-
tor’s anonymity even in the presence
of an active adversary. The respon-
der’s anonymity is guaranteed only
for passive attackers.

AM 4 ikev1-sig-a-perlman2 " Includes the same fix as above.

MM 5 ikev1-sig-m - -

MM 6 ikev1-sig-m-perlman - Includes a fix suggested by Perlman
and Kaufman to provide anonymity
for the initiator in the presence of an
active adversary.

Table 5.1: Variants of IKEv1 signature authenticated message exchanges: the column “Encrypt last msg” only is relevant
for AM exchanges and indicates whether the last message is encrypted or not (doing so is optional according to the
specification).

C
H

A
P

T
E

R
5
.

M
O

D
E

L
IN

G
P

R
O

T
O

C
O

L
S

61

Mode i Pid Encrypt
last msg

Separate
enc.

Comments

AM 7 ikev1-pk-a1 × " -

AM 8 ikev1-pk-a12 " " -

AM 9 ikev1-pk-a2 × × -

AM 10 ikev1-pk-a22 " × -

AM 11 ikev1-pk2-a × " Revised version of
public key based au-
thentication

AM 12 ikev1-pk2-a2 × × Revised version of
public key based au-
thentication

MM 13 ikev1-pk-m - " -

MM 14 ikev1-pk-m2 - × -

MM 15 ikev1-pk2-m - " Revised version of
public key based au-
thentication

MM 16 ikev1-pk2-m2 - × Revised version of
public key based au-
thentication

Table 5.2: Variants of IKEv1 public key authenticated message exchange: the column “Encrypt last msg” only is relevant
for AM exchanges and indicates whether the last message is encrypted or not. “Separate enc.” indicates the format used
to encrypt nonce and identity, e. g., whether ({|Ni |}

a
pk(R) , {| I |}a

pk(R)) or {|Ni, I |}
a
pk(R) is used.

C
H

A
P

T
E

R
5
.

M
O

D
E

L
IN

G
P

R
O

T
O

C
O

L
S

62

Mode i Pid Comments

AM 17 ikev1-psk-a -

MM 18 ikev1-psk-m -

MM 19 ikev1-psk-m-perlman Includes a fix suggested by Perlman and Kaufman to
provide anonymity for both endpoints.

QM 20 ikev1-quick Includes optional identities as well as optional Diffie-
Hellman tokens to support PFS.

QM 21 ikev1-quick-noid Includes optional Diffie-Hellman tokens only.

QM 22 ikev1-quick-nopfs Create additional IPSec SAs without support for
PFS. The optional identities are omitted as well.

Table 5.3: Variants of IKEv1 pre-shared key authenticated message exchange and QM

C
H

A
P

T
E

R
5
.

M
O

D
E

L
IN

G
P

R
O

T
O

C
O

L
S

63

Mode i Pid Comments

SIG 23 ikev2-sig " -

SIG 24 ikev2-sig2 × -

MAC 25 ikev2-mac " -

MAC 26 ikev2-mac2 × -

EAP 27 ikev2-eap " -

EAP 28 ikev2-eap2 × -

29 SM ikev2-sigtomac " The initiator authenticates itself us-
ing digital signatures while the re-
sponder is authenticated by using a
MAC. This variant stems from [26,
Section 2.15].

30 SM ikev2-sigtomac2 × The initiator authenticates itself us-
ing digital signatures while the re-
sponder is authenticated by using a
MAC. This variant stems from [26,
Section 2.15].

31 SM ikev2-mactosig " The initiator authenticates itself us-
ing a MAC while the responder is
authenticated by using digital signa-
tures. This variant stems from [26,
Section 2.15].

32 SM ikev2-mactosig2 × The initiator authenticates itself us-
ing a MAC while the responder is
authenticated by using digital signa-
tures. This variant stems from [26,
Section 2.15].

33 C ikev2-child - Includes optional Diffie-Hellman to-
kens to support PFS.

34 C ikev2-child-nopfs - Create additional IPSec SAs without
PFS support.

Table 5.4: Variants of IKEv2 message exchanges: the column “Optional identity” indicates whether the initiator transmits
the responder’s identity in message 3 or not.

Chapter 6

Analysis

In this chapter we use the symbolic security model of Chapter 3 to perform an extensive

security analysis of IKEv1 and IKEv2 using the models of Chapter 5. In our experiments

we automatically rediscover several attacks that were previously reported in the literature.

Moreover, we discover additional, previously unreported weaknesses and highlight, by es-

tablishing a security hierarchy after [6], the differences between IKEv1 and its successor,

IKEv2.

We proceed by presenting our approach in Section 6.1. Subsequently we describe redis-

covered attacks in Section 6.2, novel attacks in Section 6.3, and outline several undiscovered,

yet known vulnerabilities in Section 6.4. We conclude the analysis by establishing a security

hierarchy among IKEv1 and IKEv2.

Notational preliminaries All attacks presented throughout this chapter should work

on the minimal implementations (unless noted otherwise) and will be described textually

and graphically. For the graphical representation we again rely on the syntax of Mauw

and Bos [35]. Graphical attack descriptions are given in the form of a (property violating)

trace, e. g., Fig. 6.1. An attack trace typically consists of two threads, one of them being the

test thread. Both threads are executed by agents performing a certain role. For example,

in Fig. 6.1(a), Alice performs the initiator role and Bob performs the responder role. If

partnering is relevant for the attack, the partner relationship is expressed in the thread

header. Agent actions, e. g., the generation of terms, are denoted as boxes containing event

identifiers from Definition 1. Due to space constraints we dispense with marking state

content unless it is essential to the understanding of the attack. A send event is indicated

64

CHAPTER 6. ANALYSIS 65

(a) A trace of the (original) CR protocol
Thread 1

Initiator: Alice
(initiating CR with Bob)

A partner

Thread test

Responder: Bob
(responding to Alice)

generate({na})

state({na})

A,B ,na

state({na , {|A,na |}a
sk(B)})

{|A,na |}a
sk(B)

Weakagree

(b) A trace of the (modified) CR protocol
Thread test

Initiator: Alice
(initiating the CR
protocol with Eve)

Thread 1

Responder: Bob
(responding to Alice)

Not a partner

generate({na})

state({na})

na

state({na , {|A,na |}a
sk(B)})

{|A,na |}a
sk(B)

Alice{|E ,na |}a
sk(E)

Adv

Weakagree

Figure 6.1: Two examples of CR execution traces

by an outbound arrow from the sender where the label denotes the message to be sent

(message payload, except for identities, appears in lower-case). Conversely, a recv event is

expressed as an inbound arrow. A solid arrow from sender to receiver indicates that the

adversary did not tamper with the message in any way. Redirection of messages by the

adversary is expressed with dashed arrows. An arrow pointing to nowhere indicates that

the adversary blocked or intercepted the message (the intended recipient is given at the

arrow tip). Message injection is expressed as arrows which originate from Adv. Finally,

hexagons mark the property to be analyzed. Note that due to space constraints, we often

abbreviate agent names in messages.

6.1 Approach

6.1.1 Settings

Tool selection We performed all our experiments using the automatic protocol verifi-

cation tool Scyther [15] (version id: scyther-compromise-0.5). Scyther, on a high level,

operates as follows. When given a protocol description as input, it infers from it the system

which describes the behavior of agents in the context of an adversary. It then explores

CHAPTER 6. ANALYSIS 66

the state space within that system and verifies a number of runs, bounded or unbounded,

using a symbolic backwards search based on patterns [16]. By default, Scyther explores

the system with a bounded number of runs (5), is guaranteed to terminate, and one of the

following three situations can occur. First, the tool can establish that a certain property

holds for the bounded system (but not necessarily for the unbounded). Second, the property

is false, resulting in an attack pattern. Third, the property can be proven correct for the

unbounded system.

Hardware selection To perform our large-scale experiments, we relied on the Brutus

Cluster, the central high-performance computing environment of ETH Zurich. Brutus is

a heterogeneous system with a total of 9912 processor cores in 1108 compute nodes. The

peak performance of Brutus is approximately 90 teraflops.

Additional infrastructure Because our verification tool itself is not optimized for a

multi-core environment, we built a special-purpose infrastructure which allowed us to gen-

erate and distribute all sorts of verification jobs over the cluster, eventually collecting their

output for later consolidation. For producing the security hierarchy, we relied on a suit of

Python scripts which interface with the Scyther Python API and come bundled with the

latest release. The scripts are available online at [1].

6.1.2 Adversary Models

In Chapter 3 we introduced a number of adversary-compromise rules, each of which can

be used to model the environments where a given protocol is expected to operate in. For

example, a protocol that is said to guarantee Perfect Forward Secrecy is expected to satisfy

session key secrecy even if the adversary has the power to corrupt long-term secrets after

the session has terminated. Any combination of adversary-compromise rules is called an

adversary-compromise model. The number of possible models is thus 27 = 128, where only

96 of them are relevant (25 = 32 models include LKRafter and LKRaftercorrect, where the latter

is implied by the former). Verifying every protocol in 96 distinct adversary-models would

have been infeasible in the amount of time we had planned for our experiments. Therefore

we restricted ourselves to the 10 adversary-models presented in Table 6.1. These models

were established in [7] as a result of unifying various existing adversary models from the

computational setting into the symbolic framework our work is based on.

CHAPTER 6. ANALYSIS 67

Model LKRothers LKRactor LKRafter LKRaftercorrect SKR SR RNR Origin

AdvEXT External Dolev-Yao

AdvINT " Dolev-Yao [32]

AdvCA " Key Compromise Impersonation [23]

AdvAFC " Weak Perfect Forward Secrecy [30]

AdvAF " " Perfect Forward Secrecy [19, 21]

AdvBR " " BR95 [9]

AdvCKw " " " " " CK2001-wPFS [30]

AdvCK " " " " " CK2001 [13]

Adve−CK1 " " " eCK [31]

Adve−CK2 " " " " eCK [31]

Table 6.1: Adversary-compromise models

6.1.3 Analysis

We analyzed all subprotocols from Chapter 5 with respect to the security goals from Chap-

ter 3; session key secrecy (S), aliveness (A), and weak agreement (W). Other authentication

properties such as non-injective agreement or non-injective synchronization were left out

of scope, mainly for the reason that they would have failed for all protocols because of

how we approximated the Diffie-Hellman exchanges (cf. Section 5.2). We then let Scyther

individually verify each security goal in each of the adversary models from Table 6.1. In a

first phase, we let Scyther compute an attack overview (cf. Table 6.2). For that, we limited

the time, Scyther had available to investigate a single trace, to 20 minutes, and the number

of runs to 4. The computation of Table 6.2 took less than 5 hours on Brutus (the rows

were computed independently). In a second phase, we let Scyther verify each protocol in

each adversary model without limiting investigation time. The purpose of this was two-

fold. First, we wanted to see whether our overview was complete. It was for the most part;

only about 5% of the attacks in Table 6.2 were discovered in the second verification phase.

Second, we wanted Scyther to produce the attack patterns, which we needed for further

analysis and were not produced in the first phase. Again, we limited the number of runs

CHAPTER 6. ANALYSIS 68

to 4. Now, the verification of a single goal took Scyther between several seconds and a few

hours.

6.2 Automatically Rediscovered Attacks

The IKE protocol family has been subjected to both formal and informal analysis over the

years and many researchers have revealed a variety of attacks. We were able to rediscover

most of these attacks in the context of our analysis.

6.2.1 Reflection Attacks

6.2.1.1 Reflection Attacks Against IKEv1 MM

Ferguson and Schneier report in [20] that IKEv1 MM is susceptible to a reflection attack

if the exchange is authenticated either with digital signatures or pre-shared keys. The

attack is carried out by a dishonest responder who assumes the identity of the initiator

and subsequently passes the authentication phase without being detected. They identify

the symmetry (with regard to swapping the identities of initiator and responder) of the

authenticators (cf. Definition 11) as the root cause of the attack. Under the assumption

that the initiator accepts her own identity as the identity of her peer, the two authenticators

are equal. Thus a reflection attack becomes possible. According to Boyd and Mathuria [12],

the assumption of Alice accepting her own identity as the identity of her peer may not be

unreasonable in a setting where only IP addresses are authenticated.

Our study rediscovers this type of reflection attack for both protocol variants as a

violation of weak agreement. We stress that the adversary does not obtain the session key.

We further observe that all phase 1 subprotocols of IKEv1 suffer from this flaw, which

contradicts the statement of Ferguson and Schneier. We will present the attack against

public key authenticated IKEv1 in Section 6.3.1.1 below.

6.2.1.2 A Reflection Attack Against IKEv1 Quick Mode

In [36], Meadows finds IKEv1 quick mode vulnerable to a reflection attack which includes

multiple threads of the same agent. The attack (cf. Fig. 6.2) proceeds as follows. Alice

wants to establish an IPSec SA with Bob and, for this purpose, initiates a quick mode

session with him (to avoid confusion, we refer to this as the test session). The adversary

CHAPTER 6. ANALYSIS 69

AdvEXT AdvINT AdvCA AdvAFC AdvAF AdvBR AdvCKw AdvCK AdveCK−1 AdveCK−2

S A W S A W S A W S A W S A W S A W S A W S A W S A W S A W

Signature authenticators

ikev1-sig-a1 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % ◦

ikev1-sig-a2 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % ◦

ikev1-sig-a-perlman1 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % ◦

ikev1-sig-a-perlman2 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % ◦

ikev1-sig-m ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % ◦

ikev1-sig-m-perlman ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % ◦

ikev2-sig % %

ikev2-sig2 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ % ◦ % % % ◦

Public key authenticators

ikev1-pk-a1 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % % ◦

ikev1-pk-a12 ◦ ◦ ◦ ◦ ◦ % ◦ % ◦ ◦ ◦ % % % % ◦

ikev1-pk-a2 % ◦ % % %

ikev1-pk-a22 % ◦ % % %

ikev1-pk2-a % % %

ikev1-pk2-a2 % % %

ikev1-pk-m % % % % % % % % % ◦ % % % % % %

ikev1-pk-m2 % % % % % % % % % ◦ % % % % % %

ikev1-pk2-m ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ % % % ◦

ikev1-pk2-m2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ % % % ◦

Pre-shared key authenticators

ikev1-psk-a % % % % % % % % %

ikev1-psk-m ◦ ◦ % % % ◦ ◦ ◦ % % % ◦ ◦ % % %

ikev1-psk-m-perlman ◦ ◦ % % % ◦ ◦ ◦ % % % ◦ ◦ % % %

ikev2-mac % % % % % % % % % %

ikev2-mac2 % % % % % % % % % %

Continued on next page

Table 6.2: Attacks found against IKEv1 and IKEv2 subprotocols: automatically rediscov-
ered attacks are marked with , new attacks are denoted by %.

CHAPTER 6. ANALYSIS 70

Table 6.2 – Continued from previous page

AdvEXT AdvINT AdvCA AdvAFC AdvAF AdvBR AdvCKw AdvCK AdveCK−1 AdveCK−2

S A WA S A WA S A WA S A WA S A WA S A WA S A WA S A WA S A WA S A WA

Other authenticators

ikev2-eap % % %

ikev2-eap2 % % %

ikev2-mactosig % % % % % % % % % % %

ikev2-mactosig2 % % % % % % % % % % %

ikev2-sigtomac % % % % % % % % % % %

ikev2-sigtomac2 ◦ ◦ % % % ◦ ◦ % ◦ % % % % ◦ % % % % %

Phase 2 subprotocols

ikev1-quick % % % % % % % % %

ikev1-quick-nopfs ◦ ◦ ◦ ◦ % % % ◦ ◦ % ◦ ◦ ◦ ◦ % % % % ◦ ◦ ◦ ◦ % ◦ ◦

ikev1-quick-noid ◦ ◦ ◦ ◦ % % % ◦ ◦ ◦ ◦ ◦ ◦ % % % ◦ ◦ ◦ ◦ % ◦ ◦

ikev2-child %

ikev2-child-nopfs %

intercepts her initial message and initiates another quick mode session with Alice (session

1), thereby impersonating Bob and replaying the previously intercepted message. Alice, in

session 1, replies with her second message. The adversary again intercepts this message and

redirects it to test, disguised as Bob’s reply. Finally, Alice finishes test by sending her last

message. The adversary intercepts this message and redirects it to session 1 so that Alice

can finish session 1. The end result is that Alice winds up thinking that she shares two keys

with Bob, whereas in fact she does not share any keys at all. As a matter of fact, Bob does

neither send nor receive a single message.

At first, we were not able to reconfirm this attack because of the way we modeled

(already established) shared keys within our framework: our first attempt was to model a

key shared between Alice and Bob as k(A,B), not reflecting the role assignment in the key.

For example, Alice, acting as initiator, would encrypt a message m for Bob, who is acting

as responder, as {|m |}s
k(A,B). Bob, on the other hand, would encrypt a message m′ for Alice

with the exact same key ({|m′ |}s
k(A,B)), even if he is performing the initiator role. The

consequence was that the adversary could not inject messages from one session into another

where the same agents were performing different roles. However, Meadows’ attack bases

on the assumption that a key shared between initiator Alice and responder Bob cannot be

distinguished from the key shared between responder Alice and initiator Bob. After we

CHAPTER 6. ANALYSIS 71

Thread test

Initiator: Alice
(initiating an IKE
session with Bob)

Thread 1

Responder: Alice
(responding to Bob)

Not a partner

generate({xa ,na})

HDR, {| h1 , proposals,na , α |}s
k(A,B)

Bob

HDR, {| h1 , proposals,na , α |}s
k(B,A)

Adv

generate({x ′
a ,n ′

a})

HDR, {| h2 , proposal ,n ′
a , α′ |}s

k(B,A)
Bob

HDR, {| h2 , proposal ,n ′
a , α′ |}s

k(B,A)
Adv

HDR, {| h3 |}s
k(A,B)

Bob

HDR, {| h3 |}s
k(B,A)

Adv

Alive

Figure 6.2: Reflection attack against the initiator of IKEv1 QM: Alice winds up thinking
that she shares two keys with Bob, whereas Bob did not even execute the protocol.

adopted our models to allow key equality of the form k(A,B) = k(B,A), we were able to

reconfirm the attack which presents itself as a violation of the aliveness property.

6.2.2 Proposal Attacks

The following attack exploits another weakness in the definition of IKEv1 authenticators. In

all adversarial environments, an attacker can influence the exchange such that Alice and Bob

agree on a weak set of cryptographic algorithms for their security associations which could

potentially be exploited by the adversary at a later stage. The problem exists because both

authenticators only include Alice’s proposal list but not Bob’s choice thereof. The attack

works as follows. Suppose that Alice sends a bunch of different security association proposals

in order of preference where the least preferred proposal provides only marginal security.

Regardless of what Bob chooses from Alice’s list, the adversary modifies Bob’s response

such that both eventually agree on the weakest possible security association. Neither Bob

nor Alice will detect the alterations and start using the newly negotiated SA, which is

considerably weaker than it should be. The attack was first described by Ferguson and

Schneier in [20] and works against all IKEv1 subprotocols. Note that this is an attack

CHAPTER 6. ANALYSIS 72

against (non-injective) agreement [33] and, although we explicitly excluded non-injective

agreement from our scope, we mention the attack for the sake of completeness.

6.2.3 Penultimate Authentication Flaws

Penultimate authentication is an authentication property introduced by Meadows in [36].

The property describes desirable behavior at the penultimate stage of the protocol in the

following sense: if Bob accepted a security association as being negotiated with Alice, then

Alice had also accepted the same security association (minus the keying material contributed

by Bob if that has not been sent yet). Meadows finds attacks against penultimate authen-

tication with signature authenticated as well as with public key authenticated subprotocols

of IKEv1 whereas subprotocols using pre-shared key satisfy the property. She further con-

jectures that subprotocols which use revised public key authenticators also achieve penulti-

mate authentication. Our results confirm these findings and additionally provide evidence

to support her statement regarding revised public key authentication. We also find that

penultimate authentication is violated for signature authenticated IKEv2 and by this con-

firm results from [37]. In our setting, penultimate authentication flaws manifest themselves

as a violation of the weak agreement property.

We will now have a closer look at two penultimate authentication failures. First, we

revisit the attack against digital signature authenticated IKEv1 AM, previously described

by Meadows. Second, we look at a scenario where the property is violated for signature

authenticated IKEv2.

6.2.3.1 Attack against IKEv1

In the following attack the adversary assumes the identity of Eve.1 The attack proceeds as

follows. Alice initiates an IKE session with Bob, using signature authenticated AM. The

adversary intercepts her initial message and substitutes Alice’s identity with the identity

of Eve, forwarding the result to Bob. Now Bob replies with his second message which he

sends to Eve. The adversary intercepts this message and forwards it to Alice. Alice believes

that Bob sent this message as a reply to her initial message and successfully completes the

protocol. Bob, on the other hand, thinks that it is Eve who initiated the protocol with him,

and when he receives a message that is signed by Alice he will reject it. Eventually Bob

1Recall that in our model, the adversary explicitly compromises Eve’s long-term secrets before or during
protocol execution.

CHAPTER 6. ANALYSIS 73

Thread test

Initiator: Alice
(initiating an IKE
session with Bob)

Thread 1

Responder: Bob
(responding to Eve)

Not a partner

generate({xa , ckya ,na})

ckya , proposals, α,na ,A

ckya , proposals, α,na ,E
Eve

generate({xb , ckyb ,nb})

ckya , ckyb , proposal , β,nb ,B , {| hashb |}a
sk(B)

ckya , ckyb , {| hasha |}a
sk(A)

Weakagree

Figure 6.3: Penultimate authentication attack against signature authenticated IKEv1 AM:
Alice accepts a security association as good for communication with Bob, while he eventually
aborts the protocol waiting for Eve’s last message.

times out as the last message which he expects to come from Eve will never be sent. The

problem now is that Alice accepted the SA as good for communication with Bob while Bob

aborted the protocol. We show the attack in Fig. 6.3.

6.2.3.2 Attack against IKEv2

The attack, depicted in Fig. 6.4, starts with Alice initiating an IKE session with Eve using

signature authenticated IKEv2. The adversary intercepts her message and forwards it to

Bob. Bob generates his reply (for Alice) according to the protocol. The adversary intercepts

Bob’s reply, masquerades as Eve and sends it to Alice. Alice authenticates her exchange

by computing autha. She subsequently derives the keying material for this session and

encrypts autha together with her identity and other payloads, sending the result to Eve.

The adversary intercepts and redirects this message to Bob. Meanwhile, Bob derives his

share of the keying material. When receiving Alice’s last message, he decrypts it and

verifies her signature. The verification succeeds and Bob accepts the security association as

shared with Alice. Next, he authenticates his part of the exchange using the cryptographic

algorithms of that SA. When Alice receives the last message from Bob, she rejects it because

she is expecting the message to come from Eve. Eventually, Alice times out because she

CHAPTER 6. ANALYSIS 74

Thread 1

Initiator: Alice
(initiating an IKE
session with Eve)

Not a partner

Thread test

Responder: Bob
(responding to Alice)

generate({xa , spia ,na})

spia , 0 , proposals, α,na

generate({xb , spib ,nb})

spia , spib , proposal , β,nb

[state({za ← βxa],
ska ← KDF(za . . .)})

spia , spib , {|A, autha , proposals ′ |}s
ska

state({zb ← αxb ,
skb ← KDF(zb . . .)})

spia , spib , {|B , authb , proposal ′ |}s
skb

Weakagree

Figure 6.4: Penultimate authentication attack against signature authenticated IKEv2: Bob
accepts a security association as good for communication with Alice, while she eventually
aborts the protocol waiting for Eve’s last message.

will never receive the expected message from Eve.

6.2.3.3 Discussion

A first observation is that both attacks, although exhibiting similar patterns, differ in the

role which is attacked. In the former, the vulnerability only exists for the initiator while

in the latter, the responder is being attacked. We briefly sketch why the respective other

roles are protected from being attacked. For signature authenticated IKEv1 AM, we assume

Alice initiating the protocol with Eve while it is Bob who responds to Alice. When Alice

then receives the first message from Bob, she will fail to verify his signature. Because

Eve will never reply, Alice eventually times out. As a consequence, Bob times out too.

Similarly, Bob will time out while waiting for an answer from Eve when executing signature

CHAPTER 6. ANALYSIS 75

authenticated IKEv2.

Second, we note that IKEv2 is only vulnerable if Alice does not include the identity of

the responder in her second message. The inclusion thereof is declared optional by the spec-

ification. By including the identity, Alice expresses her belief of who she is communicating

with. When Bob receives her message, he will realize that Alice believes to communicate

with Eve and abort the protocol.

6.2.4 Consequences of Penultimate Authentication Flaws

When analyzing the subprotocols in the environments AdvBR, AdveCK−2, AdvCKw and

AdvCK (see Table 6.2), we found numerous attacks against session key secrecy, all of which

could be thought of as variants of the following. The adversary acts as a man in the middle

and impersonates Eve towards one of the participants. Through clever manipulation of the

exchange the adversary subsequently establishes a scenario in which one of the participants

believes to share the security association with its honest peer, while the peer believes to

share the security association with Eve.

This scenario looks very similar to the penultimate authentication problems discussed

before. In fact, the attacks can be viewed as an immediate consequence of failing to achieve

this authentication property. We discover that all signature authenticated variants of IKEv1

are susceptible to a Session Key Reveal and Sessionstate Reveal attacks in the above scenario.

Public key authenticated exchanges are only vulnerable in the original exchange and if

nonces and identities are encrypted separately; the revised public key exchange provides

penultimate authentication and does not suffer from this type of attack. Below, we describe

attacks against the responder and the initiator of public key authenticated MM. The attacks

are depicted in Fig. 6.5 and Fig. 6.6, respectively.

Our results, at first, appear to be conflicting with statements made by Canetti and

Krawczyk in [13, 14] where the authors performed an extensive analysis of IKE in AdvCK .

A closer look, however, quickly reveals that the conflicts only arise because our analysis is

based on different assumptions. Namely, Canetti and Krawczyk proved the signature au-

thenticated variant secure under the assumption that all incomplete sessions are considered

as matching sessions and thus can not be compromised by the adversary (cf. first condition

of [14, Definition 2]). The variant relying on public key encryption is proved secure under

the assumption that the session key is not kept in local state. Both assumptions do not

apply in our setting.

CHAPTER 6. ANALYSIS 76

6.2.4.1 Attack Against the Responder

This attack requires an active adversary that can reveal the local state of an agent. The

adversary can compute SK on the basis of the revealed information (based on the algebraic

properties of modular exponentiation). The attack proceeds as follows. Alice initiates

a protocol session with (corrupted) Eve. The adversary intercepts Alice’s first message

and relays it to the target of the attack, Bob. Bob, who believes that Alice initiated

a protocol session with him, assumes the responder role and generates his response for

Alice. The adversary intercepts Bob’s reply, fakes its origin as to have come from Eve and

sends it to Alice. Alice computes her Diffie-Hellman token and encrypts both her name

and a fresh nonce with Eve’s public key. Next, she sends her second message to Eve.

The adversary intercepts this message, decrypts Alice’s nonce, re-encrypts it for Bob and

replaces {|A |}a
pk(E) with {|A |}a

pk(B). After receiving the second message, Bob computes his

DH token and encrypts his name and his nonce for Alice. The adversary intercepts Bob’s

next message and fakes its content such that Alice will accept it as to have originated from

Eve. We note that now both agents posses enough information to compute the shared

secret, which we assume they will do. To authenticate the exchange, Alice generates her

authenticator hasha and encrypts it with the shared key. We stress that up until now, the

attack progressed exactly as the penultimate authentication attack on the same protocol.

The adversary forwards the encrypted authenticator to Bob who decrypts and verifies it.

Next, Bob generates his authenticator and encrypts it with the shared key. Meanwhile, the

adversary reveals Alice’s session state (using Sessionstate Reveal). The adversary is now able

to construct SK herself. She intercepts Bob’s final message and substitutes {| hashb |}
s
skb

with her own authenticator {|hashe |}
s
ska, forwarding the result to Alice.

Discussion Contrary to the attacks presented in [36], the adversary, in the above scenario,

is able to let both peers finish their protocol executions. The difference is that Alice does not

time out while waiting for Eve’s message because the adversary is capable of constructing

it with the knowledge of the session key. The ability of the adversary to derive the session

key, however, bases on our assumption that all relevant information is kept in the local state

of Alice (and thus is revealed by Sessionstate Reveal).

We also note that if we perform public key encryption such that we get {|A,na |}
a
pk(B)

and {|B,nb |}
a
pk(A) for initiator and responder, respectively, then there is no attack on the

protocol.

CHAPTER 6. ANALYSIS 77

Thread test

Responder: Bob
(responding to Alice)

Thread 1

Initiator: Alice
(initiating an IKE
session with Eve)

Not a partner

generate({ckya})

ckya , saa

generate({ckyb})

ckya , ckyb , sab

generate({xa ,na})

ckya , ckyb , α,
{|A |}a

pk(E), {|na |}a
pk(E)

Eve
ckya , ckyb , α,

{|A |}a
pk(B), {|na |}a

pk(B)
Adv

generate({xb ,nb})

ckya , ckyb , β,
{|B |}a

pk(A), {|nb |}a
pk(A) ckya , ckyb , β,

{|E |}a
pk(A), {|nb |}a

pk(A)
Adv

state({za ← βxa ,
ska ← KDF(za . . .)})

ckya , ckyb , {| hasha |}s
ska

Session-state Reveal
The adversary learns ska

state({zb ← αxb ,
skb ← KDF(zb . . .)})

ckya , ckyb , {| hashb |}s
skb ckya , ckyb , {| hashe |}s

ska

Adv

Secure(skb)
Weakagree

Figure 6.5: Sessionstate Reveal attack against the responder of public key authenticated
IKEv1 MM: Bob believes to share the key skb with Alice, whereas Alice believes to be
sharing ska with Eve. The adversary compromises Bob’s secrecy claim by revealing Alice’s
state.

CHAPTER 6. ANALYSIS 78

6.2.4.2 Attack Against the Initiator

Attacking the initiator of public key authenticated IKEv1 MM is analogous to the attack

presented above. The only difference is the timing of when the responder’s session state

is compromised. Above, the adversary defers the compromise of Alice (e. g., the initiator)

until she sent her last message. In this attack the adversary must compromise Bob (e. g.,

the responder) before he receives message 5. Otherwise, Bob would recognize that instead of

running the protocol with Eve, he is running it with Alice; the adversary cannot construct

Eve’s authenticator without knowing skb.

Discussion The subtle difference is in the moment of the compromise. Were we allowing

the adversary to corrupt Bob only after he had received the last message, Bob would not

be able to complete the protocol since the last message to be received by Bob could not be

constructed by the adversary. However, if the implementation allows Bob to compute the

session key at the earliest possible stage, then this attack can be considered a weakness of

the protocol. It can even be considered more serious than the attack against the responder

presented above because the adversary, to attack a given target, has the liberty to relay

traffic to any node in the network, especially to those which have weak security in place.

6.3 Newly Discovered Attacks

6.3.1 Reflection Attacks

6.3.1.1 A Novel Reflection Attack Against IKEv1 MM

Our analysis reveals that IKEv1 MM is not only susceptible to reflection attacks if authen-

ticated with digital signatures or pre-shared keys (as reported by Ferguson and Schneier,

cf. Section 6.2.1), but also if authentication is based on public key encryption. To the best

of our knowledge, we are the first ones to report this kind of vulnerability. The attack (cf.

Fig. 6.7) proceeds as follows. Alice, in the initiator role, initiates the protocol by sending

her fresh session cookie ckya together with her SA proposal to the network. The respon-

der claims Alice’s identity and responds with his cookie ckyb = ckya and his SA selection.

Next, Alice proceeds by sending α together with a fresh nonce Na. The responder chooses

his Diffie-Hellman token as β = α and replies with (β,Nb) where Nb is a fresh nonce.

Subsequently, Alice computes hasha according to Definition 11 and authenticates her side

CHAPTER 6. ANALYSIS 79

Thread 1

Responder: Bob
(responding to Eve)

Not a partner

Thread test

Initiator: Alice
(initiating an IKE
session with Bob)

generate({ckya})

ckya , saa

generate({ckyb})

ckya , ckyb , sab

generate({xa ,na})
ckya , ckyb , α,

{|A |}a
pk(B), {|na |}a

pk(B)ckya , ckyb , α,
{|E |}a

pk(B), {|na |}a
pk(B)

Adv

generate({y ,nb})

ckya , ckyb , β,
{|B |}a

pk(E), {|nb |}a
pk(E)

Eve
ckya , ckyb , β,

{|B |}a
pk(A), {|nb |}a

pk(A)
Adv

state({zb ← αxb ,
skb ← KDF(zb . . .)})

Session-state Reveal
The adversary learns skb

ckya , ckyb , {| hasha |}s
ska

ckya , ckyb , {| hashe |}s
skb

Adv
ckya , ckyb , {| hashb |}s

skb

Secure(ska)
Weakagree

Figure 6.6: Sessionstate Reveal attack against the initiator of public key authenticated
IKEv1 MM: the adversary relays traffic to an insufficiently protected host to subsequently
reveal its session state.

CHAPTER 6. ANALYSIS 80

Thread test

Initiator: Alice
(initiating an IKE
session with Alice)

generate({ckya})
ckya , saa

ckya , ckya , sab

generate({xa ,na})

ckya , ckya , α, {|A |}a
pk(A), {|na |}a

pk(A)

ckya , ckya , α, {|A |}a
pk(A), {|na |}a

pk(A)

state({za ← αxa ,
ska ← KDF(za . . .)})

ckya , ckya , {| hasha |}s
ska

ckya , ckya , {| hasha |}s
ska

Weakagree

Figure 6.7: Reflection attack against public key authenticated IKEv1 MM: a fraudulent
responder claims Alice’s identity and passes the authentication phase by reflecting her own
authenticator.

of the exchange. The responder is now able to complete (and authenticate his share of)

the exchange by reflecting Alice’s last message because he computed the same key as her

(skb = ska) and thus

hashb = prf (skb, β, α, ckyb , ckya , proposals,A) ≡

prf (ska, α, β, ckya , ckyb , proposals,A) = hasha.

The attack presents a violation of weak agreement. Again, such an attack may be relevant

in a setting where only IP addresses are authenticated.

6.3.1.2 A (Familiar) Reflection Attack Against IKEv2’s Phase 2 Exchange

We discover that IKEv2’s phase 2 exchange suffers from the same reflection attack as its

predecessor. The attack (cf. Fig. 6.8) proceeds analogously to Section 6.2.1.2. Again, Alice

eventually believes that she shares two keys with Bob, whereas in fact she does not share

any keys at all. The attack is a violation of weak agreement and as such presents an

CHAPTER 6. ANALYSIS 81

Thread test

Initiator: Alice
(initiating an IKE
session with Bob)

Thread 1

Responder: Alice
(responding to Bob)

Not a partner

generate({xa ,na})

HDR, {| proposals,na , α |}s
k(A,B)

Bob

HDR, {| proposals,na , α |}s
k(B,A)

Adv

generate({x ′
a ,n ′

a})

HDR, {| proposal ,n ′
a , α′ |}s

k(B,A)
Bob

HDR, {| proposal ,n ′
a , α′ |}s

k(B,A)
Adv

Alive

Figure 6.8: Replay attack against the initiator of a IKEv2 phase 2 exchange: Alice winds
up thinking that she shares two keys with Bob, whereas Bob did not even execute the
protocol.

authentication flaw. Additionally, Alice has been denied a service, namely the setup of an

IPSec security association.

6.3.2 Consequences of Penultimate Authentication Flaws

Below, we show an attack on a responder session of IKEv2 authenticated with digital

signatures. This attack requires an active adversary that can reveal the local state of an

agent, and assumes that agents keep their inputs to the key derivation function in their local

state. We abstain from presenting a similar attack on the initiator session but note that it

proceeds analogous to the one against IKEv1 (cf. Fig. 6.6), i. e., the adversary reveals Bob’s

state just before he receives Alice’s encrypted authenticator.

The attack is launched as follows. Alice initiates the protocol with Eve. The adversary,

acting as man in the middle, relays this message to another agent, Bob. Bob’s reply is then

intercepted and forwarded to Alice, whereby the adversary impersonates Eve towards Alice.

Alice subsequently authenticates her share of the exchange by sending an encryption of her

authenticator together with her identity (among other data) to Bob. Bob decrypts the

message and verifies Alice’s signature. Meanwhile, the adversary compromises the session

CHAPTER 6. ANALYSIS 82

Thread 1

Initiator: Alice
(initiating an IKE
session with Eve)

Not a partner

Thread test

Responder: Bob
(responding to Alice)

generate({xa , spia ,na})

spia , 0 , proposals, α,na

generate({xb , spib ,nb})

spia , spib , proposal , β,nb

state({za ← βxa ,
ska ← KDF(za . . .)})

spia , spib , {|A, autha , proposals ′ |}s
ska

state({zb ← αxb ,
skb ← KDF(zb . . .)})

Session-state Reveal
The adversary learns ska

spia , spib , {|B , authb , proposal ′ |}s
skb

spia , spib , {|E , authe , proposal ′ |}s
ska

Adv

Secure(ska)

Weakagree

Figure 6.9: Sessionstate Reveal attack against the responder of a signature authenticated
IKEv2 session

state of Alice, thereby eventually revealing the session key. Finally, the adversary intercepts

Bobs last message, decrypts it and substitutes authb with the authenticator of Eve, authe.

The adversary re-encrypts the result, forwarding it to Alice.

6.3.3 Other Attacks Relying on State Corruption

In the following, we present two attacks which require an adversary capable of Sessionstate

Reveal or Random Reveal. The first attack violates session key secrecy and weak agreement

of public key authenticated IKEv1 AM. The second attack violates all security properties of

MAC authenticated IKEv2, signature authenticated IKEv2, and of all IKEv1 subprotocols

CHAPTER 6. ANALYSIS 83

that either rely on authentication based on digital signatures or public key encryption.

Session-state reveal The following attack (cf. Fig. 6.10) against the responder of public

key authenticated IKEv1 AM requires an adversary which is capable of Sessionstate Reveal.

Moreover, we assume that agents generate and keep their nonces in local memory during

protocol execution. The attack proceeds as follows. To attack Alice, who is acting as the

responder, the adversary initiates an aggressive mode exchange with her, thereby imper-

sonating Bob (γ = gxadv). Alice replies according to the protocol and sends her public

Diffie-Hellman value α together with {|A,na |}
a
pk(B). The adversary intercepts this message

and initiates another session with Bob. In doing so, the adversary injects {|A,na |}
a
pk(B).

Note that Bob also acts as a responder and therefore will never be a partner of Alice. Bob

decrypts Alice’s nonce and identity and stores both values in his local state. Subsequently,

the adversary corrupts the session-state of Bob using Sessionstate Reveal, thereby learning

Na. Next, the adversary computes

hashadv = prf(nadv , na, α
xadv , γ, α, ckyadv , ckya, proposals,B)

and sends it to Alice who finishes the protocol. The result is that Alice winds up believing

that she shares a session key with Bob whereas she does share it with the adversary. The

attack violates session key secrecy as well as weak agreement. Note that this attack even

works if the nonce is encrypted together with the identity.

Random reveal The weakest link of almost all IKE protocols is key derivation. The

problem there is that as soon as the private exponent of one of the participants is leaked,

the protocol is broken. For example, suppose that Alice and Bob establish an IKE SA via

signature authenticated IKEv2. If the adversary is able to learn the secret exponent y of

Bob (for example by using Random Reveal), then he or she can compute Z and, because all

other inputs to the key derivation function were exchanged unprotected, also derive the key

(see Fig. 6.11). Of course, the risk of such an exposure is relatively small but nevertheless

existent2.

All IKE subprotocols, except for pre-shared key authenticated IKEv1, exhibit vulnera-

bilities in AdveCK−1, the only adversary model which includes RNR. This is as expected;

2Think of flawed random number generators, etc.

CHAPTER 6. ANALYSIS 84

Thread test

Responder: Alice
(responding to Bob)

Thread 1

Responder: Bob
(responding to Alice)

Not a partner

ckyadv , proposals, γ,
{|B |}a

pk(A), {|nadv |}a
pk(A)

Adv

generate({ckya , xa ,na})

ckyadv , ckya , proposal , α,
{|A |}a

pk(B), {|na |}a
pk(B), hasha

B

ckyadv , proposals,
γ, {|A,na |}pk(B)

Adv

state({na}

Session-state Reveal
The adversary learns na

state({za ← γxa ,
ska ← KDF(za . . .)})

ckyadv , hashadv

Adv

Secure(ska)

Weakagree

Figure 6.10: Sessionstate Reveal attack against the responder of public key authenticated
IKEv1 AM: Alice ends up believing that she shares a session key with Bob whereas Bob
did not finish the protocol.

CHAPTER 6. ANALYSIS 85

Thread 1

Initiator: Alice
(initiating an IKE
session with Bob)

Thread test

Responder: Bob
(responding to Alice)

partner

generate({xa , spia ,na})

spia , 0 , proposals, α,na

generate({xb , spib ,nb})

spia , spib , proposal , β,nb

[state({za ← βxa],
ska ← KDF(za . . .)})

Random Reveal
The adversary learns xb

spia , spib , {|A, autha , proposals ′ |}s
skb

state({zb ← αxb ,
skb ← KDF(zb . . .)})

spia , spib , {|B , authb , proposal ′ |}s
skb

Secure(ska)

Figure 6.11: Random Reveal attack against the initiator of signature authenticated IKEv2

an adversary endowed with the Random Reveal capability is the only one allowed to com-

promise the test session and its matching session. The motivation for this capability stems

from a recent extension of the Canetti-Krawczyk security model where it is shown to be

possible to construct security protocols which achieve their goals even in an environment

where parts of the session state of partners may be exposed [31]. To minimize this risk of

exposure, LaMacchia et al. suggest that the public Diffie-Hellman token should be computed

as gH1(y,sk(B)), where H1 is a hash function, instead of solely relying on gy. Note that with

the knowledge of the private exponent of one of the agents, the adversary can simply block

traffic from and to that agent and complete the exchange with the test session, thereby also

jeopardizing the authentication goal of the protocol.

CHAPTER 6. ANALYSIS 86

Thread test

Initiator: Alice
(initiating an IKE
session with Bob)

generate({xa , spia ,na})

spia , 0 , proposals, α,na

B

spia , spiadv , proposal , β,nadv

adv

spia , spiadv , {|A, autha , proposals ′, tsi , tsr |}s
ska

B

spia , spiadv , {|B , authadv , proposal ′, tsi , tsr |}s
skadv

adv

Alive

Figure 6.12: Key Compromise Impersonation attack against the initiator of MAC authen-
ticated IKEv2

6.3.4 Key Compromise Impersonation

IKEv1, when authenticated with pre-shared keys, and IKEv2, when using MAC authen-

tication are vulnerable to Key Compromise Impersonation attacks. If the adversary is

in possession of a long-term secrets of Alice, he or she can impersonate other agents to

her. An example is depicted in Fig. 6.12. The attack requires an adversary capable of

LongtermKeyRevealactor . The attack violates aliveness and proceeds as follows. Before Alice

initiates MAC authenticated IKEv2 with Bob, the adversary compromises her long-term

secret k(A,B). With the knowledge of k(A,B) the adversary is able to produce all protocol

messages of Bob.

6.4 Other Known Attacks

Apart from session key secrecy, entity authentication, and integrity, there exist other secu-

rity properties which IKE has been analyzed for in the literature. Mainly, these properties

fall into two categories: identity protection and resource exhaustion. Properties in the

CHAPTER 6. ANALYSIS 87

former category include anonymity, i. e., an adversary cannot reveal the identity of the par-

ticipants during or after protocol execution, and deniability, i. e., a protocol participant A

cannot convince a third party that he or she has executed the protocol with B. The sec-

ond category includes all forms of Denial-of-Service attacks, such as state or computational

exhaustion.

Our analysis of IKE did not include such properties. Resource exhaustion was not

considered because it is currently out of scope of the Scyther tool. Identity protection, on

the other hand, was out of scope because our model does not yet support the formalization

of such properties. Therefore we could not reproduce the attacks discovered by Perlman

and Kaufman [39]. We mention them briefly for the sake of completeness. In signature

authenticated IKEv1 MM, Alice’s identity is exposed to an active attacker impersonating

Bob to Alice. The adversary will negotiate a session key with Alice and discover her identity

in message 5. However, the adversary is not able to complete the protocol since he or she

is unable to generate Bob’s signature in the last message. Perlman and Kaufman suggested

to move the payload of message 6 to message 4. This would expose the responder’s identity

to an active attacker which, as they argue, is less critical than exposing the identity of

the initiator. We modeled their suggestion to analyze whether it influences secrecy or

authentication.

In pre-shared key authenticated IKEv1 MM, both identities are revealed, even to a

passive adversary. Bob cannot decrypt message 5, which reveals Alice identity, without

knowing who he is talking to, unless he derives this information from messages 1-4. Perlman

and Kaufman suggest to modify the exchange such that messages 5 and 6 are encrypted

with a temporary key which does not rely on the pre-shared secret but only on the agreed-

upon DH secret. Again, we modeled their suggestion to see whether it has implications on

secrecy or authentication.

6.5 Security Hierarchy

The establishment of a protocol-security hierarchy among IKE protocols enables the se-

lection of certain protocol variants based on implementation requirements and worst-case

expectations for adversaries in the application domain. In Fig. 6.14, we show the protocol-

security hierarchy for the session key secrecy property of IKEv1 and IKEv2 with respect to

all adversary models from Table 6.1. In Fig. 6.15, we show a protocol-security hierarchy for

CHAPTER 6. ANALYSIS 88

CKw
=

{LKRothers, LKRactor, LKRaftercorrect, SKR, SR}

CK

=

{LKRothers, LKRafter, SKR, SR}

eCK

=

{LKRothers, SKR, RNR}

eCK-2

=

{LKRothers, LKRactor, LKRaftercorrect, SKR}

&&%%%%%%%%%%%%%%%%%%%%%%%%%

AF

=

{LKRaftercorrect, LKRafter}

''&&&

BR

=

{LKRothers, SKR}

((''''''''''''''''''''

##(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

!!

AFC

=

{LKRaftercorrect}

!!

''&&&

CA

=

{LKRactor}

!!

INT

=

{LKRothers}

!!

EXT

=

{}

&&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!!

))))))))))))))))))))))))))))))

Figure 6.13: A hierarchy of adversary-compromise models

authentication properties. Hierarchies for security protocols were proposed in [6] and are

interpreted as follows. Each node in Fig. 6.14 and 6.15 corresponds to a set of protocols

and is annotated with a set of adversary models. For each adversary model in the set, it is

required that no attacks are found in this or any weaker model, and also that attacks are

found in all stronger models. The model hierarchy can be deduced from Table 6.1 and is

given in Fig. 6.13.

The security hierarchies in Fig. 6.14 and 6.15 can be generated automatically using

Scyther. We refer to [6] for details about the implementation. Below, we discuss some of

the relations among the protocols that were not covered by attack the descriptions above,

but are nevertheless worth mentioning.

IKEv1-PK-A1 vs. IKEv1-PK-A2 In the original version of public key authenticated

IKEv1 AM, the initiator sends his identity and nonce Ni as ({| I |}a
pk(R) , {|Ni |}

a
pk(R)). This is

CHAPTER 6. ANALYSIS 89

{ikev2-sig, ikev1-pk2-a, ikev1-pk2-a2,
ikev1-pk2-m, ikev1-pk2-m2, ikev2-eap, ikev2-eap2}

{CKw, CK}

{ikev1-psk-a, ikev1-psk-m, ikev1-psk-m-perlman,
ikev1-quick, ikev1-quick-noid, ikev2-child}

{CK, eCK−1}

{ikev1-pk-a2, ikev1-pk-a22}

{eCK−2}

{ikev2-mac, ikev2-mac2, ikev2-mactosig,
ikev2-mactosig2, ikev2-sigtomac}

{CA, CK},

!!

{ikev1-sig-a1, ikev1-sig-a2, ikev1-sig-a-perlman1,
ikev1-sig-a-perlman2, ikev1-sig-m, ikev1-sig-m-perlman,

ikev2-sig2, ikev1-pk-a1, ikev1-pk-a12, ikev1-pk-m,
ikev1-pk-m2, ikev2-sigtomac2}

{INT, CA, AF},

+++++++++++++++++++++++

!!

,,,

{ikev1-quick-nopfs}

{AFC}

!!

{ikev2-child-nopfs}

{INT }

!!

Figure 6.14: Security hierarchy among IKEv1 and IKEv2 protocol variants with respect to
session key secrecy

CHAPTER 6. ANALYSIS 90

(a) Aliveness

{ikev1-sig-a1, ikev1-sig-a2, ikev1-sig-a-perlman1,
ikev1-sig-a-perlman2, ikev1-sig-m, ikev1-sig-m-perlman,

ikev2-sig, ikev2-sig2, ikev2-eap, ikev2-eap2}

{CKw, CK, eCK−1}

{ikev1-pk-a1, ikev1-pk-a12,
ikev1-pk-a2, ikev1-pk-a22,
ikev1-pk2-a, ikev1-pk2-a2,
ikev1-pk-m, ikev1-pk-m2}

{CKw, CK}

))---------------------

{ikev1-psk-a, ikev1-psk-m,
ikev1-psk-m-perlman,ikev2-mac,

ikev2-mac2, ikev1-quick}

{CK, eCK−1}

((''''''''''''''''''''''

{ikev2-sigtomac, ikev2-sigtomac2,
ikev2-mactosig, ikev2-mactosig2}

{CK}

(('''''''''''''''''''''''

--)))))))))))))))))))))))

{ikev1-quick-noid, ikev1-quick-nopfs,
ikev2-child, ikev2-child-nopfs}

{},

!!

(b) Weak agreement
{ikev1-pk-a2, ikev1-pk-a22, ikev1-pk2-a, ikev1-pk2-a2,

ikev2-eap, ikev2-eap2}

{CKw, CK}

{ikev1-psk-a, ikev2-mac, ikev2-mac2,
ikev2-sigtomac, ikev1-quick}

{CK, eCK−1}

{ikev1-sig-a1, ikev1-sig-a2,
ikev1-sig-a-perlman1, ikev1-sig-a-perlman2

ikev1-sig-m, ikev1-sig-m-perlman,
ikev2-sig2, ikev1-pk-a1,

ikev1-pk-a12, ikev1-pk-m,
ikev1-pk-m2, ikev1-psk-m,

ikev1-psk-m-perlman, ikev1-quick-noid
ikev1-quick-nopfs, ikev2-child,

ikev2-child-nopfs, ikev2-sigtomac2}

{},

((........................

..//////////////////

Figure 6.15: Security hierarchy among IKEv1 and IKEv2 protocol variants with respect to
aliveness and weak agreement

CHAPTER 6. ANALYSIS 91

reflected in the models ikev1-pk-a1 and ikev1-pk-a12. Models ikev1-pk-a2 and ikev1-

pk-a22 reflect a modified version of the exchange where identity and nonce are transmitted

as {|X,nx |}
a
pk(Y) for sender X and receiver Y , and thereby follow principle 3 of [2]. Scyther

finds attacks against session key secrecy on the original variants for all models that are

strictly stronger than AdvINT , and attacks against weak agreement for all models. This

is due to the failure of the protocol to achieve penultimate authentication as discussed in

Section 6.2.3.

IKEv1-PK vs. IKEv1-PK2 The revised version of public key authenticated IKEv1

was originally proposed to reduce the amount of (expensive) public key operations. It turns

out that the revision also had an impact on the security of the protocol. Scyther only finds

attacks against secrecy on the revised version for AdveCK−1 whereas the original exchange

is vulnerable in all models stronger than AdvINT . The reason for this difference is that the

adversary, in order to launch an attack, needs to derive the key prf(Nx, CKYx) which is

impossible if the long-term secrets of the participants are uncompromised.

IKEv2-SIG vs. IKEv2-SIG2 We already discussed in Section 6.2.3 that the initiator

may optionally include the responder’s identity in the third message of signature signature

authenticated IKEv2. Scyther finds attacks on signature authenticated IKEv2 for all models

stronger than AdvINT if the optional field – which expresses the initiator’s belief in who

her peer is – is not included in message 3. This payload thus is security relevant and we

suggest that the specification is adapted to include the responder’s identity in message 3.

This also is along the lines with commonly accepted design principles for security protocols

(cf. [2, Principle 3]).

Chapter 7

More on Related Work

We previously presented the outcome of performing a fully automated security analysis of

IKE in various adversarial settings. Where it was appropriate, we discussed our results in

the context of related work. The purpose of this chapter is to relate our findings to other

related topics.

Unknown key share In [11], Blake and Menezes describe what they call unknown key-

share (UKS) attacks. In a UKS attack on a key agreement protocols, Bob ends up believing

that he shares a key with Alice, and although this is in fact the case, Alice mistakenly

believes the key is instead shared with Eve. This scenario appears to be very similar

to what we have discovered in Sections 6.2.4 and 6.3.2. A closer look reveals that the

scenario described by Blake and Menezes requires both participants to successfully complete

the protocol without the adversary dynamically compromising protocol participants. In our

situation, Alice can only complete because the adversary compromised her session key prior

to forging the last message from Eve. Kaliski [24], on the other hand, describes a UKS

attack as a scenario where the adversary coerces honest parties into establishing a secret

key where at least one of the parties does not know that the secret key is shared with the

other. If regarded from Kaliski’s perspective, then our attacks fall into the category of UKS

since the (although more powerful) adversary does coerce Alice and Bob into establishing

a secret key where one of them does not know that the secret key is shared with the other.

Protocol Composition Logic (PCL) In [40] Roy et al. scrutinized IKEv2 authenti-

cated with digital signatures using PCL. Their protocol model is comparable to ikev2-sig2

92

CHAPTER 7. MORE ON RELATED WORK 93

(cf. Chapter 5) in terms of exchanged messages. In Theorem 8, the authors state that

IKEv2 satisfies strong entity authentication as well as message integrity if Diffie-Hellman

exponentials are never reused. This statement contrasts with the attack reported in the

previous chapter, where digital signature authenticated IKEv2 fails to achieve Meadows’

penultimate authentication property. Finding the source of this difference in analysis is

outside of the scope of the thesis due to time limitations.

AVISPA As we have seen, penultimate authentication can be achieved for signature

authenticated IKEv2 if the initiator includes the recipient’s identity in the third message

of the exchange. Thus the fix of Mödersheim and Drielsma [37] which extends the protocol

by two messages to add key confirmation is not necessary. This not only reduces the risk

of cryptanalysis but also is much more efficient with respect to the number of exchanged

messages.

Mödersheim and Drielsma also analyzed the MAC authenticated variant of IKEv2 and

found no security flaw. This “contradicts” our findings where we show that MAC authenti-

cated IKEv2 is vulnerable to Key Compromise Impersonation. However, we must note that

their underlying security model did not allow for the expression of adaptive key compromise.

Finally, we note that Mödersheim and Drielsma (as well as Meadows) did not consider

penultimate authentication as a serious threat. Such an statement is perfectly reasonable

when implied by a security analysis in the (still standard) Dolev-Yao security model. How-

ever, we saw that as soon as we give the adversary more power, e. g., the ability to reveal the

session state of non-matching sessions, such an initially insignificant attack may suddenly

uncover serious deficiencies in protocol design.

Chapter 8

Conclusion

In this thesis, we have conducted the first formal analysis of IKEv1 and IKEv2 in a symbolic

framework which supports the notion of compromising adversaries. Our study has shown

that real-world security protocols, which often are complex and offer a lot of flexibility, can

be formally analyzed with the help of an automatic tool, such as Scyther. Our analysis

revealed several new weaknesses of IKE, the most important ones being:

Public key authenticated IKEv1 is vulnerable to the same reflection attack previously

discovered by Ferguson and Schneier on signature authenticated IKEv1 and IKEv1

authenticated with pre-shared keys.

Signature authenticated IKEv2 fails to achieve Meadows’ penultimate authentication

property. This finding is surprising because IKEv2 was aimed at resolving the many

security issues of its predecessor. It is even more surprising considering the fact that

the attack could easily be avoided by including a field which is marked optional in the

specification.

The IKEv2 subprotocol used to establish subsequent IPSec SAs from an existing IKE

SA is found vulnerable to a reflection attack which was already known to exist for its

predecessor and was also discovered by Meadows.

The stronger adversary models resulted in a number of attacks against session key se-

crecy which we consider as a consequence of lack of penultimate authentication. These

attacks particularly demonstrate that vulnerabilities previously considered harmless,

suddenly become a serious threat when the adversary is given more power; protocols

94

CHAPTER 8. CONCLUSION 95

that fail to achieve penultimate authentication are vulnerable to adversaries which

are allowed to compromise the state (or the session-keys for that matter) of agents in

non-matching sessions.

We also used Scyther to automatically establish a security hierarchy among the various

subprotocols of IKEv1 and IKEv2, based on the verification data we gained from the anal-

ysis. This not only visualizes the differences between IKEv2 and its predecessor but also

allow us to select protocol variants according to the (adversarial) environment we want to

use them in.

A lot of effort went into the design and development of the formal models of the Internet

Key Exchange protocol. We attempted to cover the full spectrum of the specification,

which, considering the enormous amount of flexibility such a specification has to offer and

the limitations of our model, was impossible. Nevertheless, we believe to have found a

reasonable degree of abstraction which is expressed through the quality of attacks we have

found. Moreover, we are convinced that our models are suitable as a basis for ongoing

research, also within other frameworks.

In the future, we hope to refine our models such that we can help implementors making

the right choice when it comes to the selection of security components, such as hardware

security modules (HSM). A first step would be to adapt the models such they clearly indicate

the type of data which is kept in local memory, and the data that is computed externally,

e. g., in a HSM.

Also, to increase the efficiency of the analysis, we would like to optimize the Scyther tool

for the operation in a high-performance environment such as the Brutus cluster. Especially

the verification of security properties in the presence of many adversary models could be

improved by allocating a process per claim and model.

An optimized verification tool would also have the benefit that we could perform a

similar analysis with respect to all 96 possible adversary-compromise models. This would

allow us to get a more fine-grained perspective on the security of IKE.

This thesis has focused on finding attacks on the Internet Key Exchange protocol. While

the documentation of attacks certainly helps in improving the security of a protocol, it

remains an unsatisfactory task.1 Our ultimate goal, therefore, is to come up with a system

that automatically generates proofs of security properties in a given symbolic model.

1It probably provides as little satisfaction as debugging a piece of software.

Appendix A

Additional Terminology

A.1 Perfect Forward Secrecy and Key Compromise Imper-

sonation

In an environment where we assume that any key can be compromised, be it by break-in,

bribery, theft, cryptanalysis, or simply loss, an important goal in the design of a security

protocol (especially key exchange) is to limit the harm caused by the exposure of crypto-

graphic keys. Contrary to short-term keys, where the damage of a compromised key can

be confined relatively well, long-term keys need special treatment. In the following we in-

troduce two attributes which describe the behavior of protocols in an environment of key

compromise and are well-known in the literature.

Perfect Forward Secrecy Consider a scenario where all session keys received by a Alice

are encrypted under Alice’s public key, then an attacker that breaks her private key also

learns all past, and even future, session keys that Alice shares with her peers.

While key revocation mechanisms can mitigate the risk of future attacks, there is no

such mechanism to protect past exchanges after the compromise has been detected. Thus,

security protocols must account for the protection of short-term keys at the time of their

exchange.

A security protocol that protects short-term keys from compromise even in case of the

exposure of long-term keys, is said to provide Perfect Forward Secrecy. This term was first

coined by Günther [21] and Diffie, van Oorshot, and Wiener [19].

96

APPENDIX A. ADDITIONAL TERMINOLOGY 97

The most well-known mechanism that provides perfect forward secrecy is the Diffie-

Hellman algorithm for key exchange where Alice’s private key is only used to sign the

exchange. In that case, a much better level of security is achieved as an adversary compro-

mising Alice’s private key will learn nothing about past communications.

Therefore, PFS is, in general, a very desirable property of a key exchange protocol.

However, as there is currently no other solution to provide this property except for the Diffie-

Hellman exchange, there is a computational cost to achieve it and hence it is worthwhile

asking if PFS is necessary in all cases and all scenarios.

Key Compromise Impersonation Contrary to PFS, which is a security property, the

term Key Compromise Impersonation refers to an authentication problem in conjunction

with the loss of long-term keys. If an attacker obtains the long-term private key of Alice

he or she obviously can impersonate Alice in any future conversation with any other agent.

A more subtle attack, however, exists if the attacker impersonates another agent towards

Alice and is able to establish a valid session with her. The consequences of this kind of

attack can be far more serious since Alice may not be aware of the fact that her long-term

private key has been compromised. Any protocol that prevents these kinds of attacks is

said to be KCI resilient.

Appendix B

Modeling Complex Security

Protocols with Scyther: Pitfalls

and Workarounds

Modeling security protocols in Scyther is pretty straight forward as long as they rely on prim-

itive cryptographic notions. As soon as these protocols comprise state-of-the-art crypto-

graphic primitives, e. g. Diffie-Hellman keys (gxy), things can get pretty ugly. This appendix

describes mechanisms to work around commutativity issues and protocol executability and

discusses pitfalls that result from implementing these mechanisms.

B.1 Diffie-Hellman Key Agreement

A vast majority of contemporary security protocols use some form of the Diffie-Hellman

algorithm to agree on session keys. Modeling such protocols pose some difficulties as the

commutative properties of exponentiation are not fully supported by Scyther. The problem

is best explained by means of an example.

Example 3 (Traditional Diffie-Hellman). Let Alice assume the role of the initiator in the

traditional Diffie-Hellman key exchange. To start the protocol, Alice randomly chooses her

secret exponent x ∈ Gp, where Gp is the multiplicative integer group modulo p with generator

g, and sends α = gx to Bob, who is acting as the responder. Similarly, Bob computes β = gy

and sends it to Alice. Finally, Alice and Bob compute their shared Diffie-Hellman key as

98

APPENDIX B. MODELING COMPLEX SECURITY PROTOCOLS WITH SCYTHER99

Zi = βx and Zr = αy, respectively.

To capture the commutative nature of modular exponentiation, we recommend the

definition of two functions g and h where the semantics are given as g(x) := gx and h(α, y) :=

αy. These functions enable the roles of the protocol model to “compute” their view of the

shared secret (Zi and Zr in the above example). We stress that, although semantically

equivalent, the two views are syntactically different because of Scyther operates in a free-

term algebra.

The equivalence Zi ≡ Zr can be expressed in Scyther by using Scyther’s ability to define

so-called helper protocols, denoted by a @-prefix. Such a protocol typically comprises a

single role that receives any message of the form h(Y, x) = h(g(y), x) and sends h(g(x), y) =

h(X, y). By this, it is ensured that whenever the adversary knows the session key of e. g.

the initiator, she also knows the responder’s semantic equivalent. The exact role definition

is given in Listing B.1.

Listing B.1: Helper protocol capturing the semantic equivalence of modular exponentiation

1 protocol @oracle (DH) {

2

3 / D i f f i e −Hellman orac l e : I f the adversary

4 i s in pos se s s ion o f gˆxy , he can ob ta in

5 gˆyx .

6 /

7 role DH {

8 var x , y : Nonce ;

9

10 r e c v !DH1(DH, DH, h(g (x) , y)) ;

11 send !DH2(DH, DH, h(g (y) , x)) ;

12 }

13 }

B.2 Message Complexity

Another problem shared by almost all modern security protocols is message complexity.

By message complexity we do not necessarily mean the ever increasing number of payloads

carried by individual messages, but rather the inherent complexity of the payload itself.

APPENDIX B. MODELING COMPLEX SECURITY PROTOCOLS WITH SCYTHER100

Compared to ancient security protocols, where message payloads merely consisted of sin-

gle atomic values (i. e. nonces, timestamps,etc.), messages of contemporary protocols often

carry composite values such as message authentication codes (MACs) or a signature com-

puted over a dozen of message fields. RFC4306, the document specifying the Internet Key

Exchange (IKE) protocol, for instance describes a single authentication payload (AUTH)

as

AUTH = {| SPIi , 0 ,SA, gx ,Ni ,Nr , prf (Kp, I) |}sk(I)

where SPIi is a 32bit integer value, SAi is a set of cryptographic algorithm identifiers, gxi

is a Diffie-Hellman half-key, Nx are nonces, Kp is a negotiated key and I denotes a protocol

role, e. g., the initiator. prf denotes a pseudo-random function and by {|M |}sk(I) we denote

the signature over M using secret key sk(I).

When specifying such a protocol in Scyther’s specification language, one quickly runs

into the problem that each message is larger than the screen can display. Additionally, iden-

tical payloads may occur in multiple messages, thus leaving the modeler with copying and

pasting message parts most of the time, which is a nightmare (!) regarding maintainability.

To improve maintainability, we recommend employing cpp, the preprocessor of the C

programming language. cpp allows the specification of macros by using the directive

#define <identifier> <replacement token list>

to replace identifier with replacement token list whenever it appears in the protocol

specification file. To simplify the aforementioned authentication payload AUTH we defined

the following macro:

#define AUTHi {SPIi, O, SA, g(i), Ni, Nr, prf(Kp, I)}sk(I)

and from thereon only used AUTHi whenever a message included this particular authentica-

tion payload.

B.3 Protocol Executability

An artifact of the way we recommend treating Diffie-Hellman key agreement in Scyther is

that the resulting protocol models may no longer be executable1. The reason for this is that

1Protocol executability can easily be checked with Scyther’s role characterization (from menu select
Verify→Characterize roles or hit F2)

APPENDIX B. MODELING COMPLEX SECURITY PROTOCOLS WITH SCYTHER101

messages being sent do not match the pattern of the recipient due to syntactic differences.

To work around this problem we recommend the following approach.

1. Prefix all message labels that possibly do not match their counterpart by ! (bang).

2. Define a helper protocol containing a single role which acts as an intermediary and

“handles” the matching as follows. For every pair of non-matching messages, the

role receives the message being sent, reformats it and subsequently sends it onto the

network so it can be received by the original recipient.

Listing B.2 (line 25ff) highlights the process.

Listing B.2: Protocol model for signature based IKEv2

1 /

2 @protocol I n t e rn e t Key Exchange Protoco l (IKEv2)

3 @subprotoco l S ignature au t h en t i c a t e d IKEv2

4 @reference RFC 4306

5 @variant Inc ludes op t i ona l pay loads

6 /

7

8 /

9 MACRO DEFINITIONS

10 Needs preproces s ing by cpp b e f o r e f ed to s c y t h e r

11 /

12

13 #de f i n e IKEV2

14 #i f n d e f ORACLE

15 #inc lude "common.h"

16 #end i f

17

18 #de f i n e AUTHii {SPIi , O, SA1 , g (i) , Ni , Nr , p r f (SKi , I)} sk (I)

19 #de f i n e AUTHir {SPIi , O, SA1 , Gi , Ni , Nr , p r f (SKr , I)} sk (I)

20 #de f i n e AUTHri {SPIi , SPIr , SA1 , Gr , Nr , Ni , p r f (SKi , R)} sk (R)

21 #de f i n e AUTHrr {SPIi , SPIr , SA1 , g (r) , Nr , Ni , p r f (SKr , R)} sk (R)

22

23

24 user type Number , Secur i tyAs so c i a t i on , T r a f f i c S e l e c t o r ;

25 const O: Number ;

APPENDIX B. MODELING COMPLEX SECURITY PROTOCOLS WITH SCYTHER102

26 const SA1 ,SA2 : S e cu r i t yAs s o c i a t i o n ;

27 const TSi , TSr : T r a f f i c S e l e c t o r ;

28

29 /

30 This r o l e s e r v e s as an ” orac l e ” to ensure the e x e c u t a b i l i t y o f the

31 pro t o co l by t ak ing care o f the problems t ha t a r i s e from our way o f

32 mode l l ing D i f f i e −Hellman keys .

33 /

34 protocol @executab i l i ty (E) {

35 #de f i n e Gi g (i)

36 #de f i n e Gr g (r)

37 role E {

38 var i , r , Ni , Nr , SPIi , SPIr : Nonce ;

39 var I , R: Agent ;

40

41 // msg 3

42 r e c v ! E1(E, E, { I , R, AUTHii , SA2 , TSi , TSr}SKi) ;

43 send ! E2(E, E, { I , R, AUTHir , SA2 , TSi , TSr}SKr) ;

44

45 // msg 4

46 r e c v ! E3(E, E, {R, AUTHrr , SA2 , TSi , TSr}SKr) ;

47 send ! E4(E, E, {R, AUTHri , SA2 , TSi , TSr}SKi) ;

48

49 }

50 #undef Gi

51 #undef Gr

52 }

53

54

55 protocol ikev2−s i g (I , R)

56 {

57 role I {

58 fresh i , Ni , SPIi : Nonce ;

59 var Nr , SPIr : Nonce ;

60 var Gr : Ticket ;

61

62

APPENDIX B. MODELING COMPLEX SECURITY PROTOCOLS WITH SCYTHER103

63 / IKE SA INIT /

64 send 1 (I , R, SPIi , O, SA1 , g (i) , Ni) ;

65 r e cv 2 (R, I , HDR, SA1 , Gr , Nr) ;

66

67 / IKE AUTH /

68 send ! 3 (I , R, HDR, { I , R, AUTHii , SA2 , TSi , TSr}SKi) ;

69 r e c v ! 4 (R, I , HDR, {R, AUTHri , SA2 , TSi , TSr}SKi) ;

70

71 / SECURITY CLAIMS /

72 cla im (I , SKR, SKi) ;

73

74 cla im (I , Alive) ;

75 c la im (I , Weakagree) ;

76

77 }

78

79 role R {

80 fresh r , Nr , SPIr : Nonce ;

81 var Ni , SPIi : Nonce ;

82 var Gi : Ticket ;

83

84

85 / IKE SA INIT /

86 r e cv 1 (I , R, SPIi , O, SA1 , Gi , Ni) ;

87 send 2 (R, I , HDR, SA1 , g (r) , Nr) ;

88

89 / IKE AUTH /

90 r e c v ! 3 (I , R, HDR, { I , R, AUTHir , SA2 , TSi , TSr}SKr) ;

91 send ! 4 (R, I , HDR, {R, AUTHrr , SA2 , TSi , TSr}SKr) ;

92

93 / SECURITY CLAIMS /

94 cla im (R, SKR, SKr) ;

95

96 cla im (R, Alive) ;

97 c la im (R, Weakagree) ;

98 }

99 }

APPENDIX B. MODELING COMPLEX SECURITY PROTOCOLS WITH SCYTHER104

B.4 Pitfalls

This section lists some of the pitfalls that we experienced when using the workarounds

described above.

Depending on the analyzed scenario, the maximum number of runs must be increased

to afford for the helper roles. For example, to analyze session key secrecy of IKEv2

(Listing B.2), a minimum of 5 runs is already consumed by the initiator, the responder,

the role ensuring executability and two additional roles which let the adversary derive

the semantic equivalence of certain Diffie-Hellman keys. To afford for two extra roles

which the adversary may actually “use” to attack the protocol, the bound needs to

be lifted to 7.

Using ! (bang) to prevent Scyther from reporting that message matching has failed

has the drawback that the property Nisynch (non-injective synchronization) always

fails because the property states that messages must be received exactly as they were

sent and as specified by the protocol which is not possible because equality checks are

based on syntactic equivalence in a free-term algebra.

References

[1] http://people.inf.ethz.ch/cremersc/scyther/IKE/. 41, 66

[2] M. Abadi and R. Needham, Prudent Engineering Practice for Cryptographic Protocols,

Software Engineering, IEEE Transactions on 22 (1996), no. 1, 6–15. 91

[3] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, Extensible Authenti-

cation Protocol (EAP), RFC 3748 (Proposed Standard), June 2004, Updated by RFC

5247. 37

[4] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis, and

O. Reingold, Just fast keying: Key agreement in a hostile internet, ACM Transactions

on Information and System Security 7 (2004), no. 2, 242–273. 32

[5] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-

kes Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von

Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron, The

AVISPA Tool for the Automated Validation of Internet Security Protocols and Applica-

tions, Computer Aided Verification (Kousha Etessami and Sriram K. Rajamani, eds.),

vol. 3576, Springer Berlin Heidelberg, 2005, pp. 281–285. 4

[6] D. Basin and C. J. F. Cremers, Degrees of Security: Protocol Guarantees in the Face

of Compromising Adversaries, Computer Science Logic, 24th International Workshop,

CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-

27, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6247, Springer, 2010,

pp. 1–18. 3, 20, 64, 88

105

http://people.inf.ethz.ch/cremersc/scyther/IKE/

REFERENCES 106

[7] , Modeling and Analyzing Security in the Presence of Compromising Adver-

saries, Computer Security - ESORICS 2010, Lecture Notes in Computer Science, vol.

6345, Springer, 2010, pp. 340–356. 2, 11, 14, 17, 19, 66

[8] M. Bellare, R. Canetti, and H. Krawczyk, Keying Hash Functions for Message Authen-

tication, Springer-Verlag, 1996, pp. 1–15. 25

[9] M. Bellare and P. Rogaway, Provably Secure Session Key Distribution: The Three

Party Case, Proceedings of the twenty-seventh annual ACM symposium on Theory of

computing (New York, NY, USA), STOC ’95, ACM, 1995, pp. 57–66. 67

[10] S. Blake-Wilson, D. Johnson, and A. Menezes, Key Agreement Protocols and Their Se-

curity Analysis, Proceedings of the 6th IMA International Conference on Cryptography

and Coding (London, UK), Springer-Verlag, 1997, pp. 30–45. 46

[11] S. Blake-Wilson and A. Menezes, Unknown Key-Share Attacks on the Station-to-

Station (STS) Protocol, 1999. 92

[12] C. Boyd and A. Mathuria, Protocols for Authentication and Key Establishment, 1 ed.,

Springer, September 2003. 68

[13] R. Canetti and H. Krawczyk, Analysis of Key-Exchange Protocols and Their Use for

Building Secure Channels, EUROCRYPT ’01: Proceedings of the International Con-

ference on the Theory and Application of Cryptographic Techniques (London, UK),

Springer-Verlag, 2001, pp. 453–474. 2, 3, 4, 67, 75

[14] , Security Analysis of IKE’s Signature-based Key-Exchange Protocol, In: Proc.

CRYPTO’02, Springer LNCS 2442, Springer-Verlag, 2002, pp. 143–161. 2, 3, 75

[15] C. J. F. Cremers, The Scyther Tool: Verification, Falsification, and Analysis of Security

Protocols, Computer Aided Verification, 20th International Conference, CAV 2008,

Princeton, USA, Proc., Lecture Notes in Computer Science, vol. 5123/2008, Springer,

2008, pp. 414–418. 2, 65

[16] , Unbounded Verification, Falsification, and Characterization of Security Pro-

tocols by Pattern Refinement, CCS ’08: Proceedings of the 15th ACM conference on

Computer and communications security (New York, NY, USA), ACM, 2008, pp. 119–

128. 66

REFERENCES 107

[17] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2,

RFC 5246 (Proposed Standard), August 2008, Updated by RFCs 5746, 5878. 6

[18] W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions on

Information Theory IT-22 (1976), no. 6, 644–654. 1

[19] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, Authentication and Authenticated

Key Exchanges, Des. Codes Cryptography 2 (1992), no. 2, 107–125. 10, 34, 67, 96

[20] N. Ferguson and B. Schneier, A Cryptographic Evaluation of IPsec, Tech. report, Coun-

terpane Internet Security, Inc, 2000. 4, 32, 34, 41, 68, 71

[21] C. G. Günther, An Identity-based Key-exchange Protocol, EUROCRYPT ’89: Pro-

ceedings of the workshop on the theory and application of cryptographic techniques on

Advances in cryptology (New York, NY, USA), Springer-Verlag New York, Inc., 1990,

pp. 29–37. 67, 96

[22] D. Harkins and D. Carrel, The Internet Key Exchange (IKE), RFC 2409 (Proposed

Standard), November 1998, Obsoleted by RFC 4306, updated by RFC 4109. 1, 10

[23] M. Just and S. Vaudenay, Authenticated Multi-party Key Agreement, Advances in

Cryptology — ASIACRYPT ’96 (Kwangjo Kim and Tsutomu Matsumoto, eds.),

Lecture Notes in Computer Science, vol. 1163, Springer Berlin / Heidelberg, 1996,

10.1007/BFb0034833, pp. 36–49. 18, 67

[24] B. S. Kaliski Jr., An Unknown Key-share Attack on the MQV Key Agreement Protocol,

ACM Transactions on Information and System Security 7 (2001), no. 3, 275–288. 92

[25] P. Karn and W. Simpson, Photuris: Session-Key Management Protocol, RFC 2522

(Experimental), March 1999. 24

[26] C. Kaufman, Internet Key Exchange (IKEv2) Protocol, RFC 4306 (Proposed Stan-

dard), December 2005, Updated by RFC 5282. 1, 10, 33, 37, 63

[27] S. Kent and K. Seo, Security Architecture for the Internet Protocol, RFC 4301 (Pro-

posed Standard), December 2005. 6, 8

[28] H. Krawczyk, SKEME: A Versatile Secure Key Exchange Mechanism for Internet,

Network and Distributed System Security, Symposium on 0 (1996), 114. 10

REFERENCES 108

[29] , SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and

Its Use in the IKE-Protocols., CRYPTO, 2003, pp. 400–425. 34

[30] , HMQV: A High-Performance Secure Diffie-Hellman Protocol, Protocol, Ad-

vances in Cryptology — CRYPTO ’05, LNCS 3621, Springer-Verlag, 2005, pp. 546–566.

18, 67

[31] B. LaMacchia, K. Lauter, and A. Mityagin, Stronger Security of Authenticated Key

Exchange, Proceedings of the 1st international conference on Provable security (Berlin,

Heidelberg), ProvSec’07, Springer-Verlag, 2007, pp. 1–16. 67, 85

[32] G. Lowe, Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR,

Proceedings of the Second International Workshop on Tools and Algorithms for Con-

struction and Analysis of Systems (London, UK), Springer-Verlag, 1996, pp. 147–166.

67

[33] , A Hierarchy of Authentication Specifications, IEEE Computer Society Press,

1997, pp. 31–43. 20, 72

[34] D. Maughan, M. Schertler, M. Schneider, and J. Turner, Internet Security Association

and Key Management Protocol (ISAKMP), RFC 2408 (Proposed Standard), November

1998, Obsoleted by RFC 4306. 9, 10, 22, 24

[35] S. Mauw and V. Bos, Drawing Message Sequence Charts with LATEX, TUGBoat 22

(2001), no. 1-2, 87–92. 48, 64

[36] C. Meadows, Analysis of the Internet Key Exchange Protocol Using the NRL Protocol

Analyzer, 1999. 2, 3, 32, 42, 68, 72, 76

[37] S. Moedersheim, P. H. Drielsma, et al., AVISPA Project Deliverable D6.2: Specification

of the Problems in the High-Level Specification Language. 2, 4, 72, 93

[38] H. Orman, The Oakley Key Determination Protocol, Tech. report, Tucson, AZ, USA,

1997. 10, 22

[39] R. Perlman and C. Kaufman, Key Exchange in IPSec: Analysis of IKE, IEEE Internet

Computing 4 (2000), no. 6, 50–56. 4, 29, 32, 87

REFERENCES 109

[40] A. Roy, A. Datta, and J. C. Mitchell, Formal Proofs of Cryptographic Security of

Diffie-Hellman-based Protocols, Tech. report, 2007. 2, 4, 92

[41] J. Zhou, Further Analysis of the Internet Key Exchange protocol, Digital Labs, 21 Heng

Mui Keng, pp. 1606–1612. 4, 34

